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1.0 OVERALL INTRODUCTION

Increasing interest in oil and gas development in the outer continental shelf (OCS) in the
eastern Beaufort Sea has elevated the need to collect ecological baseline data for fish and lower
trophic organisms in the Beaufort Sea waters of the United States and Canada. This study, “US-
Canada Transboundary Fish and Lower Trophic Communities,” (BOEM Report 2017-034),
offered an interdisciplinary approach to examine resources in the Beaufort Sea OCS.

The purpose of this study was to provide the Bureau of Ocean Energy Management (BOEM)
Alaska Outer Continental Shelf Region, the State of Alaska, Alaska and North Slope Borough
residents, and other interested stakeholders information regarding presence, abundance,
distribution, and habitat of fish and invertebrate (benthic and zooplankton) in the eastern
Beaufort Sea OCS lease area during the open water season. This project is the first time that US
Beaufort Sea continental slope at 2001000 m was extensively sampled by bottom trawl. The
information gained increases knowledge of the Beaufort Sea ecosystem and may be used to
inform decision making by federal and state resource managers. Historical data are limited,
especially in the eastern Beaufort Sea, where information about marine fish and lower trophic
communities is often extrapolated from data in the western Beaufort Sea. This research identified
fish species inhabiting the eastern Beaufort Sea study area and provided baseline information
about abundance, distribution, habitat, and seasonal/interannual variability of both fish and
invertebrates in this understudied lower trophic food web.

The US and Canada share the Beaufort Sea continental shelf and slope ecosystem. The
Beaufort Sea continental shelf extends from the Barrow Canyon in western Alaska eastward
across the US-Canada border and the Canadian Mackenzie River Canyon to the Canadian Arctic
Archipelago. In Barrow Canyon, the Alaska Coastal Current forms a coastal jet that sweeps
along the Beaufort Sea continental slope west to east in the absence of an easterly wind.
However, under the influence of a strong easterly wind (>6 m/s), the jet at the edge of the
Beaufort shelf reverses and flows westward (Pickart et al. 2011). US Beaufort Sea waters are
also influenced by the dynamics of the Mackenzie River, the 12" largest river in the world and
the fourth largest river in the Arctic. The Mackenzie River outflow plays a major role in the
ecology of the Beaufort Sea shelf, including the habitat and ecology of the fish species that range
across the US and Canada border. Therefore, we collaborated with Canada’s Department of
Fisheries and Oceans to sample the Mackenzie Canyon and westward to examine its influence on
the biology and ecosystem on the shelf and slope of our shared Beaufort Sea, particularly with
respect to fish and lower trophic levels. Our sample area was in central and east US Beaufort Sea
waters and within and east of the Mackenzie River Canyon in the western Canadian Beaufort Sea
waters, extending from 151.0°-136.7° W. The entire area was not sampled in every year.

The overall goal of this study was to implement and conduct marine fish surveys in the
Beaufort Sea OCS Planning Area in 2012, 2013, and 2014. General objectives are listed here and
specific objectives are addressed in each chapter of this report.

Objectives:

1. Collaborate with Fisheries and Oceans Canada (DFO) Central Arctic Region to
coordinate cruise times and sample collections (Chapter 2) and to share methods, data
formats, and results. There was an exchange of US and Canadian fish scientists on the
2013 cruises.
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2. Document and correlate baseline fish (Chapter 7) and invertebrate species (Chapters 4—
zooplankton, 5—infauna, 6—epibenthos) presence, abundance, distribution, and habitat in
the eastern Beaufort Sea OCS lease area during the open water season (Chapter 9).

3. Contribute samples and data to support Canadian development of a Beaufort shelf fish
and marine mammal food web model.

4. Test under-ice methods to provide baseline information for the ice-covered season
(Chapter 10).

5. Based on survey results, recommend a nested sampling design and refinements of survey
methods for future monitoring studies (Chapter 11).

6. Document the physical and chemical water characteristics that will contribute to a
collaborative effort to establish oceanographic boundary conditions in the eastern US
Beaufort Sea (Chapter 3).
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2.0 AT-SEA COLLECTION METHODS

Brenda Norcross, Bodil Bluhm, Lorena Edenfield, Sarah Hardy, Brenda Holladay, Russell
Hopcroft, and Katrin Iken

Open water shipboard surveys to collect zooplankton, infauna, epifauna, fish and associated
physical data were conducted during 2012, 2013, and 2014 from the central US Beaufort Sea
north of Harrison Bay into the eastern Canadian Beaufort Sea just east of the Mackenzie Canyon
(Figure 2.1). Spatial comparisons were made across the whole sample area from 151°-135° W.
The central (B) transects 151°-150° W were sampled 20 September—1 October 2012 and the
eastern transects 146°—135° W were sampled in 12 August—2 September 2013 and 17 August—2
September 2014. The groups of B and A transects and the TBS transect (in US waters) were
placed along lines of longitude. In Canadian waters, the MAC and GRY transects radiated to the
northwest from near the mouth of the Mackenzie River. Depths from 20-1000 m were sampled
across the study area. Sampling in US Arctic is marked by challenges such as minimizing impact
to subsistence hunting, securing research vessel access, and working with variable weather
conditions (Appendix A). Over the course of the project, field sample and analysis plans were
improved and refined by incorporating knowledge gained on the prior cruises. Protocols for gear
deployment and field processing of samples are found in Appendix B.

2.1 Physical Oceanography, Chemical Oceanography and
Chlorophyll-a

Oceanographic data were sampled along cross-shelf transects at stations ranging from 20—
1000 meters in depth from the Colville River to the Mackenzie River (Figure 2.1). Physical
oceanographic data were collected with a Seabird SBE25 CTD (2012 and 2013) or SBE911+
CTD (2014) and averaged into 1 m vertical intervals. Chlorophyll-a and macronutrient samples
were collected with a 6 Niskin bottle SBE5S5 (2012 and 2013) or 14 bottle SBE32SC (2014)
rosette attached to the CTD. Water samples for chlorophyll-a and macronutrient analysis were
taken at the surface, 10, 20, 30, 40, and 50 m; when stations were shallower than 50 m, the
deepest water sample was collected approximately three meters from the seafloor. During 2014,
the eight extra bottles available on the SBE32SC allowed additional nutrient sampling at 75, 100,
125, 150, 200, 300, 500, and 1000 m. Water for chlorophyll-a analysis was filtered under low
pressure onto Whatman GF/F filters and then frozen at -40 °C for post-cruise analysis following
Parsons et al. (1984). In 2013 and 2014, 20 um polycarbonate filters and Whatman GF/F filters
were used to size-fractionate cells. Nutrient samples were filtered with 0.45 pm cellulose-acetate
filters and frozen immediately at -40 °C for post-cruise analysis following the methods of
Gordon et al. (1993).
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Figure 2.1. Transects and stations sampled in the Beaufort Sea 2012-2014.
2012: B2, BX, B1

2013: A6, A2, A1, TBS, MAC, GRY
2014: A6, A5, A4, A2, A1, TBS

2.2 Benthic Environmental Characteristics

Benthic environmental characteristics were sampled using either a BX-650 Ocean
Instruments 0.25 m? box corer (2012) or a 0.1 m* double (2012) or single (2013, 2014) Van Veen
grab. Samples were collected at all sites where sampling was logistically feasible. One core or
grab per station was used for environmental sampling. In 2012, shallow stations on transect Bl
(20 and 100 m) were sampled using a double Van Veen grab in an effort to save time. Due to
weather delays, the nature of the substrate in some areas, and extensive troubleshooting required
to develop a successful deployment protocol, box core samples were only collected at a subset of
the planned stations. In 2013, grab samples were collected at stations <200 m depth, and, in
2014, most stations <350 m depth were successfully sampled.

The box corer and grab were deployed on a 9/16” cable from the aft deck. The corer or grab
was lowered to the bottom at a rate of ~30 m/min. Once the sampler was approximately 10 m
from the bottom, the winch was stopped to allow for any slack in the wire to settle. The
instrument was then lowered into the bottom at ~15 m/min, allowed to settle for a few minutes,
retrieved to ~10 m above the bottom, and subsequently hauled back at 30 m/min.

Each core or grab was evaluated upon retrieval through the top doors to ensure that the
sample was of good quality. Samples were rejected if the surface had been badly disturbed,
sediment was seen oozing out the doors, obstructions prevented complete closing of the jaws or
spade, or penetration was insufficient (i.e., filled mostly with water). When good cores were
obtained, the surface area was divided in half between infauna sampling (see below) and
assessment of environmental characteristics. The top water was siphoned off of each sample
using a piece of surgical tubing and/or a turkey baster. The core or grab surface was then
subsampled for multiple environmental parameters, as described in Section 3.4. The sampler was
thoroughly rinsed with seawater after sampling to remove any remaining sediment in preparation
for the next deployment.
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2.3 Zooplankton

In all years, smaller zooplankton were collected with a vertically-hauled paired 60-cm
diameter twin net fitted with 150-pm mesh at shallow stations. A Hydrobios Midi-Multinet (150-
um mesh nets; aperture: 0.25 m”) was used at stations greater than 50 meters depth to collect
vertically-stratified samples. Trigger depths for the Multinet were 50, 100, 200, 300, 500, and
1000 m. Larger, more mobile zooplankton were targeted with a 60-cm Bongo net fitted with
505-um mesh MARMAP nets hauled obliquely at approximately two knots. All simple nets were
outfitted with annually-calibrated General Oceanics flowmeters to estimate volume of water
filtered, while the Multinet employed integrated electronic flowmeters. Samples were preserved
in 5% buffered formalin and returned to the laboratory for processing.

2.4 Infauna

Infauna samples were collected from box cores (2012) and Van Veen grabs (2014) using the
same deployment protocols as described above for sediment sampling (Section 2.2). No infaunal
samples were collected in 2013. In 2014, up to three replicate grab samples were collected for
infaunal analysis at most stations <350 m. In 2012, half of each box core sample was allocated to
infaunal analysis and half for environmental sampling. A ruler was used to quantitatively split
the surface of the core and then a layer of sediment (5 cm deep) was removed using a spatula.

The top water was siphoned off each infauna sample and passed through a 500-um sieve to
collect any organisms that had been suspended from the sediment surface. Material retained on
the sieve was transferred to the same jar as the rest of the sample. All infaunal samples were then
processed on board the vessel using a 500-um sieve. Each sample was emptied into a bucket or
large tub and immediately filled with filtered seawater. The sample was gently stirred using a
gloved hand or long spoon in order to break up large clumps of sediment. The water was then
slowly poured over the sieve to collect organisms and remove as much sediment as possible prior
to preservation. The sieved sample was then transferred to a jar and preserved in 10% buffered
formalin for later laboratory processing.

2.5 Fish — Midwater Trawls

Pelagic fishes were collected during 2012 and 2013 using an IKMT with 3-mm mesh
throughout body and 1-mm mesh codend. The IKMT mouth was 1.5 m wide by 1.8 m high with
an effective fishing area of 2.137 m* when fished at 45° angle. A rigid diving vane kept the
mouth of the net open during towing and exerted a depressing force to stabilize the net vertically.
A time-depth recorder (TDR) was attached to the top of the IKMT frame and provided a post-
haul record of fishing depth. The IKMT was deployed from the stern and towed with the current
at a speed of 4 kts over ground in a double oblique tow. During the haul, the towing cable was
continuously released or retrieved at the rate of approximately 30 m/min (modified to maintain
the target 45° wire angle). The fishing goal was to examine the water column from the surface to
10 m above the seafloor or to 200 m at deeper sites. IKMT catches were quantifiable as volume
of water filtered. Catch per unit effort (CPUE) of IKMT hauls was calculated as (# fish x 1000) /
(haul distance in m x 2.137 m* net opening) and reported as # fish 1000 m™. Fishes were
typically large larvae or small juveniles; their numbers and weights were so small that biomass
per unit effort (BPUE) analysis was not conducted as it would not have been meaningful. We did
not fish the IKMT in 2014 because (1) the IKMT collected a limited number of species, (2) the
same station locations were to be sampled in eastern Alaska in 2014 as in 2013, (3) time
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limitations (needed to leave Alaska waters by 25 August 2014), and (4) the need for additional
wire time in 2014 to sample replicate hauls with the same beam trawl gear.

As our objectives were to sample pelagic fishes larger than those collected by the IKMT and
to obtain more Arctic Cod (Boreogadus saida) for a BOEM-funded genetics project, in 2014, we
deployed a single-warp Aluette net (AMT) that had a history of successfully capturing pelagic
fishes in the Gulf of Mexico and in the Chukchi Sea (DeSousa, North Slope Borough, pers.
comm.) near Utqiagvik (formerly known as Barrow). The mouth of this net was 8 m wide and 7
m high; net length was 18 m. The mesh was 42 mm at the mouth, 35 mm at the intermediary,
with a 12-mm codend liner, 25 m bridles and 41 x 91 cm (32 kg) doors. The width and height of
the mouth opening is variable while fishing. A SIMRAD depth sensor was attached above the
connection of the bridle and tow line to record real-time depth of the bridle. A TDR was attached
to the footrope to provide a post-haul record of maximum fishing depth. The AMT was deployed
and retrieved from the stern while the vessel was under way. It was towed with the current at a
speed of 3.54 kts over ground; the vessel speed was reduced if the width between the doors
varied notably or the net appeared to be dropping too slowly. During the haul, the towing cable
was continuously released or retrieved at the rate of approximately 30 m/min until the target
depth was reached, at which time, the net depth was adjusted by slowing or speeding the vessel.
Decreasing vessel speed caused the net to drop and increasing speed lifted the net. A winch was
used to haul the doors to the surface and the bridles and net were retrieved by hand. Throughout
deployment, water current, vessel direction, vessel speed, vessel position, and net depth were
recorded at least every 1-2 minutes. We reported the actual numbers of fishes captured.
Unfortunately, though the AMT net could be fished, without associated hydroacoustics to allow
it to target a patch of fish at a specific depth it captured very few fish.

2.6 Epifauna and Fish — Bottom Trawls

Three types of bottom trawls were used to capture fishes and epibenthic invertebrates: one
plumb staff beam trawl (PSBT-A), one Canadian beam trawl (CBT), and one otter trawl (OT).
OT was only used the first two years and PSBT-A and CBT were used in 2012, 2013, and 2014.
The OT had a 9.1-m headrope, 38-mm mesh in the body, 19-mm mesh in the codend, 27.5-m
bridles and 61 x 122 cm (23 kg) doors. The PSBT-A had a 4.7-m headrope and 4.6-m footrope,
7-mm mesh in body and 4-mm mesh as codend liner, and a rigid 3.05-m pipe forward of the
mouth, holding it open for an effective swath of 2.26 m, thereby allowing for accurate
quantifications of trawl effort by area swept (Gunderson and Ellis 1986). The PSBT-A was
modified according to Abookire and Rose (2005) by adding rollers to the footrope to exclude
boulders and rocky substrate and by securing the headrope to the beam in several places in order
to prevent fish escapement. Similarly, the CBT had a 4.2-m headrope and 4.2-m footrope, 10-
mm mesh in body and 6-mm mesh as codend liner, rigid 3-m beam forward of the net to hold the
mouth open and roller gear on the footrope to exclude boulders; its effective swath was 3 m. Use
of the two beam trawls will facilitate comparisons with other research in the Beaufort Sea. The
PSBT-A was used extensively during an August 2011 expedition in the central Beaufort Sea
(cruise BOEM-2011), and the CBT was used during cruises by Canada’s Department of
Fisheries and Oceans in the Canadian Beaufort Sea during 2012 and 2013.

All bottom trawls were deployed from the stern of the vessel at 30 m/min wire speed with a
ratio of 2-3 m of towing cable to 1 m of water depth. These nets were towed with the current at
approximately 1-2 kts speed. During 2013 and 2014, a SIMRAD depth sensor was attached
above the connection of the net bridle and tow line for real-time depth feedback; the SIMRAD
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was not available during 2012. A Star-Oddi TDR was attached near the footrope to provide a
post-haul record of maximum fishing depth. Haul duration was approximately 3—15 minutes
depending on the substrate and the real-time display on the SIMRAD depth sensor. Haul distance
was calculated using a known linear distance with paired timestamps, taken from the linear
distance between the positions of the vessel when towing cable was not being deployed or
retrieved, and the total time that the net was on the bottom based on TDR records; positions were
reported by the vessel’s Global Positioning System.

Some bottom hauls were considered to be solely qualitative if (1) the net was damaged
during the tow sufficiently to lead to loss of catch or to alter the net dimensions, (2) overfull
codend occurred, (3) a high proportion of pelagic rather than demersal animals was collected, or
(4) problems occurred with launching and retrieving the net such that the catch was
compromised. Qualitative hauls were included in biodiversity analysis but not for quantitative
analyses.

Generally 100% of the catch was sorted for fishes. If the catch was large enough that
subsampling of fishes or invertebrates was required, the total catch was mixed to provide an
unbiased, representative, volumetric subsample. We used area swept CPUE for catches by
PSBT-A and CBT, which were quantifiable by area during 2013 and 2014 because towing swath,
distance fished, and bottom contact duration were known. CPUE of PSBT-A and CBT catches
was calculated as (# fish x 1000) / (haul distance in m x 2.26 m net swath) and reported as # fish
1000 m™. BPUE was reported as grams fish 1000 m™. OT doors do not maintain a static distance
apart during a haul, but instead move together and apart with changes in vessel speed and
su‘tl)strate. Thus, the CPUE for OT hauls was linear distance towed and reported as # fish 1000
m .

Trawling conducted in 2012 was affected by logistical issues that made CPUE and BPUE
calculations unreliable. First, the trawling wire was heavier than previously used for bottom
trawls, resulting in the net settling on the bottom faster than expected. Second, SIMRADs did not
function for the duration of the 2012 cruise, so a real-time display of the net behavior was
unavailable. Finally, the TDR sensors had multiple malfunctions that resulted in an inability to
record the trawl duration with any confidence. As a result, many hauls were designated as
qualitative only and cannot be used for CPUE and BPUE calculations. However, to allow
comparisons among all three years, proportional catch was calculated for each haul for all three
years by expressing each species and length class as a percentage of all fish captured in each
haul.

2.7 Standardizing Effort

For comparison among samples, catches were standardized to a unit of effort specific to the
sampling gear used. Zooplankton was expressed as individuals m™ and mg dry-weight (DW) m™.
Infauna was standardized to individuals m™ Fish and epibenthos BPUE and CPUE were
calculated, where possible, for each of the five types of nets that were used: PSBT-A, CBT, and
OT for bottom sampling, and IKMT and AMT for midwater sampling. The units of effort were
not the same among gears; therefore, values of CPUE and BPUE could not be compared among
gears. Beam trawl effective sample width of net and length of tow were known, so the measure
of effort was swath of tow for both CPUE (# 1000 m™) and BPUE (gm 1000 m™). Since
effective sample width is not constant when towing the OT and AMT, measure of effort is
limited to length of tow for both CPUE (# 1000 m™) and BPUE (gm 1000 m™) for these gear
types. IKMT catches were quantifiable as volume of water filtered for CPUE (# 1000 m™).
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3.0 HABITAT
3.1 Physical Oceanography

Russell Hopcroft

3.1.1 Introduction

The physical oceanography of the Beaufort Sea has a major influence on all life forms living
in this region (Hopcroft et al. 2008). Through its influence on circulation and nutrient supply, it
determines the primary productivity of the sea ice and pelagic algal communities (Gradinger
2009) and the habitat suitability for invertebrates and fish populations that support higher trophic
levels such as seabirds and marine mammals.

Physical measurements in the Beaufort Sea can be traced back nearly a century, though
access to the region was severely limited by the ice cover. Focused oceanography studies in the
Beaufort began after the construction of US icebreakers in the early 1940s. Initially, these Wind-
class (and later Glacier-class) icebreakers measured physical oceanography primarily to inform
the US Navy. From the Transboundary perspective, the studies of greatest relevance are those
that studied the physical, chemical and biological components of this system simultaneously.
Notable examples include studies from the USS Burton Island in 1950-1953 (Johnson 1956) and
by the Western Beaufort Sea Ecological Cruise (WEBSEC) program in 1971-1972 (Hufford et
al. 1974). The Outer Continental Shelf Environmental Assessment Program (OCSEAP) sampled
the region in the late 1970s and early 1980s (Barnes et al. 1984) and was followed by additional
studies (Aagaard et al. 1989). Beginning this century, research activity has expanded
considerably with the NSF-ONR sponsored Shelf-Basin Interaction (SBI, 2001-2004) program
examining shelf break processes in the western Beaufort Sea and a focus on the Mackenzie Shelf
River by the Canadian Arctic Shelf Exchange Study (CASES-2002-2004). Most recently,
BOEM’s Central Beaufort, Transboundary, and COMIDA programs have addressed the region
between those study areas.

The physical oceanography of the Beaufort has been recently reviewed and summarized
(Hopcroft et al. 2008, Grebmeier and Maslowski 2014). In brief, the Alaskan Beaufort Sea shelf
is ~80 km wide and extends ~500 km from Point Barrow to the Convention Line along the
Mackenzie Beaufort Sea shelf in the Canadian Exclusive Economic Zone (EEZ). Bottom depths
increase gradually from the coast to approximately the 80-m isobath and then plunge rapidly
toward the abyssal plain of the Canada Basin. Although the continental slope is highly
corrugated, the shelf is relatively smooth with little along-shelf variability in depth, except for
western and eastern boundaries formed by Barrow Canyon and Mackenzie Valley, respectively.

Historically, sea ice has covered much of the shelf throughout the year, although in recent
years most of the shelf has become ice-free from late July through early October. Beaufort ice
cover consists of two distinct components; freely-drifting pack ice over the middle and outer
shelf and the immobile landfast ice on the inner shelf. Landfast ice forms in October anchoring
to the coast, and then grows rapidly northward to eventually cover ~25% of the shelf area where
it remains through June (Barnes et al. 1984). Landfast ice becomes deformed offshore with
ridging that increases throughout winter (Tucker et al. 1979). Ice keels can gouge the seafloor
along the seaward edge of the landfast ice and form piles of grounded ice that disturb seafloor
habitats (Barnes et al. 1984).
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Beaufort shelf water properties are controlled by this annual sea-ice cycle and inflows from
its oceanic and coastal boundaries (Weingartner et al. 2005). During winter, temperatures are at
or near freezing throughout the shelf’s water column. While these near-freezing waters remain
on the shelf year-round, highly stratified plume temperatures can be 5-10 °C during late summer.
Seasonal variation in salitinity is even greater. Shelf salinities are typically between 32 and 33
during winter, but during the spring freshet, river waters can spread offshore beneath the landfast
ice in meter-thick layers where salinities can be less than 5. As the landfast ice detaches, plume
and ambient waters begin to mix, meltwater increases, and all are advected along the shelf and
across-shelf by instabilities or upwelling.

At broader scales, Beaufort waters reflect the influence of three distinct oceanic regimes plus
the coastal boundary. The coast includes the Colville River and numerous small arctic rivers that
enter the central and eastern portions of the Alaskan Beaufort Sea (Weingartner et al. 1998). The
first regime consists of Pacific Ocean waters that exit the Chukchi shelf through Barrow Canyon.
Depending on the time of year and regional winds, some of this outflow continues eastward in
the surface layer or as a subsurface current along the Beaufort shelf break (contributing to the
upper halocline of the Canada Basin), spreads westward or offshore in the Polar Mixed Layer
(PML), or rounds Pt. Barrow and moves onto the inner Beaufort shelf. The second oceanic
regime is the offshore boundary that includes the outer shelf and continental slope. Within the
upper 50 m, flow is westward as part of the wind-driven Beaufort Gyre carrying the cold, dilute
waters of the PML. Below this layer, flow is eastward over most of the slope but concentrated in
a narrow (~20 km wide) jet centered at ~170 m (Pickart 2004) with a mean core speed of 8 cm
s. This jet carries dense winter water from the Chukchi shelf and warmer, saltier Atlantic Water
(AW) upwelled from deeper regions. In offshore waters of approximately 200 m depth, eastward
flowing water of Atlantic origin predominates before transitioning slowly into Arctic Bottom
Waters. The third oceanic regime occurs over the Mackenzie shelf where year-round discharge
from the Mackenzie River dominates hydrographic properties. During the ice-free season, winds
can enhance upwelling at the shelf break, push offshore waters and jets far inshore, or push
Mackenzie shelf waters far westward.

3.1.2 Objectives

Given the observed complexity and variability in the Beaufort Sea and the lack of
contemporary measurements of physical oceanography through much of the central shelf, efforts
to understand its ecosystems require contemporaneous documentation of the physical
oceanographic state. Specifically, we proposed to:

* Define the physical structure (temperature and salinity) of the Beaufort shelf during

Transboundary surveys.
* Determine the relative importance of sea ice and riverine contributions to the
Transboundary survey locations.

3.1.3 Methods

Oceanographic profiles were conducted along cross-shelf transects at stations ranging from 20—
1000 meters in depth from the Colville River to the Mackenzie River (Figure 2.1). Physical
oceanographic data were collected with a Seabird SBE25 CTD (2012 and 2013) or SBE911+ CTD
(2014) that was calibrated both pre- and post-season. Instrumentation employed on the SBE25 was
rated to 600 m depth, while no relevant limitations existed for the SBE911+. The pre-cast soak, any
anomalous spikes, and the upcast were removed after data conversion and observations were
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averaged into 1 m vertical intervals as per manufacturer’s guidelines. Data were visualized using
Ocean Dataview. Water mass characterizations follow those of McLaughlin et al. (2005).

3.1.4 Results and Interpretation

We observed three primary vertically-layered water masses across the entire sampling
domain (Figures 3.1.1-3.1.3). The Polar Mixed Layer (PML) extended from the surface to
approximately 50 m and exhibited the widest range of temperatures and salinities both within
and across years when compared to other water masses. During summer, the PML typically
stratifies into an upper layer, freshened by sea melting ice that traps most of the solar energy,
overlying a saline sub-zero layer. Arctic Halocline Water (AHW) extended from 50 m to
approximately 200 m and was characterized by temperatures <0 °C. Atlantic Water (AW) began
between 200300 m and was characterized by high salinities (~34) and temperatures >0 °C. AW
reaches thermal maximum at 350400 m (Figures 3.1.4-3.1.6). Although the abruptness of
transition between AHW and AW varies somewhat, we focused the subsequent presentation on
the upper 200 m where the greatest changes occur. In 2012, the surface waters in the PML
exhibited temperatures of ~4 °C, averaging 2.46 °C in the upper 50 m (Figures 3.1.4, 3.1.7). In
the 2013 survey year, we observed extremely freshened conditions in the upper 10 m of the PML
(Figures 3.1.5, 3.1.8) with salinity reaching ~10 and temperatures ranging from -1-10 °C,
averaging 0.30 °C in the upper 50 m (Figures 3.1.5, 3.1.7). The 2014 survey year was noticeably
less freshened than 2013 (Figures 3.1.6, 3.1.8) with lowest surface salinities reaching ~20. In
2014, surface temperatures in the PML ranged from -1 to 9 °C averaging 0.48 °C in the upper 50
m (Figure 3.1.6, 3.1.7). Surface salinities were highest in 2014 (~30 on the shelf, averaging
30.54 in the upper 50 m), lowest in 2013 (~10, averaging 27.5 in the upper 50 m), and
intermediate in 2012 (averaging 29.34 in the upper 50 m) (Figure 3.1.8). Bottom temperatures
were generally < 0 °C on the shelf, with the exception of the 2012 field year when temperatures
on the shelf were above 0 °C (Figure 3.1.4, 3.1.9). Bottom salinity was generally lower on the
shelf and higher on the slope in all survey years (Figure 3.1.20). A data table reports surface and
deepest values of temperature, salinity and Sigma-t (Appendix C Table 1).

It is notable that the surface water heat in 2012 extends deeper than in subsequent years
suggesting stronger wind-induced mixing than in other years. The later sampling period during
2012 (nearly one month), when day-length and air temperatures were declining, should have
resulted in a net loss of surface heat compared to other years. This suggests either an overall
warmer year or, perhaps, a greater advection contribution of warmer waters from the Chukchi
due to the more western location of the stations sampled during 2012. In contrast, the similarity
of upper water column temperatures observed between 2013 and 2014 suggests similar seasonal
heating; however, the strong difference in salinity suggest a much greater and more westward
influence of the Mackenzie River discharge to our sampling domain in 2013 compared to 2014.
This remains true even when comparisons are limited to the same set of stations resampled in
those two years.
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Figure 3.1.1. Oceanographic profile from Transboundary 2012 in the Beaufort Sea. Water masses are
noted: PML — Polar Mixed Layer, AHW — Arctic Halocline Water, AW — Atlantic Water.
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Figure 3.1.2. Oceanographic profile from Transboundary 2013 in the Beaufort Sea. Water masses are
noted. PML = Polar Mixed Layer. AHW = Arctic Halocline Water. AW = Atlantic Water.
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Figure 3.1.3. Oceanographic profile from Transboundary 2014 in the Beaufort Sea. Water masses are
noted.PML = Polar Mixed Layer. AHW = Arctic Halocline Water. AW = Atlantic Water.
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Figure 3.1.4. Temperature and salinity sections along cross-shelf transects in the Beaufort Sea during Transboundary 2012.
Dates at each station: B2 26-28 Sep, BX 29-30 Sep, B1 21-29 Sep.
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Figure 3.1.5. Temperature and salinity sections along cross-shelf transects in the Beaufort Sea during
Transboundary 2013.
Dates at each station: A6 13—17 Aug, A2 17-20 Aug, A1 20-23 Aug, TBS 23-26 Aug, MAC 26-31 Aug,
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Figure 3.1.7. Surface temperature in the Beaufort Sea during Transboundary 2012—-14.
Dates: 21-30 September 2012, 13—-31 August 2013, 19-31 August 2014.
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Figure 3.1.8. Surface salinity in the Beaufort Sea during Transboundary 2012—14.
Dates: 21-30 September 2012, 13—31 August 2013, 19-31 August 2014.
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Figure 3.1.9. Bottom temperature in the Beaufort Sea during Transboundary 2012—-14.
Dates: 21-30 September 2012, 13—31 August 2013, 19-31 August 2014.
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Figure 3.1.10. Bottom salinity in the Beaufort Sea during Transboundary 2012-14.
Dates: 21-30 September 2012, 13—-31 August 2013, 19-31 August 2014.
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3.2 Chemical Oceanography
Russell Hopcroft

3.2.1 Introduction

Chemical oceanography within the Transboundary program was focused almost exclusively
on the macronutrients essential for phytoplankton growth (i.e., nitrate, phosphate, and silicate).
The distribution of nutrients is intricately tied to physical processes in the environment and the
microbial processes that recycle them after update by phytoplankton. In this sense,
macronutrients are the essential connection between physical, biological, and geological
processes in the environment.

In most marine environments, surface water nutrient concentrations are depleted during
spring/summer due to phytoplankton photosynthesis and are renewed during fall/winter when
photosynthesis declines and surface waters are mixed downward with nutrient rich deep waters
(Tremblay et al. 2008, Simpson et al. 2008). On the shelves, this seasonal mixing reaches bottom
waters where nutrients have been regenerated from the seafloor. Nutrient patterns can also be
modified by river input, particularly so by Mackenzie River in the Eastern Beaufort Sea
(Emmerton et al. 2008). However, in offshore waters, the strong density stratification typical of
Arctic waters greatly limits the depth to which mixing can occur and, therefore, the size of the
nutrient reservoir available. Lateral transport of dense nutrient-rich water formed on the shelves
during the fall freeze up period may be an important source of the nutrients to the basins
(Macdonald et al. 1987, 1989, Rudels et al. 1991).

As with previous physical oceanography surveys, access to the region for chemical
oceanography research has long been limited by ice cover — an impediment greatly reduced
during the past decade. In 1971-72, considerable research was conducted during the WEBSEC
cruises by the US Coast Guard (Hufford et al. 1974) and later under the auspices of OCSEAP.
The OCSEAP research is summarized in numerous technical reports, the most relevant of which
is Horner (1981), and much of this information is available online at National Centers for
Environmental Information (NCEI). Additional measurements of shelf break processes have
been made in the western Beaufort Sea with support from the NSF-ONR sponsored Shelf-Basin
Interaction (SBI: 2001-2004). Similarly, the area around the Mackenzie River inside the
Canadian EEZ has received significant attention by the Canadian Arctic Shelf Exchange Study
(CASES: 2002-2004). Much of the existing nutrient data throughout the Arctic has been
aggregated and synthesized (Codispoti et al. 2013), and an updated synthesis is underway;
however the central Beaufort remains a poorly covered region.

3.2.2 Objectives

Recent syntheses indicate that the distribution of macronutrients on the US Beaufort Shelf
has been poorly characterized (Codispoti et al. 2013). Improving such knowledge will provide
insights into the controls of primary production in this region. Specifically, we proposed to:

* Define the distribution of macronutrients concentrations of the Beaufort shelf during

Transboundary surveys.
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3.2.3 Methods

Nutrient samples were collected along cross-shelf transects at stations ranging from 20 to
1000 meters in depth from the Colville River to the Mackenzie River (Figure 2.1). Macronutrient
samples were collected with a 6 Niskin bottle SBES5 (2012 and 2013) or a 14 bottle SBE32SC
(2014) rosette attached to the CTD. Water samples for macronutrient analysis were taken at the
surface, 10, 20, 30, 40, and 50 m; when stations were shallower than 50 m, the deepest water
sample was collected approximately three meters from the seafloor. During 2014, the eight extra
bottles available on the SBE32SC allowed nutrient sampling at 75, 100, 125, 150, 200, 300, 500,
and 1000 m. Nutrient samples were filtered with 0.45-um cellulose-acetate filters and frozen
immediately at -40 °C for post-cruise analysis. The analyses were conducted at NOAA’s Pacific
Marine Environmental Laboratory using continuous flow autoanalyzers with segmented flow and
colorimetric detection following the methods of Gordon et al. (1993). Data were screened for
anomalous values and nutrient ratios, and then visualized using Ocean Dataview.

3.2.4 Results and Interpretation

Surface nitrate was generally depleted (and thus limiting to phytoplankton growth)
throughout the study region during all surveys, while phosphate and silicate were typically low
but non-limiting (Figures 3.2.1-3.2.14). During 2012 and 2013, when nutrient collection was
limited to 50 m, higher nitrate, phosphate, and silicate concentrations increased with depth
(Figure 3.2.15). Elevated surface nitrate in the freshened off-shelf waters of 2012 represents a
notable exception (Figures 3.2.1, 3.2.2). During 2013, we observed elevated silicate levels in
surface waters (Figures 3.2.3-3.2.8) with highest concentrations (~20 um) at stations closest to
the mouth of the Mackenzie River (Figures 3.2.7, 3.2.8), showing it is important source for this
diatom nutrient. In contrast, phosphate levels were very low in this freshened surface layer.
During 2013, there was indication of elevated nutrients near the sea bottom, a pattern made more
distinct by the addition of deeper nutrient sampling in 2014 (Figures 3.2.9-3.2.14). Elevated
nutrients near the bottom in conjunction with increases in ammonium are consistent with active
nutrient regeneration through bacterial activity.

The full water-column sampling in 2014 revealed that nitrate, phosphate, and silicate
concentrations reached peaks at depths of 150-200 m (Figure 3.2.16), indicating an AHW deep
nutrient pool. The deeper sampling also revealed that AW was noticeably more depleted for
phosphate and silicate than AHW. While phosphate:silicate ratios appear relatively stable across
depth, the distinctness of AW nitrate:phosphate and nitrate:silicate ratios are a clear indication of
different nutrient utilization and regeneration processes in the AW compared to the PML and
AHW layers.
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Figure 3.2.1. Macronutrient and chlorophyll-a concentrations across Transboundary 2012 Transect B2,
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Figure 3.2.3. Macronutrient and chlorophyll-a concentrations across Transboundary 2013 Transect A6,
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Final Report - Beaufort Transboundary Report BOEM 2017-034 - December 2017
58



BOEM 2017-34

3
N
3
3
§
8
S

&
s
k4
3
s
8
S

155°wW 150°W 145°W 140°wW

Transboundary 2013
Transect A2

Ocean Data View Ocean Data View
S G =_ = NN W o
S &0 © » O P

(S

Depth (m)

0
1
0.8
40 - 0.6
2
gr104
§
80 s 0.2
S

Ocean Data View

Distance (km)
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Figure 3.2.7. Macronutrient and chlorophyll-a concentrations across Transboundary 2013 Transect MAC,
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Figure 3.2.8. Macronutrient and chlorophyll-a concentrations across Transboundary 2013 Transect GRY,
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Final Report - Beaufort Transboundary Report BOEM 2017-034 - December 2017
63



BOEM 2017-34

&
s
k4
3
s
8
S

155°wW 150°W 145°W 140°wW

Transboundary 2014
Transect A6

Ocean Data View

0.8

0.6

0.4

0.2

Ocean Data View

Depth (m)
(S
Ocean Data View
R : S

Ocean Data View

0 20 40 60 80
Distance (km)

Figure 3.2.9. Macronutrient and chlorophyll-a concentrations across Transboundary 2014 Transect A6,
19-31 Aug.
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Figure 3.2.10. Macronutrient and chlorophyll-a concentrations across Transboundary 2014 Transect A5,
20-30 Aug.
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Figure 3.2.11. Macronutrient and chlorophyll-a concentrations across Transboundary 2014 Transect A4,
20-21 Aug.
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Figure 3.2.12. Macronutrient and chlorophyll-a concentrations across Transboundary 2014 Transect A2,
21-24 Aug.
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Figure 3.2.13. Macronutrient and chlorophyll-a concentrations across Transboundary 2014 Transect A1,
24-26 Aug.
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Figure 3.2.14. Macronutrient and chlorophyll-a concentrations across Transboundary 2014 Transect TBS,
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Figure 3.2.16. Macronutrient concentrations to 1000 m depth in the Beaufort Sea during Transboundary
2014.

3.3 Chlorophyll-a

Russell Hopcroft

3.3.1 Introduction

Using sunlight, carbon dioxide, and nutrients as fuel, phytoplankton create the biological
production at the base of the food chain that feeds various invertebrate consumers. In most
oceanographic studies, phytoplankton biomass is assessed by measuring the dominant
photosynthetic pigment, chlorophyll-a. Patterns of chlorophyll concentration provide an index of
food availability and productivity, both in time and space, for the food-web dependent upon this
production.

In the Arctic, phytoplankton biomass undergoes stronger seasonal cycles than observed in
other oceans. Phytoplankton growth begins in spring, in close association with the ice—water
interface, and accelerates within increasing solar irradiance and increasing transparency of the
sea-ice (Gradinger 2009). As the cycle progresses, algae is sluffed off in melting sea ice, seeding
and enhancing the rising water column production, although much of the sea ice biomass
ultimately falls to the seafloor as large mats. The contributions of ice algae to total primary
production range from a few percent in coastal regions (Hill et al. 2005) to 60% in the central
Arctic Ocean (Gosselin et al. 1997). Intense water-column blooms typically form within and
track the poleward progression of the marginal ice zone, giving way to lower biomass in open
water and during the summer (Carmack and Wassmann 2006). Thus, the duration of the
production period for chlorophyll is sensitive to the extent, thickness, and seasonal melt
dynamics of sea ice and the extent to which high chlorophyll can occur under sea-ice is still
unresolved (Arrigo et al. 2012). Not surprisingly, estimates of phytoplankton biomass also vary
widely depending on location, and it is generally believed that local nutrient re-mineralization on
the shelves sustain much higher biomass and primary production than over the basins (see Bates
et al. 2005). A pan-arctic synthesis of directly measured (i.e., extracted) and broad-scale satellite-
based chlorophyll measurements indicated that productivity in the Pacific Arctic has been
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increasing over the past 60 years, largely due to sea ice reduction (Matrai et al. 2013, Hill et al.
2017).

3.3.2 Objectives

Recent syntheses indicate that in situ estimates of chlorophyll on the US Beaufort Shelf are
sparse (Matrai et al. 2013, Hill et al. 2013). This presents challenges in understanding how to
scale up satellite observations that only integrate the upper several meters of the ocean.
Specifically, we proposed to:

* Define the chlorophyll concentrations in the upper 50 m of the Beaufort shelf during

Trans-boundary surveys.

3.3.3 Methods

Chlorophyll samples were collected along cross-shelf transects at stations ranging from 20 to
1000 meters in depth from the Colville River to the Mackenzie River (Figure 2.1). Water samples
were collected with a 6 Niskin bottle SBES5 (2012 and 2013) or a 14 bottle SBE32SC (2014) rosette
attached to the CTD concurrent with nutrient collection. Water samples for chlorophyll analysis were
taken at the surface, 10, 20, 30, 40, and 50 m; when stations were shallower than 50 m, the deepest
water sample was collected approximately three meters from the seafloor. Nutrient samples were
filtered with 0.45-um cellulose-acetate filters and frozen immediately at -40 °C for post-cruise
analysis. Water for chlorophyll-a analysis was filtered under low pressure onto Whatman GF/F filters
and then frozen at -40 °C for post-cruise analysis. In 2013 and 2014, 20-um polycarbonate filters and
Whatman GF/F filters were used to size-fractionate cells. Post-cruise analysis used acetone extraction
and the fluorometric acidification method as described in Parsons et al. (1984). Data were screened
for anomalous values and aberrant phacopigment concentration and visualized using Ocean
Dataview.

3.3.4 Results and Interpretation

Seawater chlorophyll-a concentration was generally low (rarely >5 and typically <l mg m")
throughout the region in all surveys (Figure 3.2.15). During 2012, chlorophyll was slightly
elevated over the shelf (Figures 3.2.1, 3.2.2), while, in 2013, it was most elevated in the
freshened surface layer (Figures 3.2.4-3.2.8). Concentrations were greatest during 2014 in the
most inshore waters (Figures 3.2.9-3.2.13), with a subsurface peak also occurring along the
incomplete TBS transect (Figure 3.2.14). Considered in conjunction with nutrient concentration,
these observations suggest that sampling occurred well after the seasonal phytoplankton bloom
and that phytoplankton productivity during our cruises would be relatively low.

Size-fractionated chlorophyll-a analysis in 2013 and 2014 revealed similar average
contributions between each size fraction. Chlorophyll-a values in 2014 were generally higher
than those of the same depth and size fraction in 2013 (Figure 3.3.1) and, on average, both
fractions contributed equally. Nonetheless, as total chlorophyll concentration increased, the
proportion of chlorophyll in the >20-um size fraction typically increased (Figure 3.3.1), as did
the proportion of chlorophyll-a in the total pigments (not shown). These size-related patterns in
relative contribution are consistent with expectations (Chisholm 1992), though relatively noisy
compared to other ecosystems. The low chlorophyll concentrations, particular within the large
cells preferred by suspension-feeding zooplankton, suggest a generally food-limited environment
for zooplankton. This likely compensated for the extremely low metabolic demands that can be
expected for zooplankton (Ikeda et al. 2001).
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Figure 3.3.1. Size fractionated chlorophyll-a concentrations in the Beaufort Sea during Transboundary
2013-14.
Data at target depths offset slightly to facilitate comparison.

3.4 Benthic Environmental Characteristics
Sarah Hardy

3.4.1 Introduction

The data presented in this section support other major components of the program that
address the primary objective of correlating epibenthic and infaunal community structure,
abundance, and biomass with hydrographic characteristics and benthic habitat information.
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These data are integrated into other sections of this report where community structure analyses of
various faunal components are presented. Here, we present an independent analysis of the
benthic environmental variables as a stand-alone dataset. The parameters measured are all known
to be potential drivers of benthic community structure in other geographic areas. Our goals were
to describe how these parameters vary across the study region and to identify any key variables
that can be used as proxies for benthic habitat type at a given location (i.e., variables that explain
a majority of the variance among stations). We included various parameters that described the
distribution of sediment grain sizes, porosity, and measures of organic matter content including
total organic carbon (TOC), carbon-to-nitrogen ratio (C:N), and chloropigment concentrations
(chl-a and phaeopigment concentrations). Carbon and nitrogen stable-isotope values for surface
sediments are also presented. Lastly, our statistical analyses included bottom water temperature
and salinity values taken from CTD profiles (see Oceanography Section 3.2).

Grain size is well known to influence benthic community structure, with finer, muddier
sediments occupied by different consortia of species than more coarse-grained sandy sediments.
For example, suspension-feeding taxa tend to be relatively more abundant in coarser-grained
sediments because finer particles, which are more easily resuspended in bottom currents, can
clog the feeding apparatus of suspension feeders. In addition, many deposit-feeders tend to target
the smaller (silt) size-class of particles (Roberts et al. 2000, Ward and Shumway 2004). Small
grain size is correlated with food availability for deposit-feeders because organic-rich particles
settle to the bottom more readily under the same hydrographic conditions that allow for
sedimentation of finer sediments. Deposit-feeders also vary in their strategies for particle
collection, providing a basis for niche separation among benthic organisms (Levin et al. 2001).

Various measures of organic matter content were quantified to estimate the availability of
food for deposit-feeders. Chl-a is a commonly used tracer of labile food particles targeted by
deposit-feeding species in soft-sediment habitats because it degrades fairly quickly upon cell
death and, therefore, is associated with “fresh” phytoplankton detritus and actively
photosynthetic microphytobenthos (Stephens et al. 1997). Phaeopigments are degradation
products of chlorophyll (Mantoura et al. 1997), and their concentration relative to that of
chlorophyll can indicate algal material that has been grazed (e.g., material deposited in fecal
pellets). TOC also gives a bulk estimate of bioavailable carbon but may include more refractory
carbon sources, which are lower quality food sources. The C:N ratio is commonly used to
provide a relative measure of the food quality of organic matter (Dorgelo and Leonards 2001).
Nitrogen-rich compounds in sediments tend to be used more rapidly by microbes as they process
organic matter, such that the ratio of C:N increases with increasing organic matter processing
(Henrichs 1993). Thus, a lower C:N can indicate more labile organic matter available for
detritivores. We also present stable isotope values of sediment organic matter, which provide
information on the source of primary production reaching the sediments (i.e., marine vs.
terrestrial organic matter inputs).

3.4.2 Methods

We conducted analysis of sediment parameters at all stations where box cores (2012; 50—
1000 m) and van Veen grabs (2013-2014; stations <350 m) were collected (Figure 3.4.1). In
addition, we analyzed one muddy sediment sample collected ancillarily by bottom trawl and box
core samples from the 2012 Beaufort Regional Environmental Assessment (BREA) project,
which sampled deeper sites that could not be accessed using the van Veen grab during our
cruises.
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Figure 3.4.1. Map of Transboundary stations where sediments were collected by box core, (2012, B
transects: 50—1000 m), van Veen grab (2013-2014, A transects: stations <350 m), and bottom trawl
(2013).

3.4.2.1 Grain Size and Porosity

Sediments for grain-size analysis were removed from the top 5-cm surface layer of box cores
and grabs using a 60-cc syringe. Samples were frozen in Whirl-pak® bags at -20 °C and returned
to the home lab for processing.

Grain size samples were processed in accordance with the US EPA protocol (US EPA 2010;
see also Kenny and Sotheran 2013 for method description and discussion). Before processing,
samples were thawed and homogenized by stirring with a spatula. Subsamples (1 cc) were then
analyzed for moisture content (i.e., porosity, wt water/wt dry sediment) by drying in a drying
oven at 90 °C for 24 hours or until they showed no further loss of water weight. Porosity data
provide additional information about the sediment environment. Water entrapped in sediments
contains nutrients and oxygen used by infaunal organisms and higher porosity indicates more
water content per unit volume of sediment. Porosity data also provided sediment volume-to-dry
weight conversions used to calculate inventories of chl-a (mg/m?) in sediments and to correct dry
sediment weights for residual salt left behind by evaporated water in measurements of chl-a
concentration (pg/g).

After porosity measurements had been made, the remainder of each sample was used for
grain size analysis. Samples were transferred to a beaker along with 20 ml of a 2 g/I solution of
dispersant (sodium hexametaphosphate) and 30 ml reverse osmosis (RO) water. Samples were
stirred to break up large aggregates and then passed through two stainless steel sieves (#10, 2 ml;
#230, 63-um) to separate gravel, sand, and silt/clay fractions. Material that passed through the
63-um sieve was retained in a large evaporating dish, and material collected on the #10 and #230
sieves was transferred to beakers. All three fractions were dried at 90 °C until completely dry
and then re-weighed and recorded as gravel, sand, and silt/clay fractions. The weight of the
silt/clay portion was corrected for dispersant weight and set aside for further analysis. The sand
fraction was sieved dry through a series of brass sieves for further subdivision into additional
size categories (see Table 3.4.1). Each fraction was weighed and recorded as a fraction of the
total sample weight.
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Some studies refer to the fraction of the sample that is retained on the evaporating dish (i.e.,
<63 um) as the “mud” fraction, which is not a recognized grain size category (Table 3.4.1). Here,
we present data for %mud for comparison to other similar studies, but we also processed this
fraction into its component silt and clay fractions for more detailed analysis. The combined
silt/clay portion was treated with 30% hydrogen peroxide to remove organic material, rinsed with
RO water, and dried again until completely dry. The organic-free silt/clay was then analyzed to
determine %silt and %clay using a Micrometrics SediGraph III, which uses the X-ray
gravitational method (full description found in ISO 13317-3: 2001 Determination of particle size
distribution by gravitational liquid sedimentation methods—Part 3: X-ray gravitational technique).
This method is based on sedimentation and photon absorption. Samples are suspended in a
dispersant solution, and Stokes’ law is applied to determine particle size by measurement of the
terminal settling velocities of particles of various sizes. Relative mass concentration for each size
class is determined by applying the Beer-Lambert-Bouguer law to the measured absorption of a
low-power X-ray beam projected through the fraction of sample remaining in suspension.

Weights of all size fractions of sediment (Table 3.4.1) were recorded as proportions of the
total sample weight and analyzed using Gradistat software (Blott and Pye 2001). The object of
grain-size analysis is to characterize the sediment as a frequency distribution of particle
diameters. This distribution is defined using an arbitrary set of finite intervals to convert the
continuous distribution to a discrete series. The Wentworth scale is a geometric scale that
combines numerical intervals with descriptive definitions (e.g., fine sand, coarse sand, etc.; Table
3.4.1). A log transformation of the Wentworth scale gives the phi notation:

phi (¢) = (-logo (diameter in mm)) / log;o 2

The phi scale is used to graphically represent data in order to derive informative measures
that describe the distribution (e.g., median, skewness, standard deviation, and kurtosis). Here, we
present the proportional data for each size fraction and the value of mean phi for each sample.
Phi is useful for condensing grain size information into a single value that can be easily
incorporated into environmental data matrices that analyze environmental drivers of community
structure. We also include the sorting and kurtosis values in our statistical analysis. Sorting is the
standard deviation of the grain-size distribution and quantifies the “diversity” of grain sizes
present, which has been linked to taxonomic diversity (Etter and Grassle 1992).

3.4.2.2 Sediment Pigments

Sediments from cores and grabs were subsampled for chl-a and phaeopigment analysis by
inserting a 60-cc syringe to 1-cm depth. Samples were stored in Whirl-pak® bags wrapped in
aluminum foil and stored at -80 °C prior to laboratory processing.

Pigment analysis was performed according to the protocol outlined in Mincks et al. (2005).
Briefly, samples were thawed, homogenized, and weighed prior to analysis. Each sample was
suspended in 5 ml 100% acetone, mixed using a vortex mixer, and sonicated in an ice water bath
for 10 minutes. Samples were allowed to extract overnight at -20 °C. The following day, each
sample was centrifuged to remove sediment, and the supernatant was transferred to a clean test
tube. Chl-a concentration of the supernatant was then determined using a fluorometer. After
recording fluorescence values, samples were acidified with HCI, and fluorescence readings were
taken of the acidified samples to produce phaeopigment values. A standard curve produced using

Final Report - Beaufort Transboundary Report BOEM 2017-034 - December 2017
76



BOEM 2017-34

commercially available chl-a standard was used to convert fluorescence readings into
concentrations.

3.4.2.3 Stable Isotope and Elemental Analysis

Surface sediments from cores and grabs were subsampled for stable isotope and TOC
analysis. Sediment was collected to approximately 1 cm depth from the undisturbed surface of
each core or grab sample and placed in a sterile plastic bag. Samples were frozen at -20 °C.
Before analysis, each sample was thawed and homogenized. Approximately 1 ml of sample was
then placed into a centrifuge tube with 5 ml of IN HCI. Samples were vortexed and checked for
bubbling. Caps were loosened and allowed to sit overnight or until bubbling ceased. After adding
distilled water, samples were vortexed and centrifuged at 2500 rpm for 5 minutes and the
supernatant discarded. This process was repeated several times until pH was determined to be
close to neutral. Samples were then freeze-dried and submitted to the Alaska Stable Isotope
Facility (ASIF) for analysis on a Thermo Finnigan Delta isotope ratio mass spectrometer (IRMS)
with PDB and atmospheric nitrogen as standards for carbon and nitrogen, respectively. Data
provided by ASIF included stable isotope values as well as percent carbon and nitrogen content
obtained using a Costech Elemental Analyzer. These values were used to calculate the TOC and
C:N ratios presented here.
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Table 3.4.1. Range of grain sizes that make up each descriptive category with equivalents in phi notation.

Grain Size Descriptive term
phi mm
Very Large )
-10 1024
Large
-9 512 —
Medium > Boulder
-8 256 E——
Small
-7 128 )
Very small
-6 64 \
Very coarse
-5 32
Coarse
-4 16 _—
Medium > Gravel
-3 8 _—
Fine
22 4 J—
Very fine /
-1 2 —_—
\
Very coarse
0 1
Coarse
| 500 pm _—
Medium > Sand
2 250 ——
Fine
3 125 —
Very fine /
4 63 —_—
, 3
Very coarse
5 31
Coarse
6 16 —
Medium > Silt
7 8
Fine
8 4
Very fine J
9 2
Clay
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3.4.2.4 Statistical Analysis

Multivariate analysis of all benthic environmental parameters was conducted to identify
particular variables or combinations of variables that best characterize “benthic habitat” at each
location across the study region. Principle components analysis (PCA), an ordination technique,
was used to visualize patterns in environmental characteristics across all stations without
imposing any a priori groupings (e.g., by depth or transect). Canonical discriminant analysis
(CDA) was then used to examine how habitat parameters change across depth and by transect (as
a proxy for longitudinal trends across the study area). CDA is a related technique to PCA but
allows for a priori groups to be examined. Both analyses produce a matrix of eigenvectors that
indicate which variables are more heavily loaded on each axis. This information can be
interpreted in a similar manner for both analyses, with large (positive or negative) values
indicating that the variable(s) explain more of the separation of points along that axis. PCA was
performed using the software PRIMER-E v.7, and CDA was performed using R.

Depth, longitude, and latitude were excluded from both analyses in order to examine only the
patterns in environmental parameters, many of which strongly co-vary with depth in particular.
Chl-a and phaeopigment concentrations were log-transformed because distributions were
strongly left-skewed, which is commonly the case for concentration data (Clarke et al. 2014a).
For grain size, %omud (= silt + clay) and %sand were included; other size fractions were excluded
because the various size fractions were highly correlated. CDA was first run with sediment and
bottom water variables included, but temperature and salinity dominated the outcome of the
analysis, so CDA was run again without bottom water variables. The results of both analyses are
reported in Tables 3.4.2-3.4.6. For the analysis by depth, plots are shown for the analyses with
and without temperature and salinity included, but for the analysis by transect, only the analysis
that excludes these variables is plotted. For all the CDA analyses, some depth ranges or transects
were grouped to reduce the number of categories, which reduced some of the variation among
groups and helped to clarify patterns.
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Table 3.4.2 Eigenvalues and eigenvectors for principle components analysis (PCA) shown in Figure
3.4.10. Variables contributing the most to variation along each axis are in bold (defined by values > +3.5).

Variable PC1 PC2 PC3 PC4 PC5
Chl-a 0.185 -0.417 0.128 -0.423 0.056
Phaeopigment 0.320 -0.401 -0.087 -0.161 0.174
Porosity 0.372 0.081 -0.021 0.095 0.114
%Sand -0.321 -0.095 -0.276 -0.241 -0.014
%Mud 0.367 0.291 0.103 0.128 -0.127
Phi 0.358 0.304 0.049 0.085 -0.185
Sorting -0.064 -0.491 0.340 0.136 -0.138
Kurtosis -0.161 0.136 -0.552 -0.023 0.229
8N 0.056  -0.116  -0.370  -0.160  0.080
e -0.306  -0.06 0234 0374  0.527
C:N -0.256 0.237 0.454 -0.176 0.220
TOC 0.333 -0.160 0.088 0.009 0.272
Temperature 0.057 0.338 0.207 -0.654 0.301
Salinity 0.230 0.013 -0.136 0.246 0.578
Eigenvalues 5.48 2.03 1.77 1.13 0.91

% Variation 39.1 14.5 12.6 8.1 6.5

Cum. % Variation 391 53.7 66.3 74.4 80.9

Table 3.4.3 Loading values for canonical discriminant analysis (CDA) examining variation in habitat
parameters among depths with temperature and salinity included. Variables contributing the most to each
canonical variables (CV) are in bold (defined by values > +0.4).

Variable Ccv1 Cv2 Cv3
Chl-a 0.044 0.307 0.293
Phaeopigment -0.486 0.033 0.182
Porosity -0.777 0.051 0.079
%Mud -0.525 0.197 0.082
Phi -0.521 0.155 0.092
Sorting 0.262 -0.377 0.389
Kurtosis 0.084 -0.002 -0.220
§"°N -0.133 -0.142 0.029
§"°C 0.150 -0.170 0.162
C:N 0.363 0.166 0.019
TOC -0.399 0.145 0.446
Temperature -0.133 0.840 -0.008
Salinity -0.924 0.036 -0.049
% Variation 79 15 6
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Table 3.4.4. Loading values for canonical discriminant analysis (CDA) examining variation in habitat
parameters among depths with temperature and salinity excluded. Variables contributing the most to
each canonical variables (CV) are in bold (defined by values > +0.4).

Variable Ccv1 Cv2 Cv3
Chl-a 0.117 0.034 0.623
Phaeopigment -0.501 0.066 0.397
Porosity -0.800 0.226 0.251
%Mud -0.499 0.249 0.273
Phi -0.507 0.208 0.229
Sorting 0.156 -0.633 -0.119
Kurtosis 0.097 0.133 -0.095
§"°N -0.177 -0.072 0.037
8"°C 0.102 -0.275 0.018
C:N 0.422 0.003 0.124
TOC -0.397 -0.045 0.742
% Variation 69 22 9

Table 3.4.5 Loading values for canonical discriminant analysis (CDA) examining variation in habitat
parameters among transects with temperature and salinity included. Variables contributing the most to
each canonical variables (CV) are in bold (defined by values > +0.4).

Variable Ccv1 Cv2 Cv3
Chl-a 0.085 0.344 0.147
Phaeopigment 0.109 0.306 -0.102
Porosity 0.142 0.438 -0.187
%Mud 0.187 0.520 -0.214
Phi 0.162 0.447 -0.272
Sorting -0.118 0.252 0.399
Kurtosis -0.074 -0.452 -0.180
§"°N 0.147 -0.088 -0.132
8"°C -0.266 -0.248 0.735
C:N 0.292 -0.039 0.702
TOC 0.151 0.420 0.081
Temperature 0.905 -0.080 0.037
Salinity 0.211 -0.083 -0.104
% Variation 50 32 18
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Table 3.4.6 Loading values for canonical discriminant analysis (CDA) examining variation in habitat
parameters among transects with temperature and salinity excluded. Variables contributing the most to

each canonical variables (CV) are in bold (defined by values > +0.4).

Variable

Chl-a
Phaeopigment
Porosity
%Mud
Phi
Sorting
Kurtosis
8"°N
e
C:N
TOC

% Variation

cV1

-0.377
-0.306
-0.372
-0.479
-0.369
-0.281
0.461
0.016
0.178
-0.297
-0.478

46

cv2

-0.027
-0.188
-0.110
-0.213
-0.153
-0.101
0.030
0.035
0.407
0.718
-0.123

30

Ccv3

-0.091
0.101
0.322
0.313
0.408
-0.607
0.119
0.260
-0.809
-0.164
-0.033

24
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3.4.3 Results and Discussion

The series of maps in Figures 3.4.2-3.4.8 shows the distribution of different grain size
fractions across the study region; data are provided in Appendix C Table 2. Note that polygons
encompassing areas not sampled represent interpolations between sampling locations. Thus,
grain-size maps do not capture the potential variation in grain size distribution that can occur
over smaller (meters to 10s of meters) spatial scales. In general, the grain size fractions
encountered at Transboundary stations were similar to those indicated by the large-scale seafloor
substrate map (Figure 3.4.9) that was synthesized from a variety of sources by Audubon Alaska
(2015). Here we describe broader-scale patterns based on data interpolated between our sample
collection locations, as these more precisely describe the environment occupied by fauna
assessed by our survey. The central ‘B’ transects (Figure 2.1) were dominated by muddier
sediments. The eastern US ‘A’ transects showed a higher proportion of sand and gravel,
particularly at shallower stations. In the eastern Canadian area of the study region, finer
sediments were again dominant. The map of phi values (indicating mean grain size on the phi
scale) shows higher values of phi, indicating high silt content (Table 3.4.1) particularly in the
eastern area influenced by the Mackenzie River plume (Figure 3.4.8). As discussed above, the
dominance of fine sediment will influence the composition of the infaunal community. Small-
scale (i.e., meters to 10s of meters) topographic depressions on the seafloor may focus fine
particles and organic matter in localized areas, but this possibility cannot be evaluated without
high-resolution bathymetric mapping of the area. This type of topographic complexity, common
in slope and canyon environments, is thought to enhance the diversity of benthic organisms by
allowing for niche separation among taxa with specific feeding strategies (see McClain and
Barry 2010, Blanchard and Feder 2014).

The concentration of chl-a (ug/g dry sediment) in surface sediments was also highly variable
across the study region (Figure 3.4.10). Values were more similar among sites in the shallow
areas, but transect ‘B’ sampled in 2012 showed an extremely high value at the 350-m site (about
4x the mean for all samples). A few other transects showed this trend with depth but not with the
same magnitude. As mentioned above, topographic features may focus sedimentation of organic
particles into depressions where values of chl-a may become elevated relative to the surrounding
sediments. This chl-a peak suggests high food availability below the shelf break and merits
further investigation. However, this single high value at one location should not be over-
interpreted. Chl-a can be highly patchy over small (cm to m) spatial scales for a variety of
reasons, and this value was obtained from a single box core sample with no available replicates.

Chl-a concentration across all locations sampled ranged from 0.9-79.5 nug/g (mean 6.3 + 9.7
ug/g). The values of chl-a shown here for deeper stations (>350 m) are an order of magnitude
higher than Antarctic shelf sediments of comparable depth measured with the same method used
here (Fabiano and Danovaro 1998, Mincks et al. 2005). This comparison to Antarctic sediments
helps to place our results into a broader context, given that relatively few data are available from
comparable depths in our study region. Moreover, this contrast in sediment chlorophyll
concentration between Arctic and Antarctic sediments at comparable depths is noteworthy
because it suggests Arctic sediments may harbor substantially higher food availability for
benthos than similar high-latitude settings on the Antarctic shelf. Another study from the
Beaufort Sea reports a similar range of values (Link et al. 2013). For comparable depths in the
Barents Sea (79—459 m), Cochrane et al. (2009) report concentrations of total benthic pigments
on the order of 2—14 pg/g, which is somewhat lower than in our study region; however, this
study applied HPLC analysis, which can yield lower values of chl-a than the fluorometric
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method used here (Mincks et al. 2005). Chl-a inventories for the upper 1 cm of sediment (mg
chl-a/m?) were calculated for comparison with other published studies from Arctic waters and
ranged from 2.1-1406.8 mg/m* (mean 32.4 + 51.9 mg/m?). Roughly comparable average values
have been reported for the Chukchi Sea (Grebmeier et al. 2015a).
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Figure 3.4.3. Map: Sand percentage in surface sediment.

Final Report - Beaufort Transboundary Report BOEM 2017-034 - December 2017
84



BOEM 2017-34

150° W 145° W 140° W
\xI%* 7:555‘ 220520 Beaufort - '
600 __Sea

i =

[ &

= M~
=

=

= 3
1)
e

=2

150° W 145° W 140°W R

Figure 3.4.4. Map: Mud percentage in surface sediment.

=z

=

= ~
=

=

=z 3
o
~

=2

150° W 145° W 140°W RECITERR

Figure 3.4.5. Map: Silt percentage in surface sediment.
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Figure 3.4.7. Map: Porosity of surface sediment.
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Figure 3.4.10. Trends in sediment chlorophyll-a concentration (ug/g dry sediment) with depth along
selected transects across the study region.

The legend depicts transects in order as they are located from west to east across the study region. Only
one station (50 m) was sampled on transect B2, so data were combined with transect B1, which lies in
very close proximity.
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3.4.3.1 Multivariate Analysis

Results of PCA of environmental characteristics among stations are shown in Figure 3.4.11,
and the eigenvectors for the first five principle components are shown in Table 3.4.2. Stations
did not group clearly according to transect, but patterns across depth were more distinct with
most of the variation among depths occurring along PC1, which accounted for 39.1% of the total
variation. This axis was dominated by grain-size information, including %mud (i.e., proportion
of fine sediments), porosity (an indicator of muddier sediments), and phi (high phi indicates
small mean grain size). All three variables increased in the positive direction, indicating that
deeper stations were characterized by finer-grained, muddier sediments as would be expected for
slope habitat. Values for %sand were also relatively high and increased in the negative direction
along PC1 toward the shallower sites, which further supports separation of stations by grain size
characteristics across depth. PC2 was dominated by sorting and pigment concentrations, which
all increased in the negative direction. Much of the spread of points along this axis occurred at
the shallower sites (<100 m), suggesting shelf locations may be much more variable in both food
availability of fresh detritus and diversity of grain sizes. In addition, high sorting coefficients
indicate poorly sorted sediments, which typically indicate highly disturbed sediments. Physical
disturbance and/or more energetic currents at shallower sites may be contributing to this pattern.
PC3 was dominated by kurtosis and C:N but only a few stations show much variation along this
axis. Again, all of these sites are in the shallower depths, with the 20- and 100-m stations along
transect A2 appearing to be quite distinct from other locations and exhibiting high kurtosis and
low C:N values. High kurtosis indicates a platykurtic grain-size distribution, indicating a more
even distribution of sediment mass among grain size categories. These stations also had more
gravelly sediments.

The CDA examining variation in benthic habitat characteristics across depth yielded three
significant canonical variables (CVs) (Figure 3.4.12, Table 3.4.3). Salinity and temperature were
responsible for much of the separation of stations along CV1 and CV2, respectively (Table
3.4.3). TOC and sorting were driving most of the variation along CV3. Although a few other
variables related to grain size also had relatively high loading values (porosity, %mud, phi) on
CV1, values must be squared to be directly compared, so the salinity value of -0.924 indicates a
substantially greater effect than the next most important variable. Due to the heavy influence of
temperature and salinity, we re-ran the analysis with these variables excluded to identify
important sediment variables (Figure 3.4.13, Table 3.4.4). In this analysis, phaeopigments,
porosity, %mud, and phi all increased in the negative direction along CV1, suggesting a
transition toward finer-grained sediments and more degraded detritus (or high fecal pellet flux)
with depth. Sorting dominates the variation along CV2, such that shallow (20 m) and deeper
(>350 m) sites have lower sorting coefficients, indicating less diversity of grain sizes.
Examination of the raw data indicates higher sand content at shallower sites and siltier sediments
at depth. Chl-a and TOC, two measures of food availability, are heavily loaded on CV3,
although there is relatively little variation in sites along this axis. Sites >500 m had higher chl-a
and TOC, and 20-m sites showed relatively high variation along this axis, suggesting higher
spatial variability in food availability in the shallowest sampling depths.

Results of the CDA examining variation by transect were less straightforward to interpret.
Again, when temperature and salinity were included, temperature dominated the signal (Table
3.4.5), so we ran the analysis again without those variables. Both analyses yielded three
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significant CVs. In the second analysis, TOC, %mud, and kurtosis were most heavily loaded on
CV1, but most of the spread along this axis represents differences between a few sites on transect
A2 and the rest of the stations (Table 3.4.6). These sites appear to be more gravelly locations.
C:N is heavily loaded on CV2 and increases in the positive direction, whereas sorting and 3'°C
are heavily loaded on CV3 and both increase in the negative direction. Visual inspection of the
plots in Figure 3.4.14 essentially shows that the distribution of points is inverted along the
vertical axis when the upper and lower panels are compared. B1, B2, A4, A5 and A6 (central and
western study region) have higher C:N, lower sorting (sediment grain size diversity), and higher
8'"°C. Transects Al, TBS, GRY and MAC (eastern study region) showed the opposite trend.
These eastern transects are likely influenced by the Mackenzie River outflow.

When results of all these analyses are considered together, it appears that grain size
parameters are particularly important in separating sites by depth, whereas source and lability of
organic material deposited to sediments may be more important in separating locations from
west to east. Previous studies have also documented the strong gradient in carbon stable isotope
value across this region, with a clear signal of the Mackenzie River delta in the east (e.g., Dunton
et al. 2012). In addition, studies of macrofauna have highlighted the influence of the Mackenzie
River on patterns in community structure, which are likely mediated by sediment properties (e.g.,
Conlan et al. 2008). Our results showed more evidence of disturbance and more variability
among locations at shallower sites, whereas deeper sites may have more persistent conditions.
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Figure 3.4.11. Principle components analysis (PCA) showing similarity in environmental characteristics among stations.
All panels show results of the same analysis. Top panels are colored to show patterns among transects; bottom panels are colored to show
patterns among depths sampled. Left panels both show variation along first two principle components; right panels both show variation along first
and third principle components. The first three principle components account for 66.3% of the variation among stations. Eigenvalues and

eigenvectors are shown in Table 3.4.2.
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Figure 3.4.12. Canonical discriminant analysis (CDA) comparing benthic habitat characteristics among
sampling depths with temperature and salinity included.

Some depth categories (indicated by colored numbers) were combined due to low sample numbers, and
to reduce the number of categories and improve analysis. Upper panel shows variation along CV1 and
CV2, bottom panel shows variation along CV1 and CV3. The first three CVs were significant. Loading
values are shown in Table 3.3.
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Figure 3.4.13. Canonical discriminant analysis (CDA) comparing benthic habitat characteristics among
sampling depths with temperature and salinity excluded.
Some depth categories (indicated by colored numbers) were combined due to low sample numbers, and
to reduce the number of categories and improve analysis. Upper panel shows variation along CV1 and
CV2, bottom panel shows variation along CV1 and CV3. The first three CVs were significant. Loading

values are shown in Table 3.4.
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Figure 3.4.14. Canonical discriminant analysis (CDA) comparing benthic habitat characteristics among
transects with temperature and salinity excluded.
Points are labelled by transect category. Some adjacent transects were combined into a single category
due to low sample numbers, and to reduce the number of categories and improve analysis (B12 =B1 +
B2; A1TBS = A1 + TBS; A456 = A4 + A5 + A6; GRMA = GRY + MAC). Upper panel shows variation
along CV1 and CV2, bottom panel shows variation along CV1 and CV3. The first three CVs were
significant. Loading values are shown in Table 3.6.
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4.0 ZOOPLANKTON

Russell Hopcroft and Caitlin Smoot

4.1 Epipelagic Zooplankton Communities

4.1.1 Introduction

Zooplankton are important trophic intermediaries in marine systems; in the Beaufort Sea,
zooplankton communities connect the highly seasonal pulse of primary production to upper
trophic levels, such as fish and marine mammals, that are of cultural and ecological significance
(Lowry et al. 2004; Walkusz et al. 2011). It is well-established that the Arctic Ocean is
undergoing changes in sea ice cover, temperature, and carbonate mineral saturation states
(Serreze et al. 2007, Bates et al. 2009, Stroeve et al. 2012, Bates et al. 2013); it is less certain
how Arctic marine zooplankton communities will respond to these changes. Zooplankton will
likely be among the first responders to climate change due to their poikilothermic nature and
relatively short lifespans (Hays et al. 2005, Richardson 2008). The paucity of consistent baseline
data for many Arctic ecosystems is one of the main challenges of quantifying and documenting
zooplankton community response to development and climate change (e.g., Wassmann et al.
2011, Ershova et al. 2015a); therefore, it is critical to monitor its biological communities.

Early efforts to characterize the physical oceanography and zooplankton communities of the
Beaufort Sea by the USS Burton Island cruises (Johnson 1956) focused mostly from the shelf
break into the Canada Basin. The Western Beaufort Sea Ecological Cruise (WEBSEC) program
in the 1970s (Hufford et al. 1974, McConnell, 1977, Hopcroft et al. 2012) and the Outer
Continental Shelf Environmental Assessment Program (OCSEAP) (Horner 1978, 1979, 1980)
provided better spatial coverage of the Alaskan Beaufort shelf; however, the coarse mesh (=333
um) used in these programs resulted in a bias toward larger bodied taxa while completely
excluding small-bodied and numerically dominant taxa. Most data from OCSEAP do not provide
species-level taxonomic resolution; rather, organisms were grouped into broad taxonomic
categories, thus rendering its data of limited use. Similary the Canadian Beaufort has been
sporadically studied (Grainger 1965, Grainger and Grohe 1975, Mohammed and Grainger, 1974,
Hopky et al. 1994a, b, c) with similar issues of gear biases, inadequate taxonomic resolution of
key groups, and limited spatial coverage that preclude rigorous comparisons between many data
sets, and highlight the paucity of consistent baseline ecological data for zooplankton
communities of the Beaufort Sea. More recent efforts in the Alaskan Beaufort Sea have focused
on the oceanographically complex area around Barrow Canyon (e.g. Lane et al. 2008, Ashjian et
al. 2010), while Canadian efforts include the 2002 R/V Mirai cruise in the Chukchi and Beaufort
Seas, the CCGS Nahidik cruises (Walkusz et al. 2010, Walkusz et al. 2012, Walkusz et al. 2013),
the Canadian Arctic Shelf Exchange Study (CASES) (Darnis et al. 2008), and the Beaufort
Regional Environmental Assessment (BREA). As a result, a large contemporary data gap exists
for much of the central and eastern Alaskan Beaufort Sea.

In the Pacific-Arctic, zooplankton communities are highly associated with water masses and
their underlying hydrographic properties (e.g., Darnis et al. 2008, Lane et al. 2008, Hopcroft et
al. 2010, Ershova et al. 2015b). Understanding zooplankton assemblages and their hydrographic
associations become particularly critical as we study a rapidly changing Arctic. The volume of
Pacific water flow through Bering Strait into the Arctic has increased in recent years (Woodgate
et al. 2012), upwelling events have increased in frequency and strength in the Beaufort Sea
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(Pickart et al. 2013), and modelling efforts suggest that Mackenzie River discharge, along with
other Arctic rivers, may increase in a warming climate (Nijssen et al. 2001, Nohara et al. 2006).
Changes in these physical parameters likely impact biological communities; therefore,
determining faunal associations can document the extent and magnitude resulting from such
environmental forcing. Given the trophic position of zooplankton, changes in community
structure have the potential to reverberate throughout Arctic food webs. This study contributes to
a multi-year and multi-disciplinary effort to characterize both the physical and biological
oceanography of the Beaufort Sea, and serves as a spatially comprehensive assessment of
contemporary epipelagic zooplankton communities in the Alaskan Beaufort Sea.

4.1.2 Methods

4.1.2.1 Sample Processing and Statistical Analyses

During laboratory processing, zooplankton samples were subsampled using a Folsom splitter
until a given aliquot contained approximately 100 individuals of the most abundant taxa.
Increasingly larger fractions were examined for less abundant taxa. Organisms were identified,
enumerated, measured, and, when appropriate, staged to determine species composition,
abundance, and biomass. Measurements were completed using the ZoopBiom program (Roff and
Hopcroft 1986). The weight of measured animals was predicted from species-specific length-
weight relationships or from relationships of morphologically similar species (Questel et al.
2013). Typically, 400-600 animals were measured within each sample and organisms were
identified to lowest taxonomic level possible. For epipelagic analyses, data from stratified
samples were integrated to produce a single stratum representative of the epipelagic realm (upper
200 meters).

Analyses were performed separately for both abundance and biomass using fourth-root-
transformed (4RT) data pooled across all years for each mesh size. Community similarity was
assessed using the Bray-Curtis similarity index (Bray and Curtis 1957), and community structure
was explored with cluster analysis and non-metric multidimensional scaling (nMDS) using
PRIMER (v6) (Clarke and Warwick 2010). Taxa that contributed to community similarity were
identified using PRIMER’s similarity percentage (SIMPER) routine. Finally, we related the
observed biological community patterns to a suite of explanatory environmental variables using
PRIMER’s biota-environment stepwise matching test (BEST) routine. The BEST routine relates
matrices of multidimensional biological and environmental data using both forward-selection
and backward-elimination techniques (Clarke and Warwick 2010).

4.1.3 Results

4.1.3.1 General Patterns

We observed 107 taxonomic categories in the epipelagic realm (0—200 m) over the course of
the three Transboundary field seasons in the two mesh sizes (Tables 4.1, 4.2). Copepods
exhibited the highest species richness (36 species), followed by the cnidarians (17 species) and
amphipods (14 taxa). We also observed five euphausiid, four ctenophore, two chaetognath, two
cladoceran, two pteropod, and three mysid species. Numerous meroplanktonic taxa were
observed, including ophiuroid, polychaete, and bivalve larvae. In the 150-um net, average
holozooplankton abundance and biomass ranged from 1110-1950 individuals m™ and 40.2—-76.9
mg dry-weight (DW) m™, respectively (Table 4.3). Average holozooplankton abundance and
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biomass captured in the 505-um net ranged from 47-196 individuals m™ and 25.6-57.6 mg DW
m”, respectively (Table 4.3). Mean zooplankton abundance and biomass were generally highest
at 20- and 50-m stations and declined offshore until the 500-m isobath. We observed a slight
increase in both parameters at the 1000-m isobath. This trend held true for both the 150- and
505-um nets. With respect to stratified 150-um samples, the trend was most consistent in the
Polar Mixed Layer (PML) (Table 4.3). Copepods dominated community abundance and biomass
in all years in both nets (Figure 4.1.1). Larvaceans had their highest relative numerical
contribution in 2012. Predators, primarily cnidarians and chaetognaths, made important
contributions that varied both between and within years. The community was numerically
dominated by the copepods Calanus glacialis, Calanus hyperboreus, Metridia longa, Oithona
similis, Triconia borealis, Microcalanus pygmaeus, and the Pseudocalanus species-complex in
all surveys. These taxa have long been recognized as dominant in Arctic surface waters (see
Grainger 1965) and are henceforth referred to as an Arctic guild of taxa, despite the fact that
some species also occur outside of the Arctic. Numerically, this group accounted for 69-81% of
zooplankton abundance and 64—72% of the biomass in the 150-um net across all survey years. In
the 505-um net, the guild of Arctic copepods composed 78-92% of community abundance and
63—-68% of the biomass.
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Figure 4.1.1. The relative contribution of major zooplankton taxonomic groups in terms of abundance and
biomass in the Beaufort Sea during Transboundary 2012—-14 for the 150- and 505-uym nets.
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Table 4.1. Average abundance and biomass of Beaufort Sea zooplankton taxa captured by the 150-um
net during Transboundary 2012—-14.

* - indicates that a taxon was only observed in abundances <0.01 ind. m’®; biomass <0.01 mg DW m>.
NC - indicates biomass was not calculated.

150 ym
Taxon Abundar_lsce Biomass_3
(Ind. m™) (mg DW m"™)
2012 2013 2014 | 2012 | 2013 | 2014
Calanoida
Aetideopsis minor - 0.09 - - * -
Acartia longiremis 4.06 6.53 0.25 0.02 0.03 *
Acartia bifilosa - 1.65 - - 0.03 -
Acartia spp. (copepodite) 4.85 5.07 1.13 0.01 0.01 *
Augaptilus glacialis - * - - * -
Eurytemora herdmani - 6.17 0.10 - 0.06 *
Eurytemora richsingi - * - - * -
Eurytemora spp. (copepodite) - 62.92 0.52 - 0.22 *
Calanus glacialis 137.23 | 42.49 | 236.37 | 43.00 | 5.70 | 23.49
Calanus hyperboreus 0.68 15.11 6.99 1.98 | 15.05 | 6.532
Centropages abdominalis - 0.40 - - 0.01 -
Chiridius obtusifrons 0.36 0.31 0.21 0.07 0.04 | 0.03
Eucalanus bungii * 0.50 0.01 0.01 1.82 *
Gaetanus tenuispinus - 0.02 0.06 - * 0.03
Heterorhabdus norvegicus 0.22 0.88 0.70 0.04 0.16 | 0.06
Jashnovia tolli 0.23 * - 0.01 * -
Limnocalanus macrurus - 1.16 - - 0.03 -
Metridia longa 17.73 7.87 5.42 1.55 1.25 | 0.69
Metridia pacifica - - 0.05 - - 0.10
Metridia spp. (copepodite) 3.98 1.47 6.49 0.03 0.01 0.03
Microcalanus pygmaeus 13.99 | 47.52 38.04 | 0.02 0.06 | 0.08
Neocalanus cristatus * * * 0.33 1.87 *
Neocalanus flemingeri 0.10 * 0.03 0.05 * *
Neocalanus plumchrus - - * - - *
Paraeuchaeta glacialis 1.55 2.08 0.93 1.11 1.82 1.29
Paraheterorhabdus compactus - 0.01 - - * -
Pseudocalanus acuspes 3.06 12.41 1.47 0.03 0.14 0.02
Pseudocalanus mimus 2.84 * 0.01 0.03 * *
Pseudocalanus minutus 13.28 5.26 1.53 0.21 0.08 | 0.30
Pseudocalanus newmani 10.67 3.27 0.36 0.07 0.02 | 0.14
Pseudocalanus spp. (male) 6.40 3.47 0.85 0.03 | 0.02 | 0.01
Pseudocalanus spp. (copepodite) | 217.91 | 557.59 | 524.46 | 0.60 1.99 1.62
Scaphocalanus antarcticus - 0.11 0.05 - 0.08 | 0.03
Scolecithricella minor 0.65 1.07 0.90 0.01 0.01 0.01
Spinocalanus longicornis - - 0.37 - - 0.14
Spinocalanus antarcticus - 0.47 0.01 - * *
Cyclopoida

Oithona similis 474.08 | 483.45 | 590.52 | 0.59 | 0.49 | 2.49
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150 ym
Taxon Abundar_lsce Biomass_3
(Ind. m™) (mg DW m™)
2012 2013 2014 2012 | 2013 | 2014

Mormonilloida

Neomormonilla minor - - 0.03 - - *
Poecilostomatoida

Triconia borealis 27.53 88.40 | 156.70 | 0.05 0.14 1.58
Harpacticoida

Harpacticoid unid. - 0.15 0.27 - * *

Microsetella norvegica 1.57 1.82 2.76 0.01 0.01 0.01
Nauplii

Harpacticoid nauplii 0.03 0.02 0.20 * * *

Calanoid nauplii 83.65 | 245.12 | 121.24 | 0.05 0.15 | 0.50

Cyclopoid nauplii 1.07 5.12 0.06 * * *
Appendicularia

Oikopleura vanhoeffeni 5.67 18.29 32.91 0.02 0.08 | 0.10

Fritillaria borealis 7.18 48.87 95.17 * * 0.12
Pteropoda

Clione limacina 0.18 * 0.05 1.94 0.02 0.41

Limacina helicina 9.20 5.66 17.02 0.01 0.05 | 4.25
Chaetognatha

Eukrohnia hamata - 0.10 0.20 - 0.33 | 0.31

Parasagitta elegans 31.36 2.39 10.18 1.19 0.16 | 0.81
Cladocera

Evadne nordmanni - 2.88 2.72 - 0.07 *

Podon leuckartii - 31.82 22.81 - 0.14 *
Ostracoda

Boroecia maxima 0.14 1.51 1.02 0.01 0.14 0.1
Euphausiacea

Euphausid nauplii - 0.01 - - * -

Euphausid calyptopis - - * - - *

Euphausid juvenile - - * - - *

Euphausid furcillia - - * - - *

Thysanoessa inermis 0.19 0.01 0.06 1.84 0.08 | 0.01

Thysanoessa longipes - * - - 0.02 -

Thysanoessa raschii 0.06 0.04 0.05 0.46 | 0.19 | 0.06
Mysidae

Mysis spp. - 0.01 - - 0.01 -

Mysis oculata - * - - 0.01 0.01
Decapoda

Hippolytidae 0.01 * 0.01 0.02 0.02 | 0.05

Pandalidae * 0.01 0.01 0.01 - 0.04
Cumacea - * - - * -
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Table 4.1, continued.

150 ym
Taxon Abundar_lsce Biomass_3
(Ind. m™) (mg DW m™)
2012 2013 2014 | 2012 | 2013 | 2014
Amphipoda
Amphipod unid. 0.08 0.07 0.02 0.05 0.05 *
Apherusa glacialis - 0.01 0.01 - * *
Gammarus wilkitzkii 0.01 - * * - *
Cyphocaris challengeri - 0.01 * - 0.04 *
Hyperia galba/medusarum 0.03 * 0.01 * 0.01 *
Onisimus sp. - 0.01 - - * *
Themisto abyssorum 0.17 0.95 0.49 0.57 | 0.90 | 0.15
Themisto libellula 0.28 0.27 0.48 0.70 | 0.37 | 047
Isopoda (parasitic) 0.22 0.22 0.39 * * *
Siphonophora
Dimophyes arctica - 0.02 0.03 - 3.43 *
Hydrozoa
Aeginopsis laurentii * 0.21 0.4614 * 0.09 | 0.34
Aglantha digitale 24.93 13.07 18.07 | 0.69 | 4.68 | 2.54
Euphysa flammea - * * - * 0.01
Halitholus cirratus - 0.03 0.15 - 0.21 3.11
Obelia longissima - 0.24 0.06 - 0.09 *
Ptychogena lactea - 0.07 * - * *
Ctenophora
Beroe cucumis - - * - - 0.01
Mertensia ovum 0.13 0.01 0.04 0.50 0.19 | 0.34
Polychaeta
Tomopteris septentrionalis - 0.01 0.01 - 0.03 | 0.01
Rotifera - 73.91 44.58 - NC NC
Meroplankton
Barnacle cyprid 0.23 0.06 0.96 * * 0.24
Barnacle nauplii 0.05 0.47 0.65 * * *
Bipinnaria 0.49 2.35 1.85 * * *
Bivalve larvae 32.63 | 25.00 34.85 | 0.01 0.04 | 0.28
Brachyuran zoea 0.01 * * 0.01 * *
Cyphonautes 0.57 0.36 0.51 * 0.10 *
Echinoderm larvae 1.38 1.64 1.31 * * 0.02
Gastropod larvae 3.52 1.02 1.97 * * *
Megalops 0.05 * 0.02 0.04 * 0.20
Ophiuroid larvae - - 0.06 - - *
Pagurid zoea 0.03 0.05 0.06 * * *
Polychaete larvae 4.67 99.32 91.48 0.02 0.23 | 017
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Table 4.2. Average abundance and biomass of Beaufort Sea zooplankton taxa captured by the 505-um
net during Transboundary 2012—-14.

* - indicates that a taxon was only observed in abundances <0.01 ind. m™; biomass <0.01 mg DW m™.
NC - indicates biomass was not calculated.

505-uym
Taxon Abundar_|3ce Biomass_3
(Ind. m (mg DW m™)
2012 2013 2014 2012 | 2013 | 2014
Calanoida
Acartia longiremis 0.01 0.01 - * * -
Acartia bifilosa - 0.04 - - * -
Aetideopsis minor - * - - * -
Calanus glacialis 179.95 | 21.74 | 157.58 | 45.71 | 4.90 | 21.06
Calanus hyperboreus 0.42 11.28 6.33 0.83 | 10.04 | 6.55
Chiridius obtusifrons 0.07 0.09 0.05 0.01 0.02 0.01
Eucalanus bungii * * * * * *
Gaetanus brevispinus - * * - * *
Gaetanus tenuispinus * 0.02 0.01 * * *
Heterorhabdus norvegicus 0.03 0.23 0.29 * 0.04 0.03
Jashnovia tolli * 0.01 0.02 * * *
Limnocalanus macrurus - 1.86 - - 0.05 -
Metridia longa 8.30 4.10 2.64 0.67 0.61 0.35
Metridia pacifica - * 0.02 - * 0.01
Metridia spp. 0.01 0.02 0.03 * * *
Neocalanus cristatus 0.04 0.01 0.02 0.22 0.10 0.08
Neocalanus plumchrus * * - * 0.01 -
Paraeuchaeta glacialis 0.52 1.22 0.65 0.26 0.60 0.53
Paraheterorhabdus compactus - 0.05 - - * -
Pseudocalanus acuspes - * * - * *
Pseudocalanus minutus 1.39 0.63 0.86 0.03 0.01 0.08
Pseudocalanus spp. (male) * 0.01 0.04 * * *
Pseudocalanus spp. (copepodite) 0.07 0.43 1.63 * 0.01 0.03
Scaphocalanus antarcticus - 0.05 0.03 - 0.03 | 0.016
Scolecithricella minor 0.01 0.04 0.05 * * *
Spinocalanus antarcticus - - * - - *
Appendicularia
Oikopleura vanhoeffeni 0.03 0.65 0.7 - 0.02 *
Fritillaria borealis - 0.05 0.1 - * *
Pteropoda
Clione limacina 0.12 * * * * 0.02
Limacina helicina 0.08 0.28 0.7 0.87 1.75 0.60
Chaetognatha
Eukrohnia hamata - 0.09 0.47 4.58 0.1 0.29
Parasagitta elegans 2.93 0.47 0.68 - 0.78 0.56
Cladocera
Evadne nordmanni - * - - * -
Podon leuckartii - 0.1 - * * -
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Table 4.2, continued.

505-pym
Taxon Abundar_|3ce Biomass_3
(Ind. m (mg DW m™)
2012 2013 2014 2012 | 2013 | 2014
Ostracoda
Boroecia maxima 0.02 0.43 0.34 - 0.08 0.05
Euphausiacea
Juvenile euphausiids (all stages) * * 0.02 0.45 * *
Meganyctiphanes norvegica * - - 0.15 - -
Thysanoessa inermis 0.10 0.06 0.00 1.24 0.64 0.02
Thysanoessa longipes * * - 0.87 * -
Thysanoessa raschii 0.18 0.10 0.04 0.01 0.83 0.29
Thysanoessa spinifera - 0.02 - - 0.15 -
Mysidae
Erythrops sp. - - * - - *
Boreomysis arctica - * - - * -
Mysis oculata 0.01 * * * 0.03 0.1
Decapoda
Hippolytidae * 0.01 0.01 - 0.01 0.02
Pandalidae * 0.01 0.05 - 0.03 0.09
Eualus sp. * * - * 0.04 -
Sabinea septemcarinata - * - - 0.02 -
Cumacea * * 0.01 * * *
Amphipoda
Amphipod unid. * 0.01 - * 0.01 -
Argissa hamatipes - * - - * -
Apherusa glacialis * 0.01 0.0003 - 0.02 *
Gammarus wilkitzkii * - - * - -
Eusirus holmi - * - - * -
Hyperia galba/medusarum - * * 0.02 * *
Hyperoche medusarum - * - - * -
Monoculoides schneideri - * - - *
Onisimus sp. * * * - * *
Themisto abyssorum 0.05 0.57 0.21 - 1.1 0.14
Themisto libellula 0.01 0.07 0.04 - 0.76 0.52
Pardalisca cuspidata - * - - * -
Phoxocephalidae - * - - 0.01 -
Syrrhoe spp. - * - - * -
Isopoda
Munnopsis typica - * * - * *
Siphonophora
Dimophyes arctica * 0.01 * 0.20 * *
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Table 4.2, continued

505-pym
Taxon Abundar_|3ce Biomass_3
(Ind. m (mg DW m™)
2012 2013 2014 2012 | 2013 | 2014
Scyphozoa
Chrysaora melanaster P P P NC NC NC
Cyanea capillata - - * - - *
Hydrozoa
Aeginopsis laurentii 0.01 0.10 2.33 - 0.09 0.20
Aglantha digitale 1.67 217 9.14 1.50 1.18 1.25
Bougainvillia superciliaris - * * - * *
Catablema vesicarium - 0.01 * - 0.13 0.01
Eumedusa birulai - * 0.01 - * *
Euphysa flammea - * 0.01 0.03
Halitholus cirratus - 0.05 0.01 - 0.39 0.23
Melicertum octopunctata - * 0.01 - - 0.02
Mitrocomella polydiademata - - 0.02 0.29
Obelia longissima - 0.01 * - * *
Ptychogena lactea - * - - * -
Sarsia princeps - * - - 0.01 -
Sarsia tubulosa - * * - 0.01 0.02
Tiaropsis multicirrata - * 0.02 - * 0.15
Ctenophora
Bolinopsis infundibulum - * 0.01 - 0.27 0.17
Beroe cucumis * * 0.01 * 0.06 2.92
Beroe abyssicola - * - - 0.02 -
Mertensia ovum 0.11 0.01 0.13 0.06 0.56 210
Polychaeta
Tomopteris septentrionalis - * 0.02 - * 0.12
Meroplankton
Barnacle nauplii - 0.01 0.14 - * *
Brachyuran zoea - - * *
Echinoderm larvae - 0.02 0.16 - * *
Megalops * - - 0.20 - -
Pagurid zoea - * - - * -
Polychaete larvae 0.01 0.06 0.16 * * *
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Table 4.3. Mean zooplankton abundance (ind. m'3) and biomass (mg DW m'3) +SE for the 150- and 505-
pum during Transboundary 2012-14. Upper portion of table is displayed by year; lower portion of table is
displayed by isobath and depth interval, when applicable.

o | o | Sopiile | 7nd | fd | S | Sones
2012 | 09/21-09/30 1114 1110 £ 124 | 196+ 114 | 76.9+11.7 | 57.6 +288
2013 | 08/13-08/31 39/39 1010187 | 47%5 | 402:49 | 25624
2014 | 08/19-09/01 40/40 1950 £ 121 | 189+39 | 542+7.6 | 389%7.0
.
Depth
Interval Isobath (m)
(m)
e 20m 50 m 100 m 200 m 500 m 1000 m
0-50 | 2165654 | 1905+230 | 1457 £ 148 | 1118 £ 144 | 1106 £161 | 1487 +124
50-100 325+76 | 25746 | 265%86 | 25847
100-200 80 + 15 87 + 11 133 % 16
200-300 92 + 15 120 £ 20
300-500 82+ 17 94 £ 15
500-1000 26 £ 6
'31';’5'_‘::‘ 20 m 50 m 100 m 200 m 500 m 1000 m
0-50 57575 504147 | 354+141 | 305:82 | 18439 | 258454
50-100 172450 | 109£16 | 143£37 | 136+42
100-200 10453 | 63+15 | 9114
200-300 115222 | 80£1.0
300-500 94+21 | 4007
500-1000 19+0.8
505-um 20 m 50 m 100 m 200 m 500 m 1000 m
Abund. | 303+ 139 154 + 43 91 £ 20 53 12 387 40£9
Biomass | 90.9 £ 34.7 36142 235+33 | 166+21 | 13814 | 204%36

4.1.3.2 Species-Specific Patterns

The 150-um net provides insight to spatial patterns in the numerically dominant small-bodied
taxa, such as Pseudocalanus spp., Oithona similis, Triconia borealis, and Microcalanus
pygmaeus. Pseudocalanus spp. were found across the survey region, with highest abundances
typically observed at inshore stations (Figure 4.1.2). O. similis, a eurytopic copepod, was
distributed across the shelf and slope, with no immediately apparent spatial pattern (Figure
4.1.3). T. borealis was also distributed across the shelf and slope, with peak abundances usually
observed at slope stations, particularly in the 2012 field season (Figure 4.1.4). M. pygmaeus was
also common across the study area, and reached peak abundances at offshore stations (Figure
4.1.5). Less dominant taxa also provide insights to habitat associations. For example, the oceanic
copepod Heterorhabdus norvegicus was largely restricted to stations over the shelf break and
slope (Figure 4.1.6). Conversely, euryhaline copepods of the genus Eurytemora were found in
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highest abundances at freshened stations, mostly in the vicinity of the Mackenzie River sampled
in 2013 (Figure 4.1.7).

Distributional patterns in larger-bodied and lipid-rich taxa, such as Calanus species, are
demonstrated in the 505-um net. Calanus glacialis was present across the shelf in all years. In
2012 and 2013 no immediate spatial pattern was apparent. In 2014, C. glacialis was found in
highest abundances on the shelf (Figure 4.1.8). Calanus hyperboreus, considered an oceanic
species, was absent from the shelf in 2012 but present in moderate numbers on the shelf in 2013—
14, indicating some degree of shelf-slope exchange (Figure 4.1.9). The same pattern was
apparent for the oceanic taxa Metridia longa (Figure 4.1.10) and Paraeuchaeta glacialis (Figure
4.1.11). Euphausiids were found in low numbers throughout the entire survey area. Thysanoessa
raschii and Thysanoessa inermis were the most common euphausiid species, though
Thysanoessa longipes was encountered in extremely low abundances (<0.01 ind. m™) in offshore
waters. Two notable expatriate euphausiids were encountered in the study region: one individual
of the Atlantic-affinity Meganyctiphanes norvegica was observed at an offshore station in 2012
(captured in a midwater trawl) and one individual of the Pacific-affinity Thysanoessa spinifera
was observed at an inshore station in 2013. Juvenile euphausiid distribution was extremely
patchy and abundances were generally low. We also observed one mysid specimen of the genus
Erythrops, likely of Atlantic origin, in the 2014 survey year. We observed several Pacific
expatriate copepod species in all years of the Transboundary project (Figure 4.1.12), albeit in
extremely low abundances (<1 ind. m™). Pacific expatriate copepods included Neocalanus
cristatus, Eucalanus bungii, and Metridia pacifica. Neocalanus flemingeri and Neocalanus
plumchrus were observed at only a few stations across all survey years.
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Pseudocalanus spp.
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Figure 4.1.2. Abundance of Pseudocalanus spp. (ind. m'3) captured in the 150-um net in the Beaufort Sea during Transboundary 2012-14.
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Oithona similis
Abundance (ind. m-3)
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Figure 4.1.3. Abundance of Oithona similis (ind. m'3) captured in the 150-um net in the Beaufort Sea during Transboundary 2012-14.
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Triconia borealis
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Figure 4.1.4. Abundance of Triconia borealis (ind. m'3) captured in the 150-uym net in the Beaufort Sea during Transboundary 2012—-14.
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Microcalanus pygmaeus
Abundance (ind. m-3)

X Not present

Figure 4.1.5. Abundance of Microcalanus pygmaeus (ind. m'3) captured in the 150-um net in the Beaufort Sea during Transboundary 2012—-14.

Final Report - Beaufort Transboundary Report BOEM 2017-034 - December 2017
112



BOEM 2017-34

Heterorhabdus norvegicus
Abundance (ind. m-3)
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Figure 4.1.6. Abundance of Heterorhabdus norvegicus (ind. m'3) captured in the 150-uym net in the Beaufort Sea during Transboundary 2012—-14.
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Figure 4.1.7. Abundance of Eurytemora spp. (ind. m'3) captured in the 150-uym net in the Beaufort Sea during Transboundary 2012—-14.
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Calanus glacialis
Abundance (ind. m=)

Figure 4.1.8. Abundance of Calanus glacialis (ind. m'3) captured in the 505-uym net in the Beaufort Sea during Transboundary 2012-14.
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Calanus hyperboreus
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Figure 4.1.9. Abundance of Calanus hyperboreus (ind. m'3) captured in the 505-um net in the Beaufort Sea during Transboundary 2012-14.
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Metridia longa
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Figure 4.1.10. Abundance of Metridia longa (ind. m'3) captured in the 505-um net in the Beaufort Sea during Transboundary 2012-14.
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Paraeuchaeta glacialis
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Figure 4.1.11. Abundance of Paraeuchaeta glacialis (ind. m'3) captured in the 505-um net in the Beaufort Sea during Transboundary 2012—-14.
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Figure 4.1.12. Presence of Pacific expatriate taxa captured in the 150- and 505-uym nets in the Beaufort
Sea during Transboundary 2012-14.

4.1.3.3 Community Structure and Relation to Hydrography
150-uym net

Pooled data from all field seasons revealed strong separation of shelf and slope zooplankton
communities by both abundance (Figure 4.1.13) and biomass (Figure 4.1.14). Cluster analysis
revealed four major groupings in the pooled Transboundary 150-pm abundance data: slope,
central shelf, eastern shelf, and freshwater-influenced. Similarity percentage analysis (SIMPER)
of 150-um abundance data (Table 4.4) showed that the slope group was characterized by high
abundances of Oithona similis, Pseudocalanus spp. copepodites, calanoid nauplii, Triconia
borealis, Calanus glacialis, and Microcalanus pygmaeus. The central shelf group was
characterized by high abundances of O. similis, Pseudocalanus spp. copepodites, C. glacialis,
and calanoid nauplii. In the eastern shelf group, Pseudocalanus spp. copepodites were the largest
contributors to within-group similarity, followed by O. similis, C. glacialis, and T. borealis.
Finally, the freshwater-influenced group was characterized by Pseudocalanus spp. copepodites,
O. similis, calanoid nauplii, 7. borealis, and Eurytemora spp. Cluster analysis of the pooled 150-
um biomass data revealed the same four primary groupings; however, the freshwater-influenced
group also split along a shelf-slope axis. The slope stations of the freshwater-influenced group
were differentiated from those on the shelf by a higher contribution of the predatory chaetognath
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Eukrohnia hamata to biomass on the slope. The structure observed in samples collected by t