ALASKA OCS REGION

Segmental Analysis of Mercury in Hair in 80 Women of Nome, Alaska

SEGMENTAL ANALYSIS OF MERCURY IN HAIR IN 80 WOMEN
 OF NOME, ALASKA

Prepared for:
U.S. Department of the Interior Minerals Management Service Alaska OCS Region 949 East 36th Avenue, Room 110 Anchorage, Alaska 99508-4302

Prepared by:
B. K. Lasorsa
R. J. Citterman .

Battelle/Marine Sciences Laboratory 439 West Sequim Bay Road Sequim, Washington 98382

Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in the Sequim, Washington, area were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Fulllength hair strands were analyzed in $1.1-\mathrm{cm}$ segments representing 1 month's growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It is assumed that the concentration of mercury in each segment is an indicator of the mercury body burden of the subject during the month in which the segment emerged from the scalp.

When mercury concentration versus month of growth is plotted for each participant, a number of trends are seen. Forty of the hair samples, including one control, are either too short to show any particular trend or have steady concentrations between 0.2 and 3 ppm for all segments. Eighteen of the samples show seasonal variability, with five of the controls showing winter highs and the remainder, all Nome residents, showing summer highs. Twenty-six of the samples show a steady increase in mercury concentration toward the distal end of the strand regardless of month of growth. Fourteen of the 26 distally increasing samples, including 1 control, have a maximum of less than 3 ppm, while the remainder have maximums as high as 16 ppm . The remaining three samples show a combination of distal increases and seasonal variation.

Those individuals with maximums over 3 ppm are of interest. These 12 individuals exceed normal levels for people consuming fish 1 to 4 times per month and in some cases 1 to 4 times per week. Some also exceed the commonly accepted levels of concern for fetal effects of mercury poisoning. However, the trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.

TABLE OF CONTENTS

SUMMARY iii
INTRODUCTION 1
SAMPLING AND SAMPLE HANDLING 3
PRELIMINARY ANALYSES 5
ANALYTICAL METHODS 7
RESULTS AND DISCUSSION 9
SUGGESTIONS FOR FURTHER STUDY 19
REFERENCES 21
APPENDIX A - CALIBRATION AND STANDARD DATA A. 1
APPENDIX B - RAW DATA B. 1
APPENDIX C - RESULT GRAPHS BY PARTICIPANT NUMBER C. 1
APPENDIX D - ANALYTICAL METHODS D. 1
1 Idealized Examples of Seasonally Variable Trends 13
2 Idealized Examples of Distally Increasing Trends 14
3 Idealized Examples of Other Trends 15
4 Correlation of Sample Weight and Measured Mercury Concentration 17
TABLE
1 Minimum, Maximum, and Average MercuryConcentrations for Each Participant as Well asthe Average Concentration Determined Duringthe Previous Study10

INTRODUCTION

In the autumn of 1989, 200 samples of human hair from women of childbearing age residing in Nome, Alaska, were analyzed for total mercury. The mercury analyses were conducted at Battelle/Marine Sciences Laboratory (MSL) ${ }^{(a)}$ as part of a baseline monitoring study undertaken by Minerals Management Service (MMS) during the preparation of an environmental impact statement evaluating the feasibility of off-shore gold dredging leases. There was concern that off-shore dredging could release elemental mercury, which is often associated with gold deposits, to the waters of Norton Sound. This mercury could then be accumulated by marine mammals and fish of the region that are, in turn, consumed by the population of Nome.

The results of the 1989 study (Crecelius et al. 1990) prompted MMS to pursue a more thorough investigation of the mercury levels. To that end, 80 full-length hair samples were collected in the autumn of 1990 from 27 participants of the original study, including 10 of 16 with relatively high mercury levels, plus 53 additional heavy users of subsistence foods. The goal of this study was to analyze the full-length hair samples in segments equivalent to 1 month of growth to ascertain whether variations occur in the levels of mercury in the hair as a function of dietary habits such as seasonal consumption of certain forms of marine life.

A total of 828 hair segments from the 80 Nome participants were analyzed as well as samples from 7 control subjects and 2 standard reference materials. Results are presented in Appendices A, B, and C, and analytical methods are presented in Appendix D.

[^0]
SAMPLING AND SAMPLE HANDLING

Samples were collected by personnel from Norton Sound Health Corporation using methods and equipment supplied by MSL. Samples were taken as close to the scalp as possible by a gloved staff member using clean scissors. The sample was carefully bound with tape within 2 cm of the scalp end to maintain the hair in a bundle and placed in labeled polyethylene bags for shipment to MSL. Upon arrival at MSL, each sample was carefully removed from the bag and sectioned into $1.1-\mathrm{cm}$ lengths. This length has been determined to be equivalent to 1 -month growth on average (Marsh 1989). Each segment was placed in a labeled, pre-weighed, acid-cleaned glass vial. The portion of the sample that was in contact with the tape was discarded and the amount discarded was recorded. To reduce sample loss from static electricity, samples were wetted with distilled water during segmentation and dried prior to weighing. The number of segments generated from each sample has varied from 2 to 26 , recording between 2 and 26 months of mercury exposure.

PRELIMINARY ANALYSES

The samples were received and logged in at MSL on November 1, 1991. Prior to beginning analysis of the samples, the following preliminary experiments were performed to be certain the procedure was appropriate and would work as expected:

- An experiment to ascertain whether any significant contamination to the hair sample would occur during storage in polyethylene bags indicated an insignificant contamination level of 0.013 ng of mercury.
- Using samples of the Japanese certified hair standard, NIES-5, a series of digestions were performed to optimize the digestion method and time while still assuring complete digestion. This resulted in the $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ digestion at $350^{\circ} \mathrm{F}$ for 3 hours as presented in our Standard Operating Procedure sent to MMS in December 1990.

Once these experiments were completed and the Standard Operating Procedure was finalized, analysis was begun.

ANALYTICAL METHOOS

Samples were digested in sets of 24 to 40 segments. This usually included two or three segmented samples (depending on the length), a blank, NIES hair standard, a spiked NIES hair standard, and another tissue standard (usually DORM-1 dogfish muscle). Digestion batches were visually separated from each other using different colored labels so that the appropriate batch blank could be applied during analysis. Individual samples were identified by their participant number, and the segments were identified alphabetically, beginning with "a" at the scalp. Samples were digested by refluxing in a concentrated nitric/sulfuric acid solution and analyzed by cold vapor atomic fluorescence as outlined in Appendix D.

The instrumentation was calibrated daily using a four-point linear regression and a calibration check standard NBS-1641b. The average of the daily calibration checks was $1.51 \pm 0.07 \mu \mathrm{~g} / \mathrm{mL}$, which compares very well with the certified value of $1.52 \pm 0.04 \mu \mathrm{~g} / \mathrm{mL}$. Two tissue standards (NIES-5 human hair and DORM-1 dogfish muscle) were digested with each set and analyzed several times daily. A spiked NIES-5 hair sample was analyzed for matrix spike recovery as well. The data for these quality control analyses may be found in Appendix A.

A total of 828 hair segments were analyzed, not including duplicates, control samples, and standards. Seven samples from women of childbearing age living in the Sequim, Washington, area were segmented and analyzed as controls. Two of the samples were split prior to segmentation and analyzed as duplicates: control sample "7 was duplicated at MSL, and sample \#62 was duplicated at another laboratory. The mean deviation between mercury concentrations in each segment of the duplicated sample was 6.5% for the sample duplicated in-house and 19% for the sample duplicated at another laboratory. Raw data for all of the analyses can be found in Appendix B. Data tables and graphs for all of the participant samples and control samples, as well as the duplicates, can be found in Appendix C. In the generation of data, all values were first hand-calculated and then calculated within the project computer spreadsheet as a calculation crosscheck.

Initially, a problem was encountered with the mercury values in the tissue standards consistently running 10% to 15% high. This problem was finally resolved when it was discovered that when the sample vials were warmed to dry the samples after segmentation, the labels were actually losing weight as some of the adhesive evaporated. When the vials were reweighed following sample addition, the calculated weight difference was, therefore, too small, resulting in calculated mercury concentrations being too high. Because the weights of the segmented hair samples were very small, this weight difference is significant. This problem was rectified by heating the labeled vials briefly prior to the initial weighing. Because the "blank" vial was always weighed and treated exactly like the samples, its weight difference after heating was used to correct the concentrations of the samples analyzed prior to identification of the cause of the problem. Once this was done, the tissue standards once again fell into their certified ranges.

Another problem related to the very low sample weights was that the segments at the distal end of the samples (where there were fewer strands than at the scalp) were so light that we were often working near the limits of the balance, resulting in a potentially larger margin of error in the sample weight and therefore in the final concentration. Samples exhibiting this problem are flagged on the final graph. Two segments were lost in the course of the study: one caused by a vial rupture during digestion and one because of an apparent weighing error.

RESULTS AND DISCUSSION

The results for each participant are presented graphically and tabulated in Appendix C. A summary of minimum, maximum, and average concentrations for each participant, as well as the concentration determined in the previous study when applicable, is presented in Table 1 . When referring to the set of graphs in Appendix C, you will note that the scale of the y-axis (mercury concentration in parts per million) varies. The scale for most of the graphs has a maximum of 3 ppm . However, 13 of the graphs have a y-axis scale with a maximum of 10 ppm and 3 of the graphs have a y-axis maximum of 16 ppm . We attempted to graph all of them on the same scale, but the few samples approaching 16 ppm caused most of the samples in the 0 to 3 ppm range to disappear into the baseline.

The data reveal several interesting trends, the most prevalent of which is a steady increase in the mercury concentration from scalp to ends regardless of growth month. This would be expected to some degree because of exposure of the hair strand to airborne contaminants. The longer the hair strand has been exposed to the environment, the greater the degree of external contamination. Most of the hair samples that were long enough to exhibit any trend at all exhibit this distal increase, but the overall Hg concentrations are still at or below normal levels of $1.9 \pm 0.9 \mathrm{ppm}$ (derived from an average of 559 samples from 13 industrialized countries from individuals consuming fish 1 to 4 times per month) (Mitra 1986). However, 15 of the samples exhibit this trend to a greater extent, with distal end concentrations approaching 16 ppm. When this trend became apparent, we enlisted the help of several women in the Sequim, Washington, area to provide control samples to see if this was a trend outside Nome, as well. Because the level of concern is generally considered to be 10 ppm (Mitra 1986), it is important to determine whether these high concentrations are truly representative of body burden in these 15 individuals.

In the samples with maximum concentrations less than 3 ppm , there was a variety of trends ranging from little variation (common in the short samples, of course) to distal increases or (rarely) decreases, seasonal increases

IABLE 1. Minimum, Maximum, and Average Mercury Concentrations for Each Participant as Well as the Average Concentration Determined During the Previous (1989) Study. When two participant numbers are given, the first is for the present study and the second is for the 1989 study. No statistically significant correlation was found between mercury concentration and chemical hair treatments as indicated in the perm/color column.

$\begin{gathered} \text { Participant } \\ \text { ID } \end{gathered}$	Present Study			1989 Study Average (Ho) ppon	Comments	
	$\begin{aligned} & \text { Minimum } \\ & (\mathrm{Ha})_{\text {_ngm }} \end{aligned}$	$\begin{aligned} & \text { Maxinum } \\ & (\mathrm{Hg})_{\text {popm }} \end{aligned}$	Average (Hg) opon		Length ${ }^{\text {(a) }}$	Perm/Color
1	1.078	2.744	1.384			
2/38	1.290	15.194	4.979	0.89		
3/99	2.901	12.743	7.423	2.15		p
4/146	1.712	1.917	1.783	3.16	SHORT	p
5/152	1.335	6.575	2.864	3.75		p
6/84	0.755	2.527	1.625	3.82		P
7/166	0.653	0.742	0.697	0.39	SHORT	
8	0.599	0.842	0.720		SHORT	
9	0.729	7.535	2.853			
10	0.430	0.842	0.573		SHORT	p
11	0.532	0.866	0.657		SHORT	p
12/9	1.081	6.198	2.898	1.96		
13	0.423	1.139	0.637			P
14/145	0.762	3.975	1.838	0.80		p
15/170	1.129	6.424	3.450	3.01		
16/117	0.945	3.283	1.565	6.22	SHORT	
17	0.531	1.433	0.861			p
18/168	0.252	0.661	0.507	3.80		C
19/194	0.382	1.680	0.759	2.05		p
20	0.487	0.611	0.545		SHORT	P
21	0.891	1.566	1.129			
22	1.520	2.788	2.083		SHORT	P
23/30	0.272	1.106	0.659	0.57		
24/85	1.027	3.896	1.931	3.70		p
25/20	1.049	2.409	1.610	2.15		P
26/67	0.727	1.278	1.056	0.49		
27/27	0.413	1.026	0.537	0.59		p
28	0.681	1.386	0.980		SHORT	P
29/70	0.709	2.596	1.150	1.12		
30	0.789	3.396	1.643			
31	1.259	4.386	1.944			p
32	0.802	1.790	1.166			
33	1.947	3.333	2.564		SHORT	
34	0.821	2.859	1.781			
35	0.559	3.153	1.336			p
36	0.290	0.793	0.440			p
37/193	0.388	1.091	0.590	0.53		p
38/185	0.667	1.591	0.992	0.70		P
39/32	0.628	0.924	0.717	0.58		P
40	0.727	0.994	0.853		SHORT	
41	0.992	2.998	1.961			p
42	0.365	0.807	0.578			P
43	0.817	2.525	1.365			
44/150	0.463	0.980	0.669	0.85		p
45/66	0.715	0.836	0.775	1.38	SHORT	P
46/116	0.457	0.814	0.611	0.37		p
47	0.800	1.806	1.255			
48	1.457	4.532	2.611			
49	1.348	1.710	1.532		SHORT	p

TABLE.1. (contd)

$\begin{gathered} \text { Participant } \\ \quad 10 \\ \hline \end{gathered}$	Minimua $\text { (} \mathrm{Ha} \text {) _mom }$	$\begin{aligned} & \text { Maximum } \\ & (\mathrm{Ha} \text {) } \mathrm{omm} \end{aligned}$	Average $(\mathrm{Hg}) \text { pon }$	Average $\text { (} \mathrm{Ha})_{\text {ppin }}$	Length ${ }^{(a)}$	Perm/Color
50	1.402	1.902	1.626			
51	1.197	1.644	1.403			
52	0.508	1.613	0.850			p
53	0.209	0.380	0.270			P
54	0.429	1.242	0.830			
55	1.176	2.387	1.755			p
56	1.394	2.628	2.073		SHORT	P
57	1.195	2.324	1.543			
58	0.315	0.704	0.417			
59	2.025	2.123	2.068		SHORT	
60	0.564	1.064	0.748			
61	0.847	2.533	1.366		SHORT	
62	0.836	1.215	1.031			
62 DUP	0.660	1.240	0.973			
63	1.664	2.284	1.990		SHORT	
64	0.712	1.232	0.973			
65	0.954	1.764	1.196			
66	2.051	3.113	2.306			
67	1.037	1.790	1.490		SHORT	
68	0.565	1.402	0.828			P
69/155	0.563	1.224	0.872	0.20		P
70	0.221	0.770	0.455		SHORT	P
71/108	0.332	1.459	0.642	0.66		
72	1.700	2.583	1.993			p
73	0.420	0.794	0.612		SHORT	P
74	1.028	1.358	1.207		SHORT	p
75	0.309	0.322	0.316		SHORT	P
76	0.530	0.895	0.712			P
77	0.254	1.787	0.577			P
78	0.852	1.537	1.096			
79/93	1.381	1.604	1.493	0.54	SHORT	P
80	0.516	1.192	0.895			
CONTROL 1	0.403	0.728	0.605			
CONTROL 2	0.590	1.572	0.963			
CONTROL 3	0.164	0.805	0.359			P
CONTROL 4	0.427	1.341	0.874			
CONTROL 5	0.493	1.272	0.764			
CONTROL 6	0.249	0.597	0.475			P
CONTROL 7	0.430	1.178	0.872			
CONTROL 7DUP	0.392	1.149	0.848			

(a) Five segments or fumer.
(usually autumn/winter for the control samples and summer for the Nome participants) or any combination thereof. Idealized examples of the common trends are presented in Figures 1, 2, and 3. Figure 1 exemplifies the samples with seasonal trends, both summer and winter highs. As illustrated, the samples with summer highs tend to have higher concentrations overall, as well. Figure 2 illustrates both large and small distal increases and Figure 3 illustrates seasonal trends superimposed on a distal increase and samples that show no trend, predominantly from lack of length. The most common trend appears to be seasonal increases with or without a superimposed distal increase. Note that six of the seven control subjects fall into this category; however, the control subjects show winter increases while almost all of the Nome participants show seasonal variation peak during the summer months. None of the controls analyzed has an average concentration over 1 ppm . Because 65 of the 80 participants of the study had maximum mercury in hair concentrations of less than 3 ppm , it can be inferred, assuming that these subjects consume quantities of marine life representative of the population of Nome as a whole, that consumption of marine life from Norton Sound does not contribute levels of mercury that are above normal levels of concern.

In the remaining 15 samples, those with maximums in the 3 to 16 ppm range, all of the participants except participant \#3 exhibit a nearly constant concentration for the first 3 or 4 months of emergence followed by a steady increase toward the distal end regardless of month of emergence. Participant \#3 showed this general trend, but the values fluctuate somewhat because of low segment weights. This trend suggests that the participants showing the distal increase (particularly those greater than 3 ppm) are exposed to some source of mercury that results in hair strand uptake by adsorption rather than ingestion. Dr. Tom Clarkson of the University of Rochester told us in May 1991 that similar trends were seen in the hair of infants and their families exposed to diapers containing phenylmercury. Wilson et al. (1974) report similar trends in a family using a shampoo containing an unusually high concentration of mercury. In these cases, it is probably the first few segments (those most recently emerged from the scalp) that are indicative of the true body burden of the participant. There was initial suspicion that the

Seasonal Variability - Winter Highs: C1,C2,C4,C5,C6,26. $n=6$ Seasonal Variability - Summer Highs: 13,17,27,32,41,44,52,53,64, $68,78,80$. $\quad n=12$

EIGURE 1. Idealized Examples of Seasonally Variable Trends

$$
\begin{array}{ll}
\text { Distal Increase - Overall [Hg]<3 ppm: } & \begin{array}{l}
C 3,1,6,19,23,29,36,37, \\
43,47,58,69,71,77, \\
\text { Oistal Increase - Overall }[\mathrm{Hg}]>3 \mathrm{ppm}: \\
2,3,5,12,14,15,16,
\end{array} \\
\begin{array}{ll}
24,30,31,35 ., n=12
\end{array}
\end{array}
$$

EIGURE 2. Idealized Examples of Distally Increasing Trends

Superimposed Seasonal/Distal Increase: 25,34,54. $n=3$ No Apparent Trend: C7, 4,7,8,10,11,18,20,21,22,28,33,38,39,40,42, $45,46,48,49,50,51,55,56,57,59,60,61,62,63,65,66,67$, 70,72,73,74,75,76,79. $\quad n=40$

EIGURE 3. Idealized Examples of Other Trends
distal increases could be an analytical artifact caused by processing contamination or weighing error in the distal ends of the hair strands. These segments were sometimes up to 50% lighter than segments near the scalp from the same subject because of layered haircuts or breakage. However, examination of the numerous replicate analyses of the 31 digestions of the NIES-5 hair standard varying in weight from 0.0032 to 0.0156 grams (a total of 81 analyses) shows that this is not probable (See Figure 4). This graph shows the correlation between sample weight of the analyses of 31 digestions of the NIES Hair Standard weighing between 0.003 and 0.0156 and the corresponding analytical result, illustrating the fact that the increase in the mercury concentration at the distal end of many samples cannot be attributed to contamination. The certified mercury concentration for this standard is 4.4 $\pm 0.4 \mathrm{ppm}$. The range of NIES-5 digestion weights bracket the sample weights with the exception of the few flagged as somewhat unreliable because of low weights on the graphs. The graph shows that there is little or no correlation between sample size and analyzed concentration, except for sample weights less than 0.004 grams. However, even the slight correlation seen at weights less than 0.004 grams does not account for the order-of-magnitude increases seen in many of the samples.

Because apparent seasonal variations were seen only in the samples having lower maximum concentrations (<3ppm), this apparent absorption may be masking seasonal effects in those with higher, probably non-dietary, concentrations. Possible sources of this adsorbed mercury are airborne mercury (such as vapor from latex paints containing mercury as a mildew retardant), water, or sediment tracked into buildings and contributing mercury to the vapor phase. However, the fact that most of the Nome participants who showed seasonal variations had peak levels in the summer may indicate that the contamination may have an outdoor source. It is known that, in the early part of this century, when mercury was heavily used in the gold ore purification process, large amounts of elemental mercury were released to the environment in the vicinity of Nome and soil levels in the range of 350 to 1000 ppm have been measured within the city limits (MMS 89-0049). The relatively high mercury concentrations measured in the hair of the individuals exhibiting this trend may be indicative of this rather large source of mercury contamination in the Nome area.

EIGURE 4. Correlation of Sample Weight and Measured Mercury Concentration.

If these data are to be used as a reliable indicator for exposure assessment, it is important to determine whether the steady distal increase seen in many of the samples is indeed caused by abiotic adsorption from the environment. If that is the case, there are implications with respect to the interpretation of this and other mercury in hair data, both segmental and total hair. Several possibilities for investigating this include the following:

- If adsorption is taking place, it would be in the form of elemental mercury, as opposed to methylmercury, which is the predominant species of mercury found in marine mammals and fish. It would be possible to resolve the question of the origin of the mercury increase by analyzing segmented hair from the same subject for both methylmercury and total mercury (methylmercury + elemental mercury). If the increase is an accurate reflection of the mercury ingested by the subject, the trend should be the same for both types of mercury. If the increase is due to abiotic adsorption, the methylmercury levels should remain relatively constant while the total mercury level increases toward the distal end of the hair. By analyzing hair in this way, the results would be indicative of both body burden as a result of ingestion of organomercury compounds common in fish and marine mammals and abiotically adsorbed mercury.
- Passive air samplers can be placed in the homes of several of the participants, both those exhibiting low trendless mercury levels and those exhibiting high, distally increasing mercury levels, to see if there is a correlation between the vapor levels and hair levels. Water samples could also be taken in these homes, though this parameter is somewhat more difficult to interpret because the water is also ingested.
- It would be of interest to geographically plot the locations of the homes and/or work places (and occupations) of the participants exhibiting the high, distally increasing concentrations and to note relationships with areas of documented high levels of mercury in the soil. It would also be interesting to note other habits of the participants that would affect their exposure to air or water-borne mercury, such as living in different locations during summer versus winter, leaving Nome at a certain time of year for extended periods, exposing themselves to possible sources during certain seasons (i.e., gardening would expose them to possibly contaminated soil in the summer time), etc.

REFERENCES

Crecelius, E.A., C.W. Apts, and B.K. Lasorsa. 1990. Concentrations of Metals in Norton Sound Seawater Samples and Human Hair Samples. OCS Study MMS 900010, Minerals Management Service, Anchorage, Alaska.

Marsh, D.0. 1989: "Methylmercury Poisoning in Iraq." In Mercury in the Marine Environment. Workshop Proceedings. OCS Study MMS 89-0049, Minerals Management Service, Anchorage, Alaska.

Mitra, S. 1986. Mercury in the Ecosystem, p. 142. Trans Tech Publications.
Wilson, K., D. Stark, T. Kolotyluk, and E.E. Daniel. 1974. "A Technical Problem Discovered in Testing for Mercury in Human Hair." Arch. Environ. Health 28:18.

APPENDIX A

CALIBRATION AND STANDARD DATA

A. 1 CALIBRATION DATA

TISSOR DIGESTIOM CALIBRATIOM SHEET
:PROJBCT ID: HONR SBGETMTAL AMLYSIS
PILBHMR: HOMCLL

SEQ ${ }^{\text {P }}$	$\begin{gathered} \text { DATB } \\ \text { ROII } \end{gathered}$	START SEO	$\begin{aligned} & \text { BID } \\ & \text { SEO } \end{aligned}$	$\begin{gathered} \text { BLAIR } \\ \text { (AREA) } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { PACTOR } \\ \text { ARE/ng } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { MREA, } \\ & \text { STD 1641b } \end{aligned}\right.$
1	$14 \mathrm{JWM91}$	10	22	28	5852	
2	15Jam91	23	51	26.5	5588	1.55
3	$16 J 4 n 91$	52	60	83	5771	1.54
1	1671199	61	80	226	5771	1.54
5	$17 J$ M91	81	102	30	5750	1.55
6	175 N991	103	107	26	5750	1.55
7	1851591	108	130	43	5742	1.51
8	2151191	131	145	39	6081	1.38
9	22J2191	146	164	17.5	6084	1.54
10	23J1791	165	183	30	6138	1.47
11	2671191	184	209	28.5	5958	1.57
12	2972151	210	231	43	5808	1.58
13	3072191	232	257	34	5939	1.56
14	3172191	258	270	31	5897	1.61
15	31J1M91	271	280	19	5897	1.61
16	178991	281	303	28	6104	1.55
17	478391	304	311	24	6288	1.51
18 \|	578691	312	317	22	6321	1.51

A.1-1

IISSUR DIGRSTIOM CALIBRAFIOR SBRET
PRONET ID: HOKR SECTRILAL AMALYSIS
PILBALIR: HOMCAL

SEQ 1	$\begin{gathered} \text { DATB } \\ \text { RDII } \end{gathered}$	$\begin{aligned} & \text { STARI } \\ & \text { SEDA } \end{aligned}$	$\begin{aligned} & \text { EID } \\ & \text { SER } \end{aligned}$	$\begin{gathered} \text { BLAMIR } \\ \text { (ARRA) } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { PACTOR } \\ \text { ARR1/ng } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { KIBAI } \\ \text { STD } 1641 \mathrm{~b} \end{gathered}\right.$
19	578691	318	332	25	6321	1.51
20	678691	333	353	40	6336	1.61
21	$77 \mathrm{FB91}$	354	360	33.5	6294	1.59
22	778891	361	366	44	6294	1.59
23	$12 \mathrm{PB691}$	367	368	53	7839	1.41
24	$12 \mathrm{PES91}$	369	384	30	7839	1.41
25	$13 \mathrm{FRB91}$	385	405	34	7495	1.36
26	$14 \mathrm{PEB91}$	406	428	27	6850	1.52
27	$18 \mathrm{ERB91}$	429	442	33	7838	1.48
28	$19 \mathrm{FKB91}$	452	456	24	7916	1.41
29	$19 \mathrm{PB891}$	457	464	29	7916	1.41
30	20 FEB91	465	492	24.5	7979	1.47
31	414R91	493.	526	64	9058	1.46
32	514R91	527	531	28	9163	1.50
33	54AR91	532	559	24	9163	1.50
34	6HAR91	560	596	24	9058	1.52
35	714R91	597	633	46	9128	1.55
36	84aR91	634	665	37	9073	1.57

TISSOE DIGESTIOA CALIBRATIOM SHEEI
:PROTECT ID: HOHE SBGIETMAL AMLYSIS
FILRHAME:
HOMCAL

SBO ${ }^{\text {P }}$	$\begin{gathered} \text { DAIE } \\ \text { RUI: } \end{gathered}$	$\begin{aligned} & \text { STARI } \\ & \text { SEOI } \end{aligned}$	$\begin{aligned} & \text { ELD } \\ & \text { SEOI } \end{aligned}$	$\begin{aligned} & \text { BLARIK } \\ & \text { (ARRA) } \end{aligned}$	$\left\lvert\, \begin{array}{r} \text { FACHOR } \\ \text { ARBA/ng } \end{array}\right.$	HIBAM
37	11HAR91	666	668	35	9439	1.51
38	11HAR91	669	697	39.5	9439	1.51
39	12101291	698	727	39.5	9589	1.46
40	13142091	728	762	37.5	9393.6	1.39
41	1414P91	763	770	34	6912	1.56
42	1414R91	771	788	32	6912	1.53
43	187nP91	789	820	56.5	6904	1.56
44	2213P91	821	839	31	4048	1.47
45	251uP91	840	867	30.5	3737	1.50
46	26nP91	868	881	26.5	3910	1.11
47	261MP91	882	895	43.5	3910	1.11
48	27.1991	896	917	22.5	4025	1.51
49	2714P91	918	926	24	4025	1.51
50	28101891	927	959	29	4502	1.50
51	29\%41291	960	965	42	4513	1.44
52	29\%1291	966	986	43	4513	1.44
53	24P991	987	1003	30	4574	1.48
54	24P991	1004	1016	28	4574	1.48

TISSOE DIGRSTIOM CALIBRATIOM SHEFI
PROUECT ID: MONE SEGIBSILAL AMALYSIS
PILERNR: HOMCNL

SEO ${ }^{\text {P }}$	$\begin{gathered} \text { DAEB } \\ \text { RUI } \end{gathered}$	$\begin{aligned} & \text { STARI } \\ & \text { SERY } \end{aligned}$	$\begin{aligned} & \text { EID } \\ & \text { SEOA } \end{aligned}$	$\begin{gathered} \text { BLAIRR } \\ \text { (ARRS) } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { PACTOR } \\ \text { ARERA/ng } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { HRA1 } \\ \text { STD 164ib } \end{gathered}\right.$
55	34PR91	1017	1031	28	4806	1.52
56	34P991	1032	1052	45.5	4806	1.52
57	44P891	1053	1071	35.5	4764.4	1.54
58	4, PR21	1072	1075	43	4764.4	1.54
59	51PP91	1076	1103	35	4936	1.64
60	84PR91	1104	1115	30	4840	1.65
61	84P891	1116	1132	26	4840	1.65
62	91PR91	1133	1162	26.5	4876	1.55
63	104PR91	1163	1196	29.5	4920	1.47
64	$181 \mathrm{PR91}$	1197	1225	37	6917	1.57
65	191PR91	1226	1256	42.5	7172	1.41
66	221PR91	1257	1259	47	8150	1.52
67	221PR91	1260	1284	53	8150	1.52
68	23APR91	1285	1301	46.5	8233	1.54
					HEAM	1.51
					STD DET	0.07
				CERTIFI	valor	1.52+0.04

A. 2 ANALYSIS RECORD FOR TISSUE STANDARD DORM-1

DORH-1

$\begin{gathered} \text { BATPRLLLR } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIB } \end{gathered}\right.$	
DORH-1-01	9J1491	0.790
DORH-1-01	9JAF91	0.716
DORH-1-01	9J1491	0.707
DORH-1-02	14Jan91	0.856
DORH-1-02	14511991	0.832
DORH-1-02	14J31991	0.879
DORH-1-03	16 J 1 M 91	0.930
DORH-1-03	1651191	0.896
DORH-1-03	$16 \mathrm{Jam91}$	0.783
DORH-1-04	17711991	0.903
DORH-1-04	17511991	0.911
DORH-1-05	22J1.91	0.748
DORH-1-05	22J4991	0.819
D084-1-05	22J1991	0.803
D089-1-06	23JX191	0.638
1089-1-06	23J1991	0.817
1089-1-06	23511991	0.879
100\%-1-06	23J1491	0.856
D08\%-1-06	23JdF91	0.779
D030-1-07	25 J 1491	0.963
D084-1-07	25J1491	0.906
D03\%-1-07	25JLM91	0.857

DORH-1

$\begin{aligned} & \text { BATTELLB } \\ & \text { ID } \end{aligned}$	DIGESIIOM	$\underset{[\mathrm{EH}]}{\mathrm{VEg} / \mathrm{g}}$
DORT-1-07	25131191	0.887
D0, ${ }^{1-1-08}$	28J2191	0.905
DORH-1-08	28J2491	0.915
D08\%-1-08	28J3M91	0.944
10301-1-08	$28 J 1491$	0.907
D0, ${ }^{\text {P-1-09 }}$	31JM991	0.871
DOM ${ }^{\text {d-1-09 }}$	31J1191	0.852
DOPH-1-10	8 FEB91	0.810
D0, 2 -1-10	858691	0.824
DOPN-1-10	$85 \mathrm{EB91}$	0.948
DORH-1-10	8FEB91	0.909
DOSH-1-11	$12 \mathrm{FEB91}$	0.804
DOM-1-12	14FEB91	0.743
D02	14 FEP91	0.766
10294-1-13	20781391	0.803
10301-1-13	2015891	0.777
DOPM-1-14	412R91	0.840
D091-1-14	414AR91	0.850
DOPT-1-15	511229	0.852
DORH-1-15	54RR91	0.851
DORH-1-16	61nR91	0.800
DORS-1-16	614R91	0.833

$\begin{gathered} \text { BMTELLSB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGESIIOR } \\ \text { DATE } \end{gathered}\right.$	$\underset{[\mathrm{Bq}] \mathrm{Hg} / \mathrm{g} / \mathrm{g}}{ }$
DORH-1-16	6412R91	0.880
DORH-1-17	11HAR91	0.867
DORH-1-18	1214R91	0.920
DORH-1-18	1210R291	0.877
DOPH-1-18	12H14891	0.980
DORH-1-19	1314P91	0.727
DOP\%-1-19	1314AR91	0.891
D084-1-20	21HAR21	0.828
DOPM-1-21	2214P91	1.112
D084-1-21	22412891	1.132
DOPR-1-21	221:AP91	1.078
DO8P-1-22	2540R91	0.800
D08\%-1-22	25UAR91	0.870
D084-1-23	2610.91	0.810
1002-1-23	2610891	0.857
100e-1-24	2714891	0.840
D00\%-1-25	2914P91	0.914
D08i-1-25	29MARO1	0.833
10001-1-26	11PP91	0.926
1089-1-26	$1 \mathrm{PPR91}$	0.892
DO2R-1-26	1 P PR91	0.935
D084-1-27	$2 \mathrm{PPR91}$	0.778

DORH-1

$\begin{aligned} & \text { BATTELLB } \\ & \therefore \quad \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\underset{[\mathrm{Hfg}] \mathrm{mg} / \mathrm{g}}{\mathrm{Eng}}$
DOR2-1-27	2APR91	0.766
DOSM-1-28	44P891	0.913
DORH-1-29	9AP291	0.840
DORH-1-30	$1714 \mathrm{PR91}$	1.135
DO34-1-30	172P891	1.023
DO23-1-31	182PR91	0.849
HEMA		0.864
STD DES		0.091

A. 3 ANALYSIS RECORD FOR HAIR STANDARD NIES-5

CERTIPIED GAIR STANDARD MIES

$\begin{gathered} \text { BATTRILJB } \\ \text { ID } \end{gathered}$	$\left.\right\|_{\text {DAIE }} ^{\text {DIGSTIIOM }}$	$\underset{[\mathrm{Bg}]}{\mathrm{EHg} / \mathrm{g} / \mathrm{g}}$
HIES-01	9JAM91	4.402
MIES-01	9J1491	5.913
MIES-01	9Jג191	5.576
HIES-01	9J4191	5.386
MISS-01	gJan91	4.927
MIES-02	14JA1991	3.677
MIES-02	14J1\%91	4.568
MIES-03	16 J 1591	4.580
MIES-03	16J1991	4.416
IIPS-04	17J3991	4.540
MIRS-04	17J8991	4.307
MIES-04 OLD	1751591	4.794
HIES-05	22511991	4.720
IIES-05	2251491	4.450
IIES-05	22J1491	4.786
MISS-06	23J1591	4.342
IISS-07	25 J 1991	4.248
IIES-07	2571191	4.157
HISS-07	25 J 1991	4.123
MIES-08	28Jan91	4.577
MIES-09	31J1991	3.857
MIES-09	315М91	4.811

CERTIFIED HAIR STAMDARD MIRS

$\begin{gathered} \text { BATHELLS } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOM } \\ \text { DATE } \end{gathered}\right.$	$\underset{[\mathrm{Hig}]}{\mathrm{Eig}}$
HIRS-09	31J1491	4.247
MIRS-10	878391	4.671
MIES-10	$87 \mathrm{EB91}$	4.620
MIRS-10	$8 \mathrm{PrB91}$	4.247
MIES-10	878891	4.185
HIES-11	12F区B91	3.986
MIPS-11	12 PEB91	4.011
MISS-11	12 F [891	3.984
MIRS-12	$14 \mathrm{FEB91}$	3.716
IIES-12	1478891	3.790
MIRS-12	$14 \mathrm{PB891}$	3.913
MIES-13	20P8B91	4.090
MES-13	$20 \mathrm{FB891}$	4.082
MIES-13	$20 \mathrm{FBB91}$	4.011
IIES-14	4:1RP91	4.342
WISS-14	4MAR91	4.245
IIRS-15	541R91	4.142
HIES-15	5HAR91	4.054
MISS-16	64AR91	4.315
MIES-16	6HAR91	4.548
MIES-16	6H2R91	4.402
MIES-17	114aR91	4.215

$\begin{gathered} \text { BATTELLLB } \\ \text { DD } \end{gathered}$	DIGBSTIOM DATB	$\underset{[\mathrm{Hg}]}{\mathrm{EHg} / \mathrm{g} / \mathrm{g}}$
HIES-17	11HAR91	4.412
MIES-18	124AR91	4.269
MIES-18	121:AR91	4.966
HIES-19	13HARO1	4.839
MIES-19	13HAR91	5.235
MIES-19	1314891	5.453
HIES-20	21/14891	4.830
MIES-20	21142891	4.829
MIES-21	2210891	4.877
MIES-21	2210891	4.636
UIES-22	2514P91	4.8\%
UIES-22	2541891	4.879
IISS-22	2514P91	4.820
MIES-23	2641891	3.938
MISS-23	2614P91	4.461
IIIS-23	2601891	4.376
IISS-24	2941801	4.205
IIPS-24	2714891	4.398
IIIS-24	271ap91	4.066
IISS-25	2914891	4.988
HIES-25	2940891	4.646
HIES-25	\| 29\%12r91	4.593

CERTIPIED EAIR STADDARD IIES

$\begin{gathered} \text { BATHELLR } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGRSITOI } \\ \text { DAIEB } \end{gathered}\right.$	$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g} / \mathrm{g}}{ }$
HISS-26	14PR91	4.856
MIRS-26	$1 \mathrm{PPR91}$	4.937
MIRS-26	14PR91	5.186
UIES-27	2APR91	4.286
MIES-27	2APR91	4.237
UIES-28	4 4 PR91	4.829
MIES-28	418291	4.684
IIRS-29	918991	4.769
MIES-29	919891	4.856
IISS-30	174PR91	4.398
IIRS-30	174PR91	4.347
MIRS-31	18APR91	4.454
MIES-31	181PR91	4.629
UIES-31	18APR91	4.573
MIES-31	184P991	4.613
MRNE		4.51
STD DEV		0.42

A. 4 ANALYSIS RECORD FOR SPIKED HAIR

 STANDARD NIES-5CERTIPTED RAIR STAMDARD MIRS

$\begin{gathered} \text { BAITELLS } \\ \text { ID } \end{gathered}$	$\begin{array}{\|c} \text { DIGESTIOM } \\ \text { DAIE } \end{array}$	$\stackrel{\text { EFg }}{[\mathrm{Bg}][\mu \mathrm{g} / \mathrm{g}}$	$\begin{aligned} & \text { \& SPIKB } \\ & \text { RECOVERR } \end{aligned}$
IIES SPIKR-01	9 Tax91	15.209	87.3
HIBS SPIRB-01	9J1091	15.357	88.5
MIES SPIKR-01	9J491	16.728	99.5
IIES SPIKP-02	1451991	10.531	105.4
HISS SPIKE-02	1431991	10.594	96.8
MIES SPIKP-03	16 J 1991	8.702	65.6
ITES SPLEE-03	16 J M91	11.956	116.4
MISS SPIKB-04	1752991	12.439	102.4
MIES SPIXE-05	22J11991	9.956	96.7
IISS SPIKT-05	22J1991	10.284	103.5
IIIS SPIXE-05	227a191	8.175	65.5
IIES SPIKT-06	2351991	15.232	105.3
IISS SPIET-07	25J1991	15.117	99.6
IISS SPIM-08	288291	12.876	108.2
IISS SPITR-09		9.271	103.9
IISS SPIRT-09	31731991	9.850	115.1
IIS SPIN-10	87599	10.273	120.1
1153 SPIRT-11	12 Fr 991	10.324	85.5
IIS SPITE-12	1475991	12.542	86.6
IISS SPIST-13	$20 \% 3691$	11.311	74.4
IISS SPILT-13	2015391	11.876	80.4
IIES SPIKS-13	2014891	11.205	73.3

CERTIPIED HAIR STAIDARD MIES

$\begin{aligned} & \text { BATYELLLB } \\ & \cdot \quad \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAPE } \end{gathered}\right.$	$\underset{[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{E}}$	\& SPIKB RECOVERY
ITES SPIKP-14	4TAR91	11.856	93.0
IIES SPISP-14	414R91	12.363	99.9
MIES SPIKP-15	54aR91	12.990	104.0
WIES SPIRE-15	54AR91	13.213	106.8
IIRS SPIRX-16	61/4891	8.326	69.4
IIES SPIKP-16	G4P91	9.508	89.9
IIES SPIKP-17	11HAP91	16.094	96.5
IIES SPIXB-17	11HAP91	16.024	96.0
IIES SPILR-17	11HAR91	14.894	86.7
IIISS SPIKR-18	121012891	15.025	97.8
\| IIRS SPIKP-18	124AR91	16.279	110.2
\| IIRS SPIKR-19	13HAR91	19.549	100.0
MIIES SPIRE-20	21HAR91	21.703	110.2
IIES SPIKP-21	2240P91	13.562	98.4
\| IIRS SPILR-22	2514R91	14.954	97.9
\| IIRS SPITR-23	26 H R91	15.098	102.6
IIES SPIKP-24	2714R91	13.548	100.4
\| IIRS SPILE-25	294RR91	15.273	98.5
\| IIRS SPIKR-26	$14 \mathrm{PR91}$	20.182	102.2
\| IIES SPIKR-27	$2 \mathrm{PPR91}$	15.412	110.2
\| IIES SPIKR-28	41PR91	14.718	92.7
\| MIES SPIKR-29	9APR91	36.701	94.3

CERTIPIED HAIR STAMDARD IIES

$\begin{aligned} & \text { BATIELLS } \\ & \text { ID } \end{aligned}$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}$	$\stackrel{\Sigma E g}{[B g] \mu / g / g}$	\& SPIKB RECOVERY
MIES SPIINS-29	9118991	33.583	85.2
HIES SPIKR-30	171PP991	18.337	102.5
HIES SPIN8-31	18APP91	20.164	115.9
HEXI			96.6
STD DEV			12.7

APPENDIX B

RAH DATA
howe seghamal mair nalysis

SEQ	$\underset{\text { DD }}{\substack{\text { Barrulus }}}$	$\left\|\begin{array}{c} \text { ITrRCRMOR } \\ \text { SEQ } \end{array}\right\|$	$\left\{\begin{array}{c} \text { Digessiton } \\ \text { DAIE } \end{array}\right.$	$\begin{gathered} \text { digestion } \\ \text { wI g } \end{gathered}$	$\left\|\begin{array}{l}\text { SAMPLP VOL } \\ \text { AMALYZZD } \\ \text { H1 }\end{array}\right\|$	$\begin{aligned} & \text { Anaryzed } \\ & \text { ITI mg } \end{aligned}$	\|arra	$\int_{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}^{\mathrm{zig}}$	$\left.\right\|_{[\mathrm{Hg})} ^{\mathrm{HOL}}$	
10	MIES-1	126	grav91	0.0065	250	0.076	12424	5.386	0.057	
11	HIES SPIKS-1	127	9JM91	0.0061	250	0.071	17011	16.728	0.061	
12	DORH-1-1	128	9Jan91	0.0987	250	1.154	\| 4865	0.716	0.004	
13	1-1	129	9 9, 191	0.0128	250	0.150	\|1015	1.127	0.029	
14	1-2	131	grav9	0.0152	250	0.178	$\mid 1242$	1.167	0.024	
15	1-3	132	9, 2199	0.0161	250	0.188	\|1131	1.001	0.023	
16	D08H-1-1 dup	144	930191	0.0987	250	1.154	14806	0.707	0.004	
17	1-6	145	931991	0.0163	250	0.191	\| 2208	1.058	0.023	
18	1-7	146	971991	0.0162	250	0.189	\|1174	1.034	0.023	
19	1-8	151	9Jam1	0.0155	250	0.181	\|1451	1.342	0.024	
20	1-9	152	931991	0.0143	250	0.167	\|268	1.267	0.026	
21	1-4	157	9rame	0.0145	250	0.170	\| 1007	0.987	0.026	
22	1-5	158	921191	0.0157	250	0.184	\|1139	1.034	0.024	
23	MISS-1 dup	170	grame	0.0065	250	0.076	12538	5.913	0.057	
24	1-10	171	9 N 9192	0.0140	250	0.164	\|1695	1.824	0.027	
25	Doxill-1 dup	173		0.0887	250	1.154	5119	0.790	0.004	
26	\|ITES SPITR-1 dip		174	gramer	0.0061	250	0.071	16089	15.209	0.061
27	1-11	175	9, ${ }^{\text {am91 }}$	0.0071	250	0.083	\|1299	2.743	0.052	
28	1-1 dot	176	9J3191	0.0128	250	0.150	996	1.159	0.029	
29	HISS-1 dup	178	93xi91	0.0065	250	0.076	12395	5.576	0.057	
30	1-2 dup	179	$9 \mathrm{Sag91}$	0.0152	250	0.178	1261	1.243	0.024	
31	1-3 dup	180	grame	0.0161	250	0.188	\| 1213	1.156	10.023	

HOKIE SEGHETTAL HAIR AMALYSIS

SEQ \ddagger	$\begin{gathered} \text { BATYELLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITBGRATOR } \\ \text { SEOA } \end{array}\right\|$	\|DIGRSIIOM	DIGESTIOM m	$\left\|\begin{array}{l} \text { SAMPIB } \\ \text { ALALYZED } \\ \mu \mathrm{I} \end{array}\right\|$	AMSLYZED WI mg	ARES	$\underset{[\mathrm{Eg}] \mathrm{gq} / \mathrm{g} / \mathrm{g}}{ }$	$\left\lvert\, \begin{gathered} \mathrm{VDL} \\ {[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
32	1-4 dup	182	9J4.91	0.0145	250	0.170	\|1150	1.186	0.026
33	1-5 dup	183	وтan91	0.0157	250	0.184	\| 1216	1.159	0.024
34	1-6 dup	184	gJam91	0.0163	250	0.191	\|1192	1.094	0.023
35	1-7 dup	185	gJam91	0.0162	250	0.189	\|1408	1.305	0.023
36	1-8 dup	186	9JM191	0.0155	250	0.181	\|1557	1.511	0.024
37	1-9 dup	187	9J1491	0.0143	250	0.167	\|1463	1.537	0.026
38	1-10 dep	188	9J4.91	0.0140	250	0.164	\|1662	1.788	0.027
39	1-11 dup	189	9J2M91	0.0071	250	0.083	11303	2.751	0.052
40	IIES SPIKR-1 dup	190	9J2M91	0.0061	250	0.071	$\mid 6148$	15.357	0.061
41	3-1	192	9J1491	0.0020	250	0.023	534	3.872	0.186
42	3-2	193	gralial	0.0023	250	0.027	464	2.901	0.162
43	3-3	194	9J2991	0.0021	250	0.025	467	3.199	0.177
44	MISS-1 dup	195	9 SL 1091	0.0065	250	0.076	2121	4.927	0.057
45	3-4	196	9J1M91	0.0018	250	0.021	589	4.769	0.207
46	3-5	197	9J1591	0.0019	250	0.022	635	4.889	0.196
47	3-6	198	9 J 4 M 91	0.0018	250	0.021	594	4.812	0.207
48	3-7	199	9J1491	0.0016	250	0.019	439	3.931	0.233
49	3-8	200	9J2491	0.0008	250	0.009	378	6.695	0.465
50	3-9	201	9J1491	0.0006	250	0.007	399	9.462	0.620
51	3-10	202	gJan91	0.0004	250	0.005	301	10.444	0.930
52	3-11	212	9J1491	0.0006	250	0.007	603	12.842	0.620
53	3-12	213	\| 9J土【91	0.0006	250	0.007	494	10.150	0.620

HONR SBGIRTEAL HAIR AHALYSIS

SEQ 1	$\begin{gathered} \text { BATTELLLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITBGPAFOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSTIO } \\ \text { DATB } \end{gathered}\right.$	$\begin{gathered} \text { DIGRSIIOM } \\ \text { WI } \mathrm{g} \end{gathered}$	$\left\|\begin{array}{l} \text { SAIPRLB VOL } \\ \text { AMALYZED } \mu 1 \end{array}\right\|$		ARRA	[Hg] mg / g	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Eg}]_{\mathrm{Hg}} / \mathrm{g}} \end{gathered}\right.$
54	3-13	214	9J4M91	0.0004	250	0.005	414	12.262	0.930
55	3-14	215	gram9	0.0014	250	0.016	704	6.573	0.266
56	3-15	216	9J1491	0.0006	250	0.007	501	10.323	0.620
57	3-16	217	9JdM91	0.0006	250	0.007	599	12.743	0.620
58	HIES-1 dup	218	9J1/91	0.0065	250	0.076	2014	4.402	0.057
59	3-14 dup	219	9ramel	0.0014	250	0.016	668	6.192	0.266
60	3-8 dup	220	9J1991	0.0008	250	0.009	347	4.850	0.465
61	IIIES-2	222	1451491	0.0128	250	0.150	14172	4.568	0.029
62	7-1	225	14511591	0.0274	250	0.320	\|1487	0.682	0.014
63	7-2	226	1 1JAM91	0.0254	250	0.297	\|1448	0.713	0.015
64	7-3	228	14J1991	0.0216	250	0.253	\|1178	0.653	0.017
65	MIES SPIKS-2	229	14521991	0.0117	100	0.055	\|3552	10.531	0.079
66	DORH-1-2 dup	230	14501591	0.1612	100	0.754	4052	0.879	0.006
67	7-4	231	1451591	0.0165	250	0.193	\| 1052	0.742	0.023
68	8-1	232	147191	0.0354	250	0.414	\|2238	0.842	0.011
69	8-2	233	1471991	0.0251	250	0.294	1240	0.599	0.015
70	2-1	235	1471991	0.0147	250	0.172	\|1506	1.290	0.025
71	2-2	236	1451591	0.0162	250	0.189	\|1684	1.334	0.023
72	2-3	237	1451591	0.0161	250	0.188	\|1978	1.612	0.023
73	2-4	238	1451991	0.0143	250	0.167	\|1813	1.644	0.026
74	2-5	239	14 T 1991	0.0154	250	0.180	\|2161	1.862	0.024
75	2-6	240	\| 14J1492	0.0135	250	0.158	\|2130	2.090	0.028

B.1-3
hour SEGiETTILL BAIR MMALYSIS

SEO \ddagger	$\begin{aligned} & \text { BAITELLS } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { HITBCRATOR } \\ \text { SEO } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIER } \end{gathered}\right.$	$\begin{gathered} \text { DIGRSITOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{ll} S A 1 P L E L & V O L \\ A: A L Y Z E D & \mu l \end{array}\right\|$	MULYESD WI $\mathbf{~ m ~}$	\|arsa	$\begin{gathered} \text { EHg } \\ \text { [Bg] } \mathrm{Hg} / \mathrm{g} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { HDL } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
76	2-7	241	14J31991	0.0118	250	0.138	\|2148	2.114	0.032
77	2-8	212	1 1J4\%91	0.0127	250	0.149	$\mid 2728$	2.919	0.029
78	2-9	243	14J1491	0.0113	250	0.132	$\mid 2583$	3.091	0.033
79	2-10	244	14Jג1991	0.0121	250	0.142	\|3034	3.439	0.031
81	2-7 dup	253	14J1191	0.0118	250	0.138	\|2153	2.676	0.032
82	2-8 dup	254	14 J 1491	0.0127	250	0.149	$\mid 2739$	3.172	0.029
83	HIRS-2	256	14JA1991	0.0128	250	0.150	3195	3.677	0.029
84	HIES SPIKP-2	257	$14 \mathrm{JIM91}$	0.0117	100	0.055	\|3364	10.594	0.079
85	DORH-1-2	258	1453191	0.1612	100	0.754	\|3639	0.832	0.006
86	2-11	259	14Jג1991	0.0110	250	0.129	\|2934	3.926	0.034
87	2-12	260	14 J M91	0.0111	250	0.130	$\mid 3386$	4.496	0.034
88	2-13	261	14J1491	0.0111	250	0.130	\|3761	4.999	0.034
89	2-14	262	14 J 191	0.0110	250	0.129	\|3651	4.895	0.034
90	2-15	263	145 NM 91	0.0098	250	0.115	\|3634	5.469	0.038
91	2-16	264	1451591	0.0087	250	0.102	13580	6.068	0.043
92	2-17	265	14J19991	0.0090	250	0.105	\|4188	6.871	0.041
93	2-18	266	14511991	0.0080	250	0.094	\| 4522	8.350	0.047
94	2-19	267	$14 \mathrm{~J} 4 \mathrm{M91}$	0.0089	250	0.104	\|4958	8.235	0.042
95	2-20	268	$14 J 1491$	0.0076	250	0.089	\|4877	9.485	0.049
96	2-21	269	14J3191	0.0087	250	0.102	\|5557	9.448	0.043
97	2-22	270	14J1991	0.0057	250	0.067	15857	15.203	0.065
98	2-2 dup	271	1451891	0.0162	250	0.189	\|1719	1.551	0.023

HOHR SEGIRATLLL HAIR AHALYSIS

SEOP	$\begin{aligned} & \text { BAPTELLEB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { ITIEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\begin{gathered} \text { DIGRSIIOM } \\ \text { DATE } \end{gathered}$	$\begin{gathered} \text { DIGRSTIOM } \\ \text { WT } g \end{gathered}$	$\left\|\begin{array}{ll} \text { SAAPLR } & \text { VOL } \\ A M L Y Y Z B D & \mu 1 \end{array}\right\|$	AMALYEED in mg	AREA	$\begin{gathered} \text { EKg } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { KidL } \\ {[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
99	2-13 dup	272	14J1491	0.0111	250	0.130	\|3895	5.178	0.034
100	DO8H-1-2	274	145 ม191	0.1612	100	0.754	\|3741	0.856	0.006
101	2-18 dup	275	14 J 2191	0.0080	250	0.094	$\mid 4481$	8.274	0.047
102	2-22 dup	276	14 J M991	0.0057	250	0.067	15850	15.185	0.065
103	HIES-3	278	16J1491	0.0102	250	0.119	\| 3055	4.416	0.036
104	HITS SPIKB-3	279	16 J 1991	0.0115	250	0.134	$\mid 6755$	8.702	0.032
105	DORH-1-3	280	16 J 1991	0.0460	250	0.538	12798	0.896	0.008
106	5-1	281	16J3191	0.0188	250	0.220	1885	1.471	0.020
107	5-2	282	16 J 1991	0.0214	250	0.250	1964	1.347	0.017
108	DORH-1-3	291	16JJM91	0.0460	250	0.538	\|2917	0.930	0.008
109	5-3	292	16JJM91	0.0182	250	0.213	1747	1.394	0.020
110	5-4	293	16 J 1991	0.014	250	0.168	\|1334	1.335	0.026
111	5-5	295	16JJ1991	0.0143	250	0.167	\|1351	1.362	0.026
112	5-6	296	$16 \mathrm{JN591}$	0.014	250	0.168	\|1397	1.400	0.026
113	5-7	297	16711991	0.0123	250	0.144	\|1373	1.610	0.030
114	5-8	298	16J1991	0.0130	250	0.152	1804	2.017	0.029
115	MIISS-3	300	16J11991	0.0102	250	0.119	3180	4.580	0.036
116	MIES SPILS ${ }^{\text {-3 }}$	301	16 JNI 91	0.0115	100	0.054	\|3736	11.956	0.081
117	5-9	302	16J1591	0.0127	250	0.149	\|1813	2.076	0.029
118	5-10	303	16JJ191	0.0107	250	0.125	\|2034	2.771	0.035
119	5-11	304	16 J 1991	0.0080	250	0.094	\|1839	3.343	0.047
120	5-12	305	$16 J 3191$	0.0085	250	0.099	\|2362	4.063	0.044

HOHR SBGIEITILL HAIR AMALYSIS

SESA	$\begin{gathered} \text { BATtELLLR } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITBERATOR } \\ S E R A \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESIOM } \\ \text { Wi g } \end{gathered}$	$\left\|\begin{array}{ll} \text { SNAPLR } & \text { VOL } \\ \text { AMALYZED } & \mu 1 \end{array}\right\|$	AMALYESD in 8	\|arsa	$\underset{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{Eg}}$	$\left\lvert\, \begin{aligned} & \mathrm{nim} \\ & {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{aligned}\right.$	
121	5-13	306	16J1591	0.0078	250	0.091	\|2311	4.330	0.048	
122	5-14	307	26 J 1991	0.0077	250	0.090	$\mid 2723$	5.183	0.048	
123	5-15	308	16 J 1591	0.0065	250	0.076	\| 2465		5.549	0.057
124	6-1	311	1651991	0.0104	250	0.122	570	0.755	0.036	
125	6-2	312	16J1991	0.0096	250	0.112	611	0.881	0.039	
126	6-3	313	16J1991	0.009	250	0.112	617	0.890	0.039	
127	6-4	314	16J1991	0.0089	250	0.104	535	0.823	0.042	
128	5-16	316	16J11991	0.0059	250	0.069	\|2648	6.575	0.063	
129	6-5	317	16J1191	0.0089	250	0.104	603	0.937	0.042	
130	6-6	318	16JJ191	0.0079	250	0.092	723	1.282	0.047	
131	6-7	330	$16 \mathrm{Jam91}$	0.0073	250	0.085	823	1.510	0.051	
132	6-8	331	16 JLM 91	0.0082	250	0.096	\| 1098	1.816	0.045	
133	6-9	332	16JJK91	0.0079	250	0.092	1174	2.020	0.047	
134	6-10	333	1671591	0.0077	250	0.090	1053	1.852	0.048	
135	6-11	334	$16 \mathrm{JLY91}$	0.0071	250	0.083	\|1057	2.016	0.052	
136	6-12	335	16J1791	0.0064	250	0.075	988	2.085	0.058	
137	D0NF-1-3	337	16J1491	0.0460	250	0.538	12600	0.783	0.008	
138	6-13	338	16J1791	0.0064	250	0.075	\|1102	2.336	0.058	
139	6-14	339	16J1991	0.0057	250	0.067	856	2.016	0.065	
140	6-15	340	16J1491	0.0053	250	0.062	868	2.200	0.070	
141	6-16	341	16J1491	0.0052	250	0.061	941	2.439	0.072	
142	6-15 dup	342	16J3199	0.0053	250	0.062	\| 882	2.237	0.070	

HOHE SEGHETTAL HAIR AMALYSIS

SEQ \ddagger	$\begin{gathered} \text { BATYRLLR } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { ITTEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFB } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WT } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l} \text { SAMPLB VOL } \\ A M A L Y Z E D \end{array}\right\|$	ABALYZED WI mg	AREA	[Hg] mg / g	$\begin{gathered} \text { VDI } \\ {[\mathrm{Bq}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$
143	6-16 dup	343	16J1491	0.0052	250	0.061	\| 1006	2.615	0.072
144	6-3 dup	344	16JAM91	0.0096	250	0.112	631	0.867	0.039
145	6-13 dup	345	16 J N91	0.0064	250	0.075	\|1140	2.419	0.058
146	DORH-1-4	356	1751191	0.0771	250	0.902	\|5016	0.911	0.005
147	HIRS-4	357	17Jג.191	0.0107	250	0.125	\| 3474	4.540	0.035
148	OLD IIES 41	358	17Jג191	0.0155	250	0.181	5304	4.794	0.024
149	4-1	360	1751191	0.0078	250	0.091	\|1027	1.819	0.048
150	4-2	361	17J2M91	0.0079	250	0.092	\| 1095	1.917	0.047
151	4-3	362	17J21991	0.0083	250	0.097	\|1062	1.769	0.045
152	4-4	363	17J1191	0.0076	250	0.089	906	1.643	0.049
153	4-5	364	17JaM91	0.0040	250	0.047	536	1.822	0.093
154	9-1	365	1751991	0.0145	250	0.170	770	0.729	0.026
155	9-2	366	17Jล1991	0.0137	250	0.160	887	0.892	0.027
156	9-3	367	17JM991	0.0121	250	0.142	979	1.117	0.031
157	9-4	368	1731191	0.0110	250	0.129	1000	1.255	0.034
158	HIES SPIKT-4	370	1751991	0.00\%	100	0.045	\|3416	12.439	0.097
159	9-5	371	1751191	0.0092	250	0.108	\|1138	1.712	0.040
160	9-6	372	1731991	0.0074	250	0.087	\|1082	2.022	0.050
161	9-7	373	17J1991	0.0061	250	0.071	\|1135	2.575	0.061
162	9-8	374	17511991	0.0044	250	0.051	\|1168	3.675	0.085
163	4-3 dup	375	1751991	0.0083	250	0.097	998	1.660	0.045
164	$9-6$ dup	376	17J1991	0.0074	250	0.087	\|1093	2.043	0.050

B.1-7

MONE SEGIBITAL BAIR AHALYSIS

SEQ 1	$\begin{gathered} \text { BATIELLIR } \\ \text { DD } \end{gathered}$	$\left\|\begin{array}{c} \text { IITBGRATOR } \\ \text { SERA } \end{array}\right\|$	\|DIGESIIOM	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l} \text { SANPLE VOL } \\ \text { AHALYZZD } \end{array}\right\|$	AMALYESD ming	AREA	2 Eg g [Hg] pg / g	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
165	IIRS-4	386	17J1991	0.0107	250	0.125	\|3338	4.307	0.035
166	9-9	387	1751191	0.0044	250	0.051	\|1188	3.667	0.085
167	9-10	388	1751191	0.0049	250	0.057	\|2199	6.167	0.076
168	9-11	389	17Jג191	0.0035	250	0.041	\|1923	7.535	0.106
169	9-2 dup	390	1752191	0.0137	250	0.160	956	0.942	0.027
170	10-1	391	17 J 991	0.0111	250	0.130	701	0.842	0.034
171	10-2	392	1751591	0.0110	250	0.129	547	0.655	0.034
172	10-3	393	17J2991	0.0109	250	0.127	413	0.490	0.034
173	10-4	394	17J1991	0.0109	250	0.127	389	0.459	0.034
174	10-5	395	17J11991	0.0096	250	0.112	326	0.430	0.039
175	10-2 dup	396	17J1491	0.0110	250	0.129	534	0.638	0.034
176	11-1	397	17J1M91	0.0083	250	0.097	546	0.866	0.045
177	11-2	398	17J1M91	0.0072	250	0.084	306	0.534	0.052
178	11-3	399	$17 J 1591$	0.0074	250	0.087	313	0.533	0.050
179	11.4	400	17J1M91	0.0072	250	0.084	322	0.565	0.052
180	11-5	401	17JN191	0.0059	250	0.069	318	0.680	0.063
181	116	402	17J1491	0.0070	250	0.082	416	0.768	0.053
182	11-2 dup	403	17JA191	0.0072	250	0.084	304	0.530	0.052
183	DOPOH-1-4	404	17Jג191	0.0771	250	0.902	15026	0.903	0.005
184	DORH-1-5	414	22J13191	0.1019	250	1.192	5337	0.748	0.004
185	MIES-5	415	22J1491	0.0113	250	0.132	13745	4.720	0.033
186	IIES SPIKP-5	416	22JL191	0.0131	250	0.153	\|7481	9.956	10.071

HOME SEGIESTAL BAIR AMALYSIS

SEQf	$\begin{gathered} \text { BATPELLEB B } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { DITEGRATOR } \\ \text { SEQf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESITOH } \\ \text { DAIB } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WI } g \end{aligned}$	$\left\|\begin{array}{ll} \text { SAMPLE } & \text { VOL } \\ A M A L Y Z E D D & \beta 1 \end{array}\right\|$	$\begin{aligned} & \text { AMALYBED } \\ & \text { WI mg } \end{aligned}$	\|arEa	$\stackrel{2 \mathrm{Bg}}{[\mathrm{Bg}] \mathrm{\mu g} / \mathrm{g}}$	$\left.\left\lvert\, \begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}]} \end{array}\right.\right] \mathrm{gq} / \mathrm{g}$
187	12a	417	22J1191	0.0188	250	0.220	\| 1444	1.081	0.020
188	12b	418	22Jan91	0.0182	250	0.213	\|1631	1.264	0.020
189	12c	419	22JA1991	0.0176	250	0.206	\|2393	1.928	0.021
190	12d	420	22Jan91	0.0165	250	0.193	$\mid 2907$	2.504	0.023
191	12 e	421	22J11991	0.0180	250	0.210	\|5472	4.340	0.021
192	125	422	22JaM91	0.0129	250	0.151	\|5599	6.198	0.029
193	12b dup	423	22J1991	0.0165	250	0.193	\|1646	1.407	0.023
194	HIES SPIKP-5	424	22J1F91	0.0131	100	0.061	\|3647	8.175	0.028
195	13a	425	22JNT91	0.0090	250	0.105	540	0.816	0.041
196	13b	426	22JAF91	0.0113	250	0.132	601	0.727	0.033
197	13 C	427	22J1991	0.0096	250	0.112	392	0.543	0.039
198	13d	428	22J1191	0.0098	250	0.115	327	0.437	0.038
199	138	429	22311991	0.0099	250	0.116	320	0.423	0.038
200	138	430	22J11991	0.0075	250	0.088	287	0.495	0.050
201	13 g	431	22J1M91	0.0076	250	0.089	295	0.503	0.049
202	13b	432	22J1091	0.0076	250	0.089	280	0.475	0.049
203	$13 i$	433	2251291	0.0073	250	0.085	298	0.530	0.051
204	13j	434	22J11991	0.0060	250	0.070	290	0.626	0.062
205	13k	435	22J1191	0.0050	250	0.058	351	0.926	0.074
206	131	436	22517991	0.0038	250	0.044	330	1.139	0.098
207	13 f dup	437	22J1991	0.0075	250	0.088	265	0.453	0.050
208	13k dup	438	\| 22J1.991	0.0050	250	0.058	366	0.969	0.074

HONR SEGFITHLL HAIR AILLYSIS

SEQ	$\begin{gathered} \text { BAITHLLB } \\ \text { DD } \end{gathered}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEOA } \end{array}\right\|$	$\left.\right\|_{\text {DIGESIIC }}$	$\begin{aligned} & \text { DIGESIIOM } \\ & \text { WI } g \end{aligned}$	SAMPLE VOL AMLYEED PI	AmLYesd 	\|ARRA	$\underset{[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}}{\mathrm{mig}}$	$\left\lvert\, \begin{gathered} \mathrm{KDL} \\ {[\mathrm{Bg}]^{\prime} \mathrm{Hg} / \mathrm{g}} \end{gathered}\right.$
209	MIES-5	440	22J1991	0.0113	250	0.132	\|3532	4.450	0.033
210	DORT-1-5	481	$22 J 1991$	0.1015	250	1.187	\|5687	0.819	0.004
211	MIRS-5	482	22J1491	0.0113	250	0.132	\|3716	4.786	0.033
212	14a	485	22J1491	0.0105	250	0.123	579	0.752	0.035
213	14b	486	22J1991	0.0090	250	0.105	581	0.880	0.041
214	14adup	487	2231991	0.0105	250	0.123	594	0.773	0.035
215	14 C	488	22J1491	0.0077	250	0.090	547	0.964	0.048
216	14d	489	2271991	0.0076	250	0.089	560	1.002	0.049
217	140	490	2251991	0.0086	250	0.101	672	1.077	0.043
218	14 f	491	2251991	0.0069	250	0.081	517	1.011	0.054
219	149	493	22J1491	0.0081	250	0.095	694	1.183	0.046
220	14 f dup	494	22JAF91	0.0069	250	0.081	734	1.474	0.054
221	$14 i$	495	22J1191	0.0068	250	0.080	896	1.847	0.055
222	$14 j$	49	22J1191	0.0062	250	0.073	967	2.194	0.060
223	14k	497	22J1491	0.0050	250	0.058	932	2.618	0.074
224	141	498	22J1991	0.0046	250	0.054	1032	3.165	0.081
225	148	499	22J14991	0.0043	250	0.050	\|1078	3.544	0.087
226	141	500	22J1191	0.0048	250	0.056	\|1339	3.975	0.078
227	$14 i$ dup	501	22J1491	0.0068	250	0.080	915	1.888	0.055
228	MIRS-6	504	23J1491	0.0094	250	0.110	\|2798	4.342	0.040
229	MIRS SPIKP-6	506	23J4.991	0.0073	100	0.034	13047	15.232	0.127
230	IIRS SPIKR-5	507	22Jג1991	0.0131	100	0.061	\|3703	10.284	0.071

HOTR SEGIRTTAL RAIR ANALYSIS

SEQ	$\begin{gathered} \text { Batreilir } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { ITTEGRATOR } \\ \text { SER } \ddagger \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DATR } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WT } g \end{aligned}$	$\left\|\begin{array}{l} \text { SAMPLB VOL } \\ \text { AMALYZED } \end{array}\right\|$	$\begin{aligned} & \text { AMALYZEXD } \\ & \text { WI Eg } \end{aligned}$	\|AREA	$\underset{[\mathrm{Eg}] \mathrm{gg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{gathered} \text { NDL } \\ \text { [Hg] } \end{gathered}\right.$
231	DORH-1-6	508	23J1491	0.1063	250	1.243	\|5922	0.817	0.003
232	17a	520	23J1891	0.0082	250	0.096	675	1.126	0.045
233	17b	521	23J1ㅙ91	0.0060	250	0.070	357	0.775	0.062
234	17c	522	23Jak91	0.0062	250	0.073	320	0.664	0.060
235	DORH-1-6	523	23J1791	0.1063	100	0.497	\|2631	0.879	0.009
236	17d	524	23J11991	0.0063	250	0.074	268	0.535	0.059
237	17e	525	23719191	0.0067	250	0.078	281	0.531	0.056
238	17 f	526	2354191	0.0075	250	0.088	332	0.572	0.050
239	17 g	528	23J11991	0.0061	250	0.071	353	0.753	0.061
240	176	529	23 J 1591	0.0059	250	0.069	338	0.742	0.063
241	17 i	530	23J11991	0.0033	250	0.039	236	0.881	0.113
242	DORH-1-6	531	23J11991	0.1063	100	0.497	\|2561	0.856	0.009
243	17j	532	23J11991	0.0031	250	0.036	270	1.096	0.120
244	17k	533	23J1M91	0.0044	250	0.051	421	1.266	0.085
245	171	534	23J11991	0.0033	250	0.039	372	1.475	0.113
246	Cla	535	23J1991	0.0185	250	0.216	857	0.641	0.020
247	Cle	537	2351991	0.0198	250	0.232	1095	0.772	0.019
248	Cld	538	23JA191	0.0203	250	0.237	792	0.538	0.018
249	170 dip	539	2351191	0.0060	250	0.070	325	0.698	0.062
250	171 dup	540	23JJM91	0.0033	250	0.039	616	2.539	0.113
251	Clb	541	23J1091	0.0213	250	0.249	1056	0.691	0.017
252	Cle	542	23Ja1991	0.0186	250	0.218	760	0.562	0.020

B.1-11

HOTE SBGIBTITLL HAIR AMALYSIS

SEQ ${ }^{\text {P }}$	$\begin{gathered} \text { BATt'RLLSB } \\ \text { DD } \end{gathered}$	$\left\|\begin{array}{l} \text { IITEGERAOR } \\ -\mathrm{SEOf} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOM } \\ \text { DAFB } \end{gathered}\right.$	$\begin{gathered} \text { DICESSIIO } \\ \text { WI } 9 \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { SAMPLE VOL } \\ & \text { MMLYZED } \mu \mathrm{L}\end{aligned}\right.$	AMLYESD Tis mg	AREA	$\underset{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}{ }$	$\left\lvert\, \begin{gathered} \text { NDL } \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
253	Clf	543	2351491	0.0197	250	0.230	819	0.574	0.019
254	C1g	544	23511991	0.0180	250	0.210	692	0.526	0.021
255	171 dup 2	545	235Д591	0.0033	250	0.039	353	1.392	0.113
256	DORH-1-6	546	23511991	0.1063	100	0.497	\|1919	0.638	0.009
257	DORH-1-6	557	23511991	0.1063	100	0.497	\| 2314	0.779	0.009
258	Clh	558	23511991	0.0223	250	0.261	781	0.488	0.017
259	Cli	559	23J11991	0.0189	250	0.221	673	0.493	0.020
260	clj	561	23J11991	0.0184	250	0.215	542	0.403	0.020
261	Clk	562	23511991	0.0180	250	0.210	642	0.492	0.021
262	Cll	563	2352191	0.0183	250	0.214	668	0.505	0.020
263	Clir	564	2351991	0.0147	250	0.172	665	0.625	0.025
264	Cln	565	23J1591	0.0162	250	0.189	781	0.671	0.023
265	Clo	566	2351991	0.0138	250	0.161	724	0.728	0.027
266	Clp	567	23J11991	0.0119	250	0.139	623	0.721	0.031
267	Clq	568	23J1991	0.0101	250	0.118	493	0.663	0.037
268	CIr	569	23JД1991	0.0084	250	0.098	431	0.691	0.044
269	cls	570	23J11991	0.0063	250	0.074	342	0.716	0.059
270	Cuk dup	571	23511591	0.0180	250	0.210	635	0.487	0.021
271	DORH-1-7	574	2551191	0.0278	100	0.130	714	0.906	0.033
272	MIES-7	575	25JA191	0.0103	250	0.120	\|3036	4.248	0.036
273	UIES SPIER-7	576	25J11991	0.0070	100	0.033	\|2938	15.117	0.133
274	15a	577	25JММ91	0.0078	250	0.091	\| 638	1.151	\| 0.048

HOYR SEGMBTAL HAIR ANALYSIS

SEQ	$\begin{gathered} \text { BATrELLLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { HITEGRSIOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATB } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WT } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l} \text { SAMPLE YOL } \\ \text { AHALYZED } \end{array}\right\|$	AMALYZED解 Mg	AREA	$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{gathered} \mathrm{nDL} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
275	15b	578	25.51191	0.0077	250	0.090	753	1.382	0.048
276	15 C	579	25Jaw91	0.0066	250	0.077	533	1.129	0.056
277	15d	580	25JA191	0.0069	250	0.081	644	1.313	0.054
278	150	581	25 J 2191	0.0056	250	0.065	677	1.704	0.066
279	$15 f$	582	2551191	0.0061	250	0.071	966	2.251	0.061
280	159	583	25 J ¢1991	0.0059	250	0.069	1020	2.460	0.063
281	DO84-1-7	594	25 J 1991	0.0278	100	0.130	792	0.963	0.033
282	IIES-7	595	25511991	0.0103	250	0.120	\| 3084	4.157	0.036
283	15h	596	25711991	0.0089	250	0.104	\|1773	2.747	0.042
284	$15 i$	597	2551591	0.0059	250	0.069	11290	2.997	0.063
285	15j	598	25511991	0.0073	250	0.085	\|1893	3.579	0.051
286	15k	599	25 J 1991	0.0069	250	0.081	1983	3.969	0.054
287	151	600	25 J 1991	0.0066	250	0.077	\|2017	4.222	0.056
288	15.	601	25 J 3191	0.0065	250	0.076	2040	4.336	0.057
289	150	602	25.31991	0.0057	250	0.067	\|1953	4.731	0.065
290	150	603	25JaM91	0.0050	250	0.058	\|1866	5.150	0.074
291	15p	604	25 J 191	0.0043	250	0.050	\|1647	5.275	0.087
292	159	605	25 J 1991	0.0041	250	0.048	\|1580	5.303	0.091
293	155	606	25.51591	0.0039	250	0.046	\|1548	5.460	0.095
294	158	607	25J2991	0.0034	250	0.040	1587	6.424	0.109
295	15h dup	608	25JA1991	0.0089	250	0.104	1703	2.637	0.042
296	15p dup	609	25Jd991	0.0043	250	0.050	\|655	5.301	0.087

SEOf	$\begin{gathered} \text { BAHELIS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { Mriserasor } \\ -\quad \text { SERf } \end{array}\right\|$	DIGESTIO	$\begin{gathered} \text { DICESSIIOM } \\ \text { Ting } \end{gathered}$	$\left\|\begin{array}{l} \text { SANPLE VOL } \\ \text { AMLYESD AI } \end{array}\right\|$	ARLEYEBD WI Eq	\| 2 PEA	$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{Em}}$	$\left\lvert\, \begin{aligned} & \mathrm{KDDL} \\ & {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{aligned}\right.$
297	IIRS-7	611	2571491	0.0103	250	0.120	$\mid 3059$	4.123	0.036
298	16a	612	25.51991	0.0063	250	0.074	453	0.945	0.059
299	16b	613	25 JLIM 91	0.0069	250	0.081	646	1.255	0.054
300	16 C	614	$25 J 1191$	0.0075	250	0.088	\|1213	2.213	0.050
301	16d	615	25711991	0.0048	250	0.056	\|1153	3.283	0.078
302	16 e	616	2551991	0.1223	250	1.430	\|1169	0.131	0.003
303	189	617	25511991	0.0086	250	0.101	183	0.252	0.043
304	DORH-1-7	643	25 J 1591	0.0278	100	0.130	749	0.887	0.033
305	18b	645	25 J 1991	0.0083	250	0.097	193	0.277	0.045
306	18 C	646	2551191	0.0087	250	0.102	280	0.400	0.043
307	18d	647	2551191	0.0083	250	0.097	369	0.565	0.045
308	18 e	648	$25 \mathrm{JNM91}$	0.0083	250	0.097	417	0.644	0.045
309	18 f	649	25 J 1491	0.0074	250	0.087	340	0.581	0.050
310	189	650	25511991	0.0072	250	0.084	299	0.519	0.052
311	18b dup	652	25711991	0.0083	250	0.097	206	0.298	0.045
312	DOPH-1-7	662	2571191	0.0278	250	0.325	1783	0.857	0.013
313	18h	663	25JM191	0.0076	250	0.089	326	0.541	0.049
314	181	664	2513191	0.0050	250	0.058	226	0.552	0.074
315	18j	665	$25 J 1491$	0.0036	250	0.042	198	0.661	0.103
316	18h dup	666	25J1391	0.0036	250	0.042	202	0.676	0.103
317	DORH-1-8	668	28J1491	0.0372	100	0.174	1020	0.905	0.025
318	HIES-8	669	28JL191	0.0156	250	0.182	\|5303	4.577	0.024

WOHR SEGYRMTAL BAIR MALYSIS

SEQ	$\begin{gathered} \text { BATYBLLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEOff } \end{array}\right\|$	$\left.\right\|_{\text {DATE }} ^{\text {DIGRSTIOM }}$	$\begin{gathered} \text { DIGBSIIOM } \\ \text { WT } \mathrm{g} \end{gathered}$	$\left\|\begin{array}{l\|l} \text { SAIPLE VOL } \\ A M A L Y Z E D & \mu 1 \end{array}\right\|$	AMALYZED䚡 19	AREA	2ig [Hg] Hg / g	$\left\lvert\, \begin{gathered} \mathrm{KDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
319	HIES SPIKP-8	670	28Ja1991	0.0096	100	0.045	$\mid 3680$	12.876	0.097
320	19a	671	28J1991	0.0053	250	0.062	193	0.429	0.070
321	19b	672	28J3191	0.0052	250	0.061	172	0.382	0.072
322	19c	673	28J1491	0.0045	250	0.053	172	0.442	0.083
323	198 dup	674	28J1991	0.0045	250	0.053	167	0.427	0.083
324	198	675	28J1491	0.0053	250	0.062	210	0.472	0.070
325	19	676	2854191	0.0052	250	0.061	172	0.382	0.072
326	191	677	28541991	0.0050	250	0.058	171	0.395	0.074
327	19 g	678	2851991	0.0052	250	0.061	174	0.388	0.072
328	19h	679	2851191	0.0056	250	0.065	219	0.469	0.066
329	19 i	680	28J1M91	0.0049	250	0.057	191	0.458	0.076
330	19 j	681	28541991	0.0044	250	0.051	224	0.612	0.085
331	19k	682	28JД791	0.0045	250	0.053	259	0.703	0.083
332	191	683	28JJ1991	0.0040	250	0.047	267	0.818	0.093
333	191 dupl	69	2851191	0.0040	250	0.047	255	0.725	0.093
334	191 dup 2	697	2851991	0.0040	250	0.047	271	0.779	0.093
335	19	698	28J1991	0.0040	250	0.047	29	0.864	0.093
336	DOPer-1-8	699	28J11991	0.0372	100	0.174	1049	0.915	0.025
337	190	700	28JA1991	0.0035	250	0.041	295	0.983	0.106
338	190	701	28J1991	0.0029	250	0.034	319	1.298	0.128
339	19p	702	2851991	0.0026	250	0.030	317	1.438	0.143
340	199	703	28JJY91	0.0027	250	0.032	335	1.475	0.138

HONR SEGHITILL HAIR AMALYSIS

SEOI	$\begin{gathered} \text { BATtELLE } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{cc} \text { IIEGRRIOR } \\ - & \text { SEQf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSIIO } \\ \text { DAFEB } \end{gathered}\right.$	$\begin{gathered} \text { DIGESTIOM } \\ \text { WI } \mathrm{g} \end{gathered}$	$\left\|\begin{array}{l} \text { SAMPIB VOL } \\ \text { AMLYZED } \end{array}\right\|$	amacyex WI Eg	AREA	$\underset{[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}}{\mathrm{zig}}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}]_{\mathrm{L}} / \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
341	19 r	704	28J31991	0.0029	250	0.034	392	1.638	0.128
342	19r dup	705	28Ja191	0.0029	250	0.034	410	1.722	0.128
343	20a	706	285AM91	0.0116	250	0.136	565	0.611	0.032
344	20b	707	2851991	0.0104	250	0.122	414	0.485	0.036
345	20 C	708	285 M 91	0.0144	250	0.168	613	0.537	0.026
346	20b dup	709	28JnM91	0.0104	250	0.122	416	0.488	0.036
347	DOSu-1-8	710	28J31991	0.0372	250	0.435	\|2539	0.907	0.010
348	21a	711	28511991	0.0066	250	0.077	591	1.127	0.056
349	2 bb	712	2851991	0.0053	250	0.062	472	1.100	0.070
350	21 c	713	28Jal91	0.0053	250	0.062	501	1.174	0.070
351	21d	714	2851991	0.0040	250	0.047	304	0.891	0.093
352	21	715	2854,91	0.0049	250	0.057	375	0.923	0.076
353	21f	716	2853191	0.0042	250	0.049	389	1.121	0.089
354	DORH-1-8	727	2854191	0.0372	250	0.435	\|2619	0.944	0.010
355	219	728	2854991	0.0036	250	0.042	462	1.617	0.103
356	219 dup	729	28J4.991	0.0036	250	0.042	435	1.515	0.103
357	22a	730	28JM191	0.0057	250	0.058	\|1106	2.918	0.074
358	22 b	731	28Jan91	0.0052	250	0.061	777	1.943	0.072
359	22c	732	28J3191	0.0046	250	0.054	548	1.520	0.081
360	22a dup	734	28JN9191	0.0057	250	0.067	1149	2.659	0.065
361	DORH-1-9	736	31Jal191	0.0281	250	0.329	\|1846	0.871	0.013
362	HIRS-9	738	31J3491	0.0081	250	0.095	\|2912	4.811	0.046

HOHE SEGHETTAL HAIR ARALYSIS

SEQ \ddagger	$\begin{gathered} \text { BATTELLS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEROI } \end{array}\right\|$	$\left.\right\|_{\text {DIFTB }} ^{\text {DIGSTIOM }}$	$\begin{gathered} \text { DIGRSIIOH } \\ \text { WI } \mathrm{g} \end{gathered}$	$\left.\left\|\begin{array}{l} \text { SAMPLR POL } \\ \text { AMALYZBD } \end{array}\right\| 1 \right\rvert\,$	ahalyekd WI 89	\|ARRA	$\begin{gathered} \text { EHg } \\ {[\mathrm{ig}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} \mathrm{KDL} \\ {[\mathrm{~Bq}} \end{array}\right.\right] \mathrm{mg} / \mathrm{g}$
363	23a	739	31J1\%91	0.0035	250	0.041	114	0.272	0.106
364	23b	740	31Jak91	0.0050	250	0.058	154	0.299	0.074
365	HIRS SPIKR-9	741	3154191	0.0159	100	0.074	\|4384	9.271	0.058
366	23 c	742	31J1H91	0.0036	250	0.042	137	0.351	0.103
367	DORA-1-5	785	22J1191	0.1015	250	1.187	\|7529	0.803	0.004
368	14h	787	22J1.491	0.0066	250	0.077	818	1.264	0.056
369	23d	789	31J1N91	0.0039	250	0.046	197	0.467	0.095
370	23e	790	3151991	0.0038	250	0.044	191	0.462	0.098
371	23 f	791	31711991	0.0044	250	0.051	203	0.429	0.085
372	239	792	315J1991	0.0044	250	0.051	223	0.478	0.085
373	23h	793	3151191	0.0037	250	0.043	237	0.610	0.101
374	$23 i$	794	3152M91	0.0037	250	0.043	226	0.578	0.101
375	23 j	795	3151991	0.0036	250	0.042	276	0.745	0.103
376	HIES SPIK1-9	797	31411991	0.0159	100	0.074	\|5773	9.850	0.058
377	23k	799	31711991	0.0039	250	0.046	301	0.758	0.095
378	231	800	31721991	0.0024	250	0.028	248	0.991	0.155
379	$23!$	801	31521991	0.0034	250	0.040	311	0.902	0.109
380	237	802	31J1N91	0.0030	250	0.035	325	1.073	0.124
381	UIIES-9	803	31J11991	0.0081	250	0.095	\|2894	3.857	0.046
382	230	804	31JJ191	0.0035	250	0.041	358	1.022	0.106
383	23p	805	31J1591	0.0029	250	0.034	324	1.106	0.128
384	239 dup	806	\| 31J1/991	0.0044	250	0.051	232	0.501	0.085

HOHTE SEGTBITAL HAIR AMALYSIS

SEQ	$\begin{gathered} \text { BATIELLSB } \\ \text { DD } \end{gathered}$	$\left\|\begin{array}{c} \text { IITBGRATOR } \\ \text { SERI } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESTIOM } \\ \text { DATE } \end{array}$	$\begin{aligned} & \text { DIGBSIIOM } \\ & \text { WI } g \end{aligned}$	$\left\|\begin{array}{l} \text { SAMPLB VOL } \\ \text { ALALYZED } \end{array}\right\|$	AMALYZED Mr mg	ARBA	$\sum_{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}^{\mathrm{g}}$	$\left\lvert\, \begin{gathered} \mathrm{NDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
385	HIRS-9	818	31J2M91	0.0081	250	0.095	$\mid 3049$	4.247	0.046
386	24a	819	31511991	0.0048	250	0.056	656	1.478	0.078
387	24b	820	3151591	0.0059	250	0.069	621	1.135	0.063
388	24.	821	315LM91	0.0056	250	0.065	604	1.161	0.066
389	24d	822	31Jan91	0.0063	250	0.074	633	1.085	0.059
390	24 e	823	315aw91	0.0049	250	0.057	476	1.029	0.076
391	24 f	824	3152M91	0.0056	250	0.065	538	1.027	0.066
392	249	825	315an91	0.0051	250	0.060	504	1.051	0.073
393	24h	826	3154191	0.0053	250	0.062	637	1.298	0.070
394	$24 i$	827	31511991	0.0048	250	0.056	673	1.519	0.078
395	$24 j$	828	31J2/91	0.0051	250	0.060	824	1.767	0.073
396	24k	829	3152\%91	0.0044	250	0.051	806	2.002	0.085
397	241	830	31JAM91	0.0042	250	0.049	773	2.007	0.089
398	2419	831	315AM91	0.0045	250	0.053	949	2.320	0.083
399	24n	832	315A1991	0.0040	250	0.047	993	2.735	0.093
400	240	833	31J1591	0.0040	250	0.047	970	2.670	0.093
401	24p	834	3151191	0.0040	250	0.047	1022	2.818	0.093
402	249	835	31JN191	0.0033	250	0.039	1161	3.896	0.113
403	245	836	31JLM91	0.0030	250	0.035	1030	3.788	0.124
404	24 i dup	837	31J3\%91	0.0048	250	0.056	646	1.455	0.078
405	DORU-9	838	3153M91	0.0281	250	0.329	\|2133	0.852	0.013
406	DORT-1-10	849	$8 \mathrm{PKB91}$	0.0275	100	0.129	862	0.948	0.034

B.1-18

MOHR SEGYRTTAL HAIR ANALYSIS

SEQ	$\begin{aligned} & \text { BATTELLEB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { DITRGRATOR } \\ \text { SEQI } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{ll} S A M P L R & \nabla O L \\ A M L Y Z B D & \mu 1 \end{array}\right\|$	ABALYEED in 19	\|aREA	$\begin{gathered} \Sigma \mathrm{EHg} \\ {[\mathrm{Hq}] \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{YDL} \\ {[\mathrm{Hg}]} \end{gathered} \mathrm{\mu g} / \mathrm{g}\right.$
407	MIES-10	850	8P8B91	0.0143	250	0.167	$\mid 5319$	4.620	0.026
408	MIES SPIKR-10	851	8 FKB91	0.0154	100	0.072	\|5096	10.273	0.060
409	25a	853	878891	0.0049	250	0.057	773	1.901	0.076
410	25b	854	873891	0.0042	250	0.049	552	1.560	0.089
411	25 c	855	$8 \mathrm{PBB91}$	0.0035	250	0.041	384	1.273	0.106
412	25d	856	878B91	0.0038	250	0.044	352	1.068	0.098
413	254	857	878391	0.0040	250	0.047	363	1.049	0.093
414	$25 f$	858	87 BB 91	0.0035	250	0.041	385	1.277	0.106
415	259	859	873391	0.0022	250	0.026	303	1.566	0.169
416	25h	860	878391	0.0029	250	0.034	330	1.304	0.128
417	$25 i$	861	873B91	0.0023	250	0.027	327	1.628	0.162
418	25j	862	873891	0.0019	250	0.022	287	1.708	0.196
419	25k	863	876891	0.0017	250	0.020	281	1.865	0.219
420	251	864	878891	0.0016	250	0.019	257	1.795	0.233
421	25m	865	82891	0.0019	250	0.022	259	1.524	0.196
422	25n	866	873891	0.0013	250	0.015	232	1.969	0.286
423	250	867	876391	0.0013	250	0.015	226	1.911	0.286
424	$25 p$	868	87 T 991	0.0010	250	0.012	220	2.409	0.372
425	$25 c$ dup	869	898891	0.0035	250	0.041	371	1.227	0.106
426	251 dup	870	878891	0.0016	250	0.019	252	1.755	0.233
427	DORH-1-10	873	873891	0.0275	250	0.322	12029	0.909	0.014
428	IIES-10	874	876 BP 1	0.0143	250	0.167	15378	4.671	0.026

HOHE SEGHETTAL HAIR ANALYSIS

SEOP	$\begin{gathered} \text { BATTELLEB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{cc} \text { DIIEGRATOR } \\ - & \text { SECA } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESIIOM } \\ \text { DARE } \end{array}$	DIGESTIOM Tr 9		AMALYEBD WI Ig	AREA	$\underset{[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}}{\mathrm{E}}$	$\left\lvert\, \begin{gathered} \mathrm{KDL} \\ {[\mathrm{Bg}] \mathrm{\mu g} / \mathrm{g}} \end{gathered}\right.$
429	DOP\%-1-10	886	873891	0.0275	250	0.322	\|2074	0.810	0.014
430	263	887	8F8B91	0.0059	250	0.069	539	0.936	0.063
431	26b	889	$8 \mathrm{FSB91}$	0.0058	250	0.068	461	0.805	0.064
432	26 C	890	878691	0.0056	250	0.065	406	0.727	0.066
433	26d	891	$8 \mathrm{PRB91}$	0.0060	250	0.070	469	0.793	0.062
434	260	892	87 BB 91	0.0066	250	0.077	543	0.843	0.056
435	269	893	87 BB 91	0.0065	250	0.076	603	0.957	0.057
436	269	894	8 FEB91	0.0082	250	0.096	818	1.044	0.045
437	26n	895	$88 \mathrm{BB91}$	0.0056	250	0.065	658	1.218	0.066
438	261	89	8PEB91	0.0064	250	0.075	745	1.214	0.058
439	26 j	897	$88 \mathrm{BB91}$	0.0061	250	0.071	656	1.114	0.061
440	26.	898	876891	0.0062	250	0.073	689	1.154	0.060
44	261	899	8PKB91	0.0069	250	0.081	723	1.091	0.054
442	DOSH-1-10	901	876891	0.0275	250	0.322	2110	0.824	0.014
443	MIES-10	914	$82 \mathrm{BP91}$	0.0143	250	0.167	5564	4.185	0.026
444	26 dup	915	878691	0.0059	250	0.069	593	1.042	0.063
445	261 dup	916	878891	0.0064	250	0.075	790	1.293	0.058
446	261	917	878391	0.0058	250	0.068	586	1.047	0.064
447	$26 n$	918	873891	0.0056	250	0.065	626	1.161	0.066
448	260	919	8 P 8 P 91	0.0047	250	0.055	474	1.034	0.079
449	26p	920	$87 \mathrm{FB91}$	0.0048	250	0.056	513	1.100	0.078
450	269	921	\| 8PBE91	0.0043	250	\| 0.050	438	1.040	0.087

HOHE SEGHBITAL HAIR AMALYSIS

SEQ	$\begin{gathered} \text { BATTEILLE } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { ITIEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WT g } \end{aligned}$	$\left\|\begin{array}{ll} \text { SAMPLE } & \text { VOL } \\ \text { AHALYZED } & \text { P1 } \end{array}\right\|$	AMALYZED WI 19	AREA	$\underset{[\mathrm{Bq}] \mathrm{Hg} / \mathrm{g} / \mathrm{g}}{ }$	$\left\lvert\, \begin{aligned} & \mathrm{NDL} \\ & {[\mathrm{Hg}]} \end{aligned}\right.$	
451	26 r	922	8 PEB91	0.0041	250	0.048	462	1.154	0.091	
452	26s	923	87 B891	0.0046	250	0.054	469	1.045	0.081	
453	26 t	924	8 PEB91	0.0041	250	0.048	458	1.143	0.091	
454	264	925	8PEB91	0.0036	250	0.042	450	1.278	0.103	
455	26 V	926	88 BB 91	0.0041	250	0.048	492	1.233	0.091	
456	MIES-10	927	$8 \mathrm{PEB91}$	0.0143	250	0.167	\|5646	4.247	0.026	
457	DORH-1-11	929	$12 \mathrm{P} 8 \mathrm{B9} 1$	0.0319	250	0.373	\| 2402	0.804	0.012	
458	27a	932	$12 \mathrm{PEB91}$	0.0058	250	0.068	312	0.527	0.064	
459	27b	933	$12 \mathrm{FBB91}$	0.0057	250	0.067	300	0.514	0.065	
460	27c	934	$12 \mathrm{PBB91}$	0.0058	250	0.068	278	0.464	0.064	
461	MISS-11	935	$12 \mathrm{FBB91}$	0.0098	250	0.115	\|3643	3.984	0.038	
462	MIES SPIEX-11	936	1278891	0.0110	100	0.052	\|4197	10.324	0.009	
463	27d	937	1275891	0.0061	250	0.071	272	0.430	0.061	
464	27 e	938	1278391	0.0050	250	0.058	220	0.413	0.074	
465	MISS-11	951	1271891	0.0098	250	0.115	\| 3692		4.011	0.038
466	27a dup	952	12 F 8891	0.0058	250	0.068	292	0.494	0.064	
467	271	953	1275891	0.0061	250	0.071	270	0.431	0.061	
468	278 dup	954	12PEB91	0.0061	250	0.071	257	0.408	0.061	
469	279	955	1275891	0.0049	250	0.057	232	0.454	0.076	
470	27 h	956	127E891	0.0048	250	0.056	241	0.483	0.078	
471	27i	957	12P8891	0.0043	250	0.050	226	0.502	0.087	
472	27j	958	127B891	0.0046	250	0.054	\| 259	0.546	0.081	

WOVR SBGISHITAL HAIR AMALYSIS

SEOf	$\begin{aligned} & \text { BAITELLEB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { IITEGGRTOR } \\ \text { SER! } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESITOB } \\ \text { DAPR } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIO } \\ & \text { Wi g } \end{aligned}$	$\left\|\begin{array}{l}\text { SANPIR DOL } \\ \text { AMALYESD } \\ \text { al }\end{array}\right\|$	$\begin{aligned} & \text { ABRLYZED } \\ & \text { Wr } \mathrm{mg} \end{aligned}$	\|ARRA	$\underset{[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}}{ }$	$\begin{aligned} & \mathrm{MDL} \\ & {[\mathrm{Eg}] \mu \mathrm{kg} / \mathrm{g}} \end{aligned}$
473	27k	959	12 PB 891	0.0041	250	0.048	2431	0.571	0.091
474	271	960	$12 \mathrm{PEB91}$	0.0046	250	0.054	301	0.644	0.081
475	27	961	$12 \mathrm{PB891}$	0.0029	250	0.034	302	1.026	0.128
476	29a	962	12 FB 391	0.0065	250	0.076	508	0.797	0.057
477	29b	963	$12 \mathrm{Pr891}$	0.0067	250	0.078	468	0.709	0.056
478	29 c	964	$12 \mathrm{FEB91}$	0.0062	250	0.073	489	0.803	0.060
479	298	965	12P8891	0.0062	250	0.073	453	0.741	0.060
480	29C dup	966	12 P 8891	0.0062	250	0.073	513	0.844	0.060
481	29e	967	12P8891	0.0063	250	0.074	466	0.751	0.059
482	299	968	12 P 3891	0.0060	250	0.070	475	0.805	0.062
483	299	969	$12 \mathrm{FRB91}$	0.0056	250	0.065	502	0.914	0.066
484	29b	970	1273891	0.0051	250	0.060	479	0.955	0.073
485	291	971	12PEB91	0.0052	250	0.061	508	0.996	0.072
486	IIRS-11	973	$12 \mathrm{PrB91}$	0.0098	250	0.115	13669	3.986	0.038
487	29j	974	1275391	0.0049	250	0.057	575	1.204	0.076
488	29k	975	1278891	0.0036	250	0.042	590	1.683	0.103
489	291	976	12P8891	0.0028	250	0.033	549	2.008	0.133
490	29.	977	$12 \mathrm{PBB91}$	0.0025	250	0.029	613	2.523	0.149
491	29n dup	978	12FEB91	0.0025	250	0.029	647	2.669	0.149
492	29g dup	979	12PEB91	0.0056	250	0.065	472	0.856	0.066
493	DORH-1-12	1243	14PEB91	0.0162	100	0.076	574	0.743	0.057
494	MIES-12	1244	14PE691	0.0094	250	0.110	\| 3764	3.716	0.040

HOKE SBGIBHIAL GAIR AHALYSIS

SEQ	$\begin{gathered} \text { BATTELLLR } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IFTEGRATOR } \\ \text { SEQt } \end{array}\right\|$	$\left.\right\|_{\text {DIGRSTIOM }} ^{\text {DIT }}$	$\begin{aligned} & \text { DIGRSIIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{ll} S A M P L B & \text { VOL } \\ A M A L Y Z B D & \mu 1 \end{array}\right\|$	AMALYZED Wing	ARES	$\underset{[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}}{ }$	$\begin{gathered} \text { MDL } \\ \text { [} \mathrm{Hg} \text {] } \mathrm{mg} / \mathrm{g} \end{gathered}$
495	28a	1246	1478391	0.0088	250	0.103	699	0.681	0.042
496	28b	1247	$14 \mathrm{Pr891}$	0.0071	250	0.083	682	0.822	0.052
497	28 C	1249	14PEB91	0.0070	250	0.082	830	1.033	0.053
498	28d	1250	1478891	0.0065	250	0.076	1032	1.406	0.057
499	30a	1251	14 FBB91	0.0076	250	0.089	687	0.774	0.049
500	30b	1252	14P8991	0.0081	250	0.095	747	0.79	0.046
501	30 c	1253	1476891	0.0071	250	0.083	673	0.810	0.052
502	30 d	1254	1478891	0.0062	250	0.073	641	0.879	0.060
503	30e	1255	1476891	0.0064	250	0.075	976	1.345	0.058
504	301	1256	1478891	0.0055	250	0.064	1249	2.034	0.068
505	309	1257	14 FB 391	0.0043	250	0.050	937	1.917	0.087
506	30h	1258	1478891	0.0044	250	0.051	\|1353	2.766	0.085
507	30 i	1259	147EB91	0.0036	250	0.042	\|1359	3.396	0.103
508	IIRS SPIKP-12	1260	1478391	0.0079	100	0.037	\| 4262	12.542	0.118
509	MISS-12	1262	1476391	0.0094	250	0.110	3838	3.790	0.040
510	DOP2-1-12	1263	1475391	0.0162	250	0.189	\|1379	0.766	0.023
511	30 dup	1264	1475091	0.0076	250	0.089	711	0.804	0.049
512	28d dup	1265	147R391	0.0065	250	0.076	\|1004	1.365	0.057
513	31 a	1266	147E391	0.0064	250	0.075	\|1053	1.459	0.058
514	31b	1267	1476891	0.0053	250	0.062	921	1.527	0.070
515	316	1268	1478891	0.0053	250	0.062	945	1.569	0.070
516	31d	1269	\| 1475891	0.0046	1250	0.054	727	1.361	0.081

Hovir SEGiratal mair hmalysis

SEOA	$\begin{gathered} \text { BAFTELLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { CITEGRATOR } \\ \text { SEOP } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESIIOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{ll} S A M P L R & \text { VOL } \\ A M R L Y Z B D & \mu 1 \end{array}\right\|$	AMEYZED WI Eg	\|AREA	$[\mathrm{Bq}] \mathrm{\mu g} / \mathrm{g}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
517	312	1270	14P8B91	0.0050	250	0.058	731	1.259	0.074
518	318	1271	14PE891	0.0042	250	0.049	777	1.603	0.089
519	319	1272	$14 \mathrm{PB891}$	0.0045	250	0.053	753	1.445	0.083
520	319 dup	1273	14P8391	0.0045	250	0.053	731	1.399	0.083
521	31h	1274	1478691	0.0040	250	0.047	678	1.449	0.093
522	311	1275	14PEB91	0.0043	250	0.050	749	1.504	0.087
523	31 j	1276	1478891	0.0040	250	0.047	755	1.631	0.093
524	31k	1277	14P8891	0.0032	250	0.037	667	1.779	0.116
525	311	1278	1473891	0.0030	250	0.035	751	2.162	0.124
526	311	1279	1478891	0.0029	250	0.034	946	2.871	0.128
527	31n	1290	1478891	0.0029	250	0.034	966	3.019	0.128
528	310	1291	$14 \mathrm{PKB91}$	0.0024	250	0.028	1156	4.386	0.155
529	30h dup	1298	1478891	0.0040	250	0.047	1262	2.879	0.093
530	311 dup	1299	1478391	0.0029	250	0.034	\|1024	3.205	0.128
531	MIRS-12	1293	$14 \mathrm{PBB91}$	0.0094	250	0.110	\|3969	3.913	0.040
532	DORK-1-13	1295	2078391	0.0422	250	0.493	\|3537	0.777	0.009
533	IIES-13	1296	20 FEB91	0.0061	250	0.071	\|2646	4.011	0.061
534	HIES SPIKP-13	1297	2078B91	0.0081	100	0.038	\|3914	11.205	0.115
535	32a	1300	208 PB 91	0.0079	250	0.092	\|1366	1.585	0.047
536	32b	1301	20 PEB91	0.0085	250	0.099	1695	1.835	0.044
537	32c	1302	20 PBB91	0.0093	250	0.109	\|1683	1.665	0.040
538	32d	1303	20 FB691	0.0090	250	0.105	1006	1.018	0.041

HONR SEGHETTAL EAIR ANALYSIS

SEQ	$\begin{aligned} & \text { BATPELLSB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { HiTRECRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESTIOM } \\ W \mathbb{g} \end{gathered}$	$\left\|\begin{array}{l}\text { SAMPIR VOL } \\ \text { AHALYZED } \\ \text { pl }\end{array}\right\|$	AMALYZED WI Ig	arra	$\stackrel{\text { ERg }}{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}$	$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
539	32e	1304	$20 \mathrm{PBB91}$	0.0081	250	0.095	723	0.805	0.046
540	32 f	1305	208 PB 91	0.0063	250	0.074	572	0.812	0.059
541	329	1306	$20 \mathrm{PBB91}$	0.0074	250	0.087	660	0.802	0.050
542	32h	1307	2078891	0.0065	250	0.076	639	0.883	0.057
543	32 i	1308	2078891	0.0053	250	0.062	608	1.028	0.070
544	32j	1309	$20 \mathrm{PB891}$	0.0046	250	0.054	573	1.114	0.081
545	32k	1310	20 PB 891	0.0045	250	0.053	598	1.190	0.083
546	321	1311	2076891	0.0032	250	0.037	471	1.304	0.116
547	32b dup	1314	2075891	0.0085	250	0.099	\|1613	1.745	0.044
548	32h dup	1315	207 Fb 91	0.0065	250	0.076	627	0.866	0.057
549	33 a	1312	20FE691	0.0098	250	0.115	\|2069	1.947	0.038
550	33b	1313	2088691	0.0101	250	0.118	12633	2.411	0.037
551	33 C	1316	20F5691	0.0076	250	0.089	\|2738	3.333	0.049
552	34a	1320	20713891	0.0100	250	0.117	\|1489	1.367	0.037
553	34c	1321	2015891	0.0087	250	0.102	993	1.039	0.043
554	34d	1322	20F4391	0.0111	250	0.130	1115	0.917	0.034
555	348	1323	20718391	0.0093	250	0.109	859	0.838	0.040
556	342	1324	$20 \mathrm{PBB91}$	0.0092	250	0.108	833	0.821	0.040
557	349	1325	2014392	0.0082	250	0.096	821	0.907	0.045
558	MIPS-13	1326	2018391	0.0061	250	0.071	$\mid 2692$	4.082	0.061
559	MIES SPLKP-13	1327	2015691	0.0081	100	0.038	\| 3951	11.311	0.115
560	MISS-13	1339	2017391	0.0061	250	0.071	\|2667	4.090	0.061

B.1-25

HOTE SEGFITITLL HAIR AHALYSIS

SEOf	$\begin{aligned} & \text { BATIELLS } \\ & \text { ID } \end{aligned}$		$\begin{gathered} \text { DIGESIIOM } \\ \text { DATE } \end{gathered}$	$\begin{gathered} \text { DIGBSIIOM } \\ \text { WI } 9 \end{gathered}$	$\left\|\begin{array}{lll} \text { SAIPRLB POL } \\ A M C Y Z E D & \text { Pl } \end{array}\right\|$		\|AREA	$\underset{[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}}{\mathrm{En}}$	
561	IIRS SPIKR-13	1340	20 PEB91	0.0081	100	0.038	\| 4100	11.876	0.115
562	34h	1341	20 PEB91	0.0107	250	0.125	\|1388	1.203	0.035
563	34 i	1342	$20 \mathrm{PRB91}$	0.0094	250	0.110	\|1508	1.490	0.040
564	34j	1343	$20 \mathrm{PRB91}$	0.0102	250	0.119	$\mid 1761$	1.608	0.036
565	34k	1344	20 PE891	0.0097	250	0.113	\|1948	1.873	0.038
566	341	1345	2078691	0.0079	250	0.092	\| 1460	1.716	0.047
567	341	1346	$20 \mathrm{rgB91}$	0.0087	250	0.102	\| 1608	1.719	0.043
568	3411	1347	$20 \mathrm{PEB91}$	0.0089	250	0.104	1605	1.677	0.042
569	340	1348	20 PR891	0.0087	250	0.102	\| 1484	1.584	0.043
570	34p	1349	20 PE891	0.0098	250	0.115	\|1651	1.567	0.038
571	34 q	1350	20 PB891	0.0036	250	0.042	726	1.841	0.103
572	31r	1351	2078391	0.0036	250	0.042	799	2.032	0.103
573	348	1352	2073891	0.0033	250	0.039	789	2.188	0.113
574	$34 t$	1353	207 FB 91	0.0040	250	0.047	\| 1042	2.403	0.093
575	DORH-13	1355	2085891	0.0422	250	0.493	\| 3612	0.803	0.009
576	34u	1356	20PB891	0.0036	250	0.042	\| 1089	2.793	0.103
577	34V	1357	207 PB 91	0.0036	250	0.042	997	2.552	0.103
578	3411	1358	2078391	0.0036	250	0.042	959	2.452	0.103
579	34 x	1359	$2078 B 91$	0.0040	250	0.047	1125	2.598	0.093
580	34Y	1360	20 FBB91	0.0037	250	0.043	\|1007	2.508	0.101
581	342	1361	2081891	0.0038	250	0.044	1175	2.859	0.098
582	34c dup	1362	20 PB391	0.0087	250	0.102	976	1.033	0.043

HOUR SEGYBMTAL RAIR AMALYSIS

SEQ \ddagger	$\begin{gathered} \text { BAITIBLL® } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { LITEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSTIOI } \\ \text { DATB } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WI } g \end{aligned}$	$\left.\left\lvert\, \begin{array}{l} S A M P L R \\ \text { VOL } \\ A M A L Y Z B D \end{array}\right.\right] \mid$	AHALYZED WI Ig	AREA	$\underset{[\mathrm{Bg}][\mu \mathrm{g} / \mathrm{g}}{\mathrm{Eg}}$	
583	34 q dup	1363	208 FB 91	0.0036	250	0.042	699	1.770	0.103
584	MISS-14	1364	4HAR91	0.0101	250	0.118	\|4669	4.342	0.037
585	NTES SPIKR-14	1365	4.4ar91	0.0094	100	0.044	4746	11.856	0.099
586	DORH-1-14	1367	4112R91	0.0429	250	0.502	3888	0.850	0.009
587	C2a	1368	4MAR91	0.0116	250	0.136	749	0.590	0.032
588	C2b	1369	41aR91	0.0094	250	0.110	827	0.806	0.040
589	C2c	1370	4)AR91	0.0113	250	0.132	1038	0.847	0.033
590	C2d	1371	4MAR91	0.0101	250	0.118	1029	0.939	0.037
591	C2e	1372	41aR91	0.0106	250	0.124	\|1013	0.881	0.035
592	C2f	1373	4TAR91	0.0087	250	0.102	650	0.679	0.043
593	C29	1374	414P91	0.0104	250	0.122	711	0.624	0.036
594	C2b	1375	4 4 AR91	0.0100	250	0.117	649	0.590	0.037
595	C2I	1376	4Hap91	0.0103	250	0.120	710	0.629	0.036
596	C2j	1377	4Hap91	0.0093	250	0.109	955	0.945	0.040
597	MISS-14	1390	4 4 12 P 9	0.0101	250	0.118	4623	4.245	0.037
598	C2k	1391	4 HP 91	0.0088	250	0.103	1086	1.107	0.042
599	C21	1392	$414 \mathrm{P91}$	0.0089	250	0.104	\|1303	1.323	0.042
600	C23	1393	4Hap91	0.0087	250	0.102	\|1312	1.363	0.043
601	C2n	1394	$4 \mathrm{Hap91}$	0.0063	250	0.074	964	1.365	0.059
602	C20	1395	4!1891	0.0054	250	0.063	923	1.521	0.069
603	C2d dup	1396	4 412901	0.0101	250	0.118	1092	0.970	0.037
604	C2k dup	1398	41:AR91	0.0088	250	0.103	\|1117	1.140	0.042

HOHR SEGIBITAL RAIR MMALYSIS

SEQ	$\begin{aligned} & \text { BAITELLEB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { HIBGRATOR } \\ \text { SERI } \end{array}\right\|$	$\left.\right\|_{\text {DITERI }} ^{\text {DIGEII }}$	DIGRSTIO in 9	$\left\|\begin{array}{l} \text { SAMPLE VOL } \\ A M A L Y E D \end{array}\right\|$	AMALYRED in Ig	\|arEA	$\underset{[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{aligned} & \mathrm{MDL} \\ & {[\mathrm{Bg}]} \end{aligned} \mathrm{Mg} / \mathrm{g}\right.$
605	35a	1399	414R91	0.0074	250	0.087	453	0.515	0.050
606	35b	1400	41412891	0.0067	250	0.078	495	0.628	0.056
607	35 C	1401	414891	0.0066	250	0.077	463	0.592	0.056
608	35d	1402	4tar91	0.0063	250	0.074	499	0.674	0.059
609	35 e	1403	412R91	0.0071	250	0.083	579	0.703	0.052
610	$35 f$	1404	4tare1	0.0064	250	0.075	667	0.909	0.058
611	359	1405	4tarel	0.0052	250	0.061	681	1.144	0.072
612	35h	1406	41ar91	0.0058	250	0.068	829	1.265	0.064
613	351	1407	4tar91	0.0042	250	0.049	784	1.646	0.089
614	35j	1408	410891	0.0039	250	0.046	750	1.691	0.095
615	IIES SPIKP-14	1409	4712891	0.0094	100	0.044	$\mid 5008$	12.363	0.099
616	DORH-1-14	1410	4apal	0.0429	250	0.502	\|3891	0.840	0.009
617	35k	1411	41aR91	0.0038	250	0.044	\|1061	2.502	0.098
618	351	1412	44ar91	0.0033	250	0.039	\|1126	3.066	0.113
619	35a dup	1413	412 R 91	0.0074	250	0.087	472	0.539	0.050
620	35j dup	1414	414R91	0.0039	250	0.046	822	1.864	0.095
621	36a	1415	412R91	0.0061	250	0.071	224	0.273	0.061
622	36b	1416	4:1aR91	0.0056	250	0.065	196	0.251	0.066
623	36 C	1417	414R91	0.0048	250	0.056	205	0.310	0.078
624	36d	1418	44ar91	0.0041	250	0.048	209	0.372	0.091
625	$36 e$	1419	41RR91	0.0036	250	0.042	203	0.409	0.103
626	361	1420	4MAR91	0.0020	250	0.023	192	0.684	0.186

HOMR SEGHEITAL HAIR MMALYSIS

SEQ \ddagger	$\begin{gathered} \text { BAITEBLLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { ITTEGRATOR } \\ \text { SRQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGBSTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESTIOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{l} S A M P L E \\ A B A L Y Z S D \\ A 1 \end{array}\right\|$	AMALYZED $\text { ing } \mathrm{Ig}$	AREA		$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Bg}][\mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
627	36C dup	1421	4MAR91	0.0048	250	0.056	199	0.299	0.078
628	DORH-1-15	1423	541821	0.0225	250	0.263	\|2089	0.852	0.017
629	MIRS-15	1424	5H1R91	0.0122	250	0.143	15436	4.142	0.030
630	MIRS SPIRE-15	1425	54ap91	0.0091	100	0.043	\|5176	13.213	0.102
631	37a	1426	5414R91	0.0094	250	0.110	418	0.375	0.040
632	37b	1427	54ar91	0.0110	250	0.129	480	0.373	0.034
633	37c	1428	54aR91	0.0097	250	0.113	435	0.380	0.038
634	MIES-15	1440	540R91	0.0122	250	0.143	$\mid 5285$	4.054	0.030
635	37d	1441	501391	0.0100	250	0.117	458	0.397	0.037
636	37e	1442	540891	0.0085	250	0.099	429	0.435	0.044
637	37 f	1443	54, 291	0.0089	250	0.104	594	0.590	0.042
638	37 g	1444	514291	0.0091	250	0.106	647	0.632	0.041
639	37h	1445	54ap91	0.0076	250	0.089	555	0.642	0.049
640	371	1446	501891	0.0052	250	0.061	457	0.761	0.072
641	371	1447	501491	0.0062	250	0.073	502	0.707	0.060
642	37k	1448	54, 291	0.0045	250	0.053	558	1.091	0.083
643	38a	1449	540891	0.0090	250	0.105	936	0.941	0.041
644	38b	1450	514891	0.0081	250	0.095	610	0.667	0.046
645	38 C	1451	5414891	0.0073	250	0.085	657	0.800	0.051
646	38d	1452	514P91	0.0053	250	0.062	555	0.921	0.070
647	38 e	1453	54ap91	0.0042	250	0.049	507	1.055	0.089
648	388	1454	\| 541891	0.0035	1250	0.041	628	1.591	0.106

HOVIR SEGIBTIAL HAIR AMALYSIS

SEQ ${ }_{\text {d }}$	$\begin{gathered} \text { BATIELLE } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IIIBERATOR } \\ -\quad \text { SERA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOI } \\ \text { DAII } \end{gathered}\right.$	$\begin{aligned} & \text { DIGSSIIOM } \\ & \text { Wi } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l} \text { SARPRES POL } \\ \text { AMLYEBD } \mu 1 \end{array}\right\|$	AMALYZZD N: Eg	\|AREA	$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{E}}$	$\left\lvert\, \begin{gathered} \mathrm{VDL} \\ {[\mathrm{Bg}]} \end{gathered} \mathrm{\mu g} / \mathrm{g}\right.$
649	DORH-1-15	1456	54a891	0.0225	250	0.263	\|2069	0.851	0.017
650	IIRS SPIKP-15	1457	54ar91	0.0091	100	0.043	15054	12.990	0.102
651	C3a	1458	54ar91	0.0200	250	0.234	446	0.193	0.019
652	c3b	1459	541891	0.0195	250	0.228	401	0.176	0.019
653	C3c	1460	5414891	0.0193	250	0.226	372	0.164	0.019
654	C3d	1461	548891	0.0176	250	0.206	368	0.177	0.021
655	C3e	1462	54AP91	0.0168	250	0.196	361	0.182	0.022
656	C3f	1463	5414P91	0.0220	250	0.257	521	0.207	0.017
657	C3g	1464	54ar91	0.0187	250	0.219	496	0.231	0.020
658	C3h	1465	54ar91	0.0135	250	0.158	482	0.311	0.028
659	C3i	1466	54aR91	0.0143	250	0.167	646	0.401	0.026
660	C3j	1467	5418891	0.0135	250	0.158	770	0.512	0.028
661	C3k	1468	540R91	0.0091	250	0.106	648	0.633	0.041
662	C1	1469	54AR91	0.0068	250	0.080	537	0.693	0.055
663	C3I	1470	541891	0.0068	250	0.080	618	0.805	0.055
664	37 c dup	1471	54aR91	0.0097	250	0.113	425	0.377	0.038
665	37j dup	1472	54AR91	0.0062	250	0.073	577	0.821	0.060
666	38 a	1485	5414891	0.0090	250	0.105	919	0.890	0.041
667	C3a	1486	540891	0.0200	250	0.234	422	0.175	0.019
668	C3f	1487	5412R91	0.0220	250	0.257	525	0.202	0.017
669	DORH-1-16	1489	6HAR91	0.0413	250	0.483	4049	0.880	0.009
670	MIES-16	1490	61ar91	0.0090	250	0.105	\|4326	4.315	0.041

HONR SEGTETTAL HAIR ANALYSIS

SEO 4	$\begin{gathered} \text { BATPELLS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { LITEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIE } \end{gathered}\right.$	$\begin{gathered} \text { DIGSSIIOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{l}\text { SAMPLE VOL } \\ \text { AERLYZED P1 }\end{array}\right\|$	$\begin{aligned} & \text { ARALYZED } \\ & \text { WI Ig } \end{aligned}$	\|ARBA	$\stackrel{\mathrm{Bgg}}{[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}}$	$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Bg}]} \end{gathered} \mathrm{Mg} / \mathrm{g}\right.$
671	MIES SPIRE-16	1491	6HAR91	0.0132	100	0.062	\|5581	9.508	0.070
672	39a	1492	64AR91	0.0057	250	0.067	544	0.802	0.065
673	39b	1493	64AR91	0.0055	250	0.064	491	0.744	0.068
674	398	1494	64AR91	0.0047	250	0.055	388	0.672	0.079
675	39d	1495	6HAR91	0.0051	250	0.060	408	0.655	0.073
676	39e	1496	G1ar91	0.0054	250	0.063	414	0.628	0.069
677	$39 f$	1497	6HaR91	0.0043	250	0.050	338	0.629	0.087
678	399	1498	64ar91	0.0037	250	0.043	341	0.738	0.101
679	39h	1499	64ar91	0.0037	250	0.043	336	0.726	0.101
680	391	1500	641891	0.0035	250	0.041	307	0.692	0.106
681	39j	1501	64RP91	0.0036	250	0.042	292	0.635	0.103
682	39k	1502	6414891	0.0032	250	0.037	269	0.650	0.116
683	MIES-16	1504	64ap91	0.0090	250	0.105	\| 4558	4.548	0.041
684	391	1505	61ap91	0.0035	250	0.041	285	0.635	0.106
685	394	1506	614891	0.0022	250	0.026	264	0.924	0.169
686	390	1507	6, 2101	0.0027	250	0.032	224	0.619	0.138
687	390	1508	61ap91	0.0024	250	0.028	284	0.923	0.155
688	399	1509	612891	0.0025	250	0.029	253	0.774	0.149
689	400	1510	64ar91	0.0091	250	0.106	943	0.899	0.041
690	40b	1511	641891	0.0088	250	0.103	1005	0.994	0.042
691	40 C	1512	641291	0.0089	250	0.104	817	0.791	0.042
692	40d	1513	guap91	0.0053	250	0.062	\| 465	0.727	0.070

HoHe SEGTITTLL HAIR AMALYSIS

SEO \ddagger	$\begin{gathered} \text { BafteliLs } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { Inrsgrator } \\ \text { SERif } \end{array}\right\|$	$\left.\right\|_{\text {DAIGESIIO }}$	DIGESTIOM WI g	$\left\|\begin{array}{l} \text { SAIPLE } \\ \text { AUALYZED } \\ \hline 1 \end{array}\right\|$	ATMLYEED WI Ig	\|AREA	$\mathrm{ENg}_{\text {[Hg] }}^{\text {[img/g }}$	$\left\lvert\, \begin{gathered} \mathrm{ndL} \\ {[\mathrm{Bg}] \mathrm{gg} / \mathrm{g}} \end{gathered}\right.$
693	MIES SPIKB-16	1514	64ar91	0.0132	100	0.062	$\mid 4892$	8.326	0.070
694	39 cdup	1515	64ar91	0.0047	250	0.055	401	0.697	0.079
695	39n dup	1516	64ar91	0.0027	250	0.032	232	0.646	0.138
696	40c dup	1517	64ap91	0.0089	250	0.104	819	0.793	0.042
697	DORH-1-16	1518	6Har91	0.0413	250	0.483	\|3836	0.833	0.009
698	HIES-16	1530	641891	0.0090	250	0.105	14482	4.402	0.041
699	41a	1531	64P91	0.0067	250	0.078	785	0.992	0.056
700	416	1532	6uar91	0.0060	250	0.070	920	1.309	0.062
701	41 C	1535	6uar91	0.0071	250	0.083	832	0.995	0.052
702	41d	1536	64ap91	0.0081	250	0.095	\|1053	1.116	0.046
703	41e	1537	641481	0.0067	250	0.078	\|1119	1.437	0.056
704	417	1538	$64 \mathrm{AR91}$	0.0066	250	0.077	\|1179	1.540	0.056
705	41 g	1539	6uar91	0.0071	250	0.083	\|1529	1.871	0.052
706	41 h	1540	64ar91	0.0057	250	0.067	\|1486	2.263	0.065
707	41 i	1541	6HAR91	0.0056	250	0.065	\|1471	2.280	0.066
708	41 j	1542	614891	0.0055	250	0.064	\|1538	2.430	0.068
709	1034-1-16	1544	610891	0.0413	250	0.483	13743	0.800	0.009
710	412	1545	64aR91	0.0059	250	0.069	\|1708	2.522	0.063
711	411	1546	6HAR91	0.0049	250	0.057	11673	2.973	0.076
712	411	1547	64aR91	0.0048	250	0.056	1653	2.998	0.078
713	41n	1548	6HaR91	0.0045	250	0.053	11369	2.635	0.083
714	410	1549	641891	0.0044	250	0.051	\| 1368	2.693	0.085

HOHR SEGTIMTAL HAIR AMALYSIS

SEQ 1	$\begin{aligned} & \text { BATPELLB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { ITTEGRATOR } \\ \text { SEQ } f \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESITOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{ll} S A M P L B & V O L \\ A M L Y Z E D & \mu 1 \end{array}\right\|$	AIMLYZED解 gg	\|AREA	$\underset{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g} / \mathrm{g}}{ }$	$\left\lvert\, \begin{gathered} \mathrm{KDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
715	41p	1550	64ar91	0.0040	250	0.047	768	1.624	0.093
716	119	1552	64ar91	0.0037	250	0.043	\|1063	2.467	0.101
717	41 r	1553	641R91	0.0044	250	0.051	\| 1014	1.975	0.085
718	418	1554	6HAR91	0.0038	250	0.044	851	1.904	0.098
719	41 t	1555	6HAR91	0.0043	250	0.050	887	1.758	0.087
720	414	1556	6HAR91	0.0039	250	0.046	740	1.602	0.095
721	41V	1557	64AP91	0.0031	250	0.036	652	1.762	0.120
722	41e dup	1558	64AR91	0.0067	250	0.078	\|1128	1.449	0.056
723	41p dup	1559	6HAR91	0.0040	250	0.047	761	1.609	0.093
724	DORH-1-17	1574	11112R91	0.0111	250	0.130	\| 1095	0.867	0.034
725	MIES-17	1575	11/1RR91	0.0145	250	0.170	\|7065	4.412	0.026
726	MIES SPIKP-17	1576	11HAR91	0.0062	100	0.029	$\mid 4095$	14.894	0.150
727	42a	1577	11HAR91	0.0070	250	0.082	318	0.365	0.053
728	42b	1578	1114P91	0.0078	250	0.091	419	0.445	0.048
729	42C	1579	1114R21	0.0069	250	0.081	337	0.395	0.054
730	42d	1580	11710P91	0.0067	250	0.078	379	0.464	0.056
731	420	1581	1114P91	0.0079	250	0.092	512	0.547	0.047
732	42	1582	1114RR91	0.0051	250	0.060	381	0.613	0.073
733	429	1583	1110R21	0.0072	250	0.084	436	0.504	0.052
734	42h	1584	1110891	0.0066	250	0.077	411	0.515	0.056
735	421	1585	1114R91	0.0063	250	0.074	479	0.638	0.059
736	42j	1586	114aR91	0.0055	250	0.064	525	0.807	0.068

HOHE SEGIBITAL HAIR AMALYSIS

SEQ \ddagger	$\begin{gathered} \text { BIITELLE } \\ \text { DD } \end{gathered}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SERf } \end{array}\right\|$	$\left.\right\|_{\text {DIGESIIO }}$	$\begin{gathered} \text { DIGESIIOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{ll} \text { SAIPRLE } & \text { VOL } \\ \text { AMALYZED } & \text { P1 } \end{array}\right\|$	AMalyzed W mg	\|AREA	$\underset{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}{\mathrm{E}}$	
737	42k	1587	$1110 R 91$	0.0058	250	0.068	522	0.760	0.064
738	IIRS SPIKR-17	1589	11HAR91	0.0062	100	0.029	1422	16.094	0.150
739	421	1590	$11 / 12 R 91$	0.0052	250	0.061	418	0.666	0.072
740	421	1591	$11 \mathrm{HaR91}$	0.0054	250	0.063	395	0.603	0.069
741	42n	1592	11:12R91	0.0049	250	0.057	397	0.668	0.076
742	420	1593	$11 \mathrm{HaR91}$	0.0047	250	0.055	339	0.584	0.079
743	42p	1594	11H1R291	0.0050	250	0.058	382	0.627	0.074
744	42c dup	1596	11HAR91	0.0069	250	0.081	374	0.444	0.054
745	42n dup	1597	11HAR91	0.0054	250	0.063	400	0.611	0.069
746	43a	1598	11HAR91	0.0078	250	0.091	745	0.826	0.048
747	43b	1599	11HAR91	0.0070	250	0.082	666	0.817	0.053
748	43 C	1600	11HAR91	0.0055	250	0.064	600	0.931	0.068
749	43d	1601	$11 / 14891$	0.0053	250	0.062	576	0.925	0.070
750	43 e	1602	11HAR91	0.0057	250	0.067	572	0.854	0.065
751	43 f	1603	11HRR91	0.0057	250	0.067	559	0.833	0.065
752	IIISS SPIKR-17	1605	11HAR91	0.0062	100	0.029	4403	16.024	0.150
753	42q dup	1606	11112891	0.0052	250	0.061	381	0.601	0.072
754	439	1607	111:3P91	0.0052	250	0.061	574	0.939	0.072
755	43h	1608	11HAR91	0.0044	250	0.051	557	1.075	0.085
756	$43 i$	1609	11HaR91	0.0040	250	0.047	540	1.144	0.093
757	43j	1610	1114R91	0.0042	250	0.049	591	1.200	0.089
758	43k	1611	114AR91	0.0031	250	0.036	446	1.200	0.120

HOVRE SEGTITITAL HAIR ANALYSIS

SEOI	$\begin{gathered} \text { BATTBLLE } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { MITRERATOR } \\ \text { SEO } f \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}\right.$	DIGBSTIOM WI 9	$\left\|\begin{array}{l}\text { SAMPLE VOL } \\ \text { AMALYZZD }\end{array}\right\|$	Ahacyzed WI mg	\|AREA	IIg [Hg] Hg / g	$\left\lvert\, \begin{gathered} \mathrm{VDL} \\ {[\mathrm{Bg}]} \end{gathered} \mathrm{\mu g} / \mathrm{g}\right.$
759	431	1612	11HAR91	0.0036	250	0.042	586	1.387	0.103
760	43	1613	1140R91	0.0028	250	0.033	526	1.588	0.133
761	43n	1614	$11 \mathrm{Hap91}$	0.0032	250	0.037	600	1.600	0.116
762	430	1615	11HAR91	0.0027	250	0.032	476	1.478	0.138
763	HISS-17	1672	1140891	0.0145	250	0.170	\|4974	4.215	0.026
764	43n dup	1673	$11 \mathrm{Lar91}$	0.0032	250	0.037	471	1.689	0.116
765	430 dup	1674	11HAR91	0.0027	250	0.032	554	2.383	0.138
766	43p	1679	1140891	0.0021	250	0.025	430	2.333	0.177
767	43 r	1680	11HAR91	0.0017	250	0.020	381	2.525	0.219
768	43q	1681	1114891	0.0017	250	0.020	354	2.329	0.219
769	43 Cdup	1682	1114891	0.0055	250	0.064	453	0.942	0.068
770	43k dup	1683	1114891	0.0031	250	0.036	379	1.377	0.120
771	DOSH-1-18	1685	1214891	0.0231	250	0.270	\|1669	0.877	0.016
772	MIES-18	1686	12101891	0.0093	250	0.109	13241	4.269	0.040
773	IIES SPIKT-18	1687	12101891	0.0069	100	0.032	13384	15.025	0.135
774	44	1688	12414891	0.0056	250	0.065	313	0.621	0.066
775	44b	1689	12101991	0.0050	250	0.058	270	0.589	0.074
776	446	1690	12111291	0.0049	250	0.057	264	0.586	0.076
777	44	1691	12101891	0.0051	250	0.060	238	0.500	0.073
778	44 e	1692	12101991	0.0046	250	0.054	204	0.463	0.081
779	441	1693	12141291	0.0044	250	0.051	205	0.486	0.085
780	44 g	1694	121:1891	0.0042	250	0.049	185	0.451	0.089

hovir segiafill hair hualysis

SEQ	$\begin{aligned} & \text { BATPELLEB } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { LIIEGRATOR } \\ \text { SEQ: } \end{array}\right\|$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}$	$\begin{gathered} \text { DIGESIIOM } \\ \text { WI } \mathrm{g} \end{gathered}$	$\left\|\begin{array}{l} \text { SAIPLEB POL } \\ \text { ABLYZED } \end{array}\right\|$	AMLIESED Tin mg	\|AREA	$\underset{[\mathrm{Bq}] \mathrm{Mg} / \mathrm{g}}{\mathrm{Mig}}$	$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Eg}]} \end{gathered}\right.$
781	441	1695	1214R91	0.0051	250	0.060	273	0.585	0.073
782	441	169	121aR91	0.0039	250	0.046	217	0.587	0.095
783	44	1697	12148121	0.0044	250	0.051	277	0.689	0.085
784	44k	1698	12:14891	0.0044	250	0.051	327	0.829	0.085
785	441	1699	$12 \mathrm{nap91}$	0.0051	250	0.060	375	0.832	0.073
786	411	1700	1241821	0.0044	250	0.051	310	0.782	0.085
787	44d dup	1701	1214121	0.0051	250	0.060	221	0.458	0.073
788	DOPM-1-18	1702	121AR91	0.0231	250	0.270	1779	0.920	0.016
789	MISS-18	1714	121aR91	0.0093	250	0.109	13785	4.966	0.040
790	441	1715	1210R91	0.0037	500	0.087	642	0.980	0.050
791	440	1716	1214R91	0.0036	500	0.084	560	0.866	0.052
792	44p	1717	12 AR 21	0.0028	500	0.065	490	0.959	0.066
793	Cab	1720	1214R91	0.0080	500	0.187	681	0.483	0.023
794	C4C	1721	1214R91	0.0070	500	0.164	779	0.639	0.027
795	C4a	1722	1214R91	0.0085	500	0.199	643	0.427	0.022
796	440 dup	1723	1214R91	0.0036	500	0.084	471	0.713	0.052
797	C4d	1724	1214891	0.0076	500	0.178	1092	0.844	0.024
798	C4e	1725	12HAR91	0.0069	500	0.161	\|1136	0.969	0.027
799	C4f	1726	1214R21	0.0059	500	0.138	1059	1.052	0.032
800	C4g	1727	12HAR91	0.0057	500	0.133	944	0.964	0.033
801	C4h	1728	1214R91	0.0053	500	0.124	826	0.899	0.035
802	C4i	1729	1214R91	0.0046	500	0.108	1601	0.733	0.040

HOUR SEGHBYTAL HAIR AMALYSIS

SEOI	$\begin{gathered} \text { BaITELLSB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { ITITEGRATOR } \\ : \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGISIIOM } \end{gathered}\right.$	$\begin{aligned} & \text { DIGRSPIOM } \\ & \text { WI } g \end{aligned}$	$\left\|\begin{array}{ll} \text { SAMPLE POL } \\ \text { AMALYZBD } & \beta 1 \end{array}\right\|$	ABALYZED WI 19	\|arba	$\underset{[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}}{\mathrm{El}}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
803	DORH-1-18	1731	1214R91	0.0231	500	0.540	\| 3712	0.980	0.008
804	C4j	1732	12HAR93	0.0041	500	0.096	524	0.706	0.045
805	C4k	1733	12HAR91	0.0040	500	0.094	653	0.924	0.047
806	C41	1734	12HAR91	0.0029	500	0.068	544	1.041	0.064
807	C41	1735	1210R291	0.0024	500	0.056	534	1.232	0.078
808	C4n	1736	121:AR91	0.0016	500	0.037	403	1.341	0.116
809	C4g dup	1737	12141291	0.0057	500	0.133	992	1.016	0.033
810	C4I dup	1738	121AR91	0.0024	500	0.056	503	1.152	0.078
811	ITES SPIKT-18	1739	12H0R91	0.0069	100	0.032	\| 3684	16.279	0.135
812	UISS-19	1740	13HAR91	0.0032	500	0.075	\| 2557	4.839	0.058
813	DORH-1-19	1741	134AR91	0.0244	500	0.571	\| 3567	0.891	0.008
814	MIRS SPIKR-19	1743	13HAR91	0.0049	100	0.023	\|3150	19.549	0.190
815	45a	1744	1314R291	0.0186	500	0.435	\|2566	0.836	0.010
816	45b	1745	13HAP91	0.0164	500	0.384	\|1949	0.715	0.011
817	46a	1746	1314891	0.0102	500	0.239	809	0.457	0.018
818	46b	1747	1342891	0.0095	500	0.222	866	0.528	0.020
819	460	1748	13:12P91	0.0089	500	0.208	902	0.588	0.021
820	460	1749	13MAR91	0.0077	500	0.180	916	0.691	0.024
821	MISS-19	1882	134AR91	0.0032	250	0.037	824	5.235	0.116
822	46 e	1883	13H1891	0.0084	500	0.196	464	0.544	0.022
823	468	1884	13H1R21	0.0073	500	0.171	388	0.517	0.025
824	46 edup	1885	13HAR91	0.0084	500	0.196	486	0.572	0.022

HONE SEGIEITYAL BAIR AMALYSIS

SEOA	$\begin{aligned} & \text { BATIELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { IITBGRATOR } \\ \text { SEQ } \end{gathered}\right.$	\|DIGESTIOM	$\begin{aligned} & \text { DIGRSIIOM } \\ & \text { WI } g \end{aligned}$	$\left\|\begin{array}{l\|l} S A P P L E & \text { VOL } \\ A H A L Y Z B D & \text { Pl } \end{array}\right\|$	AMALYZED mT mg	\|AREA	$\underset{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}{\mathrm{~g}}$	${\underset{[\mathrm{Hg}}{\mathrm{KDL}} \mathrm{\mu g} / \mathrm{g}}^{\text {g }}$
825	469	1886	13MAR21	0.0074	500	0.173	545	0.734	0.025
826	MIES-19	1887	13HAR91	0.0032	500	0.075	\|1683	5.453	0.058
827	46h	1888	13HAR91	0.0074	500	0.173	601	0.814	0.025
828	47a	1889	13HAR91	0.0076	500	0.178	746	0.994	0.024
829	47b	1890	$13412 R 91$	0.0070	500	0.164	594	0.850	0.027
830	47c	1891	13HAR91	0.0072	500	0.168	678	0.949	0.026
831	47d	1892	13H14R91	0.0058	500	0.136	615	1.064	0.032
832	DORH-1-19	1894	13HAR91	0.0244	500	0.571	1710	0.727	0.008
833	47e	1895	13HAR91	0.0066	500	0.154	593	0.899	0.028
834	47 f	1896	13HAR91	0.0059	500	0.138	726	1.244	0.032
835	47g	1897	1314R91	0.0047	500	0.110	712	1.530	0.040
836	47 L	1898	1314R91	0.0036	500	0.084	583	1.620	0.052
837	47 i	1899	13HAR91	0.0025	500	0.058	419	1.639	0.074
838.	17j	1900	13MAR91	0.0021	500	0.049	390	1.806	0.089
839	47b dup	1901	13HAR91	0.0070	500	0.164	529	0.751	0.027
840	HIES-20	1911	2110R91	0.0035	500	0.082	\|1508	4.830	0.053
841	DOSH-1-20	1913	21HAR91	0.0682	250	0.798	\|2499	0.828	0.005
842	MIES SPIKE-20	1914	21HAR91	0.0048	250	0.056	$\mid 4583$	21.703	0.078
843	48b	1916	21HAR91	0.0147	500	0.344	\|5003	3.882	0.013
844	48 C	1917	$2114 A R 91$	0.0141	500	0.330	$\mid 3089$	2.482	0.013
845	48d	1918	2114R91	0.0134	500	0.313	\|1907	1.602	0.014
846	48e	\| 1919	21HAR91	0.0073	500	0.171	960	1.457	0.025

HONE SEGIEFTAL HAIR MIALYSIS

SEO 1	$\begin{gathered} \text { BATPZLLE } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { MITEGRATOR } \\ \text { SER } \end{array}\right\|$	$\left.\right\|_{\text {DIGRSTIOM }} ^{\text {DAFB }}$	$\begin{aligned} & \text { DIGESIIOM } \\ & \text { WT } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{ll} \text { SAIPPLE VOL } \\ \text { MMLYLZBD } & \mu 1 \end{array}\right\|$	andlyzed W 1 ng	AREA	$\underset{[\mathrm{ERg}]}{\underset{\mathrm{Eg} / \mathrm{g}}{ }}$	$\left\lvert\, \begin{gathered} \mathrm{RDL} \\ {[\mathrm{Hg}]} \end{gathered}\right.$	
847	48 f	1920	21HAR91	0.0040	500	0.094	573	1.552	0.047	
848	49a	1921	214AR91	0.0125	500	0.292	1531	1.373	0.015	
849	48a	1922	21HAR91	0.0164	250	0.192	3263	4.532	0.023	
850	49b	1923	21HAR91	0.0108	500	0.253	1645	1.710	0.017	
851	490	1924	$21 / 14 R 91$	0.0107	500	0.250	1480	1.550	0.017	
852	498	1925	2114R291	0.0085	500	0.199	\|1180	1.547	0.022	
853	49a dup	1926	2114RP91	0.0125	500	0.292	\|1475	1.322	0.015	
854	50a	1927	2114801	0.0141	500	0.330	2146	1.717	0.013	
855	50b	1928	21HMR91	0.0122	500	0.285	\|2081	1.923	0.015	
856	50 C	1929	21H1491	0.0124	500	0.290	\|1672	1.515	0.015	
857	508	1931	21HAPO1	0.0120	500	0.281	\|1645	1.539	0.016	
858	50e	1932	2114P91	0.0128	500	0.299	\|1599	1.402	0.015	
859	$50 ¢$	1933	2114891	0.0101	500	0.236	\|1327	1.469	0.018	
860	50 g	1934	2141891	0.0111	500	0.260	\|1614	1.632	0.017	
861	50h	1935	21108P91	0.0118	500	0.246	\|1590	1.698	0.018	
862	50 i	1936	2114R91	0.0097	500	0.227	\|1643	1.902	0.019	
863	50j	1937	2114891	0.0095	500	0.222	\|1448	1.707	0.020	
864	50\%	1938	2114891	0.0093	500	0.218	\|1319	1.585	0.020	
865	501	1939	21/10891	0.0075	500	0.175	1086	1.610	0.025	
866	48b dup	1940	21H11891	0.0147	250	0.172	\| 2718	4.207	0.025	
867	50b dup	1941	21418991	0.0122	500	0.285	\|1860	1.716	0.015	
868	MIRS-20	1955	21HAP91	0.0035	500	0.082	\|1572		4.829	0.053

B.1-39

SEOf	$\begin{gathered} \text { BATrELLLE } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{l} \text { IIIEGRATOR } \\ -\operatorname{SEQ} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGRSTIOM } \\ & \text { WI } 9 \end{aligned}$	$\left\|\begin{array}{l} \text { SANPLE } \\ \text { AMALYZED } \\ \text { PI } \end{array}\right\|$	$\begin{aligned} & \text { A!LILYZED } \\ & \text { WT Eg } \end{aligned}$	\|arba	$\underset{[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}}{\mathrm{E}}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
869	50j dup	1956	21HAR91	0.0095	500	0.222	\|1372	1.549	0.020
870	C5a	1957	214arg1	0.0078	500	0.182	419	0.550	0.024
871	c5b	1958	214AR91	0.0083	500	0.194	588	0.740	0.022
872	C5c	1959	21Mar91	0.0084	500	0.196	916	1.158	0.022
873	C5d	1960	214AR91	0.0091	500	0.213	1085	1.272	0.020
874	C5e	1961	21 Har91	0.0085	500	0.199	851	1.061	0.022
875	C5f	1962	$21 / 4 \mathrm{R} 91$	0.0069	500	0.161	430	0.639	0.027
876	Csg	1963	$21 / 4 \mathrm{R} 91$	0.0074	500	0.173	384	0.528	0.025
877	C5h	1964	21HAR91	0.0079	500	0.185	396	0.511	0.024
878	${ }^{5} 5$	1965	21HAR91	0.0076	500	0.178	432	0.583	0.024
879	c5j	1966	21HAR91	0.0073	500	0.171	473	0.669	0.025
880	Csc dup	1967	21HAR91	0.0084	500	0.196	828	1.043	0.022
881	C5h dup	1968	2114R21	0.0079	500	0.185	370	0.475	0.024
882	DORH-1-21	1971	2240R91	0.0307	500	0.718	$\mid 3070$	1.078	0.006
883	UIRS-21	1972	2214R91	0.0073	250	0.085	\|1591	4.636	0.051
884	HIES SPIRP-21	1973	22414R91	0.0079	100	0.037	\|2003	13.562	0.118
885	51a	1974	2214R91	0.0080	500	0.187	959	1.251	0.023
886	51b	1975	2214R91	0.0075	500	0.175	1010	1.409	0.025
887	51 c	1976	221AR91	0.0072	500	0.168	1070	1.559	0.026
888	51d	1977	221aR91	0.0065	500	0.152	\|1021	1.644	0.029
889	51e	1978	221ARP91	0.0067	500	0.157	955	1.488	0.028
890	517	1979	221412 P 91	0.0059	500	0.138	803	1.408	0.032

HOHR SEGREIFTAL BAIR AMALYSIS

SEQ	$\begin{aligned} & \text { BATYELLSK } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { HFEGRATOR } \\ \text { SEOA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESTIOM } \\ \text { WI } \mathrm{g} \end{gathered}$	$\left\|\begin{array}{l}\text { SNAPLR VOL } \\ \text { AMALYZED } \mu \mathrm{L}\end{array}\right\|$	$\begin{aligned} & \text { AMALYZED } \\ & \text { WI } \mathrm{mg} \end{aligned}$	AREA	$\begin{aligned} & \text { EHg } \\ & {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{aligned}$	
891	DORH-1-21	1981	221AR91	0.0307	250	0.359	\|1605	1.112	0.012
892	519	1982	22HAR91	0.0046	500	0.108	675	1.501	0.040
893	51h	1983	22MAR91	0.0047	500	0.110	648	1.406	0.040
894	51 i	1984	22MAR91	0.0035	500	0.082	505	1.442	0.053
895	51 j	1985	22414R91	0.0038	500	0.089	508	1.337	0.049
896	NIES-21	1997	221:1R21	0.0073	500	0.171	13374	4.877	0.025
897	51k	1998	22414891	0.0038	500	0.089	479	1.276	0.049
898	511	1999	2241891	0.0033	500	0.077	406	1.234	0.056
899	51.	2000	224AR91	0.0030	500	0.070	371	1.234	0.062
900	51e dup	2001	2211R891	0.0067	500	0.157	1076	1.670	0.028
901	511 dup	2002	221:1R91	0.0033	500	0.077	383	1.160	0.056
902	DORH-1-21	2003	221:1R91	0.0307	500	0.718	\| 3295	1.132	0.006
903	52a	2004	221AR91	0.0085	500	0.199	\|1313	1.613	0.022
904	52b	2005	221:1891	0.0083	500	0.194	996	1.246	0.022
905	52c	2006	22101891	0.0085	500	0.199	620	0.747	0.022
906	52d	2007	221AR91	0.0081	500	0.189	455	0.567	0.023
907	520	2008	22101291	0.0079	500	0.185	400	0.508	0.024
908	52%	2009	22101891	0.0080	500	0.187	493	0.625	0.023
909	529	2011	22418P91	0.0084	500	0.196	446	0.536	0.022
910	52h	2012	221.1.991	0.0090	500	0.210	519	0.586	0.021
911	52i	2013	22:11891	0.0081	500	0.189	490	0.613	0.023
912	52j	2014	22014P91	0.0072	500	0.168	482	0.678	0.026

B.1-41

HONE SECIBITILL RAIR AMALYSIS

SEQ	$\begin{gathered} \text { BAITELLB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITBGRATOR } \\ \text { SERA } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESIIOI } \\ \text { DAFE } \end{array}$	$\begin{gathered} \text { DIGRSITIM } \\ \mathrm{F} \end{gathered}$	$\left\|\begin{array}{ll} \text { SAIPLB } & \text { VOL } \\ \text { AKLLYZEDD } & \mu 1 \end{array}\right\|$	ABALYESD ㄴํ 19	\|AREA	$\stackrel{\Sigma: g g}{[\mathrm{~Bq}] \mathrm{mg} / \mathrm{g}}$	YDL [Hg g] Hg / g
913	52k	2015	22HAR91	0.0068	500	0.159	476	0.708	0.027
914	521	2016	2240891	0.0056	500	0.131	573	1.044	0.033
915	52	2017	2210R91	0.0036	500	0.084	519	1.465	0.052
916	52c dup	2018	22 TaP91	0.0085	500	0.199	675	0.815	0.022
917	52k dup	2019	2214R91	0.0068	500	0.159	584	0.877	0.027
918	MIRS-22	2020	25414891	0.0064	250	0.075	\|1499	4.896	0.058
919	IIES SPIKR-22	2021	254AP91	0.0070	250	0.082	\|4951	14.954	0.053
920	DO3E-1-22	2023	25412891	0.0159	250	0.186	623	0.800	0.023
921	53a	2024	2514R91	0.0159	250	0.186	229	0.274	0.023
922	53b	2025	25HAR91	0.0159	250	0.186	259	0.314	0.023
923	53 C	2026	254AR91	0.0154	250	0.180	222	0.273	0.024
924	53d	2027	2541R21	0.0129	250	0.151	157	0.219	0.029
925	53 e	2029	2514891	0.0145	500	0.339	316	0.214	0.013
926	539	2031	251AR91	0.0141	500	0.330	340	0.238	0.013
927	IIRS-22	2043	25HAR91	0.0064	500	0.150	3277	4.820	0.029
928	$53 f$	2044	2514R91	0.0169	500	0.395	435	0.228	0.011
929	53b	2045	2541491	0.0158	500	0.370	377	0.209	0.012
930	53j	2047	2544891	0.0159	500	0.372	487	0.274	0.012
931	53k	2048	25H4R91	0.0114	500	0.267	402	0.311	0.016
932	531	2049	25HaR91	0.0110	500	0.257	434	0.350	0.017
933	531	2050	2514R91	0.0066	500	0.154	293	0.380	0.028
934	531	2051	25HRR91	0.0149	500	0.348	395	0.233	0.012

B.1-42

HOHE SEGHETTLL HAIR ANALYSIS

SEQ \ddagger	$\begin{gathered} \text { BMTTBLLS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { ITRECRATOR } \\ \text { SEQ } \end{array}\right\|$	DIGRSTIO:	$\begin{gathered} \text { DIGESTIOM } \\ \text { in } g \end{gathered}$	$\left\|\begin{array}{l} \text { SAIPPLB VOL } \\ \text { AMALYZED } \end{array}\right\|$	AMALYZED WI mg	ARBA	$\begin{gathered} \text { Eigg } \\ {[\mathrm{Hg}] \mathrm{pg} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { NDL } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
935	53c dup	2052	2514.1891	0.0154	500	0.360	497	0.289	0.012
936	53k dup	2053	25HMR91	0.0114	500	0.267	381	0.293	0.016
937	54a	2054	25HAR91	0.0084	500	0.196	563	0.604	0.022
938	54b	2055	25H14R91	0.0088	500	0.206	486	0.493	0.021
939	54c	2056	2514R91	0.0087	500	0.203	422	0.429	0.021
940	54d	2057	254AR91	0.0083	500	0.194	442	0.473	0.022
941	54 e	2058	2514R91	0.0073	500	0.171	420	0.509	0.025
942	549	2059	254ar91	0.0077	500	0.180	452	0.522	0.024
943	DORH-1-22	2061	251AR91	0.0159	500	0.372	\|1485	0.870	0.012
944	549	2062	2510R91	0.0070	500	0.164	551	0.708	0.027
945	54h	2063	251MR91	0.0075	500	0.175	587	0.707	0.025
946	54i	2064	2514R21	0.0073	500	0.171	562	0.693	0.025
947	54j	2065	2514.AP91	0.0071	500	0.166	501	0.631	0.026
948	54k	2066	251AR91	0.0060	500	0.140	459	0.681	0.031
949	541	2067	2514R91	0.0065	500	0.152	524	0.723	0.029
950	54!	2068	2514P91	0.0057	500	0.133	507	0.796	0.033
951	54n	2069	2514891	0.0054	500	0.126	526	0.874	0.034
952	540	2070	2514R21	0.0028	500	0.065	385	1.207	0.066
953	54p	2071	2514.191	0.0035	500	0.082	469	1.194	0.053
954	54 q	2072	2514891	0.0032	500	0.067	337	1.026	0.065
955	54r	2073	25101291	0.0031	500	0.073	373	1.054	0.060
956	548	2074	25:4R91	0.0030	500	0.070	397	1.165	0.062

HOVR SBGIBITAL BAIR AMALYSIS

SEXI	$\begin{aligned} & \text { BAITRLLS } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { CIRBGRAORR } \\ \text { SERH: } \end{array}\right\|$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}$	$\begin{gathered} \text { DIGESTIOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{l}\text { SAYPLZ DOL } \\ \text { ABLYYZED } \\ \text { P1 }\end{array}\right\|$	$\begin{aligned} & \text { ABALYZEDD } \\ & \text { WI Eg } \end{aligned}$	ARBA	$\begin{gathered} \mathrm{nHg} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { IML } \\ {[\mathrm{Hg}] / \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$	
957	54t	2075	2540R91	0.0035	500	0.082	406	1.023	0.053	
958	544	2076	25HARP1	0.0037	500	0.087	409	0.975	0.050	
959	54V	2077	25HAR91	0.0033	500	0.077	363	0.961	0.056	
960	MIES-22	2089	25H1,R91	0.0064	500	0.150	\| 3338	4.879	0.029	
961	541\%	2090	2514R21	0.0027	500	0.063	396	1.242	0.069	
962	54x	2091	25HAR91	0.0024	500	0.056	343	1.188	0.078	
963	54 b dup	2092	2514P91	0.0088	500	0.206	527	0.522	0.021	
964	54k dup	2093	25H14R91	0.0060	500	0.140	475	0.684	0.031	
965	54t dup	2096	251, R291	0.0035	500	0.082	443	1.085	0.053	
966	DORH-1-23	2097	264aR91	0.0280	500	0.655	\|2575	0.857	0.007	
967	HIES-23	2098	2614R91	0.0072	500	0.168	\| 3369		4.376	0.026
968	MIES SPIKR-23	2099	2614R291	0.0071	100	0.033	\| 2306	15.098	0.131	
969	55.	2100	2614R21	0.0062	500	0.145	\|1605	2.387	0.030	
970	55b	2101	2614R91	0.0060	500	0.140	1189	2.283	0.031	
971	55c	2102	26H1R21	0.0059	500	0.138	\|1395	2.171	0.032	
972	55d	2103	2614291	0.0055	500	0.129	11075	1.778	0.034	
973	55	2104	26HAR91	0.0043	500	0.101	773	1.608	0.043	
974	$55 f$	2105	26HAR91	0.0044	500	0.103	589	1.176	0.042	
975	559	2106	26HAR91	0.0046	500	0.108	666	1.283	0.040	
976	55b	2107	$26142 R 91$	0.0048	500	0.112	749	1.393	0.039	
977	55g dup	2110	26HAR91	0.0046	500	0.108	638	1.225	0.040	
978	56a	2111	26HAR91	0.0062	500	0.145	955	1.394	0.030	

HOHR SEGRETTAL BAIR AMALYSIS

SEQ	$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQ } A \end{array}\right\|$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}$	$\begin{gathered} \text { digestion } \\ \text { WI } \mathrm{g} \end{gathered}$	$\left\|\begin{array}{l} \text { SAMPLZ } \\ \text { DMALYZED } \\ \hline 1 \end{array}\right\|$	AMALYZED Wr mg	\|AREA	$\begin{gathered} \text { Eig } \\ {[\mathrm{Hg}] \mathrm{pg} / \mathrm{g}} \end{gathered}$	$\begin{aligned} & \mathrm{KDL} \\ & {[\mathrm{Hg}]_{\mathrm{Mg} / \mathrm{g}}} \end{aligned}$
979	56b	2112	2614R91	0.0058	500	0.136	\|1112	1.746	0.032
980	HIES-23	2114	26HAR91	0.0072	500	0.168	\|3036	3.938	0.026
981	56 C	2115	26HRR91	0.0040	500	0.094	\| 1077	2.449	0.047
982	56 d	2116	2614R91	0.0046	500	0.108	1319	2.628	0.040
983	56b dup	2117	26414291	0.0058	500	0.136	1203	1.895	0.032
984	55b dup	2118	261AR91	0.0060	500	0.140	11475	2.261	0.031
985	C6a	2119	264RP91	0.0127	500	0.297	377	0.249	0.015
986	C6b	2120	2610R91	0.0147	500	0.344	537	0.318	0.013
987	DOR3-1-23	2141	2641R21	0.0280	500	0.655	\|2456	0.810	0.007
988	C6h	2142	26141891	0.0118	500	0.276	635	0.479	0.016
989	C6j	2143	264AR91	0.0103	500	0.241	556	0.477	0.018
990	C6i	2144	2614R91	0.0117	500	0.274	697	0.533	0.016
991	C6K	2145	2641891	0.0105	500	0.246	476	0.397	0.018
992	cob dup	2146	26418191	0.014	500	0.344	557	0.335	0.013
993	Coh dup	2147	26111891	0.0118	500	0.276	730	0.555	0.016
994	C61	2148	2641891	0.0048	500	0.112	282	0.491	0.039
995	C6I	2149	264891	0.0040	500	0.094	215	0.432	0.047
996	C6n dup	2150	2610191	0.0040	500	0.094	208	0.416	0.047
997	C6a	2151	2614P91	0.0031	500	0.073	228	0.597	0.060
998	MISS-23	2153	2614891	0.0072	500	0.168	\| 3466	4.461	0.026
999	C6c	2154	2641891	0.0135	500	0.316	756	0.503	0.014
1000	c6d	2155	264AP91	0.0150	500	0.351	974	0.588	0.012

HONTE SEGISTITLL HAIR MNLYSIS

SEQ \ddagger	$\begin{gathered} \text { BAITIELLIS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { MIEGERAOR } \\ \text { SER } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSITOM } \\ \text { DATB } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{ll} S A M P L B & \text { VOL } \\ A M A L Y Z E D & \mu l \end{array}\right\|$	$\begin{aligned} & \text { MMALYZBD } \\ & \text { WI Mg } \end{aligned}$	AREA	$\stackrel{\mathrm{Zgg}}{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}$	$\underset{[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}}{\mathrm{MDL}}$	
1001	C6e	2156	2640R91	0.0135	500	0.316	824	0.550	0.014	
1002	c6f	2157	2640891	0.0131	500	0.306	699	0.477	0.014	
1003	C6g	2158	2614R91	0.0115	500	0.269	671	0.521	0.016	
1004	MIES SPIRE-24	2162	$274 \mathrm{arg1}$	0.0082	100	0.038	\| 2405		13.548	0.113
1005	57a	2163	2714R91	0.0079	500	0.185	\|1298	1.503	0.024	
1006	DOR4-24	2164	271aR91	0.0794	250	0.929	\|3594	0.840	0.005	
1007	MISS-24	2165	2714891	0.0120	250	0.140	\|2851	4.398	0.031	
1008	57b	2166	2714R91	0.0056	500	0.131	962	1.559	0.033	
1009	57c	2167	$2714 \mathrm{P91}$	0.0059	500	0.138	936	1.439	0.032	
1010	57d	2168	2714R21	0.0041	500	0.096	825	1.817	0.045	
1011	57e	2169	271aR91	0.0049	500	0.115	710	1.301	0.038	
1012	57 f	2170	2714R91	0.0037	500	0.087	562	1.349	0.050	
1013	579	2172	2714R91	0.0032	500	0.075	437	1.195	0.058	
1014	57b	2173	2714R91	0.0025	500	0.058	368	1.271	0.074	
1015	57i	2174	2714R91	0.0025	500	0.058	400	1.391	0.074	
1016	57j	2175	2714R91	0.0023	500	0.054	497	1.906	0.081	
1017	HIES-24	2187	271aR91	0.0120	250	0.140	2770	4.066	0.031	
1018	57\%	2188	274aR91	0.0024	500	0.056	458	1.594	0.078	
1019	571	2189	271AR91	0.0016	500	0.037	446	2.324	0.116	
1020	57 b dup	2190	274AR91	0.0056	500	0.131	902	1.388	0.033	
1021	57j dup	2191	271AR91	0.0023	500	0.054	505	1.845	0.081	
1022	60a	2192	2714R91	0.0110	500	0.257	11344	1.064	0.017	

HONE SEGTRTMAL HAIR AHALYSIS

SEQ \ddagger	$\begin{gathered} \text { BATTELLEB } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { पITRCRATOR } \\ \text { SEO } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSTIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESTIOII } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{ll} S A M P L B & V O L \\ A H A L Y Z E D & 1 \end{array}\right\|$	AMALYZED WI gg	AREA	$\begin{gathered} 2 \mathrm{Hgg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}\right.$
1023	60b	2193	2714R91	0.0111	500	0.260	1146	0.896	0.017
1024	60 c	2194	2714 R 91	0.0110	500	0.257	912	0.715	0.017
1025	60 d	2195	$2741 \mathrm{R91}$	0.0110	500	0.257	725	0.564	0.017
1026	60 e	2196	27MAR91	0.0115	500	0.269	858	0.642	0.016
1027	60 f	2197	2714R91	0.0080	500	0.187	557	0.588	0.023
1028	60b dup	2198	$2714 R 91$	0.0111	500	0.260	\|1185	0.927	0.017
1029	75 a	2200	2714R91	0.0191	500	0.447	698	0.312	0.010
1030	75b	2201	2710R91	0.0144	500	0.337	550	0.322	0.013
1031	75a dup	2202	27 ar 21	0.0191	500	0.447	684	0.306	0.010
1032	MIRS-24	2203	2914R21	0.0120	250	0.140	\|2864	4.205	0.031
1033	DOP4-1-25	2205	2941 P 91	0.0454	250	0.531	$\mid 2171$	0.833	0.008
1034	MIES-25	2206	291.1.191	0.0039	500	0.091	\|2059	4.593	0.048
1035	IIES SPIKP-25	2207	29019P91	0.0067	100	0.031	2346	15.273	0.139
1036	58a	2208	29nlir91	0.0033	500	0.218	467	0.403	0.020
1037	58b	2209	2910891	0.0101	500	0.236	426	0.335	0.018
1038	58C	2210	2914R21	0.0097	500	0.227	392	0.318	0.019
1039	58d	2211	2910.191	0.0101	500	0.236	426	0.335	0.018
1040	58.	2212	2910891	0.0092	500	0.215	371	0.315	0.020
1041	582	2213	2914R91	0.0094	500	0.220	392	0.328	0.020
1042	589	2214	29141991	0.0101	500	0.236	440	0.347	0.018
1043	58h	2235	2914R91	0.0089	500	0.208	526	0.480	0.021
1044	581	2216	29414P91	0.0061	500	0.143	471	0.621	0.030

HONR SEGTBTILL HAIR ARALYSIS

SEQ	$\begin{gathered} \text { BATRELLS } \\ \text { ID } \end{gathered}$	$\begin{array}{\|c} \text { IITEGRATOR } \\ \text { SEQA } \end{array}$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOM } \\ \text { DAIEE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESTIOM } \\ \text { WI } g \end{gathered}$	SAMPLR POL AHLLYZED 11	AMALYESD WI Eg	ARRA	$\underset{[\mathrm{Hg}] \mathrm{gig} / \mathrm{g}}{\mathrm{~m}}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
1045	58j	2217	2914R91	0.0050	500	0.117	441	0.704	0.037
1046	58b dup	2218	2914R291	0.0101	500	0.236	402	0.314	0.018
1047	58b dup	2219	29H4R91	0.0089	500	0.208	514	0.468	0.021
1048	59a	2220	29118891	0.0107	500	0.250	$\mid 2481$	2.025	0.017
1049	59b	2221	2914891	0.0106	500	0.248	$\mid 2505$	2.064	0.018
1050	3IES-25	2223	2914R891	0.0039	500	0.091	\|2082	4.646	0.048
1051	59C	2224	2914R91	0.0063	500	0.147	\|1597	2.191	0.030
1052	59d	2225	2914R291	0.0026	500	0.061	666	2.123	0.072
1053	HIES-25	2247	2914891	0.0039	500	0.091	12203	4.988	0.048
1054	59C dup	2218	29410891	0.0063	500	0.147	\|1389	1.928	0.030
1055	61a	2249	29114891	0.0060	500	0.140	$\mid 1729$	2.533	0.031
1056	61b	2250	2914R91	0.0060	500	0.140	\|1184	1.718	0.031
1057	61 c	2251	2910R291	0.0054	500	0.126	545	0.847	0.034
1058	61d	2252	2914891	0.0040	500	0.094	431	0.887	0.047
1059	61e	2253	2940891	0.0031	500	0.073	358	0.934	0.060
1060	61b dup	2254	2914891	0.0060	500	0.140	\|1066	1.541	0.031
1061	63a	2255	$2914 \mathrm{RP91}$	0.0123	500	0.288	12540	1.827	0.015
1062	63b	2256	294ar91	0.0121	500	0.283	\|3123	2.290	0.015
1063	63 C	2257	2914R21	0.0118	500	0.276	\|3005	2.258	0.016
1064	63d	2258	2914R91	0.0091	500	0.213	\|1976	1.914	0.020
1065	63e	2259	2914R21	0.0054	500	0.126	\|1037	1.664	0.034
1066	63b dup	2260	2914R91	0.0121	500	0.283	\|3107	2.278	0.015

HOHR SEGHETILL HAIR AHALYSIS

SEQ \ddagger	$\begin{gathered} \text { BATPELLS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { DITEGRATOR } \\ \text { SERQ } \end{array}\right\|$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}$	$\begin{gathered} \text { DIGSSTIOM } \\ \text { MT g } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { SANPLR VOL } \\ & \text { AHALYZED } \mu 1\end{aligned}\right.$	AMALYZED in mg	ARBA	$\underset{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}{ }$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
1067	67a	2261	29HAR91	0.0085	500	0.199	\|1018	1.037	0.022
1068	67b	2262	29HAR91	0.0075	500	0.175	\|1409	1.643	0.025
1069	67c	2263	29HAR91	0.0075	500	0.175	\|1555	1.818	0.025
1070	67c dup	2266	2910R91	0.0075	500	0.175	\|1508	1.762	0.025
1071	DOSH-25	2267	2911RR91	0.0454	500	1.062	\|4661	0.914	0.004
1072	DORH-26	2268	2APR91	0.0371	500	0.868	\|3910	0,935	0.005
1073	MIES-26	2269	1 P 291	0.0063	500	0.147	\|3684	5.186	0.030
1074	MIES SPIKP-26	2270	14PR91	0.0048	100	0.022	\|2202	20.182	0.194
1075	73a	2271	$19 P 891$	0.0080	500	0.187	417	0.420	0.023
1076	HISS-26	2283	14P891	0.0063	500	0.147	\|3626	4.937	0.030
1077	73b	2284	14PR91	0.0098	500	0.229	730	0.614	0.019
1078	73c	2285	1 PP 91	0.0071	500	0.166	686	0.794	0.026
1079	73b dup	2286	$119 P 91$	0.0098	500	0.229	746	0.628	0.019
1080	749	2287	$1 \mathrm{PPP91}$	0.0053	500	0.124	814	1.273	0.035
1081	74b	2288	14P891	0.0051	500	0.119	648	1.041	0.036
1082	74 C	2289	$14 \mathrm{PR91}$	0.0036	500	0.084	520	1.167	0.052
1083	74d	2290	1aprel	0.0034	500	0.080	568	1.358	0.055
1084	74 b dep	2291	1 PP 291	0.0051	500	0.119	633	1.016	0.036
1085	C7a-1	2292	14 PP 91	0.0094	500	0.220	502	0.430	0.020
1086	C7b-1	2293	1 PP 91	0.0102	500	0.239	668	0.538	0.018
1087	C7c-1	2294	LAPR91	0.0080	500	0.187	596	0.607	0.023
1088	C7d-1	22951	14PR29	0.0086	500	0.201	851	0.822	0.022

HONR SEGIBTTAL BAIR AMALYSIS

SEOP	$\begin{aligned} & \text { Barriglid } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { DREGRATOR } \\ \text { SEQ } \end{array}\right\|$	\|DIGESIIOM	$\begin{aligned} & \text { DIGESTIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l} \text { SAMPLE VOL } \\ A M A L Y Z B D \\ A 1 \end{array}\right\|$	Mabyexd调 19	ARRA	$\begin{gathered} \frac{\mathrm{Eig}}{[\mathrm{ig}]} \mathrm{mg} / \mathrm{g} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Bg}]^{\prime} \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
1089	C7e-1	2296	1apR91	0.0087	500	0.203	903	0.864	0.021
1090	C7f-1	2297	14PR91	0.0088	500	0.206	\|1133	1.081	0.021
1091	C7g-1	2298	$14 \mathrm{PR91}$	0.0069	500	0.161	978	1.184	0.027
1092	C7h-1	2299	14PR91	0.0075	500	0.175	978	1.089	0.025
1093	DORH-1-26	2301	LapR91	0.0371	500	0.868	14003	0.926	0.005
1094	C71-1	2302	14PR91	0.0070	500	0.164	867	1.030	0.027
1095	C7j-1	2303	14PR91	0.0086	500	0.201	930	0.901	0.022
1096	C7k-1	2304	14PR91	0.0062	500	0.145	771	1.028	0.030
1097	c7b-1 dup	2305	1 P P91	0.0102	500	0.239	658	0.529	0.018
1098	C7g-1 dup	2306	1aprel	0.0069	500	0.161	968	1.171	0.027
1099	C7j-1 dup	2307	14PR91	0.0086	500	0.201	988	0.960	0.022
1100	C7a-2	2308	12PR91	0.0118	500	0.276	569	0.392	0.016
1201	C7b-2	2309	14PR91	0.0122	500	0.285	776	0.526	0.015
1102	C7c-2	2310	14 PR 91	0.0085	500	0.199	587	0.563	0.022
1103	C7d-2	2311	14PR91	0.0103	500	0.241	893	0.722	0.018
1104	HIES-26	2324	$11 \mathrm{PR91}$	0.0063	500	0.147	\|3493	4.856	0.030
1105	C7e-2	2326	$14 \mathrm{PR91}$	0.0109	500	0.255	\|1113	0.878	0.017
1106	C7f-2	2327	14PR91	0.0093	500	0.218	1126	1.041	0.020
1107	C7g-2	2328	1APR91	0.0098	500	0.229	\|1305	1.149	0.019
1108	C7h-2	2329	$1 \mathrm{APR91}$	0.0086	500	0.201	993	0.989	0.022
1109	C7i-2	2330	14PR91	0.0091	500	0.213	962	0.905	0.020
1110	C7j-2	2331	$1 \mathrm{PPR91}$	0.0112	500	0.262	\|1269	0.977	0.017

HOME SEGHRTTAL HAIR AMALYSIS

SEQf	$\begin{gathered} \text { BATYELLR } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IFIEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DATB } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESITOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l} \text { SAAPLE VOL } \\ \text { AMALYZED } \\ \hline 1 \end{array}\right\|$	$\begin{aligned} & \text { AMALYZED } \\ & \text { WT Eg } \end{aligned}$	AREA	$\stackrel{\Sigma 8 \mathrm{gg}}{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{Rg} / \mathrm{g}} \end{gathered}\right.$
1111	C7k-2	2332	$14 \mathrm{PR91}$	0.0083	500	0.194	\|1094	1.132	0.022
1112	C7b-2 dup	2333	14PR91	0.0122	500	0.285	752	0.523	0.015
1113	C7f-2 dup	2334	12PR91	0.0093	500	0.218	$\mid 1204$	1.115	0.020
1114	C7i-2 dup	2335	1APR91	0.0091	500	0.213	994	0.936	0.020
1115	DORH-1-26	2338	14PR91	0.0371	500	0.868	\|3777	0.892	0.005
1116	DORH-1-27	2339	2APR91	0.0397	500	0.929	\| 3522	0.778	0.005
1117	MIES-27	2340	2APP91	0.0056	500	0.131	$\mid 2712$	4.237	0.033
1118	MIES SPIKE-27	2341	2APR91	0.0075	100	0.035	2643	15.412	0.124
1119	64a	2343	2APR91	0.0076	500	0.178	963	1.089	0.024
1120	64b	2344	21PR91	0.0071	500	0.166	780	0.938	0.026
1121	646	2345	2APR91	0.0056	500	0.131	644	0.975	0.033
1122	64d	2346	2APR91	0.0063	500	0.147	604	0.810	0.030
1123	64 e	2347	28PR91	0.0065	500	0.152	550	0.712	0.029
1124	$64 f$	2348	2APR91	0.0061	500	0.143	628	0.872	0.030
1125	649	2349	$2 \mathrm{PPPO1}$	0.0058	500	0.136	590	0.859	0.032
1126	64h	2350	$24 \mathrm{PR91}$	0.0055	500	0.129	508	0.774	0.034
1127	$64 i$	2351	24P891	0.0051	500	0.119	550	0.908	0.036
1128	64j	2352	2AP191	0.0048	500	0.112	489	0.852	0.039
1129	64k	2353	24P191	0.0044	500	0.103	551	1.054	0.042
1130	641	2355	24P991	0.0045	500	0.105	583	1.093	0.041
1131	641	2356	24P891	0.0040	500	0.094	541	1.137	0.047
1132	64II	2357	24PR91	0.0046	500	0.108	515	0.939	0.040

HOUR SBGIBITAL EAIR AMALYSIS

SEOP	$\begin{gathered} \text { BMTTELLR } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IIITEGRAYOR } \\ \text { SERA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESITOM } \\ \text { DAIE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGRSTIOM } \\ & \text { WI } g \end{aligned}$	$\left\|\begin{array}{l\|l} S A M P L R & V O L \\ A M L L Y Z E D & \beta 1 \end{array}\right\|$	AMALYEXD WI Eg	\|area	$\underset{[\mathrm{Bq}] \mathrm{Hg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{aligned} & \mathrm{VDL} \\ & {[\mathrm{Bg}]} \end{aligned} \mathrm{\mu g} / \mathrm{g}\right.$
1133	HIES-27	2369	24PR91	0.0056	500	0.131	\|2764	4.286	0.033
1134	640	2370	2APR91	0.0038	500	0.089	466	1.014	0.049
1135	64p	2371	24PR91	0.0036	500	0.084	399	0.907	0.052
1136	649	2372	2APR91	0.0040	500	0.094	457	0.944	0.047
1137	64 r	2373	22PR91	0.0029	500	0.068	397	1.120	0.064
1138	64 s	2375	2APR91	0.0030	500	0.070	408	1.115	0.062
1139	$64 t$	2376	24P891	0.0032	500	0.075	444	1.144	0.058
1140	644	2377	24PR91	0.0028	500	0.065	420	1.232	0.066
1141	64b dup	2378	2APR91	0.0071	500	0.166	733	0.873	0.026
1142	64k dup	2379	2APR91	0.0044	500	0.103	508	0.960	0.042
1143	$64 t$ dup	2380	2APR91	0.0032	500	0.075	465	1.202	0.058
1144	65b	2382	2APR91	0.0071	500	0.166	927	1.112	0.026
1145	65 c	2383	2APR91	0.0074	500	0.173	832	0.954	0.025
1146	65d	2384	2APR91	0.0080	500	0.187	916	0.975	0.023
1147	65e	2385	2APR91	0.0068	500	0.159	815	1.017	0.027
1148	DORH-1-27	2387	21.PR91	0.0397	500	0.929	\|3494	0.766	0.005
1149	$65 f$	2388	24PR91	0.0064	500	0.150	958	1.276	0.029
1150	659	2389	24P891	0.0056	500	0.131	1153	1.764	0.033
1151	65b dup	2390	24PR91	0.0071	500	0.166	902	1.081	0.026
1152	$65 f$ dup	2391	2APR91	0.0064	500	0.150	964	1.284	0.029
1153	65a	2392	2APR91	0.0070	500	0.164	1052	1.285	0.027 .
1154	66a	2393	2APR91	0.0136	500	0.318	$\mid 3217$	2.057	0.014

HOVR SBGERTILL HAIR AMALYSIS

SEQ	$\begin{aligned} & \text { BATrgLLE } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SER: } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESTIOM } \\ \text { DATE } \end{array}$	$\begin{gathered} \text { DIGESIIOM } \\ \text { WI } g \end{gathered}$	$\left\|\begin{array}{ll} \text { SAMPLE } & \text { VOL } \\ \text { AHALYZED } & \mu l \end{array}\right\|$	$\begin{aligned} & \text { AMLYLYED } \\ & \text { WI mg } \end{aligned}$	\| 2 REA	$\underset{[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{gathered} \mathrm{nDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
1155	66b	2394	24PR91	0.0141	500	0.330	\| 3367	2.077	0.013
1156	66 C	2395	2APR91	0.0135	500	0.316	\|3255	2.097	0.014
1157	66 d	2396	$24 \mathrm{PR91}$	0.0129	500	0.302	$\mid 3030$	2.042	0.014
1158	66 e	2397	2APR91	0.0115	500	0.269	12805	2.119	0.016
1159	665	2398	2 P PR91	0.0110	500	0.257	\|3297	2.607	0.017
1160	669	2399	$24 \mathrm{PR91}$	0.0088	500	0.206	12399	2.364	0.021
1161	66 n	2400	20PR91	0.0041	500	0.096	(1482	3.113	0.045
1162	66b dup	2401	2APR91	0.0141	500	0.330	\| 3283	2.025	0.013
1163	DOSM-1-28	2413	418891	0.0205	500	0.479	\|2184	0.913	0.009
1164	UIES-28	2414	41PR91	0.0036	500	0.084	2030	4.829	0.052
1165	MTRS SPIKR-28	2415	41PR91	0.0067	100	0.031	\| 2299	14.718	0.139
1166	68a	2416	41P291	0.0049	500	0.115	820	1.402	0.038
1167	68b	2417	41PR91	0.0057	500	0.133	677	0.987	0.033
1168	68 C	218	41P891	0.0044	500	0.103	494	0.917	0.042
1169	680	2419	419891	0.0045	500	0.105	376	0.669	0.041
1170	688	2420	41P901	0.0040	500	0.094	311	0.612	0.047
1171	685	2421	42PP91	0.0040	500	0.094	294	0.575	0.047
1172	689	2422	418891	0.0044	500	0.103	303	0.540	0.042
1173	684	2423	$4 \mathrm{APR91}$	0.0045	500	0.105	346	0.611	0.041
1174	681	2424	418991	0.0033	500	0.077	346	0.833	0.056
1175	$68 j$	2425	41P891	0.0039	500	0.091	402	0.830	0.048
1176	68k	2426	4AP991	0.0031	500	0.073	379	0.980	0.060

HONIE SEGINTTAL RAIR AHALYSIS

SEQ 4	$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SER! } \end{array}\right\|$	$\left\{\begin{array}{c} \text { DIGESIIOM } \\ \text { DAFB } \end{array}\right.$	$\begin{gathered} \text { DIGSSTIOM } \\ \text { WI } 9 . \end{gathered}$	$\left\|\begin{array}{l}\text { SAMPIE VOL } \\ \text { AMALYZED P1 }\end{array}\right\|$	AHALYEED ort mg	\|AREA	$\stackrel{\text { Eigg }}{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}$	$\left\lvert\, \begin{gathered} \text { NDL } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
1177	681	2427	418891	0.0032	500	0.075	385	0.965	0.058
1178	68b dup	2428	4148991	0.0057	500	0.133	657	0.957	0.033
1179	68 g dup	2429	41PR91	0.0044	500	0.103	328	0.590	0.042
1180	MIES-28	2431	4APR91	0.0036	500	0.084	\|1970	4.684	0.052
1181	69a	2432	4APR91	0.0064	500	0.150	444	0.563	0.029
1182	69b	2433	41PR91	0.0062	500	0.145	511	0.675	0.030
1183	69	2434	4APR91	0.0057	500	0.133	473	0.676	0.033
1184	69d	2435	41PR91	0.0055	500	0.129	531	0.792	0.034
1185	69e	2436	41PR91	0.0050	500	0.117	533	0.875	0.037
1186	699	2437	4 1 PR91	0.0049	500	0.115	662	1.122	0.038
1187	699	2438	41PR91	0.0047	500	0.110	593	1.042	0.040
1188	69h	2439	4APR91	0.0044	500	0.103	649	1.224	0.042
1189	69b dup	2440	41PR91	0.0062	500	0.145	491	0.647	0.030
1190	70a	2441	$4 \mathrm{4PR91}$	0.0098	500	0.229	893	0.766	0.019
1191	70b	2442	42P891	0.0079	500	0.185	476	0.491	0.024
1192	70c	2443	44PR91	0.0085	500	0.199	467	0.447	0.022
1193	70d	2444	4APR91	0.0090	500	0.210	385	0.343	0.021
1194	70e	2445	41PR91	0.0074	500	0.173	218	0.221	0.025
1195	70a dup	2446	4 4 PR91	0.0098	500	0.229	902	0.774	0.019
1196	699 dup	2447	41PR91	0.0047	500	0.110	612	1.077	0.040
1197	DORH-1-29	2616	94PR91	0.0528	500	1.235	7211	0.840	0.004
1198	HIES-29	2617	9APR91	0.0034	500	0.080	12660	4.769	0.055

morr sfgigrtal mair analysis

SEQ	$\begin{gathered} \text { BATYELLS } \\ \text { ID } \end{gathered}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAFE } \end{gathered}\right.$	$\begin{aligned} & \text { DIGESIIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l}\text { SAMPLE VOL } \\ \text { AMALYZED }\end{array}\right\|$	AHALYZED $\mathrm{Wr} \mathrm{Ig}$	AREA	$\begin{aligned} & \text { [} \mathrm{Bg} \mathrm{gig}] \mathrm{gg} / \mathrm{g} \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}\right.$
1199	MIES SPIKR-29	2618	$9 \mathrm{PPR91}$	0.0044	100	0.021	\|5262	36.701	0.211
1200	62a	2619	98PR91	0.0070	500	0.164	1060	0.903	0.027
1201	62 b	2620	91P891	0.0066	500	0.154	\|1404	1.280	0.028
1202	62c	2622	98PR91	0.0074	500	0.173	1460	1.189	0.025
1203	62d	2623	91PR91	0.0056	500	0.131	981	1.042	0.033
1204	62e	2624	9APR91	0.0068	500	0.159	1141	1.004	0.027
1205	$62 \pm$	2625	9APR91	0.0050	500	0.117	713	0.836	0.037
1206	62b dup	2626	94PR91	0.0066	500	0.154	1265	1.150	0.028
1207	712	2627	91PR91	0.0113	500	0.264	921	0.484	0.016
1208	71b	2628	91PP91	0.0111	500	0.260	684	0.360	0.017
1209	716	2629	91PP91	0.0096	500	0.225	562	0.338	0.019
1210	71d	2630	91P801	0.0110	500	0.257	661	0.351	0.017
1211	71e	2631	$9 \mathrm{PPPO1}$	0.0100	500	0.234	732	0.430	0.019
1212	711	2632	91PP91	0.0093	500	0.218	916	0.584	0.020
1213	IISS-29	2633	91P201	0.0034	500	0.080	\|2708	4.856	0.055
1214	719	2634	91P301	0.0067	500	0.157	767	0.673	0.028
1215	7h	2635	981991	0.0055	500	0.129	\|1031	1.117	0.034
1216	71	2636	9APPE1	0.0038	500	0.089	934	1.459	0.049
1217	71d dip	2637	94P991	0.0110	500	0.257	593	0.312	0.017
1218	MIES SPIKB-29	2638	92PP91	0.0044	100	0.021	\| 4818	33.583	0.211
1219	72a	2639	98PP91	0.0103	500	0.241	\|3244	1.925	0.018
1220	72b	2640	91preg	0.0096	500	0.225	\|2677	1.700	0.019

nOVR SEGIMTAL HAIR halySIS

SEQf	$\begin{aligned} & \text { BATIELLIR } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { MIEGRATOR } \\ \text { SEQf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\begin{gathered} \text { DIGESIIOM } \\ \text { W g } \end{gathered}$	$\left\|\begin{array}{l} \text { SAYPLZ POL } \\ \text { AMALYZED } \end{array}\right\|$	AMALYZED WI 19	LRRA	$\begin{gathered} \text { EHg } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
1221	72 c	2641	$9 \mathrm{APR91}$	0.0090	500	0.210	$\mid 2509$	1.698	0.021
1222	72d	2642	9APR91	0.0079	500	0.185	\|2449	1.887	0.024
1223	72e	2643	$9 \mathrm{PPR91}$	0.0089	500	0.208	\|3104	2.130	0.021
1224	72 f	2644	91PR91	0.0050	500	0.117	$\mid 2126$	2.583	0.037
1225	72c dup	2645	98PR91	0.0090	500	0.210	$\mid 2618$	1.773	0.021
1226	HISS-30	2658	174PR91	0.0046	500	0.108	\|3397	4.347	0.040
1227	DORH-1-30	2659	174P891	0.0262	500	0.613	\|4539	1.023	0.007
1228	MIES SPIKR-30	2660	1714PR91	0.0055	100	0.026	\|3426	18.337	0.169
1229	76 a	2661	174PR91	0.0071	500	0.166	\|1109	0.895	0.026
1230	76b	2662	174P991	0.0062	500	0.145	715	0.647	0.030
1231	76 C	2663	171PP991	0.0065	500	0.152	654	0.561	0.029
1232	76 d	2664	$174 \mathrm{PR91}$	0.0071	500	0.166	813	0.647	0.026
1233	76 e	2665	171PR91	0.0058	500	0.136	746	0.723	0.032
1234	$76 f$	2666	172PR91	0.0063	500	0.147	918	0.828	0.030
1235	76c dup	2667	171PR91	0.0065	500	0.152	587	0.499	0.029
1236	78 a	2668	17APR91	. 0.0078	500	0.182	\|2054	1.537	0.024
1237	DOPR-1-30	2670	171PR91	0.0262	500	0.613	$\mid 5029$	1.135	0.007
1238	78b	2671	17APR91	0.0081	500	0.189	\|1825	1.312	0.023
1239	78 C	2672	17APR91	0.0072	500	0.168	\|1150	0.917	0.026
1240	78.	2673	174PR91	0.0078	500	0.182	\|1216	0.897	0.024
1241	78 e	2674	174PR91	0.0075	500	0.175	\|1310	1.007	0.025
1242	789	2675	17APR91	0.0065	500	0.152	\|1141	1.007	0.029

HOHR SEGHITILL HAIR ARALYSIS

SEP\%	$\begin{aligned} & \text { BAITELLE } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \text { InIEGRATOR } \\ \text { SER } f \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESITOM } \\ \text { DATE } \end{array}$	$\begin{aligned} & \text { DIGBSTIOM } \\ & \text { WI } \mathrm{g} \end{aligned}$	$\left\|\begin{array}{l}\text { SAMPLR VOL } \\ \text { AHALYZED } \mu 1\end{array}\right\|$	A:ALYzED in ${ }^{1} \mathrm{mg}$	AREA	$\underset{[\underline{E g}] \mathrm{mg} / \mathrm{g}}{ }$	$\left.\right\|_{[\mathrm{Eg} \mid \mathrm{mg} / \mathrm{g}} ^{\mathrm{nin}}$
1243	78 g	2676	174PR91	0.0071	500	0.166	\|1218	0.987	0.026
1244	78h	2677	174PR91	0.0075	500	0.175	\|1115	0.852	0.025
1245	781	2678	174PR91	0.0064	500	0.150	980	0.873	0.029
1246	$78 j$	2680	$174 \mathrm{PR91}$	0.0056	500	0.131	\|1006	1.026	0.033
1247	78k	2681	171PR91	0.0058	500	0.136	\|103	1.090	0.032
1248	781	2682	174P891	0.0062	500	0.145	$\mid 1390$	1.296	0.030
1249	781	2683	174PR91	0.0057	500	0.133	\|1356	1.374	0.033
1250	78n	2684	177.12991	0.0044	500	0.103	1150	1.501	0.042
1251	780	2685	174 PR91	0.0043	500	0.101	1021	1.357	0.043
1252	78p	2686	171PR291	0.0040	500	0.094	815	1.151	0.047
1253	789	2687	174PR91	0.0031	500	0.073	504	0.887	0.060
1254	788	2688	1714P891	0.0026	500	0.061	450	0.934	0.072
1255	788	2689	174P891	0.0027	500	0.063	433	0.862	0.069
1256	$78 t$	2690	171PP91	0.0021	500	0.049	432	1.106	0.089
1257	UIES-30	2702	171P391	0.0046	500	0.108	3903	4.398	0.040
1258	78d dup	2703	174PR91	0.0078	500	0.182	1304	0.845	0.024
1259	78k dip	2704	174P891	0.0058	500	0.136	1177	1.022	0.032
1260	D03:-1-31	2705	181P991	0.0393	500	0.919	16414	0.849	0.005
1261	MISS-31	2706	181PP91	0.0040	500	0.094	3570	4.613	0.047
1262	IITES SPIES-31	2708	182P891	0.0055	100	0.026	4281	20.164	0.169
1263	77a	2709	1818 P 91	0.0086	500	0.201	470	0.254	0.022
1264	77 b	2710	184PR91	0.0081	500	0.189	473	0.272	0.023

HOVE SEGTETTAL HAIR MALLYSIS

SEQ	$\begin{gathered} \text { BATIELLEB } \\ \text { DD } \end{gathered}$	$\left\|\begin{array}{c} \text { MIBGRAIOR } \\ \text { SEOf: } \end{array}\right\|$	$\left.\right\|_{\text {DIGESTIOM }}$	$\begin{gathered} \text { DIGBSIIOM } \\ \text { WI g } \end{gathered}$	$\left\|\begin{array}{ll} \text { SAIPLER VOL } \\ \text { AMALYZED } & \mu 1 \end{array}\right\|$	$\begin{aligned} & \text { AMLIIEED } \\ & \text { WI Eg } \end{aligned}$	\|ARRA	$\underset{[\mathrm{Eg}] \mathrm{gg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{gathered} \text { KDL } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$	
1265	77 c	2711	18APR91	0.0076	500	0.178	449	0.273	0.024	
1266	77d	2712	181PR91	0.0070	500	0.164	394	0.256	0.027	
1267	77e	2713	18APR91	0.0069	500	0.161	474	0.320	0.027	
1268	77 f	2714	181PR91	0.0066	500	0.154	549	0.394	0.028	
1269	779	2715	181PR91	0.0071	500	0.166	650	0.441	0.026	
1270	77 h	2716	18APR91	0.0060	500	0.140	653	0.525	0.031	
1271	77 j	2718	184PR91	0.0059	500	0.138	829	0.690	0.032	
1272	HIES-31	2720	18APR91	0.0040	500	0.094	\| 3449		4.454	0.047
1273	77k	2721	181PR91	0.0052	500	0.122	\|1142	1.099	0.036	
1274	771	2722	181P891	0.0035	500	0.082	\| 2245	1.787	0.053	
1275	77 b dup	2723	18APR91	0.0081	500	0.189	420	0.238	0.023	
1276	77 i	2724	181PR91	0.0057	500	0.133	736	0.629	0.033	
1277	79a	2725	184PR91	0.0079	500	0.185	\|2469	1.604	0.024	
1278	79b	2726	18APR91	0.0067	500	0.157	\|1863	1.417	0.028	
1279	79b dup	2727	18גPR91	0.0067	500	0.157	\| 1770	1.344	0.028	
1280	80a	2728	18APR91	0.0051	500	0.119	\|1212	1.192	0.036	
1281	80b	2729	181PR91	0.0047	500	0.110	\|1039	1.101	0.040	
1282	80c	2730	184PR91	0.0045	500	0.105	867	0.949	0.041	
1283	80d	2731	18APR91	0.0042	500	0.098	992	1.173	0.044	
1284	800	2732	18APR91	0.0045	500	0.105	831	0.907	0.041	
1285	HIES-31	2744	184PR91	0.0040	500	0.094	\|3612	4.629	0.047	
1286	$80 f$	2745	184PR91	0.0037	500	0.087	722	0.948	0.050	

HOIR SEGIETTAL RAIR AHALYSIS

SEQ	$\begin{gathered} \text { BATTELLLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { IITEGRATOR } \\ \text { SEQf } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOM } \\ \text { DATE } \end{gathered}\right.$	$\begin{gathered} \text { DIGBSTIOM } \\ \text { WI } g . \end{gathered}$	$\left\|\begin{array}{ll} S A A P I B & V O L \\ A B A L Y Z X D & \mu l \end{array}\right\|$	amacyezd int ng	\|ARBA	$\begin{gathered} \text { EHg } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{MDL} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
1287	80 g	2746	181PR891	0.0044	500	0.103	612	0.667	0.042
1288	80h	2747	181PR91	0.0045	500	0.105	494	0.516	0.041
1289	801	2748	184PR91	0.0044	500	0.103	591	0.643	0.042
1290	80j	2749	184PR91	0.0042	500	0.098	562	0.637	0.044
1291	80k	2750	184P991	0.0045	500	0.105	757	0.820	0.041
1292	801	2751	$1818 \mathrm{PR91}$	0.0043	500	0.101	693	0.781	0.043
1293	80.	2752	184 PR 91	0.0040	500	0.094	681	0.824	0.047
1294	801	2753	184P891	0.0035	500	0.082	686	0.949	0.053
1295	800	2754	181PR91	0.0035	500	0.082	647	0.891	0.053
12%	80p	2755	184P991	0.0031	500	0.073	634	0.984	0.060
1297	809	2756	188P891	0.0021	500	0.049	526	1.186	0.089
1298	80c dup	2757	184PR91	0.0045	500	0.105	860	0.939	0.041
1299	80j dup	2758	184P991	0.0042	500	0.098	628	0.719	0.044
1300	80p dup	2759	1818991	0.0031	500	0.073	647	1.006	0.060
1301	IIRS-31	2760	182 PP 91	0.0040	500	0.094	\|3569	4.573	0.047

APPENDIX C

RESULT GRAPHS BY PARTICIPANT NUMBER

[Hg] vs Month
 Participant Control \#1

PROJECT ID:MOHE SEGIRTTAL AMALYSIS
AMALYSIS: $\overline{Z H g} /$ HALR SAMPLE CBRIS

AHALYST: CITTERHAN/LASORSA
PILE f: HOHSECC1

$\begin{aligned} & \text { BATTELLEE } \\ & \text { ID } \end{aligned}$	$\left.\right\|_{\text {SEG }} ^{\text {Morrit }}$	$\left\|\begin{array}{c} \text { HITEGRAOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGRSTIOM } \\ \text { Wr } g \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ A H A L Y 2 C D \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{AMALYZED} \\ \operatorname{Wrgg} \end{array}\right\|$	AREA	2 Bg [Hg] mg / g	$[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g} \mid$	$\left\lvert\, \begin{gathered} \text { HENA } \\ {[\mathrm{Bg}] / \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|scalp									
Cla	JAI	535	23Jan91	0.0185	250	0.216	857	0.641	0.020	0.641
Clb	DEC	541	23J2191	0.0213	250	0.249	1056	0.691	0.017	0.691
Clic	1307	537	23811991	0.0198	250	0.232	1095	0.772	0.019	0.772
Cld	OCT	538	2372091	0.0203	250	0.237	792	0.538	0.018	0.538
Cle	SEPT	542	2354191	0.0186	250	0.218	760	0.562	0.020	0.562
CIf	$1{ }^{\text {d }}$ G	543	2378191	0.0197	250	0.230	819	0.574	0.019	0.574
Clg	JULY	544	23531991	0.0180	250	0.210	692	0.526	0.021	0.526
Clb	J01	558	23J1191	0.0223	250	0.261	781	0.488	0.017	0.488
Cli	HAY	559		0.0189	250	0.221	673	0.493	0.020	0.493
Clj	APR	561	23 JLH 91	0.0184	250	0.215	542	0.403	0.020	0.403
Cuk dup	HAR	571,562	2351191	0.0180	250	0.210	635	0.487	0.021	0.489
Cll	PEB	563	237179	0.0183	250	0.214	668	0.505	0.020	0.505
Clir	JJII	564	23511891	0.0147	250	0.172	665	0.625	0.025	0.625
CIn	DSC	565	23JN191	0.0162	250	0.189	781	0.671	0.023	0.671
Clo	100	566	2370191	0.0138	250	0.161	724	0.728	0.027	0.728
Clp	OCT	567	23J1491	0.0119	250	0.139	623	0.721	0.031	0.721
Clq	SEPT	568	23Ju191	0.0101	250	0.118	493	0.663	0.037	0.663
CIr	10G	569	23J1491	0.0084	250	0.098	431	0.691	0.044	0.691
Cls	\| JULY	570	23 Jali91	0.0063	250	0.074	342	0.716	0.059	0.716

[Hg] vs Month Participant Control \#2

PROJECT ID: HONR SBGHETTAL AHALYSIS
AMALYSIS: ERg/EAIR SAMPLEC2

AMALYST: CITTEREAA/LASORSA
PILB : : MOHSECC2

$\begin{array}{\|c} \text { BMITGULER } \\ \text { ID } \end{array}$	$\left.\right\|_{\text {HOARII }}$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGBSTIOW } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESIIOM } \\ \mathrm{m} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu l) \\ \text { AHLYEBED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYZBD } \\ \overline{W_{2}} \operatorname{mg} \end{array}\right\|$	AREA		$\left\|\begin{array}{c} \operatorname{MDL} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HRAN } \\ {[\mathrm{Hg}] \mathrm{pg} / \mathrm{g}} \end{gathered}\right.$
	\|SCAIP									
	Har									
C2a	FPB	1368	441291	0.0116	250	0.136	749	0.590	0.032	0.590
Cb	JII	1369	410891	0.0094	250	0.110	827	0.806	0.040	0.806
C2c	DEC	1370	47a891	0.0113	250	0.132	1038	0.847	0.033	0.847
C2d dup	100	\|1396,1371	4 P 1 P 91	0.0101	250	0.118	1092	0.998	0.037	0.969
C2e	OCI	1372	4 mpg 1	0.0106	250	0.124	1013	0.881	0.035	0.881
C2f	SEPT	1373	4 APP 1	0.0087	250	0.102	650	0.679	0.043	0.679
C2g	IVG	1374	$4 \mathrm{nap91}$	0.0104	250	0.122	711	0.624	0.036	0.624
Ch	JuL	1375	4 n 191	0.0100	250	0.117	649	0.590	0.037	0.590
Qi	JuI	1376	4tap91	0.0103	250	0.120	710	0.629	0.036	0.629
C2j	Hay	1377	4 x 891	0.0093	250	0.109	955	0.945	0.040	0.945
C2k dup	APR	\|1398,1391	410891	0.0088	250	0.103	1117	1.173	0.042	1.156
C21	Mar	1392	$4 \mathrm{4xP91}$	0.0069	250	0.104	1303	1.357	0.042	1.357
C2I	P6B	1393	4mper	0.0087	250	0.102	1312	1.398	0.043	1.398
C_{2}	JM	1394	4nP91	0.0063	250	0.074	964	1.409	0.059	1.409
C_{2}	DEC	1395	412891	0.0054	250	10.063	923	1.572	0.069	\| 1.572

[Hg] vs Month
 Participant Control \#3

PROWECT ID:MOTE SBCIBITAL AMALYSIS
ANALYSIS: $2 \mathrm{Eg} / \mathrm{HALR}$ SAYPLR C3

AMALIST: CITTERHAN/LASORSA
PILE 7: HOHSEGC3

$\begin{gathered} \text { BAITEELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMIH } \end{gathered}\right.$	$\begin{gathered} \text { IITBGRATOR } \\ \text { SERIf } \end{gathered}$	$\left.\right\|_{\text {DIAEB }} ^{\text {DIGESTIOK }}$	$\left\|\begin{array}{c} \text { DIGESITOM } \\ \mathrm{FI} \\ \mathrm{~g} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { AMLYZED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYZZBD } \\ \operatorname{Wing} \mathrm{Eg} \end{array}\right\|$	AREA	$\stackrel{2 \mathrm{Bg}}{[\mathrm{Eg}] \mathrm{pg} / \mathrm{g}}$	HDL [Hg] mg / g	$\begin{aligned} & \text { HRAI } \\ & {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{aligned}$
	\|Schip									
	HAR									
C3a dup	PKB	\|1486,1458	414891	0.0200	250	0.234	422	0.175	0.019	0.184
c3b	JNI	1459	map91	0.0195	250	0.228	401	0.176	0.019	0.176
C3c	DSC	1460	mapor	0.0193	250	0.226	372	0.164	0.019	0.164
C3d	100	1461	4 n P91	0.0176	250	0.206	368	0.177	0.021	0.177
C3e	OCT	1462	4napl	0.0168	250	0.196	361	0.182	0.022	0.182
C3f dap	STPT	\|1487,1463	4npel	0.0220	250	0.257	525	0.202	0.017	0.205
09	10 G	1464	4ap91	0.0187	250	0.219	496	0.231	0.020	0.231
C3h	JuL	1465	anper	0.0135	250	0.158	482	0.311	0.028	0.311
C3i	50.1	1466	4 mag 9	0.0143	250	0.167	646	0.401	0.026	0.401
Cj	max	1467	4 tapal	0.0135	250	0.158	770	0.512	0.028	0.512
C3K	182	1468	4napg	0.0091	250	0.106	648	0.633	0.041	0.633
C3l	HaR	1469	$4 \mathrm{nP91}$	0.0068	250	0.080	537	0.693	0.055	0.693
C31	\| 788	1470	4tapel	0.0068	250	0.080	618	0.805	0.055	0.805

[Hg] vs Month
 Participant Control \#4

PROJECT ID:MORE SEGHBTIL ANALYSIS
AMALYSIS: EHg/EAIR SAMPLE C4

ANALYST: CITTERHAR/LASORSA
PILR \$: HOMSEGC4

$\begin{gathered} \text { BATTELLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { Mon'ri } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IFTBGRATOR } \\ \text { SERA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSTIOM } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGBSIIOM } \\ \text { mI } g \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { ANLYRED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYZZBD } \\ W I \mathrm{mg} \end{array}\right\|$	AREA		$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{MDL}} \mid$	$\left\lvert\, \begin{gathered} \text { MEAB } \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	PEB									
C4a	J $\mathrm{LI}^{\text {I }}$	1722	1210201	0.0085	500	0.199	643	0.427	0.022	0.427
C4b	DSC	1720	1210891	0.0080	500	0.187	681	0.483	0.023	0.483
C4c	107	1721	1201081	0.0070	500	0.164	779	0.639	0.027	0.639
C4d	OCT	1724	1211891	0.0076	500	0.178	1092	0.844	0.024	0.844
C4e	SEPT	1725	1201091	0.0059	500	0.161	1136	0.969	0.027	0.969
C4f	SOG	1726	1241891	0.0059	500	0.138	1059	1.052	0.032	1.052
C4g dup	JUL	\|1737,1727	1201091	0.0057	500	0.133	992	1.016	0.033	0.990
C4h	JOI	1728	1201991	0.0053	500	0.124	826	0.899	0.035	0.899
Cil	Hay	1729	12012191	0.0046	500	0.108	601	0.733	0.040	0.733
C4j	APR	1732	12:14891	0.0041	500	0.096	524	0.706	0.045	0.706
C4k	Has	1733	1201991	0.0040	500	0.094	653	0.924	0.047	0.924
C41	PEB	1734	120apel	0.0029	500	0.068	544	1.041	0.064	1.041
C4I dup	JuI	1738,1735	1219101	0.0024	500	0.056	503	1.152	0.078	1.192
Cnn	DSC	1736	121021	0.0016	- 500	0.037	403	1.341	0.116	1.341

[Hg] vs Month Participant Control \#5

C.1-9

PROJECT ID:HONR SBETEITAL AMALYSIS

AHALYSIS: Σ Ig/MAIR SANPIB C5

AMALYST: CIITERUAN/LASORSA

PILB F: HONSECC5

$\begin{gathered} \text { BMTIELLS } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \operatorname{mon}_{\text {mint }} \end{gathered}\right.$	$\left\|\begin{array}{c} \text { MIEERATOR } \\ \text { SERY } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSIIO } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Digessiom } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL (} 11) \\ \text { AHLYESD } \end{array}\right\|$		AREA	$\text { [} \mathrm{Hg} \text {] } \mathrm{mg} / \mathrm{g}$	$\left\|\begin{array}{c} \mathrm{nDL} \\ {[\mathrm{Bg}]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{KRM} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
	\mid Scalp									
	\| MaR									
C5a	PSB	1957	21H14891	0.0078	500	0.182	419	0.550	0.024	0.550
C5b	JuII	1958	2114891	0.0083	500	0.194	588	0.740	0.022	0.740
CSC dup	DEC	\|1967,1959	21HAR91	0.0084	500	0.196	828	1.043	0.022	1.101
C5d	180	1960	21114291	0.0091	500	0.213	1085	1.272	0.020	1.272
CSE	OCI	1961	21141891	0.0085	500	0.199	851	1.061	0.022	1.061
C5f	SEPI	1962	2140891	0.0069	500	0.161	430	0.639	0.027	0.639
$\mathrm{Cbg}^{\mathrm{g}}$	106	1963	214AP91	0.0074	500	0.173	384	0.528	0.025	0.528
1 CSh dup	JUL	\|1968,1964	2114.191	0.0079	500	0.185	370	0.475	0.024	0.493
CSi	J0I	1965	2114.191	0.0076	500	0.178	432	0.583	0.024	0.583
C5j	may	1966	2114R91	0.0073	500	0.171	473	0.669	0.025	0.669

[Hg] vs Month Participant Control \#6

PROTECT ID:1OMR SECHETAL ARALYSIS
AMALYSIS: Xg/BAIR SAPPLB C6

AMLLYST: CITTIRRMA//LLSORSA
PILR $\boldsymbol{\text { : HOHSECC6 }}$

$\begin{gathered} \text { BAPTRLLSR } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { HOMII } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITPERATOR } \\ \text { SER: } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSTIOII } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { nit } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ A M L Y E S D \end{array}\right\|$	$\left\|\begin{array}{l} \text { AnLYZZBD } \\ \text { WI } \mathrm{Eg} \end{array}\right\|$	ARRA	$\underset{[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{E}}$	$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { HRAM } \\ & {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{aligned}\right.$
	\|SCLIP									
	MAR									
cba	Pr8	2119	2614891	0.0127	500	0.297	377	0.249	0.015	0.249
cob dup	J ${ }^{\text {M }}$	\|2146,2120	2614R91	0.0147	500	0.344	557	0.335	0.013	0.327
C6C	DIC	2154	26414891	0.0135	500	0.316	756	0.503	0.014	0.503
c6d	100	2155	2641291	0.0150	500	0.351	974	0.588	0.012	0.588
cbe	OCT	2156	26410291	0.0135	500	0.316	824	0.550	0.014	0.550
cof	SEPT	2157	2614891	0.0131	500	0.306	699	0.477	0.014	0.477
C6g	SOG	2158	2641201	0.0115	500	0.269	671	0.521	0.016	0.521
Coh dup	JUI	\|2147,2142	2641891	0.0118	500	0.276	730	0.555	0.016	0.517
C6i	JUS	2144	2614P91	0.0117	500	0.274	697	0.533	0.016	0.533
c6j	hay	2143	2641291	0.0103	500	0.241	556	0.477	0.018	0.477
Cok	APS	2145	$2614 \mathrm{RP91}$	0.0105	500	0.246	476	0.397	0.018	0.397
C61	HAR	2148	26181891	0.0048	500	0.112	282	0.491	0.039	0.491
C6n dup	P38	\|2150,2149	2614291	0.0040	500	0.094	208	0.416	0.047	0.424
c6n	JIII	2151	2648891	0.0031	500	0.073	228	0.597	0.060	0.597

[Hg] vs Month Participant Control \#7

PRONECI ID:HOHE SEGHRITAL MMALYSIS
AMALYSIS: EHg/HARIR SAMPLR C7

ANALYST: CITTERHAM/LASORSA
PILE f: HOUSEGC7

$\begin{gathered} \text { BATYELLS } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { WOMIT } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IMTEGRATOR } \\ \text { SERI } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGRSITOM } \\ \text { in } \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\mu 1) \\ \operatorname{ABLLYZBD} \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMLLYZED } \\ \operatorname{lir} \mathrm{Eg} \end{array}\right\|$	ARBA	$\underset{[\mathrm{Hg}][\mathrm{Mg} / \mathrm{g}}{\mathrm{En}}$	$\left\|\begin{array}{c} \operatorname{HDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { MERAM } \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$
	\|SCaLP									
	har									
C7a-1	Pr8	2292	\|14PR91	0.0094	500	0.220	502	0.430	0.020	0.430
\|C7b-1 dup	JAM	\|2305,2293	\|21PR91	0.0102	500	0.239	658	0.529	0.018	0.533
C7c-1	DSC	2294	\|14P891	0.0080	500	0.187	596	0.607	0.023	0.607
C7d-1	107	2295	\|12PR91	0.0086	500	0.201	851	0.822	0.022	0.822
C7e-1	OCT	2296	\|14PR91	0.0087	500	0.203	903	0.864	0.021	0.864
C7f-1	SEPT	2297	\|L1PRR91	0.0088	500	0.206	1133	1.081	0.021	1.081
\|C7g-1 dup	106	\|2306,2298	\|12PR91	0.0069	500	0.161	968	1.171	0.027	1.178
Ch-1	JULY	2299	\| 2 APP 91	0.0075	500	0.175	978	1.089	0.025	1.089
C7i-1	Jus	2302	\|14PR91	0.0070	500	0.164	867	1.030	0.027	1.030
\|C7j-1 dup	HAY	\|2307,2303	\|LAPE91	0.0086	500	0.201	988	0.960	0.022	0.931
C7K-1	APR	2304	\|LAPR91	0.0062	500	0.145	771	1.028	0.030	1.028

[Hg] vs Month Participant Control \#7 dup

PROJECT ID:HOTIT SEGIETITAL AMALYSIS

AHALISIS: $8 \mathrm{Eg} / \mathrm{BAIR}$ SANPLE C7 dup

AMALYST: CITTERNAM/LASORSA
PILE : : POHSEC7d

$\begin{gathered} \text { BATIELLER } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HOMint } \end{gathered}\right.$	DITEGRATOR SEQA	$\left\lvert\, \begin{gathered} \text { DIGESIIOMI } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGRSIIOM } \\ \text { mit g } \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\mu 1) \\ A B L Y S E D \end{array}\right\|$	$\left\|\begin{array}{c} \text { AnALYZZDD } \\ \text { ning } \end{array}\right\|$	AREA	$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{ZHg}}$	$\left\|\begin{array}{c} \text { MDL } \\ {[\mathrm{Bg}]_{\mu \mathrm{M}} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { HRAR } \\ {[\mathrm{Bg}] \mu \mathrm{Mg} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	MAR									
C7a-2	PEB	2308	L14P891	0.0118	500	0.276	569	0.392	0.016	0.392
\|C7b-2 dup	Jan	\|2333,2309	LaPR91	0.0122	500	0.285	752	0.523	0.015	0.524
C7c-2	DEC	2310	Lapr91	0.0085	500	0.199	587	0.563	0.022	0.563
C7d-2	1008	2311	11P891	0.0103	500	0.241	893	0.722	0.018	0.722
C7e-2	OCI	2326	LPPR91	0.0109	500	0.255	1113	0.878	0.017	0.878
\|c7f-2 dup	SEPT	\|2334,2327	$14 \mathrm{PPO1}$	0.0093	500	0.218	1204	1.115	0.020	1.078
C7g-2	1006	2328	14PP91	0.0098	500	0.229	1305	1.149	0.019	1.149
$\mathrm{Cm}_{3} 2$	JULI	2329	$1 \mathrm{PPR91}$	0.0086	500	0.201	993	0.989	0.022	0.989
\|cıi-2 dup	JUS	\|2335,2330	Laprel	0.0091	500	0.213	994	0.936	0.020	0.920
C7j-2	M Al	2331	14PR291	0.0112	500	0.262	1269	0.977	0.017	0.977
C7k-2	APP	2332	14PP91	\| 0.0083	500	\| 0.194	1094	1.132	\| 0.022	\| 1.132

[Hg] vs Month Participant \#1

PROJECT ID: HOHE SEGGETTAL ANALYSIS
ARLLYSIS: $\mathbb{Z G} /$ HAIR SAMPLE 1

ALALYST: CITTERTAN/LASORSA
PILB \&: MOHSEGO1

$\begin{gathered} \text { BAITYELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { MONTII } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Dirgecraior } \\ \text { SEOA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESFIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{gI} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{VOL}(\mu \mathrm{I}) \\ \mathrm{AMNLYESD} \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYEED } \\ \text { WI Eg } \end{array}\right\|$	ARRA	$\stackrel{\Sigma: \mathrm{g}}{[\mathrm{ig}] \mathrm{mg} / \mathrm{g}}$	NDL [Hg] mg / g	$\left\lvert\, \begin{gathered} \text { HRAM } \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPP									
	$\triangle 0 G$									
1a dup	JUL	176,129	951991	0.0128	250	0.150	996	1.157	0.029	\|1.14201
1 lb dup	गw	179,131	SJak91	0.0152	250	0.178	1261	1.241	0.024	\|1.20421
1c dup	Hay	180,132	SJM191	0.0161	250	0.188	1243	1.155	0.023	\|1.07796
1d dup	APR	182,157	9J1491	0.0145	250	0.170	1150	1.184	0.026	\|1.08536
1e dup	Has	183,158	$9 \mathrm{SNM91}$	0.0157	250	0.184	1216	1.158	0.024	\|1.09599
If dup	FEB	184,145	9 SN 191	0.0163	250	0.191	1192	1.093	0.023	\|1.07531
19 dup	Jall	185,146	97191	0.0162	250	0.189	1408	1.304	0.023	\|1.16863
Ih dup	DSC	186,151	9ramel	0.0155	250	0.181	1557	1.510	0.024	\|1.42553
11 dup	1300	187,152	9J11991	0.0143	250	0.167	1463	1.536	0.026	\|1.40136
\| 1 j dup	OCT	188,171	921191	0.0140	250	0.164	1662	1.786	0.027	\|1.80409
\| 15 dup	SEPT	189,175	951491	0.0071	\| 250	0.083	1303	2.748	0.052	\|2.74373

[Hg] vs Month Participant \#2

PRONECT ID:HONR SEGHETTAL MMLYSIS
AMALYSIS: $\Sigma \mathrm{Zg} / \mathrm{HALR}$ SAMPLE 2

AMALYST: LASORSA/CTTTERUAN
PILE f: MOHSECO2

$\begin{gathered} \text { BATYBLLLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \operatorname{mon}^{2} \mathrm{IH} \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITIECRATOR } \\ \text { SERf: } \end{array}\right\|$	$\left.\right\|_{\text {DAFE }} ^{\text {DIGSTIOM }}$	$\left\|\begin{array}{c} \text { DIGRSTIOM } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{B}) \\ \text { MWLYEDD } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { ABALYZED } \\ \text { WI Mg } \end{gathered}\right.$	AREA	$\underset{[\mathrm{Hg}] \mathrm{Kg} / \mathrm{g} / \mathrm{g}}{\mathrm{ERg}}$	$[\mathrm{Bg}] \mathrm{mg} / \mathrm{g} \mid$	$\begin{aligned} & \text { HRRAN } \\ & {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{aligned}$
	\|SCALP									
	SEPP									
	106									
2a	JULY	235	1 7 J 1191	0.0147	250	0.172	1506	1.290	0.025	1.290
2 b dup	JUS	271,236	\|14521691	0.0162	250	0.189	1719	1.551	0.023	1.442
2 c	H 4 I	237	14JaM91	0.0161	250	0.188	1978	1.612	0.023	1.612
2 d	APR	238	14J11991	0.0143	250	0.167	1813	1.644	0.026	1.644
28	Has	239	14J1991	0.0154	250	0.180	2161	1.862	0.024	1.862
27	F8B	240	145N1991	0.0135	250	0.158	2130	2.090	0.028	2.090
2 dap	JM	253,241	1451591	0.0118	250	0.138	2153	2.676	0.032	2.545
2 c dup	DSC	254,242	14J1491	0.0127	250	0.149	2739	3.172	0.029	3.046
$2 i$	100	243	14J1591	0.0113	250	0.132	2583	3.091	0.033	3.091
$2 j$	OCI	244	14J1591	0.0121	250	0.142	3034	3.439	0.031	3.439
2k	SEPI	259	1471491	0.0110	250	0.129	2934	3.926	0.034	3.926
21	206	260	14511991	0.0111	250	0.130	3386	4.496	0.034	4.496
24 dup	JWII	272,261	\|14J1M91	0.0111	250	0.130	3895	5.178	0.034	5.089
20	JuI	262	1451599	0.0110	250	0.129	3651	4.895	0.034	4.895
20	May	263	14 J 1F91	0.0098	250	0.115	3634	5.469	0.038	5.469
2 p	APR	264	14Jan91	0.0087	250	0.102	3580	6.068	0.043	6.068
29	Mar	265	\| 14 J3M91	0.0090	250	0.105	4188	6.871	0.041	6.871
2x dup	PEB	275,266	\|14J3491	0.0080	250	0.094	4481	8.274	0.047	8.312

PROJECT ID:MONE SEGITRTAL AHALYSIS
ANALYSIS: $\mathrm{ZHg} / \mathrm{BAIR}$ SANPLB 2

ANALYST: LASORSA/CITTERNAY

FILE \&: MOHSEGO2

BATTELLE ID	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HONII } \end{gathered}\right.$	$\begin{gathered} \text { IITBGRATOR } \\ \text { SEQ } \end{gathered}$	$\begin{gathered} \text { DIGESYIO: } \\ \text { DAKE } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { WI } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { VOL }(\mu 1) \\ & \text { AHALYED } \end{aligned}\right.$	$\left\|\begin{array}{c} \text { AMaLyem } \\ \text { WI mg } \end{array}\right\|$	AREA	$\stackrel{\Sigma E \mathrm{E}}{[\mathrm{Eg}] \mu \mathrm{M} / \mathrm{g}}$	IDL [Bg] $/ \mathrm{gg} / \mathrm{g}$	$\begin{aligned} & \text { HEAI } \\ & \text { [Hg] } \mathrm{Hg} / \mathrm{g} \end{aligned}$
28	ЈаM	267	\| 14 J 1591	0.0089	250	0.104	4958	8.235	0.042	8.235
$2 t$	DEC	268	\| 14 J 2 H 91	0.0076	250	0.089	4877	9.485	0.049	9.485
20	1 OV	269	\|14J1191	0.0087	250	0.102	5557	9.448	0.043	9.448
2v dup	OCI	276,270	\|14J3191	0.0057	250	0.067	5850	15.185	0.065	15.194

[Hg] vs Month Participant \#3

PROTECT ID:MONE SEGHEMTAL ANALYSIS
ANALYSIS: EHg/EAIR SAIPLR 3

ANALYST: LASORSA/CITTERUAB
FILE : HOHSEGO3

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMTH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { ing } \end{array}\right\|$	VOL (1 L) AMALYZED	$\left\|\begin{array}{c} \text { ARALYZED } \\ \text { WI } \mathrm{mg} \end{array}\right\|$	AREA	$\underset{[\mathrm{EG}]}{\mathrm{EHg}}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}} \end{array}\right\|$	$\underset{[\mathrm{Eg}] \mathrm{\mu g} / \mathrm{g}}{\mathrm{HEAH}}$
	\|SCALP									
	SEPP									
	AJG									
3 a	JULI	192	9J4991	0.0020	250	0.023	534	3.872	0.186	3.872
3b	JUS	193	9JM191	0.0023	250	0.027	464	2.901	0.162	2.901
3 C	Hay	194	9JגY91	0.0021	250	0.025	467	3.199	0.177	3.199
3 d	APR	196	gravis	0.0018	250	0.021	589	4.769	0.207	4.769
3 e	HAR	197	9J1491	0.0019	250	0.022	635	4.889	0.196	4.889
$3 f$	P6B	198	9 94191	0.0018	250	0.021	594	4.812	0.207	4.812
39	JMn	199	gJaw91	0.0016	250	0.019	439	3.931	0.233	3.931
3h dup	DSC	220,200	9 J 491	0.0008	250	0.009	347	4.890	0.465	5.792
$3 i$	108	201	974991	0.0006	250	0.007	399	9.462	0.620	9.462
$3 j$	$0 C^{1}$	202	954me	0.0004	250	0.005	301	10.444	0.930	10.444
3k	SEPT	212	97291	0.0006	250	0.007	603	12.842	0.620	12.842
31	106	213	95191	0.0006	250	0.007	494	10.150	0.620	10.150
34	JUII	214	971991	0.0004	250	0.005	414	12.262	0.930	12.262
3 n dup	JW	219,215	971991	0.0014	250	0.016	668	6.192	0.266	6.382
30	HaI	216	972991	0.0006	250	0.007	501	10.323	0.620	10.323
3p	APR 1	217	9J1991	0.0006	250	0.007	599	12.743	0.620	12.743

[Hg] vs Month Participant \#4

PROJECT LD:HONE SEETESTAL AMALYSIS
AKALYSIS: EHG/BAIR SAIPLU 4

ANALYST: CITTERMAN/LASORSA
PILE 1: MOHSECO4

$\begin{gathered} \text { BATYELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { HOMIH } \end{gathered}\right.$	$\begin{gathered} \text { IHIBERATOR } \\ \text { SEO: } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGESTIO } \\ \text { DATE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOM } \\ \text { VI } g \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { VOL }(\mu l) \\ & \text { MWLYESD } \end{aligned}\right.$	$\left\|\begin{array}{c} \text { AHALYZED } \\ \text { Wr mg } \end{array}\right\|$	AREA	$\begin{gathered} \Sigma \mathrm{ZHg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { MDL } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { MRAM } \\ {[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$	
	\|SCALP										
	SEPT										
	\\| A0G										
42	/ JUL	360	\|17J1191	0.0078	250	0.091	1027	1.819	0.048	1.819	
4b	J0.	361	\|17JM191	0.0079	250	0.092	1095	1.917	0.047	1.917	
4 c dup	H18	375,362	\|17Jय91	0.0083	250	0.097	998	1.660	0.045	1.715	
$4 d$	APR	363	\|17J3191	0.0076	250	0.089	906	1.643	0.049	1.643	
4 4	$\mid M R$	364	\|17J2991	0.0040	250	0.047	536	1.822	0.093	1.822	

[Hg] vs Month Participant \#5

PROJECT ID:HONE SEGIERTAL AMALYSIS
AMALYSIS: EHg/EAIR SAMPLE 5

ANALYST: CITTERHAN/LASORSA
FILX f: HOMSBCO5

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { MOMTH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTECRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIP } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOH } \\ \mathrm{Wr} \mathrm{~g} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{VOL}(\mu \mathrm{~L}) \\ \mathrm{AHALYEDDD} \end{array}\right\|$	$\left\|\begin{array}{c} \text { ABALYZED } \\ \text { WI } \end{array}\right\|$	AREA	$\begin{gathered} \sum \mathrm{Hgq} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}$	$\underset{\mathrm{HDL}}{\mathrm{HD}] \mu \mathrm{g} / \mathrm{g}}$	$\begin{gathered} \text { MRAM } \\ {[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$	
	\mid SCALP										
	SEPT										
5	\triangle SG	281	\|16J1991	0.0188	250	0.220	1885	1.471	0.020	1.471	
5b	JOLY	282	\|16J1491	0.0214	250	0.250	1964	1.347	0.017	1.347	
5 C	J03	292	\|16JNM91	0.0182	250	0.213	1747	1.394	0.020	1.394	
50	H $1 / 2$	293	\|16J1991	0.0144	250	0.168	1334	1.335	0.026	1.335	
5	APR	295	\|16J21991	0.0143	250	0.167	1351	1.362	0.026	1.362	
51	HMR	296	16.1491	0.0144	250	0.168	1397	1.400	0.026	1.400	
59	P6B	297	16J11991	0.0123	250	0.144	1373	1.610	0.030	1.610	
51	Jג	298	\|16J1991	0.0130	250	0.152	1804	2.017	0.029	2.017	
51	DSC	302	167191	0.0127	250	0.149	1813	2.076	0.029	2.076	
5j	100	303	\|16J191	0.0107	250	0.125	2034	2.771	0.035	2.771	
5	OCT	304	\|168191	0.0030	250	0.094	1839	3.343	0.047	3.343	
51	SEPT	305	\|16JM531	0.0085	250	0.099	2362	4.063	0.044	4.063	
51	106	306	\|1601991	0.0078	250	0.091	2311	4.330	0.048	4.330	
5n	JWH	307	\|1651991	0.0077	250	0.090	2723	5.183	0.048	5.183	
50	Jus	308	16Jam91	0.0065	250	0.076	2465	5.549	0.057	5.549	
5p	\| hay		316	\|6JJ1991	$\mid 0.0059$ \|	\| 250	\| 0.069	2648	6.575	0.063	6.575

[Hg] vs Month Participant \#6

PROSECT ID: KOFR SEGHENTAL AHALYSIS
AMALYSIS: $\mathbb{Z H} /$ HAIR SAMPLB 6

AMALYST: CITTERUAH/LASORSA
PILR f: MOHSECO6

$\begin{array}{\|c} \text { BATTBLLLB } \\ \text { ID } \end{array}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOHITE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITMERATOR } \\ \text { SER } \end{array}\right\|$		$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{mp} \end{array}\right\|$	VOL ($\mu \mathrm{L}$) AMLYZED	$\left\|\begin{array}{l} \text { AHALYZED } \\ \overline{W I R} \mathrm{Eg} \end{array}\right\|$	ARRA	$\underset{[\mathrm{Bq}] \mathrm{Hg} / \mathrm{g}}{\mathrm{EH}}$	$\left\lvert\, \begin{gathered} \text { MRAN } \\ {[\mathrm{Hg}] \mu \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|scalp								
	SEPT								
6 a	1006	311	\|16J1491	0.0104	250	0.122	570	0.755	0.755
6b	July	312	\|16J4.991	0.0096	250	0.112	611	0.881	0.881
6c dup	J01	344,313	\|16JM991	0.0096	250	0.112	631	0.867	0.879
60	M M	314	\| 26 J 1 H 91	0.0089	250	0.104	535	0.823	0.823
$6 e$	APR	317	\|16J1991	0.0089	250	0.104	603	0.937	0.937
65	HaR	318	\| $16 \mathrm{~J} 1 \mathrm{H}_{191}$	0.0079	250	0.092	723	1.282	1.282
69	PEB	330	\|16J1491	0.0073	250	0.085	823	1.510	1.510
6 h	Jal	331	\|16J1991	0.0082	250	0.096	1098	1.816	1.816
61	DSC	332	\| 16.15192	0.0079	250	0.092	1174	2.020	2.020
$6 j$	100	333	\|16J1991	0.0077	250	0.090	1053	1.852	1.852
6	OCT	334	\|16J1291	0.0071	250	0.083	1057	2.016	2.016
61	SEPT	335	\|16J1791	0.0064	250	0.075	988	2.085	2.085
61 dup	10 E	345,338	\|16J1991	0.0064	250	0.075	1140	2.419	2.377
64	Juk	. 339	\|16Jan91	0.0057	250	0.067	856	2.016	2.016
60 dup	Ju	342,340	\|16J1491	0.0053	250	0.062	882	2.237	2.218
$6 p$ dup	WII	343,341	\|1671491	\| 0.0052	250	0.061	1006	2.615	2.527

[Hg] vs Month Participant \#7

PROTECT ID:MOHE SEGIEATLLL ARALYSIS
ANALYSIS: EHg/EAIR SANPLR 7

ANALYST: CITTERHAN/LASORSA
PILB \ddagger : HOUSEG07

[Hg] vs Month Participant \#8

PROTECT ID:MONT SBCHEMTAL AMALYSIS

ANALYSIS: $\Sigma Z \mathrm{Hg} / \mathrm{BALR}$ SAMPLR 8

[Hg] vs Month Participant \#9

PROJECT ID:HONE SEGTETTAL ALALYSIS

AHALYSIS: ZHg/EAIR SAMPLE 9

$\begin{aligned} & \text { BATYEILLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONTII } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { INTEGERATOR } \\ \text { SERA } \end{gathered}\right.$	$\left.\right\|_{\text {DIIE }}{ }^{\text {DIGBSTIOI }}$	$\left\|\begin{array}{c} \text { DIGRSTIOM } \\ \text { WI g } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL (} \mu \mathrm{l}) \\ \text { AWALYEED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { MaLYEED } \\ \text { WI } \end{array}\right\|$	AREA	$\begin{gathered} \text { EHg } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\begin{gathered} \mathrm{KDL} \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCSLP								
	SEPP								
	10 G								
93	JULY	365	\|17J4.91	0.0145	250	0.170	770	0.729	0.026
9b dup	JUI	390,366	\|17J1/991	0.0137	250	0.160	956	0.942	0.027
9	May	367	\|17J3991	0.0121	250	0.142	979	1.117	0.031
98	APS	368	\|17JM991	0.0110	250	0.129	1000	1.255	0.034
ge	HAR	371	\|17J1491	0.0092	250	0.108	1138	1.712	0.040
of dup	P8B	376,372	\|17J4991	0.0074	250	0.087	1093	2.043	0.050
99	Jan	373	\|17J1991	0.0061	250	0.071	1135	2.575	0.061
و	DSC	374	\|17J3191	0.0044	250	0.051	1168	3.675	0.085
91	100	387	\|17JME91	0.0044	250	0.051	1188	3.667	0.085
$9{ }^{1}$	OCT	388	\|17J4191	0.0049	250	0.057	2199	6.167	0.076
\%	SEPI	369	\|17J1991	0.0035	250	0.041	1923	7.535	0.106

[Hg] vs Month Participant \#10

PROTECI ID:HONR SEGTETHAL AMALYSIS

AMALYSIS: EHg/EAIR SANPLR 10

ANALYST: CITTERHAN/LASORSA
FILE \ddagger : HOHSEGIO

$\begin{gathered} \text { BATTELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMII } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTESERATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \mathrm{FI} \mathrm{~g} \end{gathered}\right.$	VOL (14) AMALIEED	$\left\|\begin{array}{l} \text { AMALYZEDD } \\ \mathrm{WI} \mathrm{mg} \end{array}\right\|$	AREA	$\begin{gathered} \Sigma H g \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{KDL} \\ {[\mathrm{Eg}] / \mathrm{gg} / \mathrm{g}} \end{gathered}\right.$	
	\|SCLLP									
	SEPP									
	AOG									
103	JoLl	391	\|17J1491	0.0111	250	0.130	701	0.842	0.034	0.842
100 dup	JUS	396,392	17J1491	0.0110	250	0.129	534	0.638	0.034	0.647
10 C	mal	393		0.0109	250	0.127	413	0.490	0.034	0.490
10 d	APR	394	\|17J1星1	0.0109	250	0.127	389	0.459	0.034	0.459
100	\| MAR	395	\|17Jม191	0.00\%	250	0.112	326	0.430	0.039	0.430

[Hg] vs Month Participant \#11

PROJECT ID:NOIE SEGIGTAL AHALYSIS
ANALYSIS: ZHig/EAIR SANPLE 11

AHALYST: CITTERHAN/LASORSA
pILB : Monsegil

$\begin{aligned} & \text { BMTIELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONTH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { MTECRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGBSTION } \\ \text { WI } \mathrm{g} \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\mu \mathrm{L}) \\ \mathrm{ABALYZED} \end{array}\right\|$	$\left\|\begin{array}{c} \text { ANALYZED } \\ \operatorname{TrIg} \end{array}\right\|$	AREA	$\begin{gathered} \text { EBg } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{MDL} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { KRKM } \\ {[\mathrm{Bg}] \text { [gG/ } / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPP									
11 a	${ }^{1} \mathrm{OG}$	397	\|17Jม191	0.0083	250	0.097	546	0.866	0.045	0.866
11 b dup	JULI	403,398	\|17J1991	0.0072	250	0.084	304	0.530	0.052	0.532
116	J015	399	\|17J1091	0.0074	250	0.087	313	0.533	0.050	0.533
11d	Hay	400	\| 17 J2191	0.0072	250	0.084	322	0.565	0.052	0.565
110	APR	401	\|17J1M91	0.0059	250	0.069	318	0.680	0.063	0.680
118	HAR	402	\|1751491	0.0070	250	0.082	416	0.768	0.053	0.768

[Hg] vs Month Participant \#12

PROJECT ID:HONE SEGLTITAL MALYSIS
AMALYSIS: EHg/EAIR SAKPLE 12

ANALYST: CITTERRHAN/LASORSA
PILB |: HOHSEG12

BATMELLE ID	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOSHI } \end{gathered}\right.$	$\begin{array}{\|c} \text { DFIEGRATOR } \\ \text { SEQf } \end{array}$	DIGESIOR	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { Wr } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { POL (} \mu \mathrm{I}) \\ & \text { AMALYZ } \end{aligned}\right.$	$\left\|\begin{array}{\|c\|} A M A L y E D D \\ \operatorname{Ting} \end{array}\right\|$	AREA	$\begin{gathered} \sum \mathrm{Hg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$	$\begin{aligned} & \text { MBAH } \\ & \text { [Hg] } \mathrm{Hg} / \mathrm{g} \end{aligned}$
	\|SCALP									
	SEPP									
12a	AOG	417	\| 22 J 1191	0.0188	250	0.220	1444	1.081	0.020	1.081
12b dup	JULI	423,418	\|22]1191	0.0165	250	0.193	1646	1.407	0.023	1.335
12c	JUI	419	\|22J1491	0.0176	250	0.206	2393	1.928	0.021	1.928
12d	H2Y	420	\| 2251.91	0.0165	250	0.193	2907	2.504	0.023	2.504
128	APR	421	\| 2251191	0.0180	250	0.210	5472	4.340	0.021	4.340
127	MAR	422	\|22J4991	0.0129	250	0.151	5599	6.198	0.029	6.198

[Hg] vs Month Participant \#13

PROJECT ID:NOFR SEGIBTITAL AMALYSIS
AMALYSIS: $2 H g /$ BAIR SAMPLE 13

ANALYST: CITTERHAN/LASORSA
PILE \&: MOHSEG13

$\begin{aligned} & \text { BATPZLLE } \\ & \text { ID } \end{aligned}$	$\left.\right\|_{\text {MOHiTH }} ^{\text {SRG }}$	$\left\|\begin{array}{c} \text { NTEEPRTOR } \\ \text { SEQ: } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOII } \end{gathered}\right.$	$\left\|\begin{array}{cc} \text { DIGBSTIOM: } \\ \text { Wr } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL (} \mu \mathrm{IL}) \\ \text { AMALYED } \end{array}\right\|$	$\begin{gathered} \text {) } \\ D \end{gathered}\left\|\begin{array}{c} \text { Analyzzed } \\ \operatorname{lng} \end{array}\right\|$	AREA	$\begin{gathered} \mathrm{EHg} \\ {[\mathrm{~Bq}] \mathrm{pg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{VDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { MRAM } \\ {[\mathrm{Hg}][\mathrm{Mg} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPT									
13a	10 G	425	\|22J1491	0.0090	250	0.105	540	0.816	0.041	0.816
13b	JOLY	426	\|22J1491	0.0113	250	0.132	601	0.727	0.033	0.727
13 C	J01	427	\|22J14991	0.0096	250	0.112	392	0.543	0.039	0.543
13d	HMY	428	\|22J10691	0.0098	250	0.115	327	0.437	0.038	0.437
130	APR	429	\|22J1791	0.0099	250	0.116	320	0.423	0.038	0.423
13 f dup	HAR	437,430	22J1M91	0.0075	250	0.088	265	0.453	0.050	0.474
139	PRB	431	\|22J1491	0.0076	250	0.089	295	0.503	0.049	0.503
13h	JMI	432	\|22J4191	0.0076	250	0.089	280	0.475	0.049	0.475
131	DSC	433	22J1491	0.0073	250	0.085	298	0.530	0.051	0.530
13j	000	434	22J1791	0.0060	250	0.070	290	0.626	0.062	0.626
\| 13k dup	OCI	438,435	\|22J1791	0.0050	250	0.058	366	0.969	0.074	0.947
131	SEPI	436	\|22J1491	0.0038	250	0.044	330	1.139	0.098	1.139

[Hg] vs Month Participant \#14

PROTECT ID:HONR SEGIEITAL AMALYSIS
AHALYSIS: KHg/HAIR SAMPLR 14

AMALYST: CITTERHAN/LASORSA
PILB I: MOHSEGI4

$\begin{array}{\|c} \text { BATYELLLB } \\ \text { ID } \end{array}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \operatorname{moninH} \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTECRATOR } \\ \text { SEQ } \end{array}\right\|$	$\begin{gathered} \text { DIGESIIOM } \\ \text { DAIT } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGRSIIO } \\ \mathrm{Fr} \\ g \end{array}\right\|$	$\left\lvert\, \begin{aligned} & V O L(\mu I) \\ & \text { ABALYZED } \end{aligned}\right.$	$\left\|\begin{array}{c} \text { BMALYZED } \\ \text { Wr Eg } \end{array}\right\|$	arBa	$\stackrel{\mathrm{BHg}}{[\mathrm{Bg}] \mathrm{\mu g} / \mathrm{g}}$	$\operatorname{HNDL}_{[\mathrm{Hg}]} / \mathrm{mg} / \mathrm{g} \mid$	$\underset{[\mathrm{Hg}]}{\mathrm{HRN} / \mathrm{Mg} / \mathrm{g}}$
	\|SCAIP									
	SIPT									
14a dup	10 G	487,485	22Jı191	0.0105	250	0.123	594	0.773	0.035	0.762
14b	JULI	486	22Jan91	0.0090	250	0.105	581	0.880	0.041	0.880
14 C	JUII	488	22J1191	0.0077	250	0.090	547	0.964	0.048	0.964
14d	${ }_{14} 1$	489	22J14991	0.0076	250	0.089	560	1.002	0.049	1.002
148	APR	490	2271191	0.0086	250	0.101	672	1.077	0.043	1.077
145 dup	Mar	494,491	22.11991	0.0069	250	0.081	734	1.474	0.054	1.243
149	P6B	493	22J1491	0.0081	250	0.095	694	1.183	0.046	1.183
14h	JM	787	22711991	0.0066	250	0.077	818	1.264	0.056	1.264
14 i dup	DSC	501,495	2251991	0.0068	250	0.080	915	1.888	0.055	1.867
14)	108	4%	22711921	0.0062	250	0.073	967	2.194	0.060	2.194
14k	OCT	497	2271991	0.0050	250	0.058	932	2.618	0.074	2.618
141	SSTR	488	227199	0.0046	250	0.054	1032	3.165	0.081	3.165
1411	S0G	499	2271191	0.0043	250	0.050	1078	3.544	0.087	3.544
1418	Jun	500	2201191	0.0048	250	0.056	1339	3.975	\| 0.078	3.975

[Hg] vs Month Participant \#15

PROJECT ID:HONE SEGHRTTAL ARALYSIS
AMALYSIS: ZHg/BAIR SAKPLE 15

AMALYST: CITTERHAH/LASORSA
FILR \&: MOHSEG15

$\begin{gathered} \text { BATTYELLE } \\ \text { ID } \end{gathered}$	$\left.\right\|_{\text {HOHIRI }} ^{\text {SEG }}$	$\left\|\begin{array}{c} \text { IVTECRATOR } \\ \text { SER } \end{array}\right\|$	$\left.\right\|_{\text {DIIR }} ^{\text {DIGBSTIOM }}$	$\left\|\begin{array}{c} \text { DIGESTION } \\ \text { ming } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL (p1) } \\ \mid A L A L Y B D D \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{AMALYZEDD} \\ \operatorname{WI} \mathrm{g} \end{array}\right\|$	ARBA	$\stackrel{8 \mathrm{Eg}}{[\mathrm{Eg}]_{\mathrm{kg}} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{YDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HRAM } \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPT									
	AOG									
15a	JULY	577	25J11991	0.0078	250	0.091	638	1.151	0.048	1.151
15b	J01	578	2571191	0.0077	250	0.090	753	1.382	0.048	1.382
$15 c$	M M I	579	25JJI991	0.0066	250	0.077	533	1.129	0.056	1.129
15d	APR	580	25 J1F91	0.0069	250	0.081	644	1.313	0.054	1.313
15e	mar	581	25J11991	0.0056	250	0.065	677	1.704	0.066	1.704
151	PIS	582	2571291	0.0061	250	0.071	966	2.251	0.061	2.251
15 g	Jג	583	25511991	0.0059	250	0.069	1020	2.460	0.063	2.460
150 dup	DEC	608,586	25.51891	0.0059	250	0.104	1703	2.637	0.042	2.692
151	100	597	2571591	0.0059	250	0.069	1290	2.997	0.063	2.997
15j	OCT	598	2571191	0.0073	250	0.085	1893	3.579	0.051	3.579
15k	SEPT	599	2571991	0.0069	250	0.081	1983	3.969	0.054	3.969
151	106	600	2551991	0.0066	250	0.077	2017	4.222	0.056	4.222
151	JWEI	601	2572191	0.0065	250	0.076	2040	4.336	0.057	4.336
15n	Jum	602	2571991	0.0057	250	0.067	1953	4.731	0.065	4.731
150	H18	603	25511991	0.0050	250	0.058	1866	5.150	0.074	5.150
15p dup	APR	609,604	25511191	0.0043	250	0.050	1655	5.301	0.087	5.288
159	HAR	605	25.511991	0.0041	250	0.048	1580	5.303	0.091	5.303
15 r	FEB	606	25JMM91	\| 0.0039	250	\| 0.046	1548	5.460	0.095	5.460

PROWECT ID:HONR SEGIBITAL ANALYSIS
AMALYSIS: $\Sigma \mathrm{Hg} / \mathrm{HAIR}$ SARPLB 15

AHALYST: CIITERTIAN/LASORSA
PILR f: HOHSEG15

$\begin{gathered} \text { BAITELLX } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { Hoint } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIFBERATOR } \\ \text { SROA } \end{array}\right\|$	DIGESTIO:	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { ITI } g \end{gathered}\right.$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{l}) \\ \mathrm{A} A L Y G E D \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYEDD } \\ \text { NI } \end{array}\right\|$	AREA	$\underset{[\mathrm{Lig}]}{\mathrm{Ng} / \mathrm{gg} / \mathrm{g}}$	$\left.\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Bg}]} \end{array}\right\| \mathrm{\mu g} / \mathrm{g} \right\rvert\,$	HEAM [Bg] Hg / g
156	J月1	607	25 J 191	0.0034	250	0.040	1587	6.424	0.109	6.424

[Hg] vs Month Participant \#16

PROURCT ID: HONE SECHETTAL ANALYSIS
AHALYSIS: EBg/EMIR SAMPLE 16

AMALYST: CTTTERHAN/LASORSA
PILE \&: WOMSEG16

$\begin{gathered} \text { BAYPRLLE } \\ \text { DD } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HOMIH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IMTEGRATOR } \\ \text { SERf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DICESTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGBSITON } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{L}) \\ \text { AHALYEDD } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AHALYEBD } \\ \text { WI } \mathrm{mg} \end{array}\right\|$		$\stackrel{2 \mathrm{Bg}}{[\mathrm{Hg}] \mathrm{kg} / \mathrm{g}}$	$\left\|\begin{array}{c} \operatorname{HDL} \\ {[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { MENA } \\ {[\mathrm{Hg}]} \end{gathered} \mathrm{mg} / \mathrm{g}\right.$
	\|SCALP									
	SEPT									
16a	10 G	612	\| 25 J 12191	0.0063	250	0.074	453	0.945	0.059	0.945
16b	JULY	613	\| 25.51191	0.0069	250	0.081	646	1.255	0.054	1.255
16 C	501	614	\|25J12991	0.0075	250	0.088	1213	2.213	0.050	2.213
16 d	May	615	\|25JJic91	0.0048	250	0.056	1153	3.283	0.078	3.283
16 e	APR	616	\|25J1M91	0.1223	250	1.430	1169	0.131	0.003	0.131
	\| Mar	\|SAMPLE \$16e	C H2S 1 M	GIIIIG EREOA						

[Hg] vs Month Participant \#17

PROJECT ID:HONR SBGIETHAL MNALYSIS

ANALYSIS: EHg/BAIR SAHPLB 17

AMALYST: CITTERUAN/LASORSA
FILE \{: MOHSEG17

$\begin{gathered} \text { BATTELLS } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { Moini } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQff } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { ming } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { AMLYZED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AHALYZZD } \\ \text { WI } \end{array}\right\|$	AREA	$\underset{[\mathrm{Bg}]}{\mathrm{EBg} / \mathrm{gg} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{VDL} \\ \text { [Hg}] \end{array}\right\|$	$\begin{gathered} \text { HRAM } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPT									
	IDG									
17a	JULY	520	23J1191	0.0082	250	0.096	675	1.126	0.045	1.126
17b dup	J011	539,521	2351.91	0.0060	250	0.070	325	0.698	0.062	0.737
17 c	hay	522	2351991	0.0062	250	0.073	320	0.664	0.060	0.664
17d	APR	524	23J1491	0.0063	250	0.074	268	0.535	0.059	0.535
17 e	Mar	525	23J1991	0.0067	250	0.078	281	0.531	0.056	0.531
177	Pr8	526	2371191	0.0075	250	0.088	332	0.572	0.050	0.572
179	JaII	528	2372991	0.0061	250	0.071	353	0.753	0.061	0.753
17h	DEC	529	23J1491	0.0059	250	0.069	338	0.742	0.063	0.742
171	100	530	23J1991	0.0033	250	0.039	236	0.881	0.113	0.881
17 j	OCT	532	2351991	0.0031	250	0.036	270	1.096	0.120	1.096
17\%	SEPI	533	23J1991	0.0044	250	0.051	421	1.266	0.085	1.266
\| 171 dup	$\triangle 06$	\| 545,534	23711991	0.0033	250	0.039	353	1.392	0.113	1.433

[Hg] vs Month Participant \#18

PROJECT ID:MOHE SEGFEMTAL ANALYSIS
AMALYSIS: EHg/EAIR SAMPLE 18

AMALYST: CITTRRMAN/LASORSA
PILE \#: MOUSEG18

$\begin{gathered} \text { BATIELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { Hoint } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { IITREGRAOR } \\ \text { SEQ\& } \end{gathered}\right.$	$\begin{array}{\|c} \text { DIGESIIOII } \\ \text { DATE } \end{array}$	$\left\|\begin{array}{c} \text { DIGRSIOM } \\ \mathrm{Wr} \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\mu 1) \\ \mid \mathrm{AROLYEDD} \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMLYZED } \\ \text { WI } \end{array}\right\|$	AREA	$\underset{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}{\mathrm{Kig}}$	$\left\|\begin{array}{c} \text { NDL } \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HRAN } \\ {[\mathrm{Bg}]_{\mathrm{Hg}} / \mathrm{g}} \end{gathered}\right.$
	\|scalp									
	SEPT									
	10.6									
18a	Juy	617	25,51991	0.0086	250	0.101	183	0.252	0.043	0.252
18b dup	SOII	652,645	2551191	0.0083	250	0.097	206	0.298	0.045	0.288
18 C	hay	646	2551291	0.0087	250	0.102	280	0.400	0.043	0.400
180	APR	617	25 J 1191	0.0083	250	0.097	369	0.565	0.045	0.565
18 e	MAR	648	25 J 21991	0.0083	250	0.097	417	0.644	0.045	0.644
$18 f$	F88	649	25 J 4191	0.0074	250	0.087	340	0.581	0.050	0.581
189	JM	650	2571191	0.0072	250	0.084	299	0.519	0.052	0.519
18h dup	DEC	666,663	2572191	0.0036	250	0.042	202	0.676	0.103	0.609
$18 i$	W0V	664	257N191	0.0050	250	0.058	226	0.552	0.074	0.552
18j	OCI	665	25 JLW 91	0.0036	250	0.042	198	0.661	0.103	10.66138

[Hg] vs Month Participant \#19

PROJECT ID: HOHR SECHETTAL MNALYSIS
AHALYSIS: EHg/EAIR SANPLE 19

AMALYST: CITTERRHAS/LASORSA

PTLB : : HOUSEG19

$\begin{gathered} \text { BTYBLLE } \\ \text { ID } \end{gathered}$	$\begin{gathered} \text { SEG } \\ \text { MOHIIR } \end{gathered}$	$\left.\begin{gathered} \text { DITEGGRAOR } \\ \text { SED } \end{gathered} \right\rvert\,$	DIGESTIOM DAIE	$\left\lvert\, \begin{gathered} \text { DIGRSTIOH } \\ \mathrm{FI} \mathrm{~g} \end{gathered}\right.$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ A M L Y S E D \end{array}\right\|$	$\left\|\begin{array}{c} \text { ABALYEED } \\ \text { Wr } \\ \text { Eg } \end{array}\right\|$	AREA		$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Bg}]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HBAM } \\ {[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPT									
19a	ISE	671	2854.91	0.0053	250	0.062	193	0.429	0.070	0.429
19b	JULY	672	2851191	0.0052	250	0.061	172	0.382	0.072	0.382
19C dup	JUI	674,673	28J土n91	0.0045	250	0.053	167	0.427	0.083	0.434
19d	HAP	675	2854191	0.0053	250	0.062	210	0.472	0.070	0.472
19	APR	676	2874591	0.0052	250	0.061	172	0.382	0.072	0.382
$19 f$	har	677	28J1491	0.0050	250	0.058	171	0.395	0.074	0.395
19 g	PKB	678	2874191	0.0052	250	0.061	174	0.388	0.072	0.388
19h	JגI	679	28J1591	0.0056	250	0.065	219	0.469	0.066	0.469
191	DRC	680	2851191	0.0049	250	0.057	191	0.458	0.076	0.458
19j	100	681	2851191	0.0044	250	0.051	224	0.612	0.085	0.612
19k	OCT	682	287291	0.0045	250	0.053	259	0.703	0.083	0.703
191 dup	SEPT	697,683	2872991	0.0040	250	0.047	271	0.779	0.093	0.799
19	${ }^{1} 06$	698	28J1991	0.0040	250	0.047	296	0.864	0.093	0.864
19n	JULI	700	2851591	0.0035	250	0.041	295	0.983	0.106	0.983
190	JUI	701	2871591	0.0029	250	0.034	319	1.298	0.128	1.298
19p	HAY	702	2851491	0.0026	250	0.030	317	1.438	0.143	1.438
19 g	APR	703	28JaF91	0.0027	250	0.032	335	1.475	0.138	1.475
\| 19r dup	HAR	705,704	28JAF91	0.0029	250	0.034	410	1.722	\| 0.128	1.680

[Hg] vs Month Participant \#20

PROJECT ID:HOHE SEGIEITAL AHALYSIS
AMALISIS: EHg/HAIR SANPLE 20

AMALYST: CITTERHAN/LASORSA
FILR f: HOMSEG2O

$\begin{gathered} \text { BATTELLLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMrin } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DITBGRATOR } \\ \text { SEOf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFB } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { WI g } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { VOL }(\mu \mathrm{L}) \\ & \text { AMALYEDD } \end{aligned}\right.$	$\left\|\begin{array}{c} \text { AMLYZED } \\ \text { WI } \end{array}\right\|$	ARSA	$\begin{gathered} \mathrm{ZHg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HERAM } \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
	\mid SCALP									
	SEPT									
	1006									
203	JUL	706	28J1491	0.0116	250	0.136	565	0.611	0.032	0.611
20b dup	JOH	709,707	28510191	0.0104	250	0.122	416	0.488	0.036	0.487
200	hay	708	28JM 91	0.0144	250	0.168	613	0.537	0.026	0.537

[Hg] vs Month Participant \#21

PROJECT ID:HONE SEGIRTTAL AHALYSIS
AMALYSIS: EBg/BAIR SANPLE 21

AHALYST: CITTERNAN/LASORSA
FILE f: MOHSEG21

$\begin{gathered} \text { BATYELLSB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { MinKI } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { MTEGRATOR } \\ \text { SERf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIO: } \\ \mathrm{WIg} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu) \\ A M N Y Z E D \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYZZD } \\ \text { WI Mg } \end{array}\right\|$	AREA	$\begin{gathered} \Sigma \mathrm{Zg} \\ {[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { VDL } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\underset{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}{\text { RISN }}$
	\|SCALP									
	SEPP									
21a	$\triangle 0 G$	711	28J1991	0.0066	250	0.077	591	1.127	0.056	1.127
21b	JUY	712	2851191	0.0053	250	0.062	472	1.100	0.070	1.100
21c	J0I	713	28JJF91	0.0053	250	0.062	501	1.174	0.070	1.174
21d	yay	714	28J11991	0.0040	250	0.047	304	0.891	0.093	0.891
21 e	APR	715	28JaK91	0.0049	250	0.057	375	0.923	0.076	0.923
218	HR	716	28J31191	0.0042	250	0.049	389	1.121	0.089	1.121
\| 219 dup	PEB	729,728	\| 28Jam91	0.0036	250	0.042	435	1.515	0.103	1.566

[Hg] vs Month Participant \#22

PROJECT ID:HONR SEGTBIITAL MALLYSIS
AMALYSIS: $\mathrm{ZHg} / \mathrm{EAIR}$ SAIPIR 22

MMALYST: CITTERHAN/LASORSA
PILE : : HOHSEG22

$\begin{gathered} \text { BMTELLLE } \\ \text { D } \end{gathered}$	$\left.\right\|_{\text {MOM }} ^{\text {SEG }}$	$\left\|\begin{array}{c} \text { IITBGRATOR } \\ \text { SEOf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAEE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESIIOM } \\ \text { ITI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { POL }(\mu) \\ \text { A1LLYEED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { AHLYZESD } \\ \text { WI Eg } \end{array}\right\|$	LREA	$\underset{[\mathrm{Bq}]_{\mathrm{Kg}}^{\mathrm{Eg} / \mathrm{g}}}{ }$	$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Ig}]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { MENA } \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCATP									
	SEPT									
	AOG									
\| 22a dup	JOLY	734,730	2814191	0.0057	250	0.067	1449	2.659	0.065	2.788
22 b	J015	731	2854191	0.0052	250	0.061	777	1.943	0.072	1.943
22 c	hay	732	28J4991	0.0046	250	0.054	548	1.520	0.081	1.520

[Hg] vs Month Participant \#23

PROJECT ID:HONR SECMEITTLL AHALYSIS
AHALYSIS: EHg/HAIR SARPLE 23

AMALYST: CITTERHAM/LASORSA
PILE \#: MOUSEG23

$\begin{aligned} & \text { BATIBLLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { Moint } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { IMTEERATOR } \\ \text { SERf } \end{gathered}\right.$		$\left\lvert\, \begin{gathered} \text { DIGBSIIOM } \\ \mathrm{Mr} \end{gathered}\right.$	$\left\|\begin{array}{l} \text { VOL (} \mu \mathrm{L}) \\ \text { ABLCYEED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYZED } \\ \text { MI } x g \end{array}\right\|$	AREA	$\stackrel{\mathrm{kgg}}{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Bg}] / \mathrm{gg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { MBL } \\ {[\mathrm{Hg}] \operatorname{lng} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPT									
	1006									
23a	JUII	739	\|3151191	0.0035	250	0.041	114	0.272	0.106	0.272
23b	J01	740	\|3151991	0.0050	250	0.058	154	0.299	0.074	0.299
23 c	HMY	742	\|3151991	0.0036	250	0.042	137	0.351	0.103	0.351
23d	APR	789	3171991	0.0039	250	0.046	197	0.467	0.095	0.467
23 e	Mar	790	\|3151991	0.0038	250	0.044	191	0.462	0.098	0.462
238	PEB	791	\|3154991	0.0044	250	0.051	203	0.429	0.085	0.429
239 dup	ת/II	806,792	\|31J1991	0.0044	250	0.051	232	0.501	0.085	0.490
23h	DSC	793	\|3151491	0.0037	250	0.043	237	0.610	0.101	0.610
$23 i$	100	794	\|3151991	0.0037	250	0.043	226	0.578	0.101	0.578
23 j	OCI	795	\|3154191	0.0036	250	0.042	276	0.745	0.103	0.745
23k	SEPT	799	\|3151991	0.0039	250	0.046	301	0.758	0.095	0.758
231	IDG	800	\|31.01991	0.0024	250	0.028	248	0.991	0.155	0.991
238	JULI	801	\|3151991	0.0034	250	0.040	311	0.902	0.109	0.902
23n	JVII	802	\|31/2191	0.0030	250	0.035	325	1.073	0.124	1.073
230	Hay	804	\|3151591	0.0035	250	0.041	358	1.022	0.106	1.022
23p	APR	805	\|3151.91	0.0029	250	0.034	324	1.106	0.128	1.106

[Hg] vs Month Participant \#24

PROJECT ID:MOHR SECGETITAL AMALYSIS
AMALYSIS: EHg/HAIR SANPLE 24

AHALYST: CITTERHAA/LASORSA
PILE f: HOHSEG24

$\begin{aligned} & \text { BAITEILLR } \\ & \text { ID } \end{aligned}$	$\left\|\begin{array}{c} \operatorname{SEG} \\ \operatorname{moning} \end{array}\right\|$	$\left\|\begin{array}{c} \text { IFTBGRATOR } \\ \text { SEQAI } \end{array}\right\|$	$\left.\right\|_{\text {DIFIE }} ^{\text {DIGESTIOM }}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { in } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { AMALYED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMLCYZED } \\ \mathrm{Wr} \mathrm{mg} \end{array}\right\|$	ARRA	$\stackrel{8 \mathrm{Bg}}{[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\begin{aligned} & \text { MRNA } \\ & {[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}} \end{aligned}$
	\|SCLIP									
	SEPT									
24a	$\triangle 0 \mathrm{G}$	819	315AF91	0.0048	250	0.056	656	1.478	0.078	1.478
24 b	JULI	820	3172991	0.0059	250	0.069	621	1.135	0.063	1.135
24.	JUI	821	3151491	0.0056	250	0.065	604	1.161	0.066	1.161
24 d	may	822	3172199	0.0063	250	0.074	633	1.085	0.059	1.085
24e	APR	823	31J1991	0.0049	250	0.057	476	1.029	0.076	1.029
$24 f$	HAR	824	3151591	0.0056	250	0.065	538	1.027	0.066	1.027
249	PSB	825	3174191	0.0051	250	0.060	504	1.051	0.073	1.051
24h	JMI	826	3171191	0.0053	250	0.062	637	1.298	0.070	1.298
241 dup	DEC	837,827	31421991	0.0048	250	0.056	646	1.455	0.078	1.487
$24 j$	100	828	3172191	0.0051	250	0.060	824	1.767	0.073	1.767
24k	OCI	829	31J2M91	0.0044	250	0.051	806	2.002	0.085	2.002
241	SEPT	830	3172191	0.0042	250	0.049	773	2.007	0.089	2.007
241	IVG	831	317291	0.0045	250	0.053	949	2.320	0.083	2.320
2418	JULI	832	3172191	0.0040	250	0.047	993	2.735	0.093	2.735
240	JIII	833	3171191	0.0040	250	0.047	970	2.670	0.093	2.670
24p	H14	834	3151991	0.0040	250	0.047	1022	2.818	0.093	2.818
24 q	APR	835	3151991	0.0033	250	0.039	1161	3.896	0.113	3.896
245	Mar	836	31Jam91	0.0030	\| 250	0.035	\| 1030	3.788	0.124	3.788

[Hg] vs Month Participant \#25

PROUECT ID:MOHR SBCEBTITAL AWALYSIS
MMLYSIS: EHg/HILR SAMPLE 25

AIALYST: CTTTERPHAN/LASORSA
PILR f: MOHSEG25

$\begin{gathered} \text { BATTELLES } \\ \text { DD } \end{gathered}$	$\left.\right\|_{\text {MOM }} ^{\text {SEI }}$	$\left\|\begin{array}{c} \text { IITBERATORR } \\ \text { SERf } \end{array}\right\|$	DIGESIIOII DAFE	$\left\|\begin{array}{c}\text { DIGRSIIOM } \\ \text { nig }\end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\beta 1) \\ \text { AMSLYED } \end{array}\right\|$		ARSA	$\underset{[\mathrm{Eg}] \mathrm{Hg} / \mathrm{g}}{ }$	$\left\|\begin{array}{c} \mathrm{HDLL} \\ {[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}} \end{array}\right\|$	$\begin{array}{\|c\|c\|c\|c\|} \text { HRAR } \end{array}$
	\mid SCALP									
	SEPP									
	${ }^{1} 06$									
25a	JULI	853	\|815909	0.0049	250	0.057	773	1.901	0.076	1.901
256	JUII	854	\|854091	0.0042	250	0.049	552	1.560	0.089	1.560
\| 25 c dup	Hay	869,855	\|825891	0.0035	250	0.041	371	1.227	0.106	1.250
250	19P	856	\|875991	0.0038	250	0.044	352	1.068	0.098	1.068
25 e	Mar	857	\|818991	0.0040	250	0.047	363	1.049	0.093	1.049
255	PB8	858	\|875091	0.0035	250	0.041	385	1.277	0.106	1.277
259	JıI	859	\|818891	0.0022	250	0.026	303	1.566	0.169	1.566
250	DIC	860	1825301	0.0029	250	0.034	330	1.304	0.128	1.304
$25 i$	100	861	\|82F091.	0.0023	250	0.027	327	1.628	0.162	1.628
$25 j$	OCT	862	1815691	0.0019	250	0.022	287	1.708	0.196	1.708
25k	SEPT	863	\|812091	0.0017	250	0.020	231	1.865	0.219	1.865
251 dup	ING	870,864	\|875991	0.0016	250	0.019	252	1.755	0.233	1.775
250	JUL	865	\|854891	0.0019	250	0.022	259	1.524	0.196	1.524
25n	Jus	866	\|814891	0.0013	250	0.015	232	1.969	0.286	1.969
250	Hily	867	87F991	0.0013	250	0.015	226	1.911	0.286	1.911
25p	$\triangle P 8$	868	\|8FEB91	0.0010	250	0.012	220	2.409	\| 0.372	2.409

[Hg] vs Month Participant \#26

PROJECT ID:MOHE SEGTENTAL MMALYSIS
AHALYSIS: ZHg/HAIR SAIPLR 26

ARALYST: CITTERPAA/LASORSA
PILR \{: MOHSEG26

$\begin{gathered} \text { BATTELLIE } \\ \text { DD } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOHirit } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITHERATOR } \\ \text { SER } \end{array}\right\|$	$\begin{gathered} \text { DIGESHIOM } \\ \text { DAIE } \end{gathered}$	$\left\|\begin{array}{c} \text { digesicion } \\ \text { in g } \end{array}\right\|$	$\left\|\begin{array}{l} \text { POL }(\mu 1) \\ \text { ALNLYESD } \end{array}\right\|$	$\left\|\frac{\text { AIALYEED }}{\text { IT }}\right\|$	AREA	$\text { [} \mathrm{Eq}] \mathrm{mg} / \mathrm{g}$	$[\mathrm{Hid}] \mathrm{Hg} / \mathrm{g}$		
	\|SCLLP										
	SEPT										
26a dup	A0G	915,887	85×891	0.0059	250	0.069	593	1.042	0.063	0.989	
26 b	JULY	889	$8 \mathrm{LCP91}$	0.0058	250	0.068	461	0.805	0.064	0.805	
26 C	JOF	890	878691	0.0056	250	0.065	406	0.727	0.066	0.727	
260	HMY	891	875991	0.0060	250	0.070	469	0.793	0.062	0.793	
264	APR	892	876591	0.0066	250	0.077	543	0.843	0.056	0.843	
$26 \pm$	mar	893	87699	0.0065	250	0.076	603	0.957	0.057	0.957	
26 g	PBB	894	854891	0.0082	250	0.096	818	1.044	0.045	1.044	
26h	JגI	895	876391	0.0056	250	0.065	658	1.218	0.066	1.218	
\| 261 dup	DBC	916,896	856891	0.0064	250	0.075	790	1.293	0.058	1.253	
26j	107	897	858891	0.0061	250	0.071	656	1.114	0.061	1.114	
263	OCI	898	851891	0.0062	250	0.073	689	1.154	0.060	1.154	
261	SEPT	899	87691	0.0069	250	0.081	723	1.091	0.054	1.091	
261	S0G	917	815891	0.0058	250	0.068	586	1.047	0.064	1.047	
26n	JULI	918	858991	0.0056	250	0.065	626	1.161	0.066	1.161	
260	Ju1	919	815391	0.0047	250	0.055	474	1.034	0.079	1.034	
$26 p$	Hay	920	878391	0.0048	250	0.056	513	1.100	0.078	1.100	
269	APR	921	873891	0.0043	250	0.050	438	1.040	0.087	1.040	
26 r	HAR	922	878891	0.0041	250	0.048	462	1.154	0.091	1.154	
26s	1 PEB	923	875891	\| 0.0046		\| 2501	10.054	469	1.045	0.081	\| 1.045

PROJECT ID:	:MOVR SEE	germatal amat	UYSIS		AMALYST:	CITTERHAN/	/Lasorsa			
AMALYSIS:	EEq/EAIR	IR SAPPLE 26			PILP \$:	HOHSEG26				
$\begin{aligned} & \text { BAITELLES } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMITH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SER } \end{array}\right\|$	$\left.\right\|_{\text {DIITB }} ^{\text {DIGESTIOM }}$	$\left\lvert\, \begin{gathered} \text { DIGBSTIOM } \\ \text { in } \\ g \end{gathered}\right.$	$\left\|\begin{array}{\|l\|l\|} \left\lvert\, \begin{array}{l} \text { VOL } \end{array}(\beta 1)\right. \\ \text { ALALYEED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYERD } \\ \mathrm{WI} \mathrm{gg} \end{array}\right\|$	ARBA	$\stackrel{2 \mathrm{Hg}}{[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Bg}] \mathrm{\mu g} / \mathrm{g}} \end{array}\right\|$	$\underset{[\mathrm{HR}]_{\mathrm{Hg}}^{\mathrm{Mg} / \mathrm{g}}}{ }$
$26 t$	J 1	924	878891	0.0041	250	0.048	458	1.143	0.091	1.143
264	DRC	925	$8 \mathrm{PKB91}$	0.0036	250	0.042	450	1.278	0.103	1.278
26v	H00	926	$87 \mathrm{KB91}$	0.0041	250	0.048	492	1.233	0.091	1.233

[Hg] vs Month Participant \#27

PROURCT ID:MONB SEGTENTAL ANALYSIS

AHALYSIS: $2 \mathrm{Hg} /$ HAIR SAMPLE 27

ANALYST: CITTERUAH/LASORSA
FILE \&: NOHSEG27

$\left\|\begin{array}{c} \text { BATTBLLB } \\ \text { DD } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HOMITH } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { INTEGRATOR } \\ \text { SEQ } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESIIOH: } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGBSTIOM } \\ \text { in } \end{array}\right\|$	VOL ($\mu \mathrm{L}$) AMALYEKI	$\left\|\begin{array}{c} \text { AHALYZED } \\ \text { WI } \mathrm{Eg} \end{array}\right\|$	AREA	$\begin{gathered} \text { zHg } \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \operatorname{HDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { HBAR } \\ {[\mathrm{Bq}]_{\mu \mathrm{g} / \mathrm{g}}} \end{gathered}$
	SCALP									
	SEPT									
27a dup	10.6	952,932	12PGB91	0.0058	250	0.068	292	0.494	0.064	0.511
276	JULY	933	12F8691	0.0057	250	0.067	300	0.514	0.065	0.514
27c	JuI	934	12P5691	0.0058	250	0.068	278	0.464	0.064	0.464
27d	HLT	937	12FEB91	0.0061	250	0.071	272	0.430	0.061	0.430
27e	APR	938	12FR691	0.0050	250	0.058	220	0.413	0.074	0.413
27 f dup	Har	954,953	12PF691	0.0061	250	0.071	257	0.408	0.061	0.420
279	PIB	955	12P6391	0.0049	250	0.057	232	0.454	0.076	0.454
27 m	JגI	956	12 F 6891	0.0048	250	0.056	241	0.483	0.078	0.483
27 i	DSC	957	12FE391	0.0043	250	0.050	226	0.502	0.087	0.502
27j	100	958	12 F 5691	0.0046	250	0.054	259	0.546	0.081	0.546
27k		959	12F[391	0.0041	250	0.048	243	0.571	0.091	0.571
271	SSPR	960	1214991	0.0046	250	0.054	301	0.644	0.081	0.644
27	\| 406	961	1218391	0.0029	250	0.034	302	1.026	0.128	1.026

[Hg] vs Month Participant \#28

PROJECT ID: NOHE SEGIBTRAL ANALYSIS
ANALYSIS: $\mathrm{ZHg} /$ HAIR SAMPLE 28

ANALYST: CITTERYAH/LASORSA
FILE \ddagger : MOHSEG28

$\begin{array}{\|c} \text { BATYELLEB } \\ \text { ID } \end{array}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { MONFI } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { WI g } \end{array}\right\|$	VOL ($\mu \mathrm{I}$) AMALYZED	$\left\|\begin{array}{l} \text { AMALYZED } \\ \text { Win } \\ \hline 1 \end{array}\right\|$	ARRA	$\underset{[\mathrm{Hg}]}{\mathrm{ZHg} / \mathrm{g} / \mathrm{g}}$	$\left\|\begin{array}{c} \text { MDL } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { KERM } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPT									
	106									
28a	July	1246	14PEB91	0.0088	250	0.103	699	0.681	0.042	0.681
28b	Jus	1247	1478891	0.0071	250	0.083	682	0.822	0.052	0.822
28 C	Hay	1249	1478891	0.0070	250	0.082	830	1.033	0.053	1.033
28d dup	APS	$\mid 1265,1250$ \|	14 Pr 891	0.0065	250	0.076	1004	1.365	0.057	1.386

[Hg] vs Month Participant \#29

PROJECT ID: HONR SEGEBTIAL AMALYSIS
AHALYSIS: $2 \mathrm{Hg} / \mathrm{EALR}$ SARPLE 29

AMALYST: CITTERMAN/LASORSA
PILB \&: YOHSEG29

$\begin{gathered} \text { BATTEILE } \\ \text { DD } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMII } \end{gathered}\right.$	\mid ITHEGRATOR SEQf	DIGESTIOH DATE	DIGBSTIOM In 1	VOL ($\mu \mathrm{L}$) AMLLYZED	$\left\|\begin{array}{c} \text { AHALYZED } \\ \mathrm{mIg} \end{array}\right\|$	ARRA	$\underset{[\mathrm{Eg}]}{\mathrm{zg} / \mathrm{g} / \mathrm{g}}$	$\begin{gathered} \text { HDL } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { HERA } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SIPP									
	$\triangle \mathrm{AO}$									
29a	JULI	962	12 F [691	0.0065	250	0.076	508	0.797	0.057	0.797
29b	J0:	963	12 FW 891	0.0067	250	0.078	468	0.709	0.056	0.709
29C dup	HAY	966,964	1278891	0.0062	250	0.073	513	0.844	0.060	0.824
298	APR	965	1245391	0.0062	250	0.073	453	0.741	0.060	0.741
298	HaR	967	1276391	0.0063	250	0.074	466	0.751	0.059	0.751
29 f	IEB	968	12P6891	0.0060	250	0.070	475	0.805	0.062	0.805
299 dup	JIM	979,969	$12 \mathrm{~F} \times 991$	0.0056	250	0.065	472	0.856	0.066	0.885
29n	DSC	970	12P4891	0.0051	250	0.060	479	0.955	0.073	0.955
291	100	971	1276991	0.0052	250	0.061	508	0.996	0.072	0.996
29j	OCP	974	124:091	0.0049	250	0.057	575	1.204	0.076	1.204
29k	SEPP	975	1215891	0.0036	250	0.042	590	1.683	0.103	1.683
291	106	976	1218091	0.0028	250	0.033	549	2.008	0.133	2.008
298 dup	\| JUII	978,977	1214891	0.0025	250	0.029	647	2.669	0.149	2.596

HOTE: SANPLE 29i WAS TRAMSFERSD TO AHOTEBR VLAL AFTER TER ADDITIOM OR BRCl

[Hg] vs Month Participant \#30

PROJECT ID:HOHE SECHETTAL AHALYSIS
AMALYSIS: EHg/EAIR SALPLE 30

AMALYST: CTTTERHAH/LASORSA
PILE 7: MOUSEG3O

	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HOMTH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left.\right\|_{\text {DITESII }} ^{\text {DIGMI }}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { in } \\ \mathrm{g} \end{array}\right\|$	VOL ($\mu \mathrm{ll}$) MaLYZED	$\left\|\begin{array}{c} \text { AHALYZED } \\ \text { WI } \mathrm{gg} \end{array}\right\|$	AREA	$\underset{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{EHg}}$	$\left\lvert\, \begin{aligned} & \mathrm{HDL} \\ & {[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \text { HRAM } \\ {[\mathrm{Hg}] \mathrm{gg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPT									
	AOG									
30a dup	JULY	\|1264,1251	1478691	0.0076	250	0.089	711	0.804	0.049	0.789
30b	J0w	1252	1478891	0.0081	250	0.095	747	0.796	0.046	0.796
30 C	H HY	1253	14PE891	0.0071	250	0.083	673	0.810	0.052	0.810
$30 d$	APR	1254	14 P6B91	0.0062	250	0.073	641	0.879	0.060	0.879
300	HaR	1255	1478391	0.0064	250	0.075	976	1.345	0.058	1.345
$30 f$	PBB	1256	14 PR 891	0.0055	250	0.064	1249	2.034	0.068	2.034
309	J21	1257	1478991	0.0043	250	0.050	937	1.917	0.087	1.917
30h dup	DSC	\|1298,1258	14PE391	0.0040	250	0.047	1262	2.879	0.093	2.822
30i	100	1259	14P3891	0.0036	250	0.042	1359	3.396	0.103	3.396

[Hg] vs Month Participant \#31

PROJECT ID：MOHE SEGIRNTAL AMALYSIS
AMALYSIS：Σ Eg／EAIR SAMPLE 31

ANALYST：CITTERUAN／LASORSA
PILE \＃：MOHSEG31

$\begin{gathered} \text { BATTBLLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONII } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITTEGRITOR } \\ \text { SEQ } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESTION } \\ \text { DAIE } \end{array}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{WI} \mathrm{~g} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{L}) \\ \text { AMALYZDD } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { AMALYZED } \\ & \hdashline ⿴ 囗 十 \end{aligned}\right.$	AREA	$\begin{gathered} \text { KHg } \\ {[\mathrm{Eg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}} \end{array}\right\|$	$\left\{\begin{array}{c} \text { MERM } \\ {[\mathrm{Eq}][\mathrm{mg} / \mathrm{g}} \end{array}\right.$
	｜SCALP									
	SEPT									
	${ }^{1} 0 \mathrm{G}$									
31a	JULY	1266	14PR891	0.0064	250	0.075	1053	1.459	0.058	1.459
31b	JUII	1267	14PEB91	0.0053	250	0.062	921	1.527	0.070	1.527
31c	Hay	1268	14PEB91	0.0053	250	0.062	945	1.569	0.070	1.569
31d	APR	1269	14P8891	0.0046	250	0.054	727	1.361	0.081	1.361
31 e	MAR	1270	14 PB 891	0.0050	250	0.058	731	1.259	0.074	1.259
317	FKB	1271	1478891	0.0042	250	0.049	777	1.603	0.089	1.603
319 dup	Jan	｜1273，1272	1478891	0.0045	250	0.053	731	1.399	0.083	1.422
314	DEC	1274	14 Pr 891	0.0040	250	0.047	678	1.449	0.093	1.449
31 i	1007	1275	14\％391	0.0043	250	0.050	749	1.504	0.087	1.504
31j	OCT	1276	1474391	0.0040	250	0.047	755	1.631	0.093	1.631
31k	SEPT	1277	147691	0.0032	250	0.037	667	1.779	0.116	1.779
311	106	1278	1415991	0.0030	250	0.035	751	2.162	0.124	2.162
｜ 318 dep	JUE	［1299，1279	1414891	0.0029	250	0.034	1024	3.205	0.128	3.038
31n	Jun	1290	1474891	0.0029	250	0.034	966	3.019	0.128	3.019
310	｜May	1291	1478391	0.0024	250	0.028	1156	4.386	0.155	4.386

[Hg] vs Month Participant \#32

PROTECT ID:MONB SECIEMTAL AMALYSIS
AMALYSIS: IHg/HAIR SAHPLE 32

ANALYST: CITYERNAH/LASORSA
PLLE \#: MOHSEG32

$\begin{gathered} \text { BATTRLLLS } \\ \text { DD } \end{gathered}$	$\left.\right\|_{\text {MOMITH }} ^{\text {SEG }}$	$\left\|\begin{array}{c} \text { IMTEGRATOR } \\ \text { SER } \end{array}\right\|$	$\left.\right\|_{\text {DIITB }} ^{\text {DIGESIIOM }}$	$\left\|\begin{array}{c} \text { DIGESTIOZ } \\ \text { wr } \end{array}\right\|$		$\left\|\begin{array}{l} \text { AHALYZZDD } \\ W I \mathrm{Ig} \end{array}\right\|$	AREA	$\underset{[\mathrm{Eg}] \mathrm{\mu g} / \mathrm{g}}{\mathrm{Zgg}}$	$\left\lvert\, \begin{gathered} \mathrm{YDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { YRAN } \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPP									
32a	ADG	1300	20 Fr891	0.0079	250	0.092	1366	1.585	0.047	1.585
32b dup	JULI	\|1314,1301	2016891	0.0085	250	0.099	1613	1.745	0.044	1.790
32C	Jun	1302	\|20P1691	0.0093	250	0.109	1683	1.665	0.040	1.665
32d	HiY	1303	\|20prse9	0.0090	250	0.105	1006	1.018	0.041	1.018
32e	APS	1304	\|20pre91	0.0081	250	0.095	723	0.805	0.046	0.805
327	ImR	1305	\|2017391	0.0063	250	0.074	572	0.812	0.059	0.812
329	FXB	1306	\|2015691	0.0074	250	0.087	660	0.802	0.050	0.802
32h dup	511	\|1315,1307	\|201F391	0.0065	250	0.076	627	0.866	0.057	0.874
32i	DSC	1308	\|2018691	0.0053	250	0.062	608	1.028	0.070	1.028
32j	108	1309	\|2014891	0.0046	250	0.054	573	1.114	0.081	1.114
32k	OCT	1310	\|2017891	0.0045	250	0.053	598	1.190	0.083	1.190
321	SEPT	\| 1311	\|20188991	\| 0.0032	250	$\mid 0.037$	471	1.304	0.116	1.304

[Hg] vs Month

 Participant \#33

PROJECT ID:MOHR SEGIETIAL ANALYSIS
AHALYSIS: EHg/yAIR SAMPLE 33

ANALYST: CIITIERHAN/LASORSA
FILE f: HOHSEG33

[Hg] vs Month Participant \#34

Month

PROJECT ID:HONE SEGIEHTAL AIMLYSIS
AMALYSIS: KHg/HAIR SAMPLR 34

AMALYST: CITTERUAH/LASORSA
PILE f: HOUSEG34

$\begin{gathered} \text { BATTELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { MOMA } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IHIEGRATOR } \\ \text { SEQt } \end{array}\right\|$	$\left\lvert\, \begin{array}{\|c} \text { DIGRSIIOM } \\ \text { DAIE } \end{array}\right.$	$\left\|\begin{array}{c} \text { DIGBSTIOM } \\ \mathrm{FI} \mathrm{~g} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { VOL (} \mu 1) \\ & \left\|\begin{array}{ll} 1 / 2 L Y E D D \end{array}\right\| \end{aligned}\right.$	$\left\|\begin{array}{l\|l\|} \text { AMALYZED } \\ \text { Wi } \end{array}\right\|$	AREL	$\begin{gathered} \Sigma \mathrm{Eg} \mathrm{~g} \\ {[\mathrm{Eg}] \mathrm{pg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \operatorname{MDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	
$34 t$	DEC	1353	$20 \mathrm{PRB91}$	0.0040	250	0.047	1042	2.403	0.093	2.403
340	100	1356	$20 \mathrm{PrB91}$	0.0036	250	0.042	1089	2.793	0.103	2.793
347	OCT	1357	2078891	0.0036	250	0.042	997	2.552	0.103	2.552
3417	SEPT	1358	$20 \mathrm{Pr89} 1$	0.0036	250	0.042	959	2.452	0.103	2.452
34 x	20G	1359	2018391	0.0040	250	0.047	1125	2.598	0.093	2.598
34y	JUL	1360	2076991	0.0037	250	0.043	1007	2.508	0.101	2.508
342	Jun	1361	2018391	0.0038	250	0.044	1175	2.859	0.098	2.859

[Hg] vs Month Participant \#35

PROJECT ID:HOTR SBGETTAL MNALYSIS
AMALYSIS: EBg/HAIR SAMPLE 35

AMALYST: CITTRRHAN/LASORSA
PILE f: MOHSEG35

$\begin{gathered} \text { BATYELLSR } \\ \text { DD } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMIH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITHEGRATOR } \\ \text { SEQA } \end{array}\right\|$	$\begin{gathered} \text { DIGESITOM } \\ \text { DAIE } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{me} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { ABALYESD } \end{array}\right\|$	$\left\|\begin{array}{l} \text { allalyzED } \\ \text { WI Eg } \end{array}\right\|$	AREA	[Eq]	$\left\|\begin{array}{c} \operatorname{HDL} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{HBRM} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SIEPT									
35a dup	$\triangle \mathrm{A} G$	\|1413,1399	\|41:1891	0.0074	250	0.087	472	0.572	0.050	0.559
35b	JULY	1400	\|410R891	0.0067	250	0.078	495	0.664	0.056	0.664
35c	JUS	1401	\|414R21	0.0066	250	0.077	463	0.628	0.056	0.628
350	hay	1402	\|414R291	0.0063	250	0.074	499	0.712	0.059	0.712
35	APR	1403	\|414R21	0.0071	250	0.083	579	0.738	0.052	0.738
355	NAR	1404	\|414821	0.0064	250	0.075	667	0.948	0.058	0.948
359	PEB	1405	\|414891	0.0052	250	0.061	681	1.193	0.072	1.193
35h	JMI	1406	\|414R291	0.0058	250	0.068	829	1.310	0.064	1.310
35i	DEC	1407	\| $414 \mathrm{NR91}$	0.0042	250	0.049	784	1.708	0.089	1.708
\| 35j dup	1807	\|1414,1408	\|410891	0.0039	250	0.046	822	1.932	0.095	1.845
35k	OCT	1411	\| 4Hap91	0.0038	250	0.044	1061	2.576	0.098	2.576
351	SEPI	1412	\| 4apal	0.0033	250	0.039	1126	3.153	10.113	3.153

[Hg] vs Month Participant \#36

PROJECT ID:KOHR SECHETTLL ANALYSIS
ARALYSIS: ZHg/HALR SAMPLR 36

AHALYST: CITTERMAN/LASORSA
PILE I: HOHSEG36

$\begin{gathered} \text { BATTELLDB } \\ \text { DD } \end{gathered}$	$\left.\right\|_{\text {HOMR }} ^{\text {SRG }}$	$\left\|\begin{array}{c} \text { IITIECRATOR } \\ \text { SERA } \end{array}\right\|$	$\left.\right\|_{\text {DIGESIIOI }} ^{\text {DAFE }}$	$\left\|\begin{array}{c} \text { DIGBSIIOM } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { AMLYZED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AHALYZED } \\ \text { TII } \end{array}\right\|$	AREA	$\underset{[\mathrm{Hg}] \mathrm{Kg} / \mathrm{g} / \mathrm{g}}{\mathrm{EH}}$	$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Hg}]} \end{array}\right\|$	$\begin{gathered} \text { KRAR } \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$
	\|scale									
	SEPP									
$36 a$	206	1415	410891	0.0061	250	0.071	224	0.310	0.061	0.310
36b	JULY	1416	414R91	0.0056	250	0.065	196	0.290	0.066	0.290
36c dup	JU1	\|1421,1417	414891	0.0048	250	0.056	199	0.344	0.078	0.350
36 d	Hay	1418	4uapel	0.0041	250	0.048	209	0.426	0.091	0.426
360	APS	1419	410891	0.0036	250	0.042	203	0.469	0.103	0.469
366	\| MAR	1420	420291	0.0020	250	0.023	192	0.793	0.186	0.793

[Hg] vs Month Participant \#37

PROJECI LD:MOTR SBGIEITTAL AMALYSIS
AMLLYSIS: EHg/EAIR SANPLE 37

AMALYST: CTTTERUAN/LASORSA

PILE \ddagger : BOHSEG37

$\begin{gathered} \text { BATYELLB } \\ \text { DD } \end{gathered}$	$\left.\right\|_{\text {MOB }} ^{\text {SBI }}$	$\left\|\begin{array}{c} \text { IITBGRATOR } \\ \text { SEOA } \end{array}\right\|$	$\left.\right\|_{\text {DIGRSITOM }}$	$\left\|\begin{array}{c} \text { DIGBSTIOM } \\ \mathrm{m} \\ \mathrm{~m} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ A B A C Y E D D \end{array}\right\|$		AREA	$\begin{gathered} \mathrm{EBg} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { YDL } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HRAM } \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCLIP									
	SEPT									
	SOG									
37a	JULI	1426	540891	0.0094	250	0.110	418	0.396	0.040	0.396
37 b	JUI	1427	54, RR91	0.0110	250	0.129	480	0.391	0.034	0.391
37c dup	M M	\|1471,1428	5HAR91	0.0097	250	0.113	425	0.377	0.038	0.388
37d	APR	1441	541891	0.0100	250	0.117	458	0.397	0.037	0.397
37e	Mar	1442	501491	0.0085	250	0.099	429	0.435	0.044	0.435
37 f	FKB	1443	572P91	0.0089	250	0.104	594	0.590	0.042	0.590
379	JAII	1444	504R91	0.0091	250	0.106	647	0.632	0.041	0.632
37h	DSC	1445	5014P91	0.0076	250	0.089	555	0.642	0.049	0.642
37i	100	1446	514291	0.0052	250	0.061	457	0.761	0.072	0.761
\| 37j dup	OCT	\|1472,1447	5:0.091	0.0062	250	0.073	577	0.821	0.060	0.764
37k	SEPP	1448	51aR91	\| 0.0045	250	0.053	558	1.091	0.083	\| 1.091

[Hg] vs Month

Participant \#38

PROTBCI ID:HONR SBGEMTAL AHALYSIS
AHALYSIS: $8: g / E A I R ~ S A M P L R ~ 38$

AHALYST: CITTERMAN/LASORSA
PILB : : HONSEG38

BATIGLLE ID	$\begin{gathered} \text { SEG } \\ \text { Hoint } \end{gathered}$	\| IITBGRATOR	$\left\lvert\, \begin{gathered} \text { DIGESIIOA } \\ \text { DAIE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { WL } g \end{gathered}\right.$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{l}) \\ \text { ANLIED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AHALYEED } \\ \text { WI Eg } \end{array}\right\|$	ARRA	$\underset{[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}}{\mathrm{E}}$	MDL [Bg] Hg / g	NRKH [Bg$] / \mu \mathrm{g} / \mathrm{g}$
	SCALP									
	SRPI									
388 dup	LOG	\|1485,1449	5112991	0.0090	250	0.105	919	0.890	0.041	0.916
38b	JULI	1450	511291	0.0081	250	0.095	610	0.667	0.046	0.667
38C	Ju:	1451	514291	0.0073	250	0.085	657	0.800	0.051	0.800
38d	NAI	1452	501281	0.0053	250	0.062	555	0.921	0.070	0.921
38 e	APR	1453	511291	0.0042	250	0.049	507	1.055	0.089	1.055
388	HR	1454	54nP91	0.0035	250	0.041	628	1.591	0.106	1.591

[Hg] vs Month

 Participant \#39

PROTECT ID:HONE SRGHETAL AKALYSIS
AMALYSIS: ZHg/BAIR SAIPLE 39

AHALYST: CITTERNAN/LASORSA
PILR : MOMSEG39

$\begin{gathered} \text { BATHELLLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { Honint } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IFIEGRATOR } \\ \text { SER\& } \end{array}\right\|$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DATR } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGESTIOH: } \\ \mathrm{g} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL (} \mu \mathrm{I}) \\ \text { AMNLYED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYLZED } \\ \text { WI Eg } \end{array}\right\|$	ARES	$\underset{[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{EH}}$	$\left\|\begin{array}{c} \mathrm{VDL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\stackrel{\text { RBAN }}{[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}}$
	\|SCALP									
	SEPT									
	A0G									
39a	July	1492	6Har91	0.0057	. 250	0.067	544	0.802	0.065	0.802
39b	JWI	1493	G4aR91	0.0055	250	0.064	491	0.744	0.068	0.744
398 dup	HMY	\|1515,1494	6uar91	0.0047	250	0.055	401	0.697	0.079	0.684
398	APR	1495	guapl	0.0051	250	0.060	408	0.655	0.073	0.655
39	HAR	14%	61ap91	0.0054	250	0.063	414	0.628	0.069	0.628
39 f	FEB	1497	612891	0.0043	250	0.050	338	0.629	0.087	0.629
399	J31	1498	6ap91	0.0037	250	0.043	341	0.738	0.101	0.738
39h	DEC	1499	6aral	0.0037	250	0.043	336	0.726	0.101	0.726
391	300	1500	G1ap91	0.0035	250	0.041	307	0.692	0.106	0.692
39j	OCT	1501	6un891	0.0036	250	0.042	292	0.635	0.103	0.635
39k	SEPT	1502	641891	0.0032	250	0.037	269	0.650	0.116	0.650
391	406	1505	6ap91	0.0035	250	0.041	285	0.635	0.106	0.635
394	SULV	1506	64891	0.0022	250	0.026	264	0.924	0.169	0.924
39n dup	JuI	\|1516,1507	Gup91	0.0027	250	0.032	232	0.646	0.138	0.632
390	hay	1508	6uar91	0.0024	250	0.028	284	0.923	0.155	0.923
39p	APR	1509	6HAR91	0.0025	250	0.029	253	0.774	0.149	0.774

[Hg] vs Month

 Participant \#40

PROJECT ID:HOHR SEGIEMAL AMALYSIS
AHALYSIS: $\Sigma \mathrm{Hg} / \mathrm{HAIR}$ SAMPLE 40

AMALYST: CITTERUAT/LASORSA
PILS f: HOISEG40

$\begin{gathered} \text { BMTIELLLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HONRI } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGSSIIOM } \\ \text { DATB } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { digrsitom } \\ \text { min } \end{array}\right\|$	YOL ($\mu 1$) ALELYESD	$\left\|\begin{array}{c} \text { AWLYEZED } \\ \text { WI } \end{array}\right\|$	ARKA	$\underset{[\mathrm{Bg}]}{\mathrm{EHg} / \mathrm{gg}}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] \mathrm{gg} / \mathrm{g}} \end{gathered}\right.$	$\underset{\text { HiRAN }}{[\mathrm{Bq}] \mu \mathrm{g} / \mathrm{g}}$
	\|SCALP									
	SEPT									
40a	20 E	1510	614891	0.0091	250	0.106	943	0.899	0.041	0.899
40 b	JULI	1511	64AP91	0.0088	250	0.103	1005	0.994	0.042	0.994
40c dup	Jum	\|1517,1512	6uAR91	0.0089	250	0.104	819	0.793	0.042	0.792
400	\| May	1513	6HAR91	0.0053	250	0.062	465	0.727	0.070	0.727

[Hg] vs Month Participant \#41

PROJECT ID: HONR SBGTENTAL ANALYSIS
AHALYSIS: EHg/HAIR SAMPLS 41

AMALYST: CITTRRRMI/LLASORSA
PILR : : HOMSEGA1

$\begin{gathered} \text { BATTELLB } \\ \text { ID } \end{gathered}$	$\left.\right\|_{\text {MOMTH }}$	$\left\|\begin{array}{c} \text { IVTEGRAIOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIO } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{WI} \mathrm{~g} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { VOL }(\mu \mathrm{l}) \\ & \text { ALALYEDD } \end{aligned}\right.$	$\left\|\begin{array}{c} \text { ALALYEED } \\ \text { WI Eg } \end{array}\right\|$	AREA	$\stackrel{28 \mathrm{Bg}}{[\mathrm{gq}] \mathrm{mg} / \mathrm{g}}$	$\left\|\begin{array}{l} \mathrm{MDL} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{array}\right\|$	$\begin{array}{\|c} \text { RIBAK } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}$	
	\|SCNLP										
	SEPT										
	106										
41a	JUI	1531	6unpe1	0.0067	250	0.078	785	0.992	0.056	0.992	
41b	JU1	1532	6up91	0.0060	250	0.070	920	1.309	0.062	1.309	
41c	H HI	1535	64ar91	0.0071	250	0.083	832	0.995	0.052	0.995	
41d	APR	1536	64ar91	0.0081	250	0.095	1053	1.116	0.046	1.116	
41e dup	Har	\|1558,1537	610891	0.0067	250	0.078	1128	1.449	0.056	1.443	
417	PrB	1538	6ap91	0.0066	250	0.077	1179	1.540	0.056	1.540	
419	JaII	1539	6ap91	0.0071	250	0.083	1529	1.871	0.052	1.871	
413	DEC	1540	61ap91	0.0057	250	0.067	1486	2.263	0.065	2.263	
41 i	130	1541	$6{ }^{1} 1881$	0.0056	250	0.065	1471	2.280	0.066	2.280	
41)	OCT	1542	64ap91	0.0055	250	0.064	1538	2.430	0.068	2.430	
412	SEPT	1545	64ap91	0.0059	250	0.069	1708	2.522	0.063	2.522	
411	$\triangle A O G$	1546	641491	0.0049	250	0.057	1673	2.973	0.076	2.973	
418	JULI	1547	GUP91	0.0048	250	0.056	1653	2.998	0.078	2.998	
410	J01	1548	gand	0.0045	250	0.053	1369	2.635	0.083	2.635	
410	HAY	1549	6Hap91	0.0044	250	0.051	1368	2.693	0.085	2.693	
41p dup	APR	\|1559,1550		64R91	0.0040	250	0.047	761	1.609	0.093	1.616
419	\| MAR	1552	61ar91	0.0037	250	0.043	1063	2.467	0.101	2.467	
415	1 PEB	\| 15531	\| 6Har91	10.0044	\| 250		10.051	1014	1.975	0.085	1.975

PROJECT ID:HONE SEGIEMAL AHALYSIS

AMALYSIS: EHg/HALR SANPLS 41

ANALYST: CITTERHAH/LASORSA
FILR f: MOHSEG4

$\begin{gathered} \text { BAFTBLLS } \\ \text { ID } \end{gathered}$	$\begin{gathered} \text { SRG } \\ \text { Howriil } \end{gathered}$	$\begin{array}{\|c} \text { IITEGRATOR } \\ \text { SEO } \end{array}$	$\begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGRSIIOM } \\ \text { IT } g \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{VOL}(\beta 1) \\ \text { ABALYZBD } \end{array}\right\|$		ARBA	$\begin{gathered} \sum H g \\ {[H q] \mu g / g} \end{gathered}$		$\left\lvert\, \begin{gathered} \text { MRAN } \\ {[\mathrm{Hg}]_{\mu \mathrm{H}} / \mathrm{g}} \end{gathered}\right.$
41s	J4.	1554	671R21	0.0038	250	0.044	851	1.904	0.098	1.904
41 t	DSC	1555	64ar91	0.0043	250	0.050	887	1.758	0.087	1.758
414	1807	1556	6412891	0.0039	250	0.046	740	1.602	0.095	1.602
41v	$0 C_{1}$	1557	6unP91	0.0031	250	0.036	652	1.762	0.120	1.762

[Hg] vs Month Participant \#42

PROJECT ID:HONR SBCHIBITAL AHALYSIS

ANALYSIS: EHg/HAIR SAKPLE 42

ANALYST: CITTERHAN/LASORSA
PILE \&: MOHSEG42

$\begin{gathered} \text { BATTELLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONTH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITIEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESTIOM } \\ \text { DAIEB } \end{array}$	$\left\|\begin{array}{c} \text { DIGESTION } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{L}) \\ \text { ABALYEDD } \end{array}\right\|$		ARRA	$\text { [} \mathrm{Hg}][\mathrm{mg} / \mathrm{g}$	$[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}$	$\left\lvert\, \begin{gathered} \text { HEAM } \\ {[\mathrm{Eg}] \mathrm{gg} / \mathrm{g}} \end{gathered}\right.$	
	\|SCNIP										
	SEPT										
42a	AOG	1577	11 H 1201	0.0070	250	0.082	318	0.365	0.053	0.365	
42b	JULY	1578	11HAP91	0.0078	250	0.091	419	0.445	0.048	0.445	
42C dup	Jon	1596,1579	11 aras	0.0069	250	0.081	374	0.444	0.054	0.420	
42d	may	1580	1114891	0.0067	250	0.078	379	0.464	0.056	0.464	
42e	APR	1581	111AR91	0.0079	250	0.092	512	0.547	0.047	0.547	
427	nas	1582	1114P91	0.0051	250	0.060	381	0.613	0.073	0.613	
429	PEB	1583	$11 \mathrm{HaP91}$	0.0072	250	0.084	436	0.504	0.052	0.504	
42h	J\II	1584	1110291	0.0066	250	0.077	411	0.515	0.056	0.515	
$42 i$	DSC	1585	$14 \mathrm{nPO1}$	0.0063	250	0.074	479	0.638	0.059	0.638	
42j	100	1586	11:19891	0.0055	250	0.064	525	0.807	0.068	0.807	
42K	OCT	1587	U14P01	0.0058	250	0.068	522	0.760	0.064	0.760	
421	SEPT	1590	11918	0.0052	250	0.061	418	0.666	0.072	0.666	
421 dup	206	\|1597,1591	$110 \% 01$	0.0054	250	0.063	400	0.611	0.069	0.607	
42n	JWH	1592	1171091	0.0049	250	0.057	397	0.668	0.076	0.668	
420	Jul	1593	$13 \mathrm{MPO1}$	0.0047	250	0.055	339	0.584	0.079	0.584	
429	H1	1594	$11 \mathrm{nP} \mathrm{P}^{1}$	0.0050	250	0.058	382	0.627	0.074	0.627	
429	\| APR		\| 1606	\| 11Hap91	0.0052	250	\| 0.061	381	0.601	0.072	0.601

[Hg] vs Month Participant \#43

PROJECT ID:MOHR SEGFRMTAL ANALYSIS
AMALYSIS: EHg/BAIR SAIPLE 43

AMALYST: CITTERHAY/LASORSA
PILE \#: MOHSEG43

$\begin{array}{\|c} \text { BATTELLB } \\ \text { ID } \end{array}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOIII } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { INTEGRATOR } \\ \text { SEQf } \end{gathered}\right.$	$\left.\right\|_{\text {DITE }} ^{\text {DIGSTIOH }}$	$\left\|\begin{array}{c} \text { DIGESIIOX } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\mu 1) \\ \operatorname{ABLLYED} \end{array}\right\|$	$\left\|\begin{array}{l} \text { ABALYZED } \\ \text { WT } \mathrm{mg} \end{array}\right\|$	AREA	$\stackrel{2 \mathrm{Eg}}{[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}}$	$\left\|\begin{array}{c} \text { nid } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { KRKA } \\ {[\mathrm{Hg}] \mu \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$		
	\|SCALP											
	OCT											
	SEPT											
43a	AOG	1598	\|LIMAR91	0.0078	250	0.091	745	0.826	0.048	0.826		
43b	JULY	1599	\| 11 unar91	0.0070	250	0.082	666	0.817	0.053	0.817		
43c dup	JJII	\|1682,1600	\|114R291	0.0055	250	0.064	453	0.942	0.068	0.937		
43 d	Hay	1601	\|11\%apl	0.0053	250	0.062	576	0.925	0.070	0.925		
43	APR	1602	\|u114891	0.0057	250	0.067	572	0.854	0.065	0.854		
$43 f$	Has	1603	\|1110p91	0.0057	250	0.067	559	0.833	0.065	0.833		
439	ISB	1607	\|1100891	0.0052	250	0.061	574	0.939	0.072	0.939		
43h	JAI	1608	\|11Map91	0.0044	250	0.051	557	1.075	0.085	1.075		
431	DSC	1609	\| $114 \mathrm{napg1}$	0.0040	250	0.047	540	1.144	0.093	1.144		
43)	10%	1610	\|1191091	0.0042	250	0.049	591	1.200	0.089	1.200		
43k dap	0×1	\|1683,1611	\|limper	0.0031	250	0.036	379	1.377	0.120	1.288		
431	SEPP	1612	\|119891	0.0036	250	0.042	586	1.387	0.103	1.387		
438	206	1613	\|11\%P91	0.0038	250	0.033	526	1.588	0.133	1.588		
43n dup	Jun	\|1673,1614	\|11\%10891	0.0032	250	0.037	471	1.689	0.116	1.645		
430 dap	JuI	\|1674,1615	\|1191991	0.0027	250	0.032	554	2.383	0.138	1.931		
43p	MaI	1679	\|11H0p91	0.0021	250	0.025	430	2.333	0.177	2.333		
439	APR	1681	\|1141901	0.0017	250	0.020	354	2.329	0.219	2.329		
435	\| Mar		1680	\|11HAR91	\| 0.0017		250	0.020	381	2.525	0.219	2.525

[Hg] vs Month

Participant \#44

PROJECT ID:HOHR SEGIBTIAL AMALYSIS
AMALYSIS: EHg/BAIR SAMPLE 44

AMALYST: CITTERHAN/LASORSA
PILE $\ddagger:$ HOMSEG44

$\begin{array}{\|c} \text { BATTRLLR } \\ \text { ID } \end{array}$	$\left.\right\|_{\text {MOHITH }} ^{\text {SEG }}$	$\left\|\begin{array}{c} \text { IVTEGRATIOR } \\ \text { SERI } \end{array}\right\|$	$\left.\right\|_{\text {DIGESIIOII }} ^{\text {DIIB }}$	$\left\|\begin{array}{c} \text { DIGRSTIOM } \\ \mathrm{mI} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { ABALYZED } \end{array}\right\|$	$\left\|\begin{array}{l} \text { ABALYZED } \\ W I \operatorname{mg} \end{array}\right\|$	ARRA	$\begin{gathered} \mathrm{EHg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] / \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{HBLI} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\mid SCALP									
	\| SEPP									
	AOG									
44 a	JULI	1688	\|1210191	0.0056	250	0.065	313	0.621	0.066	0.621
44b	J015	1689	\|1210891	0.0050	250	0.058	270	0.589	0.074	0.589
44c	HAY	1690	\|1214891	0.0049	250	0.057	264	0.586	0.076	0.586
44d dup	APR	\|1701,1691	\|12argo	0.0051	250	0.060	221	0.458	0.073	0.479
44	Hap	1692	\|1214P91	0.0046	250	0.054	204	0.463	0.081	0.463
44	PR8	1693	\|124P91	0.0044	250	0.051	205	0.486	0.085	0.486
44 g	JKI	1694	\|120.as91	0.0042	250	0.049	185	0.451	0.089	0.451
44	DSC	1695	\|1210391	0.0051	250	0.060	273	0.585	0.073	0.585
44	108	169	\|1214091	0.0039	250	0.046	217	0.587	0.095	0.587
44j	OCT	1697	\|1200891	0.0044	250	0.051	277	0.689	0.085	0.689
44k	SEP	1698	\|1210891	0.0044	250	0.051	327	0.829	0.085	0.829
441	206	1699	\|201401	0.0051	250	0.060	375	0.832	0.073	0.832
441	JWI	1700	\|1201991	0.0044	250	0.051	310	0.782	0.085	0.782
441	JIS	1715	\|1210191	0.0037	500	0.087	612	0.980	0.050	0.980
140 dup	四	\|1723,1716	1270291	0.0036	500	0.084	471	0.713	0.052	0.790
44p	APR	1717	1240891	0.0028	500	0.065	490	0.959	0.066	0.959

[Hg] vs Month Participant \#45

PROJECT ID: MOHE SEGHENTAL AMALYSIS
AHALYSIS: ZHg/EAIR SANPLE 45

AMALYST: CITTERMAN/LASORSA
PILE \ddagger : MOHSEG45

$\begin{gathered} \text { BATTELLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { MOHITH } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { INTEGRATOR } \\ \text { SEQ } \end{gathered}\right.$	$\begin{array}{\|c} \text { DIGRSTIO: } \\ \text { DAFE } \end{array}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{mI} \end{array}\right\|$	VOL (11) AHALYZED	AMALYZED in mg	AREA	$\begin{gathered} \mathrm{ZHg} \\ {[\mathrm{~Bq}] \mathrm{\mu g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{MDL} \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HBAR } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	SEPI									
	${ }^{\text {a }}$ DG									
45a	JULI	1744	13HRR91	0.0186	500	0.435	2566	0.836	0.010	0.836
45b	JOI	1745	13HAR91	0.0164	500	0.384	1949	0.715	0.011	0.715

[Hg] vs Month Participant \#46

PROJECT ID: HOWR SEGGERTAL AWALYSIS
AMALYSIS: EHg/HAIR SAMPLB46

AMALYST: CITTRRHAN/LASORSA
FILE \#: MOHSEG46

$\begin{gathered} \text { BATTRLLEB } \\ \text { ID } \end{gathered}$	$\left.\right\|_{\text {HOHITH }} ^{\text {SEG }}$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left.\right\|_{\text {DAER }} ^{\text {DIGRSTIOM }}$	$\left\|\begin{array}{c} \text { DIGRSTIOM } \\ \text { WI } g \end{array}\right\|$	VOL ($\mu \mathrm{l}$) AHALYZED	$\left\|\begin{array}{c} \text { AMALYZED } \\ \text { Wr eg } \end{array}\right\|$	AREA	$\begin{gathered} \text { Z } \mathrm{Hg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left.\left\|\begin{array}{c} \operatorname{HDL} \\ {[\mathrm{Hg}]} \end{array}\right\| \mathrm{gg} / \mathrm{g} \right\rvert\,$	$\begin{gathered} \text { HBAK } \\ {[\mathrm{Bg}] \mu \mathrm{gg} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPT									
	AOG									
46a	JULY	1746	13HAR91	0.0102	500	0.239	809	0.457	0.018	0.457
46b	J01	1747	13MAR91	0.0095	500	0.222	866	0.528	0.020	0.528
46 C	HMY	1748	13HAR91	0.0089	500	0.208	902	0.588	0.021	0.588
46d	$\triangle P R$	1749	13HAR91	0.0077	500	0.180	916	0.691	0.024	0.691
46e dup	has	\|1885,1883	13142891	0.0084	500	0.196	486	0.572	0.022	0.558
465	FIB	1884	13H12891	0.0073	500	0.171	388	0.517	0.025	0.517
469	JMI	1886	13HAP91	0.0074	500	0.173	545	0.734	0.025	0.734
46 n	DSC	1888	13Map91	0.0074	500	0.173	601	0.814	0.025	0.814

[Hg] vs Month Participant \#47

PROJECT ID: MONR SBCHETTAL ANALYSIS
AMALYSIS: EHg/EAIR SAIPLEE47

AMALYST: CITTERHAN/LASORSA
FILB : : HOHSEG47

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HOHITB } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITTRERATOR } \\ \text { SEQf } \end{array}\right\|$	$\left.\right\|_{\text {DIGESTIOM }} ^{\text {DITE }}$	$\left\|\begin{array}{c} \text { DIGESTION } \\ \mathrm{mI} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ A B A L Y Z D D \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYZED } \\ \mathrm{Wr} \mathrm{~g} \end{array}\right\|$	ARRA	$\begin{gathered} \mathrm{KHg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { HEAN } \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|scale									
	SEPT									
	IDG									
47a	JULY	1889	13HAR91	0.0076	500	0.178	746	0.994	0.024	0.994
47b dup	J0:	\|1901,1890	13HAR91	0.0070	500	0.164	529	0.751	0.027	0.800
47c	hay	1891	13HAP91	0.0072	500	0.168	678	0.949	0.026	0.949
47d	APR	1892	13HAR91	0.0058	500	0.136	615	1.064	0.032	1.064
47e	HAR	1895	1314R291	0.0066	500	0.154	593	0.899	0.028	0.899
47 f	PSB	1896	$13 H 12 \mathrm{P} 91$	0.0059	500	0.138	726	1.244	0.032	1.244
479	JגI	1897	$13 \mathrm{Hap91}$	0.0047	500	0.110	712	1.530	0.040	1.530
472	DEC	1898	13H12R91	0.0036	500	0.084	583	1.620	0.052	1.620
47 i	100	1899	13412 P 91	0.0025	500	0.058	419	1.639	0.074	1.639
47j	$10 C T$	1900	1340.991	0.0021	500	0.049	390	1.806	10.089	1.806

[Hg] vs Month

 Participant \#48

PROWECT ID:MOME SBGIRNTHLL MMALYSIS
ANALYSIS: $\mathrm{EHg} / \mathrm{HAIR}$ SANPLB 48

AHALYST: CIITERHAN/LASORSA
FILE f: HOHSEG48

$\begin{aligned} & \text { BATTELLR } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { HONTH } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { IMTEGRATOR } \\ \text { SEQA } \end{gathered}\right.$	$\begin{gathered} \text { DIGBSIIOM } \\ \text { DAITE } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { WI } g \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { VOL }(\mu 1) \\ & A M A L I Z E D \end{aligned}\right.$	$\left\|\begin{array}{c} \text { AHALYGED } \\ \text { WI } \mathrm{Eg} \end{array}\right\|$	AREA	$\begin{gathered} \Sigma H g \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { MDL } \\ \text { [Hg] }] / g \end{array}\right\|$	$\begin{array}{\|c} \text { HEAN } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}$
	\|SCNLP									
	SBPT									
48a	A0G	1922	21HaR91	0.0164	250	0.192	3263	4.532	0.023	4.532
48b dup	JULI	\|1940,1916	2114R21	0.0147	250	0.172	2718	4.207	0.025	4.045
48c	JU.	1917	21141891	0.0141	500	0.330	3089	2.482	0.013	2.482
48d	HLI	1918	21141891	0.0134	500	0.313	1907	1.602	0.014	1.602
48e	APR	1919	2114R91	0.0073	500	0.171	960	1.457	0.025	1.457
485	HAR	1920	2114291	0.0040	500	0.094	573	1.552	0.047	1.552

[Hg] vs Month

Participant \#49

PROJECT ID:HOHE SEGIRTITAL ANALYSIS
ANALYSIS: $\mathrm{ZHg} / \mathrm{HAIR}$ SAMPLB 49

ANALYST: CITTERHAH/LASORSA
PILE \&: MOHSEG49

[Hg] vs Month Participant \#50

PROJBCT ID:NOHE SEGIENTAL ANALYSIS
ANALYSIS: EHg/BAIR SAMPLE 50

ANALYST: CITTERKAK/LASORSA

PILE f: HONSEG50

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOHTHI } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SER } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTION } \\ \text { mi } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{L}) \\ \text { ARALYZDD } \end{array}\right\|$		AREA	$\begin{gathered} \text { EHg } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\stackrel{\mathrm{MDL}}{[\mathrm{Hg}] \mathrm{g} / \mathrm{g} / \mathrm{g}}$	$\underset{[\mathrm{Eg}]}{\mathrm{HR} / \mathrm{Mg} / \mathrm{g}}$
	\mid Scalp									
	SEPT									
	AOG									
50a	JULY	1927	21HAR91	0.0141	500	0.330	2146	1.717	0.013	1.717
50b dup	JUI	\|1941,1928	21414991	0.0122	500	0.285	1860	1.716	0.015	1.819
50 C	HAY	1929	21HAR91	0.0124	500	0.290	1672	1.515	0.015	1.515
508	APR	1931	21HARO1	0.0120	500	0.281	1645	1.539	0.016	1.539
50e	HaR	1932	214AR91	0.0128	500	0.299	1599	1.402	0.015	1.402
$50 f$	FBB	1933	2110R91	0.0101	500	0.236	1327	1.469	0.018	1.469
50 g	JAI	1934	21:14891	0.0111	500	0.260	1614	1.632	0.017	1.632
50h	DSC	1935	2110891	0.0118	500	0.246	1590	1.698	0.018	1.698
501	100	1936	21112891	0.0097	500	0.227	1643	1.902	0.019	1.902
50j dup	OCI	\|1956,1937	2114821	0.0095	500	0.222	1372	1.549	0.020	1.628
50\%	SEPT	1938	21:0191	0.0093	500	0.218	1319	1.585	0.020	1.585
501	AOG	1939	21141291	0.0075	500	\| 0.175	1086	1.610	0.025	\| 1.610

[Hg] vs Month Participant \#51

PROJECT ID: HOHR SEGRERTAL AMALYSIS
AMALYSIS: ZHg/HAIR SAMPLRS 51

ARALYST: CITTERHAM/LASORSA
PILR f: MOHSEC51

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMNI } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INIEGRATOR } \\ \text { SBO! } \end{array}\right\|$	$\left\{\begin{array}{c} \text { DIGESTIOM } \\ \text { DAIE } \end{array}\right.$	$\left\|\begin{array}{c} \text { DIGBSIIOM } \\ \mathrm{VI} \mathrm{~g} \end{array}\right\|$	VOL (1 1) AHALYEED	$\left\|\begin{array}{c} \text { AMALYZED } \\ \text { WI } \end{array}\right\|$	AREA	$\begin{gathered} \mathrm{ZHg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\underset{[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}}{\mathrm{RERM}}$
	\|Scalp									
	SKPP									
51a	10 G	1974	2214P91	0.0080	500	0.187	959	1.251	0.023	1.251
51b	JULI	1975	2210RP91	0.0075	500	0.175	1010	1.409	0.025	1.409
51c	5015	1976	221:AR91	0.0072	500	0.168	1070	1.559	0.026	1.559
51d	hay	1977	224aR91	0.0065	500	0.152	1021	1.644	0.029	1.644
\| 51e dup	APS	\|2001,1978	2241491	0.0067	500	0.157	1076	1.670	0.028	1.579
514	Mas	1979	2214P91	0.0059	500	0.138	803	1.408	0.032	1.408
519	P68	1982	22101991	0.0046	500	0.108	675	1.501	0.040	1.501
51h	Jas	1983	2241091	0.0047	500	0.110	648	1.406	0.040	1.406
51	DEC	1984	220:1991	0.0035	500	0.082	505	1.442	0.053	1.442
51)	108	1985	2240801	0.0038	500	0.089	508	1.337	0.049	1.337
512	OCI	1998	220001	0.0038	500	0.059	479	1.276	0.049	1.276
\| 511 du9	SEPT	\|2002,1999	2200101	0.0033	500	0.077	383	1.160	0.056	1.197
511	ANS	2000	220:1091	0.0030	500	0.070	371	1.234	0.062	1.234

[Hg] vs Month
 Participant \#52

PROJECT ID: HONE SEGIENTAL ANALYSIS

ANALYSIS: EHg/EAIR SAPPLE 52

ANALYST: CITTERRAN/LASORSA
PILE \#: MOHSEG52

$\begin{array}{\|c} \text { BATPRLLE } \\ \text { ID } \end{array}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HONTH } \end{gathered}\right.$	INTEGRATOR SER	DIGESTION DATE	$\left\|\begin{array}{c} \text { DIGBSTION } \\ \text { WI g } \end{array}\right\|$	VOL ($\mu \mathrm{I}$) AHALYZED	$\left\|\begin{array}{l} \text { AMALYZED } \\ \text { WT } \end{array}\right\|$	AREA	$\begin{gathered} \mathbb{E g} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { KEAN } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	SCALP									
	SEPT									
	AJG									
52a	JoLy	2004	2240R91	0.0085	500	0.199	1313	1.613	0.022	1.613
52b	J0:	2005	2240R91	0.0083	500	0.194	996	1.246	0.022	1.246
52c dup	HAY	\|2018,2006	22101891	0.0085	500	0.199	675	0.815	0.022	0.781
52d	APR	2007	224ap91	0.0081	500	0.189	455	0.567	0.023	0.567
52e	MAR	2008	22414291	0.0079	500	0.185	400	0.508	0.024	0.508
$52 f$	FEB	2009	22414891	0.0080	500	0.187	493	0.625	0.023	0.625
52 g	JM1	2011	22101991	0.0084	500	0.196	446	0.536	0.022	0.536
52h	DEC	2012	22101291	0.0090	500	0.210	519	0.586	0.021	0.586
521	H0V	2013	22141991	0.0081	500	0.189	490	0.613	0.023	0.613
52j	CTI	2014	22401891	0.0072	500	0.168	482	0.678	0.026	0.678
52k dup	SEPT	\|2019,2015	2201891	0.0068	500	0.159	584	0.877	0.027	0.793
521	100	2016	22:01991	0.0056	500	0.131	573	1.044	0.033	1.044
52	JUIX	2017	221AP91	0.0036	500	0.084	519	1.465	0.052	1.465

[Hg] vs Month Participant \#53

PROJECT ID: HOHR SBCHEHTAL AHALYSIS

AMALYSIS: EHg/HAIR SARPLE 53

ANALYST: CITTERHAN/LASORSA
PILR \&: HONSEG53

$\begin{gathered} \text { BATTELLS } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { HOMrH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITIEGRATOR } \\ \text { SED } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSITOM } \\ \text { DANE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTION } \\ \text { Wr } \\ \hline \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { POL }(\mu I) \\ & A M A L Y E D \end{aligned}\right.$	$\left\|\begin{array}{c} \text { AHALYZED } \\ \text { WI } \mathrm{gg} \end{array}\right\|$	AREA	$\begin{gathered} \Sigma \mathrm{Bg} \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\begin{aligned} & \text { VDL } \\ & {[\mathrm{Bg}]{ }^{2} \mu \mathrm{~g} / \mathrm{g}} \end{aligned}$	$\begin{gathered} \text { HRAN } \\ {[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPT									
	$10 G$									
53 a	JULY	2024	25NaR91	0.0159	250	0.186	229	0.274	0.023	0.274
53b	J02	2025	25712121	0.0159	250	0.186	259	0.314	0.023	0.314
53c dup	HAI	\|2052,2026	25×1.891	0.0154	500	0.360	497	0.289	0.012	0.281
53d	1P2	2027	2514891	0.0129	250	0.151	157	0.219	0.029	0.219
53e	HAR	2029	2514.1091	0.0145	500	0.339	316	0.214	0.013	0.214
534	PFB8	2044	254ap91	0.0169	500	0.395	435	0.228	0.011	0.228
539	J11	2031	2510.191	0.0141	500	0.330	340	0.238	0.013	0.238
53h	DEC	2045	2501991	0.0158	500	0.370	377	0.209	0.012	0.209
$53 i$	100	2051	2510 Pal	0.0149	500	0.348	395	0.233	0.012	0.233
53j	$\boldsymbol{C O}$	2047	2012 Pal	0.0159	500	0.372	487	0.274	0.012	0.274
53k dup	Stap	2053,2048	2rupol	0.0114	500	0.267	381	0.293	0.016	0.302
531	106	2049	2301901	0.0110	500	0.257	434	0.350	0.017	0.350
53]	\| JULI	2050	250nP91	0.0066	500	0.154	293	0.380	0.028	0.380

[Hg] vs Month Participant \#54

PRORECT ID: MOME SEGFBTTAL AMALYSIS
AMALYSIS: EHg/EAIR SAMPLE 54

AMALYST: CITTERHAN/LASORSA
PILR \#: HOMSEG54

$\begin{aligned} & \text { BATTELLLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { MOMTH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTIGRATOR } \\ \text { SEQA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGRSTIOM } \\ \text { Win } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { VOL }(\mu 1) \\ & \text { ALALYZED } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \left\|\begin{array}{l} \text { ARALYEBD } \\ \\ W R E g \end{array}\right\| \end{aligned}\right.$	ARRA	$\stackrel{\text { RHg }}{[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}}$	HDL [Hg] mg / g	$\begin{gathered} \mathrm{MRNA} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	SEPT									
	AOG									
54a	JULY	2054	\|25H14R91	0.0084	500	0.196	563	0.604	0.022	0.604
54b dup	JUII	\|2092,2055	\|2514R91	0.0088	500	0.206	527	0.522	0.021	0.508
54 C	mar	2056	\| $25414 \mathrm{R91}$	0.0087	500	0.203	422	0.429	0.021	0.429
54d	APR	2057	\|251412991	0.0083	500	0.194	442	0.473	0.022	0.473
54e	MAR	2058	25121891	0.0073	500	0.171	420	0.509	0.025	0.509
545	Prs	2059	2510.1891	0.0077	500	0.180	452	0.522	0.024	0.522
54g	JNI	2062	251ar91	0.0070	500	0.164	551	0.708	0.027	0.708
54h	DSC	2063	\|2514R91	0.0075	500	0.175	587	0.707	0.025	0.707
54 i	100	2064	257nR91	0.0073	500	0.171	562	0.693	0.025	0.693
54j	OCI	2065	\|2510891	0.0071	500	0.166	501	0.631	0.026	0.631
54k dup	SEPT	\|2093,2066	\|2510391	0.0060	500	0.140	475	0.684	0.031	0.682
541	106	2067	2510391	0.0065	500	0.152	524	0.723	0.029	0.723
541.	JULI	2068	2501291	0.0057	500	0.133	507	0.796	0.033	0.7%
54	JuI	2069	\|2514891	0.0054	500	0.126	526	0.874	0.034	0.874
540	Hay	2070	25101291	0.0028	500	0.065	385	1.207	0.066	1.207
54p	APR	2071	25101891	0.0035	500	0.082	469	1.194	0.053	1.194
549	HAR	2072	2541P91	0.0032	500	0.067	337	1.026	0.065	1.026
54r	\| PEB	2073	25NaR91	0.0031	500	0.073	373	1.054	0.060	1.054

PROUECT ID: NOTE SEGHETTAL MMALYSIS
AMALYSIS: ZHg/BALR SAMPLR 54

AMALYST: CITTTRRHAI/LASORSA
PILE \&: MOHSRG54

$\begin{gathered} \text { BAITELLLE } \\ \text { DD } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMIH } \end{gathered}\right.$	IIITEGRATOR SEQt	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAPE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DICESTIOM } \\ g \end{array}\right\|$	$\left\|\begin{array}{l} \text { pol (} \beta 1) \\ \text { AMNYRED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { ABLYZZBD } \\ \text { RT } \end{array}\right\|$	AREA	$\underset{[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}}{\mathrm{El}}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Bg}] \mathrm{gg} / \mathrm{g}} \end{array}\right\|$	
54s	J/I	2074	\|25414R91	0.0030	500	0.070	397	1.165	0.062	1.165
54t dup	DEC	\|2096,2075	\|25414R91	0.0035	500	0.082	443	1.085	0.053	1.054
54u	100	2076	\|2514R21	0.0037	500	0.087	409	0.975	0.050	0.975
547	OCT	2077	\|25414R91	0.0033	500	0.077	363	0.961	0.056	0.961
541	SEPT	2090	\|25142891	0.0027	500	0.063	396	1.242	0.069	1.242
54 x	AOG	2091	\|2514891	0.0024	500	0.056	343	1.188	0.078	1.188

[Hg] vs Month
 Participant \#55

PROJECT ID:MOHR SEGIETTTLL AMALYSIS
AMALYSIS: ZHg/HILR SAMPLE 55

ANALYST: CITTERUAN/LASORSA
PILR \ddagger : HOHSBG55 \qquad

$\begin{aligned} & \text { BATHELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { MOMIH } \end{gathered}\right.$	IITPEGRATOR SERf	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { ing } \end{array}\right\|$	VOL (18) AHLLYEED	$\left\|\begin{array}{c} \text { AMALYZED } \\ \text { RI } \end{array}\right\|$	AREA	$\begin{gathered} \text { EHg } \\ {\left[\text { Hg }_{2}\right] \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \operatorname{MDL} \\ {[\mathrm{Bg}]_{\mu \mathrm{g}} / \mathrm{g}} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { MRAI } \\ {[\mathrm{Bg}][\mathrm{mg} / \mathrm{g}} \end{gathered}\right.$	
	SCALP									1	
	OCT										
55a	SEPT	2100	2614P91	0.0062	500	0.145	1605	2.387	0.030	2.387	
55b dup	10 C	\|2118,2101		2641891	0.0060	500	0.140	1475	2.261	0.031	2.272
55 c	JULI	2102	2610R91	0.0059	500	0.138	1395	2.171	0.032	2.171	
55d	JUI	2103	2641291	0.0055	500	0.129	1075	1.778	0.034	1.778	
55e	Hal	2204	26:4P91	0.0043	500	0.101	773	1.608	0.043	1.608	
555	APR	2105	2614P91	0.0044	500	0.103	589	1.176	0.042	1.176	
55g dup	Har	\|2110,2106	261:AR91	0.0046	500	0.108	638	1.225	0.040	1.254	
55b	1 PrB	2107	\| 2614R91	0.0048	500	\| 0.112	749	1.393	0.039	1.393	

[Hg] vs Month Participant \#56

PROTECT ID:HOKR SEGYENTAL ANALYSIS
AMALYSIS: $2 H g /$ HALR SAMPLE 56

AHALYST: CITHERHAN/LASORSA
PILE \&: HOHSBG56

$\begin{gathered} \text { BATTELLLR } \\ \text { ID } \end{gathered}$	$\left.\right\|_{\text {HOMKI }} ^{\text {SRE }}$	$\left\|\begin{array}{c} \text { INTEGRATOR } \\ \text { SER\# } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESTIO: } \\ \text { DAIE } \end{array}$	$\left\|\begin{array}{c} \text { DIGBSTIOM } \\ \text { mI } \end{array}\right\|$	POL (1 IL) AHALYZED	$\left\|\begin{array}{c} \text { ABLYZZDD } \\ \text { WI } \end{array}\right\|$	AREA	$\stackrel{\Sigma \mathrm{Hg}}{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{KDL} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	
	\|SCALP									
	OCT									
	SEPT									
56a	ADG	2111	264AR91	0.0062	500	0.145	955	1.394	0.030	1.394
56b dup	JULI	\|2117,2112	264UR91	0.0058	500	0.136	1203	1.895	0.032	1.820
56 C	J0I	2115	26HAR91	0.0040	500	0.094	1077	2.449	0.047	2.449
56d	I Hay	2116	26:4R91	0.0046	500	\| 0.108	1319	2.628	10.040	2.628

[Hg] vs Month Participant \#57

Month

PROTECT ID:MOHR SEGFBNTAL AHALYSIS
AHLLYSIS: EHg/EAIR SAMPLE 57

AMALYST: CITTERHAN/LASORSA
PILR f: MOHSEG57

$\begin{gathered} \text { BATIELLSB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { Hoint } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQ } \end{array}\right\|$:DIGESTIOM	$\left\|\begin{array}{c} \text { DIGRSIIOM } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { AWALYEDD } \end{array}\right\|$	$\left\|\begin{array}{c} A B A L Y Z E D \\ M I E g \end{array}\right\|$	ARRA	$\underset{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{~g}}$	$\left\lvert\, \begin{gathered} \operatorname{HDL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { K[RAM } \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|scarp									
	OCT									
57a	SEPT	2163	$27 \mathrm{Map91}$	0.0079	500	0.185	1298	1.503	0.024	1.503
57b dup	1006	\|2190,2166	$27 \mathrm{marg1}$	0.0056	500	0.131	902	1.388	0.033	1.462
57c	JULY	2167	271aR91	0.0059	500	0.138	936	1.439	0.032	1.439
57d	J01	2168	2710R91	0.0041	500	0.096	825	1.817	0.045	1.817
57e	HAY	2169	2710R91	0.0049	500	0.115	710	1.301	0.038	1.301
574	APR	2170	2701R91	0.0037	500	0.087	562	1.349	0.050	1.349
57g	Mar	2172	2710R91	0.0032	500	0.075	437	1.195	0.058	1.195
57n	F8B	2173	2714891	0.0025	500	0.058	368	1.271	0.074	1.271
571	J31	2194	2710P91	0.0025	500	0.058	400	1.391	0.074	1.391
57j dup	DEC	\|2191,2175	2710891	0.0023	500	0.054	505	1.845	0.081	1.876
57k	100	2188	27:0891	0.0024	500	0.056	458	1.594	0.078	1.594
571	\| OCI	2189	271aR91	0.0016	500	0.037	446	2.324	0.116	2.324

[Hg] vs Month Participant \#58

PROJECT ID:HOHE SEGTRTTAL AMALYSIS
AMALYSIS: ZHg/EAIR SAMPLB 58

AMALYST: CITTERUAH/LASORSA
PILR \&: HOHSEG58

$\begin{gathered} \text { BMTBLLS } \\ \text { ID } \end{gathered}$	$\left.\right\|_{\text {MOHITI }}$	$\left\|\begin{array}{c} \text { INTECRATOR } \\ \text { SEQ } \end{array}\right\|$	$\begin{gathered} \text { DIGESTIOH } \\ \text { DAIE } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGBSIIOM } \\ \text { WI } \end{array}\right\|$	OOL ($\mathrm{\mu l}$) AMLLYZED	$\left\|\begin{array}{l} \text { AMALYZED } \\ \text { In } \mathrm{Ig} \end{array}\right\|$	AREA	$\begin{aligned} & \text { Kigg } \\ & {[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}} \end{aligned}$	$\left\|\begin{array}{c} \text { MDL } \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { HBAN } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	OCT									
	SEPP									
58a	10 G	2208	29MRR91	0.0093	500	0.218	467	0.403	0.020	0.403
58b dup	JULY	\|2218,2209	294ar91	0.0101	500	0.236	402	0.314	0.018	0.325
58 C	JUI	2210	2914R21	0.0097	500	0.227	392	0.318	0.019	0.318
58d	May	2211	2910RP91	0.0101	500	0.236	426	0.335	0.018	0.335
58e	APR	2212	2910.1891	0.0092	500	0.215	371	0.315	0.020	0.315
588	HAR	2213	2914R1291	0.0094	500	0.220	392	0.328	0.020	0.328
589	FEB	2214	2910R291	0.0101	500	0.236	440	0.347	0.018	0.347
58h dup	J\II	\|2219,2215	2914RP91	0.0089	500	0.208	514	0.468	0.021	0.474
581	DSC	2216	2914RP91	0.0061	500	0.143	471	0.621	0.030	0.621
$58 j$	\| 300	2217	29114891	0.0050	\| 500	0.117	441	0.704	0.037	0.704

[Hg] vs Month Participant \#59

PRONECT ID:RONE SBGTENTAL AMALYSIS
Emg/HAIR SAIPLE 59

AHALYST: CITTERNAN/LASORSA
PILE f: HOHSEG59

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { Howith } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { ITIEGRATOR } \\ \text { SEQt } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIO } \\ \text { DAIE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { WI g } \end{gathered}\right.$	$\left\|\begin{array}{l} \text { VOL (} \mu \mathrm{l}) \\ \text { MALYEED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMLIZEED } \\ \text { WI Eg } \end{array}\right\|$	AREA	$\begin{gathered} \mathrm{ZHg} \\ {[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{MDL} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { MRAN } \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	SCALP									
	OCT									
	SEPP									
59a	ADG	2220	29112R91	0.0107	500	0.250	2481	2.025	0.017	2.025
59b	JULX	2221	2911R91	0.0106	500	0.248	2505	2.064	0.018	2.064
59c dup	Jum	\|2248,2224	2914R91	0.0063	500	0.147	1389	1.928	0.030	2.059
59d	\| NAY	2225	\|291RR291	0.0026	500	0.061	666	2.123	0.072	2.123

[Hg] vs Month Participant \#60

PROJECT ID: HONE SBGTETIAL MHALYSIS
AMALYSIS: EHg/EAIR SANPLE 60

AMALYST: CITYERYAN/LASORSA
FILE f: HOMSEG60

$\begin{aligned} & \text { BATTELLBB } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \operatorname{mon}_{12} \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITEGRATOR } \\ \text { SEQA } \end{array}\right\|$	$\left.\right\|_{\text {DIIER }} ^{\text {DIESIIM }}$	$\left\|\begin{array}{c} \text { DIGESTIO: } \\ \mathrm{Tr} \\ \mathrm{~g} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{POL}(\mu \mathrm{~L}) \\ \text { AMNYYED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYYEZD } \\ \text { WI } \mathrm{Eg} \end{array}\right\|$	AREA	$\begin{gathered} 2 \mathrm{Rg} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \operatorname{HDL} \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { HRAM } \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\mid Scalp									
	OCT									
60a	SEPT	2192	2710R91	0.0110	500	0.257	1344	1.064	0.017	1.064
60b dup	IVG	\|2198,2193	2710R291	0.0111	500	0.260	1185	0.927	0.017	0.912
$60 c$	JUY	2194	2710R91	0.0110	500	0.257	912	0.715	0.017	0.715
60 d	J05	2195	2714R91	0.0110	500	0.257	725	0.564	0.017	0.564
60 e	Hay	2196	271ap91	0.0115	500	0.269	858	0.642	0.016	0.642
605	APR	2197	2710891	0.0080	500	$\mid 0.187$	557	0.588	\| 0.023	0.588

[Hg] vs Month Participant \#61

PROJECT ID: MOHE SEGIEMTAL AMALYSIS
AHALYSIS: EHg/EAIR SAMPLE 61

ANALYST: CITTERHAR/LASORSA
PILR f: HOHSEG61

$\begin{gathered} \text { BAITEILLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \mathrm{HOHiNH} \end{gathered}\right.$	$\begin{array}{\|c} \text { IIITEGRATOR } \\ \text { SERA } \end{array}$	$\begin{gathered} \text { DIGESTIOA } \\ \text { DATE } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGESTION } \\ \text { IT } 9 \end{gathered}\right.$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{l}) \\ \text { AWLYZ } \end{array}\right\|$	$\left\|\begin{array}{\|c\|} \text { AMALYERD } \\ \text { Wi mg } \end{array}\right\|$	ARRA	$\underset{[\mathrm{Bg} \mathrm{Ig}] \mu \mathrm{g} / \mathrm{g}}{\mathrm{Z}}$	$\left\|\begin{array}{c} \text { NDL } \\ \text { (Hg }]^{\prime} / \mathrm{g} / \mathrm{g} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{MK} \mathrm{LH} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	SCALP									
SBPT										
61.	10G	2249	2914.191	0.0060	500	0.140	1729	2.533	0.031	2.533
61b dup	JULY	\|2254,2250	2911R21	0.0060	500	0.140	1066	1.541	0.031	1.630
61c	JUS	2251	2911R21	0.0054	500	0.126	545	0.847	0.034	0.847
61d	\| HAY	2252	29\%1R291	0.0040	500	0.094	431	0.887	0.047	0.887
61e	1 APR	2253	2911.1891	0.0031	500	0.073	358	0.934	0.060	0.934

[Hg] vs Month

 Participant \#62

PROJBCT ID:MONTE SEGIMTTAL AHALYSIS
AMALYSIS: $\operatorname{ZHg} /$ HAIR SAKPLB 62

AMALYST: CITTERHAN/LASORSA
PILE f: MOMSEG62

$\begin{aligned} & \text { BATTELLEX } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { HONTH } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { IWIBGRATOR } \\ \text { SEQ } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \mathrm{mI} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu l) \\ A W L Y Z E D \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYZED } \\ \text { WI } \mathrm{Eg} \end{array}\right\|$	LREA	$\begin{gathered} \Sigma \mathrm{Zg} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { MERAN } \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	SCALP									1
	OCI									
62a	SEPT	2619	91P191	0.0070	500	0.164	1060	0.903	0.027	0.903
62b dup	106	\|2626,2620	91PR91	0.0066	500	0.154	1265	1.150	0.028	1.215
62c	JUL	2622	91PR91	0.0074	500	0.173	1460	1.189	0.025	1.189
62d	501	2623	91PR91	0.0056	500	0.131	981	1.042	0.033	1.042
62e	May	2624	9 P 291	0.0068	500	0.159	1141	1.004	0.027	1.004
627	APR	2625	91P891	0.0050	500	0.117	713	0.836	10.037	0.836

[Hg] vs Month Participant \#62/BLOOM INTERCALIBRATION

PROJECT ID: MONI SEGRMTAL AMALYSIS AMALYSIS: $\mathrm{EHg} / \mathrm{HAIR}$ SAMPLB 62/BLOON

AMALYST: CITTERMAM/LASORSA
PILE f: BLOOM62

BATTELLER ID	$\begin{gathered} \text { SBG } \\ \text { Honith } \end{gathered}$	$\begin{array}{\|c} \text { InTEGRATOR } \\ \text { SEQA } \end{array}$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { Wi. } g \end{gathered}\right.$	VOL ($\mu \mathrm{l}$) ALALYEED		AREA	$\begin{gathered} \mathrm{EHg} \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	Scalp							
	OCT							
62a	SEPT			0.0073				0.66
62b	106			0.0068				1.015
62c	JULI			0.0071				0.890
62d	JU1			0.0050				1.240
62e	H2I			0.0057				1.070
625	APR			0.0032				0.960

[Hg] vs Month Participant \#63

PROJECT ID: MOHR SECGEITTAL MNALYSIS
AMALYSIS: $\mathrm{ZHg} / \mathrm{ERIR}$ SAMPLE 63

AMALYST: CITTERYAY/LASORSA
PILE \$: MOHSEG63

[Hg] vs Month Participant \#64

PROJECT ID:MONE SEGIENTAL AMALYSIS

AHALYSIS: Σ EGg/EAIR SANPLE 64

AMALYST: CITTERNIAH/LASORSA
PILR : : HOHSEG64

$\begin{gathered} \text { BATTELLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONTIH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { MITEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\begin{gathered} \text { DIGRSITOM } \\ \text { DAIE } \end{gathered}$	$\left\|\begin{array}{c} \text { DIGRSTIO } \\ \mathrm{Fi} \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu \mathrm{L}) \\ \text { ALRLYESD } \end{array}\right\|$		AREA	$\begin{gathered} \sum \mathrm{IHg} \\ {[\mathrm{gq}} \end{gathered} \mathrm{mg} / \mathrm{g}$	FidL $[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}$	$\begin{gathered} \text { KRRM } \\ {[\mathrm{EG}] \mathrm{Mg} / \mathrm{g}} \end{gathered}$
	\mid SCNLP									
	OCT									
	SEPT									
64a	${ }^{\text {a }}$ O	2343	2APR91	0.0076	500	0.178	963	1.089	0.024	1.089
64b dup	JULY	\|2378,2344	2APR91	0.0071	500	0.166	733	0.873	0.026	0.905
64c	JUII	2345	$2 \mathrm{PRR91}$	0.0056	500	0.131	644	0.975	0.033	0.975
64d	HAY	2346	22PR91	0.0063	500	0.147	604	0.810	0.030	0.810
64 e	APR	2347	21PR91	0.0065	500	0.152	550	0.712	0.029	0.712
645	HAR	2348	24P891	0.0061	500	0.143	628	0.872	0.030	0.872
649	PEB	2349	2APR91	0.0058	500	0.136	590	0.859	0.032	0.859
64h	JIH	2350	21PP91	0.0055	500	0.129	508	0.774	0.034	0.774
641	DEC	2351	2APP91	0.0051	500	0.119	550	0.908	0.036	0.908
64j	1007	2352	2APR91	0.0048	500	0.112	489	0.852	0.039	0.852
64k dup	CT	\|2379,2353	21P391	0.0044	500	0.103	508	0.960	0.042	1.007
641	SEPT	2355	21.8291	0.0045	500	0.105	583	1.093	0.041	1.093
641	106	2356	21PP91	0.0040	500	0.094	541	1.137	0.047	1.137
64n	JULI	2357	2APP91	0.0046	500	0.108	515	0.939	0.040	0.939
640	501	2370	21PR91	0.0038	500	0.089	466	1.014	0.049	1.014
64p	HAY	2371	21P891	0.0036	500	0.084	399	0.907.	0.052	0.907
649	APR	2372	2APR91	0.0040	500	0.094	457	0.944	0.047	0.944
64 r	\| Mar	2373	24PR91	0.0029	500	0.068	397	\| 1.120	0.064	1.120

PROJECT ID: HONB SEGIKTITAL AHALYSIS AMALYSIS: $\operatorname{ZHg} /$ EAIR SAMPLR 64

AMALYST: CITTERHAY/LASORSA
PILE f: MOHSEG64

$\begin{aligned} & \text { BATIBLLB } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SBG } \\ \text { MOMIT } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTEGRATIOR } \\ \text { SER } f \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM: } \\ \text { DART } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { In } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { ABLLYZED } \end{array}\right\|$	$\left\|\begin{array}{c} \text { AMALYZED } \\ \text { mI } \mathrm{Eg} \end{array}\right\|$	ARBA	$\stackrel{\Sigma \mathrm{Rg}}{[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}}$	$\left\|\begin{array}{c} \operatorname{lidL} \\ {[\mathrm{Hg}] \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { KRAM } \\ {[\mathrm{Eq}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
64s	PKB	2375	24 PR 91	0.0030	500	0.070	408	1.115	0.062	1.115
64t dup	Jal	\|2380,2376	$2 \mathrm{PPR91}$	0.0032	500	0.075	465	1.202	0.058	1.17281
64u	DEC	2377	$2 \mathrm{PrP91}$	0.0028	500	0.065	420	1.232	0.066	\|1.23231

[Hg] vs Month

Participant \#65

PROJECT ID: KOHR SEGEETMAL AMALYSIS
ANALYSIS: IHg/EAIR SA1PLE 65

ANALYST: CITTERIAH/LASORSA
PILE f: MOMSEG65

$\begin{gathered} \text { BampliLe } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONRH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITTEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DAIB } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { in g } \end{array}\right\|$	VOL (HI) MNLYZED	$\left\|\begin{array}{c} \text { AMALYZED } \\ W \mathrm{RI} \end{array}\right\|$	AREA	$\stackrel{\mathrm{EHg}}{[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}}$	$\left\|\begin{array}{c} \mathrm{MDL} \\ {[\mathrm{Hg}] \mu \mathrm{mg} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { HERA } \\ {[\mathrm{Bg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	OCT									
	SEPT									
65a	AOG	2392	201891	0.0070	500	0.164	1052	1.285	0.027	1.285
65b dup	JULY	\|2390,2382	2APR91	0.0071	500	0.166	902	1.081	0.026	1.097
65c	301	2383	2AP891	0.0074	500	0.173	832	0.954	0.025	0.954
65d	$\mathrm{H} \times 1$	2384	2 P P291	0.0080	500	0.187	916	0.975	0.023	0.975
65	APR	2385	2APP91	0.0068	500	0.159	815	1.017	0.027	1.017
655 dup	HRR	\|2391,2388	24 P991	0.0064	500	0.150	964	1.284	0.029	1.280
659	FSB	2389	24.1991	0.0056	500	\| 0.131	1153	1.764	0.033	1.764

[Hg] vs Month Participant \#66

PROJECT ID:HONTB SEGTBFITAL ANALYSIS
ANALYSIS: ZHg/BAIR SAMPLE 66

ANALYST: CITTERHAN/LASORSA
FILE \&: HOHSEG66

$\begin{gathered} \text { BATPILLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MONIIR } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { ITEGRATOR } \\ \text { SEQ! } \end{array}\right\|$	DIGESTIOM DAFE	$\left\|\begin{array}{c} \text { DIGESIIOW } \\ \text { min } \end{array}\right\|$	VOL ($\mu \mathrm{L}$) AMALYZED	$\left\|\begin{array}{l} \text { AMALYZED } \\ \mathrm{mI} \mathrm{Eg} \end{array}\right\|$	LRES	$\underset{[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}}{\mathrm{Z}}$	$\left\|\begin{array}{c} \operatorname{MDL} \\ {[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { NBAR } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	OCT									
	SEPT									
66 a	10 G	2393	24P1991	0.0136	500	0.318	3217	2.057	0.014	2.057
66b dup	JULY	\|2401,2394	24P891	0.014	500	0.330	3283	2.025	0.013	2.051
66 C	J0I	2395	2APR91	0.0135	500	0.316	3255	2.097	0.014	2.097
660	May	2396	218291	0.0129	500	0.302	3030	2.042	0.014	2.042
66 e	$\triangle \mathrm{PR}$	2397	2APR91	0.0115	500	0.269	2805	2.119	0.016	2.119
665	HaR	2398	2appe1	0.0110	500	0.257	3297	2.607	0.017	2.607
66 g	P38	2399	$22 \mathrm{PP} \mathrm{P}_{1}$	0.0088	500	0.206	2399	2.364	0.021	2.364
66h	JII	2400	218901	0.0041	500	0.096	1482	3.113	0.045	3.113

[Hg] vs Month Participant \#67

[Hg] vs Month Participant \#68

PROJECT ID:HONT SEGERNTAL AMALYSIS
AKALYSIS: $\operatorname{ZHg} /$ HAIR SAMPLE 68

AMALYST: CITTERUAN/LASORSA
PILE \#: NOHSEG68

$\begin{gathered} \text { BATYELLES } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOHITH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTRGRATOR } \\ \text { SER } \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESIIOH } \\ \text { DAIE } \end{array}$	$\left\|\begin{array}{c} \text { DIGRSTION } \\ \text { WI } \end{array}\right\|$	$\left\|\begin{array}{l} \operatorname{VOL}(\mu 1) \\ 2 H A L Y Z E D \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYZED } \\ \mathrm{VI} \mathrm{I} \\ \hline \mathrm{Eg} \end{array}\right\|$	AREA	$\begin{gathered} \mathrm{ERg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \mathrm{HRAM} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}$
	\|SCLIP									
	OCT									
68a	SEPT	2416	42PR91	0.0049	500	0.115	820	1.402	0.038	1.402
68b dup	1006	\|2428,2417	42P191	0.0057	500	0.133	657	0.957	0.033	0.972
68 C	July	2418	$4 \mathrm{APR91}$	0.0044	500	0.103	494	0.917	0.042	0.917
688	J015	2419	418 P 91	0.0045	500	0.105	376	0.669	0.041	0.669
685	Hal	2420	418891	0.0040	500	0.094	311	0.612	0.047	0.612
689	APR	2421	418201	0.0040	500	0.094	294	0.575	0.047	0.575
68g dup	HAR	12429,2422	4 P 2 P 1	0.0044	500	0.103	328	0.590	0.042	0.565
68h	FES	2423	418991	0.0045	500	0.105	346	0.611	0.041	0.611
681	Jall	2424	41P991	0.0033	500	0.077	346	0.833	0.056	0.833
$68 j$	DSC	2425	44P891	0.0039	500	0.091	402	0.830	0.048	0.830
68k	107	2426	$4 \mathrm{PP9} 91$	0.0031	500	0.073	379	0.980	0.060	0.980
681	OCI	2427	$4 \mathrm{Pr91}$	\| 0.0032	500	0.075	385	0.965	0.058	0.965

[Hg] vs Month Participant \#69

PROJECT ID:HOHR SECHEMTAL AKALYSIS
AMALYSIS: EHg/EAIR SAMPLE 69

ANALYST: CITTERKAH/LASORSA
PILE \ddagger : MOHSEG69

$\begin{aligned} & \text { BATTELLLE } \\ & \text { ID } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { HOHITH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTECRATOR } \\ \text { SEQ } \ddagger \end{array}\right\|$	$\begin{array}{\|c} \text { DIGESTIOM } \\ \text { DAITR } \end{array}$	$\left\|\begin{array}{c} \text { DIGESTION } \\ \mathrm{g} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{VOL}(\mu \mathrm{~L}) \\ \mathrm{ABACYZED} \end{array}\right\|$	$\left\|\begin{array}{l} \text { AMALYZED } \\ \text { WI mg } \end{array}\right\|$	AREA	$\underset{[\mathrm{BH}][\mu \mathrm{g} / \mathrm{g}}{\mathrm{EHg}}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { KERAR } \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|Scalp									
	OCI									
	SEPT									
69a	AOG	2432	41PR91	0.0064	500	0.150	444	0.563	0.029	0.563
69b dup	JULY	2440,2433	42PR91	0.0062	500	0.145	491	0.647	0.030	0.661
69c	JOL	2434	4APR91	0.0057	500	0.133	473	0.676	0.033	0.676
69d	HMY	2435	$4 \mathrm{APRO1}$	0.0055	500	0.129	531	0.792	0.034	0.792
69e	APR	2436	41P891	0.0050	500	0.117	533	0.875	0.037	0.875
69 f	MAR	2437	419291	0.0049	500	0.115	662	1.122	0.038	1.122
69 g dup	PEB	\|2447,2438	4APR91	0.0047	500	0.110	612	1.077	0.040	1.059
69h	\| JגI	2439	$4 \mathrm{4PR91}$	0.0044	500	0.103	649	1.224	\| 0.042	1.224

[Hg] vs Month Participant \#70

PROJECT ID: MONR SEGYETTAL ANALYSIS
AMALYSIS: $\mathrm{EHg} / \mathrm{HALR}$ SAMPLE 70

ANALYST: CITTERHAN/LASORSA
PILE : HONSEG70

$\begin{aligned} & \text { BATTELLE } \\ & \text { ID } \end{aligned}$	$\left.\right\|_{\text {HONTHE }} ^{\text {SEG }}$	$\left\|\begin{array}{c} \text { ITTEERATOR } \\ \text { SERA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGRSIIOM } \\ \text { DAIB } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM\| } \\ \mathrm{g} \end{gathered}\right.$	VOL (1 ll) AMALYZED	$\left\|\begin{array}{c} \text { ABALYZED } \\ \mathrm{FI} E g \end{array}\right\|$	ARBA	$\stackrel{\text { BHg }}{[B g] \mu g / g}$	$\left.\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Bg}]} \end{array}\right\| \mu \mathrm{g} / \mathrm{g} \right\rvert\,$	$\left\lvert\, \begin{gathered} \text { HRAN } \\ {[\mathrm{Bg}] \mathrm{mg} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	OCT									
70a dup	SEPT	\|2446,2441	4.P891	0.0098	500	0.229	902	0.774	0.019	0.770
70b	10 G	2442	418891	0.0079	500	0.185	476	0.491	0.024	0.491
70 C	JULI	2443	48 P 991	0.0085	500	0.199	467	0.447	0.022	0.447
70d	JUII	2444	42PR91	0.0090	500	0.210	385	0.343	0.021	0.343
70e	HiY	2445	4NPR91	0.0074	500	0.173	218	0.221	0.025	0.221

[Hg] vs Month Participant \#71

PROJECT ID: HOHE SEGIRTITAL ANALYSIS
AHALYSIS: ZHg/HAIR SAMPLE 71

ANALYST: CITTERYAN/LASORSA
PILE f: HOHSEG71

$\begin{gathered} \text { BATTRLLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMR } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { MrIEGRATOR } \\ \text { SEQ } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESTIOM } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { III } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \text { AHLLYZED } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { AMALYZED } \\ & \hline \text { WI ng } \end{aligned}\right.$	AREA	$\begin{gathered} 8 \mathrm{Eg} \\ {[\mathrm{Eg}] \mathrm{pg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \text { HDL } \\ {[\mathrm{Hg}] \mathrm{\mu g} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { HRNIN } \\ {[\mathrm{Bq}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$
	\|SCALP									
	OCI									
	SEPT									
71a	ADG	2627	9APR91	0.0113	500	0.264	921	0.484	0.016	0.484
71b	JULI	2628	94P891	0.0111	500	0.260	684	0.360	0.017	0.360
71c	JUII	2629	9APR91	0.0096	500	0.225	562	0.338	0.019	0.338
71d dup	MaI	\|2637,2630	9APR91	0.0110	500	0.257	593	0.312	0.017	0.332
71e	APR	2631	94PR91	0.0100	500	0.234	732	0.430	0.019	0.430
717	MAR	2632	914P91	0.0093	500	0.218	916	0.584	0.020	0.584
719	FF3	2634	91P891	0.0067	500	0.157	767	0.673	0.028	0.673
716	JJI	2635	91PR91	0.0055	500	0.129	1031	1.117	0.034	1.117
71.	DEC	2636	92 PLO 1	0.0038	500	0.089	934	1.459	0.049	1.459

[Hg] vs Month Participant \#72

PROJECT ID: MOHR SEGIETTAL ANALYSIS
AHALYSIS: KBg/EAIR SAMPLE 72

ANALYST: CITTERMAN/LASORSA
PILE \$: MOHSEG72

[Hg] vs Month Participant \#73

PROJECT ID:NONR SRCHETTAL MMALYSIS
AMALYSIS: ERg/HAIR SAMPLE 73

ANLLYST: CITTERHAN/LASORSA
PILE : : HOHSEG73
-

$\begin{array}{\|c} \text { BAITELLS } \\ \text { ID } \end{array}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOITH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DTECRATOR } \\ \text { SERA } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DAIE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { in } \end{array}\right\|$	VOL ($\mu \mathrm{I}$) AUALYZED	$\left\|\begin{array}{c} \text { AMALYZED } \\ \text { Wr mg } \end{array}\right\|$	AREA	$\begin{gathered} 28 \mathrm{gig} \\ {[\mathrm{Hg}][\mathrm{g} / \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { KIDL } \\ {[\mathrm{Eg}]} \end{gathered} \mathrm{mg} / \mathrm{g}\right.$	$\left\lvert\, \begin{gathered} \text { HRAB } \\ {[\mathrm{Bg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	\|SCALP									
	OT									
73a	SEPT	2271	$14 \mathrm{PR91}$	0.0080	500	0.187	417	0.420	0.023	0.420
73b dup	10 G	\|2286,2284	12PP91	0.0098	500	0.229	746	0.628	0.019	0.621
73c	JULI	2285	$14 \mathrm{PR91}$	0.0071	500	0.166	686	0.794	0.026	0.794

[Hg] vs Month

Participant \#74

PROJBCT ID:HONE SEGIEYTAL AMALYSIS
NMLYSIS: EHg/EAIR SAMPLE 74

AMALYST: CITTERYAN/LASORSA
PILE $\mathbf{f : ~ M O H S E G 7 4}$

$\begin{gathered} \text { BATTELLLB } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOHTH } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { INTEERATOR } \\ \text { SEQ } \end{gathered}\right.$	$\left.\right\|_{\text {DIITR }} ^{\text {DIGSTIOM }}$	$\left\|\begin{array}{c} \text { DIGBSTIOH } \\ \mathrm{HI} \end{array}\right\|$	VOL ($\mu \mathrm{I}$) analyzed	AMALYZED WI mg	ARRA	$\underset{[\mathrm{BHg}]}{\mathrm{EHg} / \mathrm{g}}$	$\left.\left\|\begin{array}{c} \operatorname{MDL} \\ {[\mathrm{Hg}]} \end{array}\right\| \mathrm{Mg} / \mathrm{g} \right\rvert\,$	$\left\lvert\, \begin{gathered} \text { HRRM } \\ {[\mathrm{Eg}] \mathrm{Mg} / \mathrm{g}} \end{gathered}\right.$
	SCALP									
	OCT									
74 a	SEPT	2287	\|12PR91	0.0053	500	0.124	814	1.273	0.035	1.273
74b dup	ADG	\|2291,2288	\|LAPR91	0.0051	500	0.119	633	1.016	0.036	1.028
74.	JOLY	2289	\| $2 \mathrm{PrP91}$	0.0036	500	0.084	520	1.167	0.052	1.167
74d	JOII	2290	\|L1P891	0.0034	500	0.080	568	1.358	0.055	1.358

[Hg] vs Month Participant \#75

PROJECI ID:HONR SEGIERTAL AMALYSIS
ANALYSIS: $\mathbb{Z g} /$ HAIR SANPLE 75

AHALYST: CITTERNAN/LASORSA
PILE \ddagger : MONSEG75

[Hg] vs Month Participant \#76

PROJECT ID:HOMB SEGTEMTAL MMLYSIS
AMALYSIS: $\Sigma \mathrm{Hg} / \mathrm{HAIR}$ SAYPLE 76

AHALYST: CITTERNAN/LASORSA
PILE : HOHSBG76

BATTELLE ID	$\begin{gathered} \text { SEG } \\ \text { HOHIH } \end{gathered}$	$\begin{array}{\|l} \text { IITEERATOR } \\ \text { SEQ! } \end{array}$	$\begin{gathered} \text { DIGBSIIOM } \\ \text { DAIE } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { DIGESTIOR } \\ \text { WI } \end{gathered}\right.$	VOL ($\mu \mathrm{l}$) AMALYEED	$\left\|\begin{array}{c} \text { AMLYKZDD } \\ \text { WI } \end{array}\right\|$	ARRA	$\underset{[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}}{\mathrm{E}}$	$\left\|\begin{array}{c} \text { VDL } \\ \text { (Eg] } 1 / \mathrm{gg} / \mathrm{g} \end{array}\right\|$	$\begin{gathered} \text { KIEAK } \\ {[\mathrm{Bg}]_{\mathrm{Hg} / \mathrm{g}}} \end{gathered}$
	SCALP									
	OCT									
$76 a$	SEPT	2661	174P291	0.0071	500	0.166	1109	0.895	0.026	0.895
76 b	10G	2662	171PF991	0.0062	500	0.145	715	0.647	0.030	0.647
76c dup	JUL	2667,2663	171PP991	0.0065	500	0.152	587	0.499	0.029	0.530
76d	JUS	2664	171PP91	0.0071	500	0.166	813	0.647	0.026	0.647
$76 e$	121	2665	171PP91	0.0058	500	0.136	746	0.723	0.032	0.723
765	APR	2666	171PR91	0.0063	500	0.147	918	0.828	0.030	0.828

[Hg] vs Month

 Participant \#77

PROJECT ID:HONB SEGIERTML ARALYSIS
AMALYSIS: $\mathrm{ZHg} / \mathrm{HILR}$ SAMPLE 77

ANALYST: CITTERNAN/LASORSA
PILR \ddagger : HOHSEG77

$\left\|\begin{array}{c} \text { BATTBLLEB } \\ \text { ID } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { SEG } \\ \text { MOMIITH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { INTECRRTOR } \\ \text { SER } \end{array}\right\|$	$\left.\right\|_{\text {DIFB }} ^{\text {DIGESIIOI }}$	$\left\|\begin{array}{c} \text { DIGESTIOM } \\ \text { wir } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL (} \mu \mathrm{L}) \\ \text { A:LLYZBD } \end{array}\right\|$	$\left\|\begin{array}{c} \operatorname{ainLYZZDD} \\ \operatorname{mag} g \end{array}\right\|$	ARBA	$\begin{gathered} \sum \mathrm{Bg} \\ {[\mathrm{Hg}] \mathrm{Hg} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{HDL} \\ {[\mathrm{Hg}] \mathrm{Mg} / \mathrm{g}} \end{array}\right\|$	$\begin{aligned} & \text { MRAM } \\ & {[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}} \end{aligned}$
	\|SCALP									
	OCT									
	SEPP									
77a	ADG	2709	181PR91	0.0086	500	0.201	470	0.254	0.022	0.254
77b dup	JULY	\|2723,2710	184P991	0.0081	500	0.189	420	0.238	0.023	0.255
77c	JUII	2711	181PR91	0.0076	500	0.178	449	0.273	0.024	0.273
77d	H\|XY	2712	181P1991	0.0070	500	0.164	394	0.256	0.027	0.256
77e	APR	2713	1828891	0.0069	500	0.161	474	0.320	0.027	0.320
77 f	mar	2714	181PP91	0.0066	500	0.154	549	0.394	0.028	0.394
779	FEB	2715	181P191	0.0071	500	0.166	650	0.441	0.026	0.441
77	JM	2716	181P891	0.0060	500	0.140	653	0.525	0.031	0.525
771	DSC	2724	182P891	0.0057	500	0.133	736	0.629	0.033	0.629
77	100	2718	181P191	0.0059	500	0.138	829	0.690	0.032	0.680
77	OT	2721	14 Pren	0.0052	500	0.122	1142	1.099	0.036	1.099
771	SEPT	2722	185P31	$\mid 0.0035$ \|	1500	0.082	12451	1.787	0.053	1.787

[Hg] vs Month

Participant \#78

PROJECT ID:KOHE SEGYRYTAL ANALYSIS
AMALYSIS: EHg/EAIR SANPLE 78

ANALYST: CITTERHAM/LASORSA
PILR \ddagger : MOHSEG78

$\begin{aligned} & \text { BAPPELLB } \\ & \text { ID } \end{aligned}$	$\left.\right\|_{\text {MOHIH }} ^{\text {SRG }}$	$\left\|\begin{array}{c} \text { INTECRATOR } \\ \text { SEQf } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { DIGESIIOM } \\ \text { DATE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGESTIOW } \\ \text { WR } \end{array}\right\|$	$\left\|\begin{array}{l} \text { VOL }(\mu 1) \\ \left\|\begin{array}{ll} \text { INLYZSD } \end{array}\right\| \end{array}\right\|$	$\left\|\begin{array}{l} \text { AHALYERD } \\ \mathrm{WI} \mathrm{Ig} \end{array}\right\|$	AREA	$\underset{[B g] \mu \mathrm{g} / \mathrm{g}}{\mathrm{EHg}}$	$\left\|\begin{array}{c} \mathrm{NDLL} \\ {[\mathrm{Hg}] \mathrm{g} / \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\begin{gathered} \text { KREAR } \\ {[\mathrm{Eg}] \mathrm{mg} / \mathrm{g}} \end{gathered}$
	\|SCAIP									
	OCT									
	SEPT									
78a	ADG	2668	174PR91	0.0078	500	0.182	2054	1.537	0.024	1.537
78b	JULY	2671	174 PR91	0.0081	500	0.189	1825	1.312	0.023	1.312
78 C	JUI	2672	171PR91	0.0072	500	0.168	1150	0.917	0.026	0.917
78d dup	Hay	\|2703,2673	171 PR91	0.0078	500	0.182	1304	0.845	0.024	0.871
78 e	APR	2674	177 PR 91	0.0075	500	0.175	1310	1.007	0.025	1.007
78 f	Has	2675	1714P891	0.0065	500	0.152	1141	1.007	0.029	1.007
789	FIB	2676	1714PR91	0.0071	500	0.166	1218	0.987	0.026	0.987
78b	JMI	2677	171 PR91	0.0075	500	0.175	1115	0.852	0.025	0.852
781	DSC	2678	171P801	0.0064	500	0.150	980	0.873	0.029	0.873
78)	1007	2680	1719891	0.0056	500	0.131	1006	1.026	0.033	1.026
78k dip	OCT	\|2704,2681	1748991	0.0058	500	0.136	1177	1.022	0.032	1.056
781	SEPT	2682	1718P91	0.0062	500	0.145	1390	1.296	0.030	1.296
78!	106	2683	171P191	0.0057	500	0.133	1356	1.374	0.033	1.374
781	JWY	2684	174 P 191	0.0044	500	0.103	1150	1.501	0.042	1.501
780	J01	2685	171P891	0.0043	500	0.101	1021	1.357	0.043	1.357
78p	May	2686	171 P991	0.0040	500	0.094	815	1.151	0.047	1.151
789	APR	2687	174PR91	0.0031	500	0.073	504	0.887	0.060	0.887
78\%	MAR	2688	17aPR91	0.0026	500	0.061	450	0.934	0.072	0.934

PROJECT ID:HOUR SEGTETIAL AMALYSIS
AMALYSIS: $\Sigma H g / H A I R ~ S A M P L E T 8$

AMALYST: CITTERHAN/LASORSA
PILE f: HOHSBG78

[Hg] vs Month Participant \#79

PROJECT ID:MOIR SEGIETTAL AMALYSIS

ANLEYSIS: $\mathrm{ZHg} / \mathrm{HAIR}$ SAMPLB 79

AHALYST: CITMERMAY/LASORSA

FILR f: HONSEG79

BATIELLLR ID	$\begin{gathered} \text { SEG } \\ \text { Honirl } \end{gathered}$	$\begin{array}{\|c\|} \text { ITHEGRATOR } \\ \text { SEQ } \end{array}$	$\left\lvert\, \begin{gathered} \text { DICESTIOM } \\ \text { DAFE } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { DIGSSIOM } \\ \text { In } \end{array}\right\|$	$\begin{array}{\|l} \text { POL }(\mu \mathrm{l}) \\ \text { AMLYZED } \end{array}$		ARRA	$\begin{gathered} \Sigma \mathrm{B} g \\ {[\mathrm{Eg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\begin{gathered} \mathrm{HDL} \\ {[\mathrm{Bg}] \mu \mathrm{m} / \mathrm{g}} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { RBAM } \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}\right.$
	SCALP					;				
	OCT									
79a	SEPP	2725	181 PP 91	0.0079	500	0.185	2469	1.604	0.024	1.604
1 79b dup	106	\|2727,2726	18AFP91	0.0067	500	0.157	1770	1.344	0.028	1.381

[Hg] vs Month Participant \#80

PROJECT ID:MONE SEGERTILL MALYSIS
ARALYSIS: $8 \mathrm{Hg} / \mathrm{HAIR}$ SARPLE 80
annuss: crirzwu/LSosese
IILS \&: HOHSEG80

$\begin{gathered} \text { BAITEBLLE } \\ \text { ID } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SRG } \\ \text { MOMIH } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { IITEGERATOR } \\ \text { SEQf } \end{array}\right\|$	DIGRSITOM DAIE	$\left\lvert\, \begin{gathered}\text { DIGESTIOH } \\ \text { Fi }\end{gathered}\right.$	$\left\|\begin{array}{l} \mathrm{VOL}(\mu \mathrm{~L}) \\ \mid \mathrm{ABLYZED} \end{array}\right\|$	$\left\|\begin{array}{l} \text { ANALYZED } \\ \text { WI } \end{array}\right\|$	ARPA	$\begin{gathered} \Sigma \mathrm{Eg} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{KDLL} \\ {[\mathrm{Hg}] \mu \mathrm{g} / \mathrm{g}} \end{array}\right\|$	$\begin{aligned} & \text { MRAR } \\ & {[\mathrm{Bg}] \mathrm{Hg} / \mathrm{g}} \end{aligned}$
	\|SCALP									
	\| OCT									
80a	SEPP	2728	184P891	0.0051	500	0.119	1212	1.192	0.036	1.192
80b	106	2729	181PP91	0.0047	500	0.110	1039	1.101	0.040	1.101
80c dup	JULI	2757,2730	184PR91	0.0045	500	0.105	860	0.939	0.041	0.944
800	JUI	2731	$184 \mathrm{PR91}$	0.0042	500	0.098	992	1.173	0.044	1.173
800	HMY	2732	181P891	0.0045	500	0.105	831	0.907	0.041	0.907
$80 f$	APR	2745	1818 P 91	0.0037	500	0.087	722	0.948	0.050	0.948
80 g	Mar	2746	182 PR 91	0.0044	500	0.103	612	0.667	0.042	0.667
80h	PEB	2747	182P991	0.0045	500	0.105	494	0.516	0.041	0.516
801	Јล1	2748	182PP91	0.0044	500	0.103	591	0.643	0.042	0.643
80j dup	DES	\|2758,2749	182PR91	0.0042	500	0.098	628	0.719	0.044	0.678
80k	nov	2750	18APR91	0.0045	500	0.105	757	0.820	0.041	0.820
801	OCT	2751	18APR91	0.0043	500	0.101	693	0.781	0.043	0.781
802	SEPP	2752	182PPe1	0.0040	500	0.094	681	0.824	0.047	0.824
80 n	ADG	2753	181PR91	0.0035	500	0.082	686	0.949	0.053	0.949
800	JULI	2754	18APR91	0.0035	500	0.082	647	0.891	0.053	0.891
180 p dup	Jus	\|2759,2755	182PR91	0.0031	500	0.073	647	1.006	0.060	0.995
809	\| May	2756	181PR91	0.0021	\| 500	\| 0.049	526	1.186	10.089	1.186

APPENDIX D

ANALYTICAL METHODS

TOTAL MERCURY IN SOLIDS BY COLD VAPOR ATOMIC FLUORESCENCE

1.0 SCOPE AND APPLICATION

1.1 This is a peer-reviewed, published procedure for the determination of total mercury in a wide range of biological and geological matrices. All samples must be subjected to an appropriate dissolution or leaching step prior to analysis.

2.0 SUMMARY OF METHOD

2.1 The method is a cold vapor atomic fluorescence technique, based upon the emission of 254 nm radiation by excited Hg° atoms in an inert gas stream. Mercuric ions in the oxidized sample are reduced to Hg° with SnCl_{2}, and then purged onto gold-coated sand traps as a means of preconcentration and interference removal. Mercury vapor is thermally desorbed to a second "analytical" gold trap, and from that into the fluorescence cell. Fluorescence (peak area) is proportional to the quantity of mercury collected, which is quantified using a standard curve as a function of the quantity of sample purged.

Typical detection limit for the method is $0.001 \mu \mathrm{~g} / \mathrm{g}$ as Hg or 1 ppb .

3.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

3.1 Samples should be collected into acid-cleaned tefion or glass bottles with teflon lids. Under no circumstances should polyethylene, polypropylene, or vinyl containers be used.
3.2 Unless samples have been freeze-dried, they are to be frozen at <$10^{\circ} \mathrm{C}$ until use. A maximum holding time of 1 year at $<-10^{\circ} \mathrm{C}$ is recommended.
3.3 All dissection, homogenization, and other handling of the samples should be done by clean-room gloved personnel in a clean station.

4.0 DEFINITIONS

4.1 Atomic Fluorescence - detection based on fluorescent emission from excited atoms of a particular element at a characteristic wavelength. The amount of fluorescence, quantified by integration of peak area, is proportional to the concentration of the atom of interest.
4.2 Acid-cleaned - cleaned in nitric acid of the highest concentration and temperature which can be withstood by the item being cleaned. Glass and teflon containers are boiled in concentrated nitric acid for 48 hours.

5.0 POTENTIAL INTERFERENCES

5.1 Due to the strong oxidation step, followed by dual gold amalgamation, there are no observed interferences with the method. The potential exists for destruction of the gold traps (and consequently low values) if free halogens are purged onto them or if they are overheated ($>500^{\circ} \mathrm{C}$). When these instructions are followed, neither of these problems is likely to occur.
5.2 Water vapor may collect on the gold traps, and be released on to the fluorescence cell where it condenses, giving a false peak due to scattering of the excitation radiation. This can be avoided by predrying the gold trap and by discarding traps which tend to absorb large quantities of water vapor.
5.3 As always with atomic fluorescence, the fluorescence intensity is strongly dependent upon the inertness of the carrier gas. The dual amalgamation technique eliminates quenching due to trace gases, but it still remains the analyst's responsibility to ensure high purity inert carrier gas and a leak free analytical system.

6.0 RESPONSIBLE STAFF

6.1 Researcher/Technician - sample prep, digestion, analysis, and calculations.

7.0 APPARATUS AND REAGENTS

7.1 Apparatus
7.1.1 Cold Vapor Atomic Fluorescence Spectrophotometer (CVAF): The components of this detector include a four-watt low pressure mercury vapor lamp, a far UV quartz flow-through fluorescence cell, ($12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 45 \mathrm{~mm}$), with a 10 mm path length, and a UV-visible photomultiplier, sensitive to $<230 \mathrm{~nm}$ isolated from outside light with a 254 nm interference filter. The carrier gas flow is controlled using a flowmeter with needle valve capable of keeping a constant flow of $25 \mathrm{ml} / \mathrm{min}$.
7.1.2 Flowmeter/needle valve: Flowmeter capable of controlling and measuring gas flow to the purge vessel at 200-500 $\mathrm{ml} / \mathrm{min}$.
7.1.3 Teflon fittings: Connections between components and columns are made using 6.4 mm O.D. tefion FEP tubing, and teflon friction-fit or threaded tubing connectors. Connections between components requiring mobility are made with 3.2 mm O.D. teflon tubing due to its greater flexibility.
7.1.4 Acid fume pretrap: A $10 \mathrm{~cm} \times 0.9 \mathrm{~cm}$ diameter teflon tube containing 2-3 g of reagent grade, non-indicating 8-14 mesh soda lime, packed between silanized glass wool plugs. This trap is purged of Hg by placing it on the output of a clean cold vapor generator, filled with $1 \% \mathrm{HCl}$, and purging overnight with N_{2} at $100 \mathrm{ml} / \mathrm{min}$.
7.1.5 Cold vapor generator: A 250 ml or 125 ml florence flask with standard taper 24/40 neck, fitted with a purging stopper having a coarse glass frit which extends to within 0.2 cm of the flask bottom.
7.1.6 Gold-coated sand column: Made from 10 cm lengths of 6.5 mm O.D. X 4 mm I.D. quartz tubing, with a coarse quartz frit or crimp 2.0 cm from one end. The tube is filled with 3.4 cm of gold-coated ashed ($800^{\circ} \mathrm{C}$ for 6 hours) quartz sand ($60 / 80$ mesh). The end is then plugged with quartz wool. Gold is applied to the sand as a coating several atoms thick using an ion exchange gilding apparatus. The columns are heated to 450-500 C with a coil consisting of 24 ga nichrome wire at a potential of 10 VAC.
7.1.7 Refluxing digestion vials: Acid-cleaned, precalibrated, 23 ml glass scintillation vials with acid-cleaned 1 inch diameter glass spheres placed over the mouth. When the vials are placed on a hot plate at $300-350^{\circ} \mathrm{C}$, the contents will reflux, with the spheres acting as pressure relief valves.
7.1.8 Pipetters: All plastic pneumatic fixed and variable volume pipetters in the range of $10 \mu 1$ to 5 ml . (calibrated)
7.1.9. Recorder: Multi-range chart-recorder/integrator with 0.1- 5.0 mV input and variable speed.

7.2 Reagents

7.2.1 Water: Deep well tap water which has been determined to be
very low (<0.02 ng/l) in mercury. The water is continuously
monitored for mercury.
7.2.2 Nitric/sulfuric acid: With constant stirring, carefully add 300 ml of preanalyzed low mercury ($<10 \mathrm{ng} / 1 \mathrm{Hg}$) concentrated sulfuric acid to 700 ml of preanalyzed low mercury ($<10 \mathrm{ng} / 1$ Hg) concentrated nitric acid in a teflon bottle. Use caution... this mixture is exothermic and emits caustic fumes.

7.2.3	10\% Stannous chloride $\left(\mathrm{SnCl}_{2}\right)$: A solution containing 200
grams of $\mathrm{SnCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ and 100 ml of concentrated HCl , brought	
to a final volume of 1 liter with mercury free water. This	
solution is purged overnight with mercury-free nitrogen" at	
$500 \mathrm{ml} / \mathrm{min}$ to remove all traces of mercury. Store tightly	
capped and in the dark.	

7.2.4 5\% Bromine monochloride (BrCl): 27 g of KBr are added to a 2 liter bottle of concentrated $\mathrm{HCl}(<5 \mathrm{ng} / 1 \mathrm{Hg})$. A clean magnetic stir bar (teflon coated) is placed in the bottle and the solution is stirred for one hour, in a fume hood. Next, 38 g of pre-analyzed, low Hg KBrO3 are slowly added to the acid as sitrring continues. CAUTION: This process should always be darried out in a fume hood. The fumes from this reagent are very corrosive and a strong irritant. When all of the KBrO3 has been added, the solution should have gone yellow to red to orange. Loosely cap the bottle, and allow to stir another hour before tightening the lid.

7.2.5 Stock Mercury Standard: A commercially available 1000 mg $\mathrm{Hg} / 1$ atomic absorption standard is used.

7.2.6 Secondary Standard Solution: 0.100 ml is diluted with $\mathrm{Hg}-$
free water containing 5 ml BrCl , to a final volume of 100 ml
in a teflon bottle. This solution contains $1000 \mathrm{ng} / \mathrm{liter}$ and
should be restandardized or replaced annually.
7.2.7 Working standard solution: Dilute 1.00 ml of the 2° mercury standard to 100 ml with Hg free water containing 1% (by volume) bromine monochloride, using a 100 ml class A volumetric flask. This solution has a $[\mathrm{Hg}] 10.0 \mathrm{ng} / \mathrm{ml}$ and should be replaced monthly.
7.2.8 Nitrogen: Grade 4.5 nitrogen which has been further purified by the removal of Hg using an in-line gold coated sand trap.
7.2.9 Helium or argon: Grade 5.0 inert gas which has been further purified by the removal of Hg using an in-line gold coated sand trap.

8.0 PROCEDURE

8.1 Sample preparation

8.1.1 A 10 gram (or more) aliquot is dissected and homogenized with acid-washed stainless steel tools. Approximately 1.0 g of the homogenized sample is weighed directly into the scintillation vial, recording the weight to the nearest mg on a mercury digestion data sheet (Exhibit 2). 5.0 ml of the $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is pipetted into the vial and swirled to mix. A sphere is placed over the mouth of the vial. Samples are then placed on a hot plate, and brought up to a refluxing boil in temperature increments. This is to avoid excessive foaming, which is especially common with tissue samples. The samples are refluxed (hot plate temperature about $300^{\circ} \mathrm{C}$) for 2-3 hours, or until all organic matter has dissolved, the solution looks almost colorless or light yellow, and the brown gas above the liquid has almost disappeared. Sediment samples, especially sandy ones, may take less time for the organic matter to dissolve. The samples are allowed to cool on the hot plate. 0.500 ml 58 BrCl is pipetted into the sample. The samples are loosely capped and allowed to react with the BrCl overnight. Next, dilute the samples to the mark with low Hg deep well water. Undigested rock material or animal fat does not effect the accuracy of this digestion, because these fractions are both very low in initial Hg content, and are effectively leached by the boiling acid.

8.2 Analysis

8.2.1 About 20 ml of low Hg water is added to each bubbler, followed by 1 ml of conc. HCl and 0.500 ml of SnCl_{2} solution. The bubbler is sparged with N_{2} at $350 \mathrm{ml} / \mathrm{min}$ for 10 minutes, and then a gold-coated sand column is connected to the soda lime pretrap and purged for another 10 minutes. This value is the bubbler blank. To analyze samples, 0.5 ml of SnCl_{2} and an aliquot of the digestate (usually $0.25-1.0 \mathrm{ml}$) are pipetted into each bubbler. THe bubbler caps are replaced, the vessel is gently swirled, gold-coated sand columns are placed onto the soda lime pretrap outlet, and the sample is sparged for 10 minutes. New samples may be sequentially added to the bubblers with additional SnCl_{2}, up to a maximum of 5 consecutive samples. After 5 samples, the bubbler blanks should be measured, and then the standards. The water
in the bubblers is then replaced with clean low Hg water, and the above sequence is repeated.
8.2.2 To analyze the mercury contained on the gold trap, the gold trap is placed inside a coil of nichrome wire and then inserted in-line with the mercury analyzer incoming Hg -free He and the second (analytical) gold-coated sand trap. The He flow rate should be about $30 \mathrm{ml} / \mathrm{min}$. The system is purged for 2 minutes to dry off any condensed water vapor. 10 VAC is applied to the nichrome coil on the working gold-coated trap for 4 minutes, thermally desorbing the Hg as Hg° which is then resorbed by the analytical gold-coated sand column. The voltage to the working gold-coated sand trap is turned off, and a cooling stream of compressed air is directed towards the trap. 10 VAC is applied to the analytical gold-coated sand trap, and the integrator is activated. The analytical trap is heated for 3.0 minutes, or 1 minute beyond the point where the mercury peak returns to baseline.
8.2.3 Following the integration of the mercury peak, the voltage to the analytical trap is turned off. A stream of cooling. compressed air is directed towards the analytical trap. The sample gold-coated sand trap is removed from the gas stream, and the tefion end plugs are replaced until it is needed to collect another sample. The next sample gold-coated sand trap is placed inside the nichrome wire coil, placed in-line with the mercury analyzer incoming Hg -free He and the procedure is repeated. Under no circumstances should a sample gold-coated sand trap be heated while the analytical column is still warm, or analyte may be lost by passing through the analytical column.
8.2.4 Peaks generated using this technique should be very sharp and almost symmetrical. The peak comes off at approximately 1 minute, and has a half-height width of about 5 seconds. Broad or asymmetrical peaks are indicative of an analytical problem possibly including: low gas flow, water vapor on the column, or an analytical column damaged by chemical fumes or overheating. If the analytical column has been damaged, replace the column and the tubing downstream, due to the possibility of gold migration on the downstream surfaces.
8.2.5 Cold vapor atomic fluorescence for mercury is linear over at least five orders of magnitude (Bloom and Fitzgerald, 1988). This method is virtually interference free, so the method of standard additions is not routinely applied. To run standards, an aliquot of working standard solution in the range of 1 ng Hg is pipetted into a purged bubbler containing 0.5 ml of SnCl_{2} solution, and analyze as one would a sample;
8.2.6 Gold-coated sand traps should be kept track of by unique identifiers, so that any trap producing poor results can be quickly recognized and discarded. Occasionally due to inadyertent contact with halogen fumes, bubbler solution, organic fumes, or overheating, a sampling gold-coated sand trap may become damaged; giving low and irreproducible results. Suspect gold-coated sand traps should be checked with at least two consecutive standard runs before continued use.
8.2.7 The major cause of analytical problems with this method is from using the soda lime pretraps too long. These traps should be purged overnight as described and then used for only one day's analytical work. Longer use risks irreproducibility, as the traps may begin retarding the flow of Hg°. Also, as the traps become very wet there is a risk of NaOH -saturated water drops coming off onto the goldcoated sand traps.

8.3 Standardization Calibration

8.3.1 Calibrate the analysis with a minimum of a 3-point calibration curve plus a system blank. The calibration concentrations should be $<1 \mathrm{ng} \mathrm{Hg}$.

9.0 QUALITY CONTROL

9.1 All quality control data should be maintained and available for easy reference or inspection.
9.2 Quality assurance data must be composed of a minimum of 2 blanks and
3 standards per day.
9.3 Samples containing high analyte concentrations may be run either following dilution, or on a separate run at a lower instrumental sensitivity.

9.4 Duplicate or triplicate analyses (depending upon client preference) should be run once every 10 samples or once per batch, whichever comes first.

9.5 NRCC or NBS certified standard materials for mercury in tissues and sediments should be analyzed at a frequency of once per 10 samples or once per batch, whichever comes first.

9.6 Procedural spike recoveries should be run once per 10 samples or once per batch, whichever comes first; in the absence of a suitable certified standard tissue, or at the request of the client.

9.7 Method Performance

9.7.1 The data shown below was obtained from the records of this laboratory, and indicate the performance of this technique compared to an entirely independent methodology.

SUMMARY OF TOTAL MERCURY ANALYSIS OF NRCC (NATIONAL RESEARCH COUNCIL OF CANADA)
AND NBS STANDARD MARINE ANIMAL TISSUE

NBS TUNA	DORM-1	DOLT-1
ALBACORE TUNA	DOGFISH MUSCLE	DOGFISH LIVER

Measured

x	0.93	0.806	0.240
$S D$	0.09	0.021	0.020
N	10	6	4

Certified or Expected
X
0.95
0.798
0.225
SD
0.10
0.074
0.037

10.0 CALCULATIONS

10.1 Calculations may be made using either a best fit linear regression analysis of the standards and blanks or by using the average response factor method.

10.1.1 Average Response Factor Method:

$\begin{aligned} \text { Ave Response Factor }(R F) & =\frac{\Sigma((s t d \text { peak area }-b l k \text { area }) /[\mathrm{Hg}] \mathrm{ng})}{\# \text { std }} \\ {[\mathrm{Hg}] \mathrm{ng} / \mathrm{g} } & =\frac{(\text { sam peak area - blk area) * } v}{R F * v * \operatorname{sam} w t(g)}\end{aligned}$
(Where std peak area is the standard peak area, blk area is the average blank area, $[\mathrm{Hg}]$ is the Hg concentration in ng , sam peak area is the sample peak area, V is the digestate volume in ml, v is the sample aliquot analyzed, sam wt is the sample weight digested in grams, and RF is the average response factor in area/ng.)
10.1.2 Linear Regression Method:

Using least squares best fit method, calculate the slope of the- line for the standards, forcing the line through zero.
$[\mathrm{Hg}] \mathrm{ng} / \mathrm{g}=\frac{\text { sam area * } V}{\text { slope * } v * \text { sam wt (g) }}$
(Where slope is the slope of the standard regression line in area/ng, for a explanation of the other variables refer to the average response method above.)
10.2 Method Detection Limit (MDL):

The MDL is calculated by recording the results of a standard analyzed seven times, whose concentration is within 10 times of the actual method detection limit.

$$
\text { MDL }[\mathrm{Hg}] \mathrm{ng}=S D * t_{(0.1(1)(n-1))}
$$

(Where $S D$ is the standard deviation of the $[\mathrm{Hg}] \mathrm{ng}$ of the standards analyzed multiplied by the student t value for 99\% one tailed confidence interval with $n-1$ degrees of freedom.)

$$
\text { Detection Limit }[\mathrm{Hg}] \mathrm{ng} / \mathrm{g}=\mathrm{MDL} / \mathrm{sam} \text { wt }(\mathrm{g})
$$

(Where MDL is the method detection limit $[\mathrm{Hg}] \mathrm{ng}$ and sam wt is the weight of the sample analyzed in grams.)

11.0 REFERENCES

Bloom, N.S. 1983. "Determination of Silver in Marine Sediments byZeemanCorrected Graphite Furnace Atomic Absorbtion Spectroscopy." Atomic Spectroscopy. 4:204.

Bloom, N.S. 1989. "Determination of Picogram Levels of Methylmercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas Chromatography with Cold Vapor Atomic Fluorescence Detection." Can. J. Fish Aq. Sci. 7:1131.

Bloom, N.S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Subnanogram per Litre Levels." Mar. Chem. 14:49.

Bloom, N.S., and E.A. Crecelius. 1987. "Distribution of Silver, Mercury, Lead, Copper and Cadmium in Central Puget Sound Sediments." Mar. Chem. 21:377.

Bloom, N.S., and W.F. Fitzgerald. 1988. "Determination of Volatile Mercury Species at the Picogram Level by Low-Temperature Gas Chromatography with ColdVapor Atomic Fluorescence Detection." Anal. Chim. Acta. 208:151.

Fitzgerald, W.F., and G.A. Gill. 1979. "Sub-Nanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis." Anal. Chem. 15:1714.

SEQ	SAMPLE ID	VIAL WT grams	VIAL+SAMPLE grams	SAMPLE WT grams	TISSUE $\mathrm{mg} / \mathrm{ml}$
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					

DISTRIBUTION

No. of
Copies
OFFSITE
2 J. Imm
U.S. Department of the Interior

949 E. 36th Avenue Anchorage, Alaska 99508-4302

2 DOE Office of Scientific and Technical Information

ONSITE

DOE Field Office. Richland

P. W. Kruger

16 Pacific Northwest Laboratory
R. J. Citterman
E. A. Crecelius
R. M. Ecker
J. W. Falco
P. C. Hays
B. K. Lasorsa (2)
J. A. Trelstad (2)

Publishing Coordination
Technical Report Files (5)

As the Nation's principal conservation agency, the Department of the interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and culturai values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interest of all our people. The Department also has a major responsibility for American indian reservation communities and for people who live in Island Territories under U.S. Administration.

[^0]: (a) The Marine Sciences Laboratory is part of the Pacific Northwest Laboratory, which is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-ACO6-76RLO 1830. This work was supported by the Minerals Management Service under a Related Services Agreement with the U.S. Department of Energy.

