### Arctic Basin Hydrography ...& some circulation

**Michael Steele** 

Polar Science Center Applied Physics Laboratory University of Washington

Large-scale,
Pacific-Arctic focus

Warming
Freshening?

### Ice Retreat & Upper Ocean Warming



SSTs from monthly mean AVHRR (Reynolds et al)

> National Weather Service Environmental Modeling Center

### Summer SST Anomaly

(relative to 1982-2006 mean)







- Natural see-saw?
- Recent pan-arctic warming

#### **Three Questions**



#### Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) Jinlun Zhang, Univ. of WA



POP (Parallel Ocean Program) ocean model, v. 1.4

No assimilation in this study

**Atmos forcing: NCEP** 

45°N

North

Pole

30 vertical levels (5 m resolution in upper 30 m)

22 km resolution (average); 3 grid pts across Bering St.

#### BESTMAS:

10 km resol. in Beaufort/Chukchi; 20 pts across Bering St.

http://psc.apl.washington.edu/IDAO zhang@apl.washington.edu

Inflow from global model

#### **Summer Upper Ocean Heat Balance**



#### **Summer Ocean Heating**



pathway unchanged, but stronger

see Shimada et al., GRL 2006

**F**<sub>surf</sub> = 70-80% of ocean surface warming



#### **Summer Ice Mass Balance**



# ∠h<sub>bot0</sub> = Ice melt from ocean dynamics July '07



- warm SST
- strong advec



#### Next Question: What is the FATE of summer ocean heat?



contours: Salinity

Krishfield et al. J. Tech. 2008

The "Near-Surface Temperature Maximum" (NSTM) ...a LOCAL Tmax layer, as opposed to...

"summer Pacific Water" (sPW)

ITP data from 2007-2008: NSTM survives through the winter!

#### *Data are sparse*: What can we learn about the NSTM from a <u>model</u>?



#### Recent winter survival of the NSTM: WHY?

**NSTM** contains Alaska 70°N 2001 <u>2002</u> enough heat to Beaufort melt up to 1 m Gyre 🔍 Russia sea ice ice e**d**a 90 E Three factors: 1.) Thinner, <u>looser ice cover</u> allows more summer heating <u>2005</u> 2004 2006 2.) Increasing Beaufort Gyre stratification suppresses surface mixing 3.) Increasing Beaufort Gyre downwelling <u>2007</u> <u>2008</u> <u>2009</u> December  $T_{max}$  (C) -1.8 -1.6 -1.4 -1.2 -1.0 -0.5 0 2

Validation: model vs. ITP NSTM



### Pacific Water





1.) sPW enters the Beaufort Gyre near NW Alaska, but...

2.) Model's <u>resolution/mixing is not adequate to maintain</u> <u>a sPW layer</u> at 70-100 m depth.

### The future?



#### **Measuring Upper Ocean Warming**





Atmos. moisture transport is the major source of FW ...ie,

- 1) storms  $\rightarrow$  arctic drainage basins
- 2) rivers  $\rightarrow$  ocean  $(ocean \leftrightarrow sea ice)$
- ocean/sea ice  $\rightarrow$  North Atl. Ocean 3)

#### Consider all the FW inputs



### How it stacks up: Ocean water mass structure in the Beaufort Sea



#### Getting the right stratification: The effect of "<u>background mixing</u>"



"Typical" K<sub>diff</sub> ≅ 0.1 cm<sup>2</sup>/s; Need to reduce mixing to levels 10 times less! ...it's ok: sea ice suppresses mixing! (D'Asaro & Morison, 1992) ...for now, anyway: (Rainville & Woodgate, 2009)

### FWC = Vertical integral of FW



Units: meters Sea ice melt: ~1 or 2 m/yr



#### "The Arctic is the freshest ocean!"

#### FWC $\cong$ factor \* steric height



### **DH: The zonal mean view**

Figure 2



Nordic Seas "potential well"

### Ocean circulation pathways



### FWC: <u>Seasonal</u> changes

#### PROSHUTINSKY ET AL.: BEAUFORT GYRE FRESHWATER RESERVOIR





There's 2 seasonal maxima:

<u>June/July</u>: FWC peak #1 from ice melt → upper layer freshening

<u>Nov/Dec/Jan</u>: FWC **peak #2** from **Ekman convergence** 

→ upper layer deepening

### FWC: Interannual variability



### The SHEBA FW anomaly: A model study

- Mackenzie River fed FW into the Beaufort Gyre, <u>as</u> <u>observed</u>, forced by:
- anomalously strong fall SE'lies (i.e., strong BG)
- 2007: another strong summer/fall BG anticyclone!

Future of the BG anticyclone?

#### Longer term pan-Arctic Ocean FWC

#### ...anomalies

Steele & Ermold, 2007



Polyakov et al. (2008):

Downward trend  $\rightarrow$  1990s

#### Arctic Ocean getting SALTIER! Why?

### Arctic FW & the North Atlantic Oscillation



### The Beaufort Gyre in the 2000's



### The Longer-Term Future?



The arctic will freshen ... ... but when?!

#### Factors influencing Arctic Ocean circulation

sea ice thinning & retreat

vertical momentum flux changes (currents, waves, mixing)

- surface warming (ice melt, tracer, density)
- vertical FW flux changes? (density)
- changes in the global hydrologic cycle
  - incr. FW input (density)
  - > altered Pacific-Atlantic ∆SSH? (OMG!)

#### Arctic Ocean circulation modeling: What's new?

- numerical improvements (e.g, resolution)
- better forcing (e.g., atmos. reanalyses)
- new tracers and diagnostics (e.g., biology!)

## Thank You

The arctic "sea ice refuge" Lincoln Sea "Switchyard" project, 2009

### The Changing Arctic: Observation and Model Study

MUYIN WANG<sup>1</sup> & JAMES E. OVERLAND<sup>2</sup> <sup>1</sup>JISAO/UW,<sup>2</sup>PMEL/NOAA
# OUTLINE

The observed changes in the Arctic
Feedback mechanisms
Model culling and projections of future Arctic Sea ice condition

## Surface Air Temperature Anomaly for 2001-2005

Annual temperatures increases for 2001-2005 relative to 1951-1980

Average surface temperature anomaly (°C) -0.8 -0.4 -0.2 0.2 0.4 0.8 1.2 1.6 2.1

Insufficient data

Hansen et al., Global Temperature Changes, Proc. Natl. Acad. Sci. 103, 2006.

## Warming is unequivocal – IPCC AR4

# Annual Mean Surface Temperature Linear Trend



### Greenland Total Melt Area: 1979-2009







**University Bremen** 



## Arctic September Sea Ice Extent



# NH Sea Ice Extent

7 5





The Evolution of Multiyear Ice



Satellite Data (QuickScat)

### From Ron Kwok (JPL)

Atmosphere



# Evolution of Sea Ice Thickness

### http://stratus.astr.ucl.ac.be/textbook/chapter3\_node12.xml



Zhang and Rothrock, 2001

40

45

50

30

35

# OUTLINE

The observed changes in the Arctic
Feedback mechanisms
Model culling and projections of future Arctic Sea ice condition

## THE FEEDBACKS

2 *a* : the partial reversion of the effects of a process to its source or to a preceding stage

*b*: the transmission of evaluative or corrective information about an action, event, or process to the original or controlling source; *also*: the information so transmitted Merriam-Webster Dictionary

A system exhibiting **positive feedback**, in response to perturbation, acts to increase the magnitude of the perturbation.

http://en.wikipedia.org/wiki/Positive\_feedback

1 Wed Jul 07 14:48:31 2010 UTC

# **Arctic Climate System Feedbacks**

Teleconnection and circulation pattern change

### Arctic Atmosphere Warming

### **Global Warming**



Arctic amplification

### **Reduction of Arctic Sea Ice**



Sept Sea Ice Extent

Surface albedo decrease => less sunlight being reflected from surface



Heat releases to atmosphere in the fall.

### Ocean Absorbs More Heat



# JAS SST Anomaly















## JAS Sea Surface Temp Anomaly Relative to 1982-2006 mean



**NOAA Arctic Report Card** 

## Recent (2002-2008) Central Arctic Fall Temperature Anomalies Greater Than $+5^{\circ}$ C

- 7



Wed Jul 07 14:48:31 2010 UTC

Oct to Dec; 2002 to 2005



A/ESRL Physical Sciences Divisio

## Vertical Cross Section of Temp Anomaly

### Oct. – Dec. 2002-2008



### Leading EOF (19%) shown as regression map of 1000mb height (m)

## The Arctic Oscillation (AO) Northern Annular Mode (NAM)





# Arctic Oscillation & Dipole Anomaly

#1 Wed Jul 07 14:48:31 2010 UTC



Wang et al, 2009; Overland and Wang, 2010

1 Wed Jul 07 14:48:31 2010 UTC

# **Seasonal Mean PC Series**



# OUTLINE

The observed changes in the Arctic
Feedback mechanisms
Model culling and projections of future Arctic Sea ice condition

## The Progress of Climate Models



# Model Components



## Source of Projection Uncertainties



# p: 11.0°C Model Culling



Boe et al. 2009

### #1 Wed Jul 07 14:48:31 20 **Climatology/Seasonal Cycle**

p: 11.0°C



# NH Sept Sea Ice Extent



### Wang and Overland 2009

# September Sea Ice Extent



Wang and Overland, 2009



### **Seasonal Cycle of Sea Ice Extents**

OBS

IPSL

10

10

8

12

8

CCSM3

CNRM

ECHO-G

Miroc(med)

UKHadgem1

12



# <sup>#1 Wed Jul 07 14:48:31 2010 UTC</sup> <u>p: 11.0°C</u> Monthly Sea Ice Extent over Chukchi Sea



2050

# <u>Mean Sea Ice Concentration over the Chukchi Sea</u>

65-80N, 180-157W



# DECADAL MEAN ICE EDGE under A1B scenario



CCSM3



# Buoy drift and Ice Concentration



## Ice Export Faster ....

### STEADY AS SHE FLOWS

In 1896, Fram became the first vessel to have ridden the Transpolar Drift Stream – one of the Arctic's ice currents. This year, Tara was the second, making the journey in less than half the time. The Transpolar Drift Stream is pushed along by westerly winds, while the other major ice current in the Arctic is the clockwise-circulating Beaufort Gyre, generated by the rotating winds created by a high-pressure atmospheric system





#### Return to previous Arctic conditions is unlikely

Record temperatures across Canadian Arctic and Greenland, a reduced summer sea ice cover, record snow cover decreases and links to some Northern Hemisphere weather support this conclusion

#### Arctic Report Card 2010





#### Atmosphere

Arctic climate is impacting mid-latitude weather, as seen in Winter 2009-2010

#### Sea Ice

Summer sea ice conditions for previous four years well below 1980s and 1990s

#### Ocean

Upper ocean showing year-to-year variability without significant trends

#### Land

Low winter snow accumulation, warm spring temperatures lead to record low snow cover duration

#### Greenland

Record setting high temperatures, ice melt, and glacier area loss

#### Biology

Rapid environmental change threatens to disrupt current natural cycles

#### About the Report Card

Printable Handout :: Executive Summary :: Full Arctic Report Card (PDF) NOAA Arctic Theme Page



DOC | NOAA | NOAA Arctic Research Program Disclaimer | Privacy Policy | Webmaster

## http://www.arctic.noaa.gov/reportcard/

## The AO and Weather Pattern



### Courtesy of J. Wallace
#### Toward producing reanalysis wind field over the Chukchi/Beaufort Seas via data assimilation and analysis nudging

Jing Zhang<sup>1</sup>, Jeremy Krieger<sup>2</sup>, Fuhong Liu<sup>1</sup>, Martha Shulski<sup>3</sup>, Xiangdong Zhang<sup>4</sup>

<sup>1</sup>NOAA ISET Center, NC A&T State Unversity, <sup>2</sup>ARSC, UAF, <sup>3</sup>High Plains Regional Climate Center, UNL <sup>4</sup>IARC, UAF

## Introduction

- When performing long-term regional simulations, techniques must be used to constrain the model and maintain numerical stability.
- Data assimilation and analysis nudging are two powerful methods for improving model performance.
- Data assimilation introduces observed, high resolution information into the model simulation, increasing accuracy.
- Analysis nudging constrains the model solution and prevents errors from growing too large.

## **Model Configuration**

Horizontal Grid Spacing: 10 km

49 vertical levels

test periods:

Jun 30 – Aug 30



#### A little about data assimilation

• Assume:

 $T_m = 18^{\circ} C$  (model temperature)

 $T_o = 21^{\circ}C$  (observed temperature)

 $T_t$  true temperature, but we don't know...

• Assume:

 $\sigma_m = 2^{\circ} C \text{ (model error)}$ 

 $\sigma_o = 1^{\circ} C$  (observational error)

 $\sigma_m \& \sigma_o$  are uncorrelated

• T will be corrected as:

$$T = a T_m + b T_o$$

• The most straightforward way to decide a & b is to minimize the mean square error of T:

 $E[(T-T_t)^2] = E[(a(T_m-T_t)+b(T_o-T_t))^2] = a^2\sigma_m^2 + b^2\sigma_o^2$  $\sigma_o^2 \qquad \sigma_m^2$ 

$$a = \frac{b}{\sigma_0^2 + \sigma_m^2} \qquad b = \frac{\sigma_0^2 + \sigma_m^2}{\sigma_0^2 + \sigma_m^2}$$

## Model Errors

- Several model background errors (BEs) are tested, including
  - CV3 (default)
  - CV5 (customize)
    - 2-month simulation, no diurnal cycle (sfc\_2mo-static)
    - 2-month simulation, with diurnal cycle (sfc\_2mo-var)
    - 1-year simulation, no diurnal cycle (sfc\_1yr-static)
    - 1-year simulation, with diurnal cycle (sfc\_1yr-var)

### Surface Observation

- Available/Total: 119/195 stations
- Once hourly (most of them)



#### The effects of BE



Speed-RMSE

## QuikSCAT Winds & Errors

- Ocean surface winds at 10 m height retrieved using observation data from NASA/JPL's SeaWinds scatterometer
- Data is available from 19 July 1999 through 21 November 2009
- Temporal resolution: multiple times daily
- Spatial resolution: 12.5 km
- Different Wind speed errors are tested
  - 1 m/s (qscat\_err1)
  - 4 m/s (qscat\_err4)

#### QuikSCAT Winds



#### QuikSCAT Winds





110 120 130 140 150 160 170 180 190 200 210 220 230 10 20 30 40 80 90 100

180 190 200 210 220 230

#### The effects of Data Errors



Speed-RMSE

# Comparisons between Reanalysis (left) and WRF 1-yr Simulation without Assimilation and Nudging (right)



## Analysis Nudging

- Analysis nudging continually guides model solution towards existing reanalysis to prevent errors from growing too large, which is very necessary for a regional climate modeling.
- WRF contains two 3-D analysis nudging options:
  - Gridpoint nudging each gridpoint is nudged toward input dataset
- Spectral nudging only nudges coarser scales; better allows smaller-scale model information to be retained

### Assimilation + Spectral Nudging

Aug09 case W RMSVE



## **Final Configuration**

- Data assimilation of:
  - Surface stations
  - Radiosondes
  - QuikSCAT
  - MODIS profiles
  - COSMIC profiles
- Spectral nudging of all vars / levels
- Updated surface condition:
  - CMC snow depth analysis
  - AMSR-E sea ice analysis

### Mesoscale Modeling – sea breeze

Unique environmental conditions:

- Continuous solar radiance
- Greater Coriolis effect

## Strongest sea breeze (+mountain breeze) occurs late evening due to continuous solar radiance



#### Mean diurnal variation of V and U

Wind fields along a north-south cross section were analyzed to show the averaged diurnal variation of U and V at different distance from the shoreline, negative values signify north and east winds





#### Sea Breeze Diurnal Variation in Idealized Simulation

latitude =  $70^{\circ}N$ 



#### **Beyond Wind Field Reanalysis**

#### Why downscaling, not just GCM?



10-yr (Oct.94-Sep.04) annual mean precip.(m/yr)

(Zhang et al 2007, GRL)

#### Snow Cover in CCSM3 (left) and Downscaling (right)







#### Projected (2010-19) and Hindcast (1994-04) Glacier Mass Balance



#### WATER BALANCE OF AN ARCTIC COASTAL WETLAND, BARROW, ALASKA: END-OF 21<sup>ST</sup> CENTURY PROJECTIONS

Anna K. Liljedahl et al 2011 (in preparation)





#### **FUTURE INVERSION CLIMATE IN ALASKA DURING 21 CENTURY**

Year

#### FURTURE CONTRIBUTION OF GLACIER RUNOFF TO FRESHWATER DISCHARGE INTO GOA

ongoing project...

# Downscaling Domain



Questions? email: jzhang1@ncat.edu