Appendix H – Air Emission Calculations

VIRGINIA COMMERCIAL OFFSHORE WIND FARM Air Emission Calculations Emission Summary - Met Facility Installation

Mot Facilities Activity	VOC	NO _x	CO	PM/PM ₁₀	PM _{2.5}	SO ₂	HAPs	GHG
Met Facilities Activity	tons	tons	tons	tons	tons	tons	tons	tons CO ₂ e
Installation Activities	0.002	0.09	0.05	0.002	0.002	0.0001	0.001	6.5
Annual Maintenance Activities	0.004	0.15	0.08	0.004	0.004	0.0001	0.001	10.8
Decommissioning Activities	0.002	0.09	0.05	0.002	0.002	0.0001	0.001	6.5
Maximum Annual Emissions ²	0.01	0.24	0.12	0.01	0.01	0.0002	0.001	17.3

Note:

1. Met facility will be installed in 2019 through the end of the Site Assessment term of the commercial lease.

2. The maximum annual emissions assumes that the annual maintenance acitivities and either the installation or decommissionin activities occur in the same year.

VIRGINIA COMMERCIAL OFFSHORE WIND FARM Air Emission Calculations Met Facility Installation

														Total Emissions										
Vessels/Equipment	No. of Engines per vessel	Dimensions (ft) length x breadth x depth (draft)	Emission Factor Used (see EFs worksheet)	Activity	Engine Rating (hp)	Fuel Type	Trips	Hrs/trip	Operating Days	Operating Hours (hrs/day)	Total Vessel Operating Hours (hrs)	Average load (%)	Fuel Usage Gallons	VOC tons	NO _x tons	CO tons	PM ₁₀ tons	PM _{2.5} tons	SO ₂ tons	HAPs tons	CO ₂ tons	CH₄ tons	N ₂ O tons	CO₂e tons
ug Boat - main engines	1	42' x 14.7' x 7.5 (6.2')	2	Tug the work barge for installation	1000	diesel	1	6	1	10	16	70%	564.7	0.00	0.09	0.05	0.00	0.00	0.00	0.00	6.35	0.00	0.00	6.43
	-aux. engines 1		2	WindSentinel buoy and mooring	7.4	diesel	1	6	1	10	16	43%	2.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.03
aunch vessel - main engines	2	47' x 14' x 8' (5')	2	Deploying the AWAC and wave	450	diesel	0	4	1	0	0	43%	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-aux. engines 1		2	measurement buoy	13	diesel	0	4	1	0	0	43%	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vork boat - main engines	2	47' x 14' x 8' (5')	2	Annual Maintenance of	450	diesel	4	4	4	8	48	43%	936.5	0.00	0.15	0.08	0.00	0.00	0.00	0.00	10.54	0.00	0.00	10.67
	-aux. engines 1		2	Met facilities	13	diesel	4	4	4	8	48	43%	13.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.15
ug Boat - main engines	1	42' x 14.7' x 7.5 (6.2')	2	Decomissioning	1000	diesel	1	6	1	10	16	70%	564.7	0.00	0.09	0.05	0.00	0.00	0.00	0.00	6.35	0.00	0.00	6.43
	-aux. engines 1		2		7.4	diesel	1	6	1	10	16	43%	2.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.03
aunch vessel - main engines	2	47' x 14' x 8' (5')	2	Decomissioning	450	diesel	0	4	1	0	0	43%	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-aux. engines 1		2		13	diesel	0	4	1	0	0	43%	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	•••												2,084.2	0.01	0.33	0.17	0.01	0.01	0.00	0.00	23.5	0.0	0.0	23.7

Notes:

1. The installation of the WindSentinel buoy and mooring, and the deployment of the AWAC and wave measurement buoy will be able to be performed in 1 trip per required vessel.

2. 4 vessel trips per year will be required to perform the annual maintenance activities.

3.1 tirp per vessel will be required to decomission the WindSentinel buoy and mooring, and the AWAC and wave measurement buoy.

4. Trip constitutes the round trip transit time to and from the project site. The number of hours per trip were estimated based on the vessel's transit speed and additional time required for maneuvering and berthing.

5. Operating days/hours is the estimated time the vessel is at the site performing their associated activities.

6. Emission calcs based on vessels traveling from Cape Henry Launch located in Virginia Beach.

7. The engines utilized on each of the vessels are assumed to be Category 1 engines based on engine horsepower rating (<1,000 kW) and cylinder displacement (1-5 liters per cylinder).

8. Emission factors for marine vessel engines are from Table 3-8 in the ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009. (See emission factors summary page)

Assumed all engines to be used are certified to meet EPA Tier 1 engine standards; therefore, the Tier 1 emission factors in Table 3-8 from the ICF International report was used to provide conservative estimate.

9. HAP emission factors for commercial marine vessels were determined using the methodology identified by US EPA for the latest (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM 10, PM2.5, or VOC emissions from the CMVs.

The HAP emisson for nonroad engines were based on EPA's AP-42 Volume 1, Chapters 3.3 and 3.4 for small and large diesel engines. (see HAP emission factor summary pages)

10. Average load factors were estimated based on load factors presented in Table 3-4 of the ICF International report.

11. CO_2e emission rates use the following carbon equivalence factors: 25 for CH₄, and 298 for N₂O.

VIRGINIA COMMERCIAL OFFSHORE WIND FARM Emission Factor Summary for Commercial Marine Vessels (CMVs)

	Commercial Marine Vessel Emission Factors (g/hp-hr) <u>a</u> /										Fuel Cons.
					PM/						
	Engine Type	VOC	NOx	со	PM ₁₀ <u>b</u> /, <u>c</u> /	PM _{2.5} <u>b</u> /	SO ₂ <u>c</u> /	CO2	CH₄	N ₂ O	(gal/hp-hr) <u>d</u> /
1	Category 2 engines	0.37	7.3	3.73	0.46	0.45	0.005	515	0.067	0.015	0.050
2	Category 1 engines ≤ 1000 kW	0.20	7.3	3.73	0.19	0.19	0.005	515	0.067	0.015	0.050

a/ Emission factors for Category 1 and 2 engines are from Table 3-8 from ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009 (converted from g/kW-hr to g/hp-hr by multiplying by 0.746 kW/hp). Assumed all Category 1 and 2 engines to be used for for VOWTAP are certified to meet EPA Tier 1 and 2 marine engine standards respectively (providing conservative estimate for Category 1 engines); therefore the Tier 1 and 2 emission factors in Table 3-8 from the ICF International report was used. Note, the CO emission factor for Category 1 Tier 2 engines is higher than what is provided for Tier 1 engines, thus the Tier 2 emission factor for CO was used to provide a conservative estimate.

b/ All PM is assumed to less than 10 μm in diameter; therefore, PM emission factor is equivalent to PM₁₀ emission factor. PM₂₅ is estimated to be 97 % of PM₁₀ per EPA guidance in "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition," EPA420-R-10-018/NR-009d, July 2010.

c/ Emission factors for Category 1 and 2 engines for SO₂ and PM₁₀ presented in Table 3-8 of the ICF report (ICF International 2009) have been adjusted for the 15 ppmw sulfur content in ultra-low sulfur diesel fuel using the correction factors for ultra-low sulfur diesel as presented in Table 3-9 of the ICF Report. The emission factors for SO₂ and PM₁₀ were multiplied by 0.005 and 0.86, respectively, as recommended in Section 3.4.2 of the ICF Report.

d/ Fuel consuption rate for category 1 and 2 marine engines was estimated based on CO₂ emission factor (g/hp-hr) and the emission factor for the mass of CO₂ generated per gallon of fuel (10.21 kg CO₂/gal fuel) as presented in the Table 13.1 of the "2014 Climate Registry Default Emission Factors". Fuel consumption for category 3 marine engines was based on the BSFC (g/kW-hr) in the ICF International report.

VIRGINIA COMMERCIAL OFFSHORE WIND FARM EPA NEI HAP emission factors for Commercial Marine Vessels

HAP emission factors for commercial marine vessels were determined using the methodology identified by US EPA for the latest (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM10, PM2.5, or VOC emissions from the CMVs.

CMV fuel type			Diesel (d	istillate)		Resi	esidual					
Operating description			In Port	Underway	In P	ort	Unde	rwav				
SCC code			2280002100	2280002200	22800	03100	22800					
								Reduced				
Туре			Maneuvering	Cruising	Manuevering	Hotelling	Cruising	Speed Zone				
Type Code			M	С	M	H	C	Z				
Pollutant	HAP?*	Fraction of		-			-					
Ammonia	No	PM10	0.01	0.02	0.00238	0.0108	0.00477	0.00477				
Arsenic	Yes	PM10	0.0000175	0.00003	8.74126E-05	0.0004	0.000174825	0.000174825				
Benzo[a]Pyrene	Yes	PM10	0.0000025	0.000005	4.37063E-07	0.000002	8.74126E-07	8.74126E-07				
Benzo[b]Fluoranthene	Yes	PM10	0.000005	0.00001	8.74126E-07	0.000004	1.74825E-06	1.74825E-06				
Benzo[k]Fluoranthene	Yes	PM10	0.0000025	0.000005	4.37063E-07	0.000002	8.74126E-07	8.74126E-07				
Beryllium	Yes	PM10			0.000000546	0.000000546	0.000000546	0.000000546				
Cadmium	Yes	PM10	0.00000283	0.00000515	0.0000226	0.0000059	0.0000226	0.0000226				
Chromium (VI)	Yes	PM10	0.0000085	0.000017	0.00006528	0.000204	0.00006528	0.00006528				
Chromium III	Yes	PM10	0.0000165	0.000033	0.00012672	0.000396	0.00012672	0.00012672				
Cobalt	Yes	PM10	0.0000105	0.000000	5.94406E-05	0.000292	0.000153846	0.000153846				
Hexachlorobenzene	Yes	PM10	0.0000002	0.00000004	3.4965E-09	0.00000016	6.99301E-09	6.99301E-09				
Indeno[1,2,3-c,d]Pyrene	Yes	PM10	0.000005	0.00001	8.74126E-07	0.000004	1.74825E-06	1.74825E-06				
Lead	Yes	PM10	0.000075	0.00015	1.39642E-05	0.00006	0.0000262	0.0000262				
Manganese	Yes	PM10	0.00000153	0.000001275	0.0000573	0.0000573	0.0000573	0.0000573				
Mercury	Yes	PM10	0.000000025	0.00000005	2.7076E-07	0.0000014	5.24476E-07	5.24476E-07				
Nickel	Yes	PM10	0.0005	0.001	0.003250219	0.0154	0.00589	0.00589				
Phosphorus	Yes**	PM10	0.0005	0.001	0.001787587	0.00438	0.005734266	0.005734266				
Polychlorinated Biphenyls	Yes	PM10	0.00000025	0.0000005	4.37063E-08	0.0000002	8.74126E-08	8.74126E-08				
Selenium	Yes	PM10	2.83E-08	5.15E-08	1.9125E-06	0.00000908	0.00000348	0.00000348				
		ed to PM10)	0.0006	0.0013	0.0055	0.0212	0.0123	0.0123				
Acenaphthene	Yes	PM2.5	0.000018	0.000015	0.00000034	0.00000034	0.00000034	0.00000034				
Acenaphthylene	Yes	PM2.5	0.00002775	0.000023125	0.000000525	0.000000525	0.000000525	0.000000525				
Anthracene	Yes	PM2.5	0.00002775	0.000023125	0.000000525	0.000000525	0.000000525	0.000000525				
Benz[a]Anthracene	Yes	PM2.5	0.00003	0.000025125	0.000000567	0.000000567	0.000000567	0.000000567				
Benzo[g,h,i,]Pervlene	Yes	PM2.5	0.00000675	0.000005625	0.000000128	0.000000128	0.000000128	0.000000128				
Chrysene	Yes	PM2.5	0.00000525	0.000004375	9.93E-08	9.93E-08	9.93E-08	9.93E-08				
Fluoranthene	Yes	PM2.5	0.0000165	0.00001375	0.000000312	0.000000312	0.000000312	0.000000312				
Fluorene	Yes	PM2.5	0.00003675	0.000030625	0.000000695	0.000000695	0.000000695	0.000000695				
Naphthalene	Yes	PM2.5	0.00105075	0.000875625	0.0000199	0.0000199	0.0000199	0.0000199				
Phenanthrene	Yes	PM2.5	0.000042	0.000035	0.00000794	0.00000794	0.00000794	0.00000794				
Pyrene	Yes	PM2.5	0.00002925	0.000024375	0.000000553	0.000000553	0.000000553	0.000000553				
-		d to PM2.5)	0.0002923	0.000024373	0.000000333	0.00000333	0.000024	0.00000333				
2,2,4-Trimethylpentane	Yes	VOC	0.0003	0.00025	NA	NA	NA	NA				
Acetaldehyde	Yes	VOC	0.0557235	0.04643625	0.000229	0.000229	0.000229	0.000229				
Acrolein	Yes	VOC	0.002625	0.0021875	0:000225 NA	0:000225 NA	NA	NA				
Benzene	Yes	VOC	0.015258	0.0021875	0.0000098	0.0000098	0.0000098	0.0000098				
Ethyl Benzene	Yes	VOC	0.0015258	0.0012713	0.0000038 NA	NA	NA	NA				
Formaldehyde	Yes	VOC	0.1122	0.0935	0.00157	0.00157	0.00157	0.00157				
Hexane	Yes	VOC	0.004125	0.0034375	NA	NA	NA	NA				
Propionaldehyde	Yes	VOC	0.004123	0.0034373	NA	NA	NA	NA				
Styrene	Yes	VOC	0.004373	0.0038125	NA	NA	NA	NA				
Toluene	Yes	VOC	0.001373	0.0013123	NA	NA	NA	NA				
Xylenes (Mixed Isomers)	Yes	VOC	0.0024	0.002	NA	NA	NA	NA				
		ped to VOC	0.0036	0.003	0.0018	0.0018	0.0018	0.0018				
i otal F	iar (ratio	Jeu lo VUC)	0.2039	0.1699	0.0018	0.0018	0.0018	0.0018				

*For completeness, all of the pollutants in EPA's database are shown, but not all are HAP as defined in Section 112 of the Clean Air Act and as updated in 40 CFR 63 Subpart C.

**Only elemental phosphorus (CAS #7723140) is a HAP; phosphorus-containing compounds in general are not.

<u>Reference:</u> US EPA, "2011 National Emissions Inventory, version 1, Technical Support Document", draft, November 2013, available from http://www.epa.gov/ttn/chief/net/2011_neiv1_tsd_draft.pdf; Table 104 on pp. 178-179 refers to the dataset "2011EPA_HAP-Augmentation" for HAP emissions, which is available from ftp://ftp.epa.gov/EmisInventory/2011/doc; the factors above are from that