## Call for Information and Nominations: Discussion of Possible Virginia Call Area

#### Virginia Task Force Meeting

Bureau of Ocean Energy Management, Regulation and Enforcement

Old Dominion University Webb Center

Norfolk, VA

17 August 2011



#### George Hagerman

VCERC Director of Offshore Wind Research Virginia Tech Advanced Research Institute 900 North Glebe Road Arlington, VA 22203

Email: hagerman@vt.edu Phone: 757-422-2704

## Recap of Commercial Navigation and Maritime Safety Concerns

# Commercial shipping avoidance of Dam Neck Danger Zone sends traffic through proposed Virginia Wind Energy Area



# Commercial shipping avoidance of Dam Neck Danger Zone sends traffic through proposed Virginia Wind Energy Area



#### Existing Deep-Water Routes and Virginia Wind Energy Area (WEA) Alternative A



#### Existing Deep-Water Routes and Possible Virginia WEA to be Discussed Today



#### Existing Coastwise Barge Routes and Possible Virginia WEA to be Discussed Today

|                          |      |                    | 6956 | 6957   | 6958        | 6959   | 6960                                                                    | 6961                                | 6962           | 6963          | 6964           | 6965     | 6966           | 6967 <sup>0</sup> |
|--------------------------|------|--------------------|------|--------|-------------|--------|-------------------------------------------------------------------------|-------------------------------------|----------------|---------------|----------------|----------|----------------|-------------------|
|                          |      | 7005               | 7006 | 7007   | 7008        | 7009   | 7010                                                                    | 7011<br>Baro                        | 7012<br>ae hea | 7013          | 7014           | ans Bar  |                | 7017<br>mal       |
|                          | 7054 | 7055               | 7056 | 7057   | 7058        | 7059   | 7 9060                                                                  | wea<br>7061                         |                | ute<br>7093   | 7064           | 2 wea    | ther r<br>7066 | oute<br>7067      |
|                          | 7104 | 7105               | 7106 | 7107   | 7108        | 7109   | 7110                                                                    | Sprint,                             | 7112           | 7113          | Atta           | 7115     | 7116           | 71 7              |
|                          | 6004 | 6005               | 6006 | 6007   | 6008        | 6003   | 96010<br>3                                                              | 60 <mark>-64 Н</mark><br>к ц<br>о Р | 6012           | 8918          | 3694           | 6095     | 6016           | 6017              |
|                          | 6054 | 6055<br><b>2</b> 4 | naut | ical m | iles        | 6059   | 6060                                                                    | B C D   F 0 4   G064 4 4   J 3 K L  | 6062           | 6463          | ener e         | <u> </u> | 6066           | 6067              |
| 279<br>Virginia<br>Beach | 8104 | 6105               | 6106 | 6107   | 6108-       | - etge | 6110 H                                                                  | 6111                                | 6112           | 8712          |                | Star S   | Jan Co         | 191175            |
|                          | 6154 | 6155               | 6156 | 6157   | <b>6158</b> | 6159   | C 0<br>F | 6161                                | 6162           | 5183          | 53-64          | 6165     | 6166           | 6167              |
|                          | 6204 | 6205               | 6206 | 6207   | 6208        | 6209   | 6210                                                                    | 6211                                | 6212           | Virgi<br>6213 | nia Ca<br>6214 | 6215     | 6216           | 62 7              |
|                          | 6254 | 6255               | 6256 | 6257   | 6258        | 62590  | 6260                                                                    | 6261                                | 6262           | 6263          | 6264           | 6265     | 6266           | 6267              |
| North                    |      | 6305               | 6306 | 6307   | 6308        | 6309   | 6310                                                                    | 6311                                | 6312           | 6313          | 6314           | 6315     | 6376           | 631/7             |
| Fed/State Boundary       |      |                    |      |        |             | e      | 0                                                                       | 10 10                               |                |               |                |          | -              |                   |

| Pedistate Boundary               | 0 | 2 | 4 | 6  | 8  | 10 | 12               | Bathymetry |
|----------------------------------|---|---|---|----|----|----|------------------|------------|
| Inclement Weather Diversion Area |   |   |   |    |    |    | Nautical Miles   | -10m       |
| Traffic Separation Scheme        |   |   |   |    |    |    |                  |            |
| Virginia Wind Energy Area        | 0 |   | 5 | 10 | 15 | 15 | 20<br>Kilometers |            |
| OCS Lease Blocks                 |   |   |   | -  |    |    | - Riometers      |            |

#### Nautical Chart View (Mariner's View) of Possible Virginia WEA to be Discussed Today

#### Possible Virginia Wind Energy Area, 17-Aug-2011



Significance of Research Lease Sub-Blocks for Early Metocean and Environmental Data Acquisition

#### Greatest Downside Risk is Lack of High-Fidelity Wind Resource Characterization



#### Existing Wind Measurement Stations are Inadequate to Secure Wind Project Financing



CHLV2 data can NOT be directly extrapolated to turbine hub heights in commercial lease area



# Chesapeake Light Tower can be a Useful Long-Term Reference Station



CHLV2 is the only Atlantic Coast offshore fixed anemometer that can be used as a long-term reference station to measure-correlate-predict annual energy production.

#### CLT also can Serve as a Reference Station for New Technology Validation and Qualification

Wake

Free Light Tower can be used to validate buoy-based vertical LIDAR wind shear profiling and to validate volume-scanning LIDAR mapping of 3-D wind field



#### Virginia DMME Proposed Research Lease Sub-Blocks for Metocean and Environmental Data Towers



Possible Virginia Wind Energy Area, 17-Aug-2011

## Offshore Wind Development Potential of Virginia Wind Energy Area Alternatives

#### **Draft EA Offshore Wind Energy Areas**



#### Assume 20 x 6 MW Turbines w/ 150m Rotor per Full Lease Block = $120 MW/(4.8 km)^2 = 5.2 MW/km^2$



Note: Excludes very small offshore sites (Beatrice, Blyth) and abandoned applications (Cromer) Source: BWEA, Crown Estate, BCG analysis

Source: www.carbontrust.co.uk/publications/pages/publicationdetail.aspx?id=CTC743

#### Potential Installed Capacity in Virginia Wind Energy Area Alternative A



#### Potential Installed Capacity in Possible Call Area to be Discussed Today



#### Nautical Chart View (Mariner's View) of Possible Virginia WEA to be Discussed Today

#### Possible Virginia Wind Energy Area, 17-Aug-2011



## BACKUP SLIDES on Estimating Potential Energy Production

#### VCERC Analysis of Turbine Productivity Among Enercon Direct-Drive Fleet and Vestas Geared Fleet



Turbine annual energy production can be increased by using direct-drive permanentmagnet generators and by reducing generator rated capacity for given rotor diameter.

#### **ALSTOM 6 MW Offshore Wind Turbine**



Two solid bearings transmit main bending loads safely to the tower (red arrows) while an elastic coupling ensures the generator rotor receives only pure torque (green arrows).

The turbine features an innovative electromechanical layout combining Alstom's unique and proven rotor support technology with a direct drive permanent magnet generator, providing outstanding reliability of the turbine's drive train.

The ALSTOM PURE TORQUE<sup>™</sup> design protects the generator and improves its performance by diverting unwanted stresses from the wind safely to the turbine's tower through the main frame.

The design separates the turbine rotor and generator to ensure that only turning force – torque – is transferred to the generator. This allows the minimum sufficient air gap to be maintained between the generator rotor and stator at all times, offering the highest electrical efficiency.

#### ALSTOM Offshore Turbine, if Similar Performance to Enercon Fleet, Could Exceed 50% Annual CF



Rotor Swept Area per Unit Capacity (m<sup>2</sup>/MW)