Appendix I – Air Emissions Calculations and Methodology

AIR EMISSION CALCULATIONS AND METHODOLOGY Virginia Offshore Wind Technology Advancement Project (VOWTAP)

Prepared for:

5000 Dominion Boulevard Glen Allen, VA 23060

Prepared by:

Tetra Tech, Inc. 4101 Cox Road, Suite 120 Glen Allen, VA 23060

www.tetratech.com

Submitted December 2013

Revised October 2014

TABLE OF CONTENTS

1	INTRO	DUCTION	1
2	EMISSI	ON CALCULATION METHODS	1
	2.1	Commercial Marine Vessels	1
	2.2	Backup Power System	3
	2.3	Nonroad Engines	4
	2.4	Onroad Vehicles	5
	2.5	GHG Emissions	5
3	REFERI	ENCES	6

TABLES

Table 1.	Summary of Harbor Craft and OGV Emission Factors, Corrected for 15 Parts per Million Sulfur Content
	in Harbor Craft and 0.1 Percent Sulfur Content in OGVs2

FIGURES

Figure 1.	NONROAD Model Input Options4	
-----------	------------------------------	--

ATTACHMENTS

Attachment A – Emission Calculations

ACRONYMS AND ABBREVIATIONS

Acronym	Definition
Btu	British thermal units
CH ₄	methane
CMV	commercial marine vessels
СО	carbon monoxide
CO ₂	carbon dioxide
CO ₂ e	carbon dioxide equivalents
EPA	U.S. Environmental Protection Agency
gal	gallons
g	grams
g/hp-hr	grams per horsepower hour
g/kW-hr	grams per kilowatt hour
GHG	greenhouse gas emissions
GWP	Global Warming Potential
HAP	hazardous air pollutant
hp	horse power
ICF	ICF International
kW	kilowatt
l/cyl	liters per cylinder
lb	pounds
MMBtu	million British thermal units
MOVES	Motor Vehicle Emission Simulator
NO _X	nitrogen oxides
N ₂ O	nitrous oxide
OGV	ocean-going vessels
ppmw	part per million by weight
SF ₆	sulfur hexafluoride
SO ₂	sulfur dioxide
PM _{2.5}	particulate matter 2.5 micrometers in diameter
PM ₁₀	particulate matter 10 micrometers in diameter
Project	Virginia Offshore Wind Technology Advancement Project
VOC	volatile organic compound
VOWTAP	Virginia Offshore Wind Technology Advancement Project

1 INTRODUCTION

This report describes the methodology applied to calculate the air emissions associated with the Virginia Offshore Wind Technology Advancement Project (VOWTAP or Project), as well as the results of the emissions calculations, which are detailed in Attachment A. As described in Section 4.16 of the VOWTAP Research Activities Plan, there are four primary categories of sources for which emissions were calculated:

- Commercial marine vessels (CMVs),
- Backup power system,
- Nonroad engines, and
- Onroad vehicles.

The specific air pollutants estimated from the above listed sources consist of the criteria air pollutants and greenhouse gases (GHGs). Specific pollutants in each group are listed as follows:

- Criteria Pollutants:
 - Nitrogen oxides [NO_X],
 - Volatile organic compounds [VOC],
 - Carbon monoxide [CO],
 - Particulate matter 10 micrometers in diameter or less [PM₁₀],
 - Particulate matter 2.5 micrometers in diameter or less [PM_{2.5}],
 - Sulfur dioxide [SO₂], and
 - Hazardous air pollutants [HAPs].
- GHGs:
 - Carbon dioxide (CO₂),
 - Methane (CH₄),
 - \circ Nitrous oxide (N₂O), and
 - Sulfur hexafluoride (SF₆).

2 EMISSION CALCULATION METHODS

Methods for calculating criteria pollutant emissions for the respective types of emission sources are summarized in Sections 2.1 through 2.4. Section 2.5 below discusses the methodology for estimating the total GHG emissions for each of the sources. GHG emissions are presented in CO_2 equivalent or " CO_2 e", because the different GHG constituents have different heat trapping capabilities.

2.1 Commercial Marine Vessels

The U.S. Environmental Protection Agency (EPA) guidance for CMV emissions (ICF International 2009) categorizes tugboats, crew boats, etc. as harbor craft and categorizes larger engine ships as ocean-going vessels (OGVs), and identifies the emission factors shown in Table 1. For the purpose of estimating the CMV emissions for the construction and operations phase of the VOWTAP commencing in 2017, Tier 1 emission factors for the smaller Category 1 engines and Tier 2 emission factors for the Category 2 engines were used providing a conservative estimate. The harbor craft emission factors for SO₂ and PM₁₀ presented

in Table 3-8 of the ICF International (2009) report are based on a fuel sulfur content of 1.5 percent. To adjust these factors for the 15 part per million by weight (ppmw) sulfur content in ultra-low sulfur diesel fuel, the ICF report factors were multiplied by 0.001 and 0.86 for SO₂ and PM₁₀, respectively, as recommended in Table 3-9: Harbor Craft Fuel Correction Factors from Offroad Diesel Fuel, of the ICF International (2009) report. Additionally, the emission factors for the larger engine OGVs for SO₂ and PM₁₀ presented in Table 2-9 of the ICF report are based on a fuel sulfur content of 1.0 percent. These factors were adjusted to account for the 0.1 percent sulfur content in marine diesel fuel to comply with International Maritime Organization Sulfur Emissions Control Area requirements discussed in the Air Quality section of the Research Activities Plan (Dominion 2014). OGVs traveling from foreign ports are able to obtain marine diesel fuel with 0.1 percent sulfur to use within the Emission Control Areas. However, vessels that fuel at U.S. ports will only have available ultra low sulfur diesel, containing no more than 0.0015 percent by weight.

	NOx	VOC	CO	PM ₁₀	SO ₂	CO ₂	CH ₄	N ₂ O
Minimum Power (kW)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)
Harbor Craft ^{a/}								
Category 1 – Tier 1 Engines								
37 - 75	9.8	0.27	2	0.77	0.007	690	0.02	0.09
75 - 130	9.8	0.27	1.7	0.34	0.007	690	0.02	0.09
130 - 225	9.8	0.27	1.5	0.34	0.007	690	0.02	0.09
225 - 450	9.8	0.27	1.5	0.26	0.007	690	0.02	0.09
450 - 560	9.8	0.27	1.5	0.26	0.007	690	0.02	0.09
560 - 1000	9.8	0.27	1.5	0.26	0.007	690	0.02	0.09
1,000 +	9.8	0.27	5	0.26	0.007	690	0.02	0.09
Category 2 – Tier 2 Engines								
	9.8	0.5	5	0.62	0.001	690	0.02	0.09
Ocean-going Vessels								
Category 3 b/ Main Engines	13.20	0.5	1.10	0.19	0.397	646.08	0.004	0.031
All Categories Aux. Engines	13.9	0.40	1.10	0.18	0.42	690.71	0.004	0.031
Notes:								

 Table 1.
 Summary of Harbor Craft and OGV Emission Factors, Corrected for 15 Parts per Million Sulfur Content in Harbor Craft and 0.1 Percent Sulfur Content in OGVs

a/ Category 1 engines have a displacement less than 5 liters per cylinder (L/cyl), Category 2 engines have a displacement greater than or equal to 5 (L/cyl) and less than 30 L/cyl, and Category 3 engines have a displacement greater than or equal to 30 L/cyl.

b/ The emission factors for the Category 3 engines were based on a medium-speed diesel vessel using marine diesel oil fuel.

In determining PM emissions, it was assumed that all PM is less than 10 micrometers in diameter; therefore, the PM emission factor is equivalent to the PM_{10} emission factor. Additionally, based on EPA guidance presented in the report *Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition* (EPA 2010), PM_{2.5} is estimated to be 97 percent of PM₁₀; therefore, the emission factor for PM_{2.5} is estimated based on the percentage of the PM₁₀ presented in the ICF International (2009) report.

The emission factors used to estimate HAP emission for the CMVs utilized the methodology identified in Table 104 of EPA's most current 2011 National Emissions Inventory report (EPA 2013a). The HAP emission factors used for the CMVs, presented in Table 104, refer to a specific dataset of factors provided

by EPA ("2011EPA_HAP-Augmentation"; EPA 2013b), and the HAP emissions from CMVs are calculated from this dataset as a percentage of the PM_{10} , $PM_{2.5}$, and VOC emissions from the CMVs.

The basic equation used to estimate annual emissions from each CMV engine and activity is:

 $\mathbf{E} = \mathbf{k}\mathbf{W} \times \mathbf{Act} \times \mathbf{LF} \times \mathbf{EF}$

Where:

E = emission, grams/year kW = kilowatts (engine rating)

Act = activity, hours/year

LF = engine load factor (for the activity)

EF = emission factor, g/kW-hr

Because the emission factors in the ICF report are expressed in g/kW-hr, engine horsepower was converted to kilowatts by multiplying the horsepower by 0.746 (one horsepower is equal to 0.746 kilowatts). The calculated emissions were converted to tons per year by dividing the emissions by the conversion factor from grams to pounds (453.6 g/lb) and by the conversion factor from pounds to ton (2,000 lb/ton). The emission factors for harbor vessels are based on EPA marine engine emissions standards (i.e., Tier 0 to Tier 3 based on cylinder displacement) and their respective EPA engine categories for CMV main propulsion engines and auxiliary engines. EPA established a tier structure for the emission standards based on age of the engine and cylinder displacement. Tier 0 (baseline), Tier 1, or Tier 2 are applicable to engines built prior to 2009. Stricter Tier 3 emission standards are applicable to engines built starting in 2009; however, as previously mentioned, for the purpose of estimating the CMV emissions for the smaller Category 1 engines and Tier 2 emission factors for the Category 2 engines were used providing a conservative estimate. The EPA categories for CMV engines are defined as follows:

- Category 1: 1-5 liters per cylinder displacement,
- Category 2: 5-30 liters per cylinder displacement, and
- Category 3: over 30 liters per cylinder displacement.

The majority of the commercial harbor vessels, such as crew boats and security boats, have Category 1 engines. Some of the larger tugboats, jack-up-barges, and cable lay barge vessels have Category 2 engines. Category 1 engines have a range of emission factors depending on size; the highest values (for sizes < 1,000 kW) were conservatively chosen. Currently it is anticipated that the only Category 3 vessel will be the OGV transporting the turbines from Europe to the Project site. The CO₂e (GHG) emissions for the CMVs were calculated based on the methodology presented in Section 2.5 below.

2.2 Backup Power System

A major goal of VOWTAP is to develop and demonstrate strategies for offshore wind projects to survive hurricanes or other events that have the potential to bring down the electrical power grid. The strategies for dealing with these environmental conditions require the presence of electrical power to operate certain vital systems during these events. The backup power system currently being proposed for each of the Alstom Haliade[™] 150 offshore wind turbine generators is an approximate 125 kW diesel generator with a 170gallon sub-base tank and a 1,000-gallon external tank, estimated to provide enough fuel to operate the generators for up to 1 week.

Emission calculations utilize emission factors for criteria air pollutants provided by the generator manufacturer, supplemented with factors presented in EPA's AP-42 Compilation of Air Pollutant Emission Factors (AP-42) Section 3.3, Gasoline and Diesel Industrial Engines (EPA 1996), and the emission factors presented in 40 Code of Federal Regulations 98 Tables C-1 and C-2 for GHG pollutants (CO₂, CH₄, and N₂O). Emissions calculated using the generator manufacturer's emission factors (g/hp-hr) were multiplied by the engine's power rating (hp) (based on a conversion factor of 1.34 hp/kW) and by the total annual operating hours (assumed to be 500 hours per year for the maximum allowable hours of operation for an emergency generator). The calculated emissions were converted to tons per year by dividing the emissions by the conversion factor from grams to pounds (453.6 g/lb) and by the conversion factor from pounds to ton (2,000 lb/ton). Emissions calculated using AP-42 emission factors (lb/million British thermal units [MMBtu]) were multiplied by the heat input rate (MMBtu/hr) (calculated from generators fuel consumption (gallons) and the diesel's heat content (Btu/gal)), and by the total annual operating hours and converting from pounds to ton (2,000 lb/ton). The CO₂e (GHG) emissions were calculated based on the methodology presented in Section 2.5.

2.3 Nonroad Engines

Emissions factors for cranes, pumps, horizontal directional drilling rigs, pile drivers, air compressors, generators, and other nonroad engines were calculated using EPA's NONROAD2008a emission model (EPA 2008a). To calculate emission factors for this project, a run was conducted for the anticipated construction year of 2017, using the options shown in Figure 1.

Options	Period		
Title 1	Year Episode 2017	Period Annual Monthly	Type C Typical day C Period total
Title 2	Growth	C Seasonal	so r cilod total
2017	Tech		Day
Fuel RVP for gas 8.0 Minimum temp (F) 60 Oxygen weight % 2.44 Maximum temp (F) 84		© Winter	Weekday 💿 Weekend 🖸
Gas Sulfur % 0.008 Average temp (F) 75	C January C July	C Spring C Summer	
Diesel Sulfur % 0.0015 Stage II Control % 0.0 Marine Diesel Sulfur % 0.0015 Et0H blend mkt % 75.1	C February C August C March C September	C Autumn	
CNG/LPG Sulfur % 0.003 Et0H volume % 9.3	C April C October C May C November C June C December		
OK Cancel High C Low C			OK Cancel

Figure 1. NONROAD Model Input Options

Emission factors from EPA's NONROAD2008a emission model are provided in g/hp-hr, so emissions were estimated by multiplying the emission factor by the nonroad engine's power rating (hp), the total operating

hours, and the load factor for each specific type of equipment. The calculated emissions were converted to tons per year by dividing the resultant emissions in grams per year by the conversion factor from grams to pounds (453.6 g/lb) and by the conversion factor from pounds to ton (2,000 lb/ton).

Emissions for CH_4 and N_2O are based on EPA emission factors for construction equipment in Table A-6 of the EPA report on "Direct Emissions from Mobile Combustion Sources" (0.180 g CH_4 /kg fuel and 0.080 g N_2O /kg fuel, respectively) (EPA 2008b). Fuel consumption for each type of equipment was estimated based on CO_2 emission factor (g/hp-hr) generated from the NONROAD2008a model and the emission factor for the mass of CO_2 generated per gallon of fuel (10.15 kg CO_2 /gal fuel), as presented in Table B-6 of the EPA (2008b) report. Therefore, CH_4 and N_2O emissions were calculated based on the following equation:

 $E = FC \times \rho x EF x 0.4536$ (kg/lb) x Eng. Rating x Act x LF / 453.6 (g/lb) / 2,000 (lb/ton)

Where:

E = emission, tons/year FC = fuel consumption, gal/hp-hr ρ = Density, lb/gal EF = emission factor, g (CH₄ or N₂O)/kg fuel Eng. Rating = engine rating, hp Act = activity, hours/year LF = load factor

The CO₂e (GHG) emissions were, therefore, calculated based on the methodology presented in Section 2.5.

2.4 Onroad Vehicles

Emissions associated with onroad vehicles are negligible compared to those from the CMVs and nonroad engines, due in part to smaller engine sizes and the more stringent emission standards that apply to onroad vehicles. The Motor Vehicle Emission Simulator (MOVES), developed by the EPA's Office of Transportation and Air Quality, was used to estimate emissions associated with on-road engines. This emission modeling system estimates emissions for a broad range of pollutants from mobile sources such as cars, trucks, and motorcycles, and allows multiple scale analysis. MOVES2014, the latest version of MOVES, was used for purposes of calculating onroad vehicle emissions (EPA 2014).

Emission factors (g/mi) for VOC, NO_X , CO, PM, SO_2 , and CO_2e were calculated for 2017 using the most current MOVES2014 input files provided by the Virginia Department of Environmental Quality. Average emission factors were determined by using the model in "inventory" mode to create an inventory for the Virginia Beach area, and then dividing by the total vehicle miles traveled in the area.

2.5 GHG Emissions

The GHG emissions from the Project are a result of the combustion of diesel fuel that produces emissions of CO_2 , CH_4 , and N_2O . GHGs (CO_2 , CH_4 , and N_2O), are typically presented in CO_2 equivalent or " CO_2e ", which is based on their specific Global Warming Potential (GWP). Each GHG constituent has a different

heat trapping capability; the corresponding GWP has been calculated to reflect how long the gas remains in the atmosphere, on average, and how strongly it absorbs energy compared to CO_2 . Gases with a higher GWP absorb more energy, per pound, than gases with a lower GWP. Factors used to calculate CO_2e (GWP) and were taken from Table A-1 of 40 CFR 98, Subpart A. The GWP for CH₄ is 25 and 298 for N₂O. Therefore, the equation to calculate CO_2e for each of the sources is:

 $CO2e = \left[CO2\frac{tons}{yr} \times CO2 \text{ GWP}(1)\right] + \left[CH4\frac{tons}{yr} \times CH4 \text{ GWP}(25)\right] + \left[N20\frac{tons}{yr} \times N20 \text{ GWP}(298)\right]$

In addition to the GHG emissions associated with the combustion of diesel fuel, GHGs will also be associated with the circuit breakers insulated with SF_6 . This gas is used for electrical insulation, arc quenching, and current interruption in high-voltage electrical equipment. SF_6 will be enclosed and sealed under pressure within the circuit breaker, which under normal circumstances does not leak gas. However, fugitive losses of SF_6 may occur and contribute to the GHG emissions from the Project. Currently, three circuit breakers, one associated with WTG 1 and two with WTG 2, are proposed for the Project. The GWP for SF_6 is 22,800 based on Table A-1 of 40 CFR 98, Subpart A, and the leak rate is based on the International Electrotechnical Commission Standard 62271-1, as presented in the EPA technical paper on SF_6 leak rates from high voltage circuit breakers (EPA 2006). Therefore, the equation to calculate CO_2e for this source is:

 $CO_2e(tons/year) = SF_6$ (lbs in circuit breaker) x SF_6 leak rate (% weight/year) x SF_6 GWP (22,800) / 2,000 (lb/ton)

3 **REFERENCES**

- Dominion (Dominion Resources Inc.). 2014. Research Activities Plan. Virginia Offshore Wind Technology Advancement Project (VOWTAP). In collaboration with Virginia Department of Mines, Minerals, and Energy; ALSTOM; Kellogg, Brown, & Root; National Renewable Energy Laboratory; Virginia Coastal Energy Research Consortium, represented by Virginia Polytechnic Institute; and Newport News Shipbuilding. Submitted December 2013, revised February, June, and October 2014.
- EPA (U.S. Environmental Protection Agency). 1996. Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources, Section 3.3 Gasoline and Diesel Industrial Engines, AP-42, October 1996.
- ———. 2006. SF₆ Leak Rates from High Voltage Circuit Breakers U.S. EPA Investigates Potential Greenhouse Gas Emissions Source. J. Blackman (Program Manager, U.S. Environmental Protection Agency), M. Averyt (ICF Consulting), and Z. Taylor, (ICF Consulting). June.

. 2008a. NONROAD2008a Model. [Internet] Available online at: http://epa.gov/otaq/nonrdmdl.htm

- ——. 2008b. Direct Emissions from Mobile Combustion Sources, Climate Leaders: Greenhouse Gas Inventory Protocol, Core Module Guidance. EPA430-K-08-004. May.
- —. 2010. Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition. EPA420-R-10-018/NR-009d. July.

—. 2013a. 2011 National Emissions Inventory, Version 1, Technical Support Document, Draft, November 2013. Available online at: http://www.epa.gov/ttn/chief/net/2011nei/2011_neiv1_tsd_draft.pdf

——. 2013b. 2011 National Emissions Inventory, Version 1, Technical Support Document, Draft, November 2013, referenced dataset presented in "2011EPA_HAP-Augmentation" for HAP emissions. Available from ftp://ftp.epa.gov/EmisInventory/2011/doc (in 2011nei_supdata_hapaug.zip)

-----. 2014. MOVES (Motor Vehicle Emission Simulator). Available online at: http://www.epa.gov/otaq/models/moves/

ICF International. 2009. Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories, prepared for the USEPA Office of Policy, Economics, and Innovation, Sector Strategies Program. April.

Attachment A – Emission Calculations

VOWTAP - AIR EMISSION CALCULATIONS Emission Summary

Total Project Emissions

				20	17							20	18			
	voc	NOx	со	PM/PM ₁₀	PM _{2.5}	SO ₂	HAPs	GHG	voc	NOx	со	PM/PM ₁₀	PM _{2.5}	SO ₂	HAPs	GHG
	tons	tons	tons	tons	tons	tons	tons	tons CO ₂ e	tons	tons	tons	tons	tons	tons	tons	tons CO ₂ e
Onshore Construction Emissions																
Export Cable Landfall Construction	0.18	1.78	0.67	0.12	0.11	0.003	0.04	329	-	-	-	-	-	-	-	-
Onshore Interconnection Cable &																
Switch Cabinet Installation	0.13	1.27	0.48	0.08	0.08	0.002	0.03	247	-	-	-	-	-	-	-	-
Interconnection Station Installation	0.05	0.49	0.19	0.03	0.03	0.001	0.01	129	-	-	-	-	-	-	-	-
TOTAL	0.37	3.54	1.34	0.23	0.22	0.01	0.09	705	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ffshore Construction Emissions																
Offshore Turbine Installation	9.40	203.11	102.79	11.19	10.85	0.047	1.91	14,677	-	-	-	-	-	-	-	-
Offshore Cable Installation	1.21	33.44	16.62	1.22	1.18	0.007	0.22	2,546	-	-	-	-	-	-	-	-
TOTAL	10.61	236.55	119.41	12.41	12.03	0.05	2.13	17,223	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
nnual Operating Emissions																
0&M	0.20	5.80	2.96	0.22	0.21	0.0008	0.04	413	0.40	11.59	5.92	0.43	0.42	0.002	0.08	475
Emergency Generator	0.01	0.22	0.05	0.01	0.01	0.001	0.0004	16	0.01	0.44	0.11	0.03	0.03	0.001	0.001	31
Circuit Breaker Fugitive GHG	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.2
TOTAL	0.21	6.02	3.01	0.23	0.22	0.001	0.04	429	0.41	12.03	6.02	0.46	0.45	0.003	0.08	508
ANNUAL TOTAL	11.19	246.11	123.76	12.86	12.48	0.06	2.26	18,358	0.41	12.03	6.02	0.46	0.45	0.00	0.08	508

Note:

- 2017 annual operating emissions assumes 6 months of operation based on wind generating turbines becoming fully operational in July of 2017 to provide a conservative estimate.

VOWTAP - AIR EMISSION CALCULATIONS Export Cable Landfall Construction

	Category unit Type ID day Pactor J F M A M J J A S O N D Months mod Equip. 2270002081 100 diesel 17 4 59% 1 1 - - - 1 1 - - 1 1 1 - 2															Fuel Use					Em	nissions - 2	2017							
Construction Equipment					-						2	2017							2017	voc	NO _x	со	PM ₁₀	PM _{2.5}	SO2	НАР	CO2	CH₄	N ₂ O	CO ₂ e
	Category' ID day J F M A M J J A S O M										NE) Mo	nths	gal	tons	tons	tons	tons	tons	tons	Tons	tons	tons	tons	tons					
Land-based Nonroad Equip.																														
Mounted Impact Hammer (Hoe Ram)	2270002081	100	diesel	117	4	59%			1									1	413	0.00	0.02	0.02	0.00	0.00	0.000	0.001	4.646	0.000	0.000	4.69
Tracked Excavator	2270002036	200	diesel	106	12	59%			1	1								2	4,463	0.01	0.10	0.03	0.01	0.01	0.000	0.003	50.231	0.003	0.001	50.68
Air Compressor	2270006015	100	diesel	130	12	43%			1	1								2	1,608	0.01	0.07	0.02	0.00	0.00	0.000	0.002	18.103	0.001	0.000	18.26
Water pump	2270006010	100	diesel	127	12	43%			1	1								2	1,786	0.02	0.14	0.08	0.01	0.01	0.000	0.004	20.099	0.001	0.001	20.28
HDD Drilling Machine	2270002033	300	diesel	103	12	43%			1	1								2	4,823	0.03	0.38	0.09	0.02	0.02	0.000	0.008	54.275	0.003	0.001	54.76
Mud Pumps	2270006010	100	diesel	127	12	43%			1	1								2	1,786	0.02	0.14	0.08	0.01	0.01	0.000	0.004	20.099	0.001	0.001	20.28
Generator	2270006005	200	diesel	124	12	43%			1	3								4	6,429	0.04	0.50	0.13	0.03	0.03	0.001	0.011	72.359	0.004	0.002	73.01
Slurry Plant	2270002042	100	diesel	109	12	43%			3	1								4	3,572	0.03	0.29	0.15	0.03	0.03	0.000	0.008	40.198	0.002	0.001	40.56
Desilter	2270003040	100	diesel	120	12	43%			1	1								2	1,609	0.01	0.07	0.01	0.00	0.00	0.000	0.002	18.104	0.001	0.000	18.27
Shale Shaker	2270003040	100	diesel	120	12	43%			1	1								2	1,609	0.01	0.07	0.01	0.00	0.00	0.000	0.002	18.104	0.001	0.000	18.27
Onroad Vehicles																														
Pickup F150		200	petrol	151	-	-		4	4	4							1	В	571	0.00	0.01	0.04	0.00	0.00	0.00	0.00	4.35	0.00	0.00	4.36
Flatbed Truck (Material Supply)		150	diesel	152	-	-			1	1								2	343	0.00	0.01	0.01	0.00	0.00	0.00	0.00	2.56	0.00	0.00	2.56
Dump Truck		200	diesel	152	-	-			1	1								2	343	0.00	0.01	0.01	0.00	0.00	0.00	0.00	2.56	0.00	0.00	2.56
																	Т	otal	29,354	0.18	1.78	0.67	0.12	0.11	0.003	0.043	326	0.018	0.008	328.53

Notes:

- Calculations assume equipment is used 7 days/wk - i.e., 30 days/month to povide conservative estimate. - Calculations conservatively assume the onroad pickup F150 travels approximately 50 miles per day, since emission factors from the MOVES2014 model for onroad vehicles are based on miles traveled. - Calculations conservatively assume the flatbed truck and dump truck travels approximately 40 miles per day, since emission factors from the MOVES2014 model for onroad vehicles are based on miles traveled.

VOWTAP - AIR EMISSION CALCULATIONS Onshore Interconnection Cable and Switch Cabinet Installation

																	Fuel Use					Em	nissions - 2	2017				
Construction Equipment														Total Equip.	2017	voc	NO _x	со	PM ₁₀	PM _{2.5}	SO2	НАР	CO2	CH₄	N₂O	CO ₂ e		
	Category ¹	unit	lype Factor										Months	gal	tons	tons	tons	tons	tons	tons	Tons	tons	tons	tons	tons			
Land-based Nonroad Equip.																												
Mounted Impact Hammer (Hoe Ram)	2270002081	100	diesel	117	4	59%		1 '	1							2	826	0.00	0.04	0.04	0.00	0.00	0.000	0.001	9.292	0.001	0.000	9.38
Tracked Excavator	2270002036	200	diesel	106	12	59%		1 '	1							2	4,463	0.01	0.10	0.03	0.01	0.01	0.000	0.003	50.231	0.003	0.001	50.68
Air Compressor	2270006015	100	diesel	130	12	43%		1 '	1							2	1,608	0.01	0.07	0.02	0.00	0.00	0.000	0.002	18.103	0.001	0.000	18.26
Water pump	2270006010		diesel	127	12	43%		1 '	1							2	1,786	0.02	0.14	0.08	0.01	0.01	0.000	0.004	20.099	0.001	0.001	20.28
HDD Drilling Machine	2270002033	300	diesel	103	12	43%		1								1	2,411	0.02	0.19	0.05	0.01	0.01	0.000	0.004	27.137	0.002	0.001	27.38
Mud Pumps	2270006010	100	diesel	127	12	43%		1								1	893	0.01	0.07	0.04	0.01	0.01	0.000	0.002	10.050	0.001	0.000	10.14
Generator	2270006005	200	diesel	124	12	43%		3 '	1							4	6,429	0.04	0.50	0.13	0.03	0.03	0.001	0.011	72.359	0.004	0.002	73.01
Slurry Plant	2270002042	100	diesel	109	12	43%		1								1	893	0.01	0.07	0.04	0.01	0.01	0.000	0.002	10.049	0.001	0.000	10.14
Desilter	2270003040	100	diesel	120	12	43%		1								1	804	0.00	0.03	0.01	0.00	0.00	0.000	0.001	9.052	0.001	0.000	9.13
Shale Shaker	2270003040	100	diesel	120	12	43%		1								1	804	0.00	0.03	0.01	0.00	0.00	0.000	0.001	9.052	0.001	0.000	9.13
Onroad Vehicles																												
Pickup F150		200	petrol	151	-	-		4 4	4							8	571	0.00	0.01	0.04	0.00	0.00	0.00	0.00	4.35	0.00	0.00	4.36
Flatbed Truck (Material Supply)		150	diesel	152	-	-		1 '	1							2	343	0.00	0.01	0.01	0.00	0.00	0.00	0.00	2.56	0.00	0.00	2.56
Dump Truck		200	diesel	152	-	-		1	1							2	343	0.00	0.01	0.01	0.00	0.00	0.00	0.00	2.56	0.00	0.00	2.56
																Total	22,176	0.13	1.27	0.48	0.08	0.08	0.002	0.030	245	0.014	0.006	247.01

Notes:

- Calculations assume equipment is used 7 days/wk - i.e., 30 days/month - Calculations conservatively assume the onroad vickup F150 travels approximately 50 miles per day, since emission factors from the MOVES2010b model for onroad vehicles are based on miles traveled. - Calculations conservatively assume the flatbed truck and dump truck travels approximately 40 miles per day, since emission factors from the MOVES2010b model for onroad vehicles are based on miles traveled.

VOWTAP - AIR EMISSION CALCULATIONS Interconnection Station Installation

																	Fuel Use					Em	issions - 2	017				
Construction Equipment	oouroc	HP per unit	Fuel Type	Emiss. Factor	hrs per	Load Factor					201	17				Total Equip.	2017	voc	NO _x	со	PM ₁₀	PM _{2.5}	SO2	НАР	CO2	CH4	N ₂ O	CO ₂ e
	Category ID day J F M A M J J A S O N D														Months	gal	tons	tons	tons	tons	tons	tons	Tons	tons	tons	tons	tons	
Land-based Nonroad Equip.	ised Nonroad Equip.																											
Mounted Impact Hammer (Hoe Ram)	2270002081	100	diesel	117	4	59%	5		1							1	413	0.00	0.02	0.02	0.00	0.00	0.000	0.001	4.646	0.000	0.000	4.69
Crane-road	2270002045	200	diesel	111	6	43%	5		1	1						2	1,609	0.01	0.06	0.01	0.00	0.00	0.000	0.001	18.105	0.001	0.000	18.27
Earth Compactor	2270002015	200	diesel	101	4	59%	5		1							1	744	0.00	0.02	0.01	0.00	0.00	0.000	0.001	8.371	0.000	0.000	8.45
Tracked Excavator	2270002036	200	diesel	106	12	59%	5		1	1						2	4,463	0.01	0.10	0.03	0.01	0.01	0.000	0.003	50.231	0.003	0.001	50.68
Generator	2270006005	200	diesel	124	12	43%	5		1	1						2	3,215	0.02	0.25	0.07	0.01	0.01	0.000	0.005	36.180	0.002	0.001	36.50
Onroad Vehicles																												1
Pickup F150		200	petrol	151	-	-			4	4						8	571	0.00	0.01	0.04	0.00	0.00	0.00	0.00	4.35	0.00	0.00	4.36
Flatbed Truck (Material Supply)		150	diesel	152	-	-			1	1						2	343	0.00	0.01	0.01	0.00	0.00	0.00	0.00	2.56	0.00	0.00	2.56
Dump Truck		200	diesel	152	-	-			1	1						2	343	0.00	0.01	0.01	0.00	0.00	0.00	0.00	2.56	0.00	0.00	2.56
Concrete Truck		250	diesel	152	-	-				1						1	171	0.00	0.01	0.00	0.00	0.00	0.00	0.00	1.28	0.00	0.00	1.28
																Total	11,872	0.05	0.49	0.19	0.03	0.03	0.001	0.012	128	0.007	0.003	129.34

Notes:

Calculations assume equipment is used 7 days/wk - i.e., 30 days/month
 Calculations conservatively assume the onroad pickup F150 travels approximately
 Calculations conservatively assume the flatbed truck and dump truck travels approximately
 do miles per day, since emission factors from the MOVES2010b model for onroad vehicles are based on miles traveled.

VOWTAP - AIR EMISSION CALCULATIONS Offshore Turbine Installation

														Γ					Тс	otal Emissio	ıs				
Vessels/Equipment	No. of Engines per vessel	1. DP 2.Anchored 3.Spuds	Dimensions (ft) length x width x depth (draft)	Propulsion	Emission Factor Used (see EFs worksheet)	Activity	Engine Fuel Rating Type (hp)	Trips	Hrs/trip	Operating Days	Operating Hours (hrs/day)	Total Operating Hours (hrs)	Average load (%)	Fuel Usage Gallons	VOC tons	NO _x tons	CO tons	PM/PM ₁₀ tons	PM _{2.5} tons	SO ₂ tons	HAPs tons	CO ₂ tons	CH₄ tons	N ₂ O tons	CO2e tons
Derrick Barge - Main generator	4	2	350 x 100 x 25 (14)		2	Install Foundations	1156 Diesel			47	24	1128	43%	113,072.6	0.50	18.07	9.22	0.48	0.47	0.00	0.10	1272.57	0.17	0.04	1287.71
Crane Generator	2			None	2	Install Foundations	970 Diesel			47	24	1128	43%	47,439.6	0.21	7.58	3.87	0.20	0.20	0.00	0.04	533.91	0.07	0.02	540.26
Emergency Generator	1				2	Install Foundations	255 Diesel			47	1	47	80%	483.4	0.00	0.08	0.04	0.00	0.00	0.00	0.00	5.44	0.00	0.00	5.50
Air compressor engine	1				130	Install Foundations	250 Diesel			47	24	1128	43%		0.03	0.27	0.06	0.01	0.01	0.00	0.00	70.90	0.00	0.00	71.54
Air compressor engine (crane)	1				130	Install Foundations	250 Diesel			47	24	1128	43%	6,300.0	0.03	0.27	0.06	0.01	0.01	0.00	0.00	70.90	0.00	0.00	71.54
Air compressor engine	1				129	Install Foundations	174 Diesel			47	24	1128	43%	4,384.3	0.02	0.21	0.05	0.01	0.01	0.00	0.00	49.34	0.00	0.00	49.78
Deck Crane engine	1				125	Install Foundations	335 Diesel			47	24	1128	43%	8,438.2	0.05	0.65	0.19	0.03	0.03	0.00	0.00	94.97	0.01	0.00	95.82
Pile Driver Engine	1				121.5	Install pilings	1050 Diesel			14	12	168	70%	5,938.4	0.04	0.6	0.10	0.02	0.02	0.0007	0.00	67	0.004	0.0017	67.43
Jack-up Vessel - main engines	8	1,3	525 x 164 x 33 (20)	4 - Azimuth Stern Thruster 2- Bow retractable azimuth thruster 2 -Bow tunnel thruster	1	Install wind turbines Power supply for propulsion, crane, leg jacks, and other	3753 Diesel			47	24	1128	50%	853,788.8	6.96	136.47	69.63	8.63	8.38	0.02	1.44	9608.89	1.25	0.28	9723.22
Ocean tug - Derrick Barge - main engines	2		100 x 32 x 12.2	2 -bow tunner tin aster	1	Transport and setting of the	1500 diesel	6	8	1	0	48	68%	4,936.7	0.04	0.79	0.40	0.05	0.05	0.00	0.01	55.56	0.01	0.00	56.22
° ° °	engines 2		100 x 52 x 1212		2	Derrick barge	133 diesel	6			0	48	43%		0.00	0.04	0.02	0.00	0.00	0.00	0.00	3.11		0.00	3.15
	engines 2				2	Derrick burge	119 diesel	6	8	3 3	0	48	43%	247.7	0.00	0.04	0.02	0.00	0.00	0.00	0.00	2.79		0.00	2.82
Ocean tug - barge - main engines	2		100 x 32 x 12.2		1	Transport temporary work barge	1500 diesel	3	8	3 3	0	24		2.468.3	0.02	0.39	0.20		0.02	0.00	0.00	27.78		0.00	28.11
0 0 0	engines 2				2		133 diesel	3	8	3 3	0	24	43%	138.1	0.00	0.02	0.01	0.00	0.00	0.00	0.00	1.55		0.00	1.57
	engines 2				2		119 diesel	3	8	3 3	0	24	43%	123.8	0.00	0.02	0.01	0.00	0.00	0.00	0.00	1.39		0.00	1.41
Support Barge - generator	1	2	400 x 120 x 25 (12)	none	124	Barge for transporting foundation and temporary offshore work platform	200 diesel			47	24	1128	10%	1,171.2	0.01	0.09	0.02	0.00	0.00	0.00	0.00	13.18	0.00	0.00	
Turbine Transportation Vessel - main engin	es 1		415 x 67 x 40 (22)		3	Transport foundation turbines	7721 diesel	1	. 8	3 1	0	8	83%	2,352.7	0.02	0.56	0.05	0.01	0.01	0.02	0.00	27.24	0.00	0.00	27.63
-aux.	engines 2				4	to demonstraion site	400 diesel	1	. 8	3 1	0	8	30%	94.2	0.00	0.02	0.00	0.00	0.00	0.00	0.00	1.09	0.00	0.00	1.11
-emergency	engines 1				4		400 diesel	1	. 8	3 1	0	8	30%	47.1	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.55
Crew boat - main engines	2		55 x 16.5 x 6.5 (4.5)	FP 32"x36" prop(s) on 3" shafts	2	Transport crew	610 diesel	119	6	5 72	0	714	45%	19,762.1	0.09	3.16	1.61	0.08	0.08	0.00	0.02	222.41	0.03	0.01	225.06
-aux.	engines 1				2		33.5 diesel	119	6	5 72	0	714	43%	518.7	0.00	0.08	0.04	0.00	0.00	0.00	0.00	5.84	0.00	0.00	5.91
Supply vessel - main engines	3		276 x 54 x 24 (14)	2-1500 kW RR azimuth units &	1	Support turbine and foundation	1930 diesel	47	6	5 47	0	282		37,048.3	0.30	5.92	3.02	0.37	0.36	0.00	0.06	416.96	0.05	0.01	421.92
	2			2-750kW RR bow thrusters	1	installation	965 diesel	47	6	5 47	0	282	43%	11,800.6	0.10	1.89	0.96	0.12	0.12	0.00	0.02	132.81	0.02	0.00	134.39
Guard vessel - main engines	2		100 x 32 x 12.2		1	Security for site work zone	1500 diesel	94	6	5 47	24	1128	43%	73,360.3	0.60	11.73	5.98	0.74	0.72	0.00	0.12	825.63	0.11	0.02	835.45
-aux.	engines 2				2		133 diesel	94	6	5 47	24	1128	43%	6,490.3	0.03	1.04	0.53	0.03	0.03	0.00	0.01	73.04	0.01	0.00	73.91
-aux.	engines 2				2		119 diesel	94	6	5 47	24	1128	43%	0)01010	0.03	0.93	0.47	0.02	0.02	0.00	0.01	65.50	0.01	0.00	66.28
MMO vessel - main engines	2		100 x 26 x 6		2	Marine mammal observation	1500 diesel	94	6	5 47	24	1128	43%	73,360.3	0.32	11.73	5.98	0.31	0.30	0.00	0.07	825.63	0.11	0.02	835.45
-aux.	engines 2				2	during entire operation	54 diesel	94	6	5 47	24	1128	43%	2,622.4	0.01	0.42	0.21	0.01	0.01	0.00	0.00	29.51	0.00	0.00	29.86
														1,288,784	9.4	203.1	102.8	11.2	10.9	0.0	1.9	14,505.3	1.9	0.4	14,676.9

Notes:

1. Emissions were estimated based on the number of days of operation and/or the number of trips the vessels made to the VOWTAP project site from port.

2. Trip constitutes the round trip transit time to and from the project site. The number of hours per trip were estimated based on the vessel's transit speed and additional time required for maneuvering and berthing. 3. The estimated time for installation of the turbines is anticipated to take approximately 49 days, operating on a 24 hours per day basis.

The contract of instantiation of the contract of antice to antin the antice to antite to antice to antice to antite to anti

7. The operation of transporting the temporary work / foundation transportation barge to the project site, relocating to second turbine site, and denobilization assumes 1 ocean tug performing 3 total trips. 8. The crew boat will be used to transport crew to the project site from the main port, assuming 2 trips per day during installation activities based on a 12 hour shift for workers. Crew boat will also be used for commissioning of the WTGs estimated to be 25 working days making one trip per day. 9. The supply vessel will be used to transport crew and equipment to the project site from the main port, assuming 1 trip per day during installation activities.

10. The guard vessel and marine mammal observation (MMO) vessel are assumed to be in operation for the entire time construction is occurring.

11. The turbine transportation vessel, an ocean going vessel, may be used to transport turbine components from Europe directly to the project site in stead of the jack-up vessel. Emission calculations were estimated when the vessel reaches 25 nm boundary from the project site and consist of transit, maneuvering and berthing time.

The tubic tubic dup of tubic part of the part of tubic tubi

The HAP emission for nonroad engines were based on EPA's AP-42 Volume 1, Chapters 3.3 and 3.4 for small and large diesel engines. (see HAP emission factor summary pages)

14. Average load factors were estimated based on load factors presented in the ICF International report "Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories", April 2009, the EPA's NONROAD2008a emission model, and based on best engineering estimate.

15. CO_2e emission rates use the following carbon equivalence factors: 25 for $CH_{4\nu}$ and 298 for N_2O .

16. Highlighted cells indicates emission sources that would be considered OCS sources, since vessel would be attached to the OCS seabed or moored to a vessel/barge that will be attached to the OCS seabed.

VOWTAP - AIR EMISSION CALCULATIONS Offshore Transmission Cable Installation

																				т	otal Emissions					
		No. of	1. DP Dimensions (ft)		Emission Factor		Engine	Fuel			Operating	Operating	Total Operating	Average	Fuel Usage	voc	NO x	со	PM/PM10	PM _{2.5}	SO ₂	HAPs	CO2	CH₄	N₂O	CO₂e
Vessels/Equipment		Ingines	2.Anchored length x width x depth	Propulsion	Used	Activity	Rating	Туре	Trips	Hrs/trip	Davs	Hours	Hours	load (%)	Gallons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons
vessels/ Equipment		er vessel			(see EFs	Activity	(hp)	Type	mps	ins, ap	Days	(hrs/dav)	(hrs)	1044 (70)	Galions	10113	tons	tons	tons	10113	cons	10113	10113	10113	10113	1
	P.		(and t)		worksheet		(((i .
Cablelay barge - main engines		4	1 250ft x 72ft	4 Azimuth thrusters	2	Install Submarine Cable	500 die				3:	1 24	744	43%	32,257.7	0.14	5.16	2.63	0.14	0.13		0.03	363.04	0.05	0.01	367.36
		2		2 Azimuth thrusters	2		750 die	esel			3:	1 24	744	43%	24,193.3	0.11	3.87	1.97	0.10	0.10	0.00	0.02	272.28	0.04	0.01	275.5
	-Generator	1			2	power generation	536 die	esel			3:	1 24	744	43%	8,648.2	0.04	1.38	0.71	0.04	0.04	0.00	0.01	97.33	0.01	0.00	98.49
	Water pumps	3			128	water pumps for jet plow	450 die	esel			3:	1 24	744	43%	22,428.5	0.13	1.74	0.52	0.08	0.08	0.00	0.01	252.42	0.01	0.01	254.68
Crew boat - main engines		2	55 x 16.5 x 6.5 (4.5)	FP 32"x36" prop(s)	2	Transport crew	1220 die	esel	62	6	3:	1 (372	45%	20,592.4	0.09	3.29	1.68	0.09	0.08	0.00	0.02	231.76	0.03	0.01	234.5
	-aux. engines	1		on 3" shafts	2		33.5 die	esel	62	6	3	1 (372	43%	270.3	0.00	0.04	0.02	0.00	0.00	0.00	0.00	3.04	0.00	0.00	3.08
Guard vessel - main engines		2	100 x 32 x 12.2		1	Security for site work zone	1500 die	esel	62	12	3:	1 24	744		48,386.6	0.39	7.73	3.95	0.49	0.47	0.00	0.08	544.56	0.07	0.02	551.04
	-aux. engines	2			2		133 die		62	12	3:	1 24	744		4,280.8	0.02	0.68	0.35	0.02	0.02	0.00	0.00	48.18	0.01	0.00	48.7
	-aux. engines	2			2		119 die		62	12	3	1 24	744	43%	3,838.7	0.02	0.61	0.31	0.02	0.02	0.00	0.00	43.20	0.01	0.00	43.72
Survey vessel - main engines		2	100 x 26 x 6		2	Survey seabed prior to cable	1500 die	esel			1	2 12	24	43%	1,560.9	0.01	0.25	0.13	0.01	0.01	0.00	0.00	17.57	0.00	0.00	17.78
	-aux. engines	2			2	Install	54 die	esel			:	2 12	24	43%	55.8	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.64
MMO vessel - main engines		2	100 x 26 x 6		2	Marine mammal observation	1500 die		62	6	3:	1 24	744		48,386.6	0.21	7.73	3.95	0.21	0.20	0.00	0.04	544.56	0.07	0.02	551.04
	-aux. engines	2			2	during entire operation	54 die		62	6	3	1 24	744	43%	1,729.6	0.01	0.28	0.14	0.01	0.01	0.00	0.00	19.47	0.00	0.00	19.70
Tug - HDD support barge - main engin	es	2	100 x 26 x 6		2	Locate HDD transition barge	1100 die		4	6	4	1 (24	31%	825.2	0.00	0.13	0.07	0.00	0.00	0.00	0.00	9.29	0.00	0.00	9.40
	-aux. engines	2			2	support HDD transition work	160 die		4	6	4	4 (24	43%	166.5	0.00	0.03	0.01	0.00	0.00	0.00	0.00	1.87	0.00	0.00	1.90
	-aux. engines	1			2		67 die	esel	4	6		4 (24	43%	34.9	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.39	0.00	0.00	0.40
HDD Shore transition work barge - Drill	rig	1	2	none	104	Barge supporting HDD shore transition - drill rig used for transmission cable install	750 di	iesel			3	0 1	360	43%	6,029.4	0.03	0.50	0.17	0.02	0.02	0.00	0.00	67.86	0.00	0.00	68.4
		I				1					1	1	1	1	223.685	1.21	33.44	16.62	1.22	1.18	0.01	0.22	2.517.4	0.30	0.1	2.546.5

Notes:
1. Emissions were estimated based on the number of days of operation and/or the number of trips the vessels made to the VOWTAP project site from port.
2. Trip constitutes the round trip transit time to and from the project site. The number of hours per trip were estimated based on the vessel's transit speed and additional time required for maneuvering and berthing.
3. The estimated time for installation of the transmission cable is anticipated to take approximately 31 days (28 days for export cable) and 3 days for inter-array cable), operating on a 24 hours per day basis.
4. The specific vessels for each operation have not been finalized at this time; however, the vessels identifed for each installation activity are typical sizes for performing this effort.
5. The cablelay barge, guard vessel and marine mammal observation (MMO) vessel are assumed to be in operation for the entire time transmission cable installation activities is occurring.
6. The crew boat will be used to transport crew to the project site from the main port, assuming 2 trips per day during installation activities based on a 12 hour shift for workers.
7. The survey vessel will be used to survey the seabed prior to cable installation activities and it is assumed this activity will take 2 days operating for 12 hours per day.
8. Emission factors for marine vessel engines are from ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009 and emission factors for the land-based nonroad engines were estimated using the methodology identified by US EPA for the latet (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM 10, PM_{2.5}, or VOC emissions from the CMVs. The HAP emission for nonroad engines were based on IPA's APA'S VONROAD2008a emission Inventories", April 2009, theEPA's NONROAD2008a emission model, and based on best engineering estimate

VOWTAP - AIR EMISSION CALCULATIONS Annual Operational and Maintenance Activities

Variate / Faultaneau			1. DP	Dimensions (ft) length x width x depth	Decadaian	Emission Factor		Engine	Fuel	Tring	11	Operating	Operating	Total Operating	Average	Fuel Usage	voc		со			SO ₂				N ₂ O	CO ₂ e
Vessels/Equipment		Engines per vessel		(draft)	Propulsion	Used (see EFs worksheet	Activity	Rating (hp)	Туре	Trips	Hrs/trip	Days	Hours (hrs/day)	Hours (hrs)	load (%)	Gallons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons
rew boat - main engines		2		55 x 16.5 x 6.5 (4.5)	FP 32"x36" prop(s)	2	Maintenance	1220 di	esel	112	6	112	0	672	45	37,199.2	0.16	5.95	3.03	0.16	0.15	0.00	0.03	418.66	0.05	0.01	423.6
	-aux. engines	1			on 3" shafts	2		33.5 di	esel	112	6	112	0	672	2 43	488.2	0.00	0.08	0.04	0.00	0.00	0.00	0.00	5.49	0.00	0.00	5.5
ork vessel - main engines		3	1	276 x 54 x 24 (14)	2-1500 kW RR azimuth units &	1	Cable & foundation inspection	1930 di	esel	2		2	12	24	43	3,012.9	0.02	0.48	0.25	0.03	0.03	0.00	0.01	33.91	0.00	0.00	34.3
	-aux. engines	2			2-750kW RR bow thrusters	2		965 di	esel	2		2	12	24	43	1,004.3	0.00	0.16	0.08	0.00	0.00	0.00	0.00	11.30	0.00	0.00	11.4
rew boat - main engines		2		55 x 16.5 x 6.5 (4.5)	FP 32"x36" prop(s)	2	Data Collection	1220 di	esel	12	6			72	49	3,985.6	0.02	0.64	0.33	0.02	0.02	0.00	0.00	44.86	0.01	0.00	45.3
	-aux. engines	1			on 3" shafts	2		33.5 di	esel	12	6			72	2 43	52.3	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.59	0.00	0.00	0.6
rew boat - main engines		2		55 x 16.5 x 6.5 (4.5)	FP 32"x36" prop(s)	2	Emergency Preparedness &	1220 di	esel	8	6			48	3 45	2,657.1	0.01	0.42	0.22	0.01	0.01	0.00	0.00	29.90	0.00	0.00	30.2
	-aux. engines	1			on 3" shafts	2	Misc. O&M activities	33.5 di	esel	8	6			48	3 43	34.9	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.39	0.00	0.00	0.4
/ork vessel - main engines		3	1	276 x 54 x 24 (14)	2-1500 kW RR azimuth units &	1	Emergency Preparedness &	1930 di	esel			8	12	96	i 43	12,051.7	0.10	1.93	0.98	0.12	0.12	0.00	0.02	135.63	0.02	0.00	137.2
	-aux. engines	2			2-750kW RR bow thrusters	2	Misc. O&M activities	965 di	esel			8	12	96	5 43	4,017.2	0.02	0.64	0.33	0.02	0.02	0.00	0.00	45.21	0.01	0.00	45.7
upply vessel - main engines		3	1	276 x 54 x 24 (14)	2-1500 kW RR azimuth units &	1	Fueling of Emergency Generators	1930 di	esel			6	8	48	3 43	6,025.8	0.05	0.96	0.49	0.06	0.06	0.00	0.01	67.82	0.01	0.00	68.6
	-aux. engines	2			2-750kW RR bow thrusters	2		965 d	iesel			6	8	48	8 4	3% 2,008.6	0.01	0.32	0.16	0.01	0.01	0.00	0.00	22.61	0.00	0.00	22.
	-															72,537.9	0.40	11.59	5.92	0.42	0.42	0.00	0.08	816.4	0.1	0.0	826

Notes:

1. Two crew boats are anticipated to take 1 trip per week per turbine for the first year and one trip per month there after for small maintenance trips (small equipment). Additionally, it is anticipated that they will make 1 trip per 3 months for small maintenance to the foundation. 2. A work vessel will be used to inspect the cable and foundations. It is anticiapate two trips will occur within the first year and one trip per year afterwards. Since the vessel may be operating the entire trip, emissions were based on days performing inspecion for 12 hours per day. 3. A crew boat is anticiapate to be used to collect research data from the WTGs on a monthly basis.

4. A crew boat and a work vessel is anticipate to be used to perform emergency preparedness activities (in the event of major weather related storms) and other miscellaneous O&M activities upto 8 times per year.

5. A supply vessel is anticiapate to be used to refuel the tanks for the emergency generators. Based on the emergency generators operating 500 hours per year, the annual fuel usage was estimated at 5,050 gallons and the number of refueling trips per year was estimated to be 6. 6. Emission calcs based on vessels traveling from Rudee Inlet which is the base case port for O&M operations.

7. Trip constitutes the round trip transit time to and from the project site. The number of hours per trip were estimated based on the vessel's transit speed and additional time required for maneuvering and berthing.

8. Jack-up barge, guard vessel, tug boats, and helicopter would only be utilized for emergency scenarios and would not be considered part of the typical annual operational and maintenance activities of the turbines. Therefore, emissions for these sources were not estimated. 9. Emission factors for marine vessel engines are from ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009 and emission factors for the land-based nonroad engines were estimated using EPA's NONROAD2008a emission model for the anticipated construction year of 2017. (see emission factors summary page)

10. HAP emission factors for commercial marine vessels were determined using the methodology identified by US EPA for the latest (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM 10, PM 25, or VOC emissions from the CMVs.

The HAP emisson for nonroad engines were based on EPA's AP-42 Volume 1, Chapters 3.3 and 3.4 for small and large diesel engines. (see HAP emission factor summary pages) 11. Average load factors were estimated based on load factors presented in the ICF International report "Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories", April 2009 and based on best engineering estimate.

12. CO_2e emission rates use the following carbon equivalence factors: 25 for CH_4 and 298 for N_2O .

VOWTAP - AIR EMISSION CALCULATIONS Emergency Generators

Generator Engine Data

Generator Manufacturer	Cummin	S				
Model	DSGAB	DSGAB				
Engine Type	4 cycle, in-line, 6	cy diesel				
Rated power	kW	125				
Rated power	bhp	168				
Total displacement	L	6.7				
Number of cylinders	су	6				
Displacement per cylinder	L/cy	1.1				
Engine speed	rpm	1800				
Fuel consumption at 100% load	gal/hr	10.1				
Exhaust temperature	°C	835				
Exhaust flow at actual temp	m³/min	1161				
Stack height	m	24				
Stack diameter	m	1				
Exit velocity	m/s	50				
Number of generators	engines	2				
Annual operating hours per generator	hr/yr	500				
Annual Fuel Usage per generator	gal/yr	5,050				

Fuel Data

Fuel type	Ultra low sulfur diese				
Fuel heat content	Btu/lb (LHV)	19,300			
Fuel heat content	Btu/lb (HHV)	20,316			
Fuel density	lb/gal	7.1			
Fuel sulfur content	% weight	0.0015			
Conversion factor	LHV/HHV	0.95			

Tetra Tech assumptions/calculations

Engine load	%	100
Heat input rate	MMBtu/hr (HHV)	0.38
Volumetric exhaust flow	m³/hr	69,660

Engine Emission Factors

NOx	g/hp-hr	2.38
CO	g/hp-hr	0.59
HC (VOC)	g/hp-hr	0.07
PM/PM10	g/hp-hr	0.15
PM2.5	g/hp-hr	0.15
SO2	g/hp-hr	0.006
НАР	lb/MMBtu (HHV)	0.004
CO2	lb/MMBtu (HHV)	163.1
CH4	lb/MMBtu (HHV)	0.007
N2O	lb/MMBtu (HHV)	0.001

Engine Emission Estimates

NOx	lb/hr (per engine)	0.9
СО	lb/hr (per engine)	0.2
VOC	lb/hr (per engine)	0.0
PM10	lb/hr (per engine)	0.1
PM2.5	lb/hr (per engine)	0.1
SO2	lb/hr (per engine)	0.0
НАР	lb/hr (per engine)	0.00
CO2	lb/hr (per engine)	63
CH4	lb/hr (per engine)	0.00
N2O	lb/hr (per engine)	0.00
CO2e	lb/hr (per engine)	63

	Short Term Emissions (Ib/hr)	Annual Emissions (tons/yr)
NOx	1.8	0.44
CO	0.4	0.11
VOC	0.1	0.01
PM10	0.1	0.03
PM2.5	0.1	0.03
SO2	0.0	0.00
НАР	0.0	0.00
CO2	125.5	31.38
CH4	0.0	0.00
N2O	0.0	0.00
CO2e	125.9	31.49

Notes:

1. Engine power rating, displacement, fuel consumption, and exhaust temperature and flow are based on manufacturers specification sheet for the Cummins DSGAB engine.

2. Assumed these engines will only be used for emergency purposes and limited to no more than 500 hours per year to include maintenance and testing.

3. Emission factors for NOx, CO, VOC, PM, and SO2 are based on manufactures technical specification sheet.

4. All particulate (PM) is assumed to be \leq to 10 μ m (PM10) and 97% of the PM is assumed to be smaller than 2.5 μ m (PM2.5) based on US EPA Report Exhaust

- and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition, No. NR-0009d, July 2010. 5. SO2 emission factor from manufacturer technical specification based on a diesel fuel with 0.03-0.05% sulfur content by weight;
- therefore, emission factor was adjusted based on a diesel sulfur content of 0.0015%. (EFadj. = EF x (0.0015% S / 0.04% S) 6. Emission factors used to calculate emission rates for CO2 (73.96 kg/MMBtu), CH4 (0.003 kg/MMBtu) and N2O (0.0006 kg/MMBtu) were based
- Tables C-1 and C-2 of 40 CFR Part 98 Mandatory Greenhouse Gas Reporting, Subpart C General Stationary Fuel Combustion Sources.

7. CO2e emission rates use the following carbon equivalence factors: 25 for CH4, and 298 for N2O.

8. Short term and annual emission rates based on operation of all engines.

VOWTAP - AIR EMISSION CALCULATIONS Circuit Breaker Fugitive GHG Emissions

Circuit Breaker SF₆¹ Fugitive Emissions

SF ₆ Storage Capacity per WTG	lbs	7.1
WTG Quantity	units	3
SF ₆ Leak Rate (by weight) ²	% per year	0.5%
SF ₆ Emissions	lbs/year	0.11
SF ₆ Emissions	tons/year	0.0001
Annual GHG emissions (CO ₂ e) ³	tons/year	1.21

1. SF₆ = Sulfur Hexafluoride

2. Leak rate for the SF6 is based on the International Electrotechnical Commission Standard 62271-1, 2004, as presented in the U.S. EPA technical paper, "SF6 Leak Rates from High Voltage Circuit Breakers - U.S. EPA Investigates Potential Greenhouse Gas Emissions Source."

3. $\mathrm{CO}_{2}\mathrm{e}$ emission rates use the following carbon equivalence factors based on

Table A-1 to Subpart A of 40 CFR Part 98—Global Warming Potentials: 22,800 for SF6.

VOWTAP Emission Factors

Commercial Marine Vessels (CMVs)

	Commercial Marine Vessel Emission Factors (g/hp-hr) a/										Fuel Cons.
					PM/						
	Engine Type	voc	NO _x	со	PM ₁₀ <u>b</u> /, <u>c</u> /	PM _{2.5} b/	SO ₂ <u>c</u> /	CO2	CH₄	N ₂ O	(gal/hp-hr) <u>d</u> /
1	Category 2 engines	0.37	7.3	3.73	0.46	0.45	0.001	515	0.067	0.015	0.050
2	Category 1 engines < 1000 kW	0.20	7.3	3.73	0.19	0.19	0.001	515	0.067	0.015	0.050
3	Category 3 engines (MSD using MDO) (>30L/cyl.)	0.37	9.8	0.82	0.14	0.13	0.296	482	0.003	0.023	0.046
4	All Categories aux. engines (MSD using MDO)	0.30	10.4	0.82	0.14	0.13	0.316	515	0.003	0.023	0.049

a/ Emission factors for Category 1 and 2 engines are from Table 3-8 and Category 3 engines are from Tables 2-9, 2-13, and 2-16 from ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009 (converted from g/kW-hr to g/hp-hr by multiplying by 0.746 kW/hp). Assumed all Category 1 and 2 engines to be used for for VOWTAP are certified to meet EPA Tier 1 and 2 marine engine standards respectively (providing conservative estimate for Category 1 engines); therefore the Tier 1 and 2 emission factors in Table 3-8 from the ICF International report was used.

b/ All PM is assumed to less than 10 µm in diameter; therefore, PM emission factor is equivalent to PM 10 emission factor. PM 23 is estimated to be 97 % of PM 20 PM

c/ Emission factors for Category 1 and 2 engines for SO₂ and PM₁₀ presented in Table 3-8 of the ICF report (ICF International 2009) are based on a fuel sulfur content of 1.5 percent. These factors were adjusted for the 15 ppmw sulfur content in ultra-low sulfur diesel fuel, by multiply the emission factors by 0.001 and 0.86 for SO₂ and PM₁₀, respectively, as recommended in Section 3.4.2 of the ICF Report.

d/ Fuel consuption rate for category 1 and 2 marine engines was estimated based on CO₂ emission factor (g/hp-hr) and the emission factor for the mass of CO₂ generated per gallon of fuel (10.21 kg CO₂/gal fuel) as presented in the Table 13.1 of the "2014 Climate Registry Default Emission Factors". Fuel consumption for category 3 marine engines was based on the BSFC (g/kW-hr) in the ICF International report.

Land-based Nonroad Engines and Other Equipment

					NO	NROAD Emi	ssion Factors	(g/hn-hour	1a/			ders Factors		NONROAD
r							5510111 decon	(6) np nou	19		(g/hp-l	nour) <u>b</u> /		Hermond
		NONROAD Source Category		Exhaust+									Fuel	
		• •		Crankcase	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Consumption	Default
	SCC	Description	Engine Size (hp)	VOC	NO _x	CO	PM ₁₀ <u>c</u> /	PM _{2.5} <u>c</u> /	SO ₂	CO2	CH₄	N ₂ O	gal/hp-hr <u>d</u> /	Load Factor
		& Mining Subcategory (*002*)												
		Diesel Pavers	175 < HP <= 300	0.18	2.23	0.90	0.13	0.13	0.004	536	0.030	0.014	0.053	59%
101		Diesel Rollers	175 < HP <= 300	0.18	1.60	0.54	0.11	0.10	0.004	536	0.030	0.014	0.053	59%
102		Diesel Signal Boards/Light Plants	40 < HP <= 50	0.25	3.99	1.04	0.19	0.19	0.005	590	0.034	0.015	0.058	43%
		Diesel Bore/Drill Rigs	175 < HP <= 300	0.31	3.66	0.93	0.19	0.19	0.004	530	0.030	0.013	0.052	43%
104	2270002033	Diesel Bore/Drill Rigs	600 < HP <= 750	0.27	3.89	1.35	0.19	0.18	0.004	530	0.030	0.013	0.052	43%
		Diesel Excavators	75 < HP <= 100	0.17	1.42	1.39	0.17	0.17	0.004	596	0.034	0.015	0.058	59%
106	2270002036	Diesel Excavators	175 < HP <= 300	0.15	1.07	0.32	0.06	0.05	0.004	536	0.030	0.014	0.053	59%
		Diesel Concrete/Industrial Saws	75 < HP <= 100	0.28	2.63	2.40	0.32	0.31	0.005	595	0.034	0.015	0.058	59%
108	2270002039	Diesel Concrete/Industrial Saws	175 < HP <= 300	0.21	2.11	0.71	0.14	0.13	0.004	536	0.030	0.014	0.053	59%
109	2270002042	Diesel Cement & Mortar Mixers	75 < HP <= 100	0.48	4.19	2.20	0.38	0.37	0.005	589	0.033	0.015	0.058	43%
110	2270002045	Diesel Cranes	100 < HP <= 175	0.19	1.82	0.50	0.13	0.12	0.004	530	0.030	0.013	0.052	43%
111	2270002045	Diesel Cranes	175 < HP <= 300	0.18	1.67	0.37	0.08	0.07	0.004	531	0.030	0.013	0.052	43%
112	2270002045	Diesel Cranes	300 < HP <= 600	0.19	2.58	0.67	0.11	0.11	0.004	530	0.030	0.013	0.052	43%
113	2270002045	Diesel Cranes	750 < HP <= 1000	0.28	4.25	0.84	0.15	0.14	0.004	530	0.030	0.013	0.052	43%
114	2270002051	Diesel Off-highway Trucks	100 < HP <= 175	0.14	0.67	0.24	0.04	0.04	0.004	536	0.030	0.014	0.053	59%
115	2270002051	Diesel Off-highway Trucks	175 < HP <= 300	0.14	0.63	0.16	0.02	0.02	0.004	536	0.030	0.014	0.053	59%
116	2270002066	Diesel Tractors/Loaders/Backhoes	75 < HP <= 100	0.81	3.94	4.89	0.71	0.69	0.006	694	0.039	0.018	0.068	21%
117	2270002081	Diesel Other Construction Equipment	75 < HP <= 100	0.27	2.55	2.34	0.31	0.30	0.005	595	0.034	0.015	0.058	59%
	Industrial Equ	ipment Subcategory (*003*)												
118	2270003020	Diesel Forklifts	50 < HP <= 75	0.15	3.02	0.66	0.05	0.05	0.004	596	0.034	0.015	0.058	59%
119	2270003020	Diesel Forklifts	175 < HP <= 300	0.14	0.61	0.16	0.02	0.02	0.004	536	0.030	0.014	0.053	59%
120	2270003040	Diesel Other General Industrial Eqp	175 < HP <= 300	0.19	1.91	0.42	0.09	0.08	0.004	530	0.030	0.013	0.052	43%
121	2270003040	Diesel Other General Industrial Eqp	300 < HP <= 600	0.20	2.93	0.76	0.13	0.12	0.004	530	0.030	0.013	0.052	43%
121.5		Pile driver e/	>750	0.30	4.50	0.76	0.13	0.13	0.005	491	0.028	0.012	0.048	
	Commercial E	quipment Subcategory (*006*)												
122	2270006005	Diesel Generator Sets	75 < HP <= 100	0.47	3.97	2.19	0.39	0.38	0.005	589	0.033	0.015	0.058	43%
123	2270006005	Diesel Generator Sets	100 < HP <= 175	0.35	3.85	1.15	0.24	0.23	0.004	530	0.030	0.013	0.052	43%
124	2270006005	Diesel Generator Sets	175 < HP <= 300	0.33	3.65	0.98	0.19	0.19	0.004	530	0.030	0.013	0.052	43%
125	2270006005	Diesel Generator Sets	300 < HP <= 600	0.28	3.64	1.09	0.16	0.16	0.004	530	0.030	0.013	0.052	43%
126	2270006005	Diesel Generator Sets e/	750 < HP <= 1200	0.17	4.10	0.76	0.13	0.13	0.005	531	0.030	0.013	0.052	43%
127	2270006010	Diesel Pumps	75 < HP <= 100	0.48	3.98	2.21	0.40	0.39	0.005	589	0.033	0.015	0.058	43%
128	2270006010	Diesel Pumps	300 < HP <= 600	0.28	3.65	1.10	0.17	0.16	0.004	530	0.030	0.013	0.052	43%
129	2270006015	Diesel Air Compressors	100 < HP <= 175	0.22	2.23	0.58	0.14	0.14	0.004	530	0.030	0.013	0.052	43%
130	2270006015	Diesel Air Compressors	175 < HP <= 300	0.20	2.05	0.45	0.09	0.09	0.004	530	0.030	0.013	0.052	43%
131	2270006025	Diesel Welders	50 < HP <= 75	1.00	4.98	5.05	0.73	0.71	0.006	693	0.039	0.018	0.068	21%

a/ Emission factors for the land-based nonroad engines were estimated using EPA's NONROAD2008a emission model for the anticipated construction year of 2017.

b/ Emission factors for CH4 and N2O are based on Table A-6 from EPA's report "Direct Emissions from Mobile Combustion Sources." Climate Leaders: Greenhouse Gas Inventory Protocol, Core Module Guidance. EPA430-K-08-004. May 2008. (CH4 = 0.180 g/kg fuel and N2O = 0.080 g/kg fuel)

c/ NONROAD only outputs emission factors as PM₁₀; as per EPA guidance ("Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition," EPA420-R-10-018/NR-009d, July 2010; "Exhaust Emission Factors for Nonroad Engine Modeling - Spark-Ignition," EPA420-R-10-019/NR-010f, July 2010); PM₁₅ factors gas diesel and gasoline engines are 97% and 92% of PM₁₆ factors, respectively. d/ Fuel consumption for each type of equipment was estimated based on CO₂ emission factor (g/n/b-n/b) generated from the NONROAD2008a model and the emission factor for the mass of CO₂ generated per gallon of fuel (10.21 kg CO₂/gal fuel) as presented in the Table 13.1 of the USEPA report on "2014 Climate Registry Default Emission Factors". e/ The NONROAD2008a model output did not generate emission factors for thes sources; therefore, emission factors for VOC, CO, NOx and PM10, are based on Tier 2 emission factors for Tables 4 to 7

e/ The NONROAD2008a emission model output did not generate emission factors for these sources; therefore, emission factors for VOC, CO, NOx and PM10, are based on Tier 2 emission factors from Tables 4 to 7 in the USEPA report "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition", Report No. EPA-420-R-10-018 NR-009d, July 2010. The emission factors for CO2 and SO2 were derived based on Equations 6 and 7 presented in the USEPA report, 2010.

On-road Vehicle

On-road ven	icies		NIOVES2014 Emission factors in Ib/ VIVIT a/											
		VOC	NOx	CO	PM ₁₀	PM2.5	SO ₂	HAP	CO ₂	CH ₄	N ₂ O	CO2e	mi/gal	
150	Light-Duty Gasoline Vehicles (LDGV)	0.00274	0.00160	0.02936	0.00005	0.00005	0.00002	0.00012	0.770	0.00006	0.000005	0.773	24.1	
151	Light-Duty Gasoline Trucks (< 3 ton)	0.00032	0.00099	0.00628	0.00002	0.00001	0.00001	0.00001	0.725	0.00001	0.000005	0.727	21	
152	Single-Unit Short-haul Truck	0.00148	0.01060	0.00433	0.00071	0.00065	0.00002	0.00018	2.129	0.00006	0.000004	2.132	7	

a/ Emission factors (lb/VMT) for VOC, NOx, CO, PM10, SO2, HAP and CO2e, were derived using the MOVES2014 model and inputs for calendar year 2017 using the latest input files for calendar year 2011 from Virgnia Department of Environmental Quality.

VOWTAP EPA NEI HAP emission factors for Commercial Marine Vessels

HAP emission factors for commercial marine vessels were determined using the methodology identified by US EPA for the latest (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM10, PM2.5, or VOC emissions from the CMVs.

CMV fuel type			Diesel (d	istillate)		Resi	dual	
Operating description			In Port	Underway	In P	ort	Unde	rway
SCC code			2280002100	2280002200	228000		22800	,
								Reduced
Туре			Maneuvering	Cruising	Manuevering	Hotelling	Cruising	Speed Zone
Type Code			М	С	М	н	С	Z
Pollutant	HAP?*	Fraction of						
Ammonia	No	PM10	0.01	0.02	0.00238	0.0108	0.00477	0.00477
Arsenic	Yes	PM10	0.0000175	0.00003	8.74126E-05	0.0004	0.000174825	0.000174825
Benzo[a]Pyrene	Yes	PM10	0.0000025	0.000005	4.37063E-07	0.000002	8.74126E-07	8.74126E-07
Benzo[b]Fluoranthene	Yes	PM10	0.000005	0.00001	8.74126E-07	0.000004	1.74825E-06	1.74825E-06
Benzo[k]Fluoranthene	Yes	PM10	0.0000025	0.000005	4.37063E-07	0.000002	8.74126E-07	8.74126E-07
Beryllium	Yes	PM10			0.000000546	0.00000546	0.00000546	0.00000546
Cadmium	Yes	PM10	0.00000283	0.00000515	0.0000226	0.0000059	0.0000226	0.0000226
Chromium (VI)	Yes	PM10	0.000085	0.000017	0.00006528	0.000204	0.00006528	0.00006528
Chromium III	Yes	PM10	0.0000165	0.000033	0.00012672	0.000396	0.00012672	0.00012672
Cobalt	Yes	PM10			5.94406E-05	0.000292	0.000153846	0.000153846
Hexachlorobenzene	Yes	PM10	0.00000002	0.00000004	3.4965E-09	0.00000016	6.99301E-09	6.99301E-09
Indeno[1,2,3-c,d]Pyrene	Yes	PM10	0.000005	0.00001	8.74126E-07	0.000004	1.74825E-06	1.74825E-06
Lead	Yes	PM10	0.000075	0.00015	1.39642E-05	0.00006	0.0000262	0.0000262
Manganese	Yes	PM10	0.00000153	0.000001275	0.0000573	0.0000573	0.0000573	0.0000573
Mercury	Yes	PM10	0.00000025	0.00000005	2.7076E-07	0.0000014	5.24476E-07	5.24476E-07
Nickel	Yes	PM10	0.0005	0.001	0.003250219	0.0154	0.00589	0.00589
Phosphorus	Yes**	PM10			0.001787587	0.00438	0.005734266	0.005734266
Polychlorinated Biphenyls	Yes	PM10	0.0000025	0.0000005	4.37063E-08	0.0000002	8.74126E-08	8.74126E-08
Selenium	Yes	PM10	2.83E-08	5.15E-08	1.9125E-06	0.00000908	0.00000348	0.00000348
Total HA	AP (ratio	ed to PM10)	0.0006	0.0013	0.0055	0.0212	0.0123	0.0123
Acenaphthene	Yes	PM2.5	0.000018	0.000015	0.0000034	0.0000034	0.0000034	0.0000034
Acenaphthylene	Yes	PM2.5	0.00002775	0.000023125	0.000000525	0.00000525	0.00000525	0.00000525
Anthracene	Yes	PM2.5	0.00002775	0.000023125	0.000000525	0.00000525	0.00000525	0.00000525
Benz[a]Anthracene	Yes	PM2.5	0.00003	0.000025	0.000000567	0.00000567	0.00000567	0.000000567
Benzo[g,h,i,]Perylene	Yes	PM2.5	0.00000675	0.000005625	0.000000128	0.000000128	0.000000128	0.000000128
Chrysene	Yes	PM2.5	0.00000525	0.000004375	9.93E-08	9.93E-08	9.93E-08	9.93E-08
Fluoranthene	Yes	PM2.5	0.0000165	0.00001375	0.00000312	0.00000312	0.00000312	0.00000312
Fluorene	Yes	PM2.5	0.00003675	0.000030625	0.000000695	0.00000695	0.00000695	0.00000695
Naphthalene	Yes	PM2.5	0.00105075	0.000875625	0.0000199	0.0000199	0.0000199	0.0000199
Phenanthrene	Yes	PM2.5	0.000042	0.000035	0.000000794	0.00000794	0.00000794	0.00000794
Pyrene	Yes	PM2.5	0.00002925	0.000024375	0.000000553	0.00000553	0.00000553	0.000000553
Total HA	P (ratioe	d to PM2.5)	0.0013	0.0011	0.000024	0.000024	0.000024	0.000024
2,2,4-Trimethylpentane	Yes	VOC	0.0003	0.00025	NA	NA	NA	NA
Acetaldehyde	Yes	VOC	0.0557235	0.04643625	0.000229	0.000229	0.000229	0.000229
Acrolein	Yes	VOC	0.002625	0.0021875	NA	NA	NA	NA
Benzene	Yes	VOC	0.015258	0.012715	0.0000098	0.000098	0.0000098	0.0000098
Ethyl Benzene	Yes	VOC	0.0015	0.00125	NA	NA	NA	NA
Formaldehyde	Yes	VOC	0.1122	0.0935	0.00157	0.00157	0.00157	0.00157
Hexane	Yes	VOC	0.004125	0.0034375	NA	NA	NA	NA
Propionaldehyde	Yes	VOC	0.004575	0.0038125	NA	NA	NA	NA
Styrene	Yes	VOC	0.001575	0.0013125	NA	NA	NA	NA
Toluene	Yes	VOC	0.0024	0.002	NA	NA	NA	NA
Xylenes (Mixed Isomers)	Yes	VOC	0.0036	0.003	NA	NA	NA	NA
, , ,	IAP (rati	oed to VOC)	0.2039	0.1699	0.0018	0.0018	0.0018	0.0018

*For completeness, all of the pollutants in EPA's database are shown, but not all are HAP as defined in Section 112 of the Clean Air Act and as updated in 40 CFR 63 Subpart C.

**Only elemental phosphorus (CAS #7723140) is a HAP; phosphorus-containing compounds in general are not.

<u>Reference:</u> US EPA, "2011 National Emissions Inventory, version 1, Technical Support Document", draft, November 2013, available from http://www.epa.gov/ttn/chief/net/2011nei/2011_neiv1_tsd_draft.pdf; Table 104 on pp. 178-179 refers to the dataset "2011EPA_HAP-Augmentation" for HAP emissions, which is available from ftp://ftp.epa.gov/EmisInventory/2011/doc; the factors above are from that dataset.

VOWTAP HAP Emission Factor Calculation Sheet Small Diesel Engines

Pollutant(Ib/MMBOrganic Compounds9.33E-Benzene ^b 9.33E-Toluene ^b 4.09E-Xylene ^b 2.85E-1,3 Butadiene< 3.91E-Propylene2.85E-Formaldehyde ^b 1.18E-Acetaldehyde ^b 7.67E-Acrolein ^b < 9.25E-PAHNaphthalene ^b < 5.06E-CAcenaphthylene ^b < 5.06E-CAcenaphthylene ^b < 2.92E-Fluorante ^b 2.92E-CPhenanthrene ^b < 1.42E-CFluorante ^b 2.94E-CAnthracene ^b 1.87E-CPyrene ^b 4.78E-CBenzo(a)anthracene ^b 1.55E-CChrysene ^b 3.53E-CBenzo(a)anthracene ^b < 1.55E-CDibenz(a,h)anthracene ^b < 5.33E-CBenzo(a)pryrene ^b < 5.33E-CDibenz(a,h)anthracene ^b < 5.33E-CDibenz(a,h)anthracene ^b < 5.33E-CCadmium ^b 5.13E-CChromium ^b 1.24E-CLead ^b 7.69E-C	Emission Factor	Factor	(AP-42	
Organic Compounds 9.33E Benzene ^b 9.33E Toluene ^b 4.09E Xylene ^b 2.85E 1,3 Butadiene < 3.91E Propylene 2.85E Formaldehyde ^b 1.18E Acetaldehyde ^b 7.67E Acctaldehyde ^b 7.67E Acctaldehyde ^b 2.92E PAH 8.48E-O Naphthalene ^b < 5.06E-O Acenaphthylene ^b < 5.06E-O Acenaphthylene ^b < 5.06E-O Acenaphthylene ^b < 1.42E-O Fluoranthene ^b 2.92E-O Phenanthrene ^b 2.92E-O Phonanthrene ^b 2.92E-O Phenanthrene ^b 2.92E-O Pyrene ^b 1.87E-O Benzo(a)anthracene ^b 3.53E-O Benzo(b)fluoranthene ^b < 9.91E-O Benzo(a)pyrene ^b < 3.55E-O Dibenz(a,h)anthracene ^b < 5.83E-O Dibenz(a,h)anthracene ^b < 5.33E-O Dibenz(a,h)anthracene ^b < 5.13E-O Chromium ^b </th <th></th> <th>Rating</th> <th>Table)</th> <th></th>		Rating	Table)	
Toluene ^b 4.09E- Xylene ^b 2.85E- 1,3 Butadiene < 3.91E-				1
Xylene ^b 2.85E- 1,3 Butadiene < 3.91E-	9.33E-04	E	3.3-2	
1,3 Butadiene< 3.91E-Propylene2.58E-Formaldehydeb1.18E-Acetaldehydeb7.67E-Acrolein ^b $<$ 9.25E-PAH8.48E-ONaphthalene ^b $<$ 1.42E-OAcenaphthylene ^b $<$ 1.42E-OFluorene ^b 2.92E-OPhenanthrene ^b $<$ 2.92E-OPhenanthrene ^b 2.92E-OPhenanthrene ^b $<$ 3.05E-OPyrene ^b $<$ 3.54E-OBenzo(a)anthracene ^b $<$ 3.55E-OBenzo(b)fluoranthene ^b $<$ 3.55E-OBenzo(b)fluoranthene ^b $<$ 3.57E-ODibenz(a,h)anthracene ^b $<$ 3.57E-O	4.09E-04	E	3.3-2	
Propylene 2.58E- Formaldehyde ^b 1.18E- Acetaldehyde ^b 7.67E- Acrolein ^b 9.25E- PAH 8.48E-0 Naphthalene ^b 8.48E-0 Acenaphthylene ^b < 5.06E-0	2.85E-04	E	3.3-2	
Formaldehyde ^b 1.18E- Acetaldehyde ^b 7.67E- Acrolein ^b 9.25E- PAH 8.48E-Q Naphthalene ^b 8.48E-Q Acenaphthylene ^b < 5.06E-Q	< 3.91E-05	E	3.3-2	
Acctaldehyde ^b 7.67E- Acrolein ^b 9.25E- PAH 8.48E-C Naphthalene ^b 8.48E-C Accaphthylene ^b 5.06E-C Accaphthylene ^b 5.06E-C Accaphthylene ^b 2.92E-C Fluorene ^b 2.92E-C Phenanthrene ^b 2.92E-C Phenanthrene ^b 2.94E-C Anthracene ^b 1.87E-C Fluorenthe ^b 7.61E-C Pyrene ^b 4.78E-C Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.53E-C Benzo(b)fluoranthene ^b < 9.91E-C	2.58E-03	E	3.3-2	
Acrolein ^b < 9.25E-	e ^b 1.18E-03	E	3.3-2	
PAH 8.48E-C Acenaphthylene ^b \$.06E-C Acenaphthylene ^b \$.12E-C Fluorene ^b 2.92E-C Phenanthrene ^b 2.94E-C Phenanthrene ^b 2.94E-C Phenanthrene ^b 2.94E-C Phenanthrene ^b 2.94E-C Phenanthrene ^b 7.61E-C Pyrene ^b 4.78E-C Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.53E-C Benzo(k)fluoranthene ^b < 9.91E-C	b 7.67E-04	E	3.3-2	
Naphthalene ^b 8.48E-C Acenaphthylene ^b < 5.06E-C	< 9.25E-05	E	3.3-2	
Acenaphthylene ^b < 5.06E-C				
Acenaphthene ^b < 1.42E-C	ene ^b 8.48E-05	E	3.3-2	
Fluorene ^b 2.92E-C Phenanthrene ^b 2.94E-C Anthracene ^b 1.87E-C Fluoranthene ^b 7.61E-C Pyrene ^b 4.78E-C Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.53E-C Benzo(b)fluoranthene ^b < 1.55E-C	hylene ^b < 5.06E-05	E	3.3-2	
Phenanthrene ^b 2.94E-C Anthracene ^b 1.87E-C Fluoranthene ^b 7.61E-C Pyrene ^b 4.78E-C Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.53E-C Benzo(b)fluoranthene ^b 9.91E-C Benzo(b)fluoranthene ^b 4.55E-C Benzo(a)pyrene ^b 4.158E-C Indeno(1,2,3-cd)pyrene ^b < 3.75E-C	hene ^b < 1.42E-06	E	3.3-2	
Anthracene ^b 1.87E-CFluoranthene ^b 7.61E-CPyrene ^b 4.78E-CBenzo(a)anthracene ^b 1.68E-CChrysene ^b 3.53E-CBenzo(b)fluoranthene ^b < 9.91E-C	2.92E-05	E	3.3-2	
Anthracene ^b 1.87E-CFluoranthene ^b 7.61E-CPyrene ^b 4.78E-CBenzo(a)anthracene ^b 1.68E-CChrysene ^b 3.53E-CBenzo(b)fluoranthene ^b < 9.91E-C		E	3.3-2	
Fluoranthene ^b 7.61E-C Pyrene ^b 4.78E-C Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.53E-C Benzo(b)fluoranthene ^b < 9.91E-C		E	3.3-2	
Pyrene ^b 4.78E-C Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.33E-C Benzo(b)fluoranthene ^b < 9.91E-C		E	3.3-2	
Benzo(a)anthracene ^b 1.68E-C Chrysene ^b 3.53E-C Benzo(b)fluoranthene ^b 9.91E-C Benzo(k)fluoranthene ^b 1.55E-C Benzo(a)pyrene ^b 1.58E-C Indeno(1,2,3-cd)pyrene ^b 3.75E-C Dibenz(a,h)anthracene ^b 5.83E-C Benzo(g,h,i)perylene ^b 4.89E-C TOTAL PAH 1.68E-C Arsenic ^b 5.13E-C Cadmium ^b 1.24E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C	4.78E-06	E	3.3-2	
Chrysene ^b 3.53E-CBenzo(b)fluoranthene ^b < 9.91E-C		E	3.3-2	
Benzo(b)fluoranthene ^b < 9.91E-C		E	3.3-2	
Benzo(k)fluoranthene ^b < 1.55E-C		E	3.3-2	
Benzo(a)pyrene ^b < 1.88E-C		E	3.3-2	
Indeno(1,2,3-cd)pyrene ^b < 3.75E-C Dibenz(a,h)anthracene ^b < 5.83E-C Benzo(g,h;)perylene ^b < 4.89E-C TOTAL PAH 1.68E-A Arsenic ^b 4.62E-C Cadmium ^b 5.13E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C		E	3.3-2	
Dibenz(a,h)anthracene ^b < 5.83E-C		E	3.3-2	
Benzo(g,h,i)perylene ^b < 4.89E-C		E	3.3-2	
TOTAL PAH 1.68E- Vetals and inorganics ⁴ 4.62E-C Arsenic ^b 4.62E-C Cadmium ^b 5.13E-C Chromium ^b 1.24E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C				
Vetals and inorganics ^c Arsenic ^b Cadmium ^b Chromium ^b Chromium VI ^b Lead ^b A.62E-C		E	3.3-2 3.3-2	
Arsenic ^b 4.62E-C Cadmium ^b 5.13E-C Chromium ^b 1.24E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C			5.5-2	
Cadmium ^b 5.13E-C Chromium ^b 1.24E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C	anics			
Chromium ^b 1.24E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C	4.62E-08			Based on ppb by weight in fuel detection limit in Rising et
Chromium ^b 1.24E-C Chromium VI ^b 2.24E-C Lead ^b 7.69E-C				
Chromium VI ^b 2.24E-C	5.13E-09			Based on ppb by weight in fuel detection limit in Rising et
Chromium VI ^b 2.24E-C				
Lead ^b 7.69E-0				Based on average ppb by weight in fuel in Rising et al. 200 18% of value for chromium
	2.24E-06			18% of value for chromium
Mercury ^b 1.03E-0	7.69E-07			Based on average ppb by weight in fuel in Rising et al. 200
	1.03E-08			Based on ppb by weight in fuel detection limit in Rising et
Nickel ^b 1.48E-C	1.48E-06			Based on average ppb by weight in fuel in Rising et al. 200
Selenium ^b 2.56E-0	2.56E-07			Based on ppb by weight in fuel detection limit in Rising et

VOWTAP HAP Emission Factor Calculation Sheet Large Stationary Diesel Engines

Discussion: The emission factors for individual organic compound shown at the right are from the U.S. Environmental Protection Agency (EPA), "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources" (AP-42), Section 3. for "Large Stationary Diesel and All Stationary Dual-fuel Engines" rev. 10:96. Emission factors prefaced with a "<" are based on method detection limits.

Section 3.4 of AP-42 does not provide emission factors for metals and inorganics from diesel engines. Metal emission factors shown here are from Section 1.3 of AP-42, for No. 6 fuel oil.

	Emission Factor	Emission Factor	Source (AP-42	
Pollutant	(lb/MMBtu) ^a	Rating	(AP-42 Table)	
rganic Compounds	(15) (1111010)	nating	Tubley	
Benzene ^b	7.76E-04	E	3.4-3	
Toluene ^b	2.81E-04	E	3.4-3	
Xylene ^b	1.93E-04	E	3.4-3	
Methane	8.10E-03	E	3.4-1	
Propylene	2.79E-03	E	3.4-3	
Formaldehyde ^b	7.89E-05	E	3.4-3	
Acetaldehyde ^b	2.52E-05	E	3.4-3	
Acrolein ^b	7.88E-06	E	3.4-3	
PAH	7.002.00	-	5.4 5	
Naphthalene ^b	1.30E-04	E	3.4-4	
Acenaphthylene ^b	9.23E-06	E	3.4-4	
Acenaphthene ^b	4.68E-06	E	3.4-4	
Fluorene ^b	1.28E-05	E	3.4-4	
Phenanthrene ^b	4.08E-05	E	3.4-4	
Anthracene ^b	1.23E-06	E	3.4-4	
Fluoranthene ^b	4.03E-06	E	3.4-4	
Pyrene ^b	3.71E-06	E	3.4-4	
Benz(a)anthracene ^b	6.22E-07	E	3.4-4	
Chrysene ^b	1.53E-06	E	3.4-4	
Benzo(b)fluoranthene ^b	1.11E-06	E	3.4-4	
Benzo(k)fluoranthene ^b	< 2.18E-07	E	3.4-4	
Benzo(a)pyrene ^b	< 2.57E-07	E	3.4-4	
Indeno(1,2,3-cd)pyrene ^b	< 4.14E-07	E	3.4-4	
Dibenz(a,h)anthracene ^b	< 3.46E-07	E	3.4-4	
Benzo(g,h,i)perylene ^b	< 5.56E-07	E	3.4-4	
TOTAL PAH	< 2.12E-04	E	3.4-4	
Metals and inorganics ^c	1 1.111 04	-	5.4 4	
Arsenic ^b	4.62E-08			Based on ppb by weight in fuel detection limit in Rising et a
Cadmium ^b	5.13E-09			Based on ppb by weight in fuel detection limit in Rising et a
Chromium ^b	1.24E-05			Based on average ppb by weight in fuel in Rising et al. 2004
Chromium VI ^b	2.24E-06			18% of value for chromium
Lead ^b	7.69E-07			Based on average ppb by weight in fuel in Rising et al. 2004
Mercury ^b	1.03E-08			Based on ppb by weight in fuel detection limit in Rising et a
Nickel ^b	1.48E-06			Based on average ppb by weight in fuel in Rising et al. 2004
Selenium ^b	2.56E-07			Based on ppb by weight in fuel detection limit in Rising et a
				,
		1		

Total for substances identified as HAP^e < 1.6E-03

^a Factors should be converted from lb/10⁶ scf to lb/MMBtu (HHV) by dividing by 1,020 Btu/scf, as per EPA. Numbers preceded by "<" are based on method detection limits.</p>

^b Specifically listed as a "Hazardous Air Pollutant" (HAP) in the Clean Air Act, or a component of Polycyclic Organic Matter, which is also listed as a HAP.

 $^{\rm c}$ Emission factors were converted from AP-42 units (lb/1000 gal) to lb/MMBtu by dividing by a heat content of 150 MMBtu/1000 gal

^d Chloride and fluoride are included in the HAP total, based on the assumption that the predominant forms emitted are hydrogen chloride and hydrogen fluoride (both of which are listed HAP).

^e Total calculated using the TOTAL PAH emission factor instead of factors for individual PAH.

^{f.} Metal emissions are based on the paper Survey of Ultra-Trace Metals in Gas Turbine Fuels, 11th Annual International Petroleum Conference, Oct 12-15, 2004. Where trace metals were detected in any of 13 samples, the average result is used. Where no metals were detected in any of 13 samples, the detection limit is used.

^B Hexavalent chrome was not detected in any fuel oil samples (in the note f reference study). However, to allow for potential hex chrome emissions formed during combustion, 18% of the total chrome emissions were assumed to be hex chrome (per EPA 453/R-98-004a)

VOWTAP EPA NEI HAP emission factors for Nonroad Diesels

HAP emission factors for nonroad diesels (below) were obtained from ERG, "Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and Other Nonroad Components of the National Emissions Inventory," Volume I - Methodology, October 7, 2003 (available from

http://www.epa.gov/ttn/chief/net/1999inventory.html#final3haps), Appendix D, Tables D-1 through D-3. This is the reference cited by EPA's National Inventory Model (NMIM), i.e., US EPA, "EPA's National Inventory Model (NMIM), A Consolidated Emissions Modeling System for MOBILE6 and NONROAD", EPA420-R-05-024, December 2005 (available from

http://www.epa.gov/otaq/models/nmim/420r05024.pdf), pp. 19-21.

Pollutant	Fraction of	Emissions Factor %
1,3-butadiene	VOC - Exhaust	0.0018616
formaldehyde	VOC	0.11815
benzene	VOC	0.020344
acetaldehyde	VOC	0.05308
ethylbenzene	VOC - Exhaust	0.0031001
styrene	VOC - Exhaust	0.00059448
acrolein	VOC	0.00303
toluene	VOC	0.014967
hexane	VOC	0.0015913
propionaldehyde	VOC	0.011815
2,2,4-trimethylpentane	VOC	0.000719235
2,3,7,8-TCDD TEQ **	tons TEQ/gal	1.90705E-14
xylenes	VOC	0.010582
Total H	IAP (ratioed to VOC)	0.239834715
РАН		
benz[a]anthracene	PM10	0.0000071
benzo[a]pyrene	PM10	0.0000035
benzo[b]fluoranthene	PM10	0.0000049
benzo[k]fluoranthene	PM10	0.0000035
chrysene	PM10	0.0000019
dibenzo[a,h]anthracene	PM10	2.9E-09
indeno[1,2,3-c,d]pyrene	PM10	0.00000079
acenaphthene	PM10	0.0001
acenaphthylene	PM10	0.000084
anthracene	PM10	0.0000043
benzo[g,h,i]perylene	PM10	0.0000019
fluoranthene	PM10	0.000017
fluorene	PM10	0.0001
naphthalene	PM10	0.00046
phenanthrene	PM10	0.00026
pyrene	PM10	0.000029
Total HA	0.001034792	
chromium	ug/bhp-hr	0.03
manganese	ug/bhp-hr	1.37
nickel	ug/bhp-hr	2.035
Total HAP	3.435	

** Note: the emission rate for 2,3,7,8-TCDD TEQ is significantly lower than any other HAP and therefore, was not factored into the total HAP emission factor.