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1. INTRODUCTION  

The Bureau of Ocean Energy Management (BOEM) is responsible for the development of 5-year 
outer continental shelf (OCS) oil and gas leasing programs, as required by the OCS Lands Act.  
As part of the process of developing a new leasing program, BOEM generates decision options 
and conducts a benefit-cost, or “Net Benefits,” analysis for each option.  These are presented to 
the Secretary of the Interior for decision at three points in the iterative process of announcement, 
comment, analysis (including analysis of comments), and decision.  Typically, an option is to 
further consider holding a set number of lease sales (auctions) in specific year(s) offering an 
identified portion of a planning area.  If the option is selected, that program area1 will be 
considered for leasing in the next stage of program development or, if selected for the final 
program, in the pre-sale planning process, which can take one to three years.  There is always a 
No Sale Option for each program area. 
 
For its Net Benefits analysis, BOEM uses its internal Offshore Environmental Cost Model 
(OECM) to generate monetary estimates of the environmental and social costs attributable to oil 
and gas exploration and production activities anticipated to result from each decision option. 
When BOEM assesses a program option, the OECM produces a cost estimate not only for the 
environmental and social costs attributable to activities anticipated to result from the sale(s) in 
that option but also for those attributable to the market substitutions anticipated to result from the 
No Sale Option; i.e., the costs associated with energy production from sources that would 
substitute for OCS production in the absence of anticipated production from the sale(s).  The 
costs associated with any No Sale Option are a function of the type and scale of substitute 
resources predicted by a companion model, the Market Simulation (MarketSim) model.   
 
Commenters on previous 5-year programs have encouraged BOEM to go beyond consideration 
of the program proposal and examine the full range of alternatives to OCS oil and gas 
production, including those that MarketSim might not capture given the current state of energy 
technologies and markets.  As a result, and in summary, BOEM now considers the effects of 
energy alternatives to anticipated production from each program area option in two ways, based 
on the market’s response to the absence of anticipated production from the recommended option 
and more generally based on the potential to meet the nation’s energy needs, both in the near- 
and long-term, through all available resources other than OCS oil and gas.  It is important to 
recognize that the broader consideration of energy alternatives necessarily includes consideration 
of the environmental and social costs of those alternatives, just as BOEM considers the 
environmental and social costs of each program area option. 
 
This report presents both of these analytical approaches.  First, it describes the environmental 
impact associated with not approving any of the proposed sales by (1) presenting the cost 
                                                           
1 The OCS is divided into 26 geographic “planning areas.”  A program area is that portion of a planning area that 
remains under consideration in the program.  For example, in recent programs, the Eastern Gulf of Mexico (GOM) 
program area has represented only a small portion of the total Eastern GOM planning area.  Typically, there have 
been be 6 to 12 program areas, some of which were entire planning areas and others only a portion thereof.  The area 
eventually offered for lease may be reduced in size during the pre-sale process but it cannot be increased until the 5-
year development process has been repeated for a new or revised program.  
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estimate associated with replacement of foregone production from the program proposal, as 
determined through the application of MarketSim and the OECM, and (2) qualitatively 
highlighting other potential costs that are likely to result from not approving a new program that 
are not currently modeled.  Second, it presents a discussion of possible near-term and longer-
term substitutes for oil and gas, by use sector (transportation, electricity production, industrial, 
and commercial and residential).  While the OCS is of course only one source of the oil and gas 
utilized by the U.S. economy, it is helpful to consider the feasibility of relying on other sources 
to meet energy demand.  The report concludes with an overview of the environmental cost 
considerations that would need to be taken into account in evaluating the net benefit of any 
transition away from oil and gas.  This report provides supplemental background information to 
help describe the analysis of energy alternatives to OCS oil and gas.  Important sections of this 
document are also included in the EIS (Section 4.5.7) and the program decision document. 

2. THE NO ACTION ALTERNATIVE  

The National Environmental Policy Act (NEPA) requires consideration of a No Action 
Alternative to every major federal action that significantly affects the environment.  The 
Environmental Impact Statement (EIS) analyzes the No Action Alternative by calculating the 
environmental impacts that would occur absent any federal action, the case of having no new 
program.  In this situation, no sales would be held in any program area.   
 
This section presents BOEM’s analysis of the energy market impacts associated with the No 
Action Alternative and the corresponding environmental effects associated with these impacts.  
With less oil and gas available from the OCS under the No Action Alternative, consumers may 
obtain oil and gas from other sources, substitute to other types of energy, or consume less energy 
overall.  Similarly, energy production may shift from OCS oil and gas to onshore oil and gas, 
overseas oil and gas production, or domestic production of oil and gas alternatives such as coal.  
Each of these shifts in consumption and production relative to the program proposal (Proposed 
Action in the EIS) yields environmental impacts that BOEM has evaluated and considered in 
developing the program. 

2.1 Relationship between the No Action Alternative and No Sale Options 

In the context of the 5-year program, the No Action Alternative is defined as the scenario in 
which BOEM holds no OCS oil and gas lease sales during the 5-year period covered by the 
program or, in other words, in which the No Sale Option is selected for each program area.  
Under this scenario, the oil and natural gas that would have been produced as a consequence of 
sales over the 5-year program period are not available to consumers, who must therefore obtain 
energy from other sources.   
 
In the main decision documents, the analyses are presented by program area, because each 
decision option is specific to a program area.  However, it is both cumbersome and unnecessary 
to use this program-area-by-program-area approach to describe the methodology for analysis of 
energy alternatives to OCS oil and gas.  Therefore, in this document, the purpose of which is to 
provide a technical explanation and not to ask for a decision, BOEM will use the concept of the 
EIS’s No Action Alternative in its explanations of the energy sources most likely to substitute for 
foregone OCS oil and gas production.    
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2.2 Methodology 

The process for calculating these impacts begins with the application of MarketSim to a given 
exploration and development (E&D) scenario.  MarketSim is a multi-market equilibrium model 
that simulates the energy supply, demand, and price effects of OCS oil and gas production 
compared with baseline projections from the Energy Information Administration’s (EIA) Annual 
Energy Outlook (AEO).  In addition to simulating oil and natural gas markets, MarketSim 
includes separate modules for coal and electricity, enabling the model to capture the broad 
effects of an E&D scenario across individual segments of the energy market.  Modeling each of 
these sectors, MarketSim produces an estimate of the energy market’s response to the absence of 
production anticipated to occur as a result of the 5-year program. Three specific responses are 
considered important to evaluate in the absence of the E&D scenario:  an increase in the quantity 
of oil delivered into the U.S. market via overseas tanker; the quantity of natural gas imported into 
the U.S. via tanker; and an increase in the onshore production of oil, gas, and coal within the 
United States.  These responses are assumed to be the most significant in terms of potential 
environmental costs, namely (1) the impact of oil spills from incoming oil tankers; (2) the air 
quality impacts associated with emissions from incoming tankers carrying oil and liquefied 
natural gas; and (3) the incremental emissions associated with onshore oil, gas, and coal 
production.  The BOEM employed the OECM to quantify these costs.  Other potential costs may 
also be relevant, for example, groundwater impacts that might be associated with onshore gas 
production, but are not included in the OECM due to the lack of credible bases for describing 
them as functions of specific model inputs.  The methods applied by the OECM to quantify the 
environmental costs of the No Action Alternative are described below. 

2.2.1 Analysis of oil spill costs under the No Action Alternative (NAA) 
The methodology for modeling oil-spill related costs under the NAA is as follows. 

• The OECM imports the MarketSim estimate of imported crude oil in the absence of the oil 
production assumed to result from the 5-year leasing program.  Note that the relevant 
MarketSim output is exclusive to tankers, and thus does not need to be expressed net of 
imports that might arrive via pipeline. 

• To assign potential costs to individual OCS planning areas, the OECM makes assumptions 
about the geographic distribution of imported oil.  As a default, the OECM assumes that this 
distribution is proportional to the average annual fraction of total crude oil tanker trips that 
arrive at ports in each of the planning areas, assuming that per tanker quantities do not vary 
significantly between ports.2 

• To calculate spill-related costs under the No Action Alternative, the model uses spill 
probability and spill-size distribution factors to determine the volume of spilled oil in each of 
the applicable planning areas, and then applies this volume to each of the OECM cost 
calculations that have a spill component in the same way it would calculate costs associated 
with a program scenario.  

                                                           
2 This is based on data for the years 2004 through 2008 collected by Environmental Research Consulting. 
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• Since the OECM distinguishes between nearshore and offshore locations for its assessment 
of oil spill impacts, an assumption is required regarding the location of potential spills.  In an 
effort to avoid over- or under-estimating the spill-related costs, the model assumes that spills 
would occur at the distance specified as the boundary between the nearshore and offshore 
areas. 

2.2.2 Analysis of air quality costs under the No Action Alternative 
The OECM uses two separate approaches to estimate the air quality costs of the No Action 
Alternative, one approach for tanker imports of oil and natural gas and a second methodology for 
increased onshore production of oil, natural gas, and coal. 

• For oil and gas tanker imports, the model applies emissions factors from the literature to 
various tanker activities, including (1) tanker cruising, (2) unloading, (3) volatile organic 
compound (VOC) losses in transit for oil tankers only, and (4) ballasting for oil tankers only.  
For emissions that occur in transit such as tanker cruising and VOC losses, we assume that 
emissions are distributed across an entire planning area.  In contrast, emissions released at 
port such as unloading and ballasting emissions are distributed across the coastal portion of 
each planning area.  Similar to the OECM’s assessment of oil spill costs for tanker imports, 
the model assumes that the geographic distribution of tanker imports across planning areas is 
similar to the historical distribution.  

• To estimate the air quality costs related to increased onshore production of oil, natural gas, 
and coal, the model follows a two-step process. 

o First, the OECM estimates the emissions associated with onshore production by 
applying the change in onshore production projected by MarketSim to a series of 
emission factors specific to each fuel such as onshore oil, natural gas, and coal.  This 
yields the change in emissions associated with onshore production.   
 

o Second, the model multiplies emissions resulting from oil, gas, and coal production 
by a series of dollar per ton values that represent the monetized costs of onshore 
emissions.  These values were derived from outputs of the Air Pollution Emission 
Experiments and Policy analysis model (APEEP).3  

2.3 Market response to the No Action Alternative 

Exhibit 2.1 presents the changes in energy markets projected by MarketSim for the No Action 
Alternative relative to the three E&D scenarios of low, mid- and high4 examined by BOEM.5  As 

                                                           
3 U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Revised 
Offshore Environmental Cost Model (OECM) Guide to Cost and Benefit Calculations, 2011. 

4 The E&D scenarios are the forecast of activity levels anticipated to occur in each program area for the different 
price cases.   

5 The BOEM analyzes three flat price cases in the 5-year program analysis.  The low-price case represents a scenario 
under which inflation-adjusted prices are $60 per barrel for oil and $4.27 per million cubic feet (mcf) for natural gas 
throughout the life of the program.  Prices for the mid-price case are $110 per barrel and $7.38 per mcf.  Prices for 
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indicated in the exhibit, domestic production of both oil and natural gas is projected to decline 
overall, but onshore production in the United States is projected to increase under the No Action 
Alternative relative to all three E&D scenarios.  This increase in onshore production, however, is 
projected to make up for only a fraction of foregone OCS production.  To ensure that demands 
for oil and gas are met, MarketSim projects a sharp increase in oil and gas imports under the No 
Action Alternative, via both tanker and pipeline.  The model also projects that the reduction in 
OCS oil and gas production under the No Action Alternative will result in an increase in 
domestic coal and electricity production.   

Energy consumption under the No Action Alternative is projected to shift relative to the three 
E&D scenarios.  More specifically, MarketSim projects that natural gas consumption will decline 
while domestic consumption of oil, coal, and electricity will increase.  Given that domestic oil 
production declines under the No Action Alternative, the increase in oil consumption may be 
somewhat unexpected.  This increase in consumption reflects the fact that oil and gas are 
substitutes within the industrial sector and, to a lesser extent, the residential and commercial 
sectors.  Therefore, as natural gas prices increase under the No Action Alternative relative to the 
E&D scenarios due to reduced OCS production; consumption of substitutes, including oil, 
increases.  The increase in oil prices under the No Action Alternative may cause substitution in 
the opposite direction, from gas to oil, but the impact of increased gas prices is the more 
dominant of the two effects. 

                                                                                                                                                                                           
the high-price case are $160 per barrel and $11.39 per mcf.  See the proposed program decision document for more 
information.   
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EXHIBIT 2.1.   PROJECTED ENERGY MARKET IMPACTS FROM 2012 THROUGH 2051 UNDER 
THE NO ACTION ALTERNATIVE RELATIVE TO EACH E&D SCENARIO  

 
CHANGE UNDER THE NO ACTION 

ALTERNATIVE RELATIVE TO 

PRODUCTION FROM PROGRAM   

PERCENT CHANGE RELATIVE TO 

PRODUCTION FROM PROGRAM 

LOW E&D 
MEDIUM 

E&D HIGH E&D LOW E&D 
MEDIUM 

E&D HIGH E&D 

OIL (billion barrels)       

U.S. Consumption 0.1 0.2 0.3 0.0% 0.1% 0.1% 
U.S. Production -3.5 -5.7 -7.6 -2.1% -3.4% -4.5% 

Lower 48 onshore, biofuels, 
other 0.1 0.1 0.2 0.1% 0.1% 0.2% 

Lower 48 offshore -2.8 -4.7 -5.4 -12.2% -18.9% -21.1% 
Alaska1 -0.8 -1.2 -2.4 -7.8% -11.0% -20.5% 

Net Imports 3.5 5.8 7.9 2.3% 3.9% 5.3% 
Net Imports Pipeline 0.3 0.5 0.7 1.0% 1.6% 2.2% 
Net Imports Tanker 3.2 5.3 7.2 2.7% 4.5% 6.2% 

GAS (trillion cubic feet)       

U.S. Consumption -3.9 -7.6 -10.9 -0.5% -0.9% -1.2% 
U.S. Production -7.1 -13.6 -19.4 -0.9% -1.7% -2.4% 

Lower 48 onshore and other 4.1 7.8 11.4 0.6% 1.2% 1.8% 
Lower 48 offshore -11.6 -19.7 -22.5 -12.0% -18.8% -20.9% 

   Alaska1 0.4 -1.7 -8.3 0.6% -2.5% -11.2% 
Total Imports 2.6 4.8 6.9 2.0% 3.8% 5.5% 

Imports Pipeline 2.3 4.2 6.0 2.6% 5.1% 7.4% 
Imports LNG 0.3 0.6 0.8 0.7% 1.4% 2.0% 

Exports -0.6 -1.2 -1.7 -0.9% -1.8% -2.5% 

COAL (million short tons)       

U.S. Consumption 76.0 144.6 209.5 0.1% 0.3% 0.4% 
U.S. Production 74.2 141.3 204.8 0.1% 0.3% 0.4% 
Net Exports -1.8 -3.3 -4.7 0.4% 0.7% 1.0% 

ELECTRICITY (billion kilowatt hours) 

U.S. Consumption 140.5 261.2 377.8 0.1% 0.1% 0.2% 
U.S. Production 130.5 241.1 347.4 0.1% 0.1% 0.2% 
Net Imports 10.0 20.1 30.4 0.7% 1.5% 2.3% 
Notes: 

1. AEO projections do not differentiate offshore and onshore production for Alaska. 
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2.4 Modeled environmental impacts of the No Action Alternative 

Exhibit 2.2 summarizes the environmental impacts of the No Action Alternative as estimated by 
the OECM.6  As indicated in the exhibit, costs associated with air pollution impacts account for 
the vast majority of these costs, followed by foregone recreational opportunities and ecological 
effects.  The air pollution impacts summarized in the exhibit reflect increased emissions of 
several different pollutants.7  Exhibit 2.3 presents the projected increase in emissions, by 
pollutant, under the No Action Alternative. 
 
EXHIBIT 2.2.   QUANTIFIED ENVIRONMENTAL AND SOCIAL COSTS UNDER THE NO 
ACTION ALTERNATIVE (MILLIONS OF DOLLARS)  

COST CATEGORY NO ACTION 

ALTERNATIVE 

RELATIVE TO LOW 

E&D SCENARIO 

NO ACTION 

ALTERNATIVE 

RELATIVE TO MID 

E&D SCENARIO 

NO ACTION 

ALTERNATIVE 

RELATIVE TO HIGH 

E&D SCENARIO 

Recreation $110  $170  $220  
Air quality $7,000  $13,000  $18,000  
Property values $0.12  $0.18  $0.23  
Subsistence use $0.00 $0.00 $0.01 
Commercial Fishing $0.00 $0.00 $0.00 
Ecological impacts $5.3 $8.2 $10.00 
Total $7,115.42  $13,178.38  $18,230.24  

 

                                                           
6 The values in Exhibit 2.2 include oil spill costs attributed to each cost category. 

7As can be seen in Exhibit 2.2, the costs of air quality are significantly larger than all of the other cost categories.   
This is a result of the dispersion of harmful air emissions and the lesser impact air emissions have on human health 
miles offshore in the E&D scenario than they do onshore near population centers in the No Action Alternative.  For 
more information, see Economic Analysis Methodology for the 5-Year OCS Oil and Gas Leasing Program for 2012-
2017 (BOEM-2011-050).   
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EXHIBIT 2.3.   INCREMENTAL AIR EMISSIONS UNDER THE NO ACTION 
ALTERNATIVE (THOUSANDS OF TONS)  

 
POLLUTANT NO ACTION 

ALTERNATIVE  

RELATIVE TO LOW 

E&D SCENARIO 

NO ACTION 

ALTERNATIVE 

RELATIVE TO MID 

E&D SCENARIO 

NO ACTION 

ALTERNATIVE 

RELATIVE TO HIGH 

E&D SCENARIO 

Criteria 
Pollutants 

NOx 280 520 740 
SOx 220 420 600 
PM10 200 390 570 
PM2.5 11 21 29 
CO 110 210 300 
VOC 430 810 1200 

Greenhouse 
Gases 

CO2 32,000 54,000 74,000 
CH4 23 038 52 
N2O 2.2 3.7 5.1 

  

2.5 Other environmental impacts of the No Action Alternative 

In addition to the No Action Alternative environmental impacts quantified in the OECM, the No 
Action Alternative may result in a range of additional environmental impacts for which sufficient 
data were not available for quantification.  These impacts would result from alternatives to 
offshore oil and gas production that would take the place of production that would otherwise 
occur under the Program.  They include, but are not limited to the following. 
 

• Acid mine drainage from coal mining:  Runoff from coal mining sites may increase the 
acidity of surface waters near and downstream from coal mining sites, adversely affecting 
habitat for aquatic organisms and limiting human recreational uses.    

• Contamination of groundwater from oil and gas extraction:  Accidental spills, 
blowouts, and/or pipeline leaks associated with terrestrial oil and gas extraction activities 
have the potential to result in contamination of groundwater resources. In addition, the 
practice of hydraulic fracturing (“fracking”) to develop terrestrial shale gas resources has 
raised concerns about the potential for local groundwater contamination if the chemicals 
and wastes associated with this process are not properly managed or if wells are not 
properly constructed.  

• Water discharges from oil and gas operations:8  To facilitate resource extraction from 
subsurface formations, oil and gas producers use water to develop pressure causing oil 

                                                           
8 This discussion is based on U.S. Environmental Protection Agency, 2008 Sector Performance Report. EPA 100-R-
08-002, September 2008.   
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and gas to rise to the surface (e.g., enhanced oil recovery and hydraulic fracturing).  
Producers must manage these waters as well as waters extracted from geologic 
formations during oil/gas extraction.  The environmental impacts associated with this 
“produced water” vary based on the geologic characteristics of the reservoir that 
produced the water and the separation and treatment technologies employed by 
producers.   

• Coal combustion impacts:  Coal consumed in place of gas under the No Action 
Alternative will result in environmental costs associated with diminished air quality and 
the disposal of coal combustion residuals.  The combustion of coal in power plants or 
industrial boilers produces higher emissions of NOx, SOx, and PM than the combustion of 
natural gas and also results in greater CO2 emissions.9  In addition, coal combustion 
residuals generated by power plants or coal-fired industrial boilers may pose a risk to 
local ground groundwater supplies when disposed in surface impoundments or landfills 
that are not properly maintained.   

 

3. OIL AND GAS USES AND ALTERNATIVES: TRANSPORTATION SECTOR 

Total energy use in the transportation sector has grown by an average of just over 1 percent per 
year over the last 20 years.  As of 2010, the transportation sector accounted for an estimated 28 
percent of all energy consumption in the United States, a proportion that has been slowly rising 
since the 1960s.  The vast majority of this energy has come from oil.  Nearly three fourths of all 
petroleum consumed in the United States in 2010, was used for transportation, with natural gas, 
electricity, and other alternatives playing much smaller roles.10  In this section, we discuss recent 
trends in the use of oil and gas in the transportation sector and the near- and long-term potential 
for substitutes to these energy sources.  These discussions provide a current snapshot of the 
various Federal policies and technological advancements that are likely to affect future fuel 
consumption trends in the United States.  BOEM welcomes comments and feedback from the 
other Federal agencies on our discussions of their programs and policies.  In general, the 
information provided in these discussions supplements the analysis of the anticipated energy 
substitutions presented in Exhibit 2.1.    

3.1 Current use of oil and gas 

3.1.1 Ground travel 

Oil is the dominant energy source for ground travel, which consumed approximately 136 billion 
gallons of motor gasoline and 42 billion gallons of diesel fuel in 2010.  Growth in consumption 
was slow but steady during the mid-2000s economic expansion, averaging about one percent per 

                                                           
9 For detailed emissions data for power plants, see U.S. Environmental Protection Agency  eGRID2010 database, 
http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html. 

10 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. DOE/EIA-
0384(2010), October 19, 2011. http://www.eia.doe.gov/aer/ 

http://www.eia.doe.gov/aer/
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year from 2003 to 2007.11  However, motor gasoline use fell by about three percent from 2007 to 
2008, the first time that total annual consumption has fallen since the 1988 to 1991 period.  
Consumption remained flat from 2008 to 2010.12  

This mid-2000s growth trend was attributable to several factors.  Growth in the U.S. population, 
averaging just under one percent per year, resulted in approximately three million potential new 
vehicle drivers annually,13 while the number of highway vehicles grew even faster, at a rate of 
nearly four million vehicles per year from 2003 to 2007.  At the end of 2007, 254 million 
registered highway vehicles were in use in the United States, one for every 1.19 people.  The 
growth in the number of vehicles has been realized entirely in the light truck segment, as the 
number of passenger cars has remained more or less constant.14  The subsequent flat growth in 
fuel consumption follows the general trend of fuel consumption declining during periods of 
economic recession and/or high gasoline prices.  

After 20 years of steady increase, the average number of miles driven per vehicle peaked at 
12,211 per year in 1998 and stayed more or less at that level until 2007 when it began to 
decline.15  The average fuel efficiency of all vehicles on the road improved only minimally over 
that time period.  The trend towards increased efficiency will accelerate in the future, as the fuel 
efficiency of new vehicles has been increasing in recent years.  New fuel efficiency and 
greenhouse gas pollution standards, announced in July 2011, will increase the minimum 
fleetwide average for manufacturers of cars and light trucks to 54.5 miles per gallon (MPG) for 
model years 2017 through 2025, which is expected to reduce oil consumption by almost 34 
billion gallons per year by 2025.16  In addition, the new Heavy-Duty National Program, recently 
announced by the U.S. Environmental Protection Agency (EPA) and Department of 

                                                           
11 U.S. Department of Energy, Energy Information Administration. Alternatives to Traditional Transportation Fuels 
2007. DOE/EIA-0585(2007), April 2009. http://www.eia.doe.gov/cneaf/alternate/page/atftables/afv_atf.html   

12 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. 
Table 5.14c: Heat Content of Petroleum Consumption: Transportation and Electric Power Sectors, 1949-2010. 
DOE/EIA-0384(2010), October 19, 2011. http://www.eia.doe.gov/aer/  

13 U.S. Census Bureau, Population Division. Annual Estimates of the Resident Population for the United States, 
Regions, States, and Puerto Rico: April 1, 2000 to July 1, 2009. NST-EST2009-01, December 2009. 
http://www.census.gov/popest/states/NST-ann-est.html  

14 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2009. 
Table 1-11. Number of U.S. Aircraft, Vehicles, Vessels, and Other Conveyances. June 2009. 
http://www.bts.gov/publications/national_transportation_statistics/ 

15 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 2.8: Motor 
Vehicle Mileage, Fuel Consumption, and Fuel Rates, 1949-2008. DOE/EIA-0384(2010), October 19, 2019. 
http://www.eia.doe.gov/aer/  

16 U.S.EPA. 2011 News Releases: President Obama Announces Historic 54.5 MPG Fuel Efficiency Standard.  July 
2011. 
http://yosemite.epa.gov/opa/admpress.nsf/1e5ab1124055f3b28525781f0042ed40/0019c092ccae8ac2852578dc0056d
ed0!OpenDocument. 

http://www.eia.doe.gov/cneaf/alternate/page/atftables/afv_atf.html
http://www.eia.doe.gov/aer/
http://www.census.gov/popest/states/NST-ann-est.html
http://www.bts.gov/publications/national_transportation_statistics/
http://www.eia.doe.gov/aer/
http://yosemite.epa.gov/opa/admpress.nsf/1e5ab1124055f3b28525781f0042ed40/0019c092ccae8ac2852578dc0056ded0!OpenDocument
http://yosemite.epa.gov/opa/admpress.nsf/1e5ab1124055f3b28525781f0042ed40/0019c092ccae8ac2852578dc0056ded0!OpenDocument
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Transportation (DOT) will reduce fuel consumption by large trucks and buses, further reducing 
overall ground transportation fuel use.17  

The use of natural gas as a vehicle fuel in both compressed and liquid forms has increased in 
recent years, with an average annual growth rate of 8.3 percent from 2006 to 201018.  However, 
natural gas still represents a small fraction of total vehicle fuel consumption, at just over 225 
million gallons of gasoline-equivalent in 2009, or slightly more than one percent of total vehicle 
fuel use.19  In 2009, approximately 117,000 natural gas-fueled vehicles were in use, many of 
which were buses and other fleet vehicles.20  

Ethanol, as a gasoline additive, makes up the majority of alternative fuel currently in use; 
consumption increased from 2.8 billion gallons gasoline-equivalent in 2005 to 7.3 billion gallons 
in 2009.  As a primary fuel (i.e., in a blend that is at least 85 percent ethanol), ethanol 
consumption increased from 38 million gallons of gasoline-equivalent in 2005 to just over 71 
million gallons in 2009. Biodiesel use rose even more quickly over that period, but remains 
relatively modest overall at 325 million gasoline-equivalent gallons.  Electricity, hydrogen, and 
other fuels contributed very little; electricity use for vehicle transportation actually declined 
slightly over this period.21  

Exhibit 3.1 summarizes the trends in the consumption of vehicle fuels and in the number of 
alternative fuel vehicles in recent years. 

3.1.2 Air travel 

Certificated U.S. air carriers used 17.3 billion gallons of fuel in 2010, 6.4 percent of the total 
energy consumed by the U.S. transportation sector.22  Until 2007, fuel use for air travel was 
rising faster than use for ground travel.  Total consumption rose by 4.6 percent per year from 

                                                           
17 U.S. EPA. Regulatory Announcement: EPA and NHTSA Adopt First-Ever Program to Reduce Greenhouse Gas 
Emissions and Improve Fuel Efficiency of Medium- and Heavy Duty Vehicles. August 2011. 
http://www.epa.gov/otaq/climate/documents/420f11031.pdf. 

18 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 6.5 Natural 
Gas Consumption by Sector, Selected Years, 1949-2010. DOE/EIA-0384(2010), October 11, 2019. 
http://www.eia.doe.gov/aer/ 

19 U.S. Department of Energy, Energy Information Administration. Alternatives to Traditional Transportation Fuels 
2009. DOE/EIA (2009), April 2011. http://www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-
atf2009.pdf 
20 Ibid.   

21 Ibid. 

22 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics. Table 
4-21:  Energy Intensity of Certificated Air Carriers, All Services. January 2011.  
http://www.bts.gov/publications/national_transportation_statistics/ 

http://www.epa.gov/otaq/climate/documents/420f11031.pdf
http://www.eia.doe.gov/aer/
http://www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.pdf
http://www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.pdf
http://www.bts.gov/publications/national_transportation_statistics/
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2003 to 2007 before falling in 2008 through 2010,23 indicating a strong linkage to larger 
economic factors.  Petroleum-derived, kerosene-style jet fuel accounts for nearly all of the fuel 
used for air travel. 

                                                           
23 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics. Table 
4-21:  Energy Intensity of Certificated Air Carriers, All Services. January 2011.  
http://www.bts.gov/publications/national_transportation_statistics/ 

http://www.bts.gov/publications/national_transportation_statistics/
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EXHIBIT 3.1   ESTIMATED CONSUMPTION OF VEHICLE FUELS AND NUMBER OF ALTERNATIVE 
FUELED-VEHICLES IN  THE U.S. ,  2009   

FUEL 

CONSUMPTION (1000 GASOLINE-EQUIVALENT GALLONS) 
ALTERNATIVE-

FUEL VEHICLES, 

2009 2005 2009 
PERCENT ANNUAL 

GROWTH 

Ethanol in Gasohol 2,765,663 7,343,133 27.65%  
Biodiesel 93,281 325,102 36.63%  
Natural Gas (CNG and LNG) 189,287 225,175 4.44% 117,446 
Ethanol, 85 percent (E85) 38,074 71,213 16.95% 504,297 
Electricity 5,219 4,956 -1.28% 57,185 
Hydrogen 25 140 53.83%  
Total Alternative Fuels 3,091,549 7,969,719 26.71%  

Source: U.S. Department of Energy, Energy Information Administration. Alternatives to Traditional Transportation 
Fuels 2009. DOE/EIA (2011), April 2011.  

 

As with ground travel, fuel use for air travel is influenced by a number of factors, the trends for 
several of which are summarized in Exhibit 3.2.  The increase through 2007 in total fuel use was 
attributable to an increase in aircraft-miles; that is, more planes are logging more miles in the air.  
This was coupled with a steady increase in passenger-miles, which increased at a rate well above 
population growth (i.e., the average person is flying more).  Meanwhile, the number of seats per 
aircraft has exhibited a long downward trend since the 1980s, suggesting a shift to smaller 
planes.  This would in and of itself lead to an increase in fuel use, but there also was an increase 
in load factor, or the proportion of seats in use, which rose to a high of 80 percent in 2007.  The 
net effect, coupled with some modest engineering improvements, was a nine percent increase in 
seat miles per gallon from 2003 to 2008, a critical measure of efficiency. More directly, energy 
efficiency, as measured by Btu per passenger mile, fell by 16 percent over that same period.  In 
short, during this period, we see a combination of factors similar to ground travel.  Efficiency 
improvements in the design and use of vehicles are occurring in parallel to an increase in overall 
travel, while playing a mitigating role in total fuel use.24 However, after 2007, load factors and 
seat miles per gallon continued to climb and passenger miles traveled decrease, leading to 
reductions in fuel use during this period. 

                                                           
24 Ibid. 
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EXHIBIT 3.2   ENERGY INTENSITY OF AIR CARRIERS,  1980-2010  

 1980 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Aircraft-miles (millions) 

Domestic 
operations 2,523 3,963 5,089 5,110 5,230 5,896 6,366 6,529 6,423 6,534 6,247 5,757 5,807 
International 
operations 401 760 1,385 1,373 1,348 1,426 1,592 1,723 1,798 1,881 1,895 1,778 1,859 

Total 2,924 4,723 6,474 6,483 6,578 7,322 7,958 8,252 8,221 8,415 8,142 7,535 7,666 
Percent 
annual 
change 4.69% 6.42% 6.69% 0.14% 1.47% 11.31% 8.69% 3.69% -0.38% 2.36% -3.24% -7.46% 1.74% 

Available seat-miles (millions)  

Domestic 
operations 346,028 563,065 702,693 684,279 670,963 685,283 736,888 744,058 730,996 747,064 717,502 669,856 678,040 
International 
operations 86,507 170,310 266,449 256,312 235,746 235,508 263,304 285,258 296,520 313,015 323,312 305,431 313,848 

Total 432,535 733,375 969,142 940,591 906,709 920,791 1,000,192 1,029,316 1,027,516 1,060,079 1,040,814 975,287 991,888 
Percent 
annual 
change 7.38% 6.01% 4.43% -2.95% -3.60% 1.55% 8.62% 2.91% -0.17% 3.17% -1.82% -6.30% 1.70% 
Passenger-miles (millions)  

Domestic 
operations 200,289 340,231 500,440 473,627 472,361 498,181 548,594 573,627 577,582 595,331 570,922 541,646 555,642 
International 
operations 54,363 117,695 200,370 184,944 178,232 175,996 203,748 221,490 232,518 246,675 252,844 238,336 253,394 

Total 254,652 457,926 700,810 658,571 650,593 674,177 752,342 795,117 810,100 842,006 823,766 779,982 809,036 
Percent 
annual 
change 9.36% 6.36% 6.36% -6.03% -1.21% 3.63% 11.59% 5.69% 1.88% 3.94% -2.17% -5.32% 3.72% 

Fuel consumed (million gallons) 

Domestic 
operations 8,519 12,323 14,865 13,868 12,922 13,082 14,091 13,976 13,694 13,682 12,686 11,339 11,256 
International 
operations 1,747 3,909 5,508 5,336 5,079 5,219 5,592 5,975 6,018 6,205 6,187 5,721 6,028 

Total 10,267 16,232 20,373 19,204 18,001 18,301 19,683 19,951 19,712 19,887 18,873 17,060 17,284 
Percent 
annual 
change 1.55% 5.19% 3.06% -5.74% -6.26% 1.67% 7.55% 1.36% -1.20% 0.89% -5.10% -9.61% 1.31% 
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 1980 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Seats per aircraft  

Domestic 
operations 137.1 142.1 138.1 133.9 128.3 116.2 115.8 114 113.8 114.3 114.9 116.4 116.8 
International 
operations 215.7 224.1 192.4 186.7 174.8 165.1 165.3 165.5 164.9 166.4 170.6 171.8 168.8 
Percent 
annual 
change 5.67% -1.82% -1.72% -3.00% -5.46% -7.19% -0.07% -0.57% -0.29% 0.72% 1.71% 0.95% -0.90% 

Seat-miles per gallon  

Domestic 
operations 41 46 47.3 49.3 51.9 52.4 52.3 53.2 53.4 54.6 56.6 59.1 60.2 
International 
operations 50 44 48.4 48 46.4 45.1 47.1 47.7 49.3 50.4 52.3 53.4 52.1 
Percent 
annual 
change 9.35% 1.23% 1.38% 1.67% 1.03% -0.81% 1.95% 1.51% 1.78% 2.24% 3.71% 3.31% -0.18% 

Energy intensity (Btu/passenger-mile) 

Domestic 
operations 5,742 4,890 4,010 3,953 3,693 3,545 3,467 3,289 3,201 3,103 3,000 2,826 2,735 
International 
operations 4,339 4,484 3,711 3,895 3,847 4,003 3,705 3,642 3,494 3,396 3,303 3,241 3,211 
Percent 
annual 
change -12.51% -2.55% -3.10% 1.64% -3.92% 0.11% -4.98% -3.36% -3.40% -2.93% -3.02% -3.74% -1.99% 

Load factor (percent)  

Domestic 
operations 58.0 60.4 71.2 69.2 70.4 72.7 74.4 77.1 79 79.7 79.6 80.9 81.9 
International 
operations 62.8 69.1 75.2 72.2 75.6 74.7 77.4 77.6 78.4 78.8 78.2 78 80.7 
Percent 
annual 
change 4.50% 1.36% 1.81% -3.42% 3.25% 0.96% 2.99% 1.91% 1.75% 0.70% -0.44% 0.70% 2.33% 

Source: U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics  2011. Table 4-21:  Energy Intensity of Certificated Air Carriers, 
All Services. January 2011.  http://www.bts.gov/publications/national_transportation_statistics/  
 

http://www.bts.gov/publications/national_transportation_statistics/
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3.1.3 Marine travel 

Marine travel accounts for a relatively small proportion of total oil consumption in the 
transportation sector and, as with air travel, does not consume any natural gas.  Total fuel 
consumption for marine travel was about 997 trillion Btu in 2009, roughly three-fifths the 
amount used by air travel and four percent of the total for the sector.  Marine travel employs a 
mix of fuels.  Residual fuel oil makes up about 70 percent of oil use, while distillate/diesel fuel 
oil and gasoline each account for about 15 percent.  This mix has remained generally consistent 
over time.25  

As summarized in Exhibit 3.3, total oil consumption for marine travel has shown no clear trend 
over time, with periods of sharp declines following years of growth, and vice versa.  After 
dropping by nearly 30 percent from 2000 to 2003, fuel use increased nearly as dramatically to 
reach comparable levels by 2007.  Consumption decreased from 2007-2009.   Like other fuels, 
general consumption trends follow the general economic trend.   

3.1.4  Rail travel 

Similar to marine travel, rail travel comprises a small proportion of total oil consumption and 
virtually no natural gas consumption. Total oil use was 454 trillion Btu in 2009.  The 
overwhelming majority of this was for freight, rather than passenger, transport.  Distillate and 
diesel are the primary fuels used with electricity accounting for only two trillion Btu out of the 
total.26  Following a low of 414 trillion Btu in 1990, oil consumption for rail transportation grew 
steadily to 594 trillion Btu in 2006, before falling to 454 trillion Btu in 2009.27 

                                                           
25 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2011. 
Table 4-6: Energy Consumption by Mode of Transportation (Trillion Btu).October 2011.  
http://www.bts.gov/publications/national_transportation_statistics/ 

26 Ibid.  

27 Ibid.  

http://www.bts.gov/publications/national_transportation_statistics/
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EXHIBIT 3.3   ENERGY CONSUMPTION FOR MARINE TRAVEL,  1980-2009 (TRILLION BTU)  

 1980 1985 1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Residual fuel oil 1,340 687 947 881 960 810 726 580 702 775 861 947 758 680 

Distillate / diesel fuel oil 205 236 286 324 314 284 288 307 297 278 264 267 165 176 

Gasoline  132 132 163 133 141 124 135 138 126 158 155 153 142 141 

Total 1,677 1,054 1,396 1,338 1,415 1,218 1,149 1,025 1,125 1,211 1,280 1,367 1,065 997 

Percent annual change 14.52% -8.86% 5.77% -0.84% 5.05% -13.92% -5.67% -10.79% 9.76% 7.64% 5.70% 6.80% -22.09% -6.38% 
Source: U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2011. Table 4-6: Energy Consumption by 
Mode of Transportation (Trillion Btu). October 2011.  http://www.bts.gov/publications/national_transportation_statistics/ 
 

http://www.bts.gov/publications/national_transportation_statistics/
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3.2 Near-term market analysis of substitutes 

This section analyzes the near-term potential for substitution away from oil and gas in the 
transportation sector, either through efficiency measures or through the use of alternative fuel 
sources.  Due to the nature of the equipment involved, the focus is solely on ground 
transportation.  Options for oil and gas substitutes in air travel will be discussed in the longer-
term analysis in section 3.3.  Due to their relatively small contributions to oil and gas 
consumption, we do not consider substitution in the marine or rail travel sectors, except insofar 
as rail-based mass transit could provide a substitute for automobiles in the long run.  
 
With the exception of flex-fuel vehicles, which operate using either gasoline or ethanol without 
any modifications, and the capacity of diesel vehicles to use biodiesel with relatively modest 
engine adjustments, most automobiles are locked into using the single fuel type for which they 
were originally designed.  This means that, barring a major shift in driving patterns, the potential 
for changes in oil and gas consumption for transportation will be determined by changes in the 
composition of the vehicle fleet.  Based on sales and registration data, the average lifespan of a 
passenger vehicle is approximately 14 years.  Recent data suggest this may be on an upward 
trend, but since new vehicle sales are generally tied to the health of the overall economy, these 
data are not sufficient to indicate a long-term trend.28,29  With a 14-year average lifespan, we can 
expect roughly 82 million vehicles, mostly from the late 1990s and early 2000s, to be retired in 
the next five years, with around 83.7 million new vehicles replacing them, assuming population 
growth and vehicle ownership per capita trends continue.  We will use these rough estimates to 
establish the magnitude of the impact of various oil and gas substituting technologies below.  It 
is important to note that in the following section and throughout this analysis, efficiency is 
considered a ‘substitute’ energy source; thus, much of the potential for a shift away from oil and 
gas use relies on technologies that continue to use these fuels, albeit in smaller quantities per 
vehicle mile traveled.  

3.2.1 More efficient vehicles 

3.2.1.1 Fuel efficiency improvements 

Based on recent trends, it is possible to develop a rough estimate of the number of new vehicles 
expected to come into use over the next five years.  Since 2000, the U.S. population has grown 
by an average of just under one percent per year.  Over that timeframe, passenger cars and light 
trucks per capita has fallen by 0.7 percent annually.  Considering these forces together, one can 
expect a net addition of 1.7 million new cars and trucks from 2011 to 2015.  However, this does 
not tell the whole story.  After accounting for 82 million vehicle retirements over that time, 
                                                           
28 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2009. 
Table 1-11: Number of U.S. Aircraft, Vehicles, Vessels, and Other Conveyances. June 2009.  
http://www.bts.gov/publications/national_transportation_statistics/ 

29 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2009. 
Table 1-17:  New and Used Passenger Car Sales and Leases (Thousands of vehicles). June 2009.  
http://www.bts.gov/publications/national_transportation_statistics/ 

http://www.bts.gov/publications/national_transportation_statistics/
http://www.bts.gov/publications/national_transportation_statistics/
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assuming an average lifespan of 14 years, we can assume that 83.7 million new cars and trucks 
will be purchased over that time, of which about half will be trucks and half passenger cars.  
 
In the near term, the efficiency of the U.S. vehicle fleet is likely to be determined more by 
stricter regulatory requirements than by a demand pull from consumers for yet-more efficient 
vehicles.  The corporate average fuel economy (CAFE) standards through model year 2010 stood 
at 27.5 MPG for passenger cars and 23.1 MPG for light trucks.  Building on requirements in the 
2007 Energy Policy Act, EPA and DOT have jointly established stricter targets, setting a 
schedule that steadily raises the requirements to an end point equivalent to of 35.7 MPG for cars 
and 28.6 MPG for light trucks for model year 2012-2016 vehicles.  The new vehicles subject to 
these limits will replace older, retired vehicles manufactured in the late 1990s and early 2000s, 
whose fuel efficiency was about eight MPG lower on average.  This is equivalent to a 23 percent 
savings in fuel use for passenger cars, or a 28 percent savings for light trucks. If we hold the 
number of miles driven per vehicle steady at the relatively high 2007 levels, we can expect to be 
close to an upper bound of expected total savings of 12.3 billion gallons of gasoline per year by 
2015, as a result of the stricter vehicle standards.  Recently announced stricter fuel efficiency and 
greenhouse gas pollution standards for model years 2017-2025 require 54.5 MPG fleetwide 
average and have been estimated to reduce oil consumption by 2.2 million barrels per day or 
approximately 33 billion gallons per year by 2025.30 

3.2.1.2 Hybrid vehicles 

Hybrid-electric vehicles are by now a familiar presence on U.S. roads.  Powered by gasoline, 
hybrid vehicles can produce significant efficiency gains by using ‘regenerative braking’ 
(recapturing the energy given off when a car brakes by charging a supplemental electric battery). 
However, by 2010, following the economic downturn that began in 2008, the sale of hybrids into 
the U.S. market had dropped by more than 20 percent from its 2007 peak.31 Plug-in hybrids, 
whose batteries can be charged through electrical grid connections, entered the U.S. passenger 
vehicle market in 2010.   
 
Hybrids attract attention because of their high fuel efficiency.  However, it is important to note, 
that these gains are not necessarily additional to the savings noted above under fuel efficiency 
and greenhouse gas pollution standards, since hybrids would constitute a portion of the 
efficiency gains required under those regulations.  Hybrids may be a promising technology for 
manufacturers to achieve fuel efficiency and greenhouse gas pollution standards.  For instance, 
the Toyota Prius, by far the most popular hybrid in the United States, gets an estimated average 
                                                           
30 U.S.EPA. 2010.  Fact Sheet: EPA and NHTSA Finalize Historic National Program to Reduce Greenhouse Gases 
and Improve Fuel Economy for Cars and Trucks.  http://www.epa.gov/otaq/climate/regulations/420f10014.htm and  

U.S.EPA. 2011.  News Releases: President Obama Announces Historic 54.5 MPG Fuel Efficiency Standard. July 
2011. 
http://yosemite.epa.gov/opa/admpress.nsf/1e5ab1124055f3b28525781f0042ed40/0019c092ccae8ac2852578dc0056d
ed0!OpenDocument. 

31 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2011. 
Table 1-19: Sales of Hybrid Vehicles in the United States. October 2011.  
http://www.bts.gov/publications/national_transportation_statistics/ 

http://www.epa.gov/otaq/climate/regulations/420f10014.htm
http://yosemite.epa.gov/opa/admpress.nsf/1e5ab1124055f3b28525781f0042ed40/0019c092ccae8ac2852578dc0056ded0!OpenDocument
http://yosemite.epa.gov/opa/admpress.nsf/1e5ab1124055f3b28525781f0042ed40/0019c092ccae8ac2852578dc0056ded0!OpenDocument
http://www.bts.gov/publications/national_transportation_statistics/
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46.7 MPG.  This compares favorably to a number of important benchmarks, including the 
current average passenger car efficiency of 22.6 MPG, the average new car efficiency of 32.6, 
and the 2010 CAFE standard of 27.5 MPG.32  Of course, not all hybrids match the Prius for fuel 
efficiency, particularly some of the hybrid sport utility vehicles on the market.  Perhaps a more 
useful point of comparison would be the Toyota Camry hybrid, which, at 34 MPG, represents a 
30 percent improvement over the conventional Camry.33   Projecting this 30 percent 
improvement to all hybrid vehicles implies an upper bound for total oil savings of about 164 
gallons per vehicle per year, based on 2007 average consumption of 547 gallons per vehicle.34   

3.2.1.3 Electric and plug-in hybrid vehicles 

All-electric vehicles, rather than using gasoline, typically run on batteries, which need to be 
charged on a regular basis. Most users charge electric cars every night through a connection to 
the electric grid or an off-grid power source.  Instead of an internal combustion engine, such 
vehicles make use of an electric motor.  Many of the mechanical parts of a conventional engine 
are thus eliminated or replaced with electronic components.  On a daily basis, the operating cost 
of an electric vehicle is generally lower than a typical vehicle, due to reduced fuel and 
maintenance costs.  At present, however, the adoption of such vehicles is hindered by, among 
other factors, their limited range (many electric vehicles can travel only 50 to 100 miles on a 
single charge) and by the current state of battery technology (the batteries used are heavy, 
expensive, and need to be replaced every few years).  Plug-in hybrids, which do not face the 
same range limitations, are likely to be more widely adopted by consumers over the near term, 
especially as battery technology improves and costs decrease.  
 
President Obama has proposed aggressive policies to aid electric cars in the U.S. with the goal of 
one million electric vehicles by 2015.35  Certain automakers are investing heavily in electric cars.  
In particular, Nissan began selling its first all-electric car, the Leaf, in late 2010 in the United 
States, Japan and Europe. 36  Chevrolet also released the Volt in late 2010, which is an all-
electric car with a gas generator.37 Ford released an electric version of the Focus starting in 2011, 

                                                           
32 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2011. 
Table 4-23. Average Fuel Efficiency of U.S. Passenger Cars and Light Trucks. October 2011. 
http://www.bts.gov/publications/national_transportation_statistics/ 

33 http://www.fueleconomy.gov/FEG/bymodel/2009_Toyota_Camry.shtml  

34 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.8: Motor 
Vehicle Mileage, Fuel Consumption, and Fuel Rates, 1949-2007. DOE/EIA-0384(2008), June 26, 2009. 
http://www.eia.doe.gov/aer/ 

35 U.S. Department of Energy. Analysis Shows Significant Advances in Electric Vehicle Deployment. February 8, 
2011. http://apps1.eere.energy.gov/news/daily.cfm/hp_news_id=290 

36 Reuters. “Nissan Unveils Electric Car, to Be Available Next Year.” New York Times. August 2, 2009.   

37 Chevrolet. Somebody has to be first. November 17, 2011.  http://www.chevrolet.com/volt-electric-car/ 

http://www.bts.gov/publications/national_transportation_statistics/
http://www.fueleconomy.gov/FEG/bymodel/2009_Toyota_Camry.shtml
http://www.eia.doe.gov/aer/
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with initial production of 5,000 to 10,000 vehicles per year.38   The electric sports car 
manufacturer, Tesla, is planning greater production capacity for its new Model S, projecting 
20,000 vehicles per year in 2012.39  Other manufacturers have all-electric vehicles in the 
development phase, or for sale in other countries but not in the United States.  
 
President Obama's objective of at least one million electric vehicles by 2015 would represent 
approximately 0.7 percent of the total U.S. vehicle fleet. If this goal is met, then electric cars will 
comprise about 0.7 percent of the total fleet.  Consequently, the near-term impact of all-electric 
vehicles on oil consumption may be modest, especially since the early adopters of these vehicles 
are likely to be drivers who travel relatively short distances.40 As in the case of pure hybrid 
gains, the efficiency gains may not necessarily be greater than the fuel efficiency and greenhouse 
gas pollution standards, but electric cars may be the technology chosen to achieve the fuel 
efficiency and greenhouse gas pollution standards.  
 
It is important to note the environmental consequences of shifting from gasoline to electricity as 
a fuel source for vehicles.  In simple terms of energy used, due to efficiency gains allowed by 
design differences, electric vehicles represent a significant improvement over gasoline vehicles. 
The Nissan Leaf, with a 24 kWh battery, can travel 100 miles on a single charge, or about 4.17 
miles per kWh; equivalent to about 140 MPG of gasoline.  Electric vehicles, therefore, produce 
environmental benefits by eliminating fossil fuel combustion and the associated tailpipe 
emissions of SO2, NOx, particulate matter, and greenhouse gases.  However, these benefits are 
offset by increased emissions from electricity generation at power plants.  The extent of these 
offsetting impacts will be determined by the electricity fuel sources used, which varies in 
different regions across the country.  In the Pacific Northwest, which has a high proportion of 
hydropower, the net impact of electric vehicles may be positive.  However, in areas where coal 
(which is more greenhouse gas-intensive than oil and can emit high levels of SO2, NOx, and 
particulate matter) is the dominant fuel source, the overall effect may be modestly beneficial or 
harmful. Areas in the immediate vicinity of coal-fired power plants may incur substantially 
worse air and water quality.  Similarly, replacing oil fuel in cars with electricity from nuclear 
power plants could lead to increased production of radioactive waste, which if improperly 
transported or disposed could pose serious health hazards.  The substitution of renewable energy 
as a source of baseload power (e.g., through the development of utility-scale wind, solar, 
biomass, and geothermal resources), would mitigate the negative impact of increased reliance on 
electric vehicles.  
 

                                                           
38 Jim Motavalli. “New York Auto Show: Ford, Microsoft and E.V.’s.” New York Times online, Wheels blog. 
March 31, 2010. http://wheels.blogs.nytimes.com/2010/03/31/new-york-auto-show-ford-microsoft-and-e-v-
s/?ref=automobiles  

39 Matt Nauman. “Tesla to Build Electric-car Factory in San Jose.” San Jose Mercury News. October 10, 2008.  

40 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2011. 
Table 4-11 Passenger Car and Motorcycle Fuel Consumption and Travel. 
http://www.bts.gov/publications/national_transportation_statistics/ 

http://wheels.blogs.nytimes.com/2010/03/31/new-york-auto-show-ford-microsoft-and-e-v-s/?ref=automobiles
http://wheels.blogs.nytimes.com/2010/03/31/new-york-auto-show-ford-microsoft-and-e-v-s/?ref=automobiles
http://www.bts.gov/publications/national_transportation_statistics/
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3.2.2 Ethanol vehicles 

Ethanol is a form of alcohol, of the type found in alcoholic beverages.  As a hydrocarbon, it can 
also be used as an energy carrier and it has been used as a fuel source or additive for vehicles for 
several years.  Most ethanol used for fuel in the United States is derived from corn, although in 
other countries, such as Brazil, sugar cane is a more popular and more efficient feedstock.  
 
In the United States, ethanol is used primarily as an additive to gasoline.  Several states mandate 
or subsidize ethanol blends in the range of 5 to 15 percent.  Less frequently, ethanol is used as 
the primary fuel, either as an 85/15 blend with gasoline or in pure (neat) form.  While all 
gasoline-powered vehicles can use ethanol in small amounts, higher concentrations require 
modifications.  Flex-fuel vehicles can use any mixture of gasoline and ethanol or, in some cases, 
natural gas.  Nearly eight million flex-fuel vehicles are currently in use in the United States; 
however, many owners may be unaware that their vehicle has this capability.41   
 
In the near term, ethanol use is likely to be determined largely by policy requirements.  Most 
notably, the Renewable Fuel Standard, as revised through the Energy Independence and Security 
Act of 2007, requires an increase from nine billion gallons of ethanol and other renewable fuels 
in 2008 to 36 billion in 2022.  EPA has established interim targets of 12.95 billion gallons in 
2010 and 20.5 billion gallons in 2015,42 more than 10 percent of 2008 levels of total oil 
consumption for transportation.  Assuming this goal remains in force, the 7.5 billion gallon 
increase in biofuels over this time period should offset about five billion gallons of gasoline per 
year by 2015, taking into account ethanol’s considerably lower energy density compared to 
gasoline.43  
 
The impacts on land use and food prices from such a large increase in corn production for 
ethanol may be significant.  These will be considered below, when we evaluate the longer-term 
potential for oil and gas substitutes in the transportation sector.   

3.2.3 Public transportation 

For people living in urban areas, public transportation can provide a substitute for automobiles, 
especially for purposes of commuting to work or school.  While many people live in areas that 
are not well served by public transportation, or do not have public transportation options that 
meet their particular needs, for others it is a viable option even within the existing transportation 
infrastructure.  Upwards of 65 million people live in the 10 urban areas with the highest transit 
usage and many more live in other transit-serviced areas.  As of December 31, 2009, 7,200 
separate public transportation service systems were operating in the United States.  Of this total, 
                                                           
41 Flexible Fuel Vehicles. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. February 
24, 2010. http://www.afdc.energy.gov/afdc/vehicles/flexible_fuel.html  

42 EPA Finalizes Regulations for the National Renewable Fuel Standard Program for 2010 and Beyond. U.S. 
Environmental Protection Agency, Office of Transportation and Air Quality. February 2010. 
http://www.epa.gov/otaq/renewablefuels/420f10007.pdf   

43 Bioenergy Conversion Factors. U.S. Department of Energy, Oak Ridge National Laboratory. N.d. 
http://bioenergy.ornl.gov/papers/misc/energy_conv.html   

http://www.afdc.energy.gov/afdc/vehicles/flexible_fuel.html
http://www.epa.gov/otaq/renewablefuels/420f10007.pdf
http://bioenergy.ornl.gov/papers/misc/energy_conv.html
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approximately 5,200 were classified as paratransit, or transportation for elderly and disabled 
persons that does not follow fixed routes or schedules.44    
 
Due in part to high oil prices, transit usage reached an all-time high in 2008, with ridership 
declining slightly in 2009.45  Seventy percent of trips taken on public transportation were for 
travel to work or school.  A similar proportion of riders used public transportation five or more 
days per week.  However, only about five percent of workers nationwide used public 
transportation to commute to work on a regular basis.46  We can conclude, then, that the greatest 
potential for increased use of public transportation exists among commuters who currently drive 
to work.  
 
The extent of oil and gas savings from using public transportation instead of automobiles is 
dependent on a number of factors, including but not limited to the mode of public transportation 
used and its fuel source, the distances involved, and the fuel use characteristics of users’ 
automobiles.  In general, it is safe to conclude that due to the inherent efficiencies in transporting 
large numbers of people at once, public transportation usage reduces oil and gas consumption, 
even for those modes of travel such as most buses that rely on fossil fuels.  The American Public 
Transportation Association (APTA) cites data from two major reports on the topic, showing that 
for a typical year, using public transportation produced direct energy savings equivalent to 420 
million gallons of gasoline, plus an additional 340 million gallons from avoided congestion.  An 
even larger amount, 3.4 billion gallons, was saved due to reduced travel distances caused by 
public transportation-related location decisions.47 
 
It is difficult to estimate the extent to which increased reliance on public transportation in place 
of automobiles could reduce consumption of oil and gas in the near term.  Aggregated data on 
the utilization rate of the Nation’s public transportation infrastructure (that is, the proportion of 
the capacity in place that is already being used, the complement to which is the proportion that 
could be used to accommodate increased ridership without requiring additional investment) are 
not readily available.  Nor is it clear how many Americans who do not currently use public 
transportation on a regular basis could choose to do so without moving or changing their place of 
work.  
 
One method to estimate the benefits of increased public transportation on energy use is to 
assume a continuation of the growth trend in transit use from 2004-2008. In 2009 growth did not 
continue, but it is not clear if this is a change in trend or a short term dip.48  The APTA cites the 
                                                           
44 American Public Transportation Association. 2011 Public Transportation Fact Book. April 2011. 
http://www.apta.com/RESOURCES/STATISTICS/Pages/transitstats.aspx  

45 Ibid.  

46 Ibid. 

47 Note that this is energy savings, not oil savings. Public transportation vehicles powered by electricity would be 
using some electricity generated from oil and gas, but would also presumably be relying on large amounts of coal, 
hydropower, and nuclear power as their underlying primary energy sources. Thus, the oil and gas savings of public 
transportation are likely to be even larger than these numbers would suggest.  

48 Ibid. 

http://www.apta.com/RESOURCES/STATISTICS/Pages/transitstats.aspx
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U.S. Census Bureau’s American Community Survey, which reports that 4.57 percent of workers 
used public transportation as their primary means of travel to work in 2004, rising to 5.01 percent 
by 2008.49  This translates into an increase of about 0.11 percent of the overall working 
population per year.  Data from the intervening years show that the increase was essentially 
linear.  If this trend were to continue, 5.78 percent of all workers would be relying primarily on 
public transportation by 2015.  Accounting for population growth of about one percent per year, 
this rate of increase would imply an additional 1.7 million regular public transportation users by 
2015 over 2008 levels, an increase equivalent to 23.5 percent of 2008 transit-using commuters.  
If we assume that non-school and work trips remain constant, that would translate into a 16.5 
percent increase in total transit trips.  Based on the nationwide totals highlighted above, such an 
increase would produce an incremental energy savings of 125 million gallons of gasoline 
equivalent (assuming there are no new indirect savings from location decisions in this 
timeframe). 

3.3 Long-term market analysis of substitutes 

This section analyzes the long-term potential for substitution away from fossil fuels.  The focus 
is primarily on ground transportation, which could demonstrate lower fuel consumption through 
efficiency improvements, a shift toward greater use of public transportation, or use of alternative 
fuels.  This section also includes a discussion on the potential for oil substitution in air travel 
through both efficiency improvements and fuel switching. 

3.3.1 More efficient vehicles  

As noted above, automobiles in the United States currently have a lifespan of about 14 years.  
While some individual vehicles will remain in use for a longer period of time, we assume that the 
Nation’s fleet will have turned over nearly in its entirety within 20 years.  As of 2009, more than 
254 million highway vehicles were registered in the United States, of which 194 million were 
light duty vehicles and 7.9 million were motorcycles. The remainder comprise other vehicle 
types, primarily trucks, vans, and larger SUVs).  Population growth may add more vehicles, 
outpacing any decrease in vehicles per capita.50  As recognized in the new fuel efficiency and 
greenhouse gas pollution standards, there is huge potential for oil reductions through efficiency 
improvements in the Nation’s automobiles. As mentioned previously, the fuel efficiency and 
greenhouse gas pollution standards may create incentives for the deployment of the following 
technologies. Since natural gas currently accounts for such a small proportion of fuel used for 
transportation, we do not consider it further.  

3.3.1.1 Hybrid vehicles 

Hybrid vehicles are already fairly well-established, with all of the major automakers now mass-
producing hybrid models.  While hybrids will remain somewhat more expensive than 

                                                           
49 Ibid. 

50 U.S. Department of Transportation, Bureau of Transportation Statistics. National Transportation Statistics 2009. 
Table 1-11: Number of U.S. Aircraft, Vehicles, Vessels, and Other Conveyances.  June 2009.  
http://www.bts.gov/publications/national_transportation_statistics/  

http://www.bts.gov/publications/national_transportation_statistics/


   

25 

conventional cars in terms of the upfront cost, the premium will likely fall as technology 
improves and manufacturers continue to scale up production.  With sufficiently strong tax 
incentives or other forms of policy support, hybrids could theoretically replace conventional 
automobiles entirely.  
 
The calculations performed earlier can be repeated to illustrate the potential scale of the impacts 
such a shift would entail.  If population growth continues at its current pace, there will be about 
393 million people in the United States in 2035, likely translating into roughly 300 million 
vehicles.  Projecting a 30 percent savings per vehicle, based on the hybrid and traditional Toyota 
Camry models, would imply a total savings of 49 billion gallons of gasoline, more than one-
fourth of total current consumption for ground transportation.  While this is a very rough, 
illustrative figure, it nonetheless shows that hybrid vehicles have the potential to offset a 
significant fraction of oil use.  Other types of fuel efficiency improvements, such as switching 
from trucks to cars or using more lightweight materials, would offer additional gains. 

3.3.1.2 Electric and plug-in hybrid vehicles 

The key to future rates of adoption of electric vehicles and plug-in hybrids are the batteries used 
to replace, in whole or in part, the gasoline-powered combustion engine.  Both plug-in hybrids 
and electric vehicles currently use lithium-ion batteries.  Conventional hybrids use nickel-metal 
hydride technology, but are expected to switch over to lithium-ion batteries as well.51  Within the 
broad characterization of lithium ion batteries are several different subtypes, each of which can 
be evaluated on six basic criteria:  energy storage capacity, power, safety, performance, life span, 
and cost.  Significantly, none of the battery types currently in use performs well across all six 
criteria.  As a result, the Boston Consulting Group concluded that absent a major breakthrough, 
fully electric vehicles that are as convenient as conventional cars will likely not be available 
before 2020.52  
 
Similarly, a report from the National Research Council (NRC) explored the prospects for plug-in 
hybrid vehicles by 2030.  The NRC estimates that under optimistic assumptions the maximum 
number of plug-in electric vehicles on the road at that time would be 40 million.  Cost and 
convenience factors suggest that 13 million may be more likely.  The NRC did not anticipate 
significant cost improvements in lithium-ion batteries in the foreseeable future.53   
 
Given this outlook, the impact of plug-in hybrid and electric vehicles is likely to be 
comparatively modest, even over a fairly long 25-year horizon.  Plug-in hybrids use 20 to 55 
percent less gasoline than traditional hybrids, depending on the mix of electricity and gasoline 

                                                           
51 Pike Research. Electric Vehicle Batteries – Lithium Ion batteries for Plug-in Hybrid and Battery Electric Vehicles: 
Market Analysis and Forecast. 2009. http://www.pikeresearch.com/research/electric-vehicle-batteries  

52 The Boston Consulting Group. Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020. 
January 2010. http://www.bcg.com/documents/file36615.pdf  

53 National Research Council of the National Academies. Transitions to Alternative Transportation Technologies—
Plug-in Hybrid Electric Vehicles. 2010. http://www.nap.edu/catalog.php?record_id=12826  

http://www.pikeresearch.com/research/electric-vehicle-batteries
http://www.bcg.com/documents/file36615.pdf
http://www.nap.edu/catalog.php?record_id=12826
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used.54  Electric vehicles, of course, use no oil at all.  The existence of 40 million plug-in 
hybrids, matching the high estimate from the NRC, would imply a savings of about 12 billion 
gallons of gasoline per year.  While the NRC report did not consider all-electric vehicles, a 
similar number of electric vehicles (a very aggressive assumption) would save about 22 billion 
gallons of gasoline per year.  The more likely figure of 13 million vehicles would produce 
savings of four to seven billion gallons.  

3.3.2 Ethanol vehicles 

Perhaps the single most important factor influencing the long-term adoption of ethanol is the cost 
of producing cellulosic ethanol.  Unlike traditional corn- or sugar-based ethanol, which is 
derived from starch, cellulosic ethanol uses cellulose as its basis, a structural component of plant 
cell walls and the most common organic compound on earth.  A cost-effective method to 
produce cellulosic ethanol would allow for the use of a wide variety of feedstocks, including 
inedible crop residues and plants that grow on marginal agricultural land with little or no active 
cultivation.  This would in turn enable far greater use of ethanol as a substitute for petroleum-
based fuel.  
 
At this time, cellulosic ethanol production is too expensive to justify large-scale use, due largely 
to the cost of producing enzymes to convert cellulose into a useable form.  However, many 
observers expect significant cost reductions in the coming years.  An early bellwether may be 
Novozymes, the world’s largest manufacturer of industrial enzymes, which announced in 
February 2010, that it was launching a line of enzymes that it expects will lower overall 
production costs to under $2 a gallon, a cost that is in line with those for corn-based ethanol and 
gasoline.55,56  In April 2011, construction started on a plant expected to produce 13 million 
gallons of cellulosic ethanol annually.57  
 
If ethanol production costs fall below those of petroleum, further policy support may be 
unnecessary, as ethanol may become the preferred transportation fuel.  Failing this, however, 
energy policy could play a major role in determining future levels of ethanol use.  As noted 
above, the Energy Independence and Security Act mandates the use of 36 billion gallons of 
ethanol in 2022, of which 16 billion is intended to be cellulosic ethanol.58  
                                                           
54 Ibid.  

55 Leber, Jessica. Economics Improve for First Commercial Cellulose Ethanol Plants. ClimateWire. February 16, 
2010. http://www.nytimes.com/cwire/2010/02/16/16climatewire-economics-improve-for-first-commercial-cellu-
93478.html 

56 Motavalli, Jim. Cellulosic Ethanol’s Time May Finally Have Come. BNET. March 11, 2010. 
http://www.bnet.com/blog/electric-cars/cellulosic-ethanol-8217s-time-may-finally-have-come/1475   

57 Novozymes Bioenergy. Novozymes partner to open world's largest cellulosic ethanol plant in 2012. 9 
http://novozymes.com/en/news/news-archive/Pages/novozymes-partner-to-open-largest-cellulosic-ethanol-plant-in-
2012.aspx  

58 EPA Finalizes Regulations for the National Renewable Fuel Standard Program for 2010 and Beyond. U.S. 
Environmental Protection Agency, Office of Transportation and Air Quality. February 2010. 
http://www.epa.gov/otaq/renewablefuels/420f10007.pdf   

http://www.bnet.com/blog/electric-cars/cellulosic-ethanol-8217s-time-may-finally-have-come/1475
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Another important consideration is the availability of sufficient agricultural capacity to support 
substantially greater reliance on biofuels without causing an unacceptable rise in the price of 
basic foods (due to upward pressure on demand for agricultural land).  A 2005 joint report by the 
U.S. Departments of Energy and Agriculture (DOE/USDA) examined the feasibility of 
displacing 30 percent of the country’s petroleum consumption with biomass-based energy, which 
the authors estimated would require dry biomass potential of about one billion tons per year.  
That report identified the potential for 368 million dry tons biomass potential per year from 
forestlands and 998 million dry tons biomass potential from agricultural lands, with “relatively 
modest changes in land use and agricultural and forestry practices.”  Agricultural biomass would 
comprise a mix of crop residues, grains for biofuels, process residues, and dedicated perennial 
crops.  Not all of this would be suitable for conversion to liquid fuels for transportation.  
Nonetheless, the report makes clear that the country has the productive capacity to meet a 
portion, but not all, of its transportation fuel demand from biofuels.59 In addition to estimating 
the potential capacity of biofuels, a follow up report has estimated capacity at different price 
ranges, which broadens the potential capacity range from well below to well above the 2005 
estimate.60 
 
The DOE/USDA 2005 study cited above noted several potential environmental impacts from 
increased use of forest and agricultural land for biofuel production. 
  

• Increase logging could result in greater soil erosion and elevated levels of sediment in 
surface waters.  

• Removing crop residues could reduce soil quality, increase erosion, and release carbon 
from the soil into the atmosphere. 

• In addition, removing the nutrients embodied in crop residues could lead to increased 
fertilizer use, leading to increased nutrients in water runoff and greater use of fossil fuels 
for fertilizer manufacture.61 

 
Furthermore, agriculture is relatively fuel-intensive.  Reliance on petroleum to power machinery 
and equipment and to manufacture fertilizers and other inputs could offset much of the potential 
for biofuels to reduce overall petroleum consumption.  Cellulosic ethanol is expected to have a 
more favorable life-cycle profile than corn ethanol, but it will nonetheless be unable to reduce 
petroleum consumption on a one-to-one basis.  
 

                                                           
59 U.S. Department of Energy and U.S. Department of Agriculture. Biomass as Feedstock for a Bioenergy and 
Bioproducts Industry: The Technical feasibility of a Billion-Ton Annual Supply. April 2005. 
http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf  

60 U.S. Department of Energy and U.S. Department of Agriculture. U.S. Billion-ton Update: Biomass as Feedstock 
for a Bioenergy and Bioproducts Industry: August 2011. 
http://www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf 
61 Ibid.  

http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf
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Overall, if cellulosic ethanol becomes cost-competitive with other liquid fuel sources and/or it is 
given sufficiently strong policy support, it may displace a significant amount of petroleum in the 
long term, possibly approaching 30 percent of total consumption. 

3.3.3 Public transportation 

In the short term, cities that have established public transportation systems could see increased 
ridership on their existing routes.  To expand the impact of public transportation over the longer 
term, cities could build new mass transit systems or expand existing systems, thereby allowing 
residents to reduce their use of gasoline-fueled automobiles.  While no firm rules exist regarding 
the time needed to develop new systems, anecdotal information from cities that have recently 
created or expanded their transit networks is instructive. 
 

• Houston voters approved a transit referendum involving light rail in 1988, but due to 
opposition by key lawmakers, it was not until March 2001 that construction started on 
the city’s METRORail system.  It opened in January 2004.  

• The Metro Light Rail system in Phoenix was created in the city’s 2000 Regional Transit 
Plan.  Construction began in March 2005, and the system started operations in 
December 2008.  

• Denver has had light rail since 1994, but recently completed a major expansion.  A 1995 
congestion study ultimately led to a major highway and light rail expansion project 
known as T-REX.  Construction began in October 2001 and was completed in 
November 2006.  

 
These experiences suggest that a 10- to 15- year time horizon should generally be sufficient for 
large cities to create or expand light rail systems.  Bus-based systems could presumably be 
implemented in much shorter timeframes.  
 
It is difficult to predict which cities that currently lack light rail or tram service would be most 
likely to add such systems, but the most populous metropolitan areas that do not currently have 
light rail or tram service would seem to be likely targets. These include:  

• Austin, TX 

• San Antonio, TX 

• Cincinnati, OH 

• Columbus, OH 

• Kansas City, MO 

• Las Vegas, NV 

• Orlando, FL.  
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These metropolitan areas had an estimated combined population of 13.8 million as of July 2009, 
approximately 4.5 percent of the U.S. population.62  The extent to which new public transit 
networks in these or other cities could reduce automobile use would depend on the extent of the 
systems, the frequency of service, and residents’ driving habits.  To illustrate the potential 
magnitude of the effect, however, if 10 percent of the residents of those cities switched from 
automobiles to public transit for commuting purposes, it would mean an 18.7 percent increase in 
total nationwide transit use.  This would save the energy equivalent of approximately 142 million 
gallons of gasoline, about one percent of current consumption for ground-based travel.63  It is 
important to note, however, that by influencing patterns of urban development, the development 
of light rail systems could have a substantially greater impact over the span of decades.  The 
APTA study cited above estimates that the indirect oil savings from public transportation due to 
location effects were more than four times greater than the direct savings from substituting for 
individual automobile trips.64 

3.3.4 Hydrogen and fuel cell vehicles 

The advantages of hydrogen gas as a transportation fuel include its abundance as an element, its 
density as an energy carrier, and its lack of harmful emissions.  However, since its gas form is 
too rare to be collected, it must be created from water, making hydrogen more like a battery than 
a traditional fuel. In vehicles, hydrogen gas can be used in two different ways: for burning in an 
internal combustion engine or in a chemical reaction in a fuel cell.  The focus of this section is on 
the latter, which has the potential for greater efficiency.  Fuel cells work by separating a 
chemical fuel, such as hydrogen, into negatively charged electrons and positively charged ions.  
The electrons are forced through a wire to create an electrical current that powers the vehicle.  
The electrons are then reunited with the ions and oxygen to form pure water.  Since there are no 
moving parts, fuel cells are reliable and can remain operational for a long time.  
 
Although hydrogen is one of the most abundant elements on earth, it occurs only rarely in pure 
elemental form.  Hydrogen for fuel must be gathered from another source.  Currently, 95 percent 
of the hydrogen used in the United States is produced through steam reforming of natural gas, in 
which high-pressure steam reacts with methane to produce hydrogen, carbon monoxide, and a 
small amount of carbon dioxide.65  A potentially more environmentally friendly, more 
expensive, alternative is to split water molecules into hydrogen and oxygen through the process 
of hydrolysis.  Since hydrolysis is powered by electricity, renewable power sources, such as 
wind or solar, could theoretically be used to produce the hydrogen needed to fuel vehicles.  
 

                                                           
62 U.S. Census Bureau. Annual Estimates of the Population of Metropolitan and Micropolitan Statistical Areas: 
April 1, 2000 to July 1, 2009. March 2010. http://www.census.gov/popest/metro/CBSA-est2009-annual.html  

63 This estimate relies on the same assumptions used in section 3.2.3 to estimate the impact of a nationwide increase 
in public transit use from 2010 to 2015.  

64 American Public Transportation Association. 2010 Public Transportation Fact Book. April 2010. 
http://www.apta.com/RESOURCES/STATISTICS/Pages/transitstats.aspx 

65 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Natural Gas Reforming. 
December 15, 2008. http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html  
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All of the technology needed for hydrogen-powered, fuel cell-operated cars is already in 
existence, but not at a stage that would permit cost-effective, widespread commercial 
deployment.  Key areas of ongoing research include the materials and manufacturing process for 
fuel cells and, in particular, reducing the amount of platinum used.  Sufficient progress appears 
to be occurring for Toyota to expect to market a mid-size hydrogen sedan in 2015.66   However, 
some analysts argue that automakers will need to realize further cost reductions to make 
hydrogen vehicles cost-competitive with current offerings.67  Another area of ongoing research 
concerns development of more efficient means of producing hydrogen through hydrolysis or 
from other non-fossil fuel sources, which would ultimately be more environmentally beneficial 
than production from natural gas.   
 
Another critical issue is the “chicken-and-egg” problem inherent in deploying hydrogen fuel on a 
wide scale.  Widespread adoption of hydrogen vehicles will necessitate significant investments 
in infrastructure to make the fuel as widely available as gasoline is at present. However, it will be 
difficult to justify investment on the scale required until there are enough hydrogen-fueled cars 
on the road to create sufficient demand to support the industry.  So long as there is a sufficient 
supply of petroleum or biofuels that can use existing infrastructure to meet the needs of the 
Nation’s vehicle fleet, this will likely be more cost effective than the full cost of the transition to 
a hydrogen system. Well-timed policy support would likely be necessary to establish an adequate 
hydrogen fueling infrastructure and a smooth transition.   
 
The California Fuel Cell Partnership estimates that if fuel cell vehicles are introduced into the 
market on a limited scale over the next decade as expected, they could be widely available by 
2030.  Due to the significant lag in vehicle turnover, it would likely be another 10 to 20 years 
before hydrogen could replace oil as the dominant transportation fuel.  Some analysts argue that 
hydrogen has the potential to replace almost all of the petroleum used by the transportation 
sector, but over a long time horizon.68 

3.3.5 More efficient planes 

As noted above, air travel has grown significantly more fuel-efficient over time. This trend is 
expected to continue into the future, due in part to engineering changes and in part to operational 
improvements. A recent NASA and Boeing report forecasts that efficiency gains of 15 to 20 
percent are possible in the medium term.69  Meanwhile, member airlines of the International Air 
Transport Association, including American, Continental, Delta, United, and US Airways, have 

                                                           
66 Mukai, Anna and Yuki Hagiwara. Toyota to Unveil Hydrogen-Fueled Sedan. November 15, 2011. 
http://www.businessweek.com/news/2011-11-15/toyota-to-unveil-hydrogen-fueled-sedan-aqua-compact-hybrid-
car.html 

67 Ohnsman, Alan. Toyota Targets $50,000 Price for First Hydrogen Car. Bloomberg. May 6, 2010. 
http://www.businessweek.com/news/2010-05-06/toyota-targets-50-000-price-for-first-hydrogen-car-update2-.html  

68 National Renewable Energy Laboratory. “Validation of Hydrogen Fuel Cell Vehicle and Infrastructure 
Technology.” October 2007. http://www.afdc.energy.gov/afdc/pdfs/42284.pdf  

69 Daggett, D. et al. “Alternative Fuels and Their Potential Impact on Aviation.” NASA Technical Memorandum 
2006-214365, October 2006. http://gltrs.grc.nasa.gov/reports/2006/TM-2006-214365.pdf 
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http://www.afdc.energy.gov/afdc/pdfs/42284.pdf
http://gltrs.grc.nasa.gov/reports/2006/TM-2006-214365.pdf
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set a voluntary goal of a 25 percent improvement in fuel consumption (per revenue-ton-mile) by 
2020 compared to 2005 levels.70 
If successful, a 25 percent fuel savings would reduce 4.7 billion gallons of fuel annually by 2020, 
based on 2008 levels of consumption.  However, if passenger-miles traveled continue to grow at 
the three percent annual rate seen over the last five years, and if revenues rise accordingly, the 
reduction would be 6.4 billion gallons, equivalent to about 2.5 percent of total U.S. 
transportation fuel use in 2010.  

3.3.6 Alternative-fuel planes 

In a 2006 NASA Technical Memorandum, Daggett et al. explore the potential for alternative 
fuels in the aviation sector.  The authors found that biofuel could be blended into jet fuel in small 
quantities (5 to 20 percent) without requiring any engine modifications, although an additional 
fuel processing step may be required to make the fuel compatible with the sector’s exacting 
specifications.  They go on to note that “[f]or biofuels to be viable in the commercial aviation 
industry, significant technical and logistical hurdles need to be overcome.  However, the task is 
not insurmountable and no single issue makes biofuel unfit for aviation use.”  In fact, on 
November 7, 2011, in an effort to demonstrate technical viability, United became the first U.S. 
airline to fly commercial passengers on a plane fueled with a blend of biofuel and traditional jet 
fuel.71 Other potential fuel sources, such as hydrogen or ethanol, are less suited to aviation, 
because the added weight of storage tanks (for hydrogen) or the weight and volume of fuel 
(ethanol) create significant energy efficiency penalties.72  
 
As with biofuel use for ground vehicles, supply is likely to pose a bigger constraint than demand 
in the aviation sector.  At 20 percent of current levels of fuel use, the upper limit suggested for 
blending with jet fuel as currently formulated, jet travel could consume as much as 2.2 billion 
gallons of biofuel.  Soybeans, the major domestic biofuel crop, yields about 60 gallons of fuel 
per acre, meaning about 37 million acres would be required, an area the size of Illinois.  
 
In light of the limits on available supply for biofuels, Daggett et al. conclude that it may be more 
efficient to concentrate use of this fuel source in the much larger ground transportation sector. 
They suggest that in the long term, the most attractive option for alternative jet fuel may be 
synthetic fuel produced from coal or natural gas.73  However, to make this path environmentally 
preferable, at least with regard to greenhouse gas emissions, the processing plants involved 
would need to utilize carbon sequestration, a technology that has not yet been widely adopted.  
 

                                                           
70 International Air Transport Association. “Fuel Efficiency.” N.d. 
http://www.iata.org/whatwedo/environment/Pages/fuel_efficiency.aspx  

71 “United Airlines Flies First U.S. Commercial Advanced Biofuel Flight.” November 7, 2011. 
http://www.united.com/press/detail/0,7056,69232,00.html 

72 Daggett, D. et al. “Alternative Fuels and Their Potential Impact on Aviation.” NASA Technical Memorandum 
2006-214365, October 2006. http://gltrs.grc.nasa.gov/reports/2006/TM-2006-214365.pdf  

73 Ibid. 

http://www.iata.org/whatwedo/environment/Pages/fuel_efficiency.aspx
http://www.united.com/press/detail/0,7056,69232,00.html
http://gltrs.grc.nasa.gov/reports/2006/TM-2006-214365.pdf
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In summary, our review of potential sources of oil and gas savings from the transportation sector 
highlights the following.  
 

• The ground transportation sector accounted for about 168 billion gallons of gasoline and 
diesel fuel use in 2009.  Air travel consumed roughly 13 billion gallons of fuel, while 
marine travel used approximately seven billion gallons.  Natural gas did not play a 
significant role as a transportation fuel.  

• In the near term, major sources of potential fuel savings include more efficient gasoline-
powered automobiles and substitution of biofuels for gasoline in automobiles.  
Depending on assumptions, these two sources could save approximately 17 billion 
gallons of gasoline per year by 2015, or about 10 percent of the total for ground 
transportation.     

• The potential for oil savings is greater in the long term.  Most notably, cellulosic ethanol 
could displace as much as 30 percent of total oil consumption.  Hybrid and electric 
vehicles, increased use of public transportation, and more efficient planes could generate 
oil savings as well, albeit in more modest amounts (likely on the order of nine to 14 
billion gallons of gasoline equivalent).  Finally, if adopted on a wide scale, hydrogen fuel 
could replace substantially all of the petroleum used by the transportation sector, but only 
over a very long time horizon. 
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4. OIL AND GAS USES AND ALTERNATIVES: ELECTRICITY GENERATION 
SECTOR 

Petroleum plays a very modest role in electricity generation and the proportion of U.S. electricity 
generation from oil-fired power plants has been on a steep decline since the late 1970s.  For 
natural gas, the converse is true.  Gas-fueled electricity generation has increased steadily from 
1996 to 2010, nearly doubling from 1996 to 2010.74  The electricity generation sector is second 
only to industrial use in terms of overall consumption of natural gas.  This section analyzes the 
use of oil and gas for electricity generation, beginning with an examination of recent trends and 
current use of oil and gas in the sector, and continuing with a discussion of the near- and long-
term potential for substitutes.  A particular focus is on the circumstances under which these fuels 
are used for electricity generation and how this affects the ability of renewable energy sources to 
serve as substitutes. 

4.1 Current use of oil and gas 

Electricity generation consumed 65 million barrels of petroleum in 2010, or about 2.7 billion 
gallons.  This translates into total primary energy use of about 376 trillion Btu.75  This represents 
a steep decline from 2005, when electricity production consumed more than three times as much. 
Prior to that, oil consumption had remained at approximately the same level since the mid-1980s. 
Oil consumption in the electricity generation sector peaked in 1977 at 3,900 trillion Btu, more 
than ten times the current level.76 
 
Within the electricity generation sector, petroleum is used primarily to fuel ‘peaker’ plants – 
facilities that stand idle most of the time and are used only at times of very high demand. 
Generally, such plants are relatively cheap to build but expensive to operate, as the per-unit fuel 
costs are more expensive than other plants; thus, they are only used when all other options have 
been exhausted.  As a result, oil provides the fuel for only a small fraction of electricity 
generated in the United States.  Petroleum was used to produce 37 million megawatt (MW) hours 
of electricity in 2010, less than one percent of the 4,127 million megawatt-hour (MWh) total.  
This was far less than the generation provided by coal, natural gas, nuclear, hydroelectric, or 
even biomass and wind resources.77  
                                                           
74 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 6.5: Natural 
Gas Consumption  by Sector, Selected Years, 1949-2008. DOE/EIA-0384(2010), October 19, 2011. 
http://www.eia.doe.gov/aer/ 

75 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2010. 
November 09, 2011. Table ES1:  Summary Statistics for the United States. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html  

76 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. 
Table 5.14c: Heat Content of Petroleum Consumption: Transportation and Electric Power Sectors, 1949-2008. 
DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/ 

77 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2010. 
November 9, 2011. Table ES1:  Summary Statistics for the United States. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
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Since most petroleum-fired plants are used relatively infrequently, these plants contribute a 
larger proportion of generating capacity to the total than they do actual generation.  In 2010, oil-
fired plants accounted for 57,647 MW of net summer generating capacity, or 5.3 percent of total 
U.S. capacity.  This figure has remained fairly steady since 2002, despite the significant drop in 
petroleum-fueled electricity generation over that time period (during which overall peak 
electricity demand increased).78,79  For peaker plants in particular, this indicates that there may 
not be a strong correlation over the short run between available capacity and actual use.  Thus, 
oil price changes may be reflected to some degree in electricity generation, but it will take a 
longer time (and a more sustained price change) before total capacity of oil-fired plants is 
similarly affected.   
 
The use of oil predominantly as a peak fuel means that most oil-fired plants are relatively small 
and that there are a relatively high number of them in use.  In 2010, 3,779 petroleum-fired 
generating stations were available, with an average capacity of 16.5 MW.  By comparison, 1,396 
coal-fired plants were in operation, with an average generating capacity of almost 250 MW. 
 
EXHIBIT 4.1   ELECTRIC UTILITIES  GENERATING CAPACITY AND NET GENERATION 

ENERGY 

SOURCE 
GENERATORS 

GENERATING CAPACITY 

(MEGAWATTS) 

NET GENERATION 

(THOUSAND MEGAWATT-

HOURS) 

PERCENT OF NET 

GENERATION 

Coal 1,396 342,296 1,847,290 45% 

Gas 5,529 467,214 987,697 24% 

Nuclear 104 106,731 806,968 20% 

Hydroelectric 4,020 78,204 260,203 6% 
Other 
renewable 3015 56993 169,761 4% 

Petroleum 3,779 62,504 37,061 1% 

Total 17,843 1,113,942 4,127,6481 100% 

Source: U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2011. 
DOE/EIA-0348, November, 2011. 1. Total includes sources not represented in table. 

Compared to petroleum, much larger quantities of natural gas are used for electricity generation.  
In 2010, 7,680 billion cubic feet of natural gas or 7,893 trillion Btu, were consumed in electricity 
generation (an energy content more than 20 times greater than that supplied by petroleum).  
Natural gas use rose sharply during the economic expansion years, growing by an average of 6.3 
percent annually from 2003 to 2008.  While that rate may seem modest, it was five times greater 
                                                           
78 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2008. 
January 21, 2010. Table ES1:  Summary Statistics for the United States. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

79 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2006. July 
7, 2008. Table ES1:  Summary Statistics for the United States. 
http://tonto.eia.gov/reports/reportsD_archived.cfm?title=Electric%20Power%20Annual  

http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://tonto.eia.gov/reports/reportsD_archived.cfm?title=Electric%20Power%20Annual
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than the overall increase in electricity generation.  More interestingly, after dipping in 2008, it 
grew substantially through 2010.  Only coal supplied a larger share of the Nation’s electricity in 
2010.80  
 
In terms of nameplate generating capacity, natural gas ranks as the largest component of the 
electricity generation sector, with 467,214 MW in 2010, or about 40 percent of the total.  Growth 
in gas-fired capacity has outpaced overall capacity expansion in recent years (2.2 percent vs. 1.3 
percent per year).  Notably, gas generation expanded much more rapidly in the early years of the 
last decade than in later years, growing more than 16 percent per year from 1999 to 2003.  This 
was largely in response to the relative flexibility of natural gas power plants, which can be used 
for baseload, intermediate, or peak generation and the comparatively favorable environmental 
profile of such plants compared to coal or nuclear power.  As of 2010, 5,529 gas-fired generators 
were in operation in the U.S., with an average capacity of approximately 85 MW.81    
 
Electricity generation is somewhat more efficient using gas than oil.  This is partially due to the 
nature of the combustion engines used for each fuel.  Since natural gas engines are more 
expensive and run more frequently, there is a greater incentive for efficient combustion.  
However, efficiency has also been rising in recent years as the result of greater use of natural gas 
combined-cycle plants.  In a combined-cycle plant, the exhaust gases from the gas turbine are 
used to heat steam which is used to turn a second turbine, thereby capturing the waste heat from 
the first cycle.  As these secondary steam turbines are installed in new gas power plants or placed 
into existing ones, the efficiency of gas-fired electricity generation should continue to improve. 

4.2 Near-term market analysis of substitutes 

A significant proportion of oil- and gas-fired generation does have the capability to switch 
between the two fossil fuels.  As of 2010, 26 percent (124,412 MW) of capacity with natural gas 
listed as the primary fuel was capable of switching to petroleum liquids and 41 percent (22,296 
MW) of capacity with oil listed as the primary fuel was capable of switching to natural gas.82,83  
However, this report is not concerned with substitutions between oil and gas but rather switches 
from oil and gas to other energy sources.  Although no comprehensive data exist, it seems logical 
to assume that a similar proportion of oil and gas plants would be capable of using biofuels, 
which can be refined to meet specifications similar to those of many petroleum products.  In the 
near term, however, the increasing demand for biofuels in the transportation sector put in place 
by the Renewable Fuels Standard suggests that there will be relatively little additional biofuel 
                                                           
80 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2010. 
November, 2011. Table ES1:  Summary Statistics for the United States. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

81 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2010. 
November, 2011. Table ES1:  Summary Statistics for the United States. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

82 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2010. 
November, 2011. Table 1.7: Fuel Switching Capacity of Generators Reporting Natural Gas as the Primary Fuel, by 
Producer Type, 2008. http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

83 Ibid. 

http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
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supply available for use by power plants.  It seems likely then that there is little if any near-term 
potential for cost-effective substitution away from oil and gas among existing power plants.   
 
With existing generating plants excluded, we must then consider how the composition of the 
electricity generation sector as a whole could change in the near term.  Power plants are long-
lived assets, meaning that reactions to market or policy signals will necessarily be somewhat 
delayed.  Using data from 2004 to 2008, approximately four to six percent of all petroleum-fired 
generators were retired each year, implying an expected lifespan of about 20 years; for natural 
gas-fired generators, the retirement rate was somewhat lower, implying an expected lifespan of 
23 years.84 (This is consistent with a general rule of thumb that fossil fuel plants can run for 
about 25 years before needing to replace generators and other key equipment.)  Therefore, we 
can assume that only those gas plants that were built in the late 1980s to early 1990s will likely 
be retired over the next few years.  If recent trends continue, approximately 500 MW of oil-fired 
capacity and 2,100 MW of gas-fired capacity will be retired every year, or 2,500 MW and 10,500 
MW respectively over a five-year period.85  These retirements will most likely be balanced at 
least in part by new capacity additions of the same type, but these figures nonetheless give an 
idea of the scope of potential near-term substitution away from oil and gas.  If market conditions 
changed such that oil or gas became more expensive, this is the maximum amount of generation 
we could expect to be displaced by alternatives.86  
 
However, as noted above, different fuel sources are useful for electricity generation in varying 
contexts.  This means that certain renewable electricity sources may not be direct substitutes for 
oil- and/or gas-fired generation.  Biomass, geothermal and nuclear power are generally used as 
baseload power, making them poor substitutes for oil and of limited usefulness in replacing 
natural gas (which, while sometimes employed for baseload generation, is more commonly used 
as intermediate or peak power).  Hydroelectric power is mostly used for baseload generation as 
well, although it is more flexible and can be ramped up and down more easily; however, with 
most potential large hydroelectric sites already developed, there is relatively limited potential for 
additional domestic capacity.  A Navigant Consulting study, based on an earlier DOE report, 
estimated a maximum technical capacity of about 84,000 MW of additional hydroelectric power, 
of which 22,000 MW could realistically be developed by 2025.  This would constitute an 
increase of approximately 30 percent over 2010 levels, but would still leave hydropower at less 
than 10 percent of total electricity generation.87  
                                                           
84 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2008. 
January 21, 2010. Table 1.5: Capacity Additions, Retirements and Changes by Energy Source, 2008. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

85 Ibid.  

86 This considers only replacement of retiring units, and not additions of new capacity. Based on trends from 2004 to 
2008, retirements of petroleum generation are likely to outpace new additions in the near future, while new natural 
gas generation will outpace retirements by more than 10,000 MW per year. U.S. Department of Energy, Energy 
Information Administration. Electric Power Annual with Data for 2008. January 21, 2010. Table 1.5: Capacity 
Additions, Retirements and Changes by Energy Source, 2008. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html. It is highly doubtful that new renewables could displace 
this generation on top of the replacement of retiring units discussed here. 

87 Frantzis, Lisa. Job Creation Opportunities in Hydropower. Navigant Consulting. April 26, 2010.  

http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
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Wind and solar power are more likely alternatives for both of these fossil fuels.88  Due to their 
intermittent nature, however, there are limits to the maximum amount of near-term penetration 
that these energy sources will likely achieve in a cost-effective manner.  Nonetheless, a report 
from National Renewable Energy Laboratory (NREL) projected that wind power could achieve a 
20 to 30 percent penetration in the eastern United States by 2024, given sufficient investment in 
transmission upgrades.  In the absence of such investment, this level of wind penetration would 
require significant curtailment or shutting down of wind plants, with a high associated cost.89 
Sufficiently robust infrastructure is important in that it can more effectively use widely-dispersed 
wind plants to ‘cancel out’ each other’s variability. While wind generation in particular has been 
growing at an impressive rate with nearly 10,000 MW installed in 2009,90 on par with capacity 
additions of oil and gas in recent years,91,92 it is not likely to approach this 20 percent constraint 
in the next five years.  Indeed, uncertainty regarding federal support for wind energy resulted in a 
decrease in new installed capacity in 2010 (a total of just over 5,100 MW); through the third 
quarter of 2011, new installed capacity for the year stood at 3,360 MW.93,94 Solar power 
currently makes up a much smaller proportion of electricity generation and is not likely to 
displace a significant amount of fossil fuel generation over that time frame.  
 
Finally, note that the electricity generation industry is shifting from simple-cycle steam turbines 
to combined-cycle generators for natural gas.  Combined-cycle generators are about 25 to 30 
percent more efficient than simple-cycle generators in terms of electricity produced per unit 

                                                           
88 This is true in terms of electricity produced and thus fuel used on an ongoing basis; with regard to capacity, it is a 
more dubious proposition. Since wind and solar are not firm resources, a certain level of natural gas or oil capacity 
will generally be required as a ‘backstop’ resources to protect against grid problems in times when the supply of 
these renewables cannot meet the instantaneous demand for electricity.  

89 EnerNex Corporation, prepared for the National Renewable Energy Laboratory. Eastern Wind Integration and 
Transmission Study: Executive Summary and Project Overview. January 2010.  
http://www.nrel.gov/wind/systemsintegration/pdfs/2010/ewits_executive_summary.pdf  

90 American Wind Energy Association (AWEA). Market Update: Record 2009 Leads to Slow Start in 2010. May 
2010. http://www.awea.org/pubs/factsheets/Market_Update_Factsheet.pdf  

91 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2008. 
January 21, 2010. Table 1.5: Capacity Additions, Retirements and Changes by Energy Source, 2008. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

92 Again, it is important to distinguish between capacity and electricity generation. Due to its intermittency, wind has 
a much lower capacity factor than oil or gas generation; thus, a megawatt of wind capacity will produce far less 
electricity over time than a megawatt of natural gas capacity (or petroleum, if it is being used for non-peak power). 
Capacity additions of wind and solar cannot be considered one-for-one substitutes for fossil fuels.  

93 American Wind Energy Association Press Release, January 24, 2011. 
http://www.awea.org/newsroom/pressreleases/release_01-24-11.cfm 

94 American Wind Energy Association. U.S. Wind Industry, Third Quarter Market Report, October 2011. 
http://www.awea.org/learnabout/publications/reports/upload/3Q-2011-AWEA-Market-Report-for-Public-2.pdf 

http://www.nrel.gov/wind/systemsintegration/pdfs/2010/ewits_executive_summary.pdf
http://www.awea.org/pubs/factsheets/Market_Update_Factsheet.pdf
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://www.awea.org/newsroom/pressreleases/release_01-24-11.cfm
http://www.awea.org/learnabout/publications/reports/upload/3Q-2011-AWEA-Market-Report-for-Public-2.pdf
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fuel.95  We can expect a trend towards greater efficiency to continue as newer natural gas 
generators and power plants come online, meaning that less gas will be needed to meet the same 
level of electricity demand.  
 
Overall, in the near term, the maximum potential for a shift away from oil and gas in the 
electricity generation sector is limited by the level of oil and gas generator retirements (expected 
to be about 2,500 MW and 10,500 MW over five years, respectively) and the extent to which 
these generators can be replaced by renewables (predominantly wind power) and more efficient 
natural gas combined cycle plants.  Based on 2008 capacity factors and fuel efficiency, we 
estimate that this maximum replacement potential translates into about 182 billion cubic feet of 
gas and 3.5 million gallons of oil avoided each year.  While wind power may place some strains 
on the grid at high levels of penetration, this is not a near-term concern.  Biofuels and other 
renewables are not likely to play a significant role in replacing fossil fuels over this time period.   

4.3 Long-term market analysis of substitutes 

As noted above, fossil fuel generators, both oil and gas, have an expected lifespan of about 20 to 
25 years.  In this timeframe, there will be a more or less complete turnover of the Nation’s oil 
and gas generators, as well as the new additions necessitated by growth in demand.  There is 
significant potential for substitution away from these fuels over that period, dependent on the 
availability and suitability of other power sources. 
 
Biofuels represent the most obvious potential substitute for petroleum and gas in terms of fuel 
characteristics, although, as noted above, they are more likely to be used in the transportation 
sector, which represents a much larger source of demand.  Even assuming significant scale-up of 
new biofuel production capabilities, the maximum amount available from domestic sources 
would not likely be enough to meet current levels of both transportation and electricity fossil fuel 
demand.  Therefore, biofuels are excluded from further consideration here.    
 
As of 2010, natural gas accounted for 24 percent of electricity generation and petroleum 
provided an additional one percent. As noted above, NREL has concluded that wind power alone 
could achieve 20 to 30 percent penetration in the eastern U.S. by 2024, with adequate 
investments in transmission infrastructure.96  Furthermore, a similar study found that 30 percent 
wind penetration is technically feasible in the western states as well, with some modifications to 
current practice by grid managers.97  In simple terms of magnitude, wind could theoretically 
displace oil and gas for electricity generation entirely.  Wind is already reasonably cost-
                                                           
95 U.S. Department of Energy, Energy Information Administration. Electric Power Annual with Data for 2008. 
January 21, 2010. Table 5.4: Average Heat Rates by Prime Mover and Energy Source, 2008. 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html 

96 EnerNex Corporation, prepared for the National Renewable Energy Laboratory. Eastern Wind Integration and 
Transmission Study: Executive Summary and Project Overview. January 2010.  
http://www.nrel.gov/wind/systemsintegration/pdfs/2010/ewits_executive_summary.pdf  

97 GE Energy prepared for the National Renewable Energy Laboratory. Western Wind and Solar Integration Study: 
Executive Summary. May 2010.  
http://www.nrel.gov/wind/systemsintegration/pdfs/2010/wwsis_executive_summary.pdf  

http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html
http://www.nrel.gov/wind/systemsintegration/pdfs/2010/ewits_executive_summary.pdf
http://www.nrel.gov/wind/systemsintegration/pdfs/2010/wwsis_executive_summary.pdf
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competitive with oil and gas and will become more so if fuel prices rise and/or if climate policy 
results in a carbon tax or cap-and-trade mechanism.  The manufacturing process and technology 
for wind turbines is fairly mature and well-established.  For wind, therefore, the most important 
constraint will be the ability of the electric grid to accommodate significant amounts of an 
intermittent resource.  Much of the wind potential evaluated by NREL would come from the 
Great Plains. While the report emphasizes the benefits of regional integration and coordination, 
this geographic dynamic suggests that a portion of the wind power is likely to be replacing coal, 
rather than oil or gas.98  In addition, some amount of oil or gas will be needed to balance the 
intermittency of wind resources.  Nonetheless, wind power could potentially replace a major 
portion of oil- and gas-fired electricity generation.  
 
A substantial portion of the long-term wind potential identified by NREL, 54 gigawatts, is to 
come from offshore wind.  The United States has areas appropriate for offshore wind power 
development near large coastal urban areas.  With growing electricity demand and space 
constraints on land-based electricity generation and transmission, offshore wind is favorably 
positioned to play a role in meeting future energy demand.99  Constructing sufficient 
transmission infrastructure is a significant barrier, but with Google and the renewable energy 
investment firm Good Energies committing to significant investments in an undersea 
transmission ‘backbone’ that would serve projects along the Atlantic coast, there could be 
sufficient infrastructure to spur additional offshore development.100  Since coastal U.S. areas rely 
more heavily on natural gas (and small amounts of oil) for electricity generation than the 
Midwest, any offshore wind development that does result would help further reduce dependence 
on these fossil fuels.  
 
Solar power, although not expected to play a significant role in centralized electricity generation 
over the next few years, could become more important given the right mix of technological 
improvements and market or policy influences.  A study by the research firm Clean Edge, Inc. 
and the non-profit Co-op America found that photovoltaic and concentrated solar power could 
reach 10 percent of electricity generation by 2025, although this would require a capital 
investment of hundreds of billions of dollars.  As a resource that is generally available during 
times of peak demand (i.e., warm-weather periods), widespread use of solar power would imply 
significant displacement of both oil and gas.  Such a scenario is dependent on significant cost 
decreases in the manufacturing process, to be driven both by the realization of economies of 
scale and by other technological improvements.101  
                                                           
98 Although coal is a baseload power source, and thus not directly replaceable by a given wind plant, a widely 
dispersed network of wind plants could provide sufficiently firm power in the aggregate to eliminate the need for a 
portion of the region’s coal-fired capacity. The NREL report frames its results in terms of smaller increases in 
capacity of fossil plants, rather than absolute reductions, but it appears that they forecast wind to displace a mix of 
coal and gas plants. See Figure 13, p. 35. 

99 Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers. National 
Renewable Energy Laboratory. September 2010. http://www.nrel.gov/wind/pdfs/40745.pdf  

100 Wald, Matthew L. Offshore Wind Power Line Wins Backing. New York Times. October 12, 2010. 
http://www.nytimes.com/2010/10/12/science/earth/12wind.html?ref=business  

101 Clean Edge, Inc., and Co-Op America. Utility Solar Assessment (USA) Study: Reaching Ten Percent Solar by 
2025. June 2008. http://www.cleanedge.com/reports/reports-solarUSA2008.php  

http://www.nrel.gov/wind/pdfs/40745.pdf
http://www.nytimes.com/2010/10/12/science/earth/12wind.html?ref=business
http://www.cleanedge.com/reports/reports-solarUSA2008.php


   

40 

 
Overall, given favorable conditions, solar and wind power could be used to replace a significant 
portion of oil and gas used for electricity generation.  The technical constraints posed by their 
status as intermittent resources mean that these energy sources cannot be used to completely 
replace fossil fuels, even with investments in the transmission grid and/or in battery storage.  
While it is not the aim of this report to develop a detailed forecast, some simple math can 
illustrate the potential scope of substitution.  The EIA’s 2010 Annual Energy Outlook forecasts 
electricity generation to grow at one percent annually over the next 25 years.102  At that rate, 
total electricity generation would be approximately 5,389 billion MW-hours in 2035, up from 
4,119 billion MW-hours in 2008.  If wind is in fact able to reach 20 percent and solar to reach 10 
percent penetration, this would imply a total of about 1,078 and 539 billion MW-hours 
respectively produced from these sources.  By way of comparison, wind accounted for 1.34 
percent of all generation in 2008, while solar was virtually zero.  If the assumption is made that 
half of the growth in these renewables replaces oil and gas, and half coal, then this suggests that 
they could displace 772 billion MW-hours of oil- and gas-fired electricity annually, more than 80 
percent of the current total produced from these sources, or roughly two-thirds of what would 
come from these fossil fuels in 2035 if they were to continue to hold their current proportions of 
total generation.  If expanded renewables displaced a higher proportion of oil and gas relative to 
coal, then even more electricity from these sources could be avoided.  
 
Note that nuclear power represents another potential substitute for natural gas.  The Nuclear 
Regulatory Commission is actively reviewing applications for operating licenses for 22 new 
nuclear power plants and power companies are considering additional plants as well.103  
However, since natural gas is used primarily as an intermediate or peak power source, whereas 
nuclear power is a baseload resource, the potential for substitution is limited.  Furthermore, the 
extent to which nuclear power will be able to successfully compete with other baseload resources 
such as coal or biomass will depend on climate policy, the relative ease or difficulty of gaining 
regulatory approval, and fuel cost and availability.  Nonetheless, expanded use of nuclear power 
could result in avoided natural gas use to a greater degree than outlined above.  
 
Finally, we note that climate change and energy policy could have a significant effect on shaping 
the electricity sector.  It is not the intention of this paper to discuss potential policy initiatives and 
their potential impacts in detail.  It is difficult to predict the political appetite for climate and 
energy policy or the specific tools potentially employed.  However, concepts discussed in the last 
five years include the following:  
 

• EPA regulation of greenhouse gases as criteria pollutants under the Clean Air Act.  
In April 2009, EPA declared carbon dioxide and five other greenhouse gases to be 
endangering public health and welfare, a precursor for the agency to regulate them 
under the Clean Air Act.    If regulations were promulgated, they would likely reduce 
coal use and increase oil and gas use.  

                                                           
102 U.S. Energy Information Administration. Annual Energy Outlook Early Release Overview. December 14, 2009. 
http://www.eia.doe.gov/oiaf/aeo/overview.html  

103 Nuclear Energy Institute. New Nuclear Plant Status. January 2011. 
http://www.nei.org/resourcesandstats/documentlibrary/newplants/graphicsandcharts/newnuclearplantstatus/   

http://www.eia.doe.gov/oiaf/aeo/overview.html
http://www.nei.org/resourcesandstats/documentlibrary/newplants/graphicsandcharts/newnuclearplantstatus/
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• A nationwide renewable energy standard or clean energy standard.  A renewable 
energy standard would require electric utilities to meet a minimum amount of 
electricity demand (e.g., 20 percent) through renewable sources. A clean energy 
standard, as proposed by the Administration, would credit a broader range of clean 
electricity sources – including nuclear power, with partial credit for generation from 
efficient combined-cycle natural gas plants and fossil fuel plants that capture and 
store carbon dioxide.   

• Subsidies for renewable energy production.  Policymakers could extend existing 
incentives for generation from renewable sources, such as the production tax credit of 
2.1 cents per kilowatt-hour for wind or the investment tax credit of 30 percent of the 
cost of solar installations, or create new incentives, such as feed-in tariffs similar to 
those that enabled significant renewable energy capacity expansion in Europe in 
recent years.  

 
These or other policy measures will influence the mix of renewables, oil, gas, and other 
resources in the electricity sector, but they will be unlikely to change the maximum potential 
levels of substitution described above.  Even over a 25-year time horizon, natural gas is likely to 
contribute a significant portion of electricity generation in the United States. 
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5. OIL AND GAS USES AND ALTERNATIVES: INDUSTRIAL SECTOR  

5.1 Current use of oil and gas 

The industrial sector used 1.57 billion barrels of petroleum in 2010, with primary energy use of 
8,029 trillion Btu.  It consumed a similar 7,930 trillion Btu in natural gas, slightly more than was 
used for electricity generation (7,380 trillion Btu).  The industrial sector was therefore the 
second-largest petroleum-consuming sector of the economy after transportation and the highest 
gas-consuming sector.104,105 
 
Industrial oil use peaked domestically in 1979 at just less than two billion barrels.  More 
recently, levels of consumption have remained relatively steady from year to year.  From 1998 to 
2007, annual industrial petroleum use held between 1.77 and 1.91 billion barrels, a difference of 
less than 10 percent.  Oil use has remained lower since 2008, due to the economic recession.  
What has changed over the past decades is the composition of the sector’s petroleum inputs.  
Liquid petroleum gases (LPG) have steadily increased as a proportion of total petroleum, from 
five percent in 1950 to 24.2 percent in 1980 to 33.3 percent in 2008.  As LPG use has grown, 
residual fuel oil has virtually disappeared, dropping from 33.4 percent of industrial oil in 1950 to 
just 1.4 percent in 2010. 106  Since LPGs are comparatively cleaner than residual fuel oil, this 
indicates that the net environmental impact of industrial oil use has moderated over time.  
 
Natural gas has a similar story.  After peaking in 1973 at 10,388 trillion Btu, industrial natural 
gas consumption fell sharply in the late 1970s and early 1980s, before climbing back during the 
1990s.  Natural gas use has been falling again in recent years, from 9,933 trillion Btu in 1997 to 
7.380 trillion Btu in 2010.107  This could reflect a response to a long-term trend of rising natural 
gas prices over that time period.  
 
Oil and gas are used for three broad purposes within the industrial sector: to generate heat and 
steam for industrial processes, either in boilers or in direct process heating; for heating and air 
conditioning of ambient air; and as nonfuel feedstocks for a variety of products, including 
                                                           
104 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. 
Table 5.14b: Heat Content of Petroleum Consumption: Industrial Sector, 1949-2010. DOE/EIA-0384(2010), 
October 19, 201. http://www.eia.doe.gov/aer/ 

105 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 2.1d: 
Industrial Sector Energy Consumption, 1949-2010. DOE/EIA-0384(2010), October 19, 2011. 
http://www.eia.doe.gov/aer/ 

106 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 5.13b: 
Estimated Petroleum Consumption: Industrial Sector, 1949-2010.DOE/EIA-0384(2010), October 19, 2011. 
http://www.eia.doe.gov/aer/ 

107 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 2.1d: 
Industrial Sector Energy Consumption, 1949-2010. DOE/EIA-0384(2010), October  19, 2011. 
http://www.eia.doe.gov/aer/ 

http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
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solvents, lubricants, plastics, asphalt, and various chemicals.  Oil and natural gas are also used by 
many industrial facilities for cogeneration, which produces electricity, as well as usable heat and 
steam to be consumed either on-site or by neighboring facilities. 
 
The EIA’s Annual Energy Review (AER), the source for the summary figures listed above, does 
not provide more fine-grained information on particular end uses of petroleum and natural gas.  
For that, we rely on EIA’s quadrennial Manufacturing Energy Consumption Survey (MECS), 
which last reported data for 2006.  There are discrepancies between the industrial sector as 
defined in the AER and manufacturing facilities as defined in the MECS, with the MECS 
appearing to cover a smaller amount of total industrial activity.  Nonetheless, the two are 
sufficiently similar for our purposes to use manufacturing facilities as a proxy for the entire 
industrial sector.  Doing so allows us to examine the particular end uses of oil and gas within the 
industrial sector in greater detail.  
 
The table below shows total energy use in manufacturing facilities for both fuel and non-fuel 
applications.  Specific end uses are discussed in greater detail below. 
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EXHIBIT 5.1  MANUFACTURING FACILITIES ENERGY USE, TRILLION BTU 

END USE 

NET ELECTRICITY NATURAL GAS PETROLEUM COAL OTHER TOTAL 

2002 2006 2002 2006 2002 2006 2002 2006 2002 2006 2002 2006 

Boiler Fuel             

  Conventional Boiler Use 9 41 1,306 1,281 99 96 255 129 -- -- 1,679 1,547 
  CHP and/or Cogeneration Process 4 -- 857 838 61 69 521 417 -- -- 1,443 1,324 
Direct Uses - Process             
  Process Heating 343 346 2,742 2,487 142 110 368 345 -- -- 3,595 3,288 
  Process Cooling and Refrigeration 194 206 45 32 2 1 * * -- -- 241 239 
  Other Process Use 1,681 1,692 169 269 23 41 12 66 -- -- 1,885 2,068 
Direct Uses – Nonprocess             
  Facility HVAC 262 265 417 378 13 13 5 2 -- -- 699 658 
  Facility Lighting 196 198 -- -- 0 0 -- -- -- -- 196 198 
  Other Facility Support 48 60 30 30 1 1 * * -- -- 79 91 
  Other Nonprocess Use 3 8 10 8 1 7 0 * -- -- 14 23 
Boiler Fuel and Direct Uses Subtotal 2,740 2,817 5,576 5,322 342 342 1,162 961 -- -- 9,831 9,442 
Nonfuel Uses (Btu equivalent) 0 0 674 398 3,022 2,380 799 473 3,693 3,711 8,189 6,962 
Boiler Fuel, Direct Uses and 
Nonfuel Uses Total 2,740 2,817 6,251 5,719 3,364 2,722 1,961 1,434 3,693 3,711 18,020 16,404 
Other Uses             
  Onsite Transportation 4 7 2 3 53 55 -- -- -- -- 59 65 
  Conventional Electricity Generation -- -- 55 19 1 4 14 3 -- -- 70 26 
  End Use Not Reported 96 26 162 168 56 58 6 52 6,006 5,820 6,306 6,125 
Total  2,840 2,850 6,470 5,909 3,474 2,839 1,981 1,489 9,699 9,531 24,455 22,620 

-- Not applicable 
* Estimate less than 0.5 
Numbers do not add due to rounding.  
Sources: U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 2006. Table 5.2: End Uses of Fuel 
Consumption, 2006; Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2006.  June 2009. http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html

http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
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5.1.1 Process heating 

Process heating is the practice of heating particular materials used in manufacturing, such as 
metals, plastics, and ceramics.  Process heating softens, melts, or evaporates materials, and may 
be used to catalyze chemical reactions.  This can be accomplished through a variety of 
equipment types, including furnaces, ovens, dryers, and specially designed heaters for the 
process in question.  Process heating systems may use fuel directly or may be electricity- or 
steam-based.  Only direct fuel-burning equipment is considered here.  
  
Process heating is the largest industrial fuel use of natural gas.  Excluding onsite transportation 
within industrial facilities, electricity generation, and unspecified uses, process heating 
accounted for 47 percent of industrial natural gas use in 2006.  In 2002, the date of EIA’s 
previous MECS survey, this number stood at 49 percent.  Total gas use for process heating 
dropped by nine percent over that time period.   
 
Process heating is also a major industrial use of petroleum, if nonfuel applications are excluded. 
Process heating represented 32 percent of industrial petroleum fuel use in 2006, once again 
excluding transportation, electricity generation, and unspecified uses.  Petroleum use for process 
heating dropped 23 percent from 2002, at which point it had accounted for 42 percent of 
industrial petroleum fuel use.  If nonfuel applications are included, process heating accounted for 
less than five percent of total petroleum use in both 2002 and 2006.108,109  
 

5.1.2 Boilers and cogeneration 

Boilers use a fuel source such as oil or gas to produce steam, which is in turn used to heat other 
materials and/or the ambient environment, or to drive turbines.  The EIA’s MECS distinguishes 
boilers from direct process heating, which does not use steam as an intermediary.  The 
equipment used is different between these two processes, although the end application may often 
be the same (i.e., heating a manufacturing input).   
 
Conventional boilers accounted for 28 percent of industrial petroleum use for fuel in 2006, with 
cogeneration responsible for another 20 percent, for a total of 48 percent.  The numbers were 
somewhat lower for natural gas, at 24 percent and 16 percent respectively.  Again, these figures 
exclude onsite transportation, non-cogeneration electricity production, nonfuel applications, and 
unspecified uses.  There was relatively little change in these proportions from 2002.  Including 
nonfuel use has only a modest impact on natural gas, but drops the proportion of petroleum use 
for boilers and cogeneration dramatically, to four percent for boilers and three percent for 

                                                           
108 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 5.2: End Use of Fuel Consumption, 2006. June 2009. See also the same table in MECS 2002. 
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html   

109 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2006.  June 2009. See also the same table in 
MECS 2002. http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html 

http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
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cogeneration.  Both natural gas and petroleum use for boilers and cogeneration were virtually 
unchanged in absolute terms from 2002 to 2006.110,111  
 

5.1.3 Heating, Ventilation, and Air Conditioning (HVAC) 

After process heating and boilers and cogeneration, HVAC is the only significant industrial end 
use of petroleum and natural gas except use as chemical feedstocks.  The HVAC sector 
accounted for four percent of petroleum and seven percent of natural gas fuel use in both 2002 
and 2006.  The proportion of petroleum use drops to less than one percent when nonfuel 
applications are factored in.  Natural gas use for HVAC saw a modest decline in absolute terms 
from 2002, matching the overall pattern in industrial gas use, while petroleum remained 
constant.112,113  
 

5.1.4 Non-energy uses 

While nonfuel applications make up a relatively small proportion of industrial gas use, just seven 
percent in 2006, down from 11 percent in 2002, they account for nearly 90 percent of petroleum 
consumption.  Thus, the use of petroleum products as chemical feedstocks deserves particular 
attention.  
 

                                                           
110 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 5.2: End Use of Fuel Consumption, 2006. June 2009. See also the same table in MECS 2002. 
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html   

111 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2006.  June 2009. See also the same table in 
MECS 2002. http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html 

112 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 5.2: End Use of Fuel Consumption, 2006. June 2009. See also the same table in MECS 2002. 
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html   

113 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2006.  June 2009. See also the same table in 
MECS 2002. http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html 

http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
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EXHIBIT 5.2   MANUFACTURING FACILITIES SELECT NONFUEL USES OF NATURAL GAS AND 
PETROLEUM FOR NONFUEL, TRILLION BTU EQUIVALENT 

END USE 

NATURAL GAS PETROLEUM 

2002 2006 2002 2006 

Petroleum Refineries 0 0 3,307*  3,399* 
Chemicals:     
  Petrochemicals 37 0 899 W 
  Other Basic Organic Chemicals 162 74 717 W 
  Plastic Materials and Resins 66 11 1,283 1,180 
  Nitrogenous Fertilizers 295 176 0 0 
  All Other Chemicals 69 91 108 W 
  Total Chemicals  629 352 3,007 2,297 
All other applications 45 46 15 83 
Total (All Nonfuel) 674 398 6,329* 5,779* 

W Data withheld in source material to prevent disclosing data on individual establishments. 
* Numbers shown here include 3,307 trillion Btu in 2002 and 3,399 trillion Btu in 2006 in ‘other’ fuel used at 
petroleum refineries, which we assume comes from petroleum.  
Source: U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption 
Survey 2006. Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2002 and 2006.  
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html  
 
Over half of the nonfuel consumption of petroleum takes place at petroleum refineries.  In 
addition to various forms of petroleum fuels, refineries also produce a range of petrochemicals, 
including lubricating oils, paraffin wax, and asphalt and tar.  However, the information available 
is not sufficiently detailed to indicate petroleum use for each of these products. 114,115  
 
The next most significant source of demand is plastics materials and resins, which accounts for 
nearly 20 percent of nonfuel petroleum consumption.116  Plastics come in a wide variety of forms 
and are used for an equally wide variety of applications, but almost all plastics are composed of 
chains of carbon and hydrogen (sometimes with other elements included).  This structure makes 
petroleum an ideal feedstock for plastics.  Most plastic manufacturing processes have very little 
material waste and incorporate virtually all of the petroleum input into the final product.117     

                                                           
114 Ibid. 

115 The input source for this sector is classified as ‘other’ in the MECS table regardless of the actual material type 
(petroleum, natural gas, coal). However, given the function of oil refineries, this energy is almost certainly taken 
from petroleum products. This discrepancy accounts for much of the ‘other’ nonfuel consumption in the table above.      

116 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2006.  June 2009. 
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html 

117 Graedel, Thomas E. and Jennifer A. Howard-Grenville. Greening the Industrial Facility: Perspectives, 
Approaches, and Tools. New York: Springer, 2005. 

http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
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The other major consuming sectors of nonfuel petroleum are classified as ‘petrochemicals’ and 
‘other basic organic chemicals.’  Again, the information available does not provide any further 
detail.  ‘Other basic organic chemicals’ is also a major nonfuel user of natural gas.  However, the 
most significant nonfuel consumer of natural gas is nitrogenous fertilizers, which are widely used 
throughout the agricultural sector.118  
 
Notably, nonfuel use of both petroleum and natural gas was significantly lower in 2006 than in 
2002.  The most significant decline for each came in chemicals.  Detailed information was not 
available for petroleum.  For natural gas, the decline was especially significant in nitrogenous 
fertilizers (which fell by 40 percent), basic organic chemicals (which dropped by 54 percent), 
and plastics (which fell by 83 percent).  Although there is less detail, data from earlier years 
suggests this may be a sustained decrease rather than an isolated phenomenon.  There was 
relatively little change in nonfuel consumption of petroleum at petroleum refineries or for 
plastics, the only major categories for which data are available for both years.119    
 

5.2 Near-term analysis of substitutes 

Industrial equipment is typically long-lived.  The Chartered Institute of Building Services 
Engineers (CIBSE) lists the “indicative life expectancy” for boilers at 15 to 25 years, and gas or 
oil fired furnaces at 15 years.120  In addition, such equipment often represents a significant 
expenditure.  As a result, turnover rates are relatively low.  Only in extreme circumstances would 
a change in fuel prices prompt a facility manager to replace petroleum- or gas-fired equipment 
significantly in advance of its planned retirement date.  For that reason, any form of fuel 
switching that would require replacing major equipment as a long-term but not a near-term 
possibility is included.  
 
Near-term substitution will require alternative fuel sources that are compatible with existing 
equipment.  For petroleum, this implies liquid biofuels such as ethanol or biodiesel.  As 
discussed in the transportation chapter, near-term biofuel use will most likely be driven largely 
by policy requirements.  The Renewable Fuel Standard currently in place sets a target of 20.5 
billion gallons of renewable fuel use for transportation by 2015.  This is more than the total 
domestic production forecast for that year by EIA’s Annual Energy Outlook.121,122  Even if this 

                                                           
118 U.S. Department of Energy, Energy Information Administration. Manufacturing Energy Consumption Survey 
2006. Table 2.2: Nonfuel (Feedstock) Use of Combustible Energy, 2006.  June 2009. See also the same table in 
MECS 2002. http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html.  

119 Ibid; see also the same table in MECS 1998.  

120 CIBSE. Indicative Life Expectancy for Building Services Plant, Equipment and Systems. N.d. 
http://www.cibse.org/pdfs/newOOMtable1.pdf  

121 EPA Finalizes Regulations for the National Renewable Fuel Standard Program for 2010 and Beyond. U.S. 
Environmental Protection Agency, Office of Transportation and Air Quality. February 2010. 
http://www.epa.gov/otaq/renewablefuels/420f10007.pdf   

http://www.eia.gov/emeu/mecs/mecs2006/2006tables.html
http://www.cibse.org/pdfs/newOOMtable1.pdf
http://www.epa.gov/otaq/renewablefuels/420f10007.pdf
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dynamic of demand outstripping supply corrects itself somewhat, there is unlikely to be any 
significant quantity of liquid biofuels left over for use in industrial, fuel-based applications.  
 
For non-fuel uses such as plastics, there may be greater potential for substitution away from 
petroleum.  The manufacture of biobased plastics, mostly produced from starch, sugar, and 
cellulose, increased by 600 percent between 2000 and 2008, although they still represent a small 
proportion of total plastics.123  Globally, demand for bioplastics is forecast to grow at 
approximately 25 percent annually from 2010 to 2015.124  This suggests potential for biobased 
plastics to replace a portion of conventional plastics.  
 
Plastics manufacturing accounted for the equivalent of 1,198 trillion Btu of petroleum 
consumption in 2006.  While it is not clear what proportion of total plastic produced 
domestically currently derives from non-petroleum sources, five to 10 percent appears to be 
reasonable based on global estimates.125,126  From this base, the projected growth rates in 
bioplastic manufacture just reported would suggest that an additional 130 to 260 trillion Btu of 
petroleum for plastics manufacturing could be replaced by biological feedstocks over the next 
five years.  This amounts to approximately 1.5 to three percent of total industrial petroleum 
use.127  

The other readily available petroleum substitute for plastics manufacturing is recycled plastic, 
which can replace virgin materials.  A large amount of potentially recoverable plastic is 
discarded in the United States each year.  For example, only 7.1 percent of all plastic discarded 
in municipal solid waste in 2009 was recovered.  However, even this represents a modest 
improvement from earlier years when the recovery rate was approximately six percent from 1990 
through 2005.128  In the near-term, dramatically increased recovery of plastic seems unlikely.  
However, if the trend of modest increases from 2005 to 2009 continues, recycling rates could 

                                                                                                                                                                                           
122 U.S. Energy Information Administration. Annual Energy Outlook 2010. DOE/EIA-0383(2010), April 2010. 
http://www.eia.gov/oiaf/aeo/pdf/0383%282010%29.pdf  

123 Ceresana Research. Market Study: Bioplastics. June 2009. http://www.ceresana.com/en/market-
studies/plastics/bioplastics/  

124 Pira International. The Future of Bioplastics for Packaging to 2020. December 13, 2010. http://www.pira-
international.com/pha-and-bio-derived-pe-to-drive-bioplastic-packaging-market-to-2020.aspx  

125 U.K. National Nonfood Crop Centre. Renewable Polymers Factsheet: Bioplastics. February 19, 2010. 
http://www.nnfcc.co.uk/publications/nnfcc-renewable-polymers-factsheet-bioplastics  

126 Nova Institute. Bioplastics Market Worldwide 2007-2025. 2009. http://innovation-
bioplastique.com/2009/02/13/bioplastics-market-worldwide-2007-2025/  

127 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. 
Table 5.13b: Estimated Petroleum Consumption: Industrial Sector, 1949-2010. DOE/EIA-0384(2010), October19, 
2011. http://www.eia.doe.gov/aer/ 

128 U.S. Environmental Protection Agency Office of Solid Waste. Municipal Solid Waste in the United States: 2009 
Facts and Figures. Table 2: Recovery of Municipal Solid Waste, 1960 to 2009. December 2010. 
http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw2009rpt.pdf  

http://www.eia.gov/oiaf/aeo/pdf/0383%282010%29.pdf
http://www.ceresana.com/en/market-studies/plastics/bioplastics/
http://www.ceresana.com/en/market-studies/plastics/bioplastics/
http://www.pira-international.com/pha-and-bio-derived-pe-to-drive-bioplastic-packaging-market-to-2020.aspx
http://www.pira-international.com/pha-and-bio-derived-pe-to-drive-bioplastic-packaging-market-to-2020.aspx
http://www.nnfcc.co.uk/publications/nnfcc-renewable-polymers-factsheet-bioplastics
http://innovation-bioplastique.com/2009/02/13/bioplastics-market-worldwide-2007-2025/
http://innovation-bioplastique.com/2009/02/13/bioplastics-market-worldwide-2007-2025/
http://www.eia.doe.gov/aer/
http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw2009rpt.pdf
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reach 8.75 percent by 2015, amounting to about 2.6 million tons of plastic.  The incremental 
increase of 0.5 million tons recycled would save about 11 trillion Btu of oil.  
 

5.3 Long-term analysis of substitutes 

There is greater potential for substitution in the longer term as industrial facilities replace their 
existing oil- and gas-fired equipment, affording them the opportunity to switch to systems using 
alternate fuel sources.  Many facilities may switch from oil to gas, but we do not evaluate this 
possibility here, focusing instead on moves away from oil and gas to other fuel sources.  Other 
substitutes include biofuels, electricity, and expanded use of the substitutes noted above for 
plastics manufacturing (i.e., recycled plastic or biobased chemicals).  While there is significant 
variation between different types of equipment, an appropriate rule of thumb is that industrial 
equipment is replaced every 25 years.  This represents the appropriate timeframe for our long-
term analysis.  
 
The potential for biofuel production has already been discussed in the transportation chapter and 
is not repeated in detail here.  As described there, biofuels could displace a significant portion of 
petroleum use over the next 25 years, perhaps up to 30 percent of total nationwide consumption. 
Biofuels are unlikely to have much impact on natural gas.  However, with three-fourths of U.S. 
petroleum use taking place in the transportation sector, most of the substitution is likely to take 
place there.  Thus, there is likely comparatively little room for expanded biofuel use in the 
industrial realm.  Furthermore, due to the limits on potential biofuel supply (based on available 
land to dedicate to growing fuel crops), if overall biofuel use does approach the upper boundary 
of 30 percent, any substitution of biofuels for petroleum that did happen in the industrial sector 
would come at the expense of similar substitution elsewhere.  This would be true for biobased 
inputs for plastics manufacturing, as well as for fuel use.   
 
Industrial facilities could also use equipment powered by electricity instead of oil- and gas-fired 
equipment.  Given that most industrial oil- and gas-using equipment is used simply to provide 
heat (e.g., for process heating or in boilers), such a move would generally be thermodynamically 
inefficient.  While electricity generation and consumption produces considerable energy losses, 
combustion for heat is far more efficient at utilizing embodied energy from a fuel source.  Even 
so, electricity is a viable option, and if generated from renewable sources, it may result in lower 
environmental impacts.  
 
As with biofuels, the potential for expanded use of renewable energy has been discussed 
previously in this report and is not repeated again here.  We do note, however, that substitution 
of electrical equipment for oil- and gas-fired combustion equipment would result in an increase 
in overall electricity demand.  As with biofuels, if renewable power generation approaches the 
upper boundaries outlined previously, any renewable electricity use by industrial sources would 
simply displace renewable energy use that would have occurred elsewhere.    
 
Significantly increased plastic recycling represents the final mode of substitution away from 
industrial petroleum use.  A recent report on the European plastics industry notes that Germany 
recycled the highest proportion of its post-consumer plastic waste of any European country, at 
33.9 percent. An additional 60 percent of Germany’s plastic waste was sent to waste-to-energy 
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plants.129  Compared to the contemporaneous 7.1 percent U.S. recycling rate, this would 
constitute an ambitious goal.  We therefore use it as an upper boundary on the potential for long-
term recycling in the United States.   
 
Thirty million tons of plastic waste was generated in this country in 2009 and this figure has held 
relatively constant in recent years.130  If this level of waste production continues into the future, 
33.9 percent recycling would represent an increase of 26.8 percent above recent levels, or an 
additional eight million tons of plastic.  This level of recycling would save 192 trillion Btu of 
petroleum, or about 2.4 percent of 2010 total industrial petroleum use.131  

                                                           
129 PlasticsEurope, EuPC, EuPR, and EPRO. Plastics – the Facts 2010. 
http://www.plasticseurope.org/documents/document/20101006091310-final_plasticsthefacts_28092010_lr.pdf  

130 U.S. Environmental Protection Agency Office of Solid Waste. Municipal Solid Waste in the United States: 2009 
Facts and Figures. Table 2: Recovery of Municipal Solid Waste, 1960 to 2009. December 2010. 
http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw2009rpt.pdf 

131 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 5.14b:  
Heat Content of Petroleum Consumption Estimates:  Industrial Sector, 1949-2010. DOE/EIA-0384(2010), October 
19, 2011. http://www.eia.doe.gov/aer/ 

http://www.plasticseurope.org/documents/document/20101006091310-final_plasticsthefacts_28092010_lr.pdf
http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw2009rpt.pdf
http://www.eia.doe.gov/aer/
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6. OIL AND GAS USES AND ALTERNATIVES: RESIDENTIAL AND COMMERCIAL 
SECTOR  

 
This chapter discusses oil and gas consumption in the commercial and residential sectors.  
Similar to the industrial sector, oil and gas use in residences and commercial establishments is 
dominated by a small number of specific end uses.  There has been a long-term shift away from 
oil use toward electricity in these applications, while natural gas use has not changed as 
dramatically. The potential substitutes for commercial and residential use of oil and gas are 
similar to those for the commercial sector, consisting mainly of electricity and biogas, although 
efficiency could also be considered a feasible substitute in certain applications. The current trend 
of increased building efficiency and weatherization, supported in part by investments through the 
American Recovery and Reinvestment Act, favors decreasing use of oil and gas in the residential 
and commercial sector. 
  

6.1 Current use of oil and gas 

The commercial and residential sectors consume negligible amounts of petroleum compared to 
the transportation and industrial sectors, but contribute more substantially to natural gas 
consumption.  Residences used 1,220 trillion Btu of petroleum in 2010; commercial buildings 
used 717 trillion Btu, for a total of 1,937 trillion Btu (395 million barrels).132  This amounts to 
5.2 percent of nationwide petroleum consumption.  For natural gas, the residential sector 
consumed 5,061 trillion Btu in 2010 and the commercial sector consumed 3,276 trillion Btu, for 
a total of 8,337 trillion Btu.133  Combined, these sectors accounted for 34 percent of gas 
consumption, greater than industrial levels and electricity generation.134   
 
Petroleum consumption has been falling steadily in both the residential and commercial sectors 
since the early 1970s.  Residential petroleum consumption reached its highest point in 1972, at 
2,856 trillion Btu, while commercial use peaked one year later at 1,604 trillion Btu.  Overall oil 
use has fallen by nearly 60 percent for both sectors since that time.135  
 

                                                           
132 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 5.14ab: 
Heat Content of Petroleum Consumption Estimates: Residential and Commercial Sectors, 1949-2010, DOE/EIA-
0384(2010),October 19, 2011. http://www.eia.doe.gov/aer/ 

133 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 2.1b: 
Residential Sector Energy Consumption, 1949-2010,and Table 2.1c: Commercial Sector Energy Consumption, 
1949-2010. DOE/EIA-0384(2010), October 19, 2011. http://www.eia.doe.gov/aer/ 

134 Ibid 

135 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.1b: 
Residential Sector Energy Consumption, 1949-2008, and Table 2.1c: Commercial Sector Energy Consumption, 
1949-2008. DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/ 

http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
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As with the industrial sector, the composition of the residential and commercial sectors’ 
petroleum inputs has evolved over time.  In the residential sector, kerosene use has dropped 
precipitously, from 25.8 percent of the total in 1949 to  2.5 percent in 2010, while LPGs have 
more than made up the difference.  Even more dramatically, in the commercial sector, residual 
fuel oil, which accounted for nearly half of all petroleum consumed in 1949, was down to just 
11.7 percent of consumption in 2010.  It was replaced mainly by distillate fuel oil, which almost 
doubled from 30.4 percent to 56.1 percent over the same time period.136  The replacement of 
residual fuel oil with distillate fuel oil, in particular, points to lower overall emissions from oil 
combustion over time.  
 
After growing steadily from approximately 1,000 trillion Btu in 1950 to nearly 5,000 trillion Btu 
in 1970, annual residential natural gas consumption has remained between 4,000 and 5,250 
trillion Btu over the past 40 years.  Commercial gas use, meanwhile, remained largely steady 
throughout the 1970s and 1980s, increased by about 20 percent during the early 1990s, and has 
leveled off since.  Growth in commercial gas use has been essentially flat since 1996.137  
 
Most residential petroleum and natural gas use is for space heating and water heating.  To a 
lesser extent, these fuels are also used for appliances such as ranges, ovens and refrigerators. 
Similarly, commercial gas and oil use is dominated by space heating and water heating, with 
additional small amounts for cooking and miscellaneous other applications.  Electricity was 
another major energy source for these applications.  The split between these fuel sources by end 
use is shown in the table below.  Due to discrepancies between different data sources, the totals 
in the table do not match those reported above.  Note that for residential buildings, the most 
recent year for which end-use data were available was 2005 and to balance comparability with 
currency throughout this section we use 2008 data for commercial buildings.138,139  Exhibit 6.1 
also shows electricity consumption by these sectors, which was discussed in the electricity 
generation chapter.     
 

                                                           
136 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. 
Table 5.14a: Heat Content of Petroleum Consumption: Residential and Commercial Sectors, 1949-2010. DOE/EIA-
0384(2010), October 19, 2011. http://www.eia.doe.gov/aer/ 

137 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.1b: 
Residential Sector Energy Consumption, 1949-2008, and Table 2.1c: Commercial Sector Energy Consumption, 
1949-2008. DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/ 

138 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. 
Table 2.5: Household Energy Consumption and Expenditures by End Use and Energy Source, Selected Years, 1978-
2005. DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/ 

139 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Buildings Energy Data Book 
2010. Table 3.1.4: 2008 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu). March 2011. 
http://buildingsdatabook.eren.doe.gov/ 

http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
http://buildingsdatabook.eren.doe.gov/
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EXHIBIT 6.1   RESIDENTIAL AND COMMERCIAL SECTOR ENERGY USE, TRILLION BTU 

END USE 

RESIDENTIAL SECTOR, 2005 COMMERCIAL SECTOR, 2008 

OIL 
NATURAL 

GAS 
ELECTRICITY TOTAL OIL 

NATURAL 

GAS 

ELECTRICITY 

AND OTHER 
TOTAL 

Space Heating 1,070 2,950 280 4,300 240 1,560 1,000 2,800 
Water Heating 290 1,410 420 2,120 20 440 320 780 
Cooking & Appliances 50 430 2,770 3,250 -- 170 2,800 2,970 
Air Conditioning -- -- 880 880 -- 30 4,110 4,140 
Other -- -- -- -- 210 290 5,870 6,370 
Total  1,410 4,790 4,350 10,550 470 2,490 14,100 17,060 

Notes: Totals do not match those reported in text due to discrepancies between data sources.  
 
Sources: 1) U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 
2.5: Household Energy Consumption and Expenditures by End Use and Energy Source, Selected Years, 1978-2005. 
DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/  2) U.S. Department of Energy, Office of Energy 
Efficiency and Renewable Energy. Buildings Energy Data Book 2010. Table 3.1.4: 2008 Commercial Energy End-
Use Splits, by Fuel Type (Quadrillion Btu). March 2011. http://buildingsdatabook.eren.doe.gov/ 

 

6.1.1 Space heating 

Space heating is the most significant use of petroleum and natural gas in both the residential and 
commercial sectors, accounting for three-fourths of residential oil use and 62 percent of 
residential gas use in 2005.  Electricity use for space heating was comparatively small.  A similar 
proportion of natural gas use in the commercial sector was for space heating in the recent and 
comparable year of 2008 (63 percent), but oil use was minimal and electricity more 
substantial.140,141   
 
The proportion of homes with natural gas as their primary heating fuel has declined only slightly 
over the past several years.  In 1980, 55 percent of homes used gas for space heating and in 2005 
the number stood at 52 percent.  The proportion of homes using oil has been cut nearly in half, 
from 20 percent to 12 percent.  Perhaps surprisingly, given the low total amount of electricity 
used for residential space heating, 30 percent of homes used electricity as their primary heating 
type in 2005, a figure that has climbed steadily since 1980.142  The apparent mismatch between 
                                                           
140 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. 
Table 2.5: Household Energy Consumption and Expenditures by End Use and Energy Source, Selected Years, 1978-
2005. DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/   

141 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Buildings Energy Data Book 
2010. Table 3.1.4: 2008 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu). March 2011. 
http://buildingsdatabook.eren.doe.gov/ 

142 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.6: 
Household End Uses: Fuel Types and Appliances, Selected Years, 1978-2005. DOE/EIA-0384(2008), June 26, 
2009. http://www.eia.doe.gov/aer/ 

http://www.eia.doe.gov/aer/
http://buildingsdatabook.eren.doe.gov/
http://www.eia.doe.gov/aer/
http://buildingsdatabook.eren.doe.gov/
http://www.eia.doe.gov/aer/
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total consumption and proportional use suggests that electricity is used for heating primarily in 
areas with mild winters and low heating demand.  
 

6.1.3 Water heating 

After space heating, water heating is the other most significant end use of oil and gas in the 
residential and commercial sectors, comprising 21 percent of residential oil use and 29 percent of 
residential gas use in 2005.  In the commercial sector, water heating used negligible amounts of 
oil, but accounted for 18 percent of natural gas use in 2008.143,144 
 
As might be expected, a similar proportion of homes use natural gas for water heating, as for 
space heating, or 53 percent in 2005.  This has remained essentially unchanged since 1980.  Just 
eight percent of homes used petroleum for water heating in 2005, down from 13 percent in 1980.  
The remaining 39 percent of homes relied on electricity for water heating in 2005, a modest 
increase from 33 percent in 1980.  Less than one percent of homes used other energy sources, 
such as solar water heating.145  
 

6.1.4 Cooking and appliances  

Cooking and appliances represent the final major end uses of residential and commercial gas. 
About nine percent of residential and seven percent of commercial gas use went toward cooking 
and appliances with residences also using a small amount of petroleum for these purposes.  There 
is no information readily available on the proportion of homes using oil, gas, and other fuels for 
these end uses.  In absolute terms, however, natural gas for appliance applications grew by about 
20 percent from 1980 to 2005, less than the rate of population growth.  Meanwhile, oil use 
remained essentially unchanged and electricity use increased by 80 percent.146,147  The rise in 
total electricity use could be due in part to increased per-capita consumption, but it seems more 

                                                           
143 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. 
Table 2.5: Household Energy Consumption and Expenditures by End Use and Energy Source, Selected Years, 1978-
2005. DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/   

144 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Buildings Energy Data Book 
2010. Table 3.1.4: 2008 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu). March 2011. 
http://buildingsdatabook.eren.doe.gov/ 

145 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.6: 
Household End Uses: Fuel Types and Appliances, Selected Years, 1978-2005. DOE/EIA-0384(2008), June 26, 
2009. http://www.eia.doe.gov/aer/ 

146 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. 
Table 2.5: Household Energy Consumption and Expenditures by End Use and Energy Source, Selected Years, 1978-
2005. DOE/EIA-0384(2008), June 26, 2009. http://www.eia.doe.gov/aer/   

147 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Buildings Energy Data Book 
2010. Table 3.1.4: 2008 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu). March 2011. 
http://buildingsdatabook.eren.doe.gov/ 

http://www.eia.doe.gov/aer/
http://buildingsdatabook.eren.doe.gov/
http://www.eia.doe.gov/aer/
http://www.eia.doe.gov/aer/
http://buildingsdatabook.eren.doe.gov/
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likely that, matching the trend with space heating and water heating, an increasing proportion of 
homes are using electricity rather than oil or gas as their primary fuel.  It would stand to reason 
that a home that used gas (or oil) for one major end use would be more likely to use it for others 
as well.    
 

6.2 Near-term analysis of substitutes 

Furnaces and boilers, water heaters, and cooking appliances – the equipment directly responsible 
for oil and gas consumption in the commercial and residential sectors – are durable, long-lived 
goods.  Water heaters have an average life span of 13 years, while furnaces, boilers and 
range/ovens typically last for 20 years or more.148  Such items also represent significant 
investments for most buyers.  Thus, similar to industrial consumers, residential and commercial 
consumers would be unlikely to replace their oil- or gas-fired equipment any earlier than 
necessary except under extreme conditions.  For that reason, any fuel-saving strategy that would 
require major new equipment to be a long-term but not a near-term possibility is considered.  
 
Given that dynamic, we identify two broad strategies for near-term reductions in oil and gas use 
in these sectors.  The first strategy considered is fuel switching or, more likely, fuel blending by 
oil and gas distribution utilities.  Heating oil, which is often distributed by trucks, could be 
replaced or supplemented by ethanol or biodiesel, both of which are discussed earlier in this 
report.  Although with greater transition costs, wood pellets are another substitute fuel for homes 
with heating oil. Fossil fuel natural gas can be supplemented with equivalent gas produced from 
renewable sources.  
 
Biogas, which is created through the anaerobic breakdown of organic material, is produced 
mainly from manure, sewage, or agricultural wastes (in digesters), or in landfills, where such 
anaerobic digestion occurs naturally.  While such gas is used primarily in industrial facilities for 
heating applications or by utilities for electricity generation, with some processing to remove 
moisture and impurities (similar to the process for fossil fuel natural gas), biogas can be refined 
to nearly pure methane and injected into distribution pipelines for use in the commercial and 
residential sectors.  The potential for increased used of biogas was discussed in the industrial 
sector chapter of this report; if the United States reaches the levels of biogas production 
discussed, any biogas used to offset fossil fuel consumption in the commercial and residential 
sectors would simply replace substitution at industrial facilities or in the electricity generation 
sector.   
 
The second strategy considered for reducing oil and gas use in commercial and residential 
sectors is efficiency upgrades to decrease space heating demand.  This refers to efficiency 
improvements for buildings in retaining heat, rather than the efficiency of the heating equipment 
itself.  Adding insulation, sealing leaks, and installing more efficient windows reduces the 
thermal transmissivity of a building envelope, thereby reducing the oil or gas needed to maintain 
a comfortable temperature in the winter.  These actions can also save electricity from lower 

                                                           
148 California Energy Commission. Consumer Energy Center: Choices at Home. N.d. 
http://www.consumerenergycenter.org/home/  

http://www.consumerenergycenter.org/home/
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demand for space cooling in the summer or space heating where electricity rather than oil or gas 
is the primary energy source.  
 
In recent years, this approach has emerged as a major energy-saving strategy, largely because it 
can often deliver substantial energy use reductions at a fairly modest cost.  In addition to ARRA-
based investments, another prominent example is the Recovery Through Retrofits initiative, 
overseen by the Council on Environmental Quality’s Middle Class Task Force.  This initiative 
focused on overcoming market barriers to residential efficiency improvements, access to 
information, financing, and workforce training.149  This follows on the efforts of numerous 
public utilities commissions and similar organizations as well as 26 states that have enacted 
energy savings targets, which often establish specific obligations or financial incentives for 
utilities to reduce energy consumption.  Utilities in many jurisdictions are required to collect a 
separate monthly charge from customers that can only be used to fund efficiency programs.  
Others operate under a decoupling regulatory framework in which profits are determined not by 
direct revenues from energy sales, but rather from performance against a number of targets, 
including efficiency measures implemented. While such regulatory efforts initially focused on 
electric utilities, an increasing number apply to gas utilities as well.150  
 
On the household scale, the DOE estimated that participants in its low-income weatherization 
program reduced their annual gas heating consumption by 32 percent.151  Because the low-
income households participating in this program have somewhat less efficient housing stock than 
the general population, this may overstate the potential gains somewhat, but it nonetheless 
indicates that there is room for substantial improvement among the entire universe of residential 
consumers.  Forty million households are eligible for DOE’s weatherization program.152  
 
On a larger level, states with gas reduction goals have generally set more modest statewide 
targets.  For example, Massachusetts has a goal of 1.15 percent gas savings by 2012 and 
Minnesota’s goal is 1.5 percent savings in 2013.  New York has the most aggressive and long-
term goal, calling for a 14.7 percent reduction in gas demand by 2020.153 
 

                                                           
149 White House Council on Environmental Quality. Recovery Through Retrofit: Saving Homeowners Money and 
Creating Jobs. N.d. http://www.whitehouse.gov/administration/eop/ceq/initiatives/retrofit  

150 American Council for an Energy-Efficient Economy. State Energy Efficiency Resource Standard (EERS) 
Activity. June 2011. http://www.aceee.org/files/pdf/fact-
sheet/State%20EERS%20Summary%20June%202011_1.pdf  

151 U.S. Department of Energy Office of Energy Efficiency & Renewable Energy. Weatherization Assistance 
Program. DOE/GO-102009-2846, May 2009. http://www1.eere.energy.gov/wip/pdfs/wap_factsheet.pdf  

152 Eisenberg, Joel F. Oak Ridge National Laboratory. Weatherization Assistance Program Technical Memorandum 
Background Data and Statistics. ORNL/TM-2010/66, March 2010. http://weatherization.ornl.gov/pdfs/ORNL_TM-
2010-66.pdf  

153 Nowak, Seth et al. Energy Efficiency Resource Standards: State and Utility Strategies for Higher Energy 
Savings. American Council for an Energy-Efficient Economy. Report U113, June 2011. 
http://www.aceee.org/sites/default/files/publications/researchreports/u113.pdf  

http://www.whitehouse.gov/administration/eop/ceq/initiatives/retrofit
http://www.aceee.org/files/pdf/fact-sheet/State%20EERS%20Summary%20June%202011_1.pdf
http://www.aceee.org/files/pdf/fact-sheet/State%20EERS%20Summary%20June%202011_1.pdf
http://www1.eere.energy.gov/wip/pdfs/wap_factsheet.pdf
http://weatherization.ornl.gov/pdfs/ORNL_TM-2010-66.pdf
http://weatherization.ornl.gov/pdfs/ORNL_TM-2010-66.pdf
http://www.aceee.org/sites/default/files/publications/researchreports/u113.pdf
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In the near term, it is highly unlikely that all homes eligible for weatherization assistance, 
whether from DOE or from state- or utility-level programs, will take advantage of them. 
Nonetheless, if all state-level programs weatherized as many homes as DOE’s nationwide 
program, this would translate into a total of 200,000 homes per year, or one million over a five-
year period.154  Based on the average efficiency improvements noted above, this level of 
participation could result in 8.5 trillion Btu in natural gas savings, or an equivalent amount in oil 
or electricity.155 
 

6.3 Long-term analysis of substitutes 

Over a longer timeframe, commercial and residential consumers will need to their replace space 
and water heating equipment and appliances as these objects reach the end of their useful 
lifespan.  This will provide consumers with an opportunity to shift away from oil- and gas-fired 
equipment.  Construction of new building stock and renovations of existing buildings allow 
further prospects for substitution.  
 
The lowest capital cost substitution would typically be to replace oil- or gas-fired space and 
water heating equipment and appliances with electric-powered units, which are readily available 
and widely used.  As noted above, in 2005, 30 percent of households used electricity as the 
primary energy source for space heating and 39 percent used it for water heating.  Both of these 
proportions have been growing over the past several years.156  
 
However, in most cases there is no clear advantage for any given residence or commercial 
building to switch to electricity, which is thermodynamically inefficient at delivering heat.  The 
Federal Energy Management Program estimates the annual energy cost of a typical gas water 
heater as approximately half the cost of an electric unit,157 while the California Energy 
Commission reports that electricity usually costs three times as much as gas.158  While gas water 
heaters are generally more expensive up front, the difference in fuel costs outweighs this initial 
price premium.  Similarly, higher operating costs mean that electric furnaces, and electric 

                                                           
154 U.S. Department of Energy Office of Energy Efficiency & Renewable Energy. Weatherization Assistance 
Program. DOE/GO-102009-2846, May 2009. http://www1.eere.energy.gov/wip/pdfs/wap_factsheet.pdf 

155 32 percent reduction in space heating gas demand per participating household x 1 million participating 
households / 111 million total households x 2,950 trillion Btu total household space heating gas demand = 8.5 
trillion Btu savings.  

156 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.6: 
Household End Uses: Fuel Types and Appliances, Selected Years, 1978-2005. DOE/EIA-0384(2008), June 26, 
2009. http://www.eia.doe.gov/aer/ 

157 U.S. Department of Energy Federal Energy Management Program. Energy Cost Calculator for Electric and Gas 
Water Heaters. November 3, 2010. 
http://www1.eere.energy.gov/femp/technologies/eep_waterheaters_calc.html#output  

158 California Energy Commission. Consumer Energy Center: Water Heaters. N.d. 
http://www.consumerenergycenter.org/home/appliances/waterheaters.html  

http://www1.eere.energy.gov/wip/pdfs/wap_factsheet.pdf
http://www.eia.doe.gov/aer/
http://www1.eere.energy.gov/femp/technologies/eep_waterheaters_calc.html#output
http://www.consumerenergycenter.org/home/appliances/waterheaters.html
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oven/ranges, are generally uneconomical compared to gas or oil units.159,160  Nonetheless, 
electricity remains a viable, if unlikely, substitute for these end uses.  The associated 
environmental impacts would depend on the fuel mix used to produce the electricity.  These 
issues have been discussed previously, and we do not repeat them here. 
 
A second substitute comes in the form of renewable energy, specifically solar water heaters. 
Solar water heaters use collectors to gather solar energy, which is then used to heat water in a 
storage tank.  Active solar water heaters contain a circulating pump, while passive systems do 
not.  Although solar water heaters are most effective in warm, sunny areas such as Florida or 
California, they can be used in colder locations as well.  Germany, for example, has more than 
9,800 MWth of solar thermal capacity installed, while Austria has more than 3,200 MWth.  Most, 
but not all, of this is for water heating.161  In the United States, all 50 states have some form of 
incentive for solar water heating systems, while the federal government provides a tax credit 
covering 30 percent of the installed cost of such systems.162 
 
Solar water heaters usually have a gas or electric backup, to provide supplemental heating on 
cloudy days, in cold seasons, or in high-demand hours.  As a result, they do not eliminate gas use 
entirely.  The Solar Rating & Certification Corporation and the Energy Star program both 
estimate that typical solar water heaters cut gas consumption in half.163,164  If applied nationwide, 
this would imply residential gas savings of 700 trillion Btu and an additional oil savings of 150 
trillion Btu.  Solar water heating in the commercial sector could contribute modest further 
savings.  Adoption on this scale is extremely unlikely; even 10 percent adoption, with savings of 
70 trillion and 15 trillion Btu, would represent a substantial increase over current levels (less than 
one percent of U.S. homes used solar water heaters in 2005).165  This would require significant 
policy support, as without generous tax credits or other incentives the higher upfront cost of a 
solar water heating system would make it uneconomical for most consumers to purchase, 
especially in less favorable climates.  
                                                           
159 U.S. Department of Energy Office of Energy Efficiency & Renewable Energy. Energy Savers: Furnaces and 
Boilers. February 9, 2011.  
http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12530 

160 California Energy Commission. Consumer Energy Center: Stoves, Ranges and Ovens. N.d. 
http://www.consumerenergycenter.org/home/appliances/ranges.html  

161 Eurobserv’er. Solar Thermal and Concentrated Solar Power Barometer. May 2011. http://www.eurobserv-
er.org/pdf/solar_thermal_barometer_2011.pdf  

162 N.C. Solar Center and Interstate Renewable Energy Council. Database of State incentives for Renewables & 
Efficiency. N.d. http://www.dsireusa.org/  

163 Solar Rating and Certification Corporation. Solar Facts – System Ratings: OG-300 Certification of Solar Water 
Heating Systems. N.d. http://www.solar-rating.org/facts/system_ratings.html   
164 U.S. Department of Energy and U.S. Environmental Protection Agency Energy Star. Solar Water Heaters. N.d. 
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=WSE  

165 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2008. Table 2.6: 
Household End Uses: Fuel Types and Appliances, Selected Years, 1978-2005. DOE/EIA-0384(2008), June 26, 
2009. http://www.eia.doe.gov/aer/ 

http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12530
http://www.consumerenergycenter.org/home/appliances/ranges.html
http://www.eurobserv-er.org/pdf/solar_thermal_barometer_2011.pdf
http://www.eurobserv-er.org/pdf/solar_thermal_barometer_2011.pdf
http://www.dsireusa.org/
http://www.solar-rating.org/facts/system_ratings.html
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=WSE
http://www.eia.doe.gov/aer/
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The other options for long-term substitution involve improvements to the building stock itself. 
Improved building-envelope efficiency has already been discussed as a short-term option.  As 
stated earlier, if 200,000 homes per year are renovated, the resulting savings could reach 8.5 
trillion Btu annually after five years.  Simply extending this trend to a 25-year period would 
indicate that renovations to five million homes could save 42.5 trillion Btu in oil, gas, or 
electricity used for space heating.  Of course, a more aggressive approach covering more homes 
would see proportionally greater impacts.  
 
Over the long run, the building stock will also go through a more fundamental transformation, as 
new buildings are built to replace aging ones and to accommodate population growth.  One well-
regarded analysis estimates that 89 million new or replaced homes and 190 billion square feet of 
nonresidential building will be constructed by 2050, and that two-thirds of buildings that will 
exist at that time did not exist in 2007.166  For context, in 2009, there were an estimated 114 
million households nationwide.167  
 
Given the massive scale of building expected, more efficient construction could produce 
substantial savings in oil and gas use for space heating (as well as electricity, for both heating 
and cooling).  This could take the form of a greater number of high-efficiency buildings, such as 
those constructed to standards such as Energy Star or LEED, or improvements to building codes 
that raise minimum performance requirements for all buildings.  
 
Minimum building energy efficiency standards have been tightening in recent years.  The 
International Energy Conservation Code (IECC), a model code, is expected to require 30 percent 
energy savings in its 2012 form as compared to the 2006 code, which itself represented a 
significant improvement over prior years.  Such a move would have far-reaching impacts.  Thirty 
nine states have adopted residential codes based on some version of the IECC and most of these 
have adopted either the 2006 or 2009 versions.  A similar number of states have adopted 
commercial energy codes based on ASHRAE 90.1, another model code.168  Presumably, these 
states will continue to adopt more recent versions of these codes as they are released. 
 
On the upper end of the spectrum, voluntary standards have pushed ‘green’ buildings to 
outperform industry averages.  The two most important such standards are Energy Star, managed 
by EPA and DOE, and the U.S. Green Building Council’s LEED family of standards.  The 
Energy Star program reports that 16,084 buildings and plants are currently Energy Star-
certified.169  To earn this designation, buildings must be more efficient than 75 percent of 
                                                           
166 Ewing, Reid et al. Growing Cooler: The Evidence on Urban Development and Climate Change. Urban Land 
Institute, 2008.  

167 U.S. Department of Energy, Energy Information Administration. Annual Energy Review 2010. Table 2.6: 
Household End Uses: Fuel Types and Appliances, Selected Years, 1978-2009. DOE/EIA-0384(2010), October 19, 
2011. http://www.eia.doe.gov/aer/ 

168 Online Code Environment & Advocacy Network. Code Status. N.d. http://www.bcap-energy.org/node/5  

169 U.S. Department of Energy and U.S. Environmental Protection Agency Energy Star. Energy Star Certified 
Buildings and Plants.  N.d. http://www.energystar.gov/index.cfm?fuseaction=labeled_buildings.locator  

http://www.eia.doe.gov/aer/
http://www.bcap-energy.org/node/5
http://www.energystar.gov/index.cfm?fuseaction=labeled_buildings.locator
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comparable buildings nationwide, which is roughly equivalent to 25 percent less energy use.  
LEED has been more widely adopted.  As of March 2011, there were just over 30,000 registered 
commercial LEED building projects.170  A 2008 study found that, while there was considerable 
variation between projects, the average LEED-certified commercial building had energy use 25 
percent below that of conventional buildings.171  While this is similar to the results of the Energy 
Star program, LEED measures against presumed results from conventional new buildings, 
whereas Energy Star compares its buildings to existing buildings.  This discrepancy 
notwithstanding, for our purposes we can assume that new commercial buildings meeting either 
the LEED or the Energy Star standard will result in at least a 25 percent reduction in energy use 
below current levels.  
 
Both Energy Star and LEED also have programs addressing homes.  Energy Star homes must be 
at least 15 percent more efficient than the 2004 International Residential Code, but with the 
additional energy-saving features included, they are typically 25 to 30 percent more efficient 
than standard homes.  More than one million U.S. homes currently meet the Energy Star 
standard.172  The LEED for Homes program has not achieved similar penetration, with just under 
50,000 registered homes as of March 2011.  As with commercial buildings, LEED measures 
energy gains versus standard new buildings. They estimate an average of 30 percent energy 
savings for LEED-certified homes.173    
 
It can safely be assumed that most if not all new residential and commercial buildings will meet 
the stricter minimum standards envisioned by the latest IECC and ASHRAE energy codes.  
Meanwhile, the overall impact of LEED, Energy Star and other voluntary green building 
standards will depend on market penetration.  While not attempting a definitive analysis, we can 
make some rough, order-of magnitude approximations to demonstrate the scale of potential 
savings.  Replacing half of all currently existing residences and commercial buildings over the 
next 25 years, through new construction or retrofits, with buildings that are 25 percent more 
efficient in space heating (a conservative estimate, since space heating will likely account for a 
disproportionate level of total energy savings), would translate into an aggregate 12.5 percent 
reduction in space heating energy demand, or about 564 trillion Btu of natural gas and 164 
trillion Btu of oil.  If 10 percent of these buildings met Energy Star and/or LEED standards and 
realized a further 25 percent improvement from the new baseline, they would save an additional 
42 trillion Btu of natural gas and 12 trillion Btu of oil from space heating.  In total, under these 
assumptions more efficient new buildings could save approximately 782 trillion Btu of oil and 
natural gas per year within 25 years. 

                                                           
170 U.S. Green Building Council. About LEED. March 2011. 
http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1720  

171 Turner, Cathy and Mark Frankel. Energy Performance of LEED for New Construction Buildings. New Buildings 
Institute, March 4, 2008. http://www.usgbc.org/ShowFile.aspx?DocumentID=3930  

172 U.S. Department of Energy and U.S. Environmental Protection Agency Energy Star. Qualified New Homes.  
N.d. http://www.energystar.gov/index.cfm?c=new_homes.hm_index  
173 U.S. Green Building Council. LEED for Homes. May 2011. 
http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1720 

http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1720
http://www.usgbc.org/ShowFile.aspx?DocumentID=3930
http://www.energystar.gov/index.cfm?c=new_homes.hm_index
http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1720
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7. ENVIRONMENTAL COSTS OF ENERGY ALTERNATIVES 

This section focuses on the potential environmental costs associated with the primary alternatives 
to oil and gas.  The purpose of this section is not to explore this subject in great detail, but rather 
to make the point that negative (as well as positive) externalities (i.e., costs borne by society that 
are not reflected in a good’s price) can be attributed to all forms of energy production, and that 
any complete consideration of alternatives would seek to take these costs into account. An 
exception, perhaps, could be made when increased energy efficiency, or simple conservation, are 
the oil or gas substitutes, as those actions will often result in decreased use of the energy 
resources that give rise to environmental costs.  The debate surrounding the so-called “Jevons 
paradox” is noted, which suggests that increased efficiency in fact leads to greater overall energy 
consumption; but the merits of that argument are beyond the scope of this report. 
 
As described in the sections above, the primary alternatives to the direct use of oil and gas across 
all sectors are biofuels and electricity production (for heat or for stationary or mobile power) 
using non-hydrocarbon fuel sources (i.e., coal, fissionable materials, or renewable resources).  
The following are brief overviews of the environmental cost considerations associated with each 
of these alternatives.  Much of this information is drawn from a study of energy-related 
externalities published by the National Academies Press in 2010.174 

7.1 Biofuels 

Externalities associated with biofuels potentially occur at each of four life-cycle stages. 
 

• Feedstock production 
• Feedstock transportation to a processing facility 
• Transportation of biofuels to distribution points 
• Downstream effects of biofuel use. 

 
The latter three types of externalities are not unique to biofuels, and generally reflect the 
production of greenhouse gases (GHG) and criteria air pollutants.  Feedstock production, 
however, introduces several potential costs that warrant separate consideration.  These include, 
but are not limited to: 
 

• GHG emissions during tilling and planting, nutrient and pesticide application, and 
harvesting and shipping of the feedstock.  This impact may be smaller for non-corn 
feedstocks, such as perennial grasses, the growth and harvesting of which may require 
fewer and less energy-intensive inputs. 

• Soil erosion and water quality impacts associated with nutrient and pesticide runoff with 
lesser impacts generally associated with non-corn feedstocks. 

• Potential loss of wildlife habitat and biodiversity when additional lands are cultivated to 
meet feedstock demands. 

                                                           
174 National Research Council, Committee on Health, Environmental, and Other External Costs and Benefits of 
Energy Production and Consumption. 2010. Hidden Costs of Energy: Unpriced Consequences of Energy Production 
and Use. Washington, DC: National Academies Press. 
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7.2 Electricity production using alternatives to oil and gas 

7.2.1 Coal 

The externalities associated with coal are well-known and include both environmental and social 
costs. On the upstream side of coal-fired power plants, these costs include 
 

• Injuries and illnesses attributable to coal mining operations. 
• Non-occupational injuries and fatalities resulting from the large-scale movement, 

particularly by train, of coal from mine to power plant. 
• Loss of habitats and changes in water quality, prior to any restoration activities, due to 

surficial mining, including the practice known as mountain top removal/valley fill. 
 
Significant downstream externalities are those resulting from combustion-related pollutant 
emissions which lead to adverse human health, visibility, agricultural, and other impacts.  The 
OECM assesses some of these impacts in the context of the No Action Alternative.  (See Section 
2 of this report.)  The emission of GHGs, as well as a variety of metals (e.g., mercury), from 
coal-fired power plants are also important externalities. 
 
In addition to emissions-related externalities, coal combustion also results in externalities related 
to the disposition of combustion residuals (e.g., fly ash), which can be managed wet in surface 
impoundments or dry in landfills.  The wet impoundments can be a source of groundwater 
contamination if protective liners do not exist or are not well-maintained.  Insufficient 
management of impoundments can also result in structural failures and the release of large 
quantities of waste material, potentially causing significant ecological damage.  Fugitive dust 
emissions from dry wastes managed in landfills are another externality that may be important to 
take into consideration with respect to the use of coal. 

7.2.2 Nuclear 

As with coal, nuclear energy gives rise to both upstream and downstream externalities, 
including: 
 

• Localized impacts on ecological resources and groundwater due to uranium mining 
activities. 

• Emissions from the facilities at which uranium conversion and enrichment occurs. 
• Low risk/high consequence events that might result in the release of radioactive materials 

from nuclear power plants. 
• Risks associated with the long-term management of low- and high-level radioactive 

wastes. 

7.2.3 Wind, solar, and other forms of renewable energy 

A primary benefit of using renewable energy resources as an alternative to fossil fuels is the 
absence of environmental costs associated with fuel extraction and production and with 
emissions during energy production.  However, wind, solar, biomass, and other forms of 
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renewable energy are not externality-free, especially when examined from a life-cycle 
perspective.  For example: 
 

• The siting of utility-scale wind energy projects can create space and use conflicts. 
Though of somewhat limited significance on land, given the relatively small footprint of 
individual turbines, such conflicts are potentially more significant in the offshore 
environment where several large projects are currently in development.  The physical 
presence of large turbine arrays (or even arrays of wave energy generators) can result in 
conflicts with other ocean uses such as commercial fishing and marine transportation. 

• The construction and operation of wind and wave energy projects in the marine 
environment can also disturb habitats (through the placement of foundations or moorings) 
and introduce pollutants into the environment (either through emissions from the vessels 
used to construct and maintain the facilities or through accidental releases of fuel or 
hydraulic fluids from vessels or offshore substations). 

• The manufacture of solar photovoltaic components can be energy-intensive; thus, the 
benefits of emission-free energy production are offset to some degree by the emissions 
associated with the energy source upon which manufacturing is dependent. 

• The manufacture of solar photovoltaic components can also be dependent on a variety of 
metals, the extraction and transport of which have environmental costs similar to those 
associated with the extraction and transport of other resources, such as coal and uranium. 

• Biomass resources used for electricity generation (or in combined heat and power 
applications) can result in the same feedstock production and transportation-related 
environmental costs as those described above for biofuels. 
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