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ABSTRACT	

Bearded,	spotted,	ribbon	and	ringed	seals	are	key	components	of	Arctic	marine	ecosystems	and	they	are	

important	subsistence	resources	for	northern	coastal	Alaska	Native	communities.		Although	these	seals	

are	protected	under	the	Marine	Mammal	Protection	Act	(MMPA)	and	bearded	and	ringed	seals	have	

been	listed	as	threatened1	under	the	Endangered	Species	Act	(ESA),	no	reliable,	comprehensive	

abundance	estimates	are	available	for	any	of	the	species.	Obtaining	reliable	abundance	estimates	for	

ice-associated	seals	is	vital	for	developing	sound	plans	for	management,	conservation,	and	responses	to	

potential	environmental	impacts	of	oil	and	gas	activities	and	climate	change.		The	Bering	Okhotsk	Seal	

Surveys	(BOSS)	project	addressed	the	most	critical	need	for	fundamental	assessment	data	on	ice-

associated	seals	(also	known	as	ice	seals)	in	the	Bering	and	Okhotsk	Seas.	Improved	monitoring	of	ice	

seals	is	fundamental	for	the	National	Marine	Fisheries	Service	(NMFS)	to	meet	its	management	and	

regulatory	mandates	for	stock	assessments	under	the	MMPA	and	extinction-risk	assessments	under	the	

ESA.	

The	best	way	to	estimate	the	abundances	of	ice-associated	seals	is	to	conduct	aerial	photographic	or	

sightings	surveys	during	the	reproductive	and	molting	period	when	the	geographic	structure	of	the	

population	reflects	the	breeding	structure	and	the	greatest	proportions	of	the	populations	are	hauled	

out	on	the	ice	and	are	available	to	be	seen.		The	distributions	of	these	seals	are	broad	and	patchy	and	so	

surveys	must	cover	large	areas.		Similarly,	the	extent,	locations,	and	conditions	of	the	sea	ice	habitat	

change	so	rapidly	that	surveys	must	be	conducted	in	a	relatively	short	period	of	time.		The	expense	and	

logistic	complexity	of	these	surveys	have	been	the	primary	impediments	to	acquisition	of	

comprehensive	and	reliable	estimates,	though	the	complexity	of	the	seals’	behavior	is	also	a	factor.		

Scientists	at	the	Polar	Ecosystems	Program	of	NOAA’s	National	Marine	Mammal	Laboratory,	Alaska	

Fisheries	Science	Center,	collaborated	with	colleagues	from	the	State	Research	and	Design	Institute	for	

the	Fishing	Fleet	(“Giprorybflot”)	in	Saint	Petersburg,	Russia,	to	conduct	synoptic	aerial	surveys	of	ice-

associated	seals	in	the	Bering	and	Okhotsk	Seas.		Conducting	spring-time	surveys	in	those	areas	will	yield	

abundance	estimates	for	the	entire	population	of	ribbon	seals,	and	all	but	a	small	fraction	of	the	spotted	

seal	population.	For	bearded	seals,	the	surveys	included	the	large	and	important	fraction	of	the	

population	that	overwinters	and	breeds	in	the	Bering	and	Okhotsk	Seas.	The	U.S.	Bureau	of	Ocean	

																																																													
1 Pending	litigation.	
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Energy	Management	(BOEM)	provided	critical	financial	support	in	2012	and	2013	to	complete	the	U.S.	

surveys	of	the	central	and	eastern	Bering	Sea.	Surveys	for	the	portions	of	the	bearded	and	ringed	seal	

populations	that	breed	in	the	Chukchi	and	Beaufort	seas	will	require	separate	and	subsequent	surveys,	

possibly	with	different	seasonal	timing.		

Two	years	of	survey	effort	were	required	to	achieve	adequate	precision	for	abundance	estimates	and	to	

ensure	that	sufficient	periods	of	suitable	weather	occurred	during	survey	periods.		Aerial	surveys	were	

conducted	in	spring	2012	and	2013.	In	the	United	States	and	Russia	combined,	the	teams	flew	more	

than	47,000	nautical	miles	(nmi)	(87,000	km)	of	survey	track.	The	completion	of	this	project	marks	the	

largest	survey	of	ice-associated	seals	ever	completed	and	will	provide	the	first	comprehensive	estimates	

of	abundance	for	bearded,	spotted,	ribbon,	and	ringed	seals	in	the	Bering	Sea	and	Sea	of	Okhotsk.	

Analysis	of	full	data	sets	from	both	years	indicate	substantial	annual	variation	in	numbers	of	seals	in	the	

U.S.	portion	of	the	Bering	Sea	during	April	and	early	May.		Model-averaged	estimates	in	2012	were	

240,000	spotted	seals,	117,000	ribbon	seals,	170,000	bearded	seals,	and	186,000	ringed	seals.		In	

contrast,	the	estimates	for	2013	were	lower:	163,000	spotted	seals,	38,000	ribbon	seals,	125,000	

bearded	seals,	and	119,000	ringed	seals.		Seals	may	have	been	distributed	farther	to	the	west	in	2013	

(i.e.	more	in	Russian	waters),	but	there	is	substantial	uncertainty	about	ribbon	and	spotted	seal	numbers	

in	2012	because	weather	constraints	prohibited	us	from	conducting	many	flights	over	the	southwest	

portion	of	our	study	(at	the	ice	edge)	where	densities	were	the	highest.	Based	on	the	proportions	of	165	

seals	instrumented	with	satellite	tags	in	separate	studies,	we	estimate	that	69,000-101,000	(42%)	of	

spotted	seals	and	6,000-25,000	(21%)	of	ribbon	seals	that	occupy	the	eastern	(U.S.)	Bering	Sea	in	spring	

used	the	Chukchi	Sea	during	the	summer,	open-water	period	in	2013	and	2012,	respectively.		

KEY	WORDS:	bearded	seal,	Erignathus	barbatus,	ribbon	seal,	Histriophoca	fasciata,	ringed	seal,	Phoca	

hispida,	spotted	seal,	Phoca	largha,	ice-associated	seals,	abundance,	distribution,	aerial	survey,	Bering	

Sea,	Sea	of	Okhotsk,	Chukchi	Sea,	Arctic	
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INTRODUCTION	

Bearded,	spotted	and	ribbon	seals	are	key	components	of	Arctic	marine	ecosystems	and	they	have	long	

been	essential	resources	in	the	subsistence	economies	of	coastal	Arctic	communities.		Although	these	

seals	are	protected	under	the	Marine	Mammal	Protection	Act	(MMPA)	and	bearded	and	ringed	seals	

have	been	listed	as	threatened	under	the	Endangered	Species	Act	(ESA),	no	reliable,	comprehensive	

abundance	estimates	are	available	for	any	of	the	species.	Obtaining	reliable	abundance	estimates	for	

ice-associated	seals	is	vital	for	developing	sound	plans	for	management,	conservation,	and	responses	to	

potential	environmental	impacts	of	oil	and	gas	activities	and	climate	change.			

Species	Background	

Spotted	Seal	(Phoca	largha)	

Spotted	seals	are	distributed	along	the	continental	shelves	of	the	Bering,	Chukchi,	and	Beaufort	Seas,	

and	from	the	Sea	of	Okhotsk	south	to	the	western	Sea	of	Japan	and	northern	Yellow	Sea	(Shaughnessy	

and	Fay	1977)	Figure	1).		

Satellite-tagging	studies	showed	that	seals	tagged	during	summer	in	the	northeastern	Chukchi	Sea	

moved	south	in	October	and	passed	through	the	Bering	Strait	in	November.	Seals	overwintered	in	the	

Bering	Sea	along	the	ice	edge	and	made	east-west	movements	along	the	edge	(Lowry	et	al.	1998).	

During	spring,	spotted	seals	tend	to	prefer	small	floes	(i.e.,	<	20	m	in	diameter),	and	inhabit	mainly	the	

southern	margin	of	the	ice	in	areas	where	the	water	depth	does	not	exceed	200	m,	and	move	to	coastal	

habitats	after	the	retreat	of	the	sea	ice	(Fay	1974,	Shaughnessy	and	Fay	1977,	Lowry	et	al.	2000,	

Simpkins	et	al.	2003).	In	summer	and	fall,	spotted	seals	use	coastal	haul-out	sites	regularly	(Frost	et	al.	

1977,	Lowry	et	al.	1998),	and	may	be	found	as	far	north	as	69-72°N	in	the	Chukchi	and	Beaufort	Seas	

(Porsild	1945,	Shaughnessy	and	Fay	1977).	To	the	south,	along	the	west	coast	of	Alaska,	spotted	seals	

are	known	to	occur	around	the	Pribilof	Islands,	Bristol	Bay,	and	the	eastern	Aleutian	Islands.	

In	2007,	the	National	Marine	Mammal	Laboratory	(NMML)	conducted	aerial		surveys	of	the	central	and	

eastern	Bering	Sea	pack	ice	using	helicopters	based	aboard	the	U.S.	Coast	Guard	icebreaker,	Healy	(Ver	

Hoef	et	al.	2014).	Frequencies	of	sightings	data	and	information	on	ice	distribution	and	the	timings	of	

seal	haul-out	behavior	were	analyzed	to	develop	a	population	estimate	of	141,479	(95%	CI	=	92,769-

321,882)	spotted	seals	in	the	areas	surveyed	within	the	eastern	and	central	Bering	Sea.		
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Bearded	Seal	(Erignathus	barbatus	nauticus)	

Bearded	seals	are	a	boreo-arctic	species	with	a	circumpolar	distribution	(Fedoseev	1965,	Johnson	et	al.	

1966,	Burns	1967,	Burns	and	Frost	1979,	Burns	1981a,	Smith	1981,	Kelly	1988a).	Their	normal	range	

(Figure	2),	extends	from	the	Arctic	Ocean	(85°N)	south	to	Sakhalin	Island	(45°N)	in	the	Pacific,	and	south	

to	Hudson	Bay	(55°N)	in	the	Atlantic	(Allen	1880,	Ognev	1935,	King	1983).	Bearded	seals	inhabit	the	

seasonally	ice-covered	seas	of	the	Northern	Hemisphere	where	they	whelp	and	rear	their	pups,	and	

molt	their	coats	on	the	ice	in	the	spring	and	early	summer.	Bearded	seals	feed	primarily	on	benthic	

organisms,	including	epifaunal	and	infaunal	invertebrates,	and	demersal	fishes;	therefore,	they	are	

closely	linked	to	areas	where	the	seafloor	is	shallow	(i.e.,	less	than	200	m).	Spring	surveys	conducted	in	

1999	and	2000	along	the	Alaskan	coast,	and	2001	in	the	central	Bering	Sea,	indicated	that	bearded	seals	

in	Alaska	tend	to	prefer	areas	of	between	70%	and	90%	sea-ice	coverage	(Simpkins	et	al.	2003),	and	

were	typically	more	abundant	20-100	nmi	from	shore	than	within	20	nmi	of	shore	(Bengtson	et	al.	

	

Figure	1	Map	of	the	approximate	distribution	of	spotted	seals,	from	Boveng	et	al.	(2009).	
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2005),	with	the	exception	of	high	concentrations	nearshore	to	the	south	of	Kivalina.	Many	of	the	seals	

that	winter	in	the	Bering	Sea	move	north	through	the	Bering	Strait	from	late	April	through	June,	and		

spend	the	summer	along	the	ice	edge	in	the	Chukchi	Sea	(Burns	1967,	Burns	1981a).	The	overall	summer	

distribution	is	quite	broad,	with	seals	rarely	hauled	out	on	land,	and	some	seals	may	not	follow	the	ice	

northward	but	remain	in	open-water	areas	of	the	Bering	and	Chukchi	Seas	(Burns	1981a,	Nelson	1981,	

Smith	1981).	An	unknown	proportion	of	the	population	moves	southward	from	the	Chukchi	Sea	in	late	

fall	and	winter,	and	Burns	(1967)	noted	a	movement	of	bearded	seals	away	from	shore	during	that	

season	as	well.	

A	reliable	population	estimate	for	this	stock	is	currently	considered	not	available.	However,	based	on	

studies	by	Ver	Hoef	et	al.	(2010),	Fedoseev	(2000),	and	Bengtson	et	al.	(2005),	Cameron	et	al.	(2010)	

estimated	about	125,000	bearded	seals	in	the	Bering	Sea	and	27,000	bearded	seals	in	the	Chukchi	Sea.	

	

Figure	2.	Map	of	the	approximate	distribution	of	bearded	seals,	from	Cameron	et	al.	(2010).	
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Cameron	et	al.	(2010)	did	not	determine	population	estimates	for	the	East	Siberian	and	Beaufort	Seas,	

but	they	did	estimate	that	the	Alaska	stock	contained	approximately	155,000	bearded	seals.	

Ribbon	Seal	(Histriophoca	fasciata)	

Ribbon	seals	inhabit	the	North	Pacific	Ocean	and	adjacent	parts	of	the	Arctic	Ocean.	In	Alaska	waters,	

ribbon	seals	are	found	in	the	open	sea,	on	the	pack	ice,	and	only	rarely	on	shore-fast	ice	(Kelly	1988b).	

They	range	northward	from	Bristol	Bay	in	the	Bering	Sea	into	the	Chukchi	and	western	Beaufort	Seas	

(Figure	3).	From	late	March	to	early	May,	ribbon	seals	inhabit	the	Bering	Sea	ice	front	(Burns	1970,	

Burns	1981b,	Braham	et	al.	1984).	They	are	most	abundant	in	the	northern	part	of	the	ice	front	in	the	

central	and	western	parts	of	the	Bering	Sea	(Burns	1970,	Burns	et	al.	1981).	

As	the	ice	recedes	in	May	to	mid-July	the	seals	move	farther	to	the	north	in	the	Bering	Sea,	where	they	

haul	out	on	the	receding	ice	edge	and	remnant	ice	(Burns	1970,	Burns	1981b,	Burns	et	al.	1981).	There	is	

little	known	about	the	range	of	ribbon	seals	during	the	rest	of	the	year.	Kelly	(1988b),	suggested	that	

many	ribbon	seals	migrate	into	the	Chukchi	Sea	for	the	summer.	Satellite	tag	data	from	2005	and	2007	

indicate	that	ribbon	seals	disperse	widely.	Ten	seals	tagged	in	2005	near	the	eastern	coast	of	Kamchatka	

spent	the	summer	and	fall	throughout	the	Bering	Sea	and	Aleutian	Islands;	eight	of	the	26	seals	tagged	

in	2007	in	the	central	Bering	Sea	moved	to	the	Bering	Strait,	Chukchi	Sea,	or	Arctic	Basin	as	the	seasonal	

ice	retreated	(Boveng	et	al.	2008).		

At	present,	reliable	data	on	trends	in	population	abundance	for	the	Alaska	stock	of	ribbon	seals	are	

unavailable.	Although	the	current	population	trend	is	unknown,	results	from	recent	aerial	surveys	and	

reports	from	Alaska	Native	hunters	suggest	that	there	has	not	been	a	dramatic	decline	in	the	recent	

past.	(Boveng	et	al.	2013).	This	stock	is	thought	to	occupy	its	entire	historically-observed	range	(Boveng	

et	al.	2013).	
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Figure	3.	Map	of	the	approximate	distribution	of	ribbon	seals,	from	Boveng	et	al.	(2013).	

Ringed	Seal	(Phoca	hispida	hispida)	

Ringed	seals	have	a	circumpolar	distribution	and	are	found	in	all	seasonally	ice-covered	seas	of	the	

Northern	Hemisphere.	The	Alaska	stock	of	ringed	seals	is	considered	the	portion	of	the	subspecies	

Phoca	hispida	hispida	that	occurs	within	the	U.S.	Exclusive	Economic	Zone	(EEZ)	of	the	Beaufort,	

Chukchi,	and	Bering	Seas	(Figure	4).	

Throughout	their	range,	ringed	seals	have	an	affinity	for	ice-covered	waters	and	are	well	adapted	to	

occupying	both	shore-fast	and	pack	ice	(Kelly	1988c).	They	remain	in	contact	with	ice	most	of	the	year	

and	use	it	as	a	platform	for	pupping	and	nursing	in	under-snow	lairs	in	late	winter	to	early	spring,	for	

molting	in	late	spring	to	early	summer,	and	for	resting	at	other	times	of	the	year.	In	Alaskan	waters,	

during	winter	and	early	spring	when	sea	ice	is	at	its	maximal	extent,	ringed	seals	are	abundant	in	the	

northern	Bering	Sea,	Norton	and	Kotzebue	Sounds,	and	throughout	the	Chukchi	and	Beaufort	Seas.	They	
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occur	as	far	south	as	Bristol	Bay	in	years	of	extensive	ice	coverage	but	generally	are	not	abundant	south	

of	Norton	Sound	except	in	nearshore	areas	(Frost	1985).	Although	details	of	their	seasonal	movements	

have	not	been	adequately	documented,	it	is	thought	that	most	ringed	seals	that	winter	in	the	Bering	and	

Chukchi	Seas	migrate	north	in	spring	as	the	seasonal	ice	melts	and	retreats	(Burns	1970)	and	historically	

spend	summer	in	the	pack	ice	of	the	northern	Chukchi	and	Beaufort	seas,	as	well	as	in	nearshore	ice	

remnants	in	the	Beaufort	Sea	(Frost	1985).		

Ringed	seal	population	surveys	in	Alaska	have	used	various	methods	and	assumptions,	had	incomplete	

coverage	of	their	habitats	and	range,	and	were	conducted	more	than	a	decade	ago;	therefore,	current,	

comprehensive,	and	reliable	abundance	estimates	or	trends	for	the	Alaska	stock	are	not	available.	Frost	

et	al.	(2004)	conducted	surveys	within	40	km	of	shore	in	the	Alaskan	Beaufort	Sea	during	May-June	

1996-1999,	and	observed	ringed	seal	densities	ranging	from	0.81	seals/km2	in	1996	to	1.17	seals/km2	in	

1999.	Bengtson	et	al.	(2005)	conducted	surveys	in	the	Alaskan	Chukchi	Sea	during	May-June	1999	and	

2000.	Population	estimates	were	derived	from	observed	densities	corrected	for	availability	bias	using	a	

haul-out	model	from	6	tagged	seals.	Ringed	seal	abundance	estimates	for	the	entire	survey	area	were	

252,488	(SE	=	47,204)	in	1999	and	208,857	(SE	=	25,502)	in	2000.	Using	the	estimates	from	Frost	et	al.	

(2004)	and	Bengtson	et	al.	(2005),	Kelly	et	al.	(2010)	calculated	a	total	population	estimate	for	in	the	

Alaskan	Chukchi	and	Beaufort	Seas	regions	of	at	least	300,000	ringed	seals,	which	is	likely	an	

underestimate.	
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Previous	Research	

Using	recent	abundance	surveys	to	estimate	statistical	power	and	effort	required	for	Bering-

Okhotsk	seal	surveys	(BOSS)	

Between	13	April	and	26	May	2007,	NMML	conducted	population	surveys	of	spotted,	ribbon,	and	

bearded	seals	in	an	area	of	81,600	km2	in	the	central	Bering	Sea.	Researchers	surveyed	2,748	km2	with	

line	transect	methods	from	helicopters	deployed	from	the	U.S.	Coast	Guard	icebreaker	Healy	(Figure	5;	

(Cameron	and	Boveng	2007).	During	that	period,	the	sea	ice	conditions	and	the	spatial	distributions	of	

seals	changed	dramatically	(Figure	6),	which	greatly	complicated	abundance	estimation.	

	

	

Figure	4.	Map	of	the	approximate	distribution	of	ringed	seals,	from	Kelly	et	al.	(2010).	
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Figure	5.	Map	showing	the	abundance	and	distribution	of	seals	observed	during	the	Healy	surveys,	from	Cameron	
and	Boveng	(2007).		Counts	of	animals	were	summed	over	5	nmi	of	track	line	and	are	represented	by	a	pie	chart.		
The	diameter	of	the	pie	represents	the	total	number	of	animals	in	the	5	nmi	of	track	line,	and	the	relative	
proportions	of	species	seen	are	shown	with	different	colored	pie	wedges.			
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	Using	methods	described	by	Ver	Hoef	et	al.	(2014),	we	accounted	for:	1)	the	incomplete	availability	of	

seals,	with	a	generalized	linear	mixed	model	fitted	to	seal	haul-out	timelines	obtained	by	satellite	

telemetry,	2)	the	incomplete	detection,	through	standard	distance-sampling	methods	along	with	a	

double-observer	model,	and	3)	the	shifting	ice	and	seal	movements,	with	a	spatially-autocorrelated	

regression	model	using	remotely	sensed	sea	ice	concentrations	to	predict	abundance	for	each	survey	

date;	all	were	combined	in	a	hierarchical	model	to	obtain	stable	estimates	of	population	abundances	for	

this	region,	even	though	the	populations	were	spatially	dynamic.	Within	this	study	area,	spotted	seals	

were	most	abundant	(233,700,	95%	CI	137,300–793,100),	followed	by	bearded	seals	(61,800,	95%	CI	

34,900–171,600)	and	ribbon	seals	(61,100,	95%	CI	35,200–189,300).	

These	surveys	and	estimates	were	for	only	a	portion	of	the	ranges	of	these	species,	and	were	conducted	

in	part	to	provide	data	necessary	to	design	and	plan	the	2012	and	2013	synoptic	surveys	in	the	present	

project.	For	example,	we	assumed	that	seals	are	spatially	distributed	as	an	overdispersed	Poisson	

process	with	variance	=	 Bql ;	where	q 	is	the	overdispersion	factor	(estimated	from	the	2007	surveys	

as:	bearded=18;	spotted=79;	ribbon=99)	l 	is	density	(bearded=0.2;	spotted=0.5;	ribbon=0.2);	and	B	is	

the	area	to	be	surveyed.	Given	the	strip	width	of	our	survey	sensors	W	(about	360	m),	we	calculated	the	

survey	track	length	L,	required	to	achieve	a	coefficient	of	variation	(CV)	of	0.2	in	our	abundance	

estimates	for	U.S.	waters	using:	

	

Figure	6.	Sea	ice	extent	in	the	Bering	Sea	on	April	21,	2007	(left)	and	May	16,	2007	(right).	
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For	bearded	seals,	we	estimated	required	track	lengths	of	6,250	km;	for	spotted	seals,	10,972	km;	and	

for	ribbon	seals,	34,375	km.	Averaging	these	three	estimates	yields	16,667	km,	or	about	17000	km	of	

survey	track	length	as	our	goal	for	adequate	precision	in	each	of	the	U.S.	and	Russian	surveys.			

We	recognized	however,	that	this	goal	for	survey	transect	length	was	fairly	conservative.	The	density	

and	overdispersion	factors	from	previous	experience	were	based	on	distance	sampling,	a	haul-out	

correction	and	spatial	modeling,	and	included	all	of	the	imprecision	in	combining	them	for	estimating	

abundance	from	those	data.	The	2012	and	2013	surveys	were	to	be	based	on	direct	counts	from	aerial	

photos,	which	are	more	precise.	Together	with	the	increased	precision	in	the	haul-out	correction	factors	

from	additional	satellite-tag	records	and	the	reduction	in	uncertainty	of	the	overall	population	estimate	

from	the	combined	and	simultaneous	effort	of	the	U.S.	and	Russian	surveys,	we	estimated	a	CV	of	about	

0.1	for	the	total	estimate	of	spotted	seals.		

We	chose	a	CV	of	0.1	in	order	to	detect	a	35%	change	in	population	abundance	with	90%	confidence	at	

α	=	0.1.		Surveys	of	this	type	are	expensive	and	logistically	and	technically	challenging.		As	such,	one	

could	expect	that	they	will	only	be	conducted	every	decade	or	more.		A	population	change	of	35%	over	

10	years	would	require	an	annual	decline	of	only	4-5%	per	year.		Detecting	such	a	change	is	critically	

important	in	the	context	of	habitat	changes	resulting	from	climate	change,	oil	and	gas	development,	and	

other	impacts.	

Using	seasonal	movement	studies	to	determine	proportions	of	seals	from	the	Bering	Sea	that	

use	the	Chukchi	Sea	during	summer	

NMML	deployed	156	satellite	tags	on	ribbon	and	spotted	seals	(67	adults,	38	sub-adults	and	51	young	of	

the	year)	in	the	Bering	Sea	between	2007	and	2010.	Results	from	these	tagging	efforts	provided	a	basis	

for	quantifying	the	use	of	habitats	north	of	the	Bering	Strait	by	both	species.	Chukchi	Sea	habitat	use	

occurs	mostly	during	the	open	water	period	from	July	through	October	(Figure	7).	We	estimated	that	

during	this	time,	spotted	and	ribbon	seals	of	the	Bering	Sea	population	spend	26.1%	and	9.5%	of	their	

time,	respectively,	north	of	the	Bering	Strait.	Based	on	proportions	of	seals	in	our	tagged	sample,	about	

42%	of	Bering	Sea	spotted	seals	and	21%	of	Bering	Sea	ribbon	seals	use	the	Chukchi	Sea	during	the	

summer,	open-water	period.	The	consistent	use	of	habitats	within	the	Chukchi	Sea	by	both	of	these	
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species	suggests	they	are	likely	to	encounter	activities	related	to	oil	and	gas	extraction	and	exploration.	

Because	ribbon	and	spotted	seals	concentrate	in	the	Bering	Sea	in	the	spring	(March-May),	using	sea	ice	

as	a	platform	for	giving	birth,	nursing	and	breeding	(Figure	8),	springtime	aerial	surveys	in	this	region	are	

the	most	efficient	means	for	estimating	abundance.	Therefore,	abundance	estimates	obtained	during	

spring	in	the	Bering	Sea,	and	proportions	of	the	Bering	Sea	populations	that	move	north	through	Bering	

Strait	for	the	open-water	season,	form	a	basis	for	computing	more	informative	estimates	of	the	

numbers	of	ribbon	and	spotted	seals	that	rely	on	the	Chukchi	Sea	during	the	open	water	season,	and	

that	may	interact	with	oil	and	gas	activities	in	that	region	By	combining	abundance	estimates	from	the	

BOSS	surveys	with	results	from	ongoing	analysis	of	seal	movements	and	behavior,	we	wished	to	provide	

more	informative	estimates	of	the	numbers	of	ribbon	and	spotted	seals	that	rely	on	the	Chukchi	Sea	

during	the	open	water	season,	and	that	may	interact	with	oil	and	gas	activities	in	that	region.	

For	bearded	and	ringed	seals,	the	satellite-telemetry	data	are	not	currently	sufficient	for	estimating	the	

proportions	of	the	Bering	Sea	populations	that	summer	in	the	Chukchi	Sea.	However,	these	proportions	

are	typically	thought	to	be	high	(Cameron	et	al.	2010,	Kelly	et	al.	2010),	so	as	a	first	approximation	the	

entire	Bering	Sea	populations	could	be	considered	present	in	the	Chukchi	Sea	during	part	or	all	of	the	

open-water	season.		

 

Figure	7.	Use	of	the	Bering	and	Chukchi	seas	by	ribbon	(green)	and	spotted	(orange)	seals	during	the	open	water	
period.	Ice	extent	is	indicated	by	the	dashed	line.	
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Figure	8.	Use	of	the	Bering	and	Chukchi	seas	by	ribbon	(green)	and	spotted	(orange)	seals	during	the	pupping	
and	molt	period.	Ice	extent	is	indicated	by	the	dashed	line.	

PROJECT	BACKGROUND	

Interagency	Agreement	(IAA)	M12PG00017	is	part	of	an	overall	project	supported	by	NOAA	and	BOEM	

funds.	The	BOEM	funds	have	been	provided	as	charter	aircraft	support	under	a	separate	IAA	between	

BOEM	and	the	U.S.	Department	of	Interior,	Office	of	Aircraft	Services,	Aviation	Management	Division,	

and	as	reimbursable	funds	to	NOAA	under	this	IAA.	This	report	includes	activities	conducted	and	

supported	under	all	three	funding	sources,	to	provide	sufficient	context	for	the	more	limited	scope	of	

this	IAA.	

Ice-associated	seal	surveys	were	conducted	by	the	NMML	in	the	spring	of	2012	and	2013	(Moreland	et	

al.	2013).	The	surveys	are	a	component	of	the	Alaska	Fisheries	Science	Center’s	Loss	of	Sea	Ice	(LOSI)	

Program	and	are	part	of	a	joint	US-Russian	effort	(BOSS:	Bering-Okhotsk	Seal	Surveys)	to	estimate	the	

abundance	of	bearded,	ringed,	spotted,	and	ribbon	seals	in	the	Bering	Sea	and	the	Sea	of	Okhotsk.	In	

2010-2011,	LOSI	funding	was	used	to	support	planning	and	preparation	for	joint	U.S.-Russia	surveys,	

including	support	for	aircraft	charters	in	Russia.	Government-wide	budget	reductions	in	2012	derailed	

plans	to	use	LOSI	funds	in	2012-2013	to	procure	aircraft	charters	for	the	U.S.	survey	area	of	this	

international	effort.	NOAA	had	already	committed	significant	funds	to	the	U.S.	surveys	by	hiring	

personnel	and	purchasing	necessary	supplies	and	equipment	(e.g.,	cameras	and	thermal	sensors).	In	

consideration	of	overlapping	goals	and	needs	for	data	between	NOAA	and	BOEM,	NMML	requested	
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assistance	from	BOEM	to	support	aircraft	contracts	and	enable	completion	of	the	U.S.	portion	of	this	

program.	

The	NMML	obtained	all	necessary	research	permits.	The	NMML	conducted	the	aerial	surveys	under	

Marine	Mammal	Protection	Act	(MMPA)	Scientific	Research	Permits	permit	15126,	issued	in	2010	and	

valid	until	2015.	The	satellite	telemetry	studies	used	for	estimating	availability	were	conducted	under	

MMPA	Permits	15126,	782-1765,	782-1676	and	358-1787.	NMML	research	is	subject	to	review	and	

oversight	by	an	animal	care	and	use	committee	(IACUC)	to	ensure	compliance	with	the	Animal	Welfare	

Act.	This	project	was	reviewed	and	authorized	under	IACUC	Number	A/NW	2010-3	through	2013.	

GOAL	AND	OBJECTIVES	

Goal:	

The	long-term	goal	of	the	BOSS	program	is	to	calculate	abundance	estimates	for	bearded,	spotted,	

ribbon,	and	ringed	seals	in	the	Bering	and	Okhotsk	Seas.	The	specific	objectives	of	the	BOEM-funded	

portion	of	the	program	are	below.		

Objectives:	
1. Contract	for	a	NOAA	Twin	Otter	and	a	second	longer-range	aircraft	to	conduct	surveys	of	the	central	

and	eastern	Bering	Sea	shelf	in	April	and	May	of	2012	and	2013.	

2. Conduct	surveys	of	ice-associated	seals	using	high-resolution	digital	photographic	and	thermal	

imaging	sensors,	with	the	coverage	required	to	obtain	annual	seal	abundance	estimates	with	

adequate	precision	(CV=0.2).		

3. Effectively	retrieve,	manage,	and	process	the	sensors’	imagery	for	analyses.	

4. For	ribbon	and	spotted	seals,	which	breed	in	the	Bering	Sea	but	are	present	seasonally	in	the	

Chukchi	Sea,	produce	estimates	of	the	numbers	of	individuals	that	use	the	Chukchi	Sea	during	the	

open-water	season.	

METHODS	

The	best	way	to	estimate	the	abundances	of	ice-associated	seals	is	to	conduct	aerial	photographic	and	

sightings	surveys	during	the	reproductive	and	molting	period	when	the	geographic	structure	of	the	

population	reflects	the	breeding	structure	and	the	greatest	proportions	of	the	populations	are	hauled	

out	on	the	ice	and	are	available	to	be	seen.		The	distributions	of	these	seals	are	broad	and	patchy	and	so	
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surveys	must	cover	large	areas.		Similarly,	the	extent,	locations,	and	conditions	of	the	sea	ice	habitat	

change	so	rapidly	that	any	surveys	must	be	conducted	in	a	relatively	short	period	of	time.			

Scientists	at	the	Polar	Ecosystems	Program	of	NOAA’s	National	Marine	Mammal	Laboratory	(NMML),	

Alaska	Fisheries	Science	Center	(AFSC),	collaborated	with	colleagues	from	the	State	Research	and	Design	

Institute	for	Fishing	Fleet	(“Giprorybflot”)	in	Saint	Petersburg,	Russia,	to	design	and	conduct	synoptic	

aerial	surveys	of	ice-associated	seals	in	the	Bering	and	Okhotsk	Seas.		Conducting	spring-time	surveys	in	

those	areas	yield	abundance	estimates	for	the	entire	population	of	ribbon	seals,	and	all	but	a	small	

fraction	of	the	spotted	seal	population.	For	bearded	seals,	the	surveys	included	the	large	and	important	

fraction	of	the	population	that	overwinters	and	breeds	in	the	Bering	and	Okhotsk	Seas.	Though	some	

ringed	seals	were	expected	to	be	observed	outside	of	their	snow	lairs,	it	was	assumed	that	the	visible	

proportion	of	the	actual	population	would	be	low,	so	that	without	appropriate	correction	factors,	

estimates	of	their	abundance	would	be	negatively	biased.		Two	years	of	survey	effort	were	required	to	

ensure	adequate	precision	for	abundance	estimates	and	to	ensure	that	sufficient	periods	of	suitable	

weather	occurred	during	survey	periods.	

Objective	1:	Contract	for	a	NOAA	Twin	Otter	and	a	second	long-range	aircraft	

The	NMML’s	Bering	Sea	pack	ice	surveys	for	ice-associated	seals	have	progressed	from	ship-based	

helicopter	flights	reliant	on	observer-collected	data	in	2007	and	2008	to	instrument-only	surveys	on	

long-range,	fixed-wing	aircraft.	Using	long-range,	fixed-wing	aircraft	makes	it	possible	to	achieve	greater	

coverage	of	the	survey	area	in	a	shorter	period	of	time,	improving	abundance	estimates	by	minimizing	

the	change	in	sea	ice	habitat	during	the	survey	window.		Two	aircraft	operating	simultaneously	would	

enable	us	to	complete	surveys	of	the	US	portion	of	the	Bering	Sea	in	less	time.		We	determined	that	a	

NOAA-owned	Twin	Otter	DHC-6	aircraft	(Figure	9)	and	a	longer-range	Aero	Commander	AC-690	owned	

and	operated	by	Clearwater	Air	(Figure	10),	would	be	the	best	platforms	for	our	surveys.		Both	aircraft	

have	a	long	and	safe	history	of	outstanding	support	for	science	operations	in	Alaska.		They	have	long	

ranges	and	existing	belly-mounted	open-air	ports	required	for	our	imaging	sensors.		For	comparison,	the	

Russian	team	used	a	Russian-made	survey	aircraft,	the	Antonov	AN-38-100	(Figure	11).	
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Figure	9.	NOAA	Twin	Otter	(N56RF).		This	U.S.	aircraft	mostly	surveyed	the	southern	portion	of	the	Bering	Sea.	

	

 

Figure	10.	Aero	Commander	(N222ME).		This	U.S.	aircraft	mostly	surveyed	the	northern	portion	of	the	Bering	
Sea.		

	



BOEM	Report	2016-077	

	16	

 

Figure	11.	Antonov	AN-38-100.	Russian	survey	aircraft	that	covered	the	Sea	of	Okhotsk	and	the	Russian	
(western)	portion	of	the	Bering	Sea.	

Objective	2:	Conduct	surveys	of	ice-associated	seals.	

U.S.	flights	were	planned	for	4-8	hours	per	day	at	an	altitude	of	1,000	ft	(300	m)	to	maximize	the	area	

surveyed	while	maintaining	the	required	minimum	ground	resolution	requirements	(i.e.,	~20	cm/pixel	

for	thermal	detection	and	~2cm/pixel	for	species	identification),	and	minimizing	the	chance	of	

disturbance	to	seals	and	other	wildlife.	Flights	originated	from	airports	in	Nome,	Bethel,	and	St.	Paul	

Island,	Alaska,	while	also	using	an	airstrip	in	Gambell,	on	St.	Lawrence	Island	as	a	refueling	point	to	reach	

the	most	remote	areas	of	sea	ice	in	the	central	Bering	Sea.	The	Russian	team’s	Sea	of	Okhotsk	surveys	

began	from	Khabarovsk	in	Tatar	Strait	and	worked	their	way	through	Shelikhov	Bay	and	into	Karaginsky	

Bay	using	airports	at	Yuzhno-Sakhalinsk,	Nikolaevsk,	Nogliki,	Okha,	Tukchi,	Okhotsk	and	Magadan.	

Surveys	of	the	western	Bering	Sea	used	airstrips	at	Ossora,	Tilichiki,	Beringovsky,	Anadyr	and	

Provideniya	on	Russia’s	Kamchatka	Peninsula.		

Advanced	thermal-imaging	technology	was	used	on	both	the	U.S.	and	Russian	survey	aircraft	to	detect	

the	warm	bodies	of	seals	against	the	background	of	the	cold	sea	ice	(Figure	12).	High-resolution	digital	

images	are	used	to	identify	the	species	of	seals	detected	by	the	thermal	imagers.		



	 	 	 BOEM	Report	2016-077	

	 17	

 

Figure	12.	Example	of	two	adult	bearded	seals	detected	using	thermal	imagery.	

A	NOAA	Twin	Otter	(N56RF)	aircraft	housed	three	FLIR	SC645	thermal	imagers	that	continuously	

recorded	data	in	the	7.5-13.0	µm	wavelength.	Each	thermal	imager	was	paired	with	a	Canon	Mark	III	

1Ds	digital	single-lens	reflex	(SLR)	camera	fitted	with	a	100-mm	Zeiss	lens.	All	six	instruments	were	

mounted	in	an	open-air	belly	port	(Figure	13).	The	center	pair	was	set	to	a	0°	angle	while	the	port	and	

starboard	pairs	were	set	to	+/-	25.5°	to	avoid	left	and	right	overlap.	The	combined	thermal	swath	width	

was	approximately	1,500	ft	(470	m),	at	an	altitude	of	1,000	ft.	A	contracted	Aero	Commander	aircraft	

(Figure	14)	carried	two	sets	of	paired	thermal	imagers	(SC645)	and	digital	SLR	cameras	(Nikon	D3X)	set	

to	12.5°	angles	outward	and	surveyed	a	swath	width	of	approximately	900	ft	(280	m).		The	thermal	

imagers	were	controlled	by	FLIR	software	(ExaminIR)	and	set	to	record	at	a	rate	of	4	frames	per	second.	

The	SLR	cameras	were	set	to	fire	at	their	maximum	write	speed	of	approximately	1	image	per	second.	

The	Russian	aircraft	carried	a	large,	cooled	thermal	imager,	Malakhit-M,	which	was	paired	with	three	

fixed,	digital	SLR	cameras	fitted	with	50-mm	lenses	(Figure	15).	On	board	observers	also	collected	

images	with	hand-held	SLR	cameras	with	zoom	lenses.	Aircraft	and	instrument	details	are	provided	in	

Table	1.	
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Figure	13.	NOAA	Twin	Otter	belly-port	camera	setup:	three	FLIR	SC645	thermal	imagers	(top),	paired	with	three	
Canon	1Ds	Mark	III	digital	SLR	cameras	(bottom).		

 

 

Figure	14.	Aero	Commander	instrument	setup.	A	Nikon	D3X	digital	SLR	camera	paired	with	a	FLIR	SC645	thermal	
imagers,	in	each	of	two	belly	ports.	
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Figure	15.	Russian	survey	aircraft	camera	setup	showing	a	downward	facing	Nikon	D3X	and	two	oblique	Nikon	
D300s.	The	cooled	thermal	imager,	Malahit-M,	is	in	a	separate	compartment	of	the	aircraft.	

Table	1.	Instrument	and	camera	resolution	of	US	and	Russian	BOSS	2012	and	2013	survey	efforts.	

	 Russian	Surveys	 US	Surveys	

Aircraft	 Antonov	AH-38-100	 NOAA	Twin	Otter	DHC-
6	

Aero	Commander	AC-
690	

Thermal	Imager	 Malahit-M	 FLIR	SC645	 FLIR	SC645	

Digital	SLR	Cameras	 Nikon	D800,	D300,	
D3X	

Canon	1Ds	Mark	III	 Nikon	D3X	

SLR	Lens	 50mm	 100mm	 100mm	

Survey	Altitude	 200-250m	 300m	 300m	

Thermal	Swath	 500m	 470m	 280m	

SLR	Swath	 500m	 390m	 237m	

SLR	Resolution	 2-7	cm/pixel	 1.9-2.1	cm/pixel	 2.0-2.5	cm/pixel	
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Objective	3:	Effectively	retrieve,	manage,	and	process	all	imagery	for	analyses.	

The	BOSS	project	capitalized	on	recent	advances	in	technology	by	pairing	thermal	and	high-resolution	

digital	SLR	imagery	to	detect	warm	seal	bodies	hauled	out	on	cold	sea	ice.	Compared	to	observer-based	

surveys,	thermal-detection	surveys	require	fewer	personnel	and	less	post-survey	processing	time,	can	

be	flown	at	a	higher	altitude	(reducing	disturbance	of	seals),	and	yield	higher	rates	of	seal	detection.	

Thermal	detection	is	particularly	useful	in	detecting	animals	that	are	well	camouflaged	(Figure	16).	High-

resolution	digital	imagery	is	being	used	to	identify	seal	species	and	differentiate	hot	spots	generated	by	

seals	from	anomalous	thermal	signals	(false	positives	caused	by	melt	pools,	dirty	ice,	etc.).	Using	

imagery	also	allows	greater	flexibility	to	explore	potential	sources	of	variability	such	as	detection	

probability	and	examine	species	misclassification	rates.		
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Figure	16.	Example	of	an	animal	(seal	pup)	likely	to	be	missed	during	a	manual	review	of	SLR	imagery,	but	easily	
detected	using	thermal	imagery.	
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Thermal	detection	

Manual	hot	spot	detection	
Preliminary	analysis	of	2012	data	for	both	the	U.S.	and	Russian	surveys	was	based	on	setting	a	

temperature	threshold	and	manually	reviewing	potential	seal	hot	spots.	Russian	technique	relied	on	

software	to	identify	hot	spots,	which	were	then	manually	reviewed	and	matched	to	SLR	imagery.	The	

U.S.	thermal	video	recordings	were	first	analyzed	using	temperature	profiles.	A	temperature	threshold	

was	applied	to	a	graph	of	maximum	pixel	temperature	per	frame	and	video	frames	corresponding	to	

peaks	that	exceeded	the	threshold	(‘hot	spots’)	were	reviewed	(Figure	17).	Distinct	peaks	falling	below	

the	threshold	were	also	evaluated.	Valid	hot	spots	were	matched	to	corresponding	SLR	imagery.	Seal	

species,	thermal	anomalies	(e.g.,	melt	pool	or	dirty	ice)	and	additional	image	characteristics	were	

recorded.	Unfortunately,	it	was	not	possible	to	identify	a	consistent	threshold	between	the	temperature	

of	the	ice	and	the	temperature	of	the	seals.	Background	temperature	noise	was	variable	throughout	

each	long	flight	and	ringed	seals	disproportionately	fell	below	the	threshold.	

	

 

 

 

 

 

 

 

 

 

 

Figure	17.	The	initial	US	hot	spot	detection	method	utilized	a	temperature	threshold	applied	to	a	plot	of	
maximum	pixel	temperature	per	frame	to	identify	which	thermal	frames	to	evaluate.	Digital	SLR	images	were	
matched	using	the	timestamps	and	ice	features	to	locate	the	source	of	the	thermal	signature.	

LOSI12_AeroFl11_PCam_120424_233240a.JPG 
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Automated	hot	spot	detection	(Skeyes)	
We	then	developed	automated	hot	spot	detection	software	(Skeyes)	that	relies	on	anomalous	

temperature	shifts	rather	than	specific,	absolute,	temperature	thresholds.	This	“outlier”	method	

reduces	the	number	of	seals	missed	by	eliminating	the	need	to	set	(subjective)	temperature	thresholds	

that	require	frequent	adjustment	in	response	to	changes	in	atmospheric	conditions	(e.g.,	humidity,	air	

temperature,	sea	ice	temperature,	and	seal	temperature,	which	changes	with	time	out	of	the	water).	

Skeyes	is	designed	to	operate	inflight	as	well	as	post	process	FLIR	video	files,	filtering	out	frames	

identified	by	the	algorithm.	Filtered	frames	were	reviewed	manually	and	valid	hot	spots	were	matched	

to	color	imagery	using	patterns	in	the	ice	and	the	source	of	the	hot	spot	was	determined.	One	thermal	

camera	video	file	per	2012	flight	was	analyzed	manually,	all	remaining	thermal	data	were	processed	by	

Skeyes.	

Species	Identification	

The	different	characteristics	that	distinguish	these	ice-associated	seal	species	can	sometimes	be	difficult	

to	discern	from	imagery	taken	at	survey	altitude.		For	example,	the	characteristic	bands	on	the	coats	of	

ribbon	seals	will	not	always	be	visible	in	a	photo,	depending	on	the	orientation	of	the	seal	and	angle	of	

the	image	(Figure	18).		The	identifying	characteristics	of	spotted	and	ringed	seals	can	be	even	more	

difficult	to	discern	from	aerial	photos.	Although	typically	ignored	in	population	estimates,	errors	can	be	

common	when	attempting	to	identify	similar-looking	seal	species	from	aerial	photographs.			

We	accounted	for	species	misidentification	in	our	abundance	model	by	estimating	misclassification	

probabilities	for	species	identified	in	the	images.	Several	ice	seal	experts	with	NMML’s	Polar	Ecosystems	

Program	identified	the	species	of	more	than	600	seals	detected	by	thermal	imagers	and	photographed	

during	the	2012	surveys.		To	learn	more	about	the	factors	influencing	the	species	identification	process,	

our	experts	also	recorded	the	specific	morphological	characteristics	that	are	visible	in	each	image.		In	

addition,	experts	ranked	their	confidence	in	each	species	identification	as	"positive,"	"likely,”	or	"guess.”	

By	replicating	the	species-identification	process	with	multiple	observers	for	each	seal,	and	assuming	that	

a	positive	species-identification	is	the	correct	species,	the	probabilities	of	correct	(and	incorrect)	species	

identification	were	estimated	and	accounted	for	in	our	final	estimates	of	population	abundance	for	each	

species	(McClintock	et	al.	2015).	



BOEM	Report	2016-077	

	24	

Abundance	estimation	

Analyzing	abundance	from	thermal	video	and	digital	photography	presents	several	statistical	challenges	

due	to	incomplete	detection,	false	positives,	and	species	misidentification.	We	developed	several	novel	

statistical	approaches	to	estimate	abundance	in	face	of	such	nuisance	factors.		The	first	approach	we	

developed	expressed	abundance	of	each	species	using	a	spatial	regression	model	that	related	expected	

density	to	covariates	(e.g.,	sea	ice	concentration,	distance	from	land,	distance	from	1000m	shelf	break,	

instance	from	the	southern	ice	edge);	observed	counts	of	each	species	were	then	assumed	to	arise	from	

an	overdispersed	Poisson	process	subject	to	thinning	and	a	multinomial	species	misclassification	process	

(Conn	et	al.	2015).		Thinning	included	both	incomplete	detection	(cameras	do	not	detect	100%	of	seals)	

and	availability	less	than	1.0	(not	all	animals	are	on	ice	while	sampling	is	being	conducted).		In	all	

analyses	reported	in	this	paper,	we	used	data	from	previously	deployed	satellite	tags	to	estimate	

availability	for	bearded,	ribbon,	and	spotted	seals.		For	ringed	seals,	we	simply	used	a	point	estimate	of	

0.6	(taken	from	Bengtson	et	al.	2005).			

The	previous	described	model	requires	that	species	distributions	be	constant	in	space,	so	was	only	

applied	to	data	we	collected	during	a	one	week	window	(April	20-27)	in	2012.		However,	we	developed	a	

second	modeling	approach	that	was	a	generalization	of	the	previous	method	that	allows	abundance	to	

change	in	space	while	sampling	is	being	conducted.		This	is	accomplished	with	a	spatio-temporal	

 

Figure	18.	The	characteristic	bands	on	the	coats	of	ribbon	seals	are	not	necessarily	clearly	visible	in	an	aerial	
image.	The	images	on	the	top	right	and	bottom	right	were	taken	with	a	Canon	1Ds	Mark	III	fitted	with	a	Zeiss	
100	mm	lens	from	1000	ft	during	BOSS	2012.	In	the	top	right	image,	a	species	identification	expert	would	likely	
rely	on	the	clearly	visible	bands	to	conclude	that	the	seal	is	certainly	a	ribbon	seal.	In	the	bottom	right	image,	a	
species	identification	expert	would	rely	on	a	combination	of	body	shape,	head	size,	flipper	size	and	shape,	and	
what	could	be	one	or	more	faint	bands	to	conclude	that	the	seal	is	likely	a	ribbon	seal.	
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statistical	modeling	framework	where	total	abundance	is	assumed	constant	but	allowed	to	redistribute	

itself	each	day	in	response	to	changing	habitat	(e.g.,	sea	ice;	Conn	et	al.	2016).		We	fit	several	variants	of	

this	model	to	full	data	from	the	U.S.	portion	of	the	Bering	Sea	from	2012	and	2013	(separate	analyses	

were	conducted	for	each	year).		Once	again,	expected	density	was	written	as	a	function	of	habitat	and	

landscape	covariates.	

Objective	4:	For	ribbon	and	spotted	seals,	which	breed	in	the	Bering	Sea	but	

are	present	seasonally	in	the	Chukchi	Sea,	produce	estimates	of	the	numbers	

of	individuals	that	use	the	Chukchi	Sea	during	the	open-water	season.	

By	combining	abundance	estimates	from	the	BOSS	surveys	with	results	from	ongoing	analysis	of	seal	

movements	and	behavior,	we	wished	to	provide	more	informative	estimates	of	the	numbers	of	ribbon	

and	spotted	seals	that	rely	on	the	Chukchi	Sea	during	the	open	water	season,	and	that	may	interact	with	

oil	and	gas	activities	in	that	region.	We	used	the	proportions	of	eastern	Bering	Sea	ribbon	and	spotted	

seals	using	the	Chukchi	Sea	during	summer	(presented	in	the	Previous	Research	section	above),	and	

multiplied	those	proportions	by	our	abundance	estimates	from	the	BOSS	surveys	in	2012	and	2013.		

	

RESULTS	AND	DISCUSSION	

Objective	1:	Contract	for	a	NOAA	Twin	Otter	and	a	second	long-range	aircraft		

The	DHC-6	Twin	Otter	N56RF,	operated	by	NOAA’s	Office	of	Marine	and	Aircraft	Operations,	was	

retained	for	Twin	Otter	to	fly	our	abundance	surveys	for	the	required	time	periods.		We	were	also	able	

to	negotiate	a	contract	with	Clearwater	Air	to	fly	our	required	survey	routes.	The	2012	surveys	took	

place	over	a	6-week	period	from	early	April	to	late	May.	The	Twin	Otter	flew	139	hours	on	28	days	and	

completed	21	survey	flights.	The	Aero	Commander	was	chartered	for	one	month	and	flew	97	hours	on	

20	days	to	complete	18	surveys.	In	2013,	the	Otter	flew	94	hours	on	20	days	and	completed	16	surveys,	

while	the	Aero	Commander	flew	107	hours	on	17	days	to	complete	18	surveys.	The	2013	survey	effort	

was	completed	within	a	4-week	window	of	good	weather	from	mid-April	to	early	May.	
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Objective	2:	Conduct	surveys	of	ice-associated	seals.	

Aerial	surveys	for	bearded,	spotted,	ribbon,	and	ringed	seals	were	conducted	from	6	April	to	23	May	

2012	and	from	4	April	to	9	May	2013.	The	two	US	aircraft	flew	a	total	of	73	surveys	covering	more	than	

31,000	nmi	(57,400	km)	of	track	line	and	collected	1.8	million	images.	The	Russian	team	completed	32	

flights	from	13	airports	and	flew	more	than	16,000	nmi	(29,600	km).	Combined,	the	teams	flew	more	

than	47,000	nmi	(87,000	km)	of	survey	track	(Figure	19)	The	completion	of	this	project	marks	the	largest	

survey	of	ice-associated	seals	ever	completed	and	will	provide	the	first	comprehensive	estimates	of	

abundance	for	bearded,	spotted,	ribbon,	and	ringed	seals	in	the	Bering	Sea	and	Sea	of	Okhotsk.	

 

Figure	19.	BOSS	2012	(pink)	and	2013	(green)	survey	track	lines	in	the	Bering	and	Okhotsk	seas	covering	over	
90,000	km	(56,000	miles)	completed	during	the	joint	US-Russian	survey	effort.	Water	depths	shallower	than	500m	
are	shown	in	light	blue	and	the	April,	2013	ice	extent	is	in	white.	
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Objective	3:	Effectively	retrieve,	manage,	and	process	all	imagery	for	analyses.	

Thermal	Detection		

Combined,	the	two	aircraft	collected	a	total	of	1.8	million	color	images	and	over	5.4	TB	of	thermal	video.	

Manual	and	automated	detection	approaches	were	established	and	tested	using	a	subset	of	survey	data	

reviewed	by	a	technician	for	the	presences	of	seals.		

Automated	hot	spot	detection	(Skeyes)	
To	test	Skeyes	effectiveness	for	finding	seals,	every	tenth	SLR	photo	from	a	10	flight	subsample	of	the	

2012	Bering	Sea	ice-seal	survey	was	examined	for	seals	by	an	experienced	observer	without	the	aid	of	

thermal	data.	Of	the	70	seal	groups	found	in	11,724	SLR	images	examined,	Skeyes	found	75	seal	groups,	

including	68	(97%)	seal	groups	found	by	the	experienced	technician,	using	only	about	1/13th	the	time.	

We	have	completed	analyzing	all	of	the	thermal	video	for	hot	spot	detection.	The	impact	of	

incorporating	thermal	imaging	into	our	aerial	survey	methodology	has	been	significant.	The	Bering	Sea	

surveys	required	half	of	the	field	personnel	needed	for	traditional	observer-based	surveys	and	data	

processing	has	occurred	in	parallel	to	detection	advances.	This	has	allowed	rapid	production	of	

preliminary	data	analysis,	including	examples	of	reliable	population	estimates,	with	human	error	

minimized	and	detection	probability	substantially	increased.	

Planned	improvements	for	future	surveys	
Development	of	this	system	is	iterative	and	ongoing.	Our	current	focus	is	on	algorithm	refinement	to	

reduce	false	positives	(without	sacrificing	detection	performance),	to	reduce	the	collection	of	

extraneous	imagery,	and	to	improve	efficiency	of	image	processing.	Towards	this	end	we	have	begin	

developing	an	automated	thermal	detection	system	called	“Snowflake.”	This	system	triggers	the	

collection	of	thermal	and	SLR	images	when	a	seal-like	thermal	signature	is	detected.		The	system	can	be	

used	in	flight	or	as	a	post-processing	module	to	replace	the	threshold	detection	approach	described	

above.		The	current	version	of	Snowflake	detects	94%	of	the	seals	found	with	the	threshold	detection	

and	97%	of	the	seal	groups	found	by	manual	review	of	SLR	imagery.	Future	improvements	to	Snowflake	

focus	on	reducing	the	false-positive	trigger	rate,	tracking	and	projecting	GPS	data	for	each	hot	spot,	and	

improved	SLR	camera	control	for	in-flight	triggering.			We	are	also	exploring	machine	vision	cameras	as	

an	alternative	to	professional	off-the-shelf	SLR	cameras.	This	would	allow	greater	camera	control	(i.e.,	

one	computer	can	control	both	the	thermal	and	visual	instruments),	provide	access	to	additional	data	to	
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improve	the	filtering	of	anomalous	hot	spots,	and	improved	efficiency	of	data	download,	processing,	

and	management.		

Species	Identification	

To	date,	we	have	completed	analyzing	the	thermal	data	and	SLR	images	in	both	years	for	seals.		We	now	

have	a	better	understanding	of	the	frequency	of	ice	seal	species	misidentification	errors	from	aerial	

photos	and	are	able	to	properly	adjust	our	population	estimate	and	variance	for	each	species	

accordingly.		In	addition,	we	have	gained	a	better	understanding	of	the	specific	morphological	

characteristics	that	are	most	effective	for	distinguishing	each	species	in	photos	from	aerial	transect	

surveys.	It	is	also	noteworthy	that	we	had	originally	assumed	that	the	number	of	ringed	seals	still	

occupying	snow	lairs	in	the	Bering	Sea	in	April	would	preclude	us	from	obtaining	a	reliable	population	

estimate	for	that	species.		Examination	of	the	photographs,	however,	has	indicated	that	snow	cover	was	

relatively	light	during	our	surveys	and	large	numbers	of	ringed	seals	were	basking	in	the	open	on	top	of	

the	ice	or	snow.	Furthermore,	our	photographs	of	the	pack	ice	zone	had	greater	numbers	of	ringed	seals	

than	we	expected	from	our	previous,	visual	observer	line-transect	surveys,	perhaps	because	of	greater	

rates	of	disturbance	and	misclassification	of	ringed	seals	in	the	former	surveys.	Therefore,	we	now	

believe	that	we	will	be	able	to	provide	a	reliable	estimate	for	ringed	seals	in	the	Bering	Sea,	though	that	

will	require	a	separate	analytical	effort	for	the	shore-fast	ice	zone	and	collaboration	with	other	

researchers	to	obtain	a	haul-out	adjustment	for	ringed	seals.		The	estimates	presented	below	assume	a	

deterministic	correction	factor	of	0.6	for	ringed	seals.	

Abundance	Estimation	

Estimates	and	standard	errors	from	each	year	and	analysis	type	performed	are	reported	in	Table	2.		

Estimates	from	the	static	spatial	regression	model	applied	to	April	20-27,	2012	were	much	higher	than	

previous	estimates	of	density	in	this	area	(e.g.,	Ver	Hoef	et	al.	2014).		We	suspect	that	static	results	may	

have	been	anomalously	high	because	a	greater	proportion	of	seals	were	hauling	out	on	ice	during	this	

one	week	window.	The	dates	selected	for	the	one	week,	static	analysis	happened	to	correspond	to	a	

time	when	temperatures	were	high	and	weather	was	better	than	normal.		We	are	currently	gathering	

data	from	satellite	tags	and	weather	reanalysis	products	to	test	the	hypothesis	that	seal	haul-out	

probabilities	are	related	to	weather	conditions.			

Results	from	spatio-temporal	statistical	analyses	using	the	full	data	sets	in	2012	and	2013	yielded	

smaller	abundance	estimates	(Table	2).		There	was	also	considerable	variation	in	estimates	among	years,	
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was	which	likely	attributable	(at	least	in	part)	to	shifts	in	spatial	distributions	(Figures	20	&	21).		In	

particular,	the	quantity	and	location	of	sea	ice	was	very	different	for	the	two	years,	with	2012	having	

record	levels	of	spring	sea	ice.		There	was	also	very	limited	coverage	of	the	southwestern	corner	of	our	

study	area	in	2012	(where	concentrations	of	ribbon	and	spotted	seals	were	at	their	highest),	so	

estimates	of	total	abundance	are	somewhat	uncertain	for	2012.	

	

	

Although	we	produced	an	estimate	of	ringed	seals,	this	estimate	should	be	viewed	with	caution.	First,	

we	used	a	simple	point	estimate	of	availability	(0.6)	from	a	study	in	the	Chukchi	Sea	(Bengtson	et	al.	

2005),	which	does	not	properly	account	for	extra	variance	attributable	to	uncertainty	about	the	

availability	process.	Also,	it	does	not	include	survey	counts	from	the	shore-fast	ice	zone.	The	shore-fast	

zone	is	relatively	small	region	of	high	ringed	seal	density	that	required	a	different	approach	for	

Table	2.	Estimates	of	ice-associated	seal	abundance	(thousands)	in	the	eastern	Bering	Sea	(U.S.	airspace)	in	
different	years	by	different	analysis	methods.		We	present	model-based	standard	errors	for	each	model	run,	as	
well	as	model-averaged	standard	errors	for	combined	estimates.		The	abbreviation	Sp-T	is	used	to	indicate	a	
spatio-temporal	model;	RE	indicates	random	effects.		We	suggest	basing	inference	on	the	combined,	model-
averaged	estimates	rather	than	results	from	individual	model	runs.	

Model	 Year	 Bearded	 Ribbon	 Ringed	 Spotted	

Static,	Apr	20-27	 2012	 301	(33)	 183	(25)	 286	(15)¹	 458	(44)	

Sp-T,	no	REs	 2012	 170	(6)	 133	(11)	 180	(3)¹	 234	(9)	

Sp-T,	REs	(1)	 2012	 167	(7)	 86	(9)	 187	(3)¹	 273	(10)	

Sp-T,	REs	(2)	 2012	 174	(6)	 133	(12)	 190	(3)¹	 220	(9)	

Sp-T,	Combined²	 2012	 170	(7)	 117	(25)	 186	(3)	 240	(24)	

Sp-T,	no	REs	 2013	 122	(5)	 38	(4)	 121	(4)	 163	(5)	

Sp-T,	REs	 2013	 127	(5)	 38	(3)	 116	(2)	 162	(6)	

Sp-T,	Combined²	 2013	 125	(5)	 38	(4)	 119	(4)	 163	(6)	

¹Ringed	seal	estimates	do	not	include	specific	efforts	to	target	fast	ice	or	extra	uncertainty	due	to	
incomplete	knowledge	of	haul-out	correction	factors			

²Combined	estimates	generated	using	simple	model-averaging	formula	(i.e.,	Burnham	and	Anderson	
2002)	and	equal	model	weights	
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allocation	of	survey	effort	(narrow,	along-shore	sawtooth).	Therefore,	it	will	require	a	separate	analysis	

to	avoid	bias	from	preferential	sampling	(Conn	et	al.	Submitted).	

 

Figure	20.	Estimates	of	bearded,	ribbon,	ringed,	and	spotted	seal	abundance	for	three	dates	in	the	spring	of	
2012	in	the	eastern	(U.S.)	Bering	Sea.				Each	map	is	bounded	by	the	Bering	Strait	to	the	north,	Alaska	to	the	
east,	the	U.S.-Russia	Exclusive	Economic	Zone	to	the	west,	and	maximum	spring	sea	ice	extent	to	the	south.	
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Figure	21.	Estimates	of	bearded,	ribbon,	ringed,	and	spotted	seal	abundance	for	three	dates	in	the	spring	of	
2013	in	the	eastern	(U.S.)	Bering	Sea.	Each	map	is	bounded	by	the	Bering	Strait	to	the	north,	Alaska	to	the	east,	
the	U.S.-Russia	Exclusive	Economic	Zone	to	the	west,	and	maximum	spring	sea	ice	extent	to	the	south.	Note	the	
scale	is	the	same	as	Figure	20	to	permit	proper	comparison.	

	

Although	we	have	made	substantial	progress	in	developing	estimation	methodology	and	software	for	

conducting	demanding	spatiotemporal	analyses,	we	intend	to	analyze	satellite	tagging	data	as	a	function	

of	weather	data	to	better	account	for	variation	in	seal	availability	(haul-out)	probabilities.		Also,	the	

variation	in	seal	densities	between	year	(especially	ribbon	and	spotted	seals)	suggests	that	there	may	be	

substantial	differences	in	the	numbers	of	seals	using	Russian	versus	U.S.	waters	between	years;	the	
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maritime	boundary	crosses	through	a	region	of	typically	high	seal	densities,	so	slight	shifts	in	distribution	

between	years	could	have	substantial	influence	on	separate	U.S.	and	Russian	estimates.	If	so,	the	

eventual	combination	of	the	U.S.	and	Russian	results	might	be	expected	to	smooth	out	some	of	this	

interannual	variability.		To	account	for	this	possibility,	a	final	step	will	be	to	incorporate	data	collected	

by	our	Russian	collaborators	to	provide	the	most	comprehensive	estimates	of	abundance	for	bearded,	

spotted,	ribbon,	and	ringed	seals	in	the	Bering	Sea	and	the	Sea	of	Okhotsk.	

Objective	4:	For	ribbon	and	spotted	seals,	which	breed	in	the	Bering	Sea	but	

are	present	seasonally	in	the	Chukchi	Sea,	produce	estimates	of	the	numbers	

of	individuals	that	use	the	Chukchi	Sea	during	the	open-water	season.	
Based	on	movement	records	from	ribbon	and	spotted	seals	instrumented	with	satellite	tags	in	separate	

studies,	we	estimated	that	42%	of	spotted	seals	and	21%	of	ribbon	seals	from	the	eastern	Bering	Sea	

population	spend	at	least	part	of	the	open-water	season	(July	–	October)	in	the	Chukchi	Sea.	Multiplying	

those	proportions	by	our	abundance	estimates	for	these	species,	we	estimated	that	69,000-101,000	

spotted	seals	and	6,000-25,000	of	ribbon	seals	that	occupy	the	eastern	(U.S.)	Bering	Sea	in	spring	used	

the	Chukchi	Sea	during	the	summer,	open-water	period	in	2013	and	2012,	respectively.	
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PRESENTATIONS,	SIGNIFICANT	MEETINGS,	AND	PUBLICATIONS	

Presentations	and	significant	meetings	

September	28,	2012:	Presentation	“Bering	Okhotsk	Seal	Surveys	(BOSS):	Synoptic	surveys	for	ice-

associated	seals”,	at	the	Marine	Mammals	of	the	Holarctic	Conference,	Suzdal,	Russia	

October	2,	2012:	CAFF	Workshop	on	International	Ringed	Seal	Monitoring;	summary	presentation	of	

BOSS	project	by	NOAA	scientists	

January	21–25,	2013:	Two	presentations;	“Bering-Okhotsk	Seal	Surveys	(BOSS):	Joint	US-Russian	Aerial	

Surveys	for	Ice-Associated	Seals”	and	“	Ice-associated	seal	detection	and	identification	from	the	2012	

Bering-Okhotsk	Seal	Surveys	(BOSS)”	at	the	Alaska	Marine	Science	Symposium,	Anchorage,	AK		

January	24–25,	2013:	Alaska	Native	Ice	Seal	Committee,	Anchorage,	AK:	summary	presentations	of	BOSS	

project	to	Committee	members	by	NOAA	scientists	

February	12-13,	2013:	Presentations	and	discussions	of	survey	plans	with	hunters	and	the	St.	Lawrence	

Island	Marine	Mammal	Advisory	Council	in	Savoonga	and	Gambell.	

March	20,	2013:	Presentation,	“How	many	seals	are	in	the	Bering	Sea?”,	to	Kawerak,	the	Bering	Straits	

Region	an	Alaska	Native,	non-profit	corporation.		

September	4,	2013:	A	seminar,	“How	many	seals	are	in	the	Bering	Sea?”,	describing	the	BOSS	surveys	

and	preliminary	results,	was	presented	at	the	Sea	Mammal	Research	Unit,	Scottish	Oceans	Institute,	

University	of	St.	Andrews,	Scotland.	

November	22,	2013:	A	seminar,	“Estimating	animal	abundance	using	an	automated	detection	system:	

Ice-associated	seals	in	the	Bering	Sea”,	describing	some	statistical	methods	developed	for	the	BOSS	

program,	was	presented	to	the	University	of	Washington,	School	of	Fisheries	and	Aquatic	Sciences	

Quantitative	Seminar	series,	Seattle,	Washington.	

December	12,	2013:	A	presentation,	“How	many	seals	are	in	the	Bering	Sea?”,	describing	the	BOSS	

surveys	and	preliminary	results,	was	presented	to	Sam	Rauch	III	(Assistant	Administrator	for	Fisheries,	

Acting)	at	NOAA’s	National	Marine	Mammal	Laboratory,	Seattle,	Washington	USA.	
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January	22-23,	2014:	A	presentation,	“Bering-Okhotsk	Seal	Surveys	(BOSS):	Joint	US-Russian	Aerial	

Surveys	for	Ice-Associated	Seals,	Spring	2012	and	2013”	an	overview	of	the	BOSS	program,	including	

preliminary	results,	was	presented	at	the	Alaska	Marine	Science	Symposium	and	at	the		Alaska	Native	

Ice	Seal	Committee	and	Co-management	meeting,	Anchorage,	Alaska,	USA.	

May	15,	2014:	Powerpoint	slides	for	“Bering-Okhotsk	Seal	Surveys	(BOSS):	Joint	U.S.-Russian	aerial	

surveys	for	ice-associated	seals,	Spring	2012	and	2013”	provided	to	the	Bristol	Bay	Marine	Mammal	

Commission	meeting,	Dillingham,	Alaska	

June	2,	2014:	A	web	presentation,	“How	many	seals	are	in	the	Bering	Sea?”,	describing	the	BOSS	surveys	

and	preliminary	results,	was	presented	to	the	5th	Annual	Meeting	of	the	Scientific	Working	Group	under	

the	U.S.	-	Russia	Polar	Bear	Commission,	National	Conservation	Training	Center,	Shepherdstown,	West	

Virginia.	

July	4,	2014.		A	presentation	“Using	spatio-temporal	statistical	models	to	estimate	animal	abundance	

from	transect	counts”	was	presented	at	the	International	Statistical	Ecology	Conference	in	Montpelier,	

France.	

September	22-27,	2014:	Two	presentations:	“Bering-Okhotsk	Seal	Surveys	(BOSS)	Program	progress	

toward	comprehensive	estimates	of	abundance”	an	overview	of	the	BOSS	program	including	preliminary	

results;	and	“Automated	thermal	detection	of	seals	on	ice,	Bering-Okhotsk	Seal	Surveys	(BOSS):	Finding	

a	needle	in	a	haystack”	an	overview	of	the	BOSS	survey	methodology,	were	presented	at	the	Marine	

Mammals	of	the	Holarctic	Conference,	St.	Petersburg,	Russia.		

August	10-11,	2015.		Two	presentations,	“using	automated	aerial	imaging	to	estimate	Arctic	seal	

abundance:	the	devil	is	in	the	details”	and	“Spatio-temporal	models	for	aerial	survey	counts:	An	

application	to	ice-associated	seals	in	the	Bering	Sea”	were	presented	at	the	Ecological	Society	of	

America	annual	meeting	in	Baltimore,	MD.	

Multiple	dates:		Meetings	with	Russian	scientists,	aircraft	pilots,	software	developers	and	thermal-

systems	contractors	to	prepare	for,	and	share	the	results	of,	the	2012	and	2013	fieldwork	and	

preliminary	analyses.	
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Publications	

The	following	publications	made	use	of	data	from	this	project.	Copies	of	the	peer-reviewed	publications	

are	provided	in	Appendices	1-5.	

Agency	reports	

Moreland,	E.,	M.	Cameron,	and	P.	Boveng.	2013.	Bering	Okhotsk	Seal	Surveys	(BOSS),	joint	U.S.-Russian	

aerial	surveys	for	ice-associated	seals,	2012-13.	Alaska	Fisheries	Science	Center	Quarterly	Report	

July-August-September	2013:1-6.	http://www.afsc.noaa.gov/Quarterly/jas2013/JAS13-

Feature.pdf	

Peer-reviewed	journals	

Conn,	P.	B.,	J.	M.	Ver	Hoef,	B.	T.	McClintock,	E.	E.	Moreland,	J.	M.	London,	M.	F.	Cameron,	S.	P.	Dahle,	

and	P.	L.	Boveng.	2014.	Estimating	multispecies	abundance	using	automated	detection	systems:	

ice-associated	seals	in	the	Bering	Sea.	Methods	in	Ecology	and	Evolution	DOI	10.1111/2041-

210X.12127.	

McClintock,	B.	T.,	E.	E.	Moreland,	J.	M.	London,	S.	P.	Dahle,	G.	M.	Brady,	E.	L.	Richmond,	K.	M.	Yano,	and	

P.	L.	Boveng.	2015.	Quantitative	assessment	of	species	identification	in	aerial	transect	surveys	

for	ice-associated	seals.	Marine	Mammal	Science	21:1057-1076.	

Conn,	P.	B.,	D.	S.	Johnson,	J.	M.	V.	Hoef,	M.	B.	Hooten,	J.	M.	London,	and	P.	L.	Boveng.	2015.	Using	

spatiotemporal	statistical	models	to	estimate	animal	abundance	and	infer	ecological	dynamics	

from	survey	counts.	Ecological	Monographs	85:235-252.	

Conn,	P.	B.,	D.	S.	Johnson,	and	P.	L.	Boveng.	2015.	On	extrapolating	past	the	range	of	observed	data	

when	making	statistical	predictions	in	ecology.	PLoS	ONE	10(10):	e0141416.		

Conn,	P.	B.,	J.	T.	Thorson,	and	D.	S.	Johnson.	In	review.	Confronting	preferential	sampling	in	wildlife	

surveys:	diagnosis	and	model-based	triage.	Methods	in	Ecology	and	Evolution.	
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This	paper	established	a	basis	for	the	analytical	method	that	will	be	used	to	estimate	the	abundance	and	

distribution	of	bearded,	spotted,	ringed,	and	ribbon	seals	in	the	Bering	Sea.	Significantly,	it	included	

consideration	of	the	effects	and	variance	from	incomplete	detection,	incomplete	availability	(haul-out	

proportion),	and	species	miss-classification	rates.	Preliminary	estimates	of	abundance,	from	just	10	

flights	conducted	in	a	1-week	period	of	the	2012	survey,	indicated	that	the	final	analysis	will	produce	

higher	and	more	precise	abundance	estimates	than	have	been	obtained	from	previous	surveys.	The	

higher	abundance	may	be	due	to	better	detection	of	seals	by	thermal	video	than	by	traditional,	visual	

observation,	and	lower	rates	of	seal	disturbance	that	were	obtained	by	flying	at	higher	altitudes.	The	

greater	precision	is	likely	due	to	the	extensive	and	relatively	dense	coverage	that	we	were	able	to	

achieve.	
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Summary

1. Automated detection systems employing advanced technology (e.g. infrared imagery, auditory recording sys-

tems, pattern recognition software) are compelling tools for gathering animal abundance and distribution data

since investigators can often collect data more efficiently and reduce animal disturbance relative to surveys using

human observers.

2. Even with these improvements, analysing animal abundance with advanced technology can be challenging

because of potential for incomplete detection, false positives and species misidentification. We argue that double

sampling with an independent sampling method can provide the critical information needed to account for such

errors.

3. We present a hierarchical modelling framework for jointly analysing automated detection and double sam-

pling data obtained during animal population surveys. Under our framework, observed counts in different sam-

pling units are conceptualized as having arisen from a thinned log-Gaussian Cox process subject to spatial

autocorrelation (where thinning accounts for incomplete detection). For multispecies surveys, our approach

handles incomplete species observations owing to (i) structural uncertainties (e.g. in cases where the automatic

detection data do not provide species observations) and (ii) species misclassification; the latter requires auxiliary

information on themisclassification process.

4. As an example of combining an automated detection system and a double sampling procedure, we consider

the problem of estimating animal abundance from aerial surveys that use infrared imagery to detect animals, and

independent, high-resolution digital photography to provide information on species composition and thermal

detection accuracy. We illustrate our approach by analysing simulated data and data from a survey of four ice-

associated seal species in the easternBering Sea.

5. Our analysis indicated reasonable performance of our hierarchical modelling approach, but suggested a need

to balance model complexity with the richness of the data set. For example, highly parameterized models can

lead to spuriously high predictions of abundance in areas that are not sampled, especially when there are large

gaps in spatial coverage.

6. We recommend that ecologists employ double sampling when enumerating animal populations with auto-

mated detection systems to estimate and correct for detection errors. Combining multiple data sets within a hier-

archical modelling framework provides a powerful approach for analysing animal abundance over large spatial

domains.

Key-words: abundance estimation, aerial survey, automated detection, data augmentation, hierar-

chical models, pattern recognition, spatially restricted regression, species misidentification, thermal

imagery

Introduction

Several promising approaches have been developed tomonitor

animal populations using advanced animal detection technol-

ogy. Pattern recognition algorithms (e.g. Kogan &Margoliash

1998) applied to automated auditory collection systems (cf.

Blumstein et al. 2011) are capable of discriminating different

species, sexes and groups of animals. Ecologists have deployed

acoustic arrays to study a range of taxa including terrestrial

(Blumstein et al. 2011), marine (Moretti et al. 2010; Ward*Correspondence author. E-mail: paul.conn@noaa.gov
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et al. 2012) and amphibian (Waddle, Thigpen & Glorioso

2009) species. Another active area of research is application of

object-based image analysis to automate animal counts from

remotely sensed high-resolution images (see e.g. Groom et al.

2013). In this case, a computer algorithm is trained to

automatically count animals on a sequence of images. Lastly,

when animals give heat signatures different from their

surrounding environment, infrared imagery can be used to enu-

merate animal populations. This approach is often combined

with digital photography to provide information about species

identity and has been used tomonitor big horn sheep (Bernatas

& Nelson 2004), pinnipeds (Chernook, Kuznetsov & Yak-

ovenko 1999; Speckman et al. 2011), polar bears (Amstrup

et al. 2004) and, most frequently, ungulates (see e.g. Kissell &

Nimmo2011; Franke et al. 2012, and references therein).

Historically, researchers employed human observers to con-

duct large-scale animal population surveys, and a variety of

sampling designs and statistical models are available to cope

with imperfect detection when estimating density and abun-

dance from such records (see e.g. Williams, Nichols & Conroy

2002, for a review). Advanced technologies (e.g. infrared imag-

ery, automated acoustic detectors, pattern recognition soft-

ware) are a promising alternative for increasing survey

coverage and reducing detection error, but are far fromperfect.

For instance, advanced technologies may still miss animals

and may also pick up non-target signatures (resulting in false

positives). In multispecies surveys, species misidentification

errors may also be present. To accurately estimate abundance

from automated detection data, it is thus often necessary to

collect sufficient auxiliary information to estimate and correct

for multiple error types. However, few statistical methods have

been developed to incorporate these error rates into abundance

estimates (but seeMarques et al. 2013).

In this paper,wedevelopahierarchicalmodelling framework

to estimate animal abundance on landscapes surveyed using an

automated detection system. Our approach assumes that the

investigator collects independent data using a different sam-

pling approach (hereafter, ‘double sampling’) over a subset of

the survey area to help estimate error rates. In particular, we

require that double samplingdatabe collected in suchamanner

that it can be used to estimate the probability of false negatives

(missed animals), falsepositives (erroneous detections) and spe-

cies misidentification, if applicable. Further, we assume that

double sampling data can be used to accurately measure

individual covariates (e.g. groupsizes for clustersofanimals).

We demonstrate our approach on simulated data and also

on aerial survey data of ice-associated seals. In both cases,

automatic detection data consisted of thermal imagery and

double sampling consisted of automatedhigh-resolutiondigital

photography. Under our approach, thermal imagery is used to

find ‘hot spots’ – points in the infrared video that have more

extreme heat signatures when compared to the surrounding

environmental matrix. Digital photographs with matched time

stamps can then be searched to get information on the species

composition of each hot spot, as well as the number of animals

present. Further, independent searches of photographs can be

conducted to estimate the proportion of animalsmissed.

Our manuscript is organized as follows. First, we describe

the data necessary to conduct a joint analysis of automatic

detection and double sampling data. Next, we describe a

model-based framework for estimating animal abundance

from such records. After describing a simple simulation study,

we analyse a test data set of flights conducted over the eastern

Bering Sea in the spring of 2012. In this case, we wish to make

inference about the abundance of four ice-associated seal

species from data that are contaminated by species misclassifi-

cations and anomalous thermal readings.

Methods

DATA REQUIREMENTS

We suppose that the investigator partitions their survey area

into J (possibly irregular) sampling units, each of which has

areaAj (see Table 1 for a complete list of notation). In practice,

the size of the sampling unit will likely be constrained by the

resolution of available habitat covariates (e.g. remote sensing

data). We assume that transects through each sampling unit

occur more or less randomly with respect to available habitat

so that the investigator is not making fine-scale adjustments

within units to target areas of higher habitat quality. We sup-

pose that L (L ≤ J) sampling units are surveyed using an auto-

matic detection system and Rj gives the proportion of unit j

that is surveyed. We suppose that the spatial domain surveyed

by the double sampling method in unit j is a subset of that sur-

veyed by the automatic detection system. As such, we allow for

the possibility that some (potentially a large fraction) of auto-

matic detections are not double-sampled.

For each unit that is sampled, we suppose that an automatic

detection algorithm is employed on remotely sensed data (e.g.

thermal imagery, audio recordings) to compile a list of detec-

tions of focal taxa. In practice, some tuning of this algorithm

may be needed to balance the resulting sensitivity and specific-

ity; making the algorithm too sensitive can markedly increase

the number of false positives, while making it too specific can

result in a large number of missed animals. Note that we allow

for both false positives (anomalies) and false negatives (non-

detections) in subsequentmodelling.

Data notation

LetYj denote the total number of automatic detections that are

recorded in survey unit j.We assign an indicator Iij = 1 to auto-

matic detections for which a species observation can be made,

and set Iij = 0 otherwise (here, i ∈ {1, 2, …, Yj} identifies the
ith automatic detection in surveys of sampling unit j).Note that

for some automatic detection data (e.g. thermal imagery), dou-

ble sampling data may actually be necessary to make species

determinations, while for others (e.g. auditory detections using

speech recognition algorithms), Iij may equal one for every

record. The investigator assigns each automatic detection with

Iij = 1 an observation type,Oij. There is considerable latitude in

selecting species classification schemes (see e.g. Species misclas-

sification model and subsequent examples). The investigator

Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.,
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also records any individual covariates, Zijk (e.g. group size),

where k identifies the kth covariate (Table 1). For the present

development, we require that covariates are available for each

recordwhere Iij = 1.

MODEL

The observed data include a set of species classifications for

each sampling unit, a count of unclassified automatic detec-

tions for each sampling unit (i.e. those for which Iij = 0),

together with individual covariates such as group size. We also

allow for the possibility that the investigator has auxiliary data

(through double sampling or some other mechanism) to esti-

mate components of the detection process (e.g. detection prob-

ability, species misclassification probabilities) and has gathered

habitat covariates to help explain variation in abundance. Our

next task shall be to devise a way to conduct inference on ani-

mal abundance and species–habitat relationships from such a

seemingly disparate data amalgam.

When conceptualizing how the observed data arise, we

find it intuitive to break the problem down into several com-

ponents within a hierarchical modelling framework (e.g. Fig.

1). First, we consider the way in which expected abundance

for each species varies over the landscape. When space is dis-

cretized into individual sampling units (as we have done

here), a common way to relate counts to habitat covariates

is through a spatial regression model. In our case, we do not

know the actual abundance in each sampling unit, but we

can still borrow this framework to describe variation in

expected abundance in each cell. Secondly, realized animal

counts in a given sampling unit will typically be different

than the expected abundance for several reasons, including

random variation, incomplete coverage of the sampling unit

and detection probabilities that are <1. We refer to the

model describing the relationship between true species counts

and expected abundance as a ‘Local abundance model’.

Finally, the type of observations that are spawned when a

group of animals is detected depends on (i) an observation

process relating the true species to different observations

classifications and (ii) a process relating the true species to

individual covariate values. We refer to models for these

Table 1. Definitions of parameters and data used in the hierarchical model for automatic detection and double sampling data. Symbols appearing

in boldface represent vectors ormatrices

Definition

Parameter

Ns Total abundance of species s in the study area ( = ∑j Njs)

Njs Abundance of species s in sampling unit j (Njs ¼ Nobs
js þN�

js þN��
js )

Nobs
js Number of observed animals in sampling unit j that are truly of species s

N�
js Number of undetected animals in surveyed regions of sampling unit j that are of species s

N��
js Abundance of species s in unsurveyed regions of sampling unit j

Gjs Number of groups of animals of species s located in sampling unit j

Gobs
js Number of groups of animals of species s located in the surveyed region of sampling unit j detected by the automatic detection system

mjs The log of abundance intensity for species s in sampling unit j

sms Precision of the log of abundance intensity for species s; possibly used to impart overdispersion relative to the Poisson distribution

sgs Precision parameter for spatial random effects associated with species s

kjs Abundance intensity for species s in sampling unit j (kjs = AjRjpjs exp (mjs))
bs Parameters of the linear predictor describing variation in the log of abundance intensity as a function of landscape and habitat

covariates for species s

gs Vector of spatial random effects for species s

as Vector of reduced-dimension random effects for species s [when restricted spatial regression (RSR) is employed]

hs Parameters describing the distribution of individual covariates at the population level for species s

Sij True species associated with the ith automatic detection obtainedwhile surveying sampling unit j

pOjs
ij Probability that the ith group of animals encounteredwhile surveying sampling unit j are assigned observation typeO given that they

are truly of species s.

pjs Probability that amember of species s associated with the area surveyed in sampling unit j is detected (pjs = psajs)

ajs Probability that an animal of species s is available to be detected at the time(s) when surveys are conducted in sampling unit j

(for seals, this is their haul-out probability)

ps Probability that amember of species swill be detected by the automatic detection system given that it is available to be detected

Data

Yj Total count of automatic detections recorded during surveys of sampling unit j

Zijk The value of the kth individual covariate associated with automatic detection i in sampling unit j

Iij Indicator for whether the ith automatic detection recorded in the jth sampling unit was also subject to double sampling

Xs Designmatrix associated with abundance intensitymodel for species s

Aj The area of sampling unit j (perhaps scaled to itsmean)

Rj Proportion of sampling unit j that is sampled via the automatic detectionmethod during the survey

Oij Observation type for the ith automatic detection in sampling unit j (e.g. observed species)

J Total number of sampling units in the study area

L Total number of sampling units in the study area that are actually sampled

W Associationmatrix describing spatial neighbourhood structure of sampling units

Q Structurematrix for spatial random effects (note the precisionmatrix for random effects is given by sgsQ)

Ks Designmatrix for spatial random effects when dimension reduction (RSR) is employed
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processes as the ‘Species misclassification model’ and ‘Indi-

vidual covariate model’, respectively.

We now describe each of these four components (spatial

regression, local abundance, species misidentification and indi-

vidual covariate models) in turn. In doing so, we make a num-

ber of distributional choices that may require refinement in

certain sampling scenarios (see Discussion). We then describe

Markov chain Monte Carlo (MCMC) methods and

approaches for generating posterior predictions of abundance

across the study area. Throughout, we use bold symbols to

denote vectors and matrices. For a fuller mathematical treat-

ment, see Appendix S1.

Spatial regressionmodel

For each species s, we write the log of expected abundance in

each sampling unit as a function of habitat covariates, spatially

autocorrelated random effects and unstructured random

effects. For the moment, we treat all sampling units as if they

were the same size (adjustments for unequal area are made in

the following section). In particular, we express the log of

expected abundance (mjs) across the collection of sampling

units as

ms ¼ Xsbs þ gs þ es; eqn 1

where Xs denotes a design matrix relating environmental and

habitat covariates to expected abundance, bs gives related

regression parameters, the gs specify random effects with spa-

tially autocorrelated, Gaussian errors, and es represents mean

zeroGaussian error with precision parameter sms.
There are several common choices for inducing spatial auto-

correlation in hierarchical spatial regression models (see e.g.

Banerjee, Carlin & Gelfand 2004). In the following, we specify

an intrinsic conditionally autoregressive prior distribution

(ICAR; Besag & Kooperberg 1995; Rue & Held 2005) for gs
such that

gs �N 0; ðsgsQÞ�1
� �

;

whereNðÞ denotes a multivariate normal (Gaussian) distribu-

tion and sgsQ gives precision of the Gaussian spatial process.

Here, sgs is a precision parameter to be estimated, and Q is

defined as Q = D�W, where W is an association matrix

describing the spatial neighbourhood structure of sampling

units andD is a diagonal matrix with elements�W1 (1 being a

column vector of ones). For purposes of this paper, we use a

formulation for W that approximates thin-plate splines (Rue

& Held 2005, section 3.4.2). This approach implies a greater

degree of smoothing than first-order formulations for Q, a

potentially useful feature when analysing sparse data from

abundance surveys (see Discussion). In an effort to eliminate

parameter redundancy and confounding between spatial

regression parameters and spatial random effects, we also

implemented a restricted spatial regression (RSR; Reich, Hod-

ges & Zadnik 2006; Hodges & Reich 2010; Hughes & Haran

2013) version of eqn 1 (see Appendix S1 for further details).

Table 2. Species classification probabilities used in the hierarchical seal abundance model. True species appear in columns, while observation types

occur on rows. The column (and row) for ‘Other’ indicate non-seals (e.g. thermal anomalies, non-target taxa)

Obs Index Obs species Confidence

True species

Bearded Ribbon Ringed Spotted Other

1 Bearded Certain p1|1 0 0 0 0

2 Bearded Likely p2|1 p2|2 p2|3 p2|4 0

3 Bearded Guess p3|1 p3|2 p3|3 p3|4 0

4 Ribbon Certain 0 p4|2 0 0 0

5 Ribbon Likely p5|1 p5|2 p5|3 p5|4 0

6 Ribbon Guess p6|1 p6|2 p6|3 p6|4 0

7 Ringed Certain 0 0 p7|3 0 0

8 Ringed Likely p8|1 p8|2 p8|3 p8|4 0

9 Ringed Guess p9|1 p9|2 p9|3 p9|4 0

10 Spotted Certain 0 0 0 p10|4 0

11 Spotted Likely p11|1 p11|2 p11|3 p11|4 0

12 Spotted Guess p12|1 p12|2 p12|3 p12|4 0

13 Other NA 0 0 0 0 1

14 Unknown NA p14|1 p14|2 p14|3 p14|4 0

ν

Spa�al 
regression 
model

Z

θ

S

Individual covariate
model

τυ

O π
misID model

X

A

τη

Q

η
R

p

Local abundance 
model

β

Fig. 1. Directed, acyclic graph for the model proposed for multispecies

abundance estimation from thermal imagery and digital photography

(adapted from Conn et al. 2013, fig. A1). Notation is defined in Table

(subscripts and superscripts omitted for clarity).
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Local abundancemodel

The preceding formulation describes variation in the log of

abundance intensity, but does not include other factors affect-

ing the expected number of animals encountered by surveys in

a given cell. For instance, sampling units may vary in size, the

proportion of area surveyed may vary across sampled units,

automatic detections may miss animals, and not all animals

associated with sampling unit j may be present while surveys

are being conducted. Also, we expect random fluctuations in

the number of animals present relative to the expected abun-

dance intensity. For these reasons, we model the number of

automatic detections of species s in sampling unit j

(Gobs
js ¼ P

i I½Sij ¼ s�) as Gobs
js �Poisson ðkjsÞ where

kjs = AjRjpjs exp (mjs) and pjs = ajsps (recall that notation is

defined in Table 1). In conjunction with our choice of a Gauss-

ian distribution for mjs, this formulation implies that the actual

number of detections for each species is a realization of a

thinned version of the log-GaussianCox process (see e.g. Rath-

bun & Cressie 1994; Møller, Syversveen & Waagepetersen

1998).

The data collected on aerial surveys do not provide sufficient

information to estimate availability, (ajs), so auxiliary data or

strong priors are needed on these parameters (see e.g. Example:

Ice-Associated Seals). One approach for getting information

on ps is to conduct an unaided search of double sampling data,

and to treat animals found in the unaided search as trials to test

the false-negative rate of the automatic detection algorithm; in

this case, the number of successful automatic detections can be

treated as binomial with success probability ps.

Speciesmisclassificationmodel

The preceding sections describe how animals (or animal

groups) of each species are detected. However, in order to

allow imperfect species observations, we need to specify a

model relating the true species to actual observations. For

observations where species can be assigned (Iij = 1), we sup-

pose that observations Oij arise according to a multinomial

process conditional on the true species Sij and classification

probabilities pOijjSij

ij . In practice, this specification requires that

we treat the true species as a latent parameter (i.e. that we

admit uncertainty about its value).

Automatic detection data are typically not sufficient to esti-

mate the misclassification parameters, p, so strong priors or
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Fig. 2. Simulated (left panels) and estimated (right panels) abundance across a landscape for five hypothetical species. Red circles on estimated abun-

dance panels indicate sampled cells.
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auxiliary data are needed to provide structure on these (see

subsequent examples). In the following sections, we suppress

dependence on individual and transect (i.e. we set

pOijjSij

ij ¼ pOijjSij ). However, we suspect that expressing classifi-

cation parameters as a function of covariates using a multino-

mial logit link (Agresti 2002) will be useful in future

applications (see e.g. Conn et al. 2013, for further discussion).

Although there is considerable flexibility for structuring the

species classification matrix, we use a formulation specifically

tailored to our seal study in subsequent applications. This for-

mulation requires observers to classify observations by both

species and certainty, and also permits them to record species

as ‘unknown’ or ‘other’ (Table 2). The ‘other’ category

accounts for false positives.

Individual covariatemodel

We allow for the possibility that automatic detection i in sam-

ple unit j has k associated individual covariates, which are only

assumed to be observed if Iij = 1 (see Discussion). The most

important of these is likely group size, the number of animals

that are associated with a specific automatic detection. In cases

where automatic detections can consist of more than one ani-

mal, one must include the group size distribution when gener-

ating an overall abundance estimate. Our approach is to

parametricallymodel covariates as

Zijk � fSij
ðhSij

Þ;

where fs(hs) gives a probability mass or density function with

parameters specific to species s. In the applications that follow,

we only use one individual covariate (group size), which we

give a zero-truncated Poisson distribution with a species-spe-

cific intensity parameter to be estimated. We also require that

each automatic detection be composed of like species.

MCMCsampler

Writing our model hierarchically, we are able to envision

how broad landscape-scale processes can ultimately be trans-

lated into observed data in a probabilistic fashion. Provided

that we believe our model is a reasonable approximation to

reality and are willing to assign prior distributions for model

parameters, Bayesian calculus provides a convenient way of

making inference about the data-generating process (includ-

ing parameters describing species–habitat relationships and

animal abundance). We used a hybrid Gibbs–Metropolis

sampler to draw samples from the joint posterior distribu-

tion symbolically specified by Fig. 1 (see Appendix S1 for a

mathematical specification). This involves iteratively sam-

pling model parameters from their full conditional distribu-

tions. Owing to our judicious choice of Gaussian error on

log-scale abundance intensity (i.e. mjs), many of the parame-
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Fig. 3. A composite image showing two high-resolution digital photographs (left) with a matched thermal hot spots (right). Thermal videos are

screened for such hot spots, and corresponding photographs are searched (when available) to provide information on species identity.
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ter groups can be sampled directly using the same strategies

commonly used in Bayesian analysis of linear models (see

e.g. Gelman et al. 2004, Chapter 14). Our strategy for

updating parameters shares many features with some of our

past work on distance sampling (see e.g. Conn, Laake &

Johnson 2012; Conn et al. 2013) and is presented in Appen-

dix S1.

Posterior prediction andmodel comparison

Our models provide estimates of parameters explaining varia-

tion in animal abundance (i.e. spatial regression parameters) as

well as species-specific abundance estimates for animals

detected in sampled areas. To extend inference to the abun-

dance of species s over the entire landscape, we use posterior

predictive distributions. For sampling units that we do not

sample, posterior predictions can be simulated as

Njs �PoissonðexpðmjsÞRjAjð1þ hsÞÞ;

where hs gives the zero-truncated Poisson intensity parameter

for group size.

For units that are sampled, we generate posterior samples of

abundance that are a combination of (i) animals detected dur-

ing surveys (Nobs
js ¼ P

i I½Sij ¼ s�Zij1; note that the total number

of such animals is fixed, but species can vary), (ii) animals that

are associated with sampled areas, but were not detected (N�
js),

and (iii) animals in portions of sampled cells that were not sur-

veyed (N��
js ), such thatNjs ¼ Nobs

js þN�
js þN��

js . This approach

is attractive in that it implicitly includes a finite population cor-

rection. For instance, if all animals are detected in a given sam-

pling unit and there is no species misclassification, then

abundance in that unit is known with certainty (Ver Hoef

2008; Johnson, Laake & Ver Hoef 2010). Specifically, we can

generate abundance predictions as

N�
js �PoissonðexpðmjsÞRjAjð1� pjsÞð1þ hsÞÞ; and

N��
js �PoissonðexpðmjsÞð1� RjÞAjð1þ hsÞÞ:

Predictions of total abundance across the study area can

then be calculated asNs = ∑j Njs.

We also compute a posterior predictive loss statistic to com-

pare the performance of alternative models with different

sources of variation inmodelled abundance (e.g. different com-

binations of covariates, presence/absence of spatial autocorre-

lation). Suggested by Gelfand & Ghosh (1998), this approach

measures the ability of a givenmodel to generate data sets simi-

lar to the one collected. In particular, a loss statistic is com-

puted for each model m as Dm ¼ Gm þ Pm, where Gm is a

measure of posterior loss and Pm is a penalty for variance.

Models with a smaller overallDm are favoured in this context.

Our implementation largely follows that of Conn et al. (2013);

see Appendix S1 for further details.

EXAMPLE: S IMULATED DATA

To assess the ability of our proposed model to accurately esti-

mate abundance, we simulated a survey of four species over a

30 9 30 grid (J = 900). We generated true abundance using

the same general model structure as used in estimation. Log

abundance for each species was generated as a function of sev-

eral covariates (easting, northing and a Matern-distributed

hypothetical covariate) as well as spatially correlated error

where spatial random effects were generated for each species

assuming an ICAR (s = 20) distribution. Covariate relation-

ships were configured such that for species one, abundance

intensity increased linearly in both eastern and northern direc-

tions; species two exhibited a low but constant abundance

across the landscape; species three exhibited a high abundance

on the western edge of the landscape which declined slightly

towards the east; and species four had a strong relationship

with the hypothetical covariate. We also included a fifth ‘spe-

cies’ in an attempt to mimic anomalous readings (false posi-

tives), where expected abundance intensity was set to be

constant across the landscape. In some cases, the ICAR ran-

dom effects obscured the covariate relationships (Fig. 2).

We simulated a survey over 200 randomly selected grid cells,

assuming that each survey covered 10% of its target sampling

unit (Fig. 2) and that double sampling was conducted for 80%

of automatic detections. Total sample coverage was thus

�2�2% of the population. The observation model was built to

resemble our seal example (see Example: Ice-Associated Seals);

Fig. 4. Map of eastern Bering Sea study area showing 25 9 25 km

sampling units and survey lines for flights that were included in the

analysis. The western boundary of the study area was determined by

the U.S. Exclusive Economic Zone (EEZ); the southern boundary was

determined by limiting analysis to cells that had ≥1% sea ice for at least

one day from 1 April 2012 to 20 May 2012. Cells comprised of >99%
landwere excluded from analysis.

Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.,

Methods in Ecology and Evolution, 5, 1280–1293

1286 P. B. Conn et al.



double-sampled animals could be classified as belonging to

any of the four target ‘species’ or could be recorded as

‘unknown’ or ‘other’. In addition, there were three classes of

target species classification certainty: ‘certain’, ‘likely’ and

‘guess’ (Table 2). Observations were determined according to a

multinomial distribution, with probabilities given in Appendix

S2.

We supplied our hierarchicalmodel with the same covariates

that were used to generate the data (thus utilizing the ‘correct’

functional form and assuming no covariate measurement

error), and permitted estimation of RSR ICAR random

effects. We fixed overdispersion relative to the Poisson distri-

bution to be small (sm = 100) to stabilize estimation (see Dis-

cussion). We summarized the posterior distribution by

running the Markov chain for 600 000 iterations, discarding

100 000 iterations as a burn-in and recording values from

every 100th iteration to save disk space. This procedure took�
2�5 days on a 2�93-GHz Dell Precision T1500 desktop with

8�0 GBofRAM.

EXAMPLE: ICE-ASSOCIATED SEALS

We conducted aerial surveys of four ice-associated seal species

(bearded seals Erignathus barbatus, ribbon seals Histriophoca

fasciata, ringed sealsPhoca hispida and spotted sealsPhoca lar-

gha) over the eastern Bering Sea between 10 April and 22May

2012. Our strategy was to use infrared cameras as an automatic

detection procedure and to use a set of independent, auto-

mated digital photographs as a form of double sampling (Fig.

3). Two aircraft were used in surveys, a NOAA DeHavilland

DHC-6 Twin Otter and an AC-690 Aero Commander. The

Twin Otter was configured with three FLIR SC645 far-IR

infrared cameras with 25 mm lenses measuring data in the 7�5-
to- 13-lm wavelength, each of which was paired with a 21

megapixel high-resolution digital single-lens reflex (SLR) cam-

era fitted with a 100 mm lens. All six cameras were mounted in

the belly port of the airplane. To avoid counting the same ani-

mal twice, the infrared cameras were mounted such that their

thermal swaths abutted each other but did not overlap. Flying

at a target altitude of 300 m, this configuration produced a

thermal swath width of c. 470 m. The Aero Commander was

similarly configured with two sets of infrared and SLR cam-

eras, resulting in a thermal swathwidth of c. 280 m. SLRswere

automated to take pictures approximately every 1–1�4 s; flying

at a target speed of 130 kts, photographs covered�84%of the

thermal swath.

As the quantity and distribution of sea ice varied consider-

ably over the course of the surveys, we selected 10 flights that

provided good spatial coverage within a 1-week period (20–27

April) for analysis (Fig. 4), assuming that abundance was con-
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stant over the study area during this period. Analysis was also

limited to one set of cameras from each plane. In total, our

analysis included 9076 km of survey effort (40�7 h of flying

time). We limited effort to times and locations when altitude

was 228�6–335�3 m and roll was <2�5∘ from centre. Aircraft

yaw could not be calculated reliably and was not included in

area calculations.

We compiled several covariates we thought might be useful

in predicting seal abundance in our study area. These included

marine ecoregion (cf. Piatt & Springer 2007), distance from

mainland, distance from 1000-m depth contour, sea ice con-

centration, distance from southern ice edge and distance from

10%sea ice contour (Fig. 5). Remotely sensed sea ice data were

obtained at a 25 9 25 km resolution from the National Snow

and Ice Data Center, Boulder, CO, USA, on an EASE Grid

2.0 projection. We used this projection and same resolution to

define sampling units (Fig. 4). Calculations of covariates were

made relative to the centroid of each sampling unit.

To estimate the probability of detection associated with

infrared detections (ps), a technician manually searched an

independent, systematic random sample of 11 724 digital pho-

tographs (out of a total of 117 225 images) for the presence of

seals. The technician spent c. 120 h searching photographs

and found a total of 70 seal groups.We then examinedwhether
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these seal groups were also detected as hot spots using our

infrared hot spot detection method, finding that 66 (94�3%) of

them were detected. As species could not always be identified,

we set ps = p for all species and used these data to help estimate

the overall probability of detection (see below). For reference,

the conditional probability of detection for our technician (cal-

culated using seals detected by infrared) was lower at 66/

82 = 80�5%.

We obtained data on availability probability (ajs) from

ARGOS-linked satellite transmitters affixed to spotted,

bearded and ribbon seals in the Bering Sea from 2004 through

2012. A conductivity sensor placed on each transmitter pro-

vided hourly data on the proportion of time each tag was dry.

As in previous analyses (e.g. Bengtson et al. 2005; Ver Hoef,

London&Boveng 2010), dry-time percentages were converted

into Bernoulli responses to analyse seal haul-out behaviour,

where a success was recorded whenever tags were mostly

(≥50%) dry in a given hour (seals could only be detected by

thermal imagery when they were out of water). Because we

were only interested in explaining variation in haul-out behav-

iour during spring, we limited analysis to records between 1

February and 31 July of each year, treating each individual-

year combination as an independent replicate (i.e. data for

individuals obtained in two separate years were treated as if

they were statistically independently). This approach resulted

in a total of 19 individual-year combinations for bearded seals,

92 for ribbon seals and 55 for spotted seals. These data were

analysed within a generalized linear mixed modelling frame-

work that explicitly acknowledges temporal autocorrelation in

responses (see Ver Hoef, London & Boveng 2010). For our

purposes, the linear predictor was written as a function of hour

of day and day of year. Hour of day was treated as a categori-

cal variable with 24 levels, while day of year was calculated as

proportion of year since 1 February. We modelled linear, qua-

dratic and cubic effects for day of year and included all interac-

tions between day of year and hour of day. After separate

models were fitted to data for each species, predictions in logit

space (Fig. 6) and an associated variance–covariance matrix

could be computed for any set of availability probabilities (ajs)

of interest using standard mixed model theory (see e.g. Littell

et al. 1996; VerHoef et al. 2013).

We used the following procedure to produce prior samples

of detection probabilities (pjs) for surveyed sampling units:

1. Determine an average time of day and day of year when

sampling was conducted on each sample unit.

2. For rep ∈ {1, 2, …, 1000}, sample logitðareps Þ�N ðl;RÞ,
where l gives mixed model haul-out (availability) predictions

in logit space and Σ gives the prediction variance–covariance

matrix.

3. For rep ∈ {1, 2, …, 1000}, sample infrared detection

probability as preps �Betað67; 5Þ. This formulation implies a

conjugate Beta(1,1) prior on ps.

4. Compute samples of detection probability (availability 9

infrared detection) by sampling unit as preps ¼ areps preps .

Samples of preps could then be used as a prior distribution

within a Metropolis–Hastings step to account for detection

probabilities that varied by hour, day of year and species (see

Appendix S1 for further details). Note that therewere no avail-

ability data for ringed seals, so ajs was set to 1�0. As such,

ringed seal abundance estimates are uncorrected for availabil-

ity.
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An independent experiment was performed to generate a

prior distribution of species classification probabilities (B.

McClintock, unpublished data). This analysis used readings by

multiple observers and certainty categories (certain, likely,

guess) to produce posterior predictions of classification proba-

bilities, with a constraint that observations recorded as ‘certain’

were 100% accurate. These predictions were used directly as a

joint prior distribution for the species classification matrix (see

Appendix S1). The classificationmatrix specified by the poster-

iormean of these predictions is provided inAppendix S2.

We considered several model formulations for each species.

Based on prior surveys in the region (see e.g. Conn et al. 2013;

Ver Hoef et al. 2013), our a priori expectation was that ribbon

and spotted seals would be concentrated in the southern por-

tions of our study area, whereas bearded and ringed seals

would be primarily located farther north. We also expected

that abundance would be nonlinearly related to sea ice concen-

tration, where zero seals would be detected in cells with no ice

and few seals (possibly with the exception of ringed seals)

would be detected in cells with 100% ice. Ideally, a model for

ribbon seal abundance would be written as a function of the

distance from the continental shelf, where nutrient upwelling

supports an abundant prey base. However, models with con-

tinuous predictors proved problematic for ribbon seals, as

covariates (and combinations of covariates) were often maxi-

mized in the south-west corner of our study area, producing

estimates of abundance that were unbelievably high (note that

there were considerable gaps in sampling in this region). To

avoid extrapolation past the range of observed data, we thus

wrote all models for ribbon seals as a function of ecoregion

and sea ice only. For the remaining species, we fit two possible

models to the data. In the first, the log of abundance intensity

was written as an additive function of ice_conc, ice_conc2,

dist_mainland, dist_shelf, dist_contour and dist_edge. In the sec-

ondmodel, the log of abundance intensity was the same as rib-

bon seals, namely an additive function of ice_conc, ice_conc2

and ecoregion.

We initially tried to fitmodels that includedRSR ICARran-

dom effects, but these often produced overinflated estimates of

abundance in areas where there were large gaps in spatial cov-

erage, even when the spatial neighbourhood defining the Q

structure matrix was a relatively smooth RW2 structure (as in

Rue & Held 2005, section 3.4.2). As such, we limit estimation

to pure trend surface models that do not include spatial auto-

correlation (i.e. ms = Xsbs+es), acknowledging that posterior

predictions of abundance likely overstate precision (seeDiscus-

sion). Initial runs also produced positive predictions of seal

abundance in cells without ice, likely because we only surveyed
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cells that had ice. To anchor this intercept at zero, we intro-

duced dummy data into estimation that indicated we encoun-

tered zero seals in cells with <0�1% sea ice. As with the

simulated data example, we set sms = 100 and summarized the

posterior distribution by running the Markov chain for

600 000 iterations, discarding 100 000 iterations as a burn-in

and recording values from every 100th iteration to save disk

space. This procedure took�3�5 days on a 2�93-GHzDell Pre-

cision T1500 desktopwith 8�0 GBofRAM.

Results

SIMULATED DATA

Posterior predictive distributions for estimated abundance

reasonably approximated the spatial distribution for each spe-

cies (Fig. 2), and posterior predictive distributions of total

abundance captured true abundance in all cases (Fig. 7). This

suggests that our estimation scheme produces reasonable esti-

mates, at least for the sample coverage (�2�2%) and high fre-

quency of double sampling (80%) assumed here.

ICE-ASSOCIATED SEALS

Our posterior loss statistic favoured model one (with continu-

ous covariates for all species other than ribbon seals;

D1 ¼ 4066) over model two (where ecoregion was used for all

species; D2 ¼ 4118), although estimated seal abundance was

similar for each. Patterns in seal abundance conformed to our

a priori expectations regarding species distributions for each

model; for brevity, we present overall abundance estimates

(Fig. 8) and mean posterior prediction abundance maps (Fig.

9) from model 1 only. Posterior mean density estimates, calcu-

lated using an effective study area of 767 114 km2, were

0�39 bearded seals km�2 (95% CI 0�32–0�47), 0�24 ribbon

seals km�2 (95% CI 0�19–0�30) and 0�60 spotted seals km�2

(95%CI 0�51–0�73).We also were able to estimate the relation-

ship between seal abundance and ice concentration, finding

that for most species abundance was maximized when the pro-

portion of sea ice in a sampling unit was in the 0�6–0�8 range

(Fig. 10).

Discussion

Automated detection systems offer several potential advanta-

ges over human observer surveys. For example, infrared sur-

vey flights can be flown faster and at higher altitudes than

conventional (human observer) surveys, increasing the effec-

tive area that can be surveyed, decreasing the likelihood of ani-

mal disturbance and making surveys safer for pilots and crew.

Surveys using automated detection devices have the added

advantage of providing a physical, archivable record of animal

detections. However, such surveys can still miss animals or

pick up non-target signatures. Here, we have shown that dou-

ble sampling (in the seal example, digital photography) is a via-

ble avenue for allowing species-specific inferences about

abundance from automated detection data. However, this

approach requires rather sophisticated hardware and software,

as well as modelling techniques to account for the vagaries of

the detection process, including imperfect detection, availabil-

ity <1, anomalies (false positives) and species misclassification

(note that these factors also occur in studies with human

observers, even if they are usually ignored!). Despite the com-

plexity, the simulation study suggested that our approach is

capable of estimating maps of species distributions that cap-

ture large-scale trends in abundance, with posterior predictive

distributions of total abundance including true values.

The subset of seal data we used was quite sparse, with survey

tracks covering about 0�4%of the study area. Nevertheless, we

were able to fit trend surface models to these data and generate

posterior predictions for abundance that largely reflected our a

priori expectations. For instance, our seal density estimates

compared favourably to results from 2006 helicopter transect

surveys over a 279 880-km2 subset of our study area (Ver Hoef

et al. 2013), where densities were estimated as 0�22 bearded

seals km�2 (95%CI 0�12–0�61), 0�22 ribbon seals km�2 (95%

CI 0�13–0�68) and 0�84 spotted seals km�2 (95% CI 0�49–
2�83). In addition to the actual numbers, the relationships

between abundance and underlying landscape and environ-

mental covariates may also be of interest. For instance, we

were able to relate seal abundance to landscape features (e.g.

distance from land), remotely-sensed sea ice data and ecore-

gion, and to compare alternative models via a posterior loss

statistic. Seal density appeared to peak at slightly higher values

of sea ice concentration than previously observed (cf. Ver Hoef

et al. 2013), possibly due to the uncharacteristically high levels
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of ice in the Bering Sea in 2012. We plan to build upon this

modelling framework to arrive at more definitive estimates of

seal abundance and covariate relationships in the near future.

This effort will likely include adding a temporal dimension in

the process model to account for changing sea ice conditions

(VerHoef et al. 2013) and expanding the survey grid to include

data from concurrent Russian surveys in the western Bering

Sea. Owing to current CPU run-times (i.e. 3�5 days for the seal

analysis), this effort will also likely require improvements to

computer code (e.g. by using parallel processing).

Although not presented here, our experience with fitting

models to both simulated and real data is that there needs to be

relatively intense spatial coverage to support estimation of

overdispersion (i.e. sms) and/or spatial random effects using our

modelling approach. Since modelling occurs on the log of

abundance intensity, the tendency with overparameterized

models is for positive bias, particularly in unsampled cells. The

robustness of our approach is likely viewed along a continuum.

With low spatial coverage, trend surface models (i.e. those

without spatial autocorrelation) may still do a reliable job of

predicting abundance at the expense of overstated precision.

However, even with trend surface models, investigators should

take care to avoid situations where the linear predictor for

abundance has maximum values in unsampled areas. With

higher levels of spatial coverage (and low species misclassifica-

tion rates), estimation of spatial random effects and overdi-

spersion may be more reliable, particularly when considering

reduced rank spatial models like the RSR approach outlined

inAppendix S1.

The methods developed in this paper were largely motivated

by our seal data, and we recognize that further developments

and refinements may be needed when different automatic

detection systems and double sampling strategies are

employed. For example, our use of double sampling data to

estimate detection probability implicitly relies on the assump-

tion that animal detections in each data set (automatic detec-

tion, double sampling) are independent. We think this

assumption is reasonable in our seal example, but would likely

fail in terrestrial applications where habitat cover affects ther-

mal and visual detections similarly (Franke et al. 2012). For

many terrestrial applications, as well as surveys using auto-

mated image processing, an alternative double sampling data

set would likely be needed (e.g. using surveys of known

animals). For auditory surveys, assessment of error rates could

be conducted using test data sets where true species is known.

However, auditory surveys would likely need to account for

additional factors such as cue rate and variation in auditory

detection distances (Marques et al. 2013), as well as availabil-

ity probability (Diefenbach et al. 2007).

An additional consideration is the amount of double sam-

pling that needs to be conducted. Required coverage largely

depends on the amount of information provided by double

sampling, as well as the propensity for spatial variation in

detection errors. In our seal example, double sampling (i.e.

automated digital photography) was used in at least three

ways: (i) to provide species observations (including false posi-

tives), (ii) to estimate detectability and (iii) to examine species

identification errors via an experiment with multiple image

readers. Since species distributions and false-positive rates var-

ied considerably across the landscape, it was necessary to have

considerable coverage in double sampling data (e.g. 79% of

detected hot spots had associated photographs). By contrast,

we only searched�10% of available images to estimate detec-

tion probability and used 716 photographs for our species

identification experiment. We did not expect these error rates

to vary spatially, and target proportions were largely informed

by power analysis (J. Ver Hoef, unpublished data). We do not

expect to increase these latter sample sizes in future work (i.e.

even when increasing the number of flights), since we expect to

use the same technology and transect protocols.

Our approach was to account for missed animals by includ-

ing detection probability as a thinning parameter relative to

the log-Gaussian Cox process, which is likely appropriate for

many populations. However, when automated detection of

animals is a function of individual-level covariates (e.g. size,

distinctiveness), an alternative approach such as data augmen-

tation (Royle 2009; Conn, Laake & Johnson 2012) would

likely be necessary since detection probability must then be

modelled at the level of the individual animal. Additional

approaches to account for overdispersion (e.g. zero inflation,

variance inflation factors) would also be useful and are a sub-

ject of current research.

It is important to contrast our approach in this paper, which

uses double sampling to estimate detection probability, to

approaches that rely on temporal replication or distance data.

For instance, N-mixture models (Royle, Dawson & Bates

2004) also specify a hierarchical framework for spatially repli-

cated animal count data; in this case, a population closure

assumption and temporal replication render detection proba-

bility estimable. However, since detection probability includes

a number of processes (e.g. detectability, availability; cf. Nic-

hols, Thomas & Conn 2009), it is usually not possible to scale

up to absolute abundance with N-mixture models. Another

related approach is hierarchical models for distance sampling

data, which rely on the assumption of declining detection with

increased distance from the transect line to help estimate detec-

tion probability (cf. Schmidt et al. 2011; Conn, Laake & John-

son 2012; VerHoef et al. 2013).

Despite the complexities associatedwithmodelling thedetec-

tion process, we are optimistic about the future of automated

detection systems as a tool for estimating animal abundance

over large spatial domains. These tools provide the means to

markedly increase survey coverage and reduce data processing

times. Hierarchical models, like the one we have developed in

this paper, provide a natural framework to combine multiple

data sets that can be used to estimate different components of

the detection process, and to correctly propagate uncertainties

associatedwith each component into final estimates.
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Quantitative assessment of species identification in aerial
transect surveys for ice-associated seals
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Abstract

Technological advances have facilitated collection of vast quantities of photo-
graphic data from aerial surveys of marine mammals. However, when it is difficult
to distinguish species from a distance, reliable identification from aerial images can
often be challenging. This is the case for ice-associated seals, species for which global
climate change has motivated intensive monitoring efforts in recent years. We assess
species and age class identification from aerial images of four ice seal species (bearded
seals, Erignathus barbatus; ribbon seals, Histriophoca fasciata; ringed seals, Pusa hispida;
spotted seals, Phoca largha) in the Bering Sea. We also investigate the specific phe-
nomenological and behavioral traits commonly associated with species identification
and observer confidence. We generally found species and age class misidentification
occurred at relatively low levels, but only 83% of spotted seals tended to be correctly
identified (with 11% mistaken as ribbon seals). We also found certain traits were
strong predictors for observed species, age class, or observer confidence. Our findings
add to the growing body of evidence that species misidentification is pervasive in
passive sampling of animal populations. Even low levels of misidentification have
been demonstrated to induce substantial biases in estimators of species distribution
and abundance, and it is important that statistical models account for such errors.

Key words: abundance, aerial survey, latent state model, partial state observation,
Phocidae, ice-associated seals, photo-identification, satellite imagery, species misclas-
sification, species misidentification, species occurrence.

Several species of seals (family Phocidae) require sea ice as a platform for whelping
and rearing pups during spring and for molting during spring to early summer. These
“ice-associated” seals, or “ice seals” have become a focus of conservation concern, pri-
marily stemming from expected losses or modifications to their sea-ice habitat due to
the effects of global climate change (Tynan and DeMaster 1997, Moore and Hunting-
ton 2008). Until recently, relatively little was known about the distribution and
abundance of many of these species (e.g., Conn et al. 2013a, b; Ver Hoef et al. 2014).
Distribution and abundance data for both marine and terrestrial mammals are dif-

ficult, time-consuming, and expensive to collect, often involving aerial transect sur-
veys over large geographic areas (e.g., O’Brien and Lindzey 1998, Ver Hoef et al.
2014). Historically, surveys required observers to visually identify and count target

1Corresponding author (e-mail: brett.mcclintock@noaa.gov).
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species during flight, but technological advances in digital imaging have facilitated
the collection of large quantities of photographic data from aerial (e.g., Conn et al.
2013b) and satellite (e.g., LaRue et al. 2011, Fretwell et al. 2012) surveys, which have
the benefit of documenting all observations for postprocessing, verification, and
archiving. However, species and age class identification from aerial or satellite imag-
ery can often be difficult (e.g., O’Brien and Lindzey 1998, Fretwell et al. 2014), and if
not accounted for, misidentification can result in unreliable inference about species
distribution and abundance (e.g., McClintock et al. 2010a, Miller et al. 2011, Caillat
et al. 2013, Conn et al. 2013a).
Species identification of ice-associated seals from aerial imagery is particularly

challenging. These species can be difficult to distinguish from a distance, occupy
similar habitats, and have overlapping distributions. In addition, safety and poten-
tial disturbance of seals necessitate relatively high survey altitudes, which, even with
modern digital image sensors, still limit the potential resolution of imagery to
examine species-specific characteristics. It is therefore challenging to balance the
conflicting goals of maximizing spatial coverage and minimizing disturbance
(improved with higher survey altitudes and wider-angle lenses) while retaining suf-
ficient pixel resolution for accurate species identification (improved with lower sur-
vey altitudes, higher zoom lenses, and higher resolution cameras). Image quality is
also highly variable due to environmental factors such as weather and light condi-
tions. Even under ideal environmental conditions, animal behavior such as body
position, orientation, or movement can further limit our ability to reliably deter-
mine species from aerial images. Because many of the characteristics commonly used
to identify ice-associated seal species (e.g., chapter 5 in Jefferson et al. 2008) are
often not readily visible in aerial photographs, coarser characteristics (e.g., body
shape, pelage pattern, or associations with other seals) must often be used. There-
fore, unlike species identifications based on physical or close visual inspection, aerial
survey photographs will often produce species identifications of variable degrees of
certainty depending on which characteristics are visible in any particular image.
Focusing on the observation process, we examine the ability of observers to identify

four ice-associated seal species (bearded seals, Erignathus barbatus; ribbon seals, Histri-
ophoca fasciata; ringed seals, Pusa hispida; and spotted seals, Phoca largha) from aerial
images collected during transect surveys of the Bering Sea. These four species are eas-
ily distinguishable from physical or close visual inspection, but can be challenging to
identify from aerial imagery (see Fig. 1, 2). For example, body position, animal
movement, or light conditions can potentially obscure the unmistakable white rib-
bons of an adult ribbon seal. When the characteristic “torpedo-like” body shape and
“dog-like” muzzle of a spotted seal are not visible, it could be more likely to be mis-
taken for a ringed seal. Juveniles and pups of all of the species tend to be the most dif-
ficult to positively identify as they have not developed many of the distinguishing
traits of the adults, and therefore tend to look alike from a distance. Furthermore,
pups of ribbon, spotted, and ringed seals are born with a white lanugo coat that is
generally present until weaning. For pups and nonpups of each species, we quantify
both correct identification probabilities and misidentification probabilities resulting
from false-positive species or age class identifications. We also identify the specific
characteristics most commonly associated with identifications of each species and age
class, as well as which traits are associated with greater degrees of observer confidence.
As inference about species distribution and abundance is generally the ultimate goal
of aerial transect and satellite surveys, we conclude with a discussion of the implica-
tions of our findings for ecological inference when species are difficult to distinguish.
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Methods

Data Collection

Between April and May in 2012 and 2013, we conducted aerial transect surveys of
ice-associated seal species in the eastern Bering Sea. Flying at a target altitude of
300 m, images were captured using automated 21 or 24 megapixel high-resolution
digital single-lens reflex cameras (Canon 1Ds Mark III and Nikon D3X) fitted with
a 100 mm Zeiss lens. These specifications were selected to produce images of

Figure 1. The characteristic bands on the coats of ribbon seals are not necessarily clearly vis-
ible in an aerial image. The images on the top right and bottom right were taken with a Canon
1Ds Mark III fitted with a Zeiss 100 mm lens from 300 m during a 2012 line transect survey
in the Bering Sea. In the top right image, an observer would likely rely on the clearly visible
bands to conclude that the seal is certainly a ribbon seal. In the bottom right image, an obser-
ver would likely rely on a combination of body shape, head size, flipper size and shape, and
what could be one or more bands to conclude that the seal is probably a ribbon seal.

Figure 2. A red face, which is one of the characteristics associated mostly with bearded
seals, is not always present, nor is it necessarily visible in an aerial image. The image on the
right was taken with a Canon 1Ds Mark III fitted with a Zeiss 100 mm lens from 300 m dur-
ing a 2012 line transect survey in the Bering Sea. In this image, an observer would likely rely
on the combination of body shape, head size, front-flipper size and shape, and position on the
floe to conclude that the seal is probably or certainly a bearded seal.
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previously established minimum ground resolution requirements for species identifi-
cation (2 cm per pixel) while maximizing survey area and minimizing animal distur-
bance. Images were collected continuously at a rate of approximately one frame per
second with minimal or no overlap; hence, some images contained partial seals at the
edge of the frame (e.g., torso only, head and partial torso, etc.). Using systematic ran-
dom sampling, 716 images were chosen from 10 flights during a one week period
from 20 to 27 April 2012. This set of flights provided representative spatial coverage
of the entire study area (see Conn et al. 2013b for full details). The 716 images
included R=759 distinct seals for species and age class identification.
Four seal biologists from the Polar Ecosystem Program of the National Marine

Mammal Laboratory participated in our species identification trials. All four observers
assigned species to 600 photographed individuals, and only one of two observers
assigned species to the remaining 159 individuals. For each trial, observers assigned a
species (bearded = BD, ribbon = RN, ringed = RD, spotted = SD, unknown = UK),
species identification confidence level for BD, RN, RD, or SD classifications (guess:
<50%, likely: 51%–99%, or positive: 100%), age class (pup, nonpup, unknown),
and age class confidence for pup or nonpup classifications (guess, likely, positive).
Here we define pup as any young animal with a white lanugo coat or, in the case of
bearded seals and those that have already molted their lanugo, within a few body
lengths of an adult seal. Nonpups are defined as all other age classes (e.g., young-of-
the-year or weaned pup, subadult, adult). Observers also recorded whether the torso,
head, fore flippers, and rear flippers were visible.
To gain a better understanding of the traits and behaviors commonly used to iden-

tify ice-associated seal species and age classes from aerial photographs, we asked our
observers to record specific characteristics associated with each seal. Prior to com-
mencing the trials, a comprehensive list of potential characteristics was compiled
from extensive discussions with ice seal biologists (Table 1). This included traits as
seen specifically in aerial imagery, which were not necessarily consistent with traits
typically seen from the ground (e.g., white band around neck and serpentine body
shape). Based on this list, observers recorded specific visible traits for each trial seal
image, including those associated with pelage (light coat, mottled coat, dark coat,
distinct ribbon, 1 faint ribbon, 2–3 faint ribbons), body shape (“American football,”
“torpedo-like,” serpentine, tubular, other), fore flipper shape (long and slender, short
broad square, other), muzzle shape (“cat-like,” “dog-like,” other), the color of any
lanugo (white, off-white), and the presence of long rear flippers. The presence of a
long neck, slender posterior, small head (relative to body size), red face, beard-like
vibrissae, or “T”-shaped pattern on the forehead were also recorded. Some behavioral
characteristics were recorded, including track path (straight, serpentine), track pat-
tern (alternating, paired), associations with other seals (triad, nonpup group, single
adult), the presence of a maintained hole in the ice, maximum ice floe dimension (>3
body lengths, <2 body lengths), and proximity to ice edge (1 body length, >1 body
length). For convenience, we will henceforth refer to these traits using the abbrevia-
tions defined in Table 1.

Species and Age Classification Analysis

We are able to estimate misidentification probabilities by repeated sampling of
multiple observers and treating observations with positive confidence levels as the
“gold standard.” Formally, let s 2 {1,2,3,4,5} denote respective observed species clas-
sifications of spotted, ribbon, bearded, ringed, and unknown, a 2 {1,2,3} denote
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respective observed age classifications of pup, nonpup, and unknown, and s�; a� 2
{1,2,3} denote respective observed species and age confidence levels of guess, likely,
and positive. Our species, age, and confidence classifications therefore yield (4 9 3 +
1) 9 (2 9 3 +1) = 91 possible observation types. Letting yr,i 2 {1,2, . . ., 91} denote
the observation type of observer i for seal r with indices

Table 1. Phenomenological and behavioral traits used to identify four species of ice-associ-
ated seal (spotted = SD, ribbon = RN, bearded = BD, ringed = RD) from aerial survey images.

Trait Description Category Affiliation

alt_track Alternating flipper pattern in tracks Track RN
assoc “Associated” with another seal within 6 body lengths Behavior
assoc_23len Approximately 2/3 the length of an associated seal Body BD pups
beard Beard-like vibrissae Head BD
catlike “Cat-like” face; compact features, short muzzle Head RD
distinctrbn 1 or more distinct ribbons Pelage RN
dkcoat Dark coat with no spots Pelage RN
doglike “Dog-like” face; wide skull, long muzzle Head SD
edge_1body Within 1 body length of edge on non-small ice floe Behavior BD
edge_gt1body >1 body length from edge on non-small ice floe Behavior
faintrbn1 1 faint ribbon Pelage RN
faintrbn23 2–3 faint ribbons Pelage RN
fball “American football” or “comma” shape Body RD
group 3 or more associated nonpups Behavior SD
gt3body On non-small ice floe (>3 body lengths) Behavior
torpedo “Torpedo-like” or “elongated teardrop” shape Body SD
hole Close proximity to a maintained hole in ice floe Behavior RD
lanugo_offwh Off-white lanugo Pelage SD pups
lanugo_white White lanugo Pelage RN pups,

RD pups
long_neck Long, slender neck Body RN
long_rearflip Long hindflippers Body RN
lsff Long slender fore flippers Body RN
lt2body On small ice floe (<2 body lengths) Behavior BD
ltcoat Light, uniform coat Pelage BD
mot Mottled coat; spots or rings Pelage SD, RD
neckband White band around neck Pelage RD
nocatdog Other face type (not catlike or doglike) Head RN, BD
other_ffchar Other fore flipper characteristics (not lsff or sbsff) Body SD, RD
othershape Other body shape Body
pair_track Paired flipper pattern in tracks Track SD
red_face Reddish coloration on face Head BD
sbsff Short broad square fore flippers Body BD
serp_track Serpentine track pattern Track RN
serpentine Serpentine body position Body RN
slender_post Slender posterior Body RN
small_head Small blunt head relative to body size Head BD
str_track Straight track pattern Track SD
Thead “T”-shaped pattern on forehead Head BD
triad Two nonpups associated with one pup Behavior SD
tubular Tubular or “cigar-like” body shape Body BD
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yr;i ¼
21ðsr;i –1Þ þ 7ðs�r;i –1Þ þ 3ðar;i –1Þ þ a�r;i if sr;i\5and ar;i\3
21ðsr;i –1Þ þ 7ðs�r;i –1Þ þ 7 if sr;i\5and ar;i ¼ 3
84þ 3ðar;i –1Þ þ a�r;i if sr;i ¼ 5and ar;i\3
91 if sr;i ¼ 5and ar;i ¼ 3;

8
>><
>>:

we can model the species, age, and confidence level data using a categorical likeli-
hood:

½yjp; z� ¼
YR
r¼1

Yn
i¼1

Categoricalðyr;i; pzr;1;i; pzr;2;i; . . .; pzr;91;iÞ;

where pzr ;y;i is the conditional probability of observation yr,i = y for observer i given
the true species and age classification for seal image r = 1,. . .,R is zr 2
{1,2,3,4,5,6,7,8}, corresponding to spotted pup (SDP), spotted nonpup (SDN), rib-
bon pup (RNP), ribbon nonpup (RNN), bearded pup (BDP), bearded nonpup
(BDN), ringed pup (RDP), and ringed nonpup (RDN).
We assume any positive species or age observation (i.e., s�r;i ¼ 3 or a�r;i ¼ 3) is the

true species or age class for seal r. For ease of interpretation, we parameterized pzr ;y;i in
terms of the probability that true species l 2 {1,2,3,4} (or {SD, RN, BD, RD}) is
identified as species s ðal;s;iÞ, the probability that true species l identified as species s
is assigned to species confidence level s�ðbl;s;s�;iÞ, the probability that true age class j2 {1,2} (or {pup, nonpup}) is identified as age class a ðdj;a;iÞ, and the probability
that true age class j identified as age class a is assigned to age class confidence level
a� ðcj;a;a�;iÞ:

pzr;y;i ¼
al;s;ibl;s;s�;idj;a;icj;a;a�;i if s\5 and a\3
al;s;ibl;s;s�;idj;a;i if s\5 and a ¼ 3
al;s;idj;a;icj;a;a�;i if s ¼ 5 and a\3
al;s;idj;a;i if s ¼ 5 and a ¼ 3;

8>><
>>:

where

l ¼
1 if zr 2 f1; 2g
2 if zr 2 f3; 4g
3 if zr 2 f5; 6g
4 if zr 2 f7; 8g

8>><
>>:

and

j ¼ 1 if zr 2 f1; 3; 5; 7g
2 if zr 2 f2; 4; 6; 8g:

�

Note that
P5

s¼1 al;s;i ¼ 1;
P3

s�¼1 bl;s;s�;i ¼ 1 for s = 1, . . ., 4, and
P3

a¼1 dj;a;i ¼ 1,P3
a�¼1 cj;a;a�;i ¼ 1 for a = 1, 2.
To illustrate, suppose image r is of a bearded seal pup (i.e., zr = 5). For sr,i = 1

(observed spotted seal), s�r;i ¼ 3 (species positive), ar;i ¼ 2 (observed nonpup) and
a�r;i ¼ 1 (age guess), we have Pr(yr,i = 18|zr = 5) = p5,18,i = a3,1,ib3,1,3,id1,2,ic1,2,1,i = 0
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because we assume a bearded seal cannot be positively misidentified as a spotted seal
(i.e., b3,1,3,i = 0). Now suppose image r is of a spotted seal nonpup (i.e., zr = 2). For
sr; i ¼ 3 (observed bearded seal), s�r;i ¼ 1 (species guess), ar,i = 1 (observed pup), and
a�r;i ¼ 3 (age positive), then Pr(yr,i = 45|zr = 2) = p2,45,i = a1,3,ib1,3,1,id2,1,ic2,1,3,i = 0
because we assume nonpups cannot be positively misclassified as pups (i.e., c2,1,3,i = 0).
Note that while these parameters are conditional on the true species and age class,
Bayes’ rule allows calculation of the probability that any given observation
corresponds to the true species and age class:

Prðzr ¼ zjyr;i ¼ yÞ ¼ wzpz;y;iP
k wkpk;y;i

:

For each seal image, the latent species identity and age class (zr) is assumed known
with certainty only if

Pn
i¼1 Iðs�r;i ¼ 3Þ[ 0 and

Pn
i¼1 Iða�r;i ¼ 3Þ[ 0, where I(x) is

an indicator function taking the value 1 when x is true and 0 otherwise. We assume
zr|w ~ Categorial(w1,w2,. . .,w8) and use Bayesian analysis methods to estimate the
joint posterior distribution of the model parameters and latent variables:

½w; a; b; d; c; zjy� / ½yja;b; d; c; z�½zjw�½w�½a�½b�½d�½c�;
where wz is the probability that any given seal image belongs to true species and age
class z. We assigned uninformative Dirichlet priors on w, a, b, d, and c (with appro-
priate constraints bl,s,3,i = 0 for l 6¼ s and cj,a,3,i = 0 for j 6¼ a).
Our model assumes positive species or age class confidence levels s� ¼ 3 or a� ¼ 3

are correct, and conflicting positive classifications are therefore not permitted. Out of
2,559 observer trials, there were initially five conflicting positive species identifica-
tions and nine conflicting positive age classifications. Observers were asked to revisit
these trials, and all but one of these conflicts was deemed a data-entry error and cor-
rected. The single remaining discrepancy was resolved through a civilized discussion
between the observers. We performed our analysis in R (R Development Core Team
2013) using the rjags package (Plummer 2013; see Appendix S1 for JAGS model
code). Starting from overdispersed initial values, we obtained three chains of 200,000
iterations for posterior summaries (after pilot tuning and burn-in of 20,000 itera-
tions). To compare observer effects and obtain posterior summaries for a, b, d, and c
across all observers, we performed an additional analysis assuming no observer effects;
that is, pzr ;y;i ¼ pzr;y for i ¼ 1,. . .,n. Standard diagnostics provided no evidence for
lack of convergence (e.g., Gelman-Brooks-Rubin diagnostic < 1.01 for all parame-
ters).

Species and Age Classification Characteristics Analysis

For each observed species and age class (SDP, SDN, RNP, RNN, BDP, BDN,
RDP, and RDN), we performed logistic regressions to identify the traits that best
predicted the observed species and species confidence levels. To identify the traits that
best explained the observed species, we first ignored observer confidence levels and
treated the response as binary (e.g., SDP or not SDP). To identify the traits that best
predicted positive species identifications, we performed logistic regressions using
only the observations in which each particular species and age class was identified
(i.e., we used only those observations with a guess, likely, or positive confidence level
for both the observed species and age class; observations with an unknown species
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and/or age class were not used). For this second set of analyses, we ignored age class
confidence levels and again treated the response as binary (e.g., positive SDP or non-
positive SDP). For both sets of analyses, the predictors were binary indicators for the
presence or absence of each trait (see Table 1).
With 40 different predictor traits, examining all possible models is impractical,

and we had no a priori basis for establishing a manageable subset of candidate models.
For both sets of logistic regression analyses, we therefore started from a null model
with no trait effects and performed bidirectional stepwise selection based on Akaike’s
Information Criterion (AIC) using the stepAIC()and glm() functions in R (R Develop-
ment Core Team 2013). When the minimum-AIC model exhibited (quasi-) complete
separation due to sparseness or the dichotomous nature of the data, we used Firth
logistic regression, which uses a penalized likelihood, to obtain estimates of effect
sizes, standard errors, and profile-likelihood confidence intervals (implemented in the
R package logistf; Heinze et al. 2013).

Results

Species and Age Classification Analysis

Based on estimated species and age classifications, the majority of images consisted
of spotted or ringed seal nonpups. Estimates of true species and age class proportions
in our sample were nearly identical between the analyses with and without observer
effects (Table 2). For the model excluding observer effects, posterior medians were
w1 = 0.08 (95% CI: 0.07–0.11) for spotted pups, w2 = 0.29 (95% CI: 0.26–0.32) for

Table 2. Comparison of estimated proportions (and standard errors) of each ice seal species
and age class from our misidentification model (w) and na€ıve estimates assuming no misiden-
tification (wi

naive) with and without observer effects (i = 1,. . .,4). Seal species and age classes
are spotted pup (SDP), spotted nonpup (SDN), ribbon pup (RNP), ribbon nonpup (RNN),
bearded pup (BDP), bearded nonpup (BDN), ringed pup (RDP), and ringed nonpup (RDN).

Observer effects
No observer

effects

Species/age w w1
naive w2

naive w3
naive w4

naive w wnaive

SDP 0.08
(0.01)

0.07
(0.01)

0.08
(0.01)

0.07
(0.01)

0.06
(0.01)

0.08
(0.01)

0.07
(0.01)

SDN 0.29
(0.02)

0.28
(0.02)

0.27
(0.02)

0.24
(0.02)

0.23
(0.02)

0.29
(0.02)

0.26
(0.01)

RNP 0.02
(0.01)

0.03
(0.01)

0.02
(0.01)

0.03
(0.01)

0.04
(0.01)

0.02
(0.01)

0.03
(0.01)

RNN 0.06
(0.01)

0.08
(0.01)

0.07
(0.01)

0.12
(0.01)

0.11
(0.01)

0.06
(0.01)

0.10
(0.00)

BDP 0.03
(0.01)

0.02
(0.01)

0.03
(0.01)

0.02
(0.01)

0.04
(0.01)

0.03
(0.01)

0.03
(0.00)

BDN 0.18
(0.01)

0.19
(0.02)

0.18
(0.01)

0.16
(0.01)

0.17
(0.01)

0.18
(0.01)

0.17
(0.01)

RDP 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.01)

RDN 0.34
(0.02)

0.32
(0.02)

0.35
(0.02)

0.35
(0.02)

0.35
(0.02)

0.34
(0.02)

0.34
(0.00)
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spotted nonpups, w3 = 0.02 (95% CI: 0.01–0.03) for ribbon pups, w4 = 0.06 (95%
CI: 0.04–0.07) for ribbon nonpups, w5 = 0.03 (95% CI: 0.02–0.04) for bearded
pups, w6 = 0.18 (95% CI: 0.15–0.21) for bearded nonpups, w7 = 0.00 (95% CI:
0.00–0.01) for ringed pups, and w8 = 0.34 (95% CI: 0.31–0.38) for ringed nonpups.
Ignoring unknown species or age classifications (i.e., s = 5 or a = 3), na€ıve proportions
assuming no misidentification were 0.07 (SE = 0.01) for spotted pups, 0.26 (SE =
0.01) for spotted nonpups, 0.03 (SE = 0.01) for ribbon pups, 0.10 (SE = 0.00) for rib-
bon nonpups, 0.03 (SE = 0.00) for bearded pups, 0.17 (SE = 0.01) for bearded nonp-
ups, 0.00 (SE = 0.01) for ringed pups, and 0.34 (SE = 0.00) for ringed nonpups
(Table 2).
We found the type and magnitude of misidentification to vary between species

(Fig. 3). Across observers, correct species identification probabilities were relatively
high for ribbon (a2,2 = 0.97; 95% CI: 0.93–0.99) and bearded seals (a3,3 = 0.96;
95% CI: 0.93–0.98). Spotted seals were correctly identified with the lowest probabil-
ity (a1,1 = 0.83; 95% CI: 0.80–0.86) and tended to be misidentified as ribbon seals
(a1,2 = 0.11; 95% CI: 0.09–0.14). Ringed seals tended to be identified correctly (a4,4
= 0.94; 95% CI: 0.92–0.96), but were more often misidentified as spotted seals (a4,1
= 0.03; 95% CI: 0.02–0.04) than the other species. With al,5 ranging between 0.01
and 0.02, all species had similarly low probabilities of being assigned to the unknown
species observation category (see Appendix S2 for more detailed posterior summaries).
We found some variability in species identification probabilities between observers
(Fig. 3). For example, one observer was significantly more likely to misidentify
spotted seals as ribbon seals (a1,2,i = 0.18; 95% CI: 0.14–0.24), while another
observer was more likely to misidentify spotted seals as bearded seals (a1,3,i = 0.04;
95% CI: 0.02–0.07) and ringed seals as spotted seals (a4,1,i = 0.07; 95% CI: 0.04–
0.10).
Within species, we found similar levels of misidentification for pups and nonpups

(Fig. 3). Pups and nonpups of all four species had similar age class identification
probabilities, with respective overall correct age class identification probabilities of
d1,1 = 0.96 (95% CI: 0.93–0.98) and d2,2 = 0.98 (95% CI: 0.97–0.99). We found
marginal evidence of slightly higher probabilities for pups being misclassified as
nonpups, with d1,2 = 0.02 (95% CI: 0.01–0.04) and d2,1 = 0.01 (95% CI: 0.01–
0.02), and pups being assigned to the unknown age class observation category, with
d1,3 = 0.02 (95% CI: 0.01–0.04) and d2,3 = 0.01 (95% CI: 0.00–0.01). In the analy-
sis including observer effects, age class identification probabilities were similar for all
four observers.
Observers overall tended to be most confident in correct identifications of ribbon

seals (b2,2,3 = 0.91; 95% CI: 0.84–0.95), followed by bearded seals (b3,3,3 = 0.72;
95% CI: 0.68–0.76), ringed seals (b4,4,3 = 0.60; 95% CI: 0.56–0.63), and spotted
seals (b1,1,3 = 0.39; 95% CI: 0.35–0.42), but we found confidence to vary among
observers (Fig. 4). For example, one observer tended to be more confident when iden-
tifying spotted seals (b1,1,3,i = 0.63; 95% CI: 0.57–0.69), and another observer
tended to be less confident for all four species (b1,1,3,i = 0.17, 95% CI: 0.12–0.23;
b2,2,3,i = 0.77, 95% CI: 0.61–0.88; b3,3,3,i = 0.50; 95% CI: 0.41–0.59; b4,4,3,i =
0.12, 95% CI: 0.08–0.17). With the exception of ribbon seals, we generally found
correct species identifications were assigned to the “guess” confidence level with the
lowest probability (see Appendix S2).
For age class confidence, observers overall tended to be more confident in correct

classifications of pups (c1,1,3 = 0.88; 95% CI: 0.84–0.92) than nonpups (c2,2,3 =
0.76; 95% CI: 0.74–0.78). However, age class confidence also varied among observers
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(Fig. 4). For example, the same observer that generally exhibited lower species confi-
dence also exhibited a substantially lower age class confidence for nonpups (c2,2,3,i =
0.06; 95% CI: 0.05–0.09).

(a)

(b)

Figure 3. Observed species and age class identification probabilities for four species of ice-
associated seals in the Bering Sea. True species and age classes include spotted seal pup (SDP),
spotted seal nonpup (SDN), ribbon seal pup (RNP), ribbon seal nonpup (RNN), bearded seal
pup (BDP), bearded seal nonpup (BDN), ringed seal pup (RDP), and ringed seal nonpup
(RDN). Observed species classifications include spotted seal (red), ribbon seal (green), bearded
seal (yellow), ringed seal (blue), and unknown seal (white). Observed age classes include
pup, nonpup, and unknown. Solid colors with no hashing indicate unknown age classification.
Top panel (a) includes results from an analysis with no observer effects on model parameters.
Bottom four panels (b) correspond to four different observers from an analysis including obser-
ver effects.
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(a)

(b)

Figure 4. Observed species, age class, and confidence level probabilities for four species of
ice-associated seals in the Bering Sea. True species and age classes include spotted seal pup
(SDP), spotted seal nonpup (SDN), ribbon seal pup (RNP), ribbon seal nonpup (RNN),
bearded seal pup (BDP), bearded seal nonpup (BDN), ringed seal pup (RDP), and ringed seal
nonpup (RDN). Observed species classifications include spotted seal (red), ribbon seal (green),
bearded seal (yellow), ringed seal (blue), and unknown seal (white). Observed age classes
include pup, nonpup, and unknown. For observed species classifications, darker shades indicate
greater confidence (e.g., light red = spotted seal guess, red = spotted seal likely, and dark red =
spotted seal positive). For observed age classes, the relative density of hash lines indicate
greater confidence (e.g., low density = guess, medium density = likely, high density = posi-
tive). Solid colors with no hashing indicate unknown age classification. Top panel (a) includes
results from an analysis with no observer effects on model parameters. Bottom four panels
(b) correspond to four different observers from an analysis including observer effects.
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Species and Age Classification Characteristics Analysis

The vast majority of seal images included the torso (99%), head (98%), and rear
flippers (98%), while fore flippers (61%) and tracks (50%) had a greater tendency to
be obstructed, absent, or otherwise indiscernible. A “complete” seal (torso, head, fore
flippers, and rear flippers) with tracks was visible in 35% of images. Many of the
traits included in our list of potential characteristics (see Table 1) were commonly
associated with observed species and age class assignments, but with varying frequen-
cies and confidence levels (Fig. 5). Our aerial survey images did not contain sufficient
numbers of ringed seal pup observations for our logistic regression analysis, but there
were sufficient sample sizes for all other species and age classes. Although presence on
an ice floe with a maximum dimension greater than three body lengths (gt3body) was
the trait most commonly associated with each species and age class, it was not gener-
ally found to be a useful predictor of observed species and age classifications
(Tables 3–6).
For the first set of logistic regression analyses ignoring species confidence levels, we

found several traits to be useful predictors for observations of spotted, ribbon, and
bearded seal pups. Based on the minimum-AIC model for spotted seal pups, the most
important predictors with positive associations were triad, lanugo_offwh, and group
(Table 3). Observations of ribbon seal pups were positively associated with both lanu-
go_white and lanugo_offwh. Observed bearded seal pups were positively associated with
small_head, mot, assoc_23len, slender_post, tubular, nocatdog, edge_1body, and ltcoat.
For spotted seal nonpups, the minimum-AIC model included positive effects for

triad, lanugo_white, doglike, lanugo_offwh, lsff, torpedo, assoc, other _ffchar, pair_track,
mot, and dkcoat (Table 4). For ribbon seal nonpups, positive associations were found
for distinctrbn, faintrbn23, serpentine, othershape, faintrbn1, torpedo, fball, catlike,
long_neck, edge_gt1body, dkcoat, and neckband. Bearded seal nonpups were positively
associated with edge_1body, red_face, small_head, tubular, ltcoat, nocatdog, and str_track.
For ringed seal nonpups, we found positive effects for hole, fball, and neckband.
In our second set of logistic regression analyses accounting for observed species

confidence levels, we found certainty in identification (i.e., positive confidence) within
each species of pup to be strongly related to the presence of an associated nonpup
(Table 5). Based on the minimum-AIC model for spotted seal pups, we found that
triad, assoc, and long_rearflip were positively associated with species certainty, while
ltcoat tended to be associated with the lower confidence levels (i.e., guess and likely).
For ribbon seal pups, we found positive species confidence to be strongly associated
with assoc. Certainty for bearded seal pups was positively associated with assoc_23len
and tubular, while the lower confidence levels were associated with slender_post and
ltcoat.
For observations of spotted seal nonpups, the minimum-AIC model suggested spe-

cies identification certainty was positively associated with triad, torpedo, tubular, mot,
sbsff, assoc, doglike, other_ffchar, lsff, and pair_track (Table 6). Ribbon seal nonpups
tended to be identified with positive species confidence when distinctrbn, faintrbn23,
alt_track, and other_ffchar were observed. Certainty for bearded seal nonpups was posi-
tively associated with red_face, assoc, nocatdog, doglike, ltcoat, small_head, edge_1body,
catlike, dkcoat, str_track, and tubular. For ringed seal nonpups, we found positive spe-
cies confidence to be strongly associated with the presence of hole, fball, and mot. For
each species, additional traits were negatively associated with species confidence for
nonpups (Table 6).
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(a)

(b)

Figure 5. Frequencies of observed characteristics from images identified as pups (a) and
nonpups (b) of four ice-associated seal species in the Bering Sea. Bars are stacked according to
the frequencies of nine observed species and age class confidence categories. For pups, only
those traits with at least one observation are included for each species. For nonpups, only traits
with ≥ 5 observations are included. Trait definitions are provided in Table 1.
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Discussion

We generally found species and age class misidentification to occur across all spe-
cies and observers. While species misidentification rates appear to be relatively low
for ribbon, bearded, and ringed seals, we found spotted seals were frequently mis-
taken for other species, and ribbon seals in particular. This is most noticeable in the
differences between estimated species proportions based on our misidentification
model and na€ıve estimates ignoring misidentification (see Table 2). We attribute this
to observers generally being less confident about spotted seal observations (e.g., only
39% of correct spotted seal observations were assigned a positive confidence level)
and a tendency for spotted seals to resemble ribbon seals when their distinctive pelage
patterns are obscured or absent. We had expected ringed seals to be more frequently
misidentified as spotted seals, as suggested during past observer-based helicopter sur-
veys, but we suspect the high resolution imagery and additional time observers had
to review imagery reduced this error. Age class misidentification rates were similarly
low across species, although we found evidence that pups may be slightly more likely
to be mistaken for nonpups.
The subset of flights for this analysis were chosen because they provided the best

coverage of the survey area within a limited amount of time (one week), ensuring
minimal ice movement. For the four species of ice-associated seals included in our
study, we found ringed and spotted seals to be the most prevalent in our sample,
while ribbon seals were encountered with the lowest frequency. These proportions
were all within the ranges of our expectations given natural history observations and
previous surveys of these species. For example, nonpups of spotted, ringed, and
bearded seals were more prevalent than nonpups of ribbon seals because the 10 survey

Table 3. Characteristics that best predicted observed species identifications across four spe-
cies of ice-associated seal pups.a Coefficients and 95% confidence intervals (LCI, UCI) for each
species are from the minimum-AIC logistic regression model. Trait definitions are provided in
Table 1.

Observed
species

Positive effects Negative effects

Trait Coef. LCI UCI Trait Coef. LCI UCI

spotted triad 4.18 1.95 9.09 tubular –2.05 –4.01 –0.49
lanugo_offwh 3.63 2.67 4.70 dkcoat –1.67 –6.56 0.55
group 3.15 –0.36 8.29 othershape –1.45 –2.76 –0.17

lanugo_white –0.97 –1.99 0.04
edge_1body –0.79 –1.75 0.14
(intercept) –0.65 –1.52 0.15

ribbon lanugo_white 5.80 4.36 8.05 triad –4.34 –9.23 –2.13
lanugo_offwh 1.29 –0.26 3.55 (intercept) –4.07 –6.24 –2.78

bearded small_head 8.96 –1.01 36.06 lanugo_offwh –19.03 –64.10 –4.24
mot 7.55 2.35 31.49 triad –14.05 –47.21 –2.90
assoc_23len 7.00 2.70 28.41 lanugo_white –10.07 –40.22 –3.68
slender_post 3.80 0.33 17.18 fball –7.01 –37.13 –1.11
tubular 3.47 0.33 13.31 assoc –5.85 –21.98 –1.47
nocatdog 2.68 –0.53 16.89 catlike –4.85 –28.24 0.86
edge_1body 2.53 0.36 8.68 (intercept) –1.78 –6.76 0.12
ltcoat 2.10 –0.39 13.08 othershape –1.44 –8.84 2.16

aSample sizes for ringed seal pups were insufficient for inclusion in this analysis.
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Table 4. Characteristics that best predicted observed species identifications across four spe-
cies of ice-associated seal nonpups. Coefficients and 95% confidence intervals (LCI, UCI) for
each species are from the minimum-AIC logistic regression model. Trait definitions are pro-
vided in Table 1.

Observed
species

Positive effects Negative effects

Trait Coef. LCI UCI Trait Coef. LCI UCI

spotted triad 4.55 2.32 9.45 distinctrbn –6.20 –11.09 –4.00
lanugo_white 2.50 –0.59 7.54 hole –4.89 –5.99 –3.99
doglike 1.82 1.27 2.40 faintrbn23 –4.63 –7.17 –2.74
lanugo_offwh 1.80 –0.59 6.72 red_face –1.96 –3.27 –0.91
lsff 1.72 1.12 2.35 faintrbn1 –1.75 –3.00 –0.59
torpedo 1.54 1.04 2.05 (intercept) –1.60 –2.41 –0.84
assoc 1.47 0.87 2.10 small_head –1.56 –2.37 –0.81
other_ffchar 1.32 0.67 2.01 fball –1.52 –2.25 –0.84
pair_track 1.25 0.73 1.78 lt2body –1.31 –2.80 –0.04
mot 1.22 0.47 1.99 catlike –0.81 –1.50 –0.15
dkcoat 0.64 2.32 9.45 edge_1body –0.69 –1.09 –0.28

ltcoat –0.68 –1.54 0.18
neckband –0.43 –0.99 0.13

ribbon distinctrbn 8.87 6.44 13.94 hole –7.12 –12.55 –3.84
faintrbn23 6.13 4.44 8.54 (intercept) –5.41 –8.01 –3.78
serpentine 5.76 3.44 8.72 sbsff –2.24 –5.14 0.19
othershape 3.81 1.96 6.48 assoc –2.03 –3.38 –0.92
faintrbn1 3.48 2.43 4.64 red_face –1.99 –6.86 0.09
torpedo 2.94 1.29 5.51 pair_track –1.23 –2.12 –0.43
fball 1.81 0.00 4.46 doglike –0.93 –1.85 –0.12
catlike 1.13 0.36 1.87 mot –0.92 –1.75 –0.07
long_neck 1.11 –0.04 2.13
edge_gt1body 0.68 0.10 1.28
dkcoat 0.65 –0.08 1.43
neckband 0.58 –0.18 1.29

bearded edge_1body 3.25 2.18 4.52 triad –4.29 –9.50 –1.38
red_face 2.96 1.82 4.37 lsff –4.25 –6.61 –1.52
small_head 2.38 1.39 3.49 long_neck –3.70 –6.71 –0.45
tubular 2.30 1.12 3.60 hole –3.31 –7.66 –0.07
ltcoat 2.29 1.48 3.18 fball –3.00 –4.49 –1.68
nocatdog 1.39 0.54 2.28 other_ffchar –2.82 –5.74 –0.60
str_track 1.35 0.13 2.55 distinctrbn –2.72 –7.70 –0.27

(intercept) –2.71 –4.63 –0.96
faintrbn23 –2.48 –7.58 0.28
long_rearflip –1.80 –3.08 –0.63
torpedo –1.59 –2.71 –0.50
gt3body –1.39 –2.86 0.03
mot –1.25 –2.38 –0.23
neckband –1.17 –2.45 –0.01
pair_track –1.03 –2.45 0.40
doglike –0.89 –2.21 0.33
slender_post –0.86 –2.14 0.33

ringed hole 5.49 4.63 6.53 distinctrbn –5.61 –10.77 –3.22
fball 3.30 2.79 3.83 faintrbn1 –3.85 –8.79 –1.51

(Continued)
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flights did not include much effort in the southwest portion of the study area where
ribbon seal densities have previously been observed to be the highest (Conn et al.
2013b, Ver Hoef et al. 2014). There were no positive ringed seal pup observations,
and we believe this is attributable to reproductive behavior; Arctic ringed seal pups
are whelped and nursed in subnivean lairs during spring (Smith and Stirling 1975)
and thus would not be visible during our surveys. Our ability to make inference
about ringed seal pups was therefore limited.
Strict sampling protocols or observer training are often proposed as means for

reducing or eliminating species misidentification (e.g., Miller et al. 2012). Despite

Table 4. (Continued)

Observed
species

Positive effects Negative effects

Trait Coef. LCI UCI Trait Coef. LCI UCI

neckband 0.86 0.24 1.49 faintrbn23 –3.59 –8.45 –1.53
(intercept) 0.10 –0.85 1.01 lanugo_white –2.87 –7.90 0.20

triad –2.74 –7.66 –0.49
tubular –2.63 –4.11 –1.48
serpentine –2.49 –4.46 –0.15
doglike –2.47 –3.47 –1.59
red_face –1.77 –3.07 –0.62
str_track –1.33 –2.21 –0.50
assoc –1.10 –1.89 –0.37
lsff –1.00 –1.95 –0.10
dkcoat –0.99 –1.58 –0.42
othershape –0.95 –2.19 0.09
gt3body –0.88 –1.81 0.10
other_ffchar –0.75 –1.60 0.05
pair_track –0.72 –1.77 0.30
ltcoat –0.66 –1.30 –0.03
nocatdog –0.50 –1.07 0.05

Table 5. Characteristics that best predicted positive observer confidence levels within obser-
vations of four species of ice-associated seal pups.a Coefficients and 95% confidence intervals
(LCI, UCI) for each species are from the minimum-AIC logistic regression model. Trait defini-
tions are provided in Table 1.

Observed
species

Positive effects Negative effects

Trait Coef. LCI UCI Trait Coef. LCI UCI

spotted triad 2.83 1.43 4.62 ltcoat –2.61 –4.27 –1.37
assoc 2.64 1.62 3.76 (intercept) –1.85 –2.64 –1.18
long_rearflip 2.05 0.04 4.23

ribbon assoc 6.94 4.59 11.90 (intercept) –4.26 –9.10 –2.31
bearded assoc_23len 3.50 1.97 5.44 (intercept) –2.40 –4.14 –1.04

tubular 1.60 0.35 3.08 slender_post –2.00 –3.71 –0.51
ltcoat –0.89 –2.29 0.34

aSample sizes for ringed seal pups were insufficient for inclusion in this analysis.
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our observers being professional ice seal biologists, they all exhibited tendencies for
misidentification to varying degrees. This is consistent with other studies assessing
species misidentification based on expert observers (e.g., Simons et al. 2007, McClin-
tock et al. 2010b, Miller et al. 2012), and it therefore seems unlikely that observer
training or experience will eliminate misidentification errors entirely. Furthermore,
variation in both misidentification rates and confidence levels among our observers
suggest it may be important to include observer effects in species distribution and
abundance models that account for these sources of uncertainty.
Our observers had differing levels of field and photo-identification experience, and

while experience is expected to affect observer performance, we did not attempt to
incorporate individual covariates as predictors in our model. We instead included
generic effects for each observer and found strong evidence of differences among our
observers. These differences could be attributable to many factors, including (but not

Table 6. Characteristics that best predicted positive observer confidence levels within obser-
vations of four species of ice-associated seal nonpups. Coefficients and 95% confidence intervals
(LCI, UCI) for each species are from the minimum-AIC logistic regression model. Trait defini-
tions are provided in Table 1.

Observed
species

Positive effects Negative effects

Trait Coef. LCI UCI Trait Coef. LCI UCI

spotted triad 3.18 2.23 4.25 (intercept) –4.84 –6.06 –3.76
torpedo 2.36 1.46 3.40 serp_track –2.18 –3.76 –0.80
tubular 1.41 –0.06 2.90 long_neck –1.73 –3.10 –0.57
mot 1.37 0.89 1.87 long_rearflip –0.93 –1.46 –0.42
sbsff 1.32 –0.25 2.84 nocatdog –0.86 –1.66 –0.13
assoc 1.24 0.76 1.73 neckband –0.80 –1.54 –0.10
doglike 1.20 0.74 1.68 slender_post –0.60 –1.19 –0.02
other_ffchar 0.97 0.39 1.56
lsff 0.68 0.14 1.23
pair_track 0.65 0.21 1.11

ribbon distinctrbn 10.87 7.86 16.18 (intercept) –3.74 –6.12 –2.30
faintrbn23 4.49 2.80 7.01 long_rearflip –2.49 –4.44 –0.96
alt_track 2.93 –0.46 11.46 doglike –1.44 –3.96 0.57
other_ffchar 1.81 –0.67 4.18

bearded red_face 2.01 1.42 2.65 (intercept) –3.92 –5.49 –2.41
assoc 1.62 0.36 3.24 pair_track –1.64 –2.92 –0.40
nocatdog 1.51 0.86 2.19 othershape –1.63 –2.90 –0.40
doglike 1.46 0.18 2.96 slender_post –1.61 –2.61 –0.64
ltcoat 1.26 0.51 2.02 long_rearflip –1.17 –2.27 –0.06
small_head 1.15 0.46 1.85
edge_1body 1.13 0.10 2.11
catlike 1.07 –0.34 2.53
dkcoat 1.00 0.00 2.03
str_track 0.98 –0.04 2.07
tubular 0.61 –0.17 1.39

ringed hole 2.22 1.82 2.63 (intercept) –2.93 –3.48 –2.39
fball 2.09 1.68 2.51 small_head –1.88 –2.41 –1.36
mot 0.87 0.51 1.23 pair_track –1.50 –2.61 –0.45

lsff –1.02 –2.00 –0.12
long_rearflip –0.59 –0.99 –0.20
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limited to) experience, personality, age, vision, and health. This remains an interest-
ing avenue for future research.
We used actual survey data in our study; the true species and age classes in our seal

images were therefore unknown and needed to be estimated. This constitutes a key
difference between our analysis and others that examined species misidentification
based on experimentally generated field data (e.g., Simons et al. 2007, McClintock
et al. 2010b, Miller et al. 2012). The critical assumption of our approach is that posi-
tive species or age class identifications are correct, and the true species or age classes
are observed in these instances. If incorrect positive identifications were pervasive,
then our inferences about misidentification and the relative proportions of each spe-
cies in our sample would clearly be erroneous. Our observers were informed of this
critical assumption and instructed to assign positive confidences only when they were
absolutely certain of species or age class. We cannot say with certainty that there were
no “positive misidentifications,” but the lack of conflicting positive identifications
among our observers provides at least some indication that this assumption was rea-
sonable.
Our findings add to the growing body of evidence that misidentification is perva-

sive in passive sampling of multiple, related animal species (e.g., Lukacs and Burnham
2005, Simons et al. 2007, McClintock et al. 2010b). Although we found misidentifi-
cation rates to be relatively low for most of our ice seal species, even low levels of mis-
identification have been demonstrated to induce substantial biases in estimators of
species distribution and abundance (e.g., McClintock et al. 2010a, Miller et al. 2011,
Caillat et al. 2013, Conn et al. 2013a). Thus, even when these events are rare, it is
important that analytical methods account for such errors. Fortunately, statistical
models for species distribution and abundance data that account for misidentification
probabilities have begun to appear in the literature, often with accompanying soft-
ware (e.g., Marques et al. 2009; Miller et al. 2011; Conn et al. 2013a, b). Similar to
Miller et al. (2011), our misclassification model is based on repeated sampling (which
can be across time, space, or observers), and it is relatively straightforward to inte-
grate this observation model with a system process model (e.g., species distribution or
abundance) in a hierarchical framework (e.g., Royle and Dorazio 2008).
The phenomenological and behavioral traits found to be associated with species

identification and observer confidence were largely consistent with our expectations.
For example, we expected observed bearded seals to be associated with a close vicinity
to the ice-floe edge, red face, relatively small head, tubular body shape, and light coat.
We also expected the presence of an associated nonpup (presumably the mother)
would be a key predictor of observer confidence for each species of pup. However, we
also found some surprising results. For example, we expected the presence of distinct
ribbons and a serpentine body position to be strongly related to ribbon seal observa-
tions, but we also found that traits typically associated with other species (e.g., “tor-
pedo-like” shape, “American football” shape, and “cat-like” face) were useful
predictors for observations of ribbon seal nonpups. However, these traits were not
found to be important predictors for observer confidence of ribbon seals. We suspect
this reflects the subjectivity of many of the phenomenological traits used to identify
these species and that the perceived presence of a single trait is not necessarily indica-
tive of one particular species. Rather, the species identification process is complicated
and often requires numerous variables to be simultaneously evaluated and weighed as
a whole. As such, the species identification process is very difficult to fully character-
ize, and our quantitative assessment represents an initial attempt to do so for these
species.
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For large databases, such as those arising from aerial transect and satellite surveys,
a great deal of time and effort is required for observers to manually identify species
from digital images. Automated pattern recognition software (e.g., Arzoumanian
et al. 2005) may have the potential to help reduce this burden, while possibly reduc-
ing misidentification and eliminating observer effects as well. In addition to learning
more about the general process of species and age class identification from aerial or
satellite images, we hope our characteristics analysis can serve as a baseline for initial
attempts to improve identification (and account for misidentification rates) of these
and similar species. However, our findings demonstrate this is a very complicated
process, and any automated classification algorithm based on imagery will necessarily
be very complex (but perhaps not insurmountably so). In the meantime, our method-
ology can be used to assess the identification process for a wide variety of species from
aerial or satellite imagery and provides a mechanism for accounting for misidentifica-
tion in models of species distribution and abundance.
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	APPENDIX	3.	–	Conn,	P.	B.,	D.	S.	Johnson,	J.	M.	V.	Hoef,	M.	B.	Hooten,	J.	M.	

London,	and	P.	L.	Boveng.	2015.	Using	spatiotemporal	statistical	models	

to	estimate	animal	abundance	and	infer	ecological	dynamics	from	

survey	counts.	Ecological	Monographs	85:235-252.	

This	article	presents	a	statistical	advance	in	the	area	of	space-time	models	for	animal	abundance	and	

provides	a	description	of	our	proposed	method	for	incorporating	the	temporal	dimension	into	our	

hierarchical	model	for	estimating	abundance	to	account	for	changing	sea	ice	conditions	that	occurred	

within	our	survey	period.	Because	the	article	is	not	an	Open	Access	publication,	only	the	abstract	is	

provided	here.	The	full	article	may	be	obtained	from	

http://onlinelibrary.wiley.com/wol1/doi/10.1890/14-0959.1/full	

	

Abstract--Ecologists	often	fit	models	to	survey	data	to	estimate	and	explain	variation	in	animal	

abundance.	Such	models	typically	require	that	animal	density	remains	constant	across	the	landscape	

where	sampling	is	being	conducted,	a	potentially	problematic	assumption	for	animals	inhabiting	

dynamic	landscapes	or	otherwise	exhibiting	considerable	spatiotemporal	variation	in	density.	We	review	

several	concepts	from	the	burgeoning	literature	on	spatiotemporal	statistical	models,	including	the	

nature	of	the	temporal	structure	(i.e.,	descriptive	or	dynamical)	and	strategies	for	dimension	reduction	

to	promote	computational	tractability.	We	also	review	several	features	as	they	specifically	relate	to	

abundance	estimation,	including	boundary	conditions,	population	closure,	choice	of	link	function,	and	

extrapolation	of	predicted	relationships	to	unsampled	areas.	We	then	compare	a	suite	of	novel	and	

existing	spatiotemporal	hierarchical	models	for	animal	count	data	that	permit	animal	density	to	vary	

over	space	and	time,	including	formulations	motivated	by	resource	selection	and	allowing	for	closed	

populations.	We	gauge	the	relative	performance	(bias,	precision,	computational	demands)	of	alternative	

spatiotemporal	models	when	confronted	with	simulated	and	real	data	sets	from	dynamic	animal	

populations.	For	the	latter,	we	analyze	spotted	seal	(Phoca	largha)	counts	from	an	aerial	survey	of	the	

Bering	Sea	where	the	quantity	and	quality	of	suitable	habitat	(sea	ice)	changed	dramatically	while	

surveys	were	being	conducted.	Simulation	analyses	suggested	that	multiple	types	of	spatiotemporal	

models	provide	reasonable	inference	(low	positive	bias,	high	precision)	about	animal	abundance,	but	
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have	potential	for	overestimating	precision.	Analysis	of	spotted	seal	data	indicated	that	several	model	

formulations,	including	those	based	on	a	log-Gaussian	Cox	process,	had	a	tendency	to	overestimate	

abundance.	By	contrast,	a	model	that	included	a	population	closure	assumption	and	a	scale	prior	on	

total	abundance	produced	estimates	that	largely	conformed	to	our	a	priori	expectation.	Although	care	

must	be	taken	to	tailor	models	to	match	the	study	population	and	survey	data	available,	we	argue	that	

hierarchical	spatiotemporal	statistical	models	represent	a	powerful	way	forward	for	estimating	

abundance	and	explaining	variation	in	the	distribution	of	dynamical	populations.	
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APPENDIX	4.	-	Conn,	P.	B.,	D.	S.	Johnson,	and	P.	L.	Boveng.	2015.	On	

extrapolating	past	the	range	of	observed	data	when	making	statistical	

predictions	in	ecology.	PLoS	ONE	10(10):	e0141416.	

doi:10.1371/journal.pone.0141416	

In	this	paper	we	developed	statistical	diagnostics	for	spatial	regression	applications	in	ecology	to	help	

gauge	the	reliability	of	model	predictions,	using	an	example	of	the	ribbon	seal	data	from	the	BOSS	

surveys.
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Abstract
Ecologists are increasingly using statistical models to predict animal abundance and occur-

rence in unsampled locations. The reliability of such predictions depends on a number of fac-

tors, including sample size, how far prediction locations are from the observed data, and

similarity of predictive covariates in locations where data are gathered to locations where pre-

dictions are desired. In this paper, we propose extending Cook’s notion of an independent

variable hull (IVH), developed originally for application with linear regression models, to gen-

eralized regression models as a way to help assess the potential reliability of predictions in

unsampled areas. Predictions occurring inside the generalized independent variable hull

(gIVH) can be regarded as interpolations, while predictions occurring outside the gIVH can be

regarded as extrapolations worthy of additional investigation or skepticism. We conduct a

simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial

inference when conducting model-based abundance estimation from survey counts. In this

case, limiting inference to the gIVH substantially reduces bias, especially when survey

designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing

problematic extrapolations when estimating the relative abundance of ribbon seals in the

Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use

diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models

(such as generalized linear, generalized additive, and spatio-temporal regression models).

Introduction
In ecology and conservation, a common goal is to make predictions about an unsampled ran-
dom variable given a limited sample from the target population. For instance, given a model

(M), estimated parameters (θ̂), and a covariate vector xi, we often desire to predict a new
observation yi at i (where i can be a design point or a spatial location). For instance, we might
use a generalized linear model (GLM; [1]) or one of its extensions to predict species density or
occurrence in a new location. Such predictions can be of direct use to conservation and
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management, for instance, in estimating population abundance or distribution, and for pro-
jecting shifts in species range as a function of climate change. Spatially explicit estimates of
abundance are also useful for testing theory related to biogeography or biodiversity (e.g., neu-
tral theory; [2]), and for accurately estimating the strength of density dependence [3].

Early in their training, ecologists and statisticians are warned against extrapolating statistical
relationships past the range of observed data. This caution is easily interpreted in the context of
single-variable linear regression analysis; one should be cautious in using the fitted relationship
to make predictions at some new response yi whenever xi <min(x) or xi <max(x) (where xi is
an independent variable measured at point i). But what about more complicated situations
where there are multiple explanatory variables, or when one uses a spatial regression model to
account for the residual spatial autocorrelation that is inevitably present in patchy ecological
data [4]? How reliable are spatially- or temporally-explicit predictions in sophisticated models
for animal abundance and occurrence?

Statisticians have long struggled with the conditions under which fitted regression models
are capable of making robust predictions at new combinations of explanatory variables. The
issue is sometimes considered more of a philosophical problem than a statistical one, and has
even been likened to soothsaying [5]. In our view, the reliability of predictions from statistical
models is likely a function of several factors, including (i) the intensity of sampling, (ii) spatial
or temporal proximity of the prediction location to locations where there are data, (iii) variabil-
ity of the ecological process, and (iv) the similarity of explanatory covariates in prediction loca-
tions when compared to the ensemble of covariates for observed data locations.

In this paper, we investigate one possibility for defining extrapolation in the GLM and its
extensions, including generalized additive models (GAMs; [6, 7]) and spatio-temporal regres-
sion models (STRMs). In particular, we exploit some of the same ideas used in multiple linear
regression regarding leverage and outliers [8] to operationally define “extrapolation” as making
predictions that occur outside of a generalized independent variable hull (gIVH) of observed
data points. Application of the gIVH and related criterion (e.g., prediction variance) can provide
intuition regarding the reliability of predictions in unobserved locations, and can aid in model
construction and survey design. We illustrate use of the gIVH on simulated count data, and on
several species distribution model (SDM) formulations for ribbon seals (Histriophoca fasciata)
in the eastern Bering Sea. In particular, we examine the performance of the gIVH in identifying
problematic extrapolations when modeling survey counts using GAMs, GLMs, and STRMs.

Materials and Methods
All data collected and research activities described in this manuscript were performed under
National Marine Fisheries Service research permit number 15126.

Generalizing the independent variable hull
Extrapolation is often distinguished from interpolation. In a prediction context, we might define
(admittedly quite imprecisely) that extrapolation consists of making predictions that are “out-
side the range of observed data” while interpolation consists of making predictions “inside the
range of observed data.” But what exactly do we mean by “outside the range of observed data”?
Predictions outside the range of observed covariates? Predictions for locations that are so far (in
either geographical or covariate space) from places where data are gathered that we are skeptical
that the estimated statistical relationship still holds? To help guide our choice of an operational
definition, we turn to early work on outlier detection in simple linear regression analysis.

In the context of outlier detection, Cook [8] defined an independent variable hull (IVH) as
the smallest convex set containing all design points of a full-rank linear regression model.
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Linear regression models are often written in matrix form; that is,

Y ¼ Xβþ ϵ;

where Y are observed responses, X is a so-called design matrix that includes explanatory vari-
ables [9], and ϵ represent normally distributed residuals (here and throughout the paper, bold
symbols will be used to denote vectors and matrices). Under this formulation, the IVH is

defined relative to the hat matrix, VLR = X(X0X)−1 X0 (where the subscript “LR” denotes linear
regression). Letting v denote the maximum diagonal element of VLR (i.e., v = max(diag(VLR))),
one can examine whether a new design point, x0 is within the IVH. In particular, x0 is within
the IVH whenever

x0
0ðX0XÞ�1

x0 � v: ð1Þ

Cook [8] used this concept to identify influential observations and possible outliers, arguing
that design points near the edge of the IVH are deserving of special attention. Similarly, points
outside the IVH should be interpreted with caution.

We simulated two sets of design data to help illustrate application of the IVH (Fig 1). In
simple linear regression with one predictor variable, predictions on a hypothetical response
variable obtained at covariate values slightly outside the range of observed data are also outside
the IVH. However, fitting a quadratic model exhibits more nuance; if there is a large gap
between design points, intermediate covariate values may also be outside of the IVH and thus
more likely to result in problematic predictions. Fitting a model with two covariates and both
linear and quadratic effects, the shape of the IVH is somewhat more irregular, and even
includes a hole in the middle of the surface when interactions are modeled (Fig 1). These sim-
ple examples highlight the sometimes counterintuitive nature of predictive inference, a prob-
lem that can only become worse as models with more dimensions are contemplated (including
those with temporal or spatial structure). Fortunately, the ideas behind the IVH provide a
potential way forward.

Cook’s [8] formulation for the IVH is particular to linear regression analysis, which assumes
independent and identically distributed (iid) Gaussian error. Thus, it is not directly applicable
to generalized models, such as those including alternative response distributions (e.g., Poisson,
binomial) or spatial random effects. Further, the hat matrix is not necessarily well defined for
more complicated models with prior distributions on parameters, as with hierarchical models.
However, since the hat matrix is proportional to prediction variance, Cook [8] notes that
design points with maximum prediction variance will be located on the boundary of the IVH.
We therefore define a generalized independent variable hull (gIVH) as the set of all predicted
locations S0 for which

varðliÞ � max½varðλSÞ�; ð2Þ

where i 2 S0, λi corresponds to the mean prediction at i, S denotes the set of locations where
data are observed, and λS denotes predictions at S.

Generalizations of the linear model are often written in the form

Yi � fY ðg�1ðmiÞÞ; ð3Þ

where fY denotes a probability density or mass function (e.g., Bernoulli, Poisson), g gives a link
function, and μi is a linear predictor. For many such generalizations, it is possible to specify the
μi as

μ ¼ Xaugβaug ; ð4Þ

Predictive Extrapolation in Statistical Ecology
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Fig 1. Example IVHs constructed from simulated data. In (A) and (B), linear regression is used to relate a response variable to a single covariate, x,
obtained at locations denoted with an “x”. Using x as a simple linear effect (A), only predictions less than the minimum observed value of x or greater than the
maximum value of x are outside the IVH (shaded area), as scaled prediction variance in these areas (solid line) is greater than the maximum scaled
prediction variance for observed data (dashed line). Using both linear and quadratic effects (B), some intermediate points are also outside the IVH. When
both linear and quadratic effects of two covariates (x1 and x2) are modeled, the IVH is more nuanced and depends on whether interactions are omitted (C) or
included (D).

doi:10.1371/journal.pone.0141416.g001
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where Xaug denotes an augmented design matrix, and βaug denote an augmented vector of
parameters. For instance, in a spatial model, βaug might include both fixed effect parameters
and spatial random effects in a reduced dimension subspace (see S1 Text for examples of how
numerous types of models can be written in this form).

When models are specified as in Eq 4, we can write prediction variance generically as

varðμ̂Þ ¼ Xaugvarðβ̂augÞX0
aug ; ð5Þ

where it is understood that the exact form of Xaug and varðβ̂augÞ depends on the model chosen

(i.e., GLM, GAM, or STRM; S1 Text). Alternative model structures for μ can also be accommo-
dated; for instance, in Bayesian models var(μ) can be set equal to posterior predictive variance,
varð~μjY; θÞ (where θ represent hyperparameters).

The expression for prediction variance in Eq 5 is on the linear predictor scale. If a non-iden-
tity link function is used, an additional step is needed to convert prediction variance to the
response scale (i.e., to calculate var(λ) as needed to define the gIVH in Eq 2). One approach for
calculating variance on the response scale is simply to use the delta method [10, 11]. In particu-
lar, we can write the variance of the expected responses as

varðλ̂Þ ¼ varðgðμ̂ÞÞ
� Δvarðμ̂ÞΔ0;

ð6Þ

where Δ is a matrix of partial derivatives of the function g(μ) with respect to its parameters,
evaluated at the estimators, m̂. Specifically, the rth row and cth column of Δ is given by
Drc ¼ @gðmrÞ=@mcjμ¼μ̂ . Under common univariate link functions (e.g., log, logit, probit), Δ has a

diagonal form, while for multivariate links (e.g., multinomial logit) Δ will be dense.
Alternatively, one can use a simulation based method for determining variance of the pre-

dictive mean response vector. In Bayesian analysis of hierarchical models, this is easily accom-
plished via posterior predictive inference [12]. In a similar spirit, it is also possible to use
parametric bootstrapping instead of the delta method to approximate prediction variance on
the response scale for frequentist models [13–15].

We propose to use the gIVH in much the same manner as Cook [16]. In particular, we use
the gIVH to determine whether spatial predictions are interpolations (predictive design points
lying inside the gIVH) or extrapolations (predictive design points lying outside the gIVH). For
most of the following treatment, we shall assume that data have already been collected (see Dis-
cussion for comments on the potential use of the gIVH in survey planning). For further details
on how the gIVH was calculated for specific models in this paper, see S1 Text.

Computing
We developed a package SpatPred in the R statistical programming environment [17] to
simulate data and conduct all analyses. The seal dataset is included as part of this package, and
is available at https://github.com/pconn/SpatPred/releases. The R package has also been
archived via figshare [18].

Simulation study
We conducted a simulation study to investigate whether the gIVH (and accompanying predic-
tion variance) was useful in diagnosing prediction biases when analyzing animal count data.
For each of 100 simulations, we generated animal abundance over a 30 × 30 grid assuming that
animal density was homogeneous in each grid cell. Animal abundance was generated as a func-
tion of three hypothetical spatially autocorrelated habitat covariates (S2 Text). For each

Predictive Extrapolation in Statistical Ecology

PLOS ONE | DOI:10.1371/journal.pone.0141416 October 23, 2015 5 / 16

https://github.com/pconn/SpatPred/releases


simulated landscape, we conducted virtual surveys of n = 45 survey units using two different
designs: (1) a spatially balanced sample [19], and (2) a convenience sample where the probabil-
ity of sampling was greater for cells closer to a “base of operations” located in the middle of the
survey grid. The former approach preserves randomness while seeking a degree of regularity
when distributing sampling locations across the landscape, while the latter may be easier to
implement logistically.

We configured virtual sampling quadrats such that they encompassed 10% of the area of
each selected grid cell. For ease of presentation and analysis, we assumed detection probability
was 1.0 in each quadrat. Once animal counts were simulated, three different estimation models
were fitted to the data: a GLM, a GAM, and an STRM (S1 Text). The fixed effects components
of the GLM and STRM were configured to have both linear and quadratic covariate effects and
first-order interactions, while the GAM expressed log-density as a function of smooth terms
for each covariate (S2 Text). Each model was provided with two of the three covariates used to
generate the data.

For each simulated data set and model structure, we calculated the posterior predictive vari-
ance and resulting gIVH as in Eq 2. We then calculated posterior predictions of animal abun-
dance within and outside of each gIVH in order to gauge bias as a function of this restriction.
Specifically, the performance of the gIVH may help decide its utility in limiting the scope of
inference once data have been collected and analyzed, and perhaps point out areas worthy of
additional sampling. A fuller, technical description of the simulation study design is provided
in S2 Text; a visual depiction of a single simulation replicate is displayed in Fig 2.

Ribbon seal SDM
As part of an international effort, researchers with the U.S. National Marine Fisheries Service
conducted aerial surveys over the eastern Bering Sea in 2012 and 2013. Agency scientists used
infrared video to detect seals that were on ice, and collected simultaneous digital photographs
to provide information on species identity. For this study, we use spatially referenced count
data from photographed ribbon seals, Phoca fasciata on a subset of 10 flights flown over the
Bering Sea from April 20–27, 2012. We limited flights to a one week period because sea ice
melts rapidly in the Bering Sea in the spring, and modeling counts over a longer duration
would likely require addressing how sea ice and seal abundance changes over both time and
space [20]. However, limiting analysis to a one week period makes the assumption of static sea
ice and seal densities tenable [21].

Our objective with this dataset will be to model seal counts on transects through 25km by
25km grid cells as a function of habitat covariates and possible spatial autocorrelation. Esti-
mates of apparent abundance can then be obtained by summing predictions across grid cells.
Fig 3 show explanatory covariates gathered to help predict ribbon seal abundance. These data
are described in fuller detail by [21], who extend the modeling framework of STRMs to account
for incomplete detection and species misidentification errors. Since our focus in this paper is
on illustrating spatial modeling concepts, we devote our efforts to the comparably easier prob-
lem of estimating apparent abundance (i.e., uncorrected for vagaries of the detection process).

Inspection of ribbon seal data (Fig 4) immediately reveals a potential issue with spatial pre-
diction: abundance of ribbon seals appears to be maximized in the southern and/or southeast
quadrant of the surveyed area. Predicting abundance in areas farther south and west may thus
prove problematic, as the values of several explanatory covariates (Fig 3) are also maximized in
these regions.

We start by fitting hierarchical GLMs and STRMs to the ribbon seal data. To accommodate
incomplete coverage of grid cells and account for non-target habitat, we adapted Eqs 3 and 4 as
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Fig 2. Depiction of a single simulation replicate where problematic extrapolation occurs. Panels (A-C) give simulated covariate values, panel D gives
true animal abundance, (E) gives estimated abundance from a GLM run on count data from a spatially balanced survey design, and (F) gives abundance
from a GLM applied to count data from a convenience survey. In (E-F), predictions outside the gIVH are represented by black boxes, and sampling locations
are represented with an x. For the convenience sample, there was considerable positive bias, particularly in cells outside of the gIVH. In this case, the median
posterior abundance prediction for the entire survey area is 57% greater than true abundance when inference is made to the whole study area. When
inference is restricted to cells within the gIVH, median posterior abundance is 16% greater than true abundance.

doi:10.1371/journal.pone.0141416.g002
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Fig 3. Assembled covariates used to help explain and predict ribbon seal relative abundance in the eastern Bering Sea. Covariates include distance
frommainland (dist_mainland), distance from 1000m depth contour (dist_shelf), average remotely sensed sea ice concentration while surveys were
being conducted (ice_conc), and distance from the southern sea ice edge (dist_edge). All covariates except ice concentration were standardized to have
a mean of 1.0 prior to plotting and analysis.

doi:10.1371/journal.pone.0141416.g003
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follows. First, let Yi denote the ribbon seal count (Yi) obtained in sampled grid cell i. Suppose
that counts arise according to a log-Gaussian Cox process, such that

Yi � PoissonðliÞ and

log ðliÞ ¼ log ðPiÞ þ log ðAiÞ þ yi þ �i;
ð7Þ

where Pi gives the proportion of area surveyed in grid cell i, Ai gives the proportion of cell i that
is seal habitat, θi is a linear predictor, and �i is normally distributed iid error. By formulating θi
differently, we can arrive at representations characteristic of GLMs and STRMs (see S1 Text).

The fixed effects component of the GLM and STRM included linear effects of all explana-
tory covariates (Fig 3), as well as a quadratic effect for sea ice concentration. For the STRM,
we imposed a restricted spatial regression (RSR) formulation for spatially autocorrelated ran-
dom effects, where dimension reduction was accomplished by only selecting eigenvectors of
the spectral decomposition associated with eigenvalues that were greater than 0.5 (see S1
Text for additional information on model structure). Adopting a Bayesian perspective, we

Fig 4. Aerial survey tracks over the Bering Sea, April 22–29, 2012. Survey tracks are shown in blue, and are overlayed on a tesselated study area
consisting of 25km by 25km grid cells (gray lines). Dark gray indicates land, while the orange dashed line indicates a 1000m depth contour, and the solid
brown line shows the U.S Exclusive Economic Zone (EEZ) boundary. Colored pixels indicate ribbon seal counts along aerial transects. The average effective
area surveyed in each grid cell was approximately 2.6km2 (0.4%). Note that surveys were designed to target multiple seal species, several of which had high
densities further north (results not shown).

doi:10.1371/journal.pone.0141416.g004
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estimated parameters for these models using MCMC (see S1 Text for algorithm details and
information on prior distributions) with 60,000 iterations where the first 10,000 iterations
were discarded as a burn-in. We generated posterior predictions of ribbon seal abundance
across the landscape as

Ni � PoissonðAiliÞ; ð8Þ

and calculated the gIVH as in Eq 2, with delta method modifications as specified in Eq 6.
We also fitted a frequentist GAM to seal data using the mgcv R package [7]. We included

smooth terms for all explanatory covariates; however, owing to relative data sparsity, we pro-
vided mgcv with the smallest basis size allowable (k = 3) for the default thin plate spline
smoother. We used a quasipoisson error structure in mgcv for this analysis, which was the
most similar option available to the log-Gaussian Cox formulation chosen for the GLM and
STRMmodels. For more information on the procedure used to generate parameter estimates
and abundance predictions on the response scale, see S1 Text.

Initial spatial predictions using two of the three models (GLM, STRM) produced
extremely high, unbelievable predictions along the southern boundary of the study area (Fig
5). Predictions in this region were also largely out of the gIVH, indicating the potential utility
for the gIVH in revealing problematic extrapolations. We considered several possible alterna-
tives for trying to obtain more robust abundance estimates before settling on a preferred
alternative. First, one could refine the study area to eliminate predictions outside of the gIVH
(as in the simulation study). However, this is not ideal in that one does not get an abundance
estimate for the whole study area, and it may be difficult to compare abundance from one
year to the next using this approach. Second, one could try different predictive covariate
models (e.g., by altering the combination or polynomial degree of covariates included in the
model). Finally, one could build in a priori knowledge of habitat preferences into the model
structure. We adopted the latter solution, incorporating presumed absences (i.e., zero counts
where sampling was not conducted) in locations where it would have been (nearly) impossi-
ble to detect seals. Specifically, we inserted presumed absences in cells where ice concentra-
tions were<0.1%. This solution seemed the most logical, as many of the large, anomalous
predictions were over open water along the southern edge of the study area, where we would
have obtained zero counts had they been surveyed. This approach effectively requires that
sea ice concentration be included as a predictive covariate to help model absences in cells
without ice.

Results

Simulation study
Posterior predictions from simulations indicated that the distribution for proportional error in
total abundance was right skewed when statistical inference was made with regard to the entire
survey area (Fig 6). Although median bias was close to zero, this right skew translated into pos-
itive mean bias, and was exacerbated when convenience sampling was employed. The magni-
tude of mean absolute bias was either the same or reduced (often substantially so) when
inference was constrained to the gIVH. Positive proportional bias was the rule, and was of con-
cerning magnitude (� 0.3) for GLMs and STRMs when convenience sampling was employed
and inference was not restricted to the gIVH. By contrast, proportional bias was close to zero
when inference was restricted to the gIVH, although there appeared to be a small negative bias
(Fig 6). Interestingly, bias for frequentist GAMs was of smaller magnitude than the Bayesian
GLM or STRMmodels for the particular model structures used here.
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Fig 5. Predictions of ribbon seal apparent abundance across the eastern Bering sea frommodels fit to survey data. Predictions were obtained using
the posterior predictive mean for GLM and STRMmodels, and for the GAM using the predict.gam function in the R mgcv package [7]. Each row gives
result for different model types (GLM, GAM, or STRM, respectively); left column plots give results for naive runs without presumed absences, while plots in
the right column give predictions for runs where presumed absence data (i.e., 0 counts in cells with <0.1% ice) were included. Cells highlighted in black
indicate those where predictions were outside the generalized independent variable hull (gIVH).

doi:10.1371/journal.pone.0141416.g005
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Fig 6. Boxplots summarizing proportional error in abundance from the simulation experiment. Each boxplot summarizes the distribution of
proportional error in the posterior predictive median of abundance as a function of estimation model (x-axis), survey design (columns) and whether or not
inference was restricted to the gIVH (rows). The lower and upper limits of each box correspond to first and third quartiles, while whiskers extend to the lowest
and highest observed bias within 1.5 interquartile range units from the box. Outliers outside of this range are denoted with points. Horizontal lines within
boxes denote median bias. The two numbers located below each boxplot indicate mean bias (upper number) and the number of additional outliers for which
proportional bias was greater than 2.0 (lower number).

doi:10.1371/journal.pone.0141416.g006
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Ribbon Seal SDM
Fitting our three ribbon seal SDMs to the augmented dataset with presumed absences, most
predictions occurred within the gIVH (Fig 5). Posterior summaries of abundance across the
entire study area were of similar magnitude, with 5%, 50%, and 95% posterior prediction quan-
tiles as follows: GLM (48,686, 64,836, 93,927); STRM(41,039, 63,717, 194,095). The GAM pro-
duced an estimate of 92,277 (90% bootstrap CI: 63,090, 129,367). The largest differences
among the three models was in the southwest corner of the study area in the area where predic-
tions often occurred outside the gIVH. Restricting comparison of abundance to those cells that
occur within the gIVH in all three models (i.e., only cells not highlighted in the right column of
Fig 5), posterior prediction quantiles for the GLM were (41,750, 52,863, 69,557) and for the
STRM were (39,446, 56,520, 135,427); estimated GAM abundance from mgcv was 59,104
(90% bootstrap CI:52,629, 73,076). There thus appears to be substantial between-model varia-
tion in predicted abundance when summed over the entire study area, but much better agree-
ment (albeit with a heavier right tail for the STRM) when restricting inference to locations
where predictions occur within the gIVH.

We note that these estimates are for example illustration only, as they are uncorrected for
imperfect detection (e.g., incomplete detection of thermal cameras, animals that were unavail-
able for sampling because they were in the water, species misidentification; [21]). Our approach
here was to examine extrapolation and prediction error using relatively simple models, with
the understanding that such effects are also likely to occur in complex models with more realis-
tic observation processes. Standard diagnostics (e.g., q-q plots in mgcv) also suggested some
lack of fit associated with the quasipoisson error distribution; future work should investigate
alternate error structures such as the Tweedie distribution [15]. Although not reported here,
additional model fitting suggested sensitivity to model complexity and choice of basis, both of
which are worthy of additional investigation.

Discussion
We have demonstrated the capacity of certain classes of statistical models to produce biased
predictions of animal abundance when extrapolating past the range of observed data. In simu-
lations, commonly used models exhibited substantial mean positive bias when predictions
were required for the entire study area, particularly when convenience sampling was employed.
Median bias in the simulation study was close to zero, but the bias distribution was right
skewed, indicating the possibility of considerably biased overestimates in a substantial propor-
tion of simulation replicates. By contrast, restricting inference to locations within the gIVH led
to small negative bias. Although this negative bias is undesirable, it may be preferable from a
conservation and management standpoint. For instance, making management decisions (e.g.,
harvest, restoration efforts) based on estimates that have a small negative bias are much less
likely to lead to catastrophic population collapse than are decisions based on overestimates.

In the ribbon seal example, naive extrapolation of fitted statistical relationships produced high
positive bias along the southern boundary of the study area for the GAM and STRMmodels.
However, the gIVH appeared useful in diagnosing places where extrapolations from the fitted
statistical model were problematic. For ribbon seal relative abundance, it was useful for confirm-
ing that the naive models needed to be reformulated. Reformulated models (with presumed
absence data) still yielded estimates of total abundance with considerable between-model varia-
tion in the southwest corner of the study area. However, when inference was restricted to loca-
tions within the gIVH for all three fitted models, abundance estimates were quite comparable.

When estimating species distributions, researchers often stress the need for prediction loca-
tions to be similar to the locations used for model development [22]. One way to accomplish
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this is through a prediction envelope, whereby a specific criterion is used to limit predictions of
animal density or occurrence to the range of conditions and covariates encountered during sur-
veys [23]. Using the gIVH for this purpose will likely be more conservative than envelope spec-
ifications based on other criterion (e.g., in contrast to minimum and maximum observed
covariate values as in [23]), but is more in line with linear modeling theory. A comparison of
envelope specification methods is beyond the scope of this paper, but we suspect there are
cases where seemingly intuitive envelope strategies result in problematic extrapolations, partic-
ularly when the form of prediction models is of high dimension or includes multiple interac-
tion terms.

In SDMs and model-based abundance estimation, the goal for analysts is often to build pre-
dictive maps of species abundance or occurrence using a limited number of sample locations.
In such applications, the ultimate aim of analysts should be to build models that have low bias
and high precision. However, traditional approaches to quantifying bias (e.g., goodness-of-fit
statistics) only work with observed data points. When inference is extended to unsampled loca-
tions, the gIVH appears to be a useful diagnostic for whether bias for predictions in unsampled
locations can be expected. In some cases, biological knowledge and intuition may be sufficient
to diagnose anomalous predictions. However, such determinations are likely to be quite subjec-
tive, and may prove insufficient when there are a large number of regression coefficients and
interaction terms. For instance, even relatively simple regression models may exhibit non-intu-
itive patterns (e.g., Fig 1). Further, relying on expert opinion alone in successive rounds of
model formulation and fitting may lead to investigators choosing models based on how much
they like the results, which is clearly not ideal scientific practice.

Our intent is to raise awareness of potential problems with extrapolation bias in statistical
models, and to provide an additional tool (the gIVH) to help diagnose its presence. Other
methods for selecting models to enhance predictive performance, such as cross validation [24],
are also useful for this purpose, but may not entirely eliminate the problem (particularly for
sparse datasets). One approach that might be useful in practice is to combine the cross valida-
tion and gIVH paradigms—for instance, using cross validation to narrow down the field to a
suite of models with good predictive performance at test locations, and then calculating the
gIVH to examine the potential for anomalously high predictions in unsampled locations.

The analyses in this paper focused on abundance estimation, which is necessarily non-nega-
tive. As such, counts are usually analyzed with a log link function, and there is a much greater
potential for positive bias than negative. Since prediction variance tends to increase as a func-
tion of the magnitude of the prediction, the gIVH will only tend to be able to diagnose predic-
tions that are anomalously large. However, one could also apply the gIVH when predicting
species occurrence from presence/absence data. In this case, common link functions (e.g.,
probit or logit) are symmetric, and potential for positive and negative bias in predictive maps
seem equally likely. Future research should be directed to examine conditions under which the
gIVH is a useful diagnostic in such applications.

One area that gIVH ideas may also prove useful is in formulating survey designs. The topic
of optimal (or near-optimal) spatial design has received considerable attention in the statistical
literature, often in the context of designing environmental monitoring programs [25]. Optimal
designs can be sensitive to the structure of the estimation model that is used, so that tailoring a
survey design to a particular model can be somewhat dangerous if there is uncertainty about
the ultimate “best” structure for the model used to relate animal abundance and occurrence to
available covariates. Nevertheless, one could still think about augmenting a given sampling
design with a number of locations which are known or thought to have high prediction vari-
ance as a function of available covariates (e.g., the southwest corner of the study area in the rib-
bon seal example). This could potentially be done as an exercise before any data (or perhaps
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data from a pilot study) have been collected. We are excited about this prospect, and it is a sub-
ject of current research.

Supporting Information
S1 Text. Model formulation, Gibbs sampling algorithms, and gIVH calculations for certain
classes and extensions of the generalized linear model.
(PDF)

S2 Text. Full details of simulation study examining predictive extrapolation.
(PDF)
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demonstrate	important	considerations	in	the	design	and	analysis	of	model-based	surveys	when	it	is	not	

always	possible	to	adhere	to	pre-planned	survey	routes.	
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Summary

1. Wildlife surveys are often used to estimate the density, abundance, or distribution of animal populations.

Recently, model-based approaches to analyzing survey data have become popular because one can more

readily accommodate departures from pre-planned survey routes and construct more detailed maps than

one can with design-based procedures.

2. Species distribution models fitted to wildlife survey data often make the implicit assumption that locations

chosen for sampling and animal abundance at those locations are conditionally independent given modeled

covariates. However, this assumption is likely violated in many cases when survey effort is non-randomized,

leading to preferential sampling.

3. We develop a hierarchical statistical modeling framework for detecting and alleviating the biasing effects of

preferential sampling in species distribution models fitted to count data. The approach works by jointly

modeling wildlife state variables and the locations selected for sampling, and specifying a dependent

correlation structure between the two models.

4. Using simulation, we show that moderate levels of preferential sampling can lead to large (e.g. 40%) bias

in estimates of animal density, and that our modeling approach can considerably reduce this bias.

5. We apply our approach to aerial survey counts of bearded seals (Erignathus barbatus) in the eastern

Bering Sea. Models that included a preferential sampling effect led to lower estimates of abundance than

models without, but the effect size of the preferential sampling parameter decreased in models that included

explanatory environmental covariates.

6. When wildlife surveys are conducted without a well-defined sampling frame, ecologists should recognize

the potentially biasing effects of preferential sampling. Joint models, such as those described in this paper,

can be used to test and correct for such biases. Predictive covariates are also useful for bias reduction, but

ultimately the best way to avoid preferential sampling bias is to incorporate design-based principles such as

randomization and/or systematic sampling into survey design.
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Introduction1

Surveys of unmarked animal populations are often used to estimate abundance and occurrence of animal populations and to predict2

species distributions, enterprises central to conservation, ecology, and management. For studies of abundance, researchers historically3

relied on design-based statistical inference (e.g. Cochran 1977), which requires adoption of a pre-defined sampling frame (e.g.4

using systematic random sampling, stratified random sampling, or some variant thereof). Designing animal surveys is relatively5

straightforward in such applications, and unbiased point and variance estimators are available. Recently, however, there has been a6

surge in research describing model-based procedures for estimating abundance, density, and occupancy from surveys of unmarked7

animals, including N-mixture and Dail-Madsen models for repeated point counts (Royle 2004; Dail & Madsen 2011), occupancy8

models for presence-absence surveys (MacKenzie et al. 2002; Johnson et al. 2013), and various model-based formulations for9

distance-sampling data (Hedley & Buckland 2004; Johnson et al. 2010; Miller et al. 2013). In such applications, it is common10

to use habitat or environmental covariates together with spatial effects (e.g. via trend surfaces or spatial random effects) to predict11

density or distributions across the landscape. We shall refer to the amalgam of model-based approaches for making spatially explicit12

inference about animal populations as “species distribution models” (SDMs; sensu Elith & Leathwick 2009), even though this term13

is more often used to refer to animal occurrence than it is to density or abundance.14

One of the main advantages of using SDMs is that one is no longer beholden to predetermined sampling frames, and can potentially15

use data gathered from non-randomized designs or platforms of opportunity to make inferences about animal populations (Johnson16

et al. 2010). However, in a recent paper, Diggle et al. (2010) emphasized that spatially explicit statistical models can easily provide17

biased estimates when sampling disproportionately targets locations where the response of interest is higher (or lower) than expected18

given a particular set of explanatory covariates. In the context of SDMs, this might occur if sampling disproportionately occurs in19

locations where animals are known to be present or of high abundance. For example, if volunteer inventory participants have access20

to multiple sites with similar covariate values, bias might arise if they consistently choose sites where species are thought or known21

to be present. Bias might also arise if surveying effort is higher near bases of operations, and if animal abundance is higher (or lower)22

near bases of operations than elsewhere in the landscape.23

In this article, we explore potential for bias in SDMs resulting from preferential sampling (hereafter, PS), and describe several24

model-based approaches for detecting and correcting for such biases. We start by describing a common currency for notation and25

basic model structures considered in this paper. Second, we review PS bias in a mathematical light, and describe prior approaches26

to coping with its effects. Third, we introduce a novel generalization of previously proposed PS models, allowing the investigator to27

jointly model animal encounter data and the locations chosen for sampling, including possible dependence structure between these28

two types of observations. Fourth, we conduct a simulation study to examine the performance of traditional SDMs and our newly29

developed PS model when data are gathered preferentially. Finally, we demonstrate our modeling approach by analyzing aerial survey30

counts of bearded seals (Erignathus barbatus) in the Bering Sea.31

Materials and methods32

NOTATION AND BASIC MODEL STRUCTURES33

We focus here exclusively on discrete space (areal) models for animal encounter data as these seem to be the dominant form used34

in design and analysis of animal population surveys, although we note that PS is likely to affect analyses similarly regardless of the35

choice of spatial domain. We suppose that the investigator intending to fit a SDM to animal encounter data breaks their study area36

up into S survey units (label these U1, U2, . . . , US), of which n are selected for sampling (call the set of sampled locations S). Each37

survey unit i is assigned a vector of covariates, xi, and an indicator Ri that takes on the value 1.0 if location i is sampled (i.e. if38

Ui ∈ S), and is 0 otherwise. To formulate a “traditional” SDM, one could then write animal abundance or occurrence as a stochastic39

realization of a probability mass function f():40

Zi ∼ f(g−1(µi)). eqn 1
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Preferential sampling in species distribution models 3

In this example, Zi denotes the state variable of interest (e.g. occupancy or abundance), g() is a link function (e.g. probit or logit for41

occupancy, log for count data), and µi is a link-scale intensity value. In applications described in this paper, we write the intensity as42

µi = β0 + xiβ + δi, eqn 2

where β0 is an intercept parameter, xi is a row vector of m predictive covariates associated with site i, β = {β1, β2, . . . , βm} is a43

column vector ofm regression parameters, and δ = {δ1, δ2, . . . , δS} are spatially autocorrelated random effects. For occupancy, f()44

would typically be Bernoulli, while the Poisson or negative binomial are typically choices for analysis of count data; common forms45

for δi include geostatistical specifications (Cressie 1993; Diggle et al. 1998), Gaussian Markov random fields (e.g. conditionally46

autoregressive models; Rue & Held 2005), or low rank alternatives such as predictive process (Banerjee et al. 2008; Latimer et al.47

2009) or restricted spatial regression models (Reich et al. 2006; Hughes & Haran 2013).48

The model for Zi describes variation in the process of interest and is often described as the “process” model. However, it is usually49

impossible to observe the system perfectly even in locations where sampling occurs, so it is customary to include an observation50

model describing incomplete detection. For occupancy studies, the response variable Yi = 1 if the species of interest is detected and51

is 0 otherwise, and is modeled with a Bernoulli distribution (Royle & Dorazio 2008):52

Yi ∼ Bernoulli(Zipi). eqn 3

Here, the detection probability pi is possibly a function of survey and observer specific covariates. Replicate surveys of the same53

sampling unit provide the necessary information to estimate pi. For count surveys, a possible model is54

Yi ∼ Poisson(ZiAipi), eqn 4

where the Yi now represents the count of animals obtained while surveying unit i, Ai denotes the proportion of sample unit i that is55

surveyed, and pi gives detection probability. Additional information will often be needed to estimate pi in this context, such as data56

from double observers, distance observations, or double sampling (see e.g. Buckland et al. 2001; Royle et al. 2004; Borchers et al.57

2006; Conn et al. 2014).58

For the remainder of this treatment, we use bold symbols to denote vector-valued quantities or matrices. We also use standard59

bracket notation to denote probability mass and density functions. For instance [Z] denotes the marginal probability mass function60

for Z, and [Z|Y] represents the conditional distribution of Z given Y. We use µ and ν to denote log-scale abundance and the logit61

of the probability of sampling, so that Zi ∼ f(µi), and Ri ∼ f(νi). We use the notation Zi when describing the state process in62

general terms, but often switch to the conventional notation Ni when animal abundance is the explicit focus of interest.63

PREFERENTIAL SAMPLING: A PRIMER64

One of the appealing aspects of model-based estimation is that there is no requirement that surveys rely on a pre-planned survey65

design selected probabilistically from an underlying sampling frame. For instance, investigators can reallocate sampling effort if66

weather or logistics preclude surveying in a desired location. This can be a crucial advantage in surveys covering large areas with67

frequent inclement weather. It also opens the door for using platforms of opportunity, presence only, and citizen science data for68

estimation.69

However, the manner in which effort is ultimately allocated can potentially have profound influence on SDM estimator70

performance. With respect to nonrandom sampling, two possible problems seem particularly likely in discrete spatial domains:71

coarse scale preferential sampling (CSPS), and fine scale preferential sampling (FSPS) (Fig. 1). FSPS arises when the observations72

taken at a particular sampling unit are non-random with respect to the density of animals within that sampling unit. For instance,73

when allocating line transect survey effort, it may be tempting to place the transect in a manner that targets habitat or landscape74

features that maximize the number of animals that will be encountered. However, this strategy will clearly lead to positive bias when75

estimating density or abundance.76
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4 P. B. Conn, J. T. Thorson, & D. S. Johnson

By contrast, CSPS (hereafter, PS), the primary focus of this article, arises when the locations being sampled and the process of77

interest (e.g. density, occupancy) are conditionally dependent given modeled covariates (Diggle et al. 2010). For instance, PS can78

occur when the investigator uses a priori knowledge or observations of the state variable obtained during sampling to allocate survey79

effort in places where abundance or occurrence is known to be high. Diggle et al. (2010) showed that this type of PS can lead to80

bias when this extra information is not included in models for the state variable of interest. Specifically, PS arises when we consider81

the set of sampled locations as stochastic and when [R,Z|x] 6= [R|x][Z|x], where R is an indicator vector whose elements Ri are82

1.0 if sampling unit i is sampled and are zero otherwise. We use this definition of PS throughout the rest of the manuscript, noting83

that it is somewhat different than has sometimes been used in the SDM literature. For instance, Merckx et al. (2011) use the term84

“preferential sampling” to refer to the process of visiting some sites more often than others, while Manceur & Kühn (2014) define it85

as occurring when the locations selected for sampling are a function of an environmental covariate. Neither of these latter conditions86

are problematic outside of the specialized field of presence-only modelling.87

Diggle et al. (2010) demonstrated PS with an environmental monitoring problem, whereby pollutant monitoring stations were88

more highly clustered around urban areas with high concentrations of pollutants than in rural areas with comparably low levels of89

pollutants. Fitting simple geostatistical models without fixed effects led to positively biased estimates of landscape-level pollutant90

concentrations. Presumably (and as noted by discussants of the article) including a fixed effect associated with a relevant covariate91

(e.g. a development index) would likely reduce or eliminate bias. However, the primary point of Diggle et al. (2010) is well taken:92

inclusion of spatially autocorrelated random effects in a statistical model is insufficient to remove the potentially biasing effects of93

PS.94

As in the pollution example, having good explanatory covariates may also reduce bias when fitting SDMs to animal encounter95

data under PS. However, in many ecological applications, predictive covariates explain only a small portion of variation present96

in the data. If the locations selected for sampling are a function of some unmodelled factor related to abundance (intentionally or97

unintentionally) , bias may still occur. Despite the clear potential for bias in SDMs, there are few examples where PS (sensu Diggle98

et al. 2010) is discussed with regard to SDMs. One exception is Chakraborty et al. (2010), who acknowledged the likely presence99

of PS when fitting SDMs to data obtained using nonrandomized designs. However, they did not attempt to account for PS in their100

models.101

In design-based sampling, unequal sampling intensity is often accommodated via stratification or unequal probability sampling,102

as with Horvitz-Thompson-like estimators where the probability of inclusion varies by sampling unit (Cochran 1977). However, in103

the case of PS, this inclusion probability also depends on the value of the response associated with the sampling unit. Evidently, any104

approach to account for PS should also account for the dependence between the state variable of interest and the locations chosen for105

sampling.106

Several authors have attempted model-based corrections for PS in the statistical literature. For Gaussian models in a continuous107

spatial domain, Diggle et al. (2010) and Pati et al. (2011) jointly modeled the locations that are chosen for sampling and the108

underlying random field of interest. In particular, they expressed sampled locations as an inhomogeneous Poisson point process where109

the underlying log-scale intensity depended linearly on spatially-referenced random field values. For instance, writing observations110

of the spatial random field at a location i as111

Zi = µi + εi, eqn 5

the spatially continuous relative intensity (ψi) of sampling locations at i could be written as112

ψi ∝ exp(ξi + bµi). eqn 6

Here, the parameter b describes the level of PS; b = 0 implies no PS, b > 0 implies a greater level of sampling in locations where the113

spatial process (e.g. animal density) is high, and b < 0 implies greater sampling where the spatial process is low. Importantly, when114

explanatory covariates are used in models for µi and ξi, Pati et al. (2011) show that “. . . accounting for informative sampling is only115

necessary when there is an association between the spatial surface of interest and the sampling density that cannot be explained by116
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the shared spatial covariates.” Pati et al. (2011) also consider a simpler, plug-in based estimator, where the log of a nonparameteric117

estimate of sampling density (specifically, a two dimensional kernel density estimate) is used as an additional fixed effect in Eq. 5,118

finding that this approach helped reduce bias associated with PS, but did not perform as well as the full joint model.119

A GENERALIZED PREFERENTIAL SAMPLING MODEL120

The models considered by Diggle et al. (2010) and Pati et al. (2011) are a useful first step in addressing and modeling PS. However,121

they are somewhat limited since they are specific to continuous spatial domains, continuous data (as opposed to presence/absence or122

count data), and Gaussian error distributions. Also, they require the linear predictor of the PS model to be written as a simple linear123

function of the the spatial process model for density. In real world applications, we can envision cases where sampling is strongly124

preferential in certain areas of the landscape, and not in others. For instance, sampling may be more strongly preferential close to125

bases of operations, (e.g. landing strips in the case of aerial surveys), but less so in areas that are harder to get to.126

Given these limitations, our present task is to generalize PS models to the types of data more typical of SDMs, and to allow the127

degree of PS to vary across the landscape. Like Diggle et al. (2010) and Pati et al. (2011), we impose a joint model for the process128

of interest (animal abundance or occurrence) and the locations chosen for sampling. For the abundance process model, we start with129

eq. 1 as a general formulation for non-Gaussian data, writing the link-scale expectation as in eq. 2. Next, recalling that Ri is a binary130

indicator taking on the value 1.0 if survey unit i is selected for sampling, and is 0.0 otherwise, we model Ri using a Bernoulli131

distribution:132

Ri ∼ Bernoulli(h−1(νi)), eqn 7

where h() denotes a link function appropriate for binary data (e.g. logit, probit). We then write the intensity for this model as133

ν = β∗
0 + x∗β∗ + η +Bδ. eqn 8

In a similar fashion to the model for the state process, the sampling intensity model has an intercept (β∗
0 ), explanatory covariates134

(x∗
i ), fixed effect regression parameters (β∗) and spatially autocorrelated random effects (η and δ). The predictive covariates xi from135

Eq. 2 and x∗
i from Eq. 8 may or may not be the same. Note also that the spatially autocorrelated random effects δ are included in136

both Eqs. 2 and 8, allowing for dependency in the two models, with the matrix B describing the strength and type of dependence137

between the sampling process and underlying density. The spatially autocorrelated random effects η are assumed independent of the138

δ. In practice, we find we often need to fix β∗
0 = 0.0 when random effects in Eq. 8 are estimated to permit parameter identification.139

The formulation in Eq. 8 is similar to the one previously proposed for hierarchical multivariate models with spatial dependence140

(cf. Royle & Berliner 1999). There are multiple ways of structuring B depending on the complexity of spatial dependence desired141

for the PS process (Royle & Berliner 1999). For instance, setting B = 0S×S corresponds to an absence of spatial dependence (and142

thus no PS). Setting B = bI, where b is an estimated parameter and I is an (S × S) identity matrix corresponds to the linear PS143

model suggested by Diggle et al. (2010) and Pati et al. (2011). Alternatively, we could allow the degree of PS to vary across the144

landscape. For instance, one can contemplate a trend surface model for PS by specifying a diagonal matrix for B, with entries given145

by b0 + b1lati + b2longi, where b0, b1, and b2 are estimated parameters and lati and longi give latitude and longitude, respectively146

(Royle & Berliner 1999). Theoretically, one could include more highly parameterized structures for spatial dependence, such as147

higher order trend surface or spline formulation (Royle & Berliner 1999), but the ability to robustly estimate the parameters of such148

a model is likely dependent on having a rich, spatially balanced dataset, which is often not the case in ecological applications.149

A comparison of the performance of models with different sets of constraints on B can serve as a test of PS. In particular, if one150

can demonstrate that models with B = 0 perform similarly or better than models with B 6= 0, then PS is likely not worth modeling151

and inference can proceed using standard SDMs (i.e. not modeling sampling intensity).152
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SIMULATION STUDY153

To illustrate PS and demonstrate that our proposed model has reasonable performance, we conducted a small simulation experiment.154

For each of 500 simulations, we generated abundance of a hypothetical species over a 25× 25 grid as155

[Ni|µi] = Poisson(exp(µi)),

where i indexes survey unit i, and µi is determined according to Eq. 2. Abundance was generated as a function of a single spatially156

autocorrelated landscape covariate, as well as residual spatial autocorrelation (δi) and overdispersion (fig. 2). Specific details of data157

generation procedures are provided in Appendix S1.158

For each simulated landscape we generated three virtual count surveys using eqs. 7 and 8. Each survey had β∗ = ηi = 0 (that159

is, no covariate or spatially autocorrelated random effects), but differed in how the matrix B was parameterized. In the first, we set160

B = 0, so that surveyed locations were selected independently of the abundance generating process. For the second and third, we161

set B to be a diagonal matrix with entries b = 1 and b = 5, respectively, so that the probability of sampling a given survey unit (grid162

cell) was explicitly dependent on the latent abundance in that unit. We refer to these scenarios as moderate and pathological PS,163

respectively (see fig. 3). Simulations were configured so that n = 50 of the 625 survey units were sampled; each survey was set to164

cover half of the target cell.165

We fitted two different models to each count dataset, both of which were provided the habitat covariate used (in part) to generate166

the data for which a log-linear coefficient β was estimated. In the first model, the elements of B in eq. 8 were all set to zero. In167

this case, the abundance and sampling process submodels were independent, as is the case canonical SDMs (at lest when fitted168

to presence-absence or count data). In the second model, we included an explicit connection between the distribution of animal169

abundance and the sampling process by setting B = bI, where b is an estimated parameter, and I is an identity matrix.170

We used maximum likelihood to conduct statistical inference. In particular, we used Template Model Builder (TMB; Kristensen171

et al. 2016), interfaced with the R programming environment, to conduct maximization. The TMB software uses a Laplace172

approximation to integrate out random effects (η and δ), and a bias correction algorithm (Tierney et al. 1989; Thorson & Kristensen173

In Press) to obtain abundance estimates and standard errors that properly account for nonlinear transformations of random effects.174

This approach resulted in a facile implementation and speedy computing times, allowing us to conduct simulation and model testing175

with greater efficiency than would have been possible with Bayesian simulation. Further detail on statistical methods are provided in176

Appendix S1; requisite R and TMB code will be published to a publicly accessible repository upon acceptance, and is also available177

at https://github.com/NMML/pref_sampling/.178

BEARDED SEAL COUNT SURVEYS179

We applied our modeling technique to counts of bearded seals obtained on aerial transects flown over the eastern Bering Sea from180

10-16 April, 2012 (Fig. 5). These counts were gathered as part of a larger survey designed to estimate abundance of four species of181

ice-associated seals; the survey is described in greater detail elsewhere (Conn et al. 2014, 2015). The survey area considered here182

consists of 25 by 25 km grid cells bordered to the north by the Bering strait, to the west by the international date line, to the south by183

maximal April ice extent, and to the east by the Alaska, USA mainland. Here, we limit counts to those gathered within a one week184

period so that relative abundance will remain relatively constant throughout the study area. Our primary focus in this application is185

to diagnose PS (rather than to estimate absolute abundance). As such, we do not attempt to correct for nuisance processes such as186

incomplete detection or species misclassification, which requires models of increased sophistication (Conn et al. 2014).187

Our choice to model bearded seal counts, as opposed to one of the other seal species, is based on the observation that bearded188

seal densities tend to be highest in the northern portion of the study area. This is also the location of one of the primary airports used189

to prosecute surveys (Nome, Alaska, USA). Higher survey coverage in areas of high bearded seal density could potentially lead to190

positive bias in apparent abundance owing to PS.191
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To test for such an effect, we modeled bearded seal counts using the formulation192

[Yi|Zi] = Poisson(PiZi), where

Zi = Ai exp(µi),

where Pi defines the proportion of grid cell i that is sampled, Ai gives the proportion of grid cell i that is composed of salt water193

habitat, and µi is defined in Eq. 2. We modeled the grid cells that were chosen for sampling using Eqs. 7-8.194

We fitted a total of six models (Mcov=0,b=0,Mcov=0,b=1,Mcov=1,b=0,Mcov=1,b=1) to bearded seal count data using the same195

estimation framework as in the simulation study. Models varied by (i) whether or not habitat and landscape variables were used as196

predictors of bearded seal density (cov = 1 and cov = 0, respectively), and (ii) the form of PS (b = 0 indicates no PS; b = 1 indicates197

B = bI, where b is an estimated parameter). We also attempted to fit models where the PS B matrix varied over the landscape using198

a trend surface specification, but parameter identification was suspect in these models and are not reported here (see Appendix S2199

for more information). When habitat and landscape variables were included, we used three log-linear predictors: linear and quadratic200

functions of sea ice concentration, and distance from the southern ice edge. Remotely sensed sea ice data were obtained at a 25× 25201

km resolution from the National Snow and Ice Data Center, Boulder, CO, USA, as described by Conn et al. (2014). Models for202

µi and νi both utilized spatially autocorrelated random effects with a Matérn covariance function between grid cell centroids (see203

Appendix S1 for further details). When covariates were included, they were included in both models (i.e. for µi and νi).204

Results205

SIMULATION STUDY206

Estimates of cumulative animal abundance across simulated landscapes were median unbiased for both estimation methods when207

the sites selected for sampling were independent of animal density, though when b was estimated, abundance estimates were more208

right skewed and had higher variance (fig. 4). Under moderate PS (b = 1), estimation of the PS parameter b led to a median bias of209

5%, while the canonical SDM model ignoring preferential sampling had a median bias of 40%. Under pathological PS (b = 5), both210

estimation methods were extremely biased, but was even more severe for the naive model ignoring PS (fig. 4).211

BEARDED SEAL ANALYSIS212

Marginal AIC strongly favored models with covariate effects, but for such models the presence of PS was equivocal (Table 1).213

Further intuition can be gained by examining estimates of the PS parameter, b. For the PS model without predictive covariates,214

b̂ = 0.27 (SE 0.11), and for the model with predictive covariates, b̂ = 0.19 (SE 0.13). Thus, it appeared that including predictive215

covariates decreased the PS effect size, as suggested by Pati et al. (2011). Estimates of abundance were substantially higher for216

models without a PS effect, with the non-PS model having a 49% higher estimate when covariates were not modeled, and a 19%217

higher estimate when covariate effects were included.218

Note that unlike the other models, Mcov=1,b=0 predicted anomalously high bearded seal abundance in the extreme southern219

portion of the study area where sea ice was absent (where there was no habitat for seals). Thus, while we present original likelihood220

and AIC values to permit direct comparison with other models, we refittedMcov=1,b=0 to produce an estimate of apparent abundance221

without this feature. Specifically, we refitted the model with 20 pseudo-absences in this portion of the study area to better inform222

abundance-covariate relationships.223

The fact that models with and without a PS effect garner approximately equal weight suggests a need to account for PS when224

producing abundance estimates from this data set. A model averaged estimate calculated using AIC machinery (Burnham & Anderson225

2002) is 54854 (SE 9351), which is 7.5% less than the estimate assuming no PS. Notably, the standard error of the model averaged226

estimate was 79% higher than the model assuming no PS.227

Discussion228

In this study, we showed that coarse-grained preferential sampling (Fig. 1) can have a profound impact on the quality of estimates229

(e.g. animal abundance) when sampling is non-randomized. In simulations, estimators were increasingly positively biased as PS230
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increased. When PS was present, we were able to substantially reduce bias by conducting estimation under a framework where the231

state variable of interest and the sites chosen for sampling were jointly modeled under a dependent covariance structure. In absence232

of PS, simulations suggest that this structure results in lower precision than a model without a PS effect; thus the need to account for233

PS reduces the quality of inference.234

Bias attributed to PS may seem counterintuitive, especially given the maxim in survey sampling to allocate more effort to strata for235

which animal density is high. For instance, in large scale line transect surveys under stratified sampling, the optimal amount of effort236

that should be allocated to stratum s is AsD
0.5
s , where As is the area of s and Ds is the anticipated density (Buckland et al. 2001;237

eqn 7.7). Thus, there are theoretical reasons to sample more in high density areas than in low density areas. The obvious solution in238

this instance is to account for variation in sampling intensity with explanatory covariates or post hoc stratification. However, it is not239

always clear how to perform post hoc stratification when effort is allocated in a subjective manner.240

When applied to bearded seal count data, approximately equal support was given to models with and without a PS effect. The241

PS effect size was estimated to be positive and to produce considerably lower abundance estimates than models without a PS effect.242

Differences between apparent abundance estimates decreased when covariates were added to model structure, supporting previous243

theoretical results (Diggle et al. 2010; Pati et al. 2011) that covariates serve to decrease the conditional dependence between site244

selection and the state variable of interest. However, in our data set, adding covariates did not eliminate evidence of PS. Accounting245

for PS in a model averaging framework led to a moderate decrease in our apparent abundance estimate for bearded seals in this246

region, and markedly decreased precision. As in our simulations, the need to account for PS thus appeared to have a real cost in terms247

of variance inflation.248

We attempted to fit models to bearded seal data where the degree of PS changed over the landscape, in a similar manner to249

multivariate spatial models (Royle & Berliner 1999). However, such models led to difficulties with parameter identification in our250

bearded seal application (see Appendix S2). Evidently, such models may require greater spatial balance or richer data sets. At this251

time, we suggest limiting initial consideration to models with a single, estimated b parameter as a composite adjustment to abundance252

or occupancy. Although more complex models are clearly identifiable in some situations (Royle & Berliner 1999), further research253

on the viability of such models as a function of data quality appears warranted. It would also be worthwhile to investigate whether254

parameter identification varies as a function of the support of the state variable being modeled (e.g. binary vs. count data).255

The models we have developed here are specific to spatial models with discrete support, as when data are gathered at a plot level,256

or aggregated prior to analysis. However, it should be possible to extend our approach to continuous space. One approach would be257

to model sampling locations as realizations from a spatial point process in a manner similar to Warton & Shepherd (2010). Another258

possible extension would be to consider models for the sampling process where sampling occurs without replacement for a fixed259

sample size. For instance, the Bernoulli sampling model makes the implicit assumption that sample size is random. If, instead, a260

fixed number of locations are sampled, the Bernoulli model is somewhat misspecified. Our simulations suggest some robustness to261

this misspecification, as the Bernoulli model performed reasonably well when sampling was without replacement for a fixed sample262

size (Fig. 4). Still, a more precise treatment would need to rely on an extended hypergeometric distribution with variable inclusion263

probabilities when formulating the sampling model; this extension is nontrivial.264

Our conception of PS is related, but not equivalent to “sample selection bias” (e.g. Phillips et al. 2009) in presence-only models.265

In such models, absence of a species at a given site is never directly observed. To draw inference about space use, it is thus necessary266

to produce a background sample representing the range of locations and habitats that could have been sampled. Sample selection bias267

then results if the characteristics of sites selected for sampling (e.g. by a volunteer or museum collector) differ systematically from268

the assumed background sample. In our case, we use PS to refer to the case where absences are available, but where the probability269

of sampling is dependent on some unknown factor that is also related to abundance or presence of the target species.270

Conclusion271

Model-based approaches to estimation of abundance or occurrence have become popular in recent years. We (the authors) have272

noticed a tendency for analysts to assume that inclusion of spatial covariates or random effects into predictive models will make273

the underlying sampling design ignorable. We have shown in this paper that this is not the case, although our results do suggest274
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that including predictive covariates can indeed decrease bias from preferential sampling. We have also shown that it is possible to275

further diagnose and adjust for preferential sampling by jointly modeling dependence between the data collection mechanism and the276

process of interest (e.g. abundance or occupancy). However, such models can be considerably less precise and have greater instability277

than models without a preferential sampling parameter. Where possible, we suggest that survey planners incorporate design-based278

elements (e.g. random or systematic sampling) into their survey designs to reduce the need for model-based triage.279
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Table 1. A summary of model selection results and estimated abundance for the four models fitted to bearded seal counts. The models include
formulations with or without predictive covariates (cov = 1 or 0, respectively) , and with or without the preferential sampling parameter b estimated
(b = 1 or 0, respectively) . All models included spatially autocorrelated random effects on log-scale abundance intensity. Shown are the log integrated
likelihood, the number of fixed effect parameters, ∆AIC, AIC model weights, and estimated apparent abundance over the landscape (N̂ ) together
with a Hessian-based standard error estimate.

Model Log likelihood Params ∆AIC Wgt N̂ (SE)
Mcov=0,b=0 -2667.1 3 21.7 0.00 68556 (7408)
Mcov=0,b=1 -2665.3 4 20.1 0.00 45857 (5114)
Mcov=1,b=0 -2650.3 9 0.0 0.53 59312† (5231)
Mcov=1,b=1 -2649.4 10 0.3 0.47 49826 (10369)

† Refitted model; see Results.
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Low quality 

High 
quality 

A. Course scale B. Fine scale 

Fig. 1. A depiction of two types of preferential sampling. In (A), an investigator preferentially places point transects (red squares) within regions of
high known animal density (blue polygons). This can cause bias in abundance or occupancy estimators unless this a priori knowledge about density
is explicitly modeled. In (B), a fine scale version of preferential sampling occurs when a line transect (red line) is intentionally placed across a region
of high quality habitat. If a landscape is discretized into homogeneous survey units for analysis (as in a grid), it is essential that the habitat surveyed
within each survey unit be randomly determined when estimating abundance. If not, bias (usually positive) can be expected.
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Fig. 2. An example of a single simulation replicate examining estimates of abundance from a naive species distribution model under preferential
sampling. First, true abundance (C) is generated as a function of a spatially autocorrelated covariate (A) and a spatially autocorrelated random effect
(B). Second, counts are generated for three different types of surveys, including a simple random sample (b = 0; D) and surveys with moderate (b = 1;
E) or pathological (b = 5; F) levels of preferential sampling. Finally, spatially explicit estimates of abundance are generated using a traditional SDM
(with b set to 0.0) to each of the count datasets (G-I). In this particular simulation replicate, cumulative abundance was underestimated by 18% when
b = 0, overestimated by 17% when b = 1, and overestimated by 293% when b = 5. For a summary of bias over 500 simulation replicates, see fig. 4.
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Fig. 3. Expected relationship between the probability of a survey unit being selected for sampling and its abundance residual in the simulation study.
The base case b = 0 represents simple random sampling, while b = 1 and b = 5 represent moderate and pathological levels of preferential sampling,
respectively. Also shown are is the realized distribution (smoothed histogram) of abundance residuals among survey units in the simulation study,
scaled to fit in the plot margins (solid black line).
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Fig. 4. Relative proportional error in abundance from the simulation experiment as computed with respect the posterior mode with a bias correction.
Each boxplot summarizes the distribution of relative proportional error as a function of the type of sampling, including simple random sampling
(b = 0), moderate preferential sampling (b = 1), and pathological preferential sampling (b = 5). Results vary by the type of estimation model; in the
“independent” model, b is set to 0.0; in the “joint” model, b is estimated. Lower and upper limits of each box correspond to first and third quartiles,
while whiskers extend to the lowest and highest observed bias within 1.5 interquartile range units from the box. Points denote outliers outside of this
range. Horizontal lines within boxes denote median bias.
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Fig. 5. Aerial survey counts and estimated apparent abundance of bearded seals in the eastern Bering Sea, April 10-16, 2012. Counts and estimates
are shown relative to a survey grid that extends south from the Bering Strait and borders the Alaska, USA mainland to the east. In (A), tan shading
denotes land, unsurveyed grid cells appear in dark gray, and counts appear in a white-blue spectrum. Apparent bearded seal abundance estimates (B)
are presented from the model with the lowest integrated AIC score, which included covariate effects but no preferential sampling effect. Apparent
abundance estimates are uncorrected for imperfect detection or species misclassification.

c© 2016 The Authors. Journal compilation c© 2016 British Ecological Society, Methods in Ecology & Evolution

Prepared using besauth.cls


	Conn_2016_Submitted_Confronting.pdf
	Summary
	Introduction
	Materials and methods
	Notation and basic model structures
	Preferential sampling: A primer
	A generalized preferential sampling model
	Simulation study
	Bearded seal count surveys

	Results
	Simulation study
	Bearded seal analysis

	Discussion
	Conclusion
	Data accessibility


