

Gulf of Mexico OCS Oil and Gas Lease Sales: 2015-2017

Central Planning Area Lease Sales 235, 241, and 247

Final Supplemental Environmental Impact Statement

Gulf of Mexico OCS Oil and Gas Lease Sales: 2015-2017

Central Planning Area Lease Sales 235, 241, and 247

Final Supplemental Environmental Impact Statement

Author

Bureau of Ocean Energy Management Gulf of Mexico OCS Region

Published by

New Orleans September 2014

REGIONAL DIRECTOR'S NOTE

This Supplemental Environmental Impact Statement (EIS) addresses three proposed Federal actions: proposed Outer Continental Shelf (OCS) oil and gas Lease Sales 235, 241, and 247 in the Central Planning Area (CPA) of the Gulf of Mexico, as scheduled in the *Proposed Final Outer Continental Shelf Oil & Gas Leasing Program: 2012-2017* (Five-Year Program) (USDOI, BOEM, 2012a). This Supplemental EIS incorporates by reference all of the relevant material in the EISs from which it tiers: *Gulf of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement (2012-2017 WPA/CPA Multisale EIS) (USDOI, BOEM, 2012b); and <i>Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement (WPA 233/CPA 231 Supplemental EIS) (USDOI, BOEM, 2013a).*

The 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS analyzed the potential impacts of a CPA proposed action on the marine, coastal, and human environments. It is important to note that the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS were prepared using the best information that was publicly available at the time the documents were prepared. This Supplemental EIS is deemed appropriate to supplement the documents cited above for proposed CPA Lease Sales 235, 241, and 247 in order to consider new circumstances and information arising from, among other things, the *Deepwater Horizon* explosion, oil spill, and response. This Supplemental EIS's analysis focuses on updating the baseline conditions and potential environmental effects of oil and natural gas leasing, exploration, development, and production in the CPA since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. This Supplemental EIS will also assist decisionmakers in making informed, future decisions regarding the approval of operations, as well as leasing. This Supplemental EIS is the final National Environmental Policy Act (NEPA) review conducted for proposed CPA Lease Sale 235. A separate NEPA review will be conducted prior to proposed CPA Lease Sales 241 and 247 to address any newly available significant information relevant to those proposed actions.

BOEM's Gulf of Mexico OCS Region and its predecessors have been conducting environmental analyses of the effects of OCS oil and gas development since the inception of NEPA. We have prepared and published more than 50 draft and 50 final EISs. Our goal has always been to provide factual, reliable, and clear analytical statements in order to inform decisionmakers and the public about the environmental effects of proposed OCS oil- and gas-related activities and their alternatives. We view the EIS process as providing a balanced forum for early identification, avoidance, and resolution of potential conflicts. It is in this spirit that we welcome comments on this document from all concerned parties.

John L. Lodi

John L. Rodi Regional Director Bureau of Ocean Energy Management Gulf of Mexico OCS Region

COVER SHEET

Supplemental Environmental Impact Statement for Proposed OCS Oil and Gas Lease Sales 235, 241, and 247 in the Central Planning Area of the Gulf of Mexico

Draft () Final (x)

Type of Action: Administrative (x) Legislative ()

Area of Potential Impact: Offshore Marine Environment and Coastal Counties/Parishes of Louisiana, Mississippi, Alabama, and northwestern Florida

Agency	Headquarters Contact	Region Contacts
U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region (GM 623E) 1201 Elmwood Park Boulevard New Orleans, LA 70123-2394	Poojan Tripathi (HM 3107) U.S. Department of the Interior Bureau of Ocean Energy Management 381 Elden Street Herndon, VA 20170-4817 703-787-1738	Brian Cameron 504-736-2990 Gary D. Goeke 504-736-3233

ABSTRACT

This Supplemental Environmental Impact Statement (EIS) addresses three proposed Federal actions: proposed Outer Continental Shelf (OCS) oil and gas Lease Sales 235, 241, and 247 in the Central Planning Area (CPA) of the Gulf of Mexico, as scheduled in the *Proposed Final Outer Continental Shelf Oil & Gas Leasing Program: 2012-2017* (Five-Year Program) (USDOI, BOEM, 2012a).

This Supplemental EIS updates the baseline conditions and potential environmental effects of oil and natural gas leasing, exploration, development, and production in the CPA since publication of *Gulf of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement (2012-2017 WPA/CPA Multisale EIS) (USDOI, BOEM, 2012b) and <i>Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement* (WPA 233/CPA 231 Supplemental EIS) (USDOI, BOEM, 2013a). This Supplemental EIS analyzes the potential impacts of a CPA proposed action on sensitive coastal environments, offshore marine resources, and socioeconomic resources both onshore and offshore. It is important to note that this Supplemental EIS was prepared using the best information that was publicly available at the time the document was prepared. Where relevant information on reasonably foreseeable significant adverse impacts is incomplete or unavailable, the need for the information was evaluated to determine if it was essential to a reasoned choice among the alternatives and if so, it was either acquired or in the event it was impossible or exorbitant to acquire the information, accepted scientific methodologies were applied in its place.

The proposed actions are considered to be major Federal actions requiring an EIS. This document provides the following information in accordance with the National Environmental Policy Act (NEPA) and its implementing regulations, and it will be used in making decisions on the proposal. This Supplemental EIS is the final NEPA review conducted for proposed CPA Lease Sale 235. A separate NEPA review will be conducted prior to BOEM's decision on whether or how to proceed with proposed CPA Lease Sales 241 and 247. This document includes the purpose of and need for a CPA proposed

action, identification of the alternatives, description of the affected environment, and an analysis of the potential environmental impacts of a CPA proposed action, alternatives, and associated activities, including proposed mitigating measures and their potential effects. Potential contributions to cumulative impacts resulting from activities associated with the proposed actions are also analyzed.

Hypothetical scenarios were developed on the levels of activities, accidental events (such as oil spills), and potential impacts that might result if a CPA proposed action is adopted. Activities and disturbances associated with a CPA proposed action on biological, physical, and socioeconomic resources are considered in the analyses.

Additional copies of this Supplemental EIS, the 2012-2017 WPA/CPA Multisale EIS, the WPA 233/CPA 231 Supplemental EIS, and the other referenced publications may be obtained from the Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, Public Information Office (GM 335A), 1201 Elmwood Park Boulevard, Room 250, New Orleans, Louisiana 70123-2394, by telephone at 504-736-2519 or 1-800-200-GULF, or on the Internet at <u>http://www.boem.gov/nepaprocess/</u>.

SUMMARY

This Supplemental Environmental Impact Statement (EIS) addresses three proposed Federal actions that offer for lease an area on the Gulf of Mexico Outer Continental Shelf (OCS) that may contain economically recoverable oil and gas resources. Under the *Proposed Final Outer Continental Shelf Oil & Gas Leasing Program: 2012-2017* (Five-Year Program) (USDOI, BOEM, 2012a), five proposed lease sales are scheduled for the Central Planning Area (CPA). The remaining three proposed lease sales within the CPA are proposed CPA Lease Sales 235, 241, and 247, which are tentatively scheduled to be held in March 2015, 2016, and 2017, respectively. Federal regulations allow for several related or similar proposals to be analyzed in one EIS (40 CFR § 1502.4). Since each lease sale proposal and projected activities are very similar for the proposed CPA lease sale area, a single EIS is being prepared for the three remaining proposed CPA lease sales. At the completion of this EIS process, a decision will be made on whether or how to proceed with proposed CPA Lease Sale 235. A separate National Environmental Policy Act (NEPA) review, in a form to be determined by the Bureau of Ocean Energy Management (BOEM), will be conducted prior to BOEM's decision on whether or how to proceed with proposed CPA Lease Sales 241 and 247.

This Supplemental EIS updates the baseline conditions and potential environmental effects of oil and natural gas leasing, exploration, development, and production in the CPA since publication of *Gulf of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement (2012-2017 WPA/CPA Multisale EIS) (USDOI, BOEM, 2012b) and <i>Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement (WPA 233/CPA 231 Supplemental EIS) (USDOI, BOEM, 2013a).*

This Supplemental EIS analyzes the potential impacts of a CPA proposed action on sensitive coastal environments, offshore marine resources, and socioeconomic resources both onshore and offshore. It is important to note that this Supplemental EIS was prepared using the best information that was publicly available at the time the document was prepared. Where relevant information on reasonably foreseeable significant adverse impacts is incomplete or unavailable, the need for the information was evaluated to determine if it was essential to a reasoned choice among the alternatives and if so, it was either acquired or in the event it was impossible or exorbitant to acquire the information, accepted scientific methodologies were applied in its place.

This summary section provides only a brief overview of the proposed CPA lease sales, alternatives, significant issues, potential environmental and socioeconomic effects, and proposed mitigating measures contained in this Supplemental EIS. To obtain the full perspective and context of the potential environmental and socioeconomic impacts discussed, it is necessary to read the entire Supplemental EIS. Relevant discussions of specific topics can be found in the chapters and appendices of this Supplemental EIS as described below.

- **Chapter 1**, The Proposed Actions, describes the purpose of and need for the proposed lease sales, the prelease process, postlease activities, and other OCS oil-and gas-related activities.
- **Chapter 2**, Alternatives Including the Proposed Actions, describes the environmental and socioeconomic effects of a proposed CPA lease sale and alternatives. Also discussed are potential mitigating measures to avoid or minimize impacts.
- **Chapter 3**, Impact-Producing Factors and Scenario, describes activities associated with a proposed lease sale and the OCS Program, and other foreseeable activities that could potentially affect the biological, physical, and socioeconomic resources of the Gulf of Mexico.

Chapter 3.1, Impact-Producing Factors and Scenario—Routine Operations, describes offshore infrastructure and activities (impact-producing factors) associated with a proposed lease sale that could potentially affect the biological, physical, and socioeconomic resources of the Gulf of Mexico.

Chapter 3.2, Impact-Producing Factors and Scenario—Accidental Events, discusses potential accidental events (i.e., oil spills, losses of well control, vessel collisions, and spills of chemicals or drilling fluids) that may occur as a result of activities associated with a proposed lease sale.

Chapter 3.3, Cumulative Activities Scenario, describes past, present, and reasonably foreseeable future human activities, including non-OCS oil- and gas-related activities, as well as all OCS oil- and gas-related activities, that may affect the biological, physical, and socioeconomic resources of the Gulf of Mexico.

• **Chapter 4**, Description of the Environment and Impact Analysis, describes the affected environment and provides analysis of the routine, accidental, and cumulative impacts of a CPA proposed action and the alternatives on environmental and socioeconomic resources of the Gulf of Mexico.

Chapter 4.1, Proposed Central Planning Area Lease Sales 235, 241, and 247, describes the routine, accidental, and cumulative impacts of a CPA proposed action and two alternatives to a CPA proposed action on the biological, physical, and socioeconomic resources of the Gulf of Mexico.

Chapter 4 also includes **Chapter 4.2**, Unavoidable Adverse Impacts of the Proposed Actions; **Chapter 4.3**, Irreversible and Irretrievable Commitment of Resources; and **Chapter 4.4**, Relationship Between the Short-term Use of Man's Environment and the Maintenance and Enhancement of Long-Term Productivity.

- Chapter 5, Consultation and Coordination, describes the consultation and coordination activities with Federal, State, and local agencies and other interested parties that occurred during the development of this Supplemental EIS, and it includes copies of comments received on the Draft Supplemental EIS and BOEM's responses to those comments.
- **Chapter 6**, References Cited, is a list of literature cited throughout this Supplemental EIS.
- **Chapter 7**, Preparers, is a list of names of persons who were primarily responsible for preparing and reviewing this Supplemental EIS.
- Chapter 8, Glossary, is a list of definitions of selected terms used in this Supplemental EIS.
- Appendix A, Air Quality Offshore Modeling Analysis, presents a detailed analysis of the Offshore Coastal Dispersion Model for air quality purposes.
- Appendix B, Catastrophic Spill Event Analysis, is a technical analysis of a potential low-probability catastrophic event to assist BOEM in meeting the Council on Environmental Quality's (CEQ) requirements for evaluating low-probability catastrophic events under NEPA. The CEQ regulations address impacts with catastrophic consequences in the context of evaluating reasonably foreseeable significant adverse effects in an EIS when they address the issue of incomplete or unavailable information (40 CFR § 1502.22). For NEPA purposes, "'[r]easonably foreseeable' impacts include impacts that have catastrophic consequences even if their probability of occurrence is low, provided that the analysis of the impacts is supported by credible scientific evidence, is not based on pure conjecture, and is within the rule of reason" (40 CFR § 1502.22(b)(4)). Therefore, this analysis, which is based on credible scientific evidence, identifies the most likely and most significant impacts from a high-volume blowout and oil spill that continues for an extended period of time. The scenario and impacts discussed in this analysis should

not be confused with the scenario and impacts anticipated to result from routine activities or more reasonably foreseeable accidental events of a CPA proposed action.

- Appendix C, BOEM-OSRA Catastrophic Run, is a detailed explanation of BOEM's Oil-Spill Risk Analysis (OSRA) and the computer model runs accomplished for this Supplemental EIS.
- Appendix D, Commonly Applied Mitigating Measures, is a list and description of standard postlease mitigating measures that may be required by BOEM or BSEE as a result of plan and/or permit review processes for the Gulf of Mexico OCS Region.
- Appendix E, Recent Publications of the Environmental Studies Program, Gulf of Mexico OCS Region, 2006-Present, contains a listing of publications that originated in BOEM's (and the Agency's predecessors, the Bureau of Ocean Energy Management, Regulation and Enforcement and the Minerals Management Service) Environmental Studies Program of the Gulf of Mexico OCS Region, with a particular focus on the most recent studies.
- **Keyword Index** is a list of descriptive terms and the pages on which they can be found in this Supplemental EIS.

Proposed Action and Alternatives

The following alternatives were included for analysis in this Supplemental EIS.

Alternatives for Proposed Central Planning Area Lease Sales 235, 241, and 247

Alternative A—The Proposed Action (Preferred Alternative): This alternative would offer for lease all unleased blocks within the proposed CPA lease sale area for oil and gas operations (**Figure 2-1**), with the following exceptions:

- (1) whole and portions of blocks deferred by the Gulf of Mexico Energy Security Act of 2006; and
- (2) blocks that are adjacent to or beyond the United States' Exclusive Economic Zone in the area known as the northern portion of the Eastern Gap.

The U.S. Department of the Interior (DOI) is conservative throughout the NEPA process and includes the total area within the CPA for environmental review even though the leasing portions of the CPA (subareas or blocks) can be deferred during a Five-Year Program.

The proposed CPA lease sale area encompasses about 63 million acres (ac) of the CPA's 66.45 million ac. As of August 2014, approximately 44.1 million ac of the proposed CPA lease sale area are currently unleased. The estimated amount of natural resources projected to be developed as a result of a proposed CPA lease sale is 0.460-0.894 billion barrels of oil (BBO) and 1.939-3.903 trillion cubic feet (Tcf) of gas (**Table 3-1**).

Alternative B—Exclude the Blocks Near Biologically Sensitive Topographic Features: This alternative would offer for lease all unleased blocks within the proposed CPA lease sale area, as described for the proposed action (Alternative A), but it would exclude from leasing any unleased blocks subject to the Topographic Features Stipulation. The estimated amount of resources projected to be developed is 0.460-0.894 BBO and 1.939-3.903 Tcf of gas.

Alternative C—No Action: This alternative is the cancellation of a single proposed CPA lease sale. If this alternative is chosen, the opportunity for development of the estimated 0.460-0.894 BBO and 1.939-3.903 Tcf of gas that could have resulted from a proposed CPA lease sale would be precluded during the current 2012-2017 Five-Year Program, but it could again be contemplated as part of a future Five-Year Program. Any potential environmental impacts arising out of a proposed CPA lease sale would not occur, but activities associated with existing leases in the CPA would continue.

Mitigating Measures

Proposed lease stipulations and other mitigating measures designed to reduce or eliminate environmental risks and/or potential multiple-use conflicts between OCS operations and U.S. Department of Defense activities may be applied to the chosen alternative. Ten lease stipulations are proposed for a CPA proposed lease sale—the Topographic Features Stipulation; the Live Bottom (Pinnacle Trend) Stipulation; the Military Areas Stipulation; the Evacuation Stipulation; the Coordination Stipulation; the Blocks South of Baldwin County, Alabama, Stipulation; the Protected Species Stipulation; the Law of the Sea Convention Royalty Payment Stipulation; the Below Seabed Operations Stipulation; and the Stipulation on the Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico. The Law of the Sea Convention Royalty Payment Stipulation is applicable to proposed CPA lease sales even though it is not an environmental or military stipulation.

Application of lease stipulations will be considered by the Assistant Secretary of the Interior for Land and Minerals (ASLM). The inclusion of the stipulations as part of the analysis of a CPA proposed action does not ensure that the ASLM will make a decision to apply the stipulations to leases that may result from a proposed lease sale, nor does it preclude minor modifications in wording during subsequent steps in the prelease process if comments indicate changes are necessary or if conditions warrant. Any lease stipulations or mitigating measures to be included in a lease sale will be described in the Final Notice of Sale. Mitigating measures in the form of lease stipulations are added to the lease terms and are therefore enforceable as part of the lease. In addition, mitigations may be added to plans and/or permits for OCS oil- and gas-related activities. For more information on mitigating measures that are added at the postlease stage, refer to **Appendix D** ("Commonly Applied Mitigating Measures").

Scenarios Analyzed

Offshore activities are described in the context of scenarios for a CPA proposed action (**Chapter 3.1**) and for the OCS Program (**Chapter 3.3**). BOEM's Gulf of Mexico OCS Region developed these scenarios to provide a framework for detailed analyses of potential impacts of a proposed CPA lease sale. The scenarios are presented as ranges of the amounts of undiscovered, unleased hydrocarbon resources estimated to be leased and discovered as a result of a CPA proposed action. The analyses are based on a traditionally employed range of activities (e.g., the installation of platforms, wells, and pipelines, and the number of helicopter operations and service-vessel trips) that would be needed to develop and produce the amount of resources estimated to be leased.

The cumulative analysis (**Chapter 4.1.1**) considers environmental and socioeconomic impacts that may result from the incremental impact of a proposed action when added to all past, present, and reasonably foreseeable future activities, including non-OCS oil- and gas-related activities such as import tankering and commercial fishing, as well as all OCS oil- and gas-related activities (OCS Program). The OCS Program scenario includes all activities that are projected to occur from past, proposed, and future lease sales during the 40-year analysis period (2012-2051). This includes projected activity from lease sales that have been held, but for which exploration or development has not yet begun or is continuing. In addition to human activities, impacts from natural occurrences, such as hurricanes, are analyzed.

Significant Issues

The major issues that frame the environmental analyses in this Supplemental EIS, the 2012-2017 WPA/CPA Multisale EIS, and the WPA 233/CPA 231 Supplemental EIS are the result of concerns raised during years of scoping for the Gulf of Mexico OCS Program. Issues related to OCS oil and gas exploration, development, production, and transportation activities include the potential for oil spills, wetlands loss, air emissions, discharges, water quality degradation, trash and debris, structure and pipeline emplacement activities, platform removal, vessel and helicopter traffic, multiple-use conflicts, support services, population fluctuations, demands on public services, land-use planning, impacts to tourism, aesthetic interference, cultural impacts, environmental justice, and conflicts with State coastal zone management programs. Environmental resources and activities identified during the scoping process that warrant environmental analyses include air quality, water quality, coastal barrier beaches and associated dunes, wetlands, seagrass communities, live bottoms, topographic features, *Sargassum* communities, deepwater benthic communities, soft bottom benthic communities, marine mammals, sea turtles,

diamondback terrapins, beach mice, coastal and marine birds, Gulf sturgeon, fish resources and essential fish habitat, commercial fisheries, recreational fishing, recreational resources, archaeological resources, and socioeconomic conditions.

Other relevant issues include impacts from the *Deepwater Horizon* explosion, oil spill, and response; impacts from past and future hurricanes on environmental and socioeconomic resources; and impacts on coastal and offshore infrastructure. During the past few years, both the Gulf Coast States and Gulf of Mexico oil and gas activities have been impacted by major hurricanes. The description of the affected environment, and socioeconomic activities and on OCS oil- and gas-related infrastructure. This Supplemental EIS also considers baseline data in the assessment of impacts from a CPA proposed action on the resources and the environment (**Chapter 4.1.1**).

Impact Conclusions

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action and a proposed action's incremental contribution to the cumulative impacts are described in **Chapter 4.1.1**. A summary of the potential impacts from a CPA proposed action on each environmental and socioeconomic resource and the conclusions of the analyses can be found below.

Air Quality: Emissions of pollutants into the atmosphere from the routine activities associated with a CPA proposed action are projected to have minimal impacts to onshore air quality because of the prevailing atmospheric conditions, emission heights, emission rates, and the distance of these emissions from the coastline, and are expected to be well within the National Ambient Air Quality Standards. While regulations are in place to reduce the risk of impacts from hydrogen sulfide (H₂S) and while no H₂S-related deaths have occurred on the OCS, accidents involving high concentrations of H₂S could result in deaths as well as environmental damage. These emissions from routine activities and accidental events associated with a CPA proposed action are not expected to occur at concentrations that would change onshore air quality classifications.

Water Quality (Coastal and Offshore Waters): Impacts from routine activities associated with a CPA proposed action would be minimal if all existing regulatory requirements are met. Coastal water impacts associated with routine activities include increases in turbidity resulting from pipeline installation and navigation canal maintenance, discharges of bilge and ballast water from support vessels, and run-off from shore-based facilities. Offshore water impacts associated with routine activities result from the discharge of drilling muds and cuttings, produced water, residual chemicals used during workovers, structure installation and removal, and pipeline placement. The discharge of drilling muds and cuttings causes temporary increased turbidity and changes in sediment composition. The discharge of produced water results in increased concentrations of some metals, hydrocarbons, and dissolved solids within an area of about 100 meters (m) (328 feet [ft]) adjacent to the point of discharge. Structure installation and removal and pipeline placement disturb the sediments and cause increased turbidity. In addition, offshore water impacts result from supply and service-vessel bilge and ballast water discharges.

Coastal Barrier Beaches and Associated Dunes: Routine activities associated with a CPA proposed action, such as increased vessel traffic, maintenance dredging of navigation canals, and pipeline installation, would cause negligible impacts. Such impacts would be expected to be restricted to temporary and localized disturbances and not deleteriously affect barrier beaches and associated dunes. Indirect impacts from routine activities are negligible and indistinguishable from direct impacts of onshore activities. The potential impacts from accidental events (primarily oil spills) associated with a CPA proposed action are anticipated to be minimal. Should a spill (other than a low-probability catastrophic spill, which is not part of a CPA proposed action and not likely expected) contact a barrier beach, oiling is expected to be light and sand removal during cleanup activities minimized. No significant long-term impacts to the physical shape and structure of barrier beaches and associated dunes are expected to occur as a result of a CPA proposed action.

Wetlands: Routine activities associated with a CPA proposed action are expected to be small, localized, and temporary due to the small length of projected onshore pipelines, the minimal contribution to the need for maintenance dredging, the disposal of OCS wastes, and the mitigating measures that would be used to further reduce these impacts. Indirect impacts from wake erosion and saltwater intrusion are expected to result in low impacts that are indistinguishable from direct impacts from inshore activities. The potential impacts from accidental events (primarily oil spills) are anticipated to be

minimal. Overall, impacts to wetland habitats from an oil spill associated with activities related to a CPA proposed action would be expected to be small and temporary because of the nature of the system, regulations, and specific cleanup techniques.

Seagrass Communities: Turbidity impacts from pipeline installation and maintenance dredging associated with a CPA proposed action would be temporary and localized. The increment of impacts from service-vessel transit associated with a CPA proposed action would be minimal. Should an oil spill occur near a seagrass community, impacts from the spill and cleanup would be considered short term in duration and minor in scope. Close monitoring and restrictions on the use of bottom-disturbing equipment to clean up the spill would be needed to avoid or minimize those impacts.

Live Bottoms (Pinnacle Trend and Low Relief): The combination of its depth (200-400 ft; 60-120 m), separation from sources of impacts as mandated by the Live Bottom (Pinnacle Trend) Stipulation and through site-specific seafloor reviews of proposed activity, and a community adapted to sedimentation makes damage to the ecosystem unlikely from routine activities associated with a CPA proposed action. In the unlikely event that oil from a subsurface spill would reach the biota of these communities, the effects would be primarily sublethal for adult sessile biota, and there would be limited incidences of mortality.

Topographic Features: The routine activities associated with a CPA proposed action that would impact topographic feature communities include anchoring, infrastructure and pipeline emplacement, infrastructure removal, drilling discharges, and produced-water discharges. However, adherence to the proposed Topographic Features Stipulation would make damage to the ecosystem unlikely. Contact with accidentally spilled oil would cause lethal and sublethal effects in benthic organisms, but the oiling of benthic organisms is not likely because of the small area of the banks, the scattered occurrence of spills, the depth of the features, and because the proposed Topographic Features Stipulation, if applied, would keep subsurface sources of spills away from the immediate vicinity of topographic features.

Sargassum Communities: The impacts that are associated with a CPA proposed action are expected to have only minor effects to a small portion of the Sargassum community as a whole. Limited portions of the Sargassum community could suffer mortality if it contacts spilled oil or cleanup activities. The Sargassum community lives in pelagic waters with generally high water quality and would be resilient to the minor effects predicted. It has a yearly cycle that promotes quick recovery from impacts. No measurable impacts are expected to the overall population of the Sargassum community from a CPA proposed action.

Chemosynthetic and Nonchemosynthetic Deepwater Benthic Communities: Chemosynthetic and nonchemosynthetic communities are susceptible to physical impacts from structure placement, anchoring, and pipeline installation associated with a CPA proposed action. However, the policy requirements described in Notice to Lessees and Operators (NTL) 2009-G40 greatly reduce the risk of these physical impacts by clarifying the measures that must be taken to ensure avoidance of potential chemosynthetic communities and, by consequence, avoidance of other hard bottom communities. Even in situations where substantial burial of typical benthic infaunal communities occurred, recolonization by populations from widespread, neighboring, soft bottom substrate would be expected over a relatively short period of time for all size ranges of organisms. Potential accidental events associated with a CPA proposed action are expected to cause little damage to the ecological function or biological productivity of the widespread, low-density chemosynthetic communities and the widespread, typical, deep-sea benthic communities.

Soft Bottom Benthic Communities: The routine activities associated with a CPA proposed action that would impact soft bottoms generally occur within a few hundred meters of platforms, and the greatest impacts are seen close to the platform communities. Although localized impacts to comparatively small areas of the soft bottom benthic communities would occur, the impacts would be on a relatively small area of the seafloor compared with the overall area of the seafloor of the CPA (268,922 km²; 103,831 mi²). A CPA proposed action is not expected to adversely impact the entire soft bottom environment because the local impacted areas are extremely small compared with the entire seafloor of the Gulf of Mexico and because the soft bottom benthic communities are ubiquitous throughout the Gulf of Mexico.

Marine Mammals: Routine events related to a CPA proposed action are not expected to have adverse effects on the size and productivity of any marine mammal species or population in the northern Gulf of Mexico. Characteristics of impacts from accidental events depend on chronic or acute exposure from accidental events resulting in harassment, harm, or mortality to marine mammals, while exposure to dispersed hydrocarbons is likely to result in sublethal impacts.

Summary

Sea Turtles: Routine activities resulting from a CPA proposed action have the potential to harm sea turtles, although this potential is unlikely to rise to a level of significance due to the activity already present in the Gulf of Mexico and due to mitigating measures that are in place. Accidental events associated with a CPA proposed action have the potential to impact small to large numbers of sea turtles. Populations of sea turtles in the northern Gulf of Mexico may be exposed to residuals of oils spilled as a result of a CPA proposed action during their lifetimes. While chronic or acute exposure from accidental events may result in the harassment, harm, or mortality to sea turtles, in the most likely scenarios, exposure to hydrocarbons persisting in the sea following the dispersal of an oil slick are expected to most often result in sublethal impacts (e.g., decreased health and/or reproductive fitness and increased vulnerability to disease) to sea turtles. The incremental contribution of a CPA proposed action would not be likely to result in a significant incremental impact on sea turtles within the CPA; in comparison, non-OCS energy-related activities, such as overexploitation, commercial fishing, and pollution, have historically proved to be a greater threat to the sea turtle species.

Diamondback Terrapins: The routine activities of a CPA proposed action are unlikely to have significant adverse effects on the size and recovery of terrapin species or populations in the Gulf of Mexico. Impacts on diamondback terrapins from smaller accidental events are likely to affect individual diamondback terrapins in the spill area, but they are unlikely to rise to the level of population effects (or significance) given the probable size and scope of such spills. Due to the distance of most terrapin habitat from offshore OCS energy-related activities, impacts associated with activities occurring as a result of a CPA proposed action are not expected to impact terrapins or their habitat. The incremental effect of a CPA proposed action on diamondback terrapin populations is not expected to be significant when compared with historic and current non-OCS energy-related activities, such as habitat loss, overharvesting, crabbing, and fishing.

Alabama, Choctawhatchee, St. Andrew, and Perdido Key Beach Mice: An impact from the consumption of beach trash and debris associated with a CPA proposed action on the Alabama, Choctawhatchee, St. Andrew, and Perdido Key beach mice is possible but unlikely. While potential spills that could result from a CPA proposed action are not expected to contact beach mice or their habitats, large-scale oiling of beach mice could result in extinction, and, if all personnel are not thoroughly trained, oil-spill response and cleanup activities could have a significant impact to the beach mice and their habitat.

Coastal and Marine Birds: The majority of impacts resulting from routine activities associated with a CPA proposed action on threatened and endangered and nonthreatened and nonendangered avian species are expected to be adverse, but not significant. These impacts include behavioral effects, exposure to or intake of OCS oil- and gas-related contaminants and discarded debris, disturbance-related impacts, and displacement of birds from habitats that are destroyed, altered, or fragmented, making these areas otherwise unavailable. Impacts from potential oil spills associated with a CPA proposed action and the effects related to oil-spill cleanup are expected to be adverse, but not significant. Oil spills, irrespective of size, can result in some mortality as well as sublethal, chronic short- and long-term effects, in addition to potential impacts to food resources. The effect of cumulative activities on coastal and marine birds is expected to result in discernible changes to avian species composition, distribution, and abundance. The incremental contribution of a CPA proposed action to cumulative impacts is expected to be adverse, but not significant, because it may seriously alter avian species' composition and abundance due to reductions in the overall carrying capacity of disturbed habitats, and possibly to the availability, abundance, and distribution of preferred food resources.

Gulf Sturgeon: Routine activities associated with a CPA proposed action, such as the installation of pipelines, maintenance dredging, potential vessel strikes, and nonpoint-source runoff from onshore facilities, would cause negligible impacts and would not deleteriously affect Gulf sturgeon. Indirect impacts from routine activities to inshore habitats are negligible and indistinguishable from direct impacts of inshore activities and are further reduced through mitigations and regulations. The potential impacts from accidental events, mainly oil spills associated with a CPA proposed action, are anticipated to be minimal. Because of the floating nature of oil, reduced toxicity through weathering (offshore dispersant treatment) and the small tidal range of the Gulf of Mexico, oil spills alone would typically have very little impact on benthic feeders such as the Gulf sturgeon. The incremental contribution of a CPA proposed action to the cumulative impact is negligible.

Fish Resources and Essential Fish Habitat: Fish resources and essential fish habitat could be impacted by coastal environmental degradation potentially caused by canal dredging, increases in

infrastructure, and inshore spills and marine environmental degradation possibly caused by pipeline trenching, offshore discharges, and offshore spills. Impacts of routine dredging and discharges are localized in time and space and are regulated by Federal and State agencies through permitting processes; therefore, there would be minimal impact to fish resources and essential fish habitat from these routine activities associated with a CPA proposed action. Accidental events that could impact fish resources and essential fish habitat include blowouts and oil or chemical spills. If a spill were to occur as a result of a CPA proposed action and if it was proximate to mobile fishes, the impacts of the spill would depend on multiple factors, including the amount spilled, the areal extent of the spill, the distance of the spill from particular essential fish habitats (e.g., nursery habitats), and the type and toxicity of oil spilled. Much of the sensitive essential fish habitat would have decreased effects from oil spills because of the depths many are found and because of the distance that these low-probability spills would occur from many of the essential fish habitats (due to stipulations, NTLs, etc.). If there is an effect of an oil spill on fish resources in the Gulf of Mexico, it is expected to cause a minimal decrease in standing stocks of any population. This is because most spill events would be localized, therefore affecting a small portion of fish populations.

Commercial Fisheries: Routine activities in the CPA, such as seismic surveys and pipeline trenching, would cause negligible impacts and would not deleteriously affect commercial fishing activities. Indirect impacts from routine activities to inshore habitats are negligible and indistinguishable from direct impacts of inshore activities on commercial fisheries. The potential impacts from accidental events, such as a well blowout or an oil spill, associated with a CPA proposed action are anticipated to be minimal. Commercial fisheries by area closures. The extent of impact depends on the areal extent and length of the closure. The impact of spills on catch or value of catch would depend on the volume and location (i.e., distance from shore) of the spill, as well as the physical properties of the oil spilled.

Recreational Fishing: There could be minor and short-term, space-use conflicts with recreational fishermen during the initial phases of a CPA proposed action. A CPA proposed action could also lead to low-level environmental degradation of fish habitat, which would also negatively impact recreational fishing activity. However, these minor negative effects would be offset by the beneficial role that oil platforms serve as artificial reefs for fish populations. An oil spill would likely lead to recreational fishing closures in the vicinity of the oil spill. Except for a low-probability catastrophic spill, which is not part of a CPA proposed action and not likely expected (e.g., the *Deepwater Horizon* oil spill), oil spills should not affect recreational fishing to a large degree due to the likely availability of substitute fishing sites in neighboring regions.

Recreational Resources: Routine OCS oil- and gas-related activities can cause minor disturbances to recreational resources, particularly beaches, through increased levels of noise, debris, and rig visibility. The oil spills most likely to result from a CPA proposed action would be small, of short duration, and not likely to impact Gulf Coast recreational resources. Should an oil spill occur and contact a beach area or other recreational resource, it would cause some disruption during the impact and cleanup phases of the spill. However, except for a low-probability catastrophic spill, which is not part of a CPA proposed action and not likely expected (e.g., the *Deepwater Horizon* oil spill), these effects are likely to be small in scale and of short duration.

Archaeological Resources (Historic and Prehistoric): The greatest potential impact to an archaeological resource as a result of routine activities associated with a CPA proposed action would result from direct contact between an offshore activity (e.g., platform installation, drilling rig emplacement, structure removal or site clearance operation, and dredging or pipeline project) and a historic or prehistoric site. The archaeological survey and archaeological clearance of sites, where required prior to an operator beginning oil and gas activities on a lease, are expected to be highly effective at identifying possible offshore archaeological sites; however, should such contact occur, there would be localized damage to or loss of significant and/or unique archaeological information. It is expected that coastal archaeological resources would be protected through the review and approval processes of the various Federal, State, and local agencies involved in permitting onshore activities.

It is not very likely that a large oil spill would occur and contact coastal prehistoric or historic archaeological sites from accidental events associated with a CPA proposed action. Should a spill contact a prehistoric archaeological site, damage might include loss of radiocarbon-dating potential, direct impact from oil-spill cleanup equipment, and/or looting resulting in the irreversible loss of unique or significant archaeological information. The major effect from an oil-spill impact on coastal historic archaeological

sites would be visual contamination, which, while reversible, could result in additional impacts to fragile cultural materials from the cleaning process.

Land Use and Coastal Infrastructure: A CPA proposed action would not require additional coastal infrastructure, with the exception of possibly one new gas processing facility and one new pipeline landfall, and it would not alter the current land use of the analysis area. The existing oil and gas infrastructure is expected to be sufficient to handle development associated with a CPA proposed action. There may be some expansion at current facilities, but the land in the analysis area is sufficient to handle such development. There is also sufficient land to construct a new gas processing plant in the analysis area, should it be needed. Accidental events such as oil or chemical spills, blowouts, and vessel collisions would have no effects on land use. Coastal or nearshore spills, as well as vessel collisions, could have short-term adverse effects on coastal infrastructure, requiring cleanup of any oil or chemical spilled.

Demographics: A CPA proposed action is projected to minimally affect the demography of the analysis area. Population impacts from a CPA proposed action are projected to be minimal (<1% of total population) for any economic impact area in the Gulf of Mexico region. The baseline population patterns and distributions, as projected and described in **Chapter 4.1.1.23**, are expected to remain unchanged as a result of a CPA proposed action. The increase in employment is expected to be met primarily with the existing population and available labor force, with the exception of some in-migration (from elsewhere within or outside the U.S.), which is projected to move into focal areas such as Port Fourchon. Accidental events associated with a CPA proposed action, such as oil or chemical spills, blowouts, and vessel collisions, would likely have no effects on the demographic characteristics of the Gulf coastal communities.

Economic Factors: A CPA proposed action is expected to generate a <1 percent increase in employment in any of the coastal subareas, even when the net employment impacts from accidental events are included. Most of the employment related to a CPA proposed action is expected to occur in Louisiana and Texas. The demand would be met primarily with the existing population and labor force.

Environmental Justice: Environmental justice implications arise indirectly from onshore activities conducted in support of OCS oil and gas exploration, development, and production. Because the onshore infrastructure support system for the OCS oil- and gas-related industry (and its associated labor force) is highly developed, widespread, and has operated for decades within a heterogeneous Gulf of Mexico population, a CPA proposed action is not expected to have disproportionately high or adverse environmental or health effects on minority or low-income people. A CPA proposed action would help to maintain ongoing levels of activity, which may or may not result in the expansion of existing infrastructure. For a detailed discussion of scenario projections and the potential for expansion at existing facilities and/or construction of new facilities, refer to **Chapter 3.1.2**.

TABLE OF CONTENTS

					Page
SU	MMAF	RY			vii
LIS	ST OF I	FIGURES	5		xxiii
LIS	ST OF 7	FABLES			xxv
AB	BREV	IATIONS	S AND AC	RONYMS	.xxvii
CC	NVFR	SION CH	IART		vvvi
cc			1/ 11/ 1		ЛЛЛІ
1.	THE P	ROPOSE	ED ACTIO	NS	1-3
	1.1.	Purpose	of and Nee	ed for the Proposed Actions	1-3
	1.2.	Descript	ion of the I	Proposed Actions	1-4
	1.3.	Regulato	ory Framew	vork	1-5
		1.3.1.	Recent BO	DEM/BSEE Rule Changes	1-6
			1.3.1.1.	Recent and Ongoing Regulatory Reform and Government-Sponsored	1
			1312	Resent and Ongoing Industry Reform and Research	1-0
	1 /	Dralaasa	1.J.1.2.	Recent and Ongoing industry Reform and Research	1-7
	1.4.	Postlease	Δ ctivities	· · · · · · · · · · · · · · · · · · ·	1_10
	1.5.	Other Of	$CS Oil_{-}$ and	I Gas-Related Activities	1_11
	1.0.	Other O			1-11
2.	ALTE	RNATIV	ES INCLU	DING THE PROPOSED ACTIONS	2-3
	2.1.	Supplem	nental EIS I	NEPA Analysis	2-3
	2.2.	Alternat	ives. Mitig	ating Measures, and Issues	2-3
		2.2.1.	Alternativ	es	2-3
			2.2.1.1.	Alternatives for Proposed Central Planning Area Lease Sales 235,	
				241, and 247	2-4
		2.2.2.	Mitigating	g Measures	2-5
			2.2.2.1.	Proposed Mitigating Measures Analyzed	2-5
			2.2.2.2.	Existing Mitigating Measures	2-5
		2.2.3.	Issues		2-6
			2.2.3.1.	Issues to be Analyzed	2-7
			2.2.3.2.	Issues Considered but Not Analyzed	2-7
	2.3.	Propose	d Central P	lanning Area Lease Sales 235, 241, and 247	2-7
		2.3.1.	Alternativ	e A—The Proposed Action	2-7
			2.3.1.1.	Description	2-7
			2.3.1.2.	Summary of Impacts	2-8
			2.3.1.3.	Mitigating Measures	2-9
				2.3.1.3.1. Topographic Features Stipulation	2-9
				2.3.1.3.2. Live Bottom (Pinnacle Trend) Stipulation	2-10
				2.3.1.3.3. Military Areas Stipulation	2-10
				2.3.1.3.4. Evacuation Stipulation	2-10
				2.3.1.3.5. Coordination Stipulation	2-11
				2.3.1.3.6. Blocks South of Baldwin County, Alabama, Stipulation	2-11
				2.3.1.3.7. Protected Species Stipulation	2-11

3.

			2.3.1.3.8. 2.3.1.3.9. 2.3.1.3.10.	Law of the Sea Convention Royalty Payment Stipulation Below Seabed Operations Stipulation Stipulation on the Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of	.2-11 .2-11
				Mexico	.2-12
	2.3.2.	Alternativ	e B—Excluc	le the Unleased Blocks Near Biologically Sensitive	
		Topograp	hic Features.		.2-12
		2.3.2.1.	Description	~~	.2-12
		2.3.2.2.	Summary o	f Impacts	.2-12
	2.3.3.	Alternativ	e C—No Ac	tion	.2-13
		2.3.3.1.	Description	ст	.2-13
		2.3.3.2.	Summary o	f Impacts	.2-13
IMPA	CT-PROI	DUCING F	ACTORS A	ND SCENARIO	3-3
3.1.	Impact-H	Producing I	Factors and S	Scenario—Routine Operations	3-3
	3.1.1.	Offshore I	impact-Produ	icing Factors and Scenario	3-3
		3.1.1.1.	Resource E	stimates and Timetables	3-4
			3.1.1.1.1.	Proposed Action	3-4
			3.1.1.1.2.	OCS Program	3-5
		3.1.1.2.	Exploration	and Delineation	3-6
			3.1.1.2.1.	Seismic Surveying Operations	3-6
			3.1.1.2.2.	Exploration and Delineation Plans and Drilling	3-6
		3.1.1.3.	Developme	nt and Production	3-8
		3.1.1.4.	Operational	Waste Discharged Offshore	.3-10
		3.1.1.5.	Air Emissio	ns	.3-11
		3.1.1.6.	Noise		.3-12
		3.1.1.7.	Major Sour	ces of Oil Inputs in the Gulf of Mexico	.3-12
		3.1.1.8.	Offshore Tr	ansport	.3-13
		3.1.1.9.	Safety Issue	28	.3-13
		3.1.1.10.	Decommiss	ioning and Removal Operations	.3-13
	3.1.2.	Coastal In	npact- Produ	cing Factors and Scenario	.3-13
		3.1.2.1.	Coastal Infr	astructure	.3-13
		3.1.2.2.	Discharges	and Wastes	.3-15
3.2.	Impact-F	Producing I	Factors and S	Scenario—Accidental Events	.3-15
	3.2.1.	Oil Spills.			.3-15
		3.2.1.1.	Spill Prever	ntion	.3-15
		3.2.1.2.	Past OCS S	pills	.3-16
		3.2.1.3.	Characteris		.3-16
		3.2.1.4.	Overview o	f Spill Risk Analysis	.3-17
		3.2.1.5.	Risk Analys	sis for Offshore Spills $\geq 1,000$ bbl	.3-18
		3.2.1.6.	Risk Analys	sis for Offshore Spills $<1,000$ bbl	.3-19
		3.2.1.7.	Risk Analys	sis for Coastal Spills	.3-19
		3.2.1.8. 2.2.1.0	KISK Analys	sis by resource	2 20
	2 2 2 2	5.2.1.9.	Spill Century	115C	2 24
	3.2.2. 3.2.2	Losses of Dipoling E	wen Contro	1	2 25
	5.2.5. 2 7 1	Voccal Ca	anures		2 25
	3.2.4. 3.2.5	Chemical	and Drilling	Fluid Spills	3_25
	5.4.5.	Chemical	and Drinnig	-1 1010 Spills	.5-45

	3.3.	Cumula	ative Activi	ties Scenario	3-26
		3.3.1.	OCS Prog	gram	3-26
		3.3.2.	State Oil	and Gas Activity	3-26
		3.3.3.	Other Ma	ojor Factors Influencing Offshore Environments	3-28
			3.3.3.1.	Dredged Material Disposal	3-28
			3.3.3.2.	OCS Sand Borrowing	3-29
			3.3.3.3.	Marine Transportation	3-31
			3.3.3.4.	Military Activities	3-31
			3.3.3.5.	Artificial Reefs and Rigs-to-Reefs Development	3-31
		3.3.3.6.	Offshore Liquefied Natural Gas Projects and Deepwater Ports	3-32	
			3.3.3.7.	Development of Gas Hydrates	3-33
			3.3.3.8.	Renewable Energy and Alternative Use	3-33
		3.3.4.	Other Ma	ijor Factors Influencing Coastal Environments	3-34
			3.3.4.1.	Sea-Level Rise and Subsidence	3-34
			3.3.4.2.	Mississippi River Hydromodification	3-36
			3.3.4.3.	Maintenance Dredging and Federal Channels	3-37
			3.3.4.4.	Coastal Restoration Programs	3-39
		3.3.5.	Natural E	Events and Processes	3-42
		3.3.6.	Oil Spills		
4.	DESC	CRIPTIO	N OF THE	ENVIRONMENT AND IMPACT ANALYSIS	4-3
	4.1.	Propose	ed Central I	Planning Area Lease Sales 235, 241, and 247	4-3
		4.1.1.	Alternativ	ve A—The Proposed Action	4-9
			4.1.1.1.	Air Quality	4-9
			4.1.1.2.	Water Quality	4-17
				4.1.1.2.1. Coastal Waters	4-17
				4.1.1.2.2. Offshore Waters	
			4.1.1.3.	Coastal Barrier Beaches and Associated Dunes	
			4.1.1.4.	Wetlands	
			4.1.1.5.	Seagrass Communities	4-48
			4.1.1.6.	Live Bottoms (Pinnacle Trend and Low Relief)	4-54
			4.1.1.7.	Topographic Features	4-63
			4.1.1.8.	Sargassum Communities	4-71
			4.1.1.9.	Chemosynthetic Deepwater Benthic Communities	4-76
			4.1.1.10.	Nonchemosynthetic Deepwater Benthic Communities	4-83
			4.1.1.11.	Soft Bottom Benthic Communities	4-89
			4.1.1.12.	Marine Mammals	4-100
			4.1.1.13.	Sea Turtles	4-109
			4.1.1.14.	Diamondback Terrapins	4-121
			4.1.1.15.	Alabama, Choctawhatchee, St. Andrew, and Perdido Key	
				Beach Mice	4-127
			41116	Coastal and Marine Birds	4-131
			4.1.1.17	Gulf Sturgeon	
			4.1.1 18	Fish Resources and Essential Fish Habitat	
			4.1 1 19	Commercial Fisheries.	4-158
			4 1 1 20	Recreational Fishing	4-166
			4 1 1 21	Recreational Resources	4-170
			4 1 1 22	Archaeological Resources	
			1.1.1.444.	4 1 1 22 1 Historic Archaeological Resources	
				4.1.1.22.2. Prehistoric Archaeological Resources	4-181

			4.1.1.23.	Human Resources and Land Use	4-187
				4.1.1.23.1. Land Use and Coastal Infrastructure	4-187
				4.1.1.23.2. Demographics	4-199
				4.1.1.23.3. Economic Factors	4-202
				4.1.1.23.4. Environmental Justice	4-205
			4.1.1.24.	Species Considered due to U.S. Fish and Wildlife Service Conce	rns .4-220
		4.1.2.	Alternativ	e B—Exclude the Unleased Blocks Near Biologically Sensitive	
			Topograpl	hic Features	4-222
		4.1.3.	Alternativ	ve C—No Action	4-224
	4.2.	Unavoid	lable Adver	rse Impacts of the Proposed Actions	4-226
	4.3.	Irreversi	ble and Irre	etrievable Commitment of Resources	4-228
	4.4.	Relation	ship betwe	en the Short-term Use of Man's Environment and the Maintenanc	e
		and Enh	ancement o	of Long-term Productivity	4-229
_	~ ~ ~ ~ ~				
5.	CONS	ULTATI	ON AND C	COORDINATION	5-3
	5.1.	Develop	ment of the	e Proposed Actions	5-3
	5.2.	Call for	Information	n and Notice of Intent to Prepare a Supplemental EIS	5-3
	5.3.	Develop	ment of the	e Draft Supplemental EIS	5-3
		5.3.1.	Summary	of Comments Received in Response to the Call for Information	5-4
		5.3.2.	Summary	of Scoping Comments	5-4
		5.3.3.	Additiona	l Scoping Opportunities	5-5
		5.3.4.	Cooperati	ng Agency	5-5
	5.4.	Distribu	tion of the	Draft Supplemental EIS for Review and Comment	5-6
	5.5	Public N	leetings		5-8
	5.6.	Coastal	Zone Mana	agement Act	5-9
	5.7.	Endange	ered Specie	s Act	5-10
	5.8.	Magnus	on-Stevens	Fishery Conservation and Management Act	5-10
	5.9.	National	Historic P	Preservation Act	5-11
	5.10.	Governm	nent-to-Go	vernment	5-12
	5.11.	Major D	offerences	Between the Draft and Final Supplemental EISs	5-12
	5.12.	Commen	nts Receive	ed on the Draft Supplemental EIS and BOEM's Responses	5-12
~	DEEE	TENCER	CITED		()
6.	KEFEI	XENCE5	CHED		
7	PRFP	ARFRS			7-3
/.	INLI	IIIIIII	• • • • • • • • • • • • • • • • • • • •		
8.	GLOS	SARY			
FIC	JURES				.Figures-3
	DIEG				T 11 0
ΤA	BLES .	•••••	•••••		Tables-3
AP	PENDI	X A. AII	R OUALIT	Y OFFSHORE MODELING ANALYSIS	
	,21		(
AP	PENDI	XB. CA	TASTROP	PHIC SPILL EVENT ANALYSIS	B-iii
		NO DO			
AP	PENDI	х С. BO	EM-OSRA	A CATASTROPHIC RUN	C-3
AP	PENDI	X D. CO	MMONLY	APPLIED MITIGATING MEASURES	D-3

APPENDIX E.	RECENT PUBLICATIONS OF THE ENVIRONMENTAL STUDIES	
	PROGRAM, GULF OF MEXICO OCS REGION, 2006-PRESENT	E-3
KEYWORD IN	DEX	Keywords-3

LIST OF FIGURES

		Page
Figure 1-1.	Gulf of Mexico Planning Areas, Proposed CPA Lease Sale Area, and Locations of Major Cities.	Figures-3
Figure 2-1.	Location of Proposed Stipulations and Deferrals	Figures-4
Figure 2-2.	Military Warning Areas and Eglin Water Test Areas in the Gulf of Mexico	Figures-5
Figure 3-1.	Offshore Subareas in the Gulf of Mexico.	Figures-6

LIST OF TABLES

		Page
Table 3-1.	Projected Oil and Gas in the Gulf of Mexico OCS	Tables-3
Table 3-2.	Offshore Scenario Information Related to a Typical Lease Sale in the Central Planning Area	Tables-4
Table 3-3.	Offshore Scenario Information Related to OCS Program Activities in the Gulf of Mexico (WPA, CPA, and EPA) for 2012-2051	Tables-5
Table 3-4.	Offshore Scenario Information Related to OCS Program Activities in the Central Planning Area for 2012-2051	l Tables-6
Table 3-5.	Annual Volume of Produced Water Discharged by Depth (millions of bbl)	Tables-7
Table 3-6.	Annual Summary of Number and Total Volume of Oil Spilled into the Gulf of Mexico, 2001-2011	Tables-7
Table 3-7.	Waterway Length, Depth, Traffic, and Number of Trips for 2011	Tables-8
Table 3-8.	Number and Volume of Chemical and Synthetic-Based Fluid Spills in the Gulf of Mexico during 2005-2012	Tables-10
Table 3-9.	Quantities of Dredged Materials Disposed of in Ocean Dredged-Material Disposal Sites between 2001 and 2010	Tables-11
Table 3-10.	Number of Vessel Calls at U.S. Gulf Ports Between 2002 and 2011	Tables-12
Table 3-11.	Corps of Engineers' Galveston District Maintenance Dredging Activity for Federal Navigation Channels in Texas, 2001-2010	Tables-13
Table 3-12.	Corps of Engineers' New Orleans District Maintenance Dredging Activity for Federal Navigation Channels in Louisiana, 2001-2010	Tables-14
Table 3-13.	Corps of Engineers' Mobile District Maintenance Dredging Activity for Federal Navigation Channels in Mississippi, Alabama, and Florida, 2000-2010	Tables-15
Table 4-1.	Unusual Mortality Event Cetacean Data for the Northern Gulf of Mexico	Tables-16
Table 4-2.	Economic Significance of Commercial Fishing 2011	Tables-16
Table 4-3.	Angler Trips in the Gulf of Mexico by Location and Mode from 2008 through 2013	Tables-17
Table 4-4.	Fish Species Caught by Recreational Anglers from 2008 through 2013	Tables-19
Table 4-5.	Economic Impact of Recreational Fishing in the Gulf of Mexico in 2012	Tables-20
Table 4-6.	Employment in the Leisure/Hospitality Industry in Selected Geographic Regions	Tables-21
Table 4-7.	Peak Population Projected from Cumulative OCS Programs as a Percent of Total Population	Tables-22
Table 4-8.	Baseline Population Projections (in thousands) by Economic Impact Area	Tables-23
Table 4-9.	Demographic and Employment Baseline Projections for Economic Impact Area AL-1	Tables-25
Table 4-12.	Demographic and Employment Baseline Projections for Economic Impact Area FL-3	Tables-34
Table 4-13.	Demographic and Employment Baseline Projections for Economic Impact Area FL-4	Tables-37

xxvi	Central Planning Area Lease Sales 235, 241, a	nd 247 EIS
Table 4-14.	Demographic and Employment Baseline Projections for Economic Impact Area LA-1	Tables-40
Table 4-15.	Demographic and Employment Baseline Projections for Economic Impact Area LA-2	Tables-43
Table 4-16.	Demographic and Employment Baseline Projections for Economic Impact Area LA-3	Tables-46
Table 4-17.	Demographic and Employment Baseline Projections for Economic Impact Area LA-4	Tables-49
Table 4-19.	Demographic and Employment Baseline Projections for Economic Impact Area TX-1	Tables-55
Table 4-20.	Demographic and Employment Baseline Projections for Economic Impact Area TX-2	Tables-58
Table 4-21.	Demographic and Employment Baseline Projections for Economic Impact Area TX-3	Tables-61
Table 4-22.	Peak Employment Projected from Cumulative OCS Programs as a Percent of Total Employment	Tables-64
Table 4-24.	Existing Coastal Infrastructure Related to OCS Oil- and Gas-Related Activities in the Gulf of Mexico	Tables-67
Table 4-25.	Gulf of Mexico Counties and Parishes with Concentrated Levels of Oil- and Gas-Related Infrastructure	Tables-67
Table 4-26 .	Deepwater Horizon Waste Landfill Destination	Tables-68

ABBREVIATIONS AND ACRONYMS

°C	degree Celsius
°F	degree Fahrenheit
2012-2017 WPA/CPA Multisale EIS	Gulf of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247;
	Final Environmental Impact Statement; Volumes I-III
ac	acre
ACP	Area Contingency Plan
AEDP	area evaluation and decision process
Agreement	Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico
AL	Alabama
API	American Petroleum Institute
ASLM	Assistant Secretary of the Interior for Land and Minerals
bbl	barrel
BBO	billion barrels of oil
BOEM	Bureau of Ocean Energy Management
BOEMRE	Bureau of Ocean Energy Management, Regulation and Enforcement
BOP	blowout preventer
BP	British Petroleum
BSEE	Bureau of Safety and Environmental Enforcement
Call	Call for Information
CAMx	Comprehensive Air Quality Model with extensions
CD	Consistency Determination
CEO	Council on Environmental Quality
CEVI	Coastal Economic Vulnerability Index
CEWAF	water-accommodated fractions plus COREXIT 9500
CFR	Code of Federal Regulations
CG	Coast Guard (also: USCG)
CH ₄	methane
CIAP	Coastal Impact Assistance Program
CMP	Coastal Management Program
CO	carbon monoxide
CO_2	carbon dioxide
COE	Corps of Engineers (U.S. Army)
CPA	Central Planning Area
CSA	Continental Shelf Associates
CWPPRA	Coastal Wetlands Planning Protection and Restoration Act
CZMA	Coastal Zone Management Act
DDE	dichloro-diphenyldichloro-ethylene
DOI	Department of the Interior (U.S.) (also: USDOI)
EA	environmental assessment
EFH	essential fish habitat
eg	for example
EIA	Economic Impact Area
EIS	environmental impact statement
EPA	Eastern Planning Area
EPA 225/226 EIS	Gulf of Mexico OCS Oil and Gas Lease Sales: 2014 and 2016
	Eastern Planning Area Lease Sales 225 and 226; Final Environmental Impact Statement
EPS	exopolysaccharides
ERMA	Environmental Response Management Application

xxviii	Central Planning Area Lease Sales 235, 241, and 247 EIS
ESA	Endangered Species Act of 1973
et al.	and others
et seg.	and the following
Five-Year Program	Proposed Final Outer Continental Shelf Oil & Gas Leasing Program: 2012-2017
Five-Year Program EIS	Outer Continental Shelf Oil and Gas Leasing Program: 2012-2017, Final Environmental Impact Statement
FL	Florida
FR	Føderal Register
ft	feet
FWS	Fish and Wildlife Service
G&G	geological and geophysical
GAP	General Activities Plan
GC-HARMS	Gulf Coast Health Alliance: Health Risks Related to the Macondo Spill
GIWW	Gulf Intracoastal Waterway
GMFMC	Gulf of Mexico Fishery Management Council
GOM	Gulf of Mexico
GS	Geological Survey (also: USGS)
GuLF STUDY	Gulf Long-Term Follow-Up Study
GWEI	Gulfwide Emissions Inventory
H_2S	hydrogen sulfide
ha	hectare
i.e.	specifically
in IDCC	inch
IPCC	Intergovernmental Panel on Climate Change
kg	kilogram
kg/d	kilogram/day
KM LA	kilometer Levisione
LA LA Hung 1	Louisiana Louisiana Highway 1
LA Hwy I lb	Louisiana figliway i
	Louisiana Coastal Area
LNG	liquefied natural gas
m	meter
MARPOL	International Convention for the Prevention of Pollution from Ships
mi	mile
mm	millimeter
MMbbl	million barrels
MMcf	million cubic feet
MMPA	Marine Mammal Protection Act of 1972
MMS	Minerals Management Service
MODU	mobile offshore drilling unit
MS	Mississippi
N_2O	nitrous oxide
NAAQS	National Ambient Air Quality Standards
NASA	National Aeronautics and Space Administration
NCP	National Contingency Plan
NEPA	National Environmental Policy Act
NHPA	National Historic Preservation Act
INMIFS	National Marine Fisheries Service
nmi NO	nautical-mile
NO ₂	nitrogen aloxide
	Introgen Oxides
	Notice of Availability National Oceanic and Atmospheric Administration
NOI	Notice of Intent to Prepare an EIS
1101	Totale of ment to repare an Lis

NOS	National Ocean Service
NPDES	National Pollutant and Discharge Elimination System
NPS	National Park Service
NRC	National Research Council
NRDA	Natural Resource Damage Assessment
NTL	Notice to Lessees and Operators
OCD	Offshore Coastal Dispersion
OCS	Outer Continental Shelf
OCSLA	Outer Continental Shelf Lands Act
OSAT	Operational Science Advisory Team
OSHA	Occupational Safety and Health Administration
OSRA	Oil Spill Risk Analysis
P.L.	Public Law
PAH	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyl
PM _{2.5}	particulate matter less than or equal to 2.5 µm
PM ₁₀	particulate matter less than or equal to 10 um
pph	parts per billion
ppm	parts per million
PSD	Prevention of Significant Deterioration
ROD	Record of Decision
SAP	Site Assessment Plan
SAV	submerged aquatic vegetation
SCAT	Shoreline Cleanup and Assessment Team
Secretary	Secretary of the Interior
SMART	Special Monitoring of Applied Response Technologies
SO.	sulphur oxides
Stat	Statute
STOF-THPO	Seminole Tribe of Florida-Tribal Historic Preservation Officer
sVGP	Small Vessel General Permit
Tcf	trillion cubic feet
Trustee Council	Natural Resource Damage Assessment Trustee Council
TX	Texas
US	United States
	United States Code
UMF	unusual mortality event
USCG	U.S. Coast Guard (also: CG)
USDHS	U.S. Department of Homeland Security
USDOC	U.S. Department of Commerce
USDOF	U.S. Department of the Energy
USDOL	U.S. Department of the Interior (also: DOI)
USDOT	US Department of Transportation
USEPA	US Environmental Protection Agency
USGS	U.S. Geological Survey (also: GS)
VGP	Vessel General Permit
VOC	volatile organic compound
VSP	vertical seismic profiling
WAF	water-accommodated fractions
WPA	Western Planning Area
WPA 233/CPA 231	Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014
Supplemental EIS	Western Planning Area Lease Sale 233. Central Planning Area
Supplemental Lib	Lease Sale 231, Final Supplemental Environmental Impact Statement
WPA 238/246/248	Gulf of Mexico OCS Oil and Gas Lease Sales: 2014-2016;
Supplemental EIS	Western Planning Area Lease Sales 238, 246, and 248; Final Environmental Impact Statement
yr	year

CONVERSION CHART

To convert from	То	Multiply by
centimeter (cm)	inch (in)	0.3937
millimeter (mm)	inch (in)	0.03937
meter (m) meter ² (m ²) meter ² (m ²) meter ² (m ²) meter ³ (m ³) meter ³ (m ³)	foot (ft) foot ² (ft ²) yard ² (yd ²) acre (ac) foot ³ (ft ³) yard ³ (yd ³)	3.281 10.76 1.196 0.0002471 35.31 1.308
kilometer (km) kilometer ² (km ²) hectare (ha)	mile (mi) mile ² (mi ²) acre (ac)	0.6214 0.3861 2.47
liter (L)	gallons (gal)	0.2642
degree Celsius (°C)	degree Fahrenheit (°F)	$^{\circ}F = (1.8 \text{ x }^{\circ}C) + 32$
1 barrel (bbl) = 42 gal = 158.9 L = approximately 0.1428 metric tons 1 nautical mile (nmi) = $1.15 \text{ mi} (1.85 \text{ km})$ or $6,076 \text{ ft} (1,852 \text{ m})$ tonnes = 1 long ton or 2,240 pounds		

CHAPTER 1

THE PROPOSED ACTIONS

1. THE PROPOSED ACTIONS

1.1. PURPOSE OF AND NEED FOR THE PROPOSED ACTIONS

The proposed Federal actions addressed in this Supplemental Environmental Impact Statement (EIS) are to offer for lease certain Outer Continental Shelf (OCS) blocks located in the Central Planning Area (CPA) of the Gulf of Mexico (GOM) (Figure 1-1). Under the *Proposed Final Outer Continental Shelf Oil & Gas Leasing Program: 2012-2017* (Five-Year Program) (USDOI, BOEM, 2012a), proposed CPA Lease Sales 235, 241, and 247 are tentatively scheduled to be held in March 2015, 2016, and 2017, respectively.

The purpose of the proposed Federal actions is to offer for lease those areas that may contain economically recoverable oil and gas resources in accordance with the Outer Continental Shelf Lands Act (OCSLA) of 1953 (67 Stat. 462), as amended (43 U.S.C. §§ 1331 *et seq.*). The proposed CPA lease sales will provide qualified bidders the opportunity to bid upon and lease acreage in the Gulf of Mexico OCS in order to explore, develop, and produce oil and natural gas. Under the OCSLA, for each potential lease sale in the Five-Year Program, the Bureau of Ocean Energy Management (BOEM) makes individual decisions on whether and how to proceed with a proposed lease sale. Although the analyses cover more than one proposed lease sale, this Supplemental EIS will be used by BOEM to support a decision on proposed CPA Lease Sale 235. Additional National Environmental Policy Act (NEPA) reviews, as appropriate, will be prepared prior to individual lease sale decisions on proposed CPA Lease Sales 241 and 247 to address any newly available significant information relevant to those proposed actions (refer to **Chapter 2.1**). Those NEPA reviews will tier from and incorporate by reference the analyses from previous lease sale EISs.

The need for the proposed actions is to further the orderly development of OCS resources. The Gulf of Mexico constitutes one of the world's major oil- and gas-producing areas and has proved a steady and reliable source of crude oil and natural gas for more than 50 years. Oil serves as the feedstock for liquid hydrocarbon products, including gasoline, aviation and diesel fuel, and various petrochemicals. Oil from the CPA would help reduce the Nation's need for oil imports and lessen the dependence on foreign oil. The U.S. consumed 18.9 million barrels (MMbbl) of oil per day (USDOE, Energy Information Administration, 2014a) and 25.68 trillion cubic feet (Tcf) of natural gas per day (USDOE, Energy Information Administration, 2014b) in 2013. The Energy Information Administration projects the total U.S. consumption of liquid fuels, including fossil fuels and biofuels, to fall slightly from 19.03 MMbbl per day in 2013 to 18.73 MMbbl by 2040 (USDOE, Energy Information Administration, 2014c). The Energy Information Administration also projects the total U.S. consumption of natural gas to rise from 25.68 Tcf to 31.48 Tcf by 2040 (USDOE, Energy Information Administration, 2014b). The U.S. net imports of natural gas accounted for 1.34 percent of our total natural gas consumption in 2013 and are projected to decrease to 0.04 percent by 2017 (USDOE, Energy Information Administration, 2014b). Altogether, net imports of crude oil and petroleum products (imports minus exports) accounted for 34 percent of our total petroleum consumption in 2013 and are projected to decrease to 32 percent by 2040 (USDOE, Energy Information Administration, 2014d). The U.S. crude oil imports stood at 7.7 MMbbl per day in 2013, and the petroleum product imports were 2.1 MMbbl per day in 2013 (USDOE, Energy Information Administration, 2014e). Exports totaled 2.9 MMbbl per day in 2013, mainly in the form of distillate fuel oil, petroleum coke, and residual fuel oil (USDOE, Energy Information Administration, 2014f). The net exports of natural gas are projected to be 0.66 percent in 2018 and rise to 5.78 percent in 2040 (USDOE, Energy Information Administration, 2014b). In 2013, the Nation's biggest supplier of crude oil and petroleum-product imports was Canada (32%), with countries in the Persian Gulf being the second largest source (21%) (USDOE, Energy Information Administration, 2014e). In 2013, the Nation's biggest supplier of natural gas was Canada (97%), with Trinidad being the second largest source (2.4%) (USDOE, Energy Information Administration, 2014g). Oil produced from the CPA would also reduce the environmental risks associated with transoceanic oil tankering from sources overseas. Natural gas is not easily transported, making domestic production especially desirable. The need for domestic natural gas reserves is also based upon its use as an environmentally preferable alternative to oil for generating electricity.

This Supplemental EIS tiers from and incorporates by reference all of the relevant analyses from *Gulf* of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238,
246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement (2012-2017 WPA/CPA Multisale EIS) (USDOI, BOEM, 2012b); and Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement (WPA 233/CPA 231 Supplemental EIS) (USDOI, BOEM, 2013a). The 2012-2017 WPA/CPA Multisale EIS notes that two sales may be held each year during the Five-Year Program—one in the WPA and one in the CPA. An additional lease sale in the Eastern Planning Area is proposed for 2016.

This Supplemental EIS focuses on updating the baseline conditions and potential environmental effects of oil and natural gas leasing, exploration, development, and production in the CPA since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. This Supplemental EIS analyzes the potential impacts of a CPA proposed action on the marine, coastal, and human environments. This Supplemental EIS will also assist decisionmakers in making informed, future decisions regarding the approval of operations, as well as leasing. At the completion of the NEPA process, a decision will be made only for proposed CPA Lease Sale 235. A separate NEPA review, in a form to be determined by BOEM (e.g., an environmental assessment or another Supplemental EIS), will be conducted prior to BOEM's decision on whether or how to proceed with proposed CPA Lease Sales 241 and 247. The analysis in this Supplemental EIS also focuses on the potential environmental effects of oil and natural gas leasing, exploration, development, and production in the areas identified through the Area Identification (Area ID) procedure as the proposed lease sale area. In addition to the No Action alternative (i.e., cancel a proposed lease sale), other alternatives are considered for a proposed CPA lease sale, such as deferring certain areas from a proposed lease sale.

The Secretary of the Interior (Secretary) has designated BOEM as the administrative agency responsible for the mineral leasing of submerged OCS lands and for the supervision of most offshore operations after lease issuance. BOEM is responsible for managing development of the Nation's offshore resources in an environmentally and economically responsible way. The functions of BOEM include leasing, exploration and development, plan administration, environmental studies, NEPA analysis, resource evaluation, economic analysis, and the renewable energy program. The Bureau of Safety and Environmental Enforcement (BSEE) is responsible for enforcing safety and environmental regulations. The functions of BSEE include all field operations, including permitting and research, inspections, offshore regulatory programs, oil-spill response, and training and environmental compliance functions.

1.2. DESCRIPTION OF THE PROPOSED ACTIONS

The proposed actions are the next three oil and gas lease sales in the CPA as scheduled in the Five-Year Program. Federal regulations allow for several related or similar proposals to be analyzed in one EIS (40 CFR § 1502.4). Since the proposed CPA lease sales are in the same area and their projected activities are very similar, BOEM has decided to prepare a single Supplemental EIS for proposed CPA Lease Sales 235, 241, and 247. The analyses contained within this Supplemental EIS examine impacts from a single, typical CPA lease sale. The findings of these analyses can be applied individually to each of the proposed lease sales, i.e., proposed WPA Lease Sales 235, 241, and 247. While the impact analyses can be applied to each proposed lease sale, this Supplemental EIS is a decision document for only proposed CPA Lease Sales 235. Additional NEPA reviews will be conducted prior to individual decisions on proposed CPA Lease Sales 241 and 247 to address any newly available significant information relevant to those proposed actions (refer to **Chapter 2.1**).

Proposed CPA Lease Sales 235, 241, and 247 are tentatively scheduled to be held in March 2015, 2016, and 2017, respectively. The proposed CPA lease sale area encompasses about 63 million acres (ac) of the total CPA area of 66.45 million ac. This area begins 3 nautical miles (nmi) (3.5 miles [mi]; 5.6 kilometers [km]) offshore Louisiana, Mississippi, and Alabama, and extends seaward to the limits of the United States' jurisdiction over the continental shelf (often referred to as the Exclusive Economic Zone) in water depths up to approximately 3,346 meters (m) (10,978 feet [ft]) (**Figure 1-1**). As of August 2014, approximately 44.1 million ac of the proposed CPA lease sale area are unleased.

The estimated amount of resources projected to be developed as a result of a single, typical lease sale (i.e., proposed CPA Lease Sale 235) is 0.460-0.894 billion barrels of oil (BBO) and 1.939-3.903 trillion cubic feet (Tcf) of gas. A proposed CPA lease sale includes proposed lease stipulations designed to reduce environmental risks; these stipulations are discussed in **Chapter 2.3.1.3** of this Supplemental EIS

and in Chapter 2.4.1.3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

1.3. REGULATORY FRAMEWORK

Federal laws mandate the OCS leasing program (e.g., OCSLA) and the environmental review process (e.g., NEPA). Several Federal regulations establish specific consultation and coordination processes with Federal, State, and local agencies (e.g., Coastal Zone Management Act, Endangered Species Act, the Magnuson-Stevens Fishery Conservation and Management Act, and the Marine Mammal Protection Act). In addition, the OCS leasing process and all activities and operations on the OCS must comply with other applicable Federal, State, and local laws and regulations. A detailed list of the major, applicable Federal laws, regulations, and Executive Orders are listed below.

Regulation, Law, and Executive Order	Citation
Outer Continental Shelf Lands Act	43 U.S.C. §§ 1331 et seq.
National Environmental Policy Act of 1969	42 U.S.C. §§ 4321-4347 40 CFR parts 1500-1508
Coastal Zone Management Act of 1972	16 U.S.C. §§ 1451 <i>et seq.</i> 15 CFR part 930
Endangered Species Act of 1973	16 U.S.C. §§ 1531 et seq.
Magnuson-Stevens Fishery Conservation and Management Act	16 U.S.C. §§ 1251 et seq.
Essential Fish Habitat Consultation (in 1996 reauthorization of the Magnuson-Stevens Fishery Conservation and Management Act)	P.L. 94-265 16 U.S.C. §§ 1801-1891 50 CFR part 600 subpart K
Marine Mammal Protection Act	16 U.S.C. §§ 1361 et seq.
Clean Air Act	42 U.S.C. §§ 7401 <i>et seq.</i> 40 CFR part 55
Clean Water Act	33 U.S.C. §§ 1251 et seq.
Harmful Algal Bloom and Hypoxia Research and Control Act	P.L. 105-383
Oil Pollution Act of 1990	33 U.S.C. §§ 2701 <i>et seq.</i> Executive Order 12777
Comprehensive Environmental Response, Compensation, and Liability Act of 1980	42 U.S.C. §§ 9601 et seq.
Resource Conservation and Recovery Act	42 U.S.C. §§ 6901 et seq.
Marine Plastic Pollution Research and Control Act	33 U.S.C. §§ 1901 et seq.
National Fishing Enhancement Act of 1984	33 U.S.C. §§ 2601 et seq.
Fishermen's Contingency Fund	43 U.S.C. §§ 1841-1846
Ports and Waterways Safety Act of 1972	33 U.S.C. §§ 1223 et seq.
Marine and Estuarine Protection Acts	33 U.S.C. §§ 1401 et seq.
Marine Protection, Research, and Sanctuaries Act of 1972	P.L. 92-532
National Estuarine Research Reserves	16 U.S.C. § 1461, Section 315
National Estuary Program	P.L. 100-4
Coastal Barrier Resources Act	16 U.S.C. §§ 3501 et seq.
National Historic Preservation Act	16 U.S.C. §§ 470 et seq.
Rivers and Harbors Act of 1899	33 U.S.C. §§ 401 et seq.
Occupational Safety and Health Act of 1970	29 U.S.C. §§ 651 et seq.
Energy Policy Act of 2005	P.L. 109-58
Gulf of Mexico Energy Security Act of 2006	P.L. 109-432
Marine Debris Research, Prevention, and Reduction Act	P.L. 109-449

American Indian Religious Freedom Act of 1978	P.L. 95-341 42 U.S.C. §§ 1996 and 1996a
Migratory Bird Treaty Act of 1918	16 U.S.C. §§ 703 et seq.
Submerged Lands Act of 1953	43 U.S.C. §§ 1301 et seq.
49 U.S.C. § 44718: Structures Interfering with Air Commerce	49 U.S.C. § 44718
Marking of Obstructions	14 U.S.C. § 86
Wilderness Act of 1964	P.L. 88-577 16 U.S.C. §§ 1131-1136 78 Stat. 890
Toxic Substances Control Act	P.L. 94-469 15 U.S.C. §§ 2601-2697 Stat. 2003
Bald Eagle Protection Act of 1940	P.L. 86-70 16 U.S.C. §§ 668-668d
Executive Order 11988: Floodplain Management	42 FR 26951 (1977); amended by Executive Order 12148 (7/20/79)
Executive Order 11990: Protection of Wetlands	42 FR 26961 (1977); amended by Executive Order 12608 (9/9/87)
Executive Order 12114: Environmental Effects Abroad	44 FR 1957 (1979)
Executive Order 12898: Environmental Justice	59 FR 5517 (1994)
Executive Order 13007: Indian Sacred Sites	61 FR 26771-26772 (1996)
Executive Order 13089: Coral Reef Protection	63 FR 32701-32703 (1998)
Executive Order 13175: Consultation and Coordination with Indian Tribal Governments	65 FR 67249-67252 (2000)
Executive Order 13186: Responsibilities of Federal Agencies to Protect Migratory Birds	66 FR 3853 (2001)

1.3.1. Recent BOEM/BSEE Rule Changes

In light of the *Deepwater Horizon* explosion, oil spill, and response, the Federal Government, along with industry, increased their rules and safety measures related to oil-spill prevention, containment, and response. Additionally, the Federal Government and industry have increased their research and reform in response to the *Deepwater Horizon* explosion, oil spill, and response through government-funded research, industry-funded research, and joint partnerships. These joint partnerships are often between government agencies, industry, and nongovernmental organizations. For more information about the recent BOEM/BSEE rule changes prior to this Supplemental EIS, refer to Chapters 1.3 and 1.5 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

1.3.1.1. Recent and Ongoing Regulatory Reform and Government-Sponsored Research

BOEM and BSEE have instituted regulatory reforms responsive to many of the recommendations expressed in the various reports prepared following the *Deepwater Horizon* explosion, oil spill, and response. To date, regulatory reform has occurred through both prescriptive and performance-based regulation and guidance, as well as OCS safety and environmental protection requirements, as described in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The reforms strengthen the requirements for all aspects of OCS operations. Ongoing reform and research endeavors to improve workplace safety and to strengthen oil-spill prevention planning, containment, and response are described in detail in Chapter 1.3.1.2 of the 2012-2017 WPA/CPA Multisale EIS, with updated information in Chapter 1.3.2.2 of the WPA 233/CPA 231 Supplemental EIS. Since publication of the WPA 233/CPA 231 Supplemental EIS, no substantive rule changes have been implemented that would affect potential environmental impacts from OCS oil- and gas-related activities in the Gulf of Mexico. However, new and modified Notices to Lessees (NTLs) and other policies applicable to OCS oil- and gas-related operations in the Gulf of Mexico are summarized below.

BOEM Final Rule, "Timing Requirements for the Submission of a Site Assessment Plan (SAP) or General Activities Plan (GAP) for a Renewable Energy Project on the Outer Continental Shelf (OCS)"

This final rule, published in the *Federal Register* on April 17, 2014 (*Federal Register*, 2014a), gives lessees or grantees of renewable energy leases a term of 12 months to submit a SAP or GAP, as well as amending other regulatory provisions.

NTL 2014-BSEE-G01, "New Addresses for New Orleans and Houma District Offices and Measurement Inspection Unit"

This NTL provides lessees up-to-date addresses and contact information for the New Orleans and Houma District Offices, as well as the new Measurement Inspection Unit.

NTL 2014-BSEE-N01, "Elimination of Expiration Dates on Certain Notices to Lessees and Operators Pending Review and Reissuance"

This NTL informs lessees that certain NTLs (published on BSEE's website) will remain in effect until BSEE revises, reissues, or withdraws the NTLs, regardless of any stated expiration date.

NTL 2014-BSEE-N02, "Performance Measures for OCS Operators and Form BSEE-0131"

This NTL gives lessees information about when and how to file their Performance Measures Data with the Bureau.

NTL 2012-BSEE-N07, "Oil Discharge Written Follow-up Reports"

The BSEE also issued this to address the oil discharge reports (30 CFR § 254.46(b)(2)) that are required to be submitted by a responsible party to BSEE for spills >1 barrel (bbl) within 15 days after a spill has been stopped or ceased. The responsible party is encouraged to report the cause, location, volume, remedial action taken, sea state, meteorological conditions, and the size and appearance of the slick.

1.3.1.2. Recent and Ongoing Industry Reform and Research

Since the publication of the WPA 233/CPA 231 Supplemental EIS, the oil and gas industry and engineering trade groups have continued to prepare new standards and develop best practices for the safe and environmentally responsible development of OCS oil and gas. As an example, the American Petroleum Institute (API) has produced several Recommended Practices and Standards that have become part of State and Federal regulations. In May 2014, API completed Standard 17F, "Standard for Subsea Production Control Systems" (API, 2014). This standard covers the design, fabrication, testing, installation, and operation of subsea production control systems, including surface control systems, subsea-installed control systems, and control fluids, and it can be applicable to multi-well systems. For more detailed information related to other industry reform and research, refer to Chapter 1.3.1.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 1.3.2.3 of the WPA 233/CPA 231 Supplemental EIS.

1.4. PRELEASE PROCESS

Scoping for this Supplemental EIS was conducted in accordance with the Council on Environmental Quality's (CEQ) guidelines on implementing NEPA. Scoping provides those with an interest in the OCS Program an opportunity to provide comments on the proposed actions. In addition, scoping provides BOEM an opportunity to update the Gulf of Mexico OCS Region's environmental and socioeconomic information base. BOEM conducted early coordination with appropriate Federal and State agencies, Tribal Nations, and other concerned parties to discuss and coordinate the prelease process for proposed CPA Lease Sales 235, 241, and 247 and for this Supplemental EIS. While scoping is an ongoing process, it officially commenced on August 23, 2013, with the publication of the Notice of Intent to Prepare an

EIS (NOI) in the *Federal Register* (2013a). Additional public notices were distributed via local newspapers, the U.S. Postal Service, and the Internet. A 30-day comment period was provided; it closed on September 23, 2013. Federal, State, and local governments, along with other interested parties, were invited to send written comments to the Gulf of Mexico OCS Region on the scope of this Supplemental EIS. Comments were received in response to the NOI from Federal, State, and local government agencies; interest groups; industry; businesses; and the general public on the scope of this Supplemental EIS, significant issues that should be addressed, alternatives that should be considered, and mitigating measures. All scoping comments received were considered in the preparation of the Draft Supplemental EIS. "

In addition to BOEM's consideration of scoping comments received for this Supplemental EIS, this document tiers from and incorporates by reference all of the relevant scoping comments and responses to the comments from the 2012-2017 WPA/CPA Multisale EIS (USDOI, BOEM, 2012b) and WPA 233/CPA 231 Supplemental EIS (USDOI, BOEM, 2013a). A summary of scoping comments incorporated by reference can be found in Chapter 5.3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

On October 24, 2012, BOEM released its Area ID decision. The Area ID is an administrative prelease step that describes the geographical area of the proposed actions (proposed lease sale area) and identifies the alternatives, mitigating measures, and issues to be analyzed in the appropriate NEPA document. As mandated by NEPA, this Supplemental EIS analyzes the potential impacts of the CPA proposed actions on the marine, coastal, and human environments.

On March 21, 2014, BOEM released the Draft Supplemental EIS for review and public comment. BOEM mailed copies of the Draft Supplemental EIS to Federal, State, and local government agencies; Tribal Nations; industry; nongovernmental organizations; the general public; and local libraries. To initiate the public review and comment period on the Draft Supplemental EIS, BOEM published a Notice of Availability (NOA) in the *Federal Register* on March 24, 2014 (*Federal Register*, 2014b). The public comment period ended on May 5, 2014. In addition, public notices were mailed with the Draft Supplemental EIS and were placed on BOEM's Internet website (http://www.boem.gov/nepaprocess/).

A consistency review will be performed in accordance with the Coastal Zone Management Act (CZMA), and a Consistency Determination (CD) will be prepared for each affected State prior to each proposed CPA lease sale. To prepare the CDs, BOEM reviews each State's Coastal Management Program (CMP) and analyzes the potential impacts as outlined in this Supplemental EIS, new information, and applicable studies as they pertain to the enforceable policies of each CMP. Based on the analyses, BOEM's Gulf of Mexico Regional Director makes an assessment of consistency, which is then sent to the States of Louisiana, Mississippi, Alabama, and Florida for CPA lease sales. If a State disagrees with the Bureau of Ocean Energy Management's CD, the State is required to do the following under the CZMA: (1) indicate how BOEM's presale proposal is inconsistent with its CMP; (2) suggest alternative measures to bring BOEM's proposal into consistency with their CMP; or (3) describe the need for additional information that would allow a determination of consistency. Unlike the consistency process for specific OCS plans and permits, there is not a procedure for administrative appeal to the Secretary of Commerce for a Federal CD for presale activities. In the event of a disagreement between a Federal agency and the State's CMP regarding consistency of the proposed lease sales, either BOEM or the State may request mediation. The regulations provide for an opportunity to resolve any differences with the State, but the CZMA allows BOEM to proceed with a proposed lease sale despite any unresolved disagreements if the Federal agency clearly describes in writing how the activity is consistent to the maximum extent practicable with the State's CMP.

Proposed CPA Lease Sale 235 is tentatively scheduled for March 2015. BOEM must publish this Final Supplemental EIS at least 30 days prior to a decision on whether and/or how to proceed with proposed CPA Lease Sale 235. BOEM will publish an NOA for the Final Supplemental EIS in the *Federal Register* and will send copies of the Final Supplemental EIS to Federal, State, and local agencies; Tribal Nations; industry; nongovernmental organizations; the general public; and local libraries. In addition, public notices will be mailed with the Final Supplemental EIS and will be placed on BOEM's Internet website (http://www.boem.gov/nepaprocess). At the completion of this Supplemental EIS process, a decision will be made for proposed CPA Lease Sale 235. A separate NEPA review will be conducted prior to proposed CPA Lease Sales 241 and 247.

The Final Supplemental EIS is not a decision document. The Assistant Secretary of the Interior for Land and Minerals Management (ASLM) will make a decision on whether to hold each lease sale, i.e.,

one each for proposed CPA Lease Sales 235, 241, and 247) and, if the decision is made to hold the lease sale, then any particulars relevant to the lease sale including but not limited to the lease sale area and any mitigations. A NEPA Record of Decision (ROD) will memorialize the decision and will identify BOEM's preferred alternative for each lease sale, as well as the environmentally preferable alternative, if different. The ROD will summarize the proposed action and the alternatives evaluated in this Supplemental EIS, the information considered in reaching the decision, and the adopted mitigations. An NOA for the ROD will be published in the *Federal Register* and will be made available on BOEM's website (http://www.boem.gov/nepaprocess).

A Proposed Notice of Sale (NOS) will become available to the public 4-5 months prior to each proposed lease sale. A notice announcing the availability of the Proposed NOS appears in the *Federal Register*, initiating a 60-day comment period. Comments received will be analyzed during preparation of the decision documents that are the basis for the Final NOS, including lease sale configuration and terms and conditions.

If the decision by the ASLM is to hold a proposed lease sale, a Final NOS will be published in the *Federal Register* at least 30 days prior to the lease sale date, as required by the OCSLA.

Measures to Enhance Transparency and Effectiveness in the Leasing and Tiering Process

The following discussion is from the Five-Year Program EIS and has been incorporated into this Supplemental EIS for information purposes.

BOEM realizes that each region is different in terms of mineral resources and dependent economies, the relative state of infrastructure and support industries, and the sensitivity of ecosystems, environmental resources, and communities; and that a leasing strategy needs to be sensitive to those differences, but also that it must be consistent with OCSLA principles. BOEM envisions a phased OCSLA process that minimizes multiple-use and environmental conflicts to the extent possible during the Five-Year Program implementation, that makes lease sale decisions in the context of the best available information, and that discloses clear reasons for those decisions, even in the face of uncertainty. This vision is consistent with the National Ocean Policy Implementation Plan and related Marine Planning initiatives, all of which provide a complementary framework for space-use conflict considerations.

BOEM is committing to several process enhancements to ensure transparency during the phased OCSLA and tiered NEPA processes of this Five-Year Program. Although specific approaches to implementation may be tailored to the different needs of the Regions and their stakeholders, BOEM is determined to improve the effectiveness of the tiering process (40 CFR § 1508.28) through the following:

- Alternative and Mitigation Tracking Table. BOEM has established an alternative and mitigation tracking table to provide increased visibility into the consideration of recommendations for deferrals, mitigations, and alternatives at different stages of the leasing process. Beginning with the Five-Year Program EIS, the table tracks the lineage and treatment of suggestions for spatial exclusions, temporal deferrals, and/or mitigation from the Five-Year Program to the lease sale phase and on to the plan phase. This table allows commenters to see how and at what stage of the process their concerns are being considered. BOEM will maintain a table that will be updated as deferral requests are considered at the lease sale and plan stages, and as new requests are made. The alternative and mitigation tracking table has been placed on BOEM's website at http://www.boem.gov/5-year/2012-2017/Tracking-Table/. A link to the table will be provided in the lease sale documents and in the annual report, which is discussed below.
- Strengthening the Prelease Sale Process. BOEM is taking a number of steps to enhance opportunities for members of the public to comment and provide new information in the prelease sale planning process. Historically, the Call for Information (Call), which is the first step in the Prelease Sale Process, has generally asked for industry to nominate specific blocks or descriptions of areas within the Five-Year Program area for which they have the most interest. The NOI requests comments from other Federal, State, and local governments, nongovernmental organizations, and the general public on issues that should be addressed and

alternatives that should be considered in the NEPA documents that will be prepared for the action.

• Annual Progress Report. BOEM will publish an annual progress report on the approved Five-Year Program that includes an opportunity for stakeholders and the public to comment on the Five-Year Program's implementation. Under Section 18(e) of the OCSLA, the Secretary must review annually the approved Five-Year Program. Historically, this has been an internal review process that reported to the Secretary any information or events that might result in a revision to the Five-Year Program. If the revision is considered significant under the OCSLA, the Five-Year Program can only be revised and reapproved by following the same Section 18 steps used to originally develop the Program. However, once the Section 18 process has been initiated for the next Five-Year Program, the annual review is subsumed in that process, as the same substantive and procedural requirements are being addressed.

The findings of this progress report may lead the Secretary to revise the Five-Year Program by reducing the size of, delaying, or canceling scheduled lease sales. If the desired revisions are considered significant, such as including new areas for consideration or more lease sales in areas already included, the entire Section 18 process must be followed, in essence resulting in the preparation of a new Program.

• Systematic Planning. BOEM is committed to engaging in systematic planning opportunities that foster improved governmental coordination, communication, and information exchange. As the only agency authorized to grant renewable energy, marine mineral, and oil and gas leases on the OCS, the Bureau of Ocean Energy Management has been assigned the Federal co-lead, along with the U.S. Coast Guard, for systematic regional planning efforts in the Mid-Atlantic. Additionally, BOEM will participate on Regional Planning Bodies in the Northeast, Mid-Atlantic, and West Coast as the Department of the Interior (DOI) lead. In the Gulf of Mexico OCS Region, BOEM representatives will assist the U.S. Fish and Wildlife Service (FWS), the DOI regional lead, with various working group activities. This will facilitate data and information availability, provide research of new technologies, and identify conflict resolution and avoidance strategies. BOEM anticipates that its Marine Planning engagement will enhance regulatory efficiency through improved coordination and collaboration, and, in the long term, enhance the stewardship of ocean and coastal resources.

These strategies will allow BOEM to not only address the activities that take place under the 2012-2017 Five-Year Program but also to lay the groundwork for decisions that will be faced in subsequent Five-Year Programs. BOEM will improve efforts to gather information while enhancing opportunities for stakeholders and other interested parties to participate in and be engaged in the decisionmaking process. The initiation of studies and long-term planning will facilitate future decisions by ensuring that the best information is available when making leasing decisions on the approved program and before the development of future OCS Programs.

1.5. POSTLEASE ACTIVITIES

BOEM and BSEE are responsible for managing, regulating, and monitoring oil and natural gas exploration, development, and production operations on the Federal OCS to promote the orderly development of mineral resources and to prevent harm or damage to, or waste of, any natural resource, any life or property, or the marine, coastal, or human environment. Regulations for oil, gas, and sulphur lease operations are specified in 30 CFR parts 250, 550, 551 (except those aspects that pertain to drilling), and 554.

Measures to minimize potential impacts are an integral part of the OCS Program. These measures are implemented through lease stipulations, operating regulations, and project-specific requirements or approval conditions. The NTLs provide clarifications and additional information on some of these measures. Mitigating measures address concerns such as endangered and threatened species, geologic and manmade hazards, military warning and ordnance disposal areas, archaeological sites, air quality, oilspill response planning, chemosynthetic communities, artificial reefs, operations in hydrogen sulfide (H_2S)-prone areas, and shunting of drill effluents in the vicinity of biologically sensitive features. Refer to **Appendix D** ("Commonly Applied Mitigating Measures") for more information on the mitigations that BOEM and BSEE typically apply to plans and/or permits as applicable.

BOEM issues NTLs to provide clarification, description, or interpretation of a regulation; to provide guidelines on the implementation of a special lease stipulation or regional requirement; or to convey administrative information. A detailed listing of the current Gulf of Mexico OCS Region's NTLs is available through BOEM's Gulf of Mexico OCS Region's Internet website at http://boem.gov/Regulations/Notices-Letters-and-Information-to-Lessees-and-Operators.aspx or through the Region's Public Information Office at 504-736-2519 or 1-800-200-GULF.

Formal plans must be submitted to BOEM for review and approval before any project-specific activities, except for ancillary activities (such as geological and geophysical [G&G] activities or studies that model potential oil and hazardous substance spills), can begin on a lease. Conditions of approval, which are mechanisms to control or mitigate potential safety or environmental problems associated with proposed operations, must be met before the activities can be approved by BOEM or BSEE. Conditions of approval are based on BOEM's technical and environmental evaluations of the proposed operations. Comments from Federal and State agencies (as applicable) are also considered in establishing conditions. Conditions may be applied to any OCS plan, permit, right-of-use of easement, or pipeline right-of-way grant.

Some BOEM-identified mitigating measures are implemented through cooperative agreements or coordination with the oil and gas industry and Federal and State agencies. These measures include the National Marine Fisheries Service's (NMFS's) Observer Program to protect marine mammals and sea turtles when OCS structures are removed using explosives, labeling of operational supplies to track sources of accidental debris loss, development of methods of pipeline landfall to eliminate impacts to barrier beaches, and semiannual beach cleanup events.

Refer to Chapters 1.5 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS for descriptions of postlease activities including G&G surveys; exploration and development plans; permits and applications; inspection and enforcement; pollution prevention, oil spill response plans, and financial responsibility; air emissions; flaring and venting; hydrogen sulfide contingency plans; archaeological resources regulation; coastal zone management consistency review and appeals for plans; best available and safest technologies, including at production facilities; personnel training and education; structure removal and site clearance; marine protected species NTLs; and the Rigs-to-Reefs program.

1.6. OTHER OCS OIL- AND GAS-RELATED ACTIVITIES

BOEM and BSEE have programs and activities that are OCS related but not specific to the oil and gas leasing process or to the management of exploration, development, and production activities. These programs include environmental and technical studies, cooperative agreements with other Federal and State agencies for NEPA work, joint jurisdiction over cooperative efforts, inspection activities, OCS sand borrowing, and regulatory enforcement. BOEM also participates in industry research efforts and forums. In January 2014, BSEE hosted the Domestic and International Standards Workshop. The BSEE Standards Development Program collaborates with national and international Standards Development Organizations to develop and revise existing standards for safety and environmental protection on the OCS. This collaboration enables BSEE to minimize the time needed to identify and incorporate new and updated industry standards into its regulatory program.

Chapter 1.6 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS contain descriptions of the other OCS oil- and gas-related activities, including the Environmental Studies Program, Technology Assessment and Research Program, and interagency agreements. Refer to **Appendix E** for the list of recent Gulf of Mexico Environmental Studies Program publications.

CHAPTER 2

ALTERNATIVES INCLUDING THE PROPOSED ACTIONS

2. ALTERNATIVES INCLUDING THE PROPOSED ACTIONS

This Supplemental EIS addresses three proposed Federal actions: proposed oil and gas Lease Sales 235, 241, and 247, in the CPA of the Gulf of Mexico OCS (**Figure 1-1**), as scheduled in the Five-Year Program (USDOI, BOEM, 2012a). The proposed actions (proposed lease sales) assume compliance with applicable regulations and lease stipulations in place at the time a ROD is signed for each proposed action.

2.1. SUPPLEMENTAL EIS NEPA ANALYSIS

Proposed CPA Lease Sales 235, 241, and 247 were analyzed in the 2012-2017 WPA/CPA Multisale EIS. This Supplemental EIS tiers from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, and it summarizes and hereby incorporates those documents by reference. Each of the proposed lease sales is expected to be within the scenario ranges summarized in **Chapter 3** of this Supplemental EIS and as discussed in Chapter 3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Since proposed CPA Lease Sales 235, 241, and 247 and their projected activities are very similar, this Supplemental EIS encompasses the three proposed lease sales as authorized under 40 CFR § 1502.4, which allows related or similar proposals to be analyzed in one EIS. In addition, one Area ID was prepared for the proposed CPA lease sales. The Multisale EIS approach is intended to focus the NEPA/EIS process on the differences between the proposed lease sales and on new issues and information. It also lessens duplication and saves agency resources. At the completion of the NEPA process for this Supplemental EIS, a decision will be made on whether or how to hold proposed CPA Lease Sale 235. An additional NEPA review will be conducted prior to proposed CPA Lease Sales 241 and 247 to address any relevant significant new information. This additional NEPA review could take the form of a determination of NEPA adequacy, an environmental assessment (EA), or if BOEM deems necessary, a supplemental EIS. Informal and formal consultation with other Federal agencies, the affected States, Tribal Nations, nongovernmental organizations, and the public will be carried out to assist in the determination of whether or not the information and analysis contained in this Supplemental EIS is still valid. Specifically, information requests will be issued soliciting input on proposed CPA Lease Sales 241 and 247.

This Supplemental EIS analyzes the potential impacts of a CPA proposed action on sensitive coastal environments, offshore marine resources, and socioeconomic resources both onshore and offshore, and it is the final NEPA review conducted for proposed CPA Lease Sale 235. It has been prepared to aid in the determination of whether or not new available information indicates that the proposed lease sales would result in new significant impacts not addressed in the 2012-2017 WPA/CPA Multisale EIS or WPA 233/CPA 231 Supplemental EIS. In preparation for this Supplemental EIS, BOEM utilized the best information available to determine if the baseline condition for resources had changed since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. This best available information was derived from ongoing and past research and from review of peer-reviewed scientific reports and studies, as well as through review of sources open to BOEM's subject-matter experts through Internet searches. Further discussion and analysis of newly identified information and best available information is contained in **Chapters 3 and 4 and in Appendix B**. This Supplemental EIS presents an analysis of this new information.

2.2. ALTERNATIVES, MITIGATING MEASURES, AND ISSUES

2.2.1. Alternatives

The alternatives to be considered for proposed CPA Lease Sales 235, 241, and 247 are detailed in **Chapter 2.3** below. These suggested alternatives have been derived from both the historical comments submitted to BOEM and the scoping performed for the analyses in this Supplemental EIS.

Through our scoping efforts for this Supplemental EIS and previous EISs, numerous issues and topics were identified for consideration. During the scoping period for the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, a number of alternatives or deferral options were suggested

and examined for inclusion in those EISs (Chapter 2.2.1.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS). Those alternative and deferral options were also reexamined during the preparation of this Supplemental EIS. These suggestions included additional deferrals, policy changes, and suggestions beyond the scope of this Supplemental EIS. BOEM has not identified any new significant information that changes its conclusions in the 2012-2017 WPA/CPA Multisale EIS or WPA 233/CPA 231 Supplemental EIS or that indicates that the proposed alternatives or deferral options are not appropriate for further in-depth analysis. The justifications for not carrying those suggestions through detailed analyses in this Supplemental EIS are the same as those used in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The analyses of environmental impacts from the proposed alternatives summarized in **Chapter 2.3.1.2** below and described in detail in **Chapter 4.1.1** are based on the development scenario, which is a set of assumptions and estimates on the amounts, locations, and timing for OCS oil and gas exploration, development, and production operations and facilities, both offshore and onshore. A detailed discussion of the development scenario and major related impact-producing factors is included in **Chapter 3**.

2.2.1.1. Alternatives for Proposed Central Planning Area Lease Sales 235, 241, and 247

Alternative A—The Proposed Action (Preferred Alternative): This alternative would offer for lease all unleased blocks within the proposed CPA lease sale area for oil and gas operations (Figure 2-1), with the following exceptions:

- (1) whole and portions of blocks deferred by the Gulf of Mexico Energy Security Act of 2006; and
- (2) blocks that are adjacent to or beyond the United States' Exclusive Economic Zone in the area known as the northern portion of the Eastern Gap.

The DOI is conservative throughout the NEPA process and includes the total area within the CPA for environmental review even though the leasing of portions of the CPA (subareas or blocks) can be deferred during a Five-Year Program.

The proposed CPA lease sale area encompasses about 63 million ac of the total CPA area of 66.45 million ac. As of August 2014, approximately 44.1 million ac of the proposed CPA lease sale area are unleased. The estimated amount of resources projected to be developed as a result of a proposed CPA lease sale is 0.460-0.894 BBO and 1.939-3.903 Tcf of gas (**Table 3-1**).

Alternative B—Exclude the Unleased Blocks Near Biologically Sensitive Topographic Features: This alternative would offer for lease all unleased blocks within the proposed CPA lease sale area, as described for the proposed action (Alternative A), but it would exclude from leasing any unleased blocks subject to the Topographic Features Stipulation. The estimated amount of resources projected to be developed is 0.460-0.894 BBO and 1.939-3.903 Tcf of gas (refer to **Chapter 2.3.2** for further details).

Alternative C—No Action: This alternative is the cancellation of a single proposed CPA lease sale. If this alternative is chosen, the opportunity for development of the estimated 0.460-0.894 BBO and 1.939-3.903 Tcf of gas that could have resulted from a proposed CPA lease sale would be precluded during the current 2012-2017 Five-Year Program, but it could again be contemplated as part of a future Five-Year Program. Any potential environmental impacts arising out of a proposed CPA lease sale would not occur, but activities associated with existing leases in the CPA would continue.

Alternatives and Deferrals Considered but Not Analyzed in Detail

Chapter 2.2.1.2 of the 2012-2017 WPA/CPA Multisale EIS includes a detailed description of alternatives considered but not analyzed in this Supplemental EIS, including the following: exclude deep water and limit leasing to shallow waters; delay leasing until drilling safety is improved; do not allow drilling in areas with strong ocean currents such as the Loop Current; delay leasing until the state of the Gulf of Mexico environmental baseline is known; and identify and protect sensitive ecosystems. The justifications for not engaging in detailed analysis of these alternatives and deferrals in this Supplemental

EIS are the same as those used in the 2012-2017 WPA/CPA Multisale EIS, and BOEM has identified no new information that changes these conclusions.

2.2.2. Mitigating Measures

The NEPA process is intended to help public officials make decisions that are based on an understanding of environmental consequences and to take actions that protect, restore, and enhance the environment. Agencies are required to state whether all practicable means to avoid or minimize environmental harm from the alternative selected have been adopted (i.e., mitigating measures and lease stipulations). The CEQ regulations (40 CFR § 1508.20) define mitigation as follows:

- Avoidance—Avoiding an impact altogether by not taking a certain action or part of an action.
- Minimization—Minimizing impacts by limiting the intensity or magnitude of the action and its implementation.
- Restoration—Rectifying the impact by repairing, rehabilitating, or restoring the affected environment.
- Maintenance—Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
- Compensation—Compensating for the impact by replacing or providing substitute resources or environments.

2.2.2.1. Proposed Mitigating Measures Analyzed

The potential lease stipulations and mitigating measures included for analysis in this Supplemental EIS were developed as a result of numerous scoping efforts for the continuing OCS Program in the Gulf of Mexico. Ten lease stipulations (described in Chapter 2.4.1.3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS) are proposed for CPA Lease Sales 235, 241, and 247— the Topographic Features Stipulation; the Live Bottom (Pinnacle Trend) Stipulation; the Military Areas Stipulation; the Evacuation Stipulation; the Coordination Stipulation; the Blocks South of Baldwin County, Alabama, Stipulation; the Protected Species Stipulation; the Law of the Sea Convention Royalty Payment Stipulation; the Below Seabed Operations Stipulation; and the Stipulation on the Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico. The Law of the Sea Convention Royalty Payment Stipulation is applicable to a proposed CPA lease sale even though it is not an environmental or military stipulation.

These measures will be considered for adoption by the ASLM, under authority delegated by the Secretary of the Interior. The analysis of any stipulations for Alternative A does not ensure that the ASLM will make a decision to apply the stipulations to leases that may result from a proposed CPA lease sale nor does it preclude minor modifications in wording during subsequent steps in the prelease process if comments indicate changes are necessary or if conditions change.

Any lease stipulations or mitigating measures to be included in a lease sale will be described in the ROD for that lease sale. Mitigating measures in the form of lease stipulations are added to the lease terms and are therefore enforceable as part of the lease. In addition, each exploration and development plan, as well as any pipeline applications that result from a lease sale, will undergo a NEPA review and additional project-specific mitigations will be applied as conditions of plan approval. The BSEE has the authority to monitor and enforce these conditions and, under 30 CFR part 250 subpart N, may seek remedies and penalties from any operator that fails to comply with those conditions, stipulations, and mitigating measures.

2.2.2.2. Existing Mitigating Measures

Mitigating measures have been proposed, identified, evaluated, or developed through previous BOEM lease sale NEPA review and analysis. Many of these mitigating measures have been adopted and

incorporated into regulations and/or guidelines governing OCS oil and gas exploration, development, and production activities. All plans for OCS oil- and gas-related activities (e.g., exploration and development plans, pipeline applications, and structure-removal applications) go through rigorous BOEM review and approval to ensure compliance with established laws and regulations. Existing mitigating measures must be incorporated and documented in plans submitted to BOEM. Operational compliance of the mitigating measures is enforced through BSEE's onsite inspection program.

Mitigating measures are a standard part of BOEM's program to ensure that the operations are always conducted in an environmentally sound manner (with an emphasis on minimizing any adverse impact of routine operations on the environment). For example, certain measures ensure site clearance, and survey procedures are carried out to determine potential snags to commercial fishing gear and to avoid archaeological sites and biologically sensitive areas such as pinnacles, topographic features, and chemosynthetic communities.

Some BOEM-identified mitigating measures are incorporated into OCS operations through cooperative agreements or efforts with industry and State and Federal agencies. These mitigating measures include mandating compliance with NMFS's Observer Program to protect marine mammals and sea turtles during the use of explosives for structure removal, labeling operational supplies to track possible sources of debris or equipment loss, developing methods of pipeline landfall to eliminate impacts to beaches or wetlands, and requiring beach cleanup events.

Site-specific mitigating measures are also applied by BOEM during plan and permit reviews. BOEM realized that many of these site-specific mitigations were recurring and developed a list of "standard" mitigations. There are currently over 120 standard mitigations. The wording of a standard mitigation is developed by BOEM in advance and may be applied whenever conditions warrant. Standard mitigation text is revised as often as is necessary (e.g., to reflect changes in regulatory citations, agency/personnel contact numbers, and internal policy). Site-specific mitigation "categories" include the following: air quality; archaeological resources; artificial reef material; chemosynthetic communities; Flower Garden Banks; topographic features; hard bottom/pinnacles, military warning areas and Eglin water test areas; hydrogen sulfide; drilling hazards; remotely operated vehicle surveys; geophysical survey reviews; and general safety concerns. Site-specific mitigation "types" include the following: advisories; conditions of approval; hazard survey reviews; inspection requirements; notifications; post-approval submittals; and safety precautions. In addition to standard mitigations, BOEM may apply nonrecurring mitigating measures that are developed on a case-by-case basis. Refer to **Appendix D** ("Commonly Applied Mitigating Measures") for more information on some of the mitigations that BOEM and BSEE typically apply to plans and/or permits.

BOEM is continually revising applicable mitigations to allow the Gulf of Mexico OCS Region to more easily and routinely track mitigation compliance and effectiveness. A primary focus of this effort is requiring post-approval submittal of information within a specified timeframe or after a triggering event (e.g., end of operations reports for plans, construction reports for pipelines, and removal reports for structure removals).

2.2.3. Issues

Issues are defined in CEQ Guidance as the principal "effects" that an EIS should evaluate in-depth. Selection of environmental and socioeconomic issues to be analyzed was based on the following criteria:

- the issue is identified in CEQ regulations as subject to evaluation;
- the relevant resource/activity was identified through agency expertise, through the scoping process, or from comments on past EISs;
- the resource/activity may be vulnerable to one or more of the impact-producing factors associated with the OCS Program;
- a reasonable probability of an interaction between the resource/activity and impactproducing factor should exist; or
- the information that indicates a need to evaluate the potential impacts to a resource/activity has become available.

2.2.3.1. Issues to be Analyzed

Chapter 2.2.3.1 of the 2012-2017 WPA/CPA Multisale EIS addresses the issues related to potential impact-producing factors and the environmental and socioeconomic resources and activities that could be affected by OCS oil and gas exploration, development, production, and transportation activities (i.e., accidental events; drilling fluids and cuttings; visual and aesthetic interference; air emissions; water quality degradation and other wastes; structure and pipeline emplacement; platform removals; OCS oil-and gas-related support services, activities, and infrastructure; and regional cultures and socioeconomics). Chapter 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, and **Chapter 4.1.1** of this Supplemental EIS describe the resources and activities that could be affected by the impact-producing factors listed above and include the following resource topics:

- Air Quality
- Alabama, Choctawhatchee, St. Andrew, and Perdido Key Beach Mice
- Archaeological Resources (Historic and Prehistoric)
- Coastal Barrier Beaches and Associated Dunes
- Coastal and Marine Birds
- Commercial Fisheries
- Deepwater Benthic Communities (Chemosynthetic and Nonchemosynthetic)
- Diamondback Terrapins
- Fish Resources and Essential Fish Habitat
- Gulf Sturgeon

- Human Resources and Land Use (Land Use and Coastal Infrastructure, Demographics, Economic Factors, and Environmental Justice)
- Live Bottoms (Pinnacle Trend and Low Relief)
- Marine Mammals
- Recreational Fishing
- Recreational Resources
- Sargassum Communities
- Sea Turtles
- Seagrass Communities
- Soft Bottom Benthic Communities
- Topographic Features
- Water Quality (Coastal and Offshore)
- Wetlands

2.2.3.2. Issues Considered but Not Analyzed

As previously noted, the CEQ regulations for implementing NEPA instruct agencies to adopt an early process (termed "scoping") for determining the scope of issues to be addressed and for identifying significant issues related to a proposed action. As part of this scoping process, agencies shall identify and eliminate from detailed study the issues that are not significant to a CPA proposed action or have been covered by prior environmental review. No additional issues were identified during scoping that are not addressed in this Supplemental EIS. Comments received during scoping are summarized in **Chapter 5.3**.

2.3. PROPOSED CENTRAL PLANNING AREA LEASE SALES 235, 241, AND 247

2.3.1. Alternative A—The Proposed Action

2.3.1.1. Description

Alternative A would offer for lease all unleased blocks within the proposed CPA lease sale area for oil and gas operations (**Figure 2-1**), with the following exceptions:

- (1) whole and portions of blocks deferred by the Gulf of Mexico Energy Security Act of 2006; and
- (2) blocks that are adjacent to or beyond the United States Exclusive Economic Zone in the area known as the northern portion of the Eastern Gap.

The DOI is conservative throughout the NEPA process and includes the total area within the CPA for environmental review even though the leasing of portions of the CPA (subareas or blocks) can be deferred during a Five-Year Program.

The proposed CPA lease sale area encompasses about 63 million ac of the total CPA area of 66.45 million ac. As of August 2014, approximately 44.1 million ac of the proposed CPA lease sale area are currently unleased. The estimated amount of resources projected to be developed as a result of a proposed CPA lease sale is 0.460-0.894 BBO and 1.939-3.903 Tcf of gas (**Table 3-1**).

The analyses of impacts summarized below and described in detail in **Chapter 4.1.1** are based on the development scenario, which is a set of assumptions and estimates on the amounts, locations, and timing for OCS oil and gas exploration, development, and production operations and facilities, both offshore and onshore. A detailed discussion of the development scenario and major related impact-producing factors is included in **Chapter 3**.

Alternative A has been identified as BOEM's preferred alternative; however, this does not mean that another alternative may not be selected in the Record of Decision.

2.3.1.2. Summary of Impacts

A search by BOEM's subject-matter experts was conducted for each resource to consider new information made available since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS and to consider new information on the *Deepwater Horizon* explosion, oil spill, and response. It must also be emphasized that, in arriving at the overall conclusions for certain environmental resources (e.g., coastal and marine birds, fisheries, and wetlands), the conclusions are not based on impacts to individuals, small groups of animals, or small areas of habitat, but on impacts to the resources/populations as a whole. Any new information discovered was analyzed by BOEM's subject-matter experts to determine if the impact conclusions presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS were altered as a result of the new information.

For the following resources, BOEM's subject-matter experts determined through literature searches and communications with other agencies and academia that there was no new information made available since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that was relevant to potential impacts from a CPA proposed action. Therefore, the impact conclusions for these resources remain the same as those that were presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. These impact conclusions are presented in **Chapter 4.1.1** of this Supplemental EIS. For ease of review, the individual chapter numbers for each resource are provided in the following list.

- Air Quality (Chapter 4.1.1.1)
- Chemosynthetic Deepwater Benthic Communities (Chapter 4.1.1.9)
- Alabama, Choctawhatchee, St. Andrew, and Perdido Key Beach Mice (Chapter 4.1.1.15)
- Gulf Sturgeon (Chapter 4.1.1.17)
- Species Considered due to U.S. Fish and Wildlife Service Concerns (Chapter 4.1.1.24)

For the following resources, BOEM's subject-matter experts determined through literature searches and communications with other agencies and academia that there was new information made available since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that was relevant to potential impacts from a CPA proposed action. BOEM's subject-matter experts have reexamined the analyses for these resources based on new information made available; however, none of the new information was deemed significant in that it did not alter the impact conclusions presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. These impact conclusions are presented in Chapter 4.1.1. For ease of review, the individual chapter numbers for each resource are provided in the following list.

- Water Quality (Coastal and Offshore Waters) (Chapters 4.1.1.2.1 and 4.1.1.2.2, respectively)
- Coastal Barrier Beaches and Associated Dunes (Chapter 4.1.1.3)

- Wetlands (Chapter 4.1.1.4)
- Seagrass Communities (Chapter 4.1.1.5)
- Live Bottoms (Pinnacle Trend and Low Relief) (Chapter 4.1.1.6)
- Topographic Features (Chapter 4.1.1.7)
- Sargassum Communities (Chapter 4.1.1.8)
- Nonchemosynthetic Deepwater Benthic Communities (Chapter 4.1.1.10)
- Soft Bottom Benthic Communities (Chapter 4.1.1.11)
- Marine Mammals (Chapter 4.1.1.12)
- Sea Turtles (Chapter 4.1.1.13)
- Diamondback Terrapins (Chapter 4.1.1.14)
- Coastal and Marine Birds (Chapter 4.1.1.16)
- Fish Resources and Essential Fish Habitat (Chapter 4.1.1.18)
- Commercial Fisheries (Chapter 4.1.1.19)
- Recreational Fishing (Chapter 4.1.1.20)
- Recreational Resources (Chapter 4.1.1.21)
- Archaeological Resources (Historic and Prehistoric) (Chapters 4.1.1.22.1 and 4.1.1.22.2, respectively)
- Human Resources and Land Use (Land Use and Coastal Infrastructure, Demographics, Economic Factors, and Environmental Justice) (Chapters 4.1.1.23.1, 4.1.1.23.2, 4.1.1.23.3, and 4.1.1.23.4, respectively)

Ultimately, no new significant information was discovered that would alter the impact conclusions for any of the resources analyzed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analyses and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS remain valid and, as such, apply for proposed CPA Lease Sales 235, 241, and 247.

In accordance with CEQ guidelines to provide decisionmakers with a robust environmental analysis, **Appendix B** ("Catastrophic Spill Event Analysis") provides an analysis of the potential impacts of a lowprobability, catastrophic oil spill, which is not reasonably expected and not part of a CPA proposed action, to the environmental and cultural resources and the socioeconomic conditions analyzed in **Chapter 4.1.1**

2.3.1.3. Mitigating Measures

The following lease stipulations may be applied to a CPA proposed action as mitigating measures. If the decision is to hold a lease sale, the lease stipulations applicable to the lease sale will be announced in the Notice of Sale and Record of Decision.

2.3.1.3.1. Topographic Features Stipulation

The topographic features located in the CPA provide habitat for hard bottom communities of high biomass and diversity (**Chapter 4.1.1.7**). Without the Topographic Features Stipulation and mitigating measures, these communities could be severely and adversely impacted by oil and gas activities resulting from a CPA proposed action if such activities took place on blocks that are within the boundaries of a topographic feature, a No Activity Zone surrounding a topographic feature, or a shunting zone (1,000-Meter, 1-Mile, 3-Mile, and/or 4-Mile) surrounding a topographic feature. The DOI has recognized this problem for some years and, since 1973, has made lease stipulations a part of leases on or near these

biotic communities so that impacts from nearby oil and gas activities were mitigated. This stipulation would not prevent the recovery of oil and gas resources but would serve to protect valuable and sensitive biological resources from routine OCS oil- and gas-related activity by distancing bottom-disturbing activity (e.g., anchors, chains, cables, and wire ropes) 152 m (500 ft) from the No Activity Zone that surrounds topographic features and by requiring that drill muds and cuttings be shunted to the seafloor if a well is within a shunting zone (1,000-Meter, 1-Mile, 3-Mile, and/or 4-Mile) surrounding a topographic feature.

The Topographic Features Stipulation was formulated based on consultation with various Federal agencies and comments solicited from the States, industry, environmental organizations, and academic BOEM and the National Oceanic and Atmospheric Administration (NOAA) also representatives. co-sponsor an ongoing long-term monitoring program at the Flower Garden Banks in order to determine if continued offshore oil- and gas-related activity in the GOM has impacted the reef habitat of these features. The Topographic Features Stipulation has been updated over time, using years of scientific information collected since the stipulation was first proposed. This information includes numerous Agency-funded studies of topographic features in the GOM; numerous stipulation-imposed, industryfunded monitoring reports; and the National Research Council (NRC) report entitled Drilling Discharges in the Marine Environment (1983). This stipulation protects these biotic communities from routine oil and gas activities resulting from a CPA proposed action, while allowing the development of nearby oil and gas resources. This stipulation would not prevent adverse effects of an accident such as a large blowout on a nearby oil or gas operation from impacting these biotic communities; however, it would distance the activity at least 152 m (500 ft) from the No Activity Zone surrounding topographic features, reducing the possibility of physical oiling. The location of the blocks affected by the Topographic Features Stipulation is shown on **Figure 2-1**. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.4.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.2. Live Bottom (Pinnacle Trend) Stipulation

The Live Bottom (Pinnacle Trend) Stipulation covers the pinnacle trend area of the proposed CPA lease sale area. A small portion of the northeastern proposed CPA lease sale area is characterized by a pinnacle trend, which is classified as a live bottom under the stipulation. The pinnacles are a series of topographic irregularities with variable biotal coverage, which provide structural habitat for a variety of pelagic fish. The pinnacles in the region could be impacted from physical damage of unrestricted oil and gas activities, as noted in **Chapter 4.1.1.6**. The Live Bottom (Pinnacle Trend) Stipulation would protect live bottoms (Pinnacle Trend features) from routine OCS oil- and gas-related activity by distancing bottom-disturbing activity (e.g., anchors, chains, cables, and wire ropes) 30 m (100 ft) from hard bottoms/pinnacles. The Live Bottom (Pinnacle Trend) Stipulation is intended to protect the pinnacle trend and the associated hard bottom communities from damage and, at the same time, provide for recovery of potential oil and gas resources. The location of the pinnacle trend areas of the proposed CPA lease sale area is shown on **Figure 2-1**. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.4.1.3.2 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.3. Military Areas Stipulation

The Military Areas Stipulation has been applied to all blocks leased in military areas since 1977 and reduces potential impacts, particularly in regards to safety. However, this stipulation does not reduce or eliminate the actual physical presence of oil and gas operations in areas where military operations are conducted. The stipulation contains a "hold harmless" clause (holding the U.S. Government harmless in case of an accident involving military operations) and requires lessees to coordinate their activities with appropriate local military contacts. **Figure 2-2** shows the military warning areas in the Gulf of Mexico. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.3.1.3.2 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.4. Evacuation Stipulation

The Evacuation Stipulation, if applied, would be a part of any lease in the easternmost portion of the proposed CPA lease sale area resulting from a CPA proposed action, i.e., Lease Sales 235, 241, and 247. This stipulation would provide for evacuation of personnel and shut-in of operations during any events

conducted by the military that could pose a danger to ongoing oil and gas operations. It is expected that the invocation of these evacuation requirements will be extremely rare.

It is expected that these measures will serve to eliminate dangerous conflicts between oil and gas operations and military operations. Continued close coordination between BSEE and the military may result in improvements in the wording and implementation of these stipulations.

An evacuation stipulation has been applied to all blocks leased in this area since 2001. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.4.1.3.4 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.5. Coordination Stipulation

The Coordination Stipulation, if applied, would be a part of any lease in the easternmost portion of the proposed CPA lease sale area resulting from a CPA proposed action, i.e., Lease Sales 235, 241, and 247. This stipulation would provide for review of pending oil and gas operations by military authorities and could result in delaying oil and gas operations if military activities have been scheduled in the area that may put the oil and gas operations and personnel at risk.

A coordination stipulation has been applied to all blocks leased in this area since 2001. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.4.1.3.5 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.6. Blocks South of Baldwin County, Alabama, Stipulation

The Blocks South of Baldwin County, Alabama, Stipulation, if applied, will be included only on leases on blocks south of and within 15 mi (24 km) of Baldwin County, Alabama. The stipulation specifies requirements for consultation that lessees must follow when developing plans for fixed structures. The stipulation has been adopted in annual CPA lease sales since 1999. It has been considered satisfactorily responsive to the concern of the Governor of Alabama and was adopted in each of the CPA lease sales in the 2002-2007 and 2007-2012 Five-Year Programs. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.4.1.3.6 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.7. Protected Species Stipulation

The Protected Species Stipulation has been applied to all blocks leased in the GOM since December 2001. This stipulation was developed in consultation with the Department of Commerce, National Oceanic and Atmospheric Administration, NMFS and the Department of the Interior, FWS in accordance with Section 7 of the Endangered Species Act, and it is designed to minimize or avoid potential adverse impacts to federally protected species. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.3.1.3.3 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.8. Law of the Sea Convention Royalty Payment Stipulation

The Law of the Sea Convention Royalty Payment Stipulation has been applied to blocks or portions of blocks beyond the U.S. Exclusive Economic Zone (generally greater than 200 nmi [230 mi; 370 km] from the U.S. coastline). Leases on these blocks may be subject to special royalty payments under the provisions of the 1982 Law of the Sea Convention (consistent with Article 82), if the U.S. becomes a party to the Convention prior to or during the life of the lease. A more detailed discussion and definition of this stipulation and its effectiveness are found in Chapter 2.3.1.3.4 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.9. Below Seabed Operations Stipulation

The Below Seabed Operations Stipulation language is intended to include lease sale-specific language and would incorporate maps of the blocks that may be affected. Rights-of-use and easements have been granted to allow permanent mooring of floating production facilities. As a result, any lessee holding an interest in oil and gas leases for these blocks is not allowed to conduct activities, including but not limited to, the construction and use of structures, operation of drilling rigs, laying of pipelines, and/or anchoring, that will occur or be located on the seafloor or in the water column within the areas. Sub-seabed activities that are part of exploration, development, and production activities from outside the areas may be allowed, including the use of directional drilling or other techniques.

This stipulation can be found in Chapter 2.4.1.3.9 of the 2012-2017 WPA/CPA Multisale EIS.

2.3.1.3.10. Stipulation on the Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico

The "Agreement Between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico," has now entered into force, making it possible for U.S. lessees to enter into voluntary agreements with a licensee of the United Mexican States to develop transboundary reservoirs. The stipulation has been applied to blocks or portions of blocks located wholly or partially within the 3 statute miles (4.8 km) of the maritime or continental shelf boundary with Mexico. The stipulation incorporates by reference the Agreement and notifies lessees that, among other things, activities in this boundary area will be subject to the Agreement and that approval of plans, permits, and unitization agreements will be conditioned upon compliance with the terms of the Agreement. For more information, refer to the Agreement itself, which is available at http://www.boem.gov/BOEM-Newsroom/Library/Publication-Reservoirs-in-the-Gulf-of-Mexico.aspx.

2.3.2. Alternative B—Exclude the Unleased Blocks Near Biologically Sensitive Topographic Features

2.3.2.1. Description

Alternative B differs from Alternative A by not offering the blocks that are potentially subject to the proposed Topographic Features Stipulation (Chapter 2.4.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS and **Figure 2-1** of this Supplemental EIS). The stipulation would not prevent the recovery of oil and gas resources but would serve to protect valuable and sensitive biological resources from routine OCS oil-and gas-related activity by distancing bottom-disturbing activity (e.g., anchors, chains, cables, and wire ropes) 152 m (500 ft) from the No Activity Zone that surrounds topographic features and by requiring that drill muds and cuttings be shunted to the seafloor if a well is within a shunting zone (1,000-Meter, 1-Mile, 3-Mile, and/or 4-Mile) surrounding a topographic feature. There are a total of 207 blocks (962,470 ac) that would have the Topographic Features Stipulation applied. All other assumptions (including the 9 other potential stipulations) and estimates are the same as for Alternative A. The estimated amount of resources projected to be developed is 0.460-0.894 BBO and 1.939-3.903 Tcf of gas.

2.3.2.2. Summary of Impacts

The analyses of impacts summarized in **Chapter 2.3.1.2** and described in detail in **Chapter 4.1.1** are based on the development scenario, which is a set of assumptions and estimates on the amounts, locations, and timing for OCS oil and gas exploration, development, and production operations and facilities, both offshore and onshore. A detailed discussion of the development scenario and major related impact-producing factors is included in **Chapter 3**.

The difference between the potential impacts described for Alternative A and those under Alternative B is that under Alternative B no oil and gas activity would take place in the blocks subject to the Topographic Features Stipulation (**Figure 2-1**). The number of blocks that would not be offered under Alternative B represents only a small percentage of the total number of blocks to be offered under Alternative A; therefore, it is assumed that the levels of activity for Alternative B would be substantially similar to those projected for a CPA proposed action. As a result, the impacts expected to result from Alternative B would be very similar to those described under a CPA proposed action (**Chapter 4.1.1**). Regional impact levels for all resources, except for the topographic features, would be similar to those described under a CPA proposed action. This alternative, if adopted, would prevent any oil and gas activity whatsoever in the affected blocks; thus, it would eliminate any potential direct impacts to the biota of those blocks from oil and gas activities, which otherwise would be conducted within the blocks.

2.3.3. Alternative C—No Action

2.3.3.1. Description

Alternative C is the cancellation of a single proposed CPA lease sale. If this alternative is chosen, the opportunity for development of the estimated 0.460-0.894 BBO and 1.939-3.903 Tcf of gas that could have resulted from a proposed CPA lease sale would be precluded or postponed to a future CPA lease sale. Any potential environmental impacts arising out of a proposed CPA lease sale would not occur, but activities associated with existing leases in the CPA would continue. The No Action alternative, therefore, encompasses the same potential impacts as a decision to delay the leasing of unleased blocks in the CPA to a later scheduled lease sale under the Five-Year Program, when another decision on whether to hold that future lease sale would be made. Because delay of a proposed CPA lease sale would yield essentially the same results as the No Action alternative (i.e., most impacts related to Alternative A would not occur), delay of a proposed lease sale was not considered as a separate alternative under this Supplemental EIS.

2.3.3.2. Summary of Impacts

Cancelling a proposed CPA lease sale would eliminate the effects described for Alternative A (**Chapter 4.1.3**). The incremental contribution of a proposed lease sale to the cumulative effects would also be foregone, but the effects from other activities, including other previous OCS lease sales, would remain. Moreover, if a proposed CPA lease sale was canceled, the resulting development of oil and gas could be reevaluated under a future proposed lease sale. Therefore, the overall level of OCS oil- and gas-related activity in the CPA would only be reduced by a small percentage, if any, and the cancellation of a proposed CPA lease sale would not significantly change the environmental impacts of overall OCS oil- and gas-related activity in the short term at least. However, the cancellation of a proposed CPA lease sale could result in direct economic impacts to the individual companies. Revenues collected by the Federal Government (and thus revenue disbursements to the States) also would be adversely affected.

If a proposed CPA lease sale was cancelled, then other sources of energy could potentially be substituted for the lost production. Principal substitutes would be additional imports, conservation, additional domestic production, and switching to other fuels. These alternatives, except conservation, have significant negative environmental impacts of their own. For example, the tankering of fuels from alternate sources over longer distances may have significant potential negative impacts, including the increased risk of spills in the Gulf of Mexico.

CHAPTER 3

IMPACT-PRODUCING FACTORS AND SCENARIO

3. IMPACT-PRODUCING FACTORS AND SCENARIO

3.1. IMPACT-PRODUCING FACTORS AND SCENARIO—ROUTINE OPERATIONS

3.1.1. Offshore Impact-Producing Factors and Scenario

Chapter 3.1.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 3.1.1 of the WPA 233/ CPA 231 Supplemental EIS describe in detail the offshore infrastructure and activities (impact-producing factors) associated with a CPA proposed action (i.e., a typical lease sale that would result from a proposed action) within the CPA that could potentially affect the biological, physical, and socioeconomic resources of the Gulf of Mexico. In addition, Chapter 3.1.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 3.1.1 of the Gulf of Mexico OCS Oil and Gas Lease Sales: 2014 and 2016; Eastern Planning Area Lease Sales 225 and 226; Final Environmental Impact Statement (EPA 225/226 EIS) (USDOI, BOEM, 2013b) also describe the OCS Program's cumulative activity scenario resulting from past and future lease sales in the WPA, CPA, and EPA that could potentially affect the biological, physical, and socioeconomic resources of the GOM within the CPA. Note that offshore and onshore impact-producing factors and scenarios associated with a WPA or an EPA proposed action (i.e., a typical lease sale that would result from a proposed action within the WPA or EPA) as well as OCS Program activity resulting from past and future lease sales in the WPA or EPA are disclosed in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, WPA 238/246/248 Supplemental EIS (Gulf of Mexico OCS Oil and Gas Lease Sales: 2014-2016; Western Planning Area Lease Sales 238, 246, and 248; Final Environmental Impact Statement) (USDOI, BOEM, 2014a), and EPA 225/226 EIS.

Offshore is defined, for the purposes of this Supplemental EIS, as the OCS portion of the GOM that begins 3 marine leagues (9 nmi; 10.36 mi; 16.67 km) offshore Texas and Florida and 3 nmi (3.5 mi; 5.6 km) offshore Louisiana, Mississippi, and Alabama. The OCS extends seaward to the limits of the United States' jurisdiction over the continental shelf in water depths up to approximately 3,346 m (10,978 ft), which comprises the Exclusive Economic Zone (**Figure 1-1**). Coastal infrastructure and activities associated with a CPA proposed action are described in **Chapter 3.1.2** of this Supplemental EIS and in Chapter 3.1.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

BOEM projects that the overwhelming majority of the oil and natural gas fields discovered as a result of a CPA proposed action will reach the end of their economic life within a time span of 40 years following a lease sale. Therefore, activity levels are projected to 40 years for this Supplemental EIS. Although unusual cases exist where activity on a lease may continue beyond 40 years, BOEM's forecasts indicate that most significant activities associated with exploration, development, production, and abandonment of leases in the GOM occur well within the 40-year analysis period. For the cumulative case analysis, total OCS Program exploration and development activities are also forecast over a 40-year period. For modeling purposes and quantitative OCS Program activity analyses, a 40-year analysis period is also used. Exploration and development activity forecasts become increasingly more uncertain as the length of time of the forecast increases and the number of influencing factors increases.

BOEM uses a series of spreadsheet-based data analysis tools to develop the forecasts of oil and gas exploration, discovery, development, and production activity for a proposed action and OCS Program scenarios presented in this Supplemental EIS. BOEM's analyses incorporate all relevant historical activity and infrastructure data, and BOEM's resulting forecasts are analyzed and compared with actual historical data to ensure that historical precedent and recent trends are reflected in each activity forecast.

BOEM is confident that its analysis methodology, with adjustments and refinements based on recent activity levels, adequately projects Gulf of Mexico OCS oil- and gas-related activities in both the short term and the long term for the EIS analyses.

The CPA proposed actions and the Gulfwide OCS Program scenarios are based on the following factors:

- resource estimates developed by BOEM;
- recent trends in the amount and location of leasing, exploration, and development activity;

- estimates of undiscovered, unleased, economically recoverable oil and gas resources in each water-depth category and each planning area;
- existing offshore and onshore oil and/or gas infrastructure;
- published data and information;
- industry information; and
- oil and gas technologies, and the economic considerations and environmental constraints of these technologies.

Proposed CPA Lease Sales 235, 241, and 247 each represent 3-4 percent of the OCS Program activities expected in the CPA from 2012 through 2051 based on barrels of oil equivalent (BOE) resource estimates and 2.5-3.5 percent of the total OCS Program (WPA, CPA, and EPA) from 2012 through 2051.

Specific projections for activities associated with a CPA proposed action are discussed in the following scenario sections. The potential impacts of the activities associated with a proposed "typical" CPA lease sale are considered in the environmental analysis sections (**Chapter 4.1.1** of this Supplemental EIS and Chapter 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS).

The OCS Program scenario includes all activities that are projected to occur from past, proposed, and future lease sales during the analysis period. This includes projected activity from lease sales that have been held but for which exploration or development has either not yet begun or is continuing. Activities that take place beyond the analysis timeframe as a result of future lease sales are not included in this analysis. The impacts of activities associated with the OCS Program on biological, physical, and socioeconomic resources are analyzed in the cumulative environmental analysis sections (**Chapter 4.1.1** of this Supplemental EIS and Chapter 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS).

3.1.1.1. Resource Estimates and Timetables

A CPA proposed action and the cumulative oil and gas program have not changed since last analyzed for the 2012-2017 WPA/CPA Multisale EIS. BOEM has not identified any new information or change in circumstances since publication of the 2012-2017 WPA/CPA Multisale EIS or WPA 233/CPA 231 Supplemental EIS that would change the estimates and timetables.

3.1.1.1.1. Proposed Action

The proposed action scenario is used to assess the potential impacts of a proposed "typical" lease sale. The resource estimates for a proposed action are based on two factors: (1) the conditional estimates of undiscovered, unleased, conventionally recoverable oil and gas resources in the proposed lease sale area; and (2) estimates of the portion or percentage of these resources assumed to be leased, discovered, developed, and produced as a result of a proposed action. Due to the inherent uncertainties associated with an assessment of undiscovered resources, probabilistic techniques were employed and the results were reported as a range of values corresponding to different probabilities of occurrence. The estimates of the portion of the resources assumed to be leased, discovered, developed, and produced as a result of a proposed action are based upon logical sequences of events that incorporate past experience, current conditions, and foreseeable development strategies. Historical databases and information derived from oil and gas exploration and development activities are available to BOEM and were used extensively. The undiscovered, unleased, conventionally recoverable resource estimates for a proposed action are expressed as ranges, from low to high. This range provides a reasonable expectation of oil and gas production anticipated from a typical lease sale held as a result of a proposed action based on an actual range of historic observations.

Table 3-1 presents the projected oil and gas production for a CPA proposed action and for the OCS Program. **Table 3-2** provides a summary of the major scenario elements of a CPA proposed action, a "typical" lease sale, and related impact-producing factors. To analyze impact-producing factors for a CPA proposed action and the OCS Program, the proposed CPA lease sale area was divided into offshore subareas based upon ranges in water depth. **Figure 3-1** depicts the location of the offshore subareas. The

water-depth ranges reflect the technological requirements and related physical and economic impacts as a consequence of the oil and gas potential, exploration and development activities, and lease terms unique to each water-depth range. Estimates of resources and facilities are distributed into each of the subareas.

Proposed Action Scenario (CPA Typical Lease Sale): The estimated amounts of resources projected to be leased, discovered, developed, and produced as a result of a typical proposed CPA lease sale are 0.460-0.894 BBO and 1.939-3.903 Tcf of gas.

The number of exploration and delineation wells, production platforms, and development wells projected to develop and produce the estimated resources for a CPA proposed action is given in **Table 3-2**. The table shows the distribution of these factors by offshore subareas in the proposed lease sale area. **Table 3-2** includes estimates of the major impact-producing factors related to the projected levels of exploration, development, and production activity.

Exploratory drilling activity generally takes place over an 8-year period, beginning within 1 year after a lease sale. Development activity generally takes place over a 39-year period, beginning with the installation of the first production platform and ending with the drilling of the last development wells. Production of oil and gas begins by the third year after a lease sale and would likely conclude by year 40; however, in rare cases, production could continue beyond year 40.

3.1.1.1.2. OCS Program

OCS Program Cumulative Scenario (WPA, CPA, and EPA): Projected reserve/resource production for the OCS Program is 18.335-25.64 BBO and 75.886-111.627 Tcf of gas and represents anticipated production from lands currently under lease plus anticipated production from future lease sales over the 40-year analysis period. The OCS Program cumulative scenario includes WPA, CPA, and EPA production estimates. **Table 3-3** presents all anticipated production from lands currently under lease in the WPA, CPA, and EPA plus all anticipated production from future total OCS Program (WPA, CPA, and EPA) lease sales over the 40-year analysis period.

WPA Cumulative Scenario: Projected reserve/resource production for the OCS Program in the WPA (2.510-3.696 BBO and 12.539-18.434 Tcf of gas) represents anticipated production from lands currently under lease in the WPA plus anticipated production from future WPA lease sales over the 40-year analysis period. Projected production under the cumulative scenario represents approximately 14 percent of the oil and 17 percent of the gas of the total Gulfwide OCS Program. Table 3-4 of the WPA 238/246/248 Supplemental EIS presents all anticipated production from lands currently under lease in the WPA plus all anticipated production from future WPA lease sales over the 40-year analysis period. The impact-producing factors, affected environment, and environmental consequences related to WPA proposed lease sales are disclosed in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, and WPA 238/246/248 Supplemental EIS.

CPA Cumulative Scenario: Projected reserve/resource production for the OCS Program in the CPA (15.825-21.733 BBO and 63.347-92.691 Tcf of gas) represents anticipated production from lands currently under lease in the CPA plus anticipated production from future CPA lease sales over the 40-year analysis period. Projected production under the cumulative scenario represents approximately 85-86 percent of the oil and 83 percent of the gas of the total Gulfwide OCS Program. **Table 3-4** presents all anticipated production from lands currently under lease in the CPA plus all anticipated production from future CPA lease sales over the 40-year analysis period. The impact-producing factors, affected environment, and environmental consequences related to CPA proposed lease sales are disclosed in this Supplemental EIS, the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

EPA Cumulative Scenario: Projected reserve/resource production for the OCS Program in the EPA (0-0.211 BBO and 0-0.502 Tcf of gas) represents all anticipated production from lands currently under lease in the EPA plus all anticipated production from future EPA lease sales over the 40-year analysis period. Projected production represents approximately 1 percent of the oil and <1 percent of the gas of the total Gulfwide OCS Program. Table 3-3 in the EPA 225/226 EIS presents all anticipated production from lands currently under lease in the EPA plus all anticipated production from future EPA lease sales over the 40-year analysis period. The impact-producing factors, affected environment, and environmental consequences related to EPA proposed lease sales are disclosed in the EPA 225/226 EIS.

3.1.1.2. Exploration and Delineation

3.1.1.2.1. Seismic Surveying Operations

Chapter 3.1.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS describes in detail seismic survey operations including ocean-bottom surveys.

Prelease surveys are comprised of seismic work performed on or off leased areas, focused most commonly (but not always) on deeper targets and collectively authorized under BOEM's geological and geophysical permitting process. Postlease, high-resolution seismic surveys collect data on surficial or near-surface geology used to identify potential shallow geologic hazards for engineering and site planning for bottom-founded structures. Noise associated with OCS oil and gas development results from seismic surveys, the operation of fixed structures such as offshore platforms and drilling rigs, and helicopter and service-vessel traffic. These noise sources are discussed in **Chapter 3.1.1.6** of this Supplemental EIS and in Chapter 3.1.1.6 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS).

CPA Proposed Action Scenario (Typical Lease Sale): Because of the cyclic nature in the acquisition of seismic surveys, a prelease seismic survey would be attributable to lease sales held up to 7-9 years after the survey. Based on an amalgam of historical trends in G&G permitting and industry input, BOEM projects that proposed lease sales within the EPA, WPA, and CPA would result in 29,197 OCS blocks surveyed by two-dimensional (2D) and three-dimensional (3D) deep seismic operations for the years 2012-2017. Broken down per planning area, this yields approximately 21,314 blocks surveyed in the CPA, approximately 7,300 blocks surveyed in the WPA, and approximately 583 blocks surveyed in the EPA. It should be noted that the number of blocks could include multiple surveys on a single block that would then be counted each time as a unique block survey. For postlease seismic surveys, information obtained from high-resolution seismic contractors operating in the GOM project a proposed action would result in about 50 vertical seismic profiling (VSP) operations and 629 high-resolution surveys covering approximately 226,400 line miles (364,420 km) of near-surface and shallow penetration seismic during the life of a proposed action. The impact-producing factors, affected environment, and environmental consequences related to CPA proposed lease sales are disclosed and addressed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

OCS Program Cumulative Scenario: Seismic surveys are projected to follow the same trend as exploration activities, which peaked in 2008-2010, will steadily decline until 2027, and will remain relatively steady throughout the second half of the 40-year analysis period. It is important to note that the cycling of G&G data acquisition is not driven by the 40-year life cycle of productive leasing, but instead will trend to respond to new production or potential new production driven by new technology. Consequently, some areas will be resurveyed in 2-year cycles, while other areas, considered nonproductive, may not be surveyed for 20 years or more.

Assuming that acoustic-sourced seismic will remain the dominant exploration tool used by industry in the future and that a number of surveyed blocks will be resurveying several more times, BOEM makes the following projections. During the first 5 years (2012-2017) of the analysis period (2012-2051), BOEM projects the following annual activities: 50 VSP operations; 226,400 lines miles (364,420 km) surveyed by high-resolution seismic; and 29,197 blocks surveyed by deep seismic, including areas that will be resurveyed. Expanding this analysis to the first 20 years (2012-2032), the annual projections would be 60 VSP operations, 400,000 mi (740,800 km) of high-resolution seismic, and 33,000 blocks of 2D/3D deep seismic (10% in EPA, 60% in CPA, and 30% in WPA). During the second half of the 40-year analysis period, the annual projection would be approximately 40 VSP operations, 240,000 mi (444,480 km) surveyed by high-resolution seismic, and 15,000-20,000 blocks surveyed by deep seismic (50% in the WPA, and 20% in the EPA).

3.1.1.2.2. Exploration and Delineation Plans and Drilling

Chapter 3.1.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS describes in detail exploration and delineation plans and drilling.

Oil and gas operators use drilling terms that represent stages in the discovery and exploitation of hydrocarbon resources. An exploration well generally refers to the first well drilled on a prospective geologic structure to confirm that a resource exists. If a resource is discovered in quantities appearing to be economically viable and in circumstances when reservoirs are large, one or more follow-up delineation

wells help define the amount of resource or the extent of the reservoir. Following a discovery, an operator will often temporarily plug and abandon a discovery to allow time to generate a development scenario and to build or procure equipment.

In the GOM, exploration and delineation wells are typically drilled with mobile offshore drilling units (MODUs); e.g., jack-up rigs, semisubmersible rigs, submersible rigs, platform rigs, or drillships. Non-MODUs, such as inland barges, are also used. The type of rig chosen to drill a prospect depends primarily on water depth. Because the water-depth ranges for each type of drilling rig overlap to a degree, other factors such as rig availability and daily operation rates play a large role when an operator decides upon the type of rig to contract. The depth ranges for exploration rigs used in this analysis for Gulf of Mexico MODUs are indicated below.

MODU or Drilling Rig Type	Water-Depth Range
Jack-up, submersible, and inland barges	≤100 m (328 ft)
Semisubmersible and platform rig	100-3,000 m (328-9,843 ft)
Drillship	≥600 m (1,969 ft)

Historically, drilling rig availability has been a limiting factor for activity in the GOM and is assumed to be a limiting factor for activity projected as a result of a proposed lease sale. Drilling activities may also be constrained by the availability of rig crews, shore-based facilities, risers, and other equipment.

The scenario for a CPA proposed action assumes that an average exploration well will require 30-120 (mean of 60) days to drill. The actual time required for each well depends on a variety of factors, including the depth of the prospect's potential target zone, the complexity of the well design, and the directional offset of the wellbore needed to reach a particular zone. This scenario assumes that the average exploration or delineation well depth will be approximately 4,572-7,010 m (15,000-23,000 ft) below the mudline (i.e., surface of the seafloor).

Some delineation wells may be drilled using a sidetrack technique. In sidetracking a well, a portion of the existing wellbore is plugged back to a specific depth, directional drilling equipment is installed, and a new wellbore is drilled to a different geologic location. The lessee may use this technology to better understand their prospect and to plan future wells. Use of this technology may also reduce the time and exploration expenditures needed to help evaluate the prospective horizons on a new prospect.

The cost of an average exploration well can be \$40-\$150 million or more, without certainty that objectives can be reached (i.e., an actual discovery and/or confirmation of hydrocarbons). Some recent ultra-deepwater exploration wells (>6,000 ft [1,829 m] water depth) in the GOM have been reported to cost upwards of \$200 million. The actual cost for each well depends on a variety of factors, including the depth of the prospect's potential target zone, the complexity of the well design, and the directional offset of the wellbore needed to reach a particular zone.

Subpart D of BSEE's regulations (30 CFR part 250) specifies requirements for drilling activities. Refer to **Chapter 1.3.1** of this Supplemental EIS, Chapter 1.3.1 and Table 1-2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 1.3.2 of the WPA 233/CPA 231 Supplemental EIS, which provide a summary of new and updated safety requirements.

Tables 3-2 through 3-4 show the estimated range of exploration and delineation wells by waterdepth range for the CPA typical lease sale cases; WPA, CPA, and EPA total OCS Program case; and CPA cumulative cases, respectively.

CPA Proposed Action Scenario (Typical Lease Sale): BOEM estimates that 168-329 exploration and delineation wells would be drilled as a result of the CPA proposed action. **Table 3-2** shows the estimated range of exploration and delineation wells by water-depth range. Greater than 50 percent of the projected wells for the CPA proposed action are expected to be on the continental shelf (0-200 m [0-656 ft] water depth), and fewer than 50 percent are expected in intermediate water-depth ranges and deeper (>200 m; 656 ft).

OCS Program Cumulative Scenario (WPA, CPA, and EPA): BOEM estimates that 6,910-9,827 exploration and delineation wells would be drilled in the WPA, CPA, and EPA as a result of all past OCS lease sales and projected activity for future lease sales associated with this Five-Year Program. **Tables 3-3 and 3-4** of this Supplemental EIS and Table 3-6 of the 2012-2017 WPA/CPA Multisale EIS show the estimated range of exploration and delineation wells by water-depth range. Of these wells, approximately 55 percent are expected to be on the continental shelf (0-200 m [0-656 ft] water depth) and approximately

45 percent are expected in intermediate water-depth ranges and deeper (>200 m; 656 ft). Note that offshore and onshore impact-producing factors and scenarios associated with a WPA or an EPA proposed action (i.e., a typical lease sale that would result from a proposed action within the WPA or EPA), as well as OCS Program activity resulting from past and future lease sales in the WPA or EPA are disclosed in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, WPA 238/246/248 Supplemental EIS, and EPA 225/226 EIS.

3.1.1.3. Development and Production

Development and Production Drilling

Chapter 3.1.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS describe in detail development and production drilling and development operations and coordination documents.

Delineation and production wells are sometimes collectively termed development wells. A development well is designed to extract resource from a known hydrocarbon reservoir. After a discovery, the operator must decide whether or not to complete the well without delay, to delay completion with the rig on station so that additional tests may be conducted, or to temporarily abandon the well site and move the rig off station to a new location and drill another well. Sometimes an operator will decide to drill a series of development wells, move off location, and then return with a rig to complete all the wells at one time. If an exploration well results in a dry hole, the operator permanently abandons the well without delay.

When the decision is made to complete the well, a new stage of activity begins. Completing a well involves preparing the well for production. BOEM estimates that approximately 90 percent of development wells will become producing wells. The typical process includes setting and cementing the production casing, installing some downhole production equipment, perforating the casing and surrounding cement, treating the formation, setting a gravel pack (if needed), and installing production tubing. One form of well completion involves a process known as "induced hydraulic fracturing," commonly referred to as "fracking." The term is used colloquially to refer to a number of activities; however, for the OCS oil and gas program, induced hydraulic fracturing refers to a process used to fracture a reservoir rock around the wellbore using pressurized liquid. The technique is used to increase flow rate and maximize production. The pressurized fluid is typically a mixture of water, well treatment chemicals, and a mechanical agent or proppant. The mechanical agents or proppants, such as sand, manmade ceramics, or small microspheres (tiny glass beads), are designed to keep open the induced hydraulic fractures that are created by the pressurized fluids so that they can perform as conduits to assist the flow of hydrocarbons from the reservoir formation to the wellbore. Well treatment chemicals are commonly used to improve well productivity. For example, acidizing a reservoir to dissolve cementing agents and improve fluid flow is the most common well treatment in the GOM. During production activities, additional waste streams include produced water, produced sand, and well treatment, workover, and completion fluids (refer to Chapter 3.1.1.4 of the 2012-2017 WPA/CPA Multisale EIS). Chapter 3.1.1.4.2 of the 2012-2017 WPA/CPA Multisale EIS discusses well treatment, workover, and completion fluids and notes that these fluids include fracturing fluids. Both USEPA Regions 4 and 6 prohibit the discharge of well treatment, workover, and completion fluids that exceed oil and grease limitations or that contain priority pollutants or free oil. However, some well treatment, workover, and completion chemicals are discharged with the drilling muds and cuttings or with the produced-water streams. Both of these waste streams may only be discharged if they meet the discharge criteria of the Region 4 or Region 6 NPDES permits as appropriate to the location of the operation. Chapter 3.1.1.4.4 of the 2012-2017 WPA/CPA Multisale EIS explains that produced sands can result from hydraulic fracturing as well as other practices. Both USEPA Region 4 and Region 6 NPDES permits prohibit the discharge of produced sand. Since discharges from drilling and production platforms are regulated by USEPA through the NPDES permit process, the effects from these discharges should be limited.

In contrast to the large-scale induced hydraulic fracturing procedures used in onshore oil and gas operations for low-permeability "tight gas," "tight oil," "shale gas," and "coal gas" reservoirs, completions that include induced hydraulic fracturing carried out on the OCS in the GOM are small scale by comparison. Completions using hydraulic fracturing on the OCS are most commonly used for highpermeability formations to repair formation damage caused during drilling operations and also to prevent formation damage during production. Since damage to the formation caused by OCS drilling operations does not extend for large distances away from the reservoir-borehole interface, the fracturing induced by the procedure is also designed to remain in close proximity to the borehole, extending distances of only a few feet to 40 or 60 ft (12 or 18 m) from the borehole, rarely extending for more than 100 ft (305 m) from the borehole. After a production test determines the desired production rate to avoid damaging the reservoir, the well is ready to go online and produce.

The chief planning document that lays out an operator's specific intentions for development is the development operations coordination document. The range of postlease development plans is discussed in Chapter 1.5 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. **Table 3-2** shows the estimated range of development wells and production structures by water-depth subarea for a CPA proposed action.

CPA Proposed Action Scenario (Typical Lease Sale): It is estimated that 215-417 development and production wells will be drilled as a result of a CPA proposed action. **Table 3-2** shows the estimated range of development and production wells by water-depth subarea. The percentage of projected oil wells within the CPA is more evenly distributed throughout the water-depth ranges, with the greatest number of wells being forecasted for water depths >2,400 m (7,874 ft), whereas 66-75 percent of the gas wells are projected to be drilled on the continental shelf (0-200 m [0-656 ft] water depth).

OCS Program Cumulative Scenario (WPA, CPA, and EPA): It is estimated that 8,530-12,180 development and production wells will be drilled in the WPA, CPA, and EPA as a result of the proposed lease sales and all OCS oil- and gas-related activity associated with previous lease sales. **Table 3-3** shows the estimated range of development wells by water depth.

Note that offshore and onshore impact-producing factors and scenarios associated with a WPA or an EPA proposed action (i.e., a typical lease sale that would result from a proposed action within the WPA or EPA as well as OCS Program activity resulting from past and future lease sales in the WPA or EPA) are disclosed in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, WPA 238/246/248 Supplemental EIS, and EPA 225/226 EIS.

Infrastructure Emplacement/Structure Installation and Commissioning Activities

Chapter 3.1.1.3.2 of the 2012-2017 WPA/CPA Multisale EIS describes in detail infrastructure emplacement/structure installation and commissioning activities.

Bottom-founded or floating structures may be placed over development wells to facilitate production from a prospect. These structures provide the means to access and control the wells. They serve as a staging area to process and treat produced hydrocarbons from the wells, initiate export of the produced hydrocarbons, conduct additional drilling or reservoir stimulation, conduct workover activities, and carry out eventual abandonment procedures. There is a range of offshore infrastructure installed for hydrocarbon production. Among these are pipelines, fixed and floating platforms, caissons, well protectors, casing, wellheads, and conductors.

CPA Proposed Action Scenario (Typical Lease Sale): It is estimated that 35-67 production structures will be installed as a result of a CPA proposed action. **Table 3-2** shows the projected number of structure installations for a CPA proposed action by water-depth range. About 80 percent of all the production structures installed for a CPA proposed action are projected to be on the continental shelf (0-60 m; 0-197 ft).

OCS Program Cumulative Scenario (WPA, CPA, and EPA): It is estimated that 1,435-2,026 production structures would be installed in the WPA, CPA, and EPA as a result of the proposed lease sales and all OCS oil- and gas-related activity associated with previous lease sales. **Tables 3-2 and 3-3** of this Supplemental EIS and Table 3-6 of the 2012-2017 WPA/CPA Multisale EIS show the projected number of structure installations by water-depth range for the OCS Program.

Note that offshore and onshore impact-producing factors and scenarios associated with a WPA or an EPA proposed action (i.e., a typical lease sale that would result from a proposed action within the WPA or EPA), as well as OCS Program activity resulting from past and future lease sales in the WPA or EPA are disclosed in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, WPA 238/246/248 Supplemental EIS, and EPA 225/226 EIS.

Bottom Area Disturbance

Chapter 3.1.1.3.2.1 of the 2012-2017 WPA/CPA Multisale EIS describes in detail bottom area disturbances. Structures emplaced or anchored on the OCS to facilitate oil and gas exploration and production include drilling rigs or MODUs (jack-ups, semisubmersibles, and drillships), pipelines, and fixed surface, floating, and subsea production systems are described in **Chapter 3.1.1.3** of this Supplemental EIS and in Chapters 3.1.1.3.1 and 3.1.1.3.2 of the 2012-2017 WPA/CPA Multisale EIS. The emplacement or removal of these structures disturbs small areas of the sea bottom beneath or adjacent to the structure. If mooring lines of steel, chain, or synthetic polymer are anchored to the sea bottom, areas around the structure can also be directly affected by their emplacement. This disturbance includes physical compaction or crushing beneath the structure or mooring lines and the resuspension and settlement of sediment caused by the activities of emplacement. Movement of floating types of facilities will also cause the movement of the mooring lines in its array. Small areas of the sea bottom will be affected by this kind of movement. Impacts from bottom disturbance are of concern near sensitive areas such as topographic features, pinnacles, low-relief live bottom features, chemosynthetic communities, high-density biological communities in water depths \geq 400 m (1,312 ft), and archaeological sites.

Sediment Displacement

Chapter 3.1.1.3.2.2 of the 2012-2017 WPA/CPA Multisale EIS describes in detail sediment displacement. Displaced sediments are those that have been physically moved "in bulk." Displaced sediments will cover or bury an area of the seafloor, while resuspended sediments will cause an increase in turbidity of the adjacent water column. Resuspended sediments eventually settle, covering the surrounding seafloor. Resuspended sediments may include entrained heavy metals or hydrocarbons.

Infrastructure Presence

Chapter 3.1.1.3.3 of the 2012-2017 WPA/CPA Multisale EIS describes in detail impact-producing factors due to infrastructure presence. The installation and maintenance of infrastructure may include, but is not limited to, the following:

- anchoring;
- offshore production systems;
- space-use requirements (deployment of survey equipment or bottom-founded production equipment);
- aesthetic quality (presence and visibility of equipment, vessels, and air traffic); and
- workovers and abandonments.

3.1.1.4. Operational Waste Discharged Offshore

Chapter 3.1.1.4 of the 2012-2017 WPA/CPA Multisale EIS describes in detail impacting factors due to operational wastes discharged offshore and Chapter 3.1.1.4 of the WPA 233/CPA 231 Supplemental EIS provides a summary as well as detailed updated information on more recent, stricter regulations regarding vessel discharges. Operational wastes discharged offshore include the following:

- drilling muds and cuttings;
- produced waters;
- well treatment, workover, and completion fluids;
- production solids and equipment;
- bilge, ballast, and fire water;
- cooling water;

- deck drainage;
- treated domestic and sanitary wastes;
- minor discharges;
- vessel operational discharges; and
- distillation and reverse osmosis brine.

BOEM maintains records of the volume of water produced from each block on the OCS and its disposition—injected on lease, injected off lease, transferred off lease, or discharged overboard. The amount discharged overboard for the years 2000-2013 is summarized by water depth in **Table 3-5**, with new data provided for the years 2010-2013. The total volume for all water depths during this 13-year period ranged from 489.0 to 648.2 MMbbl, with the largest contribution (69-88%) coming from operations on the shelf. The total volume of produced water generally decreased after 2004, reflecting an overall decrease in contributions from the shelf. The contribution of produced water from operations in deep water (>400 m [1,312 ft] water depth) and ultra-deepwater (>1,600 m [5,249 ft] water depth) production has been increasing. From 2000 to 2013, the contribution from these operations (deep and ultra-deepwater together) increased from 6 percent (37.8 MMbbl) to 28 percent (142.8 MMbbl) of the total produced-water volume (calculated from data in **Table 3-5**). The updated annual amounts and depth distributions of produced water discharged by depth are within the range of or similar to data presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Thus, this new information did not change the validity of the operational wastes discussion previously presented.

3.1.1.5. Air Emissions

In 1990, pursuant to Section 328 of the Clean Air Act Amendments and following consultation with the Commandant of the U.S. Coast Guard (USCG) and the Secretary of the Interior, the United States Environmental Protection Agency (USEPA) assumed air quality responsibility for the OCS waters in the GOM east of longitude 87.5° W., and this Agency retained National Ambient Air Quality Standards (NAAQS) air quality jurisdiction for OCS operations west of the same longitude in the GOM. Air quality regulations are under a comprehensive review in 2014 to replace obsolete provisions and to ensure that updates in regulations are following improvements in scientific and technological information.

There are many air emissions sources related to OCS oil and gas exploration, development, and production in the GOM. During the exploration stage, most of the OCS non-platform emissions are from combustion from the equipment used on a drilling rig or from fuel usage of a support vessel. During the production stage, platform emission sources include boilers, diesel engines, combustion flares, fugitives, glycol dehydrators, natural gas engines, turbines, pneumatic pumps, pressure/level controllers, storage tanks, cold vents, and others. During the development stage, most of the OCS non-platform emissions are from fuel usage of support or survey vessels to lay pipelines, install facilities, or map geologic formations and seismic properties.

Pollutants released by OCS sources include the NAAQS pollutants carbon monoxide (CO), nitrogen oxides (NO_x), particulate matter (PM), and sulfur dioxide (SO₂). Pollutants also released by OCS sources (NO_x and volatile organic compounds [VOC]) are precursors to ozone, which is formed by photochemical reactions in the atmosphere and is another NAAQS pollutant. Lastly, OCS sources release greenhouse gas emissions, such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O).

The Year 2008 Gulfwide Emissions Inventory Study (Wilson et al., 2010) indicates that, for calendar year 2008, OCS oil and gas production platforms and non-platform sources emit the majority of criteria pollutants and greenhouse gases in the GOM on the OCS, with the exception of PM and SO₂ (primarily emitted from commercial marine vessels) and N₂O (from biological sources). The OCS oil and gas production platform and non-platform sources account for 93 percent of the total CO emissions, 74 percent of NO_x emissions, 76 percent of VOC emissions, 99 percent of the CH₄ emissions, and 84 percent of the CO₂ emissions on the OCS. Natural gas engines on platforms represented the largest CO emission source, accounting for 60 percent of the total estimated OCS oil- and gas-related CO emissions; and OCS oil- and gas-related support vessels were the highest emitters of NO_x, accounting for 35 percent of the total estimated emissions. Oil and natural gas production platform vents and fugitive sources account for the highest percentage of VOC and CH₄ emissions. Support vessels (29% of total

emissions), production platform natural gas turbines (15% of total emissions), and drilling rigs (12% of total emissions) emit the majority of the CO_2 emissions attributable to oil and gas production on the OCS.

3.1.1.6. Noise

Noise associated with OCS oil and gas development results from seismic surveys, the operation of fixed structures such as offshore platforms and drilling rigs, and helicopter and service-vessel traffic. Noise generated from these activities can be transmitted through both air and water, and may be long-lived or temporary. Offshore drilling and production involves various activities that produce a composite underwater noise field. The intensity level and frequency of the noise emissions are highly variable, both between and among the various industry sources. Noise from proposed OCS oil- and gas-related activities may affect resources near the activities. Whether a sound is or is not detected by marine organisms depends both on the acoustic properties of the source (spectral characteristics, intensity, and transmission patterns) and the sensitivity of the hearing system in the marine organism. Extreme levels of noise can cause physical damage or death to an exposed animal and, in limited circumstances, can cause "take" of endangered and threatened species as defined in the Federal Endangered Species Act. Source levels well above hearing thresholds can damage hearing or induce behavioral changes (Richardson et al., 1995). Chapter 3.1.1.6 of the 2012-2017 WPA/CPA Multisale EIS describes in detail noise impact-producing factors associated with OCS oil and gas development.

3.1.1.7. Major Sources of Oil Inputs in the Gulf of Mexico

Petroleum hydrocarbons can enter the GOM from a wide variety of sources. The major sources of oil inputs in the GOM are natural seepage, permitted produced-water discharges, land-based discharges, and accidental spills. Numerical estimates of the contributions for these sources to the GOM coastal and offshore waters are shown in Tables 3-8 and 3-9 of the 2012-2017 WPA/CPA Multisale. Chapter 3.1.1.7 of the 2012-2017 WPA/CPA Multisale EIS describes in detail major sources of oil inputs in the Gulf of Mexico, including natural seepage, produced water, land-based discharges, and spills.

Chapter 3.1.1.7.4 of the 2012-2017 WPA/CPA Multisale EIS also describes in detail the following information related to oil spills: trends in reported spill volumes and numbers; projections of future spill events; OCS oil- and gas-related offshore spills; non-OCS oil- and gas-related offshore spills; OCS oil- and gas-related coastal spills; non-OCS oil- and gas-related coastal sp

The most recent version of the USCG report, Polluting Incidents In and Around U.S. Waters, A Spill/Release Compendium: 1969-2011, was published in December 2012 (U.S. Dept. of Homeland Security, CG, 2012a). This document summarizes spills reported to the USCG that occurred on navigable waters, including rivers, lakes and harbors, the territorial seas (0-3 mi [0-5 km] from the coastline), the contiguous zone (3-12 mi [5-19 km] from the coastline), and the marine environment. The data include over 174 different petroleum and nonpetroleum oils and over 50 source types, including barges, tanks, pipelines, and waterfront facilities. These data augment information included in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. According to the USCG report, crude oil and heavy fuel oil were spilled in the greatest volumes. Most spills and spill volume occurred in the GOM coastal waters and the western rivers system, which includes the Mississippi, Ohio, and Arkansas Rivers. For the 37-year period ending in 2009, the USCG's databases for all U.S. waters contained investigations of more than 270,000 oil spills. The total spill amount during that period was 240.7 million gallons. The majority of spills through the years of this report involved discharges between 1 and 100 gallons. Thus, the oil discharged from the *Macondo* well (the source of the *Deepwater Horizon* oil spill in April 2010) represents the equivalent of 86 percent of all oil discharged in the preceding 37 years (U.S. Dept. of Homeland Security, CG, 2012a).

From 1991 through 2011, non-tank vessels accounted for 75.4 percent of the number of spills that occurred in U.S. waters (U.S. Dept. of Homeland Security, CG, 2012a). Historically, tank vessels (ships and barges) accounted for most of the volume spilled in U.S. waters. However, since passage of the Oil Pollution Act of 1990, the distribution of spill volumes has shifted away from tank vessel sources. For example, at the national level for the years 1999 through 2011, 29 percent of the volume of oil spilled came from tank vessels (e.g., ships/barges) compared with 41 percent from facilities and other non-vessels (the *Macondo* well was not included). Furthermore, in 2010, the largest oil spill in U.S. waters emanated from the exploratory *Macondo* oil well in the Gulf of Mexico. However, with the

exception of rare but extreme incidents such as the *Deepwater Horizon* oil spill, the overall number and volume of spills in U.S. waters has been on a steady downward trend since 1973. In fact, 2010, the year of the largest recorded spill in U.S. waters, was followed by a record low annual volume of 210,270 gallons in 2011 (U.S. Dept. of Homeland Security, CG, 2012a).

Specifically, in 2010, the GOM region experienced 455 spills having a combined volume of 206,990,317 gallons, representing 15.1 percent of the total number of U.S. waterways spills and 99.7 percent of the total spillage volume in the U.S. waterways for that year. In 2011, 498 spills having a combined volume of 20,276 gallons occurred in the GOM, representing 16.2 percent of the total number of U.S. waterways spills and 9.6 percent of the total spillage volume in the U.S. waterways for that year (U.S. Dept. of Homeland Security, CG, 2012a). **Table 3-6** illustrates that the total number of spill incidents occurring per year in the GOM has generally declined during this period of time from a high of 1,728 reported incidents in 2001 to less than 523 yearly spill incidents reported since 2008.

3.1.1.8. Offshore Transport

Offshore transport includes both movements of oil and gas products as well as the transportation of equipment and personnel. Chapter 3.1.1.8 of the 2012-2017 WPA/CPA Multisale EIS describes in detail sources of offshore transport and proposed action scenarios, including pipelines (installation and maintenance; landfalls), barges, oil tankers and projections related to floating production, storage, and offloading systems, service vessels, and helicopter trips. Updated information on total traffic (OCS- and non-OCS Program-related) on navigation channels for 2011 can be found in **Table 3-7**. This new information did not alter the projections or conclusions made in the 2012-2017 WPA/CPA Multisale EIS or WPA 233/CPA 231 Supplemental EIS.

3.1.1.9. Safety Issues

Safety issues related to OCS oil and gas development include the presence of hydrogen sulfide and sulfurous petroleum and shallow hazards. These safety issues are described in detail in Chapters 3.1.1.9.1 and 3.1.1.9.2 of the 2012-2017 WPA/CPA Multisale EIS. Technologies continue to evolve to meet the technical, environmental, and economic challenges of deepwater development. These new and unusual technologies are described in Chapter 3.1.1.9.3 of the 2012-2017 WPA/CPA Multisale EIS.

3.1.1.10. Decommissioning and Removal Operations

During exploration, development, and production operations, the seafloor around activity sites within a proposed lease sale area becomes the repository of temporary and permanent equipment and structures. In compliance with Section 22 of BOEM's Oil and Gas Lease Form (BOEM-2005) and BSEE regulations (30 CFR §§ 250.1710 *et seq.—Permanently Plugging Wells* and 30 CFR §§ 250.1725 *et seq.—Removing Platforms and Other Facilities*), lessees are required to remove all seafloor obstructions from their leases within 1 year of lease termination or relinquishment. These regulations require lessees to sever bottomfounded structures and their related components at least 5 m (15 ft) below the mudline to ensure that nothing would be exposed that could interfere with future lessees and other activities in the area. The structures are generally grouped into two main categories depending upon their relationship to the platform/facilities (e.g., piles, jackets, caissons, templates, mooring devises, etc.) or the well (e.g., wellheads, casings, casing stubs). Decommissioning and removal operations, including a CPA proposed action and OCS Program scenarios, are described in detail in Chapter 3.1.1.10 of the 2012-2017 WPA/CPA Multisale EIS.

3.1.2. Coastal Impact- Producing Factors and Scenario

3.1.2.1. Coastal Infrastructure

Chapter 3.1.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS discuss coastal impact-producing factors and provide scenario projections for onshore coastal infrastructure that may potentially result from a single CPA proposed action in the Five-Year Program. These coastal impact-producing factors could potentially affect the biological, physical, and socioeconomic resources of the Gulf of Mexico. Chapter 3.1.2.1 of the 2012-2017 WPA/CPA Multisale
EIS and WPA 233/CPA 231 Supplemental EIS provide summaries as well as detailed updated information on OCS oil- and gas-related coastal infrastructure types, which include the following:

- service bases;
- helicopter hubs;
- platform fabrication yards;
- shipbuilding and shipyards;
- pipecoating facilities and yards;
- refineries;
- gas processing plants;
- liquefied natural gas (LNG) facilities;
- pipeline shore facilities, barge terminals, and tanker port areas;
- coastal pipelines;
- coastal barging; and
- navigation channels (refer to the updated information on navigation channels in **Table 3-7**).

This OCS oil- and gas-related infrastructure has been developed over many decades, and it is an extensive and mature system that provides support for offshore activities. The expansive presence of this coastal infrastructure is the result of long-term industry trends and is not subject to rapid fluctuations. BOEM projects no new coastal infrastructure with the exception of up to one new pipeline landfall and up to one new gas processing facility as a result of an individual proposed action. Existing solid-waste disposal infrastructure is projected to be adequate to support both existing and projected offshore oil and gas drilling and production needs. A detailed description of the baseline affected environment for land use and coastal infrastructure in the CPA can be found in **Chapter 4.2.1.23.1.1** of this Supplemental EIS, Chapter 4.2.1.23.1.1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS.

The U.S. Energy Information Administration updates national energy projections annually, including refinery capacity. A crude oil refinery is a group of industrial facilities that turns crude oil and other inputs into finished petroleum products. A refinery's capacity refers to the maximum amount of crude oil designed to flow into the distillation unit of a refinery, also known as the crude unit. Most of the GOM region's refineries are located in Texas and Louisiana (Table 3-13 of the 2012-2017 WPA/CPA Multisale EIS). Texas has 27 operable refineries, with an operating capacity of over 5.1 MMbbl/day, which is close to 28 percent of the total U.S. capacity. Louisiana follows closely behind Texas, with 19 operable refineries, with an operational capacity of over 3.2 MMbbl/day, which is 18 percent of the total U.S. capacity (USDOE, Energy Information Administration, 2013a).

For all domestic refineries, distillation capacity is expected to stay at a steady rate of 17.5 MMbbl/day over the 40-year period (USDOE, Energy Information Administration 2013b). For many years financial, environmental, and legal considerations have prevented the construction of new refineries in the U.S., thereby forcing companies to expand and retrofit existing facilities. Domestic refinery expansions are largely being driven by unconventional sources of oil, primarily Canadian oil sands (Sreekumar, 2013). The Canadian heavy crude is cheaper to purchase but costlier to refine, and many refineries planning to take advantage of the newest discoveries are expanding their facilities to handle the higher volumes of impurities associated with heavier crude oils (Rigzone, 2013).

In 2008, projections indicated that the U.S. would need to ramp up its natural gas imports, and industry began constructing LNG containers along Gulf ports to accommodate the influx in imports (Helman, 2013). In 2013, onshore unconventional natural gas production increased to the point that existing Gulf Coast LNG facilities are seeking to export natural gas to foreign countries. In 2011, Cheniere's Sabine Pass, Louisiana, facility received approval from the Department of Energy to export to

any country in the world (Helman, 2013; U.S. Dept. of Energy, Federal Energy Regulatory Commission, 2013). Twelve additional project sponsors have applied to DOE for authorization to export domestically produced LNG to free trade agreement and non-free trade agreement countries (Dismukes, official communication, 2013a and 2013b; U.S. Dept. of Energy, Federal Energy Regulatory Commission, 2013).

3.1.2.2. Discharges and Wastes

Chapter 3.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS describes in detail coastal discharges and wastes and Chapter 3.1.2.2 of the WPA 233/CPA 231 Supplemental EIS provides a summary and updates to these coastal discharges and wastes, which include the following:

- disposal and storage facilities for offshore operational wastes;
- onshore facility discharges;
- coastal service-vessel discharges;
- offshore wastes disposed onshore; and
- beach trash and debris.

The USEPA currently regulates vessel discharges with the Vessel General Permit (VGP), which is a Clean Water Act National Pollutant Discharge Elimination System (NPDES) permit that authorizes, on a nationwide basis, discharges incidental to the normal operation of nonmilitary and nonrecreational vessels greater than or equal to 79 ft (24 m) in length. On March 28, 2013, USEPA reissued the 2008 VGP for another 5 years; the reissued permit, the 2013 VGP, now contains numeric ballast water discharge limits for most vessels. The VGP also contains more stringent effluent limits for oil-to-sea interfaces and exhaust gas scrubber washwater. There is also a Small Vessel General Permit (sVGP), which if finalized, would authorize discharges incidental to the normal operation of nonmilitary and nonrecreational vessels less than 79 ft (24 m) in length and commercial fishing vessels (USEPA, 2013a).

BOEM's policy regarding marine debris prevention is outlined in NTL 2012-G01, "Marine Trash and Debris Awareness and Elimination." This NTL instructs OCS operators to post informational placards that outline the legal consequences and potential ecological harms of discharging marine debris. The NTL also states that OCS workers should complete annual marine debris prevention training and instructs operators to develop a certification process for the completion of this training by their workers. These various laws, regulations, and NTL will likely minimize the discharge of marine debris from OCS operations.

3.2. IMPACT-PRODUCING FACTORS AND SCENARIO—ACCIDENTAL EVENTS

3.2.1. Oil Spills

Oil spills are unplanned accidental events, and historical data provide the most relevant data for use in predicting future oil-spill frequency and volume in the GOM on a programmatic level. The following sections discuss spill prevention and spill response, and analyze the risk of spills that could occur as a result of activities associated with a CPA proposed action. Public input through public scoping meetings, Federal and State agencies' input through consultation and coordination, and industry and nongovernmental organizations' input indicate that oil spills are perceived to be a major concern, especially in the wake of the *Deepwater Horizon* oil spill. The following discussion analyzes the risk of spills that could occur as a result of a typical CPA proposed action, as well as information on the number and sizes of spills from non-OCS oil- and gas-related sources. Although not reasonably expected as a result of a CPA proposed action, the potential occurrence of a catastrophic spill is exceedingly low, but it cannot be ruled out entirely; refer to **Appendix B** for the "Catastrophic Spill Event Analysis."

3.2.1.1. Spill Prevention

Over the years, BOEM has established comprehensive pollution-prevention requirements that include redundant safety systems, as well as inspection and testing requirements to confirm that these devices are

working properly (**Chapter 1.5**). With the exception of rare incidents such as the *Deepwater Horizon* oil spill, an overall reduction in spill volume had occurred during the previous 40 years, while oil production had generally increased. A characterization of spill rates, average and median volumes from 1995 to 2009 compared with characterization of spill rates, average and median volumes from 1996 to 2010 (latest analysis available), which includes the *Deepwater Horizon* oil spill, is provided in *Update of Occurrence Rates for Offshore Oil Spills* (Anderson et al., 2012). BOEM attributes this overall reduction in spill volume to its operational requirements, ongoing efforts by the oil and gas industry to enhance safety and pollution prevention, and the evolution and improvement of offshore technology.

3.2.1.2. Past OCS Spills

The BSEE's spill-event database includes records of past spills from activities that are regulated by BSEE. These data include oil spills >1 bbl that occurred in Federal waters from OCS facilities and pipeline operations. Spills from facilities include spills from drilling rigs, drillships, and storage, processing, or production platforms that occurred during OCS drilling, development, and production operations. Spills from pipeline operations are those that have occurred on the OCS and are directly attributable to the transportation of OCS oil. Anderson et al. (2012) was utilized in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS to characterize spill rates and to provide analysis for average and median volumes. The Anderson et al. (2012) analysis examined spill data for the period 1964 to 2010, including the *Deepwater Horizon* oil spill.

A search of BSEE's oil-spill database (USDOI, BSEE, 2013a) was performed to assess new spill information during the 2011-2013 period and to provide an update to the Anderson et al. (2012) analysis. During the period 2011 to 2013, there were 46 spills from OCS oil- and gas-related activities of <1,000 bbl in size. The breakdown of the 46 spills <1,000 bbl that occurred from 2011 to 2013 from OCS oil- and gas-related activities into size classes is as follows: 28 spills of 1-4 bbl; 6 spills of 5-9 bbl; 10 spills of 10-49 bbl; 1 spill of 50-99 bbl; 1 spill of 100-999 bbl; and 0 spills of $\geq 1,000$ bbl. The combined total of oil spilled in these 46 events was 857 bbl. The BSEE database (USDOI, BSEE, 2013a) indicated that there were two spills, one in 2011 and one in 2012, that were between 50 and 500 bbl in size, both of which occurred in the CPA. The spill in 2011 equaled 67 bbl and was the result of equipment failure from a platform leak located in Garden Banks Block 72. The spill in 2012 was estimated at 480 bbl and resulted from an explosion on a platform located in West Delta Block 32. There have been zero spills >50 bbl since the 480-bbl spill in 2012. In summary, two spills >50 bbl occurred during the period 2011 to 2013. This is an outcome that is well within the range of spills estimated to occur in Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS, which serves as an estimate of the number and size of spills likely to occur as a result of a CPA proposed action over a 40-year time period. Thus, the additional information provided by the review of BSEE's oil-spill database (USDOI, BSEE 2013a) did not change the validity of the scenario previously presented.

The majority of the 2011-2013 spills are attributed to OCS platforms/rigs, followed by vessels, and lastly by OCS pipelines. These data were compared with the estimated number and sizes of spills presented in Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS (derived in part from Anderson et al., 2012), and it was found that the new spill data were well within the spill numbers estimated in the 2012-2017 WPA/CPA Multisale EIS. The new data also concurred with the previous finding that the most likely source of a spill would be from platforms, rigs, or vessels. Thus, a review of recent information does not change the risk analyses for spills <1,000 bbl previously provided in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. No spills have occurred in the \geq 1,000-bbl size class since the *Deepwater Horizon* oil spill in 2010.

3.2.1.3. Characteristics of OCS Oil

The physical and chemical properties of oil greatly affect its transport and its ultimate fate in the environment and determine the following: how oil will behave on the water surface (surface spills) or in the water column and sediments (subsea spills); the persistence of the slick on the water; the type and speed of weathering processes; the degree and mechanisms of toxicity; the effectiveness of containment and recovery equipment; and the ultimate fate of the spill residues. Crude oils are a natural mixture of hundreds of different compounds, with liquid hydrocarbons accounting for up to 98 percent of the total composition. The chemical composition of crude oil can vary significantly from different producing

areas; thus, the exact composition of oil being produced in OCS waters varies throughout the Gulf. The American Petroleum Institute gravity (API gravity) is a measure of the relative density of oil compared with water and is expressed in degrees (°). Oils with an API gravity <10 are heavier and typically sink, whereas oils with an API gravity >10 are lighter and typically float. Following an oil spill, the composition of the released oil can change substantially due to weathering processes such as evaporation, emulsification, dissolution, and oxidation. More details on the properties and persistence of different types of oils are provided in Table 3-7 of the WPA 233/CPA 231 Supplemental EIS.

Extensive laboratory testing has been performed on various oils from the GOM to determine their physical and chemical characteristics. For example, numerous oils collected from the GOM (U.S. waters) are included in Environment Canada's (2013) oil properties database. The database provides details of an oils chemical composition including hydrocarbon groups (i.e., saturates, aromatics, resins, asphaltenes), VOCs (such as benzene, toluene, ethylbenzene, and xylene), sulfur content, biomarkers, and metals. The database also includes API gravities, of which GOM oils are in the range of 15° to 60°. Since the *Deepwater Horizon* oil spill, new data have been collected from the approximately 450 deepwater exploration plans and development operation coordination documents that were submitted to BOEM/BSEE. These data are available through BOEM's Exploration and Development Plans Online Query (refer to USDOI, BOEM, 2014b). Statistics on these API gravities result in a similar range (16° to 58°) as previously reported, with a mean value of 36°. These new data corroborate the information previously presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

3.2.1.4. Overview of Spill Risk Analysis

There are many factors that BOEM evaluates to determine the risk of impacts occurring from an oil spill, including likely spill sources, likely spill locations, likely spill sizes, the likelihood and frequency of occurrence for different size spills, timeframes for the persistence of spilled oil, volumes of oil removed due to weathering and cleanup, and the likelihood of transport by wind and waves resulting in contact to specified environmental features. Sensitivity of the environmental resources and potential effects are addressed in the analyses for the specific resources of concern (**Chapter 4.1**). BOEM uses data on past OCS production and spills, along with estimates of future production, to evaluate the risk of future spills. Additionally, BOEM uses a numerical model to calculate the likely trajectory of spills (i.e., transport pathways) and analyzes historical data of occurrence rates for oil spills (refer to Anderson et al., 2012) to make projections of future oil-spill frequency and size. A more detailed description of the spill risk analysis and the trajectory model, called OSRA (oil-spill risk analysis) model, were provided in Chapter 3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, as well as in the Ji et al. (2012) OSRA report. **Appendix C** of this Supplemental EIS also contains the OSRA model's catastrophic spill event results to estimate the risks associated with a possible future low-probability catastrophic or high-volume, long-duration oil spill.

The OSRA model results and estimated spill size/frequency tables as presented and discussed in the 2012-2017 WPA/CPA Multisale EIS remain applicable because the basic assumptions inherent in the model and calculations are still valid. The latest analysis available for the characterization of spill rates and for average and median volumes (Anderson et al., 2012) inputted into the model is still valid because the more recent small OCS spills (2011-2012) were within spill scenario estimates developed using the past data. In addition, the physical forcing (e.g., ocean currents and wind fields) and environmental resources input (e.g., locations and seasonality of various biological resources) to the OSRA model are still representative of our current state of knowledge regarding both ocean modeling and potential environmental resources at risk. Numerous efforts are underway since the *Deepwater Horizon* oil spill to further improve trajectory modeling in the Gulf of Mexico, including several BOEM environmental studies (e.g., refer to Section 4.2 in Ji et al., 2013). The results of these new research activities are not yet available or fully tested for incorporation into BOEM's oil-spill risk analysis for this Supplemental EIS. However, the OSRA analysts have chosen to take a more environmentally conservative approach by presuming persistence of oil over the selected time duration of the trajectories. As such, the trajectories simulated by the OSRA model do not involve any direct consideration of cleanup, dispersion, or weathering processes that could alter the quantity or properties of oil that might eventually contact the environmental resource locations. Therefore, in lieu of missing information and with the understanding that the OSRA model is overly conservative, BOEM can conclude that the unavailable information is not essential to an analysis of, or reasoned choice among, alternatives. Thus, new information did not change the results of previous spill risk analyses provided in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The following discussions provide separate risk information for offshore and coastal spills that may result from a CPA proposed action. This analysis is divided into discussions of offshore spills $\geq 1,000$ bbl, offshore spills < 1,000 bbl, and coastal spills of any spill volume. Only spills $\geq 1,000$ bbl are addressed using OSRA because smaller spills typically do not persist long enough to be simulated by trajectory modeling.

3.2.1.5. Risk Analysis for Offshore Spills ≥1,000 bbl

Chapter 3.2.1.5 of the 2012-2017 WPA/CPA Multisale EIS addressed the risk of spills \geq 1,000 bbl that could occur from accidents associated with activities resulting from a CPA proposed action. The risk analyses included the following:

- estimated number of offshore spills $\geq 1,000$ bbl and probability of occurrence;
- most likely source of offshore spills $\geq 1,000$ bbl;
- most likely size of an offshore spill \geq 1,000 bbl;
- fate of offshore spills $\geq 1,000$ bbl;
- transport of spills \geq 1,000 bbl by winds and currents;
- length of coastline affected by offshore spills $\geq 1,000$ bbl; and
- likelihood of an offshore spill ≥1,000 bbl occurring and contacting modeled locations of environmental resources.

Specifically, for a CPA proposed action, the mean number of spills was estimated at ≤ 1 spill (mean equal to 0.5-1.0) total from both OCS oil- and gas-related platforms and pipelines, with an overall 41-62 percent chance of one or more spills $\geq 1,000$ bbl occurring in the CPA. Based on historical data, the most likely source of an offshore spill was determined to be a potential pipeline break at the seafloor.

The analysis presented in Anderson et al. (2012) remains applicable and up-to-date for characterizing spill rates and average and median spill volumes in this Supplemental EIS, considering that no spills \geq 1,000 bbl in size have occurred during 2011-2013. In terms of weathering, fate, and transport of oil spills in the Gulf of Mexico, a variety of ongoing studies are providing more insights in the aftermath of the Deepwater Horizon oil spill. For example, recent studies have provided further evidence that the diverse microbial communities in both the water column (e.g., Mason et al., 2012) and sediments (Kimes et al., 2013) of the GOM can play an active role in metabolizing and bioremediating crude oil from offshore spills. Further research is also being conducted regarding what impact chemical dispersant application may have on this biodegradation process. Other research on oil fates suggests that marine snow formation in the aftermath of a large oil-spill event (such as the *Deepwater Horizon* oil spill) may play a key role in the fate of surface oil (e.g., Passow et al., 2012). Many of the recent findings related to the quantitative modeling of fate and transport of large oil spills in the Gulf of Mexico are part of the ongoing Natural Resource Damage Assessment (NRDA) process and have not yet been publicly released. However, the OSRA analysts have chosen to take a more environmentally conservative approach by presuming persistence of oil over the selected time duration of the trajectories. As such, the trajectories simulated by the OSRA model do not involve any direct consideration of cleanup, dispersion, or weathering processes that could alter the quantity or properties of oil that might eventually contact the environmental resource locations. Therefore, in lieu of missing information and with the understanding that the OSRA model is overly conservative, we can conclude that the unavailable information is not essential to an analysis of, or reasoned choice among, alternatives. Thus, a review of recent information does not change the quantitative risk analyses for spills $\geq 1,000$ bbl previously provided the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

3.2.1.6. Risk Analysis for Offshore Spills <1,000 bbl

Chapter 3.2.1.6 of the 2012-2017 WPA/CPA Multisale EIS addressed the risk of spills <1,000 bbl resulting from a CPA proposed action. Analysis of historical data shows that most offshore OCS oil spills fall within this category, with the majority of spills falling within the significantly smaller range of \leq 1 bbl (Anderson et al., 2012). Although spills of \leq 1 bbl amount to 96 percent of all OCS oil- and gas-related spill occurrences, they have contributed very little to the total volume of oil spilled. The risk analyses addressed in Chapter 3.2.1.6 of the 2012-2017 WPA/CPA Multisale EIS included the following:

- estimated number of offshore spills <1,000 bbl and total volume of oil spilled;
- most likely source and type of offshore spills <1,000 bbl;
- most likely size of offshore spills <1,000 bbl;
- persistence, spreading, and weathering of offshore oil spills <1,000 bbl;
- transport of spills <1,000 bbl by winds and currents; and
- likelihood of an offshore spill <1,000 bbl occurring and contacting modeled locations of environmental resources.

A search of BSEE's oil-spill database (USDOI, BSEE, 2013a) was performed to assess new spill information during 2011-2013, a period that was not analyzed in Anderson et al. (2012). During 2011-2013, there were 46 spills from OCS oil- and gas-related activities of <1,000 bbl in size, totaling 857 bbl overall. The breakdown of these spills into size classes is provided in **Chapter 3.2.1.2**. As noted above, the 2011-2013 spill data were compared with the estimated number and sizes of spills presented in Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS and were found to be well within the spill numbers estimated in the 2012-2017 WPA/CPA Multisale EIS. The new data also supported previous findings that the most likely source of a spill of <1,000 bbl would be from platforms, rigs, or vessels. Thus, a review of recent information does not change the risk analyses for spills <1,000 bbl previously provided in Chapter 3.2.1.6 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

3.2.1.7. Risk Analysis for Coastal Spills

Spills in coastal waters could occur at storage or processing facilities supporting the OCS oil and gas industry or from the transportation of OCS-produced oil through State offshore waters and along navigation channels, rivers, and through coastal bays. BOEM projects that almost all (>99%) oil produced as a result of a CPA proposed action will be brought ashore via pipelines to oil pipeline shore bases, stored at these facilities, and eventually transferred via pipeline or barge to Gulf coastal refineries. Because oil is commingled at shore bases and cannot be directly attributed to a particular lease sale, this this analysis of coastal spills addresses spills that could occur prior to the oil arriving at the initial shoreline facility. It is also possible that non-OCS oil may be commingled with OCS oil at these facilities or during subsequent secondary transport. Chapter 3.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS describes in detail the estimated number and most likely sizes of coastal spills and the likelihood of coastal spill contact.

The USCG released a more recent version of the report titled *Polluting Incidents In and Around U.S. Waters Spill/Release Compendium: 1969-2011*, which includes data for the years 2010 and 2011 (U.S. Dept. of Homeland Security, CG, 2012a). The updated version of the USCG report included an additional 953 spills for 2010 and 2011 in inland, coastal, and OCS waters across the GOM; these spills were not reported in Chapter 3.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS (U.S. Dept. of Homeland Security, CG, 2012a).

The number and most likely spill sizes to occur in coastal waters in the future are expected to resemble the patterns that have occurred in the past as long as the level of hydrocarbon use by commercial and recreational activities remains the same. Estimates of future coastal spills are based on historical spills reported to USCG; consequently, in the GOM region, Louisiana and Texas are the states most likely to have a spill $\geq 1,000$ bbl occur in coastal waters. A spill that occurs in Federal waters could also be transported to State waters via wind/currents. For offshore spills ≤ 1000 bbl, only those >50 bbl would be

expected to have a chance of persisting long enough for the slick to reach coastal waters. Few offshore spills 50-1,000 bbl in size are estimated to occur as a result of a proposed action within the proposed CPA lease sale area and few of these slicks are expected to occur proximate to State waters. Should a slick from such a spill reach coastal waters, the volume of oil remaining in the slick is expected to be small.

3.2.1.8. Risk Analysis by Resource

BOEM previously analyzed the risk to resources from oil spills and oil slicks that could occur as a result of a CPA proposed action in the 2012-2017 WPA/CPA Multisale EIS. The risk results were based on BOEM's estimates of likely spill locations, sources, sizes, frequency of occurrence, physical fates of different types of oil slicks, and probable transport that were described in more detail in specific spill scenarios. For offshore spills $\geq 1,000$ bbl, combined probabilities were calculated using the OSRA model, which includes both the likelihood of a spill from a CPA proposed action occurring and the likelihood of the oil slick reaching areas where known environmental resources exist. The analysis of the likelihood of direct exposure and interaction of a resource with an oil slick and the sensitivity of a resource to the oil was provided under each resource category in **Chapter 4.1.1** of this Supplemental EIS and was provided in Chapter 4.1.1 of the WPA 233/CPA 231 Supplemental EIS and in Chapter 3.2.1.8 and Figures 3-8 through 3-28 of the 2012-2017 WPA/CPA Multisale EIS. Coastal spills were estimated from historic counts; the estimate was not a rate tied to an anticipated production volume or a probability.

3.2.1.9. Spill Response

Chapter 3.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS describes in detail offshore spill response. Issues discussed related to spill response include offshore response, containment, and cleanup technology; and onshore response and cleanup. Additional information and updates to the 2012-2017 WPA/CPA Multisale EIS have been included within respective sections of the WPA 233/CPA 231 Supplemental EIS and WPA 238/246/248 Supplemental EIS.

As a result of the Oil Pollution Act of 1990 and the reorganization of the Bureau of Ocean Energy Management, Regulation and Enforcement into BOEM and BSEE, BSEE was tasked with a number of oil-spill response duties and planning requirements. The following requirements are implemented according to BSEE's regulations at 30 CFR parts 250 and 254:

- requires immediate notification for spills >1 bbl—all spills require notification to USCG, and BSEE receives notification from the USCG of all spills ≥1 bbl;
- conducts investigations to determine the cause of a spill;
- assesses civil and criminal penalties, if needed;
- oversees spill source control and abatement operations by industry;
- sets requirements and reviews and approves oil spill response plans (OSRPs) for offshore facilities;
- conducts unannounced drills to ensure compliance with OSRPs;
- requires operators to ensure that their spill-response operating and management teams receive appropriate spill-response training;
- conducts inspections of oil-spill response equipment;
- requires industry to show financial responsibility to respond to possible spills; and
- provides research leadership to improve the capabilities for detecting and responding to an oil spill in the marine environment.

BOEM also has regulatory requirements addressing site-specific OSRPs and spill response information. As required by BOEM at 30 CFR §§ 550.219 and 550.250, operators are required to provide BOEM an OSRP that is prepared in accordance with 30 CFR part 254 subpart B with their proposed

exploration, development, or production plan for the facilities that they will use to conduct their activities; or to alternatively reference their approved regional OSRP by providing the following information:

- a discussion of the approved OSRP;
- the location of the primary oil-spill equipment base and staging area;
- the name of the oil-spill equipment removal organization(s) for both equipment and personnel;
- the calculated volume of the worst-case discharge scenario in accordance with 30 CFR § 254.26(a) and a comparison of the worst-case discharge scenario in the approved regional OSRP with the worst-case discharge calculated for these proposed activities;
- a description of the worst-case discharge to include the trajectory information, potentially impacted resources, and a detailed discussion of the spill response proposed to the worst-case discharge in accordance with 30 CFR §§ 254(b)-(d).

All OSRPs are reviewed and approved by BSEE, whether submitted with a BOEM-associated plan or directly to BSEE in accordance with 30 CFR part 254. Hence, BOEM relies heavily upon BSEE's expertise to ensure that the OSRP complies with all pertinent laws and regulations, and demonstrates the ability of an operator to respond to a worst-case discharge. Site-specific OSRPs are required to be submitted to BOEM with a proposed exploration, development, or production plan, and BOEM's regulations require that an operator must have an approved OSRP prior to BOEM's approval of an operator-submitted exploration, development, or production plan.

The NTLs and guidance documents have been issued that clarify additional oil-spill requirements since the occurrence of the *Deepwater Horizon* explosion, oil spill, and response. The spill-response-related NTLs issued prior to 2012 and the guidance documents issued by BOEM and BSEE are described in detail in Chapter 3.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, and WPA 238/246/248 Supplemental EIS.

The NTL 2012-BSEE-N06, "Guidance to Owners and Offshore Facilities Seaward of the Coast Line Concerning Regional Oil Spill Response Plans," which was effective on August 10, 2012, provides clarification, guidance, and information concerning the preparation and submittal of a regional OSRP for owners and operators of oil handling, storage, or transportation facilities, including pipelines located seaward of the coastline. A regional OSRP is defined as a spill response plan covering multiple facilities or leases of an owner, or operator, or their affiliates, which are located in the same BSEE region. Sitespecific OSRPs submitted with BOEM exploration, development, or production plans can either be prepared using the 30 CFR part 254 regulations or the guidance outlined in NTL 2012-BSEE-N06.

Some of the clarifications and encouraged practices identified in NTL 2012-BSEE-N06 are based upon lessons learned from the *Deepwater Horizon* spill response. This NTL indicates that BSEE's review of OSRPs will also be based, in part, upon information obtained during the *Deepwater Horizon* spill response. For example, during the *Deepwater Horizon* spill response, it was discovered that the total estimated de-rated recovery capacity for all equipment listed in the OSRP overestimated the amount of oil that could be removed from the water. The NTL 2012-BSEE-N06 therefore states that the OSRP should be developed considering (1) a fully developed response strategy that includes the identification of the available dedicated recovery equipment as well as the actual operating characteristics of the systems associated with each skimmer and (2) the use of new technology and response systems that will increase the effectiveness of mechanical recovery tactics.

The NTL is designed to encourage owners and operators of offshore facilities to include innovative offshore oil-spill response techniques, particularly for a continuous high-rate spill. NTL 2012-BSEE-N06 includes requirements for the submittal of information regarding subsea containment equipment and subsea dispersant application among other provisions. This NTL also encourages the inclusion of options that will improve spill-response capabilities such as

- using remote-sensing techniques as a tool for safe night operations to increase oilspill detection and to improve thickness determinations for ascertaining the effectiveness of response strategies;
- increasing spill-response operational time by reducing transit times to disposal locations and decontamination equipment;
- identifying sources for supplies and materials, such as fire boom and dispersants, that can support a response to an uncontrolled spill lasting longer than 30 days or for the duration of the spill response; and
- the use and specification of primary and secondary communications technology and software for coordinating and directing spill-response operations systems and/or providing a common operating picture to all spill management and response personnel, including the Federal On-Scene Coordinator and participating Federal and State government officials.

The BSEE has also issued NTL 2013-BSEE-N02, "Significant Change to Oil Spill Response Plan Worst Case Discharge Scenario," to clarify what BSEE considers a significant change in a worst-case discharge scenario, which requires that a revision to an OSRP be submitted. The guidance issued by this NTL states that a significant change in worst-case discharge may occur when calculating a new worst-case discharge based upon the following:

- the addition of a new facility installation or well;
- a modification to an existing facility; or
- a change in any assumptions and calculations used to determine the prior estimated worst-case discharge.

The NTL 2013-BSEE-N02 identifies the process an owner or operator of a facility should utilize to determine whether the newly calculated worst-case discharge represents a significant change. The BSEE considers a change in worst-case discharge as significant and thus requiring revision when the process identifies the need for additional onshore or offshore response equipment beyond what is included in an approved OSRP. Although information to make this determination is submitted to BOEM and forwarded to BSEE with a proposed exploration, development, or production plan, pursuant to NTL 2013-BSEE-N02, the 15-day timeframe for notification of a significant change will be enforced by BSEE as beginning no later than the date that the operator submitted an Application for Permit to Drill to BSEE.

Typically, for OSRP revisions, once BSEE approves an OSRP, it must be reviewed at least every 2 years, and modifications must be submitted in accordance with 30 CFR § 254.30(a). If no modifications are deemed necessary, the owner or operator must inform BSEE in writing that there are no changes. A separate revision to an OSRP must be submitted to BSEE within 15 days when the following conditions are met:

- there is a change that significantly reduces operator response capabilities;
- a significant change occurs in the worst-case discharge or in the type of oil being handled, stored, or transported at a facility;
- there is a change in the names or capabilities of the oil-spill removal organizations cited in the plan; or
- there is significant change to the area contingency plan.

The BSEE also issued NTL 2012-BSEE-N07, "Oil Discharge Written Follow-up Reports," to address the oil discharge reports (30 CFR § 254.46(b)(2)) that are required to be submitted by a responsible party to BSEE for spills >1 bbl within 15 days after a spill has been stopped or ceased. The responsible party is encouraged to report cause, location, volume, remedial action taken, sea state, meteorological conditions, and the size and appearance of the slick.

Mechanical Cleanup

As previously indicated, BSEE oversees a research program to improve the capabilities for detecting and responding to an oil spill in the marine environment. One of BSEE's recently completed research projects suggested an alternative to improve the present regulatory requirements at 30 CFR § 254.44 for determining the effective daily recovery capacity of spill-response skimming equipment. This suggested alternative would consider the encounter rate of a skimming system with spilled oil instead of the presently used de-rated pump capacity of a skimmer. This project was undertaken because the *Deepwater Horizon* spill response highlighted that the existing regulation may not be an effective or accurate planning standard and predictor of oil-spill response equipment recovery capacity. The project was completed in 2012 and the National Academy of Sciences completed a peer review in 2013. The BSEE is currently determining if any significant revisions to the report or to BSEE's oil-spill program are appropriate based upon the National Academy of Sciences' review (USDOI, BSEE, 2014). The USCG has indicated that the guidance generated by this research is applicable for offshore use but that a separate standard would still need to be developed for nearshore response capability determinations.

There have been some changes to the spill-response equipment staging locations previously reported in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, and WPA 238/246/248 Supplemental EIS. Due to these changes, it is expected that the oil-spill response equipment needed to respond to an offshore spill in a proposed lease sale area could be called out from one or more of the following oil-spill equipment base locations: New Iberia, Belle Chasse, Baton Rouge, Sulphur, Morgan City, Port Fourchon, Harvey, Leeville, Fort Jackson, Venice, Grand Isle, or Lake Charles, Louisiana; La Porte, Corpus Christi, Port Arthur, Aransas Pass, Ingleside, Galveston, or Houston, Texas; Pascagoula or Kiln, Mississippi; Mobile or Bayou La Batre, Alabama; and/or Panama City, Pensacola, Tampa, and/or Miami, Florida (Clean Gulf Associates, 2014; Marine Spill Response Corporation, 2014; National Response Corporation, 2014).

Dispersants

The USEPA updated the National Contingency Plan (NCP) product schedule in 2014. The 2014 NCP Product Schedule lists the following types of products that are authorized for use on oil discharges:

- dispersants;
- surface washing agents;
- surface collecting agents;
- bioremediation agents; and
- miscellaneous oil-spill control agents.

In February 2014, the USEPA published an NCP Product Schedule Notebook that presents manufacturers' summary information that describes (1) the conditions under which each of the products is recommended for use, (2) handling and worker precautions, (3) storage information, (4) recommended application procedures, (5) physical properties, (6) toxicity information, and (7) effectiveness information (USEPA, 2014).

Due to the unprecedented volume of dispersants applied for an extended period of time in situations not previously envisioned or incorporated in existing dispersant use plans (i.e., during the *Deepwater Horizon* spill response), the National Response Team has developed guidance for monitoring atypical dispersant operations. The guidance document, which was approved on May 30, 2013, is titled *Environmental Monitoring for Atypical Dispersant Operations: Including Guidance for Subsea Application and Prolonged Surface Application*. The subsea guidance generally applies to the subsurface ocean environment and focuses on operations in waters below 300 m (984 ft) and below the pycnocline, or the interface between an upper mixed density gradients and a lower stable density gradient. The surface application guidance supplements and complements the existing protocols as outlined within the existing Special Monitoring of Applied Response Technologies (SMART) monitoring program where the duration of the application of dispersants on discharged oil extends beyond 96 hours from the time of the first application (U.S. National Response Team, 2013). This guidance is provided to the Regional

Response Teams by the National Response Team to enhance existing SMART protocols and to ensure that their planning and response activities will be consistent with national policy.

Shoreline Cleanup Countermeasures

In addition, the USCG has worked diligently to improve coastal oil-spill response since the *Deepwater Horizon* oil spill by replacing the One Gulf Plan with separate Area Contingency Plans (ACPs) for each coastal USCG sector. The ACPs cover subregional geographic areas and represent the third tier of the National Response Planning System mandated by the Oil Pollution Act of 1990. The ACPs are a focal point of response planning. The Gulf of Mexico OCS Region's ACPs also include separate Geographic Response Plans, which are developed jointly with local, State, and other Federal entities to better focus spill-response tactics and priorities. These Geographic Response Plans contain the resources initially identified for protection during a spill, response priorities, procedures, and appropriate spill-response countermeasures.

3.2.2. Losses of Well Control

All losses of well control must be reported to BSEE. The BSEE clarified its procedure for loss of well control incident reporting in NTL 2010-N05, "Increased Safety Measures for Energy Development on the OCS," which became effective on June 8, 2010. The BSEE Drilling Safety Rule (Federal Register, 2012a) became effective on October 22, 2012. This rule implements certain additional safety measures recommended in NTL 2010-N05 by incorporating the recommendations contained in the DOI report titled Increased Safety Measures for Energy Development on the Outer Continental Shelf (Safety Measures Report) (USDOI, 2010) and the Deepwater Horizon Joint Investigation Team report (USDOI, BOEMRE and USDHS, CG, Joint Investigation Team, 2013). The BSEE amended the drilling, wellcompletion, well-workover, and decommissioning regulations related to well control, including subsea and surface blowout preventers, well casing and cementing, secondary intervention, unplanned disconnects, recordkeeping, and well plugging. The Drilling Safety Rule also enhanced the description and classification of well-control barriers, defined testing requirements for cement, clarified requirements for the installation of dual mechanical barriers, and extended requirements for blowout preventers (BOPs) and well-control fluids to well-completions, workovers, and decommissioning operations. Operators are required to document any loss of well-control event, even if temporary, and the cause of the event, and they are required to furnish that information by mail or email to the addressee indicated in the NTL. The operator does not have to provide information on kicks that were controlled, but the operator should include the release of fluids through a flow diverter (a conduit used to direct fluid flowing from a well away from the drilling rig).

The current definition for loss of well control is as follows:

- uncontrolled flow of formation or other fluids (the flow may be to an exposed formation [an underground blowout] or at the surface [a surface blowout]);
- uncontrolled flow through a diverter; and/or
- uncontrolled flow resulting from a failure of surface equipment or procedures.

A loss of well control can occur during any phase of development, i.e., exploratory drilling, development drilling, well completion, production, or workover operations. A loss of well control can occur when improperly balanced well pressure results in sudden, uncontrolled releases of fluids from a wellbead or wellbore (PCCI Marine and Environmental Engineering, 1999; Neal Adams Firefighters, Inc., 1991). From 2006 to 2010, of the 27 loss of well-control events reported in the GOM, 7 (26%) resulted in loss of fluids at the surface or underground (USDOI, BSEE, 2012). In addition to spills, the loss of well control can resuspend and disperse bottom sediments. Historically, since 1971, most OCS blowouts have resulted in the release of gas, while blowouts resulting in the release of oil have been rare.

A blowout preventer is a device with a complex of choke lines and hydraulic rams mounted atop a wellhead designed to close the wellbore with a sharp horizontal motion that may cut through or pinch shut casing and sever tool strings. The BOPs were invented in the early 1920's and have been instrumental in ending dangerous, costly, and environmentally damaging oil blowouts on land and in water. The BOPs

have been required for OCS oil and gas operations from the time offshore drilling began in the late 1940's.

The BOPs are actuated as a last resort upon imminent threat to the integrity of the well or the surface rig. For a cased well, which is the typical well configuration, the hydraulic ram of a BOP may be closed if oil or gas from an underground zone enters the wellbore to destabilize the well. By closing a BOP, usually by redundant surface-operated and hydraulic actuators, the drilling crew can prevent explosive pressure release and allow control of the well to be regained by balancing the pressure exerted by a column of drilling mud with formation fluids or gases from below. Chapter 3.2.1.9.2 of the 2012-2017 WPA/CPA Multisale EIS provides information on subsea well containment that could be utilized if a loss of well control occurred and resulted in a loss of fluids.

3.2.3. Pipeline Failures

The potential mechanisms for damage to OCS pipeline infrastructure include mass sediment movements and mudslides that can exhume or push the pipelines into another location, impacts from anchor drops or boat collisions, and accidental excavation or breaching because the exact whereabouts of a pipeline is uncertain. Pipeline failures could also be by rig/platform and pipeline activities supporting a CPA proposed action. Chapter 3.2.3 of the 2012-2017 WPA/CPA Multisale EIS describes previous incidents of OCS oil- and gas-related pipeline failures.

Any one of the mechanisms listed above could cause an OCS oil- and gas-related oil spill \geq 1,000 bbl. Any resulting spill size would be limited by the size of the pipeline and the ability of an operator to quickly shut off flow from the source. The median spill size estimated from a pipeline failure is 2,200 bbl (Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS). For a CPA proposed action, up to one spill of this size is estimated to occur during 40-year analysis period.

3.2.4. Vessel Collisions

The BSEE revised operator incident reporting requirements in a final rule effective July 17, 2006 (*Federal Register*, 2006a). The incident reporting rule more clearly defines what incidents must be reported, broadens the scope to include incidents that have the potential to be serious, and requires the reporting of standard information for both oral and written reports. As part of the incident reporting rule, BSEE's regulations at 30 CFR § 250.188(a)(6) require an operator to report all collisions that result in property or equipment damage greater than \$25,000. "Collision" is defined as the act of a moving vessel (including an aircraft) striking another vessel or striking a stationary vessel or object (e.g., a boat striking a drilling rig or platform). Chapter 3.2.4 of the 2012-2017 WPA/CPA Multisale EIS provides data related to vessel collisions and discusses methods of prevention and avoidance of vessel collisions. No new data have emerged that would cause BSEE to reevaluate its analysis for this Supplemental EIS.

3.2.5. Chemical and Drilling-Fluid Spills

Chapter 3.2.5 of the 2012-2017 WPA/CPA Multisale EIS describes OCS oil- and gas-related chemical and synthetic-based fluid spills. Below is a brief summary of that information.

Chemicals are stored and used to condition drill muds during production and in well completions, stimulation, and workover procedures. The most common chemicals spilled are methanol, ethylene glycol, and zinc bromide. Methanol and ethylene glycol may be used as a treatment to prevent the formation of gas hydrates while zinc bromide may be used in completion fluids. The chemicals that are used the most are also the chemicals that are spilled in the greatest volume. Completion fluids are used in the largest quantity and constitute the largest volume of accidental releases. Completion fluids consist of brines made from seawater mixed with calcium chloride, calcium bromide, and/or zinc bromide. A study of chemical spills from OCS oil- and gas-related activities determined that only two chemicals could potentially impact the marine environment—zinc bromide and ammonium chloride (Boehm et al., 2001). Both of these chemicals are used for well treatment or completion and, therefore, are not in continuous use. Most other chemicals are either nontoxic or used in small quantities. There are some differences in the operational needs for chemicals in deepwater versus shallow-water operations. Higher volumes of treatment chemicals (e.g., defoamers and hydrate inhibitors) are used in deepwater environments due to the conditions encountered there (Boehm et al., 2001).

Synthetic-based fluids (SBFs) or synthetic-based muds (SBMs) have been used since the mid-1990's. In deepwater drilling, SBFs are preferred over water-based muds because of the SBFs superior performance properties. The synthetic oils used in SBFs are relatively nontoxic to the marine environment and have the potential to biodegrade. However, it should be noted that SBFs are not permitted to be discharged into the marine environment; only cuttings wetted with SBF may be discharged after the majority of synthetic fluid has been removed. For further discussion on this topic, refer to Chapter 3.1.1.4.1 of the 2012-2017 WPA/CPA Multisale EIS. Accidental riser disconnects could result in the release of large quantities of drilling fluids and are of particular concern when SBFs are in use.

The BSEE tracks spill incidents of ≥ 1 bbl in size of chemical and synthetic-based fluids resulting from OCS oil and gas activities, and has historically produced counts and summaries for spills ≥ 50 bbl. **Table 3-8** provides information related to the number and volume of chemical and synthetic-based fluid spills in the GOM based on BSEE's counts and summaries. These data have been updated since the WPA 233/CPA 231 Supplemental EIS, which covered spills during the period of 2002-2009. A summary of 2013 data is not yet available. However, BOEM has conducted a search of the National Response Center database for standard reports using the search criteria "drilling mud" under the database's "material" field. This search revealed one spill of $\geq 1,000$ bbl, which was a spill of 1,531 bbl in April 2013 due to an unplanned riser disconnect (U.S. Dept. of Homeland Security, CG, 2013). Despite this spill, the updated chemical and SBF spills remain within the range of data presented in the 2012-2017 WPA/CPA Multisale EIS (Table 3-27) and WPA 233/CPA 231 Supplemental EIS. Thus, this new information did not change the validity of the chemical and SBF spills previously presented.

3.3. CUMULATIVE ACTIVITIES SCENARIO

3.3.1. OCS Program

The OCS Program scenario includes all activities that are projected to occur from past, proposed, and future lease sales during the 40-year analysis period. Projected reserve/resource production for the OCS Program (**Table 3-1**; WPA, CPA, and EPA) is 18.34-25.64 BBO and 75.886-111.627 Tcf of gas. **Table 3-3** of this Supplemental EIS presents projections of the major activities and impact-producing factors related to future Gulf of Mexico OCS Program activities.

The level of OCS oil- and gas-related activity is connected to oil prices, resource potential, cost of development, and rig availability rather than just, or even primarily to, the amount of acreage leased. The cumulative impacts of activities associated with the OCS Program on biological, physical, and socioeconomic resources are analyzed in **Chapter 4.1** of this Supplemental EIS and Chapters 4.1.1 and 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 233 Supplemental EIS.

Note that offshore and onshore impact-producing factors and scenarios associated with a WPA or an EPA proposed action (i.e., a typical lease sale that would result from a proposed action within the WPA or EPA) as well as OCS Program activity resulting from past and future lease sales in the WPA or EPA, are disclosed in the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, WPA 238/246/248 Supplemental EIS, and EPA 225/226 EIS.

3.3.2. State Oil and Gas Activity

All five Gulf Coast States have had some historical oil and gas exploration activity and, with the exception of Florida and Mississippi, currently produce oil and gas in State waters. The coastal infrastructure that supports the OCS Program also supports State oil and gas activities.

State oil and gas infrastructure consists of the wells that extract hydrocarbon resources, facilities that produce and treat the raw product, pipelines that transport the product to refineries and gas facilities for further processing, and additional pipelines that transport finished product to points of storage and final consumption. The type and size of infrastructure that supports production depends upon the size, type, and location of the producing field, the time of development, and the life cycle stage of operations. Chapter 3.3.2 of the 2012-2017 WPA/CPA Multisale EIS provides a reference for relevant historical information on State leasing programs. The most recent lease sale information for Texas and Louisiana has been updated below.

Texas

The most recent State oil and gas lease sale occurred on July 1, 2014. Thirteen parcels containing more than 21,520 ac of State lands were offered for oil and gas leasing in the offshore area by Texas State University Lands (State of Texas, General Lands Office, 2014). BOEM expects that Texas will conduct regular oil and gas lease sales during the 40-year cumulative activities scenario for OCS oil- and gas-related activity, although the lease sales' regularity could differ from current practices.

Louisiana

The most recent State oil and gas lease sale occurred on April 12, 2014. Forty-four leases containing more than 29,698 ac were offered for oil and gas leasing by the Office of Mineral Resources on the behalf of the State Mineral Board for Louisiana. The April 12, 2014, State lease sale offered no leases in offshore areas. During the 2013-2014 Fiscal Year, 99 offshore leases containing more than 164,154 ac were offered; of these, only 28 leases were awarded. BOEM expects that Louisiana will conduct regular oil and gas lease sales during the 40-year cumulative activities scenario for OCS oil- and gas-related activity, although the lease sales' regularity could differ from current practices (State of Louisiana, Dept. of Natural Resources, 2014).

Mississippi

BOEM expects Mississippi to institute a State lease sale program in the near future and to begin leasing in State waters during the 40-year cumulative activities scenario for OCS oil- and gas-related activity analyzed in this Supplemental EIS.

Alabama

Alabama has no established schedule of lease sales. The limited number of blocks in State waters has resulted in the State not holding regularly scheduled lease sales. The last lease sale was held in 1997. BOEM does not expect Alabama to institute a lease sale program in the near future, although there is at least a possibility of a lease sale in State waters during the 40-year cumulative activities scenario for OCS oil- and gas-related activity following a CPA proposed action.

Florida

Gulf Oil drilled the first offshore exploration wells in Florida in 1947; these wells were in Florida Bay south of Cape Sable in Monroe County. In 1956, Humble Oil drilled an exploration well in the State waters of Pensacola Bay in Santa Rosa County. All wells drilled in State waters were dry holes. Florida banned drilling in State waters in 1992. In 2005, Florida's Governor Jeb Bush and the Florida Cabinet signed a historic settlement agreement to buy out any existing leases in State waters and to eliminate the potential for oil drilling there. Between 1987 and 1995, Chevron made commercial gas discoveries in the Destin Dome leasing area, which is 25 mi (40 km) south of the western end of the Florida Panhandle in Federal OCS waters. The State of Florida objected to plans to produce the discovery. In May 2002, the U.S. Government agreed to buy back seven leases from Chevron, Conoco, and Murphy Oil for \$115 million and to hold in abeyance any further development of the Destin Dome discovery until 2022 and areas within 100 mi (161 km) of the coastline of the State of Florida.

In April 2009, three committees of the Florida House of Representatives approved a bill that would allow offshore drilling in State waters >3 mi (4.8 km) from the eastern Gulf shore. The bill passed the Florida House in April 2009 but died soon after in the Florida Senate.

BOEM does not expect Florida to institute a lease sale program in the near future, although it is possible that a change in policy could lead to leasing on the OCS or in State waters during the 40-year cumulative activities scenario for OCS oil- and gas-related activity analyzed in this Supplemental EIS.

Pipeline Infrastructure

A mature pipeline network exists in the GOM to transport oil and gas production from the OCS to shore (**Chapter 4.1.1.23.1**). The network carries oil and gas onshore and inland to refineries and terminals, and a network of pipelines distributes finished products such as diesel fuel or gasoline to and between refineries and processing facilities onshore (Peele et al., 2002, Figure 4.1). Expansion of this network is projected to be primarily small-diameter pipelines to increase the interconnectivity of the existing network and a few major interstate pipeline expansions. Any new larger-diameter pipelines would likely be constructed to support onshore and offshore LNG terminals. Refer to Chapter 3.3.2 of the 2012-2017 WPA/CPA Multisale EIS for information on pipeline infrastructure activities within the State waters of Texas, Louisiana, Mississippi, and Alabama.

3.3.3. Other Major Factors Influencing Offshore Environments

Other influencing factors occur concurrently with OCS oil- and gas-related activity in the offshore areas of the Gulf Coast States. Some of these factors are (1) dredged material disposal, (2) OCS sand borrowing, (3) marine transportation, (4) military activities, (5) artificial reefs and rigs-to-reefs development, (6) offshore LNG projects, (7) development of gas hydrates, and (8) renewable energy and alternative use.

Cumulative impacts to biological, physical, and socioeconomic resources from these types of non-OCS oil- and gas-related activities are analyzed in **Chapter 4.1** of this Supplemental EIS and in Chapters 4.1.1 and 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

3.3.3.1. Dredged Material Disposal

Dredged material is described in 33 CFR part 324 as any material excavated or dredged from navigable waters of the United States. Materials from maintenance dredging are primarily disposed of offshore on existing dredged-material disposal banks and in ocean dredged-material disposal sites (ODMDSs), which are regulated by USEPA under the Clean Water Act and the Marine Protection, Research, and Sanctuaries Act. Additional dredged-material disposal areas for maintenance or new-project dredging are developed as needed and must be evaluated and permitted by the U.S. Army Corps of Engineers (COE) and relevant State agencies prior to construction.

If funds are available, COE uses dredge materials beneficially for restoring and creating habitat, for beach nourishment projects, and for industrial and commercial development (**Chapter 3.3.4.3**). Virtually all ocean dumping that occurs today is maintenance dredging of sediments from the bottom of channels and bodies of water in order to maintain adequate channel depth for navigation and berthing. There are four small authorized open-water disposal areas in Louisiana and Mississippi along open-water stretches of the main Gulf Intracoastal Waterway (GIWW) between Louisiana and Mississippi: Louisiana Disposal Area 66 (1,593 ac; 645 ha); and Mississippi Disposal Area 65A (1,962 ac; 794 ha), Disposal Area 65B (815 ac; 330 ha), and Disposal Area 65C (176 ac; 71 ha) (U.S. Dept. of the Army, COE, 2010, Table 5). Dredged materials from the GIWW are sidecast at these locations. The ODMDSs utilized by COE in the cumulative activities area include those shown in Table 3-30 of the 2012-2017 WPA/CPA Multisale EIS. Maps on the USEPA's website show the locations for the ODMDSs in Louisiana and Texas (USEPA, 2011a).

There are two primary Federal environmental statutes governing dredge material disposal. The Marine Protection, Research, and Sanctuaries Act (also called the Ocean Dumping Act) governs transportation of dredge material for the purpose of disposal into ocean waters. Section 404 of the Clean Water Act governs the discharge of dredged or fill material into U.S. coastal and inland waters. The USEPA and COE are jointly responsible for the management and monitoring of ocean disposal sites. The responsibilities are divided as follows: (1) COE issues permits under the Clean Water Act and the Marine Protection, Research, and Sanctuaries Act; (2) the USEPA has the lead for establishing environmental guidelines/criteria that must be met to receive a permit under either statute; (3) permits for ODMDS disposal are subject to USEPA review and concurrence; and (4) the USEPA is responsible for identifying recommended ODMDSs.

The COE's Ocean Disposal Database reports the amount of dredged material disposed in ODMDSs by district (U.S. Dept. of the Army, COE, 2010, Table 1). Table 3-9 shows the quantities of dredged

materials disposed of in ODMDSs between 2001 and 2010 by the COE's Galveston and New Orleans Districts.

The New Orleans District dredges an average annual 78 million yd³ (59,635,279 m³). Current figures estimate that approximately 38 percent (or 30 million yd³ [22,936,646 m³]) of that average is available for the beneficial use of dredge materials program (U.S. Dept. of the Army, COE, 2013). The remaining 62 percent of the total material dredged yearly by COE's New Orleans District is disposed of at placement areas regulated under Section 404 of the Clean Water Act, at ODMDSs, or it is stored in temporary staging areas located inland (e.g., the Pass a Loutre Hopper Dredge Disposal Site at the head of the Mississippi River's main "birdfoot" distributary channel system).

Cumulative Activities Scenario: BOEM anticipates that over the next 40 years the amount of dredged material disposed at ODMDSs will fluctuate but will generally follow historical trends of the practice utilized to date by the Galveston and New Orleans Districts. Over the last 10 years, the Galveston District has averaged about 6.9 million yd³ (5.3 million m³) of material dredged per year disposed at ODMDSs, while the New Orleans District has averaged about 21.7 million yd³ (16.6 million m³) of material dredged per year disposed at ODMDSs. Quantities may decrease slightly as various entities identify additional onshore sites for the beneficial uses of dredged material. The 1972 Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (the London Convention), to which the U.S. is a signatory, requires annual reporting of the amount of materials disposed at sea. The COE prepares the dredged material disposed portion of the report to the International Maritime Organization; these yearly reports are available on the COE's Ocean Disposal Database (U.S. Dept. of the Army, COE, 2010, Table 1).

3.3.3.2. OCS Sand Borrowing

If OCS sand is requested for coastal restoration or beach nourishment, BOEM uses the following two types of instruments: a noncompetitive negotiated agreement that can only be used for obtaining sand and gravel for public works projects funded in part or whole by a Federal, State, or local government agency; and a competitive lease in which any qualified person may submit a bid through a lease sale. BOEM has issued 38 noncompetitive negotiated agreements, but it has never had a competitive lease sale for OCS sand and gravel resources. The OCS Program continues to focus on identifying sand resources for coastal restoration, investigating the environmental implications of using those resources, and processing noncompetitive use requests.

Since 2003, BOEM has participated in the multiagency Louisiana Sand Management Working Group to identify, prioritize, and define a pathway for accessing sand resources in the near-offshore OCS of Louisiana, an area where competitive space use mainly involves OCS oil and gas infrastructure such as wells, platforms, and pipelines. Table 3-32 of the 2012-2017 WPA/CPA Multisale EIS shows the projected approximate volume of OCS sand uses for coastal restoration projects over the next 5 years. Approximately 76 million yd³ (58 million m³) are expected to be needed for coastal restoration projects as reported by the Gulf of Mexico OCS Marine Minerals Program. To visualize such a dimension, this volume of sand could fill the Louisiana Superdome stadium 16.5 times.

BOEM received earmarked funds in 2005 to conduct offshore sand studies to investigate available sources of OCS sand for restoring coastal areas in Louisiana, Texas, Alabama, and Mississippi that were damaged by Hurricanes Katrina and Rita. Sand sources identified through this Agency's cooperative effort with Louisiana will likely serve as the major source of material for the restoration of the barrier islands planned as part of the Louisiana Coastal Area ecosystem restoration study (U.S. Dept. of the Army, COE, 2004), projects identified in the Louisiana 2012 Coastal Master Plan (State of Louisiana, Coastal Protection and Restoration Authority, 2012), and projects developed under the Deepwater Horizon NRDA and 2012 Resources and Ecosystems Sustainability, Tourist Opportunities and Revived Economies of the Gulf Coast States Act (RESTORE Act) barrier island restoration efforts. The Louisiana Coastal Protection and Restoration Authority and Louisiana State University have undertaken joint efforts, funded in part through BOEM, to identify potential sand resources in the Trinity and Tiger Shoal complex, located in the Vermilion and South Marsh Island leasing areas, and to examine the long-term effects of dredging sand on Ship Shoal, a large potential borrow area about 15 mi (24 km) offshore Isle Dernieres, south-central Louisiana. BOEM also has a cooperative agreement with the Louisiana Geological Survey to conduct an evaluation of sand resources associated with paleochannels offshore Cameron Parish, Louisiana. Meanwhile, the General Lands Office in Texas has collected new geologic

and geophysical data to describe potential resources in buried Pleistocene Sabine and Colorado River paleochannels, located offshore Jefferson and Brazoria Counties.

Since the dredging of OCS sand and the associated activities of oceangoing dredge vessels could present some use conflicts on blocks also leased for oil and/gas extraction, BOEM initiated a regional offshore sand management program in Louisiana in 2003, which, over the course of 10 years and several meetings, has developed options and recommendations for an orderly process to manage the competing use of OCS sand resources in areas of existing OCS infrastructure. With input from the Sand Management Working Group, BOEM has developed guidelines for sand resource allocations, maintaining a master schedule of potential sand dredging projects, developing procedures for accessing sand under emergency conditions, and establishing environmental requirements for the use of offshore borrow areas.

BOEM has not entered into a noncompetitive agreement for OCS sand use in the WPA. The following seven agreements for OCS sand have been issued in the CPA: (1) Holly Beach, Cameron Parish, Louisiana; (2) the South Pelto test area, Terrebonne Parish, Louisiana; (3) Pelican Island shoreline restoration, Plaquemines Parish, Louisiana; (4) Raccoon Island marsh creation, Terrebonne Parish, Louisiana; (5) St. Bernard Shoals, St. Bernard and Plaquemines Parishes, Louisiana; (6) Ship Shoal in South Pelto Area for Caminada Headland restoration in Lafourche and Jefferson Parishes, Louisiana; and (7) Sabine Bank in West Cameron Area for Cameron Parish shoreline restoration, Cameron Parish, Louisiana. Dredging for the Caminada Headland and Cameron Parish Restoration Projects in South Pelto and West Cameron Areas, respectively, began in August 2013 and is expected to continue through the summer of 2014.

BOEM is expected to issue one new agreement in Louisiana for the *Deepwater Horizon* NRDA Whiskey Island Restoration Project in Terrebonne Parish using sand from Ship Shoal Block 88. In March 2014, BOEM issued a noncompetitive agreement for Phase Two of the Caminada Headland Restoration Project in Lafourche and Jefferson Parishes using sand from South Pelto Blocks 13 and 14. BOEM anticipates that dredging for these projects will begin in late 2014. BOEM is also working with the COE's Mobile District and the National Park Service on the Mississippi Coastal Improvements Program, which will use OCS sand from the Mobile Area for barrier island restoration projects along East and West Ship Islands in the Gulf Island National Seashore. Dredging associated with the Mississippi Coastal Improvements Program will likely begin in late 2014. In July 2013, BOEM began working with NOAA and FWS on a North Breton Island Restoration Project planning proposal that will be included in the forthcoming draft NRDA restoration plan. The North Breton Island Restoration Project (Louisiana) will use sand from the Breton Sound Area to restore shorebird and brown pelican nesting habitat in the Breton National Wildlife Refuge. The U.S. Department of the Interior's Geological Survey (USGS) will be conducting sand resource surveys in summer 2014, and it is estimated that dredging for the North Breton Island Restoration Project will begin in late 2015.

BOEM has outlined its responsibility as steward of significant sand resources on the OCS in NTL 2009-G04. That NTL provides guidance for the avoidance and protection of significant OCS sediment resources essential to coastal restoration initiatives in the BOEM Gulf of Mexico OCS Region.

Cumulative Activities Scenario: Over the next 40 years, increased use of OCS sand for Louisiana restoration projects is likely. Currently, no Texas restoration projects have been specifically identified. The boundary between the OCS and Texas State waters (9 nmi [10 mi; 16 km]) allows that some offshore sand is within the jurisdiction of the State; however, the easternmost portion of the shelf in Texas State waters is relatively devoid of beach-quality sand deposits. The Texas General Lands Office, in cooperation with BOEM and the Texas Bureau of Economic Geology, has investigated the potential for use of Heald and Sabine Banks as borrow for beach restoration projects, but it has yet to identify specific projects. With respect to Louisiana, some uncertainty exists as to the amount of offshore OCS sand that will eventually be sought for coastal restoration projects. The Louisiana Coastal Area Ecosystem Restoration plan potentially may use up to 60 million yd³ (46 million m³) (U.S. Dept. of the Army, COE, 2009a). Recently, there has been an increase in requests from Louisiana for State-funded OCS sand resources projects. BOEM anticipates that this growing trend of State-led projects will continue into the future as restoration funding is made available directly to the State through the Coastal Impact Assistance Program, the Gulf of Mexico RESTORE Act, the *Deepwater Horizon* NRDA restoration, and the Gulf of Mexico Energy Security Act.

3.3.3.3. Marine Transportation

Under current conditions, freight and cruise ship passenger marine transportation within the analysis area should continue to grow at a modest rate or remain relatively unchanged based on historical freight and cruise traffic statistics. In 2011, the Port of Houston was the second largest port in the United States, while the Port of New Orleans was the sixth largest. Tankers carrying mostly petrochemicals account for about 60 percent of the vessel calls in the Gulf of Mexico. Dry-bulk vessels including bulk vessels, bulk containerships, cement carriers, ore carriers, and wood-chip carriers accounted for another 17 percent of the vessel calls. The GOM also supports a popular cruise industry. In 2011, there were 149 cruise ship departures from Galveston, 139 cruise ship departures from New Orleans, and 199 cruise ship departures from Tampa (USDOT, MARAD, 2012).

Total port calls, or vessel stops at a port, in the U.S. are increasing as a whole, and total port calls within the GOM are also increasing. Gulf of Mexico port calls represent approximately 32 percent of total U.S. port calls. Trends for GOM port calls relative to total U.S. port calls shows an approximate 3 percent average increase of GOM port calls over the last decade, from 17,673 in 2002 to 22,989 in 2011 (USDOT, MARAD, 2013a) (**Table 3-10**).

Table 3-2 presents the estimated number of vessel trips that would occur as a result of a CPA proposed action. Annual OCS oil- and gas-related vessel traffic due to a CPA proposed action represents a small proportion (<1%) of the total vessel traffic in the GOM (**Chapter 3.1.1.8** of this Supplemental EIS and Chapter 3.1.1.8.4 of the 2012-2017 WPA/CPA Multisale EIS). Annual OCS oil- and gas-related vessel traffic due to cumulative OCS oil- and gas-related activity represents between 9 and 12 percent of the total traffic in the GOM.

Cumulative Activities Scenario: It is expected that the usage of GOM ports will continue to increase by approximately 3 percent annually over the next 40 years. As such, it is anticipated that port calls by all ship types will be bounded annually by a lower limit of current use and an upper limit of approximately 85,000 vessel port calls.

3.3.3.4. Military Activities

Twelve military warning areas and six Eglin Water Test Areas are located within the Gulf (**Figure 2-2**). Six designated military areas and three Eglin Water Test Areas (EWTAs) that are used for military operations lie wholly or partially within the CPA (**Figure 2-2**). The military warning areas within the CPA total approximately 13.3 million ac (about 23% of the total acreage of the CPA). The EWTAs within the CPA total approximately 7 million ac (about 12% of the total acreage of the CPA). Chapter 3.3.3.4 of the 2012-2017 WPA/CPA Multisale EIS describes military activities within the OCS.

Cumulative Activities Scenario: BOEM anticipates that, over the next 40 years, the military use areas currently designated in the CPA will remain the same and that none of them would be released for nonmilitary use. Over the cumulative activities scenario, BOEM expects to continue to require military coordination stipulations in these areas. The intensity of the military's use of these areas, or the type of activities conducted in them, is anticipated to fluctuate with the military mission needs.

3.3.3.5. Artificial Reefs and Rigs-to-Reefs Development

A full description of artificial reefs and Rigs-to-Reefs operations is presented in the 2012-2017 WPA/CPA Multisale EIS. No new significant information was discovered that would alter impact conclusions based upon these operations. The following is a summary; for more details, refer to **Chapter 3.1.1.10** of this Supplemental EIS and Chapter 3.1.1.10 of the 2012-2017 WPA/CPA Multisale EIS.

Artificial reefs have been used along the coastline of the U.S. since the early 19th century. Stone (1974) documented that the use of obsolete materials to create artificial reefs has provided valuable habitat for numerous species of fish in areas devoid of natural hard bottom. Some studies have indicated artificial reefs in marine waters not only attract fish but, in some instances, may also enhance the production of fish (Stone et al., 1979; Carr and Hixon, 1997; Dance et al., 2011). All of the five Gulf Coast States—Texas, Louisiana, Mississippi, Alabama, and Florida—have artificial reef programs and plans.

Many OCS oil and gas platforms have the potential to serve as artificial reefs. Offshore oil and gas platforms have been contributing hard substrate to the GOM since the first platform was installed in 1942. Approximately 12 percent of the platforms decommissioned from the Gulf OCS have been used in the

Rigs-to-Reefs Program. Scientific and public interest in the ecology of offshore structures and the potential benefits of contributing substantial quantities of hard substrate to a predominantly soft bottom environment may lead to increased emphasis on the creation of artificial reefs through the Rigs-to-Reefs Program. At present, Texas, Louisiana, and Mississippi participate in the Rigs-to-Reefs Program.

CPA Proposed Actions Scenario (Typical Lease Sale): The number of platform removals projected for a CPA proposed action is 35-67 (**Table 3-2** of this Supplemental EIS and Table 3-3 of the 2012-2017 WPA/CPA Multisale EIS). The number of rigs anticipated to enter the Rigs-to-Reefs Program as a result of a CPA proposed action is approximately 10 percent of the projected removals, or 3-7 rigs in the CPA.

OCS Program Scenario: Over the course of the 40-year cumulative activities scenario for the OCS Program (2012-2051), BOEM projects that a total of 1,279-1,837 platforms will be removed (**Table 3-3**). If approximately 10 percent of these structures are accepted into the Rigs-to-Reefs Program, there may be as many as 128-184 additional artificial reefs installed in the WPA, CPA, and EPA.

3.3.3.6. Offshore Liquefied Natural Gas Projects and Deepwater Ports

There are currently no LNG terminals operating on the OCS in the GOM. The following provides updates to the status of LNG projects and deepwater ports in the GOM as provided in Chapter 3.3.3.6 of the 2012-2017 WPA/CPA Multisale EIS.

Louisiana

Gulf Gateway Energy Bridge. On February 22, 2012, Excelerate Energy notified the U.S. Department of Transportation's Maritime Administration (MARAD) and the USCG of its intention to decommission the Gulf Gateway Energy Bridge deepwater port, then the only operational LNG terminal operation on the OCS in the GOM. Excelerate's decision to decommission the facility was due to irreparable hurricane damage to pipelines interconnecting with the deepwater port and a changing natural gas market, which impacted the operator's ability to receive consistent shipments. After careful review and evaluation of the proposed removal plans, MARAD and other Federal agencies authorized Excelerate's decommissioning program for the Gulf Gateway Energy Bridge deepwater port (USDOT, MARAD, 2013b).

Main Pass Energy Hub. Due to significant financial challenges over the past several years, Freeport McMoRan was unable to comply with the conditions of the Record of Decision authorizing the Main Pass Energy Hub. As such, on January 2, 2012, MARAD moved forward to rescind approval of the Record of Decision for the Freeport McMoRan project (USDOT, MARAD, 2013b).

Texas

Texas Offshore Port System. On April 12, 2010, the applicant submitted a letter to MARAD to withdraw its application due to its inability to secure necessary financing. The MARAD, in a letter dated May 5, 2010, acknowledged Texas Offshore Port System's withdrawal and, thereafter, terminated the application and all processing activities. This project remains closed with MARAD (USDOT, MARAD, 2013c).

Florida

Port Dolphin. On March 29, 2007, Port Dolphin Energy LLC filed an application with MARAD to construct a deepwater port located in Federal waters approximately 28 mi (45 km) offshore of Tampa, Florida. The applicant is a wholly-owned subsidiary of Höegh LNG. The proposed port will consist of two submerged turret loading buoys similar to those used in the Northeast Gateway and Neptune projects. On October 26, 2009, MARAD issued a Record of Decision approving, with conditions, the Port Dolphin Energy Deepwater Port License application, and on April 19, 2010, the official license was issued. Port Dolphin worked with the relevant Federal and State of Florida agencies to obtain the required authorizations and permits for construction and operation of the facility. Construction of the Port Dolphin facility commenced in late 2013 (USDOT, MARAD, 2013b).

3.3.3.7. Development of Gas Hydrates

Gas hydrates are a unique, energy-rich, and poorly understood class of chemical substances in which molecules of one material (in this case solid-state water — ice) form an open lattice that physically encloses molecules of a certain size (in this case — methane) in a cage-like structure without chemical bonding (Berecz and Balla-Achs, 1983; Henriet and Mienert, 1998; Collett, 2002). The DOE and cooperating agencies have conducted a multiyear characterization program of naturally occurring methane hydrates (gas hydrates) in the GOM. The first cruise for characterizing GOM gas hydrates took place in 2005, and the second took place in 2009. The following provides an update to the Joint Industry Project (JIP) information in Chapter 3.3.3.7 of the 2012-2017 WPA/CPA Multisale EIS.

Following the events of the *Deepwater Horizon* incident in the Gulf of Mexico, the conditions and requirements for drilling operations in the Gulf of Mexico underwent a dramatic change that resulted in a substantial and detailed evaluation of what is plausible (and affordable) during the remainder of the project. As a result of this evaluation, the JIP and DOE have determined to focus the remainder of the project on the development and testing of an integrated suite of pressure coring and pressure core handling and analysis devices in collaboration with research and development experts from government, academia, and industry. The coring tools will have the flexibility to be used from various platforms in future DOE marine hydrate research expeditions. A decision has been made that a Leg III drilling / pressure coring expedition will not be conducted as part of this project (USDOE, National Energy Technology Laboratory, 2013a).

Methodologies for the extraction and production of gas hydrates are being developed in a collaborative field trial between ConocoPhillips-Japan Oil, Gas, and Metals National Corporation and DOE at the Ignik Sikumi well site in Alaska. The Ignik Sikumi gas hydrate test well was drilled and logged during the winter of 2010/2011, and gas hydrate production testing was carried out there during the winter of 2011/2012. A production method was tested by injecting a combination of carbon dioxide and nitrogen gas into the methane hydrate reservoir. The injection phase was followed by an extended period of depressurization and flowback of gas (including methane) to the surface. The data from this study are still being analyzed, but the effort represents the first extraction of methane gas (USDOE, National Energy Technology Laboratory, 2013b). A multiyear project is also being led by the Japan Oil, Gas, and Metals National Corporation and Japan's National Institute of Advanced Industrial Science and Technology and in collaboration with the USGS's Gas Hydrates Project, researchers from Georgia Tech, DOE, and the JIP in Japan. In 2012, researchers retrieved and preserved pressurized sediment cores containing gas hydrates from the Nankai Trough offshore Japan. These researchers are also conducting the first offshore production test to track how much methane can be released from deepwater gas hydrate deposits (USDOI, GS, 2013). The development of offshore production methods is essential to gas hydrate production methods in the Gulf of Mexico.

This does not change BOEM's anticipation that, within 40 years, it is likely that the first U.S. domestic production from gas hydrates may occur in Alaska, where gas obtained from onshore hydrates will either support local oil and gas field operations or be available for commercial sale if and when a gas pipeline is constructed to the lower 48 states. However, Moridis et al. (2008) stated that it is not possible to discount the possibility that the first U.S. domestic production of gas hydrates could occur in the GOM. Despite the substantially increased complexity and cost of offshore operations, there is a mature network of available pipeline capacity and easier access to markets in the Gulf of Mexico.

3.3.3.8. Renewable Energy and Alternative Use

The two primary categories of renewable energy that have the potential for development in the coastal and OCS waters of the U.S. are (1) wind turbines and (2) marine hydrokinetic systems. Chapter 3.3.3.8 of the 2012-2017 WPA/CPA Multisale EIS describes renewable energy and alternative use programs and potential action within the OCS.

3.3.4. Other Major Factors Influencing Coastal Environments

The GOM is a dynamic, constantly changing system where natural and human-caused factors simultaneously impact both the coastal areas of the Gulf Coast States and OCS oil- and gas-related activities. These factors include (1) sea-level rise and subsidence, (2) Mississippi Delta hydromodification, (3) maintenance dredging and Federal channels, and (4) coastal restoration programs.

Cumulative impacts to biological, physical, and socioeconomic resources from these types of non-OCS oil- and gas-related activities are analyzed in the cumulative impacts analysis sections of **Chapter 4.1** of this Supplemental EIS and Chapters 4.1.1 and 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

3.3.4.1. Sea-Level Rise and Subsidence

As part of the Mississippi River's delta system, both the Delta Plain and the Chenier Plain of the Louisiana Coastal Area (LCA) are experiencing relatively high rates of subsidence. All coastlines of the world have been experiencing a gradual absolute rise of sea level that is based on measurements across the globe and that extends across the influence of a single sedimentary basin. There are two aspects of sea-level rise during the past 10,000 years (Holocene Epoch): absolute sea-level rise and relative sea-level rise. Absolute sea-level rise refers to a net increase in the volume of water in the world's oceans. Relative sea-level rise refers to the appearance of sea-level rise, a circumstance where subsidence of the land is taking place at the same time that an absolute sea-level change may be occurring. Geologists tend to consider all sea-level rise as relative because the influence of one or the other is difficult to separate over geologic timeframes.

An absolute sea-level rise would be caused by the following two main contributors to the volume of ocean water on the Earth's surface: (1) change in the volume of ocean water based on temperature; and (2) change in the amount of ice locked in glaciers, mountain ice caps, and the polar ice sheets. For the period 1961-2003, thermal expansion of the oceans accounts for only 23 ± 9 percent of the observed rate of sea-level rise (Bindoff et al., 2007); the remainder is water added to the oceans by melting glaciers, ice caps, and the polar ice sheets. The measurement of sea-level rise over the last century is based on tidal gauges and, more recently, satellite observations, which are not model-dependent. Projections for future sea-level rise are dependent on temperature. As determined by an analysis of air bubbles trapped in Antarctic ice cores, today's atmospheric concentration of CO₂ is the highest it has ever been over the last for atmospheric CO₂ concentration or temperatures measurements since the Industrial Revolution are generally not in dispute, proxy data for climates of the geologic past are a source of debate, and the models constructed to make projections for how climate may change remain controversial. Climate models are very sophisticated, but they may not account for all variables that are important or may not assign to modeled variables the weight of their true influence.

The Intergovernmental Panel on Climate Change (IPCC) reported that, since 1961, global average sea level (mean sea level) has risen at an average rate of 1.8 millimeter/year (mm/yr) (0.07 in/yr) and, since 1993, at 3.1 mm/yr (0.12 in/yr) (Bindoff et al., 2007). With updated satellite data to 2010, Church and White (2011) show that satellite-measured sea levels continue to rise at a rate close to that of the upper range of the IPCC projections (IPCC, 2012). It is unclear whether the faster rate for 1993-2010 reflects decadal variability or an increase in the longer-term trend. In the structured context used by the IPCC, there is high confidence that the observed sea-level rise rate increased from the 19th to the 20th century. The average global rate for the 20th century was determined by Bindoff et al. (2007) to be 1.7 ± 0.5 mm/yr (0.066 \pm 0.02 in) and the total 20th-century average rise is estimated to be 0.17 m (0.55 ft) (Bindoff et al. 2007). The U.S. Global Change Research Program reported that over the last 50 years sea level has risen up to 8 in (203 mm) along parts of the Atlantic and Gulf Coasts, which included Louisiana and Texas (Karl et al., 2009), and that global sea level is currently rising at an increasing rate.

Although absolute sea-level rise is a contributor to the total amount of sea-level rise along the Gulf Coast, subsidence is the most important contributor to the total. In comparison to other areas along the Gulf Coast, Louisiana's Mississippi Delta and Chenier Plains are built of young sediments deposited over the last 7,000 years. These deltaic sediments have been undergoing compaction and subsidence since they were deposited. The land is sinking at the same time that sea level is rising, contributing to high rates of relative sea-level rise along the Louisiana coast. Blum and Roberts (2009) posited four scenarios

for subsidence and sea-level rise, and they concluded sediment starvation alone would cause approximately 2,286 mi² (592,071 ha) of the modern delta plain to submerge by 2100, without any other impacting factors contributing to land loss.

A general value of approximately 6 mm/yr (0.23 in/yr) of subsidence from sediment compaction, dewatering, and oxidation of organic matter (Meckel et al., 2006; Dokka, 2006) is a reasonable rate to attribute to the LCA, with the understanding that subsidence rates along the Louisiana coast are spatially variable and influenced by subsurface structure and the timing and manner that the delta was deposited. It is an oversimplification of a complex system when applied to the entire coast, but it is an estimate that is reasonable based on recent data.

Stephens (2009 and 2010) reported that the influence of subsurface structure has not been taken into account in subsidence assessments in the LCA and along the Gulf Coast (Stephens, 2009, page 747). Most workers studying the effects of subsidence along the LCA have focused on surficial or near-surface geologic data sources and have made no attempt to integrate basin analysis into planning for coastal restoration or flood control project planning.

Results from the National Assessment of Coastal Vulnerability to Sea Level Rise estimate the rate of sea-level rise in the GOM, in particular the areas around Eugene Island, Louisiana, to be the highest (~9.6 mm/yr; 0.38 in/yr) in the United States (Pendleton et al., 2010). This classification is based upon variables such as coastal geomorphology, regional coastal slope, rate of sea-level rise, wave and tide characteristics, and historical shoreline change rates. As much as 88 percent of the northern GOM falls within the high vulnerability category. Areas ranked as very low vulnerability category still have some sea-level rise (1.38 mm/yr [0.054 in/yr] at Apalachicola, Florida). Given this range, BOEM anticipates that, over the next 40 years, the northern GOM will likely experience a minimum relative sea-level rise of 55.2 mm (2.17 in) and a maximum relative sea-level rise of 384 mm (15.1 in). Sea-level rise and subsidence together have the potential to affect many important areas, including the OCS oil and gas industry, waterborne commerce, commercial fishery landings, and important habitat for biological resources (State of Louisiana, Coastal Protection and Restoration Authority, 2012). Oil and gas infrastructure located within 15 in (381 mm) of the highest high tide in coastal areas along the Gulf could potentially be affected by sea-level rise during this program. Refer to Chapter 4.1.1.23.1 for sea-level rise effects to land use and infrastructure associated with the OCS Program. Programmatic aspects of climate change relative to the environmental baseline for the Gulf of Mexico OCS Program are discussed in Appendix G.3 of the 2012-2017 WPA/CPA Multisale EIS.

Formation Extraction and Subsidence

Extracting fluids and gas from geologic formations can lead to localized subsidence at the surface. The Texas Gulf of Mexico coast is experiencing high (5-11 mm/yr; 0.19-0.43 in/yr) rates of relative sealevel rise that are the sum of subsidence and eustatic (absolute) sea-level rise (Sharp and Hill, 1995). Even higher rates are associated with areas of groundwater pumping from confined aquifers. Berman (2005, Figure 3) reported that 2 m (6 ft) of subsidence had occurred in the vicinity of the Houston Ship Channel by the mid-1970's as a result of groundwater withdrawal.

Morton et al. (2005) examined localized areas or "hot spots" corresponding to fields in the LCA where oil, gas, and brine were extracted at known rates. Morton et al. (2005) shows measured subsidence along transects across these fields that range from 4 to 18 mm/yr (0.15 to 0.7 in/yr), with the greatest rates tending to coincide with the surface footprints of oil or gas fields. Mallman and Zoback (2007) interpreted downhole pressure data in several Louisiana oil fields in Terrebonne Parish and found localized subsidence over the fields is consistent with theoretically expected reservoir compaction; however, they could not explain the entirety of localized rates to the subsidence rates measured and observed on a regional scale.

Dokka (2011) suggests that the magnitude of deep subsidence in urban New Orleans, an area that has limited oil and gas production, is too large to be explained by any combination of faulting, deep compaction, and lithospheric loading alone. Dokka proposes that the residual subsidence is caused largely due to local and regional groundwater withdrawal, causing as much as 0.8 m (2.6 ft) of subsidence since around 1960.

Down-to-the-basin faulting, also called listric or growth faulting, is a long recognized fault style along deltaic coastlines, and the Mississippi Delta is no exception (Dokka et al., 2006; Gagliano, 2005a). There is currently disagreement in the literature regarding the primary cause of modern fault movement in

the Mississippi Delta region, and the degree to which it is driven by fluid withdrawal or sediment compaction resulting from the sedimentary pile pressing down on soft, unconsolidated sediments that causes downward and toward the basin movement along surfaces of detachment in the shallow and deep subsurface.

Berman (2005) discussed the conclusions of Morton et al. (2005) and believed that they failed to make the case that hydrocarbon extraction caused substantial subsidence over the broader area of coastal Louisiana, a conclusion also reached by Gagliano (2005b).

Oil production on the LCA peaked at 513 MMbbl in 1970 and gas production peaked at 7.8 million cubic feet (MMcf) in 1969 (Ko and Day, 2004). From the peak, the level of production activity is slowly decreasing. The magnitude of subsidence caused by formation extraction is a function of how pervasive the activity is across the LCA. The oil and gas field maps in Turner and Cahoon (1987) and Ko and Day (2004) seem an adequate basis to estimate the LCA's oil- and gas-field footprint at ~20 percent of the land area. The amount of subsidence from formation extraction is also occurring on a delta platform that is experiencing natural subsidence and sea-level rise. Fluid and gas extraction may lead to high local subsidence on the scale of individual oil and gas fields but not as a pervasive contributor to regional subsidence across the LCA.

3.3.4.2. Mississippi River Hydromodification

The Mississippi River has been anchored in place by engineered structures built in the 20th century and has been hydrologically isolated from the delta it built. The natural processes that allowed for the river to flood and distribute alluvial sediments across the delta platform and for channels to meander have been shut down. Hydromodifying interventions include construction of (1) levees along the river and distributary channel systems, (2) upstream dams and flood control structures that impound sediment and meter the river flow rate, and (3) channelized canals with earthen or armored banks. Once the natural processes that act to add sediment to the delta platform to keep it emergent are shut down, subsidence begins to outpace deposition of sediment.

Of total upstream-to-downstream flow, the Old River Control Structure (built 1963) diverts 70 percent of flow down the levee-confined channels of the Mississippi River and 30 percent down the unconfined Atchafalaya River, which has been actively aggrading its delta plain since 1973 (LaCoast.gov, 2011). Blum and Roberts (2009) reported that the time-averaged sediment load carried by the Mississippi and Atchafalaya Rivers before installation of the Old River Control Structure was ~400-500 million tons per year and that the average suspended load available to either river after construction of the Old River Control Structure was ~205 million tons per year (Blum and Roberts, 2009, Figure 2). Modern sediment loads are, therefore, less than half that required to build and maintain the modern delta plain, a figure largely in agreement with previous work reporting decreases in suspended sediment load of nearly 60 percent since the 1950's (Turner and Cahoon, 1987, Figure 3-8; Tuttle and Combe, 1981).

Blum and Roberts (2009) posited four scenarios for subsidence and sea-level rise, and concluded sediment starvation alone would cause approximately 2,286 mi² (592,071 ha) of the modern delta plain to submerge by 2100 without any other impacting factors contributing to landloss. The use of sediment budget modeling, a relatively new tool for landloss assessment, appears to indicate that hydrographic modification of the Mississippi River has been the most profound man-caused influence on landloss in the LCA. Sediment starvation of the deltaic system is allowing rising sea level and subsidence to outpace the constructive processes building and maintaining the delta.

BOEM anticipates that, over the next 40 years, there might be minor sediment additions resulting from new and continuing freshwater diversion projects managed by COE. Of the 196 projects in the 1990 Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) program (LaCoast.gov, 2013), 8 involve the introduction of sediment or the reestablishment of natural water and sediment flow regimes to allow the delta plain to replenish and build up, 9 are freshwater diversion projects, 8 are outfall management, 3 are sediment diversion, and 49 are marsh creations. Insofar as these projects represent land additions to the LCA, they are already accounted for in the discussion below under coastal restoration programs.

3.3.4.3. Maintenance Dredging and Federal Channels

Along the Texas Gulf Coast there are eight federally maintained navigation channels in addition to the GIWW. Most of the dredged materials from the Texas channels have high concentrations of silt and clay. Beneficial uses of dredged material include beach nourishment for the more sandy materials, and storm reduction projects or ocean disposal for much of the finer-gained material. Ocean disposal locations along the Texas coast are situated so that materials are placed on the down drift side of the channel (U.S. Dept. of the Army, COE, 1992).

Maintenance dredging activity from 2001 through 2010 for Federal channels by COE's Galveston District are reported in COE's Ocean Disposal Database (U.S. Dept. of the Army, COE, 2010, Table 1) (**Table 3-11**). **Table 3-12** shows the same information for Federal channels in Louisiana, and **Table 3-13** shows the same information for Federal channels in Mississippi, Alabama, and Florida.

There are 10 Federal navigation channels in the LCA, ranging in depth from 4 to 14 m (12 to 45 ft) and in width from 38 to 300 m (125 to 1,000 ft), that were constructed as public works projects beginning in the 1800's (Good et al., 1995, Table 1). The Federal navigation channels in Louisiana identified by Good et al. (1995, Table 1) are as follows: (1) GIWW East of the Mississippi River; (2) Mississippi River Gulf Outlet; (3) GIWW between the Atchafalaya and Mississippi Rivers; (4) GIWW West of the Atchafalaya River; (5) Barataria Bay Waterway; (6) Bayou Lafourche; (7) Houma Navigation Canal; (8) Mermentau Navigation Channel; (9) Freshwater Bayou; and (10) Calcasieu River Ship Channel. The Mississippi River Gulf Outlet has been decommissioned and sealed with a rock barrier as of July 2009 (Shaffer et al., 2009, page 218).

Turner and Cahoon (1987, Table 4-1) and DOI (Table 3-14 of the 2012-2017 WPA/CPA Multisale EIS) identified OCS oil- and gas-related channels that bore traffic supporting the OCS Program. Between these works and Good et al. (1995, Table 1), channel names do not well agree and a comparison is difficult. No channel is exclusively used by OCS Program traffic and only a fraction of the total traffic is attributable to OCS use, i.e., approximately 10-13 percent. BOEM compiled Table 3-37 of the 2012-2017 WPA/CPA Multisale EIS using the information in industry plans to show that, between 2003 and 2008, the vast majority (80-90%) of OCS service vessels used service-base facilities in the LCA that are located along rivers or that lie within wetlands that are already saline or brackish. Table 3-37 of the 2012-2017 WPA/CPA Multisale EIS shows that the contribution of OCS Program traffic to bank degradation and freshwater wetland loss is minimal.

The GIWW is a Federal, shallow-draft navigation channel constructed to provide a domestic connection between Gulf ports after the discovery of oil in East Texas in the early 1900's, as well as to provide a pathway to support the growing need for interstate transport of steel and other manufacturing materials in the early 20th century. It extends approximately 1,400 mi (2,253 km) along the Gulf Coast from St. Marks in northwestern Florida to Brownsville, Texas, with the Louisiana part reported to be 994 mi (1,600 km) in length (Good et al., 1995). With the exception of the east-west GIWW in Louisiana, Federal channels are approximately north-south in orientation, making them vulnerable to saltwater intrusion during storms.

Direct cumulative impacts include the displacement of wetlands by original channel excavation and disposal of the dredged material. Good et al. (1995) estimated that direct impacts from the construction of Federal navigation channels were between 58,000 and 96,000 ac (23,472 and 38,850 ha). Indirect cumulative landlosses resulted from hydrologic modifications, saltwater intrusion, or bank erosion from vessel wakes (Wang, 1988). Once cut, navigation canals tend to widen as banks erode and subside, depending on the amount of traffic using the channel. Good et al. (1995, Table 1) estimated indirect impacts on wetland loss from bank erosion at 35,000 ac (14,164 ha).

The COE reported that the New Orleans District has the largest channel maintenance dredging program in the U.S., with an annual average of 70 million yd³ (53.5 million m³) of material dredged (U.S. Dept. of the Army, COE, 2009a). Of that total, COE's Ocean Disposal Database indicates that the New Orleans District has averaged about 21.7 million yd³ (16.6 million m³) of material dredged per year disposed at ODMDSs over the last 10 years (U.S. Dept. of the Army, COE, 2010, Table 1) (**Chapter 3.3.3.1**). Federal channels and canals are maintained throughout the onshore cumulative impact area by COE, State, county, commercial, and private interests. Proposals for new and maintenance dredging projects are reviewed by Federal, State, and local agencies as well as by private and commercial interests to identify and mitigate adverse impacts upon social, economic, and environmental resources.

Maintenance dredging is performed on an as-needed basis. Typically, COE schedules surveys every 2 years on each navigation channel under its responsibility to determine the need for maintenance dredging. Dredging cycles may be from 1 to as many as 11 years from channel to channel and from channel segment to channel segment. The COE is charged with maintaining all larger navigation channels in the cumulative activities area. The COE dredges millions of cubic meters of material per year in the cumulative activities area, most of which is under the responsibility of the New Orleans District. Some shallower port-access channels may be deepened over the next 10 years to accommodate deeper draft vessels. Vessels that support deepwater OCS oil- and gas-related activities may include those with drafts to about 7 m (23 ft).

Construction and maintenance dredging of rivers and navigation channels can furnish sediment for beneficial purpose, a practice the COE calls the beneficial use of dredge materials program. Drilling, production activity, and maintenance at most coastal well sites in Louisiana require service access canals that undergo some degree of aperiodic maintenance dredging to maintain channel depth, although oil and gas production on Louisiana State lands peaked in 1969-1970 (Ko and Day, 2004). In recent years, dredged materials have been sidecast to form new wetlands using the beneficial use of dredge materials program. Potential areas suited for beneficial use of dredge material are considered most feasible within a 10-mi (16-km) boundary around authorized navigation channels in the New Orleans District, but the potential for future long distance pipelines for disposal of dredge material could increase considerably the potential area available for the beneficial use of dredge materials program (U.S. Dept. of the Army, COE, 2009a).

As discussed in **Chapter 3.3.3.1**, COE's New Orleans District dredges an average annual 78 million yd^3 (59,635,279 m³). Current figures estimate that approximately 38 percent (or 30 million yd^3 [22,936,646 m³]) of that average is available for the beneficial use of the dredge materials program (U.S. Dept. of the Army, COE, 2013). The COE reported that, over the last 20 years, approximately 12,545 ha (31,000 ac) of wetlands have been created with dredged materials, most of which are located on the LCA delta plain (U.S. Dept. of the Army, COE, 2013).

Cumulative Activities Scenario: The construction of Federal channels is not a growth industry that would lead to future direct taking of wetlands, and at least one Louisiana channel (Mississippi River Gulf Outlet) has been decommissioned and sealed with a rock barrier as of July 2009 (Shaffer et al., 2009). Current research has shown that the erosion of canals has slowed from a widening rate of 1.71 m/yr (5.61 ft/yr) between 1978 and 1998 to 0.99 m/yr (3.25 ft/yr) between 1998 and 2006 (Thatcher et al., 2011). "The mean annual rates of total canal widening or narrowing ranged from -6.47 m/year (-21.23 ft/year) (measured as shoreline retreat) for the Theodore Ship Channel, Alabama, to 2.58 m/year (8.46 ft/year) for the Atchafalaya River, Louisiana (measured as shoreline advancement)" (Thatcher et al., 2011, Table 7). To estimate the effect of vessel traffic on the erosion of navigational canals, 30 percent of all banks were assumed to be armored either by rock rip-rap, degraded rock rip-rap, or with bulkheads (Thatcher et al., 2011).

BOEM conservatively estimates that there are approximately 4,850 km (3,013 mi) of Federal navigation channels, bayous, and rivers potentially exposed to OCS traffic in the EPA, CPA, and WPA (Table 3-7) and that the average canal is widening at a rate of 0.99 m/year (3.25 ft/year). Gulfwide, this results in a total annual landloss of approximately 831 ac/yr (336 ha/yr). Therefore, over the 40-year cumulative activities scenario, landloss in Federal navigation channels could total approximately 33,221 ac (13,444 ha). Total landloss in these areas can be caused by multiple factors, including saltwater intrusion, hurricanes, and vessel traffic. The OCS Program-related traffic constitutes a larger percent of the total vessel traffic (OCS Program-related and non-OCS Program-related) in the CPA (12-16%) than in the WPA (3-5%). All service vessels associated with EPA actions are assumed to use CPA navigational canals while inland and constitute less than 1 percent of the total vessel traffic. Assuming that vessel traffic alone was the sole source of erosion, the rate of landloss would be related to the usage of those canals by both OCS Program-related vessels and other vessel traffic. Using the estimated proportion of OCS Program vessel traffic as a measurement of erosion, BOEM conservatively estimates the OCS Program's contribution to bank erosion over the 40-year cumulative scenario to be 2,766-3,645 ac (1,119-1,475 ha). This number is considered conservative because open waterways were included in the total length of Federal navigation channels, vessel size was not taken into consideration, and there are sources of erosion to navigation canals other than vessel traffic alone.

In the Louisiana Coastal Master Plan (State of Louisiana, Coastal Protection and Restoration Authority, 2012), it is estimated that up to 1,750 mi² (4,500 km²) of land will be lost in the next 50 years

(or approximately 896,000 ac [362,600 ha] of land in the next 40 years). Using BOEM's conservative estimate of approximately 2,360 km (1,470 mi) of Federal navigation channels, bayous, and rivers potentially exposed to OCS traffic in the LCA (**Table 3-7**) and the average canal widening rate of -0.99 m/yr (-3.25 ft/yr), a total landloss of approximately 16,190 ac (6,550 ha) in navigation canals may be estimated over the next 40 years. Using this estimate and comparing it with the total expected landloss in coastal Louisiana over the next 40 years, BOEM estimates that approximately 2 percent of the total landloss in Louisiana will occur due to salt intrusion, hurricanes, and vessel traffic (OCS Program-related and non-OCS Program-related) in navigation canals. Because OCS Program-related vessel traffic constitutes only 12-16 percent of the total vessel traffic in the CPA, BOEM conservatively estimates that OCS Program-related vessel traffic would contribute <0.5 percent (or <2,647 ac [1,071 ha]) of the landloss in coastal Louisiana in the next 40 years.

Net landloss due to navigation canals alone can be calculated by comparing erosion rates with beneficial activities such as land gained through the use of dredged sands. BOEM anticipates that, over the next 40 years, if current trends in the beneficial use of dredged sand and sediment are simply projected based on past land additions (U.S. Dept. of the Army, COE, 2009b), approximately 50,000 ac (20,234 ha) may be created or protected in the LCA through dredged materials programs. Subtracting projected landlosses of 16,190 ac (6,550 ha) caused by bank widening of navigation channels in the LCA from land added or protected by beneficial uses of dredged material, an estimated net gain of 33,800 ac (13,700 ha) between the years 2013 and 2063 could occur.

For a more complete and detailed discussion of maintenance dredging and Federal channels, refer to Chapter 3.3.4.3 of the 2012-2017 WPA/CPA Multisale EIS. For more information on coastal restoration programs, refer to **Chapter 3.3.4.4** of this Supplemental EIS.

3.3.4.4. Coastal Restoration Programs

The Mississippi Delta sits atop a pile of Mesozoic and Tertiary-aged sediments up to 7.5 mi (12.2 km) thick at the coast and up to 11.4 mi (18.3 km) thick offshore (Gagliano, 1999). Five major deltaic deposition lobes are generally recognized within about the uppermost 50 m (164 ft) of sediments (Britsch and Dunbar, 1993; Frazier, 1967, Figure 1). The oldest lobe contains peat deposits dated as 7,240 years old (Frazier, 1967, page 296). The youngest delta lobe of the Mississippi Delta is the Plaquemines-Balize lobe that has been active since the St. Bernard lobe was abandoned about 1,000 years ago. The lower Mississippi River has shifted its course to the GOM every thousand years or so, seeking the most direct path to the sea while building a new deltaic lobe. Older lobes were abandoned to erosion and subsidence as the sediment supply was shut off. Because of the dynamics of delta building and abandonment, the LCA experiences relatively high rates of subsidence relative to more stable coastal areas eastward and westward (U.S. Dept. of the Army, COE, 2004).

The first systematic program authorized for coastal restoration in the LCA was the 1990 CWPPRA, otherwise known as the "Breaux Act." Individual CWPPRA projects are designed to protect and restore between 10 and 10,000 ac (4 and 4,047 ha), require an average of 5 years to transition from approval to construction, and are funded to operate for 20 years (U.S. Government Accountability Office, 2007), which is a typical expectation for project effectiveness (Campbell et al., 2005).

The 1990 CWPPRA introduced an ongoing program of relatively small projects to partially restore the coastal ecosystem. As the magnitude of Louisiana's coastal landlosses and ecosystem degradation became more apparent, so too appeared the need for a more systematic approach to integrate smaller projects with larger projects to restore natural geomorphic structures and processes. Projects have ranged from small demonstration projects to projects that cost over \$50 million. The COE reports that, as of May 2013, there are 196 authorized CWPPRA projects, 99 of which have been completed. Another 20 projects are under construction, 34 are in the engineering and design phase, and 43 have been The COE projects the creation of over deauthorized or transferred to another program. 81,000 "anticipated total acres" (32,780 ha) from constructed projects. Of the 60 projects not yet completed as of mid-2013, COE anticipates that those projects will result in 33,297 anticipated total acres (13,474 ha) (LaCoast.gov, 2013). Of the 99 completed projects listed on LaCoast.gov (2013), more than half were one of three categories types: shoreline protection (29 projects); hydrologic restoration (24 projects); or marsh creation (16 projects). The Coast 2050 Report (State of Louisiana, Dept. of Natural Resources, 1998) combined previous restoration planning efforts with new initiatives from private citizens, local governments, State and Federal agency personnel, and the scientific community to

converge on a shared vision to sustain the coastal ecosystem. The LCA Ecosystem Restoration Study (U.S. Dept. of the Army, COE, 2004) built upon the Coast 2050 Report. The LCA's restoration strategies generally fell into one of the following categories: (1) freshwater diversion; (2) marsh management; (3) hydrologic restoration; (4) sediment diversion; (5) vegetative planting; (6) beneficial use of dredge material; (7) barrier island restoration; (8) sediment/nutrient trapping; and (9) shoreline protection, as well as other types of projects (Louisiana Coastal Wetlands Conservation and Restoration Task Force, 2006, Table 1).

Following Hurricanes Katrina and Rita in 2005, an earlier emphasis on coastal or ecosystem restoration of the LCA was reordered to at least add an equal emphasis on hurricane flood protection. The Department of Defense Appropriations Act of 2006 authorized COE to develop a comprehensive hurricane protection analysis to present a full range of flood control, coastal restoration, and hurricane protection measures for south Louisiana (U.S. Dept. of the Army, COE, 2009b). The Appropriations Act required Louisiana to create a State organization to sponsor the hurricane protection and restoration projects that resulted. The State legislature established the Coastal Protection and Restoration Authority and charged it with coordinating the efforts of local, State, and Federal agencies to achieve long-term, integrated flood control and wetland restoration. The Coastal Protection and Restoration Authority developed a comprehensive master plan for a sustainable coast (State of Louisiana, Coastal Protection and Restoration Authority, 2007); this plan served as their vision of an integrated program designed to link what had once been separate areas of activity—flood protection and coastal restoration. The Coastal Protection and Restoration Authority's Annual Plans prioritize the types of projects undertaken each fiscal year. It is not entirely clear how coordination between the State and Federal authorities is undertaken in order to develop the range of projects selected for the State's Coastal Protection and Restoration Authority's Annual Plan and COE's plan (U.S. Dept. of the Army, COE, 2009a).

The Coastal Protection and Restoration Authority released a Final Coastal Master Plan in 2012. The Plan's objectives focus on flood protection, harnessing natural processes, supporting coastal habitats, sustaining cultural heritage, and promoting a working coast (State of Louisiana, Coastal Protection and Restoration Authority, 2012).

There is no simple way to anticipate the following: (1) which projects the State's Coastal Protection and Restoration Authority will admit to its Annual Plan; (2) which projects (among those undertaken for COE's comprehensive range of plans for flood control, coastal restoration, and hurricane protection measures for the LCA) will feed into the Coastal Protection and Restoration Authority's Annual Plan for authorization; and (3) ultimately which, if any, of the aforementioned projects will be completed. Because these projects are chosen on the basis of annual appropriations, there is no simple way to establish projections for land added or preserved over the cumulative activities scenario.

Coastal Impact Assistance Program

The Energy Policy Act of 2005 was signed into law by President George W. Bush on August 8, 2005. Section 384 of the Energy Policy Act of 2005 amended Section 31 of the OCSLA (43 U.S.C. § 1356(a)) to establish the Coastal Impact Assistance Program (CIAP). Under Section 384, Congress directed the Secretary to disburse \$250 million for each of the fiscal years 2007 through 2010 to eligible OCS oil- and gas-producing States and coastal political subdivisions.

The authority and responsibility for the management of CIAP is vested in the Secretary of the Interior; the Secretary delegated this authority and responsibility to BOEM up until September 30, 2011. In 2011, the Secretary announced that FWS would take over administration of CIAP effective October 1, 2011, because the program aligned with FWS's conservation mission and similar grant programs run by FWS. The eligibility requirements for States, coastal political subdivisions, and fundable projects remained largely the same after the transfer.

The CIAP provides Federal grant funds derived from Federal offshore lease revenues to oil-producing states for conservation, protection, and restoration of coastal areas. The CIAP funds can be directed to a number of different projects, including restoration of wetlands; mitigation of damage to fish, wildlife, or natural resources; planning assistance and payment of the administrative costs of complying with these objectives; implementation of a federally approved marine, coastal, or comprehensive conservation management plan; and mitigation of the impact of OCS oil- and gas-related activities through the funding of onshore infrastructure projects and public service needs.

Eligible CIAP States	Eligible CIAP Coastal Political Subdivisions
Alabama	Baldwin and Mobile Counties
Alaska	Municipality of Anchorage and Bristol Bay, Kenai Peninsula, Kodiak Island, Lake and Peninsula, Matanuska-Susitna, North Slope, and Northwest Arctic Boroughs
California	Alameda, Contra Costa, Los Angeles, Marin, Monterey, Napa, Orange, San Diego, San Francisco, San Luis Obispo, San Mateo, Santa Barbara, Santa Clara, Santa Cruz, Solano, Sonoma, and Ventura Counties
Louisiana	Assumption, Calcasieu, Cameron, Iberia, Jefferson, Lafourche, Livingston, Orleans, Plaquemines, St. Bernard, St. Charles, St. James, St. John the Baptist, St. Martin, St. Mary, St. Tammany, Tangipahoa, Terrebonne, and Vermilion Parishes
Mississippi	Hancock, Harrison, and Jackson Counties
Texas	Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Harris, Jackson, Jefferson, Kenedy, Kleberg, Matagorda, Nueces, Orange, Refugio, San Patricio, Victoria, and Willacy Counties

Natural Resource Damage Assessment Trustee Council

The Oil Pollution Act, as provided in 33 U.S.C. § 2706, allowed the designation of certain Federal agencies, States, and Indian tribes-collectively known as the Natural Resource Damage Assessment Trustee Council (Trustee Council). The Trustee Council is authorized to act on behalf of the public to (1) assess natural resource injuries resulting from a discharge of oil or the substantial threat of a discharge and response activities and (2) develop and implement a plan(s) for restoration of those injured resources (USDOI, 2012). With respect to NRDA for the Deepwater Horizon explosion and oil spill, a list of trustees can be found at http://www.gulfspillrestoration.noaa.gov/about-us/co-trustees/. On September 27, 2010, the Trustee Council submitted documentation supporting their determination of jurisdiction and their intent to conduct restoration planning. Executive Order 13554, signed on October 5, 2010, recognized the role of the Trustee Council under the Oil Pollution Act and required that the Gulf Coast Ecosystem Restoration Task Force support the NRDA process by referring potential ecosystem restoration actions to the Trustee Council for consideration. Specifically, Executive Order 13554 recognized the importance of carefully coordinating the work of the Task Force with the Trustee Council, "whose members have statutory responsibility to assess natural resource damages from the Deepwater Horizon Oil Spill, to restore trust resources, and seek compensation for lost use of those trust resources" (The White House, 2012). The Trustee Council is currently in the early restoration phase, and their data collection and analysis are ongoing (USDOI, 2012).

Gulf Coast Ecosystem Restoration Council

The Gulf Coast Ecosystem Restoration Task Force (refer to Chapter 3.3.3.4 of the 2012-2017 WPA/CPA Multisale EIS) was terminated in December 2012, following release of Executive Order 13626 in September 2012 and affirming the Federal Government's Gulf Coast ecosystem restoration efforts in light of the recent passage of the RESTORE Act. The RESTORE Act established a mechanism for providing funding to the Gulf region to restore ecosystems and rebuild local economies damaged by the *Deepwater Horizon* oil spill. Additionally, the RESTORE Act established the Gulf Restoration Council, an independent entity charged with developing a comprehensive plan for ecosystem restoration in the Gulf Coast (Comprehensive Plan), as well as any future revisions to the Comprehensive Plan. This Council replaced the Gulf Coast Ecosystem Restoration Task Force in December 2012.

Among its other duties, the Gulf Restoration Council is tasked with identifying projects and programs aimed at restoring and protecting the natural resources and ecosystems of the Gulf Coast region, to be funded from a portion of the Trust Fund; establishing such other advisory committees as may be necessary to assist the Gulf Restoration Council, including a scientific advisory committee and a committee to advise the Gulf Restoration Council on public policy issues; gathering information relevant to Gulf Coast restoration, including through research, modeling, and monitoring; and providing an annual report to the Congress on implementation progress. Consistent with the RESTORE Act, the Comprehensive Plan developed by the Gulf Restoration Council will include provisions necessary to fully incorporate the Strategy, projects, and programs recommended by the Task Force (The White House, 2012).

3.3.5. Natural Events and Processes

Chapter 3.3.5 of the 2012-2017 WPA/CPA Multisale EIS describes in detail natural events and processes in the GOM, including physical oceanography and hurricanes.

Since 2009, most of the extreme atmospheric events in the GOM have been categorized as tropical storms with strong winds, heavy rain, and storm surges causing coastal flooding. However, on August 28, 2012, Hurricane Isaac made landfall in southeastern Louisiana as a Category 1 hurricane. While there were no reports of moderate or extensive damage to offshore oil or gas infrastructure in the GOM, Hurricane Isaac did result in the suspension of small amounts of tarballs and some oil from sediments (Mulagabal et al., 2013). This conforms with predictions in the 2012-2017 WPA/CPA Multisale EIS analysis and is discussed more fully in **Chapter 4.1.1.2.1** of this Supplemental EIS.

3.3.6. Oil Spills

Oil spills related to non-OCS oil- and gas-related activities such as State oil and gas activity or vessel collisions (including tankering, barging, or State oil and gas vessels) can result in the contamination of offshore or coastal environments. The Oil Pollution Act of 1990 strengthens planning and prevention activities in waters by (1) providing for the establishment of spill contingency plans for all areas of the U.S., (2) mandating the development of response plans for individual tank vessels and certain facilities for responding to a worst-case discharge or a substantial threat of such a discharge, and (3) providing requirements for spill-removal equipment and periodic inspections. Oil spills associated with a CPA proposed action are discussed in Chapter 3.2.1 of this Supplemental EIS and Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS, and WPA 233/CPA 231 Supplemental EIS. Refer to Chapter 3.2.1.9 of this Supplemental EIS and Chapter 3.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS for more information on the Oil Spill Pollution Act and other response requirements and initiatives regarding oil spills. Spills from tankers involve the spillage of crude oil, whereas barge spills involve spills of both crude oil and other petroleum products. Anderson et al. (2012) noted that tanker spill rates have continued to have a substantial decline since 2000. Most likely, tanker spills have declined due to major regulatory changes in the early 1990's that substantially eliminated the use of single-hull tankers by requiring double hulls or their equivalent (Anderson et al., 2012). A majority of spills from tankers occurred in coastal areas (37 spills) verses offshore (16 spills) between 1974 and 2008. Barge spill rates for the last 15 years (1994 through 2008) declined dramatically as compared with the entire time period of available data (1974 through 2008), especially for crude oil barges and for both spill sizes $\geq 1,000$ bbl and >10,000 bbl (Anderson et al., 2012). From 1974 through 2008, 197 petroleum spills \geq 1,000 bbl (28 of which were crude oil spills) occurred from barges in U.S. coastal, offshore, and inland waters (including U.S. territorial waters). Because the data available on barge transport in U.S. waters do not differentiate between inland and coastal/offshore transport, inland transport was included.

CHAPTER 4

DESCRIPTION OF THE ENVIRONMENT AND IMPACT ANALYSIS

4. DESCRIPTION OF THE ENVIRONMENT AND IMPACT ANALYSIS

The impacts of 10 proposed WPA and CPA lease sales were analyzed in the *Gulf of Mexico OCS Oil* and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement (2012-2017 WPA/CPA Multisale EIS) (USDOI, BOEM, 2012b), and this analysis was updated in the *Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement* (WPA 233/CPA 231 Supplemental EIS) (USDOI, BOEM, 2013a). An analysis of the routine, accidental, and cumulative impacts of a CPA proposed action on the environmental, socioeconomic, and cultural resources of the GOM can be found in Chapter 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1 of the WPA 233/CPA 231 Supplemental EIS are hereby incorporated by reference.

The purpose of this Supplemental EIS is to determine if there are significant new circumstances or information bearing on a CPA proposed action or its impacts, as stated in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, and, if so, to disclose those changes and conclusions. This includes all relevant new information available since the publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. This Supplemental EIS analyzes the potential impacts of a CPA proposed action on sensitive coastal environments, offshore marine resources, onshore and offshore socioeconomic resources, and cultural resources.

4.1. PROPOSED CENTRAL PLANNING AREA LEASE SALES 235, 241, AND 247

Proposed CPA Lease Sales 235, 241, and 247 are tentatively scheduled to be held in March 2015, 2016, and 2017, respectively. The proposed CPA lease sale area encompasses about 63 million ac of the total CPA area of 66.45 million ac. This area begins 3 nmi (3.5 mi; 5.6 km) offshore Louisiana, Mississippi, and Alabama, and extends seaward to the limits of the United States' jurisdiction (often the Exclusive Economic Zone) in water depths up to approximately 3,346 m (10,978 ft) (**Figure 1-1**). As of August 2014, approximately 44.1 million ac of the proposed CPA lease sale area are currently unleased. A CPA proposed action would offer for lease all unleased blocks within the proposed CPA lease sale area for oil and gas operations (**Figure 2-1**), with the following exceptions:

- (1) whole and portions of blocks deferred by the Gulf of Mexico Energy Security Act of 2006; and
- (2) blocks that are adjacent to or beyond the United States' Exclusive Economic Zone in the area known as the northern portion of the Eastern Gap.

The DOI is conservative throughout the NEPA process and includes the total area within the CPA for environmental review even though the leasing of portions of the CPA (subareas or blocks) can be deferred during a Five-Year Program.

Chapter 4.1.1 presents a brief summary of the baseline data for the physical, biological, and socioeconomic resources that would potentially be affected by a CPA proposed action or the alternatives. For additional information on the baseline data for the physical, biological, and socioeconomic resources that would potentially be affected by a CPA proposed action or the alternatives, refer to Chapter 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to updated information provided in Chapter 4.2.1 of the WPA 233/CPA 231 Supplemental EIS.

Chapter 4.1.1 also presents analyses of the potential impacts of routine events, accidental events, and cumulative activities associated with a CPA proposed action or the alternatives on these resources. Baseline data are considered in the assessment of impacts from proposed CPA Lease Sales 235, 241, and 247 on these resources. In addition, **Appendix B** ("Catastrophic Spill Event Analysis") serves as a complement to this chapter and provides additional analysis of the potential impacts of a low-probability catastrophic oil spill, which is not reasonably expected and not part of a CPA proposed action, to the environmental and cultural resources and the socioeconomic conditions analyzed below.

The Deepwater Horizon explosion off the Louisiana coast resulted in the largest oil spill in U.S. history. An event such as this has the potential to adversely affect multiple resources over a large area. The level of adverse effect depends on many factors, including the sensitivity of the resource as well as the sensitivity of the environment in which the resource is located. All effects may not initially be seen and some could take years to fully develop. The following analyses of impacts from the *Deepwater Horizon* explosion, oil spill, and response on the physical, biological, and socioeconomic resources are based on post-Deepwater Horizon credible scientific information that was publicly available at the time This credible scientific information was applied using accepted this document was prepared. methodologies, including numerical modeling of data and scientific writing methods to convey the information of BOEM's subject-matter experts' technical knowledge and experience. However, the Trustee Council of the NRDA for the *Deepwater Horizon* oil spill continues to study, measure, and interpret impacts arising out of that spill. Because the NRDA information has not yet been made available to BOEM or the general public, there are thus instances in which BOEM is faced with incomplete or unavailable information that may be relevant to evaluating reasonably foreseeable significant adverse impacts on the human environment. While incomplete or unavailable information could conceivably result in potential future shifts in baseline conditions of habitats that could affect BOEM's decisionmaking, BOEM has determined that there is sufficient basis to proceed with this Supplemental EIS while operating on the basis of the most current available data and expertise of BOEM's subject-matter experts. Chapter 4.1.1 and Appendix B provide a summary of existing credible scientific evidence related to this issue and BOEM's evaluation of potential impacts based upon theoretical approaches or research methods generally accepted in the scientific community. Despite the unavailability of complete information from the NRDA process, BOEM has determined that it can make an informed decision even without this incomplete or unavailable information because BOEM utilizes the best available scientifically credible information in its decisionmaking process and because, although BOEM cannot speculate as to the results of ongoing NRDA studies, BOEM experts can apply other scientifically credible information using accepted theoretical approaches and research methods, such as information on related or surrogate species. Moreover, BOEM will continue to monitor these resources for effects caused by the *Deepwater Horizon* explosion, oil spill, and response, and will ensure that future BOEM environmental reviews take into account any new information that may emerge.

Chapter 3.2.1 of this Supplemental EIS provides a brief summary of the information on accidental spills that could result from all operations conducted under the OCS Program, as well as information on the number and sizes of spills from non-OCS sources. Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS provides the number of spills \geq 1,000 bbl and <1,000 bbl estimated to occur as a result of a CPA proposed action. BOEM estimates that the mean number of spills \geq 1,000 bbl for a CPA proposed action is up to one spill. Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS provides spill rates for several spill-size categories. Chapter 3.2.1.8 and Figures 3-8 through 3-28 of the 2012-2017 WPA/CPA Multisale EIS describe the probabilities of a spill \geq 1,000 bbl occurring and contacting modeled environmental resources. For additional information on accidental spills that could result from all operations conducted under the OCS Program, as well as information on the number and sizes of spills from non-OCS sources, refer to **Chapter 3.2.1** of this Supplemental EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and to Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS.

Analytical Approach

The analyses of potential effects to the wide variety of physical, environmental, and socioeconomic resources in the vast area of the GOM and adjacent coastal areas is very complex. Specialized education, experience, and technical knowledge are required, as well as familiarity with the numerous impactproducing factors associated with oil and gas activities and other activities that can cause cumulative impacts in the area. Knowledge and practical working experience of major environmental laws and regulations such as NEPA, the Clean Water Act, Clean Air Act, Coastal Zone Management Act (CZMA), Endangered Species Act (ESA), Marine Mammal Protection Act (MMPA), the Magnuson-Stevens Fishery Conservation and Management Act, and others are also required.

In order to accomplish this task, BOEM has assembled a multidisciplinary staff with hundreds of years of collective experience. The vast majority of this staff has advanced degrees with a high level of knowledge related to the particular resources discussed in this chapter. This staff prepares the input to BOEM's lease sale EISs and a variety of subsequent postlease NEPA reviews, and they are also involved

with ESA, essential fish habitat (EFH), and CZMA consultations. In addition, this same staff is also directly involved with the development of studies conducted by BOEM's Environmental Studies Program. The results of these studies feed directly into our NEPA analyses.

For this Supplemental EIS, BOEM developed a set of assumptions and a scenario, and described the impact-producing factors that could occur from routine oil and gas activities, as well as accidental events. These assumptions, scenario, and factors are summarized in **Chapter 3** of this Supplemental EIS and are discussed in detail in Chapter 3 of the 2012-2017 WPA/CPA Multisale EIS. On the basis of these assumptions, scenario, and factors, BOEM's multidisciplinary staff applies its knowledge and experience to analyze the potential effects that could arise out of proposed CPA Lease Sales 235, 241, and 247.

For most resources, the conclusions developed by BOEM's subject-matter experts regarding the potential effects of proposed CPA Lease Sales 235, 241, and 247 are necessarily qualitative in nature; however, these conclusions are based on the expert opinion and judgment of highly trained subject-matter experts. BOEM's staff approaches this effort in good faith utilizing credible scientific information including, but not limited to, information available since the Deepwater Horizon explosion, oil spill, and response, and applying this information using accepted methodologies, including numerical modeling of data and scientific writing methods to convey the information of the subject-matter experts' technical knowledge and experience. It must also be emphasized that, in arriving at the overall conclusions for certain environmental resources (e.g., coastal and marine birds, fisheries, and wetlands), the conclusions are not based on impacts to individuals, small groups of animals, or small areas of habitat, but on impacts to the resources/populations as a whole. Where relevant information on reasonably foreseeable significant adverse impacts is incomplete or unavailable, the need for the information was evaluated to determine if it was essential to a reasoned choice among the alternatives. If BOEM's subject-matter experts determined that the incomplete or unavailable information was essential, BOEM made good faith efforts to acquire the information. In the event that BOEM was unable to obtain essential information (for example due to exorbitant cost or the impossibility of obtaining the information within a known time period), BOEM applied accepted scientific methodologies in place of that information. This approach is described in the next subsection on "Incomplete or Unavailable Information."

Over the years, BOEM has developed a suite of lease stipulations and mitigating measures to eliminate or ameliorate potential environmental effects. In many instances, these lease stipulations and mitigating measures were developed in coordination with other natural resource agencies such as NMFS and FWS.

Throughout its effort to prepare this Supplemental EIS, BOEM has made painstaking efforts to comply with the spirit and intent of NEPA, to avoid being arbitrary and capricious in its analyses of potential environmental effects, and to use adaptive management to respond to new developments related to the OCS Program.

Incomplete or Unavailable Information

In the following analyses of physical, environmental, and socioeconomic resources, BOEM identifies situations in which its analysis contains incomplete or unavailable information. The major area where BOEM is faced with incomplete or unavailable information is in relation to the Deepwater Horizon explosion, oil spill, and response. Information related to the explosion, oil spill, and response is still being collected, interpreted, and analyzed by a myriad of Federal and State agencies. With respect to some of this information, including much of the data related to the NRDA process, those in charge of analyzing impacts from the spill have not yet shared their data and findings with BOEM or made this information publicly available. Therefore, in situations in which BOEM's subject-matter experts were faced with incomplete or unavailable information, the subject-matter experts for each resource utilized the most recent publicly available, scientifically credible information from other sources to support the conclusions contained in this Supplemental EIS This information is identified and summarized in Chapter 4.1.1 of this Supplemental EIS and is discussed in detail for each resource in Chapter 4.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. In certain circumstances, identified and described in more detail in Chapter 4.1.1 of this Supplemental EIS, BOEM's subject-matter experts were required to utilize accepted methodologies to extrapolate conclusions from existing or new information and to make reasoned estimates and developed conclusions regarding the current CPA baseline for resource categories and expected impacts from a CPA proposed action given any baseline changes. For reasons described below, there are no changes to these

conclusions as presented in the 2012-2017 WPA\CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

It is important to note that, barring another catastrophic oil spill, which is a low-probability accidental event not reasonably expected and not considered part of a CPA proposed action, the adverse impacts associated with a proposed CPA lease sale are small, even in light of the *Deepwater Horizon* explosion, oil spill, and response. This is because of draft lease sale stipulations and BOEM and other Federal and State entities' mitigating measures. BOEM also imposes site-specific mitigations that become conditions of plan or permit approval at the postlease stage. Collectively, these measures further reduce the likelihood and/or severity of adverse impacts.

For the following resources, as with the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, the subject-matter experts determined that there is incomplete or unavailable information that is relevant to reasonably foreseeable significant adverse impacts; however, it is not essential to a reasoned choice among alternatives.

- *Physical Resources in the CPA*: Physical resources (i.e., water quality and air quality) within the CPA are likely not continuing to be affected to any discernible degree by the *Deepwater Horizon* explosion, oil spill, and response, based on the best available information, including recent sampling data. Although unable to speculate as to the results of ongoing NRDA studies, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives because BOEM utilizes the best available scientifically credible information in its decisionmaking process. Much of the information related to the *Deepwater Horizon* explosion, oil spill, and response may not be available for some time, regardless of the costs necessary to obtain this information, as there are numerous task forces and interagency groups involved in the production of the information. It is not expected that these data would become publicly available in the near term, and certainly not within the timeline contemplated in the NEPA analysis of this Supplemental EIS.
- Nonmobile Biological Resources within the CPA: Coastal and offshore biological and benthic habitats (i.e., barrier beaches, wetlands, seagrasses, soft bottom benthic communities, topographic features, and chemosynthetic and nonchemosynthetic communities) and nonmobile benthic species that would be expected to spend their entire life cycle in the CPA were likely not affected to any discernible degree by the *Deepwater Horizon* explosion, oil spill, and response, based on the best available information, including recent sampling data. Similarly to the analysis of physical resources in the CPA described in the preceding paragraph, although unable to speculate as to the results of ongoing NRDA studies, BOEM has determined that the incomplete or unavailable information regarding nonmobile biological resources is not essential to a reasoned choice among alternatives because BOEM utilizes the best available scientifically credible information in its decisionmaking process.
- Mobile Biological Resources within or Migrating through the CPA: Certain mobile • biological resources (i.e., birds, fish, marine mammals, and sea turtles) having ranges and/or habitats that may include different areas in the GOM may have individually been affected by exposure to oil and/or spill-response activities, provided they were in the vicinity of the *Deepwater Horizon* explosion, oil spill, and response during spill conditions. Precise information on the impacts on mobile biological resources within or migrating through the CPA is therefore not known, and it is not expected that these data would become publicly available within the timeline contemplated in the NEPA analysis of this Supplemental EIS. Although unable to speculate as to the results of ongoing NRDA studies, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among the alternatives because the adverse impacts from routine activities associated with a CPA proposed action are expected to be small, even in light of how baseline conditions may have been changed by the *Deepwater Horizon* explosion, oil spill, and response. Moreover, based on the scientifically credible information that was available and

applied in **Chapter 4.1.1**, such as peer-reviewed journals and government reports, this incomplete or unavailable information is not essential to a reasoned choice among the alternatives because the subject-matter experts for this Supplemental EIS have already evaluated the probability and severity of these potential impacts and because this incomplete or unavailable information is not essential to understand every particular mechanism by which these significant impacts could occur. With regard to future potentially low-probability catastrophic spills, any incomplete or unavailable information regarding the nature of a very large spill would not be essential to a reasoned choice among the alternatives. This is because a catastrophic spill and its impacts are not "expected" as a result of a CPA proposed action since such a spill remains a low-probability event, particularly in light of improved safety and oil-spill-response requirements that have been put in place since the spill.

- Endangered and Threatened Species: BOEM reinitiated consultation with NMFS and FWS in light of new information that may become available on these species and in light of effects from the Deepwater Horizon explosion, oil spill, and response. Pending the completion of the reinitiated ESA Section 7 consultation, BOEM has prepared an ESA Section 7(d) determination (50 CFR § 402.09). Section 7(d) of the ESA requires that, after initiation or reinitiation of consultation under Section 7(a)(2), the Federal agency "shall not make any irreversible or irretrievable commitment of resources with respect to the agency action which has the effect of foreclosing the formulation or implementation of any reasonable and prudent alternative measures which would not violate" Section 7(a)(2). BOEM has determined that a CPA proposed action during the reinitiated Section 7 consultation period is consistent with the requirements of ESA Section 7(d) because (1) approving and/or conducting a proposed CPA lease sale will not foreclose the formulation or implementation of any Reasonable and Prudent Alternative measures that may be necessary to avoid jeopardy (or the likely destruction or adverse modification of critical habitat) and (2) the Secretary of the Interior retains the discretion under OCSLA to deny, suspend, or rescind plans and permits authorized under OCSLA at any time, as necessary to avoid jeopardy. Lease sales alone do not constitute an irreversible and irretrievable commitment of resources. In addition, the results of consultation and any additional relevant information on endangered and threatened species can be employed during postlease activities to ensure that Reasonable and Prudent Alternative measures are not foreclosed. BOEM and BSEE have developed an interim coordination program with NMFS and FWS for individual consultations on postlease activities requiring permits or plan approvals while formal consultation and development of a new Biological Opinion is ongoing.
- Natural Resource Damage Assessment (NRDA) Data: In response to the Deepwater Horizon explosion, oil spill, and response, a major NRDA is underway to assess impacts to all natural resources in the GOM that may have been impacted by the resulting spill from the *Macondo* well, as well as impacts from the spill-response operations. The NRDA is mandated by the Oil Pollution Act of 1990. The U.S. Department of the Interior is a co-Trustee in the NRDA process, and BOEM is a cooperating agency on a Programmatic EIS being prepared as part of the NEPA analysis for NRDA. However, the NRDA process is being led by the NRDA Trustees, which include NOAA and DOI (FWS and National Park Service), but not BOEM. BOEM is listed as an affected party for NRDA purposes. At this time, limited data compiled in the NRDA process have been made publicly available. Because limited data have been made publicly available, most NRDA datasets are not available for BOEM to use in its NEPA analyses. BOEM acknowledges that the ability to obtain and use the NRDA data in its NEPA analyses could be relevant to reasonably foreseeable significant adverse impacts; however, the NRDA data are not essential to a reasoned choice among the alternatives. Impacts identified through the NRDA process would likely be the same under any alternative and obtaining these data would not help inform the decisionmaker on a reasoned choice among those
alternatives. This is because, as discussed above, the adverse impacts associated with a proposed CPA lease sale are small, even in light of how baseline conditions in the CPA may have been changed by the Deepwater Horizon explosion, oil spill, and response. The impacts are expected to be small because of BOEM's lease sale stipulations and mitigating measures, site-specific mitigations that become conditions of plan or permit approval at the postlease stage, and mitigations required by other State and Federal agencies. Even if the NRDA data were essential to a reasoned choice among the alternatives, it is not publicly available and much of the data may not become available for many years. The NEPA allows for decisions to be made based on available scientifically credible information (e.g., peer-reviewed journals and studies, and government reports) applied using accepted methodologies where the incomplete information cannot be obtained or the cost of obtaining it is exorbitant. The NRDA process is ongoing and there is no timeline on when this information will be released. It is not within BOEM's authority to obtain this information. Cost is not an issue in obtaining the information, regardless of whether the cost would be exorbitant or not. Instead, the limitations on the NRDA process, including statutory requirements under the Oil Pollution Act of 1990, are the determining factors on the availability of this information. In light of the fact that the NRDA data may not be available for years, BOEM has used accepted scientific methodologies to evaluate each resource, as described in this chapter. Since the spill, BOEM's Gulf of Mexico OCS Region's Environmental Studies Program has continually modified its Studies Plan to reflect the Agency's current information needs for studies that address impacts and recovery from the oil spill. The scientific studies conducted by the Environmental Studies Program provide some of the data that BOEM relies on in making decisions in this Supplemental EIS. BOEM's proposed studies attempt to avoid duplication of study efforts while striving to fill information gaps where NRDA studies may not address particular resources and their impacts from the oil spill.

• Socioeconomic and Cultural Resources: Incomplete or unavailable information related to socioeconomic and cultural impacts (i.e., commercial and recreational fishing, recreational resources, archaeological resources, land use and coastal infrastructure, demographics, economic factors, and environmental justice) may be relevant to reasonably foreseeable adverse impacts on these resources. Although unable to speculate as to the results of ongoing NRDA studies, BOEM has determined that the incomplete or unavailable information would not be essential to a reasoned choice among alternatives because BOEM utilizes the best available scientifically credible information in its decisionmaking process.

This chapter has thoroughly examined the existing credible scientific evidence that is relevant to evaluating the reasonably foreseeable significant adverse impacts of the proposed CPA lease sales on the human environment. The subject-matter experts that prepared this Supplemental EIS conducted a diligent search for pertinent new information, and BOEM's evaluation of such impacts is based upon theoretical approaches or research methods generally accepted in the scientific community. All reasonably foreseeable impacts were considered, including impacts that could have catastrophic consequences, even if their probability of occurrence is low (**Appendix B**). Throughout this chapter, where information was incomplete or unavailable, BOEM complied with its obligations under NEPA to determine if the information was relevant to reasonably foreseeable significant adverse impacts; if so, whether it was essential to a reasoned choice among alternatives; and, if it is essential, whether it can be obtained and whether the cost of obtaining the information is exorbitant, as well as whether generally accepted scientific methodologies can be applied in its place (40 CFR § 1502.22).

4.1.1. Alternative A—The Proposed Action

4.1.1.1. Air Quality

BOEM has reexamined the analysis for air quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for air quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 23

A detailed description of air quality and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.1 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

As BOEM has previously noted in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, and despite the new information identified and provided below, there is incomplete or unavailable information regarding air quality and potential air impacts. Although final summary information and reports on air quality impacts from the Deepwater Horizon explosion, oil spill, and response may be forthcoming, USEPA, NOAA, and other agencies obtained and released to the public a large number of air quality measurements indicating that air impacts tended to be minor and below USEPA's health-based standards. As there are no continuing sources of air pollution related to the Deepwater Horizon explosion, oil spill, and response, BOEM would not expect any additional measurements or information to alter the conclusions from currently existing data. In addition, as noted below and in Appendix A, there are a number of competing methods and available models for estimating and tracking potential air emissions and impacts. Each of these methods and models has inherent limitations, particularly with regard to the offshore environment in which a CPA proposed action would take place. In acknowledgement of these limitations, BOEM's subject-matter experts, using their best professional judgment and experience, have developed conservative assumptions and modeling parameters so as to ensure that the impact conclusions herein are reasonable and not underestimated. As such, although there is incomplete or unavailable information on air quality impacts at this time that may be relevant to reasonably foreseeable adverse impacts, this information is not essential to a reasoned choice among alternatives. Emissions of pollutants into the atmosphere from the routine activities associated with a CPA proposed action are projected to have minimal impacts to onshore air quality because of the prevailing atmospheric conditions, emission heights, emission rates, and the distance of these emissions from the coastline. The impacts of the OCS emissions on the onshore air quality are below BOEM's Significance Levels and the NAAQS. The USEPA commented that BOEM should compare model results with the USEPA's significant impact levels (SILs). Therefore, the modeled results were compared with the U.S. Environmental Protection Agency's SILs. The modeled concentrations for annual nitrogen dioxide (NO₂) (0.4 μ g/m³) and 24-hour particulate matter of 2.5 microns or less (PM_{2.5}) $(0.3 \ \mu g/m^3)$ in the Class I area exceeds the U.S. Environmental Protection Agency's SILs for annual NO₂ $(0.1 \ \mu g/m^3)$ and 24-hour PM_{2.5} $(0.07 \ \mu g/m^3)$ in the Class I area. Although the U.S. Environmental Protection Agency's SILs were exceeded, BOEM expects in practice, if the emissions were distributed more realistically across the CPA, that emissions would not exceed the U.S. Environmental Protection Agency's SILs. The modeling that was conducted was overly conservative. All of the emissions during 1 year for the entire CPA, which would actually be dispersed throughout the CPA, were modeled as if they originated in Mississippi Canvon Block 856.

While regulations are in place to reduce the risk of impacts from hydrogen sulfide (H_2S) and while no H_2S -related deaths have occurred on the OCS, accidents involving high concentrations of H_2S could result in deaths as well as environmental damage. These emissions from routine activities and accidental events associated with a CPA proposed action are not expected to have concentrations that would change onshore air quality classifications.

Air Quality Modeling

There are many factors that BOEM evaluates to determine the potential impact occurring from offshore air emissions. These include estimates for likely emission sources, likely emission locations, emission rates, timeframes, and the likelihood of transport by wind resulting in contact to specified environmental features. Sensitivity of the environmental resources and potential effects are addressed in the analyses for the specific resources of concern (**Chapter 4.1.1**). BOEM uses data gathered during recent OCS emission inventories, along with a scenario or estimates of future production, to evaluate the potential effects of emissions. The scenario provides (1) the set of assumptions for and estimates of future activities, (2) the rationale for the scenario assumptions and estimates, and (3) the type, frequency, and quantity of emissions from offshore sources associated with a CPA proposed action.

BOEM determined projected emissions resulting from the activities on the lease based on estimated emissions from various equipment, such as diesel engines and generators, and the level of offshore activity projected in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. BOEM then uses a numerical model to calculate the concentration of five pollutants (NO₂, sulphur dioxide [SO₂], particulate matter less than or equal to 2.5 μ m [PM_{2.5}], particulate matter less than or equal to 10 μ m [PM₁₀], and carbon monoxide [CO]) at the receptor. Inputs to the model include the location of the emission source and the receptors, the aforementioned emissions, source parameters such as source height and source stack gas temperature, and a 5-year history of meteorological conditions. The latter two parameters influence the dispersion of the pollutant as it is carried from the source to the receptor. The model output is the concentration of the pollutant at the onshore receptor location at specified time intervals. A description of the numerical model, called the Offshore Coastal Dispersion (OCD) Model, and its results are summarized in **Appendix A**.

OCD Model

The OCD modeling was performed for the CPA Class I and Class II Areas, with the hypothetical CPA source located at Mississippi Canyon Block 856, which is approximately 56 mi (90 km) from shore. Meteorological data used were from the period 2000 through 2004. The surface data came from Patterson, Louisiana, and upper air data came from Slidell, Louisiana. Buoy data for Mississippi Canyon Block 856 came from Buoy 42040. These meteorological data points are the closest, physically, to the proposed CPA lease sale area available to BOEM and, therefore, are the best approximation available. BOEM calculated scenario-specific emissions based on the Year 2008 Gulfwide Emission Inventory Study (Wilson et al., 2010) and Rigzone (2009). A spreadsheet was developed based on the findings of this study (Billings et al., official communication, 2012). To provide a conservative estimate, BOEM assumed a high-range of activity emissions during the year with the greatest amount of activity (e.g., drilling and platform and pipeline installation) out of the 40-year analysis period for a CPA proposed action. All of the scenario-predicted emissions were then modeled at one location in the CPA. Even with all the emissions being attributed to a single point (which would not be the case in reality and thus provides a conservative estimate of impacts), the CPA emissions are projected to have minimal impacts to onshore air quality. The CPA emissions are within BOEM's maximum allowable increase for the scenario. Methodology, emissions, and modeling results are discussed further in **Appendix A**. As shown in Appendix A, emissions of pollutants into the atmosphere from the activities associated with the OCS Program are estimated to have minimal effects on onshore air quality because of the prevailing atmospheric conditions, emission rates and mixing heights, and the resulting pollutant concentrations. While the CPA emissions are within BOEM's significance levels and BOEM's maximum allowable increases, the CPA modeled concentrations for annual NO₂ and 24-hour PM_{2.5} in the Class I area exceed the U.S. Environmental Protection Agency's SILs. Although the U.S. Environmental Protection Agency's SILs were exceeded, BOEM expects in practice, if the emissions were distributed more realistically across the CPA, that emissions would not exceed the U.S. Environmental Protection Agency's SILs. BOEM believes that the potential onshore impacts related to emissions from OCS oil and gas activities that may result from a CPA proposed action will not be significant.

BOEM is in the process of a comprehensive assessment of numerical methods (including a variety of sensitivity analyses, comparison of emission inventories and evaluation of emission scenarios) using USEPA-approved models, which will help us to support our scientific statements in future EISs. This modeling assessment will be helpful when considering that modern air quality models are still in

4-11

development and need to be evaluated before they are widely used for realistic estimations of pollutant concentrations over offshore and coastal environments. However, this assessment will take time, potentially years, and there will always be some limitations inherent to the application of models. For this reason, BOEM is using the OCD Model as it is appropriate for current use for the offshore environment. BOEM's subject-matter experts also used their professional judgment in developing and modeling parameters to ensure that the results were conservative.

On the basis of OCD modeling for NO_x, SO_x, PM_{2.5}, PM₁₀, and CO, and the Gulf of Mexico Air Quality Study for ozone (Systems Applications International et al., 1995), BOEM is confident that offshore OCS oil and gas activities associated with a CPA proposed action will not contribute to exceedances of the NAAQS at the shoreline. The inference of conclusions from this study remains appropriate given both the decrease in the number of wells drilled and wells producing from wells in water depths <1,000 ft (305 m) and the industrial expansions into the deepwater Gulf of Mexico. During the past 5 years (2008-2012), the number of wells drilled in shallow water (<1,000-m [305-m] water depth) decreased by 45 percent from 468 wells in 2008 to 256 wells in 2012. The number of wells producing decreased by 23 percent from 5,648 to 4,355 wells during the same 5-year timeframe. Simultaneously, production expansion into deep water is documented in *Deepwater Gulf of Mexico 2009:* America's Expanding Frontier (USDOI, MMS, 2009a) and in the preceding biennial reports. Over the last 22 years, there has been an overall expansion in all phases of deepwater activity. There are approximately 5,541 active leases in the Gulf of Mexico OCS, 60 percent of which are in deep water (USDOI, BOEM, 2014c). (Note that lease status may change daily; therefore, the current number of existing leases is an approximation.) Contrast this to the approximately 5,600 existing Gulf of Mexico leases in 1992, only 27 percent of which were in deep water. On average, there are 26 rigs drilling in deep water in 2014, compared with only 3 rigs in 1992 (USDOI, BOEM, 2014d). This trend is observable in seismic activity, leasing, exploratory drilling, field discoveries, and production. The quantity of air pollutants emitted is the direct result of the level of offshore activity. The concentrations of the emissions at the shoreline are influenced by the distance between the source of the emissions and the receptors. With the simultaneous decrease in both the number of wells drilled and the number of wells producing in water depths <1,000 m (305 m) (shallow waters closest to shore) and the increase is leases, drilling, and production in water depths >1,000 m (305 m) (deeper waters farther from shore), it can be assumed that the emissions related to exploration and production activity have also moved farther offshore. As a result of these trends for fewer wells and wells that are farther offshore, the OCD modeling results obtained from Systems Applications International et al. (1995), which demonstrate no NAAQS exceedances, remain conservative and are still applicable to the discussion of shoreline impacts from lease and associated activity projected to result from proposed CPA Lease Sales 235, 241, and 247. BOEM, however, supplemented this knowledge with additional data available since that time and by running the OCD model accompanying this Supplemental EIS. Emissions from proposed action activities as modeled in **Appendix A** will not significantly contribute to any onshore exceedances of a NAAQS.

One of the limitations of the OCD model is that it is unable to directly model contributions to ambient ozone (O_3) , as ozone is formed in the ambient atmosphere from precursor pollutants. To address this limitation, BOEM examined available studies on OCS oil and gas activities' contribution to onshore ozone levels, as described below and in **Appendix A**. These studies confirm that OCS oil and gas activities are likely to only have a minimal impact on onshore ozone.

Ozone Model

The Comprehensive Air Quality Model with extensions (CAMx) was used to model contribution during an August 2000 ozone episode (Yarwood et al., 2004). The OCS contributions to ozone exceedances were minor. Yarwood et al. (2004) used a photochemical model to analyze the Year 2000 Gulfwide Emissions Inventory (GWEI) and selected the Houston-Galveston-Brazoria nonattainment area since it has the most severe ozone problem in the Gulf of Mexico region (System Applications International et al., 1995). One of the main relevant findings in Yarwood et al. (2004) is as follows: "The average impact of the Year 2000 GWEI emissions on 8-hour ozone levels above 85 ppb in Houston area is 0.2 ppb; although larger impacts may occur over the Gulf of Mexico." Haney et al. (2008) performed a modeling investigation using the Year 2000 and Year 2005 GWEIs in the WPA and CPA to evaluate the impact of offshore emissions on offshore and onshore ozone air quality, in which they proposed an emission-reduction scenario. They found a particular ozone episode where the onshore impact from all

offshore oil-and-gas-related sources was small but generally larger than those estimates using the Year 2000 GWEI. They noticed higher simulated ozone concentrations from 2005 emissions due to increases in NO_x and VOC concentrations.

Greenhouse Gas Emissions

In response to the FY 2008 Consolidated Appropriations Act, USEPA issued 40 CFR part 98, which requires reporting of greenhouse gas emissions, such as CO_2 . Subpart W of the Greenhouse Gas Reporting Rule requires petroleum and natural gas facilities that emit 25,000 metric tons or more of CO_2 equivalents per year to report emissions from equipment leaks and venting. Subpart C of the Green House Gas Reporting Rule requires operators to report greenhouse gas emissions from general stationary fuel combustion sources to USEPA. At this point, this is just a reporting requirement; there are no specific NAAQS or emission limitations for greenhouse gases.

BOEM has included in **Appendix A** modeled estimates for certain greenhouse gases that may be directly emitted during OCS oil and gas activities. At this time, the greenhouse gas emissions related to OCS oil and gas activities are a very small percentage of national emissions, and it would be impossible to tease out the impacts from this small incremental addition from global climate change impacts attributable to all other global sources. As such, BOEM does not believe that the potential greenhouse gas emissions directly attributable to oil and gas activities on the OCS as a result of a CPA proposed action are significant contributions to global greenhouse gas levels.

Impacts of Routine and Accidental Events

The following routine activities associated with a CPA proposed action would potentially affect air quality: platform construction and emplacement; platform operations; drilling activities; flaring; seismic-survey and support-vessel operations; pipeline laying and burial operations; evaporation of volatile petroleum hydrocarbons during transfers; and fugitive emissions. The impact analysis is based on four parameters—emission rates, surface winds, atmospheric stability, and the mixing height. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on air quality can be found in Chapter 4.2.1.1.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.1 of the WPA 233/CPA 231 Supplemental EIS. Emissions of pollutants into the atmosphere from the activities associated with a CPA proposed action are projected to have minimal effects on onshore air quality because of the prevailing atmospheric conditions, emission rates and mixing heights, and the resulting pollutant concentrations.

The accidental release of hydrocarbons related to a CPA proposed action would result in the emission of air pollutants. The OCS oil- and gas-related accidents could include the release of oil, condensate, or natural gas or chemicals used offshore or pollutants from the burning of these products. The air pollutants include criteria NAAQS pollutants, volatile and semi-volatile organic compounds, H₂S, and methane. If a fire was associated with the accidental event, it would produce a broad array of pollutants, including all NAAQS-regulated primary pollutants, including NO₂, CO, SO₂, VOC, PM₁₀, and PM_{2.5}. Response activities that could impact air quality include in-situ burning, the use of flares to burn gas and oil, and the use of dispersants applied from aircraft. Measurements taken during an in-situ burning show that a major portion of compounds was consumed in the burn; therefore, pollutant concentrations would be expected to be within the NAAQS. These response activities are temporary in nature and occur offshore; therefore, there are little expected impacts from these actions to onshore air quality. Accidents involving high concentrations of H₂S could result in deaths as well as environmental damage. Regulations and NTLs include safeguards and protective measures, which are in place, to protect workers from H_2S releases. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Leases Sale 235, 241, and 247 on air quality can be found in Chapter 4.2.1.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.1 of the WPA 233/CPA 231 Supplemental EIS. Other emissions of pollutants into the atmosphere from accidental events as a result of a CPA proposed action are not projected to have significant impacts on onshore air quality because of the prevailing atmospheric conditions, emissions height, emission rates, and the distance of these emissions from the coastline.

Cumulative Impacts

Background/Introduction

An impact analysis for cumulative impacts in the CPA is described in this chapter. This cumulative analysis considers OCS oil- and gas-related and non-OCS oil- and gas-related activities that could occur and adversely affect onshore air quality from OCS sources during the 40-year analysis period.

The activities in the cumulative scenario that could potentially impact onshore air quality include a CPA proposed action and the OCS Program, State oil and gas programs, other major offshore but non-OCS oil- and gas-related factors influencing the offshore environments (such as sand borrowing and transportation), onshore non-OCS oil- and gas-related activities such as emissions from industry and mobile sources (cars/trucks) related to human activities, onshore non-OCS oil- and gas-related sources unrelated to human activities (such as forest fires), accidental releases such as oil spills, accidental releases of hydrogen sulfide, natural events (e.g., hurricanes), and catastrophic oil spills.

Ozone pollution is mainly a daytime phenomenon, occurring during the summer months. The concentration of ozone in the air is determined not only by the amounts of ozone precursor chemicals but also by weather and climate factors. Strong sunlight, warm temperatures, stagnant high-pressure weather systems, and low wind speeds cause ground-level ozone to form and accumulate in harmful concentration in the air. Ozone is not emitted directly into the air. Ozone is a secondary pollutant formed in the presence of sunlight from the reaction of VOCs and NO₂. Most emissions sources of NO₂ and VOC are onshore. Emissions sources of ozone precursor pollutants include the following: vehicles such as automobiles, trucks, buses, aircraft, and locomotives; construction equipment; lawn and garden equipment; sources that combust fuel, such as large industries and utilities; small industries such as gas stations and print shops; and consumer products, including some paints and cleaners. In addition, biogenic, or natural emissions from trees and plants, are a major source of VOCs. According to the USEPA, automobiles and other mobile sources contribute about one-half of the NO_x that is emitted. According to NOAA, power plants emit about one-quarter of the total U.S. human-made contribution of NO_x to the atmosphere. All other sources of NO_x emissions account for one-quarter of the United States' totals. The total impact from the combined onshore and offshore emissions would be significant to the ozone nonattainment areas in southeast Texas and the parishes near Baton Rouge, Louisiana.

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related impacts include the drilling of exploration, delineation, and development wells; platform installation; and service-vessel trips, flaring, and fugitive emissions. Routine oil spills are also possible. Emission trends from Gulfwide platform sources from 2000, 2005, 2008, and 2011 show that emissions offshore show little variance across sampling intervals. Emissions of pollutants into the atmosphere from activities associated with the OCS Program are not projected to have significant effects on onshore air quality because of the prevailing atmospheric conditions, emission rates and heights, and the resulting pollutant concentrations. Onshore impacts on air quality from emissions from OCS oil- and gas-related activities are estimated to be within Prevention of Significant Deterioration (PSD) Class II allowable increments. The modeling results indicate that the cumulative impacts to a PSD Class I Area are well within the PSD Class I allowable increment (Wheeler et al., 2008).

Portions of the Gulf Coast have ozone levels that exceed the Federal air quality standard. Ozone levels are on a declining trend because of air-pollution control measures that have been implemented by the Gulf Coast States. This downward trend is expected to continue as a result of local as well as nationwide air-pollution control efforts. However, a more stringent air quality standard has recently been implemented by USEPA, which may result in increasing the number of parishes/counties in the coastal states in violation of the Federal ozone standard. There is also a proposal to further decrease the ozone standard. If the ozone standard was lowered, although OCS emissions from a CPA proposed action would not vary, the OCS emissions in those newly designated areas would have an incrementally larger contribution to the onshore ozone levels. Although air quality is improving, the number of areas in nonattainment could increase due to more stringent standards (USEPA, 2010).

The Gulf Coast has significant visibility impairment from anthropogenic emission sources. Area visibility is expected to improve somewhat as a result of regional and national programs to reduce emissions (USEPA, 2013b). The Gulf Coast visibility is expected to improve somewhat as a result of regional and national programs to reduce emissions. However, the incremental contribution from a CPA

proposed action would be very small and would have an insignificant effect on ozone levels in onshore ozone nonattainment areas. This minimal impact would not be a contributing factor to the States' schedule for attainment. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A spill could result in the loss of crude oil, crude oil with a mixture of natural gas, or refined fuel. Air quality could be affected by the additional response vessel traffic, volatilization of components of the oil, and natural gas if released. Impacts from individual spills would be localized and temporary.

The safety issues related to an accidental release of hydrogen sulfide include the following: irritation, injury, and lethality from leaks; exposure to sulfur oxides produced by flaring; equipment and pipeline corrosion; and outgassing and volatilization from spilled oil.

In the event of a low-probability catastrophic spill, though not reasonably foreseeable and not part of a CPA proposed action, oil may be burned to prevent it from entering sensitive habitats. The USEPA released two peer-reviewed reports concerning dioxins emitted during the controlled burns of oil during the *Deepwater Horizon* explosion, oil spill, and response (Aurell and Gullett, 2010; Schaum et al., 2010). Dioxins is a category that describes a group of hundreds of potentially cancer-causing chemicals that can be formed during combustion or burning. The reports found that, while small amounts of dioxins were created by the burns, the levels that workers and residents would have been exposed to were below USEPA's levels of concern. For more information on the potential impacts of a low-probability catastrophic event, refer to **Appendix B.3.1.1**.

The incremental contribution of a CPA proposed action to the cumulative impacts would be minimal. Portions of the Gulf Coast onshore areas have ozone levels that exceed the Federal air quality standard, but the incremental contribution from a CPA proposed action would be very small. The cumulative contribution to visibility impairment from a CPA proposed action is also expected to be very small. Area visibility is expected to improve somewhat as a result of regional and national programs to reduce emissions. A CPA proposed action would have an insignificant effect on ozone levels in ozone nonattainment areas and would not interfere with the States' schedule for compliance with the NAAQS. A routine OCS oil- and gas-related spill is not likely to impact onshore air quality because of the distance to shore. However, it would be possible for a spill from an OCS pipeline rupture to occur in State waters. Such a spill would have the potential to impact onshore air quality. Pipelines are built with safety devices to minimize pipeline spills. Because of the distance between an offshore low-probability catastrophic spill and the shore, it is unlikely that a low-probability catastrophic spill, should it occur, could adversely impact onshore air quality.

Non-OCS Oil- and Gas-Related Impacts

Non-OCS oil- and gas-related activities that generate criteria pollutants include industrial activities in territorial seas and coastal waters, industrial and transportation activities that occur onshore, and naturally occurring events onshore such as forest fires. Hurricanes are natural events that can cause emissions when they cause structural damage that result in oil spills or gas releases. Further air emissions are generated by the additional traffic from response vessels, uncontrolled or controlled burns, and ultimately, new repairs and construction to pipelines or platforms.

State oil and gas programs onshore, in territorial seas, and in coastal waters also generate emissions that affect onshore air quality. These emissions are regulated by State agencies and/or USEPA. Reductions in emissions have been achieved through the use of low sulfur fuels, catalytic reduction, and other efforts, and as a result, constitute minor impacts to onshore air quality.

Major onshore emission sources from non-OCS oil- and gas-related activities include power generation, industrial processing, manufacturing, refineries, commercial and home heating, naturally occurring forest fires, and motor vehicles. One other NAAQS pollutant, lead, is not associated with offshore oil and gas activity so it is not discussed below as cumulative impacts relative to a CPA proposed action and are not useful for purposes of NEPA.

The Gulf Coast has significant visibility impairment from anthropogenic emission sources. Area visibility is expected to improve somewhat as a result of regional and national programs to reduce emissions (USEPA, 2013b).

A spill such as from State oil and gas activity or from a tanker carrying imported oil could result in the loss of crude oil, crude oil with a mixture of natural gas, or refined fuel. Air quality would be affected

by the additional response vessel traffic, volatilization of components of the oil, and natural gas if released. Impacts from individual spills would tend to be localized and temporary.

The safety issue related to an accidental release of hydrogen sulfide is described in **Chapter 3.1.1.9**. The same safety precautions and regulations described for a CPA proposed action are applicable to the non-OCS oil- and gas-related scenario. That is, a typical safety zone is usually established in an area with the concentration of hydrogen sulfide greater than 20 parts per million (ppm) from the source or a platform.

The effects of hurricanes on the offshore infrastructure are described in **Chapter 3.3.5** of this Supplemental EIS, Chapter 3.3.5.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 3.3.5 of the WPA 233/CPA 231 Supplemental EIS. Hurricanes mainly cause damage to offshore infrastructures and pipelines, which may result in an oil spill. For the cumulative scenario, hurricanes could also damage non-OCS oil- and gas-related infrastructure such as platforms and pipelines in State waters. Any emissions from non-OCS oil-spill and response activities that occur in State territorial seas or waters are expected to be the same as a CPA proposed action and to have minimum effects on onshore air quality.

Most emissions sources of ozone precursor pollutants (NO₂, and VOC) are onshore. Emissions sources of ozone precursor pollutants include the following: vehicles such as automobiles, trucks, buses, aircraft, and locomotives; construction equipment; lawn and garden equipment; sources that combust fuel, such as large industries and utilities; small industries such as gas stations and print shops; and consumer products, including some paints and cleaners. In addition, biogenic, or natural emissions from trees and plants, are a major source of VOCs. According to USEPA, automobiles and other mobile sources contribute about half of the NO_x that is emitted. According to NOAA, power plants emit about one-quarter of the total U.S. human-made contribution of NO_x to the atmosphere. All other sources of NO_x emissions, combined, account for one-quarter of the United States' totals.

Shore-based sources of $PM_{2.5}$ include all types of combustion activities related to both human activities and naturally occurring sources. Sources range from large and highly regulated industrial sources down to sources related to activities of an individual such as trash burning. Some of the most cited additional sources include fuel burning associated with motor vehicles, power plants, and wood burning, and certain industrial processes.

Fine particulate matter can also form when gases from burning fuels react with sunlight and water vapor. These can result from fuel combustion in motor vehicles, at power plants, and in other industrial processes. Sources of coarse particles, PM_{10} , include crushing or grinding operations and dust from paved or unpaved roads.

Sources of SO_x include all types of activities ranging from large, highly regulated industrial sources, down to sources related to individual human activities such as outdoor grilling. Fossil fuels contain varying amounts of sulfur. Over 65 percent of the SO_x released to the air is attributable to electric utilities that burn coal. Some additional commonly cited sources of SO_x include pulp and paper mills, petroleum refining, and nonferrous smelters. Fuel burning associated with motor vehicle usage is another source.

Sources of NO_x include all types of activities ranging from large, highly regulated industrial sources down to sources related to the activities of individual people, for example, the use of personal water craft (e.g., jet skis). Some of the most common anthropogenic sources of NO_x include motor vehicles, electric utilities, and other industrial commercial and residential sources that burn fuels. Because NO_x is a highly reactive chemical, it can contribute to ozone formation in the presence of VOCs in the presence of heat and sunlight.

Sources of CO include all types of activities ranging from large, highly regulated industrial sources, down to sources related to individual human activities such as tobacco smoke and using gasoline-powered equipment or generators. Some of the most common CO sources include residential sources that burn fuel and motor vehicles. According to USEPA, motor vehicles account for up to 90 percent of the CO emissions in urban areas.

Other major factors influencing coastal environments, such as sand borrowing and transportation in State territorial waters, also generate emissions that can affect air quality. These emissions are regulated by State agencies and/or USEPA. Reductions have been achieved through the use of low sulfur fuels and catalytic reduction and other efforts, and as a result, constitute minor impacts to onshore air quality.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of State and Federal databases, including updates to regulations, was conducted to determine the availability of recent information. It has been discovered that Birmingham, Alabama, is no longer in nonattainment for any NAAQS criteria pollutant.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified unavailable information regarding air quality impacts related to the *Deepwater Horizon* explosion, oil spill, and response in the CPA. This information cannot be obtained because the means to obtain it are not known. This unavailable information may be relevant to adverse effects because air emissions could have reached land or dispersed throughout the WPA/CPA before the oil-spill response was activated. BOEM utilized relevant analysis such as air emissions measurements taken by Federal agencies to determine air impacts. For example, a large number of air emissions measurements were obtained and released to the public by USEPA, NOAA, and other agencies, indicating that air emissions impacts tended to be minor and below USEPA's health-based standards. And, since there are no continuing sources of air pollution related to the *Deepwater Horizon* explosion, oil spill, and response, BOEM would not expect any additional measurements or information to alter the conclusions from currently existing data.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing the relevant analysis and formulating the conclusions presented here. Although there is unavailable information, the evidence currently available supports past analyses and does not indicate reasonably foreseeable significant adverse impacts. Therefore, BOEM has determined that the unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for air quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above.

Emissions of pollutants into the atmosphere from activities associated with the OCS Program are not projected to have significant effects on onshore air quality because of the prevailing atmospheric conditions, emission rates and heights, and the resulting pollutant concentrations. Ozone precursors, NO_x and VOCs, are shown to have more ozone-emitting sources present onshore. Onshore impacts on air quality from emissions from OCS oil- and gas-related activities are estimated to be within PSD Class II allowable increments. The modeling results indicate that the cumulative impacts to a PSD Class I Area are well within the PSD Class I allowable increment.

Ozone levels are on a declining trend because of air-pollution control measures that have been implemented by the States. This downward trend is expected to continue as a result of local, as well as nationwide, air-pollution control efforts.

The Gulf Coast has significant visibility impairment from anthropogenic emission sources. Area visibility is expected to improve somewhat as a result of regional and national programs to reduce emissions.

Based on the discussion above and modeled impacts in **Appendix A**, the incremental contribution of a CPA proposed action to the cumulative impacts is not significant. The incremental contribution of a CPA proposed action to the cumulative impacts would likewise not significantly affect coastal nonattainment areas. The cumulative contribution to visibility impairment from a CPA proposed action would also not be significant.

No new significant information was discovered that would alter the impact conclusion for air quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The OCD modeling results (included in **Appendix A**) confirms BOEM's conclusions in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that offshore activities would not result in exceedances of the NAAQS at the shoreline. The only potential exception is for ozone, where there may be some minimal contribution to ozone at the shoreline. Ozone levels are on a declining trend

because of air-pollution control measures that have been implemented by the States. This downward trend is expected to continue as a result of local as well as nationwide air-pollution control efforts.

4.1.1.2. Water Quality

4.1.1.2.1. Coastal Waters

BOEM has reexamined the analysis for coastal water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for coastal water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of water quality and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.2 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A proposed action is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Any new information that has become available since those documents were published is presented below.

A detailed description of coastal waters can be found in Chapter 4.2.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS.

Impacts of Routine and Accidental Events

The routine activities associated with a CPA proposed action that would impact water quality include the following: discharges during drilling of exploration and development wells; structure installation and removal; discharges during production; installation of pipelines; workovers of wells; maintenance dredging of existing navigational canals; service-vessel discharges; and nonpoint-source runoff from platforms and OCS Program-related vessels. The primary impacting sources to water quality in coastal waters are point-source and storm-water discharges from support facilities, vessel discharges, and nonpoint-source runoff. These activities are not only highly regulated but also localized and temporary in nature. The impacts to coastal water quality from routine activities associated with a CPA proposed action should be minimal because of the distance to shore of most routine activities, USEPA and USCG regulations that restrict discharges, and few, if any, new pipeline landfalls or onshore facilities would be constructed. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on coastal waters can be found in Chapter 4.2.1.2.1 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events associated with a CPA proposed action that could impact coastal water quality include spills of oil and refined hydrocarbons, releases of natural gas, usage of chemical dispersants in oil spill response, spills of chemicals or drilling fluids, loss of well control, collisions, or other malfunctions that would result in such spills. Accidental events associated with a CPA proposed action that could impact coastal water quality include spills of oil and refined hydrocarbons, releases of natural gas and condensate, usage of chemical dispersants in oil-spill response, and spills of chemicals or drilling fluids. The loss of well control, pipeline failures, collisions, or other malfunctions could result in such spills. Although response efforts may decrease the amount of oil in the environment, the response efforts may also impact the environment through, for example, increased vessel traffic, hydromodification, and the application of dispersants. In addition to response efforts, natural processes can physically, chemically, and biologically degrade oil over time. For coastal spills, two additional factors that must be considered are the shallowness of the area and the proximity of the spill to shore. Chemicals used in the oil and gas industry are not a significant risk in the event of a spill because they are either nontoxic, are used in minor quantities, or are only used on a noncontinuous basis. Spills from collisions are not expected to be significant because collisions occur infrequently. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on coastal waters can be found in Chapter 4.2.1.2.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information can be found

in Chapter 4.2.1.2.1 of the WPA 233/CPA 231 Supplemental EIS. Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B** of this Supplemental EIS.

Cumulative Impacts

Background/Introduction

Activities in the cumulative scenario that could impact coastal water quality generally include the broad categories of a CPA proposed action and the OCS Program, alternative energy activities, alternate use programs for platforms, sand borrowing, State oil and gas activity, the activities of other Federal agencies (including the military), natural events or processes, and activities related to the direct or indirect use of land and waterways by the human population (e.g., urbanization, agricultural practices, coastal industry, and municipal wastes). Many of these categories would cause some of the same specific impacts (e.g., vessel traffic would occur for all of those categories except natural processes).

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related impacts include erosion and runoff, sediment disturbance and turbidity, vessel discharges, and accidental releases of oil, gas, or chemicals. Further discussion of these impacts is presented below.

Erosion and runoff from nonpoint sources degrade water quality. Nonpoint-source runoff from onshore support facilities could result from OCS oil- and gas-related activities; however, as discussed below, OCS oil- and gas-related activities are not the leading source of contaminants that impair coastal water quality. The leading source of contaminants that impair coastal water quality is urban runoff.

Sediment disturbance and turbidity may result from nearshore pipeline installation, maintenance dredging, and disposal of dredge materials. These impacts generally degrade water quality locally and are not expected to last for long periods of time.

Since the marine environment is a dynamic system, sediment quality and water quality can affect each other. For example, a contaminant may react with the mineral particles in the sediment and be removed from the water column (e.g., adsorption). Thus, under appropriate conditions, sediments can serve as sinks for contaminants such as metals, nutrients, or organic compounds. However, if sediments are (re)suspended (e.g., due to dredging or a storm event), the resuspension can lead to a temporary shift in water quality, including a localized and temporal release of any formally sorbed metals as well as nutrient recycling (Caetano et al., 2003; Fanning et al., 1982). Additionally, sediment disturbances from storms, especially hurricanes, may also lead to any buried coastal oil being released, as was seen by the deposition of *Deepwater Horizon* tarballs on some beaches after Hurricane Isaac (Burdeau and Reeves, 2012; Overton, official communication, 2012).

Vessel discharges can degrade water quality. Vessels may be service vessels supporting a CPA proposed action or OCS oil- and gas-related activities. Fortunately, for many types of vessels, most discharges are treated or otherwise managed prior to release through regulations administered by the USCG and/or USEPA, and many regulations are becoming more stringent. The USCG Ballast Water Management Program became mandatory for some vessels in 2004 (33 CFR part 151 subparts C and D) (USDHS, CG, 2012b). The goal of the program was designed to prevent the introduction of nonindigenous (invasive) species that would affect local water quality. The USCG is increasing its regulations on ballast water management by establishing a standard for the allowable concentration of living organisms in ballast water discharged from ships in waters of the U.S. and by establishing an approval process for ballast water management systems. The final rule was published on March 23, 2012, in the Federal Register and became effective on June 21, 2012 (USDHS, CG, 2012b). The final Vessel General Permit (VGP), which was issued by USEPA, became effective on December 19, 2008, and was an addition to already existing NPDES permit requirements. The permit strengthened the NPDES regulations so that discharges incidental to the normal operation of vessels operating as a means of transportation were no longer excluded unless exempted by Congressional legislation. On March 28, 2013, USEPA reissued the VGP for another 5 years (USEPA, 2013a). The reissued permit, the 2013 VGP, superseded the 2008 VGP on December 19, 2013. The 2013 VGP continues to regulate 26 specific discharge categories that were contained in the 2008 VGP and is more stringent because the permit contains numeric ballast water discharge limits for most vessels and more stringent effluent limits for oilto-sea interfaces and exhaust gas scrubber washwater (USEPA, 2013c). The draft Small Vessel General

Permit (sVGP), if finalized, would authorize discharges incidental to the normal operation of nonmilitary and nonrecreational vessels less than 79 ft (24 m) in length (USEPA, 2011b). These regulations should minimize the cumulative impacts of vessel activities.

Accidental releases of oil, gas, or chemicals would degrade water quality during and after the spill until either the spill is cleaned up or natural processes degrade or disperse the spill. These accidental releases could be a result of a CPA proposed action or ongoing OCS oil- and gas-related activity. The impacts of low-probability catastrophic spills, though not reasonably foreseeable and not part of a CPA proposed action, are discussed in **Appendix B**. A low-probability catastrophic event would not be expected to occur in coastal waters, but a low-probability catastrophic spill in offshore waters could affect coastal waters. For example, the oil spill resulting from the *Deepwater Horizon* explosion impacted coastal waters and sediments in Louisiana, Mississippi, Alabama, and Florida. The extent of impact from a spill depends on the release location and the behavior and fate of oil in the water column (e.g., the movement of oil and the rate and nature of weathering), which, in turn, depends on oceanographic and meteorological conditions at the time (refer to Appendices A.2 and A.3 of the 2012-2017 WPA/CPA Multisale EIS). The effect on coastal water quality from spills estimated to occur from a CPA proposed action are expected to be minimal relative to the cumulative effects from hydrocarbon inputs from other sources such as river outflow, industrial discharges, and bilge water releases, as discussed in the National Research Council's report *Oil in the Sea* (NRC, 2003).

A major hurricane can affect OCS oil- and gas-related activities and result in a greater number of coastal oil and chemical spill events with increased spill volume and oil-spill-response times. In the case of an accidental event, it is likely that response efforts would reduce the amount of oil. **Chapter 3.2.1.9** of this Supplemental EIS and Chapter 3.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS provide further discussion of oil-spill-response considerations. Coastal water quality would not only be impacted by the oil, gas, and their respective components but also to some degree from cleanup and mitigation efforts. Increased vessel traffic, hydromodification (e.g., dredging, berm building, boom deployment), and the addition of dispersants and methanol to the marine environment in an effort to contain, mitigate, or clean up the oil may also tax the environment.

Non-OCS Oil- and Gas-Related Impacts

Activities not related to a CPA proposed action or the OCS Program that may impact coastal waters include State oil and gas activities, alternative energy activities, alternate use programs for platforms, sand borrowing, the activities of other Federal agencies (including the military), natural events or processes, and activities related to the direct or indirect use of land and waterways by the human population. These activities may result in erosion and runoff, sediment disturbance and turbidity, vessel discharges, and accidental releases of oil, gas, or chemicals. Further discussion on these impacts is described below.

Water quality in coastal waters of the northern Gulf of Mexico is highly influenced by season. Seasonality influences salinity and dissolved oxygen, nutrient content, temperature, pH and Eh, pathogens, turbidity, metals, and organic compounds. Furthermore, as noted above, it is also important to consider sediment quality as sediment quality can affect water quality.

Erosion and runoff from nonpoint sources degrade water quality. Nonpoint-source runoff could result from State oil and gas activities and other industries and coastal development. The leading source of contaminants that impair coastal water quality is urban runoff. Urban runoff can include suspended solids, heavy metals and pesticides, oil and grease, nutrients, and organic matter. Urban runoff increases with population growth, and the Gulf Coast region has experienced a 109 percent population growth since 1970, with an additional expected 15 percent increase by 2020 (USDOC, NOAA, 2011a). The National Research Council (2003, Table I-4, page 237) estimated that, on average, approximately 26,324 bbl of oil per year entered Gulf waters from petrochemical and oil refinery industries in Louisiana and Texas. **Chapter 3.1.1.7** of this Supplemental EIS and Chapter 3.1.1.7 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS discuss the various sources of petroleum hydrocarbons that can enter the Gulf of Mexico in further detail. The natural emptying of rivers into the GOM as part of the water cycle may introduce chemical and physical factors that alter the condition of the natural water through both natural and anthropogenic sources, such as the addition of waterborne pollutants and inflowing waters of different temperature, as well as inputs to the GOM from groundwater discharge and precipitation. The Mississippi River introduced approximately 3,680,938 bbl of oil and grease per year

from land-based sources (NRC, 2003, Table I-9, page 242) into the waters of the Gulf. Nutrients carried in waters of the Mississippi River contribute to seasonal formation of the hypoxic zone on the Louisiana-Texas shelf. The USEPA has regulatory programs designed to protect the waters that enter the Gulf, including the regulation of point-source discharges.

Sediment disturbance and turbidity may result from nearshore pipeline installation, maintenance dredging, disposal of dredge materials, sand borrowing, sediment deposition from rivers, and hurricanes. Turbidity is also influenced by the season. These impacts may be the result of State oil and gas activities, the activities of other Federal agencies, and natural processes. Dredging projects related to restoration or flood prevention measures may be directed by the Federal Government for the benefit of growing coastal populations. The COE and State permits would require that the turbidity impacts due to pipeline installation be mitigated by using turbidity screens and other turbidity reduction or confinement equipment. These impacts generally degrade water quality locally and are not expected to last for long periods of time.

Vessel discharges can degrade water quality. Vessels may be service vessels supporting State oil and gas activities. However, the vessels may also be vessels used for shipping, fishing, military activities, or recreational boating. Fortunately, for many types of vessels, most discharges are treated or otherwise managed prior to release through regulations administered by the USCG and/or USEPA, and many regulations such as the USCG Ballast Water Management Program and the U.S. Environmental Protection Agency's VGP and sVGP are becoming more stringent as discussed in further detail above. A Congressional moratorium exempted all incidental discharges, with the exception of ballast water, from commercial fishing vessels and nonrecreational, nonmilitary vessels less than 79 ft (24 m) in length, but the moratorium expired on December 18, 2013. The sVGP will provide coverage for those vessels (USEPA, 2011b) once finalized. These regulations should minimize the cumulative impacts of vessel activities.

Accidental releases of oil, gas, or chemicals would degrade water quality during and after the spill until either the spill is cleaned up or natural processes degrade or disperse the spill. These accidental releases could be a result of State oil and gas activity, the transport of commodities to ports, and/or coastal industries. The extent of impact from a spill depends on the release location and the behavior and fate of oil in the water column (e.g., the movement of oil and the rate and nature of weathering), which, in turn, depends on oceanographic and meteorological conditions at the time.

A major hurricane can affect State oil and gas activities and result in a greater number of coastal oil and chemical spill events with increased spill volume and oil-spill-response times. In the case of an accidental event, it is likely that response efforts would reduce the amount of oil. Coastal water quality would not only be impacted by the oil, gas, and their respective components but also to some degree from cleanup and mitigation efforts. Increased vessel traffic, hydromodification (e.g., dredging, berm building, boom deployment, etc.), and the addition of dispersants and methanol to the marine environment in an effort to contain, mitigate, or clean up the oil may also tax the environment to some degree.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

Various Internet sources were examined and literature searches conducted to assess the availability of new information regarding the water quality and sediment quality in coastal waters that may be pertinent to the CPA. The searches included, but were not limited to, Google, Google Scholar, several USEPA websites, the Gulf of Mexico Sea Grant Programs website, the Coastal Response Research at the University of New Hampshire website, and the NOAA Central Library Deepwater Horizon: Α Preliminary Bibliography of Published Research and Expert Commentary website. The most recent coastal condition report (USEPA, 2012a), which evaluated the Gulf Coast from 2003 to 2006, found that the overall rating of the Gulf Coast was fair, which is a slight improvement from a previous rating of fair to poor, while the specific ratings for water quality, sediment quality, and the coastal habitat index remained fair, poor, and poor, respectively. Thus, there was not a significant change in the ratings that were reported in the 2012-2017 WPA/CPA Multisale EIS. The ratings reported do not demonstrate any analysis after the Deepwater Horizon explosion, spill, and response efforts. A Deepwater Horizon oil spill dataset, including extensive chemical analyses of sediment and water, is available online through NOAA (USDOC, NOAA, 2013a). The dataset as a whole is not fully interpreted or discussed in context to the condition of the Gulf of Mexico, but since these data are the work of other Federal agencies, State

environmental management agencies, and British Petroleum (BP) and its contractors that have been compiled by NOAA, at least some of these data were discussed in the Inter-Agency Joint Analysis Group's reports (Joint Analysis Group, 2010a and b), as well as in the Operational Science Advisory Team's (OSAT) report (OSAT, 2010) discussed in the 2012-2017 WPA/CPA Multisale EIS and incorporated by reference in the WPA 233/CPA 231 Supplemental EIS. BOEM expects these data to be considered by the scientific community, and further incorporated into additional reports and published in peer-reviewed literature in the future.

Additional studies examining dispersant use have also been published. Rico-Martinez et al. (2013) found that toxicity testing with various species of marine rotifer revealed that, when COREXIT 9500A was well mixed with oil, the toxicity increased as much as 52 fold. Without mixing, the effect was decreased to 27.6 fold. The authors noted that the rotifer strain from the Gulf of Mexico was most tolerant to *Macondo* oil. Though the authors described the effect as synergistic, other authors have noted that the increased toxicity is actually due to the oil itself (Wu et al., 2012a) as the dispersant helps the oil dissolve into the water phase and then become more available. Furthermore, Chakraborty et al. (2012) found that COREXIT 9500 was not toxic to indigenous microbes and that various components of the COREXIT 9500 were degraded. This is part of the ongoing debate that exists with the use of dispersants as a response tool. Dispersants help make the oil more bioavailable so that the oil is subject to increased degradation, including biodegradation; however, oil that is more bioavailable may also be more toxic to some species.

Debates also exist within the spill modeling community as to whether the dispersants were effective at keeping the oil from the *Deepwater Horizon* oil spill submerged. Paris et al. (2012) concluded from their modeling efforts that dispersants only marginally decreased the amount of oil surfacing; however, a comment on that work by Adams et al. (2013) notes that the droplet size model used in the Paris et al. work was not appropriate for the conditions of the *Deepwater Horizon* explosion and oil spill. A discussion on the use of dispersants as a response tool is provided in the 2012-2017 WPA/CPA Multisale EIS. As monitoring, experimental research, and modelling research continues to examine the fate of the oil, dispersants, and their components after the *Deepwater Horizon* explosion, oil spill, and the resulting response and cleanup efforts, the results of these different scientific approaches coupled together should improve our understanding of the use of dispersants deep under water.

A study by Gutierrez et al. (2013) explored the role of exopolysaccharides (EPS) in the fate of the oil released during the *Deepwater Horizon* oil spill. The study showed that the amphiphilic EPS produced by the strain of bacteria studied increased the solubilization of aromatic hydrocarbons and enhanced their biodegradation by an indigenous microbial community. The study found that the Gulf was enriched with bacteria that produced amphiphilic EPS and suggested that the enrichment of such bacteria likely contributed to the removal of oil as well as the formation of oil aggregates in surface waters. This study serves as a reminder that natural dispersion of oil takes place, as is noted in the 2012-2017 WPA/CPA Multisale EIS. In other words, if oil should be released to the Gulf of Mexico, some dispersion would be expected even if dispersants were not used in response efforts.

Additionally, some regulations have been updated and strengthened since the 2012-2017 WPA/CPA Multisale EIS and the WPA 233/CPA 231 Supplemental EIS. The NPDES general permit for new and existing sources and new discharges in the offshore subcategory of the oil and gas extraction point source category for the western portion of the Gulf of Mexico OCS (GMG290000; USEPA Region 6) was reissued on October 10, 2012, and will expire on September 30, 2017 (USEPA, 2012b). On March 28, 2013, USEPA reissued the Vessel General Permit (VGP) for another 5 years (USEPA, 2013a). The reissued permit, the 2013 VGP, superseded the 2008 VGP on December 19, 2013. The 2013 VGP continues to regulate 26 specific discharge categories that were contained in the 2008 VGP and is more stringent because the permit contains numeric ballast water discharge limits for most vessels and more stringent effluent limits for oil-to-sea interfaces and exhaust gas scrubber washwater (USEPA 2013b).

It is currently impossible to estimate precisely the long-term impacts that the spill from the *Deepwater Horizon* explosion will have on coastal water quality. Various monitoring efforts and environmental studies are underway. More time is needed to fully assess the impacts of the *Deepwater Horizon* explosion, oil spill, and response. Although response efforts decreased the fraction of oil remaining in Gulf waters and reduced the amount of oil contacting the coastline, oil still remains in the environment (USDOC, NOAA, 2011b and 2011c; OSAT-2, 2011). Oil from the *Deepwater Horizon* explosion and resulting oil spill that appears to have been buried along the coast was unearthed by Hurricane Isaac and was reported to be discovered mostly as tarballs in several locations, including

Elmer's Island and Grand Isle, Louisiana, as well as possible locations along the Mississippi and Alabama coasts (Burdeau and Reeves, 2012). Testing at Louisiana State University also confirmed a match to oil resulting from the *Deepwater Horizon* explosion with samples collected from Barataria Bay and the Bay Jimmy area, as well as from the Fort Morgan area in Alabama (Overton, official communication, 2012). Nevertheless, this possibility of resuspended oils or remnants due to natural or anthropogenic causes was identified and discussed in the 2012-2017 WPA/CPA Multisale EIS and remains an ongoing concern.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding coastal waters in the CPA. There remains some incomplete or unavailable information that may be relevant to reasonably foreseeable impacts on coastal water quality. Much of this information relates to the *Deepwater Horizon* explosion, oil spill, and response and is continuing to be collected and developed through the NRDA process. These research projects may be years from completion. It is not possible for BOEM to obtain this information and incorporate it within the timeline contemplated in the NEPA analysis of this Supplemental EIS regardless of the costs or resources needed. Few conclusions have been released to the public to date, though as noted above, extensive datasets have now been released to the public (refer to USDOC, NOAA, 2013a) and peerreviewed academic research has been and continues to be published relevant to this topic. The Federal Government's reports and peer-reviewed journal articles that are available at this time have been discussed in Chapter 4.2.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. In particular, a portion of the recently released dataset was discussed as part of published Federal Government reports, e.g., the OSAT report (OSAT, 2010). As noted in Chapter 4.2.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS, more than 6,000 water and sediment samples were collected in coastal waters during the *Deepwater Horizon* response by USEPA, USGS, and the Center for Toxicology and Environmental Health (a BP contractor), as well as by other Federal and State agencies. These samples were analyzed against the USEPA's human health benchmarks and/or the USEPA's aquatic life benchmarks, and the results were reported in the OSAT (2010) report. The report explained that none of the water samples exceeded the USEPA's benchmark for human health while water samples revealed that there were 41 exceedances of the USEPA's aquatic life benchmarks. Of those exceedances, only nine samples were consistent with Mississippi Canyon Block 252 oil. There were 24 exceedances of sediment benchmarks for aquatic life; only 4 of those samples were consistent with Mississippi Canyon Block 252 oil. No water or sediment benchmark exceedances in the nearshore were measured after August 3, 2010 (the last overflight observation of surface oil).

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. Given the available data on coastal sediments and water quality that have been released and evaluated, as described above and in Chapter 4.2.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, with the water and sediment samples discussed in the OSAT report serving as an example, BOEM believes that this incomplete or unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for coastal water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for coastal water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Dispersant studies continue to illustrate the ongoing debate on the use of dispersant as a remediation tool. Regulations relevant to the quality of offshore waters continue to be implemented and updated to more stringent standards. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Water quality in coastal waters would be impacted by sediment disturbance and suspension (i.e., turbidity), vessel discharges, erosion, runoff from nonpoint-source pollutants (including river inflows),

seasonal influences, and accidental events. These impacts may be a result of a CPA proposed action and the OCS Program, State oil and gas activity, the activities of other Federal agencies (including the military), natural events or processes, or activities related to the direct or indirect use of land and waterways by the human population (e.g., urbanization, agricultural practices, coastal industry, and municipal wastes). The impacts resulting from a CPA proposed action are a small addition to the cumulative impacts on the coastal waters of the Gulf of Mexico because non-OCS oil- and gas-related activities, including vessel traffic, erosion, and nonpoint source runoff, are cumulatively responsible for a majority of coastal water impacts. Increased turbidity and discharge from a CPA proposed action would be temporary in nature and minimized by regulations and mitigation. Since a catastrophic OCS Program-related accident, though not reasonably foreseeable and not part of a CPA proposed action, would not be expected to occur in coastal waters, the impact of accidental spills is expected to be small. The incremental contribution of the routine activities and accidental events associated with a CPA proposed action to the cumulative impacts on coastal water quality is not expected to be significant for the reasons identified above.

4.1.1.2.2. Offshore Waters

BOEM has reexamined the analysis for offshore water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for offshore water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of offshore waters and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.2.2 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Any new information that has become available since those documents were published is presented below.

Impacts on Routine and Accidental Events

The routine activities associated with a CPA proposed action that would impact water quality include the following: discharges during the drilling of exploration and development wells; structure installation and removal; discharges during production; installation of pipelines; workovers of wells; maintenance dredging of existing navigational canals; service-vessel discharges; and nonpoint-source runoff.

During exploratory activities, the primary impacting sources to offshore water quality are discharges of drilling fluids and cuttings. During platform installation and removal activities, the primary impacting sources to water quality are sediment disturbance and temporarily increased turbidity. Impacting discharges during production activities are produced water and supply-vessel discharges. Regulations are in place to limit the toxicity of the discharge components, the levels of incidental contaminants in these discharges, and, in some cases, the discharge rates and discharge locations. Pipeline installation can also affect water quality by sediment disturbance and increased turbidity. Service-vessel discharges might include water with an oil concentration of approximately 15 ppm as established by regulatory standards. Any disturbance of the seafloor would increase turbidity in the surrounding water, but the increased turbidity should be temporary and restricted to the area near the disturbance. There are multiple Federal regulations and permit requirements that would decrease the magnitude of these activities. Impacts to offshore waters from routine activities associated with a CPA proposed action should be minimal as long as regulatory requirements are followed. A detailed impact analysis of the routine impacts of OCS oiland gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on offshore waters can be found in Chapter 4.2.1.2.2.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.2.2 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events associated with a CPA proposed action that could impact offshore water quality include spills of oil and refined hydrocarbons, releases of natural gas and condensate, spills of chemicals or drilling fluids, loss of well control, pipeline failures, collisions, or other malfunctions that would result in such spills. Spills from collisions are not expected to be significant. Overall, since major losses of well control and blowouts are rare events, the potential impacts to offshore water quality are not expected to be significant except in the rare case of a low-probability catastrophic event. Although response efforts may decrease the amount of oil in the environment, the response efforts may also impact the environment through, for example, increased vessel traffic and the application of dispersants. Natural degradation processes will also decrease the amount of spilled oil over time. Chemicals used in the oil and gas industry are not a significant risk for a spill because they are either nontoxic, are used in minor quantities, or are only used on a noncontinuous basis. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on offshore waters can be found in Chapter 4.2.1.2.2 of the WPA 233/CPA 231 Supplemental EIS. Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B** of this Supplemental EIS.

Cumulative Impacts

Background/Introduction

Activities in the cumulative scenario that could impact offshore water quality generally include the broad categories of a CPA proposed action and the OCS Program, alternative energy activities, alternate use programs for platforms, sand borrowing, the activities of other Federal agencies (including the military), natural events or processes, State oil and gas activity, and activities related to the direct or indirect use of land and waterways by the human population (e.g., urbanization, agricultural practices, coastal industry, and municipal wastes). Although some of these impacts are likely to affect coastal areas to a greater degree than offshore waters, coastal pollutants that are transported away from shore would also affect offshore environments. Many of these categories noted above would have some of the same specific impacts (e.g., vessel traffic would occur for all of these categories listed above except natural processes).

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related impacts include erosion and runoff, sediment disturbance and turbidity, vessel discharges, discharges from exploration and production activities, and accidental releases of oil, gas, or chemicals. Further discussion of these impacts is presented below.

Erosion and runoff from nonpoint sources degrade water quality. Nonpoint-source runoff from onshore support facilities could result from OCS oil- and gas-related activities; however, as discussed below, runoff from OCS oil- and gas-related activities is not the leading source of contaminant runoff. The leading source of contaminants that impair coastal water quality is urban runoff. Although offshore waters would not be affected as strongly as coastal waters since contaminants would be more diluted by the time they reached offshore areas, in many cases this runoff would still contribute somewhat to the degradation of offshore waters.

Sediment disturbance and turbidity may result from pipeline installation, platform installation and removal, and discharges of muds and cuttings from drilling operations. These impacts generally degrade water quality locally and are not expected to last for long time periods. Furthermore, discharges from drilling platforms are regulated by USEPA through the NPDES permit process; thus, effects from these discharges should be limited.

It should be noted that, since the marine environment is a dynamic system, sediment quality and water quality can affect each other. For example, a contaminant may react with the mineral particles in the sediment and be removed from the water column (e.g., adsorption). Thus, under appropriate conditions, sediments can serve as sinks for contaminants such as metals, nutrients, or organic compounds. However, if sediments are (re)suspended, the resuspension can lead to a temporary shift in water quality, including a localized and temporal release of any formally sorbed metals as well as nutrient recycling (Caetano et al., 2003; Fanning et al., 1982).

Vessel discharges can degrade water quality. Vessels may be service vessels supporting a CPA proposed action or OCS oil- and gas-related activities. Fortunately, for many types of vessels, most

discharges are treated or otherwise managed prior to release through regulations administered by the USCG and/or USEPA, and many regulations are becoming more stringent. The USCG Ballast Water Management Program became mandatory for some vessels in 2004 (33 CFR part 151 subparts C and D) (USDHS, CG, 2012b). The goal of the program was designed to prevent the introduction of nonindigenous (invasive) species that would affect local water quality. The USCG is amending its regulations on ballast water management by establishing a standard for the allowable concentration of living organisms in ballast water discharged from ships in waters of the U.S. and by establishing an approval process for ballast water management systems. The final rule was published on March 23, 2012, in the Federal Register and became effective on June 21, 2012 (USDHS, CG, 2012b). The final VGP, issued by USEPA, became effective on December 19, 2008, and was an addition to already existing NPDES permit requirements. The permit increased the NPDES regulations so that discharges incidental to the normal operation of vessels operating as a means of transportation were no longer excluded unless exempted by Congressional legislation. On March 28, 2013, USEPA reissued the VGP for another 5 years (USEPA, 2013a). The reissued permit, the 2013 VGP, superseded the 2008 VGP on December 19, 2013. The 2013 VGP continues to regulate 26 specific discharge categories that were contained in the 2008 VGP and is more stringent because the permit contains numeric ballast water discharge limits for most vessels and more stringent effluent limits for oil-to-sea interfaces and exhaust gas scrubber washwater (USEPA, 2013b). The draft sVGP, if finalized, would authorize discharges incidental to the normal operation of nonmilitary and nonrecreational vessels less than 79 ft (24 m) in length (USEPA, 2011b). These regulations should minimize the cumulative impacts of vessel activities.

Discharges from exploration and production activities can degrade water quality in offshore waters. The USEPA regulates discharges associated with offshore oil and gas exploration, development, and production activities on the OCS under the Clean Water Act's NPDES program. Regulated wastes include drilling fluids, drill cuttings, deck drainage, produced water, produced sand, well treatment fluids, well completion fluids, well workover fluids, sanitary wastes, domestic wastes, and miscellaneous wastes (USEPA, 2012a). The bulk of waste materials produced by offshore oil and gas activities are produced water (formation water) and drilling muds and cuttings. Produced water is the largest waste stream by volume from the oil and gas industry that enters Gulf waters. The National Research Council has estimated the quantity of oil in produced water entering the Gulf per year to be 11,905 bbl of oil contributed from 473,000,000 bbl of produced water, with a resulting oil and grease discharge of approximately 11,905 bbl per year (NRC, 2003, Table D-8, page 200). However, produced water is commonly treated to separate free oil and, as noted above, it is a regulated discharge. Since discharges from drilling and production platforms are regulated by USEPA through the NPDES permit process, the effects from these discharges should be limited. Accidental releases of oil, gas, or chemicals would degrade water quality during and after the spill until either the spill is cleaned up or natural processes degrade or disperse the spill. These accidental releases could be a result of a CPA proposed action or ongoing OCS oil- and gas-related activity. Actions taking place directly in offshore waters would generally have more significant impacts on offshore waters. The impacts of low-probability catastrophic spills, though not reasonably foreseeable and not part of a CPA proposed action, are discussed in **Appendix B**. The extent of impact from a spill depends on the location of release and the behavior and fate of oil in the water column (e.g., the movement of oil and the rate and nature of weathering), which, in turn, depends on oceanographic and meteorological conditions at the time (Appendices A.2 and A.3 of the 2012-2017 WPA/CPA Multisale EIS). Chapter 3.2 of this Supplemental EIS and Chapter 3.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS contain more information on accidental releases. Accidental spills as a result of a low-probability catastrophic event are discussed in Appendix B of this Supplemental EIS.

A major hurricane can affect OCS oil- and gas-related activities and result in a greater number of spill events with increased spill volume and oil-spill-response times. In the case of an accidental event, it is likely that response efforts would reduce the amount of oil. (Refer to **Chapter 3.2.1.9** of this Supplemental EIS and to Chapter 3.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS for further discussion of oil-spill-response considerations.) Offshore water quality would not only be impacted by the oil, gas, and their respective components but also to some degree from cleanup and mitigation efforts. Increased vessel traffic and the addition of dispersants and methanol to the marine environment in an effort to contain, mitigate, or clean up the oil may also tax the environment to some degree.

Non-OCS Oil- and Gas-Related Impacts

Activities not related to a CPA proposed action or the OCS Program that may impact offshore waters include State oil and gas activities, alternative uses of platforms (e.g., aquaculture), sand borrowing, renewable energy activities, the activities of other Federal agencies (including the military), natural events or processes, and activities related to the direct or indirect use of land and waterways by the human population. These activities may result in erosion and runoff, sediment disturbance and turbidity, vessel discharges, natural releases of oil and gas (e.g., seeps), and accidental releases of oil, gas, or chemicals. Further discussion of these impacts is presented below.

Erosion and runoff from point and nonpoint sources degrade water quality. Nonpoint-source runoff from onshore support facilities could result from State oil and gas activities, other industries, and coastal development, as well as OCS oil- and gas-related activities. The leading source of contaminants that impair coastal water quality is urban runoff. Although offshore waters would not be affected as strongly as coastal waters since contaminants would be more diluted by the time they reached offshore areas, in many cases this runoff would still contribute somewhat to the degradation of offshore waters. Urban runoff can include suspended solids, heavy metals and pesticides, oil and grease, nutrients, and organic matter. Urban runoff increases with population growth, and the Gulf Coast region has experienced a 109 percent population growth since 1970, with an additional expected 15 percent increase by 2020 (USDOC, NOAA, 2011a). The National Research Council (2003, Table I-4, page 237) estimated that, on average, approximately 26,324 bbl of oil per year entered Gulf waters from petrochemical and oil refinery industries in Louisiana and Texas. Chapter 3.1.1.7 of this Supplemental EIS and Chapter 3.1.1.7 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS discuss the various sources of petroleum hydrocarbons that can enter the Gulf of Mexico in further detail. The natural emptying of rivers into the GOM as part of the water cycle may introduce chemical and physical factors that alter the condition of the receiving waters. The Mississippi River introduced approximately 3,680,938 bbl of oil and grease per year from land-based sources (NRC, 2003, Table I-9, page 242) into the waters of the Gulf. Nutrients carried in waters of the Mississippi River contribute to seasonal formation of the hypoxic zone on the Louisiana-Texas shelf. The zone of hypoxia on the Louisiana-Texas shelf is the largest zone in the United States and the entire western Atlantic Ocean (Turner et al., 2005; Figure 4-3 in the 2012-2017 WPA/CPA Multisale EIS). The oxygen-depleted bottom waters occur seasonally and are affected by the timing of the Mississippi and Atchafalaya Rivers' discharges carrying nutrients and freshwater to shelf surface waters. The formation of the hypoxic zone is attributed to a combination of riverborne nutrient inputs supporting phytoplankton growth and shelf stratification, which limit the aeration of bottom waters. The areal extent of mid-summer hypoxia has ranged from 40 to $22,000 \text{ km}^2$ (15 to 8,494 mi²) and has averaged approximately 13,500 km² (5,212 mi²) during 1985-2007 (Greene et al., 2009). The hypoxic conditions last until local wind-driven circulation mixes the water again. The USEPA has regulatory programs designed to protect the waters that enter the Gulf, including the regulation of point-source discharges. If these and other water quality programs and regulations continue to be administered and enforced, it is not expected that additional oil and gas activities would adversely impact the overall water quality of the region.

Sediment disturbance and turbidity in State waters may result from pipeline installation, platform installation and removal, discharges of muds and cuttings from drilling operations, disposal of dredge materials, sand borrowing, sediment deposition from rivers, and hurricanes. Turbidity is also influenced by the season. These impacts may be the result of other Federal agencies (including the military) or natural processes. State oil and gas activities may have some effect if they take place near offshore waters. Dredging projects related to restoration or flood prevention measures may be directed by the Federal Government for the benefit of growing coastal populations. These impacts generally degrade water quality locally and are not expected to last for long time periods. Furthermore, discharges from drilling platforms are regulated by USEPA through the NPDES permit process, including USEPA-authorized State programs; thus, effects from these discharges should be limited.

Vessel discharges can degrade water quality. Vessels may be service vessels supporting State oil and gas activities. However, the vessels may also be vessels used for shipping, fishing, military activities, or recreational boating. State oil and gas activities, fishing, and recreational boating would have fewer effects on offshore waters except for larger fishing operations and cruise lines, as smaller vessels tend to remain near shore. Fortunately, for many types of vessels, most discharges are treated or otherwise managed prior to release through regulations administered by the USCG and/or USEPA, and many

regulations such as the USCG Ballast Water Management Program and the U.S. Environmental Protection Agency's VGP and sVGP are becoming more stringent as discussed in further detail above. A Congressional moratorium exempted all incidental discharges, with the exception of ballast water, from commercial fishing vessels and nonrecreational, nonmilitary vessels less than 79 ft (24 m) in length, but the moratorium expired on December 18, 2013. The sVGP would provide coverage for those vessels (USEPA, 2011b), if finalized. These regulations should minimize the cumulative impacts of vessel activities.

Accidental releases of oil, gas, or chemicals would degrade water quality during and after the spill until either the spill is cleaned up or natural processes degrade or disperse the spill. These accidental releases could be a result of State oil and gas activity, the transport of commodities to ports, and/or coastal industries. Actions taking place directly in offshore waters would generally have more significant impacts on offshore waters. The extent of impact from a spill depends on the release location and the behavior and fate of oil in the water column (e.g., the movement of oil and the rate and nature of weathering), which, in turn, depends on oceanographic and meteorological conditions at the time.

A major hurricane can affect State oil and gas activities and result in a greater number of spill events with increased spill volume and oil-spill-response times. In the case of an accidental event, it is likely that response efforts would reduce the amount of oil. (Refer to **Chapter 3.2.1.9** of this Supplemental EIS and to Chapter 3.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS for further discussion of oil-spill-response considerations.) Offshore water quality would not only be impacted by the oil, gas, and their respective components but also to some degree from cleanup and mitigation efforts. Increased vessel traffic and the addition of dispersants and methanol to the marine environment in an effort to contain, mitigate, or clean up the oil may also tax the environment to some degree.

Offshore waters, especially deeper waters, are more directly affected by natural seeps since the natural seeps in the Gulf of Mexico are located in offshore waters. Natural seeps are the result of natural processes. Hydrocarbons enter the Gulf of Mexico through natural seeps at a rate of approximately 980,392 bbl/year (a range of approximately 560,224-1,400,560 bbl/year) (NRC, 2003, page 191). Hydrocarbons from natural seeps are considered to be the highest contributor of petroleum hydrocarbons to the marine environment (NRC, 2003, page 33). However, studies have shown that benthic communities are often acclimated to these seeps and may even utilize them to some degree (NRC, 2003, references therein and page 33).

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

Various Internet sources were examined and literature searches conducted in order to assess recent information regarding the water quality and sediment quality in offshore waters that may be pertinent to the CPA. The searches included, but were not limited to, Google, Google Scholar, several USEPA websites, the Gulf of Mexico Sea Grant Programs website, the Coastal Response Research at the University of New Hampshire website, and the NOAA Central Library Deepwater Horizon: Α Preliminary Bibliography of Published Research and Expert Commentary website. The searches revealed the release of a Deepwater Horizon Oil Spill dataset, including extensive chemical analyses of sediment and water, which is available online through NOAA (USDOC, NOAA, 2013a). The dataset as a whole is not fully interpreted or discussed in context to the condition of the Gulf of Mexico, but since these data are the work of other Federal agencies, State environmental management agencies, and BP and its contractors that has been compiled by NOAA, at least some of these data were discussed in the Inter-Agency Joint Analysis Group's reports (Joint Analysis Group, 2010a and 2010b) reports, as well as in the OSAT report (OSAT, 2010) discussed in the 2012-2017 WPA/CPA Multisale EIS and incorporated by reference in the WPA 233/CPA 231 Supplemental EIS. BOEM expects these data to be considered by the scientific community and further incorporated into additional reports and published in peer-reviewed literature in the future.

A recent study independently analyzed chemical data from the *Deepwater Horizon* explosion, oil spill, and response and derived an average environmental release rate for hydrocarbons of $(10.1 \pm 2.0) \times 10^6$ kg/d during the *Deepwater Horizon* oil spill, which confirmed the official average leak rate of $(10.2 \pm 1.0) \times 10^6$ kg/d (Ryerson et al., 2011). Another study found that water-soluble petroleum compounds were found to dissolve into the water column to a greater degree than what is typically

observed for surface spills (Reddy et al., 2011). Furthermore, the study indicated that the oil contained approximately 3.9 percent PAHs by weight, which results in an estimated release of 2.1×10^{10} grams of PAHs (Reddy et al., 2011; Reddy, official communication, 2012).

Another study examined surface sediment samples from two locations 2 km and 6 km (1 mi and 4 mi) from the *Macondo* wellhead (Liu et al., 2012). The limited number of samples examined in the study found that the concentrations of total *n*-alkanes were two orders of magnitude higher and that total PAHs were approximately three times higher at the station closer to the wellhead 1 year after the spill. The study observed clear signs of biodegradation; however, biodegradation in the sediments appears to be slow due to the presence of *n*-alkanes 1 year after the spill as well as the presence of benzene, ethylbenzene, toluene, and xylene (BTEX) and C3-benzenes (Liu et al., 2012). The weathering rate in the sediments appeared to be greater at the station farthest from the well. The authors attributed the weathering in the sediments to biodegradation and dissolution, and they suspected that the slow weathering may be due to low temperatures, low oxygen concentration, and less microbial activity (Liu et al., 2012). However, sorption of oil components onto sediment mineral or organic matter components may also slow the weathering of the oil as oil components associated with the sediment (solid phase) are generally considered less available than oil components associated with the water column (aqueous phase). This research confirms information that was extrapolated in the 2012-2017 WPA/CPA Multisale EIS from then existing data on the *Deepwater Horizon* explosion, namely that oil from a catastrophic event under pressure and with more soluble components may become entrained in the water column or associated with the sediment. As such, this new information has not altered the conclusions from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Studies continue to strive to better understand microbial degradation of hydrocarbons during the *Deepwater Horizon* oil spill. Dubinsky et al. (2013) challenged earlier work by Valentine et al. (2012) that suggested that respiratory succession and circulation patterns were responsible for the succession of bacterial communities that dominated the reported plume from the *Deepwater Horizon* oil spill. Dubinsky et al. (2013) concluded that multiple hydrocarbon-degrading bacteria operated concurrently during the spill, but their relative significance was controlled by changes in hydrocarbon supply, particularly after well intervention measures began. Regardless of the debate of the details regarding microbial remediation, both studies point to the efficiency of microbial degradation of hydrocarbons and thus do not change the conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Additional studies were released that focused on dispersants. Rico-Martinez et al. (2013) found that toxicity testing with various species of marine rotifer revealed that, when COREXIT 9500A was well mixed with oil, the toxicity increased as much as 52 fold. Without mixing, the effect was decreased to 27.6 fold. The authors noted that the rotifer strain from the Gulf of Mexico was most tolerant to *Macondo* oil. Though the authors described the effect as synergistic, other authors have noted that the increased toxicity is actually due to the oil itself (Wu et al., 2012a) as the dispersant helps the oil dissolve into the water phase and then become more available. Furthermore, Chakraborty et al. (2012) found that COREXIT 9500 was not toxic to indigenous microbes and that various components of the COREXIT 9500 were degraded. This is part of the ongoing debate that exists with the use of dispersants as a response tool. Dispersants help make the oil more bioavailable so that the oil is subject to increased degradation, including biodegradation; however, more bioavailable oil may also be more toxic to some species.

Debates also exist within the spill modeling community as to whether the dispersants were effective at keeping the oil from the *Deepwater Horizon* oil spill submerged. Paris et al. (2012) concluded from their modeling efforts that dispersants only marginally decreased the amount of oil surfacing; however, a comment on that work by Adams et al. (2013) notes that the droplet size model used in the Paris et al. work was not appropriate for the conditions of the *Deepwater Horizon* explosion and oil spill. A discussion of the use of dispersants as a response tool is provided in the 2012-2017 WPA/CPA Multisale EIS. As monitoring, experimental research, and modelling research continue to examine the fate of oil, dispersants, and their components after the *Deepwater Horizon* explosion, oil spill, and the resulting response and cleanup efforts, the results of these different scientific approaches coupled together should improve our understanding of the use of dispersants deep under water.

A study by Gutierrez et al. (2013) explored the role of EPS in the fate of the oil released during the *Deepwater Horizon* oil spill. The study showed that the amphiphilic EPS produced by the strain of bacteria studied increased the solubilization of aromatic hydrocarbons and enhanced their biodegradation

by an indigenous microbial community. The study found that the Gulf was enriched with bacteria that produced amphiphilic EPS and suggested that the enrichment of such bacteria likely contributed to the removal of oil as well as the formation of oil aggregates in surface waters. This study serves as a reminder that natural dispersion of oil takes place, as is noted in the 2012-2017 WPA/CPA Multisale EIS. In other words, if oil should be released to the Gulf of Mexico, some dispersion would be expected even if dispersants were not used in response efforts.

Other new items relevant to the CPA include the latest data on the hypoxic zone in the northern GOM. The zone of hypoxia in the GOM on the Louisiana-Texas shelf was reported to be $5,800 \text{ mi}^2$ (15,022 km²) in 2013, which is above average (USDOC, NOAA, 2013b). Scientists thought the dead zone would be even larger based on modeling results, but mixed conditions and winds from the west reduced the area from the predicted amount. Hypoxia was considered in the 2012-2017 WPA/CPA Multisale EIS and thus, fluctuations in the size of the hypoxic zone do not affect the conclusions reached in that EIS.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding offshore waters in the CPA. There remains some incomplete or unavailable information that may be relevant to reasonably foreseeable impacts on offshore water quality. Much of this information relates to the *Deepwater Horizon* explosion, oil spill, and response and is continuing to be collected and developed through the NRDA process. These research projects may be years from completion. It is not possible for BOEM to obtain this information and incorporate it within the timeline contemplated in the NEPA analysis of this Supplemental EIS regardless of the costs or resources needed. Few conclusions have been released to the public to date, though as noted above, extensive datasets have now been released to the public (refer to USDOC, NOAA, 2013a), and peerreviewed academic research has been and continues to be published relevant to this topic. The Federal Government's reports and peer-reviewed journal articles that are available at this time have been discussed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. In particular, a portion of the recently released dataset was discussed as part of published Federal Government reports, e.g., the OSAT report (OSAT, 2010). As noted in Chapter 4.2.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS, extensive water and sediment sampling was performed in offshore waters (OSAT, 2010).

Note that the following is a synthesis of data from the offshore (shelf) and deepwater sampling zones in the OSAT report, separated by the 200-m (656-ft) isobath. Approximately 700 water and 250 sediment samples collected in shelf waters from May through October 2010 were analyzed in the OSAT report. Chronic and acute aquatic life ratios were calculated for all samples in which PAH compounds were analyzed. Six water samples in shelf waters exceeded the USEPA's chronic aquatic life benchmark, and one of these samples exceeded the acute aquatic life benchmark during May-June 2010. No shelf water samples exceeded the benchmark after August 3, 2010. In shelf sediment samples, none of the samples exceeded the USEPA's chronic aquatic life benchmark. Approximately 4,000 water and sediment samples from the deepwater zone were analyzed in the OSAT report. In the deepwater zone, there was a total of 70 exceedances of aquatic life benchmarks for PAHs in water and 7 exceedances in sediment. Chronic exceedances in water samples in deep water potentially associated with Mississippi Canyon Block 252 oil were constrained to within approximately 70 km (43 mi) of the wellhead and to approximately two depths (the near-surface and the subsurface between ~1,100 and 1,300 m [3,609 and 4,265 ft]). Quantitative results indicate that deposits of drilling mud-entrained oil remained near the wellhead. Seven sediment samples within 3 km (2 mi) of the wellhead collected since August 3, 2010, exceeded aquatic life benchmarks for PAHs, with oil concentrations of 2,000-5,000 ppm.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. Given the available data on offshore sediments and water quality that have been released and evaluated, as described above and in Chapter 4.2.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, with the water and sediment samples discussed in the OSAT report serving as an example, BOEM believes that this incomplete or unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for offshore water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for offshore water quality presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, as these newly available studies confirmed earlier estimates of hydrocarbon releases and noted the overall return to pre-spill PAH concentrations thus far. Furthermore, efforts to better understand and prevent hypoxia are ongoing as are efforts to better understand the complex process of microbial degradation after the *Deepwater Horizon* oil spill. Dispersant studies continue to illustrate the ongoing debate on the use of dispersant as a remediation tool. Regulations relevant to the quality of offshore waters continue to be implemented and updated to more stringent standards. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated information in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Water quality in offshore waters may be impacted by sediment disturbance and suspension (i.e., turbidity), vessel discharges, erosion and runoff of nonpoint-source pollutants (including river inflows), natural seeps, discharges from exploration and production activities, and accidental events. These impacts may be a result of a CPA proposed action and the OCS Program, the activities of other Federal agencies (including the military), private vessels, and natural events or processes. To a lesser degree, these impacts may also be a result of State oil and gas activity or activities or related to the direct or indirect use of land and waterways by the human population (e.g., urbanization, agricultural practices, coastal industry, and municipal wastes). Routine activities that increase turbidity and discharges are temporary in nature and are regulated; therefore, these activities would not have a lasting adverse impact on water quality. In the case of a large-scale spill event, degradation processes in both surface and subsurface waters would decrease the amount of spilled oil over time through natural processes that can physically, chemically, and biologically degrade oil. The impacts resulting from a CPA proposed action are a small addition to the cumulative impacts on the offshore waters of the Gulf when compared with inputs from natural hydrocarbon inputs (seeps), coastal factors (such as erosion and runoff), and other non-OCS industrial discharges. The incremental contribution of the routine activities and accidental discharges associated with a CPA proposed action to the cumulative impacts on offshore water quality is not expected to be significant.

4.1.1.3. Coastal Barrier Beaches and Associated Dunes

BOEM has reexamined the analysis for coastal barrier beaches and associated dunes presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for coastal barrier beaches and associated dunes presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

A detailed description of coastal barrier beaches and associated dunes and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine-impact producing factors on coastal barrier beaches and associated dunes of the CPA include pipeline emplacements, use of navigation channels by vessel traffic, dredging, and the use and construction of support infrastructure. A detailed impact analysis of the routine impacts of OCS oil-and gas-related activities associated with a CPA proposed action on coastal barrier beaches and associated dunes can be found in Chapter 4.2.1.3.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.3 of the WPA 233/CPA 231 Supplemental EIS.

Effects to coastal barrier beaches and associated dunes from pipeline emplacements, navigation channel use and dredging, and construction or continued use of infrastructure in support of a CPA proposed action are expected to be restricted to temporary and localized disturbances. The 0-1 pipeline landfalls projected in support of a CPA proposed action are not expected to cause significant impacts to barrier beaches because of the use of nonintrusive installation methods and regulations. Impacts could be reduced or eliminated through modern techniques such as horizontal, directional (trenchless) drilling to avoid damages to these sensitive wetland habitats. Any new processing facilities would not be expected to be constructed on barrier beaches.

Maintenance dredging of barrier inlets and bar channels is expected to occur, which, when combined with channel jetties, generally causes minor and localized impacts on adjacent barrier beaches downdrift of the channel. Updated navigational channels that support the OCS Program are listed in **Table 3-10**.

Dredging activities in these channels are permitted, regulated, and coordinated by COE with the appropriate State and Federal resource agencies. Impacts from these operations are minimal due to requirements for the beneficial use of the dredged material for wetland and beach construction and restoration. Permit requirements further mitigate dredged material placement in approved disposal areas by requiring the dredged material to be placed in such a manner that it neither disrupts hydrology nor changes elevation in the surrounding marsh. Because these impacts occur whether a CPA proposed action is implemented or not, a CPA proposed action would account for a small percentage of these impacts.

Routine activities associated with a CPA proposed action are not expected to adversely alter barrier beach configurations much beyond existing, ongoing impacts in localized areas downdrift of artificially jettied and maintained channels. Strategic placement of dredged material from channel maintenance, channel deepening, and related actions can mitigate adverse impacts upon those localized areas.

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to impact coastal barrier beaches and associated dunes of the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on coastal barrier beaches and associated dunes can be found in Chapter 4.2.1.3.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.3 of the WPA 233/CPA 231 Supplemental EIS.

The main accidental impact-producing factors that would affect coastal barrier beaches and associated dunes are oil spills and cleanup activities. Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B**.

Due to the proximity of inshore spills to barrier islands and beaches, inshore spills pose the greatest threat because of their concentration and lack of weathering by the time they hit the shore and because dispersants are not utilized in inshore waters due to the negative effects on the shallow-water coastal habitats. Such spills may result from either vessel collisions that release fuel and lubricants or from pipelines that rupture. Impacts of a nearshore spill would likely be considered short term in duration and minor in scope because the size of such a spill is projected to be small. When limited to just oil- and gasrelated spill sources such as platforms, pipelines, MODUs, and support vessels, Louisiana, Texas, Mississippi, and Alabama will be expected to have a total of 130-170, 5-10, 3-5, and about 2 spills <1,000 bbl/yr, respectively. Louisiana and Texas are the states most likely to have a spill \geq 1,000 bbl occur in coastal waters (refer to Chapter 3.2.1.7.1 of the 2012-2017 WPA/CPA Multisale EIS). For offshore spills, oil would likely be lessened in toxicity when it reaches the coastal environments due to the distance from shore, increased weathering, and the possible use of dispersant. Equipment and personnel used in cleanup efforts can generate the greatest direct impacts to an area, such as the disturbance of beach and foredune sands through foot traffic and mechanized cleanup equipment (e.g., sifters), dispersal of oil deeper into sands and sediments, and foot traffic in marshes impacting the distribution of oils and marsh vegetation. Close monitoring and restrictions on the use of bottom-disturbing equipment would be needed to avoid or minimize those impacts.

Currently available information suggests that impacts on barrier islands and beaches from accidental impacts associated with a CPA proposed action would be minimal. Should a spill other than a low-probability catastrophic spill contact a barrier beach, oiling is expected to be light and sand removal during cleanup activities minimized. No significant long-term impacts to the physical shape and structure of barrier beaches and associated dunes are expected to occur as a result of a CPA proposed action. A CPA proposed action would not pose a significant increase in risk to barrier island or beach resources.

Cumulative Impacts

Background/Introduction

This cumulative analysis considers the effects of impact-producing factors related to a CPA proposed action, prior and future OCS sales in the Gulf of Mexico, State oil and gas activities, other governmental and private projects and activities, and pertinent natural processes that may affect barrier beaches and dunes.

Coastal barrier beaches and associated dunes are vulnerable to many impact-producing factors from both OCS oil- and gas-related impacts and non-OCS oil- and gas-related impacts. Specific OCS oil- and gas-related, impact-producing factors considered in this cumulative analysis include dredging, pipeline emplacement/landfalls, vessel traffic, oil spills, and oil-spill response and cleanup activities. Non-OCS oil- and gas-related activities considered include vessel traffic, river channelization, sediment deprivation, tropical and extra-tropical storm activity, sea-level rise, rapid submergence, and recreational use and tourism.

River channelization, sediment deprivation, tropical and extra-tropical storm activity, sea-level rise, and rapid submergence have resulted in severe and rapid erosion of most of the barrier and shoreline landforms along the coastal areas of the CPA. Coastal barrier beaches have experienced severe adverse cumulative impacts from natural processes and human activities. Human activities that have caused the greatest adverse impacts are river channelization and damming, pipeline canals, navigation channel stabilization and maintenance, and beach stabilization structures. Deterioration of Gulf barrier beaches from these factors is expected to continue in the future. Federal, State, and local governments have made efforts over the last 10-20 years to slow the landward retreat of shorelines. Frequent intense storms, a relative rise in sea level, and a deficit in the sediment budget (both of which are partly caused by manmade alterations of the environment) are the principal natural causes of barrier island landloss. Other non-OCS oil- and gas-related impacts include development and urbanization, tourism, and recreational activities. In addition, oil spills and oil-spill response and cleanup activities can originate from non-OCS oil- and gas-related activities. While each of these factors can cause negative impacts to barrier beaches and associated dunes, a CPA proposed action would not greatly increase the overall impacts.

OCS Oil- and Gas-Related Impacts

Navigation Channels, Vessel Traffic, and Pipeline Emplacements

Continued navigation channel use and dredging, pipeline emplacements, and construction or continued use of infrastructure in support of a CPA proposed action could impact coastal habitats. The effects to coastal barrier beaches and associated dunes from pipeline emplacements, navigation channel use and dredging, and the construction or continued use of infrastructure in support of a CPA proposed action are expected to be restricted to temporary and localized disturbances. The estimated 0-1 pipeline landfalls projected in support of a CPA proposed action are not expected to cause significant impacts to barrier beaches because of the use of nonintrusive installation methods such as directional boring. The estimated 0-1 gas processing facilities would not be expected to be constructed on barrier beaches. The use of some existing facilities in support of a CPA proposed action and subsequent CPA proposed lease sales may extend the useful lives of those facilities. During that extended life, erosion-control structures may be installed to protect a facility. Although these measures may initially protect the facility as intended, such structures may accelerate erosion elsewhere in the vicinity. They may also cause the accumulation of sediments updrift of the structures; these sediments otherwise might have alleviated erosion downdrift of the structure. These induced erosion impacts would be most damaging locally. However, these efforts would most probably be small in scale within the coastal areas of the CPA. Therefore, effects from these activities are expected to be restricted to temporary and localized disturbances.

Maintenance dredging of barrier inlets and bar channels is expected to occur, which when combined with channel jetties generally causes impacts on adjacent barrier beaches downdrift of the channel due to sediment deprivation. These impacts would occur whether a CPA proposed action is implemented or not. With the established importance of barrier islands as frontline protection for both coastal wetlands and mainland infrastructure, there are no current or future plans for routing any new navigation channels through barrier islands. A CPA proposed action is estimated to account for less than 1 percent of the service-vessel traffic in the OCS.

A large temporary increase in vessel traffic in the CPA resulted from the *Deepwater Horizon* explosion, oil spill, and response. Large numbers of specialty firefighting, dispersant, and skimmer vessels were concentrated around the Louisiana, Mississippi, and Alabama coasts. Support vessels for berm construction (skimmers, tugboats, sand barges, and dredges) and boom deployment comprised the bulk of the vessel traffic that was in close proximity to barrier islands. Due to the distance from the barrier islands and slow speed of these vessels, it is unlikely these vessels markedly increased erosion rates of these islands. In the short term, these vessels and dredges have the potential to resuspend oiled bottom sediments that may exist in the area of these islands or mainland shorelines. However, it is doubtful that cumulative erosion that results from increased vessel traffic related to catastrophic spills would occur because the probability of catastrophic spills is low. This being the case, there should not be a sustained cumulative increase in the need for supply and support vessels. This is because vessel traffic would either decrease or reach a state of equilibrium to meet the needs of the working wells.

Oil Spills

Due to the proximity of inshore spills to barrier islands and beaches, inshore spills pose the greatest threat. Aging pipelines and infrastructure continue to be problematic, and the potential for spills could exist until they are replaced. Improperly abandoned wells can also have a potential to create spills, especially in the shallow State waters. The number and most probable spill sizes to occur in coastal waters in the future are expected to resemble the patterns that have occurred in the past, and the majority of inshore spills are assumed to be small in scale and short in duration; therefore, impacts would be minor. Oil from most offshore spills, including a low-probability catastrophic spill (more detail in **Appendix B**), is assumed to be weathered and normally treated offshore; therefore, most of the toxic components would have dissipated by the time it contacts coastal beaches. The cleanup impacts of these spills could result in short-term (up to 2 years) adjustment in beach profiles and configurations as a result of sand removal and disturbance during the cleanup operations. Cleanup efforts would be monitored to ensure the least amount of disturbance to the areas.

Hurricanes and tropical storms will continue to erode and lower elevations of the barrier islands and to reduce their effectiveness as protection from inland oiling. While the probability of a catastrophic spill like the Deepwater Horizon oil spill is low and not reasonably expected, it cannot be entirely ruled out. Regardless of the spill size, some barrier islands could be oiled. Cleanup of these oiled islands and mainland beaches may involve utilizing heavy machinery that further impacts beach and littoral habitats. Based on the current analysis associated with the *Deepwater Horizon* spill, oil from offshore spills can lose many of its volatile and toxic components prior to onshore contact, which would render the residual beached oil low in PAHs and other toxic compounds (OSAT-2, 2011). The form of the residual oil (i.e., tarballs, supratidal buried oil, or surf zone submerged oil mats) could affect its rate of weathering and biodegradation. Some oil may penetrate to depths beneath the reach of the cleanup methods. The remaining oil would persist in beach sands, periodically being released when storms and high tides resuspend or flush through beach sediments. Long-term stressors, including physical effects and the chemical toxicity of hydrocarbons, could lead to decreased primary production, plant dieback, and further erosion (Ko and Day, 2004); although at some point the impact of cleanup operations exceeds the impact of the remaining oil (OSAT 2010). The OSAT-2 report (2011) found an 86-98 percent depletion of PAHs The buried supratidal samples underwent less in the weathered samples that were beached. biodegradation due to lack of oxygen, but they were estimated to decrease to 20 percent of current levels within 5 years (OSAT-2, 2011). The weathered oils measured in the beach sediment did not surpass any USEPA exceedances for aquatic wildlife, and the National Environmental Benefits Analysis performed by OSAT (2010) determined that the residual oil remaining after cleanup efforts would be less damaging to the habitat and associated resources than continuing the cleanup effort.

The State of Louisiana constructed barrier sand berms along the beaches of barrier islands in an attempt to keep the oil from reaching the coast. Such measures can impact barrier islands through increasing compaction, altering currents, and removing sand supplies needed for natural barrier island formation. These berms resulted in changes to the ecosystems they were intended to protect (Martinez, et al., 2011).

The barrier beaches of Deltaic Louisiana have the greatest rates of erosion and landward retreat of any known in the Western Hemisphere and are among the greatest rates on earth. Long-term impacts to contacted beaches from these spills could occur if significant volumes of sand were removed during cleanup operations. Removing sand from the coastal littoral environment, particularly in the sand-starved transgressive setting of coastal Louisiana, could result in accelerated coastal erosion. Spill cleanup is difficult in the inaccessible setting of coastal Louisiana. This analysis assumes that Louisiana would require the responsible party to clean the beach without removing significant volumes of sand or to replace the sand removed. Hence, cleanup operations are not expected to cause permanent effects on barrier beach stability. Within a few months, adjustments in beach configuration may result from the disturbance and movement of sand during cleanup. Mechanized cleanup was used in Alabama and Florida to remove tarballs from recreational beaches. While substantial amounts of sand were not removed, but sifted in place to remove tarballs, it is too soon to determine if there will be long-term effects on specific interstitial organisms that live in the sands of the beach face.

The reduction in slope on the beach face, loss of dune elevation, and development of scour inlets resulting from past hurricane activity contribute to future vulnerability to oil spills of the once-protected coastal inland habitats. The barrier and mainland beaches will continue to be susceptible to spills associated with vessel collisions, pipeline breaks, and refinery accidents near or at transfer facilities by the ports of Houston and Beaumont. Hurricane Ike resulted in numerous oil spills along the Texas coast. Future spills that would affect these areas are possible as refinery and offshore production facilities and pipelines continue to age and become more vulnerable to storm and hurricane damage.

Most of the Gulf Coast is comprised of sandy beaches with little vegetation directly on the beach head, except in parts of Louisiana. The more vulnerable wetland vegetation is located behind the dune or beach systems where it is less likely to come in contact with spilled oil from the OCS. Beach cleanup techniques involving heavy machinery can drive oil farther into the sediment; however, new machinery allows the sand to be sifted in place and returned to the beach after the oil is removed. Some oil may penetrate to depths beneath the reach of the cleanup methods. The remaining oil would persist in beach sands, periodically being released when storms and high tides resuspend or flush through beach sediments.

Non-OCS Oil- and Gas-Related Impacts

Vessel Traffic

Maintenance dredging of barrier inlets and bar channels is expected to occur, which when combined with channel jetties generally causes impacts on adjacent barrier beaches downdrift of the channel due to sediment deprivation. These impacts would occur from necessary channel maintenance to accommodate non-OCS vessel traffic. More than 98 percent of total vessel traffic is not associated with a CPA proposed action. With the established importance of barrier islands as frontline protection for both coastal wetlands and mainland infrastructure, there are no current or future plans for routing any new navigation channels through barrier islands.

Oil Spills

Non-OCS spills can occur as a result of import tankers, barge, or shuttle tanker accidents during transit or offloading, State-related oil production activities, and various kinds of petroleum product transfer accidents. Coastal or inland spills have the potential to have greater effects on beaches and dunes because the oil would not have the chance to weather and degrade before reaching the resource. Effects of non-OCS oil- and gas-related spills would be similar to OCS oil- and gas-related spills.

River Channelization and Beach Protection

Over the course of geological history since the peak of the last ice age 18,000 years ago, the barrier islands have migrated toward the present coast. The Gulf-facing coasts of the barrier islands have been eroded by the steady rise in sea level. Historically, as the Gulf's coast retreated, the landward side of the islands has extended and has been built up by sand deposits from over wash during storms. The vegetated dunes prevent some degree of sediment transport to the back side of the dune and increase the potential for erosion due to wash back on the dune face, and as a result, the islands are getting narrower.

Human disturbance has hastened the erosion of barrier beaches and dunes. Channel deepening and widening along the Mississippi River and other major coastal rivers, in combination with channel training and bank stabilization work, has resulted in the reduced delivery of sediment to the eroding deltas along the mouths of the rivers and to the offshore barrier islands. This, coupled with beach building and stabilization projects utilizing mined sands, jetties, groins, and other means of sediment capture, is depriving natural restoration of the barrier beaches through sediment nourishment and sediment transport.

Subsidence, erosion, and dredging of inland coastal areas, with the concurrent expansion of tidal influences, continually increase tidal prisms around the Gulf. These changes may result in the opening and deepening of many new tidal channels that connect to the Gulf and inland waterbodies. These incremental changes would cause adverse impacts to barrier beaches and dunes. Efforts to stabilize the Gulf shoreline have adversely impacted barrier landscapes in Louisiana and Texas. Large numbers and varieties of stabilization techniques, such as groins, jetties, and seawalls, as well as artificially maintained channels and jetties, installed to stabilize navigation channels, have been applied along the Gulf Coast. These efforts have contributed to coastal erosion by depriving downdrift beaches of sediments, which accelerates erosion there, and by increasing or redirecting the erosional energy of waves (Morton, 1982). Over the last 20 years, dune and beach stabilization have been better accomplished by using more natural applications such as sand dunes, beach nourishment, and vegetative plantings.

Other Anthropogenic and Natural Processes

Adverse effects on barrier beaches and dunes have resulted from changes to the natural dynamics of water and sediment flow along the coast. Some of these changes can be attributed to man-made alterations to the environment. This can happen in an attempt to control catastrophic floods and change the natural environment to better accommodate navigation on waterways used to support OCS and non-OCS seaborne traffic. Sea-level rise and coastal subsidence with tropical and extra-tropical storms exacerbate and accelerate the erosion of coastal barrier beaches along the Gulf Coast. Both the western edge of the Louisiana coast and the eastern Texas coast in the WPA received major damage as a result of Hurricanes Katrina, Rita, Gustav, and especially Ike. Texas barrier islands and mainland beaches lost elevation and vegetative cover as a result of the erosion accompanying the storm-driven debris and sheer tidal surge. The reduction in storm protection once provided by barrier islands will result in further conversion of freshwater marsh to either open water or salt marsh. Due to such hurricane-induced changes, the cumulative effect of additional storms has the potential to further erode barrier islands unless restoration methods are implemented.

Barrier beaches along coastal Louisiana have experienced severe erosion and landward retreat (marine transgression) because of natural processes enhanced by human activities. Adverse effects on barrier beaches and dunes have resulted from changes to the natural dynamics of water and sediment flow along the coast. This can happen due to anthropogenic attempts to control catastrophic floods and change the natural environment to better accommodate navigation on waterways used to support OCS Program-and non-OCS Program-related vessel traffic. Sea-level rise and coastal subsidence, along with tropical and extra-tropical storms exacerbate and accelerate the erosion of coastal barrier beaches along the Gulf Coast of Louisiana. The CPA coast received major damage as a result of Hurricanes Katrina, Rita, and Gustav.

The central Gulf Coast (i.e., Louisiana, Mississippi, Alabama, and western Florida) and the associated barrier islands and beaches have experienced an increase in frequency of high-intensity hurricanes and tropical storms over the past several years. As a result of past powerful hurricanes (i.e., Hurricanes Katrina, Rita, and Gustav), changes in barrier island topography and decreases in beach elevation potentially increased the probability for oiling farther up the beach head in some locations. Due to the more gentle slopes, removal of beach ridges, and cuts into the mainland barrier beaches, the remnant transition zone between the water and the current beach ridge may be more vulnerable to spills. In some areas along the Louisiana coast, barrier islands were severely damaged, resulting in either heavily degraded beachfront elevations and ridges or submergence of the island from sediments being redistributed by the storm surge. In coastal Louisiana, dune-line heights have been drastically reduced by the storm activity. The Isle Dernieres and Chandeleur Island chains experienced beach erosion and losses in elevation. In Mississippi and Alabama, dune elevations exceed those in Louisiana but have been reduced to some extent due to storm activity. Hurricane Katrina completely inundated the western side of Dauphin Island, Alabama, decreasing elevations to less than 2 m (7 ft).

completely overwashed the western edge of the island, resulting in large changes to the island's shape and topography (USDOI, GS, 2008).

Hurricane Rita in September 2005 severely impacted the shoreface and beach communities of Cameron Parish in southwest Louisiana. These barriers lost elevation and vegetative cover as a result of the erosional forces accompanying the storm surge and scour from storm-driven debris (Barras, 2007a). The removal of vegetative cover and scour scars provides an avenue for additional erosion to occur as a result of inlet formations and tidal rivulets. If the topography is modified, it may result in hydrological changes that enable further sediment transport from the islands. This provides pathways for further erosion and saltwater intrusion into the less salt-tolerant interior vegetated habitats of the islands. The loss of elevation, combined with the shoreline retreat and removal of vegetation further aggravated by the hurricanes, allows for the expansion of the overwash zone. This lessens the pre-storm protection provided by these barrier islands. The reduction in island elevation results in less frontline protection to valuable marshes and makes urban and industrial areas protected by these marshes at a higher risk (USDOC, NMFS, 2007).

Hurricanes and tropical storms will remain a part of the Gulf Coast weather pattern and will continue to affect the elevations of barrier islands, mainland beaches, and dunes. Depending on storm frequency and intensity, it may be possible for coastal restoration and protection projects to mitigate some of the physical damage to these areas.

Recreational Use and Tourism

Most barrier beaches in Louisiana are relatively inaccessible for regular recreational use because they are in coastal areas with limited road access. Few of these beaches have been, or are likely to be, substantially altered to accommodate recreational or industrial construction projects in the near future. Mississippi has coastal beaches behind the barrier islands that are accessible for recreational use, and the barrier islands experience extensive recreational use by boaters.

Most barrier beaches in Alabama and Florida are accessible to people for recreational use because of road access, and their use is encouraged. Recreational use of barrier beaches and dunes can have impacts on the stability of the landform. Vehicle and pedestrian traffic on sand dunes can stress and reduce the density of vegetation that binds the sediment and stabilizes the dune. Destabilized dunes are more easily eroded by winds, waves, and traffic. Recreational vehicles and even hikers have caused problems where road access is available and the beach is wide enough to support vehicle use, as in Alabama, Florida, and a few places in Louisiana. Areas without road access have limited impacts by recreational vehicles. There will continue to be seaside real-estate development where road access is available. The protection of dunes, beaches, and coastal environments will be regulated through the Coastal Management Programs of the State. This assures that projects are constructed consistent with the Federal CZMA guidelines in order to preserve the integrity of the coastal ecosystem.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search was conducted for information published on barrier beaches and dunes, and various Internet sources were examined to determine any recent information regarding barrier beaches and dunes. Sources investigated include BOEM, the USGS National Wetlands Research Center, the USGS Gulf of Mexico Integrated Science Data Information Management System, Gulf of Mexico Alliance, State environmental agencies, USEPA, and coastal universities. Other websites from scientific publication databases (including Science Direct, Elsevier, the NOAA Central Library National Oceanographic Data Center, and JSTOR) were checked for new information using general Internet searches based on major themes. Most new and pertinent information has been the result of *Deepwater Horizon* related research and these studies have provided insight into many aspects of the spill and its effects as it relates to beach and dune environments.

Various studies examined changes to microbial communities after exposure to crude oil and/or dispersant, such as increased dominance in fungal communities (Bik et al., 2012) and increased abundance of hydrocarbon degraders (Kostka et al., 2011). Hamdan and Fulmer (2011) demonstrated inhibition of hydrocarbon degrading bacteria by exposure to dispersant, and Zuijdgeest and Huettel (2012) found that COREXIT caused faster penetration of PAHs into sandy sediments, resulting in slowed

degradation under anaerobic conditions. Other studies showed that biostimulation with nutrients or organic matter enhanced biodegradation of crude oil by autochthonous microbial consortia (Nikolopoulou et al., 2013; Horel et al., 2012; Mortazavi et al., 2012). A study of the bacteria present in tarballs collected from beaches suggested that tarballs can act as reservoirs for bacteria, particularly human pathogens such as *Vibrio vulnificus* (Tao et al., 2011).

Still other studies focused on determining the source of tarballs and dispersant-related chemicals. Mulabagal et al. (2013) found that tarballs on Alabama beaches originated from the *Deepwater Horizon* explosion and oil spill, while Hayworth and Clement (2012) traced dispersant-related chemicals found in nearshore and inland water samples from the Orange Beach, Alabama, vicinity to local stormwater discharge rather than COREXIT.

While the recent research has provided new information regarding impacts to coastal beaches and dunes from oil spills, this new information does not change the conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because such a catastrophic event is unlikely to occur and because BOEM has already considered the potential irreversible effects to coastal beaches and dunes in **Appendix B**.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding coastal barrier beaches and associated dunes in the CPA. This information cannot reasonably be obtained because the long-term effects may not yet be detectable and the overall costs in time and money to determine this are exorbitant. This incomplete or unavailable information may be relevant to reasonably foreseeable significant adverse effects because recent events such as the *Deepwater Horizon* explosion, oil spill, and response may have caused changes to baseline conditions for coastal beaches and associated dunes of the Gulf of Mexico. A large body of information regarding impacts of the *Deepwater Horizon* explosion, oil spill, and response upon coastal barrier beaches and associated dunes is being developed through the NRDA process, but it is not yet available. There are also unknowns regarding the future restoration efforts being planned, such as what projects will ultimately be constructed and how successful they may be. In addition, the future rates of relative sea-level rise are not known with certainty (Hausfather, 2013), and thus, the resulting impacts to coastal barrier beaches and associated dunes are unknown.

BOEM has determined that the information is not essential to a reasoned choice among alternatives because the CPA is an active oil and gas region with ongoing exploration, drilling, and production activities. In addition, non-OCS energy-related factors will continue to occur in the CPA irrespective of a CPA proposed action (i.e., development, urbanization, recreational activities, etc.). The potential for effects from changes to the affected environment (post-*Deepwater Horizon*), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on coastal barrier beaches and associated dunes from either smaller accidental events or low-probability catastrophic events will remain the same.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, the following studies were analyzed with regards to coastal barrier beaches and dunes: Bik et al. (2012); Kostka et al. (2011); Hamdan and Fulmer (2011); Zuijdgeest and Huettel (2012); Nikolopoulou et al. (2013); Horel et al. (2012); Mortazavi et al. (2012); Tao et al. (2011); and Mulabagal et al. (2013). The results of these recent studies of coastal barrier beaches and dunes indicate that the extent of impacts resulting from a catastrophic oil spill could be extensive but that the oil would be degraded over time. However, a low-probability catastrophic oil spill is not much more likely with a proposed CPA lease sale than without, given the existing level of OCS oil- and gas-related activities and the small incremental increase in the activity that is expected from a proposed CPA lease sale. Therefore, none of these sources reveal reasonably foreseeable significantly greater adverse impacts, whether or not the No Action or an Action alternative is chosen under this Supplemental EIS.

Summary and Conclusion

BOEM has reexamined the analysis for coastal barrier beaches and associated dunes presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS based on the additional information presented above. No new significant information was discovered that would alter the impact conclusions with respect to routine and accidental activities for coastal barrier beaches and associated dunes presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Natural and anthropogenic events have severely and rapidly eroded most of the barrier and shoreline landforms along the Louisiana coast and have also impacted the Mississippi, Alabama, and West Florida coasts. The Texas coast has experienced landloss. Beach stabilization projects erode the coast. However, restoration techniques could be required to mitigate some of these impacts.

The impacts of oil spills from both OCS and non-OCS sources to the Gulf Coast depend on the size, frequency, distribution, locations, and collective spatial and temporal features of the spills.

Under a CPA proposed action, 0-1 pipeline landfalls are projected. These pipelines are expected to be installed using modern techniques, which cause little to no impacts to the barrier islands and beaches. Existing pipelines had been placed using older techniques and have caused and would continue to cause barrier beaches to narrow and breach.

Most barrier beaches in Alabama and Florida are accessible to people for recreational use because of road access, and their use is encouraged and intense. Excessive recreational use can result in damage to dunes resulting from the loss of dune stabilizing plants.

In conclusion, coastal barrier beaches have experienced severe adverse cumulative impacts from natural processes (mainly) and human activities. Human activities that have caused the greatest adverse impacts are river channelization and damming, pipeline canals, navigation channel stabilization and maintenance, reduction in sand budgets, and beach stabilization structures.

A CPA proposed action is not expected to erode significantly beyond existing, localized, ongoing impacts. A CPA proposed action may extend the life and presence of facilities in eroding areas, which would cause continued erosion in those areas. Strategic placement of dredged material can mitigate adverse impacts upon those localized areas.

The extent of impacts from the *Deepwater Horizon* explosion, oil spill, and response to coastal barrier beaches and associated dunes remains unclear at this time. This information is being developed through the NRDA process, data are still incoming and have not been made publicly available, and it is expected to be years before the information is available. Where this incomplete information is relevant to reasonably foreseeable impacts, what scientifically credible information is available was used in its stead and applied using accepted scientific methodologies. Although it may be relevant to reasonably foreseeable adverse impacts, this incomplete or unavailable information is not essential to a reasoned choice among alternatives. Compared with other impacting factors on coastal barrier beaches and dunes, the incremental contribution of a CPA proposed action to the cumulative impacts to these resources is expected to be small.

4.1.1.4. Wetlands

BOEM has reexamined the analysis for wetlands presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for wetlands presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

A detailed description of wetlands and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.4 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on wetlands of the CPA include pipeline emplacement, construction, and maintenance; navigation channel use (vessel traffic) and maintenance dredging; disposal of OCS oil- and gas-related wastes; and use and construction of support infrastructure in coastal areas. Other potential impacts that are indirectly associated with OCS oil and gas activities are wake erosion resulting from navigational traffic, levee construction that prevents necessary sedimentary processes, saltwater intrusion that changes the hydrology leading to unfavorable conditions for wetland vegetation, and vulnerability to storm damage from eroded wetlands. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on wetlands can be found in Chapter 4.2.1.4.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.4 of the WPA 233/CPA 231 Supplemental EIS.

It is expected that impacts of pipelines would be reduced or eliminated through mitigation, such as horizontal, directional (trenchless) drilling techniques to avoid damages to these sensitive wetland habitats. Although maintenance dredging of navigation channels and canals in the CPA is expected to occur, a CPA proposed action is expected to contribute minimally to the need for this dredging. Alternative dredged-material disposal methods can be used to enhance and create wetlands. Secondary impacts to wetlands from a CPA proposed action would result from OCS oil- and gas-related vessel traffic, contributing to the erosion and widening of navigation channels and canals. Overall, the impacts to wetlands from routine activities associated with a CPA proposed action are expected to be low due to the small length of projected onshore pipelines, the minimal contribution to the need for maintenance dredging, and the mitigation measures that would be used to further reduce these impacts.

Accidental disturbances resulting from a CPA proposed action, mainly oil spills, have the potential to cause plant mortality and permanent loss of wetlands of the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on wetlands can be found in Chapter 4.2.1.4.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.4 of the WPA 233/CPA 231 Supplemental EIS.

Offshore oil spills resulting from a CPA proposed action would have a low probability of contacting and damaging wetlands along the Gulf Coast, except in the case of a low-probability catastrophic event, which is not reasonably expected and not part of a CPA proposed action (refer to Appendix \mathbf{B}). This is because of the distance of the spill to the coast, the likely weathered condition of oil (through evaporation, dilution, and biodegradation) should it reach the coast, and because wetlands are generally protected by barrier islands, peninsulas, sand spits, and in some cases by currents. However, because the protective capacity of barrier islands has been reduced (due to land lost in hurricanes and anthropogenic factors; refer to **Chapter 4.1.1.3**), there is a greater potential for the oiling of coastal wetlands during an accidental event. The causes of coastal and offshore oil spills are summarized in Chapters 3.1.1.7 and **3.3.5.2.** Although the probability of occurrence is low, the greatest threat from an oil spill to wetland habitat is from an inland spill as a result of a nearshore vessel accident or pipeline rupture. Wetlands in the northern Gulf of Mexico are in moderate- to high-energy environments; therefore, sediment transport and tidal stirring should reduce the chances for oil persisting in the event that these areas are oiled. While a resulting slick may cause minor impacts to wetland habitat and surrounding seagrass communities, the equipment, chemical treatments, and personnel used for cleanup can generate the greatest impacts to the area. Associated foot traffic may work oil farther into the sediment than would otherwise occur. Close monitoring and restrictions on the use of bottom-disturbing equipment would be needed to avoid or minimize those impacts. In addition, an assessment of the area covered, oil type, and plant composition of the wetland oiled should be made prior to choosing remediation treatment. These treatments could include mechanical and chemical techniques with onsite technicians. Overall, impacts to wetland habitats from an oil spill associated with activities related to a CPA proposed action would be expected to be low and temporary because of the nature of the system, regulations, and specific cleanup techniques.

For example, Michel et al. (2013), Kokaly et al. (2013), and Mishra et al. (2012) demonstrate that understanding the extent of the oil spill in terms of the length of shoreline affected and the penetration into wetlands from the shoreline will help in setting the visual contexts to detect possible long-term recovery trends. This includes the usefulness of monitoring techniques such as remote sensing (of oil impacts), bioremediation, bioaugmentation, and microbial degradation, along with natural weathering to help in the recovery of oiled marsh vegetation (DeLaune and Wright, 2011; Horel et al., 2012; Liu et al., 2012; Tao and Yu, 2013; Natter et al., 2012; Beazley et al., 2012). Other techniques, such as the use of

barriers such as booms and sand berms, did not work as well as planned (Martinez et al., 2011; Jones and Davis, 2011; Zengel and Michel, 2013). Research has shown that marsh vegetation recovers from many disturbances, including oil exposure (DeLaune and Wright, 2011; Silliman et al., 2012). Even though some marsh vegetation is more resilient than others, all marsh vegetation will be adversely impacted if there is 100-percent oil coverage of the plant (Lin and Mendelssohn, 2012; Wu et al., 2012b; Mishra et al., 2012). The impact of oil on resident and transient marsh nekton and arthropods has been shown to be short term in nature, with these communities near pre-spill levels a year after the *Deepwater Horizon* oil spill (Moody et al., 2013; McCall and Pennings, 2012).

Cumulative Impacts

Background/Introduction

This cumulative analysis considers the effects of impact-producing factors related to a CPA proposed action, prior and future OCS sales in the Gulf of Mexico, State oil and gas activities, other governmental and private projects and activities, and pertinent natural processes that may affect wetland resources.

Wetlands are vulnerable to many impact-producing factors from OCS oil- and gas-related impacts and non-OCS oil- and gas-related impacts. Specific OCS oil- and gas-related, impact-producing factors considered in this cumulative analysis include the following: (1) oil spills; (2) OCS oil- and gas-related vessel traffic; (3) construction of OCS oil- and gas-related infrastructure and support structure (including pipelines); and (4) waste disposal. Other non-OCS oil- and gas-related impact-producing factors would potentially impact wetland resources, including the following: (1) State oil and gas activities; (2) non-OCS oil- and gas-related vessel traffic and navigation canals; (3) coastal infrastructure and development; (4) natural processes (including hurricanes and subsidence); and (5) sea-level rise (natural causes of subsidence are combined with subsidence caused by extraction and other man made alterations). While each of these factors can cause negative impacts to wetlands, a CPA proposed action would not greatly increase the overall impacts.

OCS Oil- and Gas-Related Impacts

Oil Spills

The potential for coastal/inland oil spills creates the greatest concern for coastal wetlands due to the proximity of the spills to these vegetated areas. Aging infrastructure including refineries, onshore production facilities, platforms, and pipelines would continue to be an increasing source of potential spills.

Over 3,000 production platforms in the Gulf are over 20 years old and were constructed prior to the modern structural requirements that increase endurance to hurricane force winds (Casselman, 2010). Improperly capped or marked abandoned wells also add to the possibility for future oil spills as a result of leaks or vessel collisions. Future spills from these types of facilities would be less likely because these older facilities are gradually either structurally updated to withstand larger storms or replaced at the discretion of the owner/operator.

Oil from offshore spills is less likely to reach the coastal wetlands in the same condition it was released due to weathering, dispersant treatment, and blockage by barrier islands and shorelines. However, erosion of these barriers by Hurricanes Katrina and Rita decreased the level of protection afforded the mainland (USDOC, NMFS, 2007). Flood tides may now bring some oil through tidal inlets into areas landward of barrier beaches. The turbulence of tidal water passing through most tidal passes would break up the slick, thereby accelerating dispersion and weathering. For the majority of these situations, light oiling of vegetated wetlands may occur. Any adverse impacts that may occur to wetland plants are expected to be short lived, generally less than 1 year.

Spills that occur in or near the Chandeleur or Mississippi Sounds could affect wetland habitat in or near the Gulf Islands National Seashore (135,458 ac; 545,818 ha) including its Wilderness Area (4,080 ac; 1,651 ha), and the Breton National Wildlife Refuge (18,273 ac; 7,395 ha) with its Wilderness Area (5,000 ac; 2,023 ha). Because of their natural history, these areas are considered areas of special importance. They also support endangered and threatened species. Although the wetland acreage on these islands is small, the wetlands make up an important element in the habitat of the islands. The inlets that connect the Mississippi Sound with the marsh-fringed estuaries and lagoons within the islands are

narrow, so a small percentage of the oil that contacts the Sound side of the islands would be carried by the tides into interior lagoons.

The number and most likely spill sizes to occur in coastal waters in the future are expected to resemble the patterns that have occurred in the past as long as the level of energy-related, commercial and recreational activities remain the same. Therefore, the coastal waters of Louisiana, Mississippi, and Alabama would have a total of 200, 30, and 10 spills <1,000 bbl/yr, respectively, from all sources. When limited to just oil- and gas-related spill sources such as platforms, pipelines, MODUs, and support vessels, Louisiana, Mississippi, and Alabama would have a total of 130-170, 3-5, and about 2 spills <1,000 bbl/yr, respectively. The distribution of spill sizes is likely to be similar to those identified in Anderson et al. (2012) for OCS spills. Ninety-six percent of spills are <1 bbl (average size = 0.05 bbl) and 98 percent of spills are <10 bbl (average size for spills 1-9 bbl = 3 bbl). For more information on spill sizes, refer to Chapter 3.2.1.7.1 of the 2012-2017 WPA/CPA Multisale EIS.

The *Deepwater Horizon* oil spill was the largest spill recorded in the GOM and resulted in the oiling of an extensive portion of the northern Gulf Coast shoreline from east of the Texas/Louisiana State line to northwest Florida (Florida Panhandle) (OSAT-2, 2011). This event must be considered in the cumulative baseline due to the volume of oil released and the geographic area affected. However, unlike other historic large spills (*Exxon Valdez* and *Ixtoc I*), the oil was released and treated in deep water nearly 77 km (48 mi) from shore, and the spill occurred in an unconfined open ocean as opposed to a sheltered embayment. All of these factors contribute to the weathering and detoxification of the oil that reached the shoreline. It is too early to determine the cumulative long-term effect of this spill and its contribution to the ongoing marsh loss or the acceleration of that loss. While risk of a low-probability catastrophic spill, which are is not reasonably foreseeable and not part of a CPA proposed action, cannot be wholly eliminated, new regulations focusing on improved safety, more regulatory checks, and inspections should decrease the already small likelihood of the occurrence of such spills. Accidental spills as a result of a low-probability catastrophic event, which is not reasonably foreseeable and not part of a CPA proposed action, are discussed in **Appendix B**.

Vessel Traffic

Navigation channels in the coastal areas of the CPA support both OCS and non-OCS vessel traffic. Waves generated by boats, ships, barges, and other vessels erode unprotected shorelines and accelerate erosion in areas already affected by the natural erosion process. This is evident along the Texas coast where heavy traffic using the Gulf Intracoastal Waterway has accelerated the erosion of existing salt marsh habitat.

BOEM conservatively estimates that there are approximately 4,850 km (3,013 mi) of Federal navigation channels, bayous, and rivers potentially exposed to OCS oil- and gas-related traffic in the EPA, CPA, and WPA (**Table 3-7**) and that the average canal is widening at a rate of 0.99 m/year (3.25 ft/year). Gulfwide, the average canal widening rate results in a total annual landloss of approximately 831 ac/yr (336 ha/yr). Therefore, over the 40-year cumulative activities scenario, landloss in Federal navigation channels could total approximately 33,221 ac (13,444 ha). Total landloss in these areas can be caused by multiple factors, including saltwater intrusion, hurricanes, and vessel traffic. The OCS oil- and gas-related traffic constitutes a larger percent of the total vessel traffic (OCS oil- and gasrelated and non-OCS oil- and gas-related) in the CPA (12-16%) than in the WPA (3-5%). All service vessels associated with EPA actions are expected to use CPA navigational canals while inland and constitute less than 1 percent of the total vessel traffic. Assuming that vessel traffic alone was the sole source of erosion, the rate of landloss would be related to the usage of those canals by both OCS oil- and gas-related vessels and non-OCS oil- and gas-related vessel traffic. Using the estimated proportion of OCS oil- and gas-related vessel traffic as a measurement of erosion, BOEM conservatively estimates the OCS oil- and gas-related contribution to bank erosion over the 40-year cumulative scenario to be 2,766-3,645 ac (1,119-1,475 ha). This number is considered conservative because open waterways were included in the total length of Federal navigation channels, vessel size was not taken into consideration, and there are sources of erosion to navigation canals other than vessel traffic alone.

In the Louisiana Coastal Master Plan (State of Louisiana, Coastal Protection and Restoration Authority, 2012a), it is estimated that up to 1,750 mi² (4,500 km²) of land will be lost in the next 50 years (or approximately 896,000 ac [362,600 ha] of land in the next 40 years). Using BOEM's conservative estimate of approximately 2,360 km (1,470 mi) of Federal navigation channels, bayous, and rivers

potentially exposed to OCS traffic in the LCA (**Table 3-7**) and the average canal widening rate of 0.99 m/yr (-3.25 ft/yr), a total landloss of approximately 16,190 ac (6,550 ha) in navigation canals may be estimated over the next 40 years. Using this estimate and comparing it with the total expected landloss in coastal Louisiana over the next 40 years, BOEM estimates that approximately 2 percent of the total landloss in Louisiana will occur due to saltwater intrusion, hurricanes, and vessel traffic (OCS oil- and gas-related and non-OCS oil- and gas-related) in navigation canals. Because OCS oil- and gas-related vessel traffic constitutes only 12-16 percent of the total vessel traffic in the CPA, BOEM conservatively estimates that OCS oil- and gas-related vessel traffic would contribute <0.5 percent (or <2,647 ac [1,071 ha]) of the landloss in coastal Louisiana in the next 40 years.

Depending upon the regions and soils through which canals were dredged, their secondary adverse impacts may be more locally significant than direct impacts. The OCS oil- and gas-related vessel traffic is expected to result in some level of dredging activity associated with the expansion of offshore platforms or onshore transfer or production facilities if needed. The primary indirect impacts from dredging would be wetland loss as a result of saltwater intrusion or vessel-traffic erosion. However, the primary support, transfer, and production facilities used for OCS oil- and gas-related activities are located along armored canals and waterways, thus minimizing marsh loss. In the foreseeable future, there will be a continuing need for dredged material for coastal restoration, wetland creation and, to some extent, offshore sediments (e.g., sand, etc.) needed for beach restoration and hurricane protection. Alternative dredged-material disposal methods can be beneficially used for wetland creation or restoration as required by COE's permitting program.

Coastal Infrastructure and Pipelines

Various kinds of onshore facilities service OCS development. Projected new facilities that are attributed to the OCS Program and a CPA proposed action would not be in wetland areas. State and Federal permitting agencies discourage the placement of new facilities or expansion of existing facilities in wetlands. Any impacts upon wetlands from existing facilities are expected to be mitigated. Because of existing capacity, no additional expansion into wetland areas is expected.

Activities that would further accelerate wetland loss include additional construction of access channels to shoreline staging areas and expansion or construction of onshore and offshore facilities (receiving and transfer facilities or fabrication of production platforms). BOEM projects 0-1 new gas processing facilities and 0-1 new pipeline landfalls for a CPA proposed action. However, based on the most current information available, there is only a very slim chance that either would result from a CPA proposed action, and if a new gas processing facility or pipeline landfall were to result, it would likely occur toward the end of the 40-year analysis period. The likelihood of a new gas processing facility or pipeline landfall is much closer to zero than to one (Dismukes, official communication, 2013a). A more detailed description of coastal infrastructure is provided in **Chapter 4.1.1.23.1**.

Modern pipeline installation methods that use horizontal (trenchless) drilling allow pipelines to be installed under coastal habitats such as barrier islands and beaches as well as fringe marshes, and therefore, eliminate or greatly reduce impacts to these habitats. The addition of corrosion preventatives to the pipeline itself reduces the probability of accidental leakage from aging pipelines. These techniques, in combination with "tie ins" to existing Federal or State pipelines with shore connections, further reduces the number of new pipeline landfalls and their cumulative impact. While impacts are greatly reduced by mitigation techniques, remaining impacts may include expansion of tidal influence, saltwater intrusion, hydrodynamic alterations, erosion, sediment transport, and habitat conversion (Cox et al., 1997; Morton, 2003; Ko and Day, 2004). The majority (over 80%) of previous OCS oil- and gas-related direct landloss is estimated to be caused by OCS pipelines (Turner and Cahoon, 1987). These are seaward of the inland CZM boundary to the 3-mi (5-km) State/Federal boundary offshore of Louisiana, Mississippi, and Alabama. Of those pipelines, about 8,000 km (4,971 mi) cross wetland and upland habitat, and they mainly occur in Louisiana. The remaining 7,400 km (4,595 mi) of pipeline cross waterbodies (Johnston et al., 2009). The total length of non-OCS pipelines through wetlands is believed to be approximately twice that of the Gulf OCS Program, or about 15,285 km (9,492 mi). There is a total (i.e., both OCS and non-OCS oil and gas related) of approximately 23,285 km (14,460 mi) of pipelines through Louisiana coastal wetlands. The majority of OCS pipelines entering State waters ties into existing pipeline systems and does not result in new landfalls. Pipeline maintenance activities that disturb wetlands are very infrequent and are mitigated to the maximum extent practicable. Such activities would be subject to review by the State of Louisiana through its coastal use permit requirements and through the Clean Water Act section 404 and Rivers and Harbors Act section 10 permits.

The widening of OCS pipeline canals does not appear to be an important factor contributing to OCS oil- and gas-related direct landloss. This is because few pipelines are open to navigation, and the impact width does not appear to be significantly different from that for open pipelines closed to navigation. Based on the projected coastal Louisiana wetlands loss of from approximately 523,000 to 1,156,000 ac (211,800-467,000 ha) over 50 years (Couvillion et al., 2013), landloss resulting from new OCS pipeline construction represents <1 percent of the total expected wetlands loss over 40 years. This estimate does not take into account the present regulatory programs and modern installation techniques. Today, pipeline canals are much narrower than in the past because of advances in technology and improved methods of installation. These advances are due to a greater awareness among regulatory agencies and industry (Johnston et al., 2009). The magnitude of impacts from OCS oil- and gas-related pipelines is inversely proportional to the quantity and quality of mitigation techniques applied. Pipelines with extensive mitigation measures appeared to have minimal impacts, while pipelines without such measures contributed to significant habitat changes. Impacts can be minimized or altogether avoided through proper construction methods, mitigation, and maintenance. BOEM is not a permitting agency for onshore pipelines. The permitting agencies are COE and the State in which the activity has occurred or would occur. Therefore, it would be the responsibility of COE and the States to ensure that wetland impacts resulting from pipeline construction are properly mitigated and monitored. Throughout the 40-year life of a CPA proposed action, a majority of the already old pipeline distribution and production systems would continue to age. This could result in an increasingly large inventory of pipelines and support structures that would need to be replaced or repaired. The replacement and repair of the inland pipeline system may temporarily impact wetlands in the pipeline corridors, but if proper mitigation is implemented and maintained, impacts should be minimal and temporary. In the absence of the replacement of these aging pipelines, the potential risk for spills and leaks will increase in nearshore, inland, and offshore waters.

Waste Disposal

The past discharge of saltwater and drilling fluids associated with oil and gas development has been responsible for the decline or death of some marshes (Morton, 2003). Discharge of OCS oil- and gas-related produced water is generally into offshore Gulf waters in accordance with NPDES permits, or injected. Produced waters from the OCS are not expected to affect coastal wetlands. Produced sands, oil-based or synthetic-based drilling muds and cuttings, along with fluids from well treatment, workover, and completion activities from OCS wells, would be transported to shore for disposal in existing disposal facilities approved by USEPA for handling these materials. Sufficient disposal capacity is assumed to be available in support of a CPA proposed action. Because of wetland-protection regulations, no new waste disposal site would be developed in wetlands. Some seepage from waste sites into adjacent wetland areas may occur and result in damage to wetland vegetation.

Non-OCS Oil- and Gas-Related Impacts

State Oil and Gas

Impacts from State onshore oil and gas activities are expected to occur as a result of oil spills, dredging for new canals, maintenance, and usage of existing rig access canals and drill slips, and for preparation of new well sites. Indirect impacts from dredging new canals for State onshore oil and gas development and from the maintenance of the existing canal network are expected to continue. Insignificant adverse impacts upon wetlands from maintenance dredging are expected because the large majority of the material would be placed in existing disposal areas or because alternate bank disposal techniques would be used. The alternate bank disposal technique creates gaps to maintain hydrological connections and tidal circulation important in maintaining a functioning wetland. State onshore oil and gas activities also contribute to vessel traffic and the wetland impacts associated with such traffic, as described above.

Other impacts stem from State oil and gas activity. Locally, subsidence may be due to the extraction of large volumes of oil and gas, sulfur, and salt from subsurface reservoirs (Morton, 2003; Morton et al., 2002 and 2005), but subsidence associated with this factor seems to have slowed greatly over the last three decades as the reservoirs are depleted. Subsidence leads to drowning of marsh plants and
conversion to open water. Non-OCS oil- and gas-related oil spills can occur in coastal regions as a result of import tankers, barge or shuttle tanker accidents during transit or offloading, coastal oil production activities, and various kinds of petroleum product transfer accidents. Numerous wetland areas have declined or been destroyed as a result of oil spills caused by pipeline breaks or tanker accidents.

Oil stresses the wetland communities, making them more susceptible to saltwater intrusion, drought, disease, and other stressors (Ko and Day, 2004). The past discharge of saltwater and drilling fluids associated with oil and gas development has been responsible for the decline or death of some local marshes (Morton, 2003).

Vessel Traffic and Navigation Canals

Vessel traffic in the CPA includes commercial shipping, support for oil and gas activities, commercial and recreational fishing vessels, pleasure boating, and other types of traffic. Waves generated by boats, ships, barges, and other vessels erode unprotected shorelines and accelerate erosion in areas already affected by the natural erosion process. In many cases this erosion results in wetland loss. Navigation channels require routine maintenance dredging. Insignificant adverse impacts upon wetlands from maintenance dredging are expected because the large majority of the material would be disposed upon existing disposal areas. However, due to the fluid nature of the dredged material, indirect impacts may occur as a result of disposal site widening and converting lower elevations to higher ground. This elevation change could convert existing wetland areas to uplands. Alternative dredged material disposal methods can be used to enhance and create coastal wetlands.

Net landloss due to navigation canals alone can be calculated by comparing erosion rates with beneficial activities such as land gained through the use of dredged sands. BOEM anticipates that, over the next 40 years, if current trends in the beneficial use of dredged sand and sediment are simply projected based on past land additions (U.S. Dept. of the Army, COE, 2009b), approximately 50,000 ac (20,234 ha) may be created or protected in the LCA through dredged materials programs. Subtracting projected landlosses of 16,190 ac (6,550 ha) caused by bank widening of navigation channels in the LCA from land added or protected by beneficial uses of dredged material, an estimated net gain of 33,800 ac (13,700 ha) between the years 2013 and 2063 could occur (refer to the calculations in "OCS Oil- and Gas-Related Impacts" above).

Depending upon the region and the dredged soil type, secondary adverse impacts of canals may be more locally significant than direct impacts. Additional wetland losses may be generated by the secondary impacts of saltwater intrusion, flank subsidence, freshwater-reservoir reduction, and deeper tidal penetration. A variety of mitigation efforts have been initiated to protect against direct and indirect wetland loss. The failure to maintain mitigation structures that reduce canal construction impacts can have substantial impacts upon wetlands. These localized impacts are expected to continue.

Navigation channels contribute to the negative effects from saltwater intrusion (Gosselink et al., 1979; Wang, 1987). Wang (1987) developed a model demonstrating that, under certain environmental conditions, saltwater penetrates farther inland in deep navigation channels than in shallower channels, suggesting that navigation channels act as "salt pumps." The Calcasieu Ship Channel is a good example of how saltwater intrusion, as a consequence of channelization, results in significant habitat transition from freshwater to brackish water to saltwater and ultimately to open-water systems. Another example is the construction of the Mississippi River Gulf Outlet, which transformed many of the cypress swamps east of the Mississippi River below New Orleans into open water or areas largely composed of marsh vegetation (*Spartina*) among old, dead cypress tree trunks.

Onshore activity that would further accelerate wetland loss includes additional construction of access channels (for instance at fabrication yards) and onshore action needed for the construction of new well sites and the expansion or construction of onshore production facilities or receiving and transfer facilities. Most of these facilities would be located in Louisiana and would minimally impact wetlands. Management activities, including erosion protection and restoration along the edges of these canals, can significantly reduce canal-widening impacts on wetland loss (Johnston et al., 2009; Thatcher et al., 2011).

Coastal Infrastructure and Development

The development of wetlands for agricultural, residential, industrial, commercial, and silvicultural (forest expansion) uses would continue but with more regulatory and planning constraints. Impacts from these developments are expected to continue in coastal regions around the around the Gulf.

Development pressures in the coastal regions of Texas have been primarily the result of tourism and residential beach side development in the Galveston and Bolivar Peninsula areas. In Galveston, recreation and tourist developments have been particularly destructive. These trends are expected to continue, but since Hurricane Ike, redevelopment is being coordinated with the natural resource agencies in an effort to assure compatibility of the new construction with the coastal environment to minimize impacts.

Development pressures in the coastal regions of Louisiana, Mississippi, Alabama, and Florida have caused the destruction of large areas of wetlands. In coastal Louisiana, the most destructive developments have been the inland oil and gas industry projects, which have resulted in the dredging of huge numbers of access channels. Agricultural, residential, industrial, and commercial developments have caused the most destruction of wetlands in Mississippi, Alabama, and Florida. In Florida, recreational and tourist developments have been particularly destructive. These trends are expected to continue. During the next 40 years, from 419,000 to 925,000 ac (169,000-374,000 ha) of wetlands would be lost from the Louisiana coastal zone (Couvillion et al., 2013), and 1,600-2,000 ha (647-809 ac) would be lost from the Mississippi coastal zone. Wetland losses in the coastal zones of Alabama and Florida are assumed to be comparable with those in Mississippi.

Infrastructure associated with State oil and gas activity has taken a tremendous toll on coastal wetlands, particularly in Louisiana, primarily due to construction of access canals, drilling slips, and pipeline canals (Turner et al., 1994). Many pipelines carry product from both OCS and non-OCS sources. Impacts from pipeline construction due to non-OCS oil and gas activity are similar to impacts due to OCS oil and gas activity. Infrastructure that serves the transportation of foreign oil, such as oil ports, can have wetland impacts to the extent they are constructed on or adjacent to wetlands. New and existing pipeline channels would continue eroding, largely at the expense of wetlands; however, protective channel armor may be added at a later date. The current regulatory programs, modern construction techniques, and mitigations have reduced recent impacts to wetlands from pipeline installation.

Existing regulations and development permitting procedures indicate that development-related wetland loss may be slowed. Wetland damage would be minimized through the implementation of CZMA guidelines and enforceable policies, COE regulatory guidelines for wetland development, and various State and Federal coastal development programs. Examples of these programs are the Coastal Impact Assistance Program (CIAP), the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA), and the Louisiana Coastal Protection and Restoration Authority (refer to Chapter 4.2.1.4.4 of the 2012-2017 WPA/CPA Multisale EIS).

Renewable energy facility construction could potentially impact wetlands, if for instance transmission lines coming from offshore wind turbines necessitated construction of onshore transmission substations in the coastal zone. Impacts to wetlands would be negligible due to regulatory requirements to mitigate wetland impacts and the expected limited footprint from such facilities in wetlands.

Natural Processes

Along with increased human activities, the recent increase in intensity and frequency of hurricanes in the Gulf (Stone et al., 2004) has greatly impacted the system of protective barrier islands, beaches, and dunes and associated wetlands along the Gulf Coast. Intense storms typically erode all of the vegetation and soil from some areas of marsh, leaving behind a body of water, as seen with Hurricane Isaac. These storm events will continue to impact the Gulf of Mexico coast.

Natural subsidence has caused wetland loss through compaction of Holocene strata (the rocks and deposits from 10,000 years ago to present). Stephens (2010) has identified faulting mechanisms in coastal Louisiana that actually may be causing what appears to be subsidence. He found that the "Northern Gulf of Mexico continental margin is segmented by northwest-southeast trending transfer fault zones related to Mesozoic rifting."

It was estimated in 2000 that coastal Louisiana would continue to lose land at a rate of approximately $26 \text{ km}^2/\text{yr}$ (10 mi²/yr) over the next 50 years. This would be expected to result in an additional net loss of

 $1,326 \text{ km}^2$ (512 mi²) by 2050, which is almost 10 percent of Louisiana's remaining coastal wetlands (Barras et al., 2003). However, in 2005, Hurricanes Katrina and Rita caused 562 km² (217 mi²) of land change (primarily wetlands to open water) (Barras, 2006). Based on the analysis of the latest satellite imagery, approximately 212 km² (82 mi²) of additional open-water habitat was in areas primarily impacted by Hurricane Katrina (e.g., Mississippi River Delta Basin, Breton Sound Basin, Pontchartrain Basin, and Pearl River Basin) (Barras, 2007b and 2009). Also, 256 km² (99 mi²) of open-water habitat was in areas primarily impacted by Hurricane Rita (e.g., Calcasieu/Sabine Basin, Mermentau Basin, Teche/Vermilion Basin, Atchafalaya Basin, and Terrebonne Basin). Barataria Basin contained approximately 46.6 km² (18 mi²) of new open-water habitat caused by both hurricanes. These new openwater habitats represent landloss caused by the direct removal of wetlands. They may also indicate transitory changes of wetlands to open water caused by remnant flooding, removal of aquatic vegetation, and scouring of marsh vegetation. However, it is possible that the apparent increase in open water is partly due to water-level variation attributed to normal tidal and meteorological variation between satellite images. The presence of strong tropical storms is a routine background condition in the Gulf that must be taken into consideration. Coastal change from storms in the area included both beach erosion and the erosion of channels where water continues to flow seaward to the Gulf of Mexico (Doran et al., 2009). Eroded barriers that once protected the wetlands behind them were severely eroded by the storms. These factors have led to a steep increase in the recent landloss projections cited above (Couvillion et al., 2013).

Sea-Level Rise

There is increasing new evidence of the importance of the effect of sea-level rise (or marsh subsidence) as it relates to the loss of marsh or changes in marshes, marsh types, and plant diversity (Spalding and Hester, 2007). The Spalding and Hester (2007) study shows that the very structure of coastal wetlands would likely be altered by sea-level rise because community shifts will be governed by the responses of individual species to new environmental conditions.

Gulf Coast wetlands tend to occur at low elevations, often between 1 and 2 ft (0.3-0.6 m) above sea level. It is obvious that if current projections are realized, and for example, sea level increases by 3.5 ft (1.1 m) in Galveston, Texas, by the year 2100 (USEPA, 2013d), most of Texas' coastal wetlands would be under water well before that time, in spite of organic accretion. A more conservative estimate of sea-level rise, known as the AR4 scenario, calls for an increase (globally) of 16 in (41 cm) by 2100 (NRC, 2010). Even this rate of increase would be likely to drown large areas of Gulf Coast wetlands, especially when relative sea-level rise is considered. Since 1870, global sea level has risen by about 8 in (20 cm) (USEPA, 2013d). Even at current measured rates of relative sea-level rise, vast areas of Gulf coastal wetlands can be expected to convert to open water as low-lying coastal marshes are inundated (refer to **Chapter 3.3.4.1**).

New Information Available Since the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search was conducted for information published on northern Gulf of Mexico wetland communities. and various Internet sources were examined to determine any recent information regarding these communities. Sources investigated include BOEM, the USGS National Wetlands Research Center, the USGS Gulf of Mexico Integrated Science Data Information Management System, Gulf of Mexico Alliance, State environmental agencies, USEPA, and coastal universities. Other websites from scientific publication databases (including Science Direct, Elsevier, the NOAA Central Library National Oceanographic Data Center, and JSTOR) were checked for new information using general Internet searches based on major themes. Numerous studies have been published regarding impacts of the Deepwater Horizon explosion, oil spill, and response. For example, Michel et al. (2013), Kokaly et al. (2013), and Mishra et al. (2012) demonstrate that understanding the extent of the oil spill in terms of the length of shoreline affected and the penetration into wetlands from the shoreline will help in setting the visual contexts to detect possible long-term recovery trends. This includes the usefulness of monitoring techniques such as remote sensing (of oil impacts), bioremediation, bioaugmentation, and microbial degradation, along with natural weathering to help in the recovery of oiled marsh vegetation (DeLaune and Wright, 2011; Horel et al., 2012; Liu et al., 2012; Tao and Yu, 2013; Natter et al., 2012; Beazley et al., 2012). Other techniques, such as the use of barriers such as booms and sand berms, did not work as

well as planned (Martinez et al., 2011; Jones and Davis, 2011; Zengel and Michel, 2013). Research has shown that marsh vegetation recovers from many disturbances, including oil exposure (DeLaune and Wright, 2011; Silliman et al., 2012). Even though some marsh vegetation is more resilient than others, all marsh vegetation will be adversely impacted if there is 100-percent oil coverage of the plant (Lin and Mendelssohn, 2012; Wu et al., 2012b; Mishra et al., 2012). The impact of oil on resident and transient marsh nekton and arthropods has been shown to be short term in nature, with these communities near prespill levels a year after the *Deepwater Horizon* oil spill (Moody et al., 2013; McCall and Pennings, 2012).

While the recent research has provided much new information regarding impacts to wetlands from oil spills, this new information does not change the conclusions of the 2012-2017 WPA/CPA Multisale EIS because such a catastrophic event is unlikely to occur and because BOEM has already considered the potential irreversible effects to marshes, such as erosion and permanent loss, in Appendix B (Section 5.2.2.6) of the 2012-2017 WPA/CPA Multisale EIS.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding wetlands in the CPA. This incomplete or unavailable information may be relevant to reasonably foreseeable significant adverse effects because recent events such as the *Deepwater Horizon* explosion, oil spill, and response may have caused changes to baseline conditions for coastal wetlands of the Gulf of Mexico. This information cannot reasonably be obtained because the long-term effects may not yet be detectable and the overall costs in time and money to determine this are exorbitant. A large body of information regarding impacts of the *Deepwater Horizon* explosion, oil spill, and response upon coastal wetlands is being developed through the NRDA process and may take years to acquire and analyze. There are also unknowns regarding the future restoration efforts being planned, such as what projects will ultimately be constructed and how successful they may be. In addition, the future rates of relative sea-level rise are not known with certainty, and thus, resulting impacts to wetlands are unknown.

BOEM has determined that the information is not essential to a reasoned choice among alternatives because the CPA is an active oil and gas region with ongoing exploration, drilling, and production activities. In addition, non-OCS energy-related factors will continue to occur in the CPA irrespective of a CPA proposed action (i.e., commercial development, subsidence, hurricanes, etc.). The potential for effects from changes to the affected environment (post-*Deepwater Horizon*), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on wetlands from either smaller accidental events or low-probability catastrophic events will remain the same.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, the following the studies were analyzed with regards to wetlands: Michel et al. (2013); Kokaly et al. (2013); Mishra et al. (2012); DeLaune and Wright (2011); Horel et al. (2012); Liu et al. (2012); Tao and Yu (2013); Natter et al. (2012); Beazley et al. (2012); Martinez et al. (2011); Jones and Davis (2011); Zengel and Michel (2013); Silliman et al. (2012); Lin and Mendelssohn (2012); and Wu et al. (2012b). The results of these recent studies of wetlands indicate that the extent of impacts resulting from a catastrophic oil spill could be degraded over time. While marsh vegetation can recover in some areas, conversion of some marsh to open water is likely due to plant mortality and erosion. However, a low-probability catastrophic oil spill is not much more likely with a proposed CPA lease sale than without, given the existing level of OCS oil- and gas-related activities, and the small incremental increase in the activity that is expected from a proposed CPA lease sale. Therefore, none of these sources reveal reasonably foreseeable significantly greater adverse impacts whether or not the No Action or an Action alternative is chosen under this Supplemental EIS.

Summary and Conclusion

The impacts to wetlands from activities associated with a CPA proposed action are expected to be low because 0-1 pipeline landfalls are projected, 0-1 new gas processing facilities are expected, and the contribution from a CPA proposed action to the need for maintenance dredging would be minimal. In addition, any new pipeline landfalls or gas processing facilities would have limited wetland impacts due to regulatory requirements to mitigate such impacts. The wetlands that would be associated with a CPA proposed action have a minimal probability for oil-spill contact.

Cumulative impacts to wetlands are caused by a variety of factors, including pipeline emplacement, construction, dredging, oil spills, coastal development, and natural phenomena. The impacts to wetlands from activities associated with a CPA proposed action are expected to be low because 0-1 pipeline landfalls are projected, 0-1 new gas processing facilities are expected, and the contribution from a CPA proposed action to the need for maintenance dredging would be minimal.

Wetlands are most vulnerable to inshore or nearshore oil spills, which are primarily localized in nature. Spill sources include vessel collisions, pipeline breaks, and shore-based transfer, refining, and production facilities. A CPA proposed action would have a minimal probability for causing oil-spill contact with wetlands. This reduced risk is due to the distance of the offshore facility to wetland sites, beach and barrier island topography (although reduced locally post-Hurricanes Katrina, Rita, Gustav, and Ike), and product transportation through existing pipelines or pipeline corridors. Wetlands can still be at risk for offshore spills, but the risks are minimized by distance, time, sea conditions, and weather. Offshore spills related to a CPA proposed action are not expected to reach wetlands with toxicity approaching that of the initial release because of distance to shore and weathering. If they do reach shore, only light localized impacts to inland wetlands would occur. If any inshore spills occur, they will likely be small and at service bases or other support facilities, and these small-scale local spills would not be expected to severely affect wetlands beyond local impacts.

Development pressures in the coastal regions of Texas have been primarily the result of tourism and residential beach side development. These trends are expected to continue, but since Hurricane Ike, redevelopment is being coordinated with the natural resource agencies in an effort to assure compatibility of the new construction with the coastal environment to minimize impacts. The cumulative effects of human and natural activities in the coastal area have severely degraded the deltaic processes and have shifted the coastal area from a condition of net land building to one of net landloss. Deltaic Louisiana is expected to continue to experience the greatest loss of wetland habitat in the Gulf of Mexico. Wetland loss is also expected to continue in coastal Mississippi, Alabama, and Florida, but at slower rates. The incremental contribution of a CPA proposed action to the cumulative impacts on coastal wetlands is expected to be small.

A CPA proposed action represents a small (>5%) portion of the OCS impacts that will occur over the 40-year analysis period. Impacts associated with a CPA proposed action are a minimal part of the overall OCS impacts. The incremental contribution of a CPA proposed action to the cumulative impacts on coastal wetlands is expected to be small.

BOEM has reexamined the analysis for wetlands presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for wetlands presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS 235, 241, and 247.

4.1.1.5. Seagrass Communities

BOEM has reexamined the analysis for seagrass communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for seagrass communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

A detailed description of seagrass communities and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.5 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.5 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A cpa proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A proposed action is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A proposed action is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Any new information that has become available since those documents were published is presented below.

Submerged vegetation distribution and composition depend on an interrelationship among a number of environmental factors that include water temperature, depth, turbidity, salinity, turbulence, and substrate suitability (Kemp, 1989; Onuf, 1996; Short et al., 2001). Marine seagrass beds generally occur in shallow, relatively clear, protected waters with sand bottoms (Short et al., 2001). Freshwater submerged aquatic vegetation (SAV) occurs in the low-salinity waters of coastal estuaries (Castellanos and Rozas, 2001). Seagrasses and freshwater SAVs provide important nursery and permanent habitat for sunfish (*Lepomis* sp.), killifish (*Fundulus* sp.), shrimp (Penaeidae and Palaemonidae), crabs (*Callinectes* sp. and Xanthidae), drums and seatrout (Sciaenidae), flounder (*Paralicthys* sp.), and several other nekton species, and they provide a food source for species of wintering waterfowl and megaherbivores (Rozas and Odum, 1988; Rooker et al., 1998; Castellanos and Rozas, 2001; Heck et al., 2003; Orth et al., 2006). In the northern Gulf of Mexico from south Texas to Mobile Bay, seagrasses occur behind barrier islands in bays, lagoons, and coastal waters (Figure 4-4 of the 2012-2017 Multisale EIS), while SAVs occur in the upper freshwater regions of estuaries and rivers (Onuf, 1996; Castellanos and Rozas, 2001; Handley et al., 2007).

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on seagrass communities of the CPA are the construction of pipelines, canals, navigation channels, and onshore facilities; maintenance dredging; and vessel traffic (e.g., propeller scars). A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on seagrass communities can be found in Chapter 4.2.1.5.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.5 of the WPA 233/CPA 231 Supplemental EIS.

Routine OCS oil- and gas-related activities in the CPA that may impact seagrasses are not expected to significantly increase as a result of a CPA proposed action because minimal action-associated nearshore activities and infrastructure are expected. There is only one potential pipeline landfall and only a minor increase in vessel traffic (2%) projected as a result of a CPA proposed action. Any work in and around submerged aquatic vegetation, especially seagrasses, is highly regulated by multiple State and Federal programs; as such, considerable mitigation is expected to reduce the undesirable effects on submerged vegetation beds. This includes the rerouting of pipelines, avoidance of vegetated communities, use of turbidity curtains, or the use of directional boring techniques. Local outreach programs decrease the occurrence of prop scarring in grass beds; however, channels utilized by OCS vessels are typically away from exposed submerged vegetation beds. Because of these requirements and implemented programs, along with the beneficial effects of natural flushing (e.g., from winds and currents), any potential effects from routine OCS oil- and gas-related activities on submerged vegetation in the CPA are expected to be short term, localized, and not significantly adverse.

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to change community structure, decrease growth rates, cause death, or cause a decline in ecological services by seagrass communities of the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on seagrass communities can be found in Chapter 4.2.1.5.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.5 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events possible with a CPA proposed action that could adversely affect submerged vegetation beds include nearshore and inshore spills connected with the transport and storage of oil. The greatest possibility of a spill is from a vessel accident or pipeline rupture; however, because pipelines can be shut off, ships carry limited amounts of oil, and response vessels can more easily access nearshore areas, it is expected that the resulting spill would be smaller and shorter than an uncontrolled offshore spill or blowout, resulting in short-term and localized impacts. Additionally, extreme tides and/or wind events are the only time that submerged aquatic vegetation is typically exposed to the air-water interface where most oil would be floating. As such, seagrasses are not expected to come in direct contact with surface oil; however, if oil did come in contact with seagrasses, the results could range from the sloughing of epiphytes to death. Offshore oil spills that occur in a CPA proposed action area are less likely to contact seagrass communities than are inshore spills. If the temporal and spatial duration of the spill is big enough, an offshore spill could affect submerged vegetation communities, although the oil would be substantially more weathered and spills would be outside the barrier islands, peninsulas, sand spits, and currents that protect most seagrass beds. An offshore spill would result in more sinking oil (e.g., tarballs

and patties) than an inshore spill that could become entrained within seagrass root and leave complex near the seafloor. Cleanup efforts in response to a spill can also negatively impact submerged aquatic vegetation. Close monitoring and restrictions on the use of bottom-disturbing equipment and vessel operations in and around SAVs would be needed to avoid or minimize those impacts. The floating nature of nondispersed crude oil, the regional microtidal range, the dynamic climate with mild temperatures, and the amount of microorganisms that consume oil would alleviate prolonged effects on submerged vegetation communities. It has been shown that short-term effects from an offshore spill could have little impact on specific seagrass communities. Fodrie and Heck (2011) found that, after the *Deepwater Horizon* oil spill, there were few immediate or catastrophic changes in seagrass-based nekton communities in Alabama, Florida, and Louisiana seagrass communities. Also, safety and spill-prevention technologies are expected to continue to improve and will decrease detrimental effects to submerged vegetation from a CPA proposed action. Overall, impacts to submerged vegetation from an accidental event related to a CPA proposed action are expected to be minimal due to the distance of most activities from the submerged vegetation beds and because the likelihood of an accidental event of size, location, and duration reaching submerged vegetation beds remains small.

Cumulative Impacts

Background/Introduction

Of all of the activities in the cumulative scenario found in **Chapter 3.3**, dredging, oil spills/pipelines, hydrological changes due to channelization, and storm events present the greatest threat of impacts to submerged vegetation communities.

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related activities that threaten submerged vegetation are infrastructure construction, pipelines, dredging, and oil spills including low-probability catastrophic spills (**Appendix B**). Infrastructure emplacement, such as a pipeline landfall, and the vessel activity and dredging associated with the emplacement may affect submerged vegetation beds. From 2012 to 2051, offshore oil and gas activities are projected to generate 0-1 pipeline landfalls per CPA lease sale; this is equivalent to less than 1 pipeline landfall a year for a CPA proposed action. Pipelines are heavily regulated and permitted, and they are likely to be required to be sited away from submerged vegetation. Although, submerged vegetation communities can be scarred by boat anchors, keels, and propellers, and by equipment associated with seismic surveys conducting routine OCS oil and gas activities (Sargent et al., 1995; Dunton et al., 1998), in general, channels used by OCS vessels are away from exposed submerged vegetation beds.

In support of inshore petroleum development, the oil and gas industry performs dredging that impacts lower-salinity submerged vegetation. Generally, dredging generates the greatest overall OCS oil- and gas-related risk to submerged vegetation by uprooting and burying plants, decreasing oxygen in the water and reducing water clarity in an area. Mitigation may be required to reduce undesirable impacts of dredging to submerged vegetation. The most effective mitigation for direct impacts to submerged vegetation beds is avoidance, but there are other mitigation techniques in place to lessen the effects of unavoidable disturbances. Because vessel traffic is only expected to increase by 2 percent as a result of a CPA proposed action, there are expected to be few if any new channels dredged or widened specifically for a proposed action. Additionally, dredging is expected only in areas that do not support submerged vegetation beds. The OCS oil- and gas-related dredging and vessel traffic related to a CPA proposed action remains a subset of all dredging (refer to the "Non-OCS Oil- and Gas-Related Impacts" section below) and traffic issues from all sources in the Gulf.

Other OCS oil- and gas-related activities that could cause adverse effects to submerged vegetation are accidental oil-spill events. These are generally rare and small-scale, but they do add to the possible cumulative damage to submerged vegetation ecosystems. Inshore oil spills generally present a greater risk of adversely impacting submerged vegetation and seagrass communities than do offshore spills. Inshore spills would be expected to be smaller in size than offshore spills but, because the oil from an inshore spill would not be weathered, it could be potentially more toxic. Because of the subtidal life history, microtides in the Gulf of Mexico, and the hydrophobic nature of oil, little to no direct permanent mortality of seagrass beds is expected as a result of oil-spill occurrences (Zieman et al., 1984; Gab-Alla,

2000). The only exception to this is during an extreme low-tide event when some of the shallower seagrasses may be exposed below the air-water interface as water levels drop and oil coats the plants. These tides are not normal and typically occur during winter or spring tides or when a low tide coincides with an offshore wind. There has been no documented occurrence of extensive oiling of seagrasses in the Gulf of Mexico except during the *Ixtoc I* spill. During this spill, damage to seagrass meadows was temporary (Baca et al., 1982; Tunnell and Dokken 1980); however, outside the Gulf of Mexico, changes in biomass, cover, and species composition of seagrass communities have been observed post-spills (Nievales, 2009). Epifauna could also be exposed to oil during one of these events and a high mortality rate could be expected; however, many of these species can rapidly repopulate an area once the vegetation returns. Oil spills alone would typically have little impact on submerged vegetation beds and associated epifauna because nondispersed oil floats and because of the microtidal range of the Gulf of Mexico.

During and after a spill event, the response effort can cause significant scarring and trampling of submerged vegetation beds with increased vessel traffic in the area. Preventative measures (booms, berms, and diversions) can alter water hydrology and salinity, which could harm the beds and their associated communities. There is a small probability of an offshore spill contacting beds, and inshore spills would be small and short-lived; oil exposure is not expected to increase over current levels with a CPA proposed action. In the rare event of a large spill such as the *Deepwater Horizon* oil spill, there would be similar impacts to submerged vegetation as a smaller spill, just over a larger area and over a longer time period (**Appendix B**).

Non-OCS Oil- and Gas-Related Impacts

Other influences on submerged vegetation can include non-OCS oil- and gas-related dredging and vessel traffic, changes in salinity and nutrient inputs (Waycott et al., 2009; Orth et al., 2006), and storm events. Maintenance dredging of navigation channels may also affect submerged vegetation beds by increasing turbidity and allowing larger vessels with larger wakes access to more areas. This dredging is necessary for a variety of reasons, including State onshore oil and gas activities and commercial barging. The COE performs maintenance dredging of navigation channels to help sustain the outcome of the original dredging event. This generally occurs every 2-5 years despite a CPA proposed action. Impacts on seagrasses from dredging activities can also result from the installation of new channels; however, there are no new channels expected to be created as a result of a CPA proposed action. Scarring of seagrass beds by other vessels (e.g., support vessels for State oil and gas activities, commercial shipping, cruise ships, fishing vessels, and recreational watercraft) is an increasing concern in coastal areas, particularly along the Texas coast (Dunton et al., 1998; State of Texas, Parks and Wildlife Department, 1999; Pulich and Onuf, 2007). Scarring most commonly occurs in water depths less than 2 m (~6 ft) as a result of boats operating in too shallow water (Zieman, 1976; Sargent et al., 1995; Dunton et al., 1998). Consequently, their propellers, and occasionally their keels, plow through vegetated bottoms, tearing up roots, rhizomes, and whole plants, leaving a furrow that is devoid of submerged vegetation (Zieman, 1976; Dawes et al., 1997). A few State and local governments have instituted management programs that have resulted in reduced scarring, which could decrease bed patchiness. For example, the State of Florida Seagrass Outreach Partnership consists of citizens, researchers, law enforcement officers, and marine resource managers and was created to reduce boating impacts to seagrass meadows through education. The State of Texas has also enacted House Bill 3279, which makes it illegal to uproot seagrasses in all coastal waters.

Saltwater intrusion resulting from river channelization and canal dredging is a major cause of coastal habitat deterioration (including submerged vegetation communities) (Boesch et al., 1994). Productivity and species diversity associated with SAV habitat in the coastal marshes of the GOM are greatly reduced by saltwater intrusion (Stutzenbaker and Weller, 1989; Lirman et al., 2008). Due to increased salinities farther up the estuaries, some salt-tolerant species of submerged vegetation (including seagrasses) are able to populate areas farther inland and outcompete the dominant submerged aquatic vegetation species (Longley, 1994). Large shifts in salinities can decrease seagrass and submerged aquatic vegetation populations and decrease their ecological function for juvenile fishes and invertebrates. Increased nutrients from diversions, runoffs, or flooding events can cause eutrophication in local waters. This can increase phytoplankton and epiphytic growth, which will shade and decrease submerged vegetation (Larkum et al., 2006; Orth et al., 2006). This relationship is complex and depends on multiple environmental factors.

Tropical cyclone activity in the Gulf of Mexico (USDOC, NOAA, 2005) is also common and can have a significant impact on seagrasses and submerged aquatic vegetation. Storms can remove or bury submerged beds of seagrasses and the barrier islands that protect them from storm surges. A seagrass bed already weakened due to other anthropogenic impacts could be substantially more susceptible to damage from a storm event. Hurricanes can result in the burial of seagrasses and the eroding of channels through seagrass beds. Burial occurs when storm-generated waves wash sand from the seaward side of barrier islands and deposit it on the shallow seagrass-containing areas on the back side of the islands. Having evolved in an environment where burial occurs regularly, many seagrasses are equipped to rapidly extend vertical rhizomes to recover from burial (Marba and Duarte 1994, Marba et al. 1994, Cabaço et al., 2008). Storms can also erode new passes through the islands, removing all the seagrass in its path (Michot and Wells, 2005). Over time, seagrass can recolonize the new sand flats on the shoreward side, and the natural processes of sand movement rebuild the islands. Overall, the effects of hurricanes on seagrass beds are highly variable and can range from significant changes in seagrass community quality and composition (Maiaro, 2007) to no substantial effects (Byron and Heck 2006). However, combined with other stressors (Orth et al., 2006), impacted seagrass beds may fail to recover after a storm event.

New Information Available Since the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of various print and internet sources was conducted for any recent information published regarding coastal submerged vegetation. Sources investigated include BOEM, USDOC/NOAA, the USGS National Wetlands Research Center, the USGS Gulf of Mexico Integrated Science Data Information Management System, Seagrass Watch, Gulf of Mexico Alliance, State environmental agencies, USEPA, and coastal universities. Other websites from scientific publication databases (including Science Direct, SCIRUS, Google Scholar, Elsevier, Pro Quest, and JSTOR) were checked for new information using general Internet searches based on major themes. New information available that is relevant to a CPA proposed activity includes information related to responses of seagrass species that were potentially exposed to Macondo oil. Moody et al. (2013) found that the recruitment of many species in an Alabama marsh, including killifish, were not negatively impacted by the Macondo oil spill. Although focused on the marsh, this study is important because many of the species found in the marsh are also found in the seagrass; this is also the case for Gulf killifish (Fundulus grandis) (Schofield and Fuller, 2013). In addition, Dubansky et al. (2013) noted that exposure to sediments with Macondo-related PAHs resulted in Gulf killifish (Fundulus grandis) having multitissue molecular, genomic, and developmental responses. The presence of these effects suggests that oil exposure may result in population-level effects; however, a population-level effect may be lethal or sublethal. Given that animals were recovered at the same locations in both years suggests that any lethal effects on animals may have been mitigated by subsequent cohorts, despite the presence of sublethal effects. In addition, the premise of population-level impacts has been call into question because Dubansky et al. (2013) only demonstrates that oiled sediments can adversely impact laboratory reared larvae whose eggs have been exposed to PAHs (Pearson, 2014). These results agree with similar laboratory studies (e.g., Incardona et al., 2014 and Mager et al., 2014) and by themselves are not predictive of population-level effects. Gulf killifish are a cosmopolitan but nonmigratory species, and effects due to a spill would be expected to have an impact that was limited to the local population exposed to the spill rather than the population as a whole. As such, the overall impact would be positively correlated with the size of the spill.

None of the new or available information examined here provides evidence that would result in a change of our impact conclusions for seagrasses resulting from a CPA proposed action.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.5 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified unavailable information regarding seagrass communities in the CPA. This information cannot reasonably be obtained because the long-term effects may not yet be detectable and the overall costs in time and money to determine this are exorbitant. This unavailable information may be relevant to adverse effects because much of the data related to research and monitoring of the *Deepwater Horizon* explosion, oil spill, and response has yet to be

completed and made publicly available. Other unavailable information may be related to universityrelated research that has yet to be published as a thesis or a dissertation.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, Fodrie and Heck (2011) did not sample all of the seagrasses across the northern GOM, but they sampled enough locations where OCS resource development occurs to allow for a general conclusion that changes within seagrass beds are not related to OCS development or the Deepwater Horizon oil spill. Gab-Alla (2000), Nievales (2009), and Mauseth et al. (2001) each showed that, historically, oil spills in other parts of the world have had little long-term negative impact on seagrass environments. Overall, none of the new sources or sources referenced in 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS reveal any reasonably foreseeable significant adverse impacts as a result of a CPA proposed action. The lack of impact to seagrasses is because seagrasses are benthic organisms that are spatially separated from floating oil. If oil does impact seagrasses it would tend to be along the shallow, shoreward margins or at the leaf tips that can be at the air-water interface at times. These leaf tips are generally older leaves that have undergone a considerable amount of senesce and are routinely discarded by the plant as they age. Oil found in seagrasses is often found as tarballs that typically do not result in large-scale effects. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives.

There remains uncertainty regarding the impacts of the *Deepwater Horizon* explosion, oil spill, and response on submerged vegetation. For submerged vegetation in Louisiana, Mississippi, Florida, and Alabama, BOEM cannot definitively determine that the incomplete or unavailable information being developed through the NRDA process may be essential to a reasoned choice among alternatives for the reasons stated herein and in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Nevertheless, ongoing research on submerged vegetation after the *Deepwater Horizon* explosion, oil spill, and response is being conducted through the NRDA process. These research projects may be years from completion, and data and conclusions have not been released to the public. Regardless of the costs involved, it is not within BOEM's ability to obtain this information from the NRDA process within the timeline contemplated in the NEPA analysis of this Supplemental EIS. In light of this incomplete or unavailable information, BOEM's subject-matter experts have used credible scientific information that is available and applied it using scientifically accepted methodology.

Summary and Conclusion

BOEM has reexamined the analysis for seagrass communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for seagrass communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated information provided in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

In general, a CPA proposed action would cause a minor incremental contribution to impacts on submerged vegetation from dredging, pipeline installations, potential inshore oil spills, and boat scarring. Dredging and shading generate the greatest overall risk to submerged vegetation, while naturally occurring hurricanes cause direct damage to beds. The implementation of proposed lease stipulations and mitigation policies currently in place, the small probability of an oil spill, and because flow regimes are expected to change further reduce the incremental contribution of stress from a CPA proposed action to submerged vegetation.

Unavailable information on the effects to submerged vegetation from the *Deepwater Horizon* explosion, oil spill, and response (and thus changes to the submerged vegetation baseline in the "Affected Environment" (Chapter 4.2.1.5.1 of the 2012-2017 WPA/CPA Multisale EIS) makes an understanding of the cumulative effects less clear. BOEM concludes that the unavailable information from these events may be relevant to foreseeable significant adverse impacts to submerged vegetation. Relevant data on the status of submerged vegetation beds after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze, and impacts from the *Deepwater Horizon* explosion, oil spill, and response may be difficult or impossible to discern from other factors. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this

Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM's subject-matter experts have used available scientifically credible evidence in this analysis and based it upon accepted methods and approaches. Nevertheless, BOEM believes that incomplete or unavailable information regarding the effects of the *Deepwater Horizon* explosion, oil spill, and response on submerged vegetation is not essential to a reasoned choice among alternatives in the cumulative effects analysis. In light of this, the incremental contribution of a CPA proposed action remains minor compared with the cumulative effects of other factors, including dredging, hurricanes, and vessel traffic.

4.1.1.6. Live Bottoms (Pinnacle Trend and Low Relief)

BOEM has reexamined the analysis for live bottoms (both Pinnacle Trend and Low Relief) presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for live bottoms presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.6 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is presented in the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A ny new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on live bottoms of the CPA are anchoring, infrastructure emplacement, drilling effluent and produced-water discharges, and infrastructure removal. These disturbances have the potential to disrupt and alter the environmental, commercial, recreational, and aesthetic values of live bottoms in the CPA. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on live bottoms can be found in Chapters 4.2.1.6.1.2 and 4.2.1.6.2.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.6 of the WPA 233/CPA 231 Supplemental EIS. Below is a summary of that information.

The live bottoms (Pinnacle Trend and low-relief habitats) of the CPA could be adversely impacted by oil and gas activities resulting from a CPA proposed action in the absence of the proposed Live Bottom (Pinnacle Trend) Stipulation, which distances bottom-disturbing activity 30 m (100 ft) from pinnacles, and by case-by-case reviews of permit applications for wells, pipelines, and structure removals. There is a Live Bottom (Low Relief) Stipulation that is typically applied to leases in live bottom low-relief blocks with water depths of 100 m (328 ft) or less in the EPA and northeast corner of the CPA; however, none of these blocks are offered for lease in these proposed CPA lease sales; therefore, this stipulation will not be applied. BOEM's case-by-case reviews offer protection for live bottoms that occur outside of the identified live bottom low-relief blocks and do not permit bottom-disturbing activity within 30 m (100 ft) a live bottom.

Structure or pipeline emplacement and anchoring of pipeline barges, drilling rigs, and service vessels could damage Pinnacle features and low-relief live bottoms. Organisms on live bottoms could be crushed and hard features destroyed by bottom disturbance. Such habitat damage may take a long time to repopulate with live bottom communities. Distancing bottom-disturbing activity 30 m (100 ft) from live bottoms eliminated the possibility of placing a structure or anchor on a live bottom.

Oil and gas operations discharge cuttings with some adhered drilling mud that generates turbidity, potentially smothering benthos near the drill sites. Deposition of drilling muds and cuttings near the Pinnacle Trend and low-relief areas would not greatly impact the biota of the live bottoms because the biota surrounding the live bottom features in or near the CPA are adapted to turbid (nepheloid) conditions and high sedimentation rates associated with the outflow of the Mississippi River (Gittings et al., 1992a). The pinnacles themselves and many live bottoms are coated with a veneer of sediment. Regional surface currents and water depth would largely dilute any oil- and gas-related effluent. Additional deposition and

4-54

turbidity caused by a nearby well are not expected to adversely affect the live bottom habitat because such drilling muds and cuttings would be dispersed upon discharge. For example, mud contaminants measured in the Pinnacle Trend region reached background levels within 1,500 m (4,921 ft) of the discharge point (Shinn et al., 1993). Toxic impacts on benthos, however, are limited to within 100-200 m (328-656 ft) of a well (Montagna and Harper, 1996; Kennicutt et al., 1996), and NPDES permit requirements limit discharge, limiting toxicity levels. The drilling of a well, therefore, would have minimal impacts on live bottom features due to distancing requirements and local turbidity levels.

The toxicity of produced waters has the potential to adversely impact the live bottom organisms; however, the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews would prevent the placement of oil and gas facilities within 30 m (100 ft) of a live bottom. In addition, the live bottom low-relief blocks are not currently for lease, and therefore, they will be distanced from discharges as well. Produced waters also rapidly disperse and remain in the surface layers of the water column, far above the live bottom features.

Platform removals have the potential to impact nearby habitats; however, the Live Bottom (Pinnacle Trend) Stipulation and BOEM's case-by-case reviews before platform installation and removal prevent platforms from being placed within 30 m (100 ft) of any live bottom. This distancing requirement will separate sensitive low-relief habitats from blasts. Benthic organisms on live bottoms should also have limited impact because they are resistant to blasts, tolerant of turbidity, can physically remove some suspended sediment, and may be located above or be tall enough to withstand limited sediment deposition. Distancing would also help prevent live bottoms from being smothered by disturbed sediment as it settles out of the water column.

The Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews of permit applications would prevent most of the potential impacts on live bottoms from bottom-disturbing activities (structure emplacement, anchoring, and removal) and operational discharges associated with a CPA proposed action by distancing activities 30 m (100 ft) from live bottoms. The distancing requirement also allows for the dilution of operational discharges (drill cuttings and adhered muds as well as produced waters), and USEPA's discharge regulations and permits limit toxicity of discharges. The natural turbidity of the environment also limits the impacts of suspended sediment and deposition on these habitats. Impacts on live bottom habitat as a result of OCS oil and gas operational discharges are therefore minimal.

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to disrupt and alter the environmental, commercial, recreational, and aesthetic values of live bottoms of the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on live bottoms can be found in Chapters 4.2.1.6.1.3 and 4.2.1.6.2.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.6 of the WPA 233/CPA 231 Supplemental EIS. Without the Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews of permit applications, live bottoms could be impacted by accidental events. Live bottom features represent a small fraction of the continental shelf area in the CPA. The small portion of the seafloor covered by the Pinnacle Trend and the fact that low-relief features are widely dispersed, combined with the probable random nature of oil-spill locations, serves to limit the extent of damage from any given oil spill to live bottoms.

The proposed Live Bottom (Pinnacle Trend) Stipulation (**Chapter 2.4.1.3.2**) and case-by-case reviews of permit applications would prevent most of the potential impacts from oil and gas operations, including accidental oil spills and blowouts, on the biota of live bottoms by distancing activities that could result in oil spills and blowouts 30 m (100 ft) from the features. Also, note that none of the live bottom low-relief blocks are included in the area to be offered in a CPA proposed action. However, operations that occur in blocks adjacent to live bottom habitat may affect live bottom features.

In a subsurface spill or blowout situation, it would be expected that the majority of released oil would rise to the surface and that the most heavily oiled sediments would likely be deposited before reaching live bottom features. However, operations outside the buffer zones created by distancing activities from features could have some impact on live bottom features.

The depth below the sea surface to which many live bottom features rise helps to protect them from surface oil spills. Some Pinnacles may rise to within 40 m (130 ft) of the sea surface; however, many features have much less relief or are in deeper water depths. Any oil that might contact pinnacle features would probably be at low concentrations because the depth to which surface oil can mix down into the water column is less than the peak of the tallest pinnacles, and this would result in little effect to these features. Low-relief features are also far below the water's surface, except some in shallow EPA waters,

and are far from any area available for lease. Because the concentration of oil becomes diluted as it physically mixes with the surrounding water and as it moves into the water column, any oil that might be driven to 10 m (33 ft) or deeper would probably be at concentrations low enough to reduce impact to these features. Any features in water shallower than 10 m (33 ft) would be located far from the source of activities in a CPA proposed action. Therefore, concentrated oil should not reach live bottom features, and any impacts from diluted oil would be sublethal.

A subsurface spill or plume may impact sessile biota of live bottom features. Oil or dispersed oil may cause sublethal impacts to benthic organisms if a plume reaches these features. Impacts may include loss of habitat, biodiversity, and live coverage; change in community structure; and failed reproductive success. The Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews of permit applications would limit the potential impact of such occurrences by keeping the sources of such adverse events geographically removed from the sensitive biological resources of live bottom features. Distancing OCS oil- and gas-related activity allows for oil to mix with the surrounding water and become less concentrated by the time it reaches a feature, thus reducing toxicity.

Suspended sediment and oil adhered to sediment in the water column as a result of a blowout may impact benthic organisms. However, because the Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews of permit applications distances petroleum-producing activity 30 m (100 ft) from live bottom features, the heaviest sediment concentrations would fall out of suspension and the suspended sediment would disperse, resulting in reduced turbidity and sedimentation near the sensitive features. Many of the live bottom organisms of the CPA are located within the influence of the Mississippi River plume and are more tolerant of turbidity and sedimentation, allowing them to withstand a degree of these impacts. Many also have the ability to rid themselves of sediment through ciliary action and mucus shedding.

The proposed Live Bottom (Pinnacle Trend) Stipulation, if applied, and case-by-case reviews of permit applications would assist in preventing most of the potential impacts on live bottom communities from blowouts, surface and subsurface oil spills, and the associated effects by increasing the distance of such events from the live bottoms. In addition, because no live bottom low-relief blocks are included in a CPA proposed action, most live bottom features are distanced from oil-producing activity. It would be expected that the majority of oil released from a blowout would rapidly rise to the surface and that the most heavily oiled sediments would likely be deposited on the seafloor before reaching the live bottoms. Any contact with spilled oil would likely cause sublethal effects to benthic organisms because the distance of activity would prevent contact with concentrated oil. In the unlikely event that oil from a spill would reach the biota of a live bottom, the effects would be primarily sublethal and impacts would be at the community level. Any turbidity, sedimentation, and oil adsorbed to sediments would also be at low concentrations by the time the live bottoms were reached, also resulting in sublethal impacts. Impacts from an oil spill on live bottoms are lessened by the distance of the spill to the features, the depth of the features, and the currents that surround the features. In the event that oil from a subsurface spill reached an area containing coral cover in lethal concentrations, the recovery could take in excess of 10 years (Fucik et al., 1984).

Cumulative Impacts

Background/Introduction

The proposed Live Bottom (Pinnacle Trend) Stipulation is assumed to be in effect for this cumulative analysis as well as for the case-by-case reviews of permit applications to prevent impacts to identified live bottoms (low and high relief). Details on the Live Bottom (Pinnacle Trend) Stipulation can be found in Chapter 2.3.1.3.2 of this Supplemental EIS and in Chapter 2.4.1.3.2 of the 2012-2017 WPA/CPA Multisale EIS. The continued application of this proposed stipulation and case-by-case permit reviews would prevent any direct adverse impacts on the biota of the live bottoms, i.e., impacts potentially generated by oil and gas operations. The cumulative impact from routine oil and gas operations includes effects resulting from a CPA proposed action, as well as those resulting from past and future OCS oil and gas leasing. These operations include anchoring, structure emplacement, muds and cuttings discharge, effluent discharge, blowouts, oil spills, and structure removal. Potential non-OCS oil- and gas-related factors include vessel anchoring, import tankering, heavy storms and hurricanes, commercial fishing, and recreational scuba diving.

OCS Oil- and Gas-Related Impacts

Mechanical damage, such as anchoring, is considered to be a catastrophic threat to the biota of live bottoms. The continued application of the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews preclude anchoring on live bottoms by OCS oil- and gas-related operations. Detrimental impacts would result if oil and gas operators anchored pipeline barges, drilling rigs, and service vessels, or if they placed structures on live bottoms (Lissner et al., 1991; Dinsdale and Harriott, 2004). The proposed Live Bottom (Pinnacle Trend) Stipulation restricts these activities within 30 m (100 ft) of a Pinnacle feature, thus preventing adverse impacts on benthic communities of these features. In addition, case-by-case reviews would identify live bottoms in the area of activity and prevent bottom-disturbing activity within 30 m (100 ft) of a live bottom.

The USEPA, through its NPDES discharge permit, enacts mitigating measures on discharges. Drilling fluids can be moderately toxic to marine organisms (the more toxic effluents are not allowed to be discharged under NPDES permits), but their effects are restricted to areas closest to the discharge point, thus preventing contact with the biota of live bottoms (Montagna and Harper, 1996; Kennicutt et al., 1996). Small amounts of drilling effluent in low concentrations may reach a live bottom from wells beyond the 30-m (100-ft) buffer; however, these amounts, if measurable, would be extremely small and would be restricted to small areas, with little effect on the biota.

The proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews of permit applications protect live bottom features by mandating a physical distance from drilling activities. Drilling fluid plumes are rapidly dispersed on the OCS; approximately 90 percent of the material discharged in drilling a well (cuttings and drilling fluid) settles rapidly to the seafloor, while 10 percent forms a plume of fine mud that drifts in the water column (Neff, 2005). Any drilling material that may reach coral can be removed by the coral using tentacles and mucus secretion, and it can be physically removed by currents that can help shed the mucus-trapped particles from the coral (Shinn et al., 1980; Hudson and Robbin, 1980).

With the inclusion of the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews, no discharges of effluents, including produced water, would take place within 30 m (100 ft) of a live bottom. This distancing, combined with USEPA's discharge regulations and permits, should eliminate the threat of discharges reaching and affecting the biota of a live bottom. The impacts that these discharges could cause would be primarily sublethal damages that could lead to a possible disruption or impairment of a few elements at a local scale, but no interference to the general ecosystem performance should occur.

Impacts on the live bottoms could occur as a result of OCS oil- and gas-related spills or spills from import tankering. Due to dilution and the depths of the crests of the Pinnacle and other live bottom features, discharges should not reach the live bottom features in sufficient concentrations to cause impacts. Tanker accidents would result in surface oil spills, which generally do not mix below a depth of 10-20 m (33-66 ft) (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002). The limited depth of mixing should protect most live bottoms, very few of which rise to within 20 m (66 ft) of the sea surface, except those in shallow waters of the EPA, which are extremely far from a CPA proposed action. Any dispersed surface oil from a tanker spill that may reach the benthic communities of live bottoms in the Gulf of Mexico would be expected to be at very low concentrations (<1 ppm) (McAuliffe et al., 1981a and 1981b; Lewis and Aurand, 1997). Such concentrations would not be life threatening to larval or adult stages based on experiments conducted with coral (Lewis, 1971; Elgershuizen and De Kruijf, 1976; Knap, 1987; Wyers et al., 1986; Cohen et al., 1977) and observations after oil spills (Jackson et al., 1989; Guzmán et al., 1991). Any dispersed or physically mixed oil in the water column that comes in contact with corals, however, may evoke short-term negative responses by the organisms, such as reduced feeding and photosynthesis or altered behavior (Wyers et al., 1986; Cook and Knap, 1983; Dodge et al., 1984).

Potential blowouts and low-probability catastrophic spills (**Appendix B**), though not reasonably foreseeable or expected as part of a CPA proposed action, could impact the biota of the live bottoms. Based on the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews, few blowouts or low-probability catastrophic spills, if any, would reach the live bottoms. The proposed stipulation and BOEM's policy applied during case-by-case reviews creates a 30-m (100-ft) buffer zone around live bottoms; this buffer zone would protect the live bottoms from direct impacts by damaging amounts of suspended sediment from a seafloor blowout. Most of the oil from a seafloor blowout, even a

catastrophic one, would rise to the surface, but some of it may be entrained in the water column as a subsea plume. Oil in a subsea plume could be carried to a live bottom. The resulting level of impacts depends on the concentration of the oil when it contacts the habitat. The farther the blowout is from the live bottom, the more dispersed the oil and sediment will become, reducing the possible impacts. If oil were to contact the live bottoms, the impacts may include loss of habitat, biodiversity, and live coverage; change in community structure; and failed reproductive success. In the highly unlikely event that oil from a subsurface spill could reach a coral-covered area in lethal concentrations, the recovery of this area could take in excess of 10 years (Fucik et al., 1984).

The cumulative impact of possible oil spills, along with the *Deepwater Horizon* explosion, oil spill, and response, is not anticipated to affect the overall live bottom habitat. The Live Bottom (Pinnacle Trend) Stipulation and case-by case reviews of permit applications would not allow wells to be drilled within 30 m (100 ft) of a live bottom, separating the habitat from the worst of the sediment deposition of a blowout and allowing most of the oil to rise to the sea surface without contacting live bottoms. If oil is released near a live bottom habitat with serious detrimental effects. Habitats receiving high concentrations of oil could take 10 or more years to recover (Fucik et al., 1984). However, since subsea plumes travel directionally with water currents, only live bottom habitats directly in the path of the plume would be affected. Therefore, the acute impacts of any large-scale blowout would likely be limited in scale, and any additive impacts of several blowouts should only impact small areas on an acute level, with possible sublethal impacts occurring over a larger area.

Platforms will be removed from the OCS Program each year; some may be in the vicinity of live bottoms (**Table 3-2**). However, the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case permit application reviews prevents the installation of platforms within 30 m (100 ft) of a live bottom, thus reducing the potential for impact from platform removal. The explosive removals of platforms are far enough away to prevent impacts to the biota of the live bottoms.

Non-OCS Oil- and Gas-Related Impacts

Although the Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews of permit applications prohibit oil and gas leaseholders from anchoring vessels and placing structures within 30 m (100 ft) of a live bottom, the policy does not affect other non-OCS oil- and gas-related activities such as fishing, recreational scuba diving, or anchoring other vessels on or near these features. Many of the live bottoms are well-known fishing and diving areas. Anchoring on a live bottom by a vessel involved in any of these activities could damage the biota. The degree of damage would depend on the size of the anchor and chain (Lissner et al., 1991). Anchor damages incurred by benthic organisms may take more than 10 years to recover, depending on the extent of the damage (Fucik et al., 1984; Rogers and Garrison, 2001).

Depending on the levels of fishing pressure exerted, recreational fishing activities that occur on live bottoms may impact local fish populations (refer to **Chapters 4.1.1.19 and 4.1.1.20**). The collecting activities by scuba divers on shallow live bottom features may have an adverse impact on the local biota. Much of the fishing on these habitats uses bottom fishing gear that may damage benthic organisms or may snag on the reefs and be lost. Such gear, particularly lines of varying thickness, can cut into the tissues of many benthic organisms during storm movement of bottom waters. Anchoring during recreational and fishing activities, however, would be the source of the majority of severe impacts incurred by the live bottoms.

Damage resulting from commercial fishing, especially bottom trawling, may have a severe impact on live bottoms. Bottom trawling in the Gulf of Mexico primarily targets shrimp from nearshore waters to depths of approximately 90 m (300 ft) (NRC, 2002). Although trawlers would not target areas with pinnacles or sharp relief as fishing ground, since outcrops may tangle with gear, accidental instances of trawling may occur near or over live bottoms, resulting in community damage. Reports indicate that bottom trawling activity on hard bottom substrates can overturn boulders and destroy epifaunal organisms (Freese et al., 1999). Large emergent sponges and anthozoans may be particularly vulnerable to trawling activity, as these organisms grow above the substrate and can be caught and removed by trawling activity (Freese et al., 1999). The recovery of corals and coralline algae may take decades to centuries and depends on the extent of the impact, frequency of disturbance, other natural changes that occur to the habitat, and the organism's life history (NRC, 2002).

Natural events such as storms, extreme weather, and fluctuations of environmental conditions (e.g., nutrient pulses, low dissolved oxygen levels, seawater temperature minima, and seasonal algal blooms) may impact live bottom communities. Because of the depth of the Pinnacle Trend environment, waves seldom have a direct influence. During severe storms, such as hurricanes, large waves may reach deep enough to stir bottom sediments (Brooks, 1991; CSA, 1992). These forces are not expected to be strong enough to cause direct physical damage to organisms living on the features. Rather, currents are created by the wave action that can resuspend sediments to produce added turbidity and sedimentation (Brooks, 1991; CSA, 1992). The animals in this region are well-adapted to the effects common to this frequently turbid environment (Gittings et al., 1992a). Live bottom (low relief) communities, however, occur from the shoreline to 100 m (328 ft) of water and, because many of these features are located in shallow water, storm events may damage these environments. Currents are created by wave action that can resuspend sediments to produce added turbidity and sedimentation (Brooks, 1991; CSA, 1992). Storms can physically affect shallow bottom environments, causing an increase in sedimentation, burial of organisms by sediment, a rapid change in salinity or dissolved oxygen levels, storm surge scouring, remobilization of contaminants in the sediment, and abrasion and clogging of gills as a result of turbidity (Engle et al., 2008). Storms have also been shown to uproot benthic organisms from the sediment (Dobbs and Vozarik, 1983), and breakage or detachment may occur as a result of storm activity (Yoshioka and Yoshioka, 1987). Such impacts may be devastating to a benthic community.

Hypoxic conditions of inconsistent intensities and ranges also occur annually in a band that stretches along the Louisiana-Texas shelf each summer (Rabalais et al., 2002a). The dissolved oxygen levels of bottom waters in the Gulf of Mexico hypoxic zone are less than 2 ppm during part of the summer season. Such low concentrations are lethal to many benthic organisms and may result in the loss of some benthic populations. Although this is mainly a character of the Louisiana-Texas shelf, its effect could reach some live bottom communities in the northeast portion of the CPA.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (NOAA's Gulf Spill Restoration Publications website, NOAA's Environmental Response Management Application [ERMA] Gulf Response website, NOAA's *Deepwater Horizon* Archive Publications and Factsheets, the Gulf of Mexico Sea Grant *Deepwater Horizon* Oil Spill Research and Monitoring Activities Database, the RestoreTheGulf.gov website, and the *Deepwater Horizon* Oil Spill Portal), as well as recently published journal articles and Federal documents was conducted to determine the availability of recent information on live bottoms. The search revealed new information on the monitoring of corals in the GOM for impacts of oil from the *Deepwater Horizon* explosion; information that is pertinent to this Supplemental EIS.

The NRDA has been investigating the possibility of impacts to mesophotic coral reefs in the Pinnacle Trend area as a result of the *Deepwater Horizon* explosion, oil spill, and response. Post oil-spill data (photos, video, and water quality collected by semipermeable membrane passive sampling devices) are being compared with pre-Deepwater Horizon data that exist from the Alabama Alps in the Pinnacle Trend (USDOC, NOAA, 2012). The semipermeable membrane devices suggest that the Alabama Alps may have been exposed to petroleum hydrocarbons, but the pathway for impact by subsurface oil and dispersants has yet to be established. However, preliminary evidence indicates that planktivorous fish in the area have substantially decreased and mesophotic reef corals appear to be impacted (USDOC, NOAA, 2012). This is an unusual new finding because published data, which is described in Chapter 4.2.1.6.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, indicated that the Pinnacle environment should not have been exposed to acutely toxic concentrations of oil. The potential oiling footprint, as reported through NOAA's Environmental Response Management Application (ERMA), posted on the GeoPlatform.gov website, indicated that continuously moving patches and ribbons of oil were recorded in surface waters above the Pinnacle Trend area during the spill (USDOC, NOAA, 2011d). The crests of the Pinnacle features were far enough below the sea surface that they should be protected from acute concentrations of oil exposure because their crests are deeper than the physical mixing ability of surface oil (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002; Thompson et al., 1999; Schroeder, 2000). Also, hydrocarbon measurements reported by Haddad and Murawski (2010) and OSAT (2010) indicated that the Pinnacle Trend environment was not exposed to toxic concentrations of oil. In addition, the subsea plume of oil and dispersants that was formed during

the *Deepwater Horizon* explosion, spill, and response traveled in the opposite direction of the Pinnacle Trend (OSAT, 2010), and therefore, should not have contacted the habitat. These new data on possible impacts to planktivorous fish and mesophotic reef corals in the Pinnacle Trend raise the question on how the oil exposure occurred if the crests of the Pinnacles were below the physical depth of mixing of oil, the subsea oil plume traveled in a direction opposite the Pinnacle Trend, and the toxic concentrations of oil were not measured in the area. Because BOEM does not have the data to show how the impacts occurred, we can only predict that there may be exposure pathways beyond which we are familiar that may unexpectedly occur and result in increased toxicity to organisms exposed to oil or dispersants. The impacts to the Alabama Alps appear to be an unusual case resulting from some unknown combination of events. More data are necessary to answer some of these questions and as more data are released by NRDA, the impacts to the Pinnacle Trend area, including if the area has recovered from the reported impacts, will become clearer. It should be noted that although there appears to be an impact to the Pinnacle Trend from unusual circumstances arising from the *Deepwater Horizon* explosion, spill, and response, we cannot discount the physical data, including sublethal to no measured oil concentrations, reported and discussed in previous EISs and SEISs.

Toxicity tests conducted on larvae in the laboratory on two species of coral, *Porites astreoides* and *Montastraea faveolata*, indicated that the settlement and survival of coral larvae decreased with increasing water-accommodated fractions (WAFs) of *Macondo* oil, the dispersant COREXIT 9500, and WAFs of *Macondo* oil plus COREXIT 9500 (CEWAF) (Goodbody-Gringley et al., 2013). Note that these two species of coral are not found on live bottoms of the CPA (they are, however, found in the EPA and WPA) but that the results are shown as an example in oil impacts on coral settlement. This study reinforces conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that the settlement of coral larvae can be reduced by the presence of oil and dispersants.

In 2009, a petition was submitted to NMFS by the Center for Biological Diversity to list 83 additional species of coral under the ESA (Center for Biological Diversity, 2009). Those 83 "candidate species" were reviewed by NMFS. In April 2012, NMFS completed a Status Review Report and a Draft Management Report of the candidate species of corals, and on December 7, 2012, the "Proposed Listing Determinations for 82 Reef-Building Coral Species; Proposed Reclassification of Acropora palmata and Acropora cervicornis From Threatened to Endangered" was published in the Federal Register (Federal The NOAA determined that 12 of the petitioned species warranted listing as Register, 2012b). endangered (5 in the Caribbean and 7 in the Indo-pacific), 54 species warranted listing as threatened (2 in the Caribbean and 52 in the Indo-Pacific), and 16 did not warrant listing under the ESA. None of these corals are found on live bottoms in the CPA; however, they may be found on live bottoms in the EPA and on topographic features in the CPA and WPA. The public comment period was extended to April 6, 2013, and a public meeting was held on March 12, 2013 (Federal Register, 2013b). This was followed by a 6-month extension of the final rulemaking to list the proposed corals (Federal Register, 2013c). A final decision on the listing of these species was expected in June 2014, but it has not been released at the time of publication of this Supplemental EIS. If these proposed species are listed and if an action may affect the listed species or designated critical habitat, BOEM would consult with NMFS under Section 7 of the ESA, as BOEM currently does for other listed species.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapters 4.2.1.6.1 and 4.2.1.6.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding live bottoms in the CPA. This information cannot be obtained because much of the information has not yet been released by NRDA. Relevant data on the status of live bottoms after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze. Much of these data are being developed through the NRDA process, which may take years to complete. Little data from the NRDA process have been made available to date. This incomplete or unavailable information may be relevant to adverse effects because recent events such as the *Deepwater Horizon* explosion, oil spill, and response to baseline conditions for live bottoms in the Gulf of Mexico. While most outstanding reports are not expected to reveal reasonably foreseeable effects for the live bottoms in the Gulf of Mexico, BOEM nonetheless determined that additional information could not be timely acquired and incorporated into the current analysis.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information on completing this analysis and formulating the conclusions presented here. This analysis consisted of the National Oceanic and Atmospheric Administration's ERMA posted on GeoPlatform.gov (USDOC, NOAA, 2011d), data from the OSAT (2010) and Haddad and Murawski (2010) reports, small pieces of NRDA data that have been released (USDOC, NOAA, 2012), data from studies on the physical mixing of oil in water (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002), data on specific Pinnacle features (Thompson et al., 1999; Schroeder, 2000), and data on the path of the subsea plume (OSAT, 2010). Sources indicate that there are no reasonably foreseeable significant adverse impacts of the *Deepwater Horizon* explosion, oil spill, and response on live bottoms in the CPA. Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives based on the analysis conducted by BOEM's subject-matter experts who have used available scientifically credible evidence in this analysis and applied it using accepted scientific methods and approaches. The reasons the information is not essential to a reasoned choice among alternatives are as follows:

- (1) Live bottom features of the CPA and those much farther away in the EPA should have been protected from surface oil exposure because the crests of the features are deeper than the physical mixing ability of surface oil (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002; Thompson et al., 1999; Schroeder, 2000). These features are also located north and east of the *Macondo* well, directions opposite of the pathway of the subsea plume (southwest) (OSAT, 2010). In addition, most live bottoms in the GOM are located in the EPA, which is a far distance from the spill location, and any oil that traveled to the EPA would be extremely diluted before it approached the features. Based on the location of the surface oil in relation to most live bottoms, the surface oil's mixing abilities, the depth of the features, and the direction of travel of the subsea plume, the live bottom features of the CPA and EPA (with the possible exception of the Alabama Alps within the Pinnacle Trend, which is discussed below) should not have been impacted by oil from the *Deepwater Horizon* explosion.
- (2) Water and sediment samples collected near live bottoms in the CPA were less than lethal concentrations measured for corals and less than the USEPA's aquatic life benchmarks (Haddad and Murawski, 2010; OSAT, 2010; Dodge et al., 1984; Weyers et al., 1986; Kushmaro et al., 1997). Any exceedances measured in water samples occurred near the water surface or in the deepwater plume within 70 km (44 mi) of the well (in the opposite direction of the live bottoms), and all chronic aquatic life benchmark exceedances measured in the sediment occurred within 3 km (2 mi) of the well (OSAT, 2010). Most live bottoms in the CPA, therefore, are not expected to be impacted by PAHs in the water column or sediment, as they are located beyond or deeper in the water column than where toxic measurements of PAHs were reported.

There is one source that reveals impacts to live bottoms in the Alabama Alps region of the Pinnacle Trend, possibly as a result of the *Deepwater Horizon* explosion, oil spill, and response (USDOC, NOAA, 2012). This source has reported preliminary evidence of substantially decreased planktivorous fish in the area and signs of impacted mesophotic reef corals within the Alabama Alps. It appears that oil from the *Deepwater Horizon* explosion may have resulted in impacts to fish and corals through an unknown exposure route. The impacts contradict published data on the physics of oil mixing as well as data collected and reported from the *Deepwater Horizon* explosion, oil spill, and response. The exposure pathway of hydrocarbons concentrated enough to impact the Alabama Alps is still unknown, and the results of the study indicate there must be some other exposure to a subsea oil plume. The Alabama Alps appeared to be beneath patches of the oil's footprint for a portion of the spill (USDOC, NOAA, 2011d); however, published data indicate that surface oil cannot mix to the depths of the Alabama Alps (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002; Thompson et al., 1999; Schroeder, 2000). In addition, the subsea plume traveled in a direction opposite of the Alabama Alps (OSAT, 2010).

oil or have lethal levels of exposure based on the direction of the subsea plume and inability of oil to mix to pinnacle depths at lethal concentrations, more information is needed to determine how that habitat was impacted and if the impact is long lasting. However, as noted above, this information is being developed primarily through the NRDA process and other studies, and they are not expected to result in publicly available data within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the costs involved. BOEM therefore has determined that this information is not essential to a reasoned choice among alternatives because there is not enough information available to determine how the impacts occurred and if the habitat is continuing to show impacts or if the habitat has recovered.

Summary and Conclusion

BOEM has reexamined the analysis for live bottoms presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for live bottoms presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Activities causing mechanical disturbance represent the greatest threat to the live bottoms. This would, however, be prevented by the continued application of the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews. Potential OCS oil- and gas-related impacts include anchoring of vessels and structure emplacement, operational discharges (drilling muds and cuttings, and produced waters), blowouts, oil spills, and structure removal.

The proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews would preclude mechanical damage caused by oil and gas leaseholders from impacting the benthic communities of live bottoms and would protect them from operational discharges by establishing a 30-m (100-ft) buffer around the features. As such, little impact would be incurred by the biota of the live bottoms. The USEPA's discharge regulations and permits would further reduce discharge-related impacts.

Blowouts could potentially cause damage to benthic biota; however, due to the application of the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case permit application reviews, blowouts would not reach the live bottoms and associated biota in high concentrations, resulting in little impact on the features. If a subsea oil plume is formed, it could contact the habitats of a live bottom. The farther the oil source is from the live bottom, the more dilute and degraded the oil would be when it reaches the vicinity of the live bottom.

Oil spills can cause damage to benthic organisms when oil contacts the organisms. The proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews would keep sources of OCS spills at least 30 m (100 ft) away from the immediate biota of the live bottoms. The majority of oil released below the sea surface would rise and should not physically contact organisms on live bottoms. In the unlikely event that oil from a subsurface spill would reach the biota of a live bottom, it would be physically or chemically dispersed to low concentrations by the time it reached the feature, and the effects would be primarily sublethal. In the very unlikely event that oil from a subsurface spill reached a live bottom in lethal concentrations, the recovery could take in excess of 10 years (Fucik et al., 1984). Finally, in the unlikely event a freighter, tanker, or other oceangoing vessel related to OCS oil- and gas-related activities sank and proceeded to collide with the live bottoms or associated habitat releasing its cargo and fuel, recovery could take years to decades, depending on the extent of the damage. Because these events are rare in occurrence, the potential of impacts from these events is considered low.

Non-OCS oil- and gas-related activities could mechanically disrupt the bottom (such as anchoring, as previously described). Natural events such as hurricanes or storms could cause severe impacts. Impacts from scuba diving, fishing, and discharges or spills from tankering of imported oil could have detrimental effects on live bottoms.

Overall, the incremental contribution of a CPA proposed action to the cumulative impact is negligible when evaluated against all other OCS oil- and gas-related and non-OCS oil- and gas-related impacts in the entire GOM. Where the proposed Live Bottom (Pinnacle Trend) Stipulation and case-by-case reviews are applied, mechanical impacts (anchoring and structure emplacement) and impacts from operational discharges (produced waters, drilling fluids, cuttings) or accidental discharges (oil spills, blowouts) would

4-62

be removed from the immediate area surrounding the live bottoms. However, if the stipulation or reviews are not applied, acute long-term injury to live bottoms may occur as a result of a CPA proposed action.

4.1.1.7. Topographic Features

BOEM has reexamined the analysis for topographic features presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusions for topographic features presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.7 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from Chapter 4.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A ny new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on topographic features of the CPA are anchoring, infrastructure emplacement, drilling effluent and produced-water discharges, and infrastructure removal. These disturbances have the potential to disrupt and alter the environmental, commercial, recreational, and aesthetic values of topographic features in the CPA. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on topographic features can be found in Chapter 4.2.1.7.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.7 of the WPA 233/CPA 231 Supplemental EIS.

The topographic features and associated coral reef biota of the CPA could be adversely impacted by oil and gas activities resulting from a CPA proposed action in the absence of the proposed Topographic Features Stipulation. This would be particularly true should operations occur directly on top of or in the immediate vicinity of otherwise protected CPA topographic features.

The No Activity Zone of the topographic features would be most susceptible to adverse impacts if oil and gas activities are unrestricted without the proposed Topographic Feature Stipulation. These impacting activities could include vessel anchoring and infrastructure emplacement; discharges of cuttings and adhered drilling mud, and produced water; and ultimately the explosive removal of structures. All the above-listed activities have the potential to considerably alter the diversity, cover, and long-term viability of the reef biota found within the No Activity Zone. In most cases, recovery from disturbances would take 10 years or more (Fucik et al., 1984; Rogers and Garrison, 2001). Long-lasting and possibly irreversible change would be caused mainly by vessel anchoring and structure emplacement (pipelines, drill rigs, and platforms). Such activities would physically and mechanically alter benthic substrates and their associated biota. Construction discharges would cause substantial and prolonged turbidity and sedimentation, possibly impeding the well-being and permanence of the biota and interfering with larval settlement, resulting in the decrease of live benthic cover. Finally, the unrestricted use of explosives to remove platforms installed in the vicinity of the topographic features could cause turbidity and sedimentation that would affect reef biota.

The shunting of cuttings and fluids, which would be required by the proposed Topographic Features Stipulation, is intended to limit the smothering and crushing of sensitive benthic organisms caused by depositing foreign substances onto the topographic features. The impacts from unshunted exploration and development discharges of drill cuttings and adhered drilling mud within the exclusion zones would impact the biota of topographic features. Specifically, the discharged materials would cause prolonged events of turbidity and sedimentation, which could have long-term deleterious effects on local primary production, predation, and consumption by benthic and pelagic organisms, biological diversity, and benthic live cover. The unrestricted discharge of drill cuttings and adhered fluids during development operations would be a further source of impact to the sensitive biological resources of the topographic features. Therefore, in the absence of the proposed Topographic Features Stipulation, a CPA proposed

action could cause significant long-term (10 years or more) adverse impacts to the biota of the topographic features (Fucik et al., 1984; Rogers and Garrison, 2001).

The Topographic Features Stipulation, if applied, would prevent most of the potential impacts on topographic features from bottom-disturbing activities (structure removal and emplacement) and operational discharges associated with a CPA proposed action through avoidance by requiring individual activities to be located at specified distances from the feature or zone. Because of the No Activity Zone requirement, permit restrictions, and the high-energy environment associated with topographic features, if any contaminants reach topographic features, they would be diluted from their original concentration, and impacts that do occur would be minimal.

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to disrupt and alter the environmental, commercial, recreational, and aesthetic values of topographic features of the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on topographic can be found in Chapter 4.2.1.7.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.7 of the WPA 233/CPA 231 Supplemental EIS.

The topographic features and associated coral reef biota of the CPA could be damaged by oil and gas activities resulting from a CPA proposed action should they not be restricted by application of the proposed Topographic Features Stipulation. The impacting factors that could damage topographic features include blowouts, subsea oil spills, and surface oil spills, along with oil-spill response activities such as the use of dispersants.

Oil spills as well as routine activities have the potential to considerably alter the diversity, cover, and long-term viability of the reef biota found within the No Activity Zone if the proposed Topographic Features Stipulation is not applied. Direct oil contact may result in acute toxicity (Dodge et al., 1984; Wyers et al., 1986). In most cases, recovery from disturbances would take 10 years or more (Fucik et al., 1984; Rogers and Garrison, 2001). The use of dispersants near or above protected features could result in impacts to the features because dispersants allow floating oil to mix with water. The decision to use dispersants near topographic features during an accidental event, however, lies with the Federal On-Scene Coordinator and is made on a case-by-case basis.

Disturbances, including oil spills and blowouts, could alter benthic substrates and their associated biota over large areas. In the unlikely event of a blowout, sediment resuspension potentially associated with oil could cause adverse turbidity and sedimentation conditions. In addition to affecting the live cover of a topographic feature, a blowout could alter the local benthic morphology, thus irreversibly altering the reef community. Oil spills (surface and subsea) could be harmful to the local biota should the oil have a prolonged or recurrent contact with the organisms. Accidental events related to a CPA proposed action could cause significant long-term (10 years or more) adverse impacts to the biota of the topographic features.

The proposed Topographic Features Stipulation, if applied, would assist in preventing most of the potential impacts on topographic feature communities from blowouts, surface, and subsurface oil spills and the associated effects by increasing the distance of such events from the topographic features. It would be expected that the majority of oil released from a blowout would rapidly rise to the surface and that the most heavily oiled sediments would likely be deposited on the seafloor before reaching the topographic features. Subsea oil would also be directed away from the more sensitive communities on the upper levels of topographic features because currents sweep around topographic features instead of over them (Rezak et al., 1983; McGrail, 1982). Due to distancing requirements of the Topographic Features Stipulation, any turbidity, sedimentation, and oil adsorbed to sediments would also be at low concentrations by the time the topographic features were reached, also resulting in sublethal impacts to benthic organisms.

In addition, any oil floating in surface waters from a blowout or tanker accidents as a result of OCS oil- and gas-related activity should have minimal impact on topographic features. Due to dilution with the surrounding water and the depths of the crests of the topographic features below the water's surface, surface floating oil should not reach topographic features in sufficient concentrations to cause impacts. Floating oil generally does not mix below a depth of 10-20 m (33-66 ft) (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002). The limited depth of mixing should protect most topographic features, very few of which rise to within 15 m (50 ft) of the sea surface. As a result, surface oil that may reach the benthic communities of topographic features in the Gulf of Mexico would be expected to be at very low concentrations (<1 ppm) (McAuliffe et al., 1981a and 1981b; Lewis and Aurand, 1997). Such

concentrations would not be life threatening to larval or adult stages based on experiments conducted with coral (Lewis, 1971; Elgershuizen and De Kruijf, 1976; Knap, 1987; Wyers et al., 1986; Cohen et al., 1977) and observations after oil spills (Jackson et al., 1989; Guzmán et al., 1991). Any dispersed or physically mixed oil in the water column that comes in contact with corals, however, may evoke short-term negative responses by the organisms, such as reduced feeding and photosynthesis or altered behavior (Wyers et al., 1986; Cook and Knap, 1983; Dodge et al., 1984). Therefore, impacts from a surface or subsea oil spill on topographic features are lessened by the distance of the spill to the features, the depth of the features, and the currents that surround the features. In the event that oil from a subsurface spill reached an area containing coral cover in lethal concentrations, the recovery could take in excess of 10 years (Fucik et al., 1984).

Cumulative Impacts

Background/Introduction

The proposed Topographic Features Stipulation is assumed to be in effect for this cumulative analysis. The continued application of this proposed stipulation would prevent any direct adverse impacts on the biota of the topographic features, i.e., impacts potentially generated by oil and gas operations. The cumulative impact from routine oil and gas operations includes effects resulting from a CPA proposed action, as well as those resulting from past and future OCS oil and gas leasing. These operations include anchoring, structure emplacement, muds and cuttings discharge, effluent discharge, blowouts, oil spills, and structure removal. Potential non-OCS oil- and gas-related factors include vessel anchoring, treasure-hunting activities, import tankering, heavy storms and hurricanes, the collapse of the tops of the topographic features due to dissolution of the underlying salt structure, commercial and recreational fishing, and recreational scuba diving.

OCS Oil- and Gas-Related Impacts

Mechanical damage, such as anchoring, is considered to be a catastrophic threat to the biota of topographic features. The continued application of the proposed Topographic Features Stipulation precludes anchoring on topographic features by OCS oil- and gas-related operations. Detrimental impacts would result if oil and gas operators anchored pipeline barges, drilling rigs, and service vessels, or if they placed structures on topographic features (Rezak and Bright, 1979; Rezak et al., 1985). The proposed Topographic Features Stipulation restricts these activities within 152 m (500 ft) of the No Activity Zone around topographic features, thus preventing adverse impacts on benthic communities of topographic features (refer to NTL 2009-G39, "Biologically-Sensitive Underwater Features and Areas," **Chapter 2.3.1.3.1** of this Supplemental EIS, and Chapter 2.3.1.3.1. of the 2012-2017 WPA/CPA Multisale EIS).

The USEPA, through its NPDES discharge permit, enacts mitigating measures on discharges. As noted under routine events of a CPA proposed action, drilling fluids can be moderately toxic to marine organisms (the more toxic effluents are not allowed to be discharged under NPDES permits), and their effects are restricted to areas closest to the discharge point, thus preventing contact with the biota of topographic features (Montagna and Harper, 1996; Kennicutt et al., 1996). Small amounts of drilling effluent in low concentrations may reach a bank from wells outside the No Activity Zone; however, these amounts, if measurable, would be extremely small and would be restricted to small areas, with little effect on the biota.

The proposed Topographic Features Stipulation protects topographic features by mandating a physical distance from drilling activities. Drilling fluid plumes are rapidly dispersed on the OCS; approximately 90 percent of the material discharged in drilling a well (cuttings and adhered drilling fluid) settles rapidly to the seafloor, while 10 percent forms a plume of fine mud that drifts in the water column (Neff, 2005). The shunting of drilling muds and cutting is required for wells drilled in the vicinity of topographic features. Shunting restricts the cuttings to a smaller area and places the turbidity plume near the seafloor where the environment is frequently turbid and where benthic communities are adapted to high levels of turbidity. Water currents moving turbidity plumes across the seafloor would sweep around topographic features rather than carrying the turbidity over the banks (Bright and Rezak, 1978). Any sediment that may reach coral can be removed by the coral using tentacles and mucus secretion, and it can be physically removed by currents that can shed the mucus-trapped particles from the coral (Shinn et al., 1980; Hudson and Robbin, 1980).

With the inclusion of the proposed Topographic Features Stipulation, no discharges of effluents, including produced water, would take place within the No Activity Zone. Drill cuttings in areas around the No Activity Zone would be shunted to within 10 m (33 ft) of the seabed. This procedure, combined with USEPA's discharge regulations and permits, should eliminate the threat of discharges reaching and affecting the biota of a topographic high. The impacts that these discharges could cause would be primarily sublethal damage that could lead to a possible disruption or impairment of a few elements at a local scale, but no interference to the general ecosystem performance should occur.

Impacts on the topographic features could occur as a result of OCS oil- and gas-related spills or spills from tankering. Due to dilution and the depths of the crests of the topographic features, oil should not reach topographic features in sufficient concentrations to cause impacts. Tanker accidents would result in surface oil spills, which generally do not mix below a depth of 10-20 m (33-66 ft) (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002). The limited depth of mixing should protect most topographic features, very few of which rise to within 15 m (50 ft) of the sea surface. Any dispersed surface oil from a tanker spill that may reach the benthic communities of topographic features in the Gulf of Mexico would be expected to be at very low concentrations (<1 ppm) (McAuliffe et al., 1981a and 1981b; Lewis and Aurand, 1997). Such concentrations would not be life threatening to larval or adult stages based on experiments conducted with coral (Lewis, 1971; Elgershuizen and De Kruijf, 1976; Knap, 1987; Wyers et al., 1986; Cohen et al., 1977) and observations after oil spills (Jackson et al., 1989; Guzmán et al., 1991). Any dispersed or physically mixed oil in the water column that comes in contact with corals, however, may evoke short-term negative responses by the organisms, such as reduced feeding and photosynthesis or altered behavior (Wyers et al., 1986; Cook and Knap, 1983; Dodge et al., 1984).

Potential blowouts and low-probability catastrophic spills (Appendix B) could impact the biota of the topographic features. Based on the proposed Topographic Features Stipulation, few blowouts or lowprobability catastrophic spills, if any, would reach the No Activity Zone around the topographic features. The proposed stipulation creates a buffer zone around the banks; this buffer zone would protect the banks from direct impacts from damaging amounts of suspended sediment from a seafloor blowout. Most of the oil from a seafloor blowout, even a catastrophic one, would rise to the surface, but some of it may be entrained in the water column as a subsea plume. Oil in a subsea plume could be carried to a topographic feature. The resulting level of impacts depends on the concentration of the oil when it contacts the habitat. The farther the blowout is from the topographic feature, the more dispersed the oil and sediment will become, reducing the possible impacts. Also, because currents sweep around topographic features instead of over them, subsea oil should be directed away from the more sensitive communities on the upper levels of topographic features (Rezak et al., 1983; McGrail, 1982). If oil were to contact the topographic features, the impacts may include loss of habitat, biodiversity, and live coverage; change in community structure; and failed reproductive success. In the highly unlikely event that oil from a subsurface spill could reach a coral-covered area in lethal concentrations, the recovery of this area could take in excess of 10 years (Fucik et al., 1984).

The cumulative impact of the *Deepwater Horizon* explosion, oil spill, and response on the topographic features of the CPA, if any, is anticipated to be small. The potential oiling footprint as reported through the National Oceanic and Atmospheric Administration's ERMA posted on the GeoPlatform.gov website indicated that oil was recorded in surface waters of the CPA from approximately the western Louisiana border east to Panama City, Florida (USDOC, NOAA, 2011d). Sackett Bank appeared to be the only bank beneath the oil slick, while only small surface patches of oil were reported in water near other banks. These small patches were discontinuous and scattered (USDOC, NOAA, 2011d). The crests of the topographic features, however, are deeper than the physical mixing ability of surface oil (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002; Rezak et al., 1983). Also, most of the oil that migrated west in the CPA, where most of the banks are located, was primarily observed close to Louisiana's Gulf Coast, farther inshore of the banks (USDOC, NOAA, 2011d). Based on the location of the surface oil, its mixing abilities, the depth of the features, and the trajectory of the dispersed subsea plume, most of the topographic features of the CPA should not have been impacted by oil from the *Deepwater Horizon*.

Water and sediment samples collected during and after the spill were analyzed as part of the OSAT (2010) report. A handful of samples collected off the Gulf Coast did reveal some PAH as a result of the *Deepwater Horizon* explosion, oil spill, and response; however, there were no exceedances of USEPA's aquatic life benchmarks measured near topographic features in either water or sediment (OSAT, 2010).

There were six water samples out of 481 collected that exceeded USEPA's chronic toxicity benchmarks for PAH in the offshore waters (>3 nmi offshore to the 200-m [656-ft] bathymetric contour), all of which occurred within 1 m (3 ft) of the water surface (OSAT, 2010). There were 63 water samples out of 3,605 collected from deep water (>200 m; 656 ft) that exceeded USEPA's aquatic life benchmarks for PAH (OSAT, 2010). Exceedances occurred near the water surface or in the deepwater plume within 70 km (44 mi) of the well. Oil detected in the subsurface plume was between 1,100 and 1,300 m (3,609 and 4,265 ft) and moving southwest along those depth contours (OSAT, 2010), which is deeper than the topographic features. No sediment samples collected offshore (>3 nmi offshore to the 200-m [656-ft] depth contour) and seven sediment samples collected in deep water (>200 m; 656 ft) exceeded USEPA's aquatic life benchmarks for PAH exposure (OSAT, 2010). All chronic aquatic life benchmark exceedances in the sediment occurred within 3 km (2 mi) of the well, and samples fell to background levels at a distance of 10 km (6 mi) from the well (OSAT, 2010). Dispersants were also detected in waters off Louisiana, but they were below USEPA's benchmarks of chronic toxicity. No dispersants were detected in sediment on the Gulf floor (OSAT, 2010). Topographic features in the CPA, therefore, are not expected to be impacted by PAH in the water column or sediment, as they are located much farther from the well than measured benchmark exceedances.

In addition, post oil-spill data (photos, video, water quality collected by semipermeable membrane passive sampling devices, sediment, and tissue samples) collected in the CPA (Sonnier Bank) are being compared with data that exist from coral reef monitoring programs to quantify the loss of corals, the loss of coral community components, and the loss of ecological services provided by the coral communities. There has been no documented evidence of *Macondo* oil, dispersants, or disruption from the response activities (USDOC, NOAA, 2012). Based on the distance of the banks in the CPA from the *Macondo* well, the fact that much of the oil was closer inshore than the banks, the crests of the banks are deeper than the surface oil mixing capabilities, the measured PAH were below USEPA's chronic aquatic life benchmarks and detection was far from any topographic feature, and the fact that data collected at a bank in the CPA did not show evidence of oil or dispersants reaching these features, it is not expected that any additional information released as part of the NRDA process following the *Deepwater Horizon* explosion, oil spill, and response would impact BOEM's analysis of topographic features in the CPA or the potential incremental impact on these features. This information, therefore, is not essential to a reasoned choice among the alternatives analyzed in this Supplemental EIS.

Platforms will be removed from the OCS Program each year; some may be in the vicinity of topographic features (**Table 3-2**). However, the proposed Topographic Features Stipulation prevents the installation of platforms near the No Activity Zone, thus reducing the potential for impact from platform removal. The explosive removals of platforms are far enough away to prevent impacts to the biota of the topographic features.

Non-OCS Oil- and Gas-Related Impacts

Although the Topographic Features Stipulation prohibits oil and gas leaseholders from anchoring vessels and placing structures within 152 m (500 ft) of the No Activity Zone around topographic features, the stipulation does not affect other non-OCS oil- and gas-related activities such as fishing, recreational scuba diving, or anchoring other vessels on or near these features. Many of the topographic features are found near established shipping fairways and are well-known fishing areas. The Flower Garden Banks National Marine Sanctuary allows conventional hook and line fishing within the boundaries of the Sanctuary, which includes Stetson Bank (USDOC, NOAA, 2010a). Also, the Flower Garden Banks and several of the shallower topographic features are frequently visited by scuba divers aboard recreational vessels (Hickerson et al., 2008). Anchoring at a topographic feature by a vessel involved in any of these activities could damage the biota. The degree of damage would depend on the size of the anchor and chain (Lissner et al., 1991). Anchor damages incurred by benthic organisms may take more than 10 years to recover, depending on the extent of the damage (Fucik et al., 1984; Rogers and Garrison, 2001). The Flower Garden Banks National Marine Sanctuary prohibits all anchoring within its boundaries and has installed numerous mooring buoys at the East and West Flower Garden Banks and Stetson Bank to support recreational activities (USDOC, NOAA, 2010a).

The use of explosives in treasure-hunting operations has become a concern on topographic features. Several large holes and serious damage have occurred on Bright Bank, and treasure hunters have damaged the bank as recently as 2001; both of these have resulted in the loss of coral cover (Schmahl and

Hickerson, 2006). The recovery from such destructive activity may take in excess of 10 years and would depend on the type and extent of damage incurred by individual features (Fucik et al., 1984; Rogers and Garrison, 2001). This activity is not governed by BOEM or NOAA, and it could impact topographic features in the Gulf of Mexico.

Impacts from natural occurrences such as hurricanes occasionally result in damage to the biota of the topographic features. Hurricane Rita caused severe damage to Sonnier Bank in the CPA (Robbart et al., 2009). Live cover was reduced at this bank and the disappearance of the sponge colonies, *Xestospongia muta*, was notable (Robbart et al., 2009). The community structure had visibly changed from pre-Hurricane Rita (2004) studies at this bank (Kraus et al., 2006 and 2007). In 2006, the habitat was dominated by algae, indicating an alteration in habitat after Hurricane Rita (Kraus et al., 2007). The algal cover, however, was the beginning of recovery of the storm-impacted areas, which was further colonized with sponges (Robbart et al., 2009). Fish community shifts were also observed on Sonnier Bank after Hurricane Rita versus before the storm, but clear links have yet to be made to the storm (Kraus et al., 2007). Hurricane Rita also impacted the Flower Garden Banks in the WPA. Surveys at East Flower Garden Bank indicated that coral colonies were toppled, sponges and fields of finger coral (Madracis mirabilis) were broken, coral tissues were damaged by suspended sand and rocks, and large-scale shifts occurred in sand patches (Hickerson et al., 2008; Hickerson and Schmahl, 2007; Robbart et al., 2009). Hurricane Katrina may have caused similar damage on other topographic features in both the CPA and WPA. Another possible natural impact to the banks would be the dissolution of the underlying salt structure, leading to collapse of the reef (Seni and Jackson, 1983). Dissolution of these salt structures is unlikely and beyond regulation abilities.

Depending on the levels of fishing pressure exerted, recreational and commercial fishing activities that occur at the topographic features may impact local fish populations. Note that only hook and line fishing for both recreational and commercial fishers is permitted within the Flower Garden Banks National Marine Sanctuary (East Flower Garden Bank, West Flower Garden Bank, and Stetson Bank). In addition, 13 reefs in the GOM (Stetson, East Flower Garden, West Flower Garden, 29 Fathom, MacNeil, Rankin, McGrail, Geyer, Sonnier, Bouma, Rezak, Alderdice, and Jakkula Banks) have been identified as Habitat Areas of Particular Concern (HAPCs) and measures to prohibit bottom anchoring at the reefs, trawling gear, bottom long lines, buoy gear, and fish traps in some HAPCs have been included in fishery management plans of particular HAPCs (Hickerson et al., 2008). Although certain fishing gears may not be prohibited on other banks, mobile gears that disturb the bottom, such as bottom trawls, would probably not be used on top of banks because nets can get caught on the features, resulting in snags and tears to the gear. The collecting activities by scuba divers on shallow topographic features may also have an adverse impact on the local biota. Collecting is prohibited at the Flower Garden Banks National Marine Sanctuary (USDOC, NOAA, 2010a). However, anchoring associated with diving and fishing activities would be the source of the majority of severe impacts incurred by the topographic features. BOEM does not regulate any of these activities, and these activities could impact topographic features in the Gulf of Mexico.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (NOAA's Gulf Spill Restoration Publications website, NOAA's Environmental Response Management Application [ERMA] Gulf Response website, NOAA's *Deepwater Horizon* Archive Publications and Factsheets, the Gulf of Mexico Sea Grant *Deepwater Horizon* Oil Spill Research and Monitoring Activities Database, the RestoreTheGulf.gov website, and the *Deepwater Horizon* Oil Spill Portal), as well as recently published journal articles and Federal documents was conducted to determine the availability of recent information on topographic features. The search revealed new information on monitoring of corals in the GOM for impacts of oil from the *Deepwater Horizon* explosion and on the proposed threatened/endangered listing of coral species in the GOM; information that is pertinent to this Supplemental EIS.

The NRDA has been investigating the possibility of impacts to shallow-water corals from Texas to Florida in the Gulf of Mexico and around to the Atlantic Coast of Florida, following the Florida Reef Tract, as a result of the *Deepwater Horizon* explosion, oil spill, and response. Post oil-spill data (photos, video, water quality collected by semipermeable membrane passive sampling devices, sediment, and tissue samples) are being compared with data that exist from continuous monitoring at previously

monitored sites (USDOC, NOAA, 2012). The goal is to quantify the loss of corals, the loss of coral community components, and the loss of ecological services provided by the coral communities. There has been no documented evidence of *Macondo* oil, dispersants, or disruption from the response activities within the areas of the CPA that were sampled, specifically Sonnier Bank (USDOC, NOAA, 2012).

Toxicity tests conducted on larvae in the laboratory on two species of coral, *Porites astreoides* and *Montastraea faveolata*, indicated that the settlement and survival of coral larvae decreased with increasing WAFs of *Macondo* oil, the dispersant COREXIT 9500, and WAFs of *Macondo* oil plus COREXIT 9500 (Goodbody-Gringley et al., 2013). Note that these two species of coral are not found in banks of the CPA (they are found in the WPA), but that the results are shown as an example in oil impacts on coral settlement. This study reinforces the conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that the settlement of coral larvae can be reduced by the presence of oil and dispersants.

In 2009, a petition was submitted to NMFS by the Center for Biological Diversity to list 83 additional species of coral under the ESA (Center for Biological Diversity, 2009). Those 83 "candidate species" were reviewed by NMFS. In April 2012, NMFS completed a Status Review Report and a Draft Management Report of the candidate species of corals, and on December 7, 2012, the "Proposed Listing Determinations for 82 Reef-Building Coral Species; Proposed Reclassification of Acropora palmata and Acropora cervicornis from Threatened to Endangered" was published in the Federal Register (Federal *Register*, 2012b). The NOAA determined that 12 of the petitioned species warranted listing as endangered (5 in the Caribbean and 7 in the Indo-pacific), 54 species warranted listing as threatened (2 in the Caribbean and 52 in the Indo-Pacific), and 16 did not warrant listing under the ESA. The coral found in the CPA (on McGrail Bank) proposed for listing as threatened is Agaricia lamarcki. The public comment period was extended to April 6, 2013, and a public meeting was held on March 12, 2013 (Federal Register, 2013b). This was followed by a 6-month extension of the final rulemaking to list the proposed corals (*Federal Register*, 2013c). A final decision on the listing of these species has not been made at this time. If these proposed species are listed, then BOEM would consult with NMFS under Section 7 of the ESA if an action may affect the listed species or designated critical habitat, as BOEM currently does for other listed species.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding the impact of the *Deepwater Horizon* explosion, oil spill, and response on topographic features in the CPA. This information cannot be obtained because much of the information has not yet been released by NRDA. Relevant data on the status of topographic features after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze. Much of these data are being developed through the NRDA process, which may take years to complete. Little data from the NRDA process have been made available to date. This incomplete or unavailable information may be relevant to adverse effects because recent events such as the *Deepwater Horizon* explosion, oil spill, and response to baseline conditions for topographic features in the Gulf of Mexico. While outstanding reports are not expected to reveal reasonably foreseeable significant effects, BOEM nonetheless determined that additional information could not be acquired and incorporated into the current analysis in a timely manner.

In lieu of this incomplete or unavailable information, BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, the following studies were used to analyze topographic features: the National Oceanic and Atmospheric Administration's ERMA posted on GeoPlatform.gov (USDOC, NOAA, 2011d); data from the OSAT (2010) report; small pieces of NRDA data that have been released (USDOC, NOAA, 2012); data from studies on the physical mixing of oil in water (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002); and data on specific topographic features (Rezak et al., 1983). The reasons the information is not essential to a reasoned choice among alternatives are as follows:

- (1) The potential footprint of surface oil in the CPA spanned from approximately the western Louisiana border east to Panama City, Florida (USDOC, NOAA, 2011d). The only topographic feature that appeared to be completely beneath the oil's footprint was Sackett Bank, and only small discontinuous surface patches of oil were reported in water near other banks. In addition, most of the oil that migrated towards the other banks in the CPA was primarily observed close to Louisiana's Gulf Coast, farther inshore of the banks (USDOC, NOAA, 2011d). Topographic features in the CPA, including Sackett Bank, should have been protected from any surface oil because the crests of the features are deeper than the physical mixing ability of surface oil (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002; Rezak et al., 1983). Based on the location of the surface oil, the surface oil's mixing abilities, and the depth of the features, the topographic features of the CPA should not have been impacted by oil from the *Deepwater Horizon* explosion.
- (2) Water and sediment samples collected near topographic features and analyzed for PAHs as a result of the *Deepwater Horizon* explosion, oil spill, and response did not exceed the USEPA's aquatic life benchmarks (OSAT, 2010). All exceedances measured in water samples occurred near the water surface or in the deepwater plume within 70 km (44 mi) of the well, and all chronic aquatic life benchmark exceedances measured in the sediment occurred within 3 km (2 mi) of the well (OSAT, 2010). Topographic features in the CPA, therefore, are not expected to be impacted by PAHs in the water column or sediment, as they are located much farther from the well than measured benchmark exceedances.
- The limited data released by NRDA indicates that, as of the publication of this (3) Supplemental EIS, there has been no documented evidence of Macondo oil, dispersants, or disruption from the response activities to Sonnier Bank, a topographic feature in the CPA that was studied before and after the Deepwater Horizon explosion, oil spill, and response (USDOC, NOAA, 2012). At present, the lack of measurable changes to the coral community at Sonnier Bank, along with the lack of measured oil or dispersant at the bank (USDOC, NOAA, 2012), helps to support the reasoning that most topographic features were probably not impacted by the Deepwater Horizon explosion, spill, and response. The lack of measurable impacts to Sonnier Bank can reasonably be extrapolated to the other banks of the CPA because of the distance of the banks in the CPA from the *Macondo* well, the fact that much of the oil was closer inshore than the banks (USDOC, NOAA, 2011d), the crests of the banks are deeper than the surface oil mixing capabilities (Rezak et al., 1983; Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002), the measured PAHs in water and sediment were below USEPA's chronic aquatic life benchmarks and detection was far from any topographic feature (OSAT, 2010), and the data collected at Sonnier Bank before and after the spill did not show evidence of measurable oil or dispersants (USDOC, NOAA, 2012).

Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives based on the analysis conducted by BOEM's subject-matter experts, who have used available scientifically credible evidence in this analysis and applied it using accepted scientific methods and approaches.

Summary and Conclusion

BOEM has reexamined the analysis for topographic features presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for topographic features presented in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS and updated in the WPA 233/CPA 231 Supplemental EIS and updated in the WPA 233/CPA 231 Supplemental EIS and updated in the WPA 233/CPA 231 Supplemental EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Activities causing mechanical disturbance represent the greatest threat to the topographic features. This would, however, be prevented by the continued application of the proposed Topographic Features Stipulation. Potential OCS oil- and gas-related impacts include anchoring of vessels and structure emplacement, operational discharges (drilling muds and cuttings, and produced waters), blowouts, oil spills, and structure removal.

The proposed Topographic Features Stipulation would prevent mechanical damage caused by oil and gas leaseholders from impacting the benthic communities of the topographic features and would protect them from operational discharges by establishing a buffer around the features. As such, little impact would be incurred by the biota of the topographic features. The USEPA's discharge regulations and permits would further reduce discharge-related impacts.

Blowouts and subsea spills could potentially cause damage to benthic biota; however, due to the application of the proposed Topographic Features Stipulation distancing OCS oil- and gas-related activity and sources of spills at least 152 m (500 ft) from the No Activity Zone surrounding topographic features, concentrated oil would not reach the biota on topographic features, resulting in little impact on the features. The majority of oil released below the sea surface would rise and should not physically contact organisms on topographic features inside a No Activity Zone. In the unlikely event that oil from a subsurface spill would reach the biota of a topographic feature, it would be physically or chemically dispersed to low concentrations by the time it reached the feature, and the effects would be primarily sublethal. In addition, prevailing currents swept around the banks, which would direct oil in the water column around features, not onto them

Surface spills would also have little impact on topographic features. The application of the Topographic Features Stipulation would distance oil and gas activity from the topographic features, allowing surface oil to mix with surrounding water and diluting it as it travels from the source. Also, surface oil would not mix to the depth of the crests of most topographic features, and any oil that could mix to the shallower crests would be diluted below concentration known to cause acute impacts to corals. The farther the oil source is from the bank, the more dilute and degraded the oil would be if it reaches the vicinity of the topographic features.

In the unlikely event a freighter, tanker, or other oceangoing vessel related to OCS Program activities or non-OCS oil- and gas-related activities sank and proceeded to collide with the topographic features or associated habitat releasing its cargo and fuel, recovery could take years to decades, depending on the extent of the damage. Because these events are rare in occurrence, the potential of impacts from these events is considered low.

Non-OCS oil- and gas-related activities could mechanically disrupt the bottom (such as anchoring, bottom-disturbing mobile fishing gear, and treasure-hunting activities). Natural events such as hurricanes or the collapse of the tops of the topographic features (through dissolution of the underlying salt structure) could cause severe impacts. The collapsing of topographic features is unlikely and would impact a single feature. Impacts from scuba diving, fishing, and discharges or spills from tankering of imported oil not related to the OCS Program could have detrimental effects on topographic features, especially because the stipulations that BOEM applies to OCS oil and gas activities are not applied to non-OCS oil and gas activities and, therefore, cannot require the distancing of all activity from the features.

Overall, the incremental contribution of a CPA proposed action to the cumulative impact is negligible when evaluated against all other OCS oil- and gas-related and non-OCS oil- and gas-related impacts in the entire GOM. Where the proposed Topographic Features Stipulation is applied, mechanical impacts (anchoring and structure emplacement) and impacts from operational discharges (produced waters, drilling fluids, cuttings) or accidental discharges (oil spills, blowouts) would be removed from the immediate area surrounding the topographic features. However, if the stipulation is not applied, acute long-term injury to topographic features may occur as a result of a CPA proposed action.

4.1.1.8. Sargassum Communities

BOEM has reexamined the analysis for *Sargassum* communities presented in the 2012-2017 WPA/CPA Multisale EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for *Sargassum* communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sale 235, 241, and 247.

A detailed description of *Sargassum* communities and full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.8 the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.8 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description and impact analyses incorporated from the 2012-2017 WPA/CPA Multisale EIS, and updated information provided in the WPA 233/CPA 231 Supplemental EIS. A community of the resource description and impact analyses incorporated from the 2012-2017 WPA/CPA Multisale EIS, and updated information provided in the WPA 233/CPA 231 Supplemental EIS. Any new information that has become available since the documents were published is presented below.

Sargassum is one of the most ecologically important brown algal genera found in the pelagic environment of tropical and subtropical regions of the world. The pelagic complex in the GOM is mainly comprised of *S. natans* and *S. fluitans* (Lee and Moser, 1998; Stoner, 1983; Littler and Littler, 2000). Both species of *Sargassum* live immediately below the water surface and are fully adapted to a pelagic existence (Lee and Moser, 1998). These floating plants may be up to a few meters in length and may be found floating alone or in larger rafts or mats that support communities of fish and a variety of other marine organisms. The distribution, size, and abundance of *Sargassum* mats varies depending on environmental and physiochemical factors such as temperature, salinity, and dissolved oxygen.

Impacts of Routine and Accidental Events

Impact-producing factors associated with routine events for a CPA proposed action that could affect *Sargassum* may include the following: (1) drilling discharges (muds and cuttings); (2) produced water and well treatment chemicals; (3) operational discharges (deck drainage, sanitary and domestic water, bilge and ballast water); and (4) physical disturbance from vessel traffic and the presence of exploration and production structures (i.e., rigs, platforms, and MODUs). A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on *Sargassum* communities can be found in Chapter 4.2.1.8.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.8 of the WPA 233/CPA 231 Supplemental EIS.

Sargassum, is a widely distributed pelagic algae that is ubiquitous in the northwestern Gulf and seasonal throughout the central and eastern Gulf and northwest Atlantic. Considering its widespread distribution and occurrence in the upper water column near the sea surface, it may be contacted by routine discharges from oil and gas operations. All routine discharges, including drilling discharges, produced water, and operational discharges (e.g., deck runoff, bilge water, sanitary effluent, etc.) could potentially contact *Sargassum*. However, the quantity and volume of these discharges is relatively small compared with the surface area of pelagic waters of the CPA (268,922 km²; 103,831 mi²). Therefore, although discharges would contact *Sargassum*, potentially transferring contaminants to *Sargassum*, they would only contact a very small portion of the *Sargassum* population. Because these discharges are highly regulated to control toxicity and because they would continue to be diluted in the Gulf water, reducing concentrations of any toxic component, produced-water impacts on *Sargassum* would be minimal.

The impingement by service vessels, working platforms, and drillships would contact only a very small portion of the *Sargassum* population. For those plants coming in contact with OCS equipment, the result may be the physical destruction of the plant or the stranding and subsequent desiccation of the plant. The impacts to *Sargassum* that are associated with a CPA proposed action are expected to have only minor effects to a small portion of the *Sargassum* community as a whole and would be resilient to the minor effects predicted. *Sargassum* has a yearly cycle that promotes quick recovery from impacts. No measurable impacts are expected to the overall population of the *Sargassum* community.

Impact-producing factors associated with accidental events for a CPA proposed action that could affect *Sargassum* and its associated communities include (1) spills (i.e., surface oil, fuel spills, and underwater well blowouts), (2) spill-response activities, and (3) chemical spills. These impacting factors would have varied effects depending on the intensity of the spill and the presence of *Sargassum* in the area of the spill. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on *Sargassum* communities can be found in Chapter 4.2.1.8.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.8 of the WPA 233/CPA 231 Supplemental EIS.

All types of spills, including surface oil and fuel spills, underwater well blowouts, and chemical spills, could potentially contact *Sargassum*. The quantity and volume of most of these spills would be relatively small compared with the surface waters of the CPA (268,922 km²; 103,831 mi²). Therefore,

most spills would only contact a very small portion of the *Sargassum* population. Accidental spills would be diluted by the Gulf water and, therefore, concentrations of toxic components that could potentially contaminate or kill *Sargassum* tissues would also be reduced in this scenario. The impacts to *Sargassum* that are associated with a CPA proposed action are expected to have only minor effects to a small portion of the *Sargassum* community unless a low-probability catastrophic spill occurs (**Appendix B**). In the case of a very large spill, the *Sargassum* algae community could result in the death of a large number of plants across a geographically large area in the northern Gulf of Mexico. The *Sargassum* community lives in pelagic waters with generally high water quality and is expected to show good resilience to the predicted effects of spills. It has a yearly growth cycle that promotes quick recovery from impacts and that would be expected to restore typical population levels in 1-2 growing seasons.

Cumulative Impacts

Background/Introduction

Cumulative impacts from OCS oil- and gas-related operations include effects resulting from a CPA proposed action, as well as those resulting from past and future OCS leasing. These operations include drilling discharges, produced water and well treatment chemicals, operational discharges, and physical disturbance from OCS oil- and gas-related vessels and structures. Potential non-OCS oil- and gas-related factors include hurricanes, water quality, and non-OCS vessel traffic. For additional information on the potential cumulative impacts to *Sargassum* communities, refer to Chapter 4.2.1.8.4 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.8 of the WPA 233/CPA 231 Supplemental EIS, which are hereby incorporated by reference.

OCS Oil- and Gas-Related Impacts

Pelagic Sargassum floats near the surface in oceanic waters and is moved by surface currents throughout the GOM. It can be found from scattered clumps to large mats. Vessel passage and stationary structures can have minor physical impacts on Sargassum. Vessels transiting the GOM pass through Sargassum mats, producing slight impacts to the Sargassum community by breaking up clumps/mats or physically destroying the plant. None of these would have more than minor localized effects to the affected mats as these mats routinely break up. Oil and gas structures can alter the movement of Sargassum mats and entrap small quantities of the algae. This is expected to be a minor impact with minimal consequences to the overall Sargassum community.

The discharge of drill cuttings with small quantities of associated drilling muds from oil and gas drilling can result in impacts to the *Sargassum* community, including contamination of the plant tissue by metals and chemicals contained within the discharges. Most cuttings from well drilling are discharged from the drill platform at the sea surface. This creates an area of high turbidity in the vicinity of drill operations, but the cuttings are typically deposited on the seafloor within 1,000 m (3,280 ft) of the discharge location. Some fine components of the plume may travel farther but they are dispersed in low concentrations throughout the water column (CSA, 2004; NRC, 1983). Exposure of *Sargassum* to discharges would be minimal as the composition of the discharges is limited by NPDES regulations to ensure that toxicity levels are low. These effects would be localized to small portions of *Sargassum* and represent a negligible amount of the incremental impact to *Sargassum* communities.

Effluents from marine vessels of all types and from oil and gas platforms and drillships can affect *Sargassum*. Runoff water from the decks of ships and platforms may contain small quantities of oil, metals, and other contaminants. Larger vessels and offshore platforms discharge effluents from sanitary facilities (gray water). They also circulate seawater to cool the ships' engines, electric generators, and other machines. The cooling water discharge may be up to 11°C (20°F) warmer than the surrounding seawater (USDHS, CG, and USDOT, MARAD, 2003; Patrick et al., 1993). This temperature difference can accumulate in the vicinity of the discharge. For ships, this would only occur when the vessel is stationary. For oil and gas platforms, drillships, and offshore LNG terminals, localized warming of the water could occur (Emery et al., 1997; USDHS, CG, and USDOT, MARAD, 2003). However, the warm water is rapidly diluted, mixing to background temperature levels within 100 m (328 ft) of the source (USDHS, CG, and USDOT, MARAD, 2003). Effects from gray water, deck runoff, and cooling water are only notable for stationary locations. Produced waters from stationary locations are rapidly diluted and impacts are only observed within 100 m (328 ft) of the discharge point (Neff and Sauer, 1991; Trefry

et al., 1995; Gittings et al., 1992b). Effluent discharges are also limited by NPDES regulations. The effects are localized, with only brief contact to passing *Sargassum* before dilution to background levels. The effect on plants or animals could be the contamination of tissues by toxins that could result in an increase in physiological stress while processing the contaminants. These effects would comprise a negligible portion of the overall cumulative impact to *Sargassum* communities.

Accidental spills of oil and other chemicals could affect *Sargassum* and its community wherever they contact the algae. Small spills would have a limited local effect on a small portion of the *Sargassum* community. Short-term exposure of passing *Sargassum* to high concentrations of oil and chemicals could result in death and the sinking of algae and organisms contacted. The size of the overall effect on *Sargassum* would depend on the size of the spill and the success of spill-response efforts. A low-probability catastrophic spill, which is not reasonably expected and not part of a CPA proposed action, such as the *Deepwater Horizon* oil spill, could have noticeable impacts to the overall *Sargassum* community (**Appendix B**). These impacts could destroy a sizable portion of *Sargassum* habitat wherever the surface slick of oil travels. The effects could reduce the supply of algae transiting from the GOM to the Atlantic. This effect, although large, would contact only a portion of the algae in the region of the spill. *Sargassum* algae are a widespread habitat with patchy distribution across the northern GOM and the western Atlantic. Due to the vegetative production of *Sargassum* algae, the community would likely recover within 1-2 seasons (1-2 years). If such a spill does occur, it would account for a sizable portion of the *Sargassum* in the region of its occurrence.

Turbulence from wakes and direct damage from propellers on vessels servicing OCS oil- and gasrelated activities could affect *Sargassum* by breaking up mats or destroying strands. However, the amount of damage that vessels could inflict on a *Sargassum* mat would be minimized because of *Sargassum*'s temporary nature. *Sargassum* mats are naturally loose knit with the ability to break apart and reform. Any vessel-related damage would likely be seen in the community of organisms inhabiting these mats, which may be killed when being struck by a vessel. Sea turtles and small fishes that reside in (rather than below) *Sargassum* mats would be most susceptible to this type of damage. However, the foot print of any vessel in the CPA is small compared with the distribution of *Sargassum*, and its transitory life history minimizes the possibility that any mat or the inhabitants are routinely affected. Because the proposed activity is not expected to substantially increase (if any) the number of OCS oil- and gas-related vessels, it is likely that OCS oil- and gas-related activities will only have a minimum and local effect on the *Sargassum* community.

Non-OCS Oil- and Gas-Related Impacts

Hurricanes are major natural sources of impacts that affect the Sargassum. The energy associated with these storms can break up mats, destroy strands, and displace animals; however, the life history and the widespread distribution of Sargassum communities minimize the probability that any given storm will have any lasting population-level effects. Violent surface turbulence caused by these storms would dislocate many of the organisms living on and in the Sargassum. Some of the organisms (those that cannot swim or swim only weakly) such as nudibranchs (sea slugs), shrimp, Sargassum fish (Histrio *histrio*), and pipefish (Syngnathus spp.) would become separated from the algae. Without cover, many would fall prey to fish after a storm; others may sink to the seafloor and die. Some epifauna, such as hydroids, living on the algae may suffer physical damage or be broken off. Hurricanes can also drive Sargassum into waters less conducive for growth and can strand large quantities on beaches. In addition, Sargassum communities may be susceptible to nonpoint source pollution from land-based runoffs carrying pollutants and excessive nutrients, especially in nearshore areas. The results could be a basinwide reduction in Sargassum biomass. Turbulence from wakes, direct damage from propellers, impingement on non-OCS vessels (i.e., commercial shipping, fishing activity, and pleasure boating) could also affect Sargassum by breaking up mats, destroying plants, or stranding plants. However, the amount of damage that vessels could inflict on a Sargassum mat would be minimized because of Sargassum's transitory nature. Sargassum mats are naturally loose knit with the ability to break apart and reform. Any vessel-related damage would likely be seen in the community of organisms inhabiting these mats, which may be killed by being struck by a vessel. Sea turtles and small fishes that reside in (rather than below) Sargassum mats would be most susceptible to this type of damage. Compared with the OCS, the number of vessels involved in fishing activities, pleasure boating, and commercial shipping activities far exceeds the number of OCS oil- and gas-related vessels.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search was conducted for new information published since the publication of the 2012-2017 WPA/CPA Multisale EIS. A search of Internet information sources, including scientific journals, published information from universities and research institutes, and governmental resource agencies, was conducted to determine the availability of new information. One of the primary publications relevant to this EIS is the identification of the northwest Gulf of Mexico and the area near the mouth of the Amazon river as "nursery areas" for *Sargassum* in the Sargasso Sea. Estimates suggest that between 0.6 and 6 million tonnes of *Sargassum* are present annually in the Gulf of Mexico with an additional 100 million metric tons exported to the Atlantic basin (Gower and King, 2008; Gower and King, 2011; Gower et al., 2013). In addition, Rooker et al. (2012) quantified the use of *Sargassum* by billfishes in the Gulf of Mexico and concluded that the *Sargassum* biomass was not a suitable habitat for most juvenile billfishes because it can concentrate predators.

The National Marine Fisheries Service recently designated *Sargassum* as a critical habitat for loggerhead turtles (*Caretta caretta*) in the Gulf of Mexico and the northwest Atlantic (*Federal Register*, 2014c). In the GOM, this includes all *Sargassum* between the 10-m (33-ft) depth contour and the outer boundary of the Exclusive Economic Zone. This designation could impact the commercial harvest of *Sargassum*; however, to our knowledge the commercial harvest of *Sargassum* does not occur in the GOM. Additionally, NMFS does not expect that this designation would add any risk factors or add any conservation measures by BOEM because sea turtles and their required habitats are already adequately protected through the ESA Section 7 process.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.8 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified unavailable information regarding *Sargassum* in the CPA. This information cannot be obtained because the overall costs of obtaining it are exorbitant. *Sargassum* is a cosmopolitan species and to research it throughout its range under all possible conditions would require many individuals, years, and sea-going vessels. Each of the three are expensive in their own respect and are exorbitant when combined. This unavailable information may be relevant to adverse effects because much of the data related to research and monitoring related to the *Deepwater Horizon* spill has yet to be completed and made publically available.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, Gower and King (2011) and Gower et al. (2013) did not physically follow strand of *Sargassum* as it moved across the GOM, but it is reasonable to accept that there is a high amount of habitat connectivity between the Atlantic *Sargassum* populations and the Gulf of Mexico given the successive satellite imagery and the known current patterns. As such, it is also reasonable to determine that, because of the rapid growth of *Sargassum* (Dooley, 1972), the losses of *Sargassum* described by Powers et al. (2013) could be replaced rapidly as *Sargassum* moves across the Gulf of Mexico and into the Atlantic, as shown by Gower et al. (2013). Overall, none of these sources reveal reasonably foreseeable significant adverse impacts to the *Sargassum* population associated with routine OCS events and non-catastrophic spills. For example, it is generally accepted that the cosmopolitan nature and reproductive capabilities of *Sargassum* provides a life history that is resilient towards localized or short-term deleterious effects, like those expected associated with routine OCS events and non-catastrophic spills. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for *Sargassum* communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. Although important, no new or significant information was discovered to change the

conclusions reached that activities associated with the proposed OCS oil- and gas-related activity will not significantly impact *Sargassum* communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Because of the temporary nature and widespread distribution of Sargassum communities, the cumulative effects of all OCS oil- and gas-related and non-OCS oil- and gas-related impacts associated with a CPA proposed action would have a localized and short-term effect. Sargassum occurs seasonally in almost every part of the northern GOM, resulting in a wide distribution over a very large area. However, its occurrence is patchy, drifting in floating mats that are occasionally impinged on ships and on oil and gas structures. This large, scattered, patchy distribution results in only a small portion of the total community contacting OCS oil- and gas-related ships, structures, or drilling discharges. Contact with drilling discharges and discharges of effluent from ships' operations also results in only short-term, localized effects. Because discharges are highly regulated to limit toxicity and because they would continue to be diluted in the GOM waters, concentrations of any toxic components related to a CPA proposed action would be limited. In the event that a low-probability catastrophic spill, which is not reasonably expected and not part of a CPA proposed action, would occur, Sargassum and its associated inhabitants in that area are expected to suffer mortality (Appendix B). However, Sargassum is highly resilient and recovery is expected within 1-2 growing seasons. The incremental contribution of a CPA proposed action to the overall cumulative impacts on *Sargassum* communities that would result from the OCS Program, when compared with environmental factors (such as hurricanes and coastal water quality), and non-OCS oil- and gas-related activities (such as non-OCS oil- and gas-related vessel traffic), is expected to be minimal.

4.1.1.9. Chemosynthetic Deepwater Benthic Communities

BOEM has reexamined the analysis for chemosynthetic deepwater benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for chemosynthetic deepwater benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.9 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS, and updated information provided in the WPA 233/CPA 231 Supplemental EIS. A Ny new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on chemosynthetic deepwater benthic communities of the CPA are bottom-disturbing activities associated with anchoring, structure emplacement, pipelaying, structure removal, and discharges of drill cuttings, muds, and produced water. Analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on chemosynthetic deepwater benthic communities can be found in Chapter 4.2.1.9.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.9 of the WPA 233/CPA 231 Supplemental EIS.

Considerable mechanical damage could be inflicted upon deepwater chemosynthetic communities by routine OCS drilling activities associated with a CPA proposed action if mitigations are not applied. Bottom-disturbing activities associated with anchoring, structure emplacement, pipelaying, and structure removal cause localized bottom disturbances and disruption of benthic communities in the immediate area. Routine discharge of drill cuttings with associated muds can also affect the seafloor. Without mitigating measures, these activities could result in smothering by the suspension of sediments or the crushing of organisms residing in these communities. Because of the avoidance guidance provided in NTL 2009-G40, "Deepwater Benthic Communities," the risk of these physical impacts are greatly reduced by requiring the avoidance of potential chemosynthetic communities. Discharges of produced

waters on the sea surface, chemical spills, and deck runoff would be diluted in surface waters, having no effect on seafloor habitats. Impacts from bottom-disturbing activities directly on chemosynthetic communities are expected to be extremely rare because of the application of required protective measures as guidance provided by NTL 2009-G40. Information included in required hazards surveys for oil and gas activities depicts areas that could potentially harbor chemosynthetic communities. This allows BOEM to require avoidance of any areas that are conducive to chemosynthetic growth. If a high-density community is subjected to direct impacts by bottom-disturbing activities, potentially severe or catastrophic impacts could occur due to raking of the sea bottom by anchors and anchor chains, and partial or complete burial by muds and cuttings. The severity of such an impact is such that there would be incremental losses of productivity, reproduction, community relationships, and overall ecological functions of the local community, and incremental damage to ecological relationships with the surrounding benthos.

Studies indicate that periods as long as hundreds of years are required to reestablish a seep community once it has disappeared (depending on the community type), although it may reappear relatively quickly once the process begins, as in the case of a mussel community (Powell, 1995; Fisher, 1995). Routine activities of a CPA proposed action are expected to cause no damage to the ecological function or biological productivity of chemosynthetic communities. Widely scattered, high-density chemosynthetic communities would not be expected to experience impacts from routine oil and gas activities in deep water because the impacts would be limited by protections, as guidance provided in NTL 2009-G40. Impacts on chemosynthetic communities from routine activities associated with a CPA proposed action would be minimal to none. A detailed impact analysis of the routine impacts of OCS oil-and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on chemosynthetic communities can be found in Chapter 4.2.1.9.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.9 of the WPA 233/CPA 231 Supplemental EIS.

Accidental disturbances from a CPA proposed action, including oil spills and blowouts, have the potential to result in impacts on chemosynthetic communities of the CPA. Analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on chemosynthetic communities can be found in Chapter 4.2.1.9.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.9 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events that could impact chemosynthetic communities are primarily limited to seafloor blowouts. A blowout at the seafloor could create a crater and could resuspend and disperse large quantities of bottom sediments within a 300-m (984-ft) radius from the blowout site. This could bury organisms located within that distance to some degree. The application of avoidance criteria for chemosynthetic communities provided as guidance in NTL 2009-G40 precludes the placement of a well within 610 m (2,000 ft) of any suspected site of a chemosynthetic community, therefore distancing the chemosynthetic community from the sedimentation resulting from a possible blowout.

Chemosynthetic communities could be susceptible to physical impacts, including smothering, from a blowout depending on bottom-current conditions. The guidance provided in NTL 2009-G40 greatly reduces the risk of these physical impacts by requiring a buffer of 610 m (2,000 ft) from wells. It clarifies the requirement to avoid potential chemosynthetic communities identified on the required geophysical survey records prior to approval of the structure emplacement. The 610-m (2,000-ft) avoidance required would protect sensitive communities from heavy sedimentation, with only light sediment components able to reach the communities in small quantities.

Studies indicate that periods as long as hundreds of years are required to reestablish a seep community once it has disappeared (depending on the community type) (Powell, 1995; Fisher, 1995). There is evidence that substantial impacts on these communities could permanently prevent reestablishment, particularly if hard substrate required for recolonization is buried by resuspended sediments from a blowout.

Potential accidental impacts from a CPA proposed action are expected to cause little damage to the ecological function or biological productivity of widely scattered, high-density chemosynthetic communities located at more than 610 m (2,000 ft) away from a blowout. Chemosynthetic communities could experience minor impacts from resuspended sediments that travel with currents, although the sediment concentration would be diluted with distance from the well.

If dispersants are applied to an oil spill, or if oil is ejected under high pressure, oil would mix into the water column, be carried by underwater currents, and eventually contact the seafloor in some form, either concentrated (near the source) or decayed (farther from the source), where it may impact patches of

chemosynthetic community habitat in its path. As with sediments, the farther the dispersed oil travels, the more diluted the oil will become as it mixes with surrounding water.

There is some reason to believe the presence of oil would have a limited effect on chemosynthetic organisms because these communities live among oil and gas seeps; however, natural seepage is very constant and at very low rates as compared with the potential volume of oil released from a blowout or pipeline rupture. In addition, organisms inhabit certain niches within the gradients found at oil seeps, choosing locations with enough hydrocarbons to sustain their metabolism but not enough to be toxic. All seep organisms also require unrestricted access to oxygenated water at the same time as exposure to hydrocarbon energy sources. Oil plumes that contact the seafloor before degrading could potentially affect sensitive benthic communities if they happen to encounter such a habitat in a localized area.

Accidental impacts associated with a CPA proposed action would likely result in only minimal impacts to chemosynthetic communities with adherence to the proposed biological stipulation and the guidance provided in NTL 2009-G40. One exception would be in the case of a low-probability catastrophic spill (**Appendix B**) combined with the application of dispersant or high-pressure ejection of oil, producing the potential to cause devastating effects on local patches of habitat in the path of subsea plumes where they physically contact the seafloor. The possible impacts, however, will be localized due to the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution. Oil plumes that remain in the water column for longer periods would disperse and decay, having only minimal effect.

Cumulative Impacts

Background/Information

The greatest potential for cumulative adverse impacts to chemosynthetic deepwater benthic communities comes from OCS oil- and gas-related, bottom-disturbing activities associated with pipeline and platform emplacement (including templates and subsea completions), associated anchoring activities, discharges of muds and cuttings, and seafloor blowout accidents. Other offshore activities (non-OCS oil- and gas-related) such as anchoring, fishing and trawling and events such as storms, shipwrecks, and climate change can also potentially affect deepwater benthic communities. Impacts attributed to OCS oil- and gas-related activity occur at the same time as impacts due to other governmental and private projects and activities, as well as impacts due to pertinent natural processes and events that may adversely affect chemosynthetic communities. This cumulative analysis considers the effects of impact-producing factors related to past lease sales, a proposed CPA lease sale, reasonably foreseeable lease sale programs, and other natural and human impacting factors.

OCS Oil- and Gas-Related Impacts

The greatest potential for cumulative adverse impacts to occur to the deepwater benthic communities would come from those OCS oil- and gas-related, bottom-disturbing activities associated with pipeline and platform emplacement (including templates and subsea completions), associated anchoring activities, discharges of muds and cuttings, and seafloor blowout accidents including low-probability catastrophic spills (**Appendix B**).

Sensitive deepwater communities appear to be widely scattered and not as rare as previously expected. Recent BOEM analyses of seafloor remote-sensing data indicate over 28,000 locations in the deep GOM that represent potential hard bottom habitats (Shedd, official communication, 2013). Guidance provided in NTL 2009-G40 describes surveys and avoidance measures required prior to drilling or pipeline installation, that greatly reduce risks to these habitats. Studies have refined predictive information and confirmed the effectiveness of these provisions throughout all depth ranges of the GOM (Brooks et al., 2009). With the success of this work, confidence is increasing regarding the use of geophysical signatures for the prediction of chemosynthetic communities. These geophysical signatures in plan and pipeline reviews, which substantially reduce the possibility of impacting a chemosynthetic community.

As exploration and development continue on the Federal OCS, activities have moved farther into the deeper water areas of the Gulf of Mexico. These activities will be accompanied by limited unavoidable impacts to the soft bottom deepwater benthos from bottom disturbances and disruption of the seafloor

from associated activities. The extent of these disturbances will be determined by the intensity of development in these deepwater regions, and the types of structures and mooring systems used. All activity levels for the cumulative scenario in the GOM for the years 2012-2051 are shown in **Table 3-3**. For the GOM deepwater offshore Subareas W200-800, W800-1600, W1600-2400, and W>2400, there are currently an estimated 3,180-4,510 exploration and delineation wells, 3,910-5,590 development and production wells to be drilled, and 115-141 production structures to be installed through the 40-year analysis period.

Drilling discharges and resuspended sediments have a potential to cause minor, mostly sublethal impacts to patchy, high-density chemosynthetic communities, but substantial accumulations could result in more serious impacts. Sublethal impacts may include possible incremental losses of productivity, reproduction, community relationships, overall ecological functions of the community, and incremental damage to ecological relationships with the surrounding benthos. Recovery from minor impacts is expected within several years, but even minor impacts are not expected based on avoidance measures provided by guidance in NTL 2009-G40, which precludes well development within 610 m (2,000 ft) of any suspected site of a deepwater benthic community. Routine discharges of drilling muds and cuttings have been documented to reach the seafloor in water depths >300 m (984 ft). Drill muds typically settle within about 100 m (328 ft) of the well site, while the majority of cuttings fall within 500 m (1,640 ft) (CSA, 2006). Potential local cumulative impacts could result from accumulations of muds and cuttings resulting from consistent hydrographic conditions and drilling of multiple wells from the same location, causing concentrations of material in a single direction or "splay." Such concentrations of muds and cuttings could extend beyond the distance required between the discharge and chemosynthetic communities, causing smothering of organisms. It is not expected that detectable levels of muds and cuttings discharges from separate developments or from adjacent lease blocks would act as a cumulative impact to deepwater benthic communities. Physical separation of well sites, great water depths, and adherence to the guidance provided in NTL 2009-G40 prevent separate activities from having overlapping effects.

Small impacts are expected to occur infrequently, but the impacts from bottom-disturbing activities, if they occur, could be quite severe to the immediate area affected. If such impacts occurred, the disturbance could lead to the destruction of a high-density chemosynthetic community from which recovery would occur only over long intervals (200+ years for a mature tube-worm colony and 25-50 years for a mature mussel community) or it would not occur at all (Powell, 1995; Fisher, 1995).

The majority of deepwater chemosynthetic communities is of low density and is widespread throughout the deepwater areas of the Gulf. Low-density communities may occasionally sustain minor impacts from discharges of drill muds and cuttings or resuspended sediments. These impacts are most likely to be sublethal in nature and would be limited in areal extent. The frequency of such an impact is expected to be low. Physical disturbance to a small area would not result in a major impact to the ecosystem. The consequences of these impacts to these widely distributed, low-density communities are considered to be minor with no change to ecological relationships with the surrounding benthos.

High-density communities are widely distributed, but they are few in number and limited in size. They have a high standing biomass and productivity. High-density chemosynthetic communities would be largely protected by NTL 2009-G40, which serves to prevent impacts by requiring avoidance of potential chemosynthetic communities identified by association with geophysical characteristics or by requiring photodocumentation to establish the absence of chemosynthetic communities prior to approval of the structure or anchor placements.

A blowout at the seafloor could resuspend large quantities of bottom sediments and even create a large crater, destroying any organisms in the immediate area. Structure removals and other bottom-disturbing activities could resuspend bottom sediments, but not at magnitudes as great as blowout events. Subsea structure removals are not expected in water depths >800 m (2,625 ft), in accordance with 30 CFR part 250. The distance of separation required by adherence to the guidance provided in NTL 2009-G40 would protect chemosynthetic communities from sedimentation effects of deepwater blowouts.

The use of dispersants on surface oil is not anticipated to impact chemosynthetic communities. It is reported that chemically dispersed surface oil from the *Deepwater Horizon* oil spill remained in the top 6 m (20 ft) of the water column, where it mixed with surrounding waters and biodegraded (Lubchenco et al., 2010). Data from other studies on dispersant usage on surface plumes indicate that most of the dispersed oil remained in the top 10 m (33 ft) of the water column, with 60 percent of the oil in the top
2 m (6 ft) (McAuliffe et al., 1981a). Therefore, oil spills on the sea surface are expected to have little to no effect on deepwater benthic communities.

However, subsea oil plumes resulting from a seafloor blowout could affect sensitive deepwater communities. Major impacts to localized benthic habitat are possible in such an event, particularly when chemical dispersants are applied to oil releases at depth. A recent report documents damage to a deepwater coral community in an area that oil plume models predicted as the direction of travel for subsea oil plumes from the *Deepwater Horizon* oil spill (White et al., 2012). A coral community about 10 m x 12 m (33 ft x 40 ft) in size was severely damaged, and the study results identify *Macondo* oil as present on the corals (White et al., 2012; USDOI, BOEMRE, 2010). Such blowouts are rare and may not release catastrophic quantities of oil. Oil that is released would normally rise rapidly to the sea surface. However, if oil is ejected into deep water under high pressure, a plume of micro-droplets of oil can form. Treatment of the oil with dispersants at depth would also form a plume of oil that would be carried in whatever direction the water currents flow. This directional flow could only affect seafloor habitats that are downstream from the source.

Although the oil plume could be carried into direct contact with the seafloor at some distance from the source, a more likely scenario would be for the oil to adhere to other particles and precipitate to the seafloor, much like rainfall (Kingston et al., 1995; ITOPF, 2002). Oil would also reach the seafloor through consumption by plankton with excretion distributed over the seafloor (ITOPF, 2002). Dispersants reduce the oil's ability to adhere to particles in the water column, slowing its rate of precipitation to the seafloor (McAuliffe et al., 1981a; Lewis and Aurand, 1997), and oil droplets remain neutrally buoyant in the water column, creating a subsurface plume of oil (Lee et al., 2011a and 2011b; Adcroft et al., 2010). These mechanisms would result in a wide distribution of small amounts of oil. This oil would be in the process of biodegradation from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010). The recovery time from an oiling event, if reestablishment is not permanently prevented, would be similar to that occurring from physical disturbance. Impacts to chemosynthetic communities from a catastrophic oil spill are described in **Appendix B**.

With over 28,000 potential locations of hard bottom habitats, it is likely that any subsea oil plume traveling more than a few miles on the deep seafloor would cross at least one of these potential habitats (Shedd, official communication, 2013). However, the plume may not contact chemosynthetic communities at that point. If the plume did make contact, it would result in a localized effect that is not expected to alter the wider population of the GOM.

In cases where high-density communities are subjected to greatly dispersed discharges or suspended sediments, the impacts are most likely to be sublethal in nature and limited in areal extent. The impacts to ecological function of high-density communities would be minor; minor impacts to ecological relationships with the surrounding benthos would also be likely.

Because of the great water depths, treated sanitary wastes and produced waters are not expected to have any adverse cumulative impacts to any deepwater benthic communities. These effluents would undergo a great deal of dilution and dispersion before reaching the bottom, if ever.

Oil and chemical spills on the sea surface are not considered to be a potential source of measurable impacts on any deepwater communities because of water depth. Oil spills from the surface would tend to float. Oil discharges at depth or on the bottom would tend to rise in the water column and similarly not impact the benthos unless dispersants are applied at depth. In the case of chemosynthetic communities, there is also reason to expect that animals are resistant to at least low concentrations of dissolved hydrocarbons in the water, as communities are typically found growing in oil-saturated sediments and in the immediate vicinity of active oil and gas seeps.

Non-OCS Oil- and Gas-Related Impacts

Non-OCS oil- and gas-related activities such as anchoring, fishing, and trawling, and events such as storms, shipwrecks, and climate change can also potentially affect deepwater benthic communities. There are essentially only three fish (or "shellfish") species considered important to deepwater commercial bottom fisheries—the yellowedge grouper (*Epinephelus flavolimbatus*), tilefish (*Lopholatilus chameleonticeps*), and royal red shrimp (*Hymenopenaeus robustus*). Yellowedge grouper habitat extends to about 275 m (902 ft). Bottom longlining for tilefish could potentially result in cumulative impact to deepwater communities, as their habitat in the GOM extends to 540 m (1,772 ft) (FishBase, 2006). If

contact did occur, impacts from bottom longlines would be minimal. Damage resulting from bottom trawling would have a much greater impact. The royal red shrimp is fished in some areas of the Gulf. Its depth range spans 180-730 m (591-2,395 ft), but most are obtained from depths of 250-475 m (820-1,558 ft) in the northeastern part of the Gulf of Mexico (GMFMC, 2004). This species is obtained from trawling using traditional but modified shrimp trawls. The use of traps for royal red shrimp was prohibited in Amendment 11 of the Shrimp Fishery Management Plan (GMFMC, 2006). If trawling occurred in sensitive areas of deepwater habitats, extensive damage to those communities could occur, but the areas where royal red shrimp are obtained are not known for hard bottom communities, and the shrimp prefer soft bottom composed of sand, clay, or mud (CSA, 2002). Unlike other areas in the Atlantic and in Europe, bottom fishing and trawling efforts in the deeper water of the GOM are currently minimal, and impacts to deepwater benthic communities are negligible.

Other non-OCS oil- and gas-related sources of cumulative impact to deepwater benthic communities would be possible, but they are considered unlikely to occur. Storms generally cause little to no impacts at the depths (>300 m; 984 ft) that chemosynthetic communities occur. A storm could potentially cause some type of accident that could then cause secondary impacts, such as shipwrecks, but such occurrences would be rare. Essentially no anchoring from non-OCS oil- and gas-related activities occurs at the deeper water depths considered for these resources (>300 m; 984 ft). Some impacts are highly unlikely yet not impossible, such as the sinking of a ship or barge resulting in collision with or contaminant release directly on top of a sensitive, high-density chemosynthetic community.

One potential significant, large-scale source of impact could be potential efforts of carbon sequestration in the deep sea as a technique to reduce atmospheric carbon dioxide. This concept is still being considered but could have major ramifications. One side of the issue, even beyond the problems of sea-level increase and climate change, includes the serious risk to shallow-water benthic organisms through pH decreases, particularly those with calcium carbonate shells and skeletons (e.g., corals, serpulid worms, bryozoa, calcareous algae, etc.) (Kleypas et al., 1999; Barry et al., 2005; Shirayama and Thornton, 2005). However, the impacts of even very small excursions of pH and CO_2 in the deep sea could also have serious, even global, deep-sea ecosystem impacts. Kita and Ohsumi (2004) suggest sequestration of anthropogenic CO_2 could help reduce atmospheric CO_2 , but they also summarize the potentially substantial biological impact on marine organisms. This issue continues to gain attention with the increased emphasis on climate change. Scientists suggested in the August 2006 issue of the *Proceedings of the National Academy of Sciences* that thousands of years of the Nation's carbon emissions could be stored in undersea sediments along the coasts (Zenz House et al., 2006).

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A broad Internet search for relevant new information and scientific journal articles made available since the publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS was conducted using a publicly available search engine. The websites for Federal and State agencies, as well as other organizations, were reviewed for newly released information. Sources investigated include the NOAA Ocean Exploration website, the Gulf of Mexico Alliance, USEPA, USGS, and coastal universities. Ongoing research projects funded by NOAA and the National Science Foundation are investigating chemosynthetic communities and impacts from the *Deepwater Horizon* explosion, oil spill, and response. No new analyses that are relevant to deepwater chemosynthetic communities and that would impact those analyses or conclusions have been made available since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Incomplete or Unavailable Information

After evaluating the information above, BOEM has determined there is no new information that changes the conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS; nevertheless, there is still incomplete or unavailable information. As discussed in this Supplemental EIS and in Chapter 4.2.1.9 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, there remains incomplete or unavailable information on the effects of the *Deepwater Horizon* explosion, oil spill, and response on chemosynthetic communities that could potentially be relevant to reasonably foreseeable significant adverse impacts. This information cannot

reasonably be obtained because the long-term effects may not yet be detectable and the means to obtain it are unknown. This unavailable information may be relevant to adverse effects because it could provide an example of adverse impacts directly caused by the blowout of a well.

Existing information suggests that chemosynthetic communities did not experience significant adverse impacts from the *Deepwater Horizon* explosion, oil spill, and response. Numerous cruises using research ships, submersibles, and drift cameras investigated the seafloor in the area surrounding the well site (USDOC, NOAA, 2011e and 2011f). Damage to chemosynthetic communities in the vicinity of the *Macondo* well has not been reported to date (Shedd, official communication, 2014). Therefore, it has not been demonstrated that even a catastrophic oil spill would have significant adverse impacts or change the baseline for chemosynthetic communities in the Gulf of Mexico. Even if this incomplete or unavailable information becomes available and ultimately demonstrate that such communities in the vicinity of the *Macondo* well have been severely impacted by the *Deepwater Horizon* explosion, oil spill, and response, BOEM has determined that the information is not essential to a reasoned choice among alternatives because it is clear that widespread impacts did not occur, or some indication of these impacts would have been revealed by the numerous studies to date. Even if some impacts did occur, chemosynthetic communities are found throughout the Gulf and are in patchy distributions, thus minimizing the proportion that would be likely to be impacted by any single event.

BOEM has also identified incomplete or unavailable information regarding the abundance and distribution of chemosynthetic communities in the GOM. Current understanding of the relationship between reflectivity of the seafloor and occurrence of potential habitat for chemosynthetic communities is used by BOEM to assess whether such communities occur in the vicinity of proposed OCS oil- and gasrelated activities. Similarly, side-scan sonar data are also used to determine the presence of likely habitat. These and other data are used to implement distance requirements to protect these communities. Incomplete or unavailable information could change our understanding of what signatures from such data sources indicate. Development of improved data or methods could help in determining where chemosynthetic communities occur. Such information could be used by BOEM to reduce impacts to these communities. Available scientifically credible information has been applied by BOEM's subjectmatter experts using accepted scientific methodologies. The confirmed presence of chemosynthetic communities in areas predicted to have likely habitat via reflectivity or side-scan sonar data indicates that BOEM is currently able to effectively protect these communities from OCS oil- and gas-related activities. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives because existing information has shown that current methods provide for an appropriate means for protecting these communities.

Summary and Conclusion

BOEM has reexamined the analysis for chemosynthetic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, with the understanding that no significant new information on chemosynthetic communities has been published since the release of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Therefore, no new significant information was discovered that would alter the impact conclusion for chemosynthetic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS, and updated information provided in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The most serious, impact-producing factor threatening chemosynthetic communities is physical disturbance of the seafloor, which could destroy the organisms of these communities. Such disturbance would most likely come from those OCS oil- and gas-related activities associated with pipelaying, anchoring, structure emplacement, and seafloor blowouts. There is evidence that substantial impacts on these communities could permanently prevent reestablishment.

Possible catastrophic oil spills due to seafloor blowouts have the potential to devastate localized deepwater benthic habitats. However, these events are not reasonably foreseeable and would only affect a small portion of the sensitive benthic habitat in the GOM. Refer to **Appendix B** for a more detailed discussion of catastrophic blowouts.

Activities unrelated to the OCS Program include fishing and trawling, State oil and gas activities, storms and carbon sequestration. Because of the water depths in areas of chemosynthetic communities

(>300 m; 984 ft) and the low density of commercially valuable fishery species, these activities are not expected to impact deepwater benthic communities.

The overall and incremental contribution of a CPA proposed action to cumulative impacts is expected to be slight and to result from the effects of the possible impacts caused by physical disturbance of the seafloor and minor impacts from sediment resuspension or drill cutting discharges. Cumulative impacts to deepwater communities in the GOM are considered negligible because of the remoteness of communities from most impacts, the scattered and patchy nature of chemosynthetic communities, and the application of BOEM's avoidance criteria as guidance provided in NTL 2009-G40. A CPA proposed activity considered under the cumulative scenario is expected to cause negligible damage to the ecological function or biological productivity of chemosynthetic communities as a whole.

4.1.1.10. Nonchemosynthetic Deepwater Benthic Communities

BOEM has reexamined the analysis for nonchemosynthetic deepwater benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for nonchemosynthetic deepwater benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

A detailed description of nonchemosynthetic deepwater benthic communities and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.10 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.10 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on nonchemosynthetic deepwater benthic communities of the CPA are bottom-disturbing activities associated with anchoring, structure emplacement, pipelaying, structure removal, and discharges of drill cuttings, muds, and produced water. Analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on nonchemosynthetic deepwater benthic communities can be found in Chapter 4.2.1.10.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.10 of the WPA 233/CPA 231 Supplemental EIS.

Considerable mechanical damage could be inflicted upon sensitive nonchemosynthetic deepwater benthic communities by routine OCS drilling activities associated with a CPA proposed action if mitigations are not applied. Deepwater live bottom communities, primarily structured by the coral Lophelia pertusa, are the nonchemosynthetic deepwater benthic communities that would be sensitive to impacts from oil and gas activities. Bottom-disturbing activities associated with anchoring, structure emplacement, pipelaying, and structure removal cause localized bottom disturbances and disruption of benthic communities in the localized areas. If a sensitive community is subjected to direct impacts by bottom-disturbing activities, potentially severe or catastrophic impacts could occur due to raking of the sea bottom by anchors and anchor chains and partial or complete burial by muds and cuttings. The severity of such an impact is such that there would be incremental losses of productivity, reproduction, community relationships, and overall ecological functions of the local community, and incremental damage to ecological relationships with the surrounding benthos. Should this occur, it could result in recovery times in the order of decades or more with the possibility of the community never recovering (FAO, 2008; Jones, 1992; Probert et al., 1997). However, impacts from bottom-disturbing activities directly on deepwater coral communities are expected to be rare because of the application of required protective measures as guidance provided in NTL 2009-G40, "Deepwater Benthic Communities."

Routine discharge of drill cuttings with associated muds can also affect the seafloor. In deep water, as opposed to shallower areas on the continental shelf, discharges of drilling fluids and cuttings at the sea surface are spread across broad areas of the seafloor and are generally distributed in thinner accumulations. A deepwater effects study funded by this Agency included determinations of the extent of muds and cuttings accumulations in approximately 1,000 m (3,281 ft) of water (CSA, 2006). Geophysical and chemical measurements indicated that a layer of cuttings and muds several centimeters

thick was deposited within a 500-m (1,640-ft) radius of well sites. This suggests that the required 2,000-ft (610-m) distance would protect deepwater benthic communities from impacts. Discharges of produced waters on the sea surface, chemical spills, and deck runoff would be diluted in surface waters, having no effect on seafloor habitats.

Routine activities associated with a CPA proposed action are not expected to cause damage to the ecological function or biological productivity of sensitive deepwater live bottom communities (deep coral reefs) due to the consistent application of BOEM's protection guidance provided in NTL 2009-G40. Information included in required hazards surveys for oil and gas activities depicts areas that could potentially harbor nonchemosynthetic communities. This allows BOEM to require avoidance of any areas that are conducive to the growth of sensitive hard bottom communities. The same geophysical conditions associated with the potential presence of chemosynthetic communities also results in the potential occurrence of hard carbonate substrate and other associated, deepwater live bottom communities. Because of the guidance provided in NTL 2009-G40, these communities are generally avoided in exploration and development planning and in bottom-disturbing activities. Impacts on sensitive deepwater communities from routine activities associated with a CPA proposed action would be minimal to none.

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to result in impacts to nonchemosynthetic deepwater benthic communities of the CPA. An analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on nonchemosynthetic deepwater benthic communities can be found in Chapter 4.2.1.10.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.10 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events that could impact nonchemosynthetic deepwater benthic communities are primarily limited to seafloor blowouts. A blowout at the seafloor could create a crater and could resuspend and disperse large quantities of bottom sediments within a 300-m (984-ft) radius from the blowout site. This would destroy any organisms located within that distance by burial or modification of narrow habitat quality requirements. Substantial impacts on these communities could permanently prevent reestablishment, particularly if hard substrate required for recolonization is buried by resuspended sediments from a blowout. Physical disturbance or destruction of a limited area of benthos or to a limited number of megafauna organisms (e.g., brittle stars, sea pens, and crabs) would not result in a major impact to the deepwater benthos ecosystem as a whole or even in relation to a small area of the seabed within a lease block. The application of avoidance criteria for deepwater coral communities as guidance provided in NTL 2009-G40 precludes the placement of a well within 610 m (2,000 ft) of any suspected site of a deepwater coral community, therefore distancing the community from sedimentation resulting from a possible blowout.

Accidental impacts due to oil spills caused by blowouts associated with a CPA proposed action would likely result in only minimal impacts to nonchemosynthetic communities with adherence to the guidance provided in NTL 2009-G40. A blowout could result in a catastrophic oil spill, though not reasonably foreseeable and not part of a CPA proposed action (**Appendix B**), but the distance requirements would tend to lessen but not necessarily eliminate the impacts. A large subsea spill combined with the application of dispersant or high-pressure ejection of oil could mix oil into the water column, resulting in a subsea plume. Such a plume could potentially cause devastating effects on local patches of habitat in its path where it physically contacts the seafloor. If such an event were to occur, it could take decades to reestablish the nonchemosynthetic community in that location. The possible impacts, however, would be localized due to the directional movement of an oil plume by the water currents and because the sensitive habitats have a scattered, patchy distribution. As with sediments, the farther the dispersed oil travels, the more diluted it would become as it mixes with the surrounding water, and bacteria would degrade the oil over time (and distance). Oil plumes that remain in the water column for longer periods would disperse and decay, having only minimal effect.

Cumulative Impacts

Background/Information

The greatest potential for cumulative adverse impacts to nonchemosynthetic deepwater benthic communities comes from OCS oil- and gas-related, bottom-disturbing activities associated with pipeline

and platform emplacement (including templates and subsea completions), associated anchoring activities, discharges of muds and cuttings, and seafloor blowout accidents. Other offshore activities (non-OCS) such as fishing and trawling and events such as climate change can also potentially affect deepwater benthic communities. Impacts attributed to OCS oil- and gas-related activity occur at the same time as impacts due to other governmental and private projects and activities, as well as impacts due to pertinent natural processes and events that may adversely affect nonchemosynthetic communities. The cumulative analysis considers the effects of impact-producing factors related to past lease sales, a proposed CPA lease sale, reasonably foreseeable lease sale programs, and other natural and human impacting factors.

OCS Oil- and Gas-Related Impacts

As exploration and development continue on the Federal OCS, activities have moved farther into the deeper water areas of the Gulf of Mexico. These activities would threaten sensitive habitats on the seafloor in their vicinity through bottom-disturbing activities associated with pipeline and platform emplacement (including templates and subsea completions), associated anchoring activities, discharges of muds and cuttings, and seafloor blowout accidents. However, these potential impacts are mitigated by the application of avoidance requirements as guidance provided in NTL 2009-G40. The extent of these disturbances would be determined by the intensity of development in these deepwater regions, the types of structures and mooring systems used, and the effective application of the avoidance criteria as guidance provided in NTL 2009-G40, which distances oil and gas activity from sensitive deepwater nonchemosynthetic communities.

Oil- and gas-related activities on the OCS could affect local areas of deepwater nonchemosynthetic communities in several ways. Produced-water discharges and other surface discharges are too dilute by the time they would reach the bottom in >300-m (984-ft) water depths to cause impacts to such communities. Drilling discharges and resuspended sediments have the potential to cause minor, mostly sublethal impacts to patchy, high-density nonchemosynthetic communities, but substantial accumulations could result in more serious impacts. Sublethal impacts may include possible incremental losses of productivity, reproduction, community relationships, overall ecological functions of the community, and incremental damage to ecological relationships with the surrounding benthos. Recovery from minor impacts is expected within several years, but even minor impacts are not expected based on avoidance measures provided as guidance in NTL 2009-G40, which precludes well development within 610 m (2,000 ft) of any suspected site of a deepwater benthic community. If physical disturbance (such as anchor damage) or extensive burial by muds and cuttings were to occur to high-density communities, impacts could be severe, with recovery time as long as 200 years for mature tube-worm communities (Powell, 1995; Fisher, 1995). Routine discharges of drilling muds and cuttings have been documented to reach the seafloor in water depths >300 m (984 ft). Drill muds typically settle within about 100 m (328 ft) of the well site, while the majority of cuttings fall within 500 m (1,640 ft) (CSA, 2006). Potential local cumulative impacts could result from accumulations of muds and cuttings resulting from consistent hydrographic conditions and the drilling of multiple wells from the same location, causing concentrations of material in a single direction or "splay." Such concentrations of muds and cuttings could potentially extend beyond the distance required between the discharge and nonchemosynthetic communities, causing smothering of organisms. It is not expected that detectable levels of muds and cuttings discharges from separate developments or from adjacent lease blocks would act as a cumulative impact to deepwater benthic communities. Physical separation of well sites, great water depths, and adherence to the guidance provided in NTL 2009-G40 prevent separate activities from having overlapping effects.

Localized areas of the seafloor may be affected by the installation of deepwater pilings, pipelines, anchors, and seafloor templates for mounting equipment. The greatest potential of physical disturbance is from anchor chains and cables. Deepwater work typically utilizes fewer anchors than work on the continental shelf. Because of the water depth (>300 m; 984 ft), pipelaying vessels and most drillships use dynamic positioning instead of anchors. This system uses computerized positioning controls of thrusters to maintain the position of the vessel. Most platform structures use numerous large anchors and cables that are fixed in place for the duration of the service life of the structure. Structure-removal activities could resuspend bottom sediments or cause physical impacts. The potential effects of resuspended bottom sediments are similar to those from the discharge of muds and cuttings discussed below. In deep water, the probability that infrastructure will be left on the seabed is likely higher.

impacts are mitigated by the application of avoidance requirements as guidance provided in NTL 2009-G40.

A blowout at the seafloor could resuspend large quantities of bottom sediments and even create a large crater, destroying any organisms in the immediate area. Subsea oil plumes resulting from a seafloor blowout could affect sensitive deepwater communities. This is especially true if dispersants are applied at depth. A recent report documents damage to a deepwater coral community in an area that oil plume models predicted as the direction of travel for subsea oil plumes from the *Deepwater Horizon* oil spill. A coral community about 10 m x 12 m (33 ft x 40 ft) in size was severely damaged, and the study results identify Macondo oil as present on the corals (White et al., 2012; USDOI, BOEMRE, 2010). Such blowouts are rare and may not release catastrophic quantities of oil. An analysis of impacts from a catastrophic oil spill is found in Appendix B. Oil that is released would normally rise rapidly to the sea surface. However, if oil is ejected into deep water under high pressure, a plume of micro-droplets of oil can form. Treatment of the oil with dispersants at depth would also form a plume of oil that would be carried in whatever direction the water currents flow. This directional flow could only affect seafloor habitats that are downstream from the source. Although the oil plume could be carried into direct contact with the seafloor at some distance from the source, a more likely scenario would be for the oil to adhere to other particles and precipitate to the seafloor, much like rainfall (Kingston et al., 1995; ITOPF, 2002). Oil would also reach the seafloor through consumption by plankton, with excretion distributed over the seafloor (ITOPF, 2002). Dispersants reduce the oil's ability to adhere to particles in the water column, slowing its rate of precipitation to the seafloor (McAuliffe et al., 1981a; Lewis and Aurand, 1997), and dispersed oil droplets remain neutrally buoyant in the water column, creating a subsurface plume of oil (Lee et al., 2011a and 2011b; Adcroft et al., 2010). These mechanisms would result in a wide distribution of small amounts of oil. This oil would be in the process of biodegradation from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010). This suggests that nonchemosynthetic communities could come in contact with small amounts of oil in various stages of biodegradation.

Sensitive deepwater communities appear to be widely scattered and not as rare as previously expected. Recent BOEM analyses of seafloor remote-sensing data indicate over 28,000 locations in the deep GOM that represent potential hard bottom habitats (Shedd, official communication, 2013). While it is likely that any subsea oil plume traveling more than a few miles on the deep seafloor would approach at least one of these potential habitats, the plume may not contact nonchemosynthetic communities at that point. If the plume did make contact, it would result in a localized effect that is not expected to alter the wider populations in the Gulf of Mexico. Due to the patchy nature of sensitive deepwater communities and the directional flow of subsea oil plumes, only localized patches of sensitive communities could be affected.

Non-OCS Oil- and Gas-Related Impacts

Non-OCS oil- and gas-related activities such as anchoring, fishing, and trawling, and events such as shipwrecks and climate change can also potentially affect deepwater benthic communities. There are essentially only three fish (or "shellfish") species considered important to deepwater commercial bottom fisheries—the yellowedge grouper (*Epinephelus flavolimbatus*), tilefish (*Lopholatilus chameleonticeps*), and royal red shrimp (Hymenopenaeus robustus). Yellowedge grouper habitat extends to about 275 m (902 ft). Bottom longlining for tilefish could potentially result in cumulative impacts to deepwater communities, as their habitat in the GOM extends to 540 m (1,772 ft) (FishBase, 2006). If contact did occur, impacts from bottom longlines would be minimal. Damage resulting from bottom trawling would have a much greater impact. The royal red shrimp is fished in depths of 250-475 m (820-1,558 ft) in the northeastern part of the Gulf of Mexico (GMFMC, 2004). This species is obtained from trawling using traditional but modified shrimp trawls. The use of traps for royal red shrimp was prohibited in Amendment 11 of the Shrimp Fishery Management Plan (GMFMC, 2006). If trawling occurred in sensitive areas of deepwater habitats, extensive damage to those communities could occur, but the areas where royal red shrimp are obtained are not known for hard bottom communities, and the shrimp prefer soft bottom composed of sand, clay, or mud (CSA, 2002). Unlike other areas in the Atlantic and in Europe, bottom fishing and trawling efforts in the deeper water of the CPA are currently minimal, and impacts to deepwater benthic communities are negligible.

Other non-OCS oil- and gas-related sources of cumulative impact to deepwater benthic communities would be possible, but they are considered unlikely to occur. Essentially no anchoring from non-OCS oil- and gas-related activities occurs at the deeper water depths considered for these resources (>300 m; 984 ft). Some impacts are highly unlikely yet not impossible, such as the sinking of a ship or barge, resulting in collision or contaminant release directly on top of a sensitive, high-density nonchemosynthetic community.

One potential significant large-scale source of impact could be potential efforts of carbon sequestration in the deep sea as a technique to reduce atmospheric carbon dioxide. This concept is still being considered but could have major ramifications. One side of the issue, even beyond the problems of sea-level increase and climate change, includes the serious risk to shallow-water benthic organisms (particularly those with calcium carbonate shells and skeletons, e.g., corals, serpulid worms, bryozoa, calcareous algae, etc.) due to pH decreases (Kleypas et al., 1999; Barry et al., 2005; Shirayama and Thornton, 2005). However, the impacts of even very small excursions of pH and CO_2 in the deep sea could also have serious, even global, deep-sea ecosystem impacts. Acidification in the deep waters of the oceans could impact deepwater corals by reducing respiration rates (Hennige et al., 2013). Kita and Ohsumi (2004) suggest that sequestration of anthropogenic CO_2 could help reduce atmospheric CO_2 , but they also summarize the potentially substantial biological impact on marine organisms. The issue continues to gain attention with the increased emphasis on climate change. Scientists suggested in the August 2006 issue of the Proceedings of the National Academy of Sciences that thousands of years of the Nation's carbon emissions could be stored in undersea sediments along the coasts (Zenz House et al., 2006). Such a plan needs further thought since nutrients in urban runoff to tropical seas are considered to be a major contributor to the decline of coral reefs. Substantial additional research is needed before any large-scale carbon sequestration actions would take place.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A broad Internet search for relevant new information and scientific journal articles made available since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS was conducted using a publicly available search engine. The websites for Federal and State agencies, as well as other organizations were reviewed for newly released information. Sources investigated include the NOAA Ocean Exploration website, the Gulf of Mexico Alliance, USEPA, USGS, Science Direct, Elsevier, the NOAA Central Library National Oceanographic Data Center, JSTOR, and coastal universities. Ongoing research projects funded by NOAA and the National Science Foundation are investigating nonchemosynthetic communities and impacts from the *Deepwater Horizon* explosion, oil spill, and response.

Several studies have been published that provide insight into aspects of the spill and its effects. White et al. (2012) provided evidence that the *Deepwater Horizon* oil spill impacted deepwater ecosystems including corals. One deepwater coral site at a depth of 1,370 m (4,495 ft) was reported as severely damaged following the *Deepwater Horizon* explosion and oil spill. The site is in Mississippi Canyon Block 294, 11 km (7 mi) southwest of the spill location. The site includes hard substrate supporting coral in an area approximately 10 x 12 m (33 x 39 ft) (White et al., 2012). Sabourin et al. (2012) found that corals are bioaccumulating PAHs. Goodbody-Gringley et al. (2013) found that experimental exposure of coral larvae to oil and COREXIT significantly decreased larval settlement and survival in *Montastraea faveolata* and *Porites astreoides*. While the recent research has provided new information regarding impacts to nonchemosynthetic communities from oil spills, this new information does not change the conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because such a catastrophic event is unlikely to occur and because BOEM considered the potential irreversible effects to nonchemosynthetic communities in **Appendix B** of this Supplemental EIS.

Incomplete or Unavailable Information

As identified in the resource analyses in this Supplemental EIS and in Chapter 4.2.1.10 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 2321 Supplemental EIS, there remains incomplete or unavailable information on the effects of the *Deepwater Horizon* explosion, oil spill, and response on

nonchemosynthetic deepwater benthic communities that may be relevant to reasonably foreseeable significant adverse impacts. This information may be relevant because recent events such as the *Deepwater Horizon* explosion, oil spill, and response may have caused changes to baseline conditions for such communities in the Gulf of Mexico. Information regarding impacts of the *Deepwater Horizon* explosion, oil spill, and response upon nonchemosynthetic deepwater benthic communities is being developed through the NRDA process, but it is not yet available. In addition, the cost of a comprehensive study of the GOM seafloor to definitively determine the extent of all impacts to such communities would be exorbitant.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, the following studies were analyzed with regards to nonchemosynthetic communities: White et al. (2012) and Hsing et al. (2013). The results of these studies indicate that a coral community approximately 11 km (7 mi) southwest of the *Deepwater Horizon* explosion and oil spill was severely impacted, while coral communities at 10 other sites in the deep Gulf of Mexico >20 km (12 mi) from the well were healthy. The *Deepwater Horizon* oil spill was the largest oil spill in the history of offshore exploration in the United States, and thus far only one coral communities of the Gulf of Mexico would experience significant adverse impacts from an Action alternative. These studies provide insight into the extent of impacts that could be expected from a catastrophic oil spill. However, none of these sources reveal that there would be significantly greater adverse impacts whether or not a No Action or Action alternative is chosen under this Supplemental EIS.

BOEM has determined that the information is not essential to a reasoned choice among alternatives because the CPA is an active oil and gas region with ongoing exploration, drilling, and production activities. The potential for effects from changes to the affected environment (post-*Deepwater Horizon*), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on nonchemosynthetic deepwater benthic communities from either smaller accidental events or low-probability catastrophic events will remain the same. Existing information indicates that, even though one or more coral communities in the vicinity of the *Macondo* well was impacted by the largest oil spill in the history of the GOM, the impact to coral communities of the GOM, in terms of the proportion of all such communities that was affected, was relatively minor.

BOEM has also identified incomplete or unavailable information regarding the abundance and distribution of nonchemosynthetic communities in the GOM. Current understanding of the relationship between reflectivity of the seafloor and occurrence of potential habitat for deepwater benthic communities is used by BOEM to assess whether such communities occur in the vicinity of proposed OCS oil- and gas-related activities. Similarly, side-scan sonar data are also used to determine the presence of likely habitat. These and other data are used to implement distance requirements to protect these communities. Incomplete or unavailable information could change our understanding of what signatures from such data sources indicate. Development of improved data or methods could help in determining where nonchemosynthetic communities occur. Such information could be used by BOEM to reduce impacts to these communities. Available scientifically credible information has been applied by BOEM's subjectmatter experts using accepted scientific methodologies. The confirmed presence of deepwater benthic communities in areas predicted to have likely habitat via reflectivity or side-scan sonar data indicates that BOEM is currently able to effectively protect these communities from OCS oil- and gas-related activities. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives because existing information has shown that current methods provide for an appropriate means for protecting these communities.

Summary and Conclusion

BOEM has reexamined the analysis for nonchemosynthetic deepwater benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for nonchemosynthetic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The most serious, impact-producing factor threatening nonchemosynthetic communities is physical disturbance of the seafloor, which could destroy the organisms of these communities. Such disturbance would most likely come from those OCS oil- and gas-related activities associated with pipelaying, anchoring, structure emplacement, and seafloor blowouts. There is evidence that substantial impacts on these communities could permanently prevent reestablishment.

Recent analyses reveal over 28,000 possible hard bottom locations across the deepwater Gulf of Mexico. Guidance provided in NTL 2009-G40 describes surveys and avoidance measures required prior to drilling or pipeline installation and greatly reduces risks. Studies have refined predictive information and have confirmed the effectiveness of these provisions throughout all depth ranges of the GOM (Brooks et al., 2009; Shedd et al., 2011). With the success of this work, confidence is increasing regarding the use of geophysical signatures for the prediction of nonchemosynthetic communities. These geophysical signatures enable BOEM to locate possible nonchemosynthetic communities and to implement avoidance measures in plan and pipeline reviews, which substantially reduces the possibility of impacting a nonchemosynthetic community.

Possible catastrophic oil spills due to seafloor blowouts have the potential to devastate localized deepwater benthic habitats. Major impacts to localized benthic habitat are possible in such an event, particularly when chemical dispersants are applied to oil releases at depth. However, these events are rare and would only affect a small portion of the sensitive benthic habitat in the Gulf of Mexico. The recovery time from an oiling event, if reestablishment is not permanently prevented, would be similar to that occurring from physical disturbance. Refer to **Appendix B** for a more detailed discussion of catastrophic blowouts.

Among the activities unrelated to the OCS Program, fishing and trawling represent the greatest threat to nonchemosynthetic communities. Because of the water depths in areas of nonchemosynthetic communities (>300 m; 984 ft) and the low density of commercially valuable fishery species, these activities are not expected to impact deepwater benthic communities. Storms are unlikely to impact communities at such great water depths, but they could cause secondary impacts such as shipwrecks. Climate change would potentially impact such communities, primarily if carbon dioxide concentrations increased to projected levels, leading to ocean acidification and resulting in impacts to deepwater corals. Large-scale carbon sequestration programs, should they ever be initiated, could potentially affect levels of pH and CO_2 in the deep sea, with potentially substantial biological impacts on marine organisms.

The overall and incremental contribution of a CPA proposed action to cumulative impacts is expected to be slight and to result from the effects of the possible impacts caused by physical disturbance of the seafloor and minor impacts from sediment resuspension or drill cutting discharges. Cumulative impacts to deepwater communities in the GOM are considered negligible because of the remoteness of communities from most impacts, the scattered and patchy nature of nonchemosynthetic communities, and the application of BOEM's avoidance criteria as guidance provided in NTL 2009-G40. A CPA proposed activity considered under the cumulative scenario is expected to cause negligible damage to the ecological function or biological productivity of nonchemosynthetic communities as a whole.

4.1.1.11. Soft Bottom Benthic Communities

BOEM has reexamined the analysis for soft bottom benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for soft bottom benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

A detailed description of soft bottom benthic communities and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.11 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.11 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

A majority of the oil and gas exploration in the GOM is conducted on soft seafloor sediments. The potential routine impact-producing factors on soft bottom benthic communities of the CPA are infrastructure emplacement (i.e., anchors, structures, and pipelines), turbidity and smothering, drilling-effluent and produced-water discharges, and infrastructure removal. Disturbances of soft bottom benthic communities may cause localized disruptions to benthic community composition and an alteration in food sources for some large invertebrate and finfish species. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on soft bottom benthic communities can be found in Chapter 4.2.1.11.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.11 of the WPA 233/CPA 231 Supplemental EIS.

Structure placement and anchor damage from support boats and ships, floating drilling units, and pipeline-laying vessels are routine oil and gas OCS oil- and gas-related threats that disturb areas of the seafloor. The size of the areas affected by chains associated with anchors and pipeline-laying barges depends on the water depth, chain length, sizes of anchor and chain, method of placement, wind, and current (Lissner et al., 1991). Anchor damage could result in the crushing and smothering of infauna. Anchoring often destroys a wide swath of habitat when an anchor is dragged over the seafloor (Lissner et al., 1991). Damage to infauna as a result of anchoring may take approximately 1 year to recover, depending on the reproductive cycle and immigration of surrounding communities (Rhodes and Germano, 1982).

Localized impacts to comparatively small areas of the soft bottom benthic communities would occur as a result of structure emplacement on the OCS, and the impacts would be on a relatively small area of the seafloor compared with the overall area of the seafloor of the CPA (268,922 km²; 103,831 mi²) and the entire GOM (645,825 km²; 249,354 mi²). The estimated footprint of all active platforms on the continental shelf in the GOM is approximately 14,491,864 ft² (1.346 km²; 0.520 mi²) (USDOI, BOEM, 2014b; LGL Ecological Research Associates, Inc. and Science Applications International Corporation, 1998), which is approximately 0.0002 percent of the estimated area of seafloor in the GOM. Based on these values, the impacts that may occur to the seafloor around platforms would be a fraction of the entire soft bottom community of the GOM. The placement of a structure on the seafloor would destroy some soft bottom benthic habitat; however, the impacts are localized. The greatest impact is the alteration of benthic communities as a result of smothering, chemical toxicity, and substrate change.

Routine discharges of drilling muds and cuttings by oil and gas operations could affect biological communities and organisms through a variety of mechanisms, including the smothering of organisms through deposition, sublethal toxic effects (impacts to growth and reproduction), and change in substrate grain size. Smothering of infauna by drilling discharges may be one of the greatest impacts to localized communities near a well, especially one that has shunted its cuttings to the seafloor to protect nearby sensitive, hard bottom features. The heaviest concentrations of well cuttings and drilling fluids, for both water-based and synthetic-based drilling muds, have been reported within 100 m (328 ft) of wells and are shown to decrease beyond that distance (Kennicutt et al., 1996; CSA, 2004). The impacts to the benthic communities from the deposition of cuttings and muds are localized, and impacts generally occur within a few hundred meters of platforms, with the greatest impacts close to the platform. Communities that are smothered by cuttings would be replaced by more tolerant pioneering species, resulting in a shift in species dominance (Montagna and Harper, 1996). These pioneer habitats would be similar to the early successional communities that predominate throughout areas of the Gulf of Mexico that are frequently disturbed (Gaston et al., 1998; Diaz and Solow, 1999; Rabalais et al., 2002a). Although impacts are locally drastic, cumulative impacts over the seafloor of the Gulf of Mexico are anticipated to be very small, as such comparatively small areas are affected.

Produced waters from petroleum production operations are not likely to have a great impact on soft bottom communities. Produced waters are rapidly diluted and impacts are generally only observed within proximity of the discharge point, and acute toxicity that may result from produced waters occurs "within the immediate mixing zone around a production platform" (Gittings et al., 1992a; Holdway, 2002). There have been no reported impacts to marine organisms or sediment contamination beyond 100 m (328 ft) of the produced-water discharge (Neff and Sauer, 1991; Trefry et al., 1995). Therefore, impacts to infauna are anticipated to be localized and only affect a small portion of the entire seafloor of the Gulf of Mexico.

Traditional pipeline-laying barges (as opposed to dynamically positioned barges) affect more seafloor than other anchoring impacts. These barges typically use an array of 8-12 anchors weighing about 4,500 kilograms (kg) (10,000 pounds [lb]) each. While the large anchors crush organisms in their footprint, a much larger area is affected by anchor cable sweep as the barge is pulled forward to lay the pipeline by reeling-in forward cables and reeling-out aft cables. The anchors are reset repeatedly to forward positions to allow the barge to "crawl" forward. In this way, the anchor sweep scours parallel paths on each side of the vessel where the cables touch the seafloor. The width of the scoured paths varies with water depth (deeper water equals longer cables) and may be as much as 1,500 m (5,000 ft) to each side (only a portion of the cable adjacent to the anchor touches the seafloor). Another major impact of the process is pipeline burial. In waters ≤ 60 m (200 ft), pipeline burial is required. This involves trenching up to 3.3 m (10.8 ft) deep in the seafloor from a water depth of ≤ 60 m (200 ft) to shore. This is a severe disturbance of the trenched area and creates a large turbidity plume. Resuspended sediments can cause obstruction of filter-feeding mechanisms of sedentary organisms and gills of fishes. Adverse impacts from resuspended sediments would be temporary, primarily sublethal in nature, and the effects would be limited to areas in the vicinity of the barge. Impacts may include "changes in respiration rate, abrasion and puncturing of structures, reduced feeding, reduced water filtration rates, smothering, delayed or reduced hatching of eggs, reduced larval growth or development, abnormal larval development, or reduced response to physical stimulus" (Anchor Environmental CA, L.P., 2003).

Explosive structure-removal operations disturb the seafloor and can physically lift nearby benthic organisms from their benthic habitat. An explosion may kill benthic organisms in the immediate blast zone by violent uplift or heavy deposition of disturbed sediments on top of organisms. Benthic organisms outside of the immediate blast zone are not expected to suffer much damage as many sessile benthic organisms are reported to resist the concussive force of structure-removal-type blasts (O'Keeffe and Young, 1984). O'Keeffe and Young (1984) also noted "... no damage to other invertebrates such as sea anemones, polychaete worms, isopods, and amphipods." Impacts to invertebrates outside of the immediate blast zone are anticipated to be minimal as they do not have air bladders inside their bodies that may burst with explosions, as some fish do (Schroeder and Love, 2004).

Any activity that may affect the soft bottom communities would only impact a small portion of the overall area of the seafloor of the Gulf of Mexico. Because the soft bottom substrate is ubiquitous throughout the Gulf of Mexico, there are no lease stipulations to avoid these communities. However, other routine practices restrict detrimental activities that could cause undue harm to benthic habitats (e.g., discharge restrictions, debris regulations, and NPDES permits).

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to cause damage to infaunal communities of the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on soft bottom benthic communities can be found in Chapter 4.2.1.11.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.11 of the WPA 233/CPA 231 Supplemental EIS.

Only a very small portion of the seafloor of the Gulf of Mexico would experience lethal impacts as a result of blowouts, surface, and subsurface oil spills and the associated affects because of the small amount of proportional space that OCS oil- and gas-related activities occupy on the seafloor. The greatest impacts would be closest to the spill, and impacts would decrease with distance from the spill. Contact with spilled oil at a distance from the spill would likely cause sublethal to immeasurable effects to benthic organisms because the distance of activity would prevent contact with concentrated oil. Oil from a subsurface spill that eventually reaches benthic communities would be primarily sublethal, and impacts would also be at low concentrations and widely dispersed by the time it reaches the seafloor, also resulting in sublethal impacts. Also, any local communities that are lost would be repopulated fairly rapidly (Neff, 2005). Although an oil spill may have some detrimental impacts, especially closest to the occurrence of the spill, the impacts may be no greater than natural biological fluctuations (Clark, 1982), and impacts would be to a relatively small portion of the overall Gulf of Mexico.

Cumulative Impacts

Background/Introduction

The vast majority of the Gulf of Mexico seabed is comprised of soft sediments. Because drilling activity is concentrated on the soft seabed, the greatest number of impacts occurs on soft bottom, benthic environments and to the animals that live in and on the sediment. This cumulative analysis considers the effects of impact-producing factors related to soft bottoms of the Gulf of Mexico continental shelf. A CPA proposed action plus those activities related to prior and future OCS lease sales are considered; in this discussion, these are referred to as "OCS oil- and gas-related" factors. Specific OCS oil- and gas-related, impact-producing factors considered in the analysis are structure emplacement and removal, anchoring, discharges from well drilling, produced waters, pipeline emplacement, oil spills, and blowouts. Other impacting factors (non-OCS oil- and gas-related factors) that may occur and adversely affect soft bottom benthic communities include commercial fisheries (bottom trawling), anchoring by recreational boats and other non-OCS commercial vessels, spillage from non-OCS oil- and gas-related vessels, cable laying, sand mining, hypoxia (low oxygen levels ≤ 2 ppm), and storm events, all which have the potential to damage soft bottom benthic communities.

OCS Oil- and Gas-Related Impacts

There are no BOEM stipulations that require avoidance of soft bottom benthic communities because they are so ubiquitous throughout the seafloor of the Gulf of Mexico. Most of the bottom surface area of the GOM (645,825 km²; 249,354 mi²) and specifically the CPA (268,922 km²; 103,831 mi²) are soft mud bottoms, and this substrate is where drilling occurs. It is important to note, however, that because the soft bottom benthic communities comprise a majority of the seafloor of the Gulf of Mexico, impacts are not detrimental to the Gulfwide community of these habitats. Also, because a large portion of the seafloor is subject to natural fluctuations and physical disturbances (such as storms and yearly hypoxic events), a permanent early successional community occupies much of the seafloor and enables rapid recovery of disturbed areas, including those impacted by OCS oil and gas activity.

Structure placement and anchor damage from support boats and ships, floating drilling units, and pipeline-laying vessels are routine OCS oil- and gas-related threats that disturb areas of the seafloor. The size of the areas affected by chains associated with anchors and pipeline-laying barges depends on the water depth, chain length, sizes of anchor and chain, method of placement, wind, and current (Lissner et al., 1991). Anchor damage could result in the crushing and smothering of infauna. Anchoring often destroys a wide swath of habitat when an anchor is dragged over the seafloor while being set or by the vessel swinging at anchor, causing the anchor chain to drag over the seafloor (Lissner et al., 1991). Damage to infauna as a result of anchoring may take approximately 1 year to recover, depending on the reproductive cycle and immigration of surrounding communities (Rhodes and Germano, 1982).

The placement of a structure on the seafloor also destroys some soft bottom benthic habitat; however, the impacts are localized to comparatively small areas of the seafloor compared with the overall area of the seafloor of the CPA (268,922 km²; 103,831 mi²) and the entire GOM (645,825 km²; 249,354 mi²). The estimated footprint of all platforms on the continental shelf in the GOM is approximately 14,491,864 ft² (1,346,338 m²; 0.520 mi²; 1.346 km²) (USDOI, BOEM, 2014b; LGL Ecological Research Associates, Inc. and Science Applications International Corporation, 1998), which is approximately 0.0002 percent of the estimated area of seafloor in the GOM. Based on these values, the impacts that may occur to the seafloor around platforms would be a fraction of the entire soft bottom community of the GOM.

Routine discharges of drilling muds and cuttings by oil and gas operations could affect biological communities and organisms through a variety of mechanisms, including the smothering of organisms through deposition, sublethal toxic effects (impacts to growth and reproduction), and change in substrate grain size. Smothering of infauna by drilling discharges may be one of the greatest impacts to localized communities near a well, especially one that has shunted its cuttings to the seafloor to protect nearby sensitive, hard bottom features. The heaviest concentrations of well cuttings and drilling fluids, for both water-based and synthetic-based drilling muds, have been reported within 100 m (328 ft) of wells and are shown to decrease beyond that distance (Kennicutt et al., 1996; CSA, 2004). The impacts to the benthic communities from the deposition of cuttings and muds are localized, and impacts generally occur within a few hundred meters of platforms, with the greatest impacts close to the platform. Communities that are

smothered by cuttings would be replaced by more tolerant pioneering species, resulting in a shift in species dominance (Montagna and Harper, 1996). These pioneer habitats would be similar to the early successional communities that predominate throughout areas of the Gulf of Mexico that are frequently disturbed (Gaston et al., 1998; Diaz and Solow, 1999; Rabalais et al., 2002a). Although impacts are locally drastic, cumulative impacts over the seafloor of the Gulf of Mexico are anticipated to be very small, as such comparatively small areas are affected.

Produced waters from petroleum operations are not likely to have a great impact on soft bottom communities. Produced waters are rapidly diluted and impacts are generally only observed within proximity of the discharge point, and acute toxicity that may result from produced waters occurs "within the immediate mixing zone around a production platform" (Gittings et al., 1992a; Holdway, 2002). There have been no reported impacts to marine organisms or sediment contamination beyond 100 m (328 ft) of the produced-water discharge (Neff and Sauer, 1991; Trefry et al., 1995). Therefore, impacts to infauna are anticipated to be localized and only affect a small portion of the entire seafloor of the Gulf of Mexico.

Traditional pipeline-laying barges (as opposed to dynamically positioned barges) affect more seafloor than other anchoring impacts. These barges typically use an array of 8-12 anchors weighing about 4,500 kg (10,000 lb) each. While the large anchors crush organisms in their footprint, a much larger area is affected by anchor cable sweep as the barge is pulled forward to lay the pipeline by reeling-in forward cables and reeling-out aft cables. The anchors are reset repeatedly to forward positions to allow the barge to "crawl" forward. In this way, the anchor sweep scours parallel paths on each side of the vessel where the cables touch the seafloor. The width of the scoured paths varies with water depth (deeper water equals longer cables) and may be as much as 1,500 m (5,000 ft) to each side (only a portion of the cable adjacent to the anchor touches the seafloor). Another major impact of the process is pipeline burial. In waters ≤ 60 m (200 ft), pipeline burial is required. This involves trenching up to 3.3 m (10.8 ft) deep in the seafloor from a water depth of ≤ 60 m (200 ft) to shore. This is a severe disturbance of the trenched area and creates a large turbidity plume. Resuspended sediments can cause obstruction of filter-feeding mechanisms of sedentary organisms and gills of fishes. Adverse impacts from resuspended sediments would be temporary, primarily sublethal in nature, and the effects would be limited to areas in the vicinity of the barge. Impacts may include "changes in respiration rate, abrasion and puncturing of structures, reduced feeding, reduced water filtration rates, smothering, delayed or reduced hatching of eggs, reduced larval growth or development, abnormal larval development, or reduced response to physical stimulus" (Anchor Environmental CA, L.P., 2003).

Both explosive and nonexplosive structure-removal operations disturb the seafloor and can physically lift nearby benthic organisms from their benthic habitat. An explosion may kill benthic organisms in the immediate blast zone by violent uplift or heavy deposition of disturbed sediments on top of organisms. Benthic organisms outside of the immediate blast zone are not expected to suffer much damage as many sessile benthic organisms are reported to resist the concussive force of structure-removal-type blasts (O'Keeffe and Young, 1984). O'Keeffe and Young (1984) also noted ". . . no damage to other invertebrates such as sea anemones, polychaete worms, isopods, and amphipods." Impacts to invertebrates outside of the immediate blast zone are anticipated to be minimal as they do not have air bladders inside their bodies that may burst with explosions, as some fish do (Schroeder and Love, 2004).

Accidental impacts from OCS oil- and gas-related activities can also affect benthic communities. Surface oil slicks (released offshore from vessels or released subsea and risen to the sea surface) can be moved toward shore by winds, but oil mixed into the water column is moved by water currents, which do not generally travel toward shore (Pond and Pickard, 1983; Inoue et al., 2008). Surface oil spills and physically dispersed oil released from tankers may impact shallow, nearshore benthic communities. Disturbance of the sea surface by storms can mix surface oil 10-20 m (33-66 ft) into the water column (McAuliffe et al., 1975 and 1981a; Lange, 1985; Tkalich and Chan, 2002). This may result in direct oil contact for shallow, nearshore benthic communities. Direct oiling or exposure to water soluble fractions of oil may result in lethal impacts to organisms (Byrne, 1989; Suchanek, 1993; Beiras and Saco-Álvarez, 2006) or impaired embryonic development (Byrne and Calder, 1977; Nicol et al., 1977; Vashchenko, 1980). Benthic communities farther offshore, in deeper water, would be protected from direct physical contact of surface oil by depth below the sea surface. Any dispersed surface oil from a tanker or rig spill that may reach the benthic communities on the seafloor of the Gulf of Mexico at a depth greater than 10 m (33 ft) would be expected to be at very low concentrations (less than 1 ppm) (McAuliffe et al., 1981a and 1981b; Lewis and Aurand, 1997). Such concentrations may not be life threatening to adult

stages, but they may harm larval or embryonic life stages of benthic organisms (Byrne, 1989; Suchanek, 1993; Fucik et al., 1995; Beiras and Saco-Álvarez, 2006).

Blowouts may impact the biota of the soft bottom benthic communities. If any blowouts from wells occur, the suspended sediments should settle out of the water column fairly quickly, locally smothering benthic organisms near the well. Any oil that adhered to the sediment would also smother the benthic communities below. The greatest impacts would be closest to the well, where the heaviest deposits of sediment would occur. Any oil that becomes entrained in a subsurface plume would be dispersed as it travels in the water column (Vandermuelen, 1982; Tkalich and Chan, 2002). Subsea oil plumes near the seafloor would pass over smooth soft bottom, continuing the processes of diffusion and biodegradation. These plumes would continue to be dispersed over a wide area in low concentrations with sublethal to immeasurable effect. If concentrated oil were to contact the soft bottom communities directly, the impacts may include lethal effects with loss of habitat and biodiversity, contamination of substrate, change in community structure, and failed reproductive success. Damage to infauna as a result of subsurface plume exposure may take approximately 1 year to recover, depending on the reproductive cycle and immigration of surrounding communities (Rhodes and Germano, 1982).

Oil that was deposited on the seafloor as a result of the Deepwater Horizon oil spill is discussed in this section as part of the cumulative impacts that may occur to soft bottom benthic communities. In November 2010, it was estimated that 26 percent of the released oil from the *Macondo* well remained in the environment as oil on or just below the water surface as a light sheen or tarballs; oil that was washed ashore or collected from the shore; and oil that was in the sediments (Lubchenco et al., 2010). Currently, the bulk deposits of oil have been removed from beaches, and the remaining oil that reached shorelines has been buried (e.g., through wave action and hurricanes) and is weathering over time (OSAT-2, 2011). The greatest concentrations of oil deposited on the seafloor were near the wellhead, and the concentrations decreased with distance from the source. Sediment concentrations of hydrocarbons that exceeded USEPA aquatic life benchmarks (concentration for potential adverse effects) occurred in only seven samples collected within 3 km (2 mi) of the Macondo well, and concentrations reached background levels at 10 km (6 mi) from the well, indicating a limited radius of severe impact (OSAT, 2010). Benthic abundance was reduced the most within the 3-km (2-mi) circular radius around the wellhead and was moderately affected along an elongated northeast-southwest axis that extends 8.5 km (5.3 mi) northeast and 17 km (11 mi) southwest of the wellhead (Montagna et al., 2013). The oil that was deposited on the floor of the Gulf has also weathered over time and biodegradation of oil in the sediment was greater with distance from the wellhead (OSAT, 2010; Liu et al., 2012). The concentrations of total n-alkanes (hydrocarbon chains) and total PAHs (hydrocarbon rings) were approximately three times higher at a station 2 km (1.2 mi) from the wellhead than they were at a station 6 km (3.7 mi) from the wellhead 1 year after the spill (Liu et al., 2012). The sediment was more enriched with the larger compounds (both *n*-alkanes and PAHs), indicating the biological degradation of the smaller compounds and biodegradation was more intense at the station farther from the wellhead.

The cumulative impact to soft bottoms of possible future oil spills, along with the *Deepwater Horizon* oil spill, is anticipated to be small. The limited data currently available on the impacts of the *Deepwater Horizon* explosion, oil spill, and response make it difficult to define impacts to the soft bottom communities in the GOM; although, as described above, the greatest impacts were close to the well and decreased with distance. The PAHs are also breaking down with time, reducing contamination in the affected areas. Also, seafloor samples indicated that the only sediment exceedances of USEPA's chronic aquatic life benchmarks occurred within 3 km (2 mi) of the well and samples fell to background levels at a distance of 10 km (6 mi) from the well (OSAT, 2010). Therefore, the acute impacts of any large-scale blowout to soft bottom benthic communities would likely be limited in scale and influenced by directional currents, and any additive impacts of several blowouts should have acute effects in only small areas, with possible sublethal impacts occurring over a larger area. Overall, the locally impacted seafloor will be very small compared with the overall size of the seafloor of the CPA (268,922 km²; 103,831 mi²) to the GOM (645,825 km²; 249,354 mi²). It will not impact the overall infaunal population.

Non-OCS Oil- and Gas-Related Impacts

Non-OCS oil- and gas-related activities have a greater potential to affect the soft bottom communities of the region than BOEM-regulated OCS oil- and gas-related activities. Natural events such as storms, extreme weather, and fluctuations of environmental conditions may impact soft bottom infaunal communities. Soft bottom communities occur from the shoreline into the deep waters of the Gulf of Mexico. Storms can physically affect shallow bottom environments, causing an increase in sedimentation, burial of organisms by sediment, a rapid change in salinity or dissolved oxygen levels, storm surge scouring, remobilization of contaminants in the sediment, and abrasion and clogging of gills as a result of turbidity (Engle et al., 2008). Storms have also been shown to uproot benthic organisms from the sediment and suspend organisms in the water column (Dobbs and Vozarik, 1983). Large storms may devastate infaunal populations; for example, 2 months after Hurricane Katrina, a significant decrease in the number of species, species diversity, and species density occurred in coastal waters off Louisiana, Mississippi, and Alabama (Engle et al., 2008). Such impacts may have substantial effects on benthic communities, although these impacts are generally temporary as recolonization, and immigration from nearby benthic communities should occur within a year. As a result of storm events, a permanent early successional community occupies much of the seafloor and enables rapid recovery of disturbed areas.

Hypoxic conditions of inconsistent intensities and ranges also occur annually in a band that stretches along the Louisiana-Texas continental shelf each summer (Rabalais et al., 2002a). These conditions can be caused by a combination of several factors, including warm water temperature, nutrient input, storm runoff, drainage, and algal blooms. The dissolved oxygen levels in the Gulf of Mexico's hypoxic zone are <2 ppm. Such low concentrations are lethal to many benthic organisms and may result in the loss of some benthic populations. Recolonization of devastated areas by populations from unaffected neighboring soft bottom substrate would be expected to occur within a relatively short period of time (Thistle, 1981; Dubois et al., 2009).

Recreational boating, fishing, and import tankering may have limited impact on soft bottom communities. Ships anchoring near major shipping fairways of the GOM or recreational fishing boats setting anchor would impact bottom habitats. Anchor placement may crush and eliminate infauna in the footprint of the anchor. Anchoring impacts are localized to the anchor footprint and are temporary, as nearby organisms can repopulate the affected area rapidly. Oil spilled from any of these vessels could also result in similar impacts to oil spilled from OCS oil- and gas-related vessels.

Damage resulting from commercial fishing, especially bottom trawling, may have a severe impact on soft bottom benthic communities. Bottom trawling in the Gulf of Mexico primarily targets shrimp from nearshore waters to depths of approximately 90 m (295 ft) (NRC, 2002). Some studies have indicated that trawled seafloor has reduced species diversity compared with untrawled seafloor (McConnaughey et al., 2000), while others do not show a statistical difference between trawled and untrawled seafloor, although species dominance may shift (Van Dolah et al., 1991). Trawl trails may scour sediment, killing infauna, and epifaunal organisms may be physically removed (Engel and Kvitek, 1998). A review of the use of tickle chains on trawls indicated damage to shallow infauna and surface-dwelling benthic species (Van Dolah et al., 1991). Trawling also contributes regularly to turbidity, as nets drag the seafloor, leaving trails of suspended sediment. Repetitive disturbance by trawling activity may lead to a community dominated by opportunistic species (Engel and Kvitek, 1998). Recovery from the passing of a trawl net would begin to occur with the following reproduction cycle of surrounding benthic communities (Rhodes and Germano, 1982), but populations may be severely impacted by repetitive trawling activity (Engel and Kvitek, 1998).

Cable laying may involve trenching in the seafloor to bury the cable to protect it from seafloor disturbances, such as trawling. Seafloor trenching creates a large turbidity plume where resuspended sediments can cause obstruction of filter-feeding mechanisms of sedentary organisms and gills of fishes. Adverse impacts from resuspended sediments would be temporary, primarily sublethal in nature, and the effects would be limited to areas in the vicinity of the trenching activity. Impacts may include "changes in respiration rate, abrasion and puncturing of structures, reduced feeding, reduced water filtration rates, smothering, delayed or reduced hatching of eggs, reduced larval growth or development, abnormal larval development, or reduced response to physical stimulus" (Anchor Environmental CA, L.P., 2003). In turn, the suspended sediment may cause heavy depositions that could smother benthic communities below.

Sand mining of the seafloor for the use of replenishing beaches after storm damage can also impact soft bottom benthic communities. Mining the seafloor alters the seafloor, which would result in the physical removal of infaunal and epifaunal benthic organisms, displacement of benthic fishes that feed on the benthic organisms, suspended sediment and turbidity that can clog gills, and sediment deposition that can smother organisms (Byrnes et al., 2004; Diaz et al., 2004). Benthic infaunal abundance would recover from such activity within 1-3 years, but the recovery of species composition would take longer

(Byrnes et al., 2004). Initial colonization would include the rapidly reproducing pioneering organisms that are abundant in the GOM.

As discussed above, severe physical damage may occur to soft bottom sediments and the associated benthic communities as a result of non-OCS oil- and gas-related activities. It is assumed infauna associated with soft bottom sediments of the GOM are well adapted to natural disturbances such as turbidity and storms. However, human disturbance, such as trawling and sand mining or non-OCS oil- and gas- related activity oil spills, could cause severe damage to infauna, possibly leading to changes of physical integrity, species diversity, or biological productivity. If such non-OCS oil- and gas-related human disturbances were to occur, recovery to pre-impact conditions could take approximately a year (Neff, 2005; Lu and Wu, 2006), with the overall recovery time depending on the presence of recolonizers nearby, the time of year for reproduction of those colonizers, the currents and water circulation patterns, the extent of possible oiling, and the ability of the recolonizers to tolerate the sediment conditions (Ganning et al., 1984). Recovery of benthic populations in soft subtidal environments, however, has been reported to take up to 5-10 years after oiling (Ganning et al., 1984; Gómez Gesteira and Dauvin, 2000). However, because some benthic communities in the northern Gulf of Mexico are permanently in early community successional stages due to frequent disturbances, full recovery may occur very quickly (Gaston et al., 1998; Diaz and Solow, 1999; Rabalais et al., 2002a).

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (NOAA's Gulf Spill Restoration Publications website, NOAA's Environmental Response Management Application [ERMA] Gulf Response website, NOAA's *Deepwater Horizon* Archive Publications and Factsheets; the Gulf of Mexico Sea Grant *Deepwater Horizon* Oil Spill Research and Monitoring Activities Database; the RestoreTheGulf.gov website, and the *Deepwater Horizon* Oil Spill Portal), as well as recently published journal articles and Federal documents was conducted to determine the availability of recent information on topographic features. The search revealed new information on the affected environment following the *Deepwater Horizon* explosion, oil spill, and response, which is information that is pertinent to this Supplemental EIS.

Additional information has been published since the release of the OSAT 2010 report. Using the sediment data collected during the OSAT effort, the footprint of the *Deepwater Horizon* oil spill was mapped in Geographic Information Systems (GIS) (Montagna et al., 2013). In addition, analyses were conducted to determine the correlation between impacts to benthic organisms in relation to total PAH, barium, distance from the Deepwater Horizon wellhead, and distances to seeps. Benthic communities were altered in areas where there were strong positive correlations with organic enrichment, PAH, and barium. For example, nematodes (opportunistic worms) were abundant in areas that had increased organic enrichment as a result of the spill (Montagna et al., 2013). The impacts to benthic diversity were correlated with the deposition of oil around the wellhead and the directional flow of the subsea plume. Benthic abundance was reduced the most within a 3 km (1.9 mi) circular radius around the wellhead and moderately affected along an elongated northeast-southwest axis that extends 8.5 km (5.3 mi) northeast and 17 km (10.6 mi) southwest of the wellhead (Montagna et al., 2013). There was not a correlation between benthic abundance and diversity and distance from seafloor hydrocarbon seeps, indicating that the alterations observed were probably a result of the *Deepwater Horizon* oil spill. Due to the cold temperature, low nutrient concentrations, contaminated sediments, and slow metabolic rates of deep sea benthic organisms, recovery to pre-spill conditions is anticipated to take decades or longer in the affected areas (Montagna et al., 2013).

The biodegradation of oil from the *Deepwater Horizon* oil spill on the seafloor was greater farther from the wellhead (6 km; 3.7 mi) than closer (2 km; 1.2 mi), likely due to the higher concentration of oil deposited on the seafloor closer to the wellhead. The concentrations of total *n*-alkanes (hydrocarbon chains) and total PAHs (hydrocarbon rings) were approximately three times higher at a station 2 km (1.2 mi) from the wellhead than they were at a station 6 km (3.7 mi) from the wellhead one year after the spill (Liu et al., 2012). The sediment was more enriched with the larger compounds (both *n*-alkanes and PAHs), indicating the biological degradation of the smaller compounds and biodegradation was more intense at the farther station. The more heavily contaminated site may have had a decreased biodegradation rate as a result of oxygen depletion caused by a combination of reduced oxygen penetration into the sediment by an oil barrier on the sediment surface and the local depletion of dissolved

oxygen from bacterial consumption of labile hydrocarbons (Liu et al., 2012). The smaller compounds are easier for the bacteria to break down, leaving the sediment enriched in the larger compounds; however, labile *n*-alkanes were still present in the sediment 1 year after the spill, indicating that the biodegradation of the oil in sediment is occurring slowly, especially at the more heavily contaminated sites closer to the well (Liu et al., 2012). This new information supports the previous conclusions of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that oiling impacts would be greater closer to a blowout and would decrease with distance from the oil source.

Oysters from two separate studies have not shown impacts from the *Deepwater Horizon* oil spill. Oysters that were transplanted before, during, and after the *Deepwater Horizon* oil spill, in areas of Mobile Bay and the Mississippi and Alabama coast that were potentially exposed to oil, did not show evidence of oil-derived C and N in their shells or tissue (Carmichael et al., 2012). This finding indicates that the oysters sampled were either not exposed to oil, did not feed on oiled food sources, or consumed too little oiled food to detect in their shells and tissue. It is also possible that the oysters rapidly depurated any consumed oil or slowed filter feeding due to the stress of oil exposure. Whatever the reason, because oysters did not assimilate oil-derived C and N, they did not provide a contaminated food source to higher trophic levels (Carmichael et al., 2012). In addition, oysters collected from oil exposed areas of Mississippi Sound 6 months after the *Macondo* well was capped did not show PAH accumulation (Soniat et al., 2011). Oyster condition, infection rate, and reproductive state were no different from oysters sampled from areas not exposed to oil. Both oyster studies caution, however, that sample sizes were small and the findings of the study should not be extrapolated to all oysters in the GOM. Nonetheless, the results indicate that oysters in the CPA should not have accumulated PAH or assimilate oil-derived C or N from the *Deepwater Horizon* oil spill either.

Many deepwater soft bottom benthic sites have been sampled by NRDA through visual documentation and sediment coring to assess the adverse effects of dispersed oil and drilling mud from the *Deepwater Horizon* explosion, oil spill, and response on these habitats. The information collected at site-specific locations will be used to model the extent of oiling in deepwater sediments (USDOC, NOAA, 2012). This information has yet to be released.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.11 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information regarding the impacts of the *Deepwater Horizon* explosion, oil spill, and response to soft bottom benthic communities in the CPA, as well as incomplete or unavailable information on the cumulative impacts of the OCS Program on the soft bottom benthic communities of the GOM.

This incomplete or unavailable information on the impacts to soft bottom benthic communities as a result of the *Deepwater Horizon* explosion, oil spill, and response may be relevant to this analysis because the *Deepwater Horizon* explosion, oil spill, and response may have caused changes to baseline conditions for localized soft bottom benthic communities in the Gulf of Mexico, especially those communities near the *Macondo* wellhead. Relevant data on the status of soft bottom benthic communities after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze. Much of these data are being developed through the NRDA process, which may take years to complete, and little data from the NRDA process have been made available to date. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information on the impacts of the *Deepwater Horizon* explosion, oil spill, and response and formulate the conclusions presented here. For example, the following information was analyzed with regards to soft bottoms and the possible impacts related to the *Deepwater Horizon* explosion, oil spill, and response: the National Oceanic and Atmospheric Administration's ERMA posted on GeoPlatform.gov (USDOC, NOAA, 2011d); data from the OSAT (2010) report; small pieces of NRDA data that have been released (USDOC, NOAA, 2012); newly published reports on impacts to benthic communities from the *Deepwater Horizon* explosion, oil spill, and response (Montagna et al., 2013; Liu et al., 2012; Carmichael et al., 2012; Soniat et al., 2011); and data on benthic population recovery after disturbance (Gaston et al., 1998; Diaz and Solow, 1999; Rabalais et al., 2002a; Ganning et al., 1984; Gómez Gesteira and Dauvin, 2000). These

resources reveal reasonably foreseeable significant adverse impacts to a small portion of the overall seafloor of the GOM as a result of the *Deepwater Horizon* explosion, oil spill, and response. This small portion of the seafloor is inhabited by a soft bottom benthic community that is abundant throughout the seafloor of the GOM. Impacts to any portion of this community would not cause population-level impacts to the overall soft bottom benthic community on the GOM, and the community is likely to recover to pre-spill population levels. Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives based on the analysis conducted by BOEM's subject-matter experts, who have used available scientifically credible evidence in this analysis and applied it using accepted scientific methods and approaches. The reasons the information is not essential to a reasoned choice among alternatives are as follows:

- (1) Impacts to soft bottom benthic communities only occurred to a small portion of the overall soft bottom benthic communities of the GOM. The greatest deposition of oil on the seafloor was closest to the well, and concentrations decreased with distance from the wellhead (OSAT, 2010; Montagna et al., 2013; Liu et al., 2012). The PAH concentrations in sediment did exceed the USEPA's aquatic life benchmarks within 3 km (2 mi) of the *Macondo* well, and this appeared to be correlated with a reduction in benthic abundance in the area and a slower breakdown of petroleum hydrocarbons in the sediment (OSAT, 2010; Montagna et al., 2013; Liu et al., 2012). Additional measurements indicate that PAH concentrations in the sediment and resultant impacts on organisms were reduced farther from the well (OSAT, 2010; Montagna et al., 2013; Liu et al., 2012). Other studies on oyster beds, which were located farther from the well, in coastal Mississippi and Alabama waters did not indicate PAH exposure or assimilation by oysters (Carmichael et al., 2012; Soniat et al., 2011). These available data indicate that the greatest impacts to soft bottom benthic communities appear to have occurred within 3 km (2 mi) of the Macondo well, which is a very small portion of the overall seafloor area of the GOM.
- The soft bottom benthic communities are anticipated to recover to pre-spill (2)population levels. The soft bottom benthic communities in the GOM are frequently disturbed by natural events such as storms, extreme weather, and fluctuations of environmental conditions, as well as by human-induced actions such as dredging, sand mining, offshore oil and gas activity, and commercial fishing. These frequent disturbances keep the soft bottom benthic communities in early successional stages, with populations dominated by rapidly reproducing organisms. Recovery of benthic populations to pre-disturbance conditions will generally occur very quickly, typically beginning within the next reproduction cycle of nearby organisms (Gaston et al., 1998; Diaz and Solow, 1999; Rabalais et al., 2002a). However, if the sediment is heavily oiled, recovery has been reported to take up to 5-10 years (Ganning et al., 1984; Gómez Gesteira and Dauvin, 2000). Based on recent reports, the oil in the sediment near the wellhead is weathering, and based on known benthic population information for the GOM, opportunistic species will begin to repopulate oiled areas as soon as they can tolerate the conditions. This repopulation has already been seen through reports of nematodes (opportunistic worms) that were abundant in areas with organic enrichment as a result of the spill (Montagna et al., 2013).

There is also incomplete or unavailable information on the cumulative impacts of the OCS Program on soft bottom benthic communities in the GOM. This incomplete or unavailable information may be relevant to this analysis because these events may have caused changes to baseline conditions of localized soft bottom benthic communities in the GOM; however, we are not able to obtain the data on the cumulative impacts of the OCS Program on soft bottom benthic communities in the GOM because it is cost and time exorbitant as well as difficult to determine the difference between impacts from the offshore OCS Program and other impacts from outside of the program. However, BOEM used reasonably accepted scientific methodologies to extrapolate from existing information to determine the potential cumulative impacts of routine OCS oil- and gas-related activity on soft bottom benthic communities. Research has indicated that impacts as a result of routine events are localized and limited to areas surrounding the activity (Kennicutt et al., 1996; CSA, 2004; Gittings et al., 1992a; Holdway, 2002), and accidental impacts, such as oil spills and blowouts, have the greatest impacts near the source of the oil and impacts are reduced with distance (OSAT, 2010; Montagna et al., 2013; Liu et al., 2012). This information, paired with the approximate 0.0002 percent GOM seafloor that is occupied by active platforms (USDOI, BOEM, 2014b; LGL Ecological Research Associates, Inc. and Science Applications International Corporation, 1998) and the rapid recovery rates of disturbed infaunal benthic populations in the GOM (Gaston et al., 1998; Diaz and Solow, 1999; Rabalais et al., 2002a; Neff, 2005), indicates that the cumulative impacts of OCS oil- and gas-related activities in the GOM are predicted to be negligible and therefore not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for soft bottom benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for soft bottom benthic communities presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Impacts from routine activities of OCS oil- and gas-related operations including anchoring, structure emplacement and removal, pipeline emplacement, drilling discharges of muds and cuttings, operational discharges of produced waters, accidental oil spills, and blowouts associated with OCS oil- and gas-related activities may have locally devastating impacts on infaunal communities, but the cumulative effect on the overall seafloor and infaunal communities on the Gulf of Mexico would be very small. Soft bottom benthic communities are ubiquitous throughout the GOM and often remain in an early successional stage due to natural fluctuation. Therefore, the activities of OCS production of oil and gas would not cause additional severe cumulative impacts to soft bottom benthic communities. Long-term OCS oil- and gas- related activities are not expected to adversely impact the entire soft bottom environment because the local impacted areas are extremely small compared with the entire seafloor of the Gulf of Mexico and because impacted communities are repopulated relatively quickly.

Non-OCS oil- and gas-related activities that may occur on soft bottom benthic substrate include recreational boating and fishing, commercial fishing, import tankering, cable laying, sand mining, and natural events such as extreme weather conditions, and extreme fluctuations of environmental conditions. These activities could cause temporary damage to soft bottom communities. Ships and fishermen anchoring on soft bottoms could crush and smother underlying organisms. Cable laying and sand mining could suspend sediments and impact benthic organisms through dermal abrasion, clogged gills, and burial. During severe storms, such as hurricanes, large waves may stir bottom sediments, which cause scouring, remobilization of contaminants in the sediment, abrasion and clogging of gills as a result of turbidity, uprooting benthic organisms from the sediment, and an overall result in decreased species diversity (Engle et al., 2008; Dobbs and Vozarik, 1983). Yearly hypoxic events may eliminate many species from benthic populations over a wide area covering most of the CPA and part of the WPA continental shelf (Rabalais et al., 2002a).

The incremental contribution of a CPA proposed action to the cumulative impact is expected to be slight, with possible impacts from physical disturbance of the bottom, discharges of drilling muds and cuttings, other OCS discharges, structure removals, and oil spills. Negative impacts, however, are small compared with the overall size and ubiquitous composition of the soft bottom benthic communities in the Gulf of Mexico. Non-OCS oil- and gas-related factors, such as storms, trawling, non-OCS oil- and gas-related spills, and hypoxia, are likely to impact the soft bottom communities on a more frequent basis. Impacts from OCS oil- and gas-related activities are also somewhat minimized by the fact that these communities are ubiquitous throughout the CPA and can recruit quickly from neighboring areas.

4.1.1.12. Marine Mammals

BOEM has reexamined the analysis for marine mammals presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for marine mammals presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

A detailed description of marine mammals can be found in Chapter 4.2.1.12.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS.

Impacts of Routine and Accidental Events

The routine activities associated with proposed CPA Lease Sales 235, 241, and 247 that would potentially affect marine mammals include the following: the degradation of water quality from operational discharges; noise generated by aircraft, vessels, operating platforms, and drillships; vessel traffic; explosive structure removals; seismic surveys; and marine debris from service vessels and OCS structures. A detailed impact analysis of the routine impacts of proposed CPA Lease Sales 235, 241, and 247 on marine mammals can be found in Chapter 4.2.1.12.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS.

Some routine activities related to a CPA proposed action have the potential to have adverse, but not significant, impacts to marine mammal populations in the GOM. Impacts from vessel traffic, structure removals, and seismic activity could negatively impact marine mammals; however, when mitigated as required by BOEM and NMFS, these activities are not expected to have long-term impacts on the size and productivity of any marine mammal species or population. Most other routine activities are expected to have negligible effects.

Impact-producing factors associated with accidental events that may be associated with a CPA proposed action that could affect marine mammals include blowouts, oil spills, and spill-response activities. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241 and 247 on marine mammals can be found in Chapter 4.2.1.12.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events related to a CPA proposed action have the potential to have adverse, but not significant, impacts to marine mammal populations in the Gulf of Mexico. Accidental blowouts, oil spills, and spill-response activities may impact marine mammals in the Gulf of Mexico. Characteristics of impacts (i.e., acute vs. chronic impacts) depend on the magnitude, frequency, location, and date of accidents; characteristics of spilled oil; spill-response capabilities and timing; and various meteorological and hydrological factors.

Oil spills may cause chronic (long-term lethal or sublethal oil-related injuries) and acute (spill-related deaths occurring during a spill) effects on marine mammals. Long-term effects include decreases in prey availability and abundance because of increased mortality rates, change in age-class population structure because certain year-classes were impacted more by oil, decreased reproductive rate, and increased rate of disease or neurological problems from exposure to oil (Harvey and Dahlheim, 1994). The effects of cleanup activities are unknown, but increased human presence (e.g., vessels) could add to changes in marine mammal behavior and/or distribution, thereby additionally stressing animals and perhaps making them more vulnerable to various physiologic and toxic effects.

Even after the spill is stopped, oiling or deaths of marine mammals could still occur due to oil and dispersants persisting in the water, past marine mammal/oil or dispersant interactions, and ingestion of contaminated prey. The animals' exposure to hydrocarbons persisting in the sea may result in sublethal impacts (e.g., decreased health, reproductive fitness, and longevity; behavioral effects; and increased

vulnerability to disease) and some soft tissue irritation, respiratory stress from inhalation of toxic fumes, food reduction or contamination, direct ingestion of oil and/or tar, and temporary displacement from preferred habitats.

Cumulative Impacts

Background/Introduction

The cumulative analysis considers past, ongoing, and foreseeable future human and natural activities that may occur and adversely affect marine mammals in the same general area that may be affected by a CPA proposed action. The major potential impact-producing factors affecting protected marine mammals in the GOM as a result of cumulative OCS oil- and gas-related activities include marine debris, contaminant spills and spill-response activities, vessel traffic, noise, seismic surveys, and explosive structure removals. Non-OCS oil- and gas-related activities that may affect marine mammal populations include vessel traffic and related noise (including from commercial shipping and research vessels), military operations, commercial fishing, pollution, scientific research, and natural phenomena. Specific types of impact-producing factors considered in this cumulative analysis include noise from numerous sources, pollution, habitat degradation, vessel strikes, and ingestion and entanglement in marine debris.

OCS Oil- and Gas-Related Activities

The major impact-producing factors relative to a CPA proposed action are described below and in Chapter 4.2.1.12 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS. Chapters providing supportive material for the marine mammals analysis include Chapter 4.1.1.12 (description of marine mammals) of the 2012-2017 WPA/CPA Multisale EIS, updated information provided in Chapter 4.1.1.12 of the WPA 233/CPA 231 Supplemental EIS, and Chapters 3.1.1.2 (exploration and delineation), 3.1.1.3 (development and production), 3.1.1.6 (noise), 3.1.2.1 (coastal impact-producing factors and scenario), and 3.2.1 (oil spills) of this Supplemental EIS. This Agency completed a Programmatic EA on G&G permit activities in the GOM (USDOI, MMS, 2004). The Programmatic EA includes a detailed description of the seismic surveying technologies, energy output, and operations, and it is hereby incorporated by reference.

Noise in the ocean has become a worldwide topic of concern, particularly in the last decade. The GOM is a very noisy place, and noise in the Gulf comes from a broad range of sources. Virtually all of the marine mammal species in the Gulf have been exposed to OCS industrial noise due to the rapid advance into GOM deep oceanic waters by the oil and gas industry in recent years; whereas, 20 years ago, the confinement of industry to shallower coastal and continental shelf waters generally only exposed two species of marine mammals (the bottlenose dolphin and the Atlantic spotted dolphin) to industry activities and the related sounds. Most marine mammal species in the Gulf, and particularly the deepwater mammals, rely on echolocation for basic and vital life processes including feeding, navigation, and conspecific and mate communication. Noise levels that interfere with these basic functions could have impacts on individuals and populations. The OCS oil and gas industry's operations contribute noise to the marine environment from several different operations. As noted below and in Chapter 4.2.1.12.2 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS, it is believed that most of the oil and gas industry-related noise is at lower frequencies than is detectable or in the sensitivity range of most of the GOM marine mammal species. However, most of the information on marine mammal hearing is inferred, and there are reports of species reacting to sounds that were not expected to be audible.

Industry noise sources include seismic operations, fixed platforms and drilling rigs, drilling ships, low-flying aircraft, vessel traffic, and explosive operations, particularly for structure removal. **Chapter 3.1.1.6** discusses the expected sources of many of these impacts for the OCS Program, as well as the expected sources from past, present, and future OCS oil and gas industry operations. Many other sources also contribute to the overall noise in the GOM. The dominant source of human sound in the sea is ship noise (Tyack, 2008). Both the noise from the vessel's operation as well as the potential for ship strikes could potentially impact marine mammals. The primary sources of vessel noise are propeller cavitations, propeller singing, and propulsion; other sources include auxiliaries, flow noise from water dragging along the hull, and bubbles breaking in the wake (Richardson et al., 1995). The intensity of noise from oil and gas industry service vessels is roughly related to ship size and speed. Large ships tend to be noisier than

small ones, and ships underway with a full load (or towing or pushing a load) produce more noise than unladed vessels. The GOM is a very active shipping area and supertankers are very common. Of the 10 busiest ports in the United States, 7 are located in the Gulf of Mexico (USEPA, 2011c). Industry service boats are numerous and are expected to make 3,310-4,382 round trips in the GOM per year. Service vessels are a large contributor to ship noise; however, service boats are not nearly as large or as loud as commercial shipping vessels. Also, service vessels travel rapidly and, thus, an area is ensonified for only a brief time.

BOEM and BSEE issued NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting," which provides guidance for vessel strike avoidance and reporting. This guidance should minimize the chance of marine mammals being subject to the increased noise level of an oil and gas service vessel in very close proximity. Aircraft overflights are another source of noise and can cause startle reactions in marine mammals, including rapid diving, change in travel direction, and dispersal of marine mammal groups. With approximately 1 million helicopter take offs/landings expected per year from activity related to past, proposed, and future lease sales, OCS oil and gas industry activity contributes greatly to this noise source. Although air traffic well offshore is limited, flight level minimum guidelines from NOAA and corporate helicopter policy should help mitigate the industry-related flight noise, although lower altitudes near shore and as the helicopter lands and departs from rigs could impact marine mammals in close proximity to the structures or shore bases. Occasional overflights are not expected to have long-term impacts on marine mammals.

Vessel strikes are a serious threat to marine mammals in the GOM. A collision between a marine mammal and a ship will result in injury and likely death. The increase in vessel traffic due to a CPA proposed action would increase the probability of a vessel strike and the injury or death of some animals. The increased vessel traffic may alter behavior of marine mammals by avoidance, displacement, or attraction to the vessel. However, those effects are expected to be short term. BOEM and BSEE issued NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting," which provides guidance for vessel strike avoidance and reporting in order to minimize the harassment of mammals by vessels approaching too closely. It also provides for the reporting of injured or dead protected species. Although OCS oil- and gas-related vessel traffic would be a major component of the cumulative vessel impacts, professional piloting and regulatory guidelines would minimize the impact of the OCS segment of vessel traffic.

The OCS oil and gas industry drilling impacts are discussed in **Chapter 3.1.1**. Although much of the focus is on industry operations in deep water, there is still interest and activity in more shallow and even coastal waters for oil and gas production. Similarly, explosive structure removals put considerable sound into the ocean, and these can occur in Federal or State waters. In 2005, this Agency petitioned NMFS for incidental-take regulations under the MMPA to address the potential injury and/or mortality of marine mammals that could result from the use of explosives during decommissioning activities. Similarly, this Agency initiated ESA Section 7 consultation efforts with NMFS to cover potential explosive-severance impacts to threatened and endangered species such as sperm whales (and sea turtles). The consultation was completed in August 2006, and the final MMPA take rule was published in June 2008 (Federal Register (2008a). The mitigation, monitoring, and reporting requirements from the current ESA Biological Opinion/Incidental Take Statement and MMPA regulations mirror one another and allow explosive charges up to 500 lb (227 kg), internal and external placement, and both above-mudline and The BOEMRE issued "Decommissioning Guidance for Wells and below-mudline detonations. Platforms" (NTL 2010-G05) to offshore operators. This guidance specifies and references mitigation requirements in the new ESA and MMPA guidance and require trained observers to watch for protected species of sea turtles and marine mammals in the vicinity of the structures to be removed.

Seismic exploration is the source of the loudest, and perhaps most controversial, OCS oil and gas industry activity. Details on seismic impacts on marine mammals are given in the Chapter 4.2.1.12.2 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS, and complete information is included in the G&G Programmatic EA (USDOI, MMS, 2004). Seismic exploration is an integral part of oil and gas discovery, development, and production in the GOM. With technical advances that now allow extraction of petroleum from the ultra-deep areas of the Gulf, seismic surveys are routinely conducted in virtually all water depths of the western GOM, including the deep habitat of the endangered sperm whale. Noise and acoustic disturbance have been topics of great debate in the last several years, and there is general agreement that the use of sonar, particularly by the military, has in some cases been associated with very severe impacts to certain species of marine mammals in recent years. Seismic airgun sounds are often incorrectly lumped with sonar noise as sources of marine mammal disturbance. Although there are anecdotal associations between marine mammal disturbance and airgun noise, most of those have other factors occurring at the same time (i.e., sonar use) that may be responsible for any adverse impacts. However, seismic surveys have the potential to impact marine mammals. In 2003, NMFS published a notice of receipt of application for an incidental take authorization from this Agency, requesting comments and information on taking marine mammals incidental to conducting oil and gas exploration activities in the GOM (Federal Register, 2003). In 2004, NMFS published a notice of intent to prepare an EIS, notice of public meetings, and request for scoping comments for the requested authorizations (Federal Register, 2004). In April 2011, NMFS received a revised complete application from this Agency requesting an authorization for the take of marine mammals incidental to seismic surveys on the OCS in the GOM (Federal Register, 2011). The National Marine Fisheries Service's EIS has not been completed at this time. In response to terms and conditions in NMFS's Biological Opinion for Lease Sale 184 in 2002, this Agency developed mitigations for the seismic industry that require, among other things, dedicated marine mammal observers aboard all seismic vessels, gradual ramp-up of the airgun array, and shutdowns of airgun firing if a whale gets within 500 m (1,640 ft) of an active airgun array. Although shutdowns are not extremely frequent, they do occur. Also, as reported in Chapter 4.2.1.12.1 of the 2012-2017 WPA/CPA Multisale EIS, current research by BOEM and partners did not detect avoidance of seismic vessels or airguns by sperm whales. Although that finding could be interpreted several ways, it is likely that the whales, which appear to generally remain in the northern Gulf year round, are habituated to seismic operations. Since the sperm whale is the only endangered cetacean (whale or dolphin) in the GOM, most of the research has focused on that species. However, other species may react very differently to seismic disturbances. Even with additional ongoing research, such changes in species abundance and distribution due to seismic disturbances would likely be very difficult to establish on a small scale. For the sperm whale, the most recent abundance for the GOM population was estimated to be 763 individuals (Waring et al., 2013). Research has shown that sperm whales are distributed throughout the deeper waters of the northern GOM, not primarily in Mississippi Canyon as previously thought. With seismic surveys frequently conducted in the GOM, it is likely that there are few naive sperm whales (those that have not been exposed to seismic sound) in the northern Gulf. The GOM sperm whales have generally been smaller than sperm whales in other areas, and genetic research indicates a distinct stock or population that is almost exclusively females and immature males; mature males are thought to move into and out of the GOM. Observations of adult males are uncommon in the GOM (<10), yet calves are seen regularly. Reproduction is occurring in a highly industrialized environment, although stress, particularly at the individual animal level, is difficult to observe and measure. Over the long term, stress to a population could cause very significant adverse effects, including disease, reproductive failure, and population decline. Tools such as the satellite tag (s-tag) that allow the tracking of individual whales, and sometimes several individuals in a group, over the span of weeks and months may provide information on behavioral changes, as well as learning what is "typical" whale behavior.

Pollution of marine waters is another potentially adverse impact to marine mammals in the GOM. Information on drilling fluids and drill cuttings and produced waters that would be discharged offshore is discussed in **Chapter 3.1.1.4**. Effluents are routinely discharged into offshore waters and are regulated by the U.S. Environmental Protection Agency's NPDES permits. Marine mammals may be periodically exposed to these discharges. Direct effects to marine mammals are expected to be sublethal. Indirect effects via food sources are not expected because of dilution and dispersion of offshore operational discharges. Another OCS oil and gas industry form of pollution is accidental oil spills. Impacts of these accidental events to marine mammals are discussed below and in Chapter 4.2.1.12.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.12 of the WPA 233/CPA 231 Supplemental EIS.

Marine debris is a serious concern in the ocean environment. Plastics in particular, and from many different sources, pose a threat to the environment and a serious threat to marine mammals. Ingestion of plastic can cause a digestive blockage and ultimately death for a marine mammal. Entanglement in anything from 6-pack rings to strapping bands to discarded monofilament nets can result in injury and very slow death for marine mammals. A wide variety of debris is commonly observed in the Gulf and it comes from both terrestrial and marine sources. Accidental release of debris from OCS oil- and gas-related activities is known to occur offshore, and ingestion of, or entanglement in, discarded material could injure or kill cetaceans. Sheavely (2007) reports that as much as 49 percent of marine debris is considered land-based. The offshore oil and gas industry was shown to contribute 13 percent of the

debris found at Padre Island National Seashore in 1995 (Miller et al., 1995). Since that time, industry has implemented waste management programs and has greatly improved waste handling. More efficient gear packaging and better galley practices have significantly reduced the amount of waste generated offshore. The BSEE prohibits the disposal of equipment, containers, and other materials into coastal and offshore waters by lessees (30 CFR § 250.40). Prohibition of the discharge and disposal of vessel- and offshore structure-generated garbage and solid waste items into both offshore and coastal waters was established January 1, 1989, via the enactment of MARPOL, Annex V, Public Law 100-220 (101 Statute 1458), which the USCG enforces. BOEM provides information on marine debris and awareness and requires training of all OCS personnel through the "Marine Trash and Debris Awareness and Elimination" NTL (NTL 2012-BSEE-G01).

In 2010, the Deepwater Horizon explosion occurred in Mississippi Canyon Block 252, and the resulting oil spill and related spill-response activities (including use of dispersants) have impacted marine mammals that have come into contact with oil and remediation efforts. According to NMFS's website reports on stranded marine mammals during and after the Deepwater Horizon explosion, oil spill, and response, 171 marine mammals (the majority of which were deceased) have been collected as of April 17, 2011 (USDOC, NMFS, 2013a). All marine mammals collected either alive or dead were found east of the Louisiana/Texas border. A recent study conducted as part of the NRDA process found strong evidence of petroleum hydrocarbon exposure and toxicity, some expected to result in death, in common bottlenose dolphins in Barataria Bay, Louisiana, an area that was heavily oiled during the Deepwater *Horizon* explosion and oil spill, as compared with common bottlenose dolphins in Sarasota Bay, Florida (Schwacke et al., 2013). Advances in oil-spill prevention technologies and safety requirements should greatly reduce the amount of oil that enters the marine environment accidentally. However, there is still the potential for an oil spill. Many small spills are estimated as a result of the OCS Program. The probability of a spill will decrease as the projected size of the spill increases. Marine mammals are likely to contact oil in the marine environment over their life span. However, because of dilution and weathering, such contact is expected to be sublethal in most situations. Indirect effects from the exposure of prey species to oil are also expected to be sublethal. Oil in the ocean can and does come from sources other than industry operations. Ships are known to illegally pump oily bilges into the environment. Mechanical failure on any type of vessel can lead to an oil spill, although these are usually small. Even natural seeps on the floor of the GOM can result in an oil slick or sheen on the surface (NRC, 2003).

An unusual mortality event (UME) is defined in the MMPA as "a stranding that is unexpected; involves a significant die-off of any marine mammal population; and demands immediate response." The UMEs appear to be triggered by natural events (i.e., unusually cold weather and disease) but others are suspected to at least be indirectly caused by pollution of various contaminants. It is unclear at this time whether the UME occurring in the GOM is related partially, wholly, or not at all to the Deepwater *Horizon* explosion, oil spill, and response. According to NMFS's website referenced above, which is the only publicly available source of information at this time on the UME, evidence of the UME was first documented by NMFS as early as February 2010, several months prior to the Deepwater Horizon explosion, oil spill, and response. However, the current data (Table 4-1) also show a marked increase in strandings during the *Deepwater Horizon* explosion, oil spill, and response and afterwards. According to the website, NMFS considers the investigation into the cause of the UME and the potential role of the Deepwater Horizon explosion, oil spill, and response to be "ongoing and no definitive cause has yet been identified for the increase in cetacean strandings in the northern Gulf in 2010 and 2011." It is therefore unclear whether increases in stranded cetaceans during and after the Deepwater Horizon explosion, oil spill, and response period are or are not related to impacts from the Deepwater Horizon explosion, oil spill, and response and will likely remain unclear until NMFS completes its UME and NRDA evaluation processes.

Non-OCS Oil- and Gas-Related Activities

Non-OCS oil- and gas-related activities that may affect marine mammal populations include vessel traffic and related noise (including from commercial shipping, research vessels), military operations, commercial fishing, pollution, scientific research, and natural phenomena.

Other groups such as the military (U.S. Navy and USCG) and other Federal agencies (USEPA, COE, and NMFS), dredges, commercial fishermen, and recreational boaters operate vessels and contribute to the ambient noise in the Gulf. The COE also engages in some explosive and pile-driving operations that

create loud but temporary noise. Such COE activities are consulted on with NMFS, and mitigations are included, often similar to the mitigations employed by BOEM in consultation with NMFS. Although air traffic well offshore is limited, the military maintains 11 military warning areas and 6 water test areas in the Gulf (**Figure 2-2**). Some commercial fisheries include aerial surveillance. Scientific research aerial surveys are occasionally scheduled over the GOM. Commercial and private aircraft also traverse the area. State oil and gas activities (**Chapter 3.3.2**) also create drilling and associated noise, particularly in Texas and Louisiana State waters. These effects are similar to those of OCS oil and gas operations discussed above.

Industry-related vessels are only a part of the shipping activity in the Gulf. All manner of commercial shipping vessels, commercial fishing vessels, military ships, research ships, recreational craft, and others are always present in the Gulf. Some factions of the boating public, mainly recreational fishermen and boaters, create adverse impacts by paying too much attention rather than not enough. Although most of these interactions are because of ignorance rather than malicious intent, reports of harassment, inappropriate feeding, and even attempting to swim with marine mammals are common. Dolphins have been injured and killed after becoming accustomed to being fed by humans. Animals become sick from eating the "food" that people throw. Very close approaches by boats are likely major causes of stress in marine mammals, as is chasing and following. The presence of industry structure (platforms) in the deep waters of the Gulf may indirectly be encouraging these interactions. Recreational fishing vessels go much farther out to get to the improved fishing at OCS oil and gas structures. This also puts these vessels in oceanic marine mammal waters. Service-vessel crews that keep attention on the water and that intentionally avoid marine mammals should not pose a threat to marine mammal populations.

The Gulf has very little fishery interaction with marine mammals compared with other areas. However, marine mammals can be injured or killed by commercial fishing gear. Mammals can either get caught on longline hooks or can be entrained into a net by a shrimp boat or groundfish vessel. There is also the chance of entanglement by lines from crab traps to buoys. Gillnets, which have now been banned in many places around the Gulf, have been reported to take marine mammals. Reports of these impacts are uncommon.

Pollution in the ocean comes from many point and nonpoint sources, and the GOM is certainly no exception. The drainage of the Mississippi River results in massive amounts of chemicals and other pollutants being constantly discharged into the Gulf. The zone of hypoxia on the Louisiana-Texas shelf is one of the largest areas of low oxygen in the world's coastal waters (Murray, 1997). Since most of the marine mammals in the Gulf are oceanic dwellers that have the ability to alter their course depending on the surroundings, the impact of coastal and run-off pollution is greatly minimized as a result of dilution and dispersal. Primarily, the bottlenose dolphin and the manatee are most at risk for nearshore pollution. Bottlenose dolphins have been reported having very high levels of contaminants, including heavy metals, in tissue samples. Coastal dolphins generally have higher contaminant levels than offshore dolphins, which supports the dilution and dispersal theory. Prey species also affect the influence of pollution on marine mammals. Biomagnification in fish results in the generally higher contaminant levels of fisheating marine mammals over squid-eating species. Manatees are herbivores, but pollution and habitat degradation may impact the manatee. Manatees are exposed to pesticides by ingesting aquatic vegetation containing concentrations of these compounds. The propensity of manatees to aggregate at industrial and municipal outfalls also may expose them to high concentrations of contaminants. Antifouling bottom paint on the hulls of boats has been linked to the release of contaminants. For coastal dolphins and especially manatees that are very well known to frequent marinas and that scratch on the hulls of vessels, areas with high concentrations of vessels may have extremely polluted waters.

Marine debris from non-OCS oil- and gas-related sources also has the potential to impact marine mammals. These impacts would not be different from those described above for OCS oil- and gas-related sources.

Scientific research can impact marine mammal species. BOEM has conducted numerous marine mammal research cruises, and permitted activities have included tagging and biopsy sampling. Protocols are always in place to keep the mammals safe, but some of the research techniques do involve harassment and possible stress to the animal. Scientific seismic studies could have the same impact with the same very loud noise as industry seismic work. Scientific groundfish or shrimp cruises can entrap a dolphin in a net just as commercial fisheries can. In 2011, a scientific cruise that was associated with NRDA killed six dolphins while sampling fish with nets. Scientific aerial surveys are also periodically conducted in the Gulf, and aircraft can startle marine mammals. Circling pods for identification may stress multiple

individuals in a pod. Such marking techniques as freeze branding were used in the past to do markrecapture studies. This required the live capture and branding of dolphins. Both the U.S. Navy and the public-display industry took bottlenose dolphins from the Gulf in years past. A moratorium on live captures has been in effect for several years, as captive breeding programs have become successful enough to provide dolphins for aquariums and zoos.

Other activities may have adverse effects on marine mammals. Occasionally, numbers of marine mammals strand, either alive or already dead. Die-offs happen infrequently but can seriously deplete small, discreet stocks. The causes of die offs are not always well known and vary by event. Some appear to be triggered by natural events (i.e., unusually cold weather) but others are suspected to at least be indirectly caused by pollution of various contaminants. Exposure to certain compounds may weaken the natural immunity of marine mammals and make them susceptible to viruses and diseases that would normally not affect them. Certain viruses are being observed more frequently than in the past. A UME is defined under the MMPA as a "stranding that is unexpected, involves a significant die-off of any marine mammal population, and demands immediate response." Several UMEs have been declared since 2010 in the Gulf of Mexico. Some potential causes have been determined and an UME may have devastating effects on a marine mammal population depending on its extent and duration. More detail on UMEs can be found on NMFS's website at http://www.nmfs.noaa.gov/pr/health/mmume/ (USDOC, NMFS, 2014a).

Tropical storms and hurricanes are normal occurrences in the Gulf and along the coast. Generally, the impacts have been localized and infrequent. However, during the past 10 years, the GOM has been hit extremely hard by very powerful hurricanes. Few areas of the coast had not suffered some damage in 2004 and 2005, and activities in the Gulf have also been severely impacted. In 2004, Hurricane Ivan took a large toll on oil and gas structures and operations in the Gulf and caused widespread damage to the Alabama-Florida Panhandle coast. In 2005, Hurricanes Katrina, Rita, and Wilma reached Category 5 strength in the GOM, and these hurricanes were followed in 2008 by Hurricane Gustav. These storms caused damage to all five of the Gulf Coast States and damage to structures and operations both offshore and onshore. The actual impacts of these storms on the animals in the Gulf, and the listed species and critical habitat in particular, have not yet been determined and, for the most part, may remain very difficult to quantify. Examples of other impacts that may have affected species include oil, gas, and chemical spills from damaged and destroyed structures and vessels (although no major oil spills were reported, several lesser spills are known to have occurred), increased trash and debris in both offshore and inshore habitats, and increased runoff and silting from wind and rain. Not only are the impacts themselves difficult to assess but the seasonal occurrence of impacts from hurricanes is also impossible to predict. Generally, the far offshore species and the far offshore habitat are not expected to have been severely affected in the long term. However, species that occupy more nearshore or inshore habitats may have suffered more long-term impacts.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (NOAA's websites, and the RestoreTheGulf.gov website), as well as recently published journal articles was conducted to determine the availability of recent information on marine mammals.

On December 13, 2010, NMFS declared an UME for cetaceans (whales and dolphins) in the Gulf of Mexico. An UME is defined under the Marine Mammal Protection Act as a "stranding that is unexpected, involves a significant die-off of any marine mammal population, and demands immediate response." Evidence of the UME was first noted by NMFS as early as February 2010, before the *Deepwater Horizon* explosion, oil spill, and response. As of June 15, 2014, a total of 1,228 cetaceans (5% stranded alive and 95% stranded dead) have stranded since the start of the UME, with a vast majority of these strandings between Franklin County, Florida, and the Louisiana/Texas border. After the initial response phase ended, six dolphins were killed incidental to fish related scientific data collection and one dolphin was killed incidental to trawl relocation for a dredging project. More detail on the UME can be found on NMFS's website (USDOC, NMFS, 2014a).

In addition to investigating all other potential causes, scientists are investigating what role *Brucella* may have played in the UME and this continues today. As of June 17, 2014, 53 out of 173 dolphins tested to date were positive or suspect positive for *Brucella* (USDOC, NMFS, 2014b). *Brucella* spp. refers to a genus of bacteria that infect many terrestrial and aquatic vertebrates around the world. The

4-107

disease, called brucellosis, is best known for its role in causing abortion in domestic livestock and undulant fever in people. The total deaths for just one of the cetaceans, the bottlenose dolphin, currently well exceed the Potential Biological Removal. (The Potential Biological Removal is the product of minimum population size, one-half the maximum net productivity rate and a recovery factor for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (Waring et al., 2013). It is unclear at this time whether the increase in strandings is related partially, wholly, or not at all to the *Deepwater Horizon* explosion, oil spill, and response. The NMFS has documented 25 UMEs (17 of which involved cetaceans; the remaining 8 were specific to manatees only) that have occurred in the GOM for cetaceans since 1991.

According to their website, NMFS considers the investigation into the cause of the UME and the potential role of the *Deepwater Horizon* explosion, oil spill, and response to be "ongoing and no definitive cause has yet been identified for the increase in cetacean strandings in the northern Gulf from 2010 to the present." It is therefore unclear whether increases in stranded cetaceans during and after the *Deepwater Horizon* explosion, oil spill, and response period are or are not related to impacts from the *Deepwater Horizon* explosion, oil spill, and response, and it will likely remain unclear until NMFS completes its UME and NRDA evaluation processes.

On May 9, 2012, NOAA declared an UME for bottlenose dolphins in five Texas counties (UME No. 56). The UME lasted from November 2011 through March 2012, when 123 bottlenose dolphins stranded in Aransas, Calhoun, Kleberg, Galveston, and Brazoria Counties in Texas. Of the 123 animals stranded, only 4 were found alive. Preliminary findings included infection in the lung, poor body condition, discoloration of the teeth, and in four animals, a black/grey, thick mud-like substance in the stomachs was found. The strandings were coincident with a harmful algal bloom of *Karenia brevis* that started in September 2011 in southern Texas, but researchers have not determined that was the cause of the event. Currently, there are no red tide blooms occurring in the region, and stranding rates have returned to normal levels (USDOC, NMFS, 2013b).

As of October 3, 2013, a red-tide event in southwest Florida has claimed 276 manatees so far this year since first detecting the red tide bloom in late September 2012. Although results are preliminary, this is the highest number of red tide-related deaths in a single calendar year on record. State and Federal scientists are monitoring and responding to manatees affected by the ongoing red tide bloom along the southwest Florida coast (State of Florida, Fish and Wildlife Conservation Commission, 2013). Research into the causes of these deaths is currently ongoing and undetermined for UME No. 58 (Florida). A previous UME in 2011 (No. 52) was caused by ecological factors. An UME (No. 59) was declared in January 2013 for bottlenose dolphins on the East Coast of Florida, the cause of which is still undetermined. Necropsies performed found most of the dolphins were emaciated and the timing coincided with the West Coast's red tide-caused UME of manatees. There have been three separate manatee sitings near oil rigs in the CPA in water depths as great as 1,828 m (6,000 ft) (Epperson, official communication, 2013). Per the guidance provided in NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protection Species Reporting," an operator is to report an observation of an injured or dead protected species.

The final determinations on damages to marine mammal resources from the *Deepwater Horizon* explosion, oil spill, and response will ultimately be made through the NRDA process. The *Deepwater Horizon* explosion, oil spill, and response will ultimately allow a better understanding of any realized effects from such a low-probability catastrophic spill. However, the best available information on impacts to marine mammals does not yet provide a complete understanding of the effects of the oil spill and active response/cleanup activities from the *Deepwater Horizon* explosion, oil spill, and response on marine mammals as a whole in the GOM and whether these impacts reach a population level. For example, though there has been a study published from the NRDA process regarding possible effects from the *Deepwater Horizon* spill on Barataria Bay bottlenose dolphins; there were no effects detected on the Sarasota Bay bottlenose dolphin so it would be difficult to use this information to conclude anything different for the overall bottlenose dolphin population in the GOM (Schwacke et al., 2013). There is also an incomplete understanding of the potential for population-level impacts from the ongoing UME.

Incomplete or Unavailable Information

Limited data are currently available on the potential impacts of the *Deepwater* Horizon explosion, oil spill, and response on marine mammals in the CPA. As identified in this Supplemental EIS and in

Chapter 4.2.1.12 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified unavailable information regarding marine mammals in the CPA. BOEM concludes that the unavailable information from these events may be relevant but not necessarily essential to reasonably foreseeable significant adverse impacts to marine mammals. In some specific cases, such as with bottlenose dolphins as noted above, the unavailable information may also be relevant to a reasoned choice among the alternatives based on the discussion below. The cost of obtaining data on the effects from the UME and/or *Deepwater Horizon* explosion, oil spill, and response are exorbitant; duplicative of efforts already being undertaken as part of the UME and NRDA and would likewise take years to acquire and analyze through the existing NRDA and UME processes. Further, impacts from the *Deepwater Horizon* explosion, oil spill, long-term impacts to marine mammal populations were still being investigated (Matkin et al., 2008). Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information on completing this analysis and formulating the conclusions presented here. The 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, and EPA 225/226 EIS (USDOI, BOEM, 2013b) have further details on sperm whales, Bryde's whales, bottlenose dolphins, and manatees.

Summary and Conclusion

BOEM has reexamined the analysis for marine mammals presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for marine mammals presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because of the available scientifically credible evidence in this analysis and based upon accepted scientific methods and approaches. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sale 235, 241, and 247.

Cumulative impacts on marine mammals are expected to result in a number of chronic and sporadic sublethal effects (i.e., behavioral effects and nonfatal exposure to or intake of OCS oil- and gas-related contaminants or discarded debris) that may stress and/or weaken individuals of a local group or population and predispose them to infection from natural or anthropogenic sources (Harvey and Dahlheim, 1994). Disturbance (noise from vessel traffic and drilling operations) and/or exposure to sublethal levels of toxins and anthropogenic contaminants may stress animals, weaken their immune systems, and make them more vulnerable to parasites and diseases that normally would not be fatal (Harvey and Dahlheim, 1994). The net result of any disturbance will depend upon the size and percentage of the population likely to be affected, the ecological importance of the disturbed area, the environmental and biological parameters that influence an animal's sensitivity to disturbance and stress, or the accommodation time in response to prolonged disturbance (Geraci and St. Aubin, 1980). As discussed in **Appendix B**, a low-probability catastrophic event could have population-level effects on marine mammals.

The effects of a CPA proposed action, when viewed in light of the effects associated with other past, present, and reasonably foreseeable future activities, may result in greater impacts to marine mammals than before the *Deepwater Horizon* explosion, oil spill, and response; however, the magnitude of those effects cannot yet be determined. Nonetheless, operators are required to follow all applicable lease stipulations and regulations, as clarified by NTLs, to minimize these potential interactions and impacts. The operator's reaffirmed compliance with NTL 2012-JOINT-G01 ("Vessel Strike Avoidance and Injured/Dead Protected Species Reporting") and NTL 2012-BSEE-G01 ("Marine Trash and Debris Awareness and Elimination"), as well as the limited scope, timing, and geographic location of a CPA proposed action, would result in negligible effects from the proposed drilling activities on marine mammals. In addition, NTL 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program," minimizes the potential of harm from seismic operations to marine mammals. These mitigations include onboard observers, airgun shut-downs for whales in the exclusion zone, ramp-up procedures, and the use of a minimum sound source. Therefore, no significant cumulative impacts to marine mammals would be expected as a result of the proposed exploration

activities when added to the impacts of past, present, or reasonably foreseeable oil and gas development in the area, as well as other ongoing activities in the area.

Unavailable information on the effects to marine mammals from the UME and Deepwater Horizon explosion, oil spill, and response (and thus, changes to the marine mammal baseline in the affected environment) makes an understanding of the cumulative effects less clear. Here, BOEM concludes that the unavailable information from these events may be relevant to foreseeable significant adverse impacts to marine mammals. Relevant data on the status of marine mammal populations after the UME and Deepwater Horizon explosion, oil spill, and response may take years to acquire and analyze, and impacts from the *Deepwater Horizon* explosion, oil spill, and response may be difficult or impossible to discern from other factors. For example, even 20 years after the Exxon Valdez spill, the long-term impacts to marine mammal populations are still being investigated (Matkin et al., 2008). Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM subject-matter experts have used available scientifically credible evidence in this analysis applied using accepted scientific methods and approaches. Nevertheless, a complete understanding of the missing information is not essential to a reasoned choice among alternatives for this Supplemental EIS (including the No Action and Action alternatives) for the three main reasons listed below.

- (1) The CPA is an active oil and gas region with ongoing (or the potential for) exploration, drilling, and production activities. The potential for effects from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on marine mammals from either smaller accidental events or low-probability catastrophic events will remain the same.
- (2) Some marine mammal populations in the CPA do not generally travel throughout areas affected by spilled oil from the *Deepwater Horizon* explosion, oil spill, and response, and they would not be subject to a changed baseline or cumulative effects from the *Deepwater Horizon* explosion, oil spill, and response (e.g., coastal bottlenose dolphins resident in the CPA). Other marine mammals, such as Bryde's whales and manatees, although potentially affected by the *Deepwater Horizon* explosion, oil spill, and response do not typically occur in the CPA.
- (3) Other wide-ranging populations of marine mammals (e.g., sperm whales and killer whales) that may occur in the GOM and within areas affected by the spill are unlikely to have experienced population-level effects from the *Deepwater Horizon* explosion, oil spill, and response given their wide-ranging distribution and behaviors.

Within the GOM, there is a long-standing and well-developed OCS Program (more than 50 years); there are no data to suggest that activities from the preexisting OCS Program are significantly impacting marine mammal populations. Therefore, in light of the above analysis for a CPA proposed action and its impacts, the incremental effect of a CPA proposed action on marine mammal populations is not expected to be significant when compared with non-OCS energy-related activities.

4.1.1.13. Sea Turtles

BOEM has reexamined the analysis for sea turtles presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for sea turtles presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

A detailed description of loggerhead, Kemp's ridley, hawksbill, green, and leatherback sea turtles can be found in Chapter 4.2.1.13.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.13 of the WPA 233/CPA 231 Supplemental EIS. The FWS and NMFS share Federal jurisdiction for sea turtles under the ESA. The FWS has responsibility for sea turtles (i.e., eggs, hatchlings, and nesting turtles) on the nesting beaches. The NMFS has jurisdiction for sea turtles in the marine environment.

Impacts of Routine and Accidental Events

The routine activities associated with proposed CPA Lease Sales 235, 241, and 247 that would potentially affect sea turtles include the following: the degradation of water quality resulting from operational discharges; noise generated by helicopter and vessel traffic, platforms, drillships, and seismic exploration; vessel collisions; and marine debris generated by service vessels and OCS oil- and gas-related facilities. A detailed impact analysis of the routine impacts of proposed CPA Lease Sales 235, 241, and 247 on sea turtles can be found in Chapter 4.2.1.13.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.13 of the WPA 233/CPA 231 Supplemental EIS.

Because of the mitigations (e.g., BOEM and BSEE proposed compliance with NTLs) discussed in the 2012-2017 WPA/CPA Multisale EIS, routine activities (e.g., operational discharges, noise, vessel traffic, and marine debris) related to a CPA proposed action are not expected to have long-term adverse effects on the size and productivity of any sea turtle species or populations in the northern Gulf of Mexico. Lethal effects could occur from chance collisions with OCS oil- and gas-related service vessels or ingestion of accidentally released plastic materials from OCS vessels and facilities. However, there have been no reports to date on such incidences. Most routine OCS oil- and gas-related activities are expected to have sublethal effects that are not anticipated to rise to the level of significance.

Impact-producing factors associated with accidental events that may be associated with a CPA proposed action that could affect sea turtles include blowouts, oil spills, and spill-response activities. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on sea turtles can be found in Chapter 4.2.1.13.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.13 of the WPA 233/CPA 231 Supplemental EIS.

Accidental blowouts, oil spills, and spill-response activities resulting from a CPA proposed action have the potential to impact small to large numbers of sea turtles in the GOM, depending on the magnitude and frequency of accidents, the ability to respond to accidents, the location and date of accidents, and various meteorological and hydrological factors. Impacts on sea turtles from smaller accidental events are likely to affect individual sea turtles in the area, but they are unlikely to rise to the level of population effects (or significance) given the size and scope of such spills. Further, the potential remains for smaller accidental spills to occur in a CPA proposed action area, regardless of any alternative selected under this Supplemental EIS, given that it is an active oil and gas region with either ongoing or the potential for exploration, drilling, and production activities.

Cumulative Impacts

Background/Introduction

This cumulative analysis considers the effects of impact-producing factors related to a CPA proposed action along with impacts of other commercial, military, recreational, offshore, and coastal activities that may occur and adversely affect populations of sea turtles in the same general area of a CPA proposed actions.

The major impact-producing factors resulting from cumulative OCS oil- and gas-related activities associated with a CPA proposed action that may affect loggerhead, Kemp's ridley, hawksbill, green, and leatherback turtles and their habitats include marine debris, contaminant spills and spill-response activities, vessel traffic, noise, seismic surveys, and explosive structure removals. Major impact-producing factors related to a CPA proposed action that may occur are reviewed in detail in **Chapter 4.1.1.3**. Chapters providing supporting material for the sea turtle analysis include **Chapters 4.1.1.1** (air quality), **4.1.1.2.1** and **4.1.1.2.2** (water quality), **4.1.1.3** (coastal barrier beaches and associated dunes), **4.1.1.5** (seagrass communities), **3.1.1** (offshore impact-producing factors and scenario), **3.1.2** (coastal impact-producing factors and scenario), **3.2** (impact-producing factors and scenario), **3.3** (cumulative activities scenario), and **5.7** (Endangered Species Act). The cumulative impact of these ongoing OCS oil- and gas-related activities on sea turtles is expected to result in a number of chronic and sporadic sublethal effects (i.e., behavioral effects and nonfatal exposure to or intake of OCS oil- and gas-related contaminants or discarded debris) because these activities may stress and/or weaken individuals of a local group or population and may predispose them to infection from natural or anthropogenic sources.

Marine Debris

Sea turtles may be impacted by marine debris, whatever its source. Trash and flotsam generated by the oil and gas industry and other users of the Gulf (Miller and Echols, 1996) is transported around the Gulf and Atlantic via oceanic currents (Plotkin and Amos, 1988; Hutchinson and Simmonds, 1992). Turtles that consume or become entangled in trash or flotsam may become debilitated or die (Heneman and the Center for Environmental Education, 1988). While non-OCS oil- and gas-related monofilament debris is the most common entanglement debris, floating plastics and other debris, such as petroleum residues drifting on the sea surface, accumulate in Sargassum drift lines commonly inhabited by hatchling sea turtles (refer to Chapter 4.1.1.8 for Sargassum impacts). These materials could be toxic. In a review of worldwide sea turtle debris ingestion and entanglement, Balazs (1985) found that tar was the most common item ingested. A recent literature and data synthesis by Schuyler et al. (2013) found that smaller individuals in the oceanic life stage are more likely to ingest debris than are individuals foraging in coastal areas; likewise, species that feed primarily on plants or gelatinous zooplankton ("jellyfish") are more likely to ingest debris than carnivorous species. Ingestion of plastics sometimes interferes with food passage, respiration, and buoyancy and could reduce the fitness of a turtle or result in death (Carr, 1987; USDOC, NOAA, 1988; Heneman and the Center for Environmental Education, 1988; Lutz and Alfaro-Shulman, 1992). The BSEE regulate the disposal of equipment, containers, and other materials into offshore waters by lessees (30 CFR § 250.300). In addition, MARPOL Annex V (P.L. 100-220; 101 Statute 1458) prohibits the disposal of plastics at sea or in coastal waters.

The BSEE proposes compliance with the guidance provided in NTL 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination," which should appreciably reduce the likelihood of sea turtles encountering marine debris from the proposed activity.

Effluents are routinely discharged into offshore waters and are regulated by the U.S. Environmental Protection Agency's NPDES permits. Most operational discharges are diluted and dispersed when released in offshore areas and, due to USEPA's permit regulations on discharges, are considered to have little effect (API, 1989; Kennicutt, 1995). Any potential that might exist for impact from drilling fluids would more likely be indirect, either by impact on prey items or possibly through ingestion via the food chain (API, 1989). Contaminants in drilling mud discharge may biomagnify and bioaccumulate in the trophic system, which may kill or debilitate important prey species of sea turtles or lower trophic level species. This could ultimately reduce reproductive fitness or survival in individual sea turtles.

Coastal Infrastructure and Pipelines

Structure installation and removal, pipeline placement, dredging, and water quality degradation may adversely affect sea turtle foraging habitat through destruction of seagrass beds and live bottom communities used by sea turtles (Gibson and Smith, 1999). Sea turtles, primarily loggerheads, in the GOM are known to occur regularly within the vicinity of oil and gas platforms (Hart et al., 2013). These structures provide habitat and foraging opportunities for subadult and adult sea turtles, which may enhance the recovery of some turtle populations.

Pollution

Since sea turtle habitat in the Gulf includes both inshore and offshore areas, sea turtles are likely to encounter spills that may be related to OCS oil- and gas-related development activities or other sources. Oil-spill estimates project that there will be numerous, frequent, small spills; many, infrequent, moderately sized spills; and infrequent large spills occurring in coastal and offshore waters from 2012 to 2050 (Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS). The probability that a sea turtle is exposed to hydrocarbons resulting from a spill extends well after the oil spill has dispersed from its initial aggregated mass. Oil spills can adversely affect sea turtles by toxic ingestion or blockage of the digestive tract, inflammatory dermatitis, ventilatory disturbance, disruption or failure of salt gland function, red blood cell disturbances, immune responses, and displacement from important habitat areas (Witham, 1978; Vargo et al., 1986; Lutz and Lutcavage, 1989; Lutcavage et al., 1995). Sea turtles may become entrapped by tar and oil slicks and rendered immobile (Witham, 1978; Plotkin and Amos, 1988). In the past, tanker washings were a major source of oil in GOM waters (Van Vleet and Pauly, 1987). Although habitat disturbances may be temporary, chronic exposure to or ingestion of oil may result in illness or depressed fitness. Hatchling and juvenile turtles are particularly vulnerable to contacting or ingesting oil because currents that concentrate oil spills also form aggregates of Sargassum and other floating material that provide habitat in which these turtles are sometimes found (Carr, 1980; Collard and Ogren, 1990; Witherington, 1994). There is also evidence that sea turtles feed in surface convergence lines, which could prolong their contact with viscous weathered oil that becomes concentrated in these zones (Witham, 1978; Hall et al., 1983). Fritts and McGehee (1982) noted that sea turtle eggs were damaged by contact with weathered oil released from the 1979 Ixtoc I spill. Skin damage in turtles can result in acute or irritant dermatitis; a break in the skin barrier could act as a portal of entry for pathogenic organisms, leading to infection and debilitation (Vargo et al., 1986). Captive turtles exposed to oil either reduced the amount of time spent at the surface, possibly avoiding oil, or became agitated and demonstrated short submergence levels (Lutcavage et al., 1995). Sea turtles sometimes pursue and swallow tarballs, and there is no conclusive evidence that wild turtles can detect and avoid oil (Odell and MacMurray, 1986; Vargo et al., 1986). A loggerhead turtle sighted during an aerial survey in the GOM surfaced repeatedly within a surface oil slick for over an hour (Lohoefener et al., 1989). Oil might have an indirect effect on the behavior of sea turtles. Oil fouling of a nesting area may disturb the imprinting of hatchling turtles or confuse turtles during their return migration after a 6- to 8-year absence (Geraci and St. Aubin, 1985). The effect on reproductive success could therefore be significant.

When an oil spill occurs, the severity of effects and the extent of damage to sea turtles is dependent on geographic location, oil type, oil dosage, impact area, oceanographic conditions, and meteorological conditions (NRC, 1985). Eggs, hatchlings, and small juveniles are particularly vulnerable upon contact (Fritts and McGehee, 1982; Lutz and Lutcavage, 1989). Potential toxic impacts to embryos will depend on the type of oil and degree of weathering, type of beach substrate, and especially upon the developmental stage of the embryo. Although many observed injuries and impacts to sea turtles were resolved in a 21-day recovery period, the impact of tissue oil intake on the long-term health and survival of sea turtles remains unknown (Lutcavage et al., 1995).

Oil-spill and response activities, such as vehicular and vessel traffic in coastal areas of seagrass beds and live bottom communities, can alter sea turtle habitat and displace sea turtles from these areas. Effects on seagrass and reef communities have been noted (reviewed by Coston-Clements and Hoss, 1983). Impacting factors include artificial lighting from night operations, booms, machine and human activity, equipment on beaches and in intertidal areas, sand removal and cleaning, and changed beach landscape and composition. Some resulting impacts from cleanup could include interrupted or deferred nesting, crushed nests, entanglement in booms, and increased mortality of hatchlings because of predation during the extended time required to reach the water (Newell, 1995; Lutcavage et al., 1997; Witherington, 1999). The strategy for cleanup operations should vary depending on season, recognizing that disturbance to nests may be more detrimental than oil (Fritts and McGehee, 1982). Due to the Oil Pollution Act of 1990 (**Chapter 1.3**), these areas are expected to receive individual consideration during oil-spill cleanup. Required oil-spill contingency plans include special notices to minimize adverse effects from vehicular traffic during cleanup activities and to maximize protection efforts to prevent contact of these areas with spilled oil. Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B**.

Vessel Strikes

Sea turtles must surface to breathe and may spend time at the surface for a variety of life-history functions. Collisions between service vessels or barges and sea turtles would likely cause fatal injury to the sea turtle. The speed of the vessel is correlated to the likelihood of strike; turtles are less likely to actively avoid or respond to the approach of a vessel moving at higher speeds (Hazel et al., 2007). Vessel traffic, particularly supply boats running from shore bases to offshore structures, is one of the industry activities included in a CPA proposed action. It is projected that 70,725-90,675 OCS oil- and gas-related, service-vessel round trips would occur annually in support of OCS oil- and gas-related activities in the CPA (**Table 3-4**). In the entire OCS, 82,750-109,550 service-vessel trips would occur annually (**Table 3-3**). It is important to note that these numbers take into account all of the activities projected to occur from past, proposed, and future lease sales. In response to the terms and conditions of previous NMFS's Biological Opinions, and in an effort to further minimize the potential for vessel strikes, BOEM and BSEE issued NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting," which clarifies 30 CFR § 550.282 and 30 CFR § 250.282 and provides NMFS guidelines for monitoring procedures related to vessel strike avoidance measures for sea turtles and other protected species.

Increased vessel traffic in the GOM increases the probability of sea turtle ship strikes. Regions of greatest concern may be those with high concentrations of recreational boat traffic, such as the many coastal bays in the GOM. Potential adverse effects from Federal vessel operations in the CPA proposed action area include operations of the U.S. Navy and USCG, which maintain the largest Federal vessel fleets; USEPA; NOAA; and COE. The NMFS has conducted formal consultations with the USCG, U.S. Navy, NOAA, and other Federal agencies, including BOEM, on the activities of their vessels or the vessels considered part of any permitted activity. The NMFS has recommended conservation measures for operations of agency, contract, or private vessels to minimize impacts on listed species. However, these actions represent the potential for some level of interaction and, in some cases, conservation measures only apply to areas outside the CPA proposed action area. Thus, operations of vessels by Federal agencies within the CPA proposed action area (i.e., U.S. Navy, NOAA, USEPA, and COE) may adversely affect sea turtles. However, the in-water activities of some of those agencies are limited in scope, as they operate a limited number of vessels or are engaged in research/operational activities that are unlikely to contribute a large amount of risk. (The NMFS reported in 2002 that, at that time, there were 14 active scientific research permits for sea turtles.)

Noise

Noise from service-vessel and helicopter traffic may cause a startle reaction from sea turtles and produce temporary stress (NRC, 1990). Helicopter traffic would occur on a regular basis. It is projected that 594,500-1,112,500 OCS oil- and gas-related helicopter operations (take-offs and landings) would occur annually in the support of OCS oil- and gas-related in the CPA (**Table 3-4**). In the entre OCS, 717,750-1,376,625 helicopter trips would occur annually (**Table 3-3**). The Federal Aviation Administration's Advisory Circular 91-36D (September 17, 2004) encourages pilots to maintain higher than minimum altitudes over noise-sensitive areas. The OCS oil- and gas-related helicopters are not the only aircraft that fly over the coastal and offshore areas.

Other sound sources potentially impacting sea turtles include seismic surveys and drilling noise. The potential impacts of anthropogenic sounds on sea turtles include physical auditory effects (temporary threshold shift), behavioral disruption, long-term effects, masking, and adverse impacts on prey species. Noise-induced stress has not been studied in sea turtles. Seismic surveys use airguns to generate sound pulses, which are a more intense sound than other nonexplosive sound sources. Loggerhead sea turtles in the Mediterranean Sea showed a startle response associated with airgun operation, with 57 percent of observed individuals diving upon or before reaching the airgun array. Of the observed individuals, 7 percent dove immediately after the airgun shot (DeRuiter and Doukara, 2012). Seismic activities are expected to be primarily an annoyance to sea turtles and cause a short-term behavioral response. However, sea turtles are included in the mitigations required of all seismic vessels operating in the GOM, as stated in NTL 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program," which minimizes the potential of harm from seismic operations to

sea turtles. These mitigations include onboard observers, airgun shut-downs for whales in the exclusion zone, ramp-up procedures, and the use of a minimum sound source.

It is expected that drilling noise will periodically disturb and affect turtles in the GOM. Based on the conclusions of Lenhardt et al. (1983) and O'Hara and Wilcox (1990), low-frequency sound transmissions (such as those produced by operating platforms) could cause increased surfacing and deterrence behavior from the area near the sound source.

Explosive discharges, such as those used for BSEE and COE structure removals, can cause injury to sea turtles (Duronslet et al., 1986). Although sea turtles far from the site may suffer only disorientation, those near detonation sites could sustain fatal injuries. Injury to the lungs, intestines, and/or auditory system could occur. Other potential impacts include physical or acoustic harassment. Resuspension of bottom sediments, increased water turbidity, and mobilization of bottom sediments due to explosive detonation are considered to be temporary effects. An estimated 707-1,006 explosive structure removals are projected to occur in the CPA between 2012 and 2051 (**Table 3-4**).

To minimize the likelihood of removals occurring when sea turtles may be nearby, BSEE issued guidelines for explosive platform removal to offshore operators. These guidelines include daylight-limited detonation, staggered charges, placement of charges 5 m (15 ft) below the seafloor, and pre- and post-detonation surveys of surrounding waters. With these existing protective measures (NMFS's Observer Program and daylight-only demolition) in place, the "take" of sea turtles during structure removals has been limited. This Agency published a Programmatic EA on decommissioning operations (USDOI, MMS, 2005) that, in part, addresses the potential impacts of explosive and nonexplosive severance activities on OCS oil- and gas-related resources, particularly upon marine mammals and sea turtles. Pursuant to 30 CFR part 250 subpart Q, operators must obtain a permit from BSEE before beginning any platform removal or well-severance activities. During the review of the permit applications, terms and conditions of the August 2007 NMFS Biological Opinion/Incidental Take Statement are implemented for the protection of marine protected species and to reduce the possible impacts from any potential activities resulting from a CPA proposed action.

In 30 CFR part 250 subpart B, BSEE requires operators of Federal oil and gas leases to meet the requirements of the ESA. The regulation outlines the environmental, monitoring, and mitigation information that operators must submit with plans for exploration, development, and production. This regulation requires OCS oil- and gas-related activities to be conducted in a manner that is consistent with the provisions of the ESA. Actual sea turtle impacts from explosive removals in recent years have been small. The updated pre- and post-detonation mitigations should ensure that injuries remain extremely rare. NTL 2010-G05, "Decommissioning Guidance for Wells and Platforms," offers further guidance.

Non-OCS Oil and Gas-Related Activities

Non-OCS oil- and gas-related activities that may affect sea turtle populations include State oil and gas activities, vessel traffic and related noise (including from commercial shipping, research vessels), military operations, commercial fishing, and pollution. Non-OCS oil- and gas-related related activities include historic overexploitation, commercial fishery interactions, habitat loss, dredging, pollution, vessel strikes, and pathogens. The Gulf Coast is a well-populated and growing area, and development of previously unusable land for residential and commercial purposes is common. Recreational boating and watercraft use may threaten individuals and their habitat. Increased human populations often result in increased runoff and dumping. Many areas around the Gulf already suffer from very high contaminant counts due to river and coastal runoff and discharges. Contaminants may accumulate in species or in prey species.

Dredge-and-fill activities occur in many of the coastal areas inhabited by sea turtles. Operations range in scope from propeller dredging (scarring) by recreational boats to large-scale navigation dredging and fill for land reclamation. Dredging operations affect turtles through accidental take and habitat degradation. The construction and maintenance of Federal navigation channels has been identified as a source of sea turtle mortality. Hopper dredges move relatively rapidly (compared with sea turtle swimming speeds) and can entrain and kill these species, presumably as the drag arm of the moving dredge overtakes the slower animal. Hopper dredging has caused turtle mortality in coastal areas (Slay and Richardson, 1988). Nearly all sea turtles entrained by hopper dredges are dead or dying when found (NRC, 1990). In addition to direct take, channelization of the inshore and nearshore areas can degrade foraging and migratory habitats via sediment disposal, degraded water quality/clarity, and altered current flow.

Construction, vehicle traffic, beachfront erosion, and artificial lighting are activities that disturb sea turtles or their nesting beaches (Raymond, 1984; Garber, 1985). Traffic may compress nests, and beach cleaning may compact or destroy nests, lowering hatching success (Coston-Clements and Hoss, 1983). Physical obstacles, such as deep tire tracks and expanded sand piles, may obstruct hatchling turtles from entering the sea or increase their stress and susceptibility to predation (Witham, 1995). Obstructions to the high watermark prevent nesting, and breakwalls are the most common and severe type of obstruction. Erosion of nesting beaches results in the loss of nesting habitat. Human interference has hastened erosion in many places. Artificial lighting from buildings, street lights, and beachfront properties may disorient hatchlings, as well as adults (Witherington and Martin, 1996). Females tend to avoid areas where beachfront lighting is most intense; turtles also abort nesting attempts more often in lighted areas. Hatchlings are attracted to lights and may delay their entry into the sea, thereby increasing their vulnerability to terrestrial predators. Condominiums sometimes block sunlight on nesting beaches, which could presumably affect sex ratios of hatchlings (the sex of a turtle is dependent on egg temperature) by increasing the number of males produced (discussed by Mrosovsky et al., 1995). Increased human activities, such as organized turtle watches, on nesting beaches may affect nesting activity (Fangman and Rittmaster, 1994; Johnson et al., 1996).

Sea turtles entering coastal or inshore areas have been affected by entrainment in the cooling water systems of electrical generating plants (NRC, 1990). At the St. Lucie nuclear power plant at Hutchinson Island, Florida, large numbers of green and loggerhead turtles have been captured in the seawater intake canal in the past several years. Annual capture levels from 1994 to 1997 ranged from almost 200 to almost 700 green turtles and from about 150 to over 350 loggerheads. Almost all of the turtles were caught and released alive; NMFS estimated the survival rate at 98.5 percent or greater. Other power plants in Florida, Texas, and North Carolina have also reported low levels of sea turtle entrainment. An offshore intake structure may appear as a suitable resting place to some turtles, and these turtles may be subsequently drawn into a cooling system (Witham, 1995). Feeding leatherbacks may follow large numbers of jellyfish into the intake (Witham, 1995). Deaths can result from injuries sustained in transit through the intake pipe, from drowning in the capture nets, and perhaps from causes before entrainment. Thermal effluents from power plants may cause hatchlings to become disoriented and reduce their swimming speed (O'Hara, 1980). These effluents may also degrade seagrass and reef habitats (reviewed by Coston-Clements and Hoss, 1983).

Sand mining, beach renourishment, and oil-spill cleanup operations may remove sand from the littoral zone and temporarily disturb onshore sand transport, potentially disturbing nesting activities. The main causes of permanent nesting beach loss within the GOM are the reduction of sediment transport, rapid rate of relative sea-level rise, coastal construction and development, and recreational use of accessible beaches near large population centers. Crain et al. (1995) reviewed the literature on sea turtles and beach nourishment and found certain problems repeatedly identified. For nesting females, characteristics induced by nourishment can cause (1) beach compaction, which may decrease nesting success, alter nest-chamber geometry, and alter nest concealment; and (2) escarpments, which can block turtles from reaching nesting areas. For eggs and hatchlings, nourishment can decrease survivorship and affect development by altering beach characteristics such as sand compaction, gaseous environment, hydric environment, contaminant levels, nutrient availability, and thermal environment. Additionally, nests can be covered with excess sand if beach nourishment occurs in areas with incubating eggs.

BOEM has evaluated the use of sand resources for levee, beach, and barrier island restoration projects. Between 1995 and 2013, this Agency provided over 77 million cubic yards of OCS sand for 42 coastal projects, restoring over 370 km (230 mi) of national coastline. As the demand for sand for shoreline protection increases, OCS sand and gravel has become an increasingly important resource. For example, the Louisiana Coastal Area's Ecosystem Restoration Study estimated that about 60 million cubic yards of OCS sand from Trinity Shoal, Ship Shoal, and other sites will be needed for barrier island and shoreline restoration projects in the next decade (U.S. Dept. of the Army, COE, 2004). Use of these resources will require coordination with BOEM for appropriate noncompetitive negotiated agreements. Sea turtles are included in the potential impacts identified for sand dredging projects under analyses and consultations that are separate from this Supplemental EIS. Based on the outcomes of these, required mitigating measures are included as stipulations in the negotiated agreements to protect sea turtles when it is determined that there is a likelihood of sea turtle presence within the area during the dredging operation and a trailing suction hopper dredge is used.
Human consumption of turtle eggs, meat, or byproducts occurs worldwide and depletes turtle populations (Cato et al., 1978; Mack and Duplaix, 1979). Commercial harvests are no longer permitted within continental U.S. waters, and Mexico has banned such activity (Aridjis, 1990). Since sea turtles are highly migratory species, the taking of turtles in subsistence and commercial sea turtle fisheries is still a concern.

Chronic pollution, including industrial and agricultural wastes and urban runoff, threatens sea turtles worldwide (Frazier, 1980; Hutchinson and Simmonds, 1991). Some turtle species have lifespans exceeding 50 years (Congdon, 1989; Frazer et al., 1989) and are secondary or tertiary consumers in marine environments, creating the potential for bioaccumulation of heavy metals (Hillestad et al., 1974; Stoneburner et al., 1980; Davenport et al., 1990), pesticides (Thompson et al., 1974; Clark and Krynitsky, 1980; Davenport et al., 1990), and other toxins (Lutz and Lutcavage, 1989) in their tissues. Organochlorine pollutants have been documented in eggs, juveniles, and adult turtles (Rybitski et al., 1995). Not all species accumulate residues at the same rate; for instance, loggerheads consistently have higher levels of both PCBs (polychlorinated biphenyls) and DDE (dichloro-diphenyldichloro-ethylene) than green turtles, and it has been hypothesized that the variation is because of dietary differences (George, 1997). Contaminants could stress the immune system of turtles or act as carcinogens indirectly by disrupting neuroendocrine functions (Colborn et al., 1993). In some marine mammals, chronic pollution has been linked with immune suppression, raising a similar concern for sea turtles.

The OCS oil- and gas-related helicopters are not the only aircraft that fly over the coastal and offshore areas. The air space over the GOM is used extensively by the Dept. of Defense for conducting various air-to-air and air-to-surface operations. Eleven military warning areas and six water test areas are located within the Gulf, as stated in NTL 2009-G06, "Military Warning and Water Test Areas" (Figure 2-2). Additional activities, including vessel operations and ordnance detonation, also may affect sea turtles. Private and commercial air traffic also traverse these areas and have the potential to cause impacts to sea turtles.

Numerous commercial and recreational fishing vessels also use these areas. Tanker imports and exports of crude and petroleum products into the GOM are projected to increase. Crude oil will continue to be tankered into the Gulf for refining from Alaska, California, and the Atlantic. Recreational pursuits can have an adverse effect on sea turtles through propeller and boat strike damage. Private vessels participate in high-speed marine events concentrated in the southeastern U.S. and are a particular threat to sea turtles. The magnitude of the impacts resulting from such marine events is not currently known (USDOC, NMFS, 2002). Monofilament line was reported as the most common debris to entangle turtles (NRC, 1990). Fishing-related debris has been involved in about 68 percent of all cases of sea turtle entanglement (O'Hara and Iudicello, 1987).

A major source of mortality for loggerhead and Kemp's ridleys is capture and drowning in shrimp trawls (Murphy and Hopkins-Murphy, 1989). Crowder et al. (1995) reported that 70-80 percent of turtle strandings were related to interactions with this fishery. Analysis of loggerhead strandings in South Carolina indicated a high turtle mortality rate from the shrimp fishery through an increase in strandings and that the use of turtle excluder devices could reduce strandings by 44 percent (Crowder et al., 1995). Caillouet et al. (1996) found a significant positive correlation between turtle stranding rates and shrimp fishing intensity in the northwestern GOM. The Kemp's ridley population, because of its distribution and small numbers, is at greatest risk. The NMFS has required the use of turtle excluder devices in southeast U.S. shrimp trawls since 1989. In response to increased numbers of dead sea turtles that washed up along the coasts of Texas, Louisiana, Georgia, and northeast Florida in 1994-1995, and coincident with coastal shrimp trawling activity, NMFS increased enforcement efforts (relative to turtle excluder devices), which decreased the number of strandings. After concerns arose that turtle excluder devices were not adequately protecting larger sea turtles, NMFS issued a Biological Opinion in 2002 that reported an estimated 62,000 loggerhead and 2,300 leatherback sea turtles had been killed as a result of interaction with shrimp trawls. The Biological Opinion also stated that 75 percent of the loggerhead sea turtles in the GOM were too large to be protected by the turtle excluder devices. Subsequent regulation issued by NMFS in 2003 required larger openings to better protect the larger sea turtles. The use of turtle excluder devices is believed to reduce hard-shelled sea turtle captures by 97 percent. Even so, NMFS estimated that 4,100 turtles may be captured annually by shrimp trawling, including 650 leatherbacks that cannot be released through turtle excluder devices, 1,700 turtles taken in nets, and 1,750 turtles that fail to escape through the turtle excluder devices. Other fisheries and fishery-related activities are important sources of mortality but are collectively only one-tenth as important as shrimp trawling (NRC, 1990). Turtles may

4-117

be accidentally caught and killed in finfish trawls, seines, gill nets, weirs, traps, longlines, and driftnets (Hillestad et al., 1982; NRC, 1990; Witzell, 1992; Brady and Boreman, 1994). Various fishing methods used in State fisheries, including trawling, pot fisheries, fly nets, and gillnets, are known to cause interactions with sea turtles. Florida and Texas have banned all but very small nets in State waters. Louisiana, Mississippi, and Alabama have also placed restrictions on gillnet fisheries within State waters, such that very little commercial gillnetting takes place in southeast waters. The State fishery for menhaden in the State waters of Louisiana and Texas is managed by the Gulf States Marine Fisheries Council and is not federally regulated for sea turtle take. Condrey and Rester (1996) reported a hawksbill take in the fishery, and other takes have been reported in the fishery between 1992 and 1999 (De Silva, 1998).

Coastal habitats such as algae and seagrass beds are frequented by sea turtles seeking food and shelter (Carr and Caldwell, 1956; Hendrickson, 1980). Submerged vegetated areas may be lost or damaged by activities altering salinity, turbidity, or natural tidal and sediment exchange. Natural catastrophes, including storms, floods, droughts, and hurricanes, can also substantially damage nesting beaches and coastal areas used by sea turtles (Agardy, 1990). Abnormally high tides and waves generated by storms may exact heavy mortality on sea turtle nests by washing them from the beach, inundating them with sea water, or altering the depth of sand covering them. Furthermore, excessive rainfall associated with tropical storms may reduce the viability of eggs. Turtles could be harmed in rough seas by floating debris (Milton et al., 1994). In addition, the hurricane season for the Caribbean and Western Atlantic (June 1-November 1) overlaps the sea turtle nesting season (March through November) (NRC, 1990). Nests are vulnerable to hurricanes during the incubation period as well as when hatchlings evacuate the nest. Hurricanes can cause mortality at turtle nests through immediate drowning from ocean surges, nest burial, or exhumation before hatching, and after hatching as a result of radically altered beach topography. The greatest surge effect from Hurricane Andrew in 1992 was experienced at beaches closest to the "eye" of the hurricane; egg mortality was 100 percent (Milton et al., 1994). In areas farther from the "eye," the surge was lower and mortality was correspondingly decreased. Sixty-nine percent of eggs on Fisher Island in Miami, Florida, did not hatch after Hurricane Andrew and appeared to have "drowned" during the storm (Milton et al., 1994). Further mortality occurred when surviving turtles suffocated in nests situated in the beach zone where sand had accreted. This subsequent mortality may be reduced if beach topography is returned to normal and beach debris is removed after a hurricane (Milton et al., 1994). Species that have limited nesting ranges, such as the Kemp's ridley, would be greatly impacted if a hurricane made landfall at its nesting beach (Milton et al., 1994). Hurricane Erin in 1995 caused a 40.2 percent loss in loggerhead hatchling production on the southern half of Hutchinson Island (Martin, 1996). A beach can be completely unavailable to nesting after a hurricane. For example, at Buck Island Reef National Monument on St. Croix, after Hurricane Hugo in 1989, 90 percent of the shoreline trees on the North Shore were blown down parallel to the water, blocking access to nesting areas (Hillis, 1990). The number of false crawls (i.e., a nesting attempt) for hawksbill turtles increased significantly after the hurricane, mostly because of fallen trees and eroded root tangles blocking nesting attempts (Hillis, 1990). Other direct impacts of Hurricane Hugo on sea turtle habitats include the destruction of coral reef communities important to hawksbill and green turtles. Nooks and crannies in the reef used by these turtles for resting were destroyed in some areas (Agardy, 1990). Seagrass beds, which are important foraging areas for green turtles, were widely decimated in Puerto Rico (Agardy, 1990). Indirect effects (contamination of food or poisoning of reef-building communities) on the offshore and coastal habitats of sea turtles include pollution of nearshore waters from storm-associated runoff.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (NOAA's and FWS's websites, and the RestoreTheGulf.gov website), as well as recently published journal articles was conducted to determine the availability of recent information on sea turtles.

On April 17, 2014, NMFS published a proposed rule for "Taking of Marine Mammals Incidental to Commercial Fishing Operations; Bottlenose Dolphin Take Reduction Plan; Sea Turtle Conservation; Modification to Fishing Activities" (*Federal Register*, 2014d). The NOAA published a final rule for the "Endangered and Threatened Species: Designation of Critical Habitat for the Northwest Atlantic Ocean Loggerhead Sea Turtle Distinct Population Segment (DPS) and Determination Regarding Critical Habitat

for the North Pacific Ocean Loggerhead DPS" on July 10, 2014 (Federal Register, 2014c). Within the GOM, there is a long-standing and well-developed OCS Program (more than 50 years); there are no data to suggest that activities from the preexisting OCS Program are significantly impacting sea turtle populations within these designated critical habitats. Therefore, in light of a CPA proposed action and its impacts, the incremental effect on sea turtle critical habitat is not expected to be significant when compared with non-OCS oil- and gas-related activities. Since January 1, 2011, a notable increase in sea turtle strandings has occurred in the northern GOM, primarily in Mississippi. While turtle strandings in this region typically increase in the spring, the recent increase is a cause for concern. The Sea Turtle Stranding and Salvage Network is monitoring and investigating this increase. The network is part of the NOAA/FWS National Marine Mammal Health and Stranding Response Program and encompasses the coastal areas of the 18 states from Maine through Texas. There are many possible reasons for the increase in strandings in the northern GOM, both natural and human caused (USDOC, NMFS, 2014c). These sea turtle species include loggerhead, green, Kemp's ridley, leatherback, hawksbill, and unidentified. Since the beginning of the monitoring, in states adjacent to the CPA proposed lease sale area within the Gulf of Mexico, NMFS has identified 203 strandings in Alabama, 473 strandings in Louisiana, 641 strandings in Mississippi, and 1,219 strandings in Texas (upper Texas coast—Zone 18) as of August 25, 2013 (USDOC, NMFS, 2014d).

Debris ingestion, particularly plastic debris, is an on-going threat to marine turtles. A recent literature and data synthesis by Schuyler et al. (2013) found that smaller individuals in the oceanic life stage are more likely to ingest debris than are individuals foraging in coastal areas; likewise, species that feed primarily on plants or gelatinous zooplankton ("jellyfish") are more likely to ingest debris than carnivorous species. In particular, oceanic green and leatherback turtles are at a higher risk for ingestion of pelagic floating plastics than benthic feeding carnivorous turtles. Increases in debris ingestion for leatherbacks in particular show an increasing trend until 1985 at which point the probabilities with ingestion leveled suggesting that debris distribution may have stabilized and that the environment has reached a saturation point in which debris no longer reaches new areas but ends up in the same locations (Schuyler et al., 2013).

As of the conclusion of nesting season on August 31, 2013, 79 nests had been counted along the Alabama Gulf coast (Share the Beach, 2013). In 2012, a total of 149 nests were counted along the Alabama Gulf coast (Share the Beach, 2013). In 2011 and 2010, Alabama reported 84 and 41 sea turtle nests, respectively (Share the Beach, 2013). In Florida, the Northern Gulf of Mexico nesting loggerhead population declined by almost half between 1994 and 2010 (Lamont et al., 2012). Nesting surveys are not conducted in Mississippi or Louisiana due to logistical and funding limitations, although intermittent observations indicate that some nesting does occur.

Postnesting Kemp's ridley female sea turtles appear to have foraging hotspots in the northern Gulf of Mexico, particularly in waters off Louisiana (Shaver et al., 2013). Loggerheads have been observed using both neritic habitats and oceanic habitats to forage based on size; smaller sea turtles use oceanic habitats and larger sea turtles remain nearshore in coastal areas to forage following nesting (Eder et al., 2012). Nesting activities by the northern Gulf of Mexico subpopulation suggest that site fidelity is significantly less than originally estimated with several individuals used geographically separate beaches in the same nesting season. Additionally, some loggerheads use large ranges during inter-nesting periods in relatively shallow water not necessarily adjacent to nesting beaches; these long distance movements overlap areas of trawling and OCS oil and gas activities. In particular, loggerheads use neritic habitats off of Florida and Alabama as movement corridors and inter-nesting sites (Hart et al., 2013). More analyses and understanding of sea turtle forgaing behavior and site selection in the northern GOM is needed.

Recent work on polycyclic aromatic hydrocarbons (PAHs) (e.g., compounds found in crude oil, through combustion of fossil fuels, and urban runoff) suggests that PAHs may not be bioaccumulated throughout their lifetime and likely are related to recent exposure to waters or food sources contaminated by PAHs. High levels of PAH contaminants in smaller turtles may be related to their foraging strategies and suggest that, like other higher trophic organisms, sea turtles are able to metabolize PAH contaminants. Fluoranthene, in particular, was found at higher levels in sea turtles stranded following crude oil ingestion (Camacho et al., 2012). Increased levels of total proteins, albumin, globulins, and creatinine correlated with persistent organic pollutants and PAHs suggest that kidney function as well as other health parameters in sea turtles could be affected by exposure to these pollutants (Camacho et al., 2013).

The new information presented in this chapter provides additional details on the baseline affected environment for sea turtles and does not change BOEM's conclusions about the potential effects of a CPA proposed action on sea turtles.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.13 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified unavailable information regarding sea turtles. Limited data are currently available on the potential impacts of the *Deepwater Horizon* explosion, oil spill, and response on sea turtles in the CPA. This unavailable information may be relevant to adverse effects because the full extent of impacts on sea turtles is not known. Relevant data on the status of sea turtle populations after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze, and impacts from the *Deepwater Horizon* explosion, oil spill, and response may be difficult or impossible to discern from other factors. This information cannot be obtained because the means to obtain it are not known or the overall costs to obtain it are exorbitant. Unavailable information on the effects to sea turtles from the *Deepwater Horizon* explosion, oil spill, and response (and thus changes to the sea turtle baseline in the affected environment) makes an understanding of the cumulative effects less clear.

This unavailable information may be relevant to adverse effects because the full extent of impacts on sea turtles is not known. BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. Available studies investigate evidence of impacts stemming from exposure to oil by toxic ingestion or blockage of the digestive track, inflammatory dermatitis, ventilator disturbance, salt gland function failure, red blood cell disturbances, immune responses, entrapment in slicks, and displacement from important habitat (Witham, 1978; Vargo et al., 1986; Lutz and Lutcavage, 1989; Lutcavage et al., 1995; Plotkin and Amos, 1988). These studies indicate that sea turtles may be adversely affected by oil exposure. However, the long-term health and survival of sea turtles remains relatively unknown. BOEM concludes that the unavailable information from these events may be relevant to foreseeable significant adverse impacts. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives for this Supplemental EIS (including the No Action and Action alternatives) for the two main reasons listed below:

- (1) The CPA is an active oil and gas region with ongoing (or the potential for) exploration, drilling, and production activities. In addition, non-OCS oil- and gas-related activities will continue to occur in the CPA irrespective of a CPA proposed action (i.e., fishing, military activities, scientific research, and shoreline development). The potential for effects from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on sea turtles from either smaller accidental events or low-probability catastrophic events will remain the same.
- (2) All wide-ranging populations of sea turtles that may occur in the CPA and within areas affected by the spill are unlikely to have experienced population-level effects from the *Deepwater Horizon* explosion, oil spill, and response given their wide-ranging distribution and behaviors.

Nevertheless, there are existing leases in the CPA with either ongoing or the potential for exploration, drilling, and production activities. In addition, non-OCS oil- and gas-related activities discussed below will continue to occur in the CPA irrespective of a CPA proposed action (i.e., fishing, military activities, and scientific research). The potential for effects from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), routine activities, accidental spills (including lowprobability catastrophic spills), and cumulative effects remains whether or not the No Action or Action alternative is chosen under this Supplemental EIS.

Summary and Conclusion

BOEM has reexamined the analysis for sea turtles presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for sea turtles presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because of the available scientifically credible evidence in this analysis and based upon accepted scientific methods and approaches. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

As described above, few deaths are expected from chance collisions with OCS oil- and gas-related service vessels, ingestion of plastic material, commercial fishing, and pathogens. Disturbance (noise from vessel traffic and drilling operations) and/or exposure to sublethal levels of toxins and anthropogenic contaminants may stress animals, weaken their immune systems, and make them more vulnerable to parasites and diseases that normally would not be fatal during their life cycle. The net result of any disturbance depends upon the size and percentage of the population likely to be affected, the ecological importance of the disturbed area, the environmental and biological parameters that influence an animal's sensitivity to disturbance and stress, or the accommodation time in response to prolonged disturbance (Geraci and St. Aubin, 1980). As discussed above, lease stipulations and regulations are in place to reduce vessel strike mortalities. As discussed in **Appendix B**, a low-probability catastrophic event could have population-level effects on sea turtles.

The effects of a CPA proposed action, when viewed in light of the effects associated with other past, present, and reasonably foreseeable future activities, may result in greater impacts to sea turtles than before the *Deepwater Horizon* explosion, oil spill, and response; however, the magnitude of those effects cannot yet be determined. Nonetheless, operators are required to follow all applicable lease stipulations and regulations, as clarified by NTLs, to minimize these potential interactions and impacts. The operator's reaffirmed compliance with NTL 2012-JOINT-G01 ("Vessel Strike Avoidance and Injured/Dead Protected Species Reporting") and NTL 2012-BSEE-G01 ("Marine Trash and Debris Awareness Elimination"), as well as the limited scope, timing, and geographic location of a CPA proposed action, would result in negligible effects from the proposed drilling activities on sea turtles. In addition, NTL 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program," minimizes the potential of harm from seismic operations to sea turtles and marine mammals; these mitigations include onboard observers, airgun shut-downs for whales in the exclusion zone, ramp-up procedures, and the use of a minimum sound source. Therefore, no significant cumulative impacts to sea turtles would be expected as a result of the proposed exploration activities when added to the impacts of past, present, or reasonably foreseeable oil and gas development in the area, as well as other ongoing activities in the area.

Adverse effects may result from the incremental contribution of a CPA proposed action combined with non-OCS oil- and gas-related activities. The biological significance of any mortality or adverse impact would depend, in part, on the size and reproductive rates of the affected populations, as well as the number, age, and size of animals affected. However, as the analyses above indicate, the potential for impacts is mainly focused on the individual, and population-level impacts are not anticipated based on the best available information.

Incremental injury effects from a CPA proposed action on sea turtles are expected to be negligible for drilling and vessel noise and minor for vessel collisions but will not rise to the level of significance because of the limited scope, duration, and geographic area of the proposed drilling and vessel activities and the relevant regulatory requirements.

The effects of a CPA proposed action, when viewed in light of the effects associated with other relevant activities, may affect sea turtles occurring in the GOM. With the enforcement of regulatory requirements for drilling and vessel operations and the scope of a CPA proposed action, the incremental effects from the proposed drilling activities on sea turtles will be negligible (drilling and vessel noise) to minor (vessel strikes). The best available scientific information indicates that sea turtles do not rely on acoustics; therefore, vessel noise and related activities would have limited effect. Consequently, no significant cumulative impacts would be expected from a CPA proposed action's activities or as the result of past, present, or reasonably foreseeable oil and gas leasing, exploration, development, and production in the GOM. Even taking into account additional effects resulting from non-OCS oil- and gas-related

activities, the potential for impacts from a CPA proposed action is mainly focused on the individual. Population-level impacts are not anticipated based on the best available information.

Within the CPA, there is a long-standing and well-developed OCS Program (more than 50 years); there are no data to suggest that activities from the preexisting OCS Program are significantly impacting sea turtle populations. Therefore, in light of the above analysis of a CPA proposed action and its impacts, the incremental effect of a CPA proposed action on sea turtle populations is not expected to be significant when compared with non-OCS oil- and gas-related activities.

Unavailable information on effects to sea turtles from the *Deepwater Horizon* explosion, oil spill, and response (and thus changes to the sea turtle baseline in the affected environment) makes an understanding of the cumulative effects less clear. Here, BOEM concludes that the unavailable information from these events may be relevant to foreseeable significant adverse impacts to sea turtles. Relevant data on the status of sea turtle populations after the *Deepwater Horizon* explosion, oil spill, and response and increased sea turtle GOM strandings may take years to acquire and analyze, and impacts from the *Deepwater Horizon* explosion, oil spill, and response and increased sea turtle GOM strandings may take years to acquire and analyze, and impacts from other factors. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM's subject-matter experts have used available scientifically credible evidence in this analysis and based upon accepted scientific methods and approaches. Nevertheless, a complete understanding of the missing information is not essential to a reasoned choice among alternatives for this Supplemental EIS (including the No Action and Action Alternatives) for the two main reasons listed below:

- (1) The CPA is an active oil and gas region with ongoing (or the potential for) exploration, drilling, and production activities. The potential for effects from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on sea turtles from either smaller accidental events or low-probability catastrophic events will remain the same.
- (2) All wide-ranging populations of sea turtles that may occur in the CPA and within areas affected by the spill are unlikely to have experienced population-level effects from the *Deepwater Horizon* explosion, oil spill, and response given their wide-ranging distribution and behaviors.

In any event, the incremental contribution of a CPA proposed action would not be likely to result in a significant incremental impact on sea turtles within the CPA; in comparison, non-OCS oil- and gas-related activities such as overexploitation, commercial fishing, and pollution have historically proved to be of greater threat to the sea turtle species.

4.1.1.14. Diamondback Terrapins

BOEM has reexamined the analysis for diamondback terrapins presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for two species listed as vulnerable, the Mississippi diamondback terrapin (*Malaclemys terrapin pileata*) and the Texas diamondback terrapin (*Malaclemys terrapin littoralis*), presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The national and subnational conservation status ranks of Texas and Mississippi diamondback terrapins as vulnerable, at moderate risk of extirpation in the jurisdiction due to a fairly restricted range, relatively few populations or occurrences, recent and widespread declines, threats, or other factors. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.14 of the 2012-2017 WPA/CPA Multisale EIS, and

updated information is provided in Chapter 4.2.1.14 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is below. Any new information that has become available since those documents were published is presented below.

A detailed description of both the Mississippi and the Texas diamondback terrapins can be found in Chapter 4.2.1.14.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.14 of the WPA 233/CPA 231 Supplemental EIS.

Impacts of Routine and Accidental Events

The following routine activities associated with proposed CPA Lease Sales 235, 241, and 247 would potentially affect diamondback terrapins: beach trash and debris generated by service vessels and OCS facilities; efforts undertaken for the removal of marine debris or for beach restoration; and vessel traffic (boat propeller strikes or groundings) with associated habitat (coastal marsh) erosion. A detailed impact analysis of the routine impacts of proposed CPA Lease Sales 235, 241, and 247 on diamondback terrapins can be found in Chapter 4.2.1.14.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.14 of the WPA 233/CPA 231 Supplemental EIS.

Adverse impacts due to routine activities resulting from the CPA proposed action are possible but unlikely. Because of the greatly improved handling of waste and trash by industry and because of the annual awareness training required by the marine debris mitigations, the plastics in the ocean are decreasing and the devastating effects on offshore and coastal marine life are minimizing. The routine activities of a CPA proposed action are unlikely to have significant adverse effects on the size and recovery of any terrapin species or population in the GOM. Most routine, OCS oil- and gas-related activities are expected to have sublethal effects, such as behavioral effects, that are not expected to rise to the level of population significance.

Impact-producing factors associated with accidental events that may be associated with a CPA proposed action that could affect diamondback terrapins include offshore and coastal oil spills and spill-response activities. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sale 235 on diamondback terrapins can be found in Chapter 4.2.1.14.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.14 of the WPA 233/CPA 231 Supplemental EIS.

Impacts on Mississippi and Texas diamondback terrapins from smaller accidental events are likely to affect individual diamondback terrapins in the spill area, but they are unlikely to rise to the level of population effects (or a level of significance) given the probable size and scope of such spills. Further, the potential remains for smaller accidental spills to occur in the CPA proposed action area, regardless of any alternative selected under this Supplemental EIS, given that it is an active oil and gas region with either ongoing or the potential for exploration, drilling, and production activities.

The analyses in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS conclude that there is a low probability for catastrophic spills. **Appendix B** of this Supplemental EIS also concludes that there is a potential for a low-probability catastrophic event, though not reasonably foreseeable and not part of a CPA proposed action, to result in significant, population-level effects on affected diamondback terrapin species. BOEM continues to concur with the conclusions from these analyses.

Malaclemys terrapin are federally listed as a species of concern. "Species of concern" is an informal term that refers to those species that might be in need of concentrated conservation actions. Such conservation actions vary depending on the health of the populations and degree and types of threats. At one extreme, there may only need to be periodic monitoring of populations and threats to the species and its habitat. At the other extreme, a species may need to be listed as a federally threatened or endangered species under the ESA. Species of concern receive no legal protection above those already afforded the species under other laws, and the use of the term does not necessarily mean that the species will eventually be proposed for listing as a threatened or endangered species. At the present time, the diamondback terrapin is neither a listed species nor a candidate for listing under the ESA.

Cumulative Impacts

Background/Introduction

The major impact-producing factors that may affect the Texas diamondback terrapin (*Malaclemys terrapin littoralis*) and the Mississippi diamondback terrapin (*Malaclemys terrapin pileata*) include oil spills and spill-response activities, alteration and reduction of habitat, and consumption of trash and debris.

OCS Oil- and Gas-Related Activities

The incremental contribution of a CPA proposed action to cumulative impacts on both the Texas and the Mississippi diamondback terrapins would be expected to be minimal. The major OCS oil- and gas-related, impact-producing factors that may affect the diamondback terrapin include (1) habitat destruction, (2) vessel traffic and road mortality, (3) exposure or intake of OCS oil- and gas-related contaminates or debris, and (4) oil spills and spill response.

Spending most of their lives within their limited home ranges at the aquatic-terrestrial boundary in estuaries, terrapins are susceptible to OCS oil- and gas-related habitat destruction (i.e., infrastructure construction, direct oil contact and associated cleanup efforts). Habitat loss has the potential to increase terrapin vulnerability to predation and increase competition. Pipelines from offshore oil and gas and other shoreline crossings have contributed to marsh erosion. However, a CPA proposed action would include only limited shoreline crossings and modern regulations requiring mitigation of wetland impacts. For additional effects of OCS oil- and gas-related habitat loss in beaches and dunes and in wetlands, refer to Chapters 4.2.1.3 and 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Refer to Chapter 4.2.1.23.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS for infrastructure-related habitat loss.

Vessel traffic and road mortality has the potential to affect diamondback terrapin populations. Terrapin populations are susceptible to propeller strikes by vessels traveling through wetland or beach habitat, and injury from strikes can cause mortality (Roosenburg, 1991). There have been no documented terrapin collisions with drilling and service vessels in the GOM. However, recreational vessel strikes in shallower waters of estuarine environments, where terrapins are most often found, is documented and suggests that there may be impacts associated with vessel traffic from OCS oil- and gas-related activities that require movement through estuarine habitat (Lester et al., 2012; Cecala et al., 2008). Vehicular traffic servicing ports or service bases located adjacent to terrapin habitat can lead to terrapin mortality, specifically during nesting season when gravid females emerge to lay their eggs (Szerlag and McRobert, 2006).

Behavioral effects and nonfatal exposure to or intake of OCS oil- and gas-related contaminants or discarded debris may stress and/or weaken individuals of a local group or population and predispose them to infection from natural or anthropogenic sources. Greatly improved handling of waste and trash by industry, along with the annual awareness training required by the marine debris mitigations, is decreasing the plastics in the ocean and minimizing the devastating effects on wildlife. The incidental ingestion of marine debris and entanglement could adversely affect terrapins. This Agency has established the guidance provided in NTL 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination," which appreciably reduces the likelihood of terrapin encountering marine debris from a CPA proposed action. A CPA proposed action is expected to contribute negligible marine debris or disruption to terrapin habitat. Unless properly regulated, removing marine debris may temporarily disturb terrapins or trample nesting sites. Due to the extended distance from shore, most activities associated with the OCS Program are not expected to impact terrapins or their habitat.

Most spills related to a CPA proposed action, as well as oil spills stemming from tankering and prior and future lease sales, are not expected to contact terrapins or their habitats. Even after the oil is no longer visible, terrapins may still be exposed while they forage in the salt marshes lining the edges of estuaries where oil may have accumulated under the sediments and within the food chain (Burger, 1994; Roosenburg et al., 1999; Holliday et al., 2008). Oil spills that affect beaches and dunes could potentially reduce terrapin nest size and lead to reduced hatchability (Wood and Hales, 2001). Nests can also be disturbed or destroyed by cleanup efforts. In addition, terrapins rarely move from one tidal creek to another (Gibbons et. al, 2001). Even if an oil spill is contained to one area, localized extirpation may occur in a subpopulation; however, total population-level effects would not be expected. Refer to **Chapters 4.1.1.3 and 4.1.1.4** of this Supplemental EIS and Chapters 4.2.1.3 and 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS for additional effects OCS oil- and gas-related activity to habitat loss in beaches and dunes and in wetlands.

Data collected by the Operational Science Advisory Team indicate that the *Deepwater Horizon* explosion, oil spill, and response may have impacted the beach and brackish habitats associated with terrapin communities (OSAT, 2010). For those terrapin populations that may not have been impacted by the *Deepwater Horizon* explosion, oil spill, and response, it is unlikely that a future accidental event related to the CPA proposed action would result in significant impacts due to distance of most of the terrapin habitat from offshore OCS oil- and gas-related activities. As discussed in **Appendix B**, a low-probability catastrophic event could have population-level effects on diamondback terrapins. The best available information does not provide a complete understanding of the effects of the spilled oil and active response/cleanup activities related to the *Deepwater Horizon* explosion, oil spill, and response on the potentially affected terrapin environment.

Unavailable information on the effects to diamondback terrapins from the *Deepwater Horizon* explosion, oil spill, and response (and thus changes to the diamondback terrapin baseline in the affected environment) makes an understanding of the cumulative effects less clear. Here, BOEM concludes that the unavailable information from these events may be relevant to foreseeable significant adverse impacts to diamondback terrapins. Relevant data on the status of diamondback terrapin populations after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze, and impacts may be difficult or impossible to discern from other factors. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM's subject-matter experts have used available scientifically credible evidence in this analysis and based upon accepted scientific methods and approaches.

Nevertheless, a complete understanding of the missing information is not essential to a reasoned choice among alternatives for this Supplemental EIS (including the No Action and Action alternatives). The CPA is an active oil and gas region with ongoing (or the potential for) exploration, drilling and production activities. The potential for effects from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on diamondback terrapins from either smaller accidental events or low-probability catastrophic events will remain the same.

Non-OCS Oil- and Gas-Related Activities

Activities posing the greatest potential harm to terrapins are non-OCS oil- and gas-related factors, including (1) habitat destruction, (2) overharvesting and crab pot fishing, (3) vessel traffic and road mortality, (4) nest depredation, (5) State oil- and gas-related activity, and (6) natural processes.

Terrapin populations are susceptible to non-OCS oil- and gas-related habitat destruction (i.e., urban development, subsidence/sea-level rise, coastal land uses, coastal restoration program, and maintenance dredging), and road construction. Wave action from non-OCS oil- and gas-related vessel traffic can cause the erosion of important hibernating or nesting habitat. The development of waterfront property continues to reduce shoreline habitats available as habitat to terrapins. In addition, the use of stabilization fences on dunes near developed areas can impact the accessibility of nesting sites. For additional effects of non-OCS oil- and gas-related habitat loss in beaches and dunes and in wetlands, refer to **Chapters 4.1.1.3 and 4.1.1.4** of this Supplemental EIS and Chapters 4.2.1.3 and 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Historically, the terrapin population suffered an initial decline due to overharvesting in the 1800's (Hogan, 2003). As the development of shoreline areas increased, there has been an increase in recreational and commercial crab fisheries. Terrapins are known to become entrapped in crab pots, especially young females and males. Long-term crab pot use has been suggested to influence the demographics of terrapin populations (Dorcas et al., 2007). While terrapin excluder devices have been developed, not all states require their use. Roosenburg et al. (1997) estimated that up to 78 percent of a terrapin subpopulation can die annually as a result of crab pot fishing.

Vessel traffic and road mortality has the potential to affect diamondback terrapin populations. Terrapin populations are susceptible to propeller strikes by vessels traveling through wetland or beach habitat, and injury from strikes can cause mortality (Roosenburg, 1991). Recent studies on behavioral responses of diamondback terrapin to recreational boat sounds suggest that terrapins are sensitive to boat frequencies but do not appear to respond behaviorally to the anthropogenic boat sounds (Lester et al., 2012). This failure to respond to boat sounds may be limiting populations in areas with heightened boat traffic. Major shell injuries and limb loss, many of which are attributed to boat propeller impact, has been shown to significantly reduce survivorship and reproductive output (Cecala et al., 2008).

Non-OCS oil- and gas-related traffic on roadways (e.g., to/from recreation or tourism areas) adjacent to terrapin habitat can lead to terrapin mortality, specifically during nesting season when gravid females emerge to lay their eggs (Szerlag and McRobert, 2006). Studies suggest that terrapin are attracted to the roadside because it meets the requirements for suitable nesting habitat (Szerlag and McRobert, 2006).

Characteristics of terrapin life history render this species especially vulnerable. These characteristics include low reproductive rates, low survivorship, limited population movements, and nest site fidelity year after year. In addition, non-OCS development can introduce predators to terrapin habitat by increasing the accessibility of the site (via road construction or other anthropogenic source). Raccoons alone can depredate more than 90 percent of nests of a single population (Feinberg and Burke, 2003).

State oil- and gas-related activities would affect terrapin populations in similar ways to OCS oil- and gas-related activities. Spills that occur as a result of State activity are generally closer to shore and are more likely to affect terrapin habitat. Non-OCS oil- and gas-related contamination and debris are expected to affect terrapins in a similar manner to OCS oil- and gas-related contamination and debris. For additional effects of non-OCS oil- and gas-related activities in beaches and dunes and in wetlands, refer to **Chapters 4.1.1.3 and 4.1.1.4** of this Supplemental EIS and Chapters 4.2.1.3 and 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Natural processes (i.e., coastal erosion) and natural catastrophes (i.e., hurricanes and tropical storms), in combination, could potentially deplete some terrapin populations to unsustainable levels. Beach erosion from tropical storms and hurricanes could threaten their preferred nesting habitats.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (NOAA's and FWS's websites, and the RestoreTheGulf.gov website), as well as recently published journal articles was conducted to determine the availability of recent information on diamondback terrapins. The search revealed little new information pertinent to this Supplemental EIS and nothing that affected the impact conclusions in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Non-OCS impacts from boat injuries are prevalent in terrapins and may be detrimental to populations but has had limited research conducted on its impacts. Recent studies on behavioral responses of diamondback terrapin to recreational boat sounds suggest that terrapins are sensitive to boat frequencies but do not appear to behaviorally respond to the anthropogenic boat sounds (Lester et al., 2012). This failure to respond to boat sounds may be limiting populations in high boating traffic areas. Major shell injuries and limb loss, many of which are attributed to boat impact, have been shown to significantly reduce survivorship and reproductive output (Cecala et al., 2008).

Incomplete or Unavailable Information

Limited data are currently available on the potential impacts of the *Deepwater Horizon* explosion, oil spill, and response on diamondback terrapins in the CPA. As discussed in this Supplemental EIS and in Chapter 4.2.1.14 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding impacts to diamondback terrapins in the CPA. This incomplete information may be relevant to evaluating adverse effects because the full extent of the potential impacts on terrapins is not known. Relevant data on the status of diamondback terrapin populations after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze, and impacts may be difficult or impossible to discern from other factors. This information cannot be obtained because the overall costs are exorbitant and data would likely not be available within the timeline contemplated in the NEPA analysis of this Supplemental EIS.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. Studies investigating evidence

of oil and impacts stemming from exposure to oil indicate that impacts resulting from the *Deepwater Horizon* oil spill have been largely indistinguishable from natural fluctuations or variability due to other anthropogenic activities (Burger, 1994; Roosenburg et al., 1999; Holliday et al., 2008; Wood and Hales, 2001). Although the body of available information is incomplete and long-term effects cannot yet be known, past analyses are not indicative of significant population-level responses. BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

The effects of a CPA proposed action, when viewed in light of the effects associated with other past, present, and reasonably foreseeable future activities may result in greater impacts to diamondback terrapins than before the *Deepwater Horizon* explosion, oil spill, and response; however, the magnitude of those effects cannot yet be determined. Nonetheless, to mitigate potential impacts from OCS oil- and gas-related activities, operators are required to follow all applicable lease stipulations and regulations, as clarified by NTLs, to minimize these potential interactions and impacts. The operator's reaffirmed compliance with NTL 2012-BSEE-G01 ("Marine Trash and Debris Awareness and Elimination"), as well as the limited scope, timing, and geographic location of a CPA proposed action, would result in negligible effects from the proposed drilling activities on diamondback terrapins.

A complete understanding of the missing information is not essential to establish a reasoned choice among alternatives for this Supplemental EIS (including the No Action and Action alternatives). The potential for diamondback terrapins to be affected from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), routine activities, accidental spills (including lowprobability catastrophic spills), and cumulative effects will remain regardless of whether or not the No Action an Action alternative is chosen under this Supplemental EIS. The rate of current and historic loss of terrapin habitat in Louisiana, for example, far exceeds the potential impacts to terrapin habitat from the *Deepwater Horizon* explosion, oil spill, and response.

BOEM has reexamined the analysis for diamondback terrapins presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for diamondback terrapins presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because of the available scientifically credible evidence in this analysis and based upon accepted scientific methods and approaches. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Texas and Mississippi diamondback terrapins have experienced impacting pressures from habitat destruction, road construction, drowning in crab traps, and past overharvesting resulting in historical reductions in their habitat range and declines in populations. Inshore oil spills from non-OCS oil- and gas-related sources are potential threats to terrapins in their brackish coastal marshes. Pipelines from offshore oil and gas and other shoreline crossings have contributed to marsh erosion. However, a CPA proposed action includes only limited shoreline crossings, and modern regulations require mitigation of wetland impacts. Low-probability catastrophic offshore oil spills could affect the coastal marsh environment but such events are rare occurrences and may not reach the shore, even if they do occur. Therefore, the incremental contribution of a CPA proposed action is expected to be minimal, compared with non-OCS oil- and gas-related activities. The major impact-producing factors resulting from the cumulative activities associated with a CPA proposed action that may affect the diamondback terrapin include oil spills and spill-response activities, alteration and reduction of habitat, and consumption of trash and debris. Due to the extended distance from shore, impacts associated with activities occurring on the OCS are not expected to impact terrapins or their habitat. No substantial information was found at this time that would alter the overall conclusion that cumulative impacts on diamondback terrapins associated with a CPA proposed action would be expected to be minimal.

BOEM has considered this assessment and has reexamined the cumulative analysis for diamondback terrapins and the cited new information. Based on this evaluation, the conclusions in these analyses on effects to diamondback terrapins remain unchanged in regards to routine activities (no potential for significant adverse effects) and accidental spills (potential for significant adverse effects).

Overall, within the CPA, there is a long-standing and well-developed OCS Program (more than 50 years); there are no data to suggest that activities from the preexisting OCS Program are significantly

impacting diamondback terrapin populations. Non-OCS oil- and gas-related activities will continue to occur in the CPA irrespective of a proposed CPA lease sale (i.e., crabbing, fishing, military activities, scientific research, and shoreline development). Therefore, in light of the above analysis of a CPA proposed action and its impacts, the incremental effect of a CPA proposed action on diamondback terrapins populations is not expected to be significant when compared with historic and current non-OCS oil- and gas-related activities, such as habitat loss, overharvesting, crabbing, and fishing.

4.1.1.15. Alabama, Choctawhatchee, St. Andrew, and Perdido Key Beach Mice

BOEM has reexamined the analysis for Alabama, Choctawhatchee, St. Andrew, and Perdido Key beach mice (hereafter "beach mice") presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for beach mice presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sale 235, 241, and 247.

A detailed description of the Alabama, Choctawhatchee, St. Andrew, and Perdido Key beach mice and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.15 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The major impact-producing factors associated with routine activities of a CPA proposed action that may affect beach mice include beach trash and debris, and efforts undertaken for the removal of marine debris or for beach restoration. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on beach mice can be found in Chapter 4.2.1.15.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.15 of the WPA 233/CPA 231 Supplemental EIS.

Impacts from the routine activities associated with a CPA proposed action on beach mice are possible but unlikely. Impacts may result from consumption of or entanglement in beach trash and debris. It is expected that debris from a CPA proposed action would account for a small portion of the total debris that would reach beach mice habitat; thus, the impacts from a CPA proposed action would be minimal. The BSEE prohibits the disposal of equipment, containers, and other materials into offshore waters by lessees (30 CFR § 250.300; also refer to NTL 2012-BSEE-G01 "Marine Trash and Debris Awareness and Elimination"). In addition, MARPOL, Annex V, Public Law 100-220 (101 Statute 1458) prohibits the disposal of any plastics at sea or in coastal waters. Unless all personnel are adequately trained, efforts undertaken for the removal of marine debris may temporarily scare away beach mice or destroy their food resources, such as sea oats. However, their burrows have a plugged escape tunnel that would become functional if the main entrance was trampled. Sea oats are a protected species at the State and local level throughout all beach mice habitat, theoretically reducing the potential for destruction (refer to City of Gulf Shores Ordinance No. 2012-1141, ADEM Administrative Code Regulations 335-8-2-.08, and Florida Statute Title XI 161.242).

The major impact-producing factors resulting from accidental events associated with a CPA proposed action that may affect beach mice include offshore and coastal oil spills, and spill-response activities. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on beach mice can be found in Chapter 4.2.1.15.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.15 of the WPA 233/CPA 231 Supplemental EIS.

The oiling of beach mice or beach mice critical habitat could result in local extinction. Oil-spillresponse and cleanup activities could also have a substantial impact to the beach mice and their habitat if all cleanup personnel are not adequately trained. However, potential spills that could result from a CPA proposed action are not expected to wash onto or over the foredunes of beach mouse habitat (refer to **Appendix B** of this Supplemental EIS and Figure 3-11 of the 2012-2017 WPA/CPA Multisale EIS). Also, inshore facilities related to a CPA proposed action are unlikely to be located on beach mouse habitat.

Within the last 20-30 years, the combination of habitat loss due to beachfront development, the isolation of remaining beach mouse habitat areas and populations, and the destruction of remaining habitat by tropical storms and hurricanes has increased the threat of extinction of several subspecies of beach mice. Destruction of the remaining habitat, including critical habitat, due to a low-probability catastrophic spill and cleanup activities would increase the threat of extinction, but the potential for a catastrophic spill that would substantially affect beach mice habitat is low.

A review of the available information shows that impacts on beach mice from accidental impacts associated with a CPA proposed action would be minimal.

Cumulative Impacts

Background/Introduction

This cumulative analysis considers the possible cumulative effects of all activities in the CPA on the Alabama, Choctawhatchee, St. Andrew, and Perdido Key beach mice, which are protected species under the ESA, and the Santa Rosa beach mouse (located in the same area but not listed under the ESA). Also included in this analysis are the federally threatened southeastern beach mouse and the federally endangered Anastasia Island beach mouse on the east coast of Florida, which are discussed because they could be exposed to an oil spill in the CPA if it was entrained in the Loop Current and was carried to their locations.

The major impact-producing factors that affect beach mice include OCS oil- and gas-related impacting factors such as oil spills (offshore and coastal) and associated cleanup operations, consumption of and entanglement in beach trash and debris, and non-OCS oil- and gas-related impacting factors such as beach development and alteration and reduction of habitat, predation (especially from domestic cats), competition, and natural catastrophes (i.e., hurricanes and tropical storms).

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related beach trash and debris and associated removal efforts may impact beach mice. The beach mice may consume the trash and debris, and they may become entangled in the debris. If a burrow is trampled by foot traffic of insufficiently trained debris cleanup personnel, it is likely beach mice could dig themselves out. However, they would be subject to additional energetic expenditure associated with rebuilding the burrow.

Most proposed action-related spills, as well as oil spills stemming from prior and future lease sales, are not expected to contact beach mice or their habitats, and no major impacts from associated cleanup operations are expected. If personnel are properly trained (on short notice if under emergency conditions) and supervised, these impacts could be reduced. Cumulative impacts could potentially deplete some beach mice populations to unsustainable levels. However, the expected incremental contribution of a CPA proposed action to the cumulative impacts is negligible.

Due to the extended distance of most OCS oil- and gas-related activities from shore, the incremental impacts associated with a CPA proposed action are not expected to impact beach mice when compared with the cumulative effects of non-OCS oil- and gas-related factors nearer to shore.

Non-OCS Oil- and Gas-Related Impacts

Substantial habitat loss due to sea-level rise is not expected to seriously affect beach mice habitat. The eastern Gulf of Mexico (Alabama and Florida) is underlain by a stable carbonate platform (limestone) that is not subject to subsidence to any substantial degree, and so it is predominantly influenced by absolute sea-level rise. A tidal gauge at Pensacola, Florida, showed an average relative sea-level rise of 2.1 mm/year. Absolute long-term, sea-level rise is expected to result in landward movement of beach and dune habitat, but the total habitat area may not necessarily decline from this sea-level rise alone.

Non-OCS oil- and gas-related beach trash and debris and associated removal efforts may impact beach mice. The beach mice may consume trash and debris, and they may become entangled in the debris. If a burrow is trampled by foot traffic of insufficiently trained debris cleanup personnel, beach mice could dig themselves out. However, they would be subject to additional energetic expenditure associated with rebuilding the burrow.

Predation by domestic cats is a serious threat to many native rodent species. According to the most up-to-date reference on the subject (Cascades Raptor Center, 2013), the only two available sources of reliable data on outdoor cats and beach mouse populations are 20-32 years old and indicate that "... cats introduced by people living on the barrier islands of Florida's coast have depleted several unique species of mice and woodrats to near extinction." More generally, domestic cats are an invasive species and have impacts on wildlife that feral cats and natural predators do not. Cats in general have more impact on wildlife than do natural predators. Competition between the hispid cotton rat (*Sigmodon hispidus*) and Alabama beach mouse may increase after a hurricane if the beach mouse is forced into a smaller habitat area (interior dune refuges) by hurricane damage to foredune habitat (Falcy, 2011; Yuro, 2011). The effects of oil spills from State oil- and gas-related activity and import tankering are expected to be similar to those of OCS oil- and gas-related impacts, and they are not expected to contact beach mice or their habitats. If personnel are properly trained (on short notice if under emergency conditions) and supervised, these impacts could be reduced.

A population viability analysis is a demographic modeling exercise to predict the likelihood a population will continue to persist over time given the influence of stochastic (i.e., unpredictable) events (Groom and Pascual, 1998). The population viability analysis models have potential problems with usefulness to managers because they are untested and complex (Hanski, 1999). The objective of a population viability analysis for beach mice is to determine how large and what configuration of habitat is necessary to reasonably assure that the species will survive to recover. In the first version of a population viability analysis model of the Alabama beach mouse, many of the model parameters were uncertain and may have been inaccurate, resulting in uncertainty in the probability of Alabama beach mouse extinction (Traylor-Holzer et al., 2005). The model was revised after Hurricane Ivan (Traylor-Holzer, 2005) and then data collected after Hurricane Katrina were used in a second revision of 26.8 \pm 1.0 percent over the next 100 years. Destruction of migration corridors between populations raises the risk to 41.2 \pm 1.1 percent, but only 34.9 \pm 1.1 percent with the translocation of mice.

Falcy (2011) used modelling to show smooth recovery of Alabama beach mouse populations during the 4 years after Hurricane Ivan (2004) and Hurricane Katrina (2005). Further modelling (Falcy, 2011) showed that increasing the rate of population growth in a refuge, like interior dunes after a hurricane, would have a much larger effect on population persistence than increasing the rate of recovery of damaged habitat, like foredunes after a hurricane. Occupancy of frontal dunes by Santa Rosa beach mice dropped from 100 percent to 40 percent after Hurricane Ivan, but occupancy of interior (scrub) dunes at 75 percent did not change (Pries et al., 2009). Yuro (2011) studied Hurricanes Ivan and Katrina and showed that the Alabama beach mouse has the ability to survive hurricanes if they are not successive. Hurricanes cause increased fragmentation of habitat, which is correlated with increased distance (gap width) between fragments that must be crossed by beach mice at night if they are to move between habitat patches. Beach mice, which are nocturnal, may prefer to cross narrower gaps to avoid exposure to predators (Wilkinson et al., 2013). The frequency of gap crossing may decrease when visibility is good during the full moon when mice are more visible to predators, as compared with the frequency during the new moon (Wilkinson et al., 2013). Within the historic ranges of the four Gulf Coast beach mouse subspecies, between 1851 and 2006, 58 hurricanes have made landfall in northwest Florida and 21 hurricanes have made landfall in Alabama (McAdie et al., 2009; USDOC, NOAA, National Hurricane Center, 2012). This high historic and contemporary frequency of extreme disturbance has been a form of natural selection to which the beach mice were adapted until it was combined with anthropogenic habitat loss and fragmentation.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search for new information available since the publication of the 2012-2017 WPA/CPA Multisale EIS, and WPA 233/CPA 231 Supplemental EIS, identified several new publications but none that were pertinent to OCS oil- and gas-related activities and their effects. Searches were made using EBSCO,

ScienceDirect, Google Advanced Scholar Search, and Google Advanced Book Search using the keywords "beach mouse," "dunes," and "*Peromyscus polionotus*." The Internet was searched for any new information, and a local FWS beach mouse expert was contacted (Frater, official communication, 2013). Updated information on hurricane frequencies that affected beach mice habitats was identified and incorporated into the cumulative impacts analysis above. There was no new information that had any effect on the impact analyses and conclusions in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.15 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding beach mice in the CPA. This incomplete information may be relevant to the evaluation of adverse effects because it provides any change in the baseline environmental conditions for beach mouse populations in the affected environment from the *Deepwater Horizon* oil spill and response, exacerbating any impacts from a CPA proposed action. Relevant data on the status of beach mice after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze. Much of these data are being developed through the NRDA process, which may take years to complete. It is not possible for BOEM to obtain this information and incorporate it into this analysis within the timeline contemplated in the NEPA analysis of this Supplemental EIS regardless of the costs or resources needed. Current studies are investigating the effects of the *Deepwater Horizon* explosion, oil spill, and response activities on beach mice and their habitat (Frater, official communication, 2013). The time when the study results will be released is unclear; therefore, BOEM cannot commit to waiting for the new information to become available to incorporate it into this Supplemental EIS.

The information cannot be obtained because it may take years to acquire and analyze through the NRDA process, and it cannot be released due to ongoing NRDA litigation. BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here.

The following is an example of extrapolations made from data summarized from OSAT-2 (2011) that BOEM used in the stead of unavailable and incomplete information. Assessment of the efficacy of shoreline cleanup in supratidal Alabama beach mouse habitat showed 60 percent "no oil observed," 37 percent "light-very light oiling," and 3 percent "moderate-heavy oiling." Much of the supratidal habitat of Perdido Key beach mouse and Choctawhatchee beach mouse showed "no oil observed." Supratidal habitat of St. Andrew beach mouse was not affected by the *Deepwater Horizon* oil spill and response. A "toxicity reference value" is developed by USEPA for low (2-3 ring) and high (4-7 ring) molecular weight PAHs. Two scenarios for PAHs oral uptake by Alabama beach mouse were reported: 10 percent contribution and a worst-case 100 percent contribution of small tarballs to the overall ingesting of soil. The estimated daily dose of PAHs from oral uptake following the *Deepwater Horizon* oil spill and response did not exceed the toxicity reference value for low molecular weight PAHs in the Alabama beach mouse.

The following example of this methodology is summarized by Frater (official communication, 2011). Known occupied habitat has been trampled, denuded, and eroded. The amount of impacted beach mouse habitat has been assessed since the summer of 2011. Reasonable estimates of the amount of beach mouse habitat that has been damaged, altered, or destroyed varies from 1 to 50 ac throughout the range of the five Gulf Coast subspecies (4 of which are federally protected). Preliminary data suggest that impacts to beach mouse habitat was very minor. The impacts to beach mouse habitat during the *Deepwater Horizon* response probably have not caused significant impacts to the population levels of beach mice. The habitat that was damaged was primarily young dunes. The damage may restrict population expansion and recovery for a few years, but anticipated restoration activities will probably offset this impact in the near future.

Any additional NRDA information obtained from the *Deepwater Horizon* oil spill and response is unlikely to be so significant as to change the assessed impact level. In summary, BOEM has determined that the information is not essential to a reasoned choice of alternatives.

Summary and Conclusion

New information does not indicate a change in the conclusions identified in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. An impact from the routine activities associated with a CPA proposed action on Alabama, Choctawhatchee, St. Andrew, and Perdido Key beach mice is possible but unlikely. Impacts on beach mice from accidental impacts that may be associated with a CPA proposed action would also be minimal. Cumulative activities have the potential to harm or reduce the numbers of Alabama, Choctawhatchee, St. Andrew, and Perdido Key beach mice. Those activities include oil spills, alteration and reduction of habitat, predation and competition, consumption of and entanglement in beach trash and debris, beach development, and natural catastrophes (hurricanes and tropical storms). Most spills related to a CPA proposed action and prior and future lease sales are not expected to contact beach mice or their habitats because the species lives above the mean high waterline where contact is less likely. Cumulative impacts could potentially deplete some beach mice populations to unsustainable levels, but non-OCS oil- and gas-related drivers are expected to have a greater impact than OCS oil- and gas-related activities. The expected incremental contribution of a CPA proposed action to the cumulative impacts remains small.

No new significant information was discovered that would alter the impact conclusion for the beach mice presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

4.1.1.16. Coastal and Marine Birds

BOEM has reexamined the analysis for coastal and marine birds presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for coastal and marine birds presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.16 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. A ny new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The majority of the effects resulting from routine activities of a CPA proposed action (**Tables 3-2 through 3-4**) on threatened or endangered (Table 4-1 of the WPA 233/CPA 231 Supplemental EIS) and nonthreatened and nonendangered coastal and marine birds are expected to be sublethal, primarily disturbance-related effects (Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS). Major potential impact-producing factors resulting from routine activities for marine birds in the offshore environment include the following:

- habitat loss and fragmentation (Fahrig, 1997 and 1998);
- behavioral effects primarily due to disturbance from OCS helicopter and servicevessel traffic and associated noise (Habib et al., 2007; Bayne et al., 2008);
- mortality due to exposure and intake of OCS oil- and gas-related contaminants, e.g., drilling discharges and produced waters (Wiese et al., 2001; Fraser et al., 2006) and discarded debris (Robards et al., 1995; Pierce et al., 2004);

- sublethal, chronic effects from air emissions (Newman, 1979; Newman and Schreiber, 1988); and
- mortality and energetic costs associated with structure presence and associated light (Russell, 2005; Montevecchi, 2006).

A detailed impact analysis of the routine OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on coastal and marine birds can be found in Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS.

Overall, impacts to avian species from routine activities are expected to be adverse but not significant. Impact-producing factors from accidents include oil spills, regardless of size and despite oil-spill cleanup activities, including the release of rehabilitated birds. A detailed impact analysis of the accidental impacts of OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, and 247 on coastal and marine birds can be found in Chapter 4.2.1.16.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS.

Oil-spill impacts on birds from a CPA proposed action are expected to be adverse but not significant, given the number and relatively small size of spills expected over the 40-year life of a CPA proposed action (Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS). Impacts of oil-spill cleanup from a CPA proposed action are also expected to be adverse, but not significant, but may be negligible depending on the scope and scale of efforts. Significant impacts to coastal and marine birds could result in the event of a low-probability catastrophic spill, depending on the timing, location, and size of the spill. For additional information on a low-probability catastrophic spill, refer to **Appendix B**.

Cumulative Impacts

A detailed impact analysis of the coastal and marine birds for a CPA proposed action can be found in Chapters 4.2.1.16.1, 4.2.1.16.2, and 4.2.1.16.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS, all of which are hereby incorporated by reference. The following is an analysis of the cumulative impacts to coastal and marine birds. Additional information on impacts to birds and results from avian monitoring related to the *Deepwater Horizon* explosion, oil spill, and response can be found in Chapter 4.2.1.16.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS (Tables 4-8 and 4-12 through 4-15 of the 2012-2017 WPA/CPA Multisale EIS; refer also to USDOI, FWS, 2011). The incremental contribution of a CPA proposed action to the cumulative impact is considered adverse but not significant.

A more detailed discussion of catastrophic OCS oil- and gas-related events can be found in **Appendix B**. Information regarding a CPA proposed action and the associated activity levels and oil-spill information can be found in **Tables 3-2 and 3-4** of this Supplemental EIS and in Tables 3-12, 3-18, and 3-21 of the 2012-2017 WPA/CPA Multisale EIS.

Background/Introduction

This cumulative analysis considers impact-producing factors that may adversely affect populations of threatened and endangered avian species, as well as nonthreatened and nonendangered species, related to OCS oil- and gas- and non-OCS oil- and gas-related activities. For simplicity sake, both listed and nonlisted avian species are considered together, although it is recognized that potential impacts from OCS oil- and gas-related activities may have relatively greater overall negative effects to listed species than nonthreatened and nonendangered species.

Several OCS oil- and gas-related impact-producing factors could potentially affect coastal and marine birds, including the following: air pollution; degradation of water quality; oil spills and any improperly directed spill response as a result of OCS oil- and gas-related activity; structure lights and structure lighting; aircraft and vessel traffic and noise; maintenance and use of navigation waterways; habitat loss from coastal facility and OCS support structure construction; new pipeline landfalls; and impacts from OCS oil- and gas-related trash and debris.

4-133

In addition to the factors listed above, there are several non-OCS oil- and gas-related impactproducing factors that could potentially impact coastal and marine birds. These factors include the following: air pollution; habitat loss, alteration, and fragmentation associated with commercial and residential construction and industrial growth; water pollution including State or tanker oil- and gasrelated spills and any spill-response activities and pollution of coastal waters resulting from municipal, industrial, and agricultural runoff and discharge; aircraft and vessel (including military) activities and noise; nonconsumptive and consumptive recreation; maintenance and use of navigation waterways; collisions with anthropogenic structures; predation; diseases; climate change and related impacts; impacts from storms and floods; fisheries interactions; and trash and debris.

OCS Oil- and Gas-Related Impacts

Air Pollutants

Air pollutants include the amount of sulfur dioxide and other regulated pollutants (Chapter 4.1.1.1 of this Supplemental EIS, Chapter 4.2.1.1 and Table 4-1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.1 of the WPA 233/CPA 231 Supplemental EIS) expected to be released due to a CPA proposed action, as well as from prior and future OCS lease sales. These pollutants may adversely affect coastal and marine birds and their habitats (Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS). Pollutant emissions into the atmosphere from OCS oil- and gas-related activities under the cumulative analysis are expected to have minimal effects on offshore air quality because of the prevailing atmospheric conditions, emission heights, and pollutant concentrations, as regulated by USEPA (Wilson et al., 2010, Tables 8-1 and 8-2). Onshore impacts to air quality from emissions under the OCS oil- and gas-related cumulative analysis are expected to be within both PSD Class I and Class II allowable increments, as applied to the respective subareas. Emissions of pollutants into the atmosphere under the OCS oil- and gas-related cumulative analysis are projected to have minimal effects on onshore air quality because of the atmospheric regime, emission rates (Table 4-1 of the 2012-2017 WPA/CPA Multisale EIS), and the distance of these emissions from the coastline. Increases in onshore annual average concentrations of NO_x , SO_x , and PM_{10} under the OCS oil- and gas-related cumulative analysis are estimated to be less than PSD Class I and Class II allowable increments for the respective subareas as per both the steady-state and plume dispersion analyses, and they are assumed to be below concentrations that could harm coastal and marine birds (Chapter 4.1.1.16 of this Supplemental EIS, Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS; also refer to Newman, 1979; Newman and Schreiber, 1988).

For coastal and marine birds, direct impacts (on individuals) and indirect impacts (on habitat or food supply) due to air quality under the OCS oil- and gas-related cumulative analysis may include chronic, sublethal effects leading to overall reduced recruitment. The incremental contributions of offshore emissions are below or within those allowed by USEPA, but it is uncertain to what extent air pollutants from OCS oil- and gas-related activities could adversely impact birds in the GOM region. Nevertheless, these impacts would not be expected to rise to population-level impacts across the GOM.

Degradation of Water Quality

Water quality (**Chapter 4.1.1.2** of this Supplemental EIS, Chapter 4.2.1.2 and Tables 3-8, 3-9, and 3-23 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.2 of the WPA 233/CPA 231 Supplemental EIS) of coastal environments will be affected by bilge water from service vessels and point-and nonpoint-source discharges from supporting infrastructure. Water quality in marine waters will be impacted by the discharges from drilling, production, and platform removal operations. Degradation of water quality resulting from factors related to a CPA proposed action, plus those related to prior and future OCS lease sales, is expected to adversely impact coastal and marine birds (**Chapter 4.1.1.16** of this Supplemental EIS, Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS).

The overall coastal condition of the Gulf Coast estuaries was evaluated from 2003 to 2006 by USEPA and was rated 2.4 on a scale of 1 (poor) to 5 (good). This represented an improvement from the early 1990's (USEPA, 2012a). The incremental addition related to a CPA proposed action will contribute to

further degradation of water quality, but this remains a small addition when compared with all other natural and anthropogenic sources.

Produced water is an important OCS oil- and gas-related activity factor affecting birds. Pollutants discharged into navigable waters of the U.S. are regulated by USEPA under the Clean Water Act of 1972 and subsequent provisions (33 U.S.C. §§ 1251 et seq.; Chapter 3.1.1.4 of this Supplemental EIS). Specifically, an NPDES permit must be obtained from USEPA under Sections 301(h) and 403 (Federal Register, 1980) of the Clean Water Act. From 2000 to 2012, OCS oil- and gas-related activities generated between 489.0 and 648.2 MMbbl of produced waters (Chapter 3.1.1.4 and Table 3-5 of this Supplemental EIS and Chapter 3.1.1.4 of the 2012-2017 WPA/CPA Multisale EIS). Produced water, including its constituent pollutants, is the largest waste stream associated with oil and gas production (Veil et al., 2004; Welch and Rychel, 2004; Clark and Veil, 2009). The volume of produced water is not constant over time and increases over the life of an individual well (Veil et al., 2004). Produced water is comprised of a number of different substances, including trace heavy metals, radionuclides, sulfates, treatment chemicals, produced solids, and hydrocarbons (Veil et al., 2004). Impacts to birds from pollutants remaining in produced water may be from ingestion or contact (direct) or from the changes in the abundance, distribution, or composition of preferred foods (indirect). O'Hara and Morandin (2010) documented measurable oil transfer to feathers and impacts to feather microstructure at sheen thickness as low as 0.1-0.3 micrometers. Even a light coating of hydrocarbons and other substances found in produced water can negatively affect feather microstructure, potentially compromising its buoyancy, insulation (i.e., thermoregulatory function and capacity), and flight characteristics (Stephenson, 1997; O'Hara and Morandin, 2010). Analyses herein are based, in part, on the following assumptions: (1) the regulatory limits established by USEPA eliminate or significantly reduce the potential for negative effects to most birds; and (2) produced water and its constituent pollutants will be diluted simply as a function of the dilution potential of the ocean, minimizing potential harm to birds. BOEM relies on self-reporting and self-monitoring by individual companies relative to produced waters. There is uncertainty as to the potential effects of this routine activity on seabirds that overlap spatially and temporally with producedwater discharge events in the CPA (Stephenson, 1997; Wiese et al., 2001; Burke et al., 2012).

Platform and Pipeline Oil Spills and Any Improperly Directed Spill-Response Activities

The potential effects associated with accidental oil spills are only briefly discussed here. A more detailed discussion of oil-spill effects/impacts to avian resources (birds) is provided in Chapter 4.1.1.18 of this Supplemental EIS, Chapter 4.2.1.18.3 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.18 of the WPA 233/CPA 231 Supplemental EIS. Oil spills have the greatest potential to impact coastal and marine birds (Tables 4-8, 4-12, and 4-13 of the 2012-2017 WPA/CPA Multisale EIS). Mortality is associated with oil spills or chronic oil pollution (Wiese and Robertson, 2004; Wilhelm et al., 2007; Camphuysen, 2010). It is well understood that the anthropogenic input of accidental spills varies temporally and, in the GOM, the years in which major hurricanes occurred resulted in a higher frequency of spills as well as a greater annual volume (USDOI, MMS, 2009b; Anderson et al., 2012). Oil spills and chronic oil pollution both result in the direct mortality of seabirds worldwide and result in major avian losses regionally and locally (Newton, 1998, pages 429-431; also refer to Table 4-15 of the 2012-2017 WPA/CPA Multisale EIS). Use of waterbird, marshbird, shorebird, and seabird feeding areas at the sea surface and at the intertidal wetland zone, where spilled oil may accumulate, makes many avian species extremely vulnerable to spilled oil (Tables 3-11, 3-12, 3-17, 3-18, and 3-21 of the 2012-2017 WPA/CPA Multisale EIS). Depending on the timing and location of the spill, even small spills can result in major avian mortality events (refer to Dunnet, 1982; Piatt et al., 1990; Castège et al., 2007). One or many episodes of exposure to small amounts of oil may result in sublethal impacts on birds, with the potential to impact preferred food resources through changes in distribution and abundance (i.e., availability) of preferred foods (Golet et al., 2002). Mortality from oil spills is often related to numerous symptoms of toxicity. Data on spill size, frequency, and source are given in Tables 3-11, 3-12, and 3-21 of the 2012-2017 WPA/CPA Multisale EIS.

The extensive oil and gas industry operating in the Gulf area may have caused low-level, chronic, petroleum contamination of coastal waters (Tables 3-11, 3-17, 3-18, and 3-23 of the 2012-2017 WPA/CPA Multisale EIS; Holdway, 2002; Jernelöv, 2010). Outside of a low-probability catastrophic event, petroleum spills or releases that result from a CPA proposed action or OCS energy program would be expected to be small, particularly when compared with naturally occurring seeps in the GOM (Tables

3-8 and 3-9 of the 2012-2017 WPA/CPA Multisale EIS). Nevertheless, lethal effects are expected primarily from uncontained, inshore oil spills and associated spill-response activities in wetlands and other biologically sensitive coastal habitats (National Audubon Society, Inc., 2010; USDOI, FWS, 2010). Recruitment of birds and a population's recovery from a major mortality event may take many years, depending upon the species and its life-history strategy (Table 4-13 of the 2012-2017 WPA/CPA Multisale EIS; Figures 4-18 and 4-19 of the 2012-2017 WPA/CPA Multisale EIS). Long-term effects, in some cases, may persist for \geq 20 years (e.g., Peterson et al., 2003). Though the *Deepwater Horizon* explosion, oil spill, and response only resulted in the collection of >7,000 birds (Figure 4-17 of the 2012-2017 WPA/CPA Multisale EIS), the total model-estimated mortality associated with this spill has not yet been determined. The effects on impacted populations are presently poorly understood, though species-specific life-history traits will largely determine a given species response to the spill (Table 4-13 of the 2012-2017 WPA/CPA Multisale EIS). Refer to Anderson et al. (2012) for additional information specific to OCS oil- and gas-related oil spills. A more detailed discussion of catastrophic OCS oil- and gas-related events can be found in **Appendix B**.

Structure Lights and Structure Presence

Migratory land birds may be impacted by OCS oil- and gas-related attraction to platforms, nocturnal circulation (night flights) around platforms, and collision with platforms. Every spring, about 300 million migratory landbirds, mostly neotropical passerines, cross the Gulf of Mexico from wintering grounds in Latin America to breeding grounds north of the Gulf of Mexico (Russell, 2005). Migration peaks from mid-March through the end of May. The reverse migration is repeated again in the fall with a peak around mid-August through early November (Russell, 2005). Migrants sometimes arrive at platforms shortly after night fall or later and proceed to circle those platforms (referred to as a nocturnal circulation event) for variable periods ranging from minutes to hours (Russell, 2005). Nocturnal circulation events around platforms may create lethal effects from collisions with platforms (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS), acute sublethal stress from energy loss, and increased predation risks. At present, it is unknown if birds participating in nocturnal circulation events actually have sufficient energy reserves post-event to successfully complete their migration. It is estimated that collisions with platforms in the GOM leads to an annual mortality of 200,000-321,000 birds (Table 4-7, footnote 5 of the 2012-2017 WPA/CPA Multisale EIS). Conservatively, a CPA proposed action may increase this level of mortality by 1,750-3,350 birds/year. Over the life of the entire platform archipelago, a range of 7.6-12.2 million birds may be killed, primarily due to collisions (Table 4-7, footnote 5 of the 2012-2017 WPA/CPA Multisale EIS). Mitigating measures such as changing the lighting type, light color, and/or light intensity may decrease the attraction to platforms and the associated collision risk to migratory birds (Wiese et al., 2001; Montevecchi, 2006) and may potentially reduce the frequency and duration of nocturnal circulation events associated with well-lit (standard white lights) platforms.

It is uncertain if this level of mortality has population-level effects for any of the species involved, but it appears unlikely because of what is known of their life-history strategies (e.g., age at first reproduction, clutch size, nest success, etc.) (Arnold and Zink, 2011, page 2).

Though presently there are no mitigations in place to address circulation events and attraction of birds to platforms and the associated collision risk, BOEM has recently proposed a study to determine if changes to present lighting systems on platforms might reduce associated avian mortality. The attraction of birds by visible light varies with the wavelength of the light and may not happen (Poot et al., 2008).

Aircraft and Vessel Traffic and Noise from Helicopters and Service Vessels

Helicopter and service-vessel traffic related to OCS oil- and gas-related activities would likely disturb the behavior of birds (at least temporarily). Effects tend to manifest themselves through behavioral changes such as decreased foraging time, reduced foraging efficiency, and increased energy expenditure due to flight associated with a disturbance. The Federal Aviation Administration (Advisory Circular 91-36C) and corporate helicopter policy states that helicopters must maintain a minimum altitude of 700 ft (213 m) while in transit offshore and 500 ft (152 m) while working between platforms. When flying over land, the specified minimum altitude is 1,000 ft (305 m) over unpopulated areas or across coastlines and 2,000 ft (610 m) over populated areas and biologically sensitive areas such as wildlife refuges and national parks. The net effect of OCS oil- and gas-related flights on coastal and marine birds is expected to result in temporary, often sporadic disturbances, which may result in the displacement of localized flocks. Service vessels are expected to use selected nearshore and coastal (inland) navigation waterways and are further expected to adhere to guidelines established by the USCG for reduced vessel speeds within inland areas. Routine presence and low speeds of service vessels within these waterways is expected to reduce the disturbance effects from service vessels on nearshore and inland populations of coastal and marine birds. It is estimated that the effects of both OCS oil- and gas-related and non-OCS oil- and gas-related vessel traffic on birds within coastal areas are not substantial.

For a more detailed discussion of disturbance-related impacts, refer to **Chapter 4.1.1.16** of this Supplemental EIS, Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS.

Maintenance and Use of Navigation Waterways

Construction of navigation canals for OCS oil- and gas- related development have generated substantial adverse impacts to coastal wetlands (Ko and Day, 2004; Morton et al., 2006; Day et al., 2007; Figures 3-5 and 3-7 of the 2012-2017 WPA/CPA Multisale EIS). Initial impacts are locally substantial but largely limited to where canals and channels pass through wetlands. Periodic maintenance dredging is necessary and expected in existing OCS oil- and gas-related navigation channels through barrier passes and associated bars (Johnston et al., 2009). Much of the impacts from OCS oil- and gas-related oil and gas development on coastal wetlands has already occurred. From 1998 through 2004, wetland losses from all causes for all coastal wetland types were estimated at 442,200 ac (178,952 ha) (Stedman and Dahl, 2008; Engle, 2011, Table 1). Current channels whould not be altered dramatically as a result of a CPA proposed action. In addition, no new channels will be required by a CPA proposed action (refer to **Chapters 3.3.4.3 and 4.1.1.4** of this Supplemental EIS for more information on navigation canals).

Habitat Loss, Alteration, and Fragmentation Resulting from OCS Oil- and Gas-Related Coastal Facility Construction and Development

Under the cumulative activities scenario, factors contributing to coastal landloss or modification include the construction of 0-1 gas processing plants for a CPA proposed action, as well as other associated roads, pads, and facilities (for existing installations and transportation bases and various types of infrastructure, refer to Tables 3-13, 3-15, and 3-16 and Figures 3-5, 3-6, and 3-7 of the 2012-2017 WPA/CPA Multisale EIS). The realized footprints of this construction tend to be relatively small based on an acreage basis. The OCS oil- and gas-related activities that include oil and gas processing terminals and associated roads and infrastructure result in the destruction or fragmentation of otherwise suitable avian habitats and can force affected individuals to disperse to other nonimpacted habitats, assuming it is available and of similar or greater quality. In the offshore environment, disturbance-related effects can result in temporary functional loss of habitat, as individuals are forced to disperse from impacted sites. Many of the overwintering shorebird species remain within relatively well-defined, winter-use areas throughout the season, and some species exhibit among-year wintering site fidelity, at least when not disturbed by humans. These species are particularly vulnerable to localized impacts, resulting in habitat loss or fragmentation, unless they disperse to other favorable habitats when disturbed. Cumulative activities related to a CPA proposed action will likely contribute to further loss, alteration, and fragmentation of avian habitat although certainly at a much smaller spatial scale than non-OCS residential, commercial, and industrial construction and development activities.

Pipeline Landfalls

Under the cumulative activities scenario, factors contributing to coastal landloss or modification include the construction of 0-1 pipeline landfalls for a CPA proposed action. From 1996 through 2009, there were 12 OCS oil- and gas-related pipeline landfalls in Louisiana and Texas (Table 3-16 of the 2012-2017 WPA/CPA Multisale EIS). Refer to Figure 3-5 of the 2012-2017 WPA/CPA Multisale EIS for transitioning pipelines in Louisiana and Texas. Refer to **Chapters 4.1.1.4** of this Supplemental EIS for more details regarding the impacts to wetlands; also refer to reviews by Gosselink et al. (1998). Dahl (2006) estimated an annual loss rate of 5,540 ac (2,242 ha) for the intertidal estuarine and marine wetland class, mostly in Louisiana, from all impacting factors.

Trash and Debris

Coastal and marine birds may experience chronic physiological stress from sublethal exposure to or intake of debris-related contaminants or discarded debris associated with OCS oil- and gas-related activities. This may result in disturbances to and displacement of single birds or in some cases entire flocks. Much of the floating material discarded from vessels and structures offshore presumably drifts ashore, remains within coastal waters, or eventually sinks. These materials may include lost or discarded fishing gear such as gill nets and monofilament lines, which cause the greatest overall damage to birds (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS; Tasker et al., 2000; Dau et al., 2009; Ryan et al., 2009).

It is believed that coastal and marine birds are less likely to become entangled in or ingest OCS oiland gas-related trash and debris as a result of BSEE's regulations (NTL 2012-BSEE-G01) regarding the disposal of equipment, containers, and other materials into offshore waters by lessees (30 CFR § 250.300(c)). In addition, MARPOL, Annex V, Public Law 100-220 (101 Statute 1458), prohibits the disposal of any plastics at sea or in coastal waters (effective January 1, 1989).

Non-OCS Oil- and Gas-Related Impacts

There are no mitigations in place that consider potential non-OCS oil- and gas-related effects on avian resources due to climate change and habitat impacts. A Memorandum of Understanding between this Agency and FWS regarding the conservation of migratory birds was signed in June 2009 (USDOI, FWS and USDOI, MMS, 2009).

Non-OCS Oil- and Gas-Related Air Pollutants

Air pollutants include the amount of sulfur dioxide (and other regulated pollutants; refer to **Chapter** 4.1.1.1 of this Supplemental EIS, Chapter 4.2.1.1 and Table 4-1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.1 of the WPA 233/CPA 231 Supplemental EIS) expected to be released due to a CPA proposed action, as well as from prior and future OCS lease sales, and State oil and gas activity. These pollutants may adversely affect coastal and marine birds and their habitats (Chapter 4.1.1.16 of this Supplemental EIS, Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS). Pollutant emissions into the atmosphere from the activities under the non-OCS oil- and gas-related cumulative analysis are expected to have minimal effects on offshore air quality because of the prevailing atmospheric conditions, emission heights, and pollutant concentrations, as regulated by USEPA (Wilson et al., 2010, Tables 8-1 and 8-2). Emissions of pollutants into the atmosphere under the non-OCS oil- and gas-related cumulative analysis are projected to have minimal effects on onshore air quality because of the atmospheric regime, emission rates (Table 4-1 of the 2012-2017 WPA/CPA Multisale EIS), and the distance of these emissions from the coastline. Increases in onshore annual average concentrations of NO_x, SO_x, and PM₁₀ under the non-OCS oil- and gas-related cumulative analysis are estimated to be less than PSD Class I and Class II allowable increments for the respective subareas as per both the steady-state and plume dispersion analyses, and they are assumed to be below concentrations that could harm coastal and marine birds (Chapter 4.1.1.16 of this Supplemental EIS, Chapter 4.2.1.16.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS; also refer to Newman, 1979, and Newman and Schreiber, 1988).

For coastal and marine birds, direct impacts (on individuals) and indirect impacts (on habitat or food supply) due to air quality under the non-OCS oil- and gas-related cumulative analysis may include chronic, sublethal effects leading to overall reduced recruitment. Nevertheless, these impacts would not be expected to rise to population-level impacts across the GOM.

Habitat Loss, Alteration, and Fragmentation Associated with Commercial and Residential Construction and Industrial Growth

Habitat loss, alteration, and fragmentation has the potential to affect all aspects of an avian community's annual life cycle and the overall population size for some species of birds that occur in the Gulf of Mexico (Arlt and Pärt, 2007). Much habitat loss, alteration, and fragmentation occurs in the nearshore environment or onshore and is not OCS oil- and gas-related, e.g., commercial and residential

construction and industrial development. Non-OCS oil- and gas-related impacts on habitat operate in a way similar to the OCS oil- and gas-related impacts on habitat discussed previously in this chapter. Cumulative activities will stress individuals and their populations, causing them to avoid or emigrate from traditional breeding, feeding, or wintering areas or alter migratory routes. Some of the species may be declining (Table 4-14 of the 2012-2017 WPA/CPA Multisale EIS) and are further being displaced from areas along the coast (and elsewhere) as a result of the destruction of or encroachment on their preferred habitat(s) (Andrén, 1994; Withers, 2002). As these birds emigrate to and settle in undisturbed areas of similar habitat (assuming it is available), their presence may increase intra- and interspecific competition for space and food (Goss-Custard, 1980).

Bird habitat loss, alteration, and fragmentation associated with commercial and residential development and industrial growth are probably occurring at a faster pace and on a spatial scale exceeding that compared with OCS oil- and gas-related activities. Avian species are adaptable with ephemeral settling patterns, but the pace with which they can adapt may be too slow compared with the pace with which human-induced habitat loss, alteration, or fragmentation is occurring across the U.S. (and Canada). This appears to be resulting in some species of breeding birds making poor "choices" (i.e., selecting habitats that negatively affect survival or fecundity; "sinks" or "traps"), at least in the short term (Clark and Shutler, 1999; Kristan, 2003; Battin, 2004). Delayed responses to habitat loss by some avian species are likely to occur when the rate of habitat loss or modification and/or environmental perturbation (e.g., climate change) exceeds the demographic potential of the population decoupling population dynamics from landscape dynamics (With et al., 2008). Habitat loss and fragmentation may be occurring at multiple spatial scales or across multiple areas, i.e., breeding, staging, and wintering, and therefore, connectivity of suitable habitats is reduced (Haig et al., 1998; Mönkkönen and Reunanen, 1999). Also, access to resources (either habitat itself or food resources) within these sites may be limiting or may become limiting. That is, resources are no longer available in sufficient quantities and/or of sufficient quality to meet the demands of migration and breeding (Goss-Custard et al., 2006; Newton, 2006; Skagen, 2006). Coastal habitat loss, alteration, and fragmentation are a major concern for those interested in managing these migratory bird populations (Erwin, 1996; USDOI, FWS, 2008; North American Bird Conservation Initiative, 2009). Development, both commercial and residential, was recognized as a major threat to remaining coastal habitats, ecological diversity, wildlife populations, and species persistence in the southeastern U.S. by Czech and Krausman (1997) and Czech et al. (2000).

Refer to **Chapter 4.1.1.4** of this Supplemental EIS, Chapters 4.2.1.4.1-4.2.1.4.3 of the 2012-2017 Multisale EIS, and Chapter 4.2.1.4 of the WPA 233/CPA 231 Supplemental EIS for more details regarding impacts to wetlands. Dahl (2006) estimated an annual loss rate of 5,540 ac (2,242 ha) for the intertidal estuarine and marine wetland class, mostly in Louisiana, from all impacting factors.

Tanker Oil Spills and Spills Related to Oil and Gas Activities in Coastal State Waters and Spill-Response Activities

Most offshore non-OCS oil- and gas-related spills occur from vessel and barge operations (Helm et al., 2008; Tables 3-8, 3-9, and 3-11 of the 2012-2017 WPA/CPA Multisale EIS). Based on the OSRA model for coastal spills \geq 1,000 bbl, the estimated total number of spills is 3 per 6 years for the total of non-OCS oil- and gas-related sources; for offshore spills \geq 1,000 bbl, the estimated total number of spills for non-OCS oil- and gas-related sources is \leq 1 per year for tank ships and \leq 1 per year for tank barges. In summary, the use of waterbird, marshbird, shorebird, and seabird feeding areas at the sea surface and at the intertidal wetland zone, where spilled oil tends to accumulate makes many avian species extremely vulnerable to spilled oil (Tables 4-8, 4-12, and 4-13 of the 2012-2017 WPA/CPA Multisale EIS). Oil spills in the cumulative case have the greatest potential impact to coastal and marine birds (e.g., Tables 4-8 and 4-15 of the 2012-2017 WPA/CPA Multisale EIS).

Oil-spill-related impacts on birds from the total cumulative scenario are expected to range from moderate to adverse, but not significant, in the absence of another major spill. The incremental increase of oil spills from a CPA proposed action to the total cumulative impacts is also expected to be moderate to adverse but not significant.

Pollution of Coastal Waters Resulting from Municipal, Industrial, and Agricultural Runoff and Discharge

There exists a wide variety of contaminant inputs into coastal waters bordering the Gulf of Mexico (USEPA, 2012a; USDOC, NOAA, 2011a). Non-OCS oil- and gas-related activities and natural processes that can impact marine water quality include bilge water discharges from large ships and tankers, and coastal pollutants that are transported away from shore, including municipal, industrial, and agricultural runoff, river input, sewerage discharges, industrial discharge, and natural seepage of oil and gas. Contaminants from non-OCS oil- and gas-related pollution of coastal waters resulting from runoff and discharge may have acute (single episode) or chronic (multiple episode) impacts to avian populations in the GOM and impacts may be lethal or sublethal. The dominant pollution source is the large volume of water from the Mississippi River, which drains over two-thirds of the contiguous United States, creating a seasonal zone of hypoxia offshore at the continental shelf (Rabalais et al., 2001, 2002a, and 2002b). Major activities that have added to the contamination of Gulf coastal waters include the petrochemical industry, agriculture, forestry, urban expansion, extensive dredging operations, municipal sewerage treatment processes, marinas and recreational boating, maritime shipping, hydro-modification activities, large commercial waste disposal operations, livestock farming, manufacturing industry activities, power plant operations, and pulp and paper mills (Schmitt, 1998; White and Wilds, 1998). Vessel traffic is likely to impact water quality through routine releases of bilge and ballast waters, chronic fuel and tank spills, trash and debris, and domestic and sanitary discharges. All of these factors, as well as sedimentation, greatly contribute to the diminishing water quality in the GOM and associated rivers and wetlands within the southeastern United States (USEPA, 2012a; USDOC, NOAA, 2011a). Refer to Chapter 4.1.1.2 for more information on coastal water quality.

Aircraft and Vessel Traffic (Including Military Activities)

Helicopters may have more impact on bird behavior than airplanes, probably because of a much higher noise level associated with the prop wash (Komenda-Zehnder et al., 2003; Rojek et al., 2007). Military activities will include vessel and aircraft traffic. Ward et al. (1999) recommended that all aircraft follow not only the Federal Aviation Administration's (1984) minimum altitude of 610 m (2,000 ft) but also adopt a lateral buffer distance of 1.6 km (~1 mi). Based on results for disturbance to wintering waterbirds (mostly ducks), Komenda-Zehnder et al. (2003) recommended minimum flight altitudes (above sea level) of 450 m (1,476 ft) for helicopters and 300 m (984 ft) for airplanes. Disturbance effects (e.g., air and vessel traffic) can have variable impacts to avian populations depending on the type, intensity, duration, distance to and frequency of the disturbance, as well as due to species-specific differences in tolerance levels (Blumstein, 2006; Blumstein et al., 2005; Wright et al., 2010). Disturbance-related impacts typically result in behavioral changes, decreasing available habitat, and decreases in reproductive effort or nest success. In the CPA, disturbance impacts from helicopter traffic and service vessels (Tables 3-2 and 3-4 of this Supplemental EIS and Table 3-13 of the 2012-2017 WPA/CPA Multisale EIS) represent incremental increases to the total cumulative scenario. Impacts to affected avian populations are expected to range from negligible to moderate (Chapter 4.1.1.16 of this Supplemental EIS, Chapters 4.2.1.16.1-4.2.1.16.3 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS).

Nonconsumptive and Consumptive Recreation

Impacts of nonconsumptive recreation depend on many factors, including species and type of recreation and associated disturbance. Even visitation by those most interested in conserving wildlife may result in birds abandoning areas that wildlife managers are trying to protect (Burger and Gochfeld, 1998; Klein, 1993). Ecotourists (including bird watchers and wildlife photographers) and outdoor recreationists are not likely to be aware of the negative impacts that their presence may have on wildlife (Carney and Sydeman, 1999). Ecotourists can introduce high levels of disturbance to nesting waterbird colonies (Rodgers and Schwikert, 2002 and 2003). Ecotourists often closely approach birds, return to the same sites repeatedly, and visit sites year-round.

Energy cost in birds is highest for flight. Fleeing from disturbance may affect feeding behavior and the effects of predation in complex ways; staying put may increase or decrease fitness.

Recreational vessel traffic is assumed to be a much greater source of impact to birds in coastal habitats relative to those offshore.

Despite the number of waterfowl killed annually (consumptive recreation) under Federal hunting laws, duck and goose populations remain strong.

For additional discussion on the topic, refer to **Chapter 4.1.1.14** of this Supplemental EIS, Chapter 4.1.1.14.1 of the 2012-2017 Multisale EIS; and Chapter 4.1.1.14 of the WPA 233/CPA 231 Supplemental EIS.

Maintenance and Use of Navigation Waterways

Adverse impacts related to the construction of navigation canals for oil and gas development in State waters and for commercial shipping and recreational/fishing boat traffic have generated substantial impacts to coastal wetlands (Ko and Day, 2004; Morton et al., 2006; Day et al., 2007; Figures 3-5 and 3-7 of the 2012-2017 WPA/CPA Multisale EIS). Initial impacts are locally substantial but largely limited to where canals and channels pass through wetlands. Periodic maintenance dredging is necessary and expected in existing non-OCS oil- and gas-related navigation channels through barrier passes and associated bars (Johnston et al., 2009). Much of the impact from State oil and gas development on coastal wetlands has already occurred. The continued long-term effects of saltwater intrusion, wind and wave action from storms, and erosion from wave action created by State oil- and gas-related, commercial shipping, and recreational vessel traffic and recreational/commercial fishing boats continue to take their toll on coastal salt marshes and associated wildlife and fisheries communities in the Gulf Coast region (Gosselink et al., 1998). From 1998 through 2004, wetland losses from all causes for all coastal wetland types were estimated at 442,200 ac (178,952 ha) (Stedman and Dahl, 2008; Engle, 2011, Table 1).

Collisions of Coastal and Marine Birds with Various Anthropogenic Structures

Wide-scale, long-term, standardized and systematic assessments of bird collisions with manmade structures are limited (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS; Erickson et al., 2001). The most important structural features related to collision risk may be size, height, light intensity, and light color associated with a given structure (Bevanger, 1994 and 1998). No hypotheses for the apparent attraction of birds, especially nocturnally migrating songbirds, to lights have been conclusively supported (Drewitt and Langston, 2008; Martin, 2011). The placement of elevated structures along migration corridors appear to be particularly problematic for birds, resulting in increased collision risk and collision-related mortality. Warning lights for aircraft on towers >200 ft (61 m) are mandatory in the United States (Drewitt and Langston, 2008). Combining collision mortality estimates for communication towers, power lines, and window strikes, the total mortality may be approaching 1 billion birds killed annually (Manville, 2005a and 2009; Klem, 2009).

Predation

Predation, although a natural process, can be a threat to coastal and marine birds if predator populations are artificially high, non-native predators are introduced, or predators have easier access to nesting sites because of human activities.

Domestic cats have become an increasingly devastating introduced predator in many ecological systems throughout the world. In the U.S. alone, estimates based on the number of domestic cats multiplied by average annual bird mortality per cat results in estimates of 468 million to 8.4 billion birds killed (Dauphiné and Cooper, 2009 and 2011; Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS). The lower range would place domestic cat mortality second only behind collisions with windows/buildings (Klem, 2009), whereas if the upper range even remotely approximates reality, then domestic cat-related mortality would far exceed all other anthropogenic sources of avian mortality. Domestic cats are especially important predators on land birds that are trans-Gulf migrants, preying on them while they are on land.

A study done on the Isle Dernieres barrier island complex in Louisiana suggests that colonial nesting seabirds are impacted on some barrier island breeding habitat by raccoon, rat, and coyote predation on eggs and young (Leumas, 2010).

Diseases

Throughout North America, avian mortality associated with diseases, broadly defined here to include lead poisoning, probably results in the death of millions of birds annually (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS). Friend and Franson (1999) list seven broad classes of primarily avian diseases and under each are varying numbers or kinds of specific diseases. The most commonly diagnosed viral diseases were duck plague, paramyxovirus, and West Nile virus, together causing almost all deaths due to infectious diseases; fungal and parasitical infections were relatively minor (Newman et al., 2007). The impact of influenza viruses on wild animal host survival, reproduction, and behavior are almost completely unknown (Vandegrift et al., 2010). LaDeau et al. (2007) stated that "Emerging infectious diseases present a formidable challenge to the conservation of native species in the twenty-first century." Avian diseases may become an increasingly important mortality factor to consider, particularly since environmental contaminants are prevalent in many ecosystems, and in some cases avian populations may be occurring at densities promoting the spread of diseases. Though the level of mortality associated with most diseases is unknown, avian death due to various diseases is likely in the millions annually. Many diseases are more easily spread amongst individuals at high densities, e.g., botulism in molting waterfowl.

Climate Change and Related Impacts

In general, climate change as it relates to migratory birds may impact certain species in myriad ways. Effects may manifest themselves through relatively "simple" range contractions or expansions, either elevationally or latitudinally. The relatively recent overlap of species previously segregated in space or by microhabitat features may increase interspecific competition for resources, which may lead to changes in species composition and abundance. In some cases where long-term data are available, results unequivocally demonstrate phenological changes like earlier nesting (Møller et al., 2008). Declines happened in species that had not changed the timing of nesting in response to changing environmental conditions (Møller et al., 2008). It is possible that species that cannot adapt relatively rapidly could incur temporal mismatches (Visser et al., 1998 and 2004). Before climate change, timing of departure from the wintering grounds tended to be optimized such that peak arrival and/or peak hatching overlapped the peak in food resource availability.

Impacts from predicted sea-level rise will affect the availability and distribution of preferred habitats. Many species of birds are closely linked to shallow-water habitats, primarily for food resources (e.g., marshbirds, waterbirds, and shorebirds) but also for nesting. Numerous species of coastal and marine birds are vulnerable to the effects associated with climate change (North American Bird Conservation Initiative, 2010). In particular, those species that select low-lying habitats such as islands, beaches, flats, dunes, sand bars, gravel bars, dredge spoils, shorelines, estuaries, and similar inshore habitat are particularly vulnerable due to annual increases in sea level. Sea-level rise is expected to inundate much of the low-lying areas and also increase water depths in areas farther inland. As the sea-level rises, impacts from storm surges and flooding will extend farther inland. Also, saltmarsh obligate species (e.g., seaside sparrow, Nelson's sharp-tailed sparrow, yellow rail, black rail, clapper rail, and king rail) are also extremely sensitive to loss of salt marsh habitat. Other climate change impacts include increasing seasurface temperature and the increasing frequency and intensity of storms (and associated erosion) (Michener et al., 1997). Effects from these various factors will most likely dramatically alter the species composition and abundance, as well as the distribution of potentially affected species primarily due to major reductions in available habitat and zones shifting inland and secondarily to changes in the distribution and abundance of preferred foods.

Storms and Floods

Coastal storms and hurricanes can often result in the direct mortality of many species of birds, but likely the larger impact is to the habitat on which the populations rely. Associated storm surges and flooding can destroy active nests and force birds into suboptimal habitats. Nesting territories and colonial waterbird and marshbird rookeries with optimum food and/or nest-building materials may also be destroyed. Species reliant on the beaches, flats, islands, sand bars, gravel bars, dredge spoil-piles, shorelines, estuaries, and other coastal low-lying features for nesting are particularly vulnerable to habitat loss or alteration associated with such storms (USDOI, FWS, 2010). Elevated levels of municipal,

industrial, and agricultural pollutants in coastal wetlands and waters will probably expose greater numbers of resident breeding birds and wintering migrants to chronic physiological stress due to these contaminants being redistributed across the landscape as a result of storms and flooding (Burger and Gochfeld, 2001).

Hurricane-related impacts to birds are provided in more detail in **Chapter 4.1.1.16** of this Supplemental EIS, Chapter 4.2.1.16.1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS.

Fisheries Interactions

Commercial fisheries may incidentally entangle and drown or otherwise injure birds during fishing operations or due to lost or discarded fishing gear (Manville, 2005b; Bull, 2007; Brothers et al., 2010). Avian mortality estimates associated with commercial fisheries (i.e., seabird bycatch) is likely on the order of high thousands to low millions (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS). Both NMFS and FWS have taken proactive steps to mitigate these losses through modifications to the equipment used, fishery closures in certain areas, time-of-year and time-of-day closures by some states, and use of fishery observers (Melvin et al., 1999 and 2001; Cooper et al., 2001). With these recent changes in policy, procedures, and techniques, cumulative impacts to future bird bycatch of longline fisheries on marine birds in the northern Gulf of Mexico should be much reduced. There is likely overlap between many species of seabirds, their prey, and some fisheries. Fisheries may impact certain seabird populations by removing preferred prey or may alter trophic dynamics by removing top-level predators (e.g., bluefin and yellowfin tuna) (Furness, 2003). In addition, substantial quantities of bycatch (i.e., nontarget species + offal + discards) are discarded as waste overboard, and though detrimental to the ecosystem as a whole (Crowder and Murawski, 1998; Harrington et al., 2005), may actually benefit some species of seabirds (Furness, 2003; Votier et al., 2004). Overharvest of some fish populations, particularly top-level predatory fishes, appears to be occurring at unprecedented levels worldwide (Myers and Worm, 2003). Unfortunately, the loss of these top-level predators can have unknown and potentially dramatic effects on marine food-web dynamics and the ocean ecosystem as a whole, including seabird populations reliant on various species of smaller prey fish (Furness and Camphuysen, 1997; Piatt et al., 2007).

Trash and Debris

Coastal and marine birds may experience chronic physiological stress from sublethal exposure to or intake of debris-related contaminants or discarded debris associated with non-OCS oil- and gas-related activities. This may result in disturbances to and displacement of single birds or in some cases entire flocks. Much of the floating material discarded from State oil and gas vessels and structures offshore as well as recreational debris presumably drifts ashore, remains within coastal waters, or eventually sinks. These materials may include lost or discarded fishing gear such as gill nets and monofilament lines, which cause the greatest overall damage to birds (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS; Tasker et al., 2000; Dau et al., 2009; Ryan et al., 2009).

It is believed that coastal and marine birds are less likely to become entangled in or ingest non-OCS oil- and gas-related trash and debris as a result of MARPOL, Annex V, Public Law 100-220 (101 Statute 1458), which prohibits the disposal of any plastics at sea or in coastal waters (effective January 1, 1989).

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

For a detailed treatment of the potential effects of impact-producing factors on coastal and marine birds associated with a CPA proposed action, refer to Chapters 4.2.1.16.2 and 4.2.1.16.3 of the 2012-2017 WPA/CPA Multisale EIS and to the updated information provided in Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS. A search of Internet information sources (recent publications on NOAA's, USGS's, and FWS's websites), as well as recently published journal articles was conducted to determine the availability of recent information on coastal and marine birds. New information pertinent to the consideration of the red knot (*Calidris canutus rufa*) as a federally threatened species was discovered.

The red knot (*Calidris canutus rufa*) is presently considered a Federal candidate species. It was originally (September 2006) considered as a Category 6 Candidate, but it was upgraded (more urgently) to a Category 3 Candidate in December 2008. As of September 30, 2013, the U.S. Fish and Wildlife Service, proposed to list the rufa red knot (*Calidris canutus rufa*) as a threatened species (USDOI, FWS, 2014). Three of the six subspecies of red knot occur in North America, all three of which breed in the Arctic (central Canadian Arctic and on the north coast of Alaska from the Seward Peninsula to the Canadian border). It uses coastal beaches, bays, tidal flats, salt marshes, and lagoons primarily along the Atlantic Coast (a major stopover is in Delaware Bay) during spring and fall migration in transit from its breeding grounds in the Arctic to its wintering grounds at Tierra del Fuego, Argentina, and back. Rather steep declines (~505 between late 1980's and 2003; Morrison et al., 2004) have been observed in the population that departs the central Canadian Arctic in August, embarking on a 15,000 km (9,321 mi) migration to northern Brazil and Tierra del Fuego, Argentina (Morrison et al., 2006; Niles et al., 2008). During the fall migration, this population stops on its way south in Delaware Bay where individuals almost exclusively consume (and require) large quantities (both in number and volume) of horseshoe crab (Limulus polyphemus) eggs to fatten-up prior to departure (Harrington, 2001). On the spring return flight, these same birds spend ~ 2 weeks in the same general area in an effort to recover energy lost (some as much as 30% lighter) during the migration from the wintering grounds (Niles et al., 2008). This is the single most important staging area for this population of red knots. There has been a major increase in the commercial fishing harvest of adult horseshoe crabs, likely resulting in major reductions in availability of the species that produce the eggs on which the red knots rely (Karpanty et al., 2006; Wells, 2007).

The FWS received its first petition to list this species on August 9, 2004, with two additional petitions, both received on August 5, 2005. The associated formal review, which was completed on September 12, 2006 (*Federal Register*, 2006b), indicated a listing priority of 6. Subsequently, FWS has completed formal reviews for this species in 2007 (December 6, 2007; *Federal Register*, 2007), 2008 (December 10, 2008; *Federal Register*, 2008b), 2009 (November 9, 2009; *Federal Register*, 2009), and 2010 (November 10, 2010; *Federal Register*, 2010). As indicated above, it is now considered a Category 3 Candidate species and is currently being considered to list as threatened (*Federal Register*, 2013d).

Within the Gulf of Mexico region, wintering birds are found primarily in Florida, but the species has also been observed in Texas (e.g., Bolivar Flats), Louisiana (e.g., barrier islands and headlands along the coast), Mississippi, and Alabama (e-Birds, 2013), and it is considered a State Species of Conservation Concern in Florida and Mississippi. Apparently, the numbers of wintering and staging red knots using coastal beaches in Gulf Coast States other than Florida have declined dramatically; now more are found along the Gulf and Atlantic Coasts of Florida and the Atlantic Coast of Georgia and South Carolina (Harrington, 2001; Niles et al., 2008, Figures 8-9 and 11). Both natural (i.e., hurricanes, subsidence, and saltwater intrusion) and anthropogenic (i.e., coastal development, oil and gas infrastructure onshore, and disturbance) factors influencing coastal wetlands and associated barrier island and beach habitats on the wintering and staging areas in the southeastern U.S. may be contributing to the change in distribution (and possibly population declines) of red knots over time (Wells, 2007; Niles et al., 2010).

The red knot was already covered in the category of nonthreatened and nonendangered shorebirds in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Now that it is a candidate for listing as endangered or threatened, it is more of a concern; therefore, new information was provided above. If it is eventually listed as endangered or threatened, it would be of even more concern and BOEM would consult with the FWS under the Endangered Species Act.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.16 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding coastal and marine birds in the CPA. This incomplete information may be relevant to the evaluation of adverse effects because it provides any change in the baseline environmental conditions for bird populations in the affected environment from the *Deepwater Horizon* oil spill, exacerbating any impacts from a CPA proposed action. Much of these data are being developed through the NRDA process, which may take years to complete. This information cannot be obtained because it may take years to acquire and analyze through the NRDA process, producing a reliable, model-based estimate of mortality that accounts for detection-related issues (Flint et al., 1999; Byrd et al., 2009). The information

cannot be released due to ongoing NRDA litigation and, even after it is released, the impacts of the oil spill may be difficult or impossible to discern from other factors. It is not possible for BOEM to obtain this information and incorporate it into this analysis within the timeline contemplated in the NEPA analysis of this Supplemental EIS regardless of the costs or resources needed. At present, the best available information does not provide a complete understanding of the effects of the spilled oil or the recovery potential for the most impacted species (Tables 4-8, 4-12, and 4-13 of the 2012-2017 WPA/CPA Multisale EIS and Table 4-2 of the WPA 233/CPA 231 Supplemental EIS).

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here (refer to Table 4-2 of the WPA 233/CPA 231 Supplemental EIS). A range of mortality estimates, given the total number of dead birds collected (7,258 birds) through May 12, 2011 and given various recovery rates from the literature (59%, 0%, and 17%), are a lower range of 12,300 birds (59% recovery rate), an upper range of 725,800 birds (0% recovery rate), and an upper range of 42,694 birds based on a mean recovery rate of 17% (as shown in Table 4-2 of the WPA 233/CPA 231 Supplemental EIS). These existing data do not reveal reasonably foreseeable significant adverse impacts. Even the upper range of 725,800 birds would be a small increment of what is anticipated from non-OCS Program factors such as habitat loss, collisions with non-OCS oil- and gas-related structures, disease, and other anthropogenic factors, which may result in billions of bird deaths per vear (as shown in Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS). Any additional NRDA information obtained from the *Deepwater Horizon* oil spill and response is unlikely to be so significant as to change the relative importance of non-OCS oil- and gas-related factors to bird populations, which is demonstrated in Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS and Table 4-2 of the WPA 233/CPA 231 Supplemental EIS. In summary, BOEM has determined that the incomplete information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for coastal and marine birds presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information provided above. At the present time, there is no way to discern if the additional levels of annual (>200,000; 50 birds per platform [Russell, 2005] for about 4,000 platforms) or long-term mortality (over the life of newly installed platforms) for any of the affected trans-Gulf migrant species considered herein results in population-level impacts (Russell, 2005, Chapters 17 and 18). Given what we know about the life-history characteristics of many of these species (e.g., age at first reproduction, clutch size, and nest success), the potential for major population-level impacts seems relatively low (Arnold and Zink, 2011, page 2). Various Internet sources that may be pertinent to the CPA were examined to assess recent information regarding this resource. No new significant information was discovered that would alter the impact conclusion for these coastal and marine birds presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Human-induced disturbance effects often tend to get overlooked or underestimated as a potential population-limiting factor for birds. The cumulative effect on coastal and marine birds from all sources is expected to result in changes in species composition and distribution and in a discernible decline in the number of birds that form localized groups or populations. Some of these changes are expected to be permanent and possibly result from impacts to and declines in critical habitat for some endangered species. However, the incremental contribution of a CPA proposed action to the cumulative impact is considered adverse but not significant because the effects of the most probable impacts, such as lease sale-related operational discharges and helicopters and service-vessel noise and traffic, are expected to be sublethal; and some displacement of local individuals or flocks may occur to other habitat, if available.

In general, the net effect of habitat loss from oil spills, OCS pipeline landfalls, and maintenance and use of navigation waterways, as well as habitat loss and modification resulting from coastal facility construction and development, will probably reduce the overall carrying capacity of the disturbed habitat(s). That is, impacted habitats may result in reductions to both species composition (fewer species) and abundance (lower numbers) as compared with what the area supported historically. These would be the most serious cumulative impacts on birds.

4-145

Nocturnal circulation events at platforms are assumed to have mostly sublethal impacts on migrating bird populations. However, oil and gas platforms in the GOM (and associated lighting) result in collision-related mortality of 200,000-321,000 birds/year (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS); these numbers will increase as a result of a CPA proposed action. Overall, offshore oil and gas platform-related avian mortality, though representing an additional source of human-induced mortality, represents a small fraction compared with other sources of human-induced mortality. The mortality estimates related to offshore oil and gas activities are well below that for vehicles, buildings and windows, power lines, and communication towers.

The *Deepwater Horizon* explosion and spilled oil that made it into the nearshore and coastal environment resulted in the loss of ~7,250 birds based on counts of dead and/or oiled birds (Table 4-2 of the WPA/CPA 231 Supplemental EIS). This is a low estimate because many individuals were not collected. In addition, spill-response activities likely exacerbated impacts, particularly for breeding birds nesting on the beaches, barrier islands, and other habitats that were intensively monitored. The total number of birds killed by the *Deepwater Horizon* explosion, oil spill, and response was likely biased low. In addition, it will be years before a reliable, model-based estimate of mortality that accounts for detection-related issues is provided. At present, the best available information does not provide a complete understanding of the effects of the spilled oil or the recovery potential for the most impacted species. Unavailable information on the effects on birds, including from the Deepwater Horizon explosion, oil spill, and response (and thus changes to the birds baseline in the affected environment), makes an understanding of the cumulative effects less clear. Here, BOEM concludes that the unavailable information from this event may be relevant to foreseeable significant adverse impacts to birds. Relevant data on the status of seabird populations after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze, and impacts from the *Deepwater Horizon* explosion, oil spill, and response may be difficult or impossible to discern from other factors. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM's subject-matter experts have used available scientifically credible evidence in this analysis and based upon accepted methods and approaches. Nevertheless, a complete understanding of the missing information is not essential to a reasoned choice among alternatives for this Supplemental EIS (including the No Action and an Action alternative) for the following reasons. The CPA is an active oil and gas region with ongoing (or the potential for) exploration, drilling, and production activities. In addition, non-OCS oil- and gas-related activities will continue to occur in the CPA irrespective of a CPA proposed action (e.g., fishing, military activities, and scientific research). The potential for effects from changes to the affected environment (post-Deepwater Horizon explosion, oil spill, and response), routine activities, accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS. Impacts on birds from either smaller accidental events or low-probability catastrophic events will remain the same.

Disease is often lethal and may take millions of birds annually, but it should be considered a "naturally" occurring avian mortality factor unless the pathogen is introduced by humans. Storms and floods represent natural, often major disturbances to which exposed organisms are generally adapted. An exception would be hurricane-related storm surges, which are exacerbated by coastal wetland loss in Louisiana and throughout the northern GOM. Effects from sea-level rise may be particularly severe for many species of breeding marsh- and shorebirds as well as several species of wintering shorebirds that rely on beaches, flats, dunes, sandbars, gravel bars, shorelines, islands, estuaries, and other low-lying, tidally influenced habitats in the Gulf of Mexico . Even a nominal rise in sea level would inundate much of this habitat, making it unsuitable for many, if not most, of these species.

In conclusion, the incremental contribution of a CPA proposed action to the cumulative impact is considered adverse but not significant when compared with the impacts of non-OCS Program-related factors.

4.1.1.17. Gulf Sturgeon

BOEM has reexamined the analysis for Gulf sturgeon presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for Gulf sturgeon presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental

EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of Gulf sturgeon and the full analyses of the potential impacts of routine and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.17 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.17 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below, as well as any new information that has become available since those documents were published.

The following information is a summary of the resource description incorporated from the 2012-2017 WPA/CPA Multisale EIS, WPA 233/CPA 231 Supplemental EIS, and any new information that has become available since these documents were published. Gulf sturgeon were federally listed as threatened on September 30, 1991. A recovery plan was subsequently developed and critical habitat was designated on April 18, 2003. Threats to this anadromous species include overfishing and habitat destruction. Historically, Gulf sturgeon were commercially harvested, which dramatically declined population numbers. Subsequent dam construction intensified habitat loss and restricted access to historic spawning areas. Designated critical rivers and their associated estuaries include the Pearl, Pascagoula, Escambia, Yellow, Choctawhatchee, Apalachicola, and the Suwannee Rivers. Migration areas include the nearshore northern GOM from Lake Pontchartrain in Louisiana east to the Suwannee River in Florida. Although estimates are relatively imprecise, population trends have stabilized or shown slight increases in recent years at the riverine population scale (USDOI, FWS and USDOC, NMFS, 2009), suggesting that they may be making a slow comeback. Groups of Gulf sturgeon have been observed to remain for periods of time in foraging "holding areas," or in deeper, darker, slower-moving areas of rivers or estuaries (Sulak et al., 2012). Natural or other accidental catastrophes have the potential to be detrimental to Gulf sturgeon populations and their habitats.

Impacts of Routine and Accidental Events

A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities associated with proposed CPA Lease Sales 235, 241, 247 on Gulf sturgeon can be found in Chapter 4.2.1.17.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.17 of the WPA 233/CPA 231 Supplemental EIS. Potential impacts to the threatened Gulf sturgeon and their designated critical habitat from routine activities associated with a CPA proposed action may occur from drilling and produced-water discharges, degradation of estuarine and marine water quality from infrastructure, dredging activities, vessel traffic, pipeline installation, and explosive platform removal. Designated Gulf sturgeon critical habitat is confined to State waters, and navigation channels are exempt from the critical habitat status. Most activities related to a CPA proposed action would occur in Federal waters (i.e., structure placement, drilling, removal, etc.). Though critical habitat may be impacted directly or indirectly, such impacts are expected to be negligible due to the distance of Gulf sturgeon habitat and life cycles from most activities related to a CPA proposed action.

Potential routine impacts on Gulf sturgeon and their designated critical habitat may occur from drilling and produced-water discharges, bottom degradation of estuarine and marine water quality by nonpoint runoff from estuarine OCS oil- and gas-related facilities, vessel traffic, pipeline installation, and explosive removal of structures. Because of the permitted discharge limits mandated and enforced in the Federal and State regulatory process, the dilution and low toxicity of this pollution is expected to result in negligible impacts of a CPA proposed action on Gulf sturgeon. Vessel traffic would generally only pose a risk to Gulf sturgeon when the vessels are leaving and returning to port. Major navigation channels are excluded from critical habitat. Also, the Gulf sturgeon's characteristics of bottom-feeding and general avoidance of disturbance make the probability of vessel strikes extremely remote. If pipeline is installed nearshore as a result of a CPA proposed action, regulatory permit requirements governing pipeline placement and dredging, as well as recent noninvasive techniques for locating pipelines, would result in a minimal impact to the Gulf sturgeon's critical habitat. Explosive removal of structures as a result of a CPA proposed action would occur well offshore of the Gulf sturgeon's critical habitat and the riverine, estuarine, and shallow Gulf habitats where sturgeon are generally located. There is no publicly available data indicating that sturgeons are using the deeper Gulf waters where most of the OCS oil- and gasrelated activities occur. In general, the mud substrates found in the Gulf waters do not support the appropriate benthic food source for Gulf sturgeon. Due to regulations, mitigations, and the distance of routine activities from known Gulf sturgeon habitats, impacts from routine activities of a CPA proposed action would be expected to have negligible effects on Gulf sturgeon and their designated critical habitat.

Potential accidental impacts on Gulf sturgeon and the designated critical habitat may occur primarily from oil spills. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241 and 247 on Gulf sturgeon can be found in Chapter 4.2.1.17.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.17 of the WPA 233/CPA 231 Supplemental EIS

Unusually low tidal events, increased wave energy, or the use of oil dispersants increases the risk of impact with bottom-feeding and bottom-dwelling fauna. For this reason, dispersants are not expected to be used with coastal spills. Winds and currents would also diminish the volume of a slick. For the Louisiana waters and beaches with a higher probability of oil-spill occurrence than the surrounding areas, the Mississippi River outflow would also serve to help break up a slick that might otherwise contact the area. Spreading of the slick would reduce the oil concentrations that would potentially impact the coastal Gulf sturgeon critical habitat.

The potential risk to sturgeon would result from either direct contact with oil spills (or the potential PAHs introduced through the spill) or, in some cases, long-term exposure to produced water, or water associated with extraction process. The PAHs could also reach the Gulf sturgeon through its diet of benthic invertebrates; PAHs can accumulate in invertebrates (USDOI, GS, 2012a). The likelihood of Gulf sturgeon impacts in coastal waters as a result of OCS oil- and gas-related activity is reduced by both the distance from a potential spill or production area and the concentration of contaminants that actually reach the area of sturgeon activity. Except for oil spills in the nearshore environment, the Gulf sturgeon would be at greater risk of a PAH encounter from sources other than the OCS during the inland river migrations due to the industrial and farm waste introduced into these coastal rivers from the adjacent agricultural and urban land use.

If there is contact with spilled oil, it could have detrimental physiological effects on Gulf sturgeon. In the rare event contact with oil occurs, this could cause nonlethal effects, including causing the fish to temporarily migrate from the affected area, irritation of gill epithelium, an increase of liver function in a few adults, and possibly interference with reproductive activity. The juvenile and subadult Gulf sturgeon, at a minimum, seasonally use the nearshore coastal waters and could potentially be at risk from both coastal and offshore spills. Due to the distance of the activity from shore and Gulf sturgeon critical habitat, there is a minimal risk of any oil coming in contact with Gulf sturgeon from an offshore spill. For a low-probability catastrophic spill, the proximity, type of oil, weather conditions, as well as the amount and location (distance offshore and water depth) of the dispersant treatment, may contribute to the severity of the spill's impact to the sturgeon and its habitat (for more information regarding a low-probability catastrophic spill, refer to **Appendix B**).

Cumulative Impacts

Background/Introduction

This cumulative analysis summary considers the impacts of all past, present, and reasonably foreseeable future activities plus the contribution of a CPA proposed action that may adversely affect Gulf sturgeon within its range and critical habitat in the northern Gulf of Mexico. The cumulative impacts from routine OCS oil- and gas-related, impact-producing factors considered in this cumulative analysis include oil spills. Potential non-OCS oil- and gas-related impact-producing factors considered in this analysis include natural catastrophes, fishing, and other factors that can result in changes to habitats.

OCS Oil- and Gas-Related Impacts

Gulf sturgeon could be impacted by oil spills resulting from a CPA proposed action. The effects on Gulf sturgeon from contact with spilled oil would be sublethal (Berg, 2006). Other potential impacts may occur from drilling and produced-water discharges, bottom degradation of estuarine and marine water quality by nonpoint runoff from estuarine OCS oil- and gas-related facilities, vessel traffic, pipeline installation, and explosive removal of structures. However, these impacts are expected to have negligible effects on Gulf sturgeon and their designated critical habitat, and will not be discussed as part of the cumulative impacts analysis.

Currently, there is little public data to ascertain the short-term and long-term effects of the *Deepwater Horizon* explosion, oil spill, and response on the Gulf sturgeon or its critical habitat. It is known that its critical habitat was exposed to oil and could possibly have been repeatedly exposed to oil in some cases. Until rigorous analysis on the quantity, type, and toxicity of the oil and where its spatial subsurface location is performed, no assessment can be made to the benthic forage base of the Gulf sturgeon. In addition, the oil underwent evaporation and was quickly emulsified and diluted at the wellhead by dispersants, which made it readily available for biodegradation.

Because of the low probability of an offshore oil spill from a CPA proposed action occurring and contacting Gulf sturgeon critical habitat ($\leq 4\%$; Figure 3-22 of the 2012-2017 WPA/CPA Multisale EIS), Gulf sturgeon contact with oil is expected to be minimal. The amount of oil projected to spill with a coastal spill is small, and it would have localized effects. For a more detailed analysis of low-probability catastrophic spills, refer to **Appendix B**.

Non-OCS Oil- and Gas-Related Impacts

The Gulf sturgeon and its critical habitat can be cumulatively impacted by natural catastrophes, commercial fishing, State oil and gas activities, and other factors that can result in habitat changes. Recent climate trends and projections indicate more frequent and higher intensity storms, flooding, droughts, coastal erosion, and rising sea levels (Parry et al., 2007), all of which could impact Gulf sturgeon critical habitat, spawning areas and life history stages. Other naturally occurring events that can impact Gulf sturgeon may increase, such as the 1999 and 2005 red tides in Choctawhatchee Bay that resulted in sturgeon deaths (USDOI, FWS, 2000; State of Florida, Dept. of Environmental Protection, 2012) or El Niño/La Niña events, which can cause fish to extend their range (USDOC, NOAA, 2013c). Deaths of adult sturgeon and potential habitat alterations are expected to occur from commercial fishing. Non-OCS oil- and gas-related accidental spills can happen, such as the 2008 industrial spill in the Pearl River in Louisiana that resulted in the mortality of juvenile and adult Gulf sturgeon (Kimmel and Constant, 2011) and the February 2013 spill of wastewater from a water pollution control plant into the Withlacoochee River in Georgia (Schaefer, 2013). While these events have happened recently and there is ongoing monitoring of the impacted areas, it is unknown how the related mortalities affect the Gulf sturgeon population.

BOEM does not regulate State oil and gas activities, which could result in potential cumulative impacts to Gulf sturgeon from oil spills, drilling and produced-water discharges, and bottom degradation from dredging and vessel traffic all near the coast. These activities generally occur in the marine and higher salinity estuarine coastal waters and not in the rivers and holding areas that the Gulf sturgeon frequent. Coastal land uses are not expected to affect Gulf sturgeon directly because of the protection set by critical habitat designation. However, upstream urbanization and commercial or residential development can adversely affect the water quality downstream and therefore can have potential cumulative impacts to Gulf sturgeon.

A CPA proposed action would not require dredging near natal rivers used as migratory routes to upstream spawning areas. While there could be a need for maintenance dredging not directly related to OCS oil- and gas-related activities in the nearshore waters, juvenile or adult sturgeon using these areas have the ability to avoid the regulated dredging activity.

On August 8, 2013, a notice of issuance of permits was published in the *Federal Register* for take of Gulf sturgeon for scientific research (*Federal Register*, 2013e). Substantial damage to Gulf sturgeon critical habitat is expected from natural catastrophes and inshore alteration activities, such as dam building or maintenance dredging. As a result, it is expected that the Gulf sturgeon would experience a decline in population sizes and a displacement from their current distribution that would last more than one generation. Non-OCS oil- and gas-related impacts are seen as the primary cumulative impacts on Gulf sturgeon, compared with a CPA proposed action, even in light of incomplete or unavailable information.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search was conducted for information published on Gulf sturgeon, and various Internet sources were examined to determine any recent information regarding this species. Sources investigated include

BOEM, NMFS, FWS, USGS, IPCC, Florida Fish and Wildlife Conservation Commission, American Fisheries Society, State environmental agencies, current news events and coastal universities. Other websites from scientific publication databases were checked for new information using general Internet searches based on major themes. No new significant information relevant to the above analysis was discovered since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The Natural Resource Damage Assessment (NRDA) team has completed an assessment plan for nearshore resources following the *Deepwater Horizon* explosion, oil spill and response. The goals set forth are to characterize the extent and distribution of nearshore sediment oiling, to model exposure of organisms in the water column and benthos to hydrocarbons in nearshore sediments, and evaluation and quantification of injury to nearshore benthic organisms (USDOC, NOAA, 2012). Workplans for this assessment can be found on NOAA's website (USDOC, NOAA, 2013c). Analyses of available data remain unavailable at this time.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.17 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding Gulf sturgeon in the CPA. This incomplete information may be relevant to adverse effects because the PAH toxicity to similar fish (shortnose sturgeon, salmonids) varies substantially, although conclusions of the impacts of PAHs on fish are often generalized due to the difficulty in testing any specific chemical (Berg, 2006). This information cannot be obtained because the means to obtain it are not known and because related information already in development has not been released from the NRDA process.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, studies such as Malins et al. (1985), O'Conner and Huggett (1988), Fabacher et al. (1991), Varanasi et al. (1992), Bateman and Brim (1994), Baumann et al. (1996), Matthiesson and Sumpter (1998), and Berg (2006) indicated no reasonably foreseeable significant adverse impacts from oil. For example, in the rare event that Gulf sturgeon have contact with oil, this could cause sublethal effects, including causing the fish to temporarily migrate from the affected area, irritation of gill epithelium, disturbance of liver function in a few adults, and possibly interference with reproductive activity. The juvenile and subadult Gulf sturgeon, at a minimum, seasonally use the nearshore coastal waters and could potentially be at risk from both coastal and offshore spills. Due to the distance of the proposed activity from shore and the Gulf sturgeon's critical habitat, there is a minimal risk of any oil coming in contact with Gulf sturgeon from an offshore spill. Indeed, there is little risk of most routine activities impacting Gulf sturgeon for the same reasons. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for Gulf sturgeon presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information provided above. Various Internet sources were examined to assess recent information regarding this resource that may be pertinent to a CPA proposed action. No new significant information was discovered that would alter the impact conclusion for these Gulf sturgeon presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241 and 247.

The incremental contribution of a CPA proposed action to the cumulative impacts on Gulf sturgeon is negligible. This is because the effect of contact between lease sale-specific oil spills and Gulf sturgeon is expected to be sublethal, and regulations and mitigations decrease impacts from routine events. Other non-OCS oil- and gas-related activities, including storms and anthropogenic factors on habitat, are expected to result in more incremental and cumulative impacts to this species.

4.1.1.18. Fish Resources and Essential Fish Habitat

BOEM has reexamined the analysis for fish resources and essential fish habitat (EFH) presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for fish resources and EFH presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.18 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.18 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

A detailed description of fish resources and EFH can be found in Chapter 4.2.1.18 and Appendix D of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.18 of the WPA 233/CPA 231 Supplemental EIS. Also, EFH is discussed in the following chapters of this Supplemental EIS: water quality (Chapter 4.1.1.2); wetlands (Chapter 4.1.1.4); seagrass communities (Chapter 4.1.1.5); live bottoms (Chapter 4.1.1.6); topographic features (Chapter 4.1.1.7); Sargassum communities (Chapter 4.1.1.8); chemosynthetic deepwater benthic communities (Chapter 4.1.1.9); nonchemosynthetic deepwater benthic communities (Chapter 4.1.1.1).

Impacts of Routine and Accidental Events

Effects on fish resources and EFH from routine activities associated with a CPA proposed action could result from coastal environmental degradation, marine environmental degradation, pipeline trenching, and offshore discharges of drilling muds and produced waters. A detailed impact analysis of the routine impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on fish resources and EFH can be found in Chapter 4.2.1.18.2 and Appendix D of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.18 of the WPA 233/CPA 231 Supplemental EIS. Since the majority of fish species within the CPA are estuary dependent, any modification of the coastal environment resulting from a CPA proposed action has the potential to adversely affect EFH and fish resources through the loss of nursery habitat or functional impairment of existing habitat through decreased water quality (Chambers, 1992; Stroud, 1992). Although the potential exists, it is expected that any possible coastal and marine environmental degradation from a CPA proposed action would have little effect on fish resources or EFH.

With a CPA proposed action, BOEM projects no new coastal infrastructure with the exception of a potential new pipeline landfall and a potential new gas processing facility. Although the installation of pipelines has the potential to temporarily resuspend sediment in localized areas, this is expected to have a negligible impact. Depending on the sediment characteristics, sediment load, and duration of exposure, impacts to commercially valuable species within a sediment plume can vary. Responses range in severity from no effect to mortality, but mobile species can avoid severe effects by limiting exposure. Sessile organisms and those with limited mobility may be exposed for longer durations, leading to increasingly severe impacts (e.g., increased respiratory rates, reduced feeding, and mortality). Regulations, mitigations, and practices reduce the undesirable effects on coastal habitats from dredging and other construction activities; permit requirements should ensure that pipeline routes avoid sensitive coastal habitat types. At the expected level of impact, the resultant influence on fish resources would be short term and localized, affecting only small portions of fish populations and selected areas of EFH. As a result, there would be little disturbance to fish resources or EFH.

The primary impacting sources to water quality in coastal waters are point-source and storm-water discharges from support facilities, vessel discharges, and nonpoint-source runoff. These activities are not only highly regulated but also localized and temporary in nature. The impacts to coastal water quality from routine activities associated with a CPA proposed action should be minimal because of the distance to shore of most routine activities and USEPA regulations that restrict discharges. Offshore water quality is affected temporarily and in a limited area by the discharge of produced water and the overboard discharge of drill muds. Maintenance dredging and canal widening in inshore areas causes only the temporary suspension of sediments. Negative impacts from most of these routine operations would

require a short time for fish resources to recover. This is because of multiple life history and environmental factors such as fecundity or year-class recruitment through oceanographic circulation.

Offshore, many of the EFHs are protected under the stipulations and regulations currently in place. Without these measures, there could be major negative impacts to topographic features and live bottoms. However, with routine impact-producing factors mitigated by BOEM through the Topographic Feature Stipulation and the Live Bottom (Pinnacle Trend and Low Relief) Stipulations, negative impacts are expected to be avoided. These stipulations establish a No Activity Zone around BOEM-protected topographic features, such as the Flower Gardens Banks, and NTL 2009-G39 and NTL 2009-G40 advise operators of BOEM's distancing requirements for bottom disturbing activity from identified seafloor features (live bottoms, Pinnacles, topographic features, Potentially Sensitive Biologic Feature's, and features capable of supporting high-density deepwater benthic communities). Additionally, hardsubstrate habitat provided by structure installation in areas where natural hard bottom is rare will tend to increase fish populations or attract fish populations. The removal of these structures will eliminate that habitat, except when decommissioned platforms are used as artificial reef material. This practice is expected to increase over time. A more detailed discussion of decommissioning and the impacts of these activities on marine fishes can be found in Chapters 3.1.1.10 and 4.2.1.19 of this Supplemental EIS, respectively.

For these reasons, as well as the fact that Gulf of Mexico fish stocks have retained both diversity and relatively stable biomass throughout the years of offshore development and other disturbances, a CPA proposed action is expected to result in a minimal decrease in fish resources and/or standing stocks or in EFH.

Accidental disturbances resulting from a CPA proposed action, including oil or chemical spills and blowouts, have the potential to adversely affect fish resources and EFH within the CPA. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on fish resources and EFH can be found in Chapter 4.2.1.18.3 and Appendix D of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.18 of the WPA 233/CPA 231 Supplemental EIS.

If oil or chemical spills due to a CPA proposed action were to occur in open waters of the OCS proximate to mobile adult finfish, the effects would likely be nonfatal and the extent of damage would be reduced because adult fish have the ability to move away from a spill, to metabolize hydrocarbons, and to excrete both metabolites and parent compounds. Weathered crude oil has been shown in laboratory experiments and field research to cause a range of sublethal effects including malformation, genetic damage, and physiological impairment in different life history stages of different fish species (Carls et al., 1999; Whitehead et al., 2011). Oil can be lethal to fish, especially in larval and egg stages, since early life stages of animals are usually more sensitive to environmental stress than adults (Moore and Dwyer, 1974). Therefore, fish populations would primarily be affected if oil reaches the coastal and estuarine areas because many species reside in estuaries for at least part of their life cycle or are dependent on the nutrients exported from the estuaries to the shelf region. However, pelagic species may also be affected. Offshore spawning and nursery habitat supports several valuable species that could likewise be impacted by widespread contamination of the epipelagic region. However, due to natural variability in spawning success, recruitment, oceanographic conditions, and other factors, it is difficult to attribute specific causes to short-term shifts in stocks and research to date has been inconclusive with respect to the individual contributions of the many factors impacting these fishes (Rijnsdorp et al., 2009; Atlantic Bluefin Tuna Status Review Team, 2011; Rooker et al., 2013). The probability of a spill impacting these nursery habitats is low. Much of the coastal northern Gulf of Mexico is a moderate- to high-energy environment; therefore, sediment transport and tidal stratification should reduce the chances for oil persisting in these areas if they are oiled. The extent to which a spill could impact offshore spawning and nursery habitat is highly dependent upon the time of year of the event.

The effect of oil spills that may be associated with a CPA proposed action on fish resources is expected to cause a minimal decrease in standing stocks of any population because most spill events would be small in scale and localized. Historically, there have been no oil spills of any size in the Gulf of Mexico that have had a long-term impact on fishery populations. Although many potential effects of the *Deepwater Horizon* explosion, oil spill, and response have been alleged, the actual effects are largely unknown and likely to remain so for several years, until more research is completed and the analyses become available. Recent analysis of early stage survival of fish species inhabiting seagrass nursery habitat from Chandeleur Islands, Louisiana, to St. Joseph Bay, Florida, pre- and post-*Deepwater Horizon*
oil spill show that immediate catastrophic losses of 2010 cohorts were largely avoided and that no shifts in species composition occurred following the spill (Fodrie and Heck, 2011). Analysis of the effects of a catastrophic oil spill can be found in **Appendix B**. The fish populations of the Gulf of Mexico have repeatedly proven to be resilient to large, annually occurring areas of anoxia, major hurricanes, and oil spills. Accidental events from a CPA proposed action are not expected to significantly affect fish populations or EFH in the Gulf of Mexico.

Cumulative Impacts

Background/Introduction

This cumulative analysis includes effects on fish resources and EFHs as a result of the OCS Program (a CPA proposed action and past and future OCS lease sales), State oil and gas activity, coastal development, commercial and recreational fishing, and natural phenomena. For a detailed analysis of the cumulative impacts to EFH, refer to Appendix D of the 2012-2017 WPA/CPA Multisale EIS. An example of impact-producing factors considered in this analysis include cumulative onshore impacts on EFHs, such as wetland loss as a result of human population expansion, as well as natural factors such as hurricane loss of wetlands, in addition to the cumulative impacts of OCS oil- and gas-related activities. Marine environmental degradation factors affecting water quality, such as hypoxia, are discussed in **Chapter 4.1.1.2**, and they are summarized here.

Healthy fishery stocks depend on EFHs, which are waters and substrate necessary to fish for spawning, breeding, feeding, and growth to maturity. Due to the wide variation of habitat requirements for all life history stages (as described in Appendix D of the 2012-2017 WPA/CPA Multisale EIS) for marine species, a large portion of the GOM is designated as EFH. The cumulative effects of OCS oil- and gas-related and non-OCS oil- and gas-related factors on EFHs can be found in the respective resource chapters: water quality (Chapter 4.1.1.2); wetlands (Chapter 4.1.1.4); seagrass communities (Chapter 4.1.1.5); live bottom (pinnacle trend/low relief) (Chapter 4.1.1.6); topographic features (Chapter 4.1.1.7); Sargassum communities (Chapter 4.1.1.8); chemosynthetic deepwater benthic communities (Chapter 4.1.1.1); nonchemosynthetic deepwater benthic communities (Chapter 4.1.1.1); and soft bottom benthic communities (Chapter 4.1.1.1). The direct and/or indirect effects from cumulative OCS oil- and gas-related and non-OCS oil- and gas-related activities on fish resources are reanalyzed, while EFHs are summarized in this chapter.

OCS Oil- and Gas-Related Impacts

Infrastructure projections reflect long-term industry trends, and existing oil and gas infrastructure is expected to be sufficient to handle development associated with a CPA proposed action. Any expansion of existing facilities or construction of new facilities would be closely scrutinized by State and Federal permitting agencies to ensure that potential impacts to estuarine habitats are avoided or mitigated. Secondary factors, such as vessel traffic supporting ongoing operations, will continue to have the greatest probability of producing impacts to fish resources and EFH and should receive greater attention. The present number of major navigation canals appears to be adequate for the OCS Program and most other developments. Some of these canals may be deepened or widened, and marine traffic causes erosion of adjacent wetlands. These secondary impacts of canals to wetlands will continue. The incremental contribution of a CPA proposed action would be a small part of the cumulative impacts to wetlands, seagrass communities, and coastal water quality; however, with new technologies and continual regulation and monitoring by COE, these activities will cause fewer effects.

Pipeline installation would cause sediment resuspension. Depending on the sediment characteristics, sediment load, and duration of exposure, impacts to commercially valuable species within a sediment plume can vary. Responses range in severity from no effect to mortality, but mobile species can avoid severe effects by limiting exposure. Sessile organisms and those with limited mobility may be exposed for longer durations, leading to increasingly severe impacts (e.g., increased respiratory rates, reduced feeding, and mortality). However, OCS oil- and gas-related activities resulting in sediment suspension are temporary and localized, and because of regulations, permitting processes, and protective stipulations, the OCS oil- and gas-related activities are expected to have minimal impact on fish resources and EFH. BOEM has conservatively estimated that 0-1 new pipelines will make landfall in the Gulf of Mexico, and a total of 30,428-69,749 km (18,907-43,340 mi) of pipeline could be installed in the GOM during the

4-152

40-year analysis period (**Table 3-3**). Most oil and gas operations are assumed to use existing onshore structures and pipelines, which would have a small effect on coastal EFH and fish resources.

Topographic features in the GOM include the East and West Flower Garden Banks and Sonnier and Stetson Banks. The Topographic Features Stipulation, applied to appropriate leases and clarified in NTL 2009-G39, would prevent most of the potential impacts on topographic features from offshore oil and gas bottom-disturbing activities. Also, the guidance provided in NTL 2009-G40 would distance bottom-disturbing activities from deepwater benthic communities such as chemosynthetic communities and deepwater corals. The projected total number of production structure installations resulting from OCS oil- and gas-related activities in the CPA and GOM during the next 40 years and for all water depths is 1,180-1,640 (**Table 3-4**) and 1,435-2,026 (**Table 3-3**), respectively. Bottom disturbance from structure emplacement operations associated with a CPA proposed action would produce localized and temporary increases in suspended sediment loading. This would result in decreased water clarity and little reintroduction of pollutants. There is evidence that structure emplacements can act as fish-attracting devices and provide artificial habitat, resulting in the aggregation of migratory and reef fish species. It has also been reported that artificial habitat, such as that represented by some of the associated structures, can in some instances enhance production of fish (Stone et al., 1979; Carr and Hixon, 1997; Gallaway et al., 2009; Shipp and Bortone, 2009).

It is estimated that 1.046-1.485 structures would be removed as a result of the OCS Program in the CPA during the next 40 years (Table 3-4) and that 1,279-1,837 structures would be removed as a result of the entire OCS Program during the next 40 years (Table 3-3). For more details on structure removal, please refer to Structure-Removal Operations on the Gulf of Mexico Outer Continental Shelf, Programmatic Environmental Assessment (USDOI, MMS, 2005). The removal of structures results in the loss of artificial habitat that was temporarily available for the life of particular OCS oil- and gasrelated activities, unless redeployed as artificial reef substrate. Redeployment of any structure as artificial reef substrate is contingent upon many factors, including operator interest and State and Federal approval of an application to participate in a State artificial reef program (Chapter 3.3.3.5). BOEM estimates that of the production structures removed in the next 40 years, 868-1,247 structures will be removed using explosives (Table 3-3). The potential for injury and mortality to fishes resulting from underwater blasts has been well documented (Hubbs and Rechnitzer, 1952; Ferguson, 1962; Teleki and Chamberlain, 1978; Govoni et al., 2008). Fish within the area of effect are subjected to a shock wave that expands radially, causing rapid contraction and over extension of the swim bladder, which may result in internal injury or mortality (Keevin and Hempen, 1997; Govoni et al., 2008). Invertebrates and fish with no swim bladder, or less well-developed swim bladders, are extremely resistant to underwater blasts. Other factors such as age, general health, water temperature, and reproductive condition may also influence mortality (Keevin and Hempen, 1997). It is expected that structure removals would have a major effect on fish resources near the removal sites. However, these expected impacts to fish resources have been shown to be small overall and would not alter determinations of status for impacted species or result in changes in management strategies (Gitschlag et al., 2000). The Topographic Features Stipulation (NTL 2009-G39) and the guidelines provided in NTL 2009-G40 would decrease impacts on benthic communities from bottom-disturbing activities such as anchoring and structure emplacement and removal.

Localized, minor degradation of coastal water quality is expected from a CPA proposed action within the immediate vicinity of the waterbodies proximate to the proposed service bases, commercial wastedisposal facilities, and gas processing facilities as a result of routine effluent discharges and runoff (**Chapter 4.1.1.2.1**). The degradation of water quality can cause increased physiological stress in marine organisms or can result in hypoxia, causing mobile species to avoid or leave low quality habitat. Because the input of effluent, runoff, and nutrients from a CPA proposed action is very limited, the incremental contribution of a CPA proposed action would be a very small part of the cumulative impacts to coastal water quality. A CPA proposed action would add slightly to the overall offshore water quality degradation through the disposal of offshore operational wastes and sedimentation/sediment resuspension (**Chapter 4.1.1.2.2**). Offshore vessel traffic and OCS operations would contribute in a small way to regional degradation of offshore waters through different waste discharges and spills.

Drilling mud discharges contain chemicals toxic to marine fishes; however, this is only at concentrations four or five orders of magnitude higher than those found more than a few meters from the discharge point. This is because offshore discharges of drilling mud dilute to near background levels within 1,000 m (3,280 ft) of the discharge point. Biomagnification of pollutants such as mercury are often associated with drilling discharges; however, the bioavailability of trace concentrations of mercury

in discharged drilling mud has not been demonstrated. A recent study has concluded that platforms do not contribute to higher mercury levels in marine organisms (Sluis et al., 2013). Another study suggests that mercury in sediment from drilling platforms is not in a bioavailable form (Trefry et al., 2003). Because the deposition of drilling mud is limited in space around the platform and because the mercury contained in the mud is not in bioavailable form, the discharge of drilling mud around platforms is expected to have a negligible effect on fish at a population level.

Produced-water discharges contain components and properties potentially detrimental to fish resources. These include petroleum hydrocarbons, trace metals, radionuclides, and brine. Limited petroleum concentrations and metal contamination of sediments and the upper water column would occur out to several hundred meters or feet downcurrent from the discharge point. Because produced waters are limited in space and are quickly diluted, the effects of produced waters on fish populations in the OCS environment are expected to be small. Fish populations inhabiting offshore live bottoms would similarly not be impacted by produced waters because they are released and disperse near the surface and because the deposition of drilling mud is limited because of current mitigation. Offshore discharges and subsequent changes to marine water quality are also regulated by the U.S. Environmental Protection Agency's NPDES permits.

In the unlikely event of an offshore spill, the biological resources of hard/topographic features are expected to remain unharmed as the spilled substances would likely reach the seafloor in minute concentrations. These minute quantities may cause very short-term sublethal effects such as reduced feeding and photosynthesis or altered behavior (Wyers et al., 1986; Cook and Knap, 1983; Dodge et al., 1984). A more detailed analysis of the potential impacts to topographic features from an offshore spill can be found in **Chapter 4.1.1.7**.

Surface oil spills would have the greatest chance of impacting high-relief topographic features located in depths <20 m (65 ft; mostly sublethal impacts). A comprehensive survey of all low-relief live bottoms in the CPA has yet to be conducted, but all major topographic features are well described (Chapter 4.2.1.7.1 of the 2012-2017 WPA/CPA Multisale EIS). Only three high-relief features in the Gulf rise to water depths shallower than 20 m (65 ft). These are the East Flower Garden Bank (16 m; 52 ft), Stetson Bank (17 m; 55 ft), and Sonnier Bank (17 m; 55 ft).

Subsurface blowouts of both oil and natural gas wells and subsurface spills (pipeline spills) have the potential to adversely affect fishery resources and could cause localized, sublethal (short-term, physiological changes such as reduced feeding or increased respiration) impacts on the biologically sensitive underwater features, areas, and deepwater benthic communities. The range of potential impacts and most likely effects are discussed in the following chapters: live bottoms (Pinnacle Trend and low relief) (**Chapter 4.1.1.6**); topographic features (**Chapter 4.1.1.7**); chemosynthetic deepwater benthic communities (**Chapter 4.1.1.9**); nonchemosynthetic deepwater benthic communities (**Chapter 4.1.1.0**); and soft bottom benthic communities (**Chapter 4.1.1.1**). However, these events are rare and, should one occur, protective lease stipulations mitigate the potential impacts on the live bottoms of the entire activity area, so community-wide impacts should not occur. Sandy sediments resuspended as a result of a blowout would be quickly redeposited within 400 m (1,312 ft) of the blowout site, and finer sediments would be widely dispersed and redeposited within a few thousand meters over a period of 30 days or longer. Effects on fish resources as a result of sediment resuspension due to a blowout, though longer in duration, would be similar to those described for other bottom-disturbing activities. These events are expected to have a negligible impact on fish populations.

Oil spills that contact coastal bays, estuaries, and offshore waters (each are EFH) when pelagic eggs and larvae are present have the greatest potential to affect fish resources. Early life stages of animals are usually more sensitive to environmental stress than adults (Moore and Dwyer, 1974), and oil can be lethal to fish, especially in larval and egg stages. Weathered crude oil has been shown in laboratory experiments to cause malformation, genetic damage, and even mortality at low levels in fish embryos of Pacific herring (Carls et al., 1998). However, the results of recent studies of fish resources (species and communities) indicate impacts resulting from the *Deepwater Horizon* oil spill have been largely indistinguishable from natural fluctuations or variability due to other anthropogenic activities (Atlantic Bluefin Tuna Status Review Team, 2011; Fodrie and Heck, 2011; Soniat et al., 2011; Carmichael et al., 2012). Although there is a large body of information being developed through the NRDA process that is not yet available, these early results are not indicative of significant population-level responses. If spills were to occur in coastal bays, estuaries, or waters of the OCS proximate to mobile adult finfish or shellfish, the effects would likely be sublethal and the extent of damage would be reduced due to the

capability of adult fish and shellfish to avoid a spill, to metabolize hydrocarbons, and to excrete both metabolites and parent compounds. For eggs and larvae contacted by spilled diesel, the effect is expected to be lethal.

Contamination from oil and hazardous substance spills should be primarily localized and not long term enough to preclude designated uses of the waters. For example, a large coastal spill that could occur from OCS oil- and gas-related activity in the CPA would likely originate near terminal locations, which are most numerous in the coastal zone of Louisiana (Figure 3-5 of the 2012-2017 Multisale EIS). As a result of spill response, containment, and recovery efforts, most of the inland spills' contents are expected to be recovered and what is not recovered would affect a small area and dissipate rapidly. The 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS analyzed the effect for oil spills \geq 1,000 bbl if a spill was to occur due to a CPA proposed action. The probabilities of that spill contacting different EFH after 10 days and a spill (\geq 1,000 bbl) contacting an EFH after 30 days are presented in the following chapters of the 2012-2017 WPA/CPA Multisale EIS: water quality (Chapters 4.2.1.2.1.3 and 4.2.1.2.2.3); wetlands (Chapter 4.2.1.4.3); seagrass communities (Chapter 4.2.1.5.3); live bottoms (Chapters 4.2.1.6.1.3 and 4.2.1.6.2.3); topographic features (Chapter 4.2.1.7.3); Sargassum communities chemosynthetic deepwater (Chapter 4.2.1.8.3); benthic communities (Chapter 4.2.1.9.3); nonchemosynthetic deepwater benthic communities (Chapter 4.2.1.10.3); and soft bottom benthic communities (Chapters 4.2.1.11.3).

Loss of well control and resultant blowouts and pipeline spills seldom occur on the Gulf of Mexico OCS. Estimated occurrences and probabilities of these events for all water depths in the OCS are presented in Tables 3-19 and 3-20 of the 2012-2017 WPA/CPA Multisale EIS.

Subsurface blowouts, such as the *Deepwater Horizon* explosion, that include both oil and natural gas have the potential to affect fish populations, particularly eggs, larvae, and juveniles. The specific effects of this type of spill on individual fish populations in the GOM are currently being investigated. Few, if any, definitive results have been obtained at this time. Spills from this type of a blowout have a low probability of occurring. The cumulative impact on EFH and fish populations is, therefore, not anticipated to be large as a result of a CPA proposed action. For a more detailed analysis of low-probability catastrophic spills, refer to **Appendix B**.

Non-OCS Oil- and Gas-Related Impacts

Much of coastal wetland loss is a result of agricultural, commercial, and residential development; inshore oil and gas extraction; and river modification. The conversion of wetlands for agricultural, residential, and commercial uses has been substantial. The trend is projected to continue into the future, although at a slower rate because of regulatory pressures. The most serious impact to EFH is the cumulative effects on wetlands that are occurring at an ever-increasing rate as the Gulf Coast States' human populations increase and with relative sea-level rise (GMFMC, 1998). Residential, commercial, and industrial developments are directly impacting EFH by dredging and filling coastal areas or by affecting the watersheds. Also, the conversion of wetland habitat into open water is projected to continue in the foreseeable future. This is actually a shift in EFH from important nursery habitat to open-water habitat. State oil and gas activities are projected to have greater and more frequent adverse impacts on wetlands than would the OCS Program offshore activities because of their proximity to the shore. Other factors that impact coastal wetlands include marsh burning and marsh-buggy traffic. Tracks left by marsh buggies open new routes of water flow through relatively unbroken marsh and can persist for up to 30 years, thereby inducing and accelerating erosion and sediment export. The Federal and State governments are also funding research and coastal restoration projects; however, it may take decades of monitoring to ascertain the long-term feasibility of these coastal restoration efforts.

Canal dredging primarily accommodates commercial, residential, and recreational development. Increased population and commercial pressures on the Gulf Coast are also causing the expansion of ports and marinas. Where new channels are dredged, wetlands would be adversely impacted by the channel, the disposal of dredged materials, and the development that it attracts. The continuing erosion of waterways maintained by COE is projected to adversely impact the productivity of wetlands along channel banks. Also, increased turbidity from dredging operations projected to continue within the coastal zone constitutes another considerable type of pollution. However, continual advances in technologies and mitigation required by COE in permits decrease many adverse effects on coastal habitats and water quality from dredging and related activities.

Estuarine water quality degradation is largely due to urban and agricultural runoff. The coastal waters of the CPA are expected to continue to experience nutrient enrichment, low-dissolved oxygen, and toxin and pesticide contamination, resulting in the loss of both commercial and recreational uses of the affected waters. Fish kills, shellfish-ground closures, and restricted swimming areas will likely increase in numbers over the next 30-40 years based on impacts from the non-OCS oil- and gas-related impacts described above. The degradation of water quality is expected to continue due to contamination by point-and nonpoint-source discharges due to eutrophication of waterbodies, primarily due to runoff and hydrologic modifications. However, stringent water quality standards are monitored and enforced by USEPA and USCG. Municipal, agricultural, and industrial coastal discharges and land runoff would impact the health of marine waters. As the assimilative capacity of coastal waters is exceeded, there will be a subsequent, gradual movement of the area of degraded waters farther offshore over time. This degradation will cause short-term loss of the designated uses of some shallow offshore waters due to hypoxia and red or brown tide impacts and to the levels of contaminants in some fish, thereby exceeding human health standards. Coastal sources are assumed to exceed all other sources, with the Mississippi River continuing to be the major source of contaminants to the north-central Gulf area.

Commercial fishing activities that could impact topographic features would include trawl fishing and trap fishing. With the exception of localized harvesting techniques, most wild-caught shrimp are collected using bottom trawls—nets towed along the seafloor—held apart with heavy bottom sled devices called "doors" made of wood or steel. In addition to the nonselective nature of bottom trawls, they can be potentially damaging to the bottom community as they drag. Trawls pulled over the bottom disrupt the communities that live on and just below the surface and also increase turbidity of the water (GMFMC, 1998).

Throughout the Gulf Coast, commercial trap fishing is used for the capture of reef fish, and commercial and recreational trap fishing is used for the capture of spiny lobster, stone crab, and blue crab. Reef fish traps are primarily constructed of vinyl-covered wire mesh and include a tapered funnel where the fish can enter but not escape. Traps can potentially damage the bottom community, depending on where they are placed. If they are deployed and retrieved from coral habitats or live bottoms, they can damage the corals and other attached invertebrates on the reef. Seagrasses can also be broken or destroyed by the placement and retrieval of traps in shallow environments (GMFMC, 1998).

Overfishing (commercial and recreational) has been determined to be a major factor in four populations of reef fish in the Gulf of Mexico. According to the NMFS Status of Stocks 2012 report, Gulf of Mexico overfished species included gag (Mycteroperca microlepis), greater amberjack (Seriola dumerili), red snapper (Lutjanus campechanus), and gray triggerfish (Balistes capriscus); all but red snapper were still subject to overfishing (USDOC, NMFS, 2013c). These species are reef fish that range throughout the Gulf and are discussed in Chapters 4.2.1.18.1 and 4.2.1.19.1 and Appendix D of the 2012-2017 WPA/CPA Multisale EIS and Chapters 4.1.1.16 and 4.1.1.17 of the WPA 233/CPA 231 Supplemental EIS. Many of the important species harvested from the Gulf of Mexico are believed to have been overfished, but managers are making progress in rebuilding or sustainably managing those stocks with known status (USDOC, NMFS, 2013d). However, there remain stocks with an unknown status and, while these represent a smaller fraction of commercial and recreational landings, it is possible that some are subject to overfishing and that continued fishing at the present levels may result in declines of fish resource populations and the eventual failure of certain fisheries. It is expected that overfishing of targeted species and trawl fishery bycatch will adversely affect fish resources. The impact of overfishing on fish resources is expected to cause a measurable decrease in populations, although the Gulf of Mexico Fisheries Management Council (GMFMC) has taken action to avoid the exploitation of overfished species in the form of increased regulations. The Magnuson-Stevens Fishery Conservation and Management Act and its amendments address sustainable fisheries and set guidelines for protecting marine resources and habitat from fishing- and nonfishing-related activities. Under this Act, fisheries management plans, including limits on catch and fishing seasons, are developed and proposed by the regional fisheries management councils for approval and implementation by NMFS. State agencies regulate inshore fishing seasons and limits.

Invasive species such as lionfish are a threat to commercially important species native to the Gulf of Mexico. Lionfish have been observed on natural bottom, reefs, and artificial structures across the northern Gulf of Mexico. These fish are voracious predators and have the potential to displace native species through competition for food sources and habitat space.

4-157

Finally, some natural phenomena can impact fish resources and EFHs. Nearshore habitat can be affected through events such as severe storms and floods. These events can accelerate wetland loss or damage oyster reef habitat. Offshore resources such as biologically sensitive underwater features may be damaged or buried by events like storms or turbidity flows, potentially affecting fish resources. Additionally, variability in spawning success and juvenile survival directly affect Gulf of Mexico fish populations. These natural phenomena are all continual, integral elements of the ecosystem, and impacts attributed to these events are often exacerbated by anthropogenic activities.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of internet information sources and scientific journals was conducted to determine the availability of recent information (including NMFS databases, GMFMC website, Science Direct, EBSCO, Elsevier, PLoS ONE, JSTOR, and BioOne). New scientific information has been identified as relevant to this analysis since the publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Moody et al. (2013) found that recruitment of many species in an Alabama marsh was not negatively impacted by the *Deepwater Horizon* oil spill. Although focused on the marsh, this study is important because many of the species found in the marsh are also found in other habitats; this is the case for Gulf killifish (Fundulus grandis) (Schofield and Fuller, 2013). Dubansky et al. (2013) noted that exposure to sediments with Macondo-related PAHs resulted in Gulf killifish (Fundulus grandis) having multitissue molecular, genomic, and developmental responses. The presence of these effects suggests that oil exposure may result in population-level effects; however, a population-level effect may be lethal or sublethal. Given that animals were recovered at the same locations in both years suggests that any lethal effects on animals may have been mitigated by subsequent cohorts, despite the presence of sublethal effects. In addition, the premise of population-level impacts has been called into question because Dubansky et al. (2013) only demonstrate that oiled sediments can adversely impact laboratory-reared larvae whose eggs have been exposed to PAHs (Pearson, 2014). These results agree with similar laboratory studies (refer to Chapter 4.1.1.19) and by themselves are not predictive of population-level effects. Gulf killifish are a cosmopolitan but nonmigratory species, and effects due to a spill would be expected to have an impact that was limited to the local population exposed to the spill rather than the population as a whole. As such, the overall impact would be positively correlated with the size of the spill.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.18 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding impacts of the *Deepwater Horizon* explosion, oil spill, and response on fish resources and EFH in the CPA. This incomplete information may be relevant to evaluating adverse effects because the full extent of potential impacts on fish resources and EFH are not known. Relevant data on fish resources and EFH after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze. Much of these data are being developed through the NRDA process, which may take years to complete. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed. This information cannot be obtained because the overall costs are exorbitant.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. The following studies investigating evidence of oil and impacts stemming from exposure to oil among pelagic fishes, coastal fishes, and marsh-associated nekton were utilized to reach the decision at this time: Atlantic Bluefin Tuna Status Review Team (2011); Fodrie and Heck (2011); Soniat et al. (2011); Carmichael et al. (2012); Moody et al. (2013); and Rooker et al. (2013). The results of these recent studies of fish resources (species and communities) indicate that impacts resulting from the *Deepwater Horizon* oil spill have been largely indistinguishable from natural fluctuations or variability due to other anthropogenic activities. Although the body of available information is incomplete and long-term effects cannot yet be known, the evidence currently available supports past analyses and are not indicative of significant population-level

responses. Additional information on commercially and recreationally valuable species may be found in **Chapters 4.1.1.19 and 4.1.1.20**, respectively.

Summary and Conclusion

BOEM has reexamined the analysis for fish resources and EFH presented in the 2012-2017 WPA/CPA Multisale EIS and the WPA 233/CPA 231 Supplemental EIS, based on the additional information provided above. Various printed and Internet sources (including NMFS's databases, GMGFMC's website, EBSCO, Elsevier, PLoS ONE, and BioOne) were examined to assess recent information regarding this resource that may be pertinent to the CPA. No new significant information was discovered that would alter the impact conclusion for the fish resources and EFH presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

In summary, there are widespread anthropogenic and natural factors that impact EFH and fish populations in the Gulf of Mexico. Many State and Federal agencies have shared or sole responsibility for implementing the laws and regulations within their jurisdiction that ensure coastal development and industrial operations are performed responsibly and that potential impacts are avoided or properly mitigated. Despite this concerted effort, incremental, accidental and natural or unavoidable impacts occur. However, the forecasted activities associated with a proposed CPA action, planned, executed and mitigated in accordance with applicable regulations and guidelines, are expected to contribute minimally to the cumulative impact on fish resources and EFH.

As noted in **Chapter 4.1.1.18** of this Supplemental EIS, Chapter 4.2.1.18.1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.18 of the WPA 233/CPA 231 Supplemental EIS, most of the Gulf of Mexico is designated as EFH and encompasses many different types of habitats and resources, which are described in this Supplemental EIS. The extent of impacts from the *Deepwater Horizon* explosion, oil spill, and response to fish resources and EFH remains unclear at this time. This information is being developed through the NRDA process, data are still incoming and have not been made publicly available, and it is expected to be years before the information is available. No evidence of significant impacts to fisheries populations in the Gulf of Mexico have been shown to date.

4.1.1.19. Commercial Fisheries

BOEM has reexamined the analysis for commercial fisheries presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for commercial fisheries presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts discussed in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of commercial fisheries and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.19 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.19 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

The potential routine impact-producing factors on commercial fisheries in the CPA are seismic surveys and operational noise, drilling, platform emplacement, platform removal, pipeline installation, waste discharge, channel dredging and oil spills. Analysis of the routine impacts of OCS oil- and gas-related activities associated with a CPA proposed action on commercial fisheries can be found in Chapter 4.2.1.19.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.19 of the WPA 233/CPA 231 Supplemental EIS.

Routine activities such as seismic surveys, platform operation, and vessel traffic produce noise of varying intensity and duration; a description of this factor can be found in **Chapter 3.1.1.2.1** of this

4-159

Supplemental EIS, with a more detailed description provided in Chapters 3.1.1.2 and 3.1.1.6 of the 2012-2017 WPA/CPA Multisale EIS. A CPA proposed action, throughout the 40-year life cycle, is estimated to result in numerous seismic survey activities. Studies have shown that air guns can produce behavioral responses in fishes, possibly even resulting in species- or gear-specific effects on catch rate (Popper and Hastings, 2009; Fewtrell and McCauley, 2012; Lokkeborg et al., 2012). However, there is insufficient data to consistently predict that responses and important variables, such as the duration of exposure and repeated exposure, have not been fully addressed. Seismic surveys are cyclical, temporary, localized events, and they are not expected to have a significant impact on commercial fisheries.

Exploratory drilling rigs cause temporary interference to commercial fishing, lasting approximately 30-150 days, and emplaced structures represent a semipermanent obstruction to some forms of commercial fishing, trawling and longlining in particular. BOEM estimates that 31-60 platforms would be installed in waters 200 m (656 ft) or less in depth as the result of a CPA proposed action. At these depths, the structures would yield approximately 62-120 ha (310-600 ac) unavailable to trawling. Longline fishing is performed in water depths greater than 100 m (328 ft) and usually beyond 300 m (984 ft). BOEM estimates that 7-13 platforms will be installed in this depth range, presenting a minor space-use conflict. Concerns that an areal comparison insufficiently considers geological formations and other features that constitute "high-quality" fishing grounds are not justified since the stipulations and regulations currently in place protect these habitats from being impacted by OCS oil- and gas-related activities. In addition, the current paradigm posits these structures act as both fish-attracting and production-enhancing devices, depending upon the species (Carr and Hixon, 1997; Gallaway et al., 2009; Shipp and Bortone, 2009). The resultant assemblages frequently include commercially valuable fishes, such as tunas (Thunnus spp.), red snapper (Lutjanus campechanus) and wahoo (Acanthocybium solanderi), and attract fishermen targeting these species. However, OCS platforms and supporting infrastructure do pose a hazard to commercial fishing vessels and gear. The Fishermen's Contingency Fund was created to compensate fishermen for economic and property losses as a result of oil and gas industry activities on the OCS (Sharp and Sumaila, 2009; USDOC, NMFS, 2013d). According to NMFS, claims were approved for \$188,168 in FY 2010, \$126,608 in FY 2011 and \$63,588 in 2012.

The most commonly discharged offshore wastes are drilling mud and produced water. Drill mud contains metals such as mercury and cadmium, which are toxic to fishery resources, and produced water commonly contains brine, trace metals, hydrocarbons, organic acids, and radionuclides. Studies of drilling mud and produced-water discharges from platforms show that the plume disperses rapidly in both cases and does not pose a threat to commercial fisheries. Because of concern about bioaccumulation of mercury in some fishes (Oken et al., 2012), the Gulf of Mexico in general, and areas with OCS oil and gas infrastructure in particular, have been the subject of several studies on mercury concentrations in sediment and uptake of mercury associated with drilling. As of the writing of this document, the latest study to investigate potential relationships between mercury concentrations in fish tissues and habitat compared fish caught near platforms with those caught at non-platform habitat. The researchers found no significant difference in the total mercury concentrations in tissue samples taken from fish captured at either habitat type (Sluis et al., 2013). This study supports earlier research, which resulted in similar findings (Trefry et al., 2003; Lowery and Garrett, 2005).

Pipeline trenching, navigation channel dredging, and canal construction resuspend sediments, but they are expected to cause negligible impacts and would not deleteriously affect overall CPA commercial fishing activities. Depending on the sediment characteristics, sediment load, and duration of exposure, impacts to commercially valuable species within a sediment plume can vary. Responses range in severity from no effect to mortality, but mobile species can avoid severe effects by limiting exposure. Sessile organisms and those with limited mobility may be exposed for longer durations, leading to increasingly severe impacts (e.g., increased respiratory rates, reduced feeding, and mortality). Regulations, mitigations, and permit requirements should ensure that impacts to habitat are avoided or minimized. Platform emplacement would cause displacement of commercial fishing while operations are ongoing, and explosive removal of platforms will cause temporary displacement of commercial fishing activities and localized fish mortality. These effects are limited to a small percentage of the area fished and will not significantly impact commercial fishing or fish stocks in the CPA. Furthermore, some platforms will be decommissioned using nonexplosive methods and redeployed as artificial reef substrate. For more information, refer to **Chapter 3.3.3.5**.

Accidental disturbances resulting from a CPA proposed action, including oil spills and blowouts, have the potential to result in temporary closures and/or direct impacts to fish populations, both inshore

and offshore, thereby affecting commercial fisheries within the CPA. Additional impact analysis of accidental events that may be associated with proposed CPA Lease Sales 235, 241, and 247 on commercial fisheries can be found in Chapter 4.2.1.19.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.19 of the WPA 233/CPA 231 Supplemental EIS.

In the event of an oil spill or blowout (refer to Chapter 3.2.1 and Appendix B for a detailed risk analysis), fish populations will primarily be impacted if the oil reaches the productive shelf and estuarine areas. Although there is a risk of spills occurring in coastal waters (0-5.6 km; 0-3.5 mi; 0-3.0 nmi), the majority of these would be small and unlikely to impact commercial fisheries. Most of these incidents would occur at or near pipeline terminals or shore bases and are expected to only temporarily affect a localized area. The probability of an offshore spill impacting these nearshore environments is low, and oil would generally be volatilized or dispersed by currents in the offshore environment. The most damaging oil spills to commercial fishery harvests would be those reaching the productive coastal waters or estuaries. However, while short-term negative impacts may be greatest on those populations that are short-lived and harvested annually, such as crabs and shrimp, or those populations that are sessile, such as oysters, these species have evolved to cope with high mortality through large population growth potential and should not suffer long-term population effects. Longer-lived species such as snapper and grouper have more resilience because these populations consist of multiple year classes that can breed, and the failure of any one year-class does not necessarily threaten the survival of the population. Historically, spills of sufficient magnitude to potentially and broadly affect these sensitive areas have a very low probability of occurrence.

Fisheries closures may result from a large spill event. When closures occur, they are generally small and short lived. Most fishermen should be able to avoid these closures, causing only localized economic impacts. Large-scale closures are rare, but can inflict more widespread negative economic impacts on commercial fishermen due to inability to fish and decreased marketability of their catch. These closures may also relieve fishing pressure and allow fisheries populations to increase the following year.

The potential impacts due to accidental events (i.e., a well blowout or an oil spill) from a CPA proposed action are anticipated to be minimal. The most typical events are small and of short duration, and the effects are so localized that fish may avoid the area adversely impacted.

Cumulative Impacts

Background/Introduction

This cumulative analysis considers activities that have occurred, are currently occurring, and could occur and adversely affect commercial fishing for the years 2012-2051. These activities include the effects of the OCS Program (proposed action and prior and future OCS sales), State oil and gas activity, oil transport by tankers, natural phenomena, and commercial and recreational fishing.

The potential impact-producing factors considered in the cumulative analysis include seismic surveys and operational noise, drilling, platform emplacement, platform removal, pipeline installation, waste discharge, channel dredging, oil spills, State oil and gas activity, coastal commercial and residential development, commercial and recreational fishing techniques and practices, and natural phenomena.

OCS Oil- and Gas-Related Impacts

Seismic surveys are used in both shallow- and deepwater areas of the Gulf of Mexico. Seismic surveys and operational noise have been shown to produce behavioral responses in fishes, but the results of studies are inconclusive and specific behaviors or effects on catch rate cannot be predicted. Furthermore, there is evidence that repeated episodes may elicit reduced or different responses from fish (Fewtrell and McCauley, 2012). Seismic surveys also cause space-use conflicts but are limited in time and space. Although fishermen may be precluded from an area for several days, this should not significantly affect the annual landings or the value of landings for commercial fisheries. Targeted species are usually found in many adjacent locations, and commercial fishermen typically do not fish only one locale.

Production facilities also compete with commercial fishing interests for physical space in the open ocean, and associated underwater OCS obstructions can pose hazards to fishing gear. BOEM estimates there will be 1,180-1,640 production structures installed in the CPA over the next 40 years (**Table 3-4**). Each production platform excludes a small area from the resources available for most commercial fishing.

However, even the cumulative impact of these exclusions is small in comparison to the total area available for commercial fishing in the CPA. Concerns that an areal comparison insufficiently considers geological formations and other features that constitute "high-quality" fishing grounds are not justified since the stipulations and regulations currently in place protect these habitats from being impacted by OCS oil- and gas-related activities. In addition, the current paradigm posits these structures act as both fish-attracting and production-enhancing devices, depending upon the species (Carr and Hixon, 1997; Gallaway et al., 2009; Shipp and Bortone, 2009). As such, it is expected that these benefits, over the 40-year analysis period, will outweigh localized disturbances and fish mortality resulting from exploration, installation, and decommissioning activities. The impact of a CPA proposed action on commercial fisheries is anticipated to be small.

Offsetting the projected installation of facilities is the removal of existing platforms that have reached the end of their useful life. Approximately 1,046-1,485 production structures are expected to be removed from the CPA over the next 40 years (Table 3-4). Although each removal frees an area for commercial fishing, it also removes artificial hard substrate. Since BSEE encourages the reuse of obsolete oil and gas structures as artificial reefs, a lessee may be granted a departure from the requirement to remove a platform if the necessary conditions are met (BSEE Interim Policy Document 2013-07). In these instances, decommissioned structures may be used in State-managed Rigs-to-Reefs programs, and accepted structures would continue to serve as artificial reef substrate. It is estimated that 60 percent of the projected removals will involve explosive severance activities. These removal operations result in localized mortality of fishes. A study of explosive removals found that associated mortality for three commercially important fishes did not significantly alter projected stocks (Gitschlag et al., 2000). To account for inherent variations in species composition and abundance among platforms (e.g., Stanley and Wilson, 1997 and 2000; Gitschlag et al., 2000; Wilson et al., 2003), mortality estimates were doubled and stock estimates were recalculated. Although Gitschlag et al. (2000) was limited and cannot be directly applied to all species or habitats, it is reasonable to assume that other commercially important fishes would respond similarly. At the projected rate of removal, these activities are not expected to have a substantial negative impact on stocks of commercially important fishes.

Pipeline trenching, dredging, and canal construction activities resuspend sediments. Depending on the sediment characteristics, sediment load, and duration of exposure, impacts to commercially valuable species within a sediment plume can vary. Responses range in severity from no effect to mortality, but mobile species can avoid severe effects by limiting exposure. Sessile organisms and those with limited mobility may be exposed for longer durations, leading to increasingly severe impacts (e.g., increased respiratory rates, reduced feeding, and mortality). However, sandy sediments are quickly redeposited within 400 m (1,312 ft) of a trench, and finer sediments are widely dispersed and redeposited over a period of hours to days within a few thousand meters of the event. No significant effects to commercial fisheries are anticipated as a result of pipeline trenching because these are localized, temporary events. The cumulative effect on commercial fisheries from pipeline trenching is not expected to be distinguishable from natural events or natural population variations.

Drilling mud discharges contain chemicals toxic to marine fishes that include brine, hydrocarbons, radionuclides, and metals. One of the main concerns of the concentrations of metals in the drilling muds is that mercury can be magnified in the food chain. Because of concern about bioaccumulation of mercury in some fishes (Oken et al., 2012), the Gulf of Mexico in general, and areas with OCS oil and gas infrastructure in particular, have been the subject of several studies on mercury concentrations in sediment and uptake of mercury associated with drilling. Recent studies have concluded that platforms do not contribute to higher mercury levels in marine organisms (Sluis et al., 2013). Offshore discharges of drilling mud have been shown to dilute to near background levels within 1,000 m (3,281 ft) of the discharge point and would not cause a concentration of mercury in the food chain. These discharges would therefore have a negligible cumulative effect on fisheries because of the dilution of the metal to background levels before it enters the food chain. Produced-water discharges (Chapter 3.1.1.4.2 of the 2012-2017 WPA/CPA Multisale EIS) contain components and properties potentially detrimental to commercial fishery resources. However, offshore discharges of produced water also disperse and dilute to near background levels within 1,000 m (3,281 ft) of the discharge point and have a negligible cumulative effect on fisheries. No mortality has been attributed to produced-water discharges, and no consensus of sublethal effects to fish has been reported in the literature. Offshore discharges and subsequent changes to marine water quality are closely regulated by the U.S. Environmental Protection Agency's NPDES permits. The input of drilling mud and produced waters are limited and are diluted very quickly in the marine environment. Their environmental effects are, therefore, expected to be limited.

Loss of well control and resultant blowouts in the Gulf OCS are uncommon and, since 1970, there have been only 13 losses of well control that have resulted in >50 bbl of oil being spilled. Oil spills, including catastrophic subsurface blowouts that include both oil and natural gas, have the potential to affect fish populations, in particular eggs and larvae. However, the probability of an offshore spill impacting these nearshore environments is low, and oil would generally be volatilized or dispersed by currents in the offshore environment. The most damaging oil spills to commercial fisheries harvests would be those reaching the productive waters of the continental shelf or estuaries. However, while short-term negative impacts may be greatest on those populations that are short-lived and harvested annually, such as crabs and shrimp, or those populations that are sessile, such as oysters, these species have evolved to cope with high mortality through large population growth potential and should not suffer long-term population effects. Longer-lived species such as snapper and grouper have more resilience because these populations consist of multiple year-classes that can breed, and the failure of any one yearclass does not necessarily threaten the survival of the population. Historically, spills of sufficient magnitude to potentially and broadly affect these sensitive areas have a very low probability of occurrence. Furthermore, potential population losses may be somewhat offset by commercial fisheries closure areas necessitated by a large spill.

The full effects of catastrophic subsurface blowouts, such as the *Deepwater Horizon* explosion, on individual fisheries in the Gulf of Mexico are currently unknown, but spills of this type are a low-probability event. This type of spill is not expected to occur with a CPA proposed action. However, in the unlikely event a spill of that extent does occur, the potential impacts are discussed in **Appendix B**.

Non-OCS Oil- and Gas-Related Impacts

There is competition among large numbers of commercial fishermen, commercial operations employing different fishing methods, and commercial and recreational fishermen for a given fishery resource. The effects of overfishing of finfish resources are discussed in **Chapter 4.1.1.19** of this Supplemental EIS and Chapter 4.2.1.19 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. When practiced nonselectively, fishing techniques such as trawling, gill netting, or purse seining may reduce the standing stocks of the desired target species. This can also significantly affect species other than the target. For example, bycatch of the commercial shrimping industry is believed to have been a significant factor in the population decline of red snapper. In addition, continued fishing of most commercial species at the present levels can result in rapid declines in the landings and the eventual failure of certain fisheries if not actively managed.

Space-use conflicts and conflicts over possession of the resources can result from different forms of commercial operations and can occur between commercial and recreational fisheries. These effects have resulted in State and Federal constraints such as weekday fishing only, quotas, and/or gear restrictions on commercial fishing activity. The Magnuson-Stevens Fishery Conservation and Management Act and its amendments address sustainable fisheries and set guidelines for protecting marine resources and habitat from fishing- and nonfishing-related activities. Under this Act, fisheries management plans, including limits on catch and fishing seasons, are developed and proposed by the regional fisheries management councils for approval and implementation by NMFS. State agencies regulate inshore fishing seasons and limits. Another important consideration is the variability in fish populations, which fluctuate in numbers from year to year due to natural factors such as spawning success and juvenile survival.

The size of non-OCS oil- and gas-related or coastal spills is expected to be small and to cause a minimal decrease in commercial fishing activity local to the spill area. Because these spills are small, the resultant influence on commercial fishing, landings, or the value of those landings is not expected to be distinguishable from that of natural population variations.

The most serious impact on commercial fisheries is the cumulative loss of wetlands. Wetland loss as a result of commercial and residential development is one of the major factors in this trend, although this is regulated and mitigated by COE. Wetland conversion to open water results in a permanent loss of nursery and foraging habitat for many commercial fish stocks. The loss of wetlands also contributes to the intrusion of saltwater into oyster-producing waters, resulting in increased disease and predation. Resource management agencies, both State and Federal, set restrictions and issue permits in an effort to mitigate the effects of development projects and industry activities. The Federal and State governments

4-163

are also funding research and coastal restoration projects; however, it may take decades of monitoring to ascertain the long-term feasibility of these coastal restoration efforts. In comparison to the large area of wetland loss due to commercial and recreational development (such as marinas and camps) as well as to natural forces such as hurricanes, any incremental wetland loss due to a CPA proposed action is expected to be minor. A detailed discussion of the impacts to wetlands due to commercial and recreational development can be found in Chapter 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in the WPA 233/CPA 231 Supplemental EIS.

Hurricanes may impact commercial fishing by damaging gear and shore facilities, and by dispersing resources over a wide geographic area. Hurricanes may also affect the availability and price of key supplies and services (e.g., fuel), therefore affecting commercial fishing. Hurricanes suspend fishing activity and are destructive to wetlands that are nursery grounds to many commercial fish. Hurricanes can be extremely destructive to oyster beds by causing siltation over the beds and smothering spat along with adult oysters as evidenced by Hurricanes Katrina, Rita, Gustav, and Ike. Commercial fisheries landings of the central Gulf Coast were drastically impacted by Hurricanes Katrina and Rita in 2005 as a result of the severe impact on coastal port facilities and fishing vessels. Equally as destructive were Hurricanes Gustav and Ike in 2008. These impacts to commercial fisheries from the hurricanes were so severe that Commerce Secretary Gutierrez determined a fisheries resource disaster as a result (Upton, 2010). However, natural disaster impacts such as these are easily distinguished from incremental impacts of OCS oil- and gas-related activities.

Other phenomena that could impact commercial fisheries include hypoxia events and red and brown tides. Hypoxia events can kill or displace different species, such as brown shrimp, so they are more difficult to catch in known fishing grounds. Red and brown tides can close areas to fishing. A CPA proposed action is expected to have minimal additive adverse impacts on commercial fisheries when combined with other anthropogenic and natural disturbances.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A thorough search of information sources, including on-line research databases (EBSCO, PLoS ONE, JSTOR, Elsevier and BioOne), coastal universities and state and federal environmental agencies was conducted to determine the availability of new pertinent scientific information since the publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Information relevant to this analysis is summarized below.

Two separate studies investigating potential impacts from the *Deepwater Horizon* oil spill on Eastern oysters (Crassostrea virginica) were recently published. In the first, oysters that were transplanted before, during, and after the *Deepwater Horizon* oil spill, in areas of Mobile Bay and the Mississippi and Alabama coast that were potentially exposed to oil, did not show evidence of oil-derived carbon and nitrogen in their shells or tissue (Carmichael et al., 2012). This finding indicates that the oysters sampled were either not exposed to oil, did not feed on oiled food sources, or consumed too little oiled food to detect in their shells and tissue. It is also possible that the oysters rapidly depurated any consumed oil or slowed filter feeding due to the stress of oil exposure. Whatever the reason, because oysters did not assimilate oil-derived carbon and nitrogen, they did not provide a contaminated food source to higher trophic levels (Carmichael et al., 2012). In the second study, oysters collected from oil exposed areas of Mississippi Sound six months after the *Macondo* well was capped did not show PAH accumulation (Soniat et al., 2011). Although the study was limited, the observed oyster condition, infection rate, and reproductive state were within expected ranges for oysters sampled at the salinities recorded, but not exposed to oil. Both oyster studies caution, however, that sample sizes were small and the findings of the study should not be extrapolated to all oysters in the GOM.

An investigation of the impacts of acute exposure to crude oil and dispersed oil on larval and juvenile spotted seatrout (*Cynoscion nebulosus*) found that short-term growth was reduced during exposure (Brewton et al., 2013). A second study investigating the effects of oil on embryonic and larval pelagic fishes (Incardona et al., 2014) documented results consistent with earlier research and supports conclusions reached by previous BOEM analyses. Researchers observed that PAHs accumulate more rapidly in smaller eggs due to an increased surface-to-volume ratio, resulting in lower threshold concentrations required to induce adverse effects. Related research, also consistent with earlier research and juvenile and further supporting conclusions reached by previous BOEM analyses, exposed embryonic and juvenile

dolphinfish (*Corphaena hippurus*) to crude oil WAF treatments for 48 hours and 24 hours, respectively (Mager et al., 2014). Embryos grown out to a juvenile stage demonstrated a 37 percent reduction in mean critical swimming speed. By comparison, juveniles that were assessed immediately following a 24-hour exposure to a WAF 30 times more concentrated than was used to treat embryos, experienced a 22 percent reduction in mean critical swimming speed (Mager et al., 2014). These findings support earlier research and suggest that sensitivity to acute oil exposure decreases with increasing developmental stage (Mager et al., 2014).

These studies serve to expand our understanding of the potential impacts an oil spill may have on valuable marine species and reaffirm conclusions reached in previous analyses. Therefore, the findings summarized above are relevant to this analysis, but not essential to a reasoned choice among alternatives. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated information provided in the WPA 233/CPA 231 Supplemental EIS analyses still apply for proposed CPA Lease Sales 235, 241 and 247.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.19 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information for impacts related to the following: explosive structure removal; seismic surveys; acute oil exposure; and chronic oil exposure. Fish mortality resulting from explosive structure removal has not been fully studied across a wide range of water depths and environmental conditions. However, as stated in the summary above, existing information (e.g., Gitschlag et al., 2000) is utilized and appropriate for the purpose of analyzing the potential impacts of anticipated decommissioning activities. Specific responses by fishes to seismic survey activities cannot be predicted and are unknowable due to the many possible interactions among variables (e.g., species, environmental conditions, exposure history and duration, spawning status, presence of prey or predators, etc.) that could influence the response to sound. However, available information (Popper and Hastings, 2009; Fewtrell and McCauley, 2012; Lokkeborg et al., 2012) is sufficient, within the context of historical landings and with knowledge of anticipated survey frequency and distribution, to extrapolate an overall expectation of negligible impact to commercial fisheries. Information on the potential for juvenile survival to be impacted by acute exposure to oil remains incomplete (Brewton et al., 2013; Anderson et al., 2014); however, recent studies suggest that fishes recruited near the time of the Deepwater Horizon explosion, oil spill, and response may not have suffered catastrophic losses (Fodrie and Heck, 2011; Atlantic Bluefin Tuna Status Review Team, 2011; Rooker et al., 2013). As such, it is reasonable to extrapolate that short-term effects of the oil spill did not severely impact recruitment. In the long term, the effects of acute or chronic exposures to oil remain unknown. This information cannot reasonably be obtained because the long-term effects may not yet be detectable and the overall costs in time and money to determine this are exorbitant. BOEM recognizes that the incomplete information with respect to long-term effects may be relevant to the evaluation of impacts on commercial fisheries.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here, e.g.., studies investigating evidence of oil, impacts stemming from exposure to oil in oysters, and NMFS's stock assessments and reports. None of these sources reveal reasonably foreseeable significant adverse impacts. For example, studies of oysters from areas known or suspected to have been exposed to oil have not found evidence of significant adverse impacts, and the organizations responsible for fisheries management have not reported stock or harvest fluctuations outside the range of historical variation for commercially important species such as brown shrimp and Gulf menhaden. Although the body of available information is incomplete and long-term effects cannot yet be known, the evidence currently available supports past analyses and does not indicate severe adverse impacts to commercial fisheries. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

The activities associated with a CPA proposed action would cause short-term, localized disturbances to fishes in the vicinity (e.g., acoustic surveys and resuspension of sediments) or highly localized fish mortality (e.g., explosive severance activities). However, these impacts do not extend to population-level

effects due to the limited spatial and temporal nature of routine activities. Although structure emplacement represents a long-term, space-use conflict, the area excluded is insignificant in comparison with the area available for some commercial fishers. Furthermore, historical landings data do not support an argument for regional negative impacts to commercial fisheries through either stock reduction or access limitations. While accidental disturbances have the potential to result in broader impacts to commercial fisheries through closures or juvenile mortality, these are very low-probability events.

In conclusion, impacts to commercial fisheries due to routine activities or accidental events resulting from a CPA proposed action are expected to be minimal. No new information was discovered that would alter the conclusion for commercial fisheries presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Activities resulting from the OCS oil- and gas-related and non-OCS oil- and gas-related events have the potential to cause limited detrimental effects to commercial fishing, landings, and the value of those landings. The impact-producing factors of the cumulative scenario are the installation of production platforms and underwater OCS obstructions, production platform removals, seismic surveys and operational noise, petroleum spills, subsurface blowouts, pipeline trenching, offshore discharges of drilling mud and produced waters, commercial and recreational fishing techniques or practices (overfishing), wetland loss, hurricanes, and other phenomena.

The installation of each production platform excludes a small area from the resources available for most commercial fishing. However, even the cumulative impact of these exclusions is small in comparison to the total area available for commercial fishing in the CPA. Concerns that the areal comparison insufficiently considers geological formations and other features that constitute "high-quality" fishing grounds are not justified since the stipulations and regulations currently in place protect these habitats from being impacted by OCS oil- and gas-related activities. Furthermore, the addition of OCS structures potentially enhances production for some commercially valuable species (Stone et al., 1979; Carr and Hixon, 1997; Gallaway et al., 2009; Shipp and Bortone, 2009). It is expected that these benefits, over the 40-year analysis period, will outweigh the localized disturbances and fish mortality resulting from exploration, installation, and decommissioning activities. Because the impacts from platform removals are so localized, the cumulative impact of these activities to commercial fisheries is anticipated to be minor. The effects of seismic surveys have been determined to be limited in time and space. The effects of seismic surveys are, therefore, expected to be minimal overall.

Subsurface blowouts, such as the *Deepwater Horizon* explosion that include both oil and natural gas, have the potential to affect fish populations, particularly eggs and larvae. The potential impacts are discussed in **Appendix B**. Because spills of this magnitude are low-probability events, their contribution to the cumulative impact on commercial fisheries populations is not expected to be large as a result of a CPA proposed action.

Significant contributions to cumulative impacts from OCS oil- and gas-related and non-OCS oil- and gas-related activities are not anticipated as a result of pipeline trenching because sandy sediments are quickly redeposited within 400 m (1,312 ft) of a trench and because finer sediments are widely dispersed and redeposited over a period of hours to days within a few thousand meters of the event. These are small areas as compared with the rest of the Gulf of Mexico, and they are temporary disturbances.

Offshore discharges of drilling mud have been shown to dilute to near background levels within 1,000 m (3,281 ft) of the discharge point. The mercury in sediments near drilling platforms is not in a bioavailable form. For these reasons stated here and in the section above, the contribution of drilling discharge and produced-water discharge to the cumulative impacts of a CPA proposed action is not anticipated to be significant.

Overfishing (including bycatch) has contributed to the decline of some populations of commercial fish species in the Gulf of Mexico. It is the responsibility of the regional fisheries management councils and NMFS to propose, implement, and enforce guidelines for protecting marine resources and habitat from fishing- and nonfishing-related activities.

Overall, of the many anthropogenic and natural factors impacting fish resources in the Gulf of Mexico, those stemming directly from OCS oil- and gas-related activities are federally regulated or mitigated, and are small. Commercial fish and shellfish populations have remained relatively healthy in the Gulf of Mexico in spite of ongoing anthropogenic and natural disturbances. Compared with non-OCS oil- and gas-related activities, the incremental effect of a CPA proposed action is not expected to be significant.

4.1.1.20. Recreational Fishing

BOEM has reexamined the analysis for recreational fishing presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for recreational fishing presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analyses and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of recreational fishing and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.20 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.20 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since the publication of these documents is presented below.

Impacts of Routine and Accidental Events

A detailed analysis of the routine impacts of proposed CPA Lease Sales 235, 241, and 247 on recreational fishing can be found in Chapter 4.2.1.20 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.20 of the WPA 233/CPA 231 Supplemental EIS.

Activities during the initial phases of a CPA proposed action, such as seismic surveying operations and other forms of vessel traffic, may lead to some space-use conflicts with recreational fishermen. Vessel traffic during subsequent infrastructure emplacement, structure installation, and production operations could also lead to some space-use conflicts with recreational fishing activities. The OCS oiland gas-related activities could also affect the aesthetics of fishing in a particular location, which could dissuade anglers from fishing in specific locations. Proposed CPA Lease Sales 235, 241, and 247 may also lead to low-level environmental degradation of fish habitat (**Chapter 4.1.1.18**), which would negatively impact recreational fishing activity. However, these minor negative effects would likely be outweighed by the beneficial addition of hard substrate and complex habitat provided by oil and gas infrastructure. The level of participation in any particular State Rigs-to-Reefs program will be an important determinant of the long-term impact of a CPA proposed action on recreational fishing activity. As structures are scheduled for decommissioning, a higher level of participation may benefit fishermen through the retention of complex habitat and potentially enhanced production for some recreationally desirable species, as opposed to structure removals (particularly those that use explosives) that can negatively impact the recreational activity that depends on any particular platform.

A detailed analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on recreational fishing can be found in Chapter 4.2.1.20 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.20 of the WPA 233/CPA 231 Supplemental EIS.

Oil spills can arise from accidents with respect to vessels, pipelines, drilling operations, or production operations. An oil spill would likely lead to recreational fishing closures in the vicinity of the oil spill. Small-scale spills should not affect recreational fishing to a large degree due to the likely availability of substitute fishing sites in neighboring regions. The longer-term effects of an oil spill will be determined by its effects on fish populations (**Chapter 4.1.1.18**), as well as by its effects on people and firms that support recreational fishing activity. The impacts of low-probability catastrophic oil spills are described in **Appendix B**.

Cumulative Impacts

Background/Introduction

The cumulative impacts to recreational fishing activity will arise from a CPA proposed action, the existing OCS Program, and the expected progression of the recreational fishing industry in the Gulf of Mexico. These impacts would arise from the cumulative effects on fish resources in the Gulf of Mexico, which are discussed in **Chapter 4.1.1.18**. Because many of the recreationally sought fishes are also harvested commercially, a number of the cumulative impacts to the recreational fishing industry are

4-167

similar to those of the commercial fishing industry (**Chapter 4.1.1.19**). This is true even though recreational fishing is primarily confined to smaller, closer inshore areas of the Gulf of Mexico than commercial fishing. The cumulative impacts unique to recreational fishing activity are discussed below.

OCS Oil- and Gas-Related Impacts

Routine OCS Processes

The impacts of production platforms, underwater obstructions, seismic surveys, pipeline trenching, and discharges of drilling mud and produced waters on commercial fishing activity are discussed in **Chapter 4.1.1.19**. The impacts of these factors will be similar for recreational fishing activity to a large extent. In particular, these routine processes can cause space-use conflicts and can impact the habitats of certain fish species. The main difference is that recreational fishing activity generally occurs closer to shore than commercial fishing; therefore, these impacts will occur for recreational fishing activity mainly if these activities occur close to shore. Recreational fishing activity could also be negatively impacted if the aforementioned activities temporarily negatively affect the aesthetics of fishing in nearby areas. For example, the visual impacts or the noise impacts from OCS oil- and gas-related activities and structures could dissuade anglers from fishing in a certain location. However, in most instances, there would likely be a number of suitable substitute recreational fishing sites if any temporary disruptions arose due to OCS oil- and gas-related activities.

Oil Spills

A CPA proposed action would contribute to the risk of an oil spill arising from the broader OCS Program. An oil spill would likely lead to recreational fishing closures in the vicinity of the oil spill. Small-scale spills should not affect recreational fishing to a large degree due to the likely availability of substitute fishing sites in neighboring regions. The longer-term effects of an oil spill will be determined by its effects on fish populations (**Chapter 4.1.1.18**). The impacts of a low-probability catastrophic oil spill are discussed in **Appendix B**.

Artificial Reef Development and Structure Removals

Proposed CPA Lease Sales 235, 241, and 247 are expected to result in oil and gas development, and the semipermanent addition of artificial substrate in the form of platforms and supporting infrastructure. These structures incidentally serve as artificial reefs for the duration of their life cycle, providing habitat for some epifauna and associated fish communities. The extent to which a platform will support recreational fishing activity is dependent on fish species in the area and accessibility to recreational fishermen.

Since oil/gas platforms are hypothesized to attract and/or support a large fish population, the effects of OCS oil- and gas-related actions become particularly important during the decommissioning stage of an oil platform's life cycle. Namely, the removal of a platform from a particular site has the potential to damage the fish assemblages associated with that structure. This in turn will also affect recreational fishing activity in a particular area. Gitschlag et al. (2000) conducted an analysis of the impacts to fish populations from the use of explosives to remove decommissioned oil platforms. They found that species such as red snapper and sheepshead are particularly vulnerable to the use of explosives; however, they also reported that the scale of these impacts relative to the stock of these species were relatively small at the sites that were included in the study.

As an alternative to removing an oil platform, the owner of an oil platform has the option to apply for participation in the Rigs-to-Reefs program of the appropriate state. These programs allow for portions of oil platforms to remain in the water as reefs after the productive life of a platform has ended. Platforms that are a part of these programs are either toppled in place or are moved to a location that is a suitable fish habitat. The U.S. policy towards artificial reef creation is outlined in the *National Artificial Reef Plan: Guidelines for Siting, Construction, Development, and Assessment of Artificial Reefs* (USDOC, NOAA, 2007). The BSEE policy regarding Rigs-to-Reefs programs is outlined in *Rigs-to-Reefs Policy, Progress, and Perspective* (Dauterive, 2000) and was updated in *Rigs to Reefs Policy Addendum: Enhanced Reviewing and Approval Guidelines in Response to the Post-Hurricane Katrina Regulatory Environment* (USDOI, MMS, 2009c) in light of Hurricane Katrina. Hiett and Milon (2002) present

estimates of the scale of recreational fishing activity near oil and gas structures. This study found that 20 percent of private boat fishing, 32 percent of charter boat fishing, 51 percent of party boat fishing, and 94 percent of diving activities in Texas, Louisiana, Mississippi, and Alabama occur near oil and gas structures.

Deepwater Horizon Explosion, Oil Spill, and Response

The *Deepwater Horizon* explosion, oil spill, and response may make recreational fishing activity in the GOM more sensitive to additional oil spills that may occur. This is because the fish populations in the Gulf of Mexico are still responding to the spill, the ultimate outcome of which is not yet clear (**Chapter 4.1.1.18**). The particular sensitivity of recreational fishing to the *Deepwater Horizon* explosion, oil spill, and response is also due to the complex manner in which recreational fishing activity and tourism interact. Namely, recreational fishing activity is one of a number of factors that draw tourists to a particular region. The high level of national attention focused on the *Deepwater Horizon* explosion, oil spill, and response suggests that future oil spills, even if smaller in scale, could raise greater concerns regarding recreational fishing in affected areas among tourists. While this effect may be offset by additional fishing by others, any decrease in fishing-based tourism could have broader impacts to a local economy.

Non-OCS Oil- and Gas-Related Impacts

State and Federal Fisheries Management Plans

State and Federal Fisheries Management Plans determine the manner in which recreational fishing activities can occur in any particular area. Recreational fishing activity is highly regulated, primarily to ensure a sustainable fisheries population through time. This often takes the form of catch limits per trip and quotas for overall catch per species during a given season. Recreational fishing activity in Federal waters is governed by the Gulf of Mexico Fishery Management Council (GMFMC). Each State has its own guidelines for recreational fishing in State waters. Fisheries Management Plans could serve to mitigate the effects of an oil spill since these plans are often designed to maintain stable fishing activity. For example, the GMFMC allowed for a supplemental red snapper season in October 2010 since red snapper catch was unusually low during the *Deepwater Horizon* explosion, oil spill, and response (GMFMC, 2010). This supplemental red snapper season was designed to allow the 2010 quota for red snapper catch to be reached.

Hurricanes

The impacts of a CPA proposed action on recreational fishing should be viewed in light of the ongoing risk of hurricanes in the Gulf of Mexico. Hurricanes cause short-term disruptions to recreational fishing activity in the immediate geographic area. Recreational fishing activity is also vulnerable to the disruptions in overall tourism activity that would arise in light of a hurricane. Finally, hurricanes can degrade the wetland areas that play important roles in fish ecosystems (**Chapter 4.1.1.4**).

Economic Factors

The level of recreational fishing activity is dependent on various economic factors. Recreational fishing activity will likely positively correlate to overall economic conditions. This is both due to the costs of recreational fishing activity and to the tendency of consumers to direct lower levels of spending towards leisure activities during a recession. Recreational fishing activity should also correlate with broader tourism trends in particular areas. In addition, recreational fishing activity will likely correlate with trends in input costs, particularly fuel prices. Finally, recreational fishing activity is fairly seasonal, often peaking during summer months. The NMFS provides angler effort data in 2-month increments. In 2012, the percentage of overall angler effort that occurred in each 2-month period in Louisiana, Mississippi, Alabama, and West Florida combined were as follows: January/February (13.0%); March/April (16.4%); May/June (22.0%); July/August (21.6%); September/October (15.4%); and November/December (11.7%).

State Oil and Gas Activities

State oil and gas activities will impact recreational fishing in the GOM. The space-use conflicts and the impacts of accidental events are similar to the impacts that will arise from the OCS Program. However, since recreational fishing activity usually occurs fairly close to shore, State activities that occur in popular fishing areas will have more noticeable impacts. For example, the impacts of artificial reefs and structure removals discussed above have the potential to have more noticeable effects in State waters.

Space-Use Conflicts

There are a variety of activities that could create space-use conflicts with recreational fishermen. Some of these activities include military vessel traffic, recreational vessel traffic, and commercial fishing activities. The extent of these conflicts would depend on their proximity to recreational fishing areas, which are often fairly close to shore.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

BOEM examined a variety of Internet sources, as well as known data providers, for new information regarding the impacts of a CPA proposed action on recreational fishing. Some new information sources related to fish populations and to commercial fishing activity are discussed in Chapters 4.1.1.18 and The primary new data source specific to recreational fishing is an annual update to data **4.1.1.19**. provided by NMFS (USDOC, NMFS, 2014e and 2014f), which provides updated information regarding the affected environment for recreational fishing. This data source provides data on both the species caught and the amount of angler effort in any particular year. Table 4-3 presents data on the number of angler trips taken in Louisiana, Mississippi, Alabama, and West Florida from 2008 to 2013. In these states combined, there were 24.8 million angler trips in 2008, 22.6 million angler trips in 2009, 21.0 million angler trips in 2010, 22.6 million angler trips in 2011, 23.2 million angler trips in 2012, and 25.2 million angler trips in 2013. In 2013, there were 15.9 million angler trips in West Florida, 4.6 million angler trips in Louisiana, 2.9 million angler trips in Alabama, and 1.8 million angler trips in Mississippi. Compared with 2012 effort levels, angler effort increased in Alabama, Louisiana, and West Florida while angler effort decreased in Mississippi. **Table 4-3** also breaks down these trips by location and mode. The three geographic locations for each state are inland, State ocean waters, and Federal ocean waters. The three modes of fishing are shore fishing, charter fishing, and private/rental fishing. For the Gulf as a whole, all forms of ocean-based fishing in State and Federal waters were higher in 2013 than in 2012. Shore inland and private/rental inland fishing decreased in 2013 compared with 2012, while charter inland fishing increased.

Panel A of **Table 4-4** presents data on the most commonly landed species by recreational fishermen in Louisiana, Mississippi, and Alabama combined from 2008 to 2013. Panel B of **Table 4-4** presents data on the most commonly landed species by recreational fishermen in West Florida from 2008 to 2013. In both regions, landings in 2013 for most species were roughly consistent with landings observed in prior years. However, in both regions, there were fairly large increases in landings of black drum, dolphins, red snapper, and Spanish mackerel. There were decreases in landings of sand seatrout in both regions.

The NMFS has also released its *Fisheries Economics of the U.S.*—2012 report (USDOC, NMFS, 2014g). This report presents various data regarding the economic significance of recreational fishing in the Gulf of Mexico, which enhances BOEM's understanding of the affected environment for recreational fishing. **Table 4-5** presents data from this report on expenditures, sales, value added, and employment in each Gulf Coast State. Recreational fishing activity supported \$10.37 billion in expenditures, \$13.66 billion in sales, \$7.87 billion in value added, and 115,334 jobs in the Gulf of Mexico in 2012. The largest economic impacts from recreational fishing occurred in West Florida. Louisiana and Texas had the next largest impacts, followed by Alabama and Mississippi.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.20 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information related to recreational fishing. This incomplete information may be relevant to

evaluating adverse effects because the full extents of potential impacts on recreational species are not known. This information relates to the ultimate impacts of the *Deepwater Horizon* explosion, oil spill, and response on fish populations that support recreational fishing activity. This information is relevant because it would allow BOEM to more accurately estimate the scales of recreational fishing activity in future time periods. Much of this information is being developed through NRDA, and this information has not yet been released. There is also uncertainty regarding the extent to which recreational fishing is dependent upon OCS oil and gas platforms. BOEM is planning to undertake a study project to examine this issue, although the results from this study project will not be released within the timeline contemplated in the NEPA analysis of this Supplemental EIS.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, BOEM has used data on recreational fishing activity provided by NMFS, which allowed BOEM to examine trends in recreational fishing over time. BOEM does not expect the missing information to significantly change its estimates of the impacts of the OCS Program on recreational fishing activity because BOEM still has enough baseline data to reasonably estimate impacts. Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for recreational fishing presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for recreational fishing presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because the new information was consistent with prior expectations. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A CPA proposed action and the broader OCS Program have varied effects on recreational fishing activity. The OCS Program has generally enhanced recreational fishing opportunities due to the role of oil platforms as artificial reefs. This effect depends importantly on the extent to which rigs are removed at decommissioning or are maintained through Rigs-to-Reefs programs. However, oil spills can have important negative consequences on recreational fishing activity due to the resultant fishing closures and longer-term effects oil spills can have on fish populations. These are discrete and rare events, however, and recreational fishing activity is largely driven by broader economic and tourism trends. Recreational fishing activity is also influenced by a number of non-OCS oil- and gas-related activities, particularly those that could impact fishing grounds such as wetlands areas. In addition, it is likely that Fisheries Management Plans of the Federal and State governments would serve to keep overall recreational fishing activity reasonably stable through time. The incremental contribution of a CPA proposed action to these positive and negative cumulative effects would be minimal.

4.1.1.21. Recreational Resources

BOEM has reexamined the analysis for recreational resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for recreational resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of recreational resources and the full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in the Chapter 4.2.1.21 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.21 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since the publication of these documents is presented below.

Impacts of Routine and Accidental Events

Routine OCS oil- and gas-related activities in the CPA can cause various disturbances to recreational resources. For example, marine debris can noticeably affect the aesthetic value of coastal areas, particularly beaches. Vessel noise and the visibility of OCS infrastructure can also conflict with some recreational activities. Similarly, vessel traffic can cause space-use conflicts with recreational activities. The OCS oil- and gas-related activities can also change the composition of local economies through changes in employment, land use, and demand for activities related to recreation and tourism. The presence of OCS oil and gas platforms can enhance some recreational activities such as fishing and diving, although the long-term impacts of platforms depend on the nature of the decommissioning of the platform. However, the small scale of a CPA proposed action relative to the scale of the existing oil and gas industry suggests that these potential impacts on recreational resources are likely to be minimal.

A detailed analysis of the routine impacts of a CPA proposed action on recreational resources can be found in Chapter 4.2.1.21.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.21 of the WPA 233/CPA 231 Supplemental EIS.

Accidental spills most likely to result from a CPA proposed action will be small, of short duration, and not likely to impact Gulf Coast recreational resources. Should an oil spill occur and contact a beach area or other recreational resource, it will cause some disruption during the impact and cleanup phases of the spill. Beaches, nature parks, and wetland areas could be impacted during these phases of a spill. These disruptions could also have impacts on firms and consumers that depend on the use of these resources. Media coverage and public perception regarding the extent of the oil damage can also influence the ultimate economic impacts of the spill. The economic impacts of a spill would be mitigated to some extent if a legal damage claims process were to be implemented subsequent to an oil spill. However, all of these effects would likely be small in scale and of short duration.

A detailed analysis of the accidental impacts of a CPA proposed action on recreational resources can be found in Chapter 4.2.1.21.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.21 of the WPA 233/CPA 231 Supplemental EIS.

Cumulative Impacts

Background/Introduction

The cumulative impacts to recreational resources would occur due to a CPA proposed action, the existing OCS Program, and various non-OCS events and actions. A CPA proposed action would contribute to a number of aesthetic, space-use, oil-spill, and infrastructure emplacement and removal impacts arising from existing and future oil and gas programs. Recreational resources along the Gulf Coast can also be impacted by non-OCS aesthetic and space-use conflicts, as well as a variety of other factors, such as coastal erosion, beach disruptions, impacts from military operations, and economic factors.

OCS Oil- and Gas-Related Impacts

Aesthetic Impacts

A CPA proposed action would contribute to effects of the overall OCS Program. For example, the 94,000-168,000 service-vessel trips and 696,000-1,815,000 helicopter operations that are projected to arise from a CPA proposed action would contribute to the 3,310,000-4,382,000 service-vessel trips and 28,710,000-55,605,000 helicopter operations that are projected to arise from the entire OCS Program from 2012 to 2051. These activities would have some aesthetic impacts on recreational resources. For example, the OCS Program contributes to the marine debris problems along the Gulf Coast. The BSEE guidance regarding marine debris prevention is outlined in NTL 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination." This NTL instructs OCS operators to post informational placards that outline the legal consequences and potential ecological harms of discharging marine debris. This NTL also states that OCS workers should complete annual marine debris prevention training; operators are also instructed to develop a certification process for the completion of this training by their workers. These various laws and regulations will likely minimize the potential damage to recreational resources from the discharge of marine debris from non-OCS oil- and gas-related operations.

There are also potential negative impacts on beach tourism from vessel noise and from the visibility of OCS infrastructure. While the potential effects of noise on tourism are difficult to quantify, several characteristics of the OCS oil and gas industry serve to minimize these effects. First, most OCS oil- and gas-related vessel traffic moves between onshore support bases and production areas far offshore. Support bases are located in industrial ports, which are usually distant from recreational use areas. Second, OCS vessel use of approved travel lanes should keep noise fairly transitory and thus unlikely to noticeably impact tourism. The extent to which the visibility of an OCS platform would affect tourism would depend on the size and distance from shore of a particular platform.

Space-Use Conflicts

A CPA proposed action would also contribute to space-use conflicts between recreational activities and the broader OCS Program. Space-use conflicts could arise particularly near Port Fourchon (Lafourche Parish, Louisiana) due to the high concentration of the OCS oil and gas industry in this area. The vessel traffic near OCS facilities could cause space-use conflicts with boating and recreational fishing activities. However, even if a space-use conflict was to arise in a particular instance, it is likely that a number of substitute recreational sites would be available. In addition, given the entrenched nature of the OCS oil and gas industry along the Gulf Coast, it is unlikely that any particular OCS oil- and gas-related action would significantly add to space-use conflicts in this area.

Oil Spills

A CPA proposed action would contribute incrementally to the likelihood of an oil spill caused by the broader OCS Program. Accidental spills most likely will be small, of short duration, and not likely to impact Gulf Coast recreational resources. Should an oil spill occur and contact a beach area or other recreational resource, it will cause some disruption during the impact and cleanup phases of the spill. However, these effects are also likely to be small in scale and of short duration. An OCS oil- and gas-related activity could also contribute to the possibility of a low-probability catastrophic oil spill, which is not reasonably foreseeable and not part of a CPA proposed action; the impacts of a catastrophic oil spill on recreational resources are discussed in **Appendix B**.

Infrastructure Emplacement and Removal

Routine OCS oil- and gas-related actions can contribute to coastal erosion through activities such as channel dredging and pipeline emplacements. A more detailed discussion of the cumulative impacts of OCS oil- and gas-related actions on coastal beaches and dunes is presented in **Chapter 4.1.1.3**. Further information on the cumulative impacts of OCS oil- and gas-related activities on wetlands resources can be found in **Chapter 4.1.1.4**. These effects could cause impacts to recreational activities, such as fishing and wildlife viewing, which depend on beaches and wetland areas. However, platform emplacements can encourage some recreational activities, such as diving. However, decommissioning of these structures can have negative impacts on recreational diving if a particular platform were a popular diving site.

Non-OCS Oil- and Gas-Related Impacts

Aesthetic Impacts

Marine debris can noticeably affect the aesthetic value of coastal areas, particularly beaches. This is particularly true given the high levels of marine debris that already exist in some areas. Non-OCS oiland gas-related marine debris can originate from State oil and gas activities, sewage treatment plants, recreational and commercial fishing, industrial manufacturing, cruise ships, and various forms of vessel traffic. Adler et al. (2009) present a broad overview of the nature of the marine debris; a broad summary of the issues involved and the policy structure with respect to marine debris can be found in the report of the Interagency Marine Debris Coordinating Committee (USDOC, NOAA, 2008). There is also a national monitoring program in place to track the progression of the marine debris problem in various locations. Ocean Conservancy (2007) describes the structure of the National Marine Debris Monitoring Program, as well as the methods used to measure marine debris on various coastlines. McIlgorm et al. (2009) present

4-173

an economic analysis of the costs of marine debris and of programs designed to minimize debris. This study explains that marine debris has a particular impact on fishing activity, the shipping industry, tourism activity, and on activities related to marine ecosystems. The discharge of marine debris is subject to a number of laws and treaties. These include the Marine Debris Research, Prevention, and Reduction Act; the Marine Plastic Pollution Research and Control Act; and the MARPOL Annex V Treaty. Regulation and enforcement of these laws is conducted by a number of agencies such as the U.S. Environmental Protection Agency, NOAA, and the U.S. Coast Guard.

Space-Use Conflicts

State oil and gas activities would contribute to the space-use and aesthetic conflicts experienced by the Gulf Coast. For example, State oil and gas platforms are closer to shore than OCS platforms and thus would be more likely to impact the viewshed from certain areas. State oil and gas helicopter and vessel traffic could would also have visual and noise impacts, which would have impacts on recreational experiences if those activities occur near popular recreation and tourism locations.

Beach/Wetland Erosion

The OCS Program occurs in an environment in which beach and wetland resources are undergoing depletion due to human development, hurricanes, and natural processes. An overview of issues related to coastal erosion can be found in *Evaluation of Erosion Hazards* (The Heinz Center, 2000). This study characterizes the changes in the shorelines along the United States (including the Gulf Coast), describes the National Flood Insurance Program, describes current approaches to erosion management, describes the economic impacts of erosion, and discusses various policy options. The ongoing risk of hurricanes is a particular coastal erosion threat in the Gulf of Mexico; coastal erosion also lessens protection against future hurricanes. More information regarding these issues can be found in **Chapters 4.1.1.3, 4.1.1.4, and 4.1.1.23.1**. Coastal erosion trends would have impacts on recreational resources to the extent that parts of these areas are used for recreational activities, such as beach visitation, recreational fishing, and boating.

Beach Disruptions

The recreational value of beaches can be affected by a variety of ocean processes. For example, red tides, which are caused by growth of microscopic algae, can negatively affect the aesthetic value of beaches. Red tides can also cause respiratory problems and skin irritation for beachgoers (Mote Marine Laboratory, 2013). The recreational value of beaches can also be negatively impacted by degradations of air quality and water quality (**Chapters 4.1.1.1 and 4.1.1.2**).

Military Operations

There are areas in the CPA where both OCS oil- and gas-related activities and military operations occur. Military operations in these areas can cause both space-use conflicts and aesthetic impacts to recreational resources. These effects would largely occur to offshore recreational activities such as boating, although aesthetic impacts could occur to onshore resources such as beaches if the military activities occurred close enough to these activities.

Impacts due to Economic Factors

The recreational resources along the Gulf Coast will be subject to various impacts arising from economic development. For example, there may be pressures to develop other industries into existing parks and natural resources. However, development may also encourage the expansion of other recreational resources, such as hotels and restaurants, to accommodate increased tourism and/or local recreation. The projected path of the economies along the Gulf Coast will be influenced by national economic trends. Recreational and tourism activity is positively correlated to the state of the overall economy, primarily because higher levels of disposable income encourage consumers to dedicate more money to travel and leisure activities. More information regarding economic factors can be found in **Chapter 4.1.1.23.3**.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

BOEM conducted a search of Internet sources and of known data providers for new information regarding recreational resources. The Bureau of Labor Statistics has released final data regarding the scale of employment in various industries in Gulf Coast States in 2012 (U.S. Department of Labor, Bureau of Labor Statistics, 2013). **Table 4-6** of this Supplemental EIS presents data on the levels of employment in leisure and hospitality industries in various Economic Impact Areas (EIAs) and coastal areas. Leisure and hospitality employment was higher in 2012 than in any year from 2008 through 2011 in all EIAs and coastal areas. This is likely primarily due to the gradual improvement in overall economic conditions since the most recent economic recession.

Lowe and Stokes (2013) presents a variety of information regarding the scale of wildlife tourism in various Gulf Coast areas. For example, this report finds that over 1,100 wildlife guide businesses support over 11,000 dining and lodging businesses. This report also estimates that wildlife tourism along the Gulf Coast supports over \$19 billion in spending and generates over \$5 billion in Federal, State, and local tax revenues. The three primary forms of wildlife tourism are fishing (which supports \$8 billion in spending), wildlife watching (which supports \$6.5 billion in spending), and hunting (which supports \$5 billion in spending). Wildlife tourism supports the most spending in Florida (\$8 billion) and Texas (\$5 billion); wildlife tourism supports approximately \$2 billion in spending each in Louisiana, Mississippi, and Alabama.

New data regarding the extent of shoreline oiling arising from the *Deepwater Horizon* oil spill has become available (USDOC, NOAA, 2013d). These data show that the majority of the shoreline of Louisiana has been cleaned. However, some areas, particularly areas near Chandeleur Sound and Barataria Bay, still had areas of oiled shoreline (this data was as of October 24, 2013). Finally, Ocean Conservancy (2013) provides data regarding the levels of marine debris found on the coastlines of various states, which relates to the affected environment for recreational resources. The amounts of trash found on the coastlines of the states along the Gulf of Mexico were (the data are presented in terms of pounds of trash): Alabama (173,637); Florida (428,962); Louisiana (7,801); Mississippi (54,680); and Texas (305,560).

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.21 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information related to recreational resources in the CPA. This incomplete information may be relevant to evaluating adverse effects because the full extent of potential impacts on recreational resources is not known. This information relates to quantifying measures of recreation and tourism along the Gulf Coast, as well as information relating to the impacts of the *Deepwater Horizon* oil spill on recreational resources. These information sources assist in assessing the baseline environment for recreational resources. BOEM has funded a study that is attempting to improve its information regarding these issues, although the study is not yet complete.

For example, BOEM used data from the Bureau of Labor Statistics using broader industry categories to estimate the scale of recreation-related activities in recent years. These data provide sufficient baseline information from which to estimate the impacts of the OCS Program, particularly since the available data suggest that most recreational areas have recovered from the impacts of the *Deepwater Horizon* explosion, oil spill, and response. Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for recreational resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for recreational resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because the new information was roughly consistent with prior expectations. The

analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A CPA proposed action would contribute to a number of aesthetic, space-use, oil spill, and infrastructure emplacement and removal impacts arising from existing and future oil and gas programs. Recreational resources along the Gulf Coast can also be impacted by non-OCS oil- and gas-related aesthetic and space-use conflicts, as well as a variety of other factors, such as coastal erosion, beach disruptions, and economic factors. However, the incremental contribution of a CPA proposed action is expected to be minimal in light of all OCS oil- and gas-related and non-OCS oil- and gas-related activities. This is because of the small scale of a CPA proposed action, as well as the fact that most impacts to recreational resources will be temporary.

4.1.1.22. Archaeological Resources

4.1.1.22.1. Historic Archaeological Resources

BOEM has reexamined the analysis for historic archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for historic archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.22.1.2 and 4.2.1.22.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.1 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were prepared is presented below.

A detailed description of historic archaeological resources can be found in Chapter 4.2.1.22.1.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.1 of the WPA 233/CPA 231 Supplemental EIS.

Impacts of Routine and Accidental Events

Routine impact-producing factors associated with a CPA proposed action that could affect historical archaeological resources include direct physical contact with a shipwreck site; the placement of drilling rigs and production systems on the seafloor; pile driving associated with platform emplacement; pipeline placement; dredging of new channels, as well as maintenance dredging of existing channels; anchoring activities; pipeline installation; post-decommissioning trawling clearance; and the masking from geophysical sensors of archaeological resources from industry-related debris. A detailed impact analysis of the routine impacts from OCS oil- and gas-related activities associated with proposed CPA Leases Sale 235, 241, and 247 on historic archaeological resources can be found in Chapter 4.2.1.22.1.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.1 of the WPA 233/CPA 231 Supplemental EIS.

The greatest potential impact to an archaeological resource as a result of a CPA proposed action would result from direct contact between an offshore activity (i.e., platform installation, drilling rig emplacement, and dredging or pipeline project) and a historic site because of incomplete knowledge of the location of these sites in the Gulf. The risk of contact to archaeological resources is greater in instances where archaeological survey data are inadequate or unavailable. Such an event could result in the disturbance or destruction of important archaeological information. Archaeological surveys provide the necessary information to develop avoidance strategies that reduce the potential for impacts on archaeological resources.

Archaeological surveys, where required prior to an operator beginning oil and gas activities on a lease, are expected to be effective at identifying possible archaeological sites. The technical requirements of the archaeological resource reports are detailed in NTL 2005-G07, "Archaeological Resource Surveys and Reports." Under 30 CFR § 550.194(c) lessees are required to immediately notify BOEM's Regional Director of the discovery of any potential archaeological resources. Under 30 CFR § 250.194(c) and

30 CFR § 250.1010(c), lessees are also required to immediately notify BSEE's Regional Director of the discovery of any potential archaeological resources.

Except for the projected 0-1 new gas processing facilities and 0-1 new pipeline landfalls, a CPA proposed action would require no new oil and gas coastal infrastructure. It is expected that archaeological resources would be protected through the review and approval processes of the various Federal, State, and local agencies involved in permitting onshore activities.

Impacts to documented and undocumented historic archaeological resources could occur as a result of an accidental oil spill and the associated cleanup operations. Should a spill contact a historic archaeological site (including submerged sites), damage might include contamination of materials, direct impact from oil-spill cleanup equipment, and/or looting. An additional major effect from an oil spill could be viewshed pollution of a historic coastal site, such as a fort or lighthouse. Although such effects may be temporary and reversible, cleaning oil from historic structures can be a complex, time-consuming, and expensive process, and the use of dispersants may result in long-term chemical contamination of submerged cultural heritage sites (e.g., Chin and Church, 2010). It is expected, however, that any spill cleanup operations would be considered a Federal action for the purposes of Section 106 of the National Historic Preservation Act and would be conducted in such a way as to minimize impacts to historic archaeological resources. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on historic archaeological resources can be found in Chapter 4.2.1.22.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.1 of the WPA 233/CPA 231 Supplemental EIS. Detailed risk analyses of offshore oil spills ranging from <1,000 bbl to $\geq1,000$ bbl and coastal spills associated with a CPA proposed action are provided in Chapters 3.2.1.5, 3.2.1.6, and 3.2.1.7 of this Supplemental EIS and Chapters 3.2.1.5, 3.2.1.6, and 3.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS. When oil is spilled in offshore areas, much of the oil volatilizes or is dispersed by currents, so it has a low probability of contacting coastal areas.

Impacts to documented and undocumented historic archaeological resources could occur as a result of an accidental oil spill and the associated cleanup operations; however, the potential for spills is low, the effects would generally be localized, and the cleanup efforts would be regulated. A CPA proposed action, therefore, is not expected to result in impacts to historic archaeological sites; however, should such impacts occur, unique or significant archaeological information could be lost and this impact could be irreversible.

Cumulative Impacts

Background/Information

Archaeological surveys, where required prior to an operator beginning oil and gas activities on a lease, are assumed to be highly effective in reducing the potential for an interaction between an impactproducing activity and a historic resource. The surveys are expected to be most effective in areas where there is only a thin veneer of unconsolidated Holocene sediments. In these areas, shipwreck remains are more likely to be exposed at the seafloor where they can be detected by sidescan sonar as well as a magnetometer. In areas of thicker unconsolidated sediments, shipwreck remains are more likely to be completely buried, with detection relying solely on magnetometry.

Of the cumulative scenario activities, those that could potentially impact historic archaeological resources include the OCS Program's routine and accidental impacts; OCS sand borrowing; artificial Rigs-to-Reefs development; offshore LNG projects; renewable energy and alternative-use conversions; oil-spill response and cleanup operations; new channel dredging and maintenance dredging; State oil and gas activity, artificial reef development, renewable energy and alternative-use conversions; commercial fishing trawling; sport diving and commercial treasure hunting; and natural processes, including wave action and hurricanes.

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related impact-producing factors that could potentially impact historic archaeological resources include the OCS Program's routine and accidental impacts (refer to Chapters 4.2.1.22.1.2 and 4.2.1.22.1.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.22.1 of the WPA 233/CPA 231 Supplemental EIS for more detail), artificial Rigs-to-Reefs development, and renewable energy and alternative-use conversions.

According to estimates presented in Table 3-3, between 2012 and 2051, an estimated 15,440-22,007 exploration, delineation, development, and production wells would be drilled and 1,435-2,026 production platforms would be installed as a result of the OCS Program. Of this range, between 6,110 and 8,720 exploration, delineation, production, and development wells would be drilled, and 1,210-1,720 production structures would be installed in water depths of 60 m (196 ft) or less. In support of a typical CPA lease sale, an estimated 168-329 exploration and delineation wells and 215-417 development and production wells would be drilled, and 35-67 production platforms would be installed (Table 3-4). Of this range, between 140 and 273 exploration, delineation, production, and development wells would be drilled and 28-54 production structures would be installed in water depths of 60 m (196 ft) or less. All of the lease blocks in this water depth have a high potential for historic shipwrecks. The potential of an interaction between an MODU or platform emplacement and a historic shipwreck is greatly diminished by requisite site surveys, where required, but it still exists in areas where surveys have not been required in the past or have been acquired at insufficient transect spacing. Such an interaction could result in the loss of or damage to significant or unique historic resources. Archaeological surveys provide the necessary information to develop avoidance strategies that reduce the potential for impacts on archaeological resources. Current archaeological survey guidance is provided in NTL 2005-G07 ("Archaeological Resource Surveys and Reports") and NTL 2011-JOINT-G01 ("Revisions to the List of OCS Lease Blocks Requiring Archaeological Resource Surveys and Reports"). and in BOEM's pre-seabed disturbance mitigation for the avoidance of archaeological resources (USDOI, BOEM, 2011).

Table 3-3 indicates that the placement of between 30,428 and 69,749 km (18,907-43,340 mi) of pipelines is projected in the cumulative activity area for 2012-2051. While the required archaeological survey minimizes the chances of impacting a historic shipwreck, there remains a possibility that a wreck could be impacted by pipeline emplacement. Such an interaction could result in the loss of significant or unique historic resources.

The setting of anchors for drilling rigs, platforms, and pipeline lay barges, and anchoring associated with oil and gas service-vessel trips to the OCS have the potential to impact historic wrecks. Archaeological surveys, when required, serve to minimize the chance of impacting historic wrecks; however, these surveys are not infallible and the chance of an impact from future activities does exist. Impacts from anchoring on a historic shipwreck have occurred in the past and may occur again. In 2004 an anchor associated with an exploration well was dragged across the wreck of the World War II-era tanker *Gulfstag*, due in part to inadequate survey coverage of the area. Such an interaction can result in the loss of or damage to significant or unique historic resources and the scientific information they contain.

The OCS sand borrowing is expected to increase in volume during the OCS cumulative activities period. Approximately 76 million yd³ of OCS sand are liable to be accessed for coastal restorations over the next 5-10 years, primarily from Ship Shoal Blocks 88 and 89 and from South Pelto Blocks 12 and 13. For this type of bottom-disturbing activity, a preconstruction archaeological survey is required by BOEM for the borrow site lease. These surveys are expected to be effective at identifying potential cultural resources within the sand borrow area and at establishing proper dredging setback distances for these potential resources. No new disturbance of historic shipwrecks would be expected when these surveys are conducted and the setback distances adhered to.

The Rigs-to-Reefs program, offshore LNG projects, and renewable energy projects and alternativeuse conversions are expected to remain at, respectively, a steady pace of activity, to decrease, and to increase as competing uses of the OCS. A preconstruction archaeological survey is typically required before bottom-disturbing activities are permitted for new artificial reef placement areas, deepwater ports for LNG facilities, and newly built renewable energy facilities. Alternative-use conversions of existing infrastructure likely would not involve new bottom-disturbing activities; for permit applications that do involve new bottom-disturbing activities, a preconstruction survey would be required. No new disturbance of historic shipwrecks would be expected when these surveys are conducted and when proper setback distances of potential resources are adhered to.

Past, present, and future OCS oil and gas exploration and development would result in the deposition of a significant mass of steel debris on the seafloor. The loss or discard of steel debris associated with oil and gas exploration and development, and trawling activities could result in the masking of historic shipwrecks or the identification of false negatives on archaeological surveys (an anomaly that does not appear to be of historical significance, but actually is). Such masking of the signatures characteristic of historic shipwrecks may have resulted or may yet result in OCS oil- and gas-related activities in the cumulative activity area impacting a shipwreck containing significant or unique historic information.

The probabilities of offshore oil spills \geq 1,000 bbl occurring from OCS Program activities is presented in Chapter 3.2.1.5.1 and Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS. Oil spills have the potential to impact submerged or coastal historic sites directly or indirectly by physical impacts caused by oil-spill cleanup operations. Table 3-23 of the 2012-2017 WPA/CPA Multisale EIS presents coastal spills categorized by source. The number and most likely spill sizes to occur in coastal waters in the future are expected to resemble the patterns that have occurred in the past as long as the level of OCS oil- and gasrelated commercial and recreational activities remain the same. Should such oil spills contact a historic site, the effects may be temporary and reversible; however, cleaning oil from historic structures can be a complex, time-consuming, and expensive process, and the use of dispersants may result in long-term chemical contamination of submerged cultural heritage sites (e.g., Chin and Church, 2010). Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B**.

Non-OCS Oil- and Gas-Related Impacts

The non-OCS oil- and gas-related impact-producing factors that could potentially impact historic archaeological resources include State oil and gas activity; offshore LNG projects; new channel dredging and maintenance dredging; State renewable energy and alternative-use conversions; State artificial reefs and Rigs-to Reefs development; commercial fishing, sport diving, and commercial treasure hunting; and natural processes, including wave action and hurricanes.

Most channel dredging occurs at the entrances to bays, harbors, and ports. These areas have a high potential for historic shipwrecks, and the greatest concentrations of historic wrecks are likely associated with these features (Pearson et al., 2003). It is reasonable to assume that significant or unique historic archaeological information has been lost as a result of past channel dredging activity. In many areas, COE requires remote-sensing surveys prior to dredging activities to minimize such impacts. Maintenance dredging takes place in existing, often well-used, and marked seaways and transit corridors. Any historic wrecks within maintenance dredged areas would have been already disturbed or their historical context destroyed. Routine maintenance dredging, as an ongoing activity in heavily trafficked channels, is not likely to result in any new disturbance or disruption to historic wrecks.

Within State waters, oil- and gas-related activities, sand borrow projects, renewable energy projects, artificial reef creation, and alternative-use conversions are not under the jurisdiction of BOEM with respect to the archaeological resource protection requirements of the National Historic Preservation Act (NHPA). Under the NHPA, other Federal agencies, such as COE, which issues permits associated with pipelines and sand borrow projects in State waters, are responsible for taking into consideration the effects of activities permitted by such agencies on archaeological resources. Therefore, the impacts that might occur to archaeological resources by pipeline construction, sand borrowing, renewable energy infrastructure, or alternative-use conversions within State waters should be mitigated under the requirements of the NHPA. Any activities resulting in new bottom disturbances may require a preclearance archaeological survey at the discretion of the State or lead Federal agency.

Past, present, and future oil and gas exploration and development within State waters, renewable energy development, LNG processing facilities, and commercial fishing trawling would also result in the deposition of tons of steel debris on the seafloor. Modern marine debris associated with these activities may mask the magnetic signatures of historic shipwrecks, particularly in areas that were developed prior to requiring archaeological surveys. Such masking of the signatures characteristic of historic shipwrecks may have resulted or may yet result in non-OCS oil- and gas-related activities in the cumulative activity area impacting a shipwreck containing significant or unique historic information.

Commercial fishing trawling activity may also have a direct impact on historic shipwrecks resulting from contact between a wreck and trawl nets. This activity specifically would only affect the uppermost portions of the sediment column (Garrison et al., 1989) in water depths generally <600 ft (183 m). Many wooden-hulled wrecks in these areas may be buried below the expected depth of sediment column impacts or may already be disturbed by natural factors that have minimized the wreck's archaeological context.

Sport diving, which is generally restricted to water depths <130 ft (40 m), and commercial treasure hunting are significant factors in the loss of historic data from wreck sites. Efforts to educate sport divers and to foster the protection of historic shipwrecks, such as those of the Florida Keys National Marine

Sanctuary and the Florida Public Archaeology Network, serve to lessen these potential impacts. While commercial treasure hunters generally impact wrecks with intrinsic monetary value, sport divers may collect souvenirs from all types of wrecks within their diving limits. Since the extent of these activities is unknown, the impact cannot be quantified. A Spanish war vessel, *El Cazador*, was discovered in the CPA; it contained a large amount of silver coins and has been impacted by treasure hunting salvage operations (McLaughlin, 1995). Another vessel, the 19th-century steamship *New York*, was discovered in the WPA in the 1990's. This wreck has also been subjected to extensive impacts related to treasure hunting salvage of coins, shipboard artifacts and personal artifacts (Gearhart et al., 2011). The historic data available from these wrecks and from other wrecks that have been impacted by treasure hunters and sport divers represent a localized significant or unique loss of archaeological information.

Shipwrecks and other historic archaeological sites in shallow waters may be eroded and dispersed by normal coastal wave activity, which is intensified during hurricanes and tropical storms. On average, 15-20 hurricanes make landfall along the northern Gulf Coast per decade. Shipwrecks in shallow waters are exposed to a greatly intensified, longshore current during tropical storms (Clausen and Arnold, 1975). Under such conditions, it is highly likely that artifacts (e.g., ceramics and glass) would be dispersed. Some of the original information contained in the site would be lost in this process, but a significant amount of information would also remain. Overall, a significant loss of data from historic sites has probably occurred, and will continue to occur, in the northwestern Gulf from the effects of tropical storms. Some of the data lost have most likely been significant or unique. Hurricane-induced damage to shipwrecks sunk as artificial reefs have been observed in over 200 ft (61 m) of water (Gearhart et al., 2011).

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources, as well as interviews with Larry Murphy, Historic Properties Specialist Officer for the Section 106 response to the Deepwater Horizon explosion, oil spill, and response, and Dan Odess, DOI Consulting Archaeologist, were conducted to determine the availability of recent information. Various Internet sources were examined to assess recent information regarding impacts to archaeological resources or potential new threats to archaeological resources that may be pertinent to the CPA. These Internet sources included various online indexes to periodical literature, such as EBSCO Online (http://web.ebscohost.com), JSTOR (http://www.jstor.org/), the National Technical Information Service's National Technical Reports Library (https://ntrlr3.ntis.gov), and ScienceDirect (http://www.sciencedirect.com/). A 2011 interim report describes activities to support response activities related to the Deepwater Horizon explosion, oil spill, and response and to evaluate the impact or potential impact of the event and subsequent cleanup operations to previously recorded and unidentified cultural resources. This cultural resources undertaking involves both Federal and State agencies within the States of Louisiana, Mississippi, Alabama, and Florida. The cultural resources investigation for the Deepwater Horizon explosion, oil spill, and response was managed as a component of the SCAT process, and archaeologists have been involved throughout the SCAT process. Cultural resources investigations utilized a combination of pedestrian surveys, shovel testing, auger test sampling, and trench sampling. In addition, archaeological and Tribal monitors have been embedded with all cleanup operations. This report summarizes the findings of the pre-field investigations, field surveys, and cleanup monitoring associated with the response to the Deepwater Horizon explosion and oil spill through March 31, 2011 (HDR, 2011). This new information adds to the body of analyses done by BOEM in this Supplemental EIS and in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS: however, the new information does not alter BOEM's impact conclusions of these resources.

In April 2012, BOEM, working with NOAA's Office of Ocean Exploration and Research from the research vessel *Okeanos Explorer*, investigated a sonar target reported by Shell Oil in over 4,000 ft (1,200 m) of water in an area of the CPA almost 200 mi (320 km) offshore where archaeological survey had previously not been required. The target proved to be the intact remains of an armed sailing ship dating from around 1790 to 1840. The following year in July 2013, BOEM participated in an expedition that identified two additional shipwrecks from the same time period less than 4 mi (6 km) away that also had been reported by Shell Oil as sonar targets. These discoveries highlight situations where site-specific surveys prior to bottom-disturbing activities may mitigate potential impacts, as described in this

Supplemental EIS and in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, and they reinforce BOEM's need to acquire imagery of the seafloor in order to make informed management decisions during its NEPA analyses.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.22.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding historic archaeological resources in the CPA. This information cannot be obtained because the overall costs of obtaining it are exorbitant. This incomplete information may be relevant to adverse effects because the locations and integrity of many historic archaeological resources remain unknown. Nevertheless, this incomplete information is not likely to be available within the timeline contemplated in the NEPA analysis of this Supplemental EIS. It would take several years before data confirming the presence (or lack thereof) of historic archaeological resources, and the status of each, could be investigated, analyzed, and compiled. Historic archaeological sites within the CPA region have the potential to be buried, embedded in, or laying on the seafloor. The CPA covers an area of 66,446,351 ac and ranges in water depths from an estimated 3 to 3,475 m (10 to 11,401 ft). It includes highly variable bathymetric and geophysical regimes, which differentially affect the ease and ability to identify, ground truth, and evaluate historic archaeological sites. This fact, combined with the scope of the acreage within the CPA, results in the aforementioned exorbitant costs and time factors.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing survey data in completing the relevant analysis and formulating the conclusions presented here. In addition, new site-specific, remote-sensing surveys of the seafloor are required when deemed appropriate to establish the presence of potential resources. The results of these surveys are reviewed in tandem with credible scientific evidence from previously identified sites, regional sedimentology, and physical oceanography that is relevant to evaluating the adverse impacts on historic resources that are a part of the human environment. The required surveys are analyzed by archaeologists prior to any new or significant bottom-disturbing impacts being authorized and avoidance of potential resources prescribed. Archaeological surveys, where required, are expected to be highly effective in identifying resources to allow for the protection of the resource during OCS oil- and gas-related activities. A CPA proposed action is not a reasonably foreseeable significant impact because BOEM's evaluation of such impacts is based upon predisturbance and site-specific surveys, the results of which BOEM uses to require substantial avoidance of any potential historic resource that could be impacted by the proposed activity. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for historic archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for historic archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because the only new relevant documentation describes the survey procedures undertaken by Shoreline Cleanup and Assessment Technique (SCAT) teams and a summation of site discoveries. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Several impact-producing factors may threaten historic archaeological resources, all related to bottom-disturbing activities. An impact could result from contact between a historic shipwreck and OCS Program or State oil and gas activities (i.e., pipeline and platform installations, drilling rig emplacement and operation, dredging, anchoring activities, structure removal, and site clearance). Bottom-disturbing activities on the OCS and within State waters also may include maintenance dredging, sand borrowing, transported artificial reef emplacement, liquefied natural gas facility construction, and renewable energy facility construction. With the exception of maintenance dredging, preconstruction surveys may be required by BOEM or the lead Federal permitting agency. Archaeological surveys, where required prior to an operator beginning oil and gas activities on a lease, are assumed to be highly effective in reducing the potential for an interaction between an impact-producing activity and a historic resource. Impacts

resulting from the imperfect knowledge of the location of historic resources, however, may still occur in areas where a high-resolution survey is conducted at insufficient transect spacing or not at all. The loss or discard of steel debris associated with oil and gas exploration and development and trawling activities could result in the masking of historic shipwrecks or the identification of false negatives on archaeological surveys (an anomaly that does not appear to be of historical significance, but actually is).

Non-OCS oil- and gas-related factors that may impact historic shipwrecks include maintenance dredging, commercial fishing trawling, sport-diving and treasure hunting, and hurricanes and tropical storms. It is expected that these elements have impacted and will continue to impact historic period shipwrecks on the shelf where such activities occur, and independent of a CPA lease sale.

Development onshore as a result of a CPA proposed action could result in the direct physical contact between a historic site and pipeline trenching. Such activities are not under the jurisdiction of BOEM with respect to the archaeological resource protection requirements of the NHPA and would instead be the responsibility of other Federal agencies, which issue permits associated with pipelines in State waters. It is assumed that archaeological investigations prior to construction would serve to satisfy the lead agency's NHPA requirements and to mitigate these potential impacts. Therefore, the impacts that might occur to archaeological resources by pipeline construction originating from OCS oil- and gas-related activity within State waters should be mitigated under the requirements of the NHPA, and the same archaeological surveys for planned pipelines that lead into a landfall or a tie-in to a pipeline in State waters are required. Oil spills have the potential to impact coastal historic sites directly or indirectly by physical impacts caused by oil-spill cleanup operations. The number and most likely spill sizes to occur in coastal waters in the future are expected to resemble the patterns that have occurred in the past. Recent research suggests the impact of direct contact of oil on historic properties may be long term and not easily reversible without risking damage to fragile historic materials (Chin and Church, 2010). Damage to or loss of significant or unique historic archaeological information from commercial fisheries (i.e., trawling) is highly likely in water depths <600 ft (183 m) (Foley, 2010).

The effects of the various impact-producing factors discussed in this analysis have likely resulted in the localized loss of significant or unique historic archaeological information. In the case of factors related to OCS Program activities within the cumulative activity area, it is reasonable to assume that most impacts would have occurred where development occurred prior to any archaeological survey requirements. The incremental contribution of a CPA proposed action is expected to be very small due to the efficacy of remote-sensing surveys and archaeological reports, where required. Future OCS Program activities and the bottom-disturbing activities permitted by BOEM and other agencies may require preconstruction archaeological surveys that, when completed, are highly effective in identifying bottom anomalies that could be avoided or investigated before bottom-disturbing activities begin. When surveys are not required, it is impossible to anticipate what might be imbedded in or lying directly on the seafloor, and impacts to these sites are likely to be major in scale. Despite diligence in site-clearance survey reviews, there is still the possibility of an unanticipated interaction between bottom-disturbing activity (i.e., rig emplacement, pipeline trenching, anchoring, and other ancillary activities) and a historic shipwreck.

4.1.1.22.2. Prehistoric Archaeological Resources

BOEM has reexamined the analysis for prehistoric archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for prehistoric archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with the CPA proposed action are presented in Chapters 4.2.1.22.2.2 and 4.2.1.22.2.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.2 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

A detailed description of prehistoric archaeological resources can be found in Chapter 4.2.1.22.2.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information provided in Chapter 4.2.1.22.2 of the WPA 233/CPA 231 Supplemental EIS.

Impacts of Routine and Accidental Events

Offshore development as a result of a CPA proposed action could result in an interaction between a drilling rig, platform, pipeline, dredging activity, or anchors and an inundated prehistoric site. This direct physical contact with a site could destroy fragile artifacts or site features and could disturb artifact provenance and site stratigraphy. The result would be the loss of archaeological data on prehistoric migrations, settlement patterns, subsistence strategies, and archaeological contacts for North America, Central America, South America, and the Caribbean. A detailed impact analysis of the routine impacts of OCS oil- and gas-related activities that may be associated with proposed CPA Lease Sales 235, 241, and 247 on prehistoric archaeological resources can be found in Chapter 4.2.1.22.2.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.2 of the WPA 233/CPA 231 Supplemental EIS.

Prehistoric archaeological sites are thought to be preserved shoreward of the 45-m (148-ft) bathymetric contour, where the Gulf of Mexico continental shelf was exposed during the Late Pleistocene. The greatest potential impact to an archaeological resource as a result of a CPA proposed action would result from direct contact between an offshore activity (i.e., platform installation, drilling rig emplacement, dredging, pipeline emplacement) and a prehistoric site. Archaeological surveys provide the necessary information to develop avoidance strategies that reduce the potential for impacts on archaeological resources.

Archaeological survey and archaeological clearance of sites, where required prior to an operator beginning oil and gas activities on a lease, are expected to be somewhat effective at identifying submerged landforms that could support possible archaeological sites. The NTL 2005-G07 suggests a 300-m (984-ft) line spacing for remote-sensing surveys of leases within areas having a high potential for prehistoric sites. While surveys, where required, provide a reduction in the potential for a damaging interaction between an impact-producing factor and a prehistoric archaeological site, there is a possibility of an OCS oil- and gas-related activity contacting an archaeological site because of an insufficiently dense survey grid. Should such contact occur, there would be damage to or loss of significant and/unique archaeological information.

Impacts to documented and undocumented prehistoric archaeological resources could occur as a result of an accidental oil spill and the associated cleanup operations. Should a spill contact a prehistoric archaeological site, damage might include loss of radiocarbon-dating potential, direct impact from oil-spill cleanup equipment, and/or looting. Previously unrecorded sites could be impacted by oil-spill cleanup operations on beaches. Detailed risk analyses of offshore oil spills ranging from <1,000 bbl to \geq 1,000 bbl and coastal spills that may be associated with a CPA proposed action is provided in **Chapters 3.2.1.5**, **3.2.1.6**, **and 3.2.1.7** of this Supplemental EIS and Chapters 3.2.1.5, 3.2.1.6 and 3.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS. When oil is spilled in offshore areas, much of the oil volatilizes or is dispersed by currents, so it has a low probability of contacting coastal and barrier island prehistoric sites as a result of a CPA proposed action. A CPA proposed action, therefore, is not expected to result in impacts to prehistoric archaeological sites.

Oil spills resulting from a well blowout in the CPA and related spill-response activities have the potential to impact cultural resources near the spill site and landfall areas. A detailed impact analysis of the accidental impacts OCS oil- and gas-related activities that may be associated with proposed CPA Lease Sales 235, 241, and 247 on prehistoric archaeological resources can be found in Chapter 4.2.1.22.2.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.22.2 of the WPA 233/CPA 231 Supplemental EIS.

Cumulative Impacts

Background/Information

Prehistoric archaeological sites are thought potentially to be preserved shoreward of the 45-m (148-ft) bathymetric contour, where the Gulf of Mexico continental shelf was exposed during the Late Pleistocene. Archaeological surveys, where required prior to an operator beginning oil and gas activities

on a lease, are expected to be somewhat effective at identifying submerged landforms that could support possible prehistoric archaeological sites. While surveys provide a reduction in the potential for a damaging interaction between an impact-producing factor and a prehistoric archaeological site, there is still a possibility of an OCS oil- and gas-related activity contacting an archaeological site. Should such impacts occur, there could be damage to or loss of significant and/or unique archaeological information.

Of the cumulative scenario activities, those that could potentially impact prehistoric archaeological resources include the OCS Program's routine and accidental impacts; OCS sand borrowing; artificial Rigs-to-Reef development; renewable energy and alternative-use conversions; oil-spill response and cleanup operations; new channel dredging and maintenance dredging; State oil and gas activity, artificial reef development, renewable energy and alternative-use conversions; commercial fishing trawling; and natural processes, including wave action and hurricanes.

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related impact-producing factors that could potentially impact prehistoric archaeological resources include the OCS Program's routine and accidental impacts (refer to Chapters 4.2.1.22.2.2 and 4.2.1.22.2.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.22.2 of the WPA 233/CPA 231 Supplemental EIS for more detail); renewable energy and alternative-use conversion; and artificial Rigs-to-Reefs development.

According to estimates presented in Table 3-3, between 2012 and 2051, an estimated 15,440-22,007 exploration, delineation, development, and production wells would be drilled, and 1,435-2,026 production platforms would be installed as a result of the OCS Program. Of this range, between 6,110 and 8,720 exploration, delineation, production, and development wells would be drilled and 1,210-1,720 production structures would be installed in water depths of 60 m (196 ft) or less. In support of a typical CPA lease sale, an estimated 168-329 exploration and delineation wells and 215-417 development and production wells would be drilled, and 35-67 production platforms would be installed (Table 3-4). Of this range, between 140 and 273 exploration, delineation, production, and development wells would be drilled, and 28-54 production structures would be installed in water depths of 60 m (196 ft) or less. Relative sea-level curves for the Gulf of Mexico indicate there is no potential for the occurrence of prehistoric archaeological sites in water depths >60 m (196 ft). Archaeological surveys are assumed to be highly effective in reducing the potential for an interaction between an impactproducing activity and a prehistoric resource by providing the necessary information to develop The potential of an interaction between rig or platform emplacement and a avoidance strategies. prehistoric site is diminished by the survey, but it still exists in areas where surveys have not been required in the past or have been acquired at insufficient transect spacing. Such an interaction could result in the loss of or damage to significant or unique prehistoric information. Archaeological surveys provide the necessary information to develop avoidance strategies that reduce the potential for impacts on archaeological resources. Current archaeological survey guidance is provided in NTL 2005-G07 ("Archaeological Resource Surveys and Reports") and NTL 2011-JOINT-G01 ("Revisions to the List of OCS Lease Blocks Requiring Archaeological Resource Surveys and Reports"), and in BOEM's preseabed disturbance mitigation for the avoidance of archaeological resources (USDOI, BOEM, 2011).

Table 3-3 indicates that the placement of between 30,428 and 69,749 km (18,907 and 43,340 mi) of pipelines is projected in the cumulative activity area for 2012-2051. While archaeological surveys minimize the chances of impacting a prehistoric site, there remains a possibility that a site could be impacted by pipeline emplacement. Such an interaction would result in the loss of significant or unique archaeological information.

The setting of anchors for drilling rigs, platforms, and pipeline lay barges, and anchoring associated with oil and gas service-vessel trips to the OCS have the potential to impact shallowly buried prehistoric sites in water depths <60 m (197 ft). Archaeological surveys minimize the chance of impacting these sites; however, these surveys are not seen as infallible, and the chance of an impact from future activities exists. Impacts from anchoring on a prehistoric site may have occurred. Such an interaction could result in the loss of significant or unique archaeological information.

The OCS sand borrowing is expected increase in volume during the OCS cumulative activities period. Approximately 76 million yd³ (58 million m³) of OCS sand are liable to be accessed for coastal restorations over the next 5-10 years, primarily from Ship Shoal Blocks 88 and 89 and from South Pelto Blocks 12 and 13. For these types of bottom-disturbing activities, a preconstruction archaeological

survey is required by BOEM for the borrow site lease. These surveys are expected to be effective at identifying potential cultural resources within the sand borrow area and at establishing proper dredging setback distances for these potential resources. No new disturbance of prehistoric archaeological resources would be expected when these surveys are conducted and the setback distances adhered to.

The Rigs-to-Reefs program, renewable energy projects, and alternative-use conversions are expected to remain at, respectively, a steady pace of activity, to decrease, and to increase as competing uses of the OCS. A preconstruction archaeological survey is typically required before bottom-disturbing activities are permitted for new artificial reef placement areas and newly built renewable energy facilities. Alternative-use conversions of existing infrastructure likely would not involve new bottom-disturbing activities; for permit applications that do involve new bottom-disturbing activities, a preconstruction survey would be required. No new disturbance of prehistoric sites would be expected when these surveys are conducted and when proper setback distances of potential resources are adhered to.

The probabilities of offshore oil spills $\geq 1,000$ bbl occurring from the OCS Program in the cumulative activity area are presented in Chapter 3.2.1.5.1 and Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS. Oil spills have the potential to impact coastal prehistoric sites directly or indirectly by physical impacts caused by oil-spill cleanup operations. Coastal oil-spill scenario numbers are presented in Table 3-23 of the 2012-2017 WPA/CPA Multisale EIS and are categorized by source. The number and most likely spill sizes to occur in coastal waters in the future are expected to resemble the patterns that have occurred in the past, as long as the level of energy-related, commercial, and recreational activities remain the same. There is a small possibility of these spills contacting a prehistoric site. The impacts caused by oil spills to coastal prehistoric archaeological resources can severely distort information relating to the age of the site. Contamination of the organic site materials by hydrocarbons can make radiocarbon dating of the site more difficult or even impossible. This loss might be partially ameliorated by using artifact seriation or other relative dating techniques. Coastal prehistoric sites might also suffer direct impact from oil-spill cleanup operations as well as looting resulting from interactions between persons involved in cleanup operations and unrecorded prehistoric sites. Interaction between oil-spill cleanup equipment or personnel and a site could destroy fragile artifacts or disturb site context, possibly resulting in the loss of information on the prehistory of North America and the Gulf Coast region. Some coastal sites may contain significant or unique information. Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B**.

Non-OCS Oil- and Gas-Related Impacts

The non-OCS oil- and gas-related impact-producing factors that could potentially impact prehistoric archaeological resources include State oil and gas activity, new channel dredging and maintenance dredging, State renewable energy and alternative-use conversions, State artificial reefs and Rigs-to-Reefs development, OCS sand borrowing, offshore LNG projects, commercial fishing, and natural processes, including wave action and hurricanes.

Most channel dredging occurs at the entrances to bays, harbors, and ports. Bay and river margins have a high potential for the occurrence and preservation of prehistoric sites. Prior channel dredging has disturbed buried and/or inundated prehistoric archaeological sites in the coastal plain of the Gulf of Mexico. It is assumed that some of the sites and associated archaeological data were unique or significant. In many areas, regulatory agencies require surveys prior to dredging activities to minimize such impacts. Maintenance dredging takes place in existing, often well-used, and marked seaways and transit corridors. Any prehistoric sites within maintenance dredged areas would have been already disturbed or their historical context destroyed. Routine maintenance dredging, as an ongoing activity in heavily trafficked channels, is not likely to result in any new disturbance or disruption to prehistoric sites.

Within State waters, oil- and gas-related activities, sand borrow projects, renewable energy projects, artificial reef creation, and alternative-use conversions are not under the jurisdiction of BOEM with respect to the archaeological resource protection requirements of the NHPA. Under the NHPA, other Federal agencies, such as COE, which issues permits associated with pipelines and sand borrow projects in State waters, are responsible for taking into consideration the effects of activities permitted by such agencies on archaeological resources. Therefore, the impacts that might occur to prehistoric archaeological resources by pipeline construction, sand borrowing, LNG processing facility construction, State oil and gas infrastructure construction, renewable energy infrastructure construction, or alternative-use conversions within State waters should be mitigated under the requirements of the NHPA. Any

activities resulting in new bottom disturbances may require a pre-clearance archaeological survey at the discretion of the State or lead Federal agency.

Commercial fishing trawling activity may also have an impact on prehistoric archaeological sites in State waters, resulting from contact between a site and trawl nets. This activity specifically would only affect the uppermost portions of the sediment column (Garrison et al., 1989). Most, if not all, of the prehistoric resources in these areas may be buried below the expected depth of sediment column impacts or would otherwise already be disturbed by natural factors that have minimized the resources' archaeological context through wave-based erosion and redeposition.

Submerged prehistoric archaeological sites will be eroded and dispersed by normal coastal wave activity, which is intensified during hurricanes and tropical storms. Over 100 hurricanes have made landfalls along the northern Gulf of Mexico coast from the Florida Panhandle to Texas over the past century (Liu and Fearn, 2000; Keim and Muller, 2009). Prehistoric sites in shallow waters and on coastal beaches are exposed to the destructive effects of wave action and scouring currents. Under such conditions, it is highly likely that artifacts would be dispersed and the site context disturbed. Some of the original information contained in the site would be lost in this process. Overall, loss of data from prehistoric sites has probably occurred, and will continue to occur, in the northeastern Gulf from the effects of tropical storms.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources, as well as interviews with Larry Murphy, Historic Properties Specialist Officer for the Section 106 response to the Deepwater Horizon explosion, oil spill, and response, and Dan Odess, DOI Consulting Archaeologist, were conducted to determine the availability of recent information. Various Internet sources were examined to assess recent information regarding impacts to archaeological resources or potential new threats to archaeological resources that may be pertinent to the CPA. These internet sources included various online indexes to periodical literature such as EBSCO Online (http://web.ebscohost.com), JSTOR (http://www.jstor.org/), the National Technical Information Service's National Technical Reports Library (https://ntrlr3.ntis.gov), and ScienceDirect (http://www.sciencedirect.com/). A 2011 interim report describes activities to support response activities related to the *Deepwater Horizon* explosion, oil spill, and response and to evaluate the impact or potential impact of the event and subsequent cleanup operations to previously recorded and unidentified cultural resources. This cultural resources undertaking involves both Federal and State agencies within the States of Louisiana, Mississippi, Alabama, and Florida. The cultural resources investigation for the Deepwater Horizon explosion, oil spill, and response was managed as a component of the SCAT process, and archaeologists have been involved throughout the SCAT process. Cultural resources investigations utilized a combination of pedestrian surveys, shovel testing, auger test sampling, and trench sampling. In addition, archaeological and Tribal monitors have been embedded with all cleanup operations. This report summarizes the findings of the pre-field investigations, field surveys, and cleanup monitoring associated with the response to the *Deepwater Horizon* explosion and oil spill, up until March 31, 2011 (HDR, 2011). This new information adds to the body of analyses done by BOEM in this Supplemental EIS and in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS; however, the new information does not alter BOEM's impact conclusions of these resources.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.22.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding prehistoric archaeological resources in the CPA. This information cannot be obtained because the overall costs of obtaining it are exorbitant. This incomplete information may be relevant to adverse effects because the locations and integrity of many prehistoric archaeological resources remain unknown. Nevertheless, this incomplete information is not likely to be available within the timeline contemplated in the NEPA analysis of this Supplemental EIS. It would take several years before data confirming the presence of prehistoric archaeological resources in a given location, and the status of each, could be investigated, analyzed, and compiled. Most prehistoric sites within the CPA region are likely deeply

buried, resulting in the largest portion of the aforementioned exorbitant costs and time factors. An extensive study funded by the National Park Service in 1977 in the CPA estimated that prehistoric period sites could be buried on the OCS under as much as 200 m (656 ft) of sediment in western portions of the CPA and 107 m (351 ft) in eastern portions of the CPA (Coastal Environments, Inc., 1977).

BOEM used reasonably accepted scientific methodologies to extrapolate from existing survey data in completing the relevant analysis and formulating the conclusions presented here. In addition, new site-specific, remote-sensing surveys of the seafloor are required when deemed appropriate to establish the presence of potential resources. The results of these surveys are reviewed in tandem with credible scientific evidence from previously identified sites, regional sedimentology, and physical oceanography that is relevant to evaluating the adverse impacts on prehistoric resources that are a part of the human environment. The required surveys are analyzed by archaeologists prior to any new or significant bottom-disturbing impacts being authorized and avoidance of potential resources to allow for the protection of the resource during OCS oil- and gas-related activities. A CPA proposed action is not a reasonably foreseeable significant impact because BOEM's evaluation of such impacts is based upon predisturbance and site-specific survey, the results of which BOEM uses to require substantial avoidance of any potential prehistoric resource that could be impacted by the proposed activity. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for prehistoric archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for prehistoric archaeological resources presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because the only new relevant document describes the survey procedures undertaken by SCAT teams and a summation of site discoveries. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Several impact-producing factors may threaten prehistoric archaeological resources of the Gulf of Mexico. An impact could result from contact between proposed oil and gas activities (including pipeline construction, platform installation, drilling rig emplacement and operation, dredging, and anchoring activities) and an oil spill and subsequent cleanup efforts. Each of these activities or events could damage and destroy a prehistoric archaeological site located on the continental shelf. Archaeological surveys, where required, and the resulting archaeological analyses completed prior to an operator beginning oil and gas activities on a lease are expected to be highly effective at identifying possible prehistoric sites. The OCS development has possibly impacted sites containing significant or unique prehistoric information in areas where surveys have not been required in the past or have been acquired at insufficient transect spacing. It is also possible that, even with current survey methods, prehistoric archaeological sites may be missed. No significant new information was found at this time that would alter the overall conclusion that cumulative impacts on prehistoric archaeological sites associated with a CPA proposed action is expected to be minimal. Should an oil spill occur and contact a coastal prehistoric site, loss of significant or unique information could result. Oil spills have the potential to impact coastal prehistoric sites directly or indirectly by physical impacts caused by oil-spill cleanup operations.

The initial dredging of ports and navigation channels and tropical storms are assumed to have caused the localized loss of significant or unique archaeological information.

Onshore development as a result of the OCS Program could result in the direct physical contact between a prehistoric site and new facility construction and pipeline trenching. It is assumed that archaeological investigations prior to construction would serve to mitigate these potential impacts.

The shallow depth of sediment disturbance caused by commercial fisheries activities (trawling) is not expected to exceed that portion of the sediments that have been disturbed by wave-generated forces.

The effects of the various impact-producing factors discussed in this analysis have likely resulted in localized losses of significant or unique prehistoric archaeological information. In the case of factors related to OCS Program activities in the cumulative activity area, it is reasonable to assume that most impacts have occurred in areas where surveys have not been required in the past or have been acquired at

insufficient transect spacing. The incremental contribution of a CPA proposed action is expected to be very small due to the efficacy of the required remote-sensing survey and concomitant archaeological report and clearance.

4.1.1.23. Human Resources and Land Use

4.1.1.23.1. Land Use and Coastal Infrastructure

BOEM has reexamined the analysis for land use and coastal infrastructure presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for land use and coastal infrastructure presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A detailed description of land use and coastal infrastructure can be found in Chapter 4.2.1.23.1.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS. The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapters 4.2.1.23.1.2 and 4.2.1.23.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

Impacts of Routine and Accidental Events

Many of the impacts of the *Deepwater Horizon* explosion, oil spill, and response to land use and infrastructure have been temporary and short-term, such as the ship decontamination sites and the waste staging areas established in the immediate aftermath of the *Deepwater Horizon* explosion, oil spill, and response (USDOT, Bureau of Transportation Statistics, 2010). These indirect effects on infrastructure had a short-term impact on the industry, and development drilling activity is expected to grow as several projects go online. Gulf of Mexico OCS oil production averaged 1.27 MMbbl of oil per day in 2013, which is unchanged from 2012. The Energy Information Administration forecasts GOM production of 1.38 MMbbl of oil per day in 2014 and 1.59 MMbbl of oil per day in 2015. Production growth in 2014 comes from eight projects expected to come online: Jack; St. Malo; Entrada; Big Foot; Tubular Bells; Atlantis Phase 2; Hadrian South; and Lucius. Further production growth in 2015 comes from an additional 10 projects: Axe: Cardamom Deep: Dalmatian: Deimos South: Kodiak: Pony: Samurai: West Boreas; Winter; and Mars B (USDOE, Energy Information Administration, 2014a). In the future, the long-term impacts of the Deepwater Horizon explosion, oil spill, and response will be clearer as time allows the production of peer-reviewed research and targeted studies that determine those impacts. The Deepwater Horizon explosion (and subsequent oil spill and response) was a low-probability catastrophic event. Many non-OCS oil- and gas-related factors contribute substantially to the baseline conditions for existing land use and coastal infrastructure, including, but not limited to, housing and other residential developments; the development of private and publicly owned recreational facilities; the construction and maintenance of industrial facilities and transportation systems; urbanization; city planning and zoning; changes to public facilities such as water, sewer, educational, and health facilities; changes to military bases and reserves; changes in population density; changes in State and Federal land use regulations; and changes in non-OCS oil- and gas-related demands for water transportation systems and ports.

The impacts of routine events associated with a CPA-proposed action are expected to remain at historic activity levels. The OCS oil- and gas-related infrastructure has developed over many decades and is an extensive and mature system that provides support for offshore activities. The expansive presence of this coastal infrastructure is the result of long-term industry trends, and it is not subject to rapid fluctuations. Relatively low operating costs in the Gulf of Mexico and a stable regulatory regime make the region both a more profitable and a more stable operating environment for service contractors than places such as Brazil and Africa (Bloomberg, 2013). BOEM projects 0-1 new gas processing facilities and 0-1 new pipeline landfalls for a CPA proposed action. However, based on the most current information available, there is only a very slim chance that either would result from a CPA proposed
action; and, if a new, greenfield gas processing facility or pipeline landfall were to result, it would likely occur toward the end of the 40-year analysis period. The likelihood of a newbuild gas processing facility or pipeline landfall is much closer to zero than to one (Dismukes, official communication, 2013b). Because of the current near zero estimates for a pipeline landfall and gas processing facility construction, the routine activities associated with a CPA proposed action would have little effect on land use. BOEM anticipates that there would be maintenance dredging of navigation channels, provided funding is appropriated, in support of routine activity at services bases as a result of a CPA proposed action. In regard to land use and infrastructure, it does not appear that there would be adverse impacts from routine events associated with a CPA proposed action.

Accidental events (impact-producing factors) associated with a CPA proposed action that could affect land use and coastal infrastructure include, but are not limited to, oil spills, vessel collisions, and chemical/drilling-fluid spills. Accidental events associated with a CPA proposed action would occur at differing levels of severity, based in part on the location and size of event. The *Deepwater Horizon* explosion, oil spill, and response resulted in the implementation of new drilling and environmental safeguards adopted by industry. These new safeguards have reduced the probability of a low- probability catastrophic spill, which is not reasonably foreseeable and not part of a CPA proposed action. Such low-probability catastrophic events should be distinguished from accidental events that are smaller in scale and that occur more frequently. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on land use and coastal infrastructure can be found in Chapter 4.2.1.23.1.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS.

Cumulative Impacts

Background/Introduction

The cumulative analysis considers impacts that may result from a CPA proposed action within the context of OCS oil- and gas-related and non-OCS oil- and gas-related impacts, and future OCS lease sales. The non-OCS oil- and gas-related factors consist of prior, current, and future OCS lease sales, as well as other impact-producing factors not related to the OCS oil and gas leasing program. The OCS oiland gas-related impacts include a proposed action and the OCS Program, onshore waste disposal, and the Deepwater Horizon explosion, oil spill, and response. Non-OCS oil- and gas-related impacts include State oil and gas activity, downstream activities, coastal erosion and subsidence, and coastal storms. Many non-OCS oil- and gas-related factors contribute substantially to the cumulative impacts to land use and coastal infrastructure, including the following: housing and other residential developments; the development of private and publicly owned recreational facilities; the construction and maintenance of industrial facilities and transportation systems; urbanization; city planning and zoning; changes to public facilities such as water, sewer, educational, and health facilities; changes to military bases and reserves; changes in population density; changes in State and Federal land use regulations; and changes in non-OCS oil- and gas-related demands for water transportation systems and ports. Chapter 4.2.1.23.1.1 of the 2012-2017 WPA/CPA Multisale EIS and updated information provided Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS discuss the socioeconomic analysis area, land use, and OCS oil- and gasrelated infrastructure associated with the analysis area. The vast majority of this infrastructure also supports oil and gas production in State waters, as well as in coastal areas onshore.

According to BOEM's development scenario analysis, the construction of 0-1 new gas processing facilities would be expected to occur near the end of the 40-year life of a CPA proposed action. Most new pipelines would be offshore and would tie into the existing offshore pipeline infrastructure. According to the scenario analysis, 0-1 new pipeline landfalls would be expected to occur toward the end of the 40-year lifespan of a CPA proposed action. Those projections also called for no new waste disposal facilities due to existing excess capacity along the Gulf Coast. Research based on the analysis of historical data further validated BOEM's past scenario projections of new gas processing facilities and new pipeline landfalls and found its projections to be conservative; that is, the actual numbers proved to be equal to, or less than, the projected numbers (Dismukes et al., 2007). Current scenario projections are also likely to be conservative (Dismukes, official communication, 2013b).

OCS Oil- and Gas-Related Impacts

The OCS oil- and gas-related onshore coastal infrastructure is extensive, covers a wide-ranging area, supports OCS development, and is owned, operated, maintained, and/or utilized by thousands of large and small companies. Lease sales will serve mostly to maintain ongoing activity levels associated with the current OCS Program. Industry will more or less maintain its current usage of infrastructure according to the proposed lease sale schedule. Macroeconomic shifts, such as a change in commodity prices or an economic upturn or downturn, will also determine future utilization of this infrastructure.

These industries cover every facet of OCS oil- and gas-related activity, including, but not limited to, the following: service bases; helicopter hubs; platform fabrication yards; shipbuilding and shipyards; pipecoating facilities and yards; refineries; gas processing facilities; LNG facilities; pipeline shore facilities, barge terminals and tanker port areas; coastal pipelines; coastal barging; and navigation channels.

Refer to Chapter 4.2.1.23.1.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS for a more detailed description of these infrastructure types. Impact-producing factors associated with a CPA proposed action that could affect land use and coastal infrastructure include, but are not limited to, gas processing facilities, pipeline landfalls, service bases, navigation channels, waste disposal facilities, oil spills, vessel collisions, and chemical/drilling-fluid spills. Impacts from these routine and accidental impact-producing factors are discussed above and in Chapters 4.2.1.23.1.2 and 4.2.1.23.1.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.23.1 of the WPA 233/CPA 231 Supplemental EIS. BOEM's staff continually monitors developments in the OCS onshore-related industries and will update analyses as new information becomes available.

Gas Processing Facilities

The majority of change is likely to occur from general, regional economic and demographic growth rather than from activities associated with current OCS and/or State offshore petroleum production or future planned OCS or State lease sales. BOEM's development scenarios consider demand from both current and future OCS and State leases. These scenarios project 0-1 new gas processing facilities to result from a CPA proposed action. However, this number is derived from the estimated demand for future processing capacity. Given current industry practice, it is likely that few (if any) new, greenfield gas processing facilities would actually be constructed along the CPA. Instead, it is likely that a large share (and possibly all) of any additional natural gas processing capacity that is needed in the industry would be developed at existing facilities through future investments in expansions and/or replacement of depreciated capital equipment. Also, these BOEM scenario projections are conservative; that is, they likely overestimate the additional capacity that would be required.

Over the past several years, there has been a substantial decrease in offshore natural gas production, partially as a result of increasing emphasis on onshore shale gas development, which is less expensive to produce and provides larger per-well production opportunities and reserve growth. Also, there has been a trend toward more efficient gas processing facilities with greater processing capacities (Dismukes, 2011a). For example, in Texas the average daily processing capacity per plant increased from 95 MMcf to 121 MMcf per day between 2004 and 2009. Louisiana, Mississippi, and Alabama also saw their perplant capacity increase, with the average capacity per plant in Mississippi more than doubling from 262 MMcf per day to 568 MMcf per day (USDOE, Energy Information Administration, 2011a). While natural gas production on the OCS (shallow water) has been rapidly declining, deepwater gas production has been increasing, but not quickly enough to make up the difference. The U.S. Energy Information Administration's Annual Energy Outlook 2013 forecasts that Gulf offshore natural gas production will decrease from 2.15 Tcf per day in 2012 to 1.89 Tcf per day in 2013 and to 1.79 Tcf per day in 2014 (USDOE, Energy Information Administration, 2013b). These production trends are driven by many factors, including price pressures arising from increasing onshore natural gas production (Humphries, 2013). Increasing onshore shale gas development, declining offshore gas production, and the increasing efficiency and capacity of existing gas processing facilities are trends that have combined to lower the need for new gas processing facilities along the Gulf Coast. In terms of both capacity and the number of plants, Texas and Louisiana accounted for nearly half of all U.S. capacity and plants (USDOE, Energy Information Administration, 2011b). Spare capacity at existing facilities should be sufficient to satisfy new gas production for many years, although there remains a slim chance that a new gas processing facility may be needed by the end of the 40-year life of a CPA proposed action (Dismukes, official communication, 2013b). Any additions to, or expansions of, current facilities would also support State oil and gas production and, should any occur, the land in the analysis area is sufficient to handle development. Thus, the results of OCS and State oil and gas activities are expected to minimally alter the current land use of the area.

Pipeline Landfalls

BOEM analyzes the potential for new pipeline landfalls to determine the potential impacts to wetlands and other coastal habitats. In **Chapter 3.1.2.1** of this Supplemental EIS, Chapter 3.1.2.1.6 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 3.1.2.1 of the WPA 233/CPA 231 Supplemental EIS, BOEM assumes that the majority of new Federal OCS pipelines would connect to the existing infrastructure in Federal and State waters and that very few would result in new pipeline landfalls. Therefore, BOEM projects up to one pipeline landfall for a CPA proposed action; however, it is generally unlikely that even one landfall would result from a CPA proposed action.

Service Bases/Ports

Service-base infrastructure supports offshore petroleum-related activities in both OCS and State waters. Any changes to offshore support infrastructure that occurs in the cumulative case are expected to be contained on available land. Service bases are industrial ports and are located in designated industrial parks designed with the intent to accommodate future oil and gas needs. Also, most of these are located in BOEM analysis areas that have strong industrial bases. Shore-based OCS and State servicing is expected to increase in the ports of Galveston, Texas; Port Fourchon, Louisiana; and Mobile, Alabama. There is sufficient land designated in commercial and industrial parks and adjacent to the Galveston port area. This would minimize disruption possible from port expansions to current residential and business use patterns.

In contrast, while Port Fourchon has land designated for future expansion, the port has a limited amount of waterfront land available and, because of surrounding wetlands, may face capacity constraints in the long term. Louisiana has the greatest rate of landloss in the Nation. A Louisiana State-sponsored study found that the "gradual erosion of Louisiana's coast may force the oil and gas industry to interrupt, postpone, or permanently delay the production and transportation of oil and gas products" (Richardson and Scott, 2004). It is unknown how current subsidence and erosion is impacting industry or whether industry is making plans to mitigate current or future impacts. BOEM will continue to monitor industry and its infrastructure footprint over time to document short- and long-term impacts of continued landloss. For a more detailed discussion on deltaic landloss, refer to Chapter 4.1.1.4. Port Fourchon serves as the primary support base for over 90 percent of existing deepwater projects, with 270 large supply vessels using the port's waterways each day (Greater Lafourche Port Commission, 2013). The OCS oil- and gasrelated demands upon coastal infrastructure and land use tend to be geographically concentrated as compared with historic residential settlement within the region. For instance, Port Fourchon is the service base for over 90 percent of OCS deepwater production and serves as a conduit for 15-18 percent of the Nation's entire oil supply (Greater Lafourche Port Commission, 2011). As one of the most significant footprints within the OCS oil- and gas-related infrastructure corridor, Port Fourchon comprises only 2.7 developed square miles (7 km²) within a close to 44,000-mi² (113,959-km²) state. In Louisiana, there are 105 persons per square mile, and in Lafourche Parish (where Port Fourchon is located), there are 90 persons per square mile, both above the national average of 87 persons per square mile (USDOC, Census Bureau, 2010).

Navigation Canals

Chapter 3.1.2.1 of this Supplemental EIS, Chapter 3.1.2.1.8 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 3.1.2.1 of the WPA 233/CPA 231 Supplemental EIS discuss navigation channels along the Gulf Coast. Much of the traffic navigating these channels is unrelated to OCS oil- and gas-related activity, and the current system of navigation channels in the northern GOM is projected to be adequate for accommodating any additional traffic generated by a CPA proposed action. The Gulf-to-port channels and the Gulf Intracoastal Waterway that support prospective OCS ports are generally deep and wide enough to handle OCS oil- and gas-related traffic and are maintained by regular dredging if funding is

available (Figure 3-7 of the 2012-2017 WPA/CPA Multisale EIS). All single lease sales contribute to the demand for offshore supply/service vessel support; hence, they also contribute to the vessel traffic that moves in and out of support facilities. Therefore, a CPA proposed action is likely to contribute to the continued need for maintenance dredging of existing navigation channels. However, no new navigation channels are expected to be dredged as a result of a CPA proposed action because the existing system of navigation channels is projected to be adequate to allow proper accommodation for vessel traffic that will occur as a result of a CPA proposed action.

Transportation

There is increasing demand to transport crude oil from Canadian and U.S. shale plays locations and send it by barge to Gulf Coast refineries. Scheduled to have opened in the second quarter of 2013 is the new Gulf Gateway Terminal, a crude oil destination terminal located at the Port of New Orleans. The terminal's unloading capacity is designed to handle one unit train per day and to be equipped to transfer up to 10,000 bbl per hour directly into barges or into tanks with 103,000 bbl of usable storage (Gulf Gateway Terminal, 2013).

Louisiana Highway 1 (LA Hwy 1) is the only highway connecting Port Fourchon with the rest of Louisiana. This two-lane highway is surrounded by marshland and has been prone to extreme flooding over the years, jeopardizing critical access to Port Fourchon, which has up to 1,200 trucks travelling in and out of the port each day (Greater Lafourche Port Commission, 2013). Currently, LA Hwy 1 is closed an average of 3.5 days annually due to inundation. However, within 15 years, NOAA anticipates that the at-grade portions of LA Hwy 1 will be inundated by tides an average of 30 times annually, even in the absence of extreme weather. Because of Port Fourchon's significance to the national, State, and local oil industry, the U.S. Department of Homeland Security, in July 2011, estimated that "a closure of 90 days could reduce national gross domestic product by \$7.8 billion" (LA 1 Coalition, 2013). While, in the absence of planned expansions, LA Hwy 1 would not be able to handle future OCS and State activities, a multiphase LA Hwy 1 improvement project is currently underway. On July 8, 2009, the new LA Hwy 1 fixed-span toll bridge over Bayou Lafourche connecting Port Fourchon and Leeville, Louisiana, was opened and marks partial completion of the first phase of improvements to LA Hwy 1 (Toll Roads News, 2009). A large portion of the tolls collected will be paid by transportation activities associated with OCS oil- and gas-related activities. The remaining portion of Phase 1 construction, a two-lane elevated highway from the bridge to Port Fourchon, was completed in 2011. There are continuing efforts to get Federal funding to construct Phase 2 of the project—an elevated highway from the Golden Meadow floodgates to Leeville, Louisiana (Wilson, 2012).

The South Lafourche Leonard Miller Jr. Airport opened a partial parallel taxiway, and the Port Commission has plans to extend it to full length. In the past several years, \$20 million has been invested in the airport for improvements that include the paving of airport roadways, runway expansion and overlay, installation of fuel tanks, and construction of an extra-large hangar. As a result of recent improvements, the airport is showing growth. Between 2012 and 2013, total aircraft operations at the South Lafourche Airport were the highest in airport history, exceeding 20,000 aircrafts (Greater Lafourche Port Commission, 2014).

If the service base expansion occurs in the cumulative case at the port of Galveston, Texas, or Mobile, Alabama, this expansion would occur in areas that are already industrialized and would have little effect on land use and infrastructure. This is also true for Port Fourchon, Louisiana, although, in the cumulative case, expansion of this service base may eventually be constrained by surrounding wetlands. Limited highway access and airport capacity could also constrain service base expansion at Port Fourchon in the cumulative case. However, ongoing and planned improvement projects make this unlikely.

Waste Disposal Facilities

The OCS waste disposal is discussed above and in **Chapter 3.1.2.2** of this Supplemental EIS, Chapters 4.2.1.23.1.1 and 3.1.2.2 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.23 of the WPA 233/CPA 231 Supplemental EIS. The scenario analysis concluded that no new solid-waste facilities would be built as a result of a single lease sale. Focused scenario analysis research into onshore waste disposal further supports the conclusion that existing solid-waste disposal infrastructure is adequate

to support both existing and projected offshore oil and gas drilling and production needs (Dismukes et al., 2007).

Oil Spills and Chemical/Drilling Fluid Spills

Oil spills may be associated with exploration, production, or transportation activities that result from a CPA proposed action. A detailed risk analysis of offshore oil spills ranging from <1,000 bbl to \geq 1,000 bbl and coastal spills associated with a WPA proposed action is provided in **Chapters 3.2.1.5**, **3.2.1.6**, **and 3.2.1.7** of this Supplemental EIS and Chapters 3.2.1.5, 3.2.1.6, and 3.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The mean number and sizes of spills estimated to occur in OCS offshore waters from an accident related to rig/platform and pipeline activities supporting a CPA proposed action are also presented in Table 3-12 of the 2012-2017 WPA/CPA Multisale EIS. Accidental spills as a result of a low-probability catastrophic event are discussed in **Appendix B**.

Chemical and drilling-fluid spills may be associated with exploration, production, or transportation activities that result from a CPA proposed action. **Chapter 3.2.5** of this Supplemental EIS and Chapter 3.2.5 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS provide a detailed discussion of chemical and drilling-fluid spills. Each year, between 5 and 15 chemical spills are expected to occur; most of these are \leq 50 bbl in size. Large spills are much less frequent. For example, from 1964 to 2005, only two chemical spills \geq 1,000 bbl occurred. Even though additional production chemicals are needed in deepwater operations where hydrate formation is a possibility, spill volumes are expected to remain stable because of advances in subsea processing.

Non-OCS Oil- and Gas-Related Impacts

For a CPA proposed action, the primary region of geographic influence is coastal Texas, Louisiana, Mississippi, and Alabama. Land-use patterns vary greatly by region, reflecting differences in soils, climate, topography, and patterns of population settlement. Land-use changes will largely depend upon local zoning and economic trends. Mississippi and Louisiana are located in what the U.S. Department of Agriculture's Economic Research Service calls the Delta farm production region, while Alabama is located in the Southeast farm production region and Texas is located in the Southern Plain region (Lubowski et al., 2006). The Economic Research Service conducts land-use inventories based on available land use data obtained from surveys conducted both by the Economic Research Service and predecessor agencies. The following sections are divided into those land use categories and other non-OCS oil- and gas-related, impact-producing factors including the following: (1) State oil and gas activities; (2) agriculture; (3) forest, parks, and special use areas; (4) urban areas; (5) miscellaneous areas; (6) inland navigable waterways and ports; and (7) natural processes.

State Oil and Gas Activities

Effects of State oil- and gas-related activities are expected to be similar to the effects from OCS oiland gas-related activities. Over the past several years, there has been a substantial decrease in offshore natural gas production, partially as a result of increasing emphasis on onshore shale gas development, which is less expensive to produce and which provides larger per well production opportunities and reserve growth. As described in **Chapter 3.1.2.1** of this Supplemental EIS and Chapter 3.1.2.1 of the 2012-2017 WPA/CPA Multisale EIS and the WPA 233/CPA 231 Supplemental EIS, onshore unconventional natural gas production has increased to the point that existing Gulf Coast LNG facilities are seeking to export natural gas to foreign consumers. In 2011, Cheniere's Sabine Pass facility in Louisiana received approval from DOE to export to any country in the world (Helman, 2013; USDOE, Federal Energy Regulatory Commission, 2013). Seventeen additional project sponsors have applied to DOE for authorization to export domestically produced LNG to free trade agreement and non-free trade agreement countries. BOEM will continue to monitor future development of new LNG export facilities, but these should not on their own represent a significant development or change in land use.

Agriculture

Of the over 400,000 mi² (1,035,995 km²) comprising these coastal states, 18 percent of the total land area is covered in cropland, which includes cropland harvested, crop failure, cultivated summer fallow, cropland used only for pasture, and idle cropland. Texas and Mississippi have the highest percentages of cropland, with 20 percent and 19 percent of each respective State's total land being used for cropland. Texas leads the Nation in cattle, cotton, hay, sheep, and wool (State of Texas, Dept. of Agriculture, 2013). Texas also leads the Nation in the number of farms and ranches, with 247,500 farms and ranches covering 130.4 million ac (52.8 million ha). For all four coastal states, 42 percent of the total land area is used for grassland pasture and range, with Texas devoting 61 percent of close to 262,000 mi² (679,095 km²) for grassland pasture and range. Agriculture places many demands on the environment and produces impacts that include, but are not limited to, habitat fragmentation, pesticide and nutrient runoff, competing urban and agricultural water needs, changes to watershed hydrology, and changes in soil quality. Both State and Federal entities regulate various farming and ranching practices through laws such as the Clean Water Act, which establishes pollutant standards for many of the inputs used in conventional farming methods.

Forest, Parks, and Special-Use Areas

Forest land, which the U.S. Forest Service defines as land at least 10 percent stocked by trees of any size, including land that formerly had such tree cover and that will be naturally or artificially regenerated, makes up 28 percent of the total land area in these four coastal states. Alabama has the most forest use land, with 70 percent of the State's 53,868 mi² (139,517 km²) covered in forest, followed by Mississippi with 65 percent of its total land area covered in forest. From the Gulf Coast Flatwoods to the Upper Coastal Plains, forest resources abound in Mississippi. Forest resources represent the State's largest single land use, covering more than 19.8 million ac (8.0 million ha) (State of Mississippi, Forestry Commission, 2009). Rural lands, including privately owned forest, total 144 million ac (58 million ha), 86 percent of the Texas's total land area (State of Texas, Dept. of Agriculture, 2013). Forest use land includes timberland and reserved forest land, but it excludes forest land in parks, wildlife areas, and similar special purpose uses. Special-use areas (which include areas in highway, road, and railroad rightsof-way and airports; Federal and State parks, wilderness areas, and wildlife refuges; and national defense and industrial areas) make up 4 percent of the total land area for these four coastal states. Louisiana has the highest percentage of special-use area, with 7 percent of the land used for special-use purposes (Lubowski, et al., 2006). Texas, for instance, has 2 national parks and well over 100 State parks, national parks, and historic sites. Texas has 15 military bases throughout the state, Louisiana has 4 military bases, and Mississippi and Alabama each have 5 military bases (MilitaryBases.com, 2013a and 2013b). The U.S. Congress decides when and where a military base will be established, but regardless of the branch of military, the new site and its associated environmental impacts would be subject to NEPA.

Texas has more than 10,000 mi (16,093 km) of railroad tracks, more than any other state. Those tracks are owned or operated by Union Pacific Railroad (6,408 mi; 10,313 km), the Burlington Northern/Santa Fe Railway (4,645 mi; 7,475 km), and the Kansas City Southern Railway (379 mi; 610 km). Also, the Texas State highway system consists of about 79,696 centerline miles (miles traveled in a one-way direction regardless of the number of lanes) of road and carries about 74 percent of the State's vehicular traffic. Included are 28,374 mi (45,664 km) of U.S. and State highways, carrying 36 percent of traffic (including 22 centerline miles of toll roads); 40,988 mi (65,967 km) of farm-to-market roads, carrying 11 percent of traffic; 9,953 mi (16,018 km) of interstate highways and frontage roads, carrying 26 percent of traffic; and 339 mi (546 km) of parks and recreation roads, carrying less than 1 percent of traffic. An additional 65 centerline miles of toll roads are under construction (State of Texas, Comptroller of Public Accounts, 2013). Louisiana's highway network is the 32nd largest in the Nation, with the State highway system the

Louisiana's highway network is the 32nd largest in the Nation, with the State highway system the 11th largest. The network is comprised of over 60,000 mi (96,561 km) and more than 13,000 bridges under the jurisdiction of Federal, State, and local governments and entities. The 27.4 percent of highway network centerline mileage that are State-owned places Louisiana 10th nationally, while the 30 percent of total highway network lane mileage that are State-owned places Louisiana 11th (State of Louisiana, Dept. of Transportation and Development, 2013). The network typically handles just under 41 billion mi (66 billion km) traveled annually. Louisiana also has 2,656 mi (4,274 km) of Class I railroad trackage and 2,823 mi (4,543 km) of inland waterways (State of Louisiana, Dept. of Transportation and

Development, 2013). Five interstate highways converge in Alabama, allowing goods to be shipped to major markets. The I-22 is planned to be completed by 2014, making this the sixth interstate in Alabama (Economic Development Partnership of Alabama, 2013). The impacts of transportation corridors include noise, air pollution, and potential loss of living quality. Wildlife and plants suffer from habitat destruction and various forms of pollution. Ecosystems suffer fragmentation with habitats, and biomes that had worked in cohesion are separated. Transportation projects may also necessitate the draining or contamination of wetlands, crucial habitat for many species and important for flood control and filtering and cleaning water (USEPA, 1994). As a large-scale infrastructure project with potential environmental impacts, any new highway or rail corridor would be subject to Federal NEPA requirements as well as local and State regulatory scrutiny.

Urban Areas

Census urban areas include densely populated areas with at least 50,000 people ("urbanized areas") and densely populated areas with 2,500-50,000 people ("urban clusters"). Included in the Census urban area definition are residential areas and concentrations of nonresidential urban areas such as commercial, industrial, and institutional land; office areas; urban streets and roads; major airports; urban parks and recreational areas; and other land within urban defined areas. The total urban land area for all four states is just 3 percent of the total land area, with Louisiana and Alabama tied for the highest percentage of urban areas, with 4 percent of each state being utilized for high population areas. Development takes the place of natural ecosystems and fragments habitat. It also influences decisions people make about how to get around and determines how much people must travel to meet daily needs. These mobility and travel decisions have indirect effects on human health and the natural environment by affecting air and water pollution levels. Impacts of urbanization include habitat fragmentation, reduced water and air qualities, and the urban heat island impact. On the other hand, residents of cities live in smaller homes and drive less because of the close proximity of amenities. Future trends in urban land use will be largely determined by economics, demographic shifts, local ordinances, and zoning (USEPA, 2013e).

Miscellaneous Areas

The final land use category according to the Economic Research Service, "Miscellaneous," includes industrial and commercial sites in rural areas, cemeteries, golf courses, mining areas, quarry sites, marshes, swamps, sand dunes, bare rocks, deserts, tundra, rural residential, and other unclassified land. For Alabama, Mississippi, and Texas, 4 percent of land use is classified as miscellaneous; however, in Louisiana, 16 percent of land use is classified as miscellaneous. Louisiana contains 40-45 percent of the wetlands found in the lower states within its 195,000-mi² (505,048-km²) footprint (USDOI, GS, 2012b).

Inland Navigable Waterways and Ports

Coastal states with inland navigable waterways and direct access to the Gulf of Mexico are uniquely positioned to benefit from international trade and facilitate domestic trade. The Ports of South Louisiana and Houston rank 12th and 13th, respectively, in total trade for all world ports and 1st and 2nd, respectively, for American ports (American Association of Port Authorities, 2011). With direct access to the Mississippi River and its system of inland rivers, the Port of South Louisiana averages 223 million metric tons per year. In Louisiana, there are 2,823 mi (4,543 km) of inland waterways (State of Louisiana, Dept. of Transportation and Development, 2013). Alabama's water corridors connect to over 15,000 mi (24,140 km) of inland waterways in 23 states (Economic Development Partnership of Alabama, 2013). The Gulf Intracoastal Waterway runs 1,050 mi (1,690 km), connecting Gulf ports from Carrabelle, Florida, to Brownsville, Texas. In Texas alone, the waterway extends 423 mi (681 km). The Port of Houston handled 215 million metric tons in total cargo in 2011 (American Association of Port Authorities, 2011). The primary issue facing ports and inland navigable waterways is availability of funds and dredge vessels to maintain navigable depths and widths. The Harbor Maintenance Tax, established in 1986, is an ad valorem tax paid on the value of imports entering the U.S. on domestic cargo. Appropriations for the Harbor Maintenance Tax Fund, which are primarily used by COE for maintenance dredging, dredged material disposal areas, jetties and breakwaters, have lagged behind revenues (Ojard, 2013). While industry continues to plan for improvements and set aside funding, Congress has not appropriated funds to meet the demand for repairs and improvements, which have

resulted in channels not being maintained to their constructed depths and widths. The America Society of Civil Engineers rated inland waterways with a D+ (poor) and gave ports a C (mediocre) in its 2013 report card (American Society of Civil Engineers, 2013). The Big River Coalition completed a study in 2013, which looked at the economic impact of dredging the Mississippi River to deeper depths. It found that for every 1,000 tons of cargo gained due to the deepening, the local economy will gain \$14,691 in spending on ship services (e.g., loading, unloading, freight forwarding, dockage, etc.); inland transportation; and increased business for port users, mostly manufacturing firms. This gain in direct spending creates additional impacts in the local economy in secondary spending, sometimes referred to as the "ripple effect," total spending (direct plus secondary spending), earnings of affected workers, jobs, and tax revenues for local, State, and Federal governments (Ryan, 2013).

The U.S. Energy Sector has long prepared for all hazards, but natural disasters have traditionally been a key focus of sector efforts. The National Infrastructure Protection Plan, a comprehensive risk management framework that defines critical infrastructure protection roles and responsibilities for all levels of government, private industry, and other sector partners has evolved to identify and prepare other hazards that include terrorism (domestic and international), cyber security, and pandemics (USDHS, 2010). The Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan details how the National Infrastructure Protection Plan risk management framework is implemented within the context of the unique characteristics and risk landscape of the sector (USDHS, 2010). Each Sector-Specific Agency develops a sector-specific plan through a coordinated effort involving its public and private sector partners. The DOE is designated as the Sector-Specific Agency for the Energy Sector. The energy infrastructure provides essential fuel to all of the other critical infrastructures, and in turn depends on the Nation's transportation, information technology, communications, finance, and government infrastructures. Over time, cyber/information technology dependencies have increased. For example, electricity and natural gas suppliers rely heavily on data collection systems to ensure accurate billing. Energy control systems and the information and communications technologies on which they rely play a key role in the North American energy infrastructure. Energy infrastructure resilience is defined as the ability to reduce the magnitude and/or duration of disruptive events. The resilience of an infrastructure or enterprise depends on its ability to anticipate, absorb, adapt to, and/or rapidly recover from a disruptive event. The DOE, in cooperation with other Federal agencies, State and local governments, and sector partners, has undertaken programs to assess the risks of key energy infrastructure assets and to provide technology, tools, and expertise to Federal, State, local, Tribal, and territorial entities, and to public and private owners and operators of critical infrastructure. These programs are designed to assist all entities within the energy infrastructure in securing systems against physical and cyber attacks.

Natural Processes

A U.S. Geological Survey study published in spring 2013, Economic Vulnerability to Sea-Level Rise along the Northern U.S. Gulf Coast (Thatcher et al., 2013), applied a Coastal Economic Vulnerability Index (CEVI) to the northern Gulf coastal region in order to measure economic vulnerability to sea-level rise. Coastal landloss in Louisiana is an ongoing threat to the people and industry of that region— Louisiana has the greatest rate of landloss in the Nation. Louisiana contains 40-45 percent of the wetlands found in the lower states within its 195,000-mi² (505,048-km²) footprint (USDOI, GS, 2012b). Louisiana also has the greatest rate of landloss in the Nation. The U.S. Geological Survey projects that coastal Louisiana has undergone a net change in land area of about 1,883 mi² (4,897 km²) from 1932 to 2010. Within an area, the presence of a concentration of economically valuable infrastructure combined with physical vulnerability to inundation from sea-level rise resulted in the highest vulnerability rankings (CEVI score). The highest average CEVI score in the Gulf coastal region appeared in Lafourche Parish, Louisiana, where there is an extensive amount of valuable infrastructure related to the oil and gas industry, along with high relative sea-level rise rates and high coastal erosion rates (Thatcher, et al, 2013). For a more detailed discussion of this study and how it relates to environmental justice communities, refer to Chapter 4.1.1.23.4 of this Supplemental EIS, Chapter 4.2.1.23.4 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.23.4 of the WPA 233/CPA 231 Supplemental EIS. A Louisiana Statesponsored study found that the "gradual erosion of Louisiana's coast may force the oil and gas industry to interrupt, postpone, or permanently delay the production and transportation of oil and gas products" (Richardson and Scott, 2004). It is unknown how current subsidence and erosion is impacting industry or whether industry is making plans to mitigate current or future impacts. BOEM will continue to monitor industry and its infrastructure footprint over time to document short- and long-term impacts of continued landloss. For a more detailed discussion on deltaic landloss, refer to **Chapter 4.1.1.4** of this Supplemental EIS, Chapter 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.4 of the WPA 233/CPA 231 Supplemental EIS.

While coastal infrastructure is subject to the impacts of coastal landloss and routine tropical storm activity, there is still considerable investment to expand and improve existing infrastructure. In June 2013, Governor Bobby Jindal of Louisiana signed Senate Bill 122, which modified the Investor Tax Credit and the Import-Export Tax Credit. The new credits now include projects like warehousing and storage, port operations, marine cargo handling, ship building and repairs, and oil and gas activities (State of Louisiana, Office of Governor, 2013). Additionally, the decision criteria for the State of Louisiana's 5-year coastal restoration planning document places a higher value on collections of risk reduction and restoration projects that improve coastal conditions for oil and gas infrastructure and increase the resilience of coastal communities that support the industry. The criterion also puts a higher value on projects that benefit the navigation industry and places a lower value on projects that impede navigation (State of Louisiana, Coastal Protection and Restoration Authority, 2012). Meanwhile, Texas experiences an overall loss of almost 6,000 ac (2,428 ha) of tidal and nontidal wetlands per year (State of Texas, General Lands Office, 2010). The Texas Coastal Erosion Planning and Response Act Program, which is administered by the Texas General Land Office, oversees restoration projects throughout the state. Restoration plans also focus on mitigating the impacts of tropical storms and land subsidence. Landsurface subsidence, or land subsidence, in areas including Harris County, Texas, which encompasses much of the Houston area, has been occurring for decades. Land subsidence has increased the frequency and extent of flooding, damaged buildings, and transportation infrastructure (Kasmarek et al., 2009). In addition to public efforts, private industry has teamed up with nongovernment organizations like the Nature Conservancy to mitigate risks from storms and flooding through small-scale restoration projects near private infrastructure. For instance, the Dow Chemical Company Collaboration partnered with The Nature Conservancy to evaluate green infrastructure solutions (e.g., protecting or restoring marshes, oyster reefs, etc.) alongside gray infrastructure solutions in their coastal hazard mitigation planning for their Freeport, Texas, facilities (Dow Chemical Company Collaboration, 2011).

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

Additional research was conducted to investigate the availability of recent information affecting land use and coastal infrastructure since publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. Various Internet sources were examined, including the websites of numerous Federal and State agencies (USDHS, Federal Emergency Management Agency; USDOC, Bureau of the Census; USDOC, NOAA; U.S. Department of Energy, Energy Information Administration; U.S. Department of Transportation, Maritime Administration; USDOI, FWS; RestoreTheGulf.gov website; *Deepwater Horizon* Oil Spill Portal; USEPA; Louisiana Department of Environmental Quality; Louisiana Recovery Authority; Louisiana Office of Community Development; Mississippi Department of Environmental Quality; Alabama Department of Environmental Management; and the Florida Department of Environmental Protection). Further information was sought from other organizations, recently published journal articles, and trade publications such as The Greater Lafourche Port Commission, LA1 Coalition, The Oil Drum, Rigzone, Oil and Gas Journal, *Offshore* Magazine, TOLLROADS News, and *The Energy Journal*.

A USGS study published in the spring of 2013, *Economic Vulnerability to Sea-Level Rise along the Northern U.S. Gulf Coast* (Thatcher et al., 2013), applied a CEVI to the northern Gulf coastal region in order to measure economic vulnerability to sea-level rise. Within an area, the presence of a concentration of economically valuable infrastructure combined with physical vulnerability to inundation from sea-level rise resulted in the highest vulnerability rankings (CEVI score). The highest average CEVI score in the Gulf coastal region appeared in Lafourche Parish, Louisiana, where there is an extensive amount of valuable infrastructure related to the oil and gas industry, along with high relative sea-level rise rates and high coastal erosion rates (Thatcher et al., 2013). For a more detailed discussion of this study and how it relates to environmental justice communities, refer to **Chapter 4.1.1.23.4** of this Supplemental EIS and Chapter 4.2.1.23.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

4-197

The Gulf of Mexico OCS oil and gas exploration and production industry has more or less recovered from the effects of the Deepwater Horizon explosion, oil spill, and response, including the related drilling suspensions and the development of needed adaptations to new Federal requirements for drilling safety. In 2012, Federal regulators issued the most permits for deepwater drilling in the Gulf of Mexico since 2007, with BSEE approving 520 deepwater well permit applications in 2012 alone (Dupre, 2013; USDOI, BSEE, 2013b). If drilling activity continues with its current upward trajectory, there may be new increased demand for waste disposal services as a result of a CPA proposed action. Current capacity, however, should be able to accommodate any increased demand. The Argonne National Laboratory reported that there were 46 waste management facilities that serviced the oil and gas industry along the GOM, with 18 in Louisiana and 18 in Texas, as well as numerous salt caverns used for oil and gas waste disposal scattered throughout Texas (Dismukes, official communication, 2013b). There are also facilities equipped to recycle some of the wastes associated with exploration and production, and industry and universities are also working on technologies to utilize exploration and production wastes, such as drill cuttings, as inputs for construction materials (Saunders, 2012). In 2014, New Orleans-based Harvey Gulf International Marine broke ground on a Port Fourchon-based LNG terminal. The first of its kind in the United States, the LNG facility will provide LNG fuel to the growing supply of LNG-operated vessels servicing the OCS, as well as to over-the-road vehicles fueled by LNG (Workboat.com, 2014). BOEM will continue to monitor future development of this new coastal infrastructure category (LNG bunkering facility), but this one proposed plan would not be expected to, on its own, represent a significant development or change in land use. None of this new significant information would alter the impact conclusion for land use and coastal infrastructure presented in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS because the new information was roughly consistent with prior expectations. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241 and 247.

It is not completely known how current subsidence and erosion is impacting industry or whether industry is making plans to mitigate current or future impacts. BOEM has proposed a study to evaluate these potential effects by surveying industry on current impacts and potential adaptation strategies, but at the time of publication of this Supplemental EIS it is unfunded, and it would take several years before data could be available. This incomplete information may be relevant to adverse effects because a comprehensive understanding of the potential impacts of coastal landloss on coastal infrastructure and land use remain unknown. Nevertheless, this incomplete information is not likely to be available within the timeframe contemplated by this NEPA analysis of this Supplemental EIS.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.23.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete information regarding the potential impacts of coastal landloss on land use and coastal infrastructure. This incomplete information may be relevant to adverse effects because a comprehensive understanding of the potential impacts of coastal landloss on coastal infrastructure and land use remains unknown. It is not completely known how current subsidence and erosion are impacting industry or whether industry is making plans to mitigate current or future impacts. This information cannot reasonably be obtained because the overall costs in time and money to collect data on the varying impacts of coastal landloss to different firms are exorbitant. BOEM has proposed a study to evaluate these potential effects by surveying industry on current impacts and potential adaptation strategies, but at the time of publication of this Supplemental EIS it is not yet funded, and it would take several years before data could be available. Nevertheless, this incomplete information is not likely to be available within the timeline contemplated in the NEPA

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, BOEM knows that, in the case of Port Fourchon for instance, dredged material from navigation slips is used to fill in property and mitigation habitat areas for wildlife and to act as a barrier to protect Port Fourchon from storm surges (Volz, 2013). While coastal infrastructure is subject to the impacts of coastal landloss and routine tropical storm activity, there is still considerable investment to expand, improve, and protect existing infrastructure. In June 2013, Governor Bobby Jindal of Louisiana signed Senate Bill 122, which

modified the Investor Tax Credit and the Import-Export Tax Credit. The new credits now include projects like warehousing and storage, port operations, marine cargo handling, ship building and repairs, and oil and gas activities (State of Louisiana, Office of Governor, 2013). Additionally, the decision criteria for the State of Louisiana's 5-year coastal restoration planning document places a higher value on collections of risk reduction and restoration projects that improve coastal conditions for oil and gas infrastructure and increase the resilience of coastal communities that support the industry. The criterion also puts a higher value on projects that benefit the navigation industry and places a lower value on projects that impede navigation (State of Louisiana, Coastal Protection and Restoration Authority, 2012). Therefore, coastal restoration efforts will be focused on those land use areas with a higher concentration of OCS coastal infrastructure. While not completely known, current and future industry adaptation plans for coastal landloss are not essential to a reasoned choice among alternatives for this Supplemental EIS (including the No Action and an Action alternative).

Like any industrial infrastructure improvements, future adaptations will likely occur on an as needed basis or as new technologies become available. Therefore, BOEM has determined that the information is not essential to a reasoned choice among alternatives. BOEM will continue to monitor industry and its infrastructure footprint over time to document short- and long-term impacts of continued landloss. For a more detailed discussion on deltaic landloss, refer to **Chapter 4.1.1.4**.

Summary and Conclusion

BOEM has reexamined the analysis for land use and coastal infrastructure presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. BOEM has determined that the additional information does not alter the impact conclusion for land use and coastal infrastructure because the plans to build the new gas-to-liquids facility are very preliminary and are dependent upon not only the outcome of the 18-month feasibility study but also because of future fluctuations in the natural gas supply market. Therefore, the analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

Activities relating to the OCS Program and State oil and gas production are expected to minimally affect the current land use of the analysis area because most subareas have strong industrial bases and designated industrial parks to accommodate future growth in oil and gas businesses. BOEM projects 0-1 new gas processing facilities and 0-1 new pipeline landfalls for a CPA proposed action, although this is a conservative estimate and the number is much closer to zero than to one. If a new gas processing facility or pipeline landfall were to occur, it would likely be toward the end of the 40-year analysis period (Dismukes, official communication 2011b). There may be a new increased demand for waste disposal services as a result of a CPA proposed action. Any service base expansion in the cumulative case would be limited, would occur on lands designated for such purposes, and would have minimal effects on land use and infrastructure. However, in the cumulative case, it is possible that Port Fourchon expansions may eventually be constrained by surrounding wetlands. Based on the available information and current BOEM scenario projections, the cumulative impacts on land use and coastal infrastructure from OCS oil-and gas-related activities are expected to be minor. Therefore, the incremental contribution of a CPA proposed action to the cumulative impacts on land use and coastal infrastructure is also expected to be minor.

The coastal infrastructure supporting a CPA proposed action represents only a small portion of the coastal land and infrastructure throughout the CPA and Gulf of Mexico, and little change is expected to occur due to changing agricultural and extractive (e.g., lumbering and petroleum) uses of onshore land. Many non-OCS oil- and gas-related factors contribute substantially to the cumulative impacts to land use and coastal infrastructure, including housing and other residential developments; the development of private and publicly owned recreational facilities; the construction and maintenance of industrial facilities and transportation systems; urbanization; city planning and zoning; changes to public facilities such as water, sewer, educational, and health facilities; changes to military bases and reserves; changes in population density; changes in State and Federal land-use regulations; and changes in non-OCS oil- and gas-related factors to the cumulative impacts on land use and coastal infrastructure and the small incremental contribution of a CPA proposed action, the cumulative impacts on land use and coastal infrastructure are also expected to be minor.

BOEM will continue to monitor these infrastructure changes as they evolve over time. Again, lease sales will serve mostly to maintain ongoing activity levels associated with the current OCS Program. Industry is expected to maintain its current usage of infrastructure according to the proposed lease sale schedule. Macroeconomic shifts, such as a change in commodity prices or an economic upturn or downturn, will also determine future utilization of this infrastructure.

4.1.1.23.2. Demographics

BOEM has reexamined the analysis for demographics presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for demographics presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapter 4.2.1.23.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.2 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since the publication of these documents is presented below. A detailed description of demographics can be found in Chapter 4.2.1.23.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.2.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.2 of the WPA 233/CPA 231 Supplemental EIS.

Impacts of Routine and Accidental Events

A detailed impact analysis of the routine impacts of proposed CPA Lease Sales 235, 241, and 247 on demographics can be found in Chapter 4.2.1.23.2.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.2 of the WPA 233/CPA 231 Supplemental EIS.

In general, impact producing factors that cause employment impacts, such as exploration and delineation activities, development and production activities, and coastal infrastructure development, can have some impacts on the demographic characteristics of a particular area. However, routine activities associated with a CPA proposed action are projected to minimally affect the demography of the analysis area. The projected impacts to population arising from a lease sale are calculated by multiplying the employment estimates from the mathematical model MAG-PLAN by an estimate of the number of members in a typical family. The projected population increases arising from a lease sale are then divided by the population forecasts in Woods and Poole, Inc. (2013), which yields the percentage impacts to population of a lease sale. Population impacts from a CPA proposed action are projected to be minimal (<1% of the total population) for all Economic Impact Areas (EIAs) in the Gulf of Mexico region.

A detailed analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on demographics can be found in Chapter 4.2.1.23.2.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.2 of the WPA 233/CPA 231 Supplemental EIS.

Accidental events associated with a CPA proposed action, such as low to moderate scale oil or chemical spills, blowouts, and vessel collisions, would likely have no effects on the long-term demographic characteristics of the Gulf coastal communities. This is because accidental events typically cause only short-term population movements as individuals seek employment related to the event or have their existing employment displaced during the event. For a detailed discussion on the employment and demographic impacts of a low-probability catastrophic spill, refer to **Appendix B**.

Cumulative Impacts

Background/Introduction

This section considers the combined effects of OCS oil- and gas-related and non-OCS oil- and gasrelated factors on demographics in the Gulf of Mexico. The demographic characteristics of any area include the distribution of population, age, gender, ethnicity, employment, and earnings in that area. The OCS oil- and gas-related factors that could impact the demographics of any area consist of routine activities and accidental events arising from prior, current, and future OCS lease sales. The impacts of routine activities and accidental events on demographics are discussed above; the impacts of a low-probability catastrophic oil spill are discussed in **Appendix B**. There are numerous non-OCS oil- and gas-related factors that could impact demographics, including fluctuations in workforce, net migration, relative income, oil and gas activity in State waters, and offshore liquefied natural gas activity. Most approaches to analyzing cumulative effects begin by assembling a list of projects and actions that will likely be associated with a CPA proposed action. However, no such list of future projects and actions could be assembled that would be sufficiently current and comprehensive to support a cumulative analysis for all 132 of the coastal counties and parishes in the analysis area over a 40-year period. Instead, this analysis uses the economic and demographic projections from Woods & Poole Economics, Inc. (2013) as a reasonable approximation to define the contributions of other likely projects, actions, and trends to the cumulative case. These projections include population associated with the continuation of current patterns of OCS leasing activity as well as the continuation of trends in other industries important to the region.

OCS Oil- and Gas-Related Impacts

The projected impacts to population arising from the OCS Program are calculated by multiplying the employment estimates from the mathematical model MAG-PLAN by an estimate of the number of members in a typical family. The projected population increases arising from the OCS Program are then divided by the population forecasts in Woods and Poole, Inc. (2013), which yields the percentage impacts of the OCS Program. For more information about MAG-PLAN, refer to Chapter 4.1.1.23.3 of this Supplemental EIS and Chapter 4.2.1.23.3.2 of the 2012-2017 WPA/CPA Multisale EIS. Table 4-7 presents estimates of the population impacts of the OCS Program under the low-case and high-case exploration and development scenarios. These cumulative scenarios reflect activities that are expected to arise from prior, current, and future OCS lease sales. The cumulative projections reflect the positive contribution to population that will arise from increased employment arising from OCS oil and gas activities, as well as the positive impacts to population that will arise from maintaining current employment in OCS oil- and gas-related industries. The OCS Program is projected to have the greatest positive impacts on population in the following EIAs (the low-case and high-case percentage impacts are in parenthesis, respectively): LA-2 (3.3%, 5.1%); LA-3 (2.5%, 3.9%); LA-1 (2.2%, 3.6%); MS-1 (1.6%, 2.6%); TX-3 (1.5%, 2.2%); and AL-1 (1.3%, 2.2%). A CPA proposed action would represent a small fraction of these broader impacts.

A CPA proposed action would also incrementally contribute to the risk of oil spills that could arise from the OCS Program. However, oil spills typically cause only short-term population movements as individuals seek employment related to the event or have their existing employment displaced during the event.

Non-OCS Oil- and Gas-Related Impacts

Table 4-8 provides projections of the evolution of the total population in all EIAs in future years. These projections incorporate the impacts from all non-OCS oil- and gas-related sources, such as fluctuations in workforce, net migration, relative income, oil and gas activity in State waters, and offshore liquefied natural gas activity. In 2013, the total Gulf Coast population was 25.51 million. In 2013, the EIAs with the largest populations were TX-3 (6.54 million), FL-4 (6.43 million), and FL-3 (3.77 million). The EIAs with the smallest populations were LA-1 (353,510), MS-1 (493,860), and LA-2 (603,940). For all EIAs combined, it is expected that the total population will grow at a 1.27 percent rate between 2014 and 2055. The fastest population growth is expected in TX-3 (1.65%), TX-1 (1.46%), and FL-3 (1.28%); the slowest population growth is expected in LA-4 (0.45%) and MS-1 (0.62%). **Tables 4-9 through 4-21** provide projections of employment, income, wealth, business patterns, and racial composition for individual EIAs.

The racial and ethnic composition of the analysis area is influenced by many non-OCS oil- and gasrelated sources, including settlement patterns and employment opportunities in various economic sectors. For example, those areas in Texas where Hispanics are the dominant group (i.e., EIA TX-1 where they represent 82% of the population) were also first settled by people from Mexico. By TX-3, the size of the African-American population increases, and there is a more diversified racial mix. In Louisiana, Mississippi, Alabama, and northern Florida (FL-1 and FL-2), African Americans outnumber Hispanics. A more detailed discussion of minority populations in the area can be found in **Chapter 4.1.1.23.4**. As discussed above, the impacts of a CPA proposed action to these projected demographic trends are expected to be minimal.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

BOEM conducted a search of known data sources related to demographics and Internet resources. The primary source of new information is Woods & Poole Economics, Inc. (2014), which is an annual update of the data that were used in the WPA 233/CPA 231 Supplemental EIS. Woods & Poole Economics, Inc. (2014) provides projections of economic and demographic variables at the county level. **Table 4-8** provides projections of the evolution of the total population in all EIAs in future years. These projections assume the continuation of existing social, economic, and technological trends at the time of the forecast. In 2013, the total Gulf Coast population was 25.51 million. In 2013, the EIAs with the largest populations were TX-3 (6.54 million), FL-4 (6.43 million), and FL-3 (3.77 million). The EIAs with the smallest populations were LA-1 (353,510), MS-1 (493,860), and LA-2 (603,940). For all EIAs combined, it is expected that the total population will grow at a 1.27 percent rate between 2014 and 2055. The fastest population growth is expected in TX-3 (1.65%), TX-1 (1.46%), and FL-3 (1.28%); the slowest population growth is expected in LA-4 (0.45%) and MS-1 (0.62%). **Tables 4-9 through 4-21** provide projections of employment, income, wealth, business patterns, and racial composition for individual EIAs.. In general, the projections of these variables have not changed noticeably from the projections in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.23.2 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information related to demographics in the CPA. This incomplete information may be relevant to evaluating adverse effects because the full extent of potential impacts on demographics is not known. This incomplete or unavailable information relates to translating employment impacts of OCS oil- and gas-related activities into estimated population impacts. This information cannot be obtained at this time due to data limitations and the complexity of methodologies needed to accurately estimate population impacts arising from OCS oil- and gas-related activities. BOEM plans to initiate a study project to analyze population impacts more fully, although this potential study project has not yet been funded and will not be completed in the timeline contemplated in the NEPA analysis of this Supplemental EIS.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions here. For example, BOEM used data from Woods & Poole Economics, Inc. (2014), which provides projections of the evolution of the total population in all EIAs in future years. These projections assume the continuation of existing social, economic, and technological trends at the time of the forecast. This incomplete or unavailable information is unlikely to significantly impact BOEM's estimates of the impacts of OCS lease sales on demographics, in part because these impacts are fairly limited. In addition, increases in population arising from lease sales are generally positive, not adverse, impacts. Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for demographics presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for demographics presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because the new Woods and Poole data did not change much from what was presented in those documents. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale

EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

A CPA proposed action is projected to have an incremental contribution of less than 1 percent to the population level in any of the EIAs, in comparison to other factors influencing population growth, such as the status of the overall economy, fluctuations in workforce, net migration, and changes in income. Given both the low levels of population growth and industrial expansion associated with a CPA proposed action, it is expected that the baseline age and racial distribution pattern will continue through the analysis period.

4.1.1.23.3. Economic Factors

BOEM has reexamined the analysis for economic factors presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for economic factors presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapters 4.2.1.23.3.2 and 4.2.1.23.3.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below.

A detailed description of economic factors can be found in Chapter 4.2.1.23.3.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS.

Impacts of Routine and Accidental Events

A detailed impact analysis of the routine impacts of proposed CPA Lease Sales 235, 241, and 247 on economic factors can be found in Chapter 4.2.1.23.3.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS.

As a result of proposed CPA Lease Sales 235, 241, and 247, there would be only minor economic changes in the Texas, Louisiana, Mississippi, Alabama, and Florida EISs. This is because the demand would be met primarily with the existing population and labor force. Most of the employment related to proposed CPA Lease Sales 235, 241, and 247 is expected to occur in Texas (primarily in the EIA TX-3) and in the coastal areas of Louisiana. A CPA proposed action, irrespective of whether one analyzes the high-case or low-case production scenario, would not cause employment effects >1 percent in any EIA along the Gulf Coast.

A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on economic factors can be found in Chapter 4.2.1.23.3.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS.

An oil spill can cause a number of disruptions to local economies. Many of these effects are due to industries that depend on damaged resources. However, the impacts of an oil spill can be somewhat broader if companies further along industry supply chains are affected. These effects depend on issues such as the duration, methods, and logistics of the cleanup operations and the responses of policymakers to a spill. However, the impacts of small-to medium-sized spills should be localized and temporary.

Cumulative Impacts

Background/Introduction

The cumulative impacts on economic factors will arise from the expected progression of the broader OCS Program, the expected progression of overall economic activity, the potential risks of oil spills, and the potential risks of natural events such as hurricanes.

A CPA proposed action would contribute to the economic effects of the broader OCS Program. The OCS Program directly affects firms that are responsible for well drilling, equipment manufacturing, pipeline construction, and servicing OCS oil- and gas-related activities. The OCS oil- and gas-related activities also impact the suppliers to those firms, as well as firms that depend on consumer spending of oil and gas industry workers. These activities support employment (and the corresponding levels of population) in various areas in the Gulf of Mexico region. In order to estimate the scale of these effects, BOEM has developed the mathematical model MAG-PLAN, which is a two-stage model. The first stage estimates the levels of spending in various industries that arise from a particular scenario for oil and gas exploration and development; these scenarios include estimates of activities such as drilling, platform installations, and structure removals. These estimates arise from a detailed analysis of the numerous activities that are needed to directly support OCS oil- and gas-related operations. The second stage estimates the impacts of oil and gas industry spending on the broader economies along the Gulf Coast. First, direct OCS oil- and gas-related industry spending will support activities further down the supply chain; these are referred to as "indirect" economic impacts. In addition, the incomes of employees along the OCS industry's supply chain will support consumer spending throughout the economy; these are referred to as "induced" economic impacts. These indirect and induced effects are estimated using the widely used economic modeling software IMPLAN. In particular, MAG-PLAN uses IMPLAN "multipliers" to compute how direct OCS spending circulates within the economy and translates into additional indirect and induced economic impacts. The MAG-PLAN has some limitations. For example, its employment estimates are not able to fully take into account the expected progression of the economy in future years. However, MAG-PLAN still provides reasonable estimates of the relative scale of the economic impacts of OCS oil- and gas-related activities. The initial version of MAG-PLAN is outlined in Manik et al. (2005). BOEM has made a number of adjustments to MAG-PLAN in recent years. For example, BOEM has incorporated the use of a number of new technologies, such as subsea systems and floating production, storage, and offloading system units, into MAG-PLAN. BOEM has also incorporated additional data regarding onshore support activities into the model. More information regarding the most recent version of MAG-PLAN can be found in Eastern Research Group, Inc. (2012).

Table 4-22 presents data on the peak levels of employment in EIAs that are forecasted to arise from the entire Gulf of Mexico OCS Program. The peak employment levels for the entire OCS industry are primarily felt in Louisiana and Texas (primarily in the EIA TX-3). The OCS oil- and gas-related activities will support 53,000 jobs in TX-3 in the peak employment year according to the low-production scenario and over 78,000 jobs in the high-production scenario. However, as can be seen in **Table 4-22**, the OCS industry will make up a larger fraction of the economy of south Louisiana. For example, in LA-2, under the high-case scenario, the OCS industry will support 3.5 percent of total employment, while in TX-3, the OCS industry will support 1.5 percent of total employment. Employment demand will continue to be met primarily with the existing population and available labor force in most EIAs. The vast majority of these cumulative employment estimates represent existing jobs from previous OCS Program actions. BOEM does expect some employment will be met through in-migration; however, this level is projected to be small and localized. As discussed in **Chapter 4.1.1.23.3**, a CPA proposed action is expected to contribute less than 1 percent to the employment level in each of the EIAs.

Oil Spills

A CPA proposed action would contribute to the risk of an oil spill arising from the broader OCS Program. The impacts of low to moderate oil spills are discussed in Chapter 4.2.1.23.3.3 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS. The impacts of a low-probability catastrophic oil spill are discussed in **Appendix B**. In general, a CPA proposed action would only slightly increase the likelihood of oil spills.

Non-OCS Oil- and Gas-Related Impacts

Most approaches to analyzing cumulative effects begin by assembling a list of other likely projects and actions that would be included with a CPA proposed action for analysis. However, no such list of future projects and actions could be assembled that would be sufficiently current and comprehensive to support a cumulative analysis for all 132 of the coastal counties and parishes in the analysis area over a 40-year period. Instead of an arbitrary assemblage of future possible projects and actions, this analysis employs the economic and demographic projections from Woods & Poole Economics, Inc. (2013) to define the contributions of other likely projects, actions, and trends to the cumulative case. These projections are based on local, regional, and national trend data as well as likely changes to local, regional, and national economic and demographic conditions. Therefore, the projections include employment associated with the continuation of current patterns in OCS leasing activity and infrastructure development (refer to **Chapter 4.1.1.23.1**), as well as the contributions of State oil and gas activities, renewable energy activities, coastal land use, tourism-related activities, and beach restoration projects using sand and gravel. **Table 4-23** provides projections of employment, income, wealth, and business patterns for individual EIAs; these data were obtained from the 2013 CEDDS data provided by Woods & Poole Economics, Inc. (2013). As discussed in the previous section, the OCS oil and gas industry comprises a modest percentage of the economics of most EIAs.

Hurricanes

The impacts of a CPA proposed action on economic factors should be viewed in light of the ongoing risk of hurricanes in the Gulf of Mexico. Hurricanes can cause impacts to the OCS oil and gas industry by shutting down production in the immediate vicinity. Hurricanes can also cause disruptions to the functioning of economies and, if severe enough, can cause labor migrations to occur. Finally, hurricanes can cause damage to a number of base resources on which local economies depend.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

BOEM conducted a search of internet sources and of known data sources regarding economic factors. A study report that describes the most recent updates to BOEM's economic model MAG-PLAN has become available (Eastern Research Group, 2012). This report describes the methods used to reflect developments in new technologies, to incorporate costs for major activities, to incorporate detailed onshore distribution data, and to estimate onshore distributions of industry sectors at different levels of granularity. MAG-PLAN's estimates of the levels of employment impacts of lease sales are the same as was presented in the WPA 233/CPA 231 Supplemental EIS. Kaiser et al. (2013) provide additional information regarding the structures of the various components of the offshore drilling industry in the Gulf of Mexico. For example, this report describes the trends, major firms, and determinants of activity levels in both the drilling service market and the rig newbuild market.

Beaubouef (2013) and Dupre (2013) provide updates regarding the status of oil and gas exploration and development activities in the Gulf of Mexico. These reports find that exploration and development activities are increasing and that drilling has rebounded to levels seen prior to the *Deepwater Horizon* explosion, oil spill, and response. These reports also forecast that exploration and development activities will continue to increase in future years. IHS Petrodata (2013) finds that its jackup day rate index for the Gulf of Mexico increased from 417 in October 2012 to 535 in October 2013. Workboat.com (2013) finds that day rates for offshore supply boats less than 200 deadweight tons increased from \$5,840 in September 2012 to \$11,736 in September 2013, while day rates for offshore crewboats under 170 feet long increased from \$3,410 in September 2012 to \$5,180 in September 2013.

The U.S. Energy Information Administration has also released its 2013 Annual Energy Outlook (USDOE, Energy Information Administration, 2013b). This report provides forecasts regarding a wide variety of issues related to energy markets. For example, this report provides forecasts of the levels of oil and gas production that will occur in Gulf offshore waters in future years. In its reference scenario, this report forecasts that Gulf offshore oil production will increase from 1.32 million barrels per day in 2012 to 1.40 million barrels per day in 2013 and 1.51 million barrels per day in 2012 to 1.89 trillion cubic feet per day in 2013 and 1.79 trillion cubic feet per day in 2014. These production trends are driven by many factors, including price pressures arising from increasing onshore natural gas production (Humphries, 2013). Future production will also be influenced by a variety of factors that could affect oil and gas prices, such as the potential for increased energy production in Mexico that could arise from reforms of its energy sector (Hill, 2013).

The impacts of a CPA lease sale and of the OCS program should be viewed in the context of overall economic conditions. In **Table 4-23**, data from Woods and Poole Economics, Inc. (2013) is used to generate forecasts of overall employment in EIAs during the life of activities that would arise from a proposed CPA lease sale. Woods and Poole Economics, Inc. (2013) is also used to forecast various demographic variables; refer to **Chapter 4.1.1.23.2** for more information regarding demographics. In general, the new Woods and Poole Economics, Inc. data is not noticeably different from the Woods and Poole Economics, Inc. data presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.23.3 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified incomplete or unavailable information related to economic factors in the CPA. This incomplete information may be relevant to evaluating adverse effects because the full extent of the potential impacts on economic factors is not known. This information primarily relates to the onshore geographic distributions of economic impacts arising from the OCS Program, which would allow BOEM to better estimate routine and cumulative impacts. This information is difficult to obtain since most data sources do not adequately differentiate between onshore and offshore oil and gas activities.

However, BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing the relevant analysis and formulating the conclusions presented here. In particular, BOEM used the most recent version of MAG-PLAN to estimate the impacts of a CPA proposed action and OCS Program. In addition, BOEM is planning to launch a study project to explore new avenues for improving BOEM's information regarding onshore distributions, although this project will take time and funding to pursue. However, any new information regarding onshore distributions of economic impacts is unlikely to significantly change BOEM's estimates of the impacts of the OCS Program. In addition, the economic impacts arising from the OCS Program are generally positive, not adverse. Therefore, BOEM has determined that the incomplete or unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for economic factors presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for economic factors presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because the new information was roughly in line with prior expectations. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The cumulative impacts of a CPA proposed action would be determined by the expected path of the economy and by the expected progression of the OCS oil and gas industry in upcoming years. The expected path of the overall economy is projected using the data provided by Woods and Poole Economics, Inc. (2013). The expected economic impacts of the OCS oil and gas industry in upcoming years are estimated using the mathematical model MAG-PLAN. The cumulative impacts of a CPA proposed action to the economies along the Gulf Coast are expected to be relatively small.

4.1.1.23.4. Environmental Justice

BOEM has reexamined the analysis for environmental justice presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. No new significant information was discovered that would alter the impact conclusion for environmental justice presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The full analyses of the potential impacts of routine activities and accidental events associated with a CPA proposed action are presented in Chapters 4.2.1.23.4.2 and 4.2.1.23.3 of the 2012-2017 WPA/CPA

Multisale EIS, and updated information is provided in Chapter 4.2.1.23.4 of the WPA 233/CPA 231 Supplemental EIS. A CPA proposed action's incremental contribution to the cumulative impacts is presented below. Any new information that has become available since those documents were published is presented below. A detailed description of environmental justice can be found in Chapter 4.2.1.23.4.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.4 of the WPA 233/CPA 231 Supplemental EIS.

The oil and gas industry and its associated support sectors are interlinked and widely distributed along the Gulf Coast. Offshore OCS oil- and gas-related industry operations within the CPA may utilize onshore facilities located within the WPA, CPA, or both planning areas. While there are no clearly discrete, identifiable, or recognized environmental justice communities in the analysis area, BOEM conducts county-level analysis to determine the concentration of minority and low-income populations located near coastal infrastructure related to OCS oil- and gas-related activities (refer to Chapter 4.2.1.23.4.1 and Figures 4-26 through 4-35 of the 2012-2017 WPA/CPA Multisale EIS).

In accordance with CEQ regulations implementing NEPA, BOEM must provide opportunities for public input during the NEPA process. Minority and low-income populations are provided the same opportunities as other populations to engage in the decisionmaking process. Some of the numerous avenues for public outreach employed by BOEM include specific types of notices that are (1) mailed to public libraries; interest groups; industry; ports and docks; the general public;, local, State, and Federal agencies; (2) published in local newspapers; (3) posted on the Internet; and (4) published in the *Federal Register*. These notices reflect the stages of the NEPA process and include the Call for Information (Call), Notice of Intent to Prepare a Supplemental EIS (NOI), and Notice of Availability (NOA) for the Draft Supplemental EIS. A series of specified time periods after the Call, NOI, and NOA allow for public comments, all of which are considered and addressed. The formal scoping process is initiated by the Call and the NOI, and public scoping meetings are held in several geographically separate cities to allow the public to submit comments and to identify all stakeholders' concerns. A detailed discussion of the complete scoping process can be found in **Chapters 1.4 and 5**. A summary of the scoping comments for this Supplemental EIS can be found in **Chapter 5.3.2**.

Impacts of Routine and Accidental Events

The following routine activities associated with proposed CPA Lease Sales 235, 241, and 247 could potentially affect environmental justice: potential infrastructure changes/expansions including fabrication yards, support bases, and onshore disposal sites for offshore waste; increased commuter and truck traffic; and employment changes and immigration. An analysis of the routine impacts of a CPA proposed action on environmental justice can be found in Chapter 4.2.1.23.4.2 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.4 of the WPA 233/CPA 231 Supplemental EIS.

Because of the existing extensive and widespread support system for OCS oil- and gas-related industry and the associated labor force, the effects of routine events related to a CPA proposed action are expected to be widely distributed and to have little impact. This is because a CPA proposed action is not expected to significantly change most of the existing conditions, such as traffic or the amount of infrastructure. Where such change might occur is impossible to predict but, in any case, it would be very limited. Because of Louisiana's extensive oil-related support system, that State is likely to experience more employment effects related to a CPA proposed action than are the other coastal states, and because of the concentration of this system in Lafourche Parish, that parish is likely to experience the greatest benefits from employment benefits and burdens from traffic and infrastructure demand. Impacts related to a CPA proposed action on minority and low-income populations are expected to be primarily economic in nature and to have a limited but positive effect on low-income and minority populations because a CPA proposed action would contribute to the sustainability of current industry and related support services. Given the existing distribution of the industry and the limited concentrations of minority and low-income peoples adjacent to the OCS infrastructure (Chapter 4.2.1.23.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS) (Kaplan, et al., 2011), a CPA proposed action is not expected to have a disproportionate effect on these populations, even in Lafourche Parish.

Accidental events with impact-producing factors that may be associated with a CPA proposed action that could affect environmental justice include oil spills, vessel collisions, and chemical/drilling-fluid spills. These factors could affect environmental justice through direct exposure to oil, dispersants,

degreasers, and other chemicals that can affect human health; decreased access to natural resources due to environmental damages, fisheries closures, or wildlife contamination; and proximity to onshore disposal sites used in support of oil and chemical spill cleanup efforts. A detailed impact analysis of the accidental impacts that may be associated with proposed CPA Lease Sales 235, 241, and 247 on environmental justice can be found in Chapter 4.2.1.23.4.3 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.23.4 of the WPA 233/CPA 231 Supplemental EIS.

Chemical and drilling-fluid spills may be associated with exploration, production, or transportation activities that result from a CPA proposed action. Low-income and minority populations might be more sensitive to oil spills in coastal waters than is the general population because of their dietary reliance on wild coastal resources, their reliance on these resources for other subsistence purposes such as sharing and bartering, their limited flexibility in substituting wild resources with purchased ones, and their likelihood of participating in cleanup efforts and other mitigating activities. Little is known about subsistence along the Gulf Coast, and BOEM is currently funding a study to better document subsistence in the region. BOEM's subject-matter experts have utilized available, credible information for this analysis. Although most criteria related to environmental justice may not be essential to a reasoned choice among alternatives, subsistence impacts may be essential. Nevertheless, subsistence research is pending and outcomes will not be available within the timeline contemplated in the NEPA analysis of this Supplemental EIS. What credible information is available was applied using accepted methodologies. BOEM will continue to seek additional information as it becomes available and bases this analysis on the best information currently available. With the exception of a low-probability catastrophic accidental event, such as the *Deepwater Horizon* explosion, oil spill, and response, which is not reasonably foreseeable and not part of a CPA proposed action, the impacts of oil spills, vessel collisions, and chemical/drilling fluid spills are not likely to be of sufficient duration to have adverse and disproportionate long-term effects for low-income and minority communities in the analysis area.

An event like the *Deepwater Horizon* explosion, oil spill, and response, which is not reasonably foreseeable and not part of a CPA proposed action, potentially could have adverse and disproportionate health effects for low-income and minority populations in the analysis area; however, to date, there has been little concrete evidence that such effects have occurred (Brown et al., 2011; Dickey, 2012; King and Gibbons, 2011; Middlebrook et al., 2011; U.S. Dept. of Labor, OSHA, 2010a and 2010b), although there is some dispute in the scientific community about proper risk assessment standards in seafood contamination research (Rotkin-Ellman et al., 2012; Rotkin-Ellman and Soloman, 2012). Whether or not disproportionate long-term health impacts to low-income and minority populations will occur is unknown, although scientific research continues.

The Gulf Coast Claims Facility was replaced by a Court Supervised Settlement Program that has been in operation since June 4, 2012 (Gulf Coast Claims Facility, 2012). An Economic and Property Damages Settlement was reached in early 2012 and includes the following types of claims: seafood compensation; business economic loss; individual economic loss; loss of subsistence; vessel physical damage; Vessel-of-Opportunity charter payment; coastal real property damage; wetlands real property damage; and real property sales loss. A Medical Benefits Settlement was also reached in early 2012 and offers benefits to qualifying people who resided in the United States as of April 16, 2012, who were either "Clean-Up Workers" or who were residents in certain defined beachfront areas and wetlands ("Zones") during certain time periods in 2010. On May 2, 2012, the Court granted preliminary approval for the settlement and ordered that the Court-supervised settlement program begin accepting claims on June 4, 2012. For economic and property damages, valid claims will be paid as they are approved. For medical claims, payments and other benefits will be distributed after the final approval of the settlement and any appeals are resolved. The official Court-authorized claims administration website can be found on the *Deepwater* Horizon Claims Center website (Deepwater Horizon Claims Center, 2013a). Persons who filed a claim with the Gulf Coast Claims Facility for losses, such as subsistence, whose claims were rejected or who have not already accepted a final settlement from British Petroleum, may file a new claim with the Deepwater Horizon Claims Center (Deepwater Horizon Claims Center, 2013b).

While economic impacts were partially mitigated by employers retaining employees for delayed maintenance or through the Gulf Coast Claims Facility Program's emergency funds, the physical and mental health effects to both children and adults within these populations could potentially unfold for many years. As studies of past oil spills have highlighted, different cultural groups can possess varying capacities to cope with these types of events (Palinkas et al., 1992). Likewise, some low-income and/or minority groups may be more reliant on natural resources and/or less equipped to substitute contaminated

or inaccessible natural resources with private market offerings. Because lower-income and/or minority populations may live near and may be directly involved with spill cleanup efforts, the vectors of exposure can be higher for them than for the general population, increasing the potential risks of long-term health effects. The post-*Deepwater Horizon*'s human environment remains dynamic, and BOEM will continue to monitor these populations over time and to document short- and long-term impacts. BOEM has funded a study on the social impacts of the oil spill. This study is currently ongoing and explores impacts through a two-pronged approach that involves ethnographic fieldwork combined with demographic analysis. The long-term impacts of the *Deepwater Horizon* explosion, oil spill, and response will become clearer as time allows the production of peer-reviewed research and targeted studies that determine those impacts.

The types of accidental events (smaller, shorter time scale) that are likely to result from a CPA proposed action may affect low-income and/or minority populations more than the general population, at least in the shorter term. These higher risk groups may lack the financial or social resources and may be more sensitive and less equipped to cope with the disruption these events pose. These smaller events, however, are not likely to significantly affect minority and low-income populations in the long term.

Cumulative Impacts

Background/Introduction

The cumulative analysis considers impacts that may result from a CPA proposed action within the context of OCS oil- and gas-related and non-OCS oil- and gas-related, impact-producing factors for environmental justice. The OCS oil- and gas-related, impact-producing factors include OCS leasing, exploration, development, and production activities, and accidental events arising from these OCS oiland gas-related activities. Non-OCS oil- and gas-related, impact-producing factors include human activities and natural events. The context in which people may find themselves and how that context affects their ability to respond to an additional change in the socioeconomic or physical environment is the heart of an environmental justice analysis. The OCS Program in the GOM is large and has been ongoing for more than 50 years, with established infrastructure, resources, and labor pools to That said, low-income and/or minority groups lacking financial, social, or accommodate it. environmental resources or practical alternatives may be more sensitive than other groups to the consequences of an oil spill, such as interruptions to municipal services or fisheries closures, and they may be less equipped to cope with these consequences. In studies on social disaster resiliency, variables such as income inequality can negatively impact a community's ability to respond, and recover, from a disaster (Norris et al., 2008). Groups may be even less equipped to respond to these types of events if they are already in the process of recovering from a disaster, such as a hurricane. On the other hand, Cutter et al. (2008) found that previous disaster experience, defined as the number of paid disaster declarations, positively affected disaster resilience. This cumulative impact analysis examines how incremental additions to an established program from a CPA proposed action may potentially interact within these ongoing external impacts along the Gulf Coast. The oil and gas industry and its associated support sectors are interlinked and widely distributed along the Gulf Coast. Offshore OCS oil- and gasrelated industry operations within the CPA may utilize onshore facilities located within the WPA, CPA, or both planning areas. In accordance with NEPA and the Executive Orders, BOEM must provide opportunities for community input during the NEPA process. Minority and low-income populations are provided the same opportunities as other communities to engage in the decisionmaking process.

OCS Oil- and Gas-Related Impacts

A CPA proposed action and the OCS Program have the potential to adversely impact low-income, minority, and other environmental justice communities either directly or indirectly from onshore activities conducted in support of OCS oil and gas exploration, development, and production and in onshore response activities associated with accidental events such as the *Deepwater Horizon* explosion, oil spill and response. Potential vectors for impacts include increases in onshore activity (such as employment, migration, commuter traffic, and truck traffic), additions to the infrastructure supporting this activity (such as fabrication yards, supply ports, and onshore disposal sites for offshore waste), and additional accidental events such as oil or chemical spills. BOEM estimates that production from a CPA proposed action will be 0.460-0.894 BBO and 1.939-3.903 Tcf of gas (**Table 3-1**). The cumulative oil and gas

production in the CPA for the OCS Program (2012-2051) is estimated at 15.825-21.733 BBO and 63.347-92.691 Tcf of gas. Chapters 4.2.1.23.1.1 and 4.2.1.23.3.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapters 4.2.1.23.1 and 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS describe the widespread and extensive OCS support system and associated labor force, as well as economic factors related to OCS oil- and gas-related activities. The widespread nature of the OCS oil- and gas-related infrastructure serves to limit the magnitude of effects that a single CPA proposed action or the overall OCS Program may have on any particular community. Future lease sales will serve mostly to maintain the ongoing activity levels associated with the current OCS Program.

For most of the Gulf Coast, the OCS Program will result in only minor economic changes. Generally, effects will be widely yet thinly distributed across the Gulf Coast and will consist of slight increases in employment and few, if any, increases in population. Some places could experience elevated employment, population, infrastructure, and/or traffic effects because of local concentrations of fabrication and supply operations. Because of Louisiana's extensive oil-related support system, it is likely to experience more employment effects related to a CPA proposed action than are the other coastal states. Because Lafourche Parish, Louisiana, already services about 90 percent of all deepwater oil production and 45 percent of all shallow-water oil and gas production in the Gulf, it is likely to continue experiencing benefits from the OCS Program (Loren C. Scott & Associates, 2008). Except in Louisiana, the OCS Program is expected to provide little additional employment, although it will serve to maintain current activity levels, which is expected to be beneficial to Gulf region low-income and minority populations. One Agency-funded study found income inequality in Louisiana decreased during the oil boom and increased with the decline (Tolbert, 1995).

A CPA proposed action will generate significant new infrastructure demand. Pipeline shore facilities are small structures, such as oil metering stations, associated with pipeline landfalls. In the Gulf of Mexico region, there are 129 OCS oil- and gas-related pipeline landfalls and 53 OCS oil- and gas-related pipeline shore facilities in the GOM region (**Table 4-24**). **Chapter 3.1.2** discusses projected new coastal infrastructure that may result from a CPA proposed action, including the potential need for the construction of new facilities and/or the expansion of existing facilities. Each OCS oil- and gas-related facility that may be constructed onshore must receive approval by the relevant Federal, State, and local agencies. Each onshore pipeline must obtain similar permit approval and concurrence. BOEM assumes that all such approval would be consistent with appropriate land-use plans, zoning regulations, and other Federal/State/regional/local regulatory mechanisms. Should a conflict occur, BOEM assumes that approval would not be granted or that appropriate mitigating measures would be enforced by the responsible political entities, such as USEPA, the Louisiana Department of Environmental Quality, or the Alabama Department of Environmental Management.

The Gulf Coast region as a whole is not homogenous, but there are several potentially vulnerable ethnic and socioeconomic groups, some residing in enclaves, dispersed throughout Gulf of Mexico OCS economic impact areas. Ten counties/parishes possess high concentrations of oil-related infrastructure, but they do not generally include high concentrations of minority and low-income populations. In the 10 high infrastructure concentration counties/parishes, many of the low-income and minority populations reside in large urban areas where the complexity and dynamism of the economy and labor force preclude measurable lease sale-level or programmatic-level OCS effects (Kaplan et al., 2011). A list of the counties and parishes in the Gulf of Mexico region with high, medium, and low concentrations of OCS oil- and gas-related infrastructure can be found in **Table 4-25**.

Two local infrastructure issues analyzed in Chapter 4.2.1.23.4.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.23.4 of the WPA 233/CPA 231 Supplemental EIS could possibly have related environmental justice concerns: traffic on LA Hwy 1 and the ongoing Port Fourchon expansion. This analysis concludes that the minority and low-income populations of Lafourche Parish will share the negative impacts of the OCS Program with the rest of the population. However, most effects are expected to be economic and positive, as in the areas of job creation and economic stimulation. Improvements to the Port Fourchon highway system are ongoing and upon completion will alleviate many of the associated transportation issues.

Impacts, including how communities respond to fluctuations in industry activity, vary from one coastal community to the next. Expansion or contraction of offshore or onshore oil and gas activity has produced moderate impacts in some communities, whereas other communities have dealt with episodes of

rapid industry change with negligible to minor impact. Overall, OCS programmatic impacts to environmental justice over the next 40 years will likely represent a very small proportion of the cumulative impacts of all activities that affect environmental justice.

Based on operator data provided in filed plans, BOEM estimates that there is an average of $2,000 \text{ ft}^3$ (57 m^3) of trash and debris generated per exploration well drilled, 102 ft³ (3 m³) of trash and debris generated per development well drilled, and 1,000 ft³ (28 m³) of trash and debris generated per year per manned platform of its 25-year life (Dismukes et al., 2007). A single CPA proposed action usually represents <1 percent of the total current permitted landfill capacity in a GOM economic impact area. Because of technological improvements on how waste is compacted, landfill capacity has increased, with Texas landfills having increased useful life by 19 years from the mid-1990's to 2005. Drilling muds and wastewater streams can be used as landfill cover, and landfills will often accept these materials at a reduced price or even at no charge (The Louis Berger Group, Inc., 2004). The occurrence of hazardous offshore, oil-field waste is minimal and infrequent. Industry representatives contracted for a BOEM study indicated that the need for hazardous storage could occur as infrequently as once in 5 years for a typical offshore facility with drilling and production activities (Dismukes et al., 2007). Table 4-26 lists where existing waste sites are located and the amount of waste that was generated by the Deepwater Horizon explosion, oil spill, and response and that was distributed between Gulf landfills and waste processing facilities. Argonne National Laboratory reported that there are 46 waste management facilities that service the oil and gas industry along the GOM, with 18 in Louisiana, 18 in Texas, 5 in Mississippi, 4 in Alabama, and 1 in Florida (Puder and Veil, 2006). Because of existing capacity, no new waste disposal sites are projected for the cumulative case (The Louis Berger Group, Inc., 2004). Therefore, no changes in impacts to minority and low-income communities are expected.

While the long-term social impacts of the *Deepwater Horizon* explosion, oil spill, and response have yet to be determined, anecdotal evidence from media coverage and early survey studies suggested the possibility of trends that might disproportionately affect low-income and minority communities for some time to come. A phone survey conducted by a team of Louisiana State University sociologists found that nearly 60 percent of the 925 coastal Louisiana residents interviewed reported being almost constantly worried by the *Deepwater Horizon* explosion, oil spill, and response (Lee and Blanchard, 2010). Studies of residents near past oil spills (such as the *Exxon Valdez* in Prince William Sound, Alaska) have noted impacts to social cohesion and increased distrust in government and other institutions, which contributed to community anxiety (Tuler et al., 2009). Refer to **Appendix B** for a detailed discussion of a low-probability, high-impact catastrophic oil spill.

Cumulative effects from oil-spill events on social organization could include fragmentation of the family, cooperation, sharing, and subsistence availability. Long-term effects on wild resource harvest patterns might also be expected. While acute health effects from oil-spill events have been somewhat studied, the long-term impacts from exposure are unknown (Aguilera et al., 2010; Meo, 2009; Morita et al., 1999; Sathiakumar, 2010). The National Institutes of Health's long-term health surveillance studies of possible long-term health effects from exposure to either the *Deepwater Horizon* explosion, oil spill, and response's oil or dispersants, such as the possible bioaccumulation of toxins in tissues and organs, are ongoing. The potential for the long-term human health effects remains largely unknown. Participants in the Deepwater Horizon "Vessels of Opportunity" program, which recruited local boat owners (including Cajun, Houma Indian, and Vietnamese fishermen) to assist in cleanup efforts, may be one of the exposed groups. African Americans are thought to have made up a high percentage of the cleanup workforce. In Gulf coastal areas, low-income and minority groups are heavy subsistence users of local seafood. Worker and shoreline monitoring data indicate that the concentrations of oil and dispersants to which low-income and minority communities may have been exposed are unlikely to result in adverse health effects (King and Gibbons, 2011; Middlebrook et al., 2011; U.S. Dept. of Labor, OSHA, 2010a and 2010b). One concern is that heavy subsistence users may face higher than expected, and potentially harmful, exposure rates to PAHs from the Deepwater Horizon explosion, oil spill, and response. However, fisheries closures may have temporarily limited access to subsistence foods, thereby also reducing the potential of oil dispersant exposure, especially since fisheries were not reopened until testing indicated that the waters were safe for fishing. Extensive seafood testing for PAHs and dispersant compounds found levels that were within the risk assessment protocol established by the U.S. Food and Drug Administration, NOAA, and the Gulf Coast States (Brown et al., 2011; Dickey, 2012). It should be noted that there is some dispute within the scientific community over the validity of the risk assessment protocol that was used, and there is concern that the levels of concern established by the protocol may have underestimated the

risk from seafood contaminants among vulnerable populations such as pregnant women and children (Rotkin-Ellman et al., 2012; Rotkin-Ellman and Soloman, 2012). The U.S. Food and Drug Administration defended the protocol as valid (Dickey, 2012). Future long-term studies may help to resolve the dispute. For purposes of this Supplemental EIS, BOEM has conservatively assumed that fish consumption remains a potential pathway for impacting the local population in the event of a low-probability catastrophic event.

The National Institutes of Health's proposed study, known as the Gulf Long-Term Follow-Up Study (GuLF STUDY), is expected to provide a better understanding of the long-term and cumulative health impacts, such as the consequences of working close to a spill and of consuming contaminated seafood. The GuLF STUDY will monitor oil-spill cleanup workers for 10 years. The GuLF STUDY has closed enrollment with nearly 33,000 participants. Of the study participants, 82 percent live in the five Gulf Coast States and 18 percent are from other states. Minority and low-income persons comprise 38 percent and 26 percent, respectively, of study participants. All of the participants either helped with the cleanup effort (74%) or were trained but did not actually help with the cleanup (26%) (National Institute of Environmental Health Sciences, 2013).

Studies that seek to understand the short- and long-term impacts of the *Deepwater Horizon* explosion, oil spill, and response are ongoing regarding environmental justice concerns. BOEM modified an ethnicity study immediately after the oil spill started and added an oil-spill impact component, which allowed them to task ethnographers who were already on the ground in Louisiana and Mississippi. In mid-2010, BOEM also funded a study to document subsistence in the region. In 2012, BOEM kicked-off a study on the social impacts of the oil spill and explores impacts through a two-pronged approach that involves ethnographic fieldwork combined with demographic analysis. The NRDA process may also help us to understand issues relating to subsistence and other indigenous reliance on natural resources.

The National Institute of Environmental Health Sciences awarded a 5-year \$7.85 million grant to a consortium of university researchers and regional community groups; the consortium will be led by the University of Texas Medical Branch at Galveston. The study, known as *Gulf Coast Health Alliance: Health Risks Related to the Macondo Spill* (GC-HARMS), will be focused on gaining an understanding of the long-term health effects attributable to the *Deepwater Horizon* oil spill. The GC-HARMS will examine and analyze human exposure and seafood contamination by "measuring the distribution of potentially carcinogenic petrogenic polycyclic aromatic hydrocarbons (PAH) present in weathered oil" (University of Texas Medical Branch, 2013). University researchers will work closely with community partners using a Community-Based Participatory Research approach. The community groups will connect researchers with local fishermen who will be trained to do sampling from not only their commercial catches but also from their bycatch, which they consume and frequently share or barter through extended families. They will also serve as partners in the effort to determine how seafood is distributed in local subsistence communities. The GC-HARMS will also include an outreach effort to inform Gulf Coast residents of the study's findings and other relevant research (University of Texas Medical Branch, 2013).

The *Deepwater Horizon* explosion, oil spill, and response stimulated increased community outreach projects. For example, the Mississippi Coalition for Vietnamese-American Fisher Folks and Families continued its extensive post-oil spill outreach efforts by helping to facilitate a NRDA/Early Coastal Restoration training in 2012 that over 80 Vietnamese-American fisher folks attended. The Mississippi Coalition for Vietnamese-American Fisher Folks and Families provided qualified interpreters and translated materials to ease communication throughout the training. A series of early Coastal Restoration public meetings in the coastal counties of Mississippi were also widely attended by fisher folks who were able to participate in the process and present ideas for coastal restoration projects (USEPA, 2013f).

Minority and low-income populations who may have a claim against the responsible party have faced a difficult claim-resolution process that evolved in the post-spill environment. The Gulf Coast Claims Facility was replaced by a Court Supervised Settlement Program that started operations on June 4, 2012 (Gulf Coast Claims Facility, 2012). An Economic and Property Damages Settlement was reached in early 2012 and includes the following types of claims: seafood compensation; business economic loss; individual economic loss; loss of subsistence; vessel physical damage; Vessel-of-Opportunity charter payment; coastal real property damage; wetlands real property damage; and real property sales loss. A Medical Benefits Settlement was also reached in early 2012 and offers benefits to qualifying people who resided in the United States as of April 16, 2012, who were either "Clean-Up Workers" or who were residents in certain defined beachfront areas and wetlands ("Zones") during certain time periods in 2010.

The official Court-authorized claims administration website can be found on the *Deepwater Horizon* Claims Center website (*Deepwater Horizon* Claims Center, 2013a). Persons who filed a claim with the Gulf Coast Claims Facility for losses, such as subsistence, whose claims were rejected, or who have not already accepted a final settlement from British Petroleum may file a new claim with the *Deepwater Horizon* Claims Center (*Deepwater Horizon* Claims Center, 2013b).

Whether or not long-term impacts to low-income and minority populations will occur is unknown. As studies of past oil spills have highlighted, different cultural groups can possess varying capacities to cope with these types of events (Palinkas et al., 1992). Likewise, some low-income and/or minority groups may be more reliant on natural resources and/or less equipped to substitute contaminated or inaccessible natural resources with private market offerings. Because lower-income and/or minority populations may live near and may be directly involved with spill cleanup efforts, the vectors of exposure can be higher for them than for the general population, increasing the potential risks of long-term health effects. BOEM will continue to monitor these populations over time and to document short- and long-term impacts. Information regarding the long-term impacts of the *Deepwater Horizon* explosion, oil spill, and response remains incomplete, and scientific research is ongoing. Information from the NRDA process is unavailable and unobtainable at this time. In its place, BOEM's subject-matter experts have used credible information that is available and applied it using accepted socioeconomic methodologies. BOEM will continue to seek additional information as it becomes available and bases the previous analysis on the best information currently available.

In addition to oil-spill events, public health also may be affected by routine OCS oil- and gas-related activities, though it is difficult to determine whether the impact is directly or indirectly related to oil and gas activities on the OCS since there are also extensive oil and gas activities onshore. Public health is a unique factor for this cumulative analysis because it is applicable to either or both OCS oil- and gas-related analyses. The complexity of making that determination, teasing out which does what and where, is far beyond the scope of this analysis.

The Natural Resources Defense Council and the National Disease Clusters Alliance identify and track disease clusters in the U.S. An unusually large number of people sickened by a disease in a certain place and time is known as a "disease cluster" (Natural Resources Defense Council and National Disease Clusters Alliance, 2011). The underlying causes of a disease cluster can be genetic, environmental, or both. The State of Louisiana's Center for Environmental Health defines an environmental disease cluster when evidence of a known connection between the hazard and the disease or health outcome of concern is established (State of Louisiana, Dept. of Health and Hospitals, 2008). The Natural Resources Defense Council and the National Disease Clusters Alliance identified disease clusters in 13 states, with four clusters in Louisiana and three clusters in Florida. The four locations in Louisiana include Mossville in Calcasieu Parish, Amelia in St. Mary Parish, Coteau in Iberville Parish, and New Orleans in Orleans Parish. The exact cause of these clusters is unknown, but experts suspect environmental contaminants. The Agency for Toxic Substances and Disease Registry identified a cluster of breast cancer in an urban census tract at the Agricultural Street Landfill Superfund Site in New Orleans in a 2003 study. According to the Agency for Toxic Substances and Disease Registry, the site and neighborhood are contaminated with metals, PAHs, volatile organic compounds, and pesticides due to a contaminated landfill that operated from 1909 to 1962 and then was covered with dirt and used as a site for residential development in 1976. The area was designated a hazardous waste site in 1993. From 1986 through 1987, researchers from Louisiana State University Medical School identified a cluster of neuroblastoma, a type of brain cancer adjacent to a marine shale processor plant in Amelia, located in St. Mary Parish, Louisiana. There was insufficient data to link a hazardous waste incinerator at the marine shale processor plant, but in 2007 the owners paid the State government a settlement to close and remediate the site. In Florida, Palm Beach, Collier, and Manatee Counties each have confirmed disease clusters. Loxahatchee, Florida, located in Palm Beach County, has a pediatric brain cancer cluster thought to be caused by spills of chemicals, solvents, and pesticides from a rocket and jet engine company. Immokalee, Florida, located in Collier County, is site of a birth defect disease cluster believed to be caused by an agricultural corporation that used six of the most dangerous pesticides in excessive levels. Tallevast, Florida, located in Manatee County, is home to a cancer disease cluster caused by prior long-term use of contaminated groundwater that resulted from improper disposal of a cancer-causing solvents such as trichloroethylene at a machine parts manufacturing plant (Natural Resources Defense Council and the National Disease Clusters Alliance, 2011). Disease clusters are included here because even though a direct cause-effect relationship has not been established between OCS oil- and gas-related activities and the occurrence of these clusters,

4-213

it cannot be stated emphatically that OCS oil- and gas-related activities have or have not been a contributing factor to some of these problems. Clearly, impacts to public health can occur because of non-OCS and OCS oil- and gas-related activities whether from marine shale processors or waste brought to landfills or from environmental contamination from non-OCS oil- and gas-related industrial concerns or upstream and downstream facilities attached to either or both onshore and offshore oil and gas activities. The most important question, and one that has proved impossible to answer, is how much of actual OCS oil- and gas-related activities, i.e., offshore activity in Federal waters, may contribute to these problems. This cannot be definitively determined. There are numerous non-OCS oil- and gas activities, both onshore and offshore in State waters, as well as other industrial activities onshore that have produced various landfill-destined waste products and/or discharged toxic liquid waste and air emissions.

Due to the distance of OCS oil- and gas- related activities offshore, routine events related to a CPA proposed action would not be expected to directly affect public health in these communities, though it is not unlikely that members of these communities could participate in cleanup efforts if there was an oil-spill event. An environmental justice analysis seeks to identify populations that, through a variety of mechanisms, may become disproportionately impacted by a CPA proposed action and associated activities. Research like this suggests that there may be a correlation between downstream oil and gas processing (after any OCS Program-related oil and gas comes ashore) and diminished health in adjacent populations. As a result, communities appearing to have disease clusters are probably more sensitive to potential impacts in a cumulative scenario.

Non-OCS Oil- and Gas-Related Impacts

Non-OCS oil- and gas-related impacts cover a wide range of potential impact-producing factors. including all human activities and natural events and processes that are not related to OCS oil- and gasrelated activities. Some of the human activities that may disproportionately affect low-income and minority populations include, but are not limited to, the following: urbanization; pollution (air, light, noise, garbage dumping, and contaminated runoff); commercial/residential/agricultural development; zoning ordinances; community development strategies (multi-purpose, single-use); expansions to the Federal, State and local highway systems; expansions to regional port facilities; military activities; demographic shifts (in-migration, out-migration); economic shifts on the national, State and local levels (job creation and job losses); military activities; educational systems (quality, availability, expansions or contractions); family support systems (availability, proximity and quality of mental health services, foster care, charity hospital systems, addictive disorders rehabilitation centers, planned parenthood, head start programs, etc.); governmental functions (municipal waterworks systems, sewage systems, tax structures, revenue collection, law enforcement, fire protection, traffic control, voting processes, legislative processes, court procedures and processes, real estate property assessments, construction permits, environmental protection services, land-use permits, etc.); contraction or expansion of the tourism industry; financial system (banking and investment services); State renewable energy activities; river channelization, dredging of waterways; State oil and gas activity; existing infrastructure associated with downstream activities such as petrochemical processing; and public health.

Urbanization may disproportionately impact low-income and minority populations who make up the larger portion of an urban population and thus may be subjected to high levels of pollution (air, light, noise, litter/dumping) that often exist in urban areas. Commercial and residential developments may produce a disproportionate affect if the low-income and minority population's interests are not adequately represented at public hearings. Agricultural development has often contributed (and may continue to contribute) to the loss of wetlands and deforestation, which is a problem for subsistence populations who are often low-income and minority and depend on the wetlands and forests for their subsistence activities. When Federal, State, and local highway systems and regional port facilities are expanded, there is a tradeoff between the benefits of expansion and the potential negative impact to the local environment. Low-income and minority populations share in those positive and negative impacts. Likewise, when the Federal, State, and/or local economic conditions deteriorate (job losses), low-income and minority populations where the brunt of the impact. Military activities such as military base closures resulting in job losses and the resulting direct, indirect, and induced economic impacts for surrounding communities, as well as infrastructure expansion at military bases, may produce both negative and positive effects on nearby low-income and minority populations.

such as out-migration, which often occur with major economic downturns, affect whole communities. However, economic upturns and demographic in-migration may benefit low-income and minority populations. Similarly, the status of a community's educational system may be a positive or negative benefit to these populations, depending on the quality of the educational facilities and infrastructure, the teacher to student ratios, the standardized test scores, the amount and extent of busing across cities and towns, and the availability of special education services in the public schools. All of these factors contribute to the quality of the educational system in these communities. Another very important non-OCS oil- and gas-related, impact-producing factor for low-income and minority populations involves family support services systems, namely their availability, proximity, and quality. Social services such as mental health support, charity hospitals, addictive disorder rehabilitation, foster care, head start programs, and planned parenthood are often hard to find in rural areas, but these services may be more accessible in larger cities, towns, and urban areas.

Other human activities that also may have disproportionate positive or negative impacts on lowincome and minority populations are related to local, State, and Federal government functions, which are numerous and expansive. Two of the more crucial government functions for basic community functioning involve municipal waterworks and sewage systems. If these are not maintained in good condition with adequate capacity, low-income and minority populations may suffer disproportionate negative impacts. Another important factor to consider is the contraction and expansion of the tourism industry, which is very important to the economies of the Gulf of Mexico region. When there is a contraction in the tourism sector, the negative effects are felt by all those connected, but the effects may be disproportionately felt by low-income and minority populations in any area that they may constitute a larger presence. These same populations may experience disproportionate negative effects related to the financial system, namely access to loans, investment planning, and insurance. State renewable energy programs are non-OCS oil- and gas-related and may also provide a vector for disproportionate impacts due to their potential placement on or near fishing and hunting grounds that are crucial for subsistence users. River channelization and dredging of other waterways are also potential negative impacts for lowincome and minority populations where they may have traditionally fished and tended oyster beds.

Additionally, onshore human activities conducted in support of State oil and gas exploration, development, and production have the potential to adversely impact low-income, minority, and other environmental justice communities either directly or indirectly. Louisiana, Mississippi, and Alabama's jurisdiction over mineral resources extends 3 nmi (3.5 mi; 5.6 km) from the shore; Texas and the west coast of Florida's jurisdiction over the seabed extends out 9 nmi (10.4 mi; 16.7 km). The annual gas production from Alabama State waters has ranged from 150 to 200 billion cubic feet or approximately 50 percent of the State's total gas production (State of Alabama, n.d.). While offshore leasing in shallow waters is in general decline, states like Louisiana are attempting to incentivize increased activity closer to the shore. In 2006, the Louisiana Legislature authorized the Louisiana Department of Environmental Quality to implement an Expedited Permit Processing Program, which has so far resulted in a 55-percent reduction in coastal permitting time (State of Louisiana, Dept. of Natural Resources, 2009). In November 2010, Louisiana voters passed the Louisiana Natural Resource Severance Tax Amendment, which effectively decreases the amount of taxes retained by the State on the severance of natural resources, but it increases what can be collected by the parishes where resources are extracted (State of Louisiana, 2010). Whether this measure will increase individual parishes' incentive to encourage production closer to the coast is still unknown.

State offshore oil and gas programs pose the same potential issues as does the OCS Program, although since State leases are closer to land, their petroleum-related activities are generally viewed as having greater potential for directly impacting coastal communities. BOEM assumes that sitings of any future facilities associated with State programs will be based on the same economic, logistical, zoning, and permitting considerations that determined past sitings. Revenues from oil programs in State waters have produced several positive impacts, and the steady stream of oil exploration and development have produced positive cumulative impacts that include increased funding for infrastructure, higher incomes (that can be used to purchase better equipment for subsistence), better health care, and improved educational facilities. While industrialization generally leads to a shift in community organization and cultural development, the offshore oil and gas industry and its concentrated work schedule has been more accommodating of "traditional" activities, such as trapping and fishing, during their time at home (Luton and Cluck, 2004).

Existing onshore infrastructure associated with petrochemical processing, including refineries (such

as polyvinyl plants) and the production of petroleum-based goods, poses potential health and other related risks to minority and low-income communities. Expectations for new gas processing facilities being built during the period 2012-2051 as a direct result of the OCS Program are dependent on long-term market trends that are not easily predictable over the next 40 years. Existing facilities will experience equipment switch-outs or upgrades during this time. The marginal contribution of a CPA proposed action does not change the estimate. The geographic distribution of projected gas processing facilities differs markedly from the current distribution. BOEM cannot predict and does not regulate the siting of future gas processing plants. BOEM assumes that sitings of any future facilities will be based on the same economic, logistical, zoning, and permitting considerations that determined past sitings and that they will not disproportionately affect minority and low-income populations. An environmental justice study of industrial siting patterns in Jefferson, St. Bernard, and Lafourche Parishes in Louisiana (Hemmerling and Colten, 2003) found that "people appear to be moving into densely populated, largely industrial areas where the costs of rent are lower. In addition, people tend to be moving into newer housing." This historical analysis revealed little evidence of systematic environmental injustice of various oil-related industries, with the demographic makeup of the communities changing after facilities arrived.

While human activities are extensive and nearly all-encompassing, there are a substantial number of natural events and processes that may be classified as non-OCS oil- and gas-related impacts and that are unassociated with OCS-based oil and gas activities. Some of the natural events and processes that lowincome and minority populations may be disproportionately affected by include, but are not limited to, the following: oyster reef degradation; saltwater intrusion; sedimentation of rivers; sediment deprivation; barrier island migration and erosion; fish kills; red tide; beach strandings; coastal erosion/subsidence; sealevel rise; and coastal storms.

Low-income and minority populations in the coastal region are often subsistence users, and many depend on the harvesting of ovsters for either subsistence or financial income. There are a large number of African-American oyster harvesters in Plaquemines Parish, Louisiana, for example. The health of the oyster beds is critical to these populations. When degradation of oyster reefs occurs, it may negatively and disproportionately affect low-income and minority populations by decreasing the number of oysters that are able to harvest for economic and subsistence uses. Saltwater intrusion affects oyster reefs and the overall wetlands ecosystem, which is where these populations hunt and fish. In some places there is too much sediment deposited in waterways, and in others there is sediment deprivation; both of these serve to negatively impact the delicate ecosystem upon which these people depend. Barrier islands are very important to low-income and minority populations who make their living fishing these areas. The barrier islands in the regions have been migrating and eroding for decades. This natural process is one of the challenges faced in the region and contributes to cumulative effects. Low-income and minority populations may also be disproportionally affected by the negative impacts of fish kills, red tide, and beach strandings, which all may interfere with their use of the land for subsistence and economic purposes.

Coastal erosion and subsidence in some parts of the southeastern coastal plain serves to amplify the vulnerability of communities, infrastructure, and natural resources to storm-surge flooding (Dalton and Jones, 2010). Submergence in the Gulf area is occurring most rapidly along the Louisiana coast and more slowly in other coastal states. Depending on local geologic conditions, the subsidence rate varies across coastal Louisiana from 3 to over 10 mm/yr (0.12 to over 0.39 in/yr). Natural drainage patterns along many areas of the Gulf Coast areas have been severely altered by construction of the Gulf Intracoastal Waterway and other channelization projects associated with its development. Saltwater intrusion resulting from river channelization and canal dredging is a major cause of coastal habitat deterioration (Tiner, 1984; National Wetlands Inventory Group, 1985; Cox et al., 1997); refer to Chapter 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS for a detailed discussion of wetlands in the CPA. As discussed in Chapter 4.2.1.23.4.1 of the 2012-2017 WPA/CPA Multisale EIS, tropical storms may be the norm in the region, but low-income and minority communities may bear a larger burden than the general populations when the amount of coastal erosion resulting from those storms is considered. Native Americans, Vietnamese, Cajuns, African Americans, and other ethnic enclaves have all borne catastrophic losses in recent storm events. An estimated 4,500 Native Americans living on the southeast Louisiana coast lost their possessions to Hurricane Katrina, according to State officials and tribal leaders. Cajuns were also impacted by Hurricane Katrina, and especially by Hurricane Rita, whose 20-ft (6-m) storm surges flooded low-lying communities in Cameron, Calcasieu, and other coastal parishes (Kaplan et al., 2011).

According to a USGS 5-year, post-Katrina survey, the wetland loss in Louisiana from all four storms (Hurricanes Katrina, Rita, Gustav, and Ike) totaled 340 mi² (881 km²). The U.S. Geological Survey projects that coastal Louisiana has undergone a net change in land area of about 1,883 mi² (4,877 km²) from 1932 to 2010 (Couvillion et al., 2010).

A U.S. Geological Survey study published in early 2013, Economic Vulnerability to Sea-Level Rise along the Northern U.S. Gulf Coast, applied a CEVI to the northern Gulf coastal region in order to measure economic vulnerability to sea-level rise. The study attempted to determine which coastal communities may face the greatest challenges with regard to the economic and physical impacts of relative sea-level rise and revealed areas along the Gulf Coast that could most benefit from long-term resiliency planning. Within an area, the presence of a concentration of economically valuable infrastructure combined with physical vulnerability to inundation from sea-level rise resulted in the highest vulnerability rankings (CEVI score). The highest average CEVI score in the Gulf coastal region appeared in Lafourche Parish, Louisiana, where there is an extensive amount of valuable infrastructure related to the oil and gas industry, along with high relative sea-level rise rates and high coastal erosion rates. Terrebonne Parish, Louisiana, also received a high CEVI value because of its high level of physical vulnerability and high concentration of energy infrastructure. Due to limitations within the CEVI model, such as subjective weighting of variables, researchers caution that results of the study should remain within a vulnerability context and that CEVI results should only be considered relative measures that are best utilized to provide decisionmakers with a better understanding of the vulnerability of the coastal region's critical infrastructure when making decisions about modifying, protecting, or building new infrastructure in these coastal communities (Thatcher et al., 2013).

Coastal erosion, subsidence, and sea-level rise can increase community vulnerability to future hazards and also threaten traditional ways of life. Saltwater intrusion reduces the productivity and species diversity associated with wetlands and coastal marshes (Stutzenbaker and Weller, 1989; Cox et al., 1997). While users of coastal waters may trend towards the relatively affluent, low-income and minority groups may be more dependent on the resources of the Gulf Coast. Several ethnic minority and low-income groups rely substantially on these resources (e.g., refer to Hemmerling and Colten, 2003, for an evaluation of environmental justice considerations for south Lafourche Parish).

Hurricanes, tropical storms, and other wind-driven tidal or storm events are a fact of life for communities living along the Gulf of Mexico coastal zone. For low-income and minority populations, however, the impacts of coastal storm events can be particularly profound because of factors like limited resources to evacuate or to mitigate hazards. Baseline conditions pertaining to environmental justice were reevaluated in light of recent hurricane activity in the Gulf of Mexico. The intensity and frequency of hurricanes in the Gulf over the last several years has greatly impacted the system of protective barrier islands, beaches, and dunes and associated wetlands along the Gulf Coast. Within the last several years, the Gulf Coast of Texas, Louisiana, Mississippi, Alabama, and to some degree Florida have experienced five major hurricanes (Ivan, Katrina, Rita, Gustav, and Ike) as well as minor hurricanes (Humberto and Isaac). Impacts from future hurricanes and tropical storm events are uncertain. One study found that Galveston neighborhoods with higher proportions of renters, households in poverty, and minorities were more likely to have waited to evacuate the urbanized barrier island in advance of Hurricane Ike (Van Zandt et al., 2010). Municipal programs like the New Orleans Office of Homeland Security and Public Safety's City Assisted Evacuation Plan are being implemented to help citizens who want to evacuate during an emergency but lack the capability to self-evacuate (City of New Orleans, n.d.). Hazard mitigation funds available through individual states and the Federal Emergency Management Agency also seek to mitigate potential damage to homes in flood zones throughout the Gulf. While hurricanes and tropical storms are inevitable, lessons learned from Hurricanes Katrina, Rita, Gustav, and Ike are shaping local and national policies as well as nongovernmental organizations efforts to protect low-income, minority, and other vulnerable communities.

In addition to coastal storms, public health also may be considered a non-OCS oil- and gas-related factor. Public health is a unique factor for this cumulative analysis because it is applicable to both OCS oil- and gas-related and non-OCS oil- and gas-related analysis. Problems that the affect public health may be cause by either or both non-OCS oil- and gas-related and OCS oil- and gas-related activities. The complexity of making that determination, teasing out which does what and where, is far beyond the scope of this analysis. The Natural Resources Defense Council and the National Disease Clusters Alliance identify and track disease clusters in the U.S. An unusually large number of people sickened by a disease in a certain place and time is known as a "disease cluster" (Natural Resources Defense Council and

National Disease Clusters Alliance, 2011). The underlying causes of a disease cluster can be genetic, environmental, or both. The State of Louisiana's Center for Environmental Health defines an environmental disease cluster when evidence of a known connection between the hazard and the disease or health outcome of concern is established (State of Louisiana, Dept. of Health and Hospitals, 2008). The Natural Resources Defense Council and the National Disease Clusters Alliance identified disease clusters in 13 states, with four clusters in Louisiana and three clusters in Florida. The four locations in Louisiana include Mossville in Calcasieu Parish, Amelia in St. Mary Parish, Coteau in Iberville Parish, and New Orleans in Orleans Parish. The exact cause of these is unknown, but experts suspect environmental contaminants. The Agency for Toxic Substances and Disease Registry identified a cluster of breast cancer in an urban census tract at the Agricultural Street Landfill Superfund Site in New Orleans in a 2003 study. According to the Agency for Toxic Substances and Disease Registry, the site and neighborhood are contaminated with metals, PAHs, volatile organic compounds, and pesticides due to a contaminated landfill that operated from 1909 to 1962 and then was covered with dirt and used as a site for residential development in 1976. The area was designated a hazardous waste sight in 1993. From 1986 through 1987, researchers from Louisiana State University Medical School identified a cluster of neuroblastoma, a type of brain cancer adjacent to a marine shale processor plant in Amelia, located in St. Mary Parish, Louisiana. There was insufficient data to link a hazardous waste incinerator at the marine shale processor plant, but in 2007 the owners paid the State government a settlement to close and remediate the site. In Florida, Palm Beach, Collier, and Manatee Counties each have a confirmed disease cluster. Loxahatchee, Florida, located in Palm Beach County, has a pediatric brain cancer cluster thought to be caused by spills of chemicals, solvents, and pesticides from a rocket and jet engine company. Immokalee, Florida, located in Collier County, is site of a birth defect disease cluster believed to be caused by an agricultural corporation that used six of the most dangerous pesticides in excessive levels. Tallevast, Florida, located in Manatee County, is home to a cancer disease cluster caused by prior longterm use of contaminated groundwater that resulted from improper disposal of cancer-causing solvents such as trichloroethylene at a machine parts manufacturing plant. The complexity and inherent difficulty of investigating potential and suspected disease clusters often lead to inconclusive results. Scientific tools used to determine cause-and-effect in small populations are limited (Natural Resources Defense Council and the National Disease Clusters Alliance, 2011). This discussion shows that impacts to public health can occur because of non-OCS oil- and gas-related and OCS oil- and gas-related activities whether they are from marine shale processors or waste brought to landfills or from environmental contamination from non-OCS oil- and gas-related industrial concerns or upstream and downstream facilities attached to either or both onshore and offshore oil and gas activities.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of various Internet information sources and trade publications (U.S. Department of Health and Human Services, National Institutes of Health; USEPA; USDOC, Bureau of the Census and Bureau of Labor Statistics; U.S. Department of Homeland Security, Federal Emergency Management Agency; RestoreTheGulf.gov website; *Deepwater Horizon* Claims Center; *Deepwater Horizon* Oil Spill Portal; Louisiana Department of Environmental Quality; Mississippi Department of Environmental Quality; Alabama Department of Environmental Management; Florida Department of Environmental Protection; Louisiana Recovery Authority; and Louisiana Office of Community Development, The Greater Lafourche Port Commission, LA1 Coalition, Rigzone, *Oil and Gas Journal* and The Oil Drum), as well as recently published journal articles, was conducted to determine the availability of recent information on environmental justice. The search revealed the following new information.

The *Deepwater Horizon* explosion, oil spill, and response stimulated increased community outreach projects. For example, the Mississippi Coalition for Vietnamese-American Fisher Folks and Families continued its extensive outreach efforts by helping to facilitate a NRDA/Early Coastal Restoration training in 2012 that over 80 Vietnamese-American fisher folks attended. The Mississippi Coalition for Vietnamese-American Fisher Folks and Families provided qualified interpreters and translated materials to ease communication throughout the training. A series of Early Coastal Restoration public meetings in coastal counties of Mississippi were also widely attended by fisher folks who were able to participate in the process and present ideas for coastal restoration projects (USEPA, 2013f).

The National Institute of Environmental Health Sciences awarded a 5-year (2011-2016) \$7.85 million grant to a consortium of university researchers and regional community groups that will be led by the University of Texas Medical Branch at Galveston. The study, known as *Gulf Coast Health Alliance: Health Risks Related to the Macondo Spill* (GC-HARMS), will be focused upon gaining an understanding of the long-term health effects attributable to the *Deepwater Horizon* oil spill. The GC-HARMS will examine and analyze human exposure and seafood contamination by "measuring the distribution of potentially carcinogenic polycyclic aromatic hydrocarbons (PAH) present in weathered oil" (University of Texas Medical Branch, 2013). University researchers will work closely with community partners using a Community-Based Participatory Research approach. The community groups will connect researchers with local fishermen who will be trained to do sampling from not only their commercial catches but also from their bycatch, which they consume and frequently share or barter through extended families. They will also serve as partners in the effort to determine how seafood is distributed in local subsistence communities. The GC-HARMS will also include an outreach effort to inform Gulf Coast residents of the study's findings and other relevant research (University of Texas Medical Branch, 2013).

A related effort, GuLF STUDY (a national effort to determine if the *Deepwater Horizon* oil spill led to physical or mental health problems), has enrolled nearly 33,000 participants. Of the study participants, 82 percent live in the five Gulf Coastal States and 18 percent are from other states. Minority and low-income persons comprise 38 percent and 26 percent, respectively, of study participants. All of the participants either helped with the cleanup effort (74%) or were trained but did not actually help with the cleanup (26%). This 10-year long study will be completed in 2021 (National Institute of Environmental Health Sciences, 2013).

A U.S. Geological Survey study, Economic Vulnerability to Sea-Level Rise along the Northern U.S. Gulf Coast, was published in spring 2013 and applied a CEVI to the northern Gulf coastal region in order to measure economic vulnerability to sea-level rise. The study attempted to determine which coastal communities may face the greatest challenges with regard to the economic and physical impacts of relative sea-level rise, and it revealed areas along the Gulf Coast that could most benefit from long-term resiliency planning. Within an area, the presence of a concentration of economically valuable infrastructure, combined with physical vulnerability to inundation from sea-level rise, resulted in the highest vulnerability rankings (CEVI score). The highest average CEVI score in the Gulf coastal region appeared in Lafourche Parish, Louisiana, where there is an extensive amount of valuable infrastructure related to the oil and gas industry, along with high relative sea-level rise rates and high coastal erosion rates. Terrebonne Parish, Louisiana, also received a high CEVI value because of its high level of physical vulnerability and high concentration of energy infrastructure. Due to limitations within the CEVI model, such as subjective weighting of variables, researchers caution that results of the study should remain within a vulnerability context and that CEVI results should only be considered relative measures best utilized to provide decisionmakers with a better understanding of the vulnerability of the coastal region's critical infrastructure when making decisions about modifying, protecting, or building new infrastructure in these coastal communities (Thatcher et al., 2013). These findings do not alter BOEM's prior conclusions but serve as an example of how one may attempt to quantify and measure a coastal community's economic vulnerability to sea-level rise.

Incomplete or Unavailable Information

As discussed in this Supplemental EIS and in Chapter 4.2.1.23.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, BOEM has identified unavailable information regarding the impacts of the *Deepwater Horizon* explosion, oil spill, and response related to environmental justice. This unavailable information may be relevant to adverse effects because even though there have been very few catastrophic oil spills in the past, adverse effects to human populations may have occurred. Relevant data on the status of environmental justice after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze. This information cannot be obtained because of long-term health impact studies, subsistence studies, and the NRDA process, which may take years to complete. For example, the GC-HARMS long-term health impacts study will not be completed until 2016, and the GuLF STUDY of long-term health impacts will continue until 2021. Until the results from these studies are known, BOEM will have to depend upon the information currently available. To date, there has been little concrete evidence that long-term health or subsistence effects have occurred (Brown et al., 2011), although there is some dispute in the scientific community about

proper risk assessment standards in seafood contamination research (Rotkin-Ellman et al., 2012; Rotkin-Ellman and Soloman, 2012). It is not possible for BOEM to obtain this information and incorporate it into this analysis within the timeline contemplated in the NEPA analysis of this Supplemental EIS regardless of the cost or resources needed.

BOEM used reasonably accepted scientific methodologies to extrapolate from existing information in completing this analysis and formulating the conclusions presented here. For example, studies of past oil spills reveal that, even though a low-probability, catastrophic oil spill is not a reasonably foreseeable impact of a CPA proposed action, significant adverse impacts may occur to lower-income and minority communities if one was to occur. Some studies have shown that different cultural groups can possess varying levels of coping capacities (Palinkas et al., 1992), and impacts to social cohesion, including increased distrust in government and other institutions, contributed to community anxiety (Tuler et al., 2009). Also, because lower-income and/or minority populations may live near and be involved directly with spill cleanup efforts, the vectors of exposure can be higher for them than for the general population, increasing the potential risks of long-term health effects. However, since a low-probability catastrophic oil spill is not a reasonably foreseeable impact of a CPA proposed action, BOEM has determined that the unavailable information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

BOEM has reexamined the analysis for environmental justice presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. BOEM has determined that the additional information does not alter the impact conclusion for environmental justice because the information is currently inconclusive with regard to environmental justice issues and will remain so for an indefinite period of time. Therefore, the analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

The cumulative impacts of a CPA proposed action would occur within the context of other impactproducing factors for environmental justice. The OCS oil- and gas-related, impact-producing factors include OCS leasing, exploration, development, and production activities, and accidental events arising from these OCS oil- and gas-related activities. Non-OCS oil- and gas-related, impact-producing factors include human activities and natural events. Because of the presence of an extensive and widespread support system for the OCS and associated labor force, the OCS oil- and gas-related effects of the cumulative case are expected to be widely distributed and, except in Louisiana, little felt. In general, the cumulative OCS oil- and gas-related effects are expected to be economic and to have a limited but positive effect on low-income and minority populations. In Louisiana, these positive economic effects are expected to be greater. In general, who will be hired and where new infrastructure might be located is impossible to predict. Given the existing distribution of the OCS oil- and gas-related industry and the limited concentrations of minority and low-income peoples, a CPA proposed action and the cumulative OCS Program are not expected to have disproportionate high/adverse environmental or health effects on minority or low-income populations. Lafourche Parish will experience the most concentrated effects of cumulative OCS oil- and gas-related impacts. However, these groups are not expected to be differentially affected because the parish is not heavily low-income or minority and because the effects of road traffic and port expansion would not occur in areas of low-income or minority concentration.

In the Gulf coastal area, the contribution of a CPA proposed action and the OCS Program to the cumulative effects of all non-OCS oil- and gas-related activities and trends affecting environmental justice issues over the next 40 years are expected to be negligible to minor. The cumulative effects will be concentrated in coastal areas, and particularly Louisiana.. Most OCS Program effects are expected to be in the areas of job creation and the stimulation of the economy, and they are expected to make a positive contribution to environmental justice. The contribution of the cumulative OCS Program to the cumulative impacts of all factors affecting environmental justice is expected to be minor; therefore, the incremental contribution of a CPA proposed action to the cumulative impacts would also be minor. State offshore leasing programs in Alabama and Louisiana have similar, although more limited, effects due to their smaller scale. Cumulative effects from onshore infrastructure, including waste facilities, is also expected to be minor because existing infrastructure is regulated, because little new infrastructure is expected to result in the cumulative case, and because any new infrastructure will be subject to relevant permitting requirements. Other human activities and natural events and processes also may raise

environmental justice issues. The cumulative consequences to environmental justice cannot be determined at this time. Nevertheless, when added to existing State and Federal leasing programs, the associated onshore infrastructure, and all of the non-OCS oil- and gas-related impacting factors, a single proposed CPA lease sale will make only minor contributions to the cumulative effects on environmental justice communities.

4.1.1.24. Species Considered due to U.S. Fish and Wildlife Service Concerns

BOEM has reexamined the analysis for species considered due to FWS concerns presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented below. The species considered are the Louisiana black bear, gopher tortoise, Alabama red-belly turtle, ringed map turtle, black pine snake, yellow-blotched map turtle, eastern indigo snake, Mississippi gopher frog, frosted flatwoods salamander, reticulated flatwoods salamander, pallid sturgeon, pearl darter, inflated heelsplitter, Louisiana quillwort, and telephus spurge. The conclusions for the following species can be found in their respective chapters: West Indian manatee (Chapter 4.1.1.12) of this Supplemental EIS and Chapter 4.2.1.12 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS); green, hawksbill, Kemp's ridley, leatherback, and loggerhead sea turtles (Chapter 4.1.1.13 of this Supplemental EIS and Chapter 4.2.1.13 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS); and red knot (Calidris canutus rufa), piping plover, whooping crane, and mountain plover (Chapter 4.1.1.16 of this Supplemental EIS and Chapter 4.2.1.16 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS). No new significant information was discovered that would alter the impact conclusion for species considered due to FWS concerns presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

BOEM has only focused on species within coastal counties because those are the species that could potentially be impacted by oil and gas development activities, including a potential OCS spill. Because of the mitigations that may be implemented (**Chapter 2.3.1.3**), routine activities (e.g., operational discharges, noise, and marine debris) related to a CPA proposed action are not expected to have long-term adverse effects on the size and productivity of any of these species or populations (one mammal species, six reptile species, three amphibian species, two fish species, one bivalve species, and two plant species) in the Gulf of Mexico. Lethal effects could occur from ingestion of accidentally released plastic materials from OCS vessels and facilities. However, there have been no reports to date on such incidences.

A detailed description of species considered due to FWS concerns can be found in Chapter 4.2.1.24 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 4.2.1.24 of the WPA 233/CPA 231 Supplemental EIS. A detailed explanation of the routine and accidental impact-producing factors can be found in **Chapters 3.1 and 3.2** of this Supplemental EIS and Chapters 3.1 and 3.2 of the 2012-2017 WPA/CPA Multisale EIS. The cumulative analysis in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS considers the effects of impact-producing factors related to past CPA lease sales, proposed CPA Lease Sales 235, 241, and 247, and reasonably foreseeable lease sale programs in the CPA. Cumulative impacts attributed to OCS oil- and gas-related activity co-occur with State oil and gas activities, other governmental and private projects and activities, and pertinent natural processes and events that may occur that adversely affect wetlands.

Adverse impacts due to routine activities resulting from a CPA proposed action are possible but unlikely. Because of the greatly improved handling of waste and trash by industry and the annual awareness training required by the marine debris mitigations, it is likely that there are not as many plastics being added to the GOM and the devastating effects on offshore and coastal marine life are decreasing (USDOC, NOAA, 2011g). The routine activities of a CPA proposed action are unlikely to have significant adverse effects on the size and recovery of any above-mentioned species or population in the GOM due to the distance from shore of most activities, the heavy regulation of infrastructure and pipelines, and permitting and siting requirements.

Adverse impacts due to accidental events are also likely to be small. Accidental blowouts, oil spills, and spill-response activities resulting from a CPA proposed action have the potential to impact small to large areas in the Gulf of Mexico, depending on the magnitude and frequency of accidents, the ability to respond to accidents, the location and date of accidents, and various meteorological and hydrological

factors (including tropical storms). The incremental contribution of a CPA proposed action would not be likely to result in a significant incremental impact on these species within the CPA. A CPA proposed action would be expected to have little or no effect on these species of concern.

Cumulative activities posing the greatest potential harm to species considered due to FWS concerns are non-OCS oil- and gas-related factors such as habitat loss and competition. These factors have historically proved to be of greater threat to these species of concern.

At this time, there is no known record of a hurricane crossing the path of a large oil spill; the impacts of such have yet to be determined. The experience from Hurricanes Katrina and Rita in 2005 was that the oil released during the storms widely dispersed as far as the surge reached (USDOC, NOAA, 2010b). Due to their species' reliance on terrestrial habitats to carryout their life-history functions at a considerable distance from the GOM, the activities of a CPA proposed action are unlikely to have significant adverse effects on the size and recovery of any of the above-mentioned species or populations in Texas, Louisiana, Mississippi, Alabama, and Florida.

As BOEM has previously noted in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, relevant data on the status of populations after the Deepwater Horizon explosion, oil spill, and response may take years to acquire and analyze, and impacts from the Deepwater Horizon explosion, oil spill, and response may be difficult or impossible to discern from other factors. As data continue to be gathered and impact assessments completed, a better characterization of the full scope of impacts to populations in the GOM from the *Deepwater Horizon* explosion, oil spill, and response will be available. Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in the NEPA analysis of this Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM's subject-matter experts have used available scientifically credible evidence in this analysis and applied it using accepted methods and approaches. Nevertheless, a complete understanding of the unavailable information is not essential to a reasoned choice among alternatives for this Supplemental EIS. There are existing leases in the CPA with either ongoing or the potential for exploration, drilling, and production activities. In addition, non-OCS energyrelated activities will continue to occur in the CPA irrespective of a CPA proposed action (i.e., habitat loss and competition). The potential for effects from changes to the affected environment (post-Deepwater Horizon), routine activities, accidental spills, low-probability catastrophic spills), and cumulative effects remains whether or not an Action or No Action alternative is chosen under this Supplemental EIS.

New Information Available Since Publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS

A search of Internet information sources (FWS's website), as well as recently published journal articles was conducted to determine the availability of recent information on species considered due to FWS concerns. The search revealed no new information pertinent to this Supplemental EIS.

These one mammal species, six reptile species, three amphibian species, two fish species, one bivalve species, and two plant species within the CPA were not affected to any discernible degree by the *Deepwater Horizon* explosion, oil spill, and response, based on the best available information and the distance from the *Macondo* well. As identified in the resource analyses in this Supplemental EIS and 2012-2017 WPA/CPA Multisale EIS, and in the updated information provided in the WPA 233/CPA 231 Supplemental EIS, incomplete or unavailable information regarding these one mammal species, six reptile species, three amphibian species, two fish species, one bivalve species, and two plant species in the CPA are not relevant to reasonably foreseeable significant adverse effects. BOEM has determined that the information is not essential to a reasoned choice among alternatives.

Summary and Conclusion

Because of the mitigations that may be implemented, routine activities (e.g., operational discharges, noise, and marine debris) related to a CPA proposed action are not expected to have long-term adverse effects on the size and productivity of any of these species or populations in the GOM. Lethal effects could occur from ingestion of accidentally released plastic materials from OCS oil- and gas-related and non-OCS oil- and gas-related vessels and facilities. However, there have been no reports to date on such incidences. BOEM employs several measures (e.g., marine debris mitigations) to reduce the potential

impacts to any animal from routine activities associated with a CPA proposed action. Accidental blowouts, oil spills, and spill-response activities resulting from a CPA proposed action have the potential to impact small to large areas in the GOM, depending on the magnitude and frequency of accidents, the ability to respond to accidents, the location and date of accidents, and various meteorological and hydrological factors (including tropical storms). The incremental contribution of a CPA proposed action would not be likely to result in a significant incremental impact on the above-mentioned species within the CPA; in comparison, non-OCS oil- and gas-related activities, such as habitat loss and competition, have historically proven to be a greater threat to the above-mentioned species.

BOEM has reexamined the analysis for species considered due to FWS concerns presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, based on the additional information presented above. No new significant information was discovered that would alter the impact conclusion for species considered due to FWS concerns presented in the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS because of the available scientifically credible evidence in this analysis and based upon accepted scientific methods and approaches. The analysis and potential impacts detailed in the 2012-2017 WPA/CPA Multisale EIS and updated in the WPA 233/CPA 231 Supplemental EIS still apply for proposed CPA Lease Sales 235, 241, and 247.

There is a long-standing and well-developed OCS Program of more than 50 years within the CPA, and there are no data to suggest that activities from the preexisting OCS Program are significantly impacting the above-mentioned species populations; therefore, a CPA proposed action would be expected to have little or no effect on the above-mentioned species.

4.1.2. Alternative B—Exclude the Unleased Blocks Near Biologically Sensitive Topographic Features

Description of the Alternative

Alternative B differs from Alternative A (the proposed action) by not offering unleased blocks that are possibly affected by the proposed Topographic Features Stipulation (**Chapter 2.3.1.3.1** of this Supplemental EIS and Chapter 2.4.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS). Blocks subject to the Topographic Features Stipulation include any unleased block in which a No Activity Zone or Shunting Zone surrounding a topographic feature is located. There are 207 blocks (962,470 ac) in the CPA in which the Topographic Features Stipulation may be applied (**Figure 2-1**). These unleased blocks will not be available for lease under Alternative B. The number of unleased blocks that would not be offered under Alternative B represents only a small percentage of the total number of blocks to be offered under Alternative A; therefore, it is assumed that the levels of activity for Alternative B would be essentially the same as those projected for a CPA proposed action (refer to **Chapter 2.3.2** for further details). The estimated amount of resources projected to be developed under Alternative B is within the same scenario range as for Alternative A, i.e., 0.116-0.200 BBO and 0.538-0.938 Tcf of gas.

All of the assumptions, including the nine other potential stipulations (i.e., the Live Bottom Stipulation; Military Areas Stipulation; Evacuation Stipulation; Coordination Stipulation; Blocks South of Baldwin County, Alabama, Stipulation; Protected Species Stipulation; Law of the Sea Convention Royalty Payment Stipulation; Below Seabed Operations Stipulation; and the Stipulation on the Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico, as described in **Chapter 2.2.1.3**), are the same as for a CPA proposed action (Alternative A). A description of Alternative A is presented in **Chapter 2.3.1.1**. The Topographic Features Stipulation would not be applied with Alternative B because the blocks that could be affected by the Topographic Features Stipulation would not be offered for lease.

Because the incremental contribution of Alternative A (the Proposed Action) to the cumulative impacts on topographic features is expected to be slight and because negative impacts should be restricted by the implementation of the Topographic Features Stipulation and site-specific mitigations, the depths of the features, and water currents in the topographic feature area, Alternative A is not expected to result in adverse impacts greater than Alternative B. Therefore, since both Alternatives A and B minimize the potential for adverse impacts to Topographic Features, but since Alternative A better meets the purpose and need by providing a greater level of flexibility when considering oil and gas exploration, development, and production activities, Alternative A is BOEM's preferred alternative.

Effects of the Alternative

The following analyses are based on the scenario for a CPA proposed action (Alternative A). The scenario provides assumptions and estimates on the amounts, locations, and timing for OCS oil and gas exploration, development, and production operations and facilities, both offshore and onshore. These are estimates only and not predictions of what would happen as a result of holding proposed CPA Lease Sales 235, 241, and 247. A detailed discussion of the scenario and related impact-producing factors is presented in Chapter 3.1 of this Supplemental EIS and in Chapter 3.1 of the 2012-2017 WPA/CPA Multisale EIS, and updated information is provided in Chapter 3.1 of the WPA 233/CPA 231 Supplemental EIS.

The analyses of impacts to the various resources under Alternative B are very similar to those for Alternative A. The reader should refer to the appropriate discussions under Alternative A for additional and more detailed information regarding impact-producing factors and their expected effects on the various resources. Impacts under Alternative B are expected to be the same as a CPA proposed action (Chapter 4.1.1) for the following resources:

- Air Quality
- Water Quality
- Coastal Barrier Beaches and Associated Dunes
- Wetlands
- Seagrass Communities
- Live Bottoms (Pinnacle Trend and Low Relief)
- Sargassum Communities
- Chemosynthetic and Nonchemosynthetic **Deepwater Benthic Communities**
- Soft Bottom Benthic Communities
- Marine Mammals

- Sea Turtles
- Diamondback Terrapins
- Alabama, Choctawhatchee, St. Andrew and Perdido Key Beach Mice
- Coastal and Marine Birds
- Gulf Sturgeon
- Fish Resources and Essential Fish Habitat
- **Commercial Fisheries**
- **Recreational Fishing**
- Recreational Resources
- Archaeological Resources
- Human Resources and Land Use

The impacts to some Gulf of Mexico resources under Alternative B would be slightly different from the impacts expected under a CPA proposed action (Alternative A). These impacts are described below.

Impacts on Topographic Features

The sources and severity in impacts associated with this alternative are those lease sale-related activities discussed for a CPA proposed action. The potential impact-producing factors to the topographic features of the CPA are anchoring and structure emplacement, effluent discharge, blowouts, oil spills, and structure removal. A more detailed discussion of these potential impact-producing factors and the appropriate mitigating measures are presented in Chapter 2.3.1.3.1 of this Supplemental EIS and Chapter 2.4.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS.

Impacts of Routine and Accidental Events

Of the 16 topographic features in the CPA, 15 are located within water depths less than 200 m (656 ft). Geyer Bank is located in water depths of 190-210 m (623-689 ft). These features occupy a very small portion of the entire area. Of the potential impact-producing factors that may affect the topographic features, anchoring, structure emplacement, and structure removal would be eliminated by the adoption of this alternative. Effluent discharge and blowouts would not be a threat to the topographic features because blocks near enough to the banks for these events to have an impact on the biota of the banks would have been excluded from leasing under this alternative. Thus, the only impact-producing factor remaining from operations in blocks included in this alternative (i.e., those blocks not excluded by this alternative) is an oil spill. The potential impacts from oil spills are summarized below and are discussed further in Chapter 3.2.1 of this Supplemental EIS and in Chapter 3.2.1 of the 2012-2017 WPA/CPA Multisale EIS and the WPA 233/CPA 231 Supplemental EIS.

A subsurface spill would have no effect on a biologically sensitive feature unless the oil or its dissolved components comes into direct contact with the habitat. Oil from a subsurface spill is expected
to rise to the sea surface, based on the specific gravity of Gulf of Mexico oil. An exception to this could occur if oil is released at the seafloor under high pressure, having the effect of atomizing the oil into micro-droplets that have very little buoyancy. Under these conditions, a subsea oil plume could form and travel laterally with the prevailing currents. This can also happen if chemical dispersants are used underwater, forming a plume. If a subsea oil plume does form, the oil is expected to be swept clear of the banks because prevailing currents travel around the banks rather than over them (Rezak et al., 1983). As the oil travels in the water column, it will become diluted from its original concentration. Transient concentrations of oil below 20 ppm are not expected to result in lasting harm to a coral reef (Shigenaka, 2001). The fact that the topographic features are widely dispersed in the CPA, combined with the random nature of spill events, would serve to limit the likelihood of a spill occurring near a topographic feature. In addition, the exclusion of blocks adjacent to topographic features from a proposed CPA lease sale would further distance potential spills from the habitat. Chapter 4.2.1.7 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS discusses the risk of spills interacting with topographic features in more detail. The currents that move around the banks would likely steer any spilled oil around the banks rather than directly upon them, lessening impact severity. In the unlikely event that oil from a subsurface spill would reach the biota of a topographic feature, the effects would be primarily sublethal for most of the adult sessile biota. Lethal effects would probably be limited to a few coral colonies (CSA, 1992 and 1994). If oil from a subsurface spill contacted a coral-covered area, the areal extent of coral mortality would be limited, but long-lasting sublethal effects may be incurred by organisms surviving the initial effects of a spill (Jackson et al., 1989). Stress resulting from the oiling of reef coral colonies could affect their resilience to natural disturbances (e.g., elevated water temperature and diseases) and may hamper their ability to reproduce. A complete recovery of such an affected area could take in excess of 10 years.

Cumulative Impacts

With the exception of the topographic features, the cumulative impacts of Alternative B on the environmental and socioeconomic resources of the CPA would be identical to Alternative A. The incremental contribution of a CPA proposed action to the cumulative impacts on topographic features is expected to be slight, and negative impacts should be restricted by the implementation of the Topographic Features Stipulation and site-specific mitigations, the depths of the features, and water currents in the topographic feature area.

Summary and Conclusion

Alternative B, if adopted, would prevent any oil and gas activity whatsoever in the blocks containing topographic features and their surrounding protective zones; thus, it would eliminate any potential direct impacts to the biota of those blocks from routine oil and gas activities within the blocks. In the unlikely event that oil from a subsurface spill contacts the biota of a topographic feature, the effects would be localized and primarily sublethal for most of the adult sessile biota. Some lethal effects would probably occur upon oil contact to coral colonies.

Environmental impacts of Alternative B would be almost indistinguishable from Alternative A with the Topographic Features Stipulation in place. There would be an economic impact to the extent that economic returns from the excluded lease blocks would not be realized. While the unleased blocks subject to the Topographic Features Stipulation would not be leased under Alternative B, and therefore all potential routine impacts would be completely removed and potential accidental impacts would be further distanced from any topographic feature, the application of the Topographic Features Stipulation under Alternative A also sufficiently minimizes the potential impacts of routine OCS oil- and gas-related activities by requiring bottom-disturbing activity to be distanced from topographic features in order to diminish physical impacts to them.

4.1.3. Alternative C—No Action

Description of the Alternative

Alternative C is the cancellation of a single proposed CPA lease sale. If this alternative is chosen, the opportunity for development of the estimated 0.460-0.894 BBO and 1.939-3.903 Tcf of gas that could

have resulted from a proposed CPA lease sale would be precluded during the current 2012-2017 Five-Year Program, but it could again be contemplated as part of another proposed lease sale in the current or a future Five-Year Program. The No Action alternative encompasses the same potential impacts as a decision to delay a proposed CPA lease sale to a later scheduled lease sale under the Five-Year Program, when another decision on whether to hold that future lease sale is made. Delay of a proposed CPA lease sale was not considered as a separate alternative from Alternative C because the potential impacts are the same, namely that most impacts related to Alternative A would not occur as described below. Any potential environmental impacts resulting from a proposed CPA lease sale would not occur or would be postponed to a future lease sale decision.

Effects of the Alternative

This Agency published a report that examined previous exploration and development activity scenarios (USDOI, MMS, 2007). This Agency compared forecasted activity with the actual activity from 14 WPA and 14 CPA lease sales. The report shows that many lease sales contribute to the present level of OCS oil- and gas-related activity, and any single lease sale accounts for only a small percentage of the total OCS oil- and gas-related activities. In 2006, leases from 92 different sales contributed to Gulf of Mexico production, while an average CPA lease sale contributed to 2 percent of oil production and 2 percent of gas production in the CPA. In 2006, leases from 15 different sales contributed to the installation of production structures in the Gulf of Mexico, while an average CPA lease sale, for example, contributed to 6 percent of the installation of production structures in the Gulf of Mexico, while an average CPA lease sale contributed to 4 percent of the wells drilled in the CPA.

As in the past, a proposed CPA lease sale would contribute to maintaining the present level of OCS oil- and gas-related activity in the Gulf of Mexico. Exploration and development activity, including service-vessel trips, helicopter trips, and construction that would result from a proposed CPA lease sale would replace activity resulting from existing leases that have reached, or are near the end of, their economic life.

In the short term, however, it is important to note that activities under previous lease sales would continue in the Gulf of Mexico, including exploration, development, production, and decommissioning activities. As a decision on a proposed CPA lease sale will not affect those preexisting leases and activities related to them, there may still be environmental impacts occurring in the Gulf in the short term, even if a proposed CPA lease sale is cancelled.

Environmental Impacts

If a proposed CPA lease sale would be cancelled, the resulting development of oil and gas would most likely be postponed to a future lease sale; therefore, the overall level of OCS oil- and gas-related activity in the CPA would only be reduced by a small percentage, if any. Therefore, the cancellation of a proposed CPA lease sale would not significantly change the environmental impacts of overall OCS oil- and gas-related activity in the long term. The environmental impacts expected to result from a CPA proposed action, which are described above, would not occur in the short term, but they would likely be postponed to any future lease sale.

Economic Impacts

Although environmental impacts may be reduced or postponed by cancelling a proposed CPA lease sale, the economic impacts of cancelling the scheduled lease sale should be given consideration. Chapter 4.2.1.23.3.2 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.23.3 of the WPA 233/CPA 231 Supplemental EIS discuss the potential economic impacts of a CPA proposed action. In the event that a proposed CPA lease sale is cancelled or postponed, there may be impacts to employment along the Gulf Coast, but these are not expected to be significant (e.g., less than 1% of total employment) or long term given the existing OCS infrastructure.

Federal, State, and local governments would also have to forgo the revenue that would have been received from a proposed CPA lease sale. There could be minor impacts on global energy prices from cancelling a proposed CPA lease sale, along with minor changes in energy consumption patterns that would result from these price changes.

Other factors may minimize or exacerbate the economic impacts of cancelling a proposed CPA lease sale. For example, the longer-term economic impacts of cancelling a CPA proposed lease sale could be minimized if they were offset by a larger lease sale at a later date. The economic impacts may be exacerbated if additional lease sales are cancelled. The OCS industry is dependent on high capital investment costs and there may be long lags between the lease sale and the majority of production activities. Therefore, firms' investment and spending decisions are dependent on their confidence that the OCS Program will be maintained in the future. In addition, while firms in the OCS industry are generally likely to be able to weather the cancellation of a single lease sale, the cancellation of multiple lease sales could lead to broader damage to firms and workers in the industry or decisions to operate in areas other than the Gulf. These economic impacts would be particularly damaging to the coastal counties and parishes in Texas and Louisiana for which the OCS industry as a whole is an important component of their economics.

Summary and Conclusion

Cancelling a proposed CPA lease sale would eliminate the effects described for Alternative A (**Chapter 4.1.1**); however, any single lease sale accounts for only a small percentage of the total OCS oiland gas-related activities. If a proposed CPA lease sale would be cancelled, the resulting development of oil and gas would most likely be postponed to a future lease sale; therefore, the overall level of OCS oiland gas-related activity in the CPA would only be reduced by a small percentage, if any. Therefore, the cancellation of a proposed CPA lease sale would not significantly change the environmental impacts of overall OCS oil- and gas-related activity in the long term.

Federal, State, and local governments would have to forgo the revenue that would have been received from a proposed CPA lease sale. There could be minor impacts on global energy prices from cancelling a proposed CPA lease sale, along with minor changes in energy consumption patterns that would result from these price changes. Other factors may minimize or exacerbate the economic impacts of cancelling a proposed CPA lease sale.

4.2. UNAVOIDABLE ADVERSE IMPACTS OF THE PROPOSED ACTIONS

Unavoidable adverse impacts associated with a CPA proposed action are expected to be primarily short term and localized in nature and are summarized below. Adverse impacts from low-probability catastrophic events could be of longer duration and extend beyond the local area. All OCS oil- and gas-related activities involve temporary and exclusive use of relatively small areas of the OCS over the lifetimes of specific projects. Lifetimes for these activities can be days, as in the case of seismic surveys; or decades, as in the case of a production structure or platform. No activities in the OCS Program involve the permanent or temporary use or "taking" of large areas of the OCS on a semicontinuous basis. Cumulatively, however, a multitude of individual projects results in a major use of OCS space.

Sensitive Coastal Habitats: If an oil spill contacts beaches or barrier islands, the removal of beach sand during cleanup activities could result in adverse impacts if the sand is not replaced. In addition, a beach could experience several years of tarballs washing ashore over time, causing an aesthetic impact. Sand borrowing on the OCS for coastal restorations involves the taking of a quantity of sand from the OCS and depositing it onshore, essentially moving small products of the deltaic system to another location. If sand is left where it is, it would eventually be lost to the deltaic system by redeposition or burial by younger sediments; if transported onshore, it would be lost to burial and submergence caused by subsidence and sea-level rise.

If an oil spill contacts coastal wetlands, adverse impacts could be high in localized areas. In more heavily oiled areas, wetland vegetation could experience suppressed productivity for several years; in more lightly oiled areas, wetland vegetation could experience die-back for one season. Epibionts on wetland vegetation and grasses in the tidal zone could be killed, and the productivity of tidal marshes for the vertebrates and invertebrates that use them to spawn and develop could be impaired. Much of the wetland vegetation would recover over time, but some wetland areas could be converted to open water. Some unavoidable impacts could occur during pipeline and other related coastal construction, but regulations are in place to avoid and minimize these impacts to the maximum extent practicable. Unavoidable impacts resulting from dredging, wake erosion, and other secondary impacts related to channel use and maintenance would occur as a result of a CPA proposed action.

Sensitive Coastal and Offshore Biological Habitats: Unavoidable adverse impacts would take place if an oil spill occurred and contacted sensitive coastal and offshore biological habitats, such as Sargassum at the surface; fish, turtles, and marine mammals in the water column; or benthic habitats on the bottom. There could be some adverse impacts on organisms contacted by oil, dispersant chemicals, or emulsions of dispersed oil droplets and dispersant chemicals that, at this time, are not completely understood, particularly in subsurface environments.

Water Quality: Routine offshore operations would cause some unavoidable adverse impacts to varying degrees on the quality of the surrounding water. Drilling, construction, overboard discharges of drilling mud and cuttings, and pipelaying activities would cause an increase in the turbidity of the affected waters for the duration of the activity periods. This, however, would only affect water in the immediate vicinity of the construction activity or in the vicinity of offshore structures, rigs, and platforms. The discharge of treated sewage from manned rigs and platforms would increase the levels of suspended solids, nutrients, chlorine, and biochemical oxygen demand in a small area near the discharge point for a short period of time. Accidental spills from platforms and the discharge of produced waters could result in increases of hydrocarbon levels and trace metal concentrations in the water column in the vicinity of the platforms. Spilled oil from a tanker collision would affect the water surface in combination with dispersant chemicals used during spill response. A subsurface blowout would subject the surface, water column, and near-bottom environment to spilled oil and gas released from solution, dispersant chemicals, or emulsions of dispersed oil droplets and dispersant chemicals.

Unavoidable impacts to onshore water quality would occur as a result of chronic point- and nonpointsource discharges such as runoff and effluent discharges from existing onshore infrastructure used in support of lease sale activities. Vessel traffic contributes to the degradation of water quality by chronic low-quantity oil leakage, treated sanitary and domestic waste, bilge water, and contaminants known to exist in ship paints. Regulatory requirements of the State and Federal water authorities and some local jurisdictions would be applicable to point-source discharges from support facilities such as refineries and marine terminals.

Air Quality: Unavoidable short-term impacts on air quality could occur after large oil spills and blowouts because of evaporation and volatilization of the lighter components of crude oil, combustion from surface burning, and aerial spraying of dispersant chemicals. Short-term effects from spill events are uncontrollable and are likely to be aggravated or mitigated by the time of year the spills take place. Mitigation of long-term effects from offshore engine combustion during routine operations would be accomplished through existing regulations and the development of new control emission technology.

Threatened and Endangered Species: Because the proposed CPA lease sales do not in and of themselves make any irreversible or irretrievable commitment of resources that would foreclose the development or implementation of any reasonable and prudent measures to comply with the Endangered Species Act, BOEM may proceed with publication of this Supplemental EIS and finalize a decision among these alternatives even if consultation is not complete, consistent with Section 7(d) of the ESA (also refer to **Chapter 5.7**). Irreversible loss of individuals that are ESA-listed species may occur after a large oil spill from the acute impact of being oiled or the chronic impact of oil having eliminated, reduced, or rendered suboptimal the food species upon which they were dependent.

Nonendangered and Nonthreatened Marine Mammals: Unavoidable adverse impacts to nonendangered and nonthreatened marine mammals would be those that also affect endangered and threatened marine mammal species. Routine operation impacts (such as seismic surveys, water quality and habitat degradation, helicopter disturbance, vessel collision, and discarded trash and debris) would be negligible or minor to a population, but they could be lethal to individuals as in the case of a vessel collision. A large oil spill would temporarily degrade habitat if spilled oil, dispersant chemicals, or emulsions of dispersed oil droplets and dispersant chemicals contact free-ranging pods or spawning grounds.

Coastal and Marine Birds: Unavoidable adverse impacts from routine operations on coastal birds could result from helicopter and OCS service-vessel traffic, facility lighting, and floating trash and debris. Marine birds could be affected by noise, platform lighting, aircraft disturbances, and trash and debris associated with offshore activities. Cross-Gulf migrating species could be affected by lighted platforms, helicopter and vessel traffic, and floating trash and debris. If a large oil spill occurs and contacts coastal or marine bird habitats, some birds could experience lethal and sublethal impacts from oiling, and birds feeding or resting in the water could be oiled and die. Coastal birds coming into contact with oil may migrate more deeply into marsh habitats, out of reach from spill responders seeking to count them or

collect them for rehabilitation. Oil spills and oil-spill cleanup activities could also affect the food species for coastal, marine, and migratory bird species. Depending on the time of year, large oil spills could decrease the nesting success of species that concentrate nests in coastal environments due to direct effects of the spill and also disruption from oil-spill cleanup activities.

Fish Resources, Commercial Fisheries, and Recreational Fishing: Unavoidable adverse impacts from routine operations are loss of open ocean or bottom areas desired for fishing by the presence or construction of OCS oil- and gas-related facilities and pipelines. Loss of gear could occur from bottom obstructions around platforms and subsea production systems. Routine discharges from vessels and platforms are minor given the available area for fish habitat. If a large oil spill occurs, the oil, dispersant chemicals, or emulsions of oil droplets and dispersant chemicals could temporarily displace mobile fish species on a population or local scale. There could also be impacts on prey and sublethal effects on fish. It is unlikely that fishermen would want, or be permitted, to harvest fish in the area of an oil spill, as spilled oil could coat or contaminate commercial fish species, rendering them unmarketable.

Recreational Beaches: Unavoidable adverse impacts from routine operations may result in the accidental loss overboard of some floatable debris that may eventually come ashore on frequented recreational beaches. A large oil spill could make landfall on recreational beaches, leading to local or regional economic losses and stigma effects, causing potential users to avoid the area after acute impacts have been removed. Some recreational beaches become temporarily soiled by weathered crude oil, and tarballs may come ashore long after stranded oil has been cleaned from shoreline areas.

Economic Activity: Net economic, political, and social benefits accrue from the production of hydrocarbon resources. Once these benefits become routine, unavoidable adverse impacts from routine operations follow trends in supply and demand based on the commodity prices for oil, gas, and refined hydrocarbon products. Declines in oil and gas prices can lead to activity ramp downs by operators until prices rise. A large oil spill would cause temporary increases in economic activity associated with spill-response activity. An increase in economic activity from the response to a large spill could be offset by temporary work stoppages that are associated with spill-cause investigations and would involve a transfer or displacement of demand to different skill sets. An oil spill could also negatively impact industries such as tourism and fishing. Routine operations affected by new regulations that are incremental would not have much effect on the baseline of economic activity; however, temporary work stoppages or the introduction of several new requirements at one time, which are costly to implement, could cause a drop-off of activity as operators adjust to new expectations or use the opportunity to move resources to other basins where they have interests.

Archaeological Resources: Unavoidable adverse impacts from routine operations could lead to the loss of unique or significant archaeological information if unrecognized at the time an area is disturbed. Required archaeological surveys significantly reduce the potential for this loss by identifying potential archaeological sites prior to an interaction occurring, thereby making avoidance or mitigation of impacts possible. A large oil spill that makes landfall on or near protected archaeological landmarks could cause temporary aesthetic or cosmetic impacts until the oil is cleaned or degrades.

4.3. IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES

Irreversible or irretrievable commitment of resources refers to impacts or losses to resources that cannot be reversed or recovered. Examples are when a species becomes extinct or when wetlands are permanently converted to open water. In either case, the loss is permanent.

Wetlands: An irreversible or irretrievable loss of wetlands and associated biological resources could occur if wetlands are permanently lost because of impacts caused by dredging and construction activities that displace existing wetlands or from oil spills severe enough to cause permanent die-back of vegetation and conversion to open water. Construction and emplacement of onshore pipelines in coastal wetlands displace coastal wetlands in disturbed areas that are then subject to indirect impacts like saltwater intrusion or erosion of the marsh soils along navigation channels and canals. Ongoing natural and anthropogenic processes in the coastal zone, only one of which is OCS oil- and gas-related activity, can result in direct and indirect loss of wetlands. Natural losses as a consequence of the coastal area becoming hydrologically isolated from the Mississippi River that built it, sea-level rise, and subsidence of the delta platform in the absence of new sediment added to the delta plain appear to be much more dominant processes impacting coastal wetlands.

Sensitive Nearshore and Offshore Biological Resources: An irreversible loss or degradation of ecological habitat caused by cumulative activity tends to be incremental over the short term. Irretrievable loss may not occur unless or until a critical threshold is reached. It can be difficult or impossible to identify when that threshold is, or would be, reached. Oil spills and chronic low-level pollution can injure and kill organisms at virtually all trophic levels. Mortality of individual organisms can be expected to occur, and possibly a reduction or even elimination of a few small or isolated populations. The proposed biological stipulations, however, are expected to eliminate most of these risks.

Threatened and Endangered Species: Irreversible loss of individuals that are protected species may occur after a large oil spill from the acute impact of being oiled or the chronic impact of oil having eliminated, reduced, or rendered suboptimal the food species upon which they were dependent.

Fish Resources and Commercial Fisheries: Irreversible loss of fish and coral resources, including commercial and recreational species, are caused by structure removal using explosives. Fish in proximity to an underwater explosion can be killed. Without the structure to serve as habitat area, sessile, attached invertebrates and the fish that live among them are absent. Removing structures eliminates these special and local habitats and the organisms living there, including such valuable species as red snapper. Continued structure removal, regardless of the technique used, would reduce the net benefits to commercial fishing due to the presence of these structures.

Recreational Beaches: Impacts on recreational beaches from a large oil spill may, at the time, seem irreversible, but the impacts are generally temporary. Beaches fouled by a large oil spill would be temporarily unavailable to the people who would otherwise frequent them, but only during the period between landfall and cleanup of the oil, followed by an indefinite lag period during which stigma effects recede from public consciousness.

Archaeological Resources: Irreversible loss of a prehistoric or historic archaeological resource can occur if bottom-disturbing activity takes place without the surveys, where required, to demonstrate its absence before work proceeds. A resource can be completely destroyed, severely damaged, or the scientific context badly impaired by well drilling, subsea completions, and platform and pipeline installation, or sand borrowing.

Oil and Gas Development: Leasing and subsequent development and extraction of hydrocarbons as a result of a CPA proposed action represents an irreversible and irretrievable commitment by the removal and consumption of nonrenewable oil and gas resources. The estimated amount of resources to be recovered as a result of a CPA proposed action is presented in **Table 3-1**.

Loss of Human and Animal Life: The OCS oil and gas exploration, development, production, and transportation are carried out under comprehensive, state-of-the-art, enforced regulatory procedures designed to ensure public and work place safety and environmental protection. Nevertheless, some loss of human and animal life may be inevitable from unpredictable and unexpected acts of man and nature (i.e., unavoidable accidents, accidents caused by human negligence or misinterpretation, human error, willful noncompliance, and adverse weather conditions). Some normal and required operations, such as structure removal, can kill sea life in proximity to explosive charges or by removal of the structure that served as the framework for invertebrates living on it and the fish that lived with it.

4.4. RELATIONSHIP BETWEEN THE SHORT-TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

The short-term effects on various components of the environment in the vicinity of a CPA proposed action are related to long-term effects and the maintenance and enhancement of long-term productivity.

Short-Term Use

Short-term refers to the total duration of oil and gas exploration and production activities. Extraction and consumption of offshore oil and natural gas is a short-term benefit. Discovering and producing domestic oil and gas now reduces the Nation's dependency on foreign imports. Depleting a nonrenewable resource now removes these domestic resources from being available for future use. The production of offshore oil and natural gas as a result of a CPA proposed action would provide short-term energy, and as it delays the increase in the Nation's dependency on foreign imports, it can also allow additional time for ramp-up and development of long-term renewable energy sources or substitutes for

nonrenewable oil and gas. Economic, political, and social benefits would accrue from the availability of these natural resources.

The principle short-term use of the leased areas in the Gulf of Mexico would be for the production of 0.460-0.894 BBO and 1.939-3.903 Tcf of gas from a typical CPA proposed action. The cumulative impacts scenario in this Supplemental EIS extends approximately from 2012 to 2051. The 40-year time period is used because it is the approximate longest life span of activities conducted on an individual lease. The 40 years following a proposed CPA lease sale is the period of time during which the activities and impacting factors that follow as a consequence of a proposed CPA lease sale would be influencing the environment.

The specific impacts of a CPA proposed action vary in kind, intensity, and duration according to the activities occurring at any given time (**Chapter 3**). Initial activities, such as seismic surveying and exploration drilling, result in short-term, localized impacts. Development drilling and well workovers occur sporadically throughout the life of a CPA proposed action but also result in short-term, localized impacts. Activities during the production life of a platform may result in chronic impacts over a longer period of time (over 25 years), potentially punctuated by more severe impacts as a result of accidental events or a spill. Platform removal is also a short-term activity with localized impacts, including removal of the habitat for encrusting invertebrates and fish living among them. Many of the effects on physical, biological, and socioeconomic resources discussed in **Chapter 4.1** are considered to be short term (being greatest during the construction, exploration, and early production phases). These impacts would be further reduced by the mitigating measures discussed in **Chapter 2.2.2**.

The OCS development off Texas, Louisiana, Mississippi, and Alabama has enhanced recreational and commercial fishing activities, which in turn has stimulated the manufacture and sale of larger private fishing vessels and specialized recreational fishing equipment. Commercial enterprises such as charter boats have become heavily dependent on offshore structures for satisfying recreational customers. A CPA proposed action could increase these incidental benefits of offshore development. Offshore fishing and diving has gradually increased in the past three decades, with offshore structures and platforms becoming the focus of much of that activity. As mineral resources become depleted, platform removals would occur and may result in a decline in these activities.

The short-term exploitation of hydrocarbons for the OCS Program in the Gulf of Mexico may have long-term impacts on biologically sensitive coastal and offshore resources and areas if a large oil spill occurs. A spill and spill-response activity could temporarily interfere with commercial and recreational fishing, beach use, and tourism in the area where the spill makes landfall and in a wider area based on stigma effects. The proposed leasing may also result in onshore development and population increases that could cause very short-term adverse impacts to local community infrastructure, particularly in areas of low population and minimal existing industrial infrastructure (Chapter 4.2.1.23.1 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS).

Relationship to Long-Term Productivity

Long-term refers to an indefinite period beyond the termination of oil and gas production. Over a period of time after peak oil production has occurred in the Gulf of Mexico, a gradual easing of the specific impacts caused by oil and gas exploration and production would occur as the productive reservoirs in the Gulf have been discovered and produced, and have become depleted. The Oil Drum (2009) showed a graphic demonstrating that peak oil production in the Gulf occurred in June 2002 at 1.73 MMbbl/day. Whether or not this date is correct can only be known in hindsight and only after a period of years while production continues. At this time, however, the trend is fairly convincing (The Oil Drum, 2009). There is disagreement on what future production trends may be in the Gulf of Mexico after several operators, BP among them, announced discoveries over the last 5 years (*Oil and Gas Journal*, 2009) in the Lower Tertiary in ultra-deepwater (>5,000 ft; 1,524 m) with large projected reserves. These claims are as yet unproven and there are questions as to the difficulties that may be encountered producing these prospects because of their geologic age; burial depth and high-temperature, high-pressure in-situ conditions; lateral continuity of reservoirs; and the challenges of producing from ultra-deepwater water depths.

The Gulf of Mexico's large marine ecosystem is considered a Class II, moderately productive ecosystem (mean phytoplankton primary production 150-300 gChlorophyll a/m^2 -yr [The Encyclopedia of Earth, 2008]) based on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) global primary productivity

estimates (USDOC, NASA, 2003). After the completion of oil and gas production, a gradual ramp-down to economic conditions without oil and gas activity would be experienced, while the marine environment is generally expected to remain at or return to its normal long-term productivity levels that, in recent years, has been described as stressed (The Encyclopedia of Earth, 2008). The Gulf of Mexico's large marine ecosystem shows signs of ecosystem stress in bays, estuaries, and coastal regions (Birkett and Rapport, 1999). There is shoreline alteration, pollutant discharge, oil and gas development, and nutrient loading. The overall condition for the U.S. section of this large marine ecosystem, according to USEPA's seven primary indicators (Jackson et al., 2000), is good dissolved oxygen, fair water quality, poor coastal wetlands, poor eutrophic condition, and poor sediment, benthos, and fish tissue (The Encyclopedia of Earth, 2008).

To help sustain the long-term productivity of the Gulf of Mexico ecosystem, the OCS Program provides structures to use as site-specific artificial reefs and fish-attracting devices for the benefit of commercial and recreational fishermen and to sport divers and spear fishers. Additionally, the OCS Program continues to improve the knowledge and mitigation practices used in offshore development. Approximately 10 percent of the oil and gas structures removed from the OCS are eventually used for State artificial reef programs.

CHAPTER 5

CONSULTATION AND COORDINATION

5. CONSULTATION AND COORDINATION

5.1. DEVELOPMENT OF THE PROPOSED ACTIONS

This Supplemental EIS addresses three proposed Federal OCS oil and gas lease sales, i.e., Lease Sales 235, 241, and 247 in the CPA of the Gulf of Mexico OCS, as scheduled in the Five-Year Program (USDOI, BOEM, 2012a). BOEM conducted early coordination with appropriate Federal and State agencies and other concerned parties to discuss and coordinate the prelease process for the proposed CPA lease sales and this Supplemental EIS. Key agencies and organizations included the National Oceanic and Atmospheric Administration, NOAA's National Marine Fisheries Service, FWS, U.S. Coast Guard, U.S. Department of Defense, USEPA, State governors' offices, and industry groups.

5.2. CALL FOR INFORMATION AND NOTICE OF INTENT TO PREPARE A SUPPLEMENTAL EIS

On July 9, 2012, the Call for Information (Call) for proposed CPA Lease Sales 231, 235, 241, and 247 was published in the *Federal Register* (2012c). The comment period closed on August 8, 2012. This Agency received two comment letters in response to the Call. These comments are summarized below in **Chapter 5.3.1**. The Call was the same for this Supplemental EIS as it was for the WPA 233/CPA 231 Supplemental EIS.

On August 23, 2013, the Notice of Intent to Prepare a Supplemental EIS (NOI) for the proposed CPA lease sales was published in the *Federal Register* (2013a). Additional public notices were distributed via the U.S. Postal Service, and the Internet. A 30-day comment period was provided; it closed on September 23, 2013. Federal, State, and local governments, nongovernmental organizations, and other interested parties, were invited to send written comments to the Gulf of Mexico OCS Region on the scope of the Supplemental EIS. BOEM received 11 comment letters in response to the NOI. These comments are summarized below in **Chapter 5.3.2**.

5.3. DEVELOPMENT OF THE DRAFT SUPPLEMENTAL EIS

Scoping for the Draft Supplemental EIS was conducted in accordance with CEQ regulations implementing NEPA. Scoping provides those with an interest in the OCS Program an opportunity to provide comments on the proposed actions. In addition, scoping provides BOEM an opportunity to update the Gulf of Mexico OCS Region's environmental and socioeconomic information base. Public scoping meetings were held in Louisiana, Mississippi, and Alabama on the following dates and at the times and locations indicated below:

Monday, September 9, 2013 6:30 p.m. CDT Courtyard by Marriott Gulfport Beachfront MS Hotel 1600 East Beach Boulevard Gulfport, Mississippi 39501 5 registered attendees 2 speakers 2 verbal comments received 0 written comments received Tuesday, September 10, 2013 6:30 p.m. CDT

6:30 p.m. CDT
Hilton Garden Inn Mobile West
828 West I-65 Service Road South
Mobile, Alabama 36609
2 registered attendees
0 speakers
0 verbal comments received
0 written comments received

Wednesday, September 12, 2012 1:00 p.m. CDT Bureau of Ocean Energy Management Gulf of Mexico OCS Region 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123 1 registered attendee 0 speakers 0 verbal comments received 0 written comments received

5.3.1. Summary of Comments Received in Response to the Call for Information

In response to the Call, BOEM received two comment letters: one letter from the Louisiana Department of Natural Resources and one letter from the American Petroleum Institute. The Louisiana Department of Natural Resources hopes that BOEM will be more attentive to the State of Louisiana's comments during the prelease planning phase, believes that a better appraisal of coastal effects is necessary, and believes that BOEM must more efficiently revisit reviews of earlier OCS lease sales to determine whether the models and predictive techniques used were accurate. The American Petroleum Institute states that annual, predictable lease sales in these planning areas are needed to help ensure continued offshore exploration and production in the future because production from lease sales will take many years to develop. The American Petroleum Institute further encourages BOEM to pursue legislation that will allow the entry into force of the "Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico" (Agreement). This Agreement, which was signed after issuance of the Call and entered into force on July 18, 2014, governs the development of reservoirs of petroleum and natural gas straddling the U.S.-Mexico maritime and continental shelf boundary in the Gulf of Mexico.

5.3.2. Summary of Scoping Comments

Eleven comments were received in response to the NOI from Federal agencies, State government, interested groups, industry, and the general public on the scope of the Supplemental EIS, significant issues that should be addressed, alternatives that should be considered, and mitigating measures. All scoping comments received, which were appropriate for a lease sale NEPA document, were considered in the preparation of the Draft Supplemental EIS. Comments received included the following:

- BOEM must oversee oil and gas development in a way that protects Alabama from future incidents; BOEM must constantly examine their practices and procedures to improve their ability to provide safe offshore operations; Alabama understands the importance of the oil and gas industry to the Nation and supports its safe production offshore provided those developments comply with applicable Alabama laws, rules, and regulations, and is in compliance with Alabama's Coastal Zone Management Plan; Alabama asks for protection of live bottom, pinnacle reefs, chemosynthetic communities, and other sensitive areas (including archaeological sites); Alabama opposes leases within 15 mi (24 km) south of Baldwin County; and Alabama requests just and equitable revenue sharing under the Gulf of Mexico Energy Security Act and calls for new legislation for additional revenue sharing;
- the Gulf is contaminated enough so leave it alone;
- no more drilling; opposes lease sales; BOEM cannot monitor the oil industry; oil companies do not care about regulations and will continue to destroy our lands;
- there is a way to produce oil and gas in the Gulf near the barrier islands without permanent derricks and platforms; use dredge material to rebuild barrier islands that can hold, protect, and hide wells; and use horizontal drilling techniques;
- BOEM must focus EIS analyses on currently available, new information and should not speculate on future results from ongoing studies. BOEM should also take into consideration the new safety and regulatory improvements since the *Deepwater Horizon* explosion, oil spill, and response as a part of the new information analyzed. Suggest that this Supplemental EIS be designed specifically for use as a tiering document for future environmental reviews. Data from the best-available, peerreviewed scientific literature should be the basis of environmental analyses, and not speculation;
- BOEM and BSEE must evaluate regulatory oversight, safety procedures, and new technologies in light of recent accidents around the world to ensure safe oil and gas operations on the United States' OCS;

- "... BOEM should suspend preparation of the SEIS and establish a fundamental revision to the planning, oversight, and approval process for offshore drilling activities. It should also allow for site assessment and permitting activities for renewable energy in the Gulf of Mexico. ... BOEM must fully consider how the impacts of the DWH Spill changed the ecological baselines of the Gulf of Mexico, regardless of the amount of time it takes to attain this information. ... BOEM must not approve any new activities in the CPA until these actions are complete";
- the USEPA provided guidance on topics including the following: statement of purpose and need; alternatives analysis; affected environment; environmental consequences; Marine Protection, Research and Sanctuaries Act; oil management and spill analysis; discharge of dredged or fill materials; water quality; biological resources, habitat, and wildlife; air quality; greenhouse gases; climate change; hazardous materials; hazardous waste and solid waste; National Historic Preservation Act and Executive Order 13007; environmental justice and impacted communities; Tribal consultation; children's health and safety; indirect and cumulative impacts; mitigation and monitoring; and additional non-OCS oil- and gas-related activities;
- Louisiana supports continued expansion of OCS oil and gas development, but requests that BOEM adequately address the cumulative, secondary, and indirect impacts of these activities and discuss compensatory mitigation for the impacts;
- the Consumer Energy Alliance supports the proposed action for the socioeconomic and national security benefits, and urges BOEM to reject requests to delay or prohibit leasing in the CPA; and
- BOEM should expand leasing to all areas of the Eastern Planning Area due to the socioeconomic benefits for the Nation and Gulf Coast.

5.3.3. Additional Scoping Opportunities

Although the scoping process is formally initiated by the publication of the NOI and Call, scoping efforts and other coordination meetings have continued throughout this NEPA process. The Gulf of Mexico OCS Region's Information Transfer Meetings provide an opportunity for BOEM's analysts to attend technical presentations related to OCS Program activities and to meet with representatives from Federal, State, and local agencies; industry; BOEM contractors; and academia. Scoping and coordination opportunities were also available during BOEM's requests for information, comments, input, and review of its other NEPA documents, included the following:

- scoping and comments on the Five-Year Program EIS;
- requests for comments on the 2012-2017 WPA/CPA Multisale EIS; and
- scoping and comments on the WPA 233/CPA 231 Supplemental EIS.

5.3.4. Cooperating Agency

According to Part 516 of the DOI Departmental Manual, BOEM must invite eligible governmental entities to participate as cooperating agencies when developing an EIS in accordance with the requirements of NEPA and CEQ regulations. BOEM must also consider any requests by eligible government entities to participate as a cooperating agency with respect to a particular EIS, and then to either accept or deny such requests.

The NOI, which was published on August 23, 2013, included an invitation to other Federal agencies and State, Tribal, and local governments to consider becoming cooperating agencies in the preparation of this Supplemental EIS. No Federal agencies or State, Tribal, or local governments requested to participate as a cooperating agency.

5.4. DISTRIBUTION OF THE DRAFT SUPPLEMENTAL EIS FOR REVIEW AND COMMENT

BOEM sent copies of the Draft Supplemental EIS to the government, public, and private agencies and groups listed below. Local libraries along the Gulf Coast were provided copies of this document; a list of these libraries is available on BOEM's Internet website at <u>http://www.boem.gov/nepaprocess/</u>.

Federal Agencies

Congress

Congressional Budget Office House Resources Subcommittee on Energy and Mineral Resources Senate Committee on Energy and Natural Resources Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Department of Defense Corps of Engineers Department of the Air Force Department of the Army Corps of Engineers Department of the Navy Naval Mine and Anti-Submarine Warfare Command Department of Energy Strategic Petroleum Reserve PMD Department of Homeland Security U.S. Coast Guard Department of State Bureau of Oceans and International Environmental and Scientific Affairs Department of the Interior Bureau of Ocean Energy Management Fish and Wildlife Service **Geological Survey** National Park Service Office of Environmental Policy and Compliance Office of the Solicitor Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Pipeline Safety Environmental Protection Agency Region 4 Region 6 Marine Mammal Commission

State and Local Agencies

Alabama Governor's Office Alabama Highway Department Alabama Historical Commission and State Historic Preservation Officer Alabama Public Service Commission Department of Conservation and Natural Resources Department of Environmental Management South Alabama Regional Planning Commission State Docks Department State Legislature Natural Resources Committee State Legislature Oil and Gas Committee Florida Governor's Office Bureau of Archaeological Research City of Gulf Breeze City of Panama City City of Pensacola Department of Agriculture and Consumer Services Department of Economic Opportunity Department of Environmental Protection Department of State Archives, History and Records Management Escambia County Florida Coastal Zone Management Office Sarasota County Coastal Resources State Legislature Natural Resources and Conservation Committee State Legislature Natural Resources Committee West Florida Regional Planning Council Louisiana Governor's Office City of Grand Isle City of Morgan City City of New Orleans Department of Culture, Recreation, and Tourism Department of Environmental Quality Department of Natural Resources

Department of Transportation and Development Department of Wildlife and Fisheries Houma-Terrebonne Chamber of Commerce Jefferson Parish Director Jefferson Parish President Lafourche Parish Vater District #1 Louisiana Geological Survey South Lafourche Levee District St. Bernard Planning Commission State House of Representatives, Natural Resources Committee State Legislature, Natural Resources Committee

Mississippi

Governor's Office City of Gulfport Department of Archives and History Department of Natural Resources Department of Wildlife Conservation Mississippi Development Authority State Legislature Oil, Gas, and Other Minerals Committee

Tribal Nation or Organization

Alabama-Coushatta Tribes of Texas Caddo Nation Chitimacha Tribe of Louisiana Choctaw Nation of Oklahoma Coushatta Indian Tribe Jena Band of Choctaw Indians Miccosukee Indian Tribe of Florida Mississippi Band of Choctaw Indians Poarch Band of Creek Indians Seminole Tribe of Florida Seminole Nation of Oklahoma Tunica-Biloxi Indian Tribe of Louisiana

Industry

Alabama Petroleum Council American Petroleum Institute Area Energy LLC Baker Atlas Bellwether Group B-J Services Co BP Amoco Chevron U.S.A. Inc. Coastal Conservation Association Coastal Environments, Inc. Continental Shelf Associates, Inc. Dominion Exploration & Production, Inc. Ecological Associates, Inc. Ecology and Environment Energy Partners, Ltd. EOG Resources, Inc. Exxon Mobil Production Company Freeport-McMoRan, Inc. Fugro Geo Services, Inc. Gulf Environmental Associates Gulf of Mexico Newsletter Horizon Marine, Inc. Industrial Vehicles International, Inc. International Association of Geophysical Contractors J. Connor Consultants John Chance Land Surveys, Inc. Marine Safety Office Midstream Fuel Service Murphy Exploration & Production Newfield Exploration Company Petrobras America, Inc. PPG Industries. Inc. Propane Market Strategy Newsletter Science Applications International Corporation Seneca Resources Corporation Shell Exploration & Production Company Stone Energy Corporation Strategic Management Services-USA T. Baker Smith, Inc. Texas Geophysical Company, Inc. The Houston Exploration Company The Washington Post Triton Engineering Services Co. W & T Offshore. Inc. WEAR-TV

Special Interest Groups

Alabama Oil & Gas Board Alabama Wildlife Federation American Cetacean Society **Apalachee Regional Planning Council** Audubon of Florida Audubon Louisiana Nature Center **Capital Region Planning Commission** Center for Marine Conservation **Clean Gulf Associates** Coalition to Restore Coastal Louisiana **Coastal Conservation Association** Concerned Shrimpers of America Earthjustice Gulf and South Atlantic Fisheries Foundation, Inc. Gulf Coast Environmental Defense

Gulf Restoration Network Houma-Terrebonne Chamber of Commerce Izaak Walton League of America, Inc. JOC Venture LA 1 Coalition. Inc. Louisiana Wildlife Federation Marine Mammal Commission Mission Enhancement Office Mobile Area Chamber of Commerce Mobile Bay National Estuary Program Natural Resources Defense Council Nature Conservancy Offshore Operators Committee Organized Fishermen of Florida **Population Connection** Portersville Revival Group Restore or Retreat **Roffers Ocean Fishing Forecast Service**

Ports/Docks

Alabama Alabama State Port Authority Port of Mobile

Louisiana

Abbeville Harbor and Terminal District Grand Isle Port Commission Greater Baton Rouge Port Commission Greater Lafourche Port Commission Lake Charles Harbor and Terminal District Plaquemines Port, Harbor and Terminal District Port of Baton Rouge Port of Iberia District Port of New Orleans Twin Parish Port Commission St. Bernard Port, Harbor and Terminal District West Cameron Port Commission Mississippi Greenville Port Commission Mississippi State Port Authority Port of Gulfport

Educational Institutions/Research Laboratories

Dauphin Island Sea Laboratory Foley Elementary School Gulf Coast Research Laboratory Jackson State University Louisiana Sea Grant College Program Louisiana State University Louisiana Tech University Louisiana Universities Marine Consortium Loyola University McNeese State University Mississippi-Alabama Sea Grant Consortium Mississippi State University Mote Marine Laboratory Nicholls State University Pensacola Junior College **Tulane University** University of Alabama University of Florida University of Miami University of New Orleans University of South Alabama University of South Florida University of Southern Mississippi University of Texas at Arlington University of Texas at Austin University of Texas Law School University of Texas Libraries University of West Florida

5.5 PUBLIC MEETINGS

In accordance with 30 CFR § 556.26, BOEM scheduled public meetings soliciting comments on the Draft Supplemental EIS. The meetings provided the Secretary of the Interior with information from interested parties to help in the evaluation of the potential effects of a proposed CPA lease sale. An announcement of the dates, times, and locations of the public meetings was included in the Notice of Availability of the Draft Supplemental EIS. A copy of the public meeting notices was included with the Draft Supplemental EIS that was mailed to the parties indicated above, was published in local newspapers, and was posted on BOEM's Internet website at http://www.boem.gov/nepaprocess/.

The public meetings were held on the following dates and at the times and locations indicated below:

Monday, April 7, 2014 1:00 p.m. CDT Bureau of Ocean Energy Management 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123 0 registered attendees 0 speakers 0 verbal comments received 0 written comments received

Tuesday, April 8, 2014 1:00 p.m. CDT Courtyard by Marriott Gulfport Beachfront MS Hotel 1600 East Beach Boulevard Gulfport, Mississippi 39501 6 registered attendees 2 speakers 2 verbal comments received 0 written comments received Wednesday, April 9, 2014
1:00 p.m. CDT
Five Rivers-Alabama's Delta Resource Center
30945 Five Rivers Boulevard
Spanish Fort, Alabama 36527
2 registered attendees
0 speakers
0 verbal comments received
0 written comments received

New Orleans, Louisiana, April 7, 2014

There were no speakers at the public meeting held in New Orleans, Louisiana, on April 7, 2014.

Gulfport, Mississippi, April 8, 2014

There were two speakers at the public meeting held in Gulfport, Mississippi, on April 8, 2014. Both speakers were opposed to drilling in the Gulf of Mexico following the *Deepwater Horizon* explosion, oil spill, and response, and they were concerned with the use of air guns during permitted geological and geophysical activities and the impacts on marine mammals.

Mobile, Alabama, April 9, 2014

There were no speakers at the public meeting held in Mobile, Alabama, on April 9, 2014.

5.6. COASTAL ZONE MANAGEMENT ACT

If a Federal agency's activities or development projects within or outside of the coastal zone will have reasonably foreseeable coastal effects in the coastal zone, then the activity is subject to a Federal Consistency Determination (CD). A consistency review will be performed pursuant to the Coastal Zone Management Act (CZMA) and CDs will be prepared for each CZMA State prior to each of the proposed CPA lease sales. To prepare the CDs, BOEM reviews each CZMA State's Coastal Management Plan and analyzes the potential impacts as outlined in this Supplemental EIS, new information, and applicable studies as they pertain to the enforceable policies of each Coastal Management Program (CMP). The CZMA requires that Federal actions that are reasonably likely to affect any land or water use or natural resource of the coastal zone be "consistent to the maximum extent practicable" with relevant enforceable policies of the State's federally approved coastal management program (15 CFR part 930 subpart C).

Based on these and other analyses, BOEM's Gulf of Mexico OCS Region's Regional Director makes an assessment of consistency, which is then sent to the States of Louisiana, Mississippi, Alabama, and Florida for proposed CPA lease sales. If a State concurs, BOEM can proceed with the proposed lease sale. A State's concurrence may be presumed when a State does not provide a response within the 60-day review period. A State may request an extension of time to review the CD within the 60-day period, which the Federal agency shall approve for an extension of 15 days or less. If a State objects, it must do the following under the CZMA: (1) indicate how BOEM's prelease proposal is inconsistent with their CMP and suggest alternative measures to bring BOEM's proposal into consistency with their CMP; or (2) describe the need for additional information that would allow a determination of consistency. In the event of an objection, the Federal and State agencies should use the remaining portion of the 90-day review period to attempt to resolve their differences (15 CFR § 930.43(b)). At the end of the 90-day review period, the Federal agency shall not proceed with the activity over a State agency's objection unless the Federal agency concludes that, under the "consistent to the maximum extent practicable" standard described in 15 CFR § 930.32, consistency with the enforceable policies of the CMP is prohibited by existing law applicable to the Federal agency and the Federal agency has clearly described, in writing, to the State agency the legal impediments to full consistency; or, the Federal agency has concluded that its proposed action is fully consistent with the enforceable policies of the CMP, though the State agency objects. Unlike the consistency process for specific OCS plans and permits, there is no procedure for administrative appeal to the Secretary of Commerce for a Federal CD for prelease activities. In the event that there is a serious disagreement between BOEM and a State, either agency may request mediation. Mediation is voluntary, and the Secretary of Commerce would serve as the mediator. Whether there is mediation or not, the final CD is made by DOI, and it is the final administrative action for the prelease consistency process. Each Gulf State's CMP is described in Appendix F of the 2012-2017 WPA/CPA Multisale EIS.

5.7. ENDANGERED SPECIES ACT

The Endangered Species Act of 1973 (ESA) (16 U.S.C. §§ 1531 *et seq.*) establishes a national policy designed to protect and conserve threatened and endangered species and the ecosystems upon which they depend. BOEM and BSEE are currently in consultation with NMFS and FWS regarding the OCS oil and gas program in the Gulf of Mexico, including as it relates to the CPA proposed actions. BOEM is acting as the lead agency in the ongoing consultation, with BSEE's assistance and involvement. The programmatic consultation, which was reinitiated in 2010, was expanded in scope after the reinitiation of consultation by BOEM following the *Deepwater Horizon* explosion and oil spill, and it will include both existing and future OCS oil and gas leases in the Gulf of Mexico over a 10-year period. This consultation also considers any changes in baseline environmental conditions following the *Deepwater Horizon* explosion, oil spill, and response. The programmatic consultation will also include postlease activities associated with OCS oil- and gas-related activities in the Gulf of Mexico, including G&G and decommissioning activities. While the programmatic Biological Opinion is in development, BOEM and NMFS have agreed to interim consultations on postlease approvals.

With consultation ongoing, BOEM and BSEE will continue to comply with all reasonable and prudent measures and the terms and conditions under the existing consultations, along with implementing the current BOEM- and BSEE-required mitigation, monitoring, and reporting requirements. Based on the most recent and best available information at the time, BOEM and BSEE will also continue to closely evaluate and assess risks to listed species and designated critical habitat in upcoming environmental compliance documentation under NEPA and other statutes.

5.8. MAGNUSON-STEVENS FISHERY CONSERVATION AND MANAGEMENT ACT

Pursuant to Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act, Federal agencies are required to consult with NMFS on any action that may result in adverse effects to EFH. The NMFS published the final rule implementing the EFH provisions of the Magnuson-Stevens Fisheries Conservation and Management Act (50 CFR part 600) on January 17, 2002. Certain OCS oil-and gas-related activities authorized by BOEM may result in adverse effects to EFH, and therefore, require EFH consultation.

Following the *Deepwater Horizon* explosion, oil spill, and response, NMFS requested a comprehensive review of the existing EFH consultation in a response letter dated September 24, 2010. In light of this request, Regional staff of BOEM and NMFS agreed on procedures that would incorporate a new programmatic EFH consultation into each prepared Five-Year Program EIS and that began with the 2012-2017 Five-Year Program. BOEM has an EFH Assessment (Appendix D of the 2012-2017 WPA/CPA Multisale EIS) that describes the OCS proposed activities, analyzes the effects of the proposed activities on EFH, and identifies proposed mitigating measures. The programmatic EFH consultation, which covers proposed CPA Lease Sales 235, 241, and 247 was initiated with the distribution and review of the 2012-2017 WPA/CPA Multisale EIS and with the subsequent written communications between BOEM and NMFS. These documents formalized the conservation recommendations put forth by NMFS and by BOEM's acceptance and response to these recommendations. While the necessary components of

the EFH consultation are complete (as per BOEM's June 8, 2012, response letter to NMFS), there is ongoing coordination among NMFS, BOEM, and BSEE. This coordination includes annual reports from BOEM to NMFS, meetings with Regional staff, and discussions of mitigation and relevant topics. All agencies will continue to communicate for the duration of the Five-Year Program.

5.9. NATIONAL HISTORIC PRESERVATION ACT

In accordance with the National Historic Preservation Act (16 U.S.C. §§ 470 *et seq.*), Federal agencies are required to consider the effect of their undertakings on historic properties. The implementing regulations for Section 106 of the National Historic Preservation Act (16 U.S.C. § 470f), issued by the Advisory Council on Historic Preservation (16 CFR part 800), specify the required review process.

The State of Louisiana, in a letter to this Agency dated December 16, 2010, indicated that no known historic properties on State land or within State waters will be affected by this undertaking and that consultation regarding the CPA proposed actions is not necessary. The State of Alabama, in a letter to BOEM referencing proposed WPA Lease Sale 233 and proposed CPA Lease Sale 231 dated July 18, 2012, requested that a "Maritime Cultural Resource Assessment which meets the AHC [Alabama Historical Commission] standards should be conducted for any action within these sale blocks" and that the resulting report should be forwarded to their office for review and approval. Additional correspondence with the State of Alabama explained that cultural resource assessments are completed as part of BOEM's postlease requirements and that they are site specific and are completed prior to authorization or approval of all proposed OCS oil- and gas-related activities. When necessary, cultural resource reports are also forwarded to the appropriate State agency as part of the Section 106 consultation process. A subsequent letter from the State of Alabama, dated August 16, 2012, agreed with the proposed lease actions provided that submerged cultural resources are addressed prior to disturbance, as outlined above.

This Agency initiated a request for consultation on the 2012-2017 WPA/CPA Multisale EIS on November 12, 2010, via a formal letter. That letter was addressed to each of the affected Gulf Coast States and Tribal Nations, including the Alabama-Coushatta Tribes of Texas, Chitimacha Tribe of Louisiana, Choctaw Nation of Oklahoma, Coushatta Indian Tribe, Jena Band of Choctaw Indians, Miccosukee Indian Tribe of Florida, Mississippi Band of Choctaw Indians, Poarch Band of Creek Indians, Seminole Tribe of Florida, and Tunica-Biloxi Indian Tribe of Louisiana. A response timeline of 30 days was provided and three responses were received.

The Seminole Tribe of Florida-Tribal Historic Preservation Officer (STOF-THPO) responded to this Agency's request for consultation on December 6, 2010. The STOF-THPO indicated that there was no objection to the proposed undertakings at this time. The STOF-THPO requested to review the impending remote-sensing survey reports that are to be conducted over the high-probability zones within the project area. Additionally, the STOF-THPO requested to be notified if cultural resources that are potentially ancestral or historically relevant to the Seminole Tribe of Florida are inadvertently discovered at any point during this process.

BOEM initiated a request for comment on the NOA for the Draft Supplemental EIS via a formal letter on March 14, 2014. That letter was addressed to each of the affected Gulf Coast States and Tribal Nations, including the Alabama-Coushatta Tribes of Texas, Caddo Nation, Chitimacha Tribe of Louisiana, Choctaw Nation of Oklahoma, Coushatta Indian Tribe, Jena Band of Choctaw Indians, Miccosukee Indian Tribe of Florida, Mississippi Band of Choctaw Indians, Poarch Band of Creek Indians, Seminole Tribe of Florida, Seminole Nation of Oklahoma, and Tunica-Biloxi Indian Tribe of Louisiana. A response timeline of 30 days was provided and no Tribal responses were received.

None of the above-referenced responses requested consultation. No further responses were received beyond the 30-day timeline and no requests for consultation were received. BOEM will continue to impose mitigating measures and monitoring and reporting requirements to ensure that historic properties are not affected by the proposed undertakings. BOEM will reinitiate the consultation process with the affected parties should such circumstances warrant further consultation.

5.10. GOVERNMENT-TO-GOVERNMENT

In accordance with Executive Order 13175, "Consultation and Coordination with Indian Tribal Governments," Federal agencies are required "to establish regular and meaningful consultation and collaboration with Tribal officials in the development of Federal policies that have Tribal implications, to strengthen the United States' government-to-government relationships with Indian tribes, and to reduce the imposition of unfunded mandates upon Indian tribes." BOEM initiated a request for comment with 12 federally recognized Tribal Nations on the NOA for the Draft Supplemental EIS via a formal letter on April 3, 2014. No Tribal Nations requested a Section 106 Consultation.

5.11. MAJOR DIFFERENCES BETWEEN THE DRAFT AND FINAL SUPPLEMENTAL EISS

Comments on the Draft Supplemental EIS were received via written and electronic correspondence. As a result of these comments, changes have been made between the Draft and Final Supplemental EISs. Where appropriate, the text in this Final Supplemental EIS has been verified or expanded to provide clarification on specific issues, as well as to provide updated information. None of the revisions between the Draft and Final Supplemental EISs changed the impact conclusions for the physical, environmental, and socioeconomic resources analyzed in this Supplemental EIS.

5.12. COMMENTS RECEIVED ON THE DRAFT SUPPLEMENTAL EIS AND BOEM'S RESPONSES

The Notice of Availability and the announcement of public meetings were published in the *Federal Register* on March 24, 2014, were posted on BOEM's Internet website, and were mailed to interested parties. The comment period ended on May 5, 2014. BOEM received seven distinct comments in response to the Draft Supplemental EIS via letter, email, and the regulations.gov website. The commenters are USEPA, the Alabama Department of Environmental Management, the Florida Department of Agriculture and Consumer Services, the Louisiana Department of Natural Resources, the American Petroleum Institute, and two general public comments.

Copies of the comments are presented on the subsequent pages. Each comment has been marked for identification purposes. BOEM's responses immediately follow the comments.

AGENCA AGENCA	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 4 ATLANTA FEDERAL CENTER
BUAL PHOTECTO	61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960
	May 5, 2014
Mr. Gary D. Goo	eke
Chief, Environm	ental Assessment Section
Leasing and Env	ironment (MS 5410)
1201 Elmwood F	Park Boulevard
New Orleans, LA	x 70133-2394
Subject: EPA N	FPA Review Comments on POEMIs DEIG 6 10 10 10
Continental She Sales 235, 241, a	If (OCS) Oil and Gas Lease Sales: 2015-2017 Central Planning Area Lease and 247" CEQ #20140089
Dear Mr. Goeke:	
The U.S. Environ Energy Managem accordance with o Policy Act (NEPA proposes lease sal blocks in the Cent and 247 in the Ce review for the pro prior to proposed relevant to the 241	mental Protection Agency (EPA) has reviewed the subject Bureau of Ocean aent (BOEM) Draft Supplemental Environmental Impact Statement (DSEIS) in our responsibilities under Section 102(2)(C) of the National Environmental A) and Section 309 of the Clean Air Act. It is our understanding that BOEM es in the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for lease tral Planning Area. The proposed action covers lease sales of blocks 235, 241, ntral Planning Area. EPA understands that this DSEIS is the final NEPA posed CPA lease sale 235 and that a separate NEPA review will be conducted CPA lease sales 241 and 247 to address any newly significant information 1/247 lease sales. ¹
The EPA has parti of the Draft Progra Outer Continental EIS and WPA 233	cipated in several recent NEPA reviews for BOEM actions, including reviews ammatic Environmental Impact Statement (PEIS) for the proposed 2012-2017 Shelf Oil and Gas Leasing Program and the 2012-2017 WPA/CPA Multisale /CPA 231 Supplemental EISs which this current EIS supplements
Based on our analy i.e., EPA has "En EIS (FEIS). The F	vsis of the above referenced proposed action. EPA rates this DEIS as "EC-2" vironmental Concerns and Request Additional Information" in the Final EPA's rating system criteria can be found online at:
http://www.epa.go with the proposed mitigation, and lev	v/oecaerth/nepa/comments/ratings.html. Our primary concerns associated actions are related to potential impacts to air, coastal ecosystems, wetlands, el of detail provided in the document. Detailed comments are enclosed with
Regional Directors N	ote - DSEIS

this letter which more clearly identifies our concerns and comments. We request that the FSEIS include specific responses to our comments.

EPA appreciates the opportunity to review the DSEIS. Should BOEM have questions regarding our comments, please feel free to contact Dan Holliman of my staff at 404/562-9531 or holliman.daniel@epa.gov.

Sincerely,

Heinz J. Mueller Chief, NEPA Program Office Office Environmental Accountability

Attachment: Detailed Comments

U.S. EPA DETAILED COMMENTS ON THE DRAFT SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (DSEIS) FOR THE U.S. DEPARTMENT OF THE INTERIOR, BUREAU OF OCEAN ENERGY MANAGEMENT (BOEM) GULF OF MEXICO OUTER CONTINENTAL SHELF (OCS) OIL AND GAS LEASE SALES: 2015-2017 CENTRAL PLANNING AREA LEASE SALES 235, 241, AND 247

BACKGROUND:

USEPA-1

The Draft Supplemental Environmental Impact Statement (DSEIS) was prepared by the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Gulf of Mexico (GOM) Outer Continental Shelf (OCS) Region for lease areas in the Central Planning Area. A total of 3 federal lease sales are being proposed; lease sales in blocks 235, 241, and 247. EPA understands that the proposed lease sales for the blocks are tentatively scheduled for 2015, 2016, and 2017. EPA understands that the completion of this EIS will complete the NEPA / decision making process for lease sale block 235; however, additional the National Environmental Policy Act (NEPA) analysis will be conducted for final decisions on lease sale blocks 241 and 247. EPA also understands that this EIS supplements information covered in the following past NEPA documents: Gulf of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement (2012-2017 WPA/CPA Multisale EIS) and Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014: Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement (WPA 233/CPA 231 Supplemental EIS). EPA provided review comments on these previous BOEM EISs in accordance with our responsibilities under Section 102(2)(C) of NEPA and Section 309 of the Clean Air Act.

ALTERNATIVES PROPOSED:

Alternatives for Proposed Eastern Planning Area Lease Sales 235, 241, and 2471

- Alternative A—The Proposed Action (Preferred Alternative): This alternative would offer for lease all unleased blocks within the proposed CPA lease sale area for oil and gas operations with the following exceptions:
 - whole and portions of blocks deferred by the Gulf of Mexico Energy Security Act of 2006; and
 - blocks that are adjacent to or beyond the United States' Exclusive Economic Zone in the area known as the northern portion of the Eastern Gap.
- Alternative B The Proposed Action Excluding the Blocks Near Biologically Sensitive
 Topographic Features: This alternative would offer for lease all unleased blocks within the

1

¹ Alternatives section cited directly from p. ix in DSEIS

proposed CPA lease sale area, as described for the proposed action (Alternative A), but it would exclude from leasing any unleased blocks subject to the Topographic Features Stipulation.

Alternative C - No Action: This alternative is the cancellation of a proposed CPA lease sale.

EPA COMMENTS:

ALTERNATIVES

In general, Alternative B (The Proposed Action Excluding the Unleased Blocks Near Biologically Sensitive Topographic Features) would be the more environmentally sensitive approach with regard to these resources targeted by this review. However, EPA assumes that a more detailed site specific analysis is forthcoming at the lease block level, as the lease sale process proceeds. EPA also assumes that this site specific analysis would identify the presence of biologically sensitive features, and if these areas are identified, appropriate mitigation measures would be implemented.

AIR

USEPA-2

The EPA is responsible for ensuring compliance with the National Ambient Air Quality Standards (NAAQS) in the Gulf States of Texas, Louisiana, Mississippi, Alabama and Florida. In addition, EPA Region 4 is responsible for implementing and enforcing Clean Air Act (CAA) requirements for OCS sources offshore the state seaward boundaries of all areas of the Gulf of Mexico (GOM) east of 87'30" (see CAA section 328). Pursuant to the CAA and applicable federal regulations (see 40 CFR 55), OCS activities, such as exploratory drilling operations and production platforms are subject to the EPA requirements to obtain air quality preconstruction and operating permits.

The air quality sections of the DSEIS, including Appendix A - Air Quality Offshore Modeling Analysis, were reviewed by EPA Region 4 APTMD.

2.2.2. Mitigating Measures

As discussed in section 2.2.2, Mitigation Measures, "agencies are required to include, in the alternative chosen, relevant and reasonable mitigation measure that could improve the action." The DSEIS does not, however, discuss reasonable mitigation measures for air quality impacts. Section 2.2.2.2, Existing Mitigation Measures, indicates that air quality is among the over 120 "standard mitigation measures" that are applied by BOEM during plan and permit reviews, EPA recommends, consistent with NEPA regulations and guidance, that at a minimum, BOEM identify known technologies in the EIS that may be generally applied to offshore oil and gas operations (*see* 40 CFR 1508.20; Forty Questions No.19(a)) or provide a reference as to where the standard measures can be reviewed, such as on the BOEM website. EPA continues to suggest that reasonable mitigation measures that should be considered include the use of low sulfur fuels, inherently lower polluting engine designs, use of tier certified non-road and marine engines (rather than engines certified for export), electrification of cranes and support equipment,

2

fuel efficiency measures, and use of best available technologies. It was our understanding from EPA's meeting with BOEM in December 2013 that the TIMS mitigation measures would be included or available as part of the EIS documents.

3.1.1.5. Air Emissions

This section discusses the emissions sources related to OCS activities. EPA recommends that BOEM consider including well stimulation vessel activities in future analyses, as it is our understanding that these vessels are not currently included in the GOADS inventory.

4.1.1.1. Air Quality

USEPA-4

SEPA-5

USEPA-6

USEPA-7

USEPA-8

JSEPA-9

This section and the Executive Summary indicate that the CPA proposed actions are projected to have minimal impacts and are expected to be well within the National Ambient Air Quality Standards. This statement is not supported by the analysis given that the modeled emission results are above the EPA significant impact level (SIL) for the annual NO₂ standard and the 24-hour particulate matter of 2.5 microns or less (PM_{2.5}) standard. The DSEIS concludes that the proposed activities will not affect the onshore air quality, since the model is conservative and approximated all sources at one location, and therefore actual operations might not violate the SIL. "All of the emissions during 1 year for the entire CPA, which would actually be dispersed throughout the CPA, were modeled as if they originated from Mississippi Canyon Block 856," page 4-9. The SIL is a screening tool used to indicate when further analysis is warranted. Hence, EPA recommends that a more refined analysis be conducted to validate the BOEM conclusion, as it is unclear what metrics were used for BOEM's determination, or under what conditions BOEM would consider the results of the analysis to be meaningful.

The model described on page 4-10, and in Appendix A, does not include VOCs. It is unclear how the emissions of VOCs were estimated. EPA recommends the EIS include clarification of the VOC analysis (It seems as though VOC emissions were most likely a part of the ozone studies, but this is not discussed.)

This section also indicates (top of 4-10) that BOEM used "known" emissions from various equipment. This statement is repeated in Appendix A. For clarity, EPA recommend that the EIS more accurately describe the emissions as "estimated," since the estimated emissions are based on emissions factors that contain significant uncertainty.

The statement in the OCD Model section, "Given that these very conservative estimates of emissions were modeled and are still below both agencies regulatory thresholds" page 4-10, contradicts the statements made on page 4-9, see above, that the EPA SIL was exceeded. EPA recommends that this statement be updated to adequately reflect the modeled results.

This section also indicates that: "with the movement of the bulk of activities to deep water, air emission-producing sources moving farther from shore. This further reduces the potential for air quality impact to onshore from a proposed CPA lease sale." EPA believes that this assumption is not a given, and should be verified or qualified. Deepwater vessels are dynamically positioned

3

and have significantly higher emissions than near-shore jack-up rigs - including significant emissions of PM that are readily transported onshore.

EPA continues to have concerns that the 2008 Gulf-wide Emissions inventory may not capture the extent of the higher emissions associated with increased deepwater exploratory drilling, and that some aspects of the analysis are not as conservative as BOEM has assumed, given our experience with emission factor and activity assumptions. EPA supports BOEM's commitment to conduct a variety of sensitivity analyses, updated emission inventories, and an evaluation of emission scenarios using USEPA-approved models, which will support BOEM's scientific analyses and overall assessment of air quality impacts in future EIS's, as mentioned in this section.

Greenhouse Gas Emissions (p. 4-11)

The DEIS indicates that a typical well site emits 237-439 tons per year of CO2e emissions. EPA is concerned that this emission range is in error, or perhaps may apply only to direct emission of methane, rather than CO2. This range would be the emissions from a small combustion source operating infrequently, and would not represent emissions from a turbine generator or large crane engines. For example, a single deepwater exploratory rig operating only 45-180 days per year has CO2e emissions of 30,000 – 100,000 tpy.

Cumulative impacts (4-13,15)

This section indicates that mobile source emissions contribute 50% of NOx emissions onshore. It is not clear from this section whether the marine vessel emissions associated with CPA activities have been addressed in relation to their contribution at coastal ports (i.e. not just when they are within 25 miles of a given lease activity). In addition, the summary of ozone precursor pollutants on page 4-15 appears to describe an inland urban environment. EPA recommends that this discussion be updated to include marine vessels and typical port emissions. Emissions from ports and associated vessels are making up an increasing percentage of the emissions inventory in coastal cities. In some cities, these emissions exceed the contributions from all automobiles. Given that there is a significant industry associated with servicing offshore oil and gas activities, EPA recommends that marine vessels, in terms of both the cumulative and CPA contribution (at the onshore ports) be addressed. The following link has additional information regarding the Administration's ports initiative: http://www.epa.gov/otag/ports/

Appendix A. Air Quality Modelling Analysis

A Class I and Class II modeling procedure using the Offshore and Coastal Dispersion (OCD) was used to assess the project's affect at BOEM's shoreline and Breton National Wilderness Class I area. The OCD model developed project impacts at 90 km (shoreline) and at 153 km in the direction of Breton Wilderness Class I area. These impacts were used to assess the likelihood of project emissions causing ambient impacts in the Class I or Class II area greater than the Significant Impact Levels (SIL).

4

SEPA-10

USEPA-11

SEPA-12

USEPA-15

USEPA-16

JSEPA-17

JSEPA-18

EPA understands that there are limitations to the reliability of all the various models for use on the OCS and has considered these limitations in our own analyses. Despite the appropriateness for overwater, the distances used in this analysis are beyond the stated reliable limits of OCD. Extrapolating the OCD modeling results for the Class I annual NOx SIL and Class II 1-hr NO2 SIL and NAAQS is also beyond the reliable limits of the OCD model. EPA continues to recommend that CALPUFF modeling be performed for Class I annual SIL and Class II SIL and NAAQS for NOx and NO2, respectively.

The OCD Class I annual NOx concentrations at 153 km are greater than the applicable PSD SIL: EPA believes this indicates a need to perform long-range CALPUFF impact assessment.

The scope of the analysis was limited to onshore receptors. However, States are responsible for ensuring compliance with the NAAQS within State seaward boundaries, which extend 3 or 9 miles offshore. Consistent with NEPA guidelines, EPA suggests that the EIS not be limited to impacts to onshore receptors. An EIS serves as a document to provide an assessment of air quality impacts in general and to allow decision makers an insight into compliance with all applicable statutes and regulations, including the requirements of the CAA and applicability of the NAAQS within state seaward boundaries.

Errata: Super-scripts (a, b, c, d, and e) are missing references on Table A-4 page A-10.

NPDES

EPA notes that Sections 4.1.1.2.1, 4.1.1.2.2, & 4.1.1.18, and Table 3-3 include minimal information on the use of well stimulation fluids (i.e., "fracking fluids"). EPA notes that the potential for impacting benthic environments and surrounding water columns from the use of well stimulation fluids is not clearly understood.

Recommendation:

EPA recommends information on the trends pertaining to the volumes of well stimulation fluids used in well development, any available information on the formulation of these fluids, and fate and transport be included in the FSEIS. We also recommend that BOEM provide information relating how fracking is different from traditional well development (Will special vessels for fracking related operations be needed? How do these vessels impact BOEM's impact analysis relating to vessel traffic? etc.)

FISHERIES

A recent study, "Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish"² which is part of the Deepwater Horizon Natural Resource Damage Assessment, seeks to determine the impact of the Deepwater Horizon spill on certain fish species. This study found that juvenile tuna and amberjack exposed to crude oil-derived polycyclic aromatic

5

² "Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish" www.pnas.org/cgi/doi/10.1073/pnas.1320950111 **USEPA-18**

USEPA-19

USEPA-20

Recommendation:

long-term survival.

EPA recommends that BOEM consider this study when discussing the potential impacts of oil spills on fish species in the GOM in the FSEIS.

hydrocarbons (PAHs) develop heart defects that will likely limit their ability to catch food and

WETLANDS AND COASTAL AREAS

Coastal wetland systems are very sensitive systems that are increasingly stressed from all types of activities including but not limited to coastal development, maintenance dredging of channels, and oil and gas development. These systems are also stressed due to natural events such as hurricanes. Stresses on these systems are only predicted to increase with climate change and sea level rise.

A report by Stedman and Dahl (2008) on the status and trends of wetlands in coastal watersheds states that the "Gulf of Mexico coastal watersheds exhibited substantial losses in freshwater wetlands. This rate of loss was 6 times higher than the rate of freshwater vegetated wetlands losses in the Atlantic coastal watersheds. The estimated losses for all wetland types in the Gulf of Mexico were 25 times higher than those estimates for the Atlantic over the course of this study."3 This report also indicates that coastal areas along the panhandle of Florida, Alabama, Mississippi, Louisiana, and Texas are listed as areas of greatest coastal wetland loss in the Gulf of Mexico and that a "majority of the coastal wetland loss (61,800 acres per year) from 1998 to 2004 occurred in the Gulf of Mexico."

Recommendation/Comment:

EPA appreciates BOEM's efforts to better quantify historical wetland losses for coastal areas in the Central Planning Area and the current status of these systems.4 As EPA has expressed in several previous NEPA comment letters, we remain concerned about the potential for cumulative impacts on near shore wetlands and coastal areas.

ENVIRONMENTAL JUSTICE

The federal action proposed under this DSEIS has the potential to impact EJ communities negatively and positively. The potential negative impacts on EJ communities involve oil spills that negatively impact communities that rely on commercial and recreational fishing, oystering, and subsistence fishing. Other negative impacts are associated with the oil-related infrastructure and its impact on minority and low-income communities. The infrastructure support system for oil- and gas-related industries in the GOM is highly developed, widespread, and has operated for decades within a heterogeneous GOM population. The potential positive impacts associated

³ Stedman, S. and T.E. Dahl. 2008. Status and trends of wetlands in the coastal watersheds of the Eastern United States 1998 to 2004. National Oceanic and Atmospheric Administration. National Marine Fisheries Service and U.S. Department of the Interior. Fish and Wildlife Service. (32 pages) ⁴ See p. 4-47 New Information - Wetlands Section and 4-127 - Discussion of Maintenance and Use of Navigation Waterways

with the proposed action include increases in economic activity and job creation in these same communities. EPA supports the efforts made by BOEM to conduct subsistence research in an effort to document the potential impact on these communities.

Recommendation:

JSEPA-20

JSEPA-21

JSEPA-22

EPA recommends BOEM include discussion of mitigation efforts in the FSEIS that addresses impacts to these communities relating to subsistence fishing and oystering in the event of an oil spill. EPA also recommends that BOEM better define in the FSEIS how minority and low-income communities that may be impacted by the proposed action have had opportunities to engage in the decision making process.

PUBLIC DISCLOSURE

EPA notes that BOEM is taking a number of steps to enhance to public's ability to comment and provide input into the prelease sale planning process. Public disclosure an essential piece of the NEPA process. EPA encourages BOEM to continue these efforts.

SEAGRASS / ISLAND RESTORATION

EPA supports the proposed monitoring and restrictions on the use of bottom-disturbing equipment in areas with seagrass in response to any future oil spill cleanup activities. In addition, we support efforts to identify sand resources for coastal restoration and for evaluating the environmental impacts of exploiting those resources. Specifically, we appreciate the efforts of BOEM in evaluating and leasing OCS sand sources for implementation of the Deepwater Horizon NRDA Whisky Island Restoration Project using sand from Ship Shoal Block 88 and for Phase Two Caminada Headland Restoration Project using sand from South Pelto Blocks 13 and 14.

EDITORIAL COMMENTS

Section 2.3.1.2 – Summary of Impacts – BOEM provides two lists of resources under this section, one list for resources which BOEM's subject matter experts discovered no new information and another list of resources where they did discover new information since the WPA/CPA Multisale EIS and WPA 233/CPA231 Supplemental EISs. EPA notes that Air Quality and Water Quality are under the list of "no new information", however after review of this EIS we note that BOEM does provide a significant amount of new information relating to these resources. Another example (relating to the discussion of the Diamondback Terrapin) is when BOEM states on p. 4-118 that "The search revealed little new information pertinent to this Supplemental EIS", however, EPA notes the Diamondback Terrapin falls on the list on p. 2-9 of resources with new information. EPA recommends clarifying these sections and lists in the FSEIS.

Chapter 4 Organization – Under each resource, BOEM provides a discussion of the potential impacts on that resource from the proposed action. Included in these sections are discussions of cumulative impacts, summaries of new information, and conclusions. EPA notes that for some resources, the Summary and Conclusion section comes before

the New Information Section. A more logical structure for these sections would be to present the reader with the new information and then present BOEM's summary and conclusions.

Level of Detail Covered in New Information Sections in Chapter 4 - EPA notes that the New Information Sections in Chapter 4 provide a varying degree of detail (some more some less). Much more information relating to sea turtles (mortality, impacts of PAH's, etc) is provided than for wetlands in these sections. For example, it is stated on p 4-47 that "Numerous studies have been published regarding impacts of the *Deepwater Horizon* explosion, oil spill, and response", but BOEM provides no real details regarding what studies have been conducted and the results of these studies. A summary of these studies and the results would be beneficial to determine the significance of this new information. EPA recommends this level of detail be provided for all new information being considered under this supplemental EIS.

Region 4 Contacts:

Dan Holliman – Region 4 NEPA Program Office – <u>Holliman Daniel@epa.gov</u> Kelly Fortin – Region 4 Air Division – <u>Fortin Kelly@epa.gov</u> Karrie-Jo Shell – Region 4 Water Protection Division (NPDES) – <u>Shell.Karrie-Jo@epa.gov</u> Bridget Staples – Region 4 Water Protection Division (NPDES) – <u>Staples.Bridget@epa.gov</u> Rol Ferry – Region 4 Water Protection Division (Marine Resources) – <u>Ferry.Roland@epa.gov</u> Rosemary Hall – Region 4 Water Protection Division (Wetlands) – <u>Hall.Rosemary@epa.gov</u> Keith Hayden – Region 6 NEPA Program - <u>Hayden Keith@epa.gov</u>

8

USEPA-22

USEPA-23

USEPA-24

- USEPA-1 As noted in **Chapter 1.2**, the proposed CPA lease sale area does not consist of one block (i.e., "Block 235, 241, or 247"). Instead, it encompasses about 63 million acres of the total CPA area of 66.45 million acres. The CPA is divided into 12,409 blocks and is analyzed in this Supplemental EIS. The Assistant Secretary for Lands and Minerals Management will make a decision as to whether to proceed with each proposed CPA lease sale and, if so, which blocks will be available for lease will be announced in the Final Notice of Sale and Record of Decision.
- USEPA-2 BOEM's decision on whether and how to proceed with a proposed CPA lease sale will be announced in the Final Notice of Sale and Record of Decision. For a detailed discussion of the postlease NEPA analysis, refer to **Chapter 1.5**.
- USEPA-3 BOEM is charged with the review of exploration and development plans as part of its postlease process. The agency reviews the air quality information submitted as part of these plans in accordance with air quality regulations stipulated in 30 CFR § 550.303. However, these regulations do not provide the authority to issue air permits nor do they provide for an air permit review process.

Additionally, air quality regulations at 30 CFR § 550.128 and 30 CFR § 550.149 discuss what air emissions information must accompany the exploration and development plans, respectively. There are a total of 18 air quality mitigations currently in effect that can be incorporated into exploration and development plans when warranted, thereby imposing additional requirements that limit or attenuate the environmental impacts of air emissions from offshore exploration and development activities.

BOEM has mitigating measures for the use of ultra-low sulfur fuel, fuel efficiency measures, flaring, stack testing for verification of emission factors, and H_2S presence in plans and pipelines. Furthermore, BOEM has the capability to include mitigating measures for use with new technologies that BOEM has the authority to regulate. On May 16, 2014, BOEM sent a copy of the mitigating measures currently in effect in the Technical Information Management System (TIMS) database to the USEPA for review.

A complete list of the most commonly applied site-specific mitigating measures (including the 18 air quality mitigations) can be found in **Appendix D** ("Commonly Applied Mitigating Measures").

- USEPA-4 This Supplemental EIS is based on the 2008 Gulfwide Emissions Inventory and does not include well stimulation vessel activity. Due to the recent advances in technology and offshore discoveries, this large-scale activity has been made feasible only in the past few years. Additionally, well stimulation activity data may not have been available for the 2011 Gulfwide Emissions Inventory. However, BOEM will include well stimulation activity in the 2014 Gulfwide Emissions Inventory as recommended by the USEPA.
- USEPA-5 BOEM is in the process of conducting a comprehensive assessment of numerical methods (including a variety of sensitivity analyses, a comparison of emissions inventories, and an evaluation of emission scenarios) using USEPA-approved models, which will support our scientific analyses in future EISs. This assessment will likely be awarded by the fall of 2014, but the results will not be available within the timeline of the publication of this Supplemental EIS. This modeling is important considering that modern air quality models are still in development and need to be evaluated before they are widely used for realistic estimations of pollutant concentrations over offshore and coastal environments. Particular attention will be provided to resolve the issues in sensitive Class I and Class II areas.

5-24	Central Planning Area Lease Sales 235, 241, and 247 EIS
USEPA-6	BOEM calculated scenario-specific emissions based on the <i>Year 2008 Gulfwide Emission</i> <i>Inventory Study</i> (Wilson et al., 2010) and Rigzone (2009). A spreadsheet was developed based on the findings of this study (Billings et al., official communication, 2012). All of the scenario-predicted emissions were then modeled at one location in the CPA. The VOC emissions were analyzed as well. An electronic copy of the spreadsheet was sent to the USEPA during development of the WPA 233/CPA 231 Supplemental EIS. That spreadsheet remains accurate for this Supplemental EIS.
USEPA-7	Comment noted. BOEM will replace "known" with "estimated" in this Supplemental EIS.
USEPA-8	Comment noted. BOEM will update the statement to reflect the results of the model.
USEPA-9	Comment noted. BOEM will remove the statement.
USEPA-10	As previously stated, BOEM is in the process of conducting a comprehensive assessment of numerical methods (including a variety of sensitivity analyses, a comparison of emissions inventories, and an evaluation of emission scenarios) using USEPA-approved models, which will support our scientific analyses in future EISs. This assessment will likely be awarded by August 2014, but the results will not be available within the timeline of the publication of this Supplemental EIS.
	Additionally, the 2011 Gulfwide Emissions Inventory should be finalized by the end of summer 2014.
USEPA-11	Comment noted. BOEM removed the statement from the Final Supplemental EIS and has updated the information.
USEPA-12	BOEM acquired the information used in statement, "Mobile sources emissions contribute 50% of NO _x emissions onshore" from USEPA published information (see USEPA's website at <u>http://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=194645</u>) (USEPA, 2008).
	The 2008 Gulfwide Emissions Inventory tracked marine vessel emissions from local ports to platforms and not just within 25 mi (40 km) of the lease activity. At this time, this is the best available data to conduct the analyses. BOEM will continue to track marine vessel emissions from local ports to platforms in future analyses.
	A cumulative impact assessment (as recommended by the USEPA) will be addressed in the proposed Gulfwide air quality modeling study. The study will assess OCS oil and gas development impacts to the States (if any). The modeling will estimate the potential cumulative impacts of offshore OCS air emissions to the States. The impact analysis will be used in EISs to describe the cumulative and the multisale scenario effects (if any) of oil and gas development in the Gulf of Mexico region. This comprehensive assessment of numerical methods (including a variety of sensitivity analyses, a comparison of emissions inventories, and an evaluation of emission scenarios), using USEPA-approved models, will support our scientific analyses in future EISs.
USEPA-13	BOEM acknowledges that every available air quality model has benefits and limitations. BOEM's subject-matter experts determined that the OCD model was one of the few to be viable for use in offshore environments and that it would produce more conservative results (i.e., tend to overestimate impacts) than other available models. Nevertheless, while it is true that the OCD model has a 50-km (31-mi) applicability limitation, this Supplemental EIS has demonstrated that the receptors within 50 km (31 km) of the proposed CPA lease sale are within acceptable limits, even accounting for the OCD model's conservative nature.

- USEPA-14 BOEM's subject-matter experts determined that the OCD model was one of the few to be viable for use in offshore environments and that it would produce more conservative results (i.e., tend to overestimate impacts) than other available models. BOEM calculated scenario-specific emissions based on the *Year 2008 Gulfwide Emission Inventory Study* (Wilson et al., 2010), and all of the scenario-predicted emissions were then modeled at one location in the CPA. Although the U.S. Environmental Protection Agency's SILs were exceeded, BOEM expects, in practice, that if the emissions were distributed more realistically across the CPA, emissions would not exceed the SILs.
- USEPA-15 NEPA does not mandate a specific regulatory proxy for the nature and scope of significant impacts that may result from a CPA proposed action. Although the USEPA has applied the NAAQS to the State seaward boundary for State attainment purposes, BOEM's regulations at 30 CFR § 550.303 state that the proposed activities should be reviewed for their potential to affect the air quality of an onshore area; therefore, onshore receptors rather than receptors at the State's seaward boundary were selected.
- USEPA-16 Comment noted. The superscripts have been removed from **Table A-4** (page A-12).
- Chapter 3.1.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS, which is incorporated by **USEPA-17** reference into this Supplemental EIS, discusses development and production drilling, including hydraulic fracturing or "fracking." However, Chapter 3.1.1.3 of this Supplemental EIS has been revised to provide additional clarity regarding "fracking," which is an imprecise term in that its use primarily during well completion on the OCS is very different than its onshore application. Chapter 3.1.1.4.2 of the 2012-2017 WPA/CPA Multisale EIS discusses well treatment, workover, and completion fluids and notes that these fluids include fracturing fluids. Chapter 3.1.1.4.4 of the 2012-2017 WPA/CPA Multisale EIS explains that produced sands can result from hydraulic fracturing as well as other practices. Since discharges from drilling and production platforms are regulated by USEPA through the NPDES permit process, the effects from these discharges should be limited. For more detailed information and the full analyses of the potential impacts associated with a CPA proposed action, refer to Chapters 4.2.1.2.1 (coastal waters), 4.2.1.2.2 (offshore waters), and 4.2.1.18 (fish resources and essential fish habitat) of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS and to Chapters 4.1.1.2.1 (coastal waters), 4.1.1.2.2 (offshore waters), **4.1.1.9** (chemosynthetic deepwater benthic communities), **4.1.1.10** (nonchemosynthetic deepwater benthic communities), 4.1.1.11 (soft bottom benthic communities), and 4.1.1.18 (fish resources and essential fish habitat) of this Supplemental EIS.
- USEPA-18 The publication referenced in USEPA's comment 18 (Incardona et al., 2014) supports the general conclusions reached by BOEM's analysis of existing information, and it has been included in **Chapter 4.1.1** where relevant.
- USEPA-19 Comment noted. Recent studies of landloss were cited in the cumulative section, which included estimates of the proportion of loss caused by various factors, including both OCS oil- and gas-related and ,non-OCS oil- and gas-related factors. These studies are the State of Louisiana, Coastal Protection and Restoration Authority (2012) and Couvillion et al. (2013).
- USEPA-20 For clarification, as there are no clearly discrete, identifiable, or recognized environmental justice communities in the impact area, BOEM always refers to "minority and low-income" populations, rather than "EJ communities" when analyzing environmental justice concerns in this Supplemental EIS. To date, there is still very little known about subsistence fishing and oystering, though BOEM-funded subsistence research is currently underway. To frame the environmental justice analysis, the issue is whether minority and low-income populations suffer disproportionately high and adverse human health or environmental effects (as opposed to *any* adverse effects). There is no

evidence yet identified to suggest that minority and low-income people who participate in subsistence fishing and oystering are disproportionately affected by oil spills when compared with other populations who also participate in subsistence fishing and oystering. Therefore, given the lack of evidence to support a supposition of disproportionately high and adverse impacts from oil spills to minority and low-income populations related to subsistence fishing and oystering, it would be premature to identify mitigation efforts in this Supplemental EIS that "address" hypothetical impacts to "EJ communities" or minority and low-income populations.

Nevertheless, text was added to clarify paragraph 3 of the introduction.

Text was also added in the introduction (4th paragraph) to better define BOEM's efforts to engage all stakeholders, including minority and low-income populations.

- USEPA-21 Comment noted. The lists has been updated to reflect new information published since the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS that is relevant to potential impacts from a CPA proposed action.
- USEPA-22 Comment noted. **Chapter 4.1.1** has been reorganized to present the "Summary and Conclusion" at the end of each resource analysis.
- USEPA-23 Comment noted. The level of detail covered in the "New Information" sections of **Chapter 4.1.1** are resource specific. Much of this depends on the completion of studies since the publication of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS, and on the relevance to the proposed action.
- USEPA-24 Comment noted. The text has been revised to identify and discuss the new studies in the "New Information" section.

5-27
ADEM-1 As noted in ADEM's letter, the Governors of Alabama have historically indicated opposition to new leasing south and within 15 mi (24 km) of Baldwin County; however, they have requested that, if the area is offered for lease, a lease stipulation to reduce the potential for visual impacts should be applied to all new leases in this area. Prior to issuance of the Final Notice of Sale for Sale 172 in 1999, this Agency's Gulf of Mexico OCS Regional Director, in consultation with the Geological Survey of Alabama/State Oil and Gas Board, developed a lease stipulation to be applied to any new leases within the 15-mi (24-km) area to mitigate potential visual impacts. The stipulation specifies requirements for consultation that lessees must follow when developing plans for fixed structures. The stipulation has been continually adopted in annual CPA lease sales since 1999. It has been adopted in each of the CPA lease sales in the 2002-2007 and 2007-2012 Five-Year Programs, and it will be considered for adoption as part of proposed CPA Lease Sale 235 in the 2012-2017 Five Year Program, which is tentatively scheduled to be held in March 2015.

BOEM may apply a number of lease sale mitigations and stipulations to minimize the impacts of oil and gas exploration and development. **Chapter 2.2.2** of this Supplemental EIS and Chapter 2.2.2 of the 2012-2017 WPA/CPA Multisale EIS discuss these mitigations and stipulations, including the Topographic Features Stipulation. Additionally, a number of site-specific mitigations for environmental protection and safety are routinely applied by BOEM and BSEE at the postlease stages. All exploration plans, development plans, and pipeline applications are thoroughly reviewed to determine what protective measures should be included as a condition of plan or permit approval. Mitigations and stipulations are developed as conditions warrant and are subject to a review and approval process.

5-28

DIVISION OF AQUACULTURE (850) 488-5471

Magnolia Center, Suite 501 1203 Governor's Square Boulevard Tallahassee, Florida 32301

FLORIDA DEPARTMENT OF AGRICULTURE AND CONSUMER SERVICES COMMISSIONER ADAM H. PUTNAM

Please Respond to:

Division of Aquaculture Shellfish Environmental Assessment Section Western Gulf Coast District Office 4408 Delwood Lane Panama City Beach, FL 32408 Phone: 850-236-2200

April 4, 2014

Gary D. Goeke U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region (MS 5410) 1201 Elmwood Park Boulevard New Orleans, LA 70123-2394

RE: Comments on EIS 2015-2017 proposed lease sales of Western Planning Area 229, 233, 238, 246 and 248, and Central Planning Area 227, 231, 235, 241, and 247.

Applicant: US Dept of the Interior, Bureau of Ocean Energy Management.

The Central Planning area in this Environmental Impact Statement (EIS) is located approximately 50 - 100 miles or more southwest of the nearest Florida shellfish harvesting area which is the Pensacola Bay shellfish harvesting area (#02), Escambia and Santa Rosa Counties. The following comments by the Division are based solely on shellfish classification and management for public health.

According to the document, 10 lease sales are planned in the central and western planning area for the potential of future oil and gas exploration. The proposed lease sale area is about 63 million acres of the total 66 million acres.

1-800-HELPFLA

www.FreshFromFlorida.com

The impacts from the proposed offshore oil and gas exploration activities may include drilling fluids and cuttings, ballast water, and uncontaminated seawater. Minor discharges will include sanitary and domestic wastes. Hurricanes are considered the major cause of accidental oil spills. Considering the volume of any potential effluent discharges and the distance between the project and the Florida coastline, these effluent discharges do not appear to have the potential to impact any of the shellfish harvesting areas located within the State of Florida. However, a greater concern is the potential impacts to shellfish resources that can result in the case of a major accidental release of a chemical, oil, or fuel spill. While such an event is unlikely due to safeguards established by the applicant, unexpected fluid releases can occur.

If the project is completed as proposed, it will not result in the reclassification or closure of shellfish harvesting areas in Florida. Adverse impacts are not expected because the proposed project is located a sufficient distance away from shellfish resources.

As a safety measure, please include the Division of Aquaculture in the oil spill response plan contact list to be notified if significant oil, chemical, or fuel spill occurs. Upon such notice, we would invoke our emergency procedures to close shellfish areas to harvesting if necessary.

Thank you for the opportunity to comment. Please call if you need additional information.

Sincerely,

Loanna Torrance Environmental Specialist II

cc: Jill Fleiger

Escambia County file

FDAC-1

FDAC-1 Thank you for your review of the Draft Supplemental EIS and recent comment. At this time, there is a single point of contact notification protocol established by the State of Florida. Consistent with BSEE and Oil Pollution Act implementing regulations (refer to 30 CFR part 254 and 40 CFR part 300), in the event of a discharge, the operators would contact the Florida State Watch Office/State Warning Point directly, and from there, the State of Florida would notify the appropriate offices and personnel. These notification points are required to be specified in the OSRPs in order for plans to be approved by BSEE. Additionally, the OSRPs are required to be consistent with the Regional Contingency Plan from the Regional Response Team (in this case, Regional Response Team IV) and appropriate Area Contingency Plans (ACPs). These plans also contain the required notification information. The ACPs are created by each of the U.S. Coast Guard Captains of the Ports throughout the Gulf of Mexico. The Division of Aquaculture, a Division within the Department of Agriculture and Consumer Services, should contact the Florida State Watch Office directly to ensure that you are on the State's contact list and to provide information for what types of events you would need to be contacted.

STEPHEN CHUSTZ SECRETARY

State of Louisiana department of natural resources office of coastal management

April 22, 2014

BOBBY JINDAL

GOVERNOR

Mr. Gary D. Goeke, Chief Environmental Assessment Section Office of Environment (GM 623E) Bureau of Ocean Energy Management Gulf of Mexico OCS Region 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394

RE: Comments on the Central Planning Area (CPA) Lease Sales 235, 241, and 247 Draft Supplemental Environmental Impact Statement (SEIS)

Dear Mr. Goeke:

The Department of Natural Resources (DNR) has received the draft SEIS for the referenced lease sales, which builds upon the findings of the Gulf of Mexico Outer Continental Shelf (OCS) Oil and Gas Lease Sales: 2012 - 2017 Environmental Impact Statement (EIS) and related National Environmental Policy Act (NEPA) documentation.

We previously commented on the present Multisale EIS by letter to you dated February 15, 2012. We found that while the EIS did address concerns resulting from the subject Lease Sales, it did not credibly assess historic activity, nor did it develop a mitigation plan for resulting adverse impacts. We also commented to you by letter on September 18, 2013, concerning the Notice of Intent to prepare this draft SEIS. Here we advised a more thorough NEPA process to improve upon the Multisale EIS, with greater effort to quantify all secondary, indirect and cumulative losses to Louisiana's coastal zone from offshore energy development. We expressed our desire that the Bureau of Ocean Energy Management (BOEM) would be more proactive during the pre-lease planning phase and development of the SEIS. Yet the BOEM found no new significant information during its preparation of the draft SEIS and maintains that the earlier conclusions of the Multisale EIS and related NEPA work remain valid.

The State of Louisiana is pleased to play a prominent role in moving forward with new discovery and production of offshore oil and gas resources in the Gulf of Mexico and the development of all of our Nation's domestic energy resources. Energy production in the federal waters of the Gulf of Mexico's OCS may continue to grow and be a driver for jobs and business, while playing a key role in providing for the nation's energy needs. However, Louisiana persists in suffering losses in our coastal zone as a result of offshore energy development, as we have throughout the history of OCS Lease Sales in the Gulf of Mexico.

> Post Office Box 44487 • Baton Rouge, Louisiana 70804-4487 617 North Third Street • 10th Floor • Suite 1078 • Baton Rouge, Louisiana 70802 (225) 342-7591 • Fax (225) 342-9439 • http://www.dnr.louisiana.gov An Equal Opportunity Employer

LADNR-2

We do not believe the full measure of coastal effects has been addressed, potential impacts quantified nor adequate mitigation plans developed in the draft SEIS or any earlier NEPA documentation. An aggregate approach to mitigation is necessary to account for direct, indirect and cumulative impacts from all prior and future lease sales, and BOEM is the responsible agency for this undertaking. While effects from a given Lease Sale may be a small percentage of total OCS activity, consideration must be given to historic activity before determining the incremental contribution of OCS impacts to wetland loss.

A better appraisal of coastal effects is necessary at the NEPA stage for OCS Lease Sales if we are to protect Louisiana's future ability to support offshore exploration and development. In order to arrive at a comprehensive and credible assessment, BOEM must assess all impacts, even those separated from a Lease Sale by distance or time. Louisiana is a willing host to OCS exploration and production, but incurs the consequences of those activities and thus should see adequate compensation for those impacts.

The State of Louisiana appreciates the coordination with BOEM and looks forward to Lease Sale planning that aims to balance offshore energy development with a compensation framework that fully accounts for all social, environmental, and economic costs.

Thank you for allowing us to comment. If you should have any questions regarding these comments, please contact Mr. Jeff Harris of the Office of Coastal Management of the Louisiana Department of Natural Resources at (225) 342-7949.

Sincerely Don Ha

cc:

Tershara Matthews, BOEM MS 5412 Brian Cameron, BOEM MS 5412 Project file C20140058 LADNR-1 Chapters 4.1.1.3 and 4.1.1.4 of this Supplemental EIS and Chapters 4.2.1.3 and 4.2.1.4 of the 2012-2017 WPA/CPA Multisale EIS and WPA 233/CPA 231 Supplemental EIS describe the environmental impacts of proposed lease sales on coastal areas, including coastal barrier beaches and wetland resources. Cumulative analyses are also included in order to put the incremental contribution of proposed EPA, CPA, and WPA lease sales in context considering all of the other types of activities (past, present, and reasonably foreseeable) that have the potential to cause impacts, including impacts from other lease sales that are part of the overall OCS Program. BOEM has included in this Supplemental EIS and the aforementioned EISs the relevant information related to its cumulative effects analysis, including both the proposed actions and all OCS oil and gas program activities in its consideration. As noted in **Chapter 4.1.1**, the incremental contribution of an individual lease sale to these impacts is very small. Many of the impacts to environmental and socioeconomic resources that are identified in the cumulative analysis have occurred over many years, much of it prior to the enactment of important laws to protect the environment and prior to the bulk of OCS oil- and gas-related activities.

In particular, BOEM-supported studies by Johnston et al. (2009) and Thatcher et al. (2011), which are used in **Chapters 4.1.1.4**, **4.1.1.16**, **4.1.1.23.1**, **and 4.1.1.23.4** (respectively wetlands, coastal and marine birds, land use and coastal infrastructure, and environmental justice), examined secondary impacts associated with OCS oil- and gas-related activity. In addition, the OSRA program at BOEM provides a thorough characterization of the risk to coastal resources from large oil spills.

LADNR-2 BOEM includes a robust consideration of potential mitigation in its analysis. Please note, however, that BOEM's authority to require certain types of mitigation is limited to its statutory authority and that BOEM has no or limited authority to provide or mandate compensatory mitigation for possible activities outside the OCS Federal waters with indirect coastal impacts. These activities are regulated by other Federal and State agencies, such as the U.S. Army Corps of Engineers through the Rivers and Harbors Act Section 10 and Clean Water Act Section 404 permits and the Louisiana Department of Natural Resources through the Louisiana Coastal Use permits. A decision on what BOEM mitigations may be imposed as part of a proposed CPA lease sale, if the decision is to move forward with a proposed CPA lease sale, will be announced in the Final Notice of Sale and Record of Decision.

iPl

May 8, 2014

Mr. Gary D. Goeke Chief, Environmental Assessment Section Leasing and Environment (MS 5410) Bureau of Ocean Energy Management Gulf of Mexico OCS Region 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394

Submitted via E-mail to <u>pa285@beem.gov</u>

Re: Comments on the CPA 235, 241, and 247 Draft Supplemental SEIS

Dear Mr. Goeke:

The American Petroleum Institute (API) offers the following comments on the U.S. Department of Intenor Bureau of Ocean Energy Management's (BOEM's) Draft Supplemental Environmental Impact. Statement (DSEIS) for the Central Planning Area (CPA) Gulf of Mexico (GOM) lease sales scheduled for 2015 – 2017 (also referred to as the 'CPA Lease Sales 235, 241 and 247 DSEIS'). The API is a national trade association that represents over 600 members involved in all aspects of the oil and natural gas industry, including exploring for and developing oil and natural gas resources in the GOM – a vital part of our nation's economy. The industry supports millions of American jobs and delivers billions of dollars in annual revenue to our government.

This CPA Lease Sales 235, 241 and 247 DSEIS uses information contained in three previous environmental impact statements. This DSEIS tiers from the Proposed Final Outer Continental Shelf Oil and Gas Leasing Program: 2012-2017, Final Programmatic Environmental Impact Statement (Five-Year Program EIS). It incorporates by reference all of the relevant material published in the EIS's that were prepared for the Western and Central Planning Areas (WPA and CPA). Gulf of Mexico OCS Oil and Gas Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 2013-2014; Western Planning Area Lease Sales 2013-2014; Western Planning Area Lease Sales 231, 500, 2013-2014; Western Planning Area Lease Sale 231; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement (WPA 233/CPA 231 Supplemental EIS).

BOEM's CPA Lease Sales 235, 241 and 247 DSEIS addresses three proposed Federal actions that offer areas for lease on the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) that may contain substantial reserves of economically recoverable oil and gas resources. The Gulf of Mexico constitutes one of the world's major oil and gas producing areas, and has proved a steady and reliable source of U.S. crude oil and natural gas for more than 50 years.

The CPA is a critically important hydrocarbon energy producing area where existing infrastructure and expertise can be used to increase our nation's oil and natural gas resources. Predictable lease sales in this Planning Area are needed to help ensure continued offshore exploration and production in the future since leases sold today will take many years to fully develop. Predictability and certainty in the leasing

program helps companies make the long-term decisions required for offshore development and avoids the potential of having years wasted in bringing vital oil and natural gas production to the market.

BOEM's NEPA Analysis

API strongly supports the analysis made by BOEM in the Gulf of Mexico OCS Oil and Gas Lease Sales: 2015 – 2017 Draft Supplemental Environmental Impact Statement (OCS EIS/EA BOEM 2014-010). API believes that the detailed analysis provided in the DSEIS, along with the other supporting environmental documents and additional assessments being conducted by BOEM, provide a thorough analysis upon which to make decisions related to the three proposed lease sales, new or revised exploration and development plans in the CPA, and future permit applications, without delay. API notes that the DSEIS contains (by reference) updated information and analyses regarding the 2010 Macondo oil spill. This new information supports the NEPA process by describing the current environmental baseline conditions in the WPA (as appropriate) including the results of numerous new scientific studies regarding the spill. We encourage BOEM to continue reviewing and evaluating the sound, peer-reviewed science in this area and to avoid the use of unsubstantiated or anecdotal information.

API also acknowledges that BOEM has conducted a detailed Catastrophic Spill Event Analysis at Appendix B of the DSEIS to consider the environmental impacts associated with a low probability high-volume oil spill resulting from loss of well control on the Gulf of Mexico OCS. API believes that this analysis fully meets the agency's obligations under NEPA to provide decision makers with a robust analysis of reasonably foreseeable impacts associated with a low probability oil spill on the OCS.

Tiering Under the National Environmental Policy Act (NEPA)

API supports BOEM's approach of evaluating multiple similar federal actions (i.e. holding multiple lease sales) in a single EIS as provided in the Council on Environmental Quality's (CEQ's) regulations (see 40 CFR 1502.4). API is aware that at the completion of this EIS process, agency decisions will be made only for proposed Lease Sale 235 in the WPA. We understand that a NEPA review will be conducted before each subsequent lease sale following lease sales 241 and 247. API believes that this approach will allow the NEPA reviews of the subsequent lease sales to proceed efficiently by focusing on any new issues or information and avoiding the repetitive issuance of cumbersome draft and final EISs for each sale area. In short, API fully supports BOEM's continued practice of tiering EISs and Environmental Assessments (EISs/EAs) under NEPA.

Alternatives Considered in the SEIS

The *CPA Lease Sales 235, 241 and 247 DSEIS* considers three alternatives for proposed WPA lease sales 235, 241 and 247. API strongly supports Alternative A (the *Proposed Action*) for the proposed WPA lease sales as described below:

Alternative A—The Proposed Action (Preferred Alternative): This alternative would offer for lease all unleased blocks within the proposed WPA lease sale area for oil and gas operations, with the following exception:

(1) whole and portions of blocks deferred by the Gulf of Mexico Energy Security Act of 2006; and

(2) blocks that are adjacent to or beyond the United States' Exclusive Economic Zone in the area known as the northern portion of the Eastern Gap

The DOI is conservative throughout the NEPA process and includes the total area within the CPA for environmental review even though the leasing of portions of the CPA (subareas or blocks) can be deferred during a Five-Year Program. The proposed CPA lease sale area encompasses about 63 million acres of the CPA's 66.45 million acres. As of February 2014, approximately 43.5 million acres of the proposed CPA lease sale area are currently unleased. The estimated amount of natural resources projected to be developed as a result of a proposed CPA lease sale is 0.460-0.894 billion barrels of oil (BBO) and 1.939-3.903 million cubic feet (Tof) of gas

Alternative B—The Proposed Action Excluding the Unleased Blocks Near Biologically Sensitive Topographic Features: This alternative would offer for lease all unleased blocks within the proposed CPA lease sale area, as described for a proposed action (Alternative A), but it would exclude from leasing any unleased blocks subject to the Topographic Features Stipulation.

Alternative C-No Action. This alternative is the cancellation of a proposed CPA lease sales. If this alternative is chosen, the opportunity for development of the estimated 0.460-0.894 BBO and 1.939-3.903 Tcf of gas that could have resulted from holding the proposed CPA lease sale would be precluded during the current 2012-2017 Five-Year Program, but it could again be contemplated as part of a future Five-Year Program. Any potential environmental impacts ansing out of a proposed CPA lease sale would not occur, but activities associated with existing leases in the CPA would continue. This alternative is also analyzed in the EIS for the Five-Year Program on a nationwide programmatic level.

API is strongly opposed to Alternatives B and C for the CPA lease sales. The analysis in the DEIS does not support the adoption of such restrictive alternatives. API urges BOEM to adopt Alternative A for the CPA Lease Sales 235, 241 and 247 DSEIS. Adoption of Alternative A is fully consistent with the agency's analysis.

Discussion of "Incomplete and Unavailable" Information

On several occasions throughout the document, the DEIS discusses the instances in which the information available to BOEM is "incomplete or unavailable" within the meaning of 40 C.F.R § 1502.22. Although "numerous" instances are cited, BOEM has determined, after careful analysis, that the currently unavailable information is not essential to a reasoned choice among alternatives. This conclusion is an important one, since both CEQ regulations and case law spell out how an agency must proceed when confronted by information that is not currently available.

The resources of the GOM remain a vital source of jobs, revenue, energy and economic growth for the nation. API and its member companies are committed to the safe and responsible development of these vital oil and natural gas resources. As such, we ask that the department finalize the *CPA Lease Sales 235, 241 and 247 DSEIS* as quickly as possible so that leasing can continue in accordance with *Alternative A* as proposed in the DSEIS. Should you have any questions on these comments please contact me at (202) 682-8584 or by email at <u>rational@api org</u>

Sincerely,

API-1

API-2

Andy Radford

5-38		Central Planning Area Lease Sales 235, 241, and 247 EIS
API-1	Comment noted.	
API-2	Comment noted.	

https://www.fdms.gov/fdms/getcontent?objectId=09000064816c8c1f&f...

PUBLIC SUBMISSION

As of: 4/29/14 10:16 AM Received: April 24, 2014 Status: Pending_Post Tracking No. 1jy-8bpo-zgiz Comments Due: May 08, 2014 Submission Type: Web

Docket: BOEM-2014-0033 Oil and Gas Lease Sales: Lease Sales 235, 241, and 247; Outer Continental Shelf, Gulf of Mexico, Central Planning Area

Comment On: BOEM-2014-0033-0001 Oil and Gas Lease Sales: Lease Sales 235, 241, and 247; Outer Continental Shelf, Gulf of Mexico, Central Planning Area

Document: BOEM-2014-0033-DRAFT-0004 Comment from Anonymous Anonymous, NA

Submitter Information

Name: Anonymous Anonymous Address: 1740 Cleveland Ave Cincinnati, OH, 45212 Email: peacefuljeff@gmail.com Organization: NA

General Comment

I oppose any and all oil and gas lease sales anywhere and everywhere in the world. ExxonMobil has recently joined the rest of the world, and admitted on their own website that climate change is real. i've been a climate change activist since 2006 when I saw 'Inconvenient Truth'. I wasn't any kind of activist before that. Since that time I've immersed myself DEEPLY in the science, reading the reports themselves, not articles about them. I was arrested at the Tar Sands Action in 2011 in DC, my first and thus far only arrest. Because unfortunately the situation is that critical, and Congress is owned by the fossil fuel industry, ignoring the science.

The scientists say we need to limit global temperature increase to below 1.5 Celsius above pre-industrial levels to have a planet safe for people. The politicians have agreed in 2009 on the target of 2 degrees Celsius. They chose this target because politicians like to aim for something easy, and because the fossil fuel industry owns so many politicians, there was great resistance to even this.

We can already measure 0.8 degrees C temperature increase. Because of the slow thermal inertia of the climate system, it takes 30-50 years from the time greenhouse gases are emitted, before the air actually heats up. So what we can measure now was emitted 30-50 years ago (sorry to be pedantic). Because of

https://www.fdms.gov/fdms/getcontent?objectId=09000064816c8c1f&f...

this slow thermal inertia of the climate system, what we have already emitted will raised the temperature to a total of 1.8 degrees C above pre-industrial levels.

It would take an all-out effort for 10-15 years similar to WWII, The Manhattan Project, and the Apollo moon shot combined of all the worlds nations working in concert to get off all fossil fuels as fast as the engineering could be done. The time frame to accomplish this alone will take us above 2 degrees Celsius temp increase.

Once the 2 degree Celsius limit was set, despite being too high, the climate scientists went to work and determined the size of the planetary carbon budget maximum that can be burned without going over 2 degrees C increase. Without pulling up the numbers, it's very small.

Others have determined that the total known fossil fuel reserves of the planet combined is five times more than the planetary carbon budget. This has not stopped the fossil fuel companies from spending hundreds of millions looking for more fossil fuel reserves, or galvanized the world's nations into action to get off fossil fuels. They continue business as usual while speechifying.

At this point I hope it is obvious that no new fossil fuel infrastructure can be built, or the situation will continue to spiral out of control. No one who has read the science I have (and their are hundreds if not thousands) would disagree with any of this. I oppose any and all pipelines and other infrastructure of fossil fuels for what I hope are obvious humanitarian reasons, not environmental.

I oppose any and all oil and gas lease sales anywhere and everywhere in the world.

A-1

4/29/2014 9:16 AM

2 of 2

A-1 Comment noted. This Supplemental EIS is not a decision document; BOEM will make a decision on a CPA proposed action. If the decision is to hold a proposed lease sale, it will be announced in the Final Notice of Sale and Record of Decision.

https://www.fdms.gov/fdms/getcontent?objectId=09000064816c4112&f...

PUBLIC SUBMISSION

As of: 4/29/14 10:13 AM Received: April 23, 2014 Status: Pending_Post Tracking No. 1jy-8bp2-cu82 Comments Due: May 08, 2014 Submission Type: Web

Docket: BOEM-2014-0033 Oil and Gas Lease Sales: Lease Sales 235, 241, and 247; Outer Continental Shelf, Gulf of Mexico, Central Planning Area

Comment On: BOEM-2014-0033-0001 Oil and Gas Lease Sales: Lease Sales 235, 241, and 247; Outer Continental Shelf, Gulf of Mexico, Central Planning Area

Document: BOEM-2014-0033-DRAFT-0003 Comment from Julia O'Neal, 12 Miles South

Submitter Information

Name: Julia O'Neal Address: P.O. Box 165 Ocean Springs, MS, 39566 Email: joneal4@gmail.com Organization: 12 Miles South

General Comment

0'NEAL-1

of 1

I am for Alternative B.

4/29/2014 9:13 AM

O'NEAL-1 Comment noted. This Supplemental EIS is not a decision document; BOEM will make a decision on a CPA proposed action. If the Assistant Secretary for Land and Minerals Management's decision is to proceed with Alternative B, it will be reflected in the Final Notice of Sale and Record of Decision.

CHAPTER 6

REFERENCES CITED

6. **REFERENCES CITED**

- Adams, E., S.A. Socolofsky, and M. Boufadel. 2013. Comment on "Evolution of the Macondo well blowout: Simulating effects of the circulation and synthetic dispersants on the subsea oil transport." Environmental Science & Technology 47(20):11905-11905. doi:10.1021/es4034099.
- Adcroft, A., R. Hallberg, J.P. Dunne, B.L. Samuels, J.A. Galt, C.H. Barker, and D. Payton. 2010. Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters 37, L18605. doi:10.1029/2010GL044689.
- Adler, E., L. Jeftic, and S. Sheavly. 2009. Marine litter: A global challenge. United Nations Environment Programme.
- Agardy, M.T. 1990. Preliminary assessment of the impacts of Hurricane Hugo on sea turtle populations of the eastern Caribbean. In: Richardson, T.H., J.I. Richardson, and M. Donnelly, comps. Proceedings of the 10th Annual Workshop on Sea Turtle Biology and Conservation, February 20-24, 1990, Hilton Head Island, SC. NOAA Technical Memorandum NMFS-SEFSC-278.
- Aguilera, F., J. Méndez, E. Pásaro, and B. Laffon. 2010. Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology 30:291-301. doi:10.1002/jat.1521.
- American Association of Port Authorities. 2011. World port rankings: 2011. Internet website: <u>http://aapa.files.cms-plus.com/PDFs/WORLD%20PORT%20RANKINGS%202011.pdf</u>. Accessed July 10, 2013.
- American Petroleum Institute (API). 1989. Effects of offshore petroleum operations on cold water marine mammals: A literature review. Washington, DC: American Petroleum Institute. 385 pp.
- American Petroleum Institute (API). 2014. Standard for subsea production control systems. Standard 17F. Washington, DC: American Petroleum Institute. 144 pp.
- American Society of Civil Engineers. 2013. 2013 report on America's infrastructure. Internet website: <u>http://www.infrastructurereportcard.org/a/#p/overview/executive-summary</u>. Accessed August 2, 2013.
- Anchor Environmental CA, L.P. 2003. Literature review of effects of resuspended sediments due to dredging operations. Prepared for the Los Angeles Contaminated Sediments Task Force, Los Angeles, CA. 140 pp.
- Anderson, C., M. Mayes, and R. Labelle. 2012. Update of occurrence rates for offshore oil spills. U.S. Dept. of the Interior, Bureau of Ocean Energy Management and Bureau of Safety and Environmental Enforcement, Herndon, VA. OCS Report BOEM 2012-069 or BSEE 2012-069. 87 pp.
- Anderson, J.A., A.J. Kuhl, and A.N. Anderson. 2014. Toxicity of oil and dispersed oil on juvenile mud crabs, *Rhithropanopeus harrisii*. Bulletin of Environmental Contamination and Toxicology 92(4):375-380.
- Andrén, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos 71:355-366.
- Aridjis, H. 1990. Mexico proclaims total ban on harvest of turtles and eggs. Marine Turtle Newsletter 50:1.
- Arlt, D. and T. Pärt. 2007. Nonideal breeding habitat selection: A mismatch between preference and fitness. Ecology 88:792-801.
- Arnold, T.W. and R.M. Zink. 2011. Collision mortality has no discernable effect on population trends of North American birds. PLoS ONE 6(9), 6 pp. Internet website: <u>http://www.plosone.org/article/info</u> <u>%3Adoi%2F10.1371%2Fjournal.pone.0024708;jsessionid=2750268D5AD6D804B0653274AFF32</u> <u>D60.ambra02</u>. Accessed September 12, 2011.

- Atlantic Bluefin Tuna Status Review Team. 2011. Status review report of Atlantic bluefin tuna (*Thunnus thynnus*). Report to the U.S. Dept. of Commerce, National Marine Fisheries Service, Northeast Regional Office. March 22, 2011. 104 pp.
- Aurell, J. and B.K. Gullett. 2010. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns. U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC. 22 pp.
- Baca, B.J., T.M. Schmidt, and J.W. Tunnell. 1982 (unpublished). Ixtoc oil in seagrass beds surrounding Isla de Media. Simposio Internacional Ixtoc I, Mexico City, Mexico. June 2-5, 1982. (unpublished symposium proceedings; PDF file of the submitted paper).
- Balazs, G.H. 1985. Impact of ocean debris on marine turtles: Entanglement and ingestion. In: Shomura, R.S. and H.O. Yoshida, eds. Proceedings of the Workshop on the Fate and Impact of Marine Debris, 26-29 November 1984, Honolulu, HI. NOAA Technical Memorandum NMFS NOAA-TM-NMFS-SWFC-54. Pp. 387-429.
- Barras, J.A. 2006. Land area change in coastal Louisiana after the 2005 hurricanes—a series of three maps. U.S. Dept. of the Interior, Geological Survey. Open-File Report 2006-1274. Internet website: <u>http://pubs.usgs.gov/of/2006/1274/</u>.
- Barras, J.A. 2007a. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita (Chapter 5). In: Farris, G.S., G.J. Smith, M.P. Crane, C.R. Demas, L.L. Robbins, and D.L. Lavoie, eds. Science and the storms: The USGS response to the hurricanes of 2005. U.S. Dept. of the Interior, Geological Survey. Geological Survey Circular 1306. Pp. 97-112. Internet website: <u>http:// pubs.usgs.gov/circ/1306/pdf/c1306_ch5_b.pdf</u>. Accessed June 2, 2011.
- Barras, J.A. 2007b. Satellite images and aerial photographs of the effects of Hurricanes Katrina and Rita on coastal Louisiana. U.S. Dept. of the Interior, Geological Survey. Geological Survey Data Series 281. Internet website: <u>http://pubs.usgs.gov/ds/2007/281</u>. Accessed April 15, 2011.
- Barras, J.A. 2009. Land area change and overview of major hurricane impacts in coastal Louisiana, 2004-08. U.S. Dept. of the Interior, Geological Survey. Scientific Investigations Map 3080, scale 1:250,000, 6-p. pamphlet.
- Barras, J.A., S. Beville, D. Britsch, S. Hartley, S. Hawes, J. Johnston, P. Kemp, Q. Kinler, A. Martucci, J. Porthouse, D. Reed, K. Roy, S. Sapkota, and J. Suhayda. 2003. Historical and projected coastal Louisiana land changes: 1978-2050. U.S. Dept. of the Interior, Geological Survey. Open File Report 03-334.
- Barry, J.P., E.E. Adams, R. Bleck, K. Caldeira, K. Carman, D. Erickson, J.P. Kennett, J.L. Sarmiento, and C. Tsouris. 2005. Ecosystem and societal consequences of ocean versus atmosphere carbon storage. American Geophysical Union, fall meeting. Abstract #B31D-01. Internet website: <u>http://adsabs.harvard.edu/abs/2005AGUFM.B31D..01B</u>. Accessed December 2005.
- Bateman, D.H. and M.S. Brim. 1994. Environmental contaminants in Gulf sturgeon of northwest Florida 1985-1991. U.S. Dept. of the Interior, Fish and Wildlife Service, Panama City, FL. 23 pp.
- Battin, J. 2004. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conservation Biology 18:1482-1491.
- Baumann, P.C., I.R. Smith, and C.D. Metcalfe. 1996. Linkages between chemical contaminants and tumors in benthic Great Lake fishes. Journal of Great Lakes Research 22(2):131-152.
- Bayne, E.M., L. Habib, and S. Boutin. 2008. Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology 22:1186-1193.
- Beaubouef, B. 2013. Gulf drilling rebounds to pre-Macondo levels. Offshore Magazine 73(6). June 1, 2013. Internet website: <u>http://www.offshore-mag.com/articles/print/volume-73/issue-6/gulf-of-mexico/gulf-drilling-rebounds-to-pre-macondo-levels.html</u>. Accessed June 18, 2013.

- Beazley, M.J., R.J. Martinez, S. Rajan, J. Powell, Y.M. Piceno, L.M. Tom, G.L. Anderson, T.C. Hazen, J.D. Van Nostrand, J. Zhou, B. Mortazavi, and P.A. Sobecky. 2012. Microbial community analysis of a coastal salt marsh affected by the *Deepwater Horizon* oil spill. PLoS ONE 7(7):e41305.
- Beiras, R. and L. Saco-Álvarez. 2006. Toxicity of seawater and sand affected by the Prestige fuel-oil spill using bivalve and sea urchin embryogenesis bioassays. Water, Air, and Soil Pollution 177:457-466.
- Berecz, E. and M. Balla-Achs. 1983. Gas hydrates. New York, NY: Elsevier. 343 pp.
- Berg, J. 2006. A review of contaminant impacts on Gulf of Mexico sturgeon, *Acipenser oxyrinchus desotoi*. U.S. Dept. of the Interior, Fish and Wildlife Service, Panama City, FL.
- Berman, A.E. 2005. The debate over subsidence in coastal Louisiana and Texas. Houston Geological Society. Internet website: <u>http://www.hgs.org/node/4080</u>. Posted November 24, 2005. Accessed October 5, 2010.
- Bevanger, K. 1994. Bird interactions with utility structures: Collision and electrocution, causes and mitigating measures. Ibis 136:412-425.
- Bevanger, K. 1998. Biological and conservation aspects of bird mortality caused by electricity power lines: A review. Biological Conservation 86:67-76.
- Bik, H.M., K.M. Halanych, J. Sharma, and W.K. Thomas. 2012. Dramatic shifts in benthic microbial eukaryote communities following the *Deepwater Horizon* oil spill. PLoS One 7(6):e38550. doi:10.1371/journal.pone.0038550.
- Billings, R., B. Lange, and D. Wilson. 2012. Official communication. Emission estimates for Eastern Planning Area Sales 225-226. Memorandum to Holli Ensz, U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. Eastern Research Group, Inc., September 7, 2012. 9 pp.
- Bindoff, N.L., J. Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D. Talley and A. Unnikrishnan. 2007. Observations: Oceanic climate change and sea level. In: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, eds.). Cambridge, United Kingdom and New York, NY: Cambridge University Press. Internet website: <u>http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter5.pdf</u>.
- Birkett, S.H. and D.J. Rapport. 1999. A stress-response assessment of the northwestern Gulf of Mexico ecosystem. In: Kumpf, H., K. Steidinger, and K. Sherman, eds. The Gulf of Mexico large marine ecosystem: Assessment, sustainability, and management. Malden, MA: Blackwell Science, Inc. Pp. 438-458.
- Bloomberg. 2013. U.S. Gulf oil profits lure \$16 billion more rigs by 2014. Internet website: <u>http://fuelfix.com/blog/2013/07/18/u-s-gulf-oil-profits-lure-16-billion-more-rigs-by-2015/</u>. Accessed October 22, 2013.
- Blum, M.D. and H.H. Roberts. 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience 2:488-491. Internet website: <u>http://www.deltas2010.com/blum2009.pdf</u>.
- Blumstein, D.T. 2006. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Animal Behaviour 71:389-399.
- Blumstein, D.T., E. Fernández-Juricic, P.A. Zollner, and S.C. Garity. 2005. Inter-specific variation in avian responses to human disturbance. Journal of Applied Ecology 42:943-953.
- Boehm, P., D. Turton, A. Raval, D. Caudle, D. French, N. Rabalais, R. Spies, and J. Johnson. 2001. Deepwater program: Literature review, environmental risks of chemical products used in Gulf of Mexico deepwater oil and gas operations. Volume I: Technical report. U.S. Dept. of the Interior,

Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2001-011. 326 pp.

- Boesch, D.F., M.N. Josselyn, A.J. Mehta, J.T. Morris, W.K. Nuttle, C.A. Simestad, and D.J.P. Swift. 1994. Scientific assessment of coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research Special Issue 20:1-103.
- Brady, S. and J. Boreman. 1994. Sea turtle distributions and documented fishery threats off the northeastern United States coast. In: Proceedings, 13th Annual Symposium on Sea Turtle Biology and Conservation, February 23-27, Jekyll Island, GA. NOAA Technical Memorandum NMFS-SEFSC-341. Pp. 31-34.
- Brewton, R.A., R. Fulford, and R.J. Griffitt. 2013. Gene expression and growth as indicators of effects of the BP *Deepwater Horizon* oil spill on spotted seatrout (*Cynoscion nebulosus*). Journal of Toxicology and Environmental Health, Part A, 76:1198-1209.
- Bright, T.J. and R. Rezak. 1978. Northwestern Gulf of Mexico topographic features study: Final report. U.S. Dept. of the Interior, Bureau of Land Management, New Orleans OCS Office, New Orleans, LA. Study No. 1978-4. 692 pp.
- Britsch, L.D. and J.B. Dunbar. 1993. Land loss rates: Louisiana coastal plain. Journal of Coastal Research 9(2):324-338.
- Brooks, J.M., ed. 1991. Mississippi-Alabama continental shelf ecosystem study: Data summary and synthesis. Volume I: Executive summary and Volume II: Technical summary. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 91-0062 and 91-0063. 43 and 368 pp., respectively.
- Brooks, J.M., C. Fisher, H. Roberts, B. Bernard, I. McDonald, R. Carney, S. Joye, E. Cordes, G. Wolff, and E. Goehring. 2009. Investigations of chemosynthetic communities on the lower continental slope of the Gulf of Mexico: Interim report 2. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2009-046. 360 pp.
- Brothers, N., A.R. Duckworth, C. Safina, and E.L. Gilman. 2010. Seabird bycatch in pelagic longline fisheries is grossly underestimated when using only haul data. PLoS ONE 5(8):e12491. doi:10.1371/journal.pone.0012491. Internet website: <u>http://www.plosone.org/article/info%3Adoi%</u> <u>2F10.1371%2Fjournal.pone.0012491</u>. Accessed March 17, 2011.
- Brown, A., K. Xia, K. Armbrust, G. Hagood, J. Jewell, D. Diaz, N. Gatian, and H. Folmer. 2011. Monitoring polycyclic aromatic hydrocarbons (PAHs) in seafood in Mississippi in response to the Gulf oil spill. Gulf Oil Spill SETAC Focused Topic Meeting, Pensacola, FL, April 26-28, 2011. Internet website: <u>http://gulfoilspill.setac.org/sites/default/files/abstract-book-1.pdf</u>. Accessed June 25, 2013.
- Bull, L.S. 2007. Reducing seabird bycatch in longline, trawl and gillnet fisheries. Fish and Fisheries 8:31-56.
- Burdeau, C. and J. Reeves. 2012. APNewsBreak: Tests confirm oil came from BP. Internet website: <u>http://bigstory.ap.org/article/apnewsbreak-tests-confirm-oil-came-bp-spill</u>. Accessed September 24, 2012.
- Burger, J. 1994. Immediate effects of oils spills on organisms in the Arthur Kill. In: Burger, J., ed. Before and after an oil spill: The Arthur Kill. New Brunswick, NJ: Rutgers University Press. Pp. 115-130.
- Burger, J. and M. Gochfeld. 2001. Effects of chemicals and pollution on seabirds. In: Schreiber, E.A. and J. Burger, eds. 2001. Biology of marine birds. Boca Raton, FL: CRC Press. Pp. 254-263.
- Burke, C.M., W.A. Montevecchi, and F.K. Wiese. 2012. Inadequate environmental monitoring around offshore oil and gas platforms on the Grand Bank of Eastern Canada: Are risks to marine birds known? Journal of Environmental Management 104:121-126.

- Byrd, G.V., J.H. Reynolds, and P.L. Flint. 2009. Persistence rates and detection probabilities of bird carcasses on beaches of Unalaska Island, Alaska, following the wreck of the M/V *Selendang Ayu*. Marine Ornithology 37:197-204.
- Byrne, C. 1989. Effects of the water-soluble fractions of No. 2 fuel oil on the cytokinesis of the Quahog clam (*Mercenaria mercenaria*). Bulletin of Environmental Contamination and Toxicology 42:81-86.
- Byrne, C.J. and J.A. Calder. 1977. Effect of the water-soluble fractions of crude, refined, and waste oils on the embryonic and larval stages of the Quahog clam *Mercenaria* sp. Marine Biology 40:225-231.
- Byrnes, M.R., R.M. Hammer, T.D. Thibaut, and D.B. Snyder. 2004. Physical and biological effects of sand mining offshore Alabama, U.S.A. Journal of Coastal Research 20(1):6-24.
- Byron, D. and K.L. Heck, Jr. 2006. Hurricane effects on seagrasses along Alabama's Gulf Coast. Estuaries and Coasts 29(6A):939-942.
- Cabaço, S., R. Santos, and C.M. Duarte. 2008. The impact of sediment burial and erosion on seagrasses: A review. Estuarine, Coastal and Shelf Science 79:354-366. ISSN 0272-7714. Internet website: <u>http://www.seaturtle.org/PDF/Ocr/CabacoS_2008_EstCoastShelfSci.pdf</u>.
- Caetano, M., M.J. Madureira, and C. Vale. 2003. Metal remobilization during resuspension of anoxic contaminated sediment: Short-term laboratory study. Water, Air, and Soil Pollution 143:23-40.
- Caillouet Jr., C.W., D.J. Shaver, W.G. Teas, J.M. Nance, D.B. Revera, and A.C. Cannon. 1996. Relationship between sea turtle stranding rates and shrimp fishing intensities in the northwestern Gulf of Mexico: 1986-1989 versus 1990-1993. U.S. Fishery Bulletin 94:237-249.
- Camacho, M., L.D. Boada, J. Orós, P. Calabuig, M. Zumbado, and O.P. Luzardo. 2012. Comparative study of polycyclic aromatic hydrocarbons (PAHs) in plasma of Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (*Caretta caretta*). Marine Pollution Bulletin 64:1974-80.
- Camacho, M., O.P. Luzardo, L.D. Boada, L.F.L. Jurado, M. Medina, M. Zumbado, and J. Oros. 2013. Potential adverse health effects of persistent organic pollutants on sea turtles: Evidences from a cross section study on Cape Verde loggerhead sea turtles. The Science of the Total Environment. 458-460:283-289. doi:10.1016/j.scitotenv.2013.04.043.
- Campbell, T., L. Benedict, and C.W. Finkl. 2005. Regional strategies for coastal restoration along Louisiana barrier islands. Journal of Coastal Research, Special Issue 44. Pp. 245-267.
- Camphuysen, C.J. 2010. Declines in oil-rates of stranded birds in the North Sea highlight spatial patterns in reductions of chronic oil pollution. Marine Pollution Bulletin 60:1299-1306.
- Carls, M.G., G.D. Marty, T.R. Meyers, R.E. Thomas, and S.D. Rice. 1998. Expression of viral hemorrhagic septicemia virus in prespawning Pacific herring (*Clupea pallasi*) exposed to weathered crude oil. Canadian Journal of Fisheries and Aquatic Sciences 55(10):2300-2309.
- Carls, M.G., S.D. Ricem, and J. Hose. 1999. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubations causes malformations, genetic damage, and mortality in larval Pacific herring (*Clupea pallasi*). Environmental Toxicology and Chemistry 18(3):481-493.
- Carmichael, R.H., A.L. Jones, H.K. Patterson, W.C. Walton, A. Pérez-Huerta, E.B. Overton, M. Dailey, and K.L. Willett. 2012. Assimilation of oil-derived elements by oysters due to the *Deepwater Horizon* oil spill. Environmental Science and Technology 46:12787-12795.
- Carney, K.M. and W.J. Sydeman. 1999. A review of human disturbance effects on nesting colonial waterbirds. Waterbirds 22:68-79.
- Carr, A.F., Jr. 1980. Some problems of sea turtle ecology. American Zoology 20:489-498.
- Carr, A. 1987. Impact of nondegradable marine debris on the ecology and survival outlook of sea turtles. Marine Pollution Bulletin 18:352-356.
- Carr, A. and D.K. Caldwell. 1956. The ecology and migration of sea turtles. I. Results of field work in Florida, 1955. American Museum Novitates 1793:1-23.

- Carr, M. and M. Hixon. 1997. Artificial reefs: The importance of comparisons with natural reefs. Fisheries 22(4):28-33.
- Cascades Raptor Center. 2013. The effects of cats on wildlife. Cascades Raptor Center, Eugene, OR. Internet website: <u>http://eraptors.org/cats.htm</u>. Accessed November 29, 2013.
- Casselman, B. 2010. Aging oil rigs, pipelines expose Gulf to accidents. The Wall Street Journal. December 14, 2010. Internet website: <u>http://online.wsj.com/article/SB100014240527487</u> 04584804575644463302701660.html. Accessed December 2010.
- Castege, I., Y. Lalanne, V. Gouriou, G. Hemery, M. Girin, F. D'Amico, C. Mouches, J. D'Elbe, L. Soulier, J. Pensu, D. Lafitte, and F. Pautrizel. 2007. Estimating actual seabird mortality at sea and relationship with oil spills: Lesson from the "Prestige" oil spill in Aquitate (France). Ardeola 54:289-307.
- Castellanos, D.L. and L.P. Rozas. 2001. Nekton use of submerged aquatic vegetation, marsh, and shallow unvegetated bottom in the Atchafalaya River Delta, a Louisiana tidal freshwater ecosystem. Estuaries 24(2):184-197.
- Cato, J.C., F.J. Prochaska, and P.C.H. Pritchard. 1978. An analysis of the capture, marketing and utilization of marine turtles. U.S. Dept. of Commerce, National Marine Fisheries Service, St. Petersburg, FL. Purchase Order 01-7-042-11283. 119 pp.
- Cecala, K.K, J.W. Gibbons, and M.E. Dorcas. 2008. Ecological effects of major injuries in diamondback terrapins: Implications for conservation and management. Aquatic Conservation: Marine and Freshwater Ecosystems 19(4):421-427.
- Center for Biological Diversity. 2009. Before the Secretary of Commerce, petition to list 83 coral species under the Endangered Species Act. Submitted October 20, 2009.
- Chakraborty, R., S.E. Borglin, E.A. Dubinsky, G.L. Andersen, and T. Hazen. 2012. Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Frontiers in Microbiology 3 Article 357.
- Chambers, J.R. 1992. Coastal degradation and fish population losses. In: Proceedings of the National Symposium of Fish Habitat Conservation, March 7-9, 1991, Baltimore, MD. 38 pp.
- Chin, C.S. and J. Church. 2010. Field report: Fort Livingston, Grand Terre Island (September 9-10, 2010). National Center for Preservation Technology and Training, Natchitoches, LA. Internet website: <u>http://web.archive.org/web/20110324000359/http://www.ncptt.nps.gov/2011/field-report-fort-livingston-grand-terre-island/</u>. Accessed March 18, 2011.
- Church, J.A. and N.J. White. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32:4-5, 585-602. Internet website: <u>http://link.springer.com/article/10.1007%2Fs10712-011-9119-1</u>.
- City of New Orleans. n.d. The New Orleans city assisted evacuation plan. Internet website: <u>http://</u> <u>media.nola.com/hurricane_katrina/other/050206_assisted_evac_plan.pdf</u>. Accessed February 17, 2011.
- Clark, R.B. 1982. The impact of oil pollution on marine populations, communities, and ecosystems: A summing up. Philosophical Transactions of the Royal Society of London B 297:433-443.
- Clark, D.R., Jr. and A.J. Krynitsky. 1980. Organochlorine residues in eggs of loggerhead and green sea turtles nesting at Merritt Island, Florida-July and August 1976. Pesticides Monitoring Journal 14:7-10.
- Clark, R.G. and D. Shutler. 1999. Avian habitat selection: Pattern from process in nest-site use by ducks. Ecology 80:272-287.
- Clark, C.E. and J.A. Veil. 2009. Produced water volumes and management practices in the United States. Prepared by the Environmental Science Division, Argonne National Laboratory for the U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory under Contract DE-AC02-06CH11357. ANL/EVS/R-09/1. Internet website: <u>http://www.circleofblue.org/</u>

waternews/wp-content/uploads/2010/09/ANL_EVS_R09_produced_water_volume_report_2437.pdf. Accessed April 14, 2011.

- Clausen, C.J. and J.B. Arnold III. 1975. Magnetic delineation of individual shipwreck sites; a new control technique. Bulletin of the Texas Archaeological Society 46:69-86.
- Clean Gulf Associates. 2014. Equipment locations. Internet website: <u>http://www.cleangulfassoc.com/</u> locations.html. Accessed June 4, 2014.
- Coastal Environments, Inc. (CEI). 1977. Cultural resources evaluation of the northern Gulf of Mexico continental shelf. Prepared for the U.S. Dept. of the Interior, National Park Service, Office of Archaeology and Historic Preservation, Interagency Archaeological Services, Baton Rouge, LA. 2 vols. Pp. 95-110 of Volume 1.
- Cohen, Y., A. Nissenbaum, and R. Eisler. 1977. Effects of Iranian crude oil on the Red Sea octocoral *Heteroxenia fuscescens*. Environmental Pollution 12(3):173-186.
- Colborn, T., F.S. vom Saal, and A.M. Soto. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives 101:378-384.
- Collard, S.B. and L.H. Ogren. 1990. Dispersal scenarios for pelagic post-hatchling sea turtles. Bulletin of Marine Science 47:233-243.
- Collett, T.S. 2002. Energy resource potential of natural gas hydrates. American Association of Petroleum Geologists Bulletin 86(11):1971-1992.
- Condrey, R. and J. Rester. 1996. The occurrence of the hawksbill turtle, *Eretmochelys imbricata*, along the Louisiana coast. Gulf of Mexico Science 2:112-114.
- Congdon, J.D. 1989. Proximate and evolutionary constraints on energy relations of reptiles. Physiological Zoology 62:356-373.
- Continental Shelf Associates, Inc. (CSA). 1992. Mississippi-Alabama shelf pinnacle trend habitat mapping study. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 92-0026. 114 pp. + 2 plates.
- Continental Shelf Associates, Inc. (CSA). 1994. Analysis of potential effects of oil spilled from proposed structures associated with Oryx's High Island Block 384 unit on the biota of the East Flower Garden Bank and on the biota of Coffee Lump Bank. Prepared for Oryx Energy Company, Jupiter, FL.
- Continental Shelf Associates (CSA). 2002. Deepwater program: Bluewater fishing and OCS activity, interactions between the fishing and petroleum industries in deep waters of the Gulf of Mexico. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2002-078. 193 pp + apps.
- Continental Shelf Associates, Inc. (CSA). 2004. Gulf of Mexico comprehensive synthetic based muds monitoring program. Volume II: Technical. Final report. Prepared for SMB Research Group. 358 pp. Internet website: <u>http://www.data.boem.gov/PI/PDFImages/ESPIS/2/3051.pdf</u>.
- Continental Shelf Associates, Inc. (CSA). 2006. Effects of oil and gas exploration and development at selected continental slope sites in the Gulf of Mexico. Volume II: Technical report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2006-045. 636 pp.
- Cook, C.B. and A.H. Knap. 1983. Effects of crude oil and chemical dispersant on photosynthesis in the brain coral *Diploria strigosa*. Marine Biology 78:21-27.
- Cooper, J., J.P. Croxall, and K.S. Rivera. 2001. Off the hook? Initiatives to reduce seabird bycatch in longline fisheries. In: Melvin, E.F. and J.K. Parrish, eds. Proceedings of the 26th Annual Meeting of the Pacific Seabird Group (26-27 February 1999), Blaine, WA. University of Alaska Sea Grant Publication Number AK-SG-01-01, Fairbanks, AK. Pp. 9-32. Internet website: <u>http:// nsgl.gso.uri.edu/aku/akuw99002.pdf</u>. Accessed March 17, 2011.

- Coston-Clements, L. and D.E. Hoss. 1983. Synopsis of data on the impact of habitat alteration on sea turtles around the southeastern United States. NOAA Technical Memorandum NMFS-SEFC-117.
- Couvillion, B.R., J.A Barras, G.D. Steyer, W. Sleavin, M. Fisher, H. Beck, N. Trahan, B. Griffin, and D. Heckman. 2011. Land area change in coastal Louisiana from 1932 to 2010. U.S. Dept. of the Interior, Geological Survey Scientific Investigations Map 3164, scale 1:265,000. Pamphlet. 12 pp. Internet website: <u>http://pubs.usgs.gov/sim/3164/</u>.
- Couvillion, B.R.; G.D. Steyer, H. Wang, H.J. Beck, and J.M. Rybczyk. 2013. Forecasting the effects of coastal protection and restoration projects on wetland morphology in coastal Louisiana under multiple environmental uncertainty scenarios. In: Peyronnin, N. and D. Reed, eds. Louisiana's 2012 coastal master plan technical analysis. Journal of Coastal Research, Special Issue 67:29-50. ISSN 0749-0208.
- Cox, S.A., E.H. Smith, and J.W. Tunnell, Jr. 1997. Macronektonic and macrobenthic community dynamics in a coastal saltmarsh: Phase I. Prepared for Texas Parks and Wildlife Department, Wildlife Division. TAMU CC 9701-CCS. Corpus Christi, TX. 67 pp.
- Crain, D.A., A.B. Bolten, and K.A. Bjorndal. 1995. Effects of beach nourishment on sea turtles: Review and research initiatives. Restoration Ecology 3:95-104.
- Crowder, L.B. and S.A. Murawski. 1998. Fisheries bycatch: Implications for management. Fisheries 23:8-17.
- Crowder, L.B., S.R. Hopkins-Murphy, and J.A. Royle. 1995. Effects of turtle excluder devices (TEDs) on loggerhead sea turtle strandings with implications for conservation. Copeia 1995(4):773-779.
- Cutter, S.L., L. Barnes, M. Berry, C.G. Burton, E. Evans, E.C. Tate, and J. Webb. 2008. Community and regional resilience: Perspectives from hazards, disasters, and emergency management. CARRI Research Report 1. Oak Ridge, TN: Community and Regional Resilience Institute. 33 pp. Internet website: <u>http://www.resilientus.org/wp-content/uploads/2013/03/FINAL_CUTTER_9-25-08_1223482309.pdf</u>. Accessed February 16, 2011.
- Czech, B. and P.R. Krausman. 1997. Distribution and causation of species endangerment in the United States. Science 277:1116-1117.
- Czech, B., P.R. Krausman, and P.K. Devers. 2000. Economic associations among causes of species endangerment in the United States. BioScience 50:593-601.
- Dahl, T.E. 2006. Status and trends of wetlands in the conterminous United States 1998 to 2004. U.S. Dept. of the Interior; Fish and Wildlife Service, Washington, DC. 112 pp. Internet website: <u>http://library.fws.gov/Pubs9/wetlands98-04.pdf</u>. Accessed June 10, 2011.
- Dalton, M.S. and S.A. Jones, comps. 2010. Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey. U.S. Dept. of the Interior, Geological Survey, Reston, VA. Open-File Report 2010-1213. 38 pp. Internet website: <u>http:// pubs.usgs.gov/of/2010/1213/pdf/ofr2010_1213.pdf</u>.
- Dance, M.A., W.F. Patterson, and D.T. Addis. 2011. Fish community and trophic structure at artificial reef sites in the northeastern Gulf of Mexico. Bulletin of Marine Science 87(3):301-324.
- Dau, B.K., K.V.K. Gilardi, F.M. Gulland, A. Higgins, J.B. Holcomb, J. St. Leger, and M.H. Ziccardi. 2009. Fishing gear-related injury in California marine wildlife. Journal of Wildlife Diseases 45:355-362.
- Dauphiné, N. and R.J. Cooper. 2009. Impacts of free-ranging domestic cats (*Felis catus*) on birds in the United States: A review of recent research with conservation and management recommendations. In: Rich, T.D., C. Arizmendi, D.W. Demarest, and C. Thompson, eds. Tundra to tropics: Connecting birds, habitats and people. Proceedings of the 4th International Partners in Flight Conference, 13-16 February 2008, McAllen, TX, USA. Pp. 205-219. Internet website: <u>http:// www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/ Dauphine_1_PIF09.pdf</u>. Accessed March 4, 2011.

- Dauphiné, N. and R.J. Cooper. 2011. Pick one: Outdoor cats or conservation—the fight over managing an invasive predator. Wildlife Professional 5:50-56.
- Dauterive, L.D. 2000. Rigs-to-Reefs policy, progress, and perspective. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Report MMS 2000-073. 8 pp.
- Davenport, J., J. Wrench, J. McEnvoy, and V. Camacho-Ibar. 1990. Metal and PCB concentrations in the "Harlech" leatherback. Marine Turtle Newsletter 48:1-6.
- Dawes, C.J., J. Andorfer, C. Rose., C. Uranowski, and N. Ehringer. 1997. Regrowth of seagrass *Thalassia testudinum* into propeller scars. Aquatic Botany 59:139-155.
- Day, J.W., Jr., D.F. Boesch, E.J. Clairain, G.P. Kemp, S.B. Laska, W.J. Mitsch, K. Orth, H. Mashriqui, D.J. Reed, L. Shabman, C.A. Simenstad, B.J. Streever, R.R. Twilley, C.C. Watson, J.T. Wells, and D.F. Whigham. 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 315:1679-1684.
- De Silva, J.A. 1998. The nature and extent of species interactions with the US Gulf menhaden fishery. Baton Rouge, Louisiana: Louisiana State University, dissertation.
- *Deepwater Horizon* Claims Center. 2013a. Deepwater Horizon Claims Center; economic and property damage claims. Internet website: <u>http://www.deepwaterhorizoneconomicsettlement.com/</u>. Accessed December 4, 2013.
- *Deepwater Horizon* Claims Center. 2013b. Frequently asked questions. Internet website: <u>https://cert.gardencitygroup.com/dwh/fs/faq?.delloginType=faqs</u>. Accessed June 25, 2013.
- Delaune, R.D. and A.L. Wright. 2011. Projected impact of *Deepwater Horizon* oil spill on U.S. Gulf coast wetlands. Soil Science Society of America (SSAJ) 75(5):September-October 2011.
- DeRuiter, S.L. and K. Larbi Doukara. 2012. Loggerhead turtles dive in response to airgun sound exposure. Endangered Species Research 16:55-63. doi:10.3354/esr00396
- Diaz, R.J. and A. Solow. 1999. Ecological and economic consequences of hypoxia. Topic 2 report for the Integrated Assessment on Hypoxia in the Gulf of Mexico. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Coastal Ocean Program, Silver Spring, MD. NOAA Coastal Ocean Program Decision Analysis Series No. 16. 45 pp.
- Diaz, R.J., G.R. Cutter, and C.H. Hobbs, III. 2004. Potential impacts of sand mining offshore of Maryland and Delaware: Part 2—biological considerations. Journal of Coastal Research 20(1):61-69.
- Dickey, R.W. 2012. FDA risk assessment of seafood contamination after the BP oil spill. Environmental Health Perspectives 120(2), February 2012. Internet website: <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279456/pdf/ehp.1104539.pdf</u>. Accessed June 25, 2013.
- Dinsdale, E.A. and V.J. Harriott. 2004. Assessing anchor damage on coral reefs: A case study in selection of environmental indicators. Environmental Management 33(1):126-139.
- Dismukes, D.E. 2011a. OCS-related infrastructure fact book. Volume I: Post-hurricane impact assessment. U.S. Dept. of the Interior, Bureau of Ocean Energy, Management, Regulation and Enforcement, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEMRE 2011-043.
- Dismukes, D. 2011b. Official communication. Email regarding scenario projections. Associate Director, LSU Center for Energy Studies, Baton Rouge, LA. June 29, 2011.
- Dismukes, D. 2013a. Official communication. Email regarding port usage. Louisiana State University, Center for Energy Studies, Baton Rouge, LA. August 9, 2013.
- Dismukes, D. 2013b. Official communication. Email regarding scenario projections. Associate Director, Louisiana State University. Louisiana State University, Center for Energy Studies, Baton Rouge, LA. May 21, 2013.

- Dismukes, D., M. Barnett, D. Vitrano, and K. Strellec. 2007. Gulf of Mexico OCS oil and gas scenario examination: Onshore waste disposal. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Report MMS 2007-051. 8 pp.
- Dobbs, C.D. and J.M. Vozarik. 1983. Immediate effects of a storm on coastal infauna. Marine Ecology Progress Series 11:273-279.
- Dodge, R.E., S.C. Wyers, A.H. Knap, H.R. Frith, T.D. Sleeter, and S.R. Smith. 1984. The effects of oil and oil dispersants on hermatypic coral skeletal growth (extension rate). Coral Reefs 3:191-198.
- Dokka, R. 2006. Modern-day tectonic subsidence in coastal Louisiana. Geology 34(4):281-284.
- Dokka, R.J. 2011. The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi. Journal of Geophysical Research 116:B06403, 25 pp. Internet website: <u>http://biotech.law.lsu.edu/climate/docs/TT_Dokka20112010JB008008.pdf</u>.
- Dokka, R.K., G.F. Sella, and T.H. Dixon. 2006. Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. American Geophysical Union, Geophysical Research Letters Volume 33, L23308. Internet website: <u>http:// www.ngs.noaa.gov/CORS/Articles/2006GL027250.pdf</u>.
- Dooley, J.K. 1972. Fishes associated with the pelagic *Sargassum* complex, with a discussion of the *Sargassum* community. Contributions in Marine Science 16:1-32.
- Doran, K.S., N.G. Plant, H.F. Stockdon, A.H. Sallenger, and K.A. Serafin. 2009. Hurricane Ike: Observations of coastal change. U.S. Dept. of the Interior, Geological Survey, Reston, VA. Open-File Report 2009-1061. vi + 35 pp. Internet website: <u>http://pubs.usgs.gov/of/2009/1061/pdf/ofr2009-1061.pdf</u>.
- Dorcas, M.E., J.D. Wilson, and J.W. Gibbons. 2007. Crab trapping causes population decline and demographic changes in diamondback terrapin over two decades. Biological Conservation 137:334-340.
- Dow Chemical Company Collaboration. 2011. DOW-TNC collaboration analysis summary pilot 1: Dow Texas Operations, Freeport, TX, coastal hazard mitigation analysis. Green and gray infrastructure: Valuation for corporate coastal hazard mitigation. Internet website: <u>http://www.dow.com/sustainability/pdf/coastal-hazard-analysis.pdf</u>. Accessed July 9, 2013.
- Drewitt, A.L. and R.H.W. Langston. 2008. Collision effects of wind-power generators and other obstacles on birds. Annals of the New York Academy of Sciences 1134:233-266.
- Dubinsky, E.A., M.E. Conrad, R. Chakraborty, M. Bill, S.E. Borglin, J..T. Hollibaugh, O.U. Mason, Y.M. Piceno, F.C. Reid, W.T. Stringfellow, L.M. Tom, T.C. Hazen, and G.L. Anderson. 2013. Succession of hydrocarbon-degrading bacteria in the aftermath of the *Deepwater Horizon* oil spill in the Gulf of Mexico. Environmental Science & Technology 47(19):10860-10867.
- Dubois, S., C.G. Gelpi Jr., R.E. Condrey, M.A. Grippo, and J.W. Fleeger. 2009. Diversity and composition of macrobenthic community associated with sandy shoals of the Louisiana continental shelf. Biodiversity and Conservation 18(14):3759-3784.
- Dunnet, G.M. 1982. Oil pollution and seabird populations. Philosophical Transactions of the Royal Society of London B 297:413-427.
- Dunton, K.H., S.V. Shonberg, S. Herzka, P.A. Montagna, and S.A. Holt. 1998. Characterization of anthropogenic and natural disturbance on vegetated and nonvegetated bay bottom habitats in the Corpus Christi Bay National Estuarine Program Study Area. Volume II: Assessment of scarring in seagrass beds. CCBNEP-25B. 23 pp.
- Dupre, R. 2013. Gulf of Mexico poised to remain strong in coming years. Internet website: <u>http://www.rigzone.com/news/article_pf.asp?a_id=124243</u>. Posted February 18, 2013. Accessed July 3, 2013.

- Duronslet, M.J., C.W. Caillouet, S. Manzella, K.W. Indelicato, C.T. Fontaine, D.B. Revera, T. Williams, and D. Boss. 1986. The effects of an underwater explosion on the sea turtles *Lepidochelys kempi* and *Caretta caretta* with observations of effects on other marine organisms (trip report). U.S. Dept. of Commerce, National Marine Fisheries Service, Southeast Fisheries Center, Galveston, TX.
- e-Birds. 2013. Red knot (*Calidris canutus rufa*) query by species and by state. Internet website: <u>http://ebird.org/ebird/map/redkno?neg=true&env.minX=&env.minY=&env.maxX=&env.maxY=&zh=false&gp=false&mr=1-12&bmo=1&emo=12&yr=1900-2013&byr=1900&eyr=2013</u>. Accessed May 21, 2013.
- Eastern Research Group. 2012. MAG-PLAN 2012: Economic impacts model for the Gulf of Mexico updated and revised data. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2012-102. 143 pp.
- Economic Development Partnership of Alabama. 2013. Alabama: Distribution, logistics and transportation industry. Internet website: <u>http://www.edpa.org/docs/distribution-industry-profile.pdf</u>. Accessed October 2013.
- Eder, E., A. Ceballos, S. Martins, H. Pérez-García, I. Marín, A. Marco, and L. Cardona. 2012. Foraging dichotomy in loggerhead sea turtles *Caretta caretta* off northwestern Africa. Marine Ecology Progress Series 470:113-22.
- Elgershuizen, J.H.B.W. and H.A.M. De Kruijf. 1976. Toxicity of crude oils and a dispersant to the stony coral *Madracis mirabilis*. Marine Pollution Bulletin 7(2):22-25.
- Emery, W.J., K. Cherkauer, B. Shannon, and R.W. Reynolds. 1997. Hull-mounted sea surface temperatures from ships of opportunity. American Meteorological Society, Boston, MA. Journal of Atmospheric and Oceanic Technology 14:1237-1251.
- Engel, J. and R. Kvitek. 1998. Effects of otter trawling on a benthic community in Monterey Bay National Marine Sanctuary. Conservation Biology 12(6):1204-1214.
- Engle, V.D. 2011. Estimating the provision of ecosystem services by Gulf of Mexico coastal wetlands. Wetlands 31:179-193.
- Engle, V.D., J.L. Hyland, and C. Cooksey. 2008. Effects of Hurricane Katrina on benthic macroinvertebrate communities along the northern Gulf of Mexico coast. Environmental Monitoring Assessment 150:193-209.
- Environment Canada. 2013. Environmental Technology Centre. Oil properties database. Internet website: <u>http://www.etc-cte.ec.gc.ca/databases/OilProperties/Default.aspx</u>. Accessed April 24, 2013.
- Epperson, D. 2013. Official communication. Email from Deborah Epperson to Tre Glenn regarding manatees spotted offshore near oil drilling rigs on March 20 and March 27, 2013. Email dated August 21, 2013.
- Erickson, W.P., G.D. Johnson, M.D. Strickland, D.P. Young, Jr., K.J. Sernka, and R.E. Good. 2001. Avian collisions with wind turbines: A summary of existing studies and comparisons to other sources of avian collision mortality in the United States. National Wind Coordinating Collaborative, Washington, DC. 67 pp. Internet website: <u>http://www.west-inc.com/reports/avian_collisions.pdf</u>. Accessed July 26, 2010.
- Erwin, R.M. 1996. Dependence of waterbirds and shorebirds on shallow-water habitats in the mid-Atlantic coastal region: an ecological profile and management recommendations. Estuaries 19:213-219.
- Fabacher, D.L., J.M. Besser, C.J. Schmitt, J.C. Harshbarger, P.H. Peterman, and J.A. Lebo. 1991. Contaminated sediments from tributaries of the Great Lakes: Chemical characterization and cancercausing effects in medaka (*Oryzias latipes*). Archives of Environmental Contamination and Toxicology 20:17-35.
- Fahrig, L. 1997. Relative effects of habitat loss and fragmentation on population extinction. Journal of Wildlife Management 61:603-610.

- Fahrig, L. 1998. When does fragmentation of breeding habitat affect population survival? Ecological Modelling 105:273-292.
- Falcy, M.R. 2011. Individual and population-level responses of the Alabama beach mouse (*Peromyscus polionotus ammobates*) to environmental variation in space and time. Graduate theses and dissertations, paper 12192. Internet website: <u>http://lib.dr.iastate.edu/etd/12192/</u>. Accessed September 27, 2013.
- Fangman, M.S. and K.A. Rittmaster. 1994. Effects of human beach usage on the temporal distribution of loggerhead nesting activities. In: Proceedings, 13th Annual Symposium on Sea Turtle Biology and Conservation, 23-27 February, Jekyll Island, GA. NOAA Technical Memorandum NMFS-SEFSC-341.
- Fanning, K., K.L. Carder, and P.R. Betzer. 1982. Sediment resuspension by coastal waters: A potential mechanism for nutrient re-cycling on the ocean's margins. Deep-Sea Research 29:953-965.
- Federal Register. 1980. Ocean discharge criteria source. 45 FR 65953. October 3, 1980.
- *Federal Register.* 2003. Taking and importing marine mammals; taking marine mammals incidental to conducting oil and gas exploration activities in the Gulf of Mexico. Final rule. 68 FR 9991, pp. 16262-16263. April 3, 2003.
- *Federal Register*. 2004. Taking and importing marine mammals; taking marine mammals incidental to conducting oil and gas exploration activities in the Gulf of Mexico. Final rule. 69 FR 67535, pp. 67535-67539. November 18, 2004.
- *Federal Register*. 2006a. Oil and gas and sulphur operations in the outer continental shelf—Incident reporting requirements. Final rule. 71 FR 73, pp. 19640-19646. April 17, 2006.
- *Federal Register.* 2006b. Endangered and threatened wildlife and plants: Review of native species that are candidates or proposed for listing as endangered or threatened; annual notice of findings on resubmitted petitions; annual description of progress on listing actions. Notice of review. 71 FR 176, pp. 53756-53835. September 12, 2006.
- *Federal Register.* 2007. Endangered and threatened wildlife and plants: Review of native species that are candidates or proposed for listing as endangered or threatened; annual notice of findings on resubmitted petitions; annual description of progress on listing actions. Notice of review. 72 FR 234, pp. 69034-69106. December 6, 2007.
- *Federal Register*. 2008a. Taking and importing marine mammals; taking marine mammals incidental to the explosive removal of offshore structures in the Gulf of Mexico. Final rule. 50 CFR part 216. 73 FR 119, pp. 34875-34894. June 19, 2008.
- *Federal Register.* 2008b. Endangered and threatened wildlife and plants: Review of native species that are candidates or proposed for listing as endangered or threatened; annual notice of findings on resubmitted petitions; annual description of progress on listing actions. Notice of review. 73 FR 238, pp. 75176-75244. December 10, 2008.
- *Federal Register.* 2009. Endangered and threatened wildlife and plants: Review of native species that are candidates or proposed for listing as endangered or threatened; annual notice of findings on resubmitted petitions; annual description of progress on listing actions. Notice of review. 74 FR 215, pp. 57804-57878. November 9, 2009.
- *Federal Register.* 2010. Endangered and threatened wildlife and plants: Review of native species that are candidates or proposed for listing as endangered or threatened; annual notice of findings on resubmitted petitions; annual description of progress on listing actions. Notice of review. 75 FR 217, pp. 69222-69294. November 10, 2010.
- *Federal Register.* 2011. Intent to prepare an environmental impact statement for sea turtle conservation and recovery actions and to conduct public scoping meetings. Notice of Intent. 76 FR 37050, pp. 37050-37052. June 24, 2011.

- *Federal Register.* 2012a. Oil and gas and sulphur operations on the outer continental shelf—Increased safety measures for energy development on the outer continental shelf. Final rule. 77 FR 163, pp. 50856-50901. August 22, 2012.
- Federal Register. 2012b. Endangered and threatened wildlife and plants: Proposed listing determinations for 82 reef-building coral species; proposed reclassification of Acropora palmata and Acropora cervicornis from threatened to endangered. 50 CFR parts 223 and 224. Proposed rules. 77 FR 236, pp. 73219-73262. December 7, 2012.
- Federal Register. 2012c. Outer continental shelf, oil and gas lease sales in the Central Gulf of Mexico Planning Area (CPA) and the Western Gulf of Mexico Planning Area (WPA), beginning with WPA Sale 233 in 2013 and subsequent sales through 2017. Call for Information and Nominations. 77 FR 131, pp. 40376-40380. July 9, 2012.
- *Federal Register*. 2013a. Intent to prepare a supplemental environmental impact statement (EIS). Notice of Intent. 78 FR 52562, pp. 52562-52563. August 23, 2013.
- *Federal Register.* 2013b. Endangered and threatened species; proposed rule to list 66 reef-building coral species; proposed reclassification of elkhorn *Acropora palmata* and staghorn *Acropora cervicornis* under the Endangered Species Act (ESA); extension of public comment period and notice of public hearing. 50 CFR parts 223 and 224. Proposed rules. 78 FR 37, pp. 12702-12703. February 25, 2013.
- *Federal Register.* 2013c. Endangered and threatened species; notice of 6-month extension to the final rulemaking to list 66 species of corals as threatened or endangered under the Endangered Species Act and reclassify *Acropora cervicornis* and *Acropora palmate* from threatened to endangered. 50 CFR parts 223 and 224. Proposed rules. 78 FR 183, pp. 57835-57836. September 20, 2013.
- *Federal Register.* 2013d. 50 CFR part 17; Endangered and threatened wildlife and plants; proposed threatened status for the Rufa red knot (*Calidris canutus rufa*). Proposed rule. 78 FR 189, pp. 60024-60098. September 30, 2013.
- *Federal Register.* 2013e. Endangered species; file nos. 17557 and 17273. Issuance of permits. 78 FR 160, pp. 50395-50396. August 19, 2013.
- *Federal Register*. 2014a. MMAA104000; timing requirements for the submission of a site assessment plan (SAP) or general activities plan (GAP) for a renewable energy project on the outer continental shelf (OCS). Final rule. 79 FR 74, pp. 21617-21626. April 17, 2014.
- *Federal Register.* 2014b. Outer continental shelf (OCS), Gulf of Mexico (GOM), oil and gas lease sales, Central Planning Area (CPA) Lease Sales 235, 241, and 247; Notice of Availability (NOA) of a draft supplemental environmental impact statement (EIS) and public meetings. 79 FR 56, pp. 16048-16049. March 24, 2014.
- *Federal Register.* 2014c. Endangered and threatened species: Critical habitat for the northwest Atlantic Ocean loggerhead sea turtle distinct population segment (DPS) and determination regarding critical habitat for the north Pacific Ocean loggerhead DPS. Final rule (50 CFR 256). 79 FR 132, pp. 39856-39912. July 10, 2014.
- *Federal Register.* 2014d. Taking of marine mammals incidental to commercial fishing operations; bottlenose dolphin take reduction plan; sea turtle conservation; modification to fishing activities. Proposed rule (50 CFR Parts 222, 223, and 229). 79 FR 74, pp. 21695-21710. April 17, 2014.
- Feinburg, J.A. and R.L. Burke. 2003. Nesting ecology and predation of diamondback terrapins, *Melaclemys terrapin*, at Gateway National Recreation Area, New York. Journal of Herpetology 37(3):517-526.
- Ferguson, R.G. 1962. The effects of underwater explosions on yellow perch (*Perca flavescens*). Canadian Fish Culturist 29: 31-39.
- Fewtrell, J. and R. McCauley. 2012. Impact of air gun noise on the behavior of marine fish and squid. Marine Pollution Bulletin 64:984-993.

- FishBase. 2006. Internet fish database; great northern tilefish. Internet website: <u>http://fishbase.org/</u> <u>Summary/SpeciesSummary.php?id=362</u>. Accessed September 15, 2006.
- Fisher, C.R. 1995. Characterization of habitats and determination of growth rate and approximate ages of the chemosynthetic symbiont-containing fauna. In: MacDonald, I.R., W.W. Schroeder, and J.M. Brooks, eds. Chemosynthetic ecosystems study: Final report. Volume 2: Technical report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0022. Pp. 5.1-5.47.
- Flint, P.L., A.C. Fowler, and R.F. Rockwell. 1999. Modeling bird mortality associated with the M/V *Citrus* oil spill off St. Paul Island, Alaska. Ecological Modelling 117:261-267.
- Fodrie, F.J. and K.L. Heck, Jr. 2011. Response of coastal fishes to the Gulf of Mexico oil disaster. PLoS ONE 6(7):e21609. doi:10.1371/journal.pone.0021609.
- Foley, B. 2010. Impact of fishing on shipwrecks: In: Archaeology in deep water. Woods Hole Oceanographic Institution, Woods Hole, MA. Internet website: <u>http://www.whoi.edu/sbl/liteSite.do?</u> <u>litesiteid=2740&articleId=4965</u>. Accessed August 31, 2010.
- Food and Agriculture Organization of the United Nations (FAO). 2008. Report of the FAO Workshop on Vulnerable Ecosystems and Destructive Fishing in Deep-Sea Fisheries. Rome, 26-29 June 2007. FAO Fisheries Report No. 829. Rome, Italy: FAO. 18 pp. Internet website: <u>ftp://ftp.fao.org/ docrep/fao/010/i0150e/i0150e00.pdf</u>.
- Fraser, G.S., J. Russell, and W.M. von Zharen. 2006. Produced water from offshore oil and gas installations on the Grand Banks, Newfoundland and Labrador: Are the potential effects to seabirds sufficiently known? Marine Ornithology 34:147-156.
- Frater, B. 2011. Official communication. Email regarding the estimates of total habitat occupied by three of the four species of beach mouse. Ecologist, U.S. Dept. of the Interior, Fish and Wildlife Service, Ecological Services Office, Panama City, FL. June 23, 2011.
- Frater, B. 2013. Official communication. Telephone conversation on September 25, 2013, regarding the status of the NRDA *Deepwater Horizon* study on beach mice. Restoration biologist, U.S. Dept. of the Interior, Fish and Wildlife Service, *Deepwater Horizon* NRDA Field Office, Fairhope, AL.
- Frazer, N.B., J.W. Gibbons, and J.L. Greene. 1989. Life tables of a slider turtle population. In: Gibbons, J.W., ed. Life history and ecology of the slider turtle. Washington, DC: Smithsonian Institution Press.
- Frazier, D.E. 1967. Recent deltaic deposits of the Mississippi River: Their development and chronology. In: Sandridge, J.R., ed. Transactions Gulf Coast Association of Geological Societies, San Antonio, TX, 27:287 315. Internet website: <u>http://search.datapages.com/data/gcags/data/017/ 017001/pdfs/0287.pdf</u>.
- Frazier, J.G. 1980. Marine turtles and problems in coastal management. In: Edge, B.C., ed. Coastal Zone '80: Proceedings of the Second Symposium on Coastal and Ocean Management. Volume 3. New York, NY: American Society of Civil Engineers. Pp. 2395-2411.
- Freese, L., P.J. Auster, J. Heifetz, and B.L. Wing. 1999. Effects of trawling on seafloor habitat and associated invertebrate taxa in the Gulf of Alaska. Marine Ecology Progress Series 182:119-126.
- Friend, M. and J.C. Franson. 1999. Field manual of wildlife diseases- general field procedures and diseases of birds. U.S. Dept. of the Interior, Geological Survey, Biological Resources Division, Washington, DC. Information and Technology Report 1999-001. 426 pp. Internet website: <u>http:// www.nwhc.usgs.gov/publications/field_manual/field_manual_of_wildlife_diseases.pdf</u>. Accessed June 13, 2011.
- Fritts, T.H. and M.A. McGehee. 1982. Effects of petroleum on the development and survival of marine turtle embryos. Prepared for the U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. Contract no. 14-16-0009-80-946.

- Fucik, K.W., T.J. Bright, and K.S. Goodman. 1984. Measurements of damage, recovery, and rehabilitation of coral reefs exposed to oil. In: Cairns, J. and A.L. Buikema, Jr., eds. Restoration of habitats impacted by oil spills. Boston, MA: Butterworth Publishers. Pp. 115-133.
- Furness, R.W. 2003. Impacts of fisheries on seabird communities. Scientia Marina 67:33-45.
- Furness, R.W. and K.C.J. Camphuysen. 1997. Seabirds as monitors of the marine environment. ICES Journal of Marine Science 54:726-737.
- Gab-Alla, A.A. 2000. Ecological status of seagrass community in Sharm El-Moyia Bay, Egyptian Red Sea after its oil pollution in 1999. Egyptian Journal of Biology 2:34-41.
- Gagliano, S.M. 1999. Faulting, subsidence and land loss in coastal Louisiana. In: Louisiana Coastal Wetlands Conservation and Restoration Task Force and Wetlands Conservation and Restoration Authority, Coast 2050: Toward a sustainable coastal Louisiana, Appendix B—Technical methods. Louisiana Dept. of Natural Resources, Baton Rouge, LA.
- Gagliano, S.M. 2005a. Effects of earthquakes, fault movements, and subsidence on the south Louisiana landscape. Reprinted from The Louisiana Civil Engineer, Journal of the Louisiana Section of The American Society of Civil Engineers, Baton Rouge, LA. February 2005, 13(2):5-7, 19-22. Internet website: <u>http://www.coastalenv.com/EffectofEarthquakeFaultMovementsandSubsidence.pdf</u>.
- Gagliano, S.M. 2005b. Effects of natural fault movement on land submergence in coastal Louisiana. Proceedings, 14th Biennial Coastal Zone Conference, New Orleans, LA, July 17-21, 2005. 5 pp.
- Gallaway, B., S. Szedlmayer, and W. Gazey. 2009. A life history review for red snapper in the Gulf of Mexico with an evaluation of the importance of offshore petroleum platforms and other artificial reefs. Reviews in Fisheries Science 17(1):48-67.
- Ganning, B., D.J. Reish, and D. Straughan. 1984. Recovery and restoration of rocky shores, sandy beaches, tidal flats, and shallow subtidal bottoms impacted by oil spill. In: Cairns, J., Jr. and A.L. Buikema, Jr., eds. Restoration of habitats impacted by oil spills. Boston, MA.
- Garber, S.D. 1985. The integration of ecological factors affecting marine turtle nesting beach management. In: Proceedings of the Ninth Annual Conference of the Coastal Society, October 14-17, 1984. Atlantic City, NJ: The Coastal Society.
- Garrison, E.G., C.P. Giammona, F.J. Kelly, A.R. Tripp, and G.A. Wolf. 1989. Historic shipwrecks and magnetic anomalies of the northern Gulf of Mexico: Reevaluation of archaeological resource management. Volume II: Technical narrative. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 89-0024. 241 pp.
- Gaston, G.R., C.F. Rakocinski, S.S. Brown, and C.M. Cleveland. 1998. Trophic function in estuaries: Response of macrobenthos to natural and contaminant gradients. Marine and Freshwater Research 49:833-846.
- Gearhart II, R., D. Jones, A. Borgens, S. Laurence, T. DeMunda, and J. Shipp. 2011. Impacts of recent hurricane activity in historic shipwrecks in the Gulf of Mexico outer continental shelf. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEMRE 2011-003.
- George, R.H. 1997. Health problems and diseases of sea turtles. In: Lutz, P.L. and J.A. Musick, eds. The biology of sea turtles. Boca Raton, FL: CRC Press. Pp. 363-385.
- Geraci, J.R. and D.J. St. Aubin. 1980. Offshore petroleum resource development and marine mammals: A review and research recommendations. Marine Fisheries Review 42:1-12.
- Geraci, J.R. and D.J. St. Aubin. 1985. Expanded studies of the effects of oil on cetaceans, part I. Final report prepared for the U.S. Dept. of the Interior, Minerals Management Service, Washington, DC.
- Gibbons, J.W., J.E. Lovich, A.D. Tucker, N.N. Fitzsimmons, and J.L. Greene. 2001. Demographic and ecological factors affecting conservation and management of diamondback terrapins (*Malaclemys terrapin*) in South Carolina. Chelonian Conservation and Biology 4:66-74.

- Gibson, J. and G. Smith. 1999. Reducing threats to nesting habitat. In: Eckert, K.L., K.A. Bjorndal, F.A. Abreu Grobois, and M. Donnelly, eds. Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication No. 4. Pp. 184-188.
- Gitschlag, G., M. Schirripa, and J. Powers. 2000. Estimation of fisheries impacts due to underwater explosives used to sever and salvage oil and gas platforms in the U.S. Gulf of Mexico. Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2000-087. 80 pp.
- Gittings, S.R., T.J. Bright, W.W. Schroeder, W.W. Sager, J.S. Laswell, and R. Rezak. 1992a. Invertebrate assemblages and ecological controls on topographic features in the northeast Gulf of Mexico. Bulletin of Marine Science 50(3):435-455.
- Gittings, S.R., G.S. Boland, K.J.P. Deslarzes, D.K. Hagman, and B.S. Holland. 1992b. Long-term monitoring at the East and West Flower Garden Banks. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 92-0006. 206 pp.
- Golet, G.H., P.E. Seiser, A.D. McGuire, D.D. Roby, J.B. Fischer, K.J. Kuletz, D.B. Irons, T.A. Dean, S.C. Jewett, and S.H. Newman. 2002. Long-term direct and indirect effects of the 'Exxon Valdez' oil spill on pigeon guillemots in Prince William Sound, Alaska. Marine Ecology Progress Series 241:287-304.
- Gómez Gesteira, J.L. and J.C. Dauvin. 2000. Amphipods are good bioindicators of the impact of oil spills on soft-bottom macrobenthic communities. Marine Pollution Bulletin 40(11):1017-1027.
- Good, B., J. Buchtel, D. Meffert, J. Radford, K. Rhinehart, and R. Wilson. 1995. Louisiana's major coastal navigation channels. Louisiana Dept. of Natural Resources, Baton Rouge, LA. 35 pp.
- Goodbody-Gringley, G., D.L. Wetzel, D. Gillon, E. Pulster, A. Miller, and K.B. Ritchie. 2013. Toxicity of *Deepwater Horizon* source oil and the chemical dispersant, Corexit® 9500, to coral larvae. PLoS ONE 8(1), January 9, 2013. doi:10.1371/journal.pone.0045574.
- Goss-Custard, J.D. 1980. Competition for food and interference among waders. Ardea 68:31-52.
- Goss-Custard, J.D., P. Triplet, F. Sueur, and A.D. West. 2006. Critical thresholds of disturbance by people and raptors in foraging wading birds. Biological Conservation 127:88-97.
- Gosselink, J.G., C.L. Cordes, and J.W. Parsons. 1979. An ecological characterization study of the Chenier Plain coastal ecosystem of Louisiana and Texas. 3 vols. U.S. Dept. of the Interior, Fish and Wildlife Services. FWS/OBS-78/9 through 78/11.
- Gosselink, J.G., J.M. Coleman, and R.E. Stewart, Jr. 1998. Coastal Louisiana. In: Mac, M.J., P.A. Opler, C.E. Puckett-Haecker, and P.D. Doran, eds. Status and trends of the Nation's biological resources. Volume 2. U.S. Dept. of the Interior, Geological Survey, Reston, VA. Pp. 385-436. Internet website: <u>http://www.nwrc.usgs.gov/sandt/Coastal.pdf</u>. Accessed May 11, 2011.
- Govoni, J.J., M.A. West, L.R. Settle, R.T. Lynch, and M.D. Greene. 2008. Effects of underwater explosions on larval fish: Implications for a coastal engineering project. Journal of Coastal Research 24(sp2):228-233.
- Gower, J. and S. King. 2008. Satellite images show the movement of floating *Sargassum* in the Gulf of Mexico and Atlantic Ocean. Nature Precedings hdl:10101/npre.2008.1894.1.
- Gower, J.F.R. and S.A. King. 2011. Distribution of floating *Sargassum* in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. International Journal of Remote Sensing 32(7):1917-1929.
- Gower, J., E. Young, and S. King. 2013. Satellite images suggest a new *Sargassum* source region in 2011. Remote Sensing Letters 4(8):764-773.
- Greater Lafourche Port Commission. 2011. Port facts. Internet website: <u>http://www.portfourchon.com/</u> <u>explore.cfm/aboutus/portfacts/</u>. Accessed June 22, 2011.

- Greater Lafourche Port Commission. 2013. Capital projects brochure: Completed, ongoing and proposed projects. Internet website: <u>http://www.portfourchon.com/site100-01/1001757/docs/</u> capital_projects_brochure_april_2013.pdf. Accessed July 10, 2013.
- Greater Lafourche Port Commission. 2014. South Lafourche airport. Internet website: <u>http://www.portfourchon.com/explore.cfm/airport</u>. Accessed January 31, 2014.
- Greene, R.M., J.C. Lehrter, and J.D. Hagy, III. 2009. Multiple regression models for hindcasting and forecasting mid-summer hypoxia in the Gulf of Mexico. Ecological Applications 19(5):1161-1175.
- Groom, M.J. and M.A. Pascual. 1998. The analysis of population persistence: An outlook on the practice of population persistence. In: Fiedler, O.L. and P.M. Kareiva, eds.. Conservation biology. New York, NY: Chapman and Hall. Pp. 4-27.
- Gulf Coast Claims Facility. 2012. Important announcement. Internet website: <u>http://gulfcoastclaimsfacility.com/</u>. Accessed June 25, 2013.
- Gulf Gateway Terminal. 2013. Opening second quarter 2013. Internet website: <u>http://gulfgatewayterminal.com/</u>. Accessed July 10, 2013.
- Gulf of Mexico Fishery Management Council. 1998. Generic amendment for addressing essential fish habitat requirements. Gulf of Mexico Fishery Management Council, Tampa, FL. NOAA Award No. NA87FC0003. 238 pp. + apps.
- Gulf of Mexico Fisheries Management Council. 2004. Assessment summary report of the Gulf of Mexico Red Snapper Workshop. SEDAR 7. 13 pp.
- Gulf of Mexico Fishery Management Council. 2006. Download files; fishery management plans; shrimp. Internet website: <u>http://www.gulfcouncil.org/fishery_management_plans/shrimp_management.php</u>. Accessed May 2011.
- Gulf of Mexico Fishery Management Council. 2010. Supplemental recreational red snapper season to open October 1, 2010. Internet website: <u>http://www.gulfcouncil.org/news_resources/Press%20</u> <u>Releases/2010RedSnapperReopening.pdf</u>.
- Gutierrez, T., D. Berry, T. Yang, S. Mishamandani, L. McKay, A. Teske, and M.D. Aitken. 2013. Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the *Deepwater Horizon* oil spill. 17 pp. PLoS ONE 8(6):e67717. doi:10.1371/journal.pone.0067717.
- Guzmán, H.M., J.B.C. Jackson, and E. Weil. 1991. Short-term ecological consequences of a major oil spill on Panamanian subtidal reef corals. Coral Reefs 10:1-12.
- Habib, L.E., M. Bayne, and S. Boutin. 2007. Chronic industrial noise affects pairing success and age structure of ovenbirds *Seiurus aurocapilla*. Journal of Animal Ecology 44:176-184.
- Haddad, R. and S. Murawski. 2010. Analysis of hydrocarbons in samples provided from the cruise of the R/V Weatherbird II, May 23-26, 2010. U.S. Dept. of Commerce, National Oceanographic and Atmospheric Administration, Silver Spring, MD. 14 pp.
- Haig, S.M., D.W. Mehlman, and L.W. Oring. 1998. Avian movements and wetland connectivity in landscape conservation. Conservation Biology 12:749-758.
- Hall, R.J., A.A. Belisle, and L. Sileo. 1983. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the Ixtoc I oil spill. Journal of Wildlife Diseases 19(2):106-109.
- Hamdan, L.J. and P.A. Fulmer. 2011. Effects of COREXIT® EC9500A on bacteria from a beach oiled by the *Deepwater Horizon* spill. Aquatic Microbial Ecology 63:101-109. doi:10.3354/ame01482.
- Handley, D.A., D. Altsman, and R. DeMay, eds. 2007. Seagrass status and trends in the northern Gulf of Mexico: 1940-2002. U.S. Dept. of the Interior, Geological Survey, Scientific Investigations Report 2006-5287 and U.S. Environmental Protection Agency, 855-R-04-003. Internet website: <u>http:// pubs.usgs.gov/sir/2006/5287/</u>.
- Haney, J.L., Y. Wei, T. Myers, and S. Douglas. 2008 (unpublished). An assessment of onshore air quality impacts for the eastern Gulf Coast (Louisiana to Florida) using the 2005 Gulfwide emissions inventory. Prepared for the U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- Hanski, I. 1999. Metapopulation ecology. Oxford: Oxford University Press. 328 pp.
- Harrington, B.A. 2001. Red knot (*Calidris canutus*). In: Poole, A., ed. The birds of North America online. Ithaca, NY. Cornell Lab of Ornithology. Issue No. 563. doi:10.2173/bna.563. Internet website: <u>http://bna.birds.cornell.edu/bna/species/563</u>. Accessed April 23, 2012.
- Harrington, J.M., R.A Myers, and A.A Rosenberg. 2005. Wasted fishery resources: Discarded by-catch in the USA. Fish and Fisheries 6:350-361.
- Hart, K.M., M.M. Lamont, A.R. Sartain, I. Fujisaki, and B.S. Stephens. 2013. Movements and habitatuse of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period. PLoS ONE 8(7):e66921. doi:10.1371/journal.pone.0066921.
- Harvey, J.T. and M.E. Dahlheim. 1994. Cetaceans in oil. In: Loughlin, T.R., ed. Marine mammals and the *Exxon Valdez*. San Diego, CA: Academic Press. Pp. 257-264.
- Hausfather, Z. 2013. IPCC's new estimates for increased sea-level rise. Internet website: <u>http://</u> www.yaleclimateconnections.org/2013/10/ipccs-new-estimates-for-increased-sea-level-rise/. Posted October 23, 2013. Accessed July 2, 2014.
- Hayworth, J.S. and T.P. Clement. 2012. Provenance of Corexit-related chemical constituents found in nearshore and inland Gulf coast waters. Marine Pollution Bulletin 64(10):2005-2014.
- Hazel, J., I.R. Lawler, H. Marsh, and S. Robson. 2007. Vessel speed increases collision risk for the green turtle *Chelonia mydas*. Endangered Species Research 3:105-113.
- Hazen, T.C., E.A. Dubinsky, T.Z. DeSantis, G.L. Andersen, Y.M. Picento, N. Singh, J.K. Jansson, A. Probst, S.E. Borglin, J.L. Fortney, W.T. Stringfellow, M. Bill, M.S. Conrad, L.M. Tom, K.L. Chavarria, T.R. Alusi, R. Lamendella, D.C. Joyner, C. Spier, J. Baelum, M. Auer, M.L. Zelma, R. Chakraborty, E.L. Sonnenthal, P. D'haeseleer, H.N. Holman, S. Osman, Z. Lu, J.D. Van Nostrand, Y. Deng, J. Zhou, and O.U. Mason. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204-208. doi:10.1126/science.1195979.
- HDR. 2011. The cultural resources response to the MC 252 incident along the Gulf Coasts of Louisiana, Mississippi, Alabama, and Florida: Interim report, April 2010-March 2011. Prepared for BP Gulf Coast Restoration Organization, Metairie, LA.
- Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253:123-136.
- The Heinz Center. 2000. Evaluation of erosion hazards. Prepared for the Federal Emergency Management Agency. Contract EMW-97-CO-0375. 205 pp.
- Helm, R.C., R.G. Ford, and H.R. Carter. 2008. Oil spills, seabirds, and NRDA: Differences between U.S. west, east, and Gulf Coasts. Proceedings of the 20th International Oil Spill Conference, Savanna, GA, USA. American Petroleum Institute. Pp. 1131-1139. Internet website: <u>http:// ioscproceedings.org/doi/pdf/10.7901/2169-3358-2008-1-1131</u>. Accessed July 29, 2010.
- Helman, C. 2013. How Cheniere energy got first in line to export America's natural gas. Forbes Magazine. May 6, 2013. Internet website: <u>http://www.forbes.com/sites/christopherhelman/2013/04/</u> <u>17/first-mover-how-cheniere-energy-is-leading-americas-lng-revolution/</u>. Accessed May 23, 2013.
- Hemmerling, S.A. and C.E. Colten. 2003. Environmental justice considerations in Lafourche Parish, Louisiana. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2003-038. 354 pp.

Hendrickson, J.R. 1980. The ecological strategies of sea turtles. American Zoologist 20:597-608.

- Heneman, B. and the Center for Environmental Education. 1988. Persistent marine debris in the North Sea, northwest Atlantic Ocean, wider Caribbean area, and the west coast of Baja California. Final report to the Marine Mammal Commission and the U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Pollution Program Office. Contract MM3309598-5. Washington, DC: Center for Environmental Education. Available from NTIS, Springfield, VA: PB89-109938. 161 pp.
- Hennige,S.J., L.C. Wicks, N.A. Kamenos, D.C.E. Bakker, H.S. Findlay, C. Dumousseaud, and J.M. Roberts. 2013. Short-term metabolic and growth responses of the cold-water coral *Lophelia pertusa* to ocean acidification. Deep-Sea Research II 99(2014):27-35. Internet website: <u>http://www.sciencedirect.com/science/article/pii/S0967064513002774</u>. Available online July 22, 2013.
- Henriet, J.P. and J. Mienert. 1998. Gas hydrates; relevance to world marginal stability and climate change. Geological Society of London, England. Geological Society Special Publication No. 137. 338 pp.
- Hickerson, E.L. and G.P. Schmahl. 2007. Hurricane Rita impacts at the Flower Garden Banks National Marine Sanctuary. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration. 13 pp.
- Hickerson, E.L., G.P. Schmahl, M. Robbart, W.F. Precht, and C. Caldow. 2008. The state of coral reef ecosystems of the Flower Garden Banks, Stetson Bank, and other banks in the northwestern Gulf of Mexico. In: Waddell, J.E. and A.M. Clarke, eds. The state of coral reef ecosystems of the United States and Pacific freely associated states: 2008. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment's Biogeography Team, Silver Spring, MD. NOAA Technical Memorandum NOS NCCOS 73. 569 pp.
- Hiett, R.L. and J.W. Milon. 2002. Economic impact of recreational fishing and diving associated with offshore oil and gas structures in the Gulf of Mexico: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2002-010. 98 pp.
- Hill, P. 2013. Mexico could make North America the world leader in oil production. The Washington Times. Internet website: <u>http://www.washingtontimes.com/news/2013/sep/12/mexico-could-make-north-america-the-world-leader-i/?page=all</u>. Accessed October 30, 2013.
- Hillestad, H.O., R.J. Reimold, R.R. Stickney, H.L. Windom, and J.H. Jenkins. 1974. Pesticides, heavy metals and radionuclide uptake in loggerhead sea turtles from South Carolina and Georgia. Herpetological Review 5:75.
- Hillestad, H.O., J.I. Richardson, C. McVea, Jr., and J.M. Watson, Jr. 1982. Worldwide incidental capture of sea turtles. In: Bjorndal, K.A., ed. Biology and conservation of sea turtles. Washington, DC: Smithsonian Institution Press. Pp. 489-495.
- Hillis, Z-M. 1990. Buck Island Reef National Monument Sea Turtle Research Program: 1989—the year of hawksbills and hurricanes. In: Proceedings, 10th Annual Workshop on Sea Turtle Biology and Conservation, February 20-24, Hilton Head Island, SC. NOAA Technical Memorandum NMFS-SEFSC-278. Pp. 15-20.
- Hogan, J.L. 2003. Occurrence of the diamondback terrapin (*Malaclemys terrapin littoralis*) at South Deer Island in Galveston Bay, Texas, April 2001-May 2002. U.S. Dept. of the Interior, Geological Survey, Austin, TX. USGS Open-File Report 03-022. 30 pp.
- Holdway, D.A. 2002. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes. Marine Pollution Bulletin 44:185-203.
- Holliday, D.K., W.M. Roosenburg, and A.A. Elskus. 2008. Spatial variation on polycyclic aromatic hydrocarbon concentrations in eggs of diamondback terrapins, *Malaclemys terrapin*, from the Patuxent River, Maryland. Bulletin of Environmental Contamination Toxicology 80:119-122.

- Hönisch, B., N.G. Hemming, D. Archer, M. Siddall, and J.F. McManus. 2009. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324(5934):1551-1554. Internet website: <u>http://128.135.10.93/~archer/reprints/honisch.2009.mid_pleist_co2.pdf</u>.
- Horel, A., B. Mortazavi, and P.A. Sobecky. 2012. Responses of microbial community from northern Gulf of Mexico sandy sediments following exposure to *Deepwater Horizon* crude oil. Environmental Toxicology and Chemistry 31(5):1004-1011.
- Hsing, P.-Y., B. Fu, E.A. Larcom, S.P. Berlet, T.M. Shank, A.G. Govindarajan, A.J. Lukasiewicz, P.M. Dixon, and C.R. Fisher. 2013. Evidence of lasting impact of the *Deepwater Horizon* oil spill on a deep Gulf of Mexico coral community. Elementa: Science of the Anthropocene 1:000012. 15 pp.
- Hubbs, C.L. and A.B. Rechnitzer. 1952. Report on experiments designed to determine effects of underwater explosions on fish life. Scripps Institution of Oceanography, New Series, No. 576. University of California, La Jolla, CA. Pp. 333-366.
- Hudson, J.H. and D.M. Robbin. 1980. Effects of drilling mud on the growth rate of reef-building coral, Montastraea annularis. The R&D Program for OCS Oil and Gas Operations. U.S. Dept. of the Interior, Geological Survey, Fisher Island Station, Miami Beach, FL.
- Humphries, M. 2013. U.S. crude oil and natural gas production in Federal and non-Federal areas. Congressional Research Service Report for Congress.
- Hutchinson, J. and M. Simmonds. 1991. A review of the effects of pollution on marine turtles. Greenpeace International. 27 pp.
- Inoue, M., S.E. Welsh, L.J. Rouse, Jr., and E. Weeks. 2008. Deepwater currents in the eastern Gulf of Mexico: Observations at 25.5°N and 87°W. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2008-001. 95 pp.
- IHS Petrodata. 2013. Day rate index report for October 18, 2013. Internet website: <u>http://www.ihs.com/</u> products/oil-gas-information/drilling-data/day-rate-index.aspx. Accessed October 29, 2013.
- Incardona, J.P., L.D. Gardner, T.L. Linbo, T.L. Brown, A.J. Esbaugh, E.M. Mager, J.D. Stieglitz, B.L. French, J.S. Labenia, C.A. Laetz, M. Tagal, C.A. Sloan, A. Elizur, D.D. Benetti, M. Grosell, B.A. Block, and N.L. Scholz. *Deepwater Horizon* crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences of the United States of America, Volume 111, No. 15. Internet website: <u>www.pnas.org/cgi/doi/10.1073/pnas.1320950111</u>. Accessed May 9, 2014.
- International Panel on Climate Change. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley, eds.) Cambridge, United Kingdom, and New York, NY, USA: Cambridge University Press. 582 pp. Internet website: <u>https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf</u>.
- International Tanker Owners Pollution Federation Limited (ITOPF). 2002. Fate of marine oil spills. Technical Information Paper. London, United Kingdom. 8 pp. Internet website: <u>http://www.itopf.com/_assets/documents/tip2.pdf</u>. Accessed December 2, 2010.
- Jackson, J.B.C., J.D. Cubit, B.D. Keller, V. Batista, K. Burns, H.M. Caffey, R.L. Caldwell, S.D. Garrity, C.D. Getter, C. Gonzalez, H.M. Guzman, K.W. Kaufmann, A.H. Knap, S.C. Levings, M.J. Marshall, R. Steger, R.C. Thompson, and E. Weil. 1989. Ecological effects of a major oil spill on Panamanian coastal marine communities. Science 243:37-44.
- Jackson, L.E., J.C. Kurtz, and W.S. Fisher. 2000. Evaluation guidelines for ecological indicators. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA/620/R-99/005. 109 pp. Internet website: <u>http://www.epa.gov/emap/html/pubs/docs/resdocs/ecol_ind.pdf</u>.
- Jernelöv, A. 2010. The threats from oil spills: Now, then, and in the future. Ambio 39:353-366.

- Ji, Z.-G., W.R. Johnson, Z. Li, R.E. Green, S.E. O'Reilly, and M.P. Gravois. 2012. Oil spill risk analysis: Gulf of Mexico Outer Continental Shelf (OCS) lease sales, Central and Western Planning Areas, 2012-2017, and Gulfwide OCS Program, 2012-2051. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Environmental Division, Herndon, VA. OCS Report BOEM 2012-066. 77 pp. Internet website: <u>http://www.boem.gov/uploadedFiles/ BOEM/Environmental_Stewardship/Environmental_Assessment/Oil_Spill_Modeling/2012-066-BOEM-OCS-Report.pdf</u>.
- Ji, Z.-G., W.R. Johnson, Z. Li, R. Green, S.E. O'Reilly, M.P. Gravois, and C. Murphy. 2013. Oil-spill risk analysis: Gulf of Mexico Outer Continental Shelf (OCS) lease sales, Eastern Planning Area, 2012-2017, and Eastern Planning Area OCS Program, 2012-2051, U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Division of Environmental Sciences, Herndon, VA. OCS Report BOEM 2013-0110. Internet website: <u>http://www.boem.gov/uploadedFiles/BOEM/Environmental_ Stewardship/Environmental_Assessment/Oil_Spill_Modeling/2013_Eastern_OSRA_Report.pdf</u>.
- Johnson, S.A., K.A. Bjorndal, and A.B. Bolten. 1996. Effects of organized turtle watches on loggerhead (*Caretta caretta*) nesting behavior and hatchling production in Florida. Conservation Biology 10(2):570-577.
- Johnston, J.B., D.R. Cahoon, and M.K. La Peyre. 2009. Outer continental shelf (OCS)-related pipelines and navigation canals in the western and central Gulf of Mexico: Relative impacts on wetland habitats and effectiveness of mitigation. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2009-048. 200 pp.
- Joint Analysis Group. 2010a. Review of R/V *Brooks McCall* data to examine subsurface oil. Internet website: <u>http://www.noaa.gov/sciencemissions/PDFs/JAG_Report_1_BrooksMcCall_Final_June20.pdf</u>. Accessed October 14, 2010.
- Joint Analysis Group. 2010b. Review of preliminary data to examine oxygen levels in the vicinity of MC252#1. May 8 to August 9, 2010. Internet website: <u>http://www.noaa.gov/sciencemissions/PDFs/JAG Oxygen Report%20(FINAL%20090410).pdf</u>. Accessed October 19, 2010.
- Jones, J.B. 1992. Environmental impact of trawling on the seabed: A review. New Zealand Journal of Marine and Freshwater Research 26:59-67, 0028-8330/2601-0059. Internet website: <u>http://www.eurocbc.org/envimpact_trawlseabed_review.pdf</u>.
- Jones, C.E. and B.A. Davis. 2011. High resolution radar for response and recovery: Monitoring containment booms in Barataria Bay. Photogrammetric Engineering and Remote Sensing 77(2):102-105.
- Kaiser, M.J., B. Snyder, and A.G. Pulsipher. 2013. Offshore drilling industry and rig construction market in the Gulf of Mexico. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2013-0112. 375 pp.
- Kaplan, M.F., A. Laughland, and J. Mott. 2011. OCS-related infrastructure fact book. Volume II: Communities in the Gulf of Mexico. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2011-043 and 2011-44. 372 pp. and 163 pp., respectively.
- Karl, T.R., J.M. Melillo, and T.C. Peterson, eds. 2009. Global climate change impacts in the United States. New York, NY: Cambridge University Press. 196 pp. Internet website: <u>http:// downloads.globalchange.gov/usimpacts/pdfs/climate-impacts-report.pdf</u>.
- Karpanty, S.M., J.D. Fraser, J. Berkson, L.J. Niles, A. Dey, and E.P. Smith. 2006. Horseshoe crab eggs determine distribution of red knots in Delaware Bay. Journal of Wildlife Management 70:1704-1710.
- Kasmarek, M.C., R.K. Gabrysch, and M.R. Johnson. 2009. Estimated land-surface subsidence in Harris County, Texas, 1915-17 to 2001. U.S. Dept. of the Interior, Geological Survey, Scientific Investigations Map 2097. 2 pp. Internet website: <u>http://pubs.usgs.gov/sim/3097/</u>. Accessed July 9, 2013.

- Keevin, T.M. and G.L. Hempen. 1997. The environmental effects of underwater explosions with methods to mitigate impacts. U.S. Army Corps of Engineers, St. Louis District. August 1997. 99 pp.
- Keim, B. and R.A. Muller. 2009. Hurricanes of the Gulf of Mexico. Louisiana State University Press, Baton Rouge, LA.
- Kemp, W.M. 1989. Estuarine seagrasses. In: Day, J.W., Jr., C.A.S. Hall, W.M. Kemp, and A. Yanez-Arancibia, eds. Estuarine ecology. New York, NY: John Wiley & Sons. 558 pp.
- Kennicutt II, M.C., ed. 1995. Gulf of Mexico offshore operations monitoring experiment, Phase I: Sublethal responses to contaminant exposure, final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0045. 709 pp.
- Kennicutt II, M.C., P.N. Boothe, T.L. Wade, S.T. Sweet, R. Rezak, F.J. Kelly, J.M. Brooks, B.J. Presley, and D.A. Wiesenburg. 1996. Geochemical patterns in sediments near offshore production platforms. Canadian Journal of Fisheries and Aquatic Science 53:2554-2566.
- Kimes, N.E., A.V. Callaghan, D.F. Aktas, W.L. Smith, J. Sunner, B.T. Golding, M. Drozdowska, T.C. Hazen, J.M. Suflita., and P.J. Morris. 2013. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the *Deepwater Horizon* oil spill. Frontiers in Microbiology, 15 March 2013, 4:50. doi:10.3389/fmicb.2013.00050.
- Kimmel, K.D. and G. Constant. 2011. The fight to recover the Gulf dinosaur. Endangered Species Bulletin, Dec.-Nov. 2011. Internet website: <u>http://www.fws.gov/endangered/news/episodes/bu-10-2011/gulf_sturgeon/index.html</u>. Last updated January 20, 2012. Accessed September 24, 2013.
- King, B.S. and J.D. Gibbons. 2011. Health hazard evaluation of *Deepwater Horizon* response workers. Health hazard evaluation report HETA 2010-0115 & 2010-0129-3138. National Institute for Occupational Safety and Health (NIOSH). August 2011. Internet website: <u>http://www.cdc.gov/ niosh/hhe/reports/pdfs/2010-0115-0129-3138.pdf</u>. Accessed June 25, 2013.
- Kingston, P.F., I.M.T. Dixon, S. Hamilton, and D.C. Moore. 1995. The impact of the Braer oil spill on the macrobenthic infauna of the sediments off the Shetland Isles. Marine Pollution Bulletin 189:159-170.
- Kita, J. and T. Ohsumi. 2004. Perspectives on biological research for CO₂ ocean sequestration. Journal of Oceanography 60(4):695-703.
- Klein, M.L. 1993. Waterbird behavioural responses to human disturbances. Wildlife Society Bulletin 21:31-39.
- Klem, D., Jr. 2009. Avian mortality at windows: the second largest human source of bird mortality on earth. In: Rich, T.D., C. Arizmendi, D.W. Demarest, and C. Thompson, eds. Tundra to tropics: Connecting birds, habitats and people. Proceedings of the Fourth International Partners in Flight Conference, 13-16 February 2008, McAllen, TX, USA. Pp. 244-251. Internet website: <u>http:// www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/ Klem_PIF09.pdf</u>. Accessed September 13, 2011.
- Kleypas, J.A., R.W. Buddemeier, D. Archer, J. Gattuso, C. Langdon, and B.N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118-120.
- Knap, A.H. 1987. Effects of chemically dispersed oil on the brain coral, *Diploria strigosa*. Marine Pollution Bulletin 18(3):119-122.
- Ko, J-Y. and J.W. Day. 2004. Wetlands: Impacts of energy development in the Mississippi Delta. Encyclopedia of Energy, Volume 6. Elsevier Inc. Pp. 397-408. Internet website: <u>http://web.archive.org/web/20120414191756/http://www.lsu.edu/cei/research_projects/Wetlands_final.pdf</u>.
- Kokaly, R.F., B.R. Couvillion, J.M. Holloway, D.A. Roberts, S.L. Ustin, S.H. Peterson, S. Khanna, and S.C. Piazza. 2013. Spectroscopic remote sensing of the distribution and persistence of oil from the *Deepwater Horizon* spill in Barataria Bay marshes. Remote Sensing of Environment 129:210-230.

- Komenda-Zehnder, S., M. Cevallos, and B. Bruderer. 2003. Effects of disturbance by aircraft overflightan experimental approach. Proceedings of the International Bird Strike Committee (Paper #IBSC26/WP-LE2), Warsaw, Poland. 12 pp. Internet website: <u>http://www.int-birdstrike.org/</u> <u>Warsaw_Papers/IBSC26%20WPLE2.pdf</u>. Accessed November 9, 2010.
- Kostka, J.E., O. Prakash, W.A. Overholt, S.J. Green, G. Freyer, A. Canion, J. Delgardio, N. Norton, T.C. Hazen, and M. Huettel. 2011. Hydrocarbon-degrading bacteria and the bacterial community in Gulf of Mexico beach sands impacted by the *Deepwater* Horizon oil spill. Applied and Environmental Microbiology 77(22):7962-7974. doi:10.1128/AEM.05402-11.
- Kraus, R.T., R.L. Hill, J.R. Rooker, and T.M. Dellapenna. 2006. Preliminary characterization of a midshelf bank in the northwestern Gulf of Mexico as essential habitat of reef fishes. In: Proceedings of the 57th Gulf and Caribbean Fisheries Institute, November 8-12, 2004, St. Petersburg, FL. Pp. 621-632.
- Kraus, R.T., C. Friess, R.L. Hill, and J.R. Rooker. 2007. Characteristics of the snapper-grouper-grunt complex, benthic habitat description, and patterns of reef fish recruitment at Sonnier Bank in the northwestern Gulf of Mexico. In: Proceedings of the 59th Gulf and Caribbean Fisheries Institute, November 6-11, 2006, Belize City, Belize. Pp. 165-170.
- Kristan, W.B., III. 2003. The role of habitat selection behavior in population dynamics: Source-sink systems and ecological traps. Oikos 103:457-468.
- Kushmaro, A., G. Henning, D.K. Hofmann, and Y. Benayahu. 1997. Metamorphosis of *Heteroxenia fuscescens* Plaunlae (Cnidaria: Octocorallia) is inhibited by crude oil: A novel short-term toxicity bioassay. Marine Environmental Research 43(4):295-302.
- LA 1 Coalition. 2013. Federal report highlights elevated LA 1's resiliency and at-grade highways' continued vulnerability to rising water. May 16, 2013. Internet website: <u>http://www.la1coalition.org/news/federal-report-highlights-elevated-la-1s-resiliency-and-at-grade-highways-continued-vulnerability-to-rising-water</u>. Accessed July 10, 2013.
- LaCoast.gov. 2011. Atchafalaya Basin: Summary of basin plan. Internet website: <u>http://lacoast.gov/new/About/Basin_data/at/Default.aspx</u>. Accessed January 28, 2011.
- LaCoast.gov. 2013. CWPPRA restoration projects. Internet website: <u>http://www.lacoast.gov/projects/</u> <u>list.asp</u>. Accessed June 17, 2013
- LaDeau, S.L., A.M. Kilpatrick, and P.P. Marra. 2007. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447:710-714 and Supplementary Information, 10 pp.
- Lamont, M.M., R.R. Carthy, and I. Fujisaki. 2012. Declining reproductive parameters highlight conservation needs of loggerhead turtles (*Caretta caretta*) in the northern Gulf of Mexico. Chelonian Conservation and Biology 11(2):190-196.
- Lange, R. 1985. A 100-ton experimental oil spill at Halten Bank, off Norway. In: Proceedings, 1985 Oil Spill Conference, February 25-28, 1985, Los Angeles, CA. Washington, DC: American Petroleum Institute.
- Larkum, W.D., R.J. Orth, and C.M. Duarte. 2006. Seagrasses: Biology, ecology, and conservation. The Netherlands: Springer. 672 pp.
- Lee, M.R. and T.C. Blanchard. 2010. Health impacts of *Deepwater Horizon* oil disaster on coastal Louisiana residents. Louisiana State University, Department of Sociology, Baton Rouge, LA.
- Lee, D.S. and M.L. Moser. 1998. Importance des Sargasses pelagiques pour la recherché alimentaire des oiseaux marins. El Pitirre 11(3):111-112.
- Lee, K., Z. Li, P. Kepkay, P., and S. Ryan. 2011a. Time-series monitoring the subsurface oil plume released from *Deepwater Horizon* MC252 in the Gulf of Mexico. Presented at the International Oil Spill Conference. Portland, OR, May 23-26, 2011.

- Lee, K., T. Nedwed, and R.C. Prince. 2011b. Lab tests on the biodegradation rates of chemically dispersed oil must consider natural dilution. Presented at the International Oil Spill Conference, Portland, OR, May 23-26, 2011.
- Lenhardt, M.L., S. Bellmund, R.A. Byles, S.W. Harkins, and J.A. Musick. 1983. Marine turtle reception of bone-conducted sound. Journal of Auditory Research 23:119-125.
- Lester, L.A., E.A. Standora, W.F. Bien, and H.W. Avery. 2012. Behavioral responses of diamondback terrapins (*Malaclemys terrapin terrapin*) to recreational boat sounds. Advances in Experimental Medicine and Biology 730:361-362.
- Leumas, C. 2010. Understanding the use of barrier islands as nesting habitat for Louisiana birds of concern. Master's Thesis, Louisiana State University and Agricultural and Mechanical College School of Renewable Natural Resources.
- Lewis, A. and D. Aurand. 1997. Putting dispersants to work: Overcoming obstacles. 1997 International Oil Spill Conference. API 4652A. Technical Report IOSC-004.
- Lewis, J.B. 1971. Effect of crude oil and an oil-spill dispersant on reef corals. Marine Pollution Bulletin 2:59-62
- LGL Ecological Research Associates, Inc. and Science Applications International Corporation. 1998. Cumulative ecological significance of oil and gas structures in the Gulf of Mexico: Information search, synthesis, and ecological modeling; Phase I, final report. U.S. Dept. of the Interior, Geological Survey, Biological Resources Division, USGS/BRD/CR-1997-0006 and Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 97-0036. 130 pp.
- Lin, Q. and I.A. Mendelssohn. 2012. Impacts and recovery of the *Deepwater Horizon* oil spill on vegetation structure and function of coastal salt marshes in the Northern Gulf of Mexico. Environmental Science & Technology 46(7):3737-3743.
- Lirman, D., G. Deangelo, J. Serafy, A. Hazra, D. Smith Hazra, J. Herlan, J. Lou, S. Bellmund, J. Wang, and R. Clausing. 2008. Seasonal changes in the abundance and distribution of submerged aquatic vegetation in a highly managed coastal lagoon. Hydrobiologia 596:105-120.
- Lissner, A.L., G.L. Taghon, D.R. Diener, S.C. Schroeter, and J.D. Dixon. 1991. Recolonization of deepwater hard-substrate communities: Potential impacts from oil and gas development. Ecological Implications 1(3):258-267.
- Littler, D.S. and M.M. Littler. 2000. Caribbean reef plants; an identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. OffShore Graphics Inc., Florida. Pp. 280-290.
- Liu, K-B. and M.L. Fearn. 2000. Holocene history of catastrophic hurricane landfalls along the Gulf of Mexico coast reconstructed from coastal lake and marsh sediments. In: Nig, Z.H. and K.K. Abdollahi, eds. Current stresses and potential vulnerabilities: Implications of global change for the Gulf Coast region of the United States. Baton Rouge, LA: Franklin Press.
- Liu, Z., J. Liu, Q. Zhuand, and W. Wu. 2012. The weathering of oil after the *Deepwater Horizon* oil spill: Insights form the chemical composition of the oil from the sea surface, salt marshes, and sediments. Environmental Research Letters 7:1-14.
- Lohoefener, R.R., W. Hoggard, C.L. Roden, K.D. Mullin, and C.M. Rogers. 1989. Petroleum structures and the distribution of sea turtles. In: Proceedings, Spring Ternary Gulf of Mexico Studies Meeting. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 89-0062. Pp. 31-35.
- Lokkeborg, S., E. Ona, A. Vold, and A. Salthaug. 2012. Sounds from seismic air guns: Gear- and species-specific effects on catch rates and fish distribution. Canadian Journal of Fisheries and Aquatic Sciences 69:1278-1291.

- Longley, W.L., ed. 1994. Freshwater inflows to Texas bays and estuaries: Ecological relationships and methods for determination of needs. Texas Water Development Board and Texas Parks and Wildlife Department, Austin, TX. 386 pp.
- Loren C. Scott & Associates. 2008. The economic impacts of Port Fourchon on the national and Houma MSA economies. 31 pp. Internet website: <u>http://www.portfourchon.com/site100-01/1001757/docs/port_fourchon_economic_impact_study.pdf</u>.
- The Louis Berger Group, Inc. 2004. OCS-related infrastructure in the Gulf of Mexico fact book. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2004-027. 249 pp.
- Louisiana Coastal Wetlands Conservation and Restoration Task Force. 2006. The 2006 evaluation report to the U.S. Congress on the effectiveness of Coastal Wetlands Planning, Protection and Restoration Act projects. Submitted by the Chairman of the Louisiana Coastal Wetlands Conservation and Restoration Task Force, U.S. Dept. of the Army, Corps of Engineers, New Orleans District, New Orleans, LA.

Lowe, M. and S. Stokes. 2013. Wildlife tourism and the Gulf Coast economy. 57 pp.

- Lowery, T. and E.S. Garrett. 2005. Report of findings: Synoptic survey of total mercury in recreational finfish of the Gulf of Mexico. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration Fisheries Service, Office of Sustainable Fisheries, National Seafood Inspection Laboratory, Pascagoula, MS.
- Lu, L. and R.S.S. Wu. 2006. A field experimental study on recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with petroleum hydrocarbons. Estuarine, Coastal and Shelf Science 68:627-634.
- Lubchenco, J.L., M. McNutt, B. Lehr, M. Sogge, M. Miller, S. Hammond, and W. Conner. 2010. BP *Deepwater Horizon* oil budget: What happened to the oil? Internet website: <u>http://</u> <u>www.noaanews.noaa.gov/stories2010/PDFs/OilBudget_description_%2083final.pdf</u>. Accessed September 8, 2010.
- Lubowski, R.N., M. Vesterby, S. Bucholtz, A. Baez, and M. Roberts. 2006. Major uses of land in the United States, 2002. U.S. Dept. of Agriculture, Economic Research Service. Economic Information Bulletin No. (EIB-14). 54 pp. Internet website: <u>http://www.ers.usda.gov/publications/eib-economicinformation-bulletin/eib14.aspx</u>. Accessed January 16, 2013.
- Lutcavage, M.E., P.L. Lutz, G.D. Bossart, and D.M. Hudson. 1995. Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles. Archives of Environmental Contamination and Toxicology 28:417-422.
- Lutcavage, M.E., P. Plotkin, B. Witherington, and P.L. Lutz. 1997. Human impacts on sea turtle survival. In: Lutz, P.L. and J.A. Musick, eds. The biology of sea turtles. Boca Raton, FL: CRC Press, Inc. Pp. 387-409.
- Luthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379-381.
- Luton, H.H. and R.E. Cluck. 2004. Social impact assessment and offshore oil and gas in the Gulf of Mexico. In: Proceedings, 24th Annual Conference, International Association for Impact Assessment, 24-30 April 2004, Vancouver, Canada.
- Lutz, P.L. and A.A. Alfaro-Shulman. 1992. The effects of chronic plastic ingestion on green sea turtles, final report. U.S. Dept. of Commerce, Miami, FL. NOAA SB2-WCHO6134.
- Lutz, P.L. and M. Lutcavage. 1989. The effects of petroleum on sea turtles: Applicability to Kemp's ridley. In: Caillouet, C.W., Jr. and A.M. Landry, Jr., eds. Proceedings of the First International Symposium on Kemp's Ridley Sea Turtle Biology, Conservation and Management. Texas A&M University Sea Grant College Program, Galveston. TAMU-SG-89-105. Pp. 52-54.

- Mack, D. and N. Duplaix. 1979. The sea turtle: An animal of divisible parts. International trade in sea turtle products. Presented at the World Conference on Sea Turtle Conservation, 1979. Washington, DC. 86 pp.
- Mager, E.M., A.J. Esbaugh, J.D. Stieglitz, R. Hoenig, C. Bodinier, J.P. Incardona, N.L. Scholz, D.D. Benetti, and M. Grosell. 2014. Acute embryonic or juvenile exposure to *Deepwater Horizon* crude oil impairs the swimming performance of mahi-mahi (*Coryphaena hippurus*). Internet website: <u>https://www.rsmas.miami.edu/users/emager/Mager%20EST%202014.pdf</u>. Environmental Science & Technology. Accepted May 23, 2014.
- Maiaro, J.L. 2007. Disturbance effects on nekton communities of seagrasses and bare substrates in Biloxi Marsh, Louisiana. Master's thesis, Louisiana State University, Baton Rouge, LA. 78 pp. Internet website: <u>http://etd.lsu.edu/docs/available/etd-07032007-101237/unrestricted/Maiaro_thesis.pdf.</u>
- Malins, D.C., M.M. Krahn, M.S. Myers, L.D. Rhodes, D.W. Brown, C.A. Krone, B.B. McCain, and S-L. Chan. 1985. Toxic chemicals in sediments and biota from a creosote-polluted harbor: Relationships with hepatic neoplasms and other hepatic lesions in English sole (*Parophrys vetulus*). Carcinogenesis 6:1463-469.
- Mallman, E.P. and M.D. Zoback. 2007. Subsidence in the Louisiana coastal zone due to hydrocarbon production. Proceedings of the 9th International Coastal Symposium, Journal of Coastal Research SI 50:443–449. Gold Coast, Australia. Internet website: <u>http://www.cerf-jcr.org/images/stories/</u> <u>Subsidence% 20in% 20the% 20Louisiana% 20coastal% 20zone% 20due% 20to% 20hydrocarbon% 20</u> <u>production.% 20E.% 20P.% 20Mallman% 20and% 20M.% 20D.% 20Zoback.% 20Pg% 20443-448.pdf</u>.
- Manik, J., M. Phillips, and B. Saha. 2005. Upgrading the outer continental shelf economic impact models for the Gulf of Mexico and Alaska.
- Manville II, A.M. 2005a. Bird strikes and electrocutions at power lines, communication towers, and wind turbines: State of the art and state of the science—next steps toward mitigation. In: Ralph, C.J. and T.D. Rich, eds. Bird conservation implementation in the Americas: Proceedings of the Third International Partners in Flight Conference, 20-24 March 2002, Asilomar, CA. U.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA. Forest Service General Technical Report PSW-GTR-191. Pp. 1051-1064. Internet website: <u>http://www.fs.fed.us/psw/ publications/documents/psw_gtr191/Asilomar/pdfs/1051-1064.pdf</u>. Accessed July 26, 2010.
- Manville, A.M., II. 2005b. Seabird and waterbird bycatch in fishing gear: next steps in dealing with a problem. In: Ralph, C.J. and T.D. Rich, eds. Bird conservation and implementation in the Americas: Proceedings of the Third International Partners in Flight Conference, 20-24 March 2002, Asilomar, CA. U.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA. Forest Service General Technical Report PSW-GTR-191 Pp. 1071-1082. Internet website: http://www.fs.fed.us/psw/publications/documents/psw_gtr191/psw_gtr191_1071-1082_manville.pdf. Accessed March 17, 2011.
- Manville A.M., II. 2009. Towers, turbines, power lines, and buildings- steps being taken by the U.S. Fish and Wildlife Service to avoid or minimize take of migratory birds at these structures. In: Rich, T.D., C. Arizmendi, D.W. Demarest, and C. Thompson, eds. Tundra to tropics: Connecting birds, habitats and people. Proceedings of the Fourth International Partners in Flight Conference, 13-16 February 2008, McAllen, TX. Pp. 262-272. Internet website: http://www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Manville_PIF09.pdf. Accessed January 26, 2011.
- Marba, N. and C.M. Duarte. 1994. Growth response of the seagrass *Cymodocea nodosa* to experimental burial and erosion. Marine Ecology Progress Series 107:307-311.
- Marbà, N., M.E. Gallegos, M. Merino, and C.M. Duarte. 1994. Vertical growth of *Thalassia testudinum*: Seasonal and interannual variability. Aquatic Botany 47: 1-11. ISSN 0304-3770.

- Marine Spill Response Corporation. 2014. MSRC major equipment list. 32 pp. Internet website: <u>https://www-msrc-org-documents.s3.amazonaws.com/major-equipment-list/MSRC_Major_</u> Equipment_List.pdf. Accessed June 3, 2014.
- Martin, R.E. 1996. Storm impacts on loggerhead turtle reproductive success. Marine Turtle Newsletter (73):10-12.
- Martin, G.R. 2011. Understanding bird collisions with man-made objects: A sensory ecology approach. Ibis 153:239-254.
- Martinez, M.L, R.A. Feagin, K.M. Yeager, J. Day, R. Costanza, J.A. Harris, R.J. Hobbs, J. Lopez-Portillo, I.J. Walker, E. Higgs, P. Moreno-Casasola, J. Sheinbaum, A. Yáñez-Arancibia. 2011. Artificial modifications of the coast in response to the *Deepwater Horizon* spill: Quick solutions or long-term liabilities? Frontiers in Ecology 10(1):44-49.
- Mason, O.U., T.C. Hazen, S. Borglin, P.S. Chain, E.A. Dubinsky, J.L. Fortney, and J.K. Jansson. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to *Deepwater Horizon* oil spill. The ISME Journal 6:1715-1727. Internet website: <u>http://hazenlab.utk.edu/files/pdf/2012Mason_etal_ismej.pdf</u>.
- Matkin, C.O., E.L. Saulitis, G.M. Ellis, P. Olesiuk, and S.D. Rice. 2008. Ongoing population-level impacts on killer whales *Orcinus orca* following the "Exxon Valdez" oil spill in Prince William Sound, Alaska. Marine Ecology Progress Series 356:269-281.
- Matthiessen, P. and J.P. Sumpter. 1998. Effects of estrogenic substances in the aquatic environment. In: Braunbeck, T., D.E. Hinton, and B. Streit. Fish ecotoxicology. Pp. 319-335.
- Mauseth, G.S., J.S. Urquhart-Donnelly, and R.R. Lewis. 2001. Compensatory restoration of mangrove habitat following the Tampa Bay oil spill. 2001 International Oil Spill Conference. Restoration Case Studies #2. Pp. 761-767.
- McAdie, C.J., C.W. Landsea, C.J. Neuman, J.E. David, E. Blake, and G.R. Hamner. 2009. Tropical cyclones of the North Atlantic Ocean, 1851-2006. Historical Climatology Series 6-2, prepared by the National Climatic Data Center, Asheville, NC, in cooperation with the National Hurricane Center, Miami, FL. 238 pp.
- McAuliffe, C.D., A.E. Smalley, R.D. Groover, W.M. Welsh, W.S. Pickle, and G.E. Jones. 1975. Chevron Main Pass Block 41 oil spill: Chemical and biological investigation. In: Proceedings, 1975 Conference on Prevention and Control of Oil Pollution, March 25-27, 1975, San Francisco, CA. Washington, DC: American Petroleum Institute.
- McAuliffe, C.D., B.L. Steelman, W.L. Leek, D.E. Fitzgerald, J.P. Ray, and C.D. Baker. 1981a. The 1979 southern California dispersant treated research oil spills. In: Proceedings, 1981 Oil Spill Conference, March 2-5, 1981, Atlanta, GA. Washington DC: American Petroleum Institute. Pp. 269-282.
- McAuliffe, C.D., G.P. Canevari, T.D. Searl, J.C. Johnson, and S.H. Greene. 1981b. The dispersion and weathering of chemically treated crude oils on the sea surface. In: Petroleum and the Marine Environment. Proceedings of Petromar '80. London: Graham and Trotman Ltd.
- McCall, B.D. and S.C. Pennings. 2012. Disturbance and recovery of salt marsh arthropod communities following BP *Deepwater Horizon* oil spill. PLoS ONE 7(3):e32735.
- McConnaughey, R.A., K.L. Mier, and C.B. Dew. 2000. An examination of chronic trawling effects on soft-bottom benthos of the eastern Bering Sea. ICES Journal of Marine Science 57:1377-1388.
- McGrail, D. 1982. Water and sediment dynamics at the Flower Garden Banks. In: Norman, R., ed. Environmental studies at the Flower Gardens and selected banks: Northwestern Gulf of Mexico, 1979-1981. Executive summary. Technical Report No. 82-8-T. Pp. 27-29.
- McIlgorm, A., H.F. Campbell, and M.J. Rule. 2009. Understanding the economic benefits and costs of controlling marine debris in the APEC region (MRC 02/2007). A report to the Asia-Pacific Economic Cooperation, Marine Resource Conservation Working Group by the National Marine

Science Centre (University of New England and Southern Cross University). Coffs Harbour, NSW, Australia. APEC#209-MR-01.3. 95 pp.

- McLaughlin, S.L. 1995. Roots, relics, and recovery: What went wrong with the Abandoned Shipwreck Act of 1987. Columbia-VLA Journal of Law & the Arts 19(3):149-198.
- Meckel, T.A., U.S. ten Brink, and S.J. Williams. 2006. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophysical Research Letters Volume 33, L11403. doi:10.1029/2006GL026300. Internet website: <u>http://128.128.240.12/staffpages/utenbrink/my%20</u> publications/Meckel_GRL.pdf.
- Melvin, E.F., J.K. Parrish, and L.L. Conquest. 1999. Novel tools to reduce seabird bycatch in coastal gillnet fisheries. Conservation Biology 13:1386-1397.
- Melvin, E.F., J.K. Parrish, and L.L. Conquest. 2001. Novel tools to reduce seabird bycatch in coastal gillnet fisheries. In: Melvin, E.F. and J.K. Parrish, eds. 2001. Seabird bycatch: Trends, roadblocks, and solutions. Proceedings of the 26th Annual Meeting of the Pacific Seabird Group (26-27 February 1999), Blaine, WA. University of Alaska Sea Grant Publication Number AK-SG-01-01, Fairbanks, AK, USA. Pp. 161-184. Internet website: <u>http://nsgl.gso.uri.edu/aku/akuw99002.pdf</u>. Accessed March 17, 2011.
- Meo, S.A. 2009. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. International Journal of Occupational Medicine and Environmental Health 22(1):35-41.
- Michener, W.K., A.R. Blood, K.L. Bildstein, M.M. Brinson, and L.R. Gardner. 1997. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7:770-801.
- Michel, J., E.H. Owens, S. Zengel, A. Graham, Z. Nixo, T. Allard, W. Holton, P.D. Reimer, A. Lamarche, M. White, N. Rutherford, C. Childs, G. Mauseth, G. Challenger, and E. Taylor. 2013. Extent and degree of shoreline oiling: *Deepwater Horizon* oil spill, Gulf of Mexico, U.S.A. PLoS ONE 8(6):e65087. doi:10.1371/journal.pone.0065087.
- *Michot*, T.C. and C.J. Wells. 2005. Hurricane Katrina photographs, August 30, 2005. U.S. Dept. of the Interior, Geological Survey, National Wetlands Research Center.
- Middlebrook, A.M., D.M. Murphy, R. Ahmadov, E.L. Atlas, R. Bahreini, D.R. Blake, J. Frioud, J.A. deGouw, F.C. Fehsenfeld, G.J. Frost, J.S. Holloway, D.A. Lack, J.M. Langridge, R.A. Lueb, S.A. McKeen, J.F. Meagher, S. Meinardi, J.A. Neuman, J.G.Nowak, D.D. Parrish, J. Peischl, A.E. Perring, I.B. Pollack, J.M. Roberts, T.B. Ryerson, J.P. Schwarz, J.R. Spackman, C. Warneke, and A.R. Ravishankara. 2011. Air quality implications of the *Deepwater Horizon* oil spill. Proceedings of the National Academy of Science. Early edition, December 2011. Internet website: http://www.pnas.org/content/early/2011/12/23/1110052108.full.pdf. Accessed June 25, 2013.
- MilitaryBases.com. 2013a. Military bases in Texas. Internet website: <u>http://militarybases.com/texas/</u>. Accessed August 1, 2013.
- MilitaryBases.com. 2013b. Military bases in Louisiana. Internet website: <u>http://militarybases.com/</u> louisiana/. Accessed August 1, 2013.
- Miller, J.E. and D.L. Echols. 1996. Marine debris point source investigation: Padre Island National Seashore, March 1994-September 1995. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 96 0023. 35 pp.
- Miller, J.E., S.W. Baker, and D.L. Echols. 1995. Marine debris point source investigation 1994-1995, Padre Island National Seashore. U.S. Dept. of the Interior, National Park Service, Corpus Christi, TX. 40 pp.
- Milton, S.L., S. Leone-Kabler, A.A. Schulman, and P.L. Lutz. 1994. Effects of Hurricane Andrew on the sea turtle nesting beaches of South Florida. Bulletin of Marine Science 54:974-981.

- Mishra, D.R., H.J. Cho, S. Ghosh, A. Fox, C. Downs, Merani, P.B.T. Merani, P. Kirui, N. Jackson, and S. Mishra. 2012. Post-spill state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana salt marshes. Remote Sensing of Environment 118:176-185.
- Møller, A. P., D. Rubolini, and E. Lehikoinen. 2008. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences 105:16195-16200.
- Mönkkönen, M. and P. Reunanen. 1999. On critical thresholds in landscape connectivity: A management perspective. Oikos 84:302-305.
- Montagna, P.A. and D.E. Harper, Jr. 1996. Benthic infaunal long-term response to offshore production platforms in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Science 53:2567-2588.
- Montagna, P.A., J.G. Baguley, C. Cooksey, I. Hartwell, L.J. Hyde, J.L. Hyland, R.D. Kalke, L.M. Kracker, M. Reuscher, and A.C. Rhodes. 2013. Deep-sea benthic footprint of the *Deepwater Horizon* blowout. PLoS ONE 8(8):e70540. doi:10.1371/journal.phone.0070540.
- Montevecchi, W.A. 2006. Influences of artificial light on marine birds. In: Rich, C. and T. Longcore, eds. Ecological consequences of ecological night lighting. Washington, DC: Island Press. Pp. 94-11.
- Moody R.M., J. Cebrian, and K.L. Heck, Jr. 2013. Interannual recruitment dynamics for resident and transient marsh species: Evidence for a lack of impact by the Macondo oil spill. PLoS ONE 8(3):e58376. doi:10.1371/journal.pone.0058376.
- Moore, S.F. and R.L. Dwyer. 1974. Effects of oil on marine organisms: A critical assessment of published data. Water Research 8:819-827.
- Moridis, G.J., T.S. Collett, R. Boswell, M. Kurihara, M.T. Reagan, C. Koh, and E.D. Sloan. 2008. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential. Society of Petroleum Engineers. Unconventional Reservoirs Conference, Keystone, CO, February 10-12, 2008. 43 pp. Internet website: <u>http://web.archive.org/ web/20121209115621/http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/reports/ G308_SPE114163_Feb08.pdf</u>.
- Morita A., Y. Kusaka, Y. Deguchi, A. Moriuchi, Y. Nakanaga, M. Iki, S. Miyazaki, and K. Kawahara. 1999. Acute health problems among the people engaged in the cleanup of the Nakhodka oil spill. Environmental Research 91:185-194.
- Morrison, R.I.G., R.K. Ross, and L.J. Niles. 2004. Declines in wintering populations of red knots in southern South America. Condor 106:60-70.
- Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen, S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A. Andres. 2006. Population estimates of North American shorebirds. Wader Study Group Bulletin 111:67-85.
- Mortazavi, B., A. Horel, M.J. Beazley, and P.A. Sobecky. 2012. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates. Journal of Hazardous Materials 244-245(2013):537-544.
- Morton, R.A. 1982. Effects of coastal structures on shoreline stabilization and land loss—the Texas experience. In: Boesch, D.F., ed. Proceedings of the Conference on Coastal Erosion and Wetland Modification in Louisiana: Causes, Consequences, and Options. Washington, DC: U.S. Dept. of the Interior, Fish and Wildlife Service, Biological Services Program. FWS/OBS-82/59.
- Morton, R.A. 2003. An overview of coastal land loss: With emphasis on the southeastern United States. U.S. Dept. of the Interior, Geological Survey. Open-File Report 03-337. Internet website: <u>http://pubs.usgs.gov/of/2003/of03-337/intro.html</u>. Accessed May 11, 2010.
- Morton, R.A., N. Buster, and M. Krohn. 2002. Subsurface controls on historical subsidence rates and associated wetland loss in south-central Louisiana. Transactions Gulf Coast Association of Geological Societies 52:767 778.

- Morton, R.A., J.C. Bernier, J.A. Barras, and N.F. Ferina. 2005. Rapid subsidence and historical wetland loss in the Mississippi Delta plain: Likely causes and future implications. U.S. Dept. of the Interior, Geological Survey. Open-File Report 2005-1216. 116 pp. Internet website: <u>http://pubs.usgs.gov/of/ 2005/1216/ofr-2005-1216.pdf</u>.
- Morton, R.A., J.C. Bernier, and J.A. Barras. 2006. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environmental Geology 50:261-274.
- Mote Marine Laboratory. 2013. Red tide research. Internet website: <u>http://www.mote.org/index.php?</u> <u>src=gendocs&link=Red%20Tide%20Update</u> Accessed August 2, 2013.
- Mrosovsky, N., C. Lavin, and M.H. Godfrey. 1995. Thermal effects of condominiums on a turtle beach in Florida. Biological Conservation 74:151-156.
- Mulabagal V., F. Yin, G.F. John, J.S. Hayworth, and T.P. Clement. 2013. Chemical fingerprinting of petroleum biomarkers in *Deepwater Horizon* oil spill samples collected from Alabama shoreline. Marine Pollution Bulletin 70(1-2):147-154. doi:10.1016/j.marpolbul.2013.02.026.
- Murphy, T.M. and S.R. Hopkins-Murphy. 1989. Sea turtle & shrimp fishing interactions: A summary and critique of relevant information. Washington, DC: Center for Marine Conservation. 52 pp.
- Murray, S.P. 1997. An observational study of the Mississippi-Atchafalaya coastal plume: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 98-0040. 513 pp.
- Myers, R.A. and B. Worm. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423:280-283.
- National Audubon Society, Inc. 2010. Oil and birds, too close for comfort: Louisiana's coast six months into the BP disaster. New York, NY: National Audubon Society, Inc. 28 pp. Internet website: <u>http://gulfoilspill.audubon.org/sites/default/files/documents/oilandbirds-toocloseforcomfort_october2010_1.pdf</u>. Accessed October 14, 2010.
- National Institute of Environmental Health Sciences. 2013. Nearly 33,000 participants joined the GuLF STUDY to help answer health questions that matter to clean-up workers and affected communities. Internet website: <u>https://gulfstudy.nih.gov/en/participation.html</u>. Accessed June 24, 2013.
- National Research Council (NRC). 1983. Drilling discharges in the marine environment. Panel on Assessment of Fates and Effects of Drilling Fluids and Cuttings in the Marine Environment. Marine Board, Commission on Engineering and Technical Systems, National Research Council. Washington, DC: National Academy Press. Pp. 18-21.
- National Research Council (NRC). 1985. Oil in the sea—inputs, fates and effects. Washington, DC: National Academy Press. 601 pp.
- National Research Council (NRC). 1990. Decline of the sea turtles: Causes and prevention. Committee on Sea Turtle Conservation. Washington, DC: National Academy Press. 280 pp.
- National Research Council (NRC). 2002. Effects of trawling & dredging on seafloor habitat. Washington, DC: National Academy Press. 136 pp.
- National Research Council (NRC). 2003. Oil in the sea III: Inputs, fates, and effects (Committee on Oil in the Sea: J.N. Coleman, J. Baker, C. Cooper, M. Fingas, G. Hunt, K. Kvenvolden, J. McDowell, J. Michel, K. Michel, J. Phinney, N. Rabalais, L. Roesner, and R.B. Spies). Washington, DC: The National Academies Press. 265 pp. Internet website: <u>http://www.nap.edu/catalog.php?record_id=10388</u>. Accessed January 8, 2011.
- National Research Council (NRC). 2010. Advancing the science of climate change. America's climate choices: Panel on advancing the science of climate change; National Research Council. 528 pp.
- National Response Corporation. 2014. NRC major equipment list. 19 pp. Internet website: <u>http://www.nrcc.com/Services/SiteAssets/Website.pdf</u>.

- National Wetlands Inventory Group. 1985. Status and trends of wetlands and deepwater habitats in the conterminous United States, 1950's to 1970's. Transactions of the North American Wildlife and Natural Resources Conference 50:440-448.
- Natter, M., J. Keevan, Y. Wang, A.R. Keimowitz, B.C. Okeke, A. Son, and M.K. Lee. 2012. Level and degradation of *Deepwater Horizon* spilled oil in coastal marsh sediments and pore-water. Environmental Science & Technology 46(11):5744-5755.
- Natural Resources Defense Council and National Disease Clusters Alliance. 2011. Health alert: Disease clusters spotlight the need to protect people from toxic chemicals. Internet website: <u>http://www.nrdc.org/health/diseaseclusters/files/diseaseclusters issuepaper.pdf</u>. Accessed June 25, 2013.
- Neal Adams Firefighters Inc. 1991. Joint industry program for floating vessel blowout control. Prepared for the U.S. Dept. of the Interior, Minerals Management Service. TA&R Project 150. Internet website: <u>http://www.bsee.gov/Research-and-Training/Technology-Assessment-and-Research/ tarprojects/100-199/150AA.</u>
- Neff, J.M. 2005. Composition, environmental fates, and biological effects of water based drilling muds and cuttings discharged to the marine environment: A synthesis and annotated bibliography. Prepared for the Petroleum Environmental Research Forum and American Petroleum Institute. Duxbury, MA: Battelle. 83 pp. Internet website: <u>http://www.perf.org/images/API_PERF_drilling_mud_report.pdf</u>.
- Neff, J.M. and T.C. Sauer, Jr. 1991. Review: Findings of the American Petroleum Institute study on produced waters. In: Geo-Marine, Inc. Proceedings: Eleventh Annual Gulf of Mexico Information Transfer Meeting. November, 1990. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 91-0040. 524 pp.
- Newell, M.J. 1995. Sea turtles and natural resource damage assessment. In: Rineer-Garber, C., ed. Proceedings: The effects of oil on wildlife, Fourth International Conference, Seattle, WA. Pp. 137-142.
- Newman, J.R. 1979. Effects of industrial air pollution on wildlife. Biological Conservation 15:181-190.
- Newman, J.R. and R.K. Schreiber. 1988. Air pollution and wildlife toxicology: An overlooked problem. Environmental Toxicology and Chemistry 7:381-390.
- Newman, S.H., A. Chmura, K. Converse, A.M. Kilpatrick, N. Patel, E. Lammers, and P. Daszak. 2007. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Marine Ecology Progress Series 352:299-309.
- Newton, I. 1998. Population limitation in birds. San Diego, CA: Academic Press. 597 pp.
- Newton, I. 2006. Can conditions experienced during migration limit the population levels of birds? Journal of Ornithology 147:146-166.
- Nicol, J.A.C., W.H. Donahue, R.T. Wang, and K. Winters. 1977. Chemical composition and effects of water extracts of petroleum and eggs of the sand dollar *Melitta quinquiesperforata*. Marine Biology 40:309-316.
- Nievales, M.F.J. 2009. Some structural changes of seagrass meadows in Taklong Island National Marine Reserve, Guimaras, Western Visayas Philippines after an oil spill. Publications of the Seto Marine Biological Laboratory. Special Publication Series 9:37-44.
- Nikolopoulou, M., N. Pasadakis, and N. Kalogerakis. 2013. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Marine Pollution Bulletin 72(1). Pp. 165-173.
- Niles, L.J., H.P. Sitters, A.D. Dey, P.W. Atkinson, A.J. Baker, K.A. Bennett, R. Carmona, K.E. Clark, N.A. Clark, C. Espoz, P.M. González, B.A. Harrington, D.E. Hernández, K.S. Kalasz, R.G. Lathrop, R.N. Matus, C.D.T. Minton, R.I.G. Morrison, M.K. Peck, W. Pitts, R.A. Robinson, and I.L. Serrano. 2008. Status of the red knot (*Calidris canutus rufa*) in the western hemisphere. Studies in Avian Biology 36:1-185.

- Niles, L.J., H.P. Sitters, A.D. Dey, and Red Knot Working Group. 2010. Red knot conservation plan for the western hemisphere (*Calidris canutus*). Version 1.1. Manomet Center for Conservation Sciences, Manomet, MA. 173 pp.
- Norris, F.H., S.P. Stevens, B. Pfefferbaum, K.F. Wyche, and R.L. Pfefferbaum. 2008. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. American Journal of Community Psychology 41:127-150.
- North American Bird Conservation Initiative. 2009. The state of the birds: United States of America, 2009. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. 36 pp. Internet website: <u>http://www.stateofthebirds.org/2009/pdf files/State of the Birds 2009.pdf</u>. Accessed May 6, 2011.
- North American Bird Conservation Initiative. 2010. The state of the birds: 2010 report on climate change—United States of America. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. 32 pp. Internet website: <u>http://www.stateofthebirds.org/2010/pdf_files/State%20 of%20the%20Birds_FINAL.pdf</u>. Accessed January 13, 2011.
- O'Conner, J.M. and R.J. Huggett. 1998. Aquatic pollution problems, North Atlantic coast, including Chesapeake Bay. Aquatic Toxicology 11:163-190.
- O'Hara, J. 1980. Thermal influences on the swimming speed of loggerhead turtle hatchlings. Copeia 1980:773-780.
- O'Hara, K.J. and S. Iudicello. 1987. Plastics in the ocean: More than a litter problem. Center for Environmental Education, Washington, DC.
- O'Hara, P.D. and L.A. Morandin. 2010. Effects of sheens associated with offshore oil and gas development on the feather microstructure of pelagic seabirds. Marine Pollution Bulletin 60:672-678.
- O'Hara, J. and J.R. Wilcox. 1990. Avoidance responses of loggerhead turtles, *Caretta caretta*, to low frequency sound. Copeia (1990)2:564-567.
- O'Keefe, D.J. and G.A. Young. 1984. Handbook on the environmental effects of underwater explosives. U.S. Dept. of the Navy, Naval Surface Warfare Center, Dahlgren, VA, and Silver Spring, MD. NSWC TR 83-240.
- Ocean Conservancy. 2007. National Marine Debris Monitoring Program. Submitted to the U.S. Environmental Protection Agency. Grant Number 83053401-02. 74 pp.
- Ocean Conservancy. 2013. Working for clean beaches and clean water: 2013 report. Internet website: <u>http://www.oceanconservancy.org/our-work/international-coastal-cleanup/2012-ocean-trash-index.html</u>.
- Odell, D.K. and C. MacMurray. 1986. Behavioral response to oil. In: Vargo, S., P.L. Lutz, D.K. Odell, T. van Vleet, and G. Bossart, eds. Study of the effects of oil on marine turtles: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 86-0070.
- *Oil and Gas Journal*. 2009. BP finds oil in multiple Lower Tertiary reservoirs. Internet website: <u>http://www.ogfj.com/index/article-display/5015598529/articles/oil-gas-financial-journal/volume-6/Issue_10/Upstream_News/BP_finds_oil_in_multiple_Lower_Tertiary_reservoirs.html</u>. Posted October 1, 2009. Accessed January 11, 2011.
- Ojard, A. 2013. Testimony of Adolph N. Ojard before the U.S. Congress Transportation and Infrastructure Committee, Subcommittee on water resources and environment hearing of the Foundations of a New Water Resources Development Act. April 16, 2013. American Association of Port Authorities. Internet website: <u>http://www.aapa-ports.org/files/</u> <u>WRDAhouseWREtestimonyAdolphOjard16APR2013.pdf</u>. Accessed August 2, 2013.
- Oken, E., A.L. Choi, M.R. Karagas, K. Marien, C.M. Rheinberger, R. Schoeny, E. Sunderland, and S. Korrick. 2012. Which fish should I eat? Perspectives influencing fish consumption choices. Environmental Health Perspectives 120(6):790-798.

- Onuf, C.P. 1996. Biomass patterns in seagrass meadows of the Laguna Madre, Texas. Bulletin of Marine Science 58(2):404-420.
- Operational Science Advisory Team (OSAT). 2010. Summary report for sub-sea and sub-surface oil and dispersant detection: Sampling and monitoring. Unified Area Command, New Orleans, LA. Released December 17, 2010. Internet website: <u>http://www.restorethegulf.gov/sites/default/files/</u> documents/pdf/OSAT_Report_FINAL_17DEC.pdf. Accessed March 14, 2011.
- Operational Science Advisory Team (OSAT-2). 2011. Summary report for fate and effects of remnant oil in the beach environment. Operational Science Team (OSAT-2), Gulf Coast Incident Management Team. Prepared for Lincoln H. Stroh, Capt., U.S. Coast Guard, Federal On-Scene Coordinator, *Deepwater Horizon* MC 252. February 10, 2011. 35 pp. Internet website: <u>http://www.dep.state.fl.us/deepwaterhorizon/files2/osat_2_report_10feb.pdf</u>.
- Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. BioScience 56(12):987-996.
- Overton, E. 2012. Official communication. Email confirming telephone conversation regarding matching of tarballs observed on Louisiana beaches to *Deepwater Horizon* oil. Louisiana State University, School of the Coast and Environment, Baton Rouge, LA.
- Palinkas, L.A., A.J. Russell, M.A. Downs, and J.S. Petterson. 1992. Ethnic-differences in stress, coping, and depressive symptoms after the Exxon Valdez oil-spill. Journal of Nervous and Mental Disease 180:287-295.
- Paris, C.B., M. Le Henaff, Z.M. Aman, A. Subramaniam, J. Helgers, D.P. Wang, V.H. Kourafalou, and A. Srinivasan. 2012. Evolution of the Macondo well blowout: Simulating effects of the circulation and synthetic dispersants on the subsea oil transport. Environmental Science & Technology 46(24):13293-13302.
- Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, eds. 2007. Climate change 2007: Impacts, adaptation and vulnerability. In: Intergovernmental Panel on Climate Change. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 976 pp. Internet website: <u>http://www.ipcc.ch/ publications_and_data/publications_ipcc_fourth_assessment_report_wg2_report_impacts_adaptation_and_vulnerability.htm</u>. Accessed September 24, 2013.
- Passow, U., K. Ziervogel, V. Asper, and A. Diercks. 2012. Marine snow formation in the aftermath of the *Deepwater Horizon* oil spill in the Gulf of Mexico. Environmental Research Letters 7(3):035301. Internet website: <u>http://iopscience.iop.org/1748-9326/7/3/035301/pdf/1748-9326_7_3_035301.pdf</u>.
- Patrick, S.R., D.R. Patrick, and S.W. Fardo. 1993. Energy conservation guidebook. Lilburn, GA: The Fairmont Press, Inc. 471 pp. Internet website: <u>http://books.google.com/books?id=f45IIzt4DCIC&pg =PA143&lpg=PA143&dq=ship,+%22discharge+water+temperature%22&source=bl&ots=CEHy0 wpaMz&sig=BZam0pB-2mDwo4vO5zGM9jBsQWY&hl=en&ei=nMEpTYnqJsSBIAf_-7joAQ&sa= X&oi=book_result&ct=result&resnum=5&ved=0CC0Q6AEwBA#v=onepage&q&f=false. Accessed January 10, 2011.</u>
- PCCI Marine and Environmental Engineering. 1999. Oil spill containment, remote sensing and tracking for deepwater blowouts: Status of existing and emerging technologies. Report prepared for the U.S. Dept. of the Interior, Minerals Management Service. TA&R Project 311. 66 pp. + apps. Internet website: <u>http://www.bsee.gov/Research-and-Training/Technology-Assessment-and-Research/tarprojects/300-399/311AA/</u>.
- Pearson, W.H. 2014. Comment on "Multitissue molecular, genomic, and developmental effects of the *Deepwater Horizon* oil spill on resident Gulf killifish (*Fundulus grandis*)." Environmental Science and Technology 48:7677-7678.
- Pearson, C.E., S.R. James, Jr., M.C. Krivor, S.D. El Darragi, and L. Cunningham. 2003. Refining and revising the Gulf of Mexico outer continental shelf region high-probability model for historic

shipwrecks: Final report. Volume I-III. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2003-060, 2003-061, and 2003-062. 13, 338, and 138 pp., respectively.

- Peele, R.H., J.I. Snead, and W. Feng. 2002. Outer continental shelf pipelines crossing the Louisiana coastal zone: A geographic information system approach. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico Region, New Orleans LA. OCS Study MMS 2002-038. 24 pp.
- Pendleton, E.A., J.A. Barras, S.J. Williams, and D.C. Twichell. 2010. Coastal vulnerability assessment of the northern Gulf of Mexico to sea-level rise and coastal change: U.S. Dept. of the Interior, Geological Survey. Open-File Report 2010-1146. 30 pp. Internet website: <u>http://pubs.usgs.gov/of/</u>2010/1146/pdf/ofr2010-1146.pdf.
- Peterson, C.H., S.D. Rice, J.W. Short, D. Esler, J.L. Bodkin, B.E. Ballachey, and D.B. Irons. 2003. Long-term ecosystem response to the *Exxon Valdez* oil spill. Science 302:2082-2086.
- Piatt, J.F., H.R. Carter, and D.N. Nettleship. 1990. Effects of oil pollution in marine bird populations. In: White, J., ed. The effects of oil on wildlife: Research, rehabilitation and general concerns. Proceedings of the Oil Symposium, Herndon, VA, October 16-18, 1990. Hanover, PA: Sheridan Press. Pp. 125-141.
- Piatt, J.F., A.M.A. Harding, M. Shultz, S.G. Speckman, T.I. Van Pelt, G.S. Drew, and A.B. Kettle. 2007. Seabirds as indicators of marine food supplies: Cairns revisited. Marine Ecology Progress Series 352:221-234.
- Pierce, K.E., R.J. Harris, L.S. Larned, and M.A. Pokras. 2004. Obstruction and starvation associated with plastic ingestion in a northern gannet *Morus bassanus* and a greater shearwater *Puffinus gravis*. Marine Ornithology 32:187-189.
- Plotkin, P. and A.F. Amos. 1988. Entanglement in and ingestion of marine debris by sea turtles stranded along the South Texas coast. In: Proceedings, 8th Annual Workshop on Sea Turtle Conservation and Biology. NOAA Technical Memorandum NMFS-SEFSC-214.
- Pond, S. and G.L. Pickard. 1983. Introductory dynamical oceanography, 2nd ed. New York, NY: Pergamon Press. 329 pp.
- Poot, H., B.J. Ens, H. de Vries, M.A.H. Donners, M.R. Wernand, and J.M. Marquenie. 2008. Green light for nocturnally migrating birds. Ecology and Society 13(2):47. Internet website: <u>http://www.ecologyandsociety.org/vol13/iss2/art47/</u>. Accessed September 2, 2010.
- Popper, A.N. and M.C. Hastings. 2009. The effects of anthropogenic sources of sound on fishes. Journal of Fish Biology 75:455-489.
- Powell, E.N. 1995. Evidence for temporal change at seeps. In: MacDonald, I.R., W.W. Schroeder, and J.M. Brooks, eds. Chemosynthetic ecosystems study: Final report. Volume 2: Technical report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0022. Pp. 8.1-8.65.
- Powers, S.P., F.J. Hernandez, R.H. Condon, J.M. Drymon, and C.M. Free. 2013. Novel pathways for injury from offshore oil spills: Direct, sublethal and indirect effects of the *Deepwater Horizon* oil spill on pelagic *sargassum* communities. PLoS ONE 8(9):e74802. doi:10.1371/ journal.pone.0074802.
- Pries, A.J., L.C. Branch, and D.L. Miller. 2009. Impact of hurricanes on habitat and habitat occupancy and spatial distribution of beach mice. Journal of Mammalogy 90:841-850.
- Probert P.K., D.G. McKnight, and S.L. Grove. 1997. Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems 7:27-40. Internet website: <u>http://www.mcbi.org/what/what_pdfs/</u> <u>Probert_et_al_1997.pdf</u>.
- Puder, M.G. and J.A. Veil. 2006. Offsite commercial disposal of oil and gas exploration and production waste: Availability, options, and costs. Argonne National Laboratory, Environmental Science

Division. Internet website: <u>http://www.netl.doe.gov/KMD/cds/disk23/D-Water%20Management%</u>20Projects/Produced%20Water/W-31-109-ENG-38/W-31-109-ENG-38ANL%20Final.pdf.

- Pulich, W., Jr. and C. Onuf. 2007. Statewide summary for Texas. In: Handley, D.A., D. Altsman, and R. DeMay, eds. Seagrass status and trends in the northern Gulf of Mexico: 1940-2002. Scientific Investigations Report 2006-5287. U.S. Environmental Protection Agency 855-R-04-003. Pp. 7-16. Internet website: <u>http://pubs.usgs.gov/sir/2006/5287/</u>.
- Rabalais, N.N., R.E. Turner, and W.J. Wiseman, Jr. 2001. Hypoxia in the Gulf of Mexico. Journal of Environmental Quality 30:320-329.
- Rabalais, N.N., R.E. Turner, and D. Scavia. 2002a. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience 52:129-142.
- Rabalais, N.N., R.E. Turner, and W.J. Wiseman, Jr. 2002b. Gulf of Mexico hypoxia, A.K.A. The Dead Zone. Annual Review of Ecological Systems 33:235-263.
- Raymond, P.W. 1984. Sea turtle hatchling disorientation and artificial beachfront lighting: A review of the problem and potential solutions. Washington, DC: Center for Environmental Education. 72 pp.
- Reddy, C.M. 2012. Official communication. Email discussing a clarification of the percent of PAH by weight reported in the contact's paper. Woods Hole, MA. April 4, 2012.
- Reddy, C.M., J.S. Arey, J.S. Seewald, S.P. Sylva, K.L. Lemkau, R.K. Nelson, C.A. Carmichael, C.P. McIntyre, J. Fenwick, G.T. Ventura, B.A.S. Van Mooy, and R. Camilli. 2011. Composition and fate of gas and oil released to the water column during the *Deepwater Horizon* oil spill. Proceedings of the National Academy of Sciences (PNAS). doi:10.1073/pnas.1101242108.
- Reed, D.H. and K.R. Traylor-Holzer. 2006. Revised population viability analysis III for the Alabama beach mouse (*Peromyscus polionotus ammobates*). Report to the U.S. Dept. of the Interior, Fish and Wildlife Service. June 2006. 24 pp.
- Rezak, R. and T.J. Bright. 1979. Northwestern Gulf of Mexico topographic features study: Final report. Executive summary. U.S. Dept. of the Interior, Bureau of Land Management, New Orleans OCS Office, New Orleans, Louisiana. Study no. 1979-14.
- Rezak, R., T.J. Bright, and D.W. McGrail. 1983. Reefs and banks of the northwestern Gulf of Mexico: Their geological, biological, and physical dynamics. Final Technical Report No. 83-1-T.
- Rezak, R., T.J. Bright, and D.W. McGrail. 1985. Reefs and banks of the northwestern Gulf of Mexico: Their geological, biological, and physical dynamics. New York, NY: Wiley and Sons. 259 pp.
- Rhodes, D.C. and J.D. Germano. 1982. Characterization of organism-sediment relations using sediment profile imaging: An efficient method of remote ecological monitoring of the seafloor (Remots[™] System). Marine Ecology Progress Series 8:115-128.
- Richardson, J.A. and L.C. Scott. 2004. The economic impact of coastal erosion in Louisiana on state, regional and national economies. April 2004. Internet website: <u>http://dnr.louisiana.gov/assets/docs/energy/policypapers/AW_EconomicImpactofCoastErosion.pdf</u>. Accessed June 17, 2013.
- Richardson, W.J., C.R. Greene, C.I. Malme, and D.H. Thomson. 1995. Marine mammals and noise. San Diego, CA: Academic Press Inc.
- Rico-Martínez, R., T. Snell, T. Shearer. 2013. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the *Brachionus plicatilis* species complex (Rotifera). Environmental Pollution 173: 5-10.
- Rigzone. 2009. Offshore rig search. Internet website: <u>http://www.rigzone.com</u>. Accessed November 7, 2013.
- Rigzone. 2013. Heavier crude feedstocks: Gaining respect. Internet website: <u>http://www.rigzone.com/</u> <u>training/heavyoil/insight.asp?i_id=284</u>. Accessed August 9, 2013.

- Rijnsdorp, A., M. Peck, G. Engelhard, C. Mollmann and J. Pinnegar. 2009. Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 66:1570-1583.
- Robards, M.D., J.F. Piatt, and K.D. Wohl. 1995. Increasing frequency of plastic particles ingested by seabirds in the subarctic North Pacific. Marine Ecology Progress Series 30:151-157.
- Robbart, M.L., R.B. Aronson, K.J.P. Deslarzes, W.F. Precht, L. Duncan, B. Zimmer, and T. DeMunda. 2009. Post-hurricane assessment of sensitive habitats of the Flower Garden Banks vicinity. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2009-032. 160 pp.
- Rodgers, J.A., Jr. and S.T. Schwikert. 2002. Buffer-zone distances to protect foraging and loafing waterbirds from disturbance by personal watercraft and outboard-powered boats. Conservation Biology 16:216-224.
- Rodgers, J.A., Jr. and S.T. Schwikert. 2003. Buffer zone distances to protect foraging and loafing waterbirds from disturbance by airboats in Florida. Waterbirds 26:437-443.
- Rogers, C.S. and V.H. Garrison. 2001. Ten years after the crime: Lasting effects of damage from a cruise ship anchor on a coral reef in St. John, U.S. Virgin Islands. Bulletin of Marine Science 69(2):793-803.
- Rojek, N.A., M.W. Parker, H.R. Carter, and G.J. McChesney. 2007. Aircraft and vessel disturbances to common murres *Uria aalge* at breeding colonies in central California, 1997-1999. Marine Ornithology 35:61-69.
- Rooker, J.R., S.A. Holt, M.A. Soto, and G.J. Holt. 1998. Postsettlement patterns of habitat use by Sciaenid fishes in subtropical seagrass meadows. Estuaries 21(2):318-327.
- Rooker J.R., J.R. Simms, R.J.D. Wells, S.A. Holt, G.J. Holt, J.E. Graves, and N.B. Furey. 2012. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico. PLoS ONE 7(4):e34180. doi:10.1371/journal.pone.0034180.
- Rooker, J., L. Kitchens, M. Dance, R. Wells, B. Falterman and M. Cornic. 2013. Spatial, temporal, and habitat-related variation in abundance of pelagic fishes in the Gulf of Mexico: Potential implications of the *Deepwater Horizon* oil spill. PLoS ONE 8(10):e76080.
- Roosenburg, W.M. 1991. The diamondback terrapin: Habitat requirements, population dynamics, and opportunities for conservation. New perspectives in the Chesapeake System: A research and management and partnership. Proceedings of a Conference, Solomons, MD. Chesapeake Research Consortium Publication No 137. Pp. 237-234.
- Roosenburg, W.M., W. Cresko, M. Modesitte, and M.B. Robbins. 1997. Diamondback terrapin (*Malaclemys terrapin*) mortality in crab pots. Conservation Biology 5:1166-1172.
- Roosenburg, W.M., K.L. Haley, and S. McGuire. 1999. Habitat selection and movements of the diamondback terrapin, *Malaclemys terrapin*, in a Maryland estuary. Chelonian Conservation and Biology 3:425-429.
- Rotkin-Ellman, M. and G. Soloman. 2012. FDA risk assessment of seafood contamination after the BP oil spill: Rotkin-Ellman and Soloman respond. Environmental Health Perspectives 120(2), February 2012. Internet website: <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279457/pdf/ehp.1104539R.pdf</u>. Accessed March 14, 2012.
- Rotkin-Ellman, M., K. Wong, and G. Soloman. 2012. Seafood contamination after the BP Gulf oil spill and risks to vulnerable populations: A critique of the FDA risk assessment. Environmental Health Perspectives 120(2), February 2012. Internet website: <u>http://www.ncbi.nlm.nih.gov/pmc/articles/</u> <u>PMC3279436/pdf/ehp.1103695.pdf</u>. Accessed March 14, 2012.
- Rozas, L.P. and W.E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes: Testing the roles of food and refuge. Oecologia 77:101-106.

- Russell, R.W. 2005. Interactions between migrating birds and offshore oil and gas platforms in the northern Gulf of Mexico: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2005-009. 327 pp.
- Ryan, T.P. 2013. The economic impact of deepening the Mississippi River to 50 feet. August 22, 2013. Internet website: <u>http://media.nola.com/business_impact/other/Mississippi%20River%20deepening%</u>20economic%20study.pdf. 56 pp. Accessed December 9, 2013.
- Ryan, P.G., C.J. Moore, J.A. van Franeker, and C.L. Moloney. 2009. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London B 364:1999-2012.
- Rybitski, M.J., R.C. Hale, and J.A. Musick. 1995. Distribution of organochlorine pollutants in Atlantic sea turtles. Copeia 1995:379-390.
- Ryerson T.B., R. Camilli, J.D. Kessler, E.B. Kujawinski, C.M. Reddy, D.L. Valentine, E. Atlas, D.R. Blake, J. de Gouw, S. Meinardi, D. Parrish, J. Peischl, J.S. Seewald, and C. Warneke. 2011. Chemical data quantify *Deepwater Horizon* hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences. Internet website: <u>http://www.pnas.org/content/early/2012/01/04/1110564109.full.pdf</u>.
- Sabourin, D.T., J.E. Silliman, and K.B. Strychar. 2012. Polycyclic aromatic hydrocarbon contents of coral and surface sediments off the south Texas coast of the Gulf of Mexico. International Journal of Biology 5(1):1-12.
- Sargent, F.J., T.J. Leary, D.W. Crewz, and C.R. Kruer. 1995. Scarring of Florida's seagrasses: Assessment and management options. FRMI TR-1, Florida Marine Research Institute, St. Petersburg, FL. 37 pp. + app.
- Sathiakumar, N. 2010. Short-term physical effects: Oil spills. Presentation, School of Public Health, University of Alabama at Birmingham. Internet website: <u>http://www.iom.edu/~/media/Files/Activity</u> %20Files/PublicHealth/OilSpillHealth/NaliniSathiakumar-6-22-1110am.pdf.
- Saunders, B. 2012. First movers in eco-drilling: what to do with those pesky drill cuttings. Internet website: http://<u>http://http://www.rigzone.com/news/article.asp?a_id=116217</u>. Accessed December 9, 2013.
- Schaefer, J. 2013. Withlacoochee flooding causes major treatment plant spill; safety hazards expected to continue until waters recede. February 28, 2013. Valdosta Daily Times, Valdosta, GA. Internet website: <u>http://valdostadailytimes.com/local/x273855315/Withlacoochee-flooding-causes-major-treatment-plant-spill</u>.
- Schaum, J., M. Cohen, S. Perry, R. Artz, R. Draxler, J.B. Frithsen, D. Heist, M. Lorber, and L. Phillips. 2010. Screening level assessment of risks due to dioxin emissions from burning oil from the BP Deepwater Horizon Gulf of Mexico spill. 21 pp.
- Schmahl, G.P. and E.L. Hickerson. 2006. McGrail Bank, a deep tropical coral reef community in the northwestern Gulf of Mexico. In: Proceedings of 10th International Coral Reef Symposium. June 28-July 2, 2006, Okinawa, Japan.
- Schmitt, C.J. 1998. Environmental contaminants. In: Mac, M.J., P.A. Opler, C.E. Puckett-Haecker, and P.D. Doran, eds. Status and trends of the Nation's biological resources. Volume 2. U.S. Dept. of the Interior, Geological Survey, Reston, VA. Pp. 131-165. Internet website: <u>http://www.nwrc.usgs.gov/</u> <u>sandt/Contam.pdf</u>. Accessed September 1, 2010.
- Schofield, P.J. and P. Fuller. 2013. Fundulus grandis: NAS—nonindigenous aquatic species database. U.S. Dept. of the Interior, Geological Survey, Gainesville, FL. Internet website: <u>http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=687</u>. Revised January 28, 2013.
- Schroeder, W.W. 2000. Shelf hard bottom habitats. In: Schroeder, W.W. and C.F. Wood, eds. Physical/Biological Oceanographic Integration Workshop for DeSoto Canyon and Adjacent Shelf, October 19-21, 1999. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2000-074. Pp. 67-71.

- Schroeder, D.M. and M.S. Love. 2004. Ecological and political issues surrounding decommissioning of offshore oil facilities in the southern California Bight. Ocean and Coastal Management 47:21-48.
- Schuyler, Q., B.D. Hardesty, C. Wilcox, and K. Townsend. 2013. Global analysis of anthropogenic debris ingestion by sea turtles. Conservation Biology 00(00):1-11. doi:10.1111/cobi.12126.
- Schwacke, L.H., C.R. Smith, F.I Townsend, R.S. Wells, L.B. Hart, B.C. Balmer, T.K. Collier, S. De Guise, M.M. Fry, L.J. Guillette, Jr., S.V. Lamb, S.M. Lane, W.E. McFee, N.J. Place, M.C. Tumlin, G.M. Ylitalo, E.S. Zoman, and T.K. Rowles. 2013. Health of common bottlenose dolphins (*Tursiops truncatus*) in Barataria Bay, Louisiana, following the *Deepwater Horizon* oil spill. Environmental Science & Technology 48-93-103. Internet website: <u>http://pubs.acs.org/doi/ipdf/</u>10.1021/es403610f. Accessed January 2, 2014.
- Seni, S.J. and M.P.A. Jackson. 1983. Evolution of salt structures, east Texas diapir province, Part 2: Patterns and rates of halokinesis. The American Association of Petroleum Geologists Bulletin 67(8):1245-1274.
- Shaffer, G.P., J.W. Day, S. Mack, G.P. Kemp, I. van Heerden, M.A. Poirrier, K.A.Westphal, D. FitzGerald, A. Milanes, C.A. Morris, R. Bea, and P.S. Penland. 2009. The MRGO navigation project: A massive human-induced environmental, economic, and storm disaster. Journal of Coastal Research 54:206-224.
- Share the Beach. 2013. Nesting season statistics. Internet website: <u>http://www.alabamaseaturtles.com/</u><u>nesting-season-statistics/</u>. Accessed September 24, 2013.
- Sharp, J.M. and D.W. Hill. 1995. Land subsidence along the northeastern Texas Gulf Coast: Effects of deep hydrocarbon production. Environmental Geology 25(3):181-191. Internet website: <u>http://www.springerlink.com/content/t5072854ukl2r262/</u>.
- Sharp, R. and U.R, Sumaila. 2009. Quantification of U.S. marine fisheries subsidies. North American Journal of Fisheries Management 29:18-32.
- Shaver, D.J., K.M. Hart, I. Fujisaki, C. Rubio, A.R. Sartain, J. Peña, P.M. Burchfield, D.G. Gamez, and J. Ortiz. 2013. Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico. Ecology and Evolution 3(7):2002-2012.
- Sheavly, S.B. 2007. National marine debris monitoring program: Final program report, data analysis and summary. Prepared for the U.S. Environmental Protection Agency by Ocean Conservancy. Grant Number X83053401-02. 76 pp.
- Shedd, W. 2013. Official communication. Email regarding update of database of seismic water bottom anomalies. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA.
- Shedd, W. 2014. Official communication. Email regarding studies of the seafloor in the vicinity of the Deepwater Horizon explosion, oil spill, and response. March 10, 2014. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA.
- Shedd, W., P. Godfriaux, K. Kramer, and J. Hunt. 2011. Seismic water bottom anomalies map galleries. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, Office of Resource Evaluation, Regional Analysis Unit, New Orleans, LA. Internet website: <u>http:// www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Map-Gallery/Seismic-Water-Bottom-Anomalies-Map-Gallery.aspx</u>. Accessed March 15, 2012.
- Shigenaka, G. 2001. Toxicity of oil to reef-building corals: A spill response perspective. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Seattle, WA. NOAA Technical Memorandum NOS OR&R 8. 95 pp. Internet website: <u>http://archive.orr.noaa.gov/book_shelf/</u><u>1_coral_tox.pdf</u>.
- Shinn, E.A., J.H. Hudson, D.M. Robbin, and C.K. Lee. 1980. Drilling mud plumes from offshore drilling operations: Implications for coral survival. In: Geyer, R.A., ed. Marine environmental pollution. Elsevier Oceanography Series, 27A. Amsterdam, The Netherlands: Elsevier Scientific Publishing Company. Pp. 471-495.

- Shinn, E.A., B.H. Lidz, and C.D. Reich. 1993. Habitat impacts of offshore drilling: Eastern Gulf of Mexico. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 93-0021. 73 pp.
- Shipp, R. and S. Bortone. 2009. A perspective of the importance of artificial habitat on the management of red snapper in the Gulf of Mexico. Reviews in Fisheries Science 17(1):41-47.
- Shirayama, Y. and H. Thornton. 2005. Effect of increased atmospheric CO₂ on shallow water marine benthos. Journal of Geophysical Research 110(C09) S09. doi:10.1029/2004JC002561.
- Short, F.T., R.G. Coles, and C. Pergent-Martini. 2001. Global seagrass distribution. In: Short, F.T. and R.G. Coles, eds. 2001. Global seagrass research methods. Amsterdam, The Netherlands: Elsevier Science B.V. Pp 5-6, 20.
- Silliman, B.R., J. van de Koppel, M.W. McCoy, J. Diller, G.N. Kasozi, K. Earl, P.N. Adams, and A.R. Zimmerman. 2012. Degradation and resilience in Louisiana salt marshes after the BP— *Deepwater Horizon* oil spill. Proceedings of the National Academy of Sciences 109(28):11234-11239.
- Skagen, S.K. 2006. Migration stopovers and the conservation of Arctic-breeding Calidridine sandpipers. Auk 123:313-322.
- Slay, C.K. and J.I. Richardson. 1988. King's Bay, Georgia: Dredging and turtles. In: Schroeder, B.A., comp. Proceedings of the Eighth Annual Conference on Sea Turtle Biology and Conservation. NOAA Technical Memorandum NMFS-SEFC-214. Pp. 109-111.
- Sluis, M.Z., K.M. Boswell, M.M. Chumchal, R.J.D. Wells, B. Soulen, and J.H. Cowan Jr. 2013. Regional variation in mercury and stable isotopes of red snapper (*Lutjanus campechanus*) in the northern Gulf of Mexico, U.S.A. Environmental Toxicology and Chemistry 32(2):434-441.
- Soniat, T.M., S.M. King, M.A. Tarr, and M.A. Thorne. 2011. Chemical and physiological measures on oysters (*Crassostrea virginica*) from oil-exposed sites in Louisiana. Journal of Shellfish Research 30(3):713-717.
- Spalding, E.A. and M.W. Hester. 2007. Effects of hydrology and salinity on oligohaline plant species productivity: Implications of relative sea-level rise. Estuaries and Coasts 30(2):214-225.
- Sreekumar, A. 2013. What does the future hold for Canada's oil sands? Internet website: <u>http://www.dailyfinance.com/2013/06/28/what-does-the-future-hold-for-canadas-oil-sands/</u>. Accessed August 9, 2013.
- Stanley, D.R. and C.A. Wilson. 1997. Seasonal and spatial variation in the abundance and size distribution of fishes associated with a petroleum platform in the northern Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences 54:1166-1176.
- Stanley, D.R. and C.A. Wilson. 2000. Variation in the density and species composition of fishes associated with three petroleum platforms using dual beam hydroacoustics. Fisheries Research 47(2000):161-172.
- State of Alabama. n.d. Oil & gas industry. Geological Survey of Alabama and State Oil and Gas Board of Alabama. Internet website: <u>http://www.gsa.state.al.us/documents/oginfo/og_industry.pdf</u>. Accessed October 17, 2013.
- State of Florida. Dept. of Environmental Protection. 2012. Site-specific information in support of establishing numeric nutrient criteria for Choctawhatchee Bay. Nutrient Criteria Technical Support Document. October 2012.
- State of Florida. Fish and Wildlife Conservation Commission. 2013. Preliminary red tide manatee mortalities: Manatee carcasses collected within the known red tide bloom boundary (Marine Mammal Pathobiology Laboratory). Internet websites: <u>http://myfwc.com/media/2477220/</u> <u>2013PreliminaryRedTide.pdf</u> and <u>http://myfwc.com/research/redtide/statewide/</u>. Accessed October 22, 2013.

- State of Louisiana. 2010. Election 2010: Constitutional amendments results. Internet website: <u>http://staticresults.sos.la.gov/10022010/10022010_Statewide.html</u> and <u>http://staticresults.sos.la.gov/10022010_Statewide.html</u>. Accessed January 23, 2011.
- State of Louisiana. Coastal Protection and Restoration Authority. 2007. Integrated ecosystem restoration and hurricane protection: Louisiana's comprehensive master plan for a sustainable coast. State of Louisiana, Coastal Protection and Restoration Authority of Louisiana, Baton Rouge, LA.
- State of Louisiana. Coastal Protection and Restoration Authority. 2012. Integrated ecosystem restoration and hurricane protection: Louisiana's comprehensive master plan for a sustainable coast. Louisiana Coastal Protection and Restoration Authority. Baton Rouge, LA. Internet website: <u>http://issuu.com/coastalmasterplan/docs/coastal_master_plan-v2?e=3722998/2447530</u>. Accessed June 17, 2013.
- State of Louisiana. Dept. of Health and Hospitals. 2008. Disease cluster investigation program. State of Louisiana, Dept. of Health and Hospitals, Center for Environmental Health. Internet website: <u>http:// new.dhh.louisiana.gov/index.cfm/page/563</u>. Accessed June 25, 2013.
- State of Louisiana. Dept. of Natural Resources. 1998. Coast 2050: Toward a sustainable coastal Louisiana. Report of the Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority, Baton Rouge, LA. 161 pp. Internet website: http://www.coast2050.gov/products/docs/orig/2050report.pdf.
- State of Louisiana. Dept. of Natural Resources. 2009. Louisiana is proud to be a hub of industry. 6 pp. Internet website: <u>http://dnr.louisiana.gov/assets/docs/hub-of-business_brochure.pdf</u>. Accessed October 17, 2013.
- State of Louisiana. Dept. of Natural Resources. 2014. State lease sale and fiscal year totals; April 12, 2014. 1 p. Internet website: <u>http://dnr.louisiana.gov/assets/news_releases/</u> April.2014.State.Lease.Sale.pdf. Accessed May 28, 2014.
- State of Louisiana. Dept. of Transportation and Development. 2013. Existing conditions. Internet website: <u>http://www.dotd.la.gov/study/pdf/08%20Chapter%205%20-%20Existing%20</u> Conditions.pdf. Accessed October 2013.
- State of Louisiana. Office of the Governor. 2013. Governor Jindal signs legislation to support ports and attract new companies to Louisiana. June 26, 2013. Internet website: <u>http://gov.louisiana.gov/index.cfm?md=newsroom&tmp=detail&articleID=4131</u>. Accessed July 5, 2013.
- State of Mississippi. Forestry Commission. 2009. Mississippi Stewardship Program. Internet website: http://www.mfc.ms.gov/pdf/Mgt/FS/State_Stewardship_Plan_Final_08.pdf. Accessed October 2013.
- State of Texas. Comptroller of Public Accounts. 2013. Texas in focus: A statewide view of opportunities. Infrastructure: Transportation. Internet website: <u>http://www.window.state.tx.us/</u> <u>specialrpt/tif/transportation.html</u>. Accessed August 1, 2013.
- State of Texas. Dept. of Agriculture. 2013. Texas Ag stats. Internet website: <u>http://</u> <u>texasagriculture.gov/About/TexasAgStats.aspx</u>. Accessed August 1, 2013.
- State of Texas. General Land Office. 2010. Texas coastal and estuarine land conservation program plan. July 2010. Internet website: <u>http://coastalmanagement.noaa.gov/mystate/docs/celclplantx.pdf</u>. Accessed July 8, 2013.
- State of Texas. General Land Office. 2014. Oil and gas lease bid application, July 1, 2014. Internet website: <u>http://www.glo.texas.gov/what-we-do/energy-and-minerals/_documents/sealed-bids/bid07-01-14/web-notice-07-14.pdf</u>.
- State of Texas. Parks and Wildlife Department. 1999. Seagrass conservation plan for Texas. Texas Parks and Wildlife, Resource Protection Division, Austin, TX. 79 pp. Internet website: <u>http://www.tpwd.state.tx.us/publications/pwdpubs/media/pwd_bk_r0400_0041.pdf</u>.
- Stedman, S. and T.E. Dahl. 2008. Status and trends of wetlands in the coastal watersheds of the eastern United States 1998-2004. U.S. Dept. of Commerce, National Oceanic and Atmospheric

Administration, National Marine Fisheries Service and U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. 36 pp.

- Stephens, B.P. 2009. Basement controls on subsurface geologic patterns and coastal geomorphology across the northern Gulf of Mexico: Implications for subsidence studies and coastal restoration. Transactions Gulf Coast Association of Geological Societies 59:729-751. Internet website: <u>http://www.searchanddiscovery.net/abstracts/html/2009/gcags/abstracts/stephens.htm</u>.
- Stephens, B.P. 2010. Basement controls on subsurface geologic patterns and coastal geomorphology across the northern Gulf of Mexico: Implications for subsidence studies and coastal restoration. Adapted from the presentation given to New Orleans Geological Society, July 14, 2010.
- Stephenson, R. 1997. Effects of oil and other surface-active organic pollutants on aquatic birds. Environmental Conservation 24:121-129.
- Stone, R.B. 1974. A brief history of artificial reef activities in the United States. In: Proceedings: Artificial Reef Conference, Houston, TX. Pp. 24-27.
- Stone, R.B., W. Pratt, R.O. Parker, and G. Davis. 1979. A comparison of fish populations on an artificial and natural reef in the Florida Keys. Marine Fisheries Review 41(9):1-24.
- Stone, G.W., L. Baozhu, D.A. Pepper, and P. Wang. 2004. The importance of extratropical and tropical cyclones on the short-term evolution of barrier islands along the northern Gulf of Mexico, USA. Marine Geology 210(2004)63-78.
- Stoneburner, D.L., M.N. Nicora, and E.R. Blood. 1980. Heavy metals in loggerhead sea turtle eggs (*Caretta caretta*): Evidence to support the hypothesis that demes exist in the western Atlantic population. Journal of Herpetology 14:71-175.
- Stoner, A.W. 1983. Pelagic *Sargassum*: Evidence for a major decrease in biomass. Deep-Sea Research Part A. Oceanographic Research Papers 30(4):469-474.
- Stroud, R.H. 1992. Stemming the tide of coastal fish habitat loss. In: Proceedings of a Symposium on Coastal Fish Habitat, March 7-9, 1991, Baltimore, MD. National Coalition for Marine Conservation, Inc., Savannah, GA. Pp. 73-79.
- Stutzenbaker, C.D. and M.W. Weller. 1989. The Texas coast. In: Smith, L.M., R.L. Pederson, and R.K. Kaminski, eds. Habitat management for migrating and wintering waterfowl in North America. Lubbock, TX: Texas Tech. University Press. Pp. 385-405.
- Suchanek, T.H. 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist 33:510-523.
- Sulak, K.J., J.J. Berg, and M. Randall. 2012. Feeding habits of the Gulf sturgeon, Acipenser oxyrinchus desotoi, in the Suwannee and Yellow Rivers, Florida, as identified by multiple stable isotope analyses. Environmental Biology of Fishes 95: 237-258.
- Systems Applications International, Sonoma Technology, Inc., Earth Tech, Alpine Geophysics, and A.T. Kearney. 1995. Gulf of Mexico air quality study: Final report. Volumes I-III. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0038, 95-0039, and 95-0040. 650, 214, and 190 pp., respectively.
- Szerlag, S. and S.P. McRobert. 2006. Road occurrence and mortality of the northern diamondback terrapin. Applied Herpetology 3:27-37.
- Tao, R. and K. Yu. 2013. Nitrate addition has minimal effect on anaerobic biodegradation of benzene in coastal saline (salt), brackish and freshwater marsh sediments. Wetlands 1-9.
- Tao, Z., S. Bullard, and C. Aria. 2011. High numbers of *Vibrio vulnificus* in tar balls collected from oiled areas of the north-central Gulf of Mexico following the 2010 BP *Deepwater Horizon* oil spill. EcoHealth 8:507-511.
- Tasker, M.L., C.J. Camphuysen, J. Cooper, S. Garthe, W.A. Montevecchi, and S.J.M. Blaber. 2000. The impacts of fishing on marine birds. ICES Journal of Marine Science 57:531-547.

- Teleki, G.C. and A.J. Chamberlain. 1978. Acute effects of underwater construction blasting fishes in Long Point Bay, Lake Erie. Journal of Fisheries Research Board of Canada 35(9):1191-1198.
- Thatcher, C.A., S.B. Hartley, and S.A. Wilson. 2011. Bank erosion of navigation canals in the western and central Gulf of Mexico. U.S. Dept. of the Interior, Geological Survey, National Wetlands Resource Center, Open-File Report 2010-1017 and U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Gulf of Mexico OCS Region, New Orleans, LA, OCS Study BOEMRE 2010-039. 32 pp. + 2 apps. Internet website: <u>http://pubs.usgs.gov/of/2010/ 1017/pdf/OF10-1017.pdf</u>.
- Thatcher, C., J.C. Brock, and E.A. Pendleton. 2013. Economic vulnerability to sea-level rise along the northern U.S. Gulf coast. Journal of Coastal Research 63(1):234-243.
- The Encyclopedia of Earth. 2008. Gulf of Mexico large marine ecosystem. Internet website: <u>http://www.eoearth.org/view/article/153198/</u>. Updated December 28, 2010. Accessed January 11, 2011.
- The Oil Drum. 2009. USA Gulf of Mexico oil production forecast update. Internet website: <u>http://www.theoildrum.com/node/5081</u>. Posted February 9, 2009. Accessed January 4, 2011.
- The White House. 2012. Executive Order—Gulf Coast ecosystem restoration. The White House, Office of Press Secretary, Washington, DC. Internet website: <u>http://www.whitehouse.gov/the-press-office/2012/09/10/executive-order-gulf-coast-ecosystem-restoration</u>. Posted September 10, 2012. Accessed July 29, 2013.
- Thistle, D. 1981. Natural physical disturbances and communities of marine soft bottoms. Marine Ecology Progress Series 6:223-228.
- Thompson, N.P., P.W. Rankin, and D.W. Johnston. 1974. Polychlorinated biphenyls and p,p'DDE in green turtle eggs from Ascension Island, south Atlantic Ocean. Bulletin of Environmental Contamination and Toxicology 11:399-406.
- Thompson, M.J., W.W. Schroeder, and N.W. Phillips. 1999. Ecology of live bottom habitats of the northeastern Gulf of Mexico: A community profile. U.S. Dept. of the Interior, Geological Survey, Biological Resources Division, USGS/BRD/CR-1999-0001 and Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 99-0004. x + 74 pp.
- Tiner, R.W. 1984. Wetlands of the United States: Current status and recent trends. U.S. Dept. of the Interior, Fish and Wildlife Service, Newton Corner, MA. vii + 59 pp.
- Tkalich, P. and E.S. Chan. 2002. Vertical mixing of oil droplets by breaking waves. Marine Pollution Bulletin 44:1219-1229.
- Tolbert, C.M. 1995. Oil and gas development and coastal income inequality: Case studies at the place level. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 94-0052. 75 pp.
- *Toll Road News.* 2009. LA1 bridge to Gulf oil & gas is tolling. Internet website: <u>http://tollroadsnews.com/node/4305</u>. Accessed December 3, 2010.
- Traylor-Holzer, K. 2005. Revised population viability analysis for the Alabama beach mouse *Peromyscus polionotus ammobates*. Report to the U.S. Dept. of the Interior, Fish and Wildlife Service, from IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN. 31 pp.
- Traylor-Holzer, K., R. Lacy, D. Reed, and O. Byers. 2005. Alabama beach mouse population and habitat viability analysis: Final report. Conservation Breeding Specialist Group, Apple Valley, MN.
- Trefry, J.H., K.L. Naito, R.P. Trocine, and S. Metz. 1995. Distribution and bioaccumulation of heavy metals from produced water discharges to the Gulf of Mexico. Water Science and Technology 32(2):31-36.
- Trefry, J.H., R.P. Trocine, M.L. McElvaine, R.D. Rember, and L. Hawkins. 2003. Concentrations of total mercury and methylmercury in sediment adjacent to offshore drilling sites. In: Proceedings of

the SPE/EPA/DOE Exploration and Production Environmental Conference, March 10-12, 2003, San Antonio, TX. Paper SPE 80569-MS. 12 pp.

- Tuler, S., T. Webler, K. Dow, and F. Lord. 2009. Human dimensions impacts of oil spills: Brief summaries of human impacts of oil and oil spill response efforts. Social and Environmental Research Institute. Project funded by the Coastal Response Research Center.
- Tunnell, J.W., Jr. and Q.R. Dokken. 1980. Observations on Ixtoc I oil impact of southwestern Gulf of Mexico coral reefs. Congresso sobre Problemas Ambientales de Mexico Resumenes. Instituto Politecnico Nacional. 8-12 December 1980, Mexico City, Mexico. P. 47. (proceedings never published; PDF of submitted paper).
- Turner, R.E. and D.R. Cahoon. 1987. Causes of wetland loss in the coastal Central Gulf of Mexico. 3 vols. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 87-0119, 87-0120, and 87-0121. 32, 400, and 122 pp., respectively.
- Turner, R.E., J.M. Lee, and C. Neill. 1994. Backfilling canals to restore wetlands: Empirical results in coastal Louisiana. Wetlands Ecology and Management 3(1):63-78.
- Turner, R.E., N.N. Rabalais, E.M. Swenson, M. Kasprzak, and T. Romaire. 2005. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Marine Environmental Research 59:65-77.
- Tuttle, J.R. and A.J. Combe III. 1981. Flow regime and sediment load affected by alterations of the Mississippi River. In: Cross, R.D. and Williams, D.L., eds. Proceedings, National Symposium: Freshwater Inflow Estuaries. U.S. Dept. of the Interior, Fish and Wildlife Service, Office of Biological Services. FWS/OBS-81/104. Pp. 334-348.
- Tyack, P.L. 2008. Implications for marine mammals of large-scale changes in the marine acoustic environment. Journal of Mammalogy 89(3):549-558.
- U.S. Dept. of Commerce. Census Bureau. 2010. America's families and living arrangements: 2010. Internet website: <u>http://www.census.gov/population/www/socdemo/hh-fam/cps2010.html</u>. Accessed August 18, 2011.
- U.S. Dept. of Commerce. National Aeronautics and Space Administration. 2003. SeaWiFS Project detailed description. Internet website: <u>http://oceancolor.gsfc.nasa.gov/SeaWiFS/BACKGROUND/</u> <u>SEAWIFS_970_BROCHURE.html</u>. Updated July 30, 2003. Accessed January 11, 2011.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2002. Endangered Species Act—Section 7 Consultation Biological Opinion for U.S. Dept. of Interior, Minerals Management Service, Gulf of Mexico Outer Continental Shelf Multi-Lease Sale (185, 187, 190, 192, 194, 196, 198, 200, 201). F/SER/2002/00718. 146 pp.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2007. Report to Congress on the impact of Hurricanes Katrina, Rita, and Wilma on commercial and recreational fishery habitat of Alabama, Florida, Louisiana, Mississippi, and Texas. July 2007. 191 pp. + apps. Internet website: <u>http://www.nmfs.noaa.gov/msa2007/docs/HurricaneImpactsHabitat_080707_1200.pdf</u>. Accessed December 30, 2010.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2013a. Dolphins and whales and the Gulf of Mexico oil spill. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/oilspill/mammals.htm</u>. Accessed November 12, 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2013b. NOAA declares 2011-2012 bottlenose dolphin unusual mortality event in Texas. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/mmume/bottlenosedolphins_texas.htm</u>. Accessed July 1, 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2013c. Status of stocks 2012: Annual report to Congress on the status of U.S. fisheries. Internet website: <u>http://www.nmfs.noaa.gov/stories/2013/05/docs/2012_sos_rtc.pdf</u>. Accessed July 26, 2013.

- U.S. Dept. of Commerce. National Marine Fisheries Service. 2013d. Fishermen's contingency fund. Internet website: <u>http://www.nmfs.noaa.gov/mb/financial_services/fcf.htm</u>. Accessed September 12, 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2013e. Supplemental environmental assessment for the 2013 Atlantic bluefin tuna quota specifications. U.S. Dept. of Commerce, National Marine Fisheries Service, Office of Sustainable Fisheries, Highly Migratory Species Management Division, Gloucester, MA. 51 pp.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014a. 2010-2014 cetacean unusual mortality event in the northern Gulf of Mexico. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/mmume/cetacean_gulfofmexico.htm</u>. Updated June 15, 2014. Accessed June 17, 2014.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014b. *Brucella* and 2010-2014 cetacean unusual mortality event in northern Gulf of Mexico: *Brucella*-positive cases identified. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/mmume/cetacean_gulfofmexico2010_brucella.htm</u>. Updated June 17, 2014. Accessed June 17, 2014.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014c. FAQs on sea turtles, dolphins and whales and the Gulf of Mexico oil spill. U.S. Dept. of Commerce, NOAA Fisheries, Office of Protected Resources. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/oilspill/faq.htm</u>. Accessed June 25, 2014.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014d. Sea turtle strandings in the Gulf of Mexico. NOAA Fisheries, Office of Protected Resources. Internet website: <u>http://</u>www.nmfs.noaa.gov/pr/species/turtles/gulfofmexico.htm. Accessed June 25, 2014.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014e. Marine recreational information program query results; angler trips in the Gulf of Mexico by location and mode from 2008-2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014f. Marine recreational information program query results; fish species caught by recreational anglers from 2008 through 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014g. Fisheries economics of the U.S.— 2012. Internet website: <u>http://www.st.nmfs.noaa.gov/economics/publications/feus/</u> <u>fisheries_economics_2012</u>. Accessed July 30, 2014.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 1988. Interagency task force on persistent marine debris. U.S. Dept. of Commerce, National Marine Fisheries Service, Office of the Chief Scientist, Ecology and Conservation.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2005. NOAA attributes recent increase in hurricane activity to naturally occurring multi-decadal climate variability. NOAA Magazine. November 29, 2005. Internet website: <u>http://www.magazine.noaa.gov/stories/ mag184.htm</u>.
- U.S. Dept. of Commerce. National Oceanic Atmospheric Administration. 2007. National Artificial Reef Plan: Guidelines for siting, construction, development, and assessment of artificial reefs. Internet website: <u>http://www.nmfs.noaa.gov/sfa/PartnershipsCommunications/recfish/NARPREVISION_3_07_07_FINAL.pdf</u>.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2008. Interagency report on marine debris sources, impacts, strategies, and recommendations. Interagency Marine Debris Coordinating Committee, Silver Spring, MD. 62 pp.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010a. Flower Gardens National Marine Sanctuary draft management plan. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010b. NOAA's oil spill response: Hurricanes and the oil spill. Internet website: <u>http://www.nhc.noaa.gov/pdf/hurricanes_oil_factsheet.pdf</u>. Accessed August 29, 2011.

- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011a. The Gulf of Mexico at a glance: The second glance. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Washington, DC. Internet website: <u>http://stateofthecoast.noaa.gov/NOAAs_Gulf_of_Mexico_at_a_Glance_report.pdf</u>. Accessed June 1, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011b. Shoreline Clean-up and Assessment Technique (SCAT) shoreline oiling. Louisiana, March 7, 2011, SCAT oiling ground observations.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011c. Shoreline Clean-up and Assessment Technique (SCAT) shoreline oiling. Mobile Sector, March 7, 2011, SCAT oiling ground observations.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011d. Potential oiling footprint—NOAA/NESDIS (RADARSAT-2 ScanSAR). April 2010 to August 2010. Internet website: <a href="http://gomex.erma.noaa.gov/erma.html#x=-88.38501&y=29.16176&z=6&layers=9651+9655+9657+9506+9447+9413+9309+9203+9095+8981+8816+8747+8666+8592+8523+8332+8236+8152+8058+7961+7849+7768+7685+7585+7531+7473+7252+7162+7157+6914+6807+6764+6583+6548+6564+6484+6372+6268+6272+6214+6197+6174+6060+5895+5771+5675+5600+5482+5430+5336+5258+5200+5147+5073+5021+4944+4880+4686+4585+4509+4435+4354+4264+4164+4065+3976+3906+3580+3494+3399+3295+3203+3101+3009+2915+2835+2751+2647+2574+2512+2362+2439+2361+2312+2311+2266+2244+2213+2127+2230+2073+2058+2066+1966+1984+1965+11953+1820+1876+1827+1785+8920+1550+1530+1584+1582+1515+1454+1467+1453+1417+1404+1345+1330+1329+1309+1328+1248+1267+1171+1202+1164+1165+1144+1126+1125+1084+1115+1129+1053+1013+1005+1004+968+928+837+836+789+739+653+639+637+576+567+5555+551+546+507+504+492+473+365+5723. Accessed April 7, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011e. NRDA Tier I sampling plan. AUV Reconnaissance Survey II of potential hard-ground megafaunal communities in the vicinity of the *Deepwater Horizon* spill site. Internet website: <u>http://www.gulfspillrestoration.noaa.gov/wp-content/uploads/2011/08/AUV-Reconnaissance-Survey-of-Potential-Megafaunal-Communities-in-Vicinity-of-Spill-Site4-23-2011.redacted21.pdf</u>. Accessed May 15, 2014.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011f. Study plan for NRDA-Phase II Project, deepwater sediment sampling to assess post-spill benthic impacts from the *Deepwater Horizon* oil spill. Internet website: <u>http://www.gulfspillrestoration.noaa.gov/wp-content/uploads/2011/09/DeepBenthicSedimentSampling_5-20-2011-allsigned.redacted-1.pdf</u>. Accessed May 15, 2014.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011g. Plastic marine debris: An in-depth look. Internet website: <u>http://marinedebris.noaa.gov/info/pdf/plasticdet.pdf</u>. Revised September 21, 2011. Accessed November 7, 2013.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2012. Natural resource damage assessment; April 2012; Status update for the *Deepwater Horizon* oil spill. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Gulf Spill Restoration. 91 pp.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2013a. National Oceanographic Data Center (NODC), ship data: *Deepwater Horizon* support, August 30, 2013. Internet website: <u>http://www.nodc.noaa.gov/deepwaterhorizon/specialcollections.html</u>. Accessed September 27, 2013.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2013b. 2013 Gulf of Mexico dead zone size above average but not largest, August 9, 2013. Internet website: <u>http://coastalscience.noaa.gov/news/coastal-pollution/2013-gulf-of-mexico-dead-zone-size-above-average-but-not-largest/</u>. Accessed November 7, 2013.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2013c. Impacts of El Niño on fish distribution from NOAA Fisheries. September 3, 2013. Internet website: <u>http://www.elnino.noaa.gov/enso4.html</u>. Accessed September 24, 2013.

- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2013d. Shoreline Clean-up and Assessment Technique (SCAT) shoreline oiling. Louisiana, October 24, 2013, SCAT oiling ground observations.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. National Hurricane Center. 2012. Archive of Atlantic hurricane seasons, 1995-2011. Internet website: <u>http://www.nhc.noaa.gov/2011atlan.shtml</u>.
- U.S. Dept. of Energy. Energy Information Administration. 2011a. Natural gas processing plants in the United States: 2010 update natural gas processing capacity by state. U.S. Dept. of Energy, Energy Information Administration, Office of Oil and Gas, Washington DC, June 17, 2011. Internet website: <u>http://www.eia.gov/pub/oil_gas/natural_gas/feature_articles/2010/ngpps2009/table_1.cfm</u>. Accessed July 10, 2013.
- U.S. Dept. of Energy. Energy Information Administration. 2011b. Natural gas processing plants in the United States: 2010 update regional analysis. U.S. Dept. of Energy, Energy Information Administration, Office of Oil and Gas, Washington DC, June 17, 2011. Internet website: <u>http:// www.eia.gov/pub/oil_gas/natural_gas/feature_articles/2010/ngpps2009/gom.cfm</u>. Accessed July 10, 2013.
- U.S. Dept. of Energy. Energy Information Administration. 2013a. Number and capacity of operable petroleum refineries by PAD district and state as of January 1, 2013. Internet website: <u>http://www.eia.gov/petroleum/refinerycapacity/table1.pdf</u>. Accessed August 20, 2013.
- U.S. Dept. of Energy. Energy Information Administration. 2013b. Number and capacity of operable petroleum refineries by PAD district and state as of January 1, 2013. Internet website: <u>http://www.eia.gov/petroleum/refinerycapacity/table1.pdf</u>. Accessed May 2013.
- U.S. Dept. of Energy. Energy Information Administration. 2014a. Short-term energy outlook; U.S. petroleum and other liquids; July 8, 2014. Internet website: <u>http://www.eia.gov/forecasts/steo/report/us_oil.cfm</u>. Accessed July 10, 2014.
- U.S. Dept. of Energy. Energy Information Administration. 2014b. Total natural gas production, consumption, and imports in reference case, 1990-2040 (trillion cubic feet). Internet website: <u>http://www.eia.gov/forecasts/aeo/excel/figmt42_data.xls</u>. Accessed July 10, 2014.
- U.S. Dept. of Energy. Energy Information Administration. 2014c. Consumption of petroleum and other liquids by sector in the reference case, 1990-2040 (million barrels per day). Internet website: <u>http://www.eia.gov/forecasts/aeo/excel/figmt50_data.xls</u>. Accessed May 28, 2014.
- U.S. Dept. of Energy. Energy Information Administration. 2014d. Net import share of U.S. petroleum and other liquid fuels consumption in five cases, 1990-2040 (percent). Internet website: <u>http://www.eia.gov/forecasts/aeo/excel/figmt55_data.xls</u>. Accessed May 28, 2014.
- U.S. Dept. of Energy. Energy Information Administration. 2014e. U.S. imports by country of origin, total crude oil and products. Internet website: <u>http://www.eia.gov/dnav/pet/pet_move_impcus_a2_nus_epc0_im0_mbblpd_a.htm</u>. Accessed July 10, 2014.
- U.S. Dept. of Energy. Energy Information Administration. 2014f. Motor gasoline consumption, diesel fuel consumption, and petroleum product exports in the reference case, 2012-40 (million barrels per day). Internet website: <u>http://www.eia.gov/forecasts/aeo/excel/figmt57 data.xls</u>. Accessed May 28, 2014.
- U.S. Dept. of Energy. Energy Information Administration. 2014g. U.S. natural gas imports by country. Internet website: <u>http://www.eia.gov/dnav/ng/ng_move_impc_s1_a.htm</u>. Accessed July 10, 2014.
- U.S. Dept. of Energy. Federal Energy Regulatory Commission. 2013. North American LNG import/export terminals. April 17, 2013. Internet website: <u>http://www.ferc.gov/industries/gas/indus-act/lng/LNG-proposed-potential.pdf</u>. Accessed May 23, 2013.
- U.S. Dept. of Energy. National Energy Technology Laboratory. 2013a. Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) characterizing natural gas hydrates in the deep water Gulf of Mexico—applications for safe exploration and production; DE-FC26-01NT41330. Internet website: http://

web.archive.org/web/20130220224323/http://netldev.netl.doe.gov/research/oil-and-gas/projectsummaries/methane-hydrate/de-fc26-01nt41330. Current as of February 28, 2013. Accessed June 20, 2013.

- U.S. Dept. of Energy. National Energy Technology Laboratory. 2013b. The National Methane Hydrates R&D Program: 2012 Ignik Sikumi gas hydrate field trial. Internet website: <u>http://netl.doe.gov/</u>research/oil-and-gas/methane-hydrates/co2_ch4exchange. Accessed July 2, 2013.
- U.S. Dept. of Homeland Security. 2010. Energy sector-specific plan: An annex to the National Infrastructure Protection Plan. Internet website: <u>http://www.dhs.gov/xlibrary/assets/nipp-ssp-energy-2010.pdf</u>. Accessed October 2013.
- U.S. Dept. of Homeland Security. Coast Guard. 2012a. Polluting incidents in and around U.S. waters. A spill/release compendium: 1969-2011. U.S. Dept. of Homeland Security, Coast Guard, Office of Investigations & Compliance Analysis (CG-INV), Washington DC.
- U.S. Dept. of Homeland Security. Coast Guard. 2012b. Ballast water management. Internet website: <u>https://homeport.uscg.mil/mycg/portal/ep/channelView.do?channelId=-18366&channelPage=%2Fep</u> <u>%2Fchannel%2Fdefault.jsp&pageTypeId=13489&BV_SessionID=@@@@1681303534.139161721</u> 5@@@@&BV_EngineID=cccdadfmedelgkicfngcfkmdfhfdfgl.0. Accessed May 3, 2012.
- U.S. Dept. of Homeland Security. Coast Guard. 2013. Website query/download NRC FOIA data: Query of standard reports. U.S. Dept. of Homeland Security, National Response Center, Washington, DC. Internet website: <u>http://www.nrc.uscg.mil/pls/apex/f?p=109:1:17107903192545</u>. Accessed May 20, 2013.
- U.S. Dept. of Homeland Security, Coast Guard and U.S. Dept. of Transportation, Maritime Administration (MARAD). 2003. Final environmental impact statement for the Port Pelican LLC Deepwater Port license application. Commandant, U.S. Dept. of Homeland Security, Coast Guard, Washington, DC.
- U.S. Dept. of Labor. Bureau of Labor Statistics. 2013. Quarterly census of employment and wages. Internet website: <u>http://www.bls.gov/cew/</u>. Accessed October 23-24, 2013.
- U.S. Dept. of Labor. Occupational Safety and Health Administration. 2010a. OSHA statement on 2-butoxyethanol & worker exposure. July 9, 2010. Internet website: <u>https://www.osha.gov/oilspills/oilspill-statement.html</u>. Accessed March 14, 2012.
- U.S. Dept. of Labor. Occupational Safety and Health Administration. 2010b. General health and safety information for the Gulf oil spill. August 19, 2010. Internet website: <u>https://www.osha.gov/oilspills/deepwater-oil-spill-factsheet-ppe.pdf</u>. Accessed March 14, 2012.
- U.S. Dept. of the Army. Corps of Engineers. 1992. Planning assistance to States program, Section 22 report, inlets along the Texas Gulf Coast. U.S. Dept. of the Army, Corps of Engineers, Galveston District, Southwestern Division, August 1992. 56 pp. Internet website: <u>http://cirp.usace.army.mil/pubs/archive/Inlets_Along_TX_Gulf_Coast.pdf</u>.
- U.S. Dept. of the Army. Corps of Engineers. 2004. Louisiana coastal area (LCA), Louisiana: Ecosystem restoration study. Volume I: LCA Study—main report and Volume II: Programmatic environmental impact statement. U.S. Dept. of the Army, Corps of Engineers, New Orleans District, New Orleans, LA. 506 and 918 pp., respectively. Internet website: <u>http://www.lca.gov/Library/ ProductList.aspx?Prodtype=0&folder=1118</u>. Accessed March 18, 2011.
- U.S. Dept. of the Army. Corps of Engineers. 2009a. Louisiana coastal protection and restoration: Final technical report. Programmatic cumulative effects analysis appendix. U.S. Dept. of the Army, Corps of Engineers, New Orleans District, Mississippi Valley Division. 586 pp. with annexes. Internet website: <u>http://www2.mvn.usace.army.mil/pd/projectslist/ProjectData/302/reports/LACPR%20 Report%2014%20Aug%202009.pdf</u>.
- U.S. Dept. of the Army. Corps of Engineers. 2009b. Corps hurricane response. Task force hope status report newsletter. December 14, 2009. 8 pp. Internet website: <u>http://www.mvn.usace.army.mil/hps2/pdf/Dec_14_2009.pdf</u>.

- U.S. Dept. of the Army. Corps of Engineers. 2010. Ocean disposal database. Internet website: <u>http://el.erdc.usace.army.mil/odd/</u>. Stated as current through 2010. Accessed June 17, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2013. Beneficial use of dredged material. Internet website: <u>http://www.mvn.usace.army.mil/About/Offices/Operations/BeneficialUseofDredgedMaterial.aspx</u>. Accessed December 12, 2013.
- U.S. Dept. of the Interior. 2010. Increased safety measures for energy development on the outer continental shelf, May 27, 2010. U.S. Dept. of the Interior, Washington, DC. 44 pp.
- U.S. Dept. of the Interior. 2012. Second interim partial claim for assessment and restoration planning costs: 20 April 2010 *Deepwater Horizon* (MC252) incident; time period: January December 2013. Internet website: <u>http://www.doi.gov/deepwaterhorizon/upload/Final-DOI-2nd-Interim-Partial-Claim-for-2013-October-4-2012-2.pdf</u>. Submitted October 4, 2012. Accessed September 11, 2013.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2011. Guidance for compliance with mitigation 3.20: Avoidance of archaeological resources. Internet website: <u>http://www.boem.gov/uploadedFiles/BOEM/Environmental_Stewardship/Archaeology/Guidance.pdf</u>. Accessed July 8, 2013.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2012a. Proposed final Outer Continental Shelf oil & gas leasing program: 2012-2017. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Herndon, VA. 223 pp.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2012b. Gulf of Mexico OCS oil and gas lease sales: 2012-2017; Western Planning Area lease sales 229, 233, 238, 246, and 248; Central Planning Area lease sales 227, 231, 235, 241, and 247—final environmental impact statement. 3 vols. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA BOEM 2012-019.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2012c. Outer Continental Shelf oil and gas leasing program: 2012-2017—final environmental impact statement. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Herndon, VA. OCS EIS/EA BOEM 2012-030.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2013a. Gulf of Mexico OCS oil and gas lease sales: 2012-2017; Western Planning Area lease sale 233; Central Planning Area lease sale 231—final supplemental environmental impact statement. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA BOEM 2013-0118.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2013b. Gulf of Mexico OCS oil and gas lease sales: 2014 and 2016; Eastern Planning Area lease sales 225 and 226—final environmental impact statement. 2 vols. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico Region, New Orleans, LA. OCS EIS/EA BOEM 2013-200.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2014a. Gulf of Mexico OCS oil and gas lease sales: 2014-2016; Western Planning Area Lease Sales 238, 246, and 248—final supplemental environmental impact statement. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA BOEM 2014-009.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2014b. Exploration and development plans online query. Internet website: <u>http://www.data.boem.gov/homepg/data_center/plans/plans/master.asp</u>. Accessed March 21, 2014.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2014c. BOEM Gulf of Mexico OCS Region blocks and active leases by planning area; June 4, 2014. Internet website: <u>http://www.boem.gov/Gulf-of-Mexico-Region-Lease-Map/</u>. Accessed June 4, 2014.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2014d. Offshore statistics by water depth. Internet website: <u>http://www.data.boem.gov/homepg/data_center/leasing/WaterDepth/WaterDepth.asp</u>. Accessed February 14, 2014.

- U.S. Dept. of the Interior. Bureau of Ocean Energy Management, Regulation and Enforcement. 2010. Federal and academic scientists return from deep-sea research cruise in Gulf of Mexico: Scientists observe damage to deep-sea corals. Press Release. November 4, 2010. Internet website: <u>http:// www.bsee.gov/BSEE-Newsroom/Press-Releases/2010/press1104a/</u>. Accessed November 24, 2010.
- U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement and U.S. Dept. of Homeland Security, Coast Guard, Joint Investigation Team. 2013. Report of investigation into the circumstances surrounding the explosion, fire, sinking and loss of eleven crew members aboard the mobile offshore drilling unit: *Deepwater Horizon* in the Gulf of Mexico, April 20-22, 2010. Internet website: <u>https://homeport.uscg.mil/mycg/portal/ep/contentView.do?</u> contentId=323899&pageTypeId=13489&contentType=EDITORIAL. Accessed April 16, 2013.
- U.S. Dept. of the Interior. Bureau of Safety and Environmental Enforcement. 2012. Loss of well control—statistics and summaries 2006-2012 ytd. Internet website: <u>http://www.bsee.gov/Inspection-and-Enforcement/Accidents-and-Incidents/Loss-of-Well-Control/</u>. Accessed September 25, 2012.
- U.S. Dept. of the Interior. Bureau of Safety and Environmental Enforcement. 2013a. Spills—statistics and summaries through 2012. Internet website: <u>http://www.bsee.gov/Inspection-and-Enforcement/</u><u>Accidents-and-Incidents/Spills/</u>. Accessed April 24, 2013.
- U.S. Dept. of the Interior. Bureau of Safety and Environmental Enforcement. 2013b. Safety and Environmental Management Systems. Internet website: <u>http://www.bsee.gov/Regulations-and-Guidance/Safety-and-Environmental-Management-Systems---SEMS/Safety-and-Environmental-Management-Systems---SEMS/.</u> Accessed May 10, 2013.
- U.S. Dept. of the Interior. Bureau of Safety and Environmental Enforcement. 2014. Oil spill response research program. Internet website: <u>http://www.bsee.gov/Research-and-Training/Oil-Spill-Response-Research/Projects/Project-673/</u>. Accessed May 13, 2014.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2000. Fisheries resources annual report. U.S. Dept. of the Interior, Fish and Wildlife Service, Panama City, FL. 28 pp.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2008. Birds of conservation concern 2008. U.S. Dept. of the Interior, Fish and Wildlife Service, Division of Migratory Bird Management, Arlington, VA. 85 pp. Internet website: <u>http://digitalmedia.fws.gov/cdm/ref/collection/document/id/1404</u>.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2010. Dead bird recovery locations. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. 1 p. Internet website: <u>http://www.fws.gov/home/dhoilspill/pdfs/DeadDensity20101214.pdf</u>.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2011. Deepwater Horizon bird impact data from DOI-ERDC database 12 May 2011: Weekly bird impact data and consolidated wildlife reports. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. Internet website: <u>http://www.fws.gov/home/dhoilspill/pdfs/Bird%20Data%20Species%20Spreadsheet%2005122011.pdf</u>.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2014. Species profile: Red knot (*Calidris canutus rufa*). Internet website: <u>http://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0DM</u>. Accessed January 9, 2014.
- U.S. Dept. of the Interior, Fish and Wildlife Service and U.S. Dept. of Commerce, National Marine Fisheries Service. 2009. Gulf sturgeon (*Acipenser oxyrinchus desotoi*)—5-year review: Summary and evaluation. U.S. Dept. of the Interior, Fish and Wildlife Service, Southeast Region, Panama City Ecological Services Field Office, Panama City, FL, and U.S. Dept. of Commerce, National Marine Fisheries Service, Southeast Region, Office of Protected Species, St. Petersburg, FL. 49 pp. Internet website: http://www.nmfs.noaa.gov/pr/pdfs/species/gulfsturgeon_5yearreview.pdf.
- U.S. Dept. of the Interior, Fish and Wildlife Service and U.S. Dept. of the Interior, Minerals Management Service. 2009. Memorandum of Understanding between the U.S. Minerals Management Service and U.S. Fish and Wildlife Service regarding implementation of Executive Order 13186, "Responsibilities of Federal agencies to protect migratory birds." U.S. Dept. of the Interior, Washington, DC. 17 pp.

Internet website: <u>http://www.fws.gov/migratorybirds/Partnerships/MMS-FWS_MBTA_MOU_6-4-09.pdf</u>. Accessed May 5, 2011.

- U.S. Dept. of the Interior. Geological Survey. 2008. Coastal change hazards: Hurricanes and extreme storms. Internet website: <u>http://coastal.er.usgs.gov/hurricanes/</u>. Accessed April 15, 2011.
- U.S. Dept. of the Interior. Geological Survey. 2012a. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-2010. Scientific Investigations Report 2012-5068. Internet website: http://pubs.usgs.gov/sir/2012/5068/section4.html. Accessed February 4, 2013.
- U.S. Dept. of the Interior. Geological Survey. 2012b. National water summary on wetland resources. U.S. Geological Survey Water-Supply Paper 2425. Internet website: <u>http://water.usgs.gov/nwsum/WSP2425/</u>. Accessed January 11, 2013.
- U.S. Dept. of the Interior. Geological Survey. 2013. Groundbreaking gas hydrate research. Internet website: <u>http://www.usgs.gov/blogs/features/usgs_top_story/groundbreaking-gas-hydrate-research/</u>. Accessed July 2, 2013.
- U.S. Dept. of the Interior. Minerals Management Service. 2004. Geological and geophysical exploration for mineral resources on the Gulf of Mexico outer continental shelf—final programmatic environmental assessment. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA MMS 2004-054. 466 pp.
- U.S. Dept. of the Interior. Minerals Management Service. 2005. Structure-removal operations on the Gulf of Mexico outer continental shelf—programmatic environmental assessment. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA MMS 2005-013. 358 pp.
- U.S. Dept. of the Interior. Minerals Management Service. 2007. Gulf of Mexico OCS oil and gas scenario examination: Exploration and development activity. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Report MMS 2007-052. 14 pp.
- U.S. Dept. of the Interior. Minerals Management Service. 2009a. Deepwater Gulf of Mexico 2009: Interim report of 2008 highlights. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Report MMS 2009-016. 72 pp. Internet website: <u>http://www.boem.gov/BOEM-Newsroom/Library/Publications/2009/2009-016.aspx</u>.
- U.S. Dept. of the Interior. Minerals Management Service. 2009b. Petroleum spills from Federal outer continental shelf oil and gas facilities caused by major hurricanes, 2002 to 2008: Lili (2002), Ivan (2004), Katrina (2005), Rita (2005), Gustav (2008), and Ike (2008). Incident report dated September 9, 2009. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 16 pp.
- U.S. Dept. of the Interior. Minerals Management Service. 2009c. Rigs to reefs policy addendum: Enhanced reviewing and approval guidelines in response to the post-Hurricane Katrina regulatory environment. Related document, OCS Report MMS 2000-073. Internet website: <u>http://www.gomr.boemre.gov/homepg/regulate/environ/rigs-to-reefs/Rigs-to-Reefs-Policy-Addendum.pdf</u>.
- U.S. Dept. of the Interior. National Park Service. 2013. Annual recreation visitation by park type or region for 2012. Internet website: <u>https://irma.nps.gov/Stats/SSRSReports/National%20Reports/Annual%20Recreation%20Visitation%20Report%20by%20Park%20Type%20or%20Region%20</u> (1979%20-%20Last%20Calendar%20Year). Accessed January 17, 2014.
- U.S. Dept. of Transportation. Bureau of Transportation Statistics. 2010. Gulf Coast ports surrounding the *Deepwater Horizon* oil spill. June 2010. Research and Innovative Technology Administration. Internet website: <u>http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/bts_fact_sheets/june_2010/pdf/entire.pdf</u>. Accessed August 31, 2010.

- U.S. Dept. of Transportation. Maritime Administration (MARAD). 2012. North American cruises, key statistics (capacity and traffic in thousands). Internet website: <u>http://www.marad.dot.gov/documents/north_america_cruise_summary_data.xls</u>. Accessed June 19, 2013.
- U.S. Dept. of Transportation. Maritime Administration (MARAD). 2013a. Vessel calls at U.S. ports by vessel type. Internet website: <u>http://www.marad.dot.gov/documents/US_Port_Calls_by_Vessel_Type.xls</u>. Current as of March 28, 2013. Accessed June 19, 2013.
- U.S. Dept. of Transportation. Maritime Administration (MARAD). 2013b. Approved applications and operational facilities. Internet website: <u>http://www.marad.dot.gov/ports_landing_page/deepwater_port_licensing/dwp_current_ports.htm</u>. Accessed June 20, 2013.
- U.S. Dept. of Transportation. Maritime Administration (MARAD). 2013c. Withdrawn and disapproved applications. Internet website: <u>http://www.marad.dot.gov/ports_landing_page/deepwater_port_licensing/dwp_cancelled_applications/dwp_cancelled_applications.htm</u>. Accessed June 20, 2013.
- U.S. Environmental Protection Agency. 1994. Evaluation of ecological impacts from highway development. EPA 300-B-94-005. April 1994. Internet website: <u>http://www.epa.gov/compliance/resources/policies/nepa/ecological-impacts-highway-development-pg.pdf</u>. Accessed August 1, 2013.
- U.S. Environmental Protection Agency. 2008. Integrated science assessment for oxides of nitrogen health criteria annexes. EPA/600/R-08/072. P. 62. Internet website: <u>http://cfpub.epa.gov/ncea/isa/</u> recordisplay.cfm?deid=194645. Accessed August 5, 2014.
- U.S. Environmental Protection Agency. 2010. EPA response to BP spill in the Gulf of Mexico: Air data from the Gulf coastline.. Internet website: <u>http://www.epa.gov/BPSpill/air.html</u>. Accessed June 29, 2010.
- U.S. Environmental Protection Agency. 2011a. Ocean dredged material disposal sites (ODMDS) in the western Gulf of Mexico. Internet website: <u>http://www.epa.gov/region6/water/ecopro/em/ocean/odmd_sites.html</u>. Accessed June 17, 2013.
- U.S. Environmental Protection Agency. 2011b. Brief fact sheet: Draft 2013 vessel general permit and small vessel general permit. EPA-800-F-11-002. Internet website: <u>http://www.epa.gov/npdes/pubs/vgp_brieffactsheet2011.pdf</u>. Accessed May 3, 2012.
- U.S. Environmental Protection Agency. 2011c. General facts about the Gulf of Mexico. Internet website: <u>http://www.epa.gov/gmpo/about/facts.html</u>. Accessed July 14, 2011.
- U.S. Environmental Protection Agency. 2012a. National Coastal Condition Report IV. U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, DC. EPA-842-R-10-003.
- U.S. Environmental Protection Agency. 2012b. The NPDES General Permit for new and existing sources and new discharges in the offshore subcategory of the oil and gas extraction point source category for the western portion of the outer continental shelf of the Gulf of Mexico (GMG290000): 77 FR 196, p. 61605; October 10, 2012; effective October 1, 2012; expires midnight September 30, 2017. Internet website: <u>http://www.epa.gov/region6/6en/w/offshore/permit-language-link.pdf</u>.
- U.S. Environmental Protection Agency. 2013a. Vessel discharges frequently asked questions: What changes are in the 2013 draft VGP? Internet website: <u>http://cfpub.epa.gov/npdes/faqs.cfm?</u> program id=350#472. Accessed May 2013.
- U.S. Environmental Protection Agency. 2013b. Vessel general permit (VGP). Internet website: <u>http://</u> <u>cfpub.epa.gov/npdes/vessels/vgpermit.cfm</u>. Accessed November 6, 2013.
- U.S. Environmental Protection Agency. 2013c. Visibility in mandatory Federal Class I areas, 1994-1998: A report to Congress. Internet website: <u>http://www.epa.gov/visibility/report/</u>. Accessed July 26, 2013.
- U.S. Environmental Protection Agency. 2013d. Future climate change: Future sea level change. Internet website: <u>http://www.epa.gov/climatechange/science/future.html#sealevel</u>. Accessed July 26, 2013.

- U.S. Environmental Protection Agency. 2013e. Our built and natural environments: A technical review of the interactions among and use, transportation and environmental quality. Internet website: <u>http://www.epa.gov/smartgrowth/pdf/b-and-n/b-and-n-EPA-231K13001.pdf</u>. Accessed August 1, 2013.
- U.S. Environmental Protection Agency. 2013f. Mississippi Coalition for Vietnamese-American Fisher Folks and Families receives second place Gulf Guardian Award in the Environmental Justice/Cultural Diversity Category. Internet website: <u>http://yosemite.epa.gov/opa/admpress.nsf/0/</u> B9DD7A5E9262372685257B87006CB347. Accessed June 26, 2013.
- U.S. Environmental Protection Agency. 2014. Emergency response: National contingency plan subpart J. Internet website: <u>http://www2.epa.gov/emergency-response/national-contingency-plan-subpart-j</u>. Accessed March 18, 2014.
- U.S. Government Accountability Office. 2007. Coastal wetlands: Lessons learned from past efforts in Louisiana could help guide future restoration and protection. U.S. Government Accountability Office, Washington, DC. GAO 08-130. 62 pp. Internet website: <u>http://www.gao.gov/new.items/ d08130.pdf</u>.
- U.S. National Response Team. 2013. Environmental monitoring for atypical dispersant operations: Including guidance for subsea application and prolonged surface application. 25 pp. Internet website: <u>http://www.nrt.org/Production/NRT/NRTWeb.nsf/AllAttachmentsByTitle/SA-1086NRT_Atypical_Dispersant_Guidance_Final_5-30-2013.pdf/\$File/NRT_Atypical_Dispersant_Guidance_Final_5-30-2013.pdf?OpenElement.</u>
- University of Texas Medical Branch. 2013. UTMB-led researchers awarded \$7.85 million for Gulf oil spill study. University of Texas Medical Branch, Center in Environmental Toxicology, Galveston, TX. Internet website: <u>http://www.utmb.edu/cet/highlights/center/GC-HARMS.asp</u>. Accessed June 24, 2013.
- Upton, H.F. 2010. Commercial fishery disaster assistance. Congressional Research Service. Report for Congress. RL 34209. Internet website: <u>http://www.fas.org/sgp/crs/misc/RL34209.pdf</u>.
- Valentine, D.L., I. Mezic, S. Macesic, N. Crnjaric-Zic, S. Ivic, P.J. Hogan, V.A. Fonoberov, and S. Loire. 2012. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proceedings of the National Academy of Sciences 109(50):20286-20291.
- Van Dolah, R.F., P.H. Wendt, and M.V. Levisen. 1991. A study of the effects of shrimp trawling on benthic communities in two South Carolina sounds. Fisheries Research 12:139-156.
- Van Vleet, E.S. and G. Pauly. 1987. Characterization of oil residues scraped from stranded sea turtles from the Gulf of Mexico. Caribbean Journal of Science 23:77-83.
- Van Zandt, S., W.G. Peacock, D. Henry, H. Grover, and W.E. Highfield. 2010. Social vulnerability and Hurricane Ike: Using social vulnerability mapping to enhance coastal community resilience in Texas. Special permission via email correspondence working paper from the Hazard Reduction & Recovery Center, Texas A&M University.
- Vandegrift, K.J., S.H. Sokolow, P. Daszak, and A.M. Kilpatrick. 2010. Ecology of avian influenza viruses in a changing world. Annals of the New York Academy of Sciences 1195:113-128.
- Vandermuelen, J.H. 1982. Some conclusions regarding long-term effects of some major oil spills. Philosophical Transactions of the Royal Society of London. Series B, Biological Communities and Ecosystems 297(1087):335-351.
- Varanasi, U., J.E. Stein, L.L. Johnson, T.K. Collier, E. Casillas, and M.S. Myers. 1992. Evaluation of bioindicators of contaminant exposure and effects in coastal ecosystems. In: McKenzie, D.H., D.E. Hyatt, and V.J. McDonald, eds. Volume 1: Ecological indicators. Proceedings of an International Symposium, Fort Lauderdale, FL. Pp. 461-498.
- Vargo, S., P. Lutz, D. Odell, E. Van Vleet, and G. Bossart. 1986. Study of the effects of oil on marine turtles, a final report. Volume II: Technical report. 3 vols. U.S. Dept. of the Interior, Minerals Management Service, Atlantic OCS Region, Washington, DC. OCS Study MMS 86-0070. 181 pp.

- Vashchenko, M.A. 1980. Effects of oil pollution on the development of sex cells in sea urchins. Biologische Anstalt Helgoland 297-300.
- Veil, J.A., M.G. Puder, D. Elcock, and R.J. Redweik, Jr. 2004. A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. Prepared by Argonne National Laboratory, Argonne, IL, for the U.S. Dept. of Energy, National Energy Technology Laboratory, Contract W-31-109-Eng-38. 79 pp. Internet website: <u>http://www.ipd.anl.gov/anlpubs/2004/02/</u> 49109.pdf. Accessed June 8, 2011.
- Visser, M.E., A.J. van Noordwijk, J.M. Tinbergen, and C.M. Lessells. 1998. Warmer springs lead to mistimed reproduction in great tits (*Parus major*). Proceedings of the Royal Society of London B 265:1867-1870.
- Visser, M.E., C. Both, and M.M. Lambrechts. 2004. Global climate change leads to mistimed avian reproduction. Advances in Ecological Research 35:89-110.
- Volz, D. 2013. Port Fourchon completes dredging as part of big expansion project. Professional Mariner. Internet website: <u>http://www.professionalmariner.com/April-2013/Port-Fourchoncompletes-dredging-as-part-of-big-expansion-project/</u>. Posted March 27, 2013. Accessed May 29, 2014.
- Votier, S.C., R.W. Furness, S. Bearhop, J.E. Crane, R.W.G. Caldow, P. Catry, K. Ensor, K.C. Hamer, A.V. Hudson, E. Kalmbach, N.I. Klomp, S. Pfeiffer, R.A. Phillips, I. Prieto, and D.R. Thompson. 2004. Changes in fisheries discard rates and seabird communities. Nature 427:727-730.
- Wang, F.C. 1987. Effects of levee extension on marsh flooding. Journal of Water Resources Planning and Management 113:161-176.
- Wang, F.C. 1988. Saltwater intrusion modeling: The role of man-made features. In: Turner, R.E. and D.R. Cahoon, eds. Causes of wetland loss in the coastal central Gulf of Mexico. Volume 2. U.S. Dept. of the Interior, Minerals Management Service, New Orleans, LA. OCS Study MMS 87-0120. Pp. 71-100.
- Ward, D.H., R.A. Stehn, W.P. Erickson, and D.V. Derksen. 1999. Response of fall-staging brant and Canada geese to aircraft overflights in southwestern Alaska. Journal of Wildlife Management 63:373-381.
- Waring, G.T., E. Josephson, K. Maze-Foley, and P.E. Rosel, eds. 2013. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments—2012. NOAA Technical Memorandum NMFS-NE-223. 419 pp.
- Waycott M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106:12377-12381.
- Welch, R.A. and D.F. Rychel. 2004. Produced water from oil and gas operations in the onshore lower 48 states. White paper—Phase I. U.S. Dept. of Energy, National Energy Technology Laboratory, Pittsburgh, PA. 100 pp. Internet website: <u>http://www.netl.doe.gov/KMD/cds/disk23/D-Water%20 Management%20Projects/Produced%20Water%5CNT00249%20ProducedWaterReport%20NGC 103.pdf</u>. Accessed June 8, 2011.
- Wells, J.V. 2007. Birder's conservation handbook: 100 North American birds at risk. Princeton, NJ: Princeton University Press.
- Wheeler, N.M., S.B. Reid, K.J. Craig, J.R. Zielonka, D.R. Stauffer, and S.R. Hanna. 2008. Cumulative increment analysis for the Breton National Wilderness Area. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2008-058. 334 pp.
- White, P.S. and S.P. Wilds. 1998. Southeast. In: Mac, M.J., P.A. Opler, C.E. Puckett-Haecker, and P.D. Doran, eds. Status and trends of the nation's biological resources. Volume 2. U.S. Dept. of the
Interior, Geological Survey, Reston, VA. Pp. 255-314. Internet website: <u>http://www.nwrc.usgs.gov/</u> <u>sandt/</u>. Accessed April 19, 2011.

- White, H.K., P. Hsing, W. Cho, T.M. Shank, E.E. Cordes, A.M. Quattrini, R.K. Nelson, R. Camilli, A.W.J. Demopoulos, C.R. German, J.M. Brooks, H.H. Roberts, W. Shedd, C.M. Reddy, and C.R. Fisher. 2012. Impact of the *Deepwater Horizon* oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences 109(50):20303-20308.
- Whitehead, A., B. Dubansky, C. Bodinier, T.I. Garcia, S. Miles, C. Pilley, V. Raghunathan, J.L. Roach, N. Walker, R.B. Walter, C.D. Rice, and F. Galvez. 2011. Genomic and physiological footprint of the *Deepwater Horizon* oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences 108(15):6193-6198.
- Wiese, F.K. and R.G. Robertson. 2004. Assessing seabird mortality from chronic oil discharges at sea. Journal of Wildlife Management 68:627-638.
- Wiese, F.K., W.A. Montevecchi, G.K. Davoren, F. Huettmann, A.W. Diamond, and J. Linke. 2001. Seabirds at risk around offshore oil platforms in the north-west Atlantic. Marine Pollution Bulletin 42:1285-1290.
- Wilhelm, S.I., G.J. Robertson, P.C. Ryan, and D.C. Schneider. 2007. Comparing an estimate of seabirds at risk to a mortality estimate from the November 2004 Terra Nova FPSO oil spill. Marine Pollution Bulletin 54:537-544.
- Wilkinson, E.B. L.C. Branch, and D.L. Miller. 2013. Functional habitat connectivity for beach mice depends on perceived predation risk. Landscape Ecology 28:547-558.
- Wilson, X. 2012. Next segment of LA 1 elevation progressing. *The Courier*. December 30, 2012. Internet website: <u>http://www.houmatoday.com/article/20121230/ARTICLES/121239991</u>. Accessed July 10, 2013.
- Wilson, C.A., A. Pierce, and M.W. Miller. 2003. Rigs and reefs: A comparison of the fish communities at two artificial reefs, a production platform, and a natural reef in the northern Gulf of Mexico: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2003-009. 94 pp.
- Wilson, D., R. Billings, R. Oommen, B. Lange, J. Marik, S. McClutchey, and H. Perez. 2010. Year 2008: Gulfwide emission inventory study. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEMRE 2010-045. 186 pp.
- With, K.A., A.W. King, and W.E. Jensen. 2008. Remaining large grasslands may not be sufficient to prevent grassland bird declines. Biological Conservation 41:3152–3167.
- Witham, R. 1978. Does a problem exist relative to small sea turtles and oil spills? In: Proceedings, Conference on Assessment of Ecological Impacts of Oil Spills, 14-17 June 1978, Keystone, CO. AIBS, pp. 629-632.
- Witham, R. 1995. Disruption of sea turtle habitat with emphasis on human influence. In: Bjorndal, K.A., ed. Biology and conservation of sea turtles; revised edition. Washington, DC: Smithsonian Institution Press. Pp. 519-522.
- Witherington, B.E. 1994. Flotsam, jetsam, post-hatchling loggerheads, and the advecting surface smorgasbord. In: Bjorndal, K.A., A.B. Bolten, D.A. Johnson, P.J. Eliazar, comps. Proceedings of the Fourteenth Annual Symposium on Sea Turtle Biology and Conservation. NOAA Technical Memorandum NMFS-SEFSC-351.
- Witherington, B.E. 1999. Reducing threats to nesting habitat. In: Eckert, K.L., K.A. Bjorndal, F.A. Abreu-Grobois, and M. Donnelly, eds. Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication No. 4. Pp. 179-183.

- Witherington, B.E. and R.E. Martin. 1996. Understanding, assessing, and resolving light-pollution problems on sea turtle nesting beaches. Florida Marine Research Institute Technical Report TR-2, Florida Dept. of Environmental Protection. 73 pp.
- Withers, K. 2002. Shorebird use of coastal wetland and barrier island habitat in the Gulf of Mexico. Scientific World Journal 2:514-536.
- Witzell, W.N. 1992. The incidental capture of sea turtles in commercial non-shrimping fisheries in southeastern U.S. waters. Report to the U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Miami Lab., Miami, FL. Contribution number MIA-91/92-43.
- Wood, R.C. and L.S. Hales. 2001. Comparison of northern diamondback terrapin (*Malaclemys terrapin terrapin*) hatching success among variably oiled nesting sites along the Patuxent River following the Chalk Point Oil Spill of April 7, 2000: Final report. 16 pp.
- Woods & Poole Economics, Inc. 2013. The 2013 complete economic and demographic data source (CEDDS) on CD-ROM.
- Woods & Poole Economics, Inc. 2014. The 2014 complete economic and demographic data source (CEDDS) on CD-ROM.
- WorkBoat.com. 2014. Harvey Gulf breaks ground on LNG facility. Internet website: <u>http://www.workboat.com/newsdetail.aspx?id=23605</u>. Posted February 17, 2014. Accessed February 18, 2014.
- Workboat.com. 2013. OSV day rates report. Internet website: <u>www.workboat.com</u>. Accessed October 29, 2013.
- Wright, M.D., P. Goodman, and T.C. Cameron. 2010. Exploring behavioural responses of shorebirds to impulsive noise. Wildfowl 60:150-167.
- Wu, D., Z. Wang, B. Hollebone, S. McIntosh, T. King, P. Hodson. 2012a. Comparative toxicity of four chemically dispersed and undispersed crude oils to rainbow trout embryos. Environmental Toxicology and Chemistry 31(4):754-765.
- Wu, W., P.D. Biber, M.S. Peterson, and C. Gong. 2012b. Modeling photosynthesis of Spartina alterniflora (smooth cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference. Environmental Research Letters 7(4).
- Wyers, S.C., H.R. Frith, R.E. Dodge, S.R. Smith, A.H. Knap, and T.D. Sleeter. 1986. Behavioral effects of chemically dispersed oil and subsequent recovery in *Diploria strigosa*. Marine Ecology 7:23-42.
- Yarwood, G., G. Mansell, M. Jimenez, and S. Lau. 2004 (unpublished). 2000 Gulf-wide emissions inventory—OCS on-shore impacts modeling (Texas), a preliminary look. Prepared for the U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. Prepared by ENVIRON International Corporation, Novato, CA. September 1, 2004.
- Yoshioka, P.M. and B.B. Yoshioka. 1987. Variable effects of Hurricane David on the shallow water gorgonians of Puerto Rico. Bulletin of Marine Science 40(1):132-144.
- Yuro, A.M. 2011. The impact of storm surge from successive hurricanes on the Alabama beach mouse population. M.S. Thesis, Geography Dept., University of Alabama, Tuscaloosa.
- Zengel, S. and J. Michel. 2013. Deepwater Horizon oil spill: Salt marsh oiling conditions, treatment testing, and treatment history in northern Barataria Bay, Louisiana (Interim Report October 2011). U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Emergency Response Division, Seattle, WA. NOAA Technical Memorandum NOS OR&R 42. 74 pp.
- Zenz House, K., D.P. Schrag, C.F. Harvey, and K.A. Lackner. 2006. Permanent carbon dioxide storage in deep-sea sediments. Proceedings of the National Academy of Sciences 103(33):12291-12295.
- Zieman, J.C. 1976. The ecological effects of physical damage from motor boats on turtle grass beds in southern Florida. Aquatic Botany 2:127-139.

- Zieman, J.C., R. Orth, R.C. Phillips, G. Thayer, and A. Thorhaug. 1984. The effects of oil on seagrass ecosystems. In: Cairns, J., Jr. and A.L. Buikema, Jr., eds. Restoration of habitats impacted by oil spills. Boston, MA: Butterworth Publishers.
- Zuijdgeest, A. and M. Huettel. 2012. Dispersants as used in response to the MC252-spill lead to higher mobility of polycyclic aromatic hydrocarbons in oil-contaminated Gulf of Mexico sand. PLoS ONE 7(11):e50549. doi:10.1371/journal.pone.0050549.

CHAPTER 7

PREPARERS

7. PREPARERS

Gary D. Goeke, Chief, Environmental Assessment Section Lissa Lyncker, Unit Supervisor, Environmental Scientist Tershara Matthews, Unit Supervisor, Environmental Scientist

Brian Cameron, NEPA Coordinator, Senior Environmental Scientist Poojan Tripathi, Headquarters' Coordinator, Environmental Protection Specialist

Pat Adkins, Information Management Specialist Bruce Baird, Marine Biologist Mark Belter, Marine Biologist Darice Breeding, Environmental Protection Specialist Alicia Caporaso, Marine Archaeologist Bruce Cervini, Physical Scientist Sindey Chaky, Environmental Protection Specialist Ross Del Rio, Environmental Scientist Chris DuFore, Oceanographer Donald (Tre) W. Glenn IIÎ, Protected Species Biologist Mike Gravois, Geographer Allison Hernandez, Protected Species Biologist Jose Hernandez, Physical Scientist Mark Jensen, Economist Jack Irion, Unit Supervisor, Marine Archaeologist Agatha-Marie Kaller, Unit Supervisor, Marine Biologist Carla Langley, Geographer Jessica Mallindine, Protected Species Biologist Stacie Merritt, Physical Scientist Margaret Metcalf, Chief, Physical/Chemical Sciences Section Deborah Miller, Technical Editor Megan Milliken, Economist Mike Miner, Geologist David Moran, Biologist Michelle Nannen, Marine Biologist S. Erin O'Reilly, Physical Scientist Christopher Oos, Geographer Steve Pomes, Librarian Catherine Rosa, Environmental Assessment Program Specialist Scott Sorset, Marine Archaeologist Shane Stradley, Geographer Ariel White, Environmental Scientist

CHAPTER 8

GLOSSARY

8. GLOSSARY

- Acute—Sudden, short term, severe, critical, crucial, intense, but usually of short duration.
- Anaerobic—Capable of growing in the absence of molecular oxygen.
- **Annular preventer**—A component of the pressure control system in the BOP that forms a seal in the annular space around any object in the wellbore or upon itself, enabling well control operations to commence.
- Anthropogenic—Coming from human sources, relating to the effect of humankind on nature.
- **API gravity**—A standard adopted by the American Petroleum Institute for expressing the specific weight of oil.
- Aromatic—Class of organic compounds containing benzene rings or benzenoid structures.
- Attainment area—An area that is shown by monitored data or by air-quality modeling calculations to be in compliance with primary and secondary ambient air quality standards established by USEPA.
- **Barrel (bbl)**—A volumetric unit used in the petroleum industry; equivalent to 42 U.S. gallons or 158.99 liters.
- Benthic—On or in the bottom of the sea.
- **Biological Opinion**—The FWS or NMFS evaluation of the impact of a proposed action on endangered and threatened species, in response to formal consultation under Section 7 of the Endangered Species Act.
- **Block**—A geographical area portrayed on official BOEM protraction diagrams or leasing maps that contains approximately 2,331 ha (9 mi²).
- **Blowout**—An uncontrolled flow of fluids below the mudline from appurtenances on a wellhead or from a wellbore.
- **Blowout preventer (BOP)**—One of several valves installed at the wellhead to prevent the escape of pressure either in the annular space between the casing and drill pipe or in open hole (i.e., hole with no drill pipe) during drilling completion operations. Blowout preventers on jackup or platform rigs are located at the water's surface; on floating offshore rigs, BOP's are located on the seafloor.

- **Bottom kill**—A wild well-control procedure involving the intersection of an uncontrolled well with a relief well for the purpose of pumping heavy mud or cement into the wild well to stanch the flow of oil or gas (the wellcontrol strategy for the *Macondo* spill deployed in mid-July 2010 that resulted in the successful capping of the well).
- **Cetacean**—Aquatic mammal of the order Cetacea, such as whales, dolphins, and porpoises.
- **Chemosynthetic**—Organisms that obtain their energy from the oxidation of various inorganic compounds rather than from light (photosynthetic).
- **Coastal waters**—Waters within the geographical areas defined by each State's Coastal Zone Management Program.
- **Coastal wetlands**—forested and nonforested habitats, mangroves, and marsh islands exposed to tidal activity. These areas directly contribute to the high biological productivity of coastal waters by input of detritus and nutrients, by providing nursery and feeding areas for shellfish and finfish, and by serving as habitat for birds and other animals.
- Coastal zone—The coastal waters (including the lands therein and thereunder) and the adjacent shorelands (including the waters therein and thereunder) strongly influenced by each other and in proximity to the shorelines of several coastal states; the zone includes islands, transitional and intertidal areas, salt marshes, wetlands, and beaches, and it extends seaward to the outer limit of the United States territorial sea. The zone extends inland from the shorelines only to the extent necessary to control shorelands, the uses of which have a direct and significant impact on the coastal waters. Excluded from the coastal zone are lands the use of which is by law subject to the discretion of or which is held in trust by the Federal Government, its officers, or agents. See also State coastal zone boundaries.
- **Completion**—Conversion of a development well or an exploration well into a production well.
- **Condensate**—Liquid hydrocarbons produced with natural gas; they are separated from the gas by cooling and various other means. Condensates generally have an API gravity of 50°-120°.

- **Continental margin**—The ocean floor that lies between the shoreline and the abyssal ocean floor, includes the continental shelf, continental slope, and continental rise.
- **Continental shelf**—General term used by geologists to refer to the continental margin province that lies between the shoreline and the abrupt change in slope called the shelf edge, which generally occurs in the Gulf of Mexico at about the 200-m (656-ft) water depth. The continental shelf is characterized by a gentle slope (about 0.1°). This is different from the juridical term used in Article 76 of the Convention on the Law of the Sea (see the definition of Outer Continental Shelf).
- **Continental slope**—The continental margin province that lies between the continental shelf and continental rise, characterized by a steep slope (about $3^{\circ}-6^{\circ}$).
- **Critical habitat**—Specific areas essential to the conservation of a protected species and that may require special management considerations or protection.
- **Crude oil**—Petroleum in its natural state as it emerges from a well or after it passes through a gas-oil separator, but before refining or distillation. An oily, flammable, bituminous liquid that is essentially a complex mixture of hydrocarbons of different types with small amounts of other substances.
- **Delineation well**—A well that is drilled for the purpose of determining the size and/or volume of an oil or gas reservoir.
- **Demersal**—Living at or near the bottom of the sea.
- **Development**—Activities that take place following discovery of economically recoverable mineral resources, including geophysical surveying, drilling, platform construction, operation of onshore support facilities, and other activities that are for the purpose of ultimately producing the resources.
- **Development and Production Plan (DPP)**—A document that must be prepared by the operator and submitted to BOEM for approval before any development and production activities are conducted on a lease or unit in any OCS area other than the western Gulf of Mexico.

- **Development Operations Coordination Document (DOCD)**—A document that must be prepared by the operator and submitted to BOEM for approval before any development or production activities are conducted on a lease in the western Gulf of Mexico.
- **Development well**—A well drilled to a known producing formation to extract oil or gas; a production well; distinguished from a wildcat or exploration well and from an offset well.
- **Direct employment**—Consists of those workers involved the primary industries of oil and gas exploration, development, and production operations (Standard Industrial Classification Code 13—Oil and Gas Extraction).
- **Discharge**—Something that is emitted; flow rate of a fluid at a given instant expressed as volume per unit of time.
- **Dispersant**—A suite of chemicals and solvents used to break up an oil slick into small droplets, which increases the surface area of the oil and hastens the processes of weathering and microbial degradation.
- **Dispersion**—A suspension of finely divided particles in a medium.
- **Drilling mud**—A mixture of clay, water or refined oil, and chemical additives pumped continuously downhole through the drill pipe and drill bit, and back up the annulus between the pipe and the walls of the borehole to a surface pit or tank. The mud lubricates and cools the drill bit, lubricates the drill pipe as it turns in the wellbore, carries rock cuttings to the surface, serves to keep the hole from crumbling or collapsing, and provides the weight or hydrostatic head to prevent extraneous fluids from entering the well bore and to downhole pressures; also called drilling fluid.
- **Economically recoverable resources**—An assessment of hydrocarbon potential that takes into account the physical and technological constraints on production and the influence of costs of exploration and development and market price on industry investment in OCS exploration and production.
- **Effluent**—The liquid waste of sewage and industrial processing.
- **Effluent limitations**—Any restriction established by a State or the USEPA on quantities, rates, and concentrations of chemical, physical,

biological, and other constituents discharged from point sources into U.S. waters, including schedules of compliance.

- **Epifaunal**—Animals living on the surface of hard substrate.
- **Essential habitat**—Specific areas crucial to the conservation of a species and that may necessitate special considerations.
- **Estuary**—Coastal semienclosed body of water that has a free connection with the open sea and where freshwater meets and mixes with seawater.
- **Eutrophication**—Enrichment of nutrients in the water column by natural or artificial methods accompanied by an increase of respiration, which may create an oxygen deficiency.
- **Exclusive Economic Zone (EEZ)**—The maritime region extending 200 nmi (230 mi; 370 km) from the baseline of the territorial sea, in which the United States has exclusive rights and jurisdiction over living and nonliving natural resources.
- **Exploration Plan (EP)**—A plan that must be prepared by the operator and submitted to BOEM for approval before any exploration or delineation drilling is conducted on a lease.
- **Exploration well**—A well drilled in unproven or semi-proven territory to determining whether economic quantities of oil or natural gas deposit are present.
- False crawls—Refers to when a female sea turtle crawls up on the beach to nest (perhaps) but does not and returns to the sea without laying eggs.
- **Field**—An accumulation, pool, or group of pools of hydrocarbons in the subsurface. A hydrocarbon field consists of a reservoir in a shape that will trap hydrocarbons and that is covered by an impermeable, sealing rock.
- Floating production, storage, and offloading (FPSO) system—A tank vessel used as a production and storage base; produced oil is stored in the hull and periodically offloaded to a shuttle tanker for transport to shore.
- **Gathering lines**—A pipeline system used to bring oil or gas production from a number of separate wells or production facilities to a central trunk pipeline, storage facility, or processing terminal.

- **Geochemical**—Of or relating to the science dealing with the chemical composition of and the actual or possible chemical changes in the crust of the earth.
- **Geophysical survey**—A method of exploration in which geophysical properties and relationships are measured remotely by one or more geophysical methods.
- **Habitat**—A specific type of environment that is occupied by an organism, a population, or a community.
- **Hermatypic coral**—Reef-building corals that produce hard, calcium carbonate skeletons and that possess symbiotic, unicellular algae within their tissues.
- **Harassment**—An intentional or negligent act or omission that creates the likelihood of injury to wildlife by annoying it to such an extent as to significantly disrupt normal behavior patterns that include, but are not limited to, feeding or sheltering.
- **Hydrocarbons**—Any of a large class of organic compounds containing primarily carbon and hydrogen. Hydrocarbon compounds are divided into two broad classes: aromatic and aliphatics. They occur primarily in petroleum, natural gas, coal, and bitumens.
- **Hypoxia**—Depressed levels of dissolved oxygen in water, usually resulting in decreased metabolism.
- **Incidental take**—Takings that result from, but are not the purpose of, carrying out an otherwise lawful activity (e.g., fishing) conducted by a Federal agency or applicant (see Taking).
- **Indirect employment**—Secondary or supporting oil- and gas-related industries, such as the processing of crude oil and gas in refineries, natural gas plants, and petrochemical plants.
- **Induced employment**—Tertiary industries that are created or supported by the expenditures of employees in the primary or secondary industries (direct and indirect employment), including consumer goods and services such as food, clothing, housing, and entertainment.
- **Infrastructure**—The facilities associated with oil and gas development, e.g., refineries, gas processing plants, etc.
- Jack-up rig—A barge-like, floating platform with legs at each corner that can be lowered to the

sea bottom to raise the platform above the water.

- **Kick**—A deviation or imbalance, typically sudden or unexpected, between the downward pressure exerted by the drilling fluid and the upward pressure of in-situ formation fluids or gases.
- **Landfall**—The site where a marine pipeline comes to shore.
- Lease—Authorization that is issued under Section 8 or maintained under Section 6 of the Outer Continental Shelf Lands Act and that authorizes exploration for, and development and production of, minerals.
- **Lease sale**—The competitive auction of leases granting companies or individuals the right to explore for and develop certain minerals under specified conditions and periods of time.
- Lease term—The initial period for oil and gas leases, usually a period of 5, 8, or 10 years depending on water depth or potentially adverse conditions.
- **Lessee**—A party authorized by a lease, or an approved assignment thereof, to explore for and develop and produce the leased deposits in accordance with regulations at 30 CFR part 250 and 30 CFR part 550.
- **Lower marine riser package**—The head assembly of a subsurface well at the point where the riser connects to a blowout preventer.
- *Macondo*—Prospect name given by BP to the Mississippi Canyon Block 252 exploration well that the *Deepwater Horizon* rig was drilling when a blowout occurred on April 20, 2010.
- *Macondo* spill—The name given to the oil spill that resulted from the explosion and sinking of the *Deepwater Horizon* rig from the period between April 24, 2010, when search and recovery vessels on site reported oil at the sea surface, and September 19, 2010, when the uncontrolled flow from the *Macondo* well was capped.
- **Marshes**—Persistent, emergent, nonforested wetlands characterized by predominantly cordgrasses, rushes, and cattails.
- **Military warning area**—An area established by the U.S. Department of Defense within which military activities take place.

- **Minerals**—As used in this document, minerals include oil, gas, sulphur, and associated resources, and all other minerals authorized by an Act of Congress to be produced from public lands as defined in Section 103 of the Federal Land Policy and Management Act of 1976.
- **Naturally occurring radioactive materials** (NORM)—naturally occurring material that emits low levels of radioactivity, originating from processes not associated with the recovery of radioactive material. The radionuclides of concern in NORM are Radium-226, Radium-228, and other isotopes in the radioactive decay chains of uranium and thorium.
- **Nepheloid**—A layer of water near the bottom that contains significant amounts of suspended sediment.
- Nonattainment area—An area that is shown by monitoring data or by air-quality modeling calculations to exceed primary or secondary ambient air quality standards established by USEPA.
- Nonhazardous oil-field wastes (NOW)—Wastes generated by exploration, development, or production of crude oil or natural gas that are exempt from hazardous waste regulation under the Resource Conservation and Recovery Act (*Regulatory Determination for Oil and Gas and Geothermal Exploration, Development and Production Wastes*, dated June 29, 1988, 53 FR 25446; July 6, 1988). These wastes may contain hazardous substances.
- **Offloading**—Unloading liquid cargo, crude oil, or refined petroleum products.
- **Operational discharge**—Any incidental pumping, pouring, emitting, emptying, or dumping of wastes generated during routine offshore drilling and production activities.
- **Operator**—An individual, partnership, firm, or corporation having control or management of operations on a leased area or portion thereof. The operator may be a lessee, designated agent of the lessee, or holder of operating rights under an approved operating agreement.
- **Organic matter**—Material derived from living plants or animals.
- Outer Continental Shelf (OCS)—All submerged lands that comprise the continental margin

adjacent to the United States and seaward of State offshore lands.

- **Pelagic**—Of or pertaining to the open sea; associated with open water beyond the direct influence of coastal systems.
- **Plankton**—Passively floating or weakly motile aquatic plants (phytoplankton) and animals (zooplankton).
- **Platform**—A steel or concrete structure from which offshore development wells are drilled.
- **Play**—A prospective subsurface area for hydrocarbon accumulation that is characterized by a particular structural style or depositional relationship.
- **Primary production**—Organic material produced by photosynthetic or chemosynthetic organisms.
- **Produced water**—Total water discharged from the oil and gas extraction process; production water or production brine.
- **Production**—Activities that take place after the successful completion of any means for the extraction of resources, including bringing the resource to the surface, transferring the produced resource to shore, monitoring operations, and drilling additional wells or workovers.
- **Province**—A spatial entity with common geologic attributes. A province may include a single dominant structural element such as a basin or a fold belt, or a number of contiguous related elements.
- **Ram**—The main component of a blowout preventer designed to shear casing and tools in a wellbore or to seal an empty wellbore. A blind shear ram accomplishes the former and a blind ram the latter.
- **Recoverable reserves**—The portion of the identified hydrocarbon or mineral resource that can be economically extracted under current technological constraints.
- **Recoverable resource estimate**—An assessment of hydrocarbon or mineral resources that takes into account the fact that physical and technological constraints dictate that only a portion of resources can be brought to the surface.
- **Recreational beaches**—Frequently visited, sandy areas along the Gulf of Mexico shorefront that support multiple recreational activities at the

land-water interface. Included are National Seashores, State Park and Recreational Areas, county and local parks, urban beachfronts, and private resorts.

- **Refining**—Fractional distillation of petroleum, usually followed by other processing (e.g., cracking).
- **Relief**—The difference in elevation between the high and low points of a surface.
- Reserves—Proved oil or gas resources.
- **Rig**—A structure used for drilling an oil or gas well.
- **Riser insertion tube tool**—A "straw" and gasket assembly improvised during the *Macondo* spill response that was designed to siphon oil and gas from the broken riser of the *Deepwater Horizon* rig lying on the sea bottom (an early recovery strategy for the *Macondo* spill in May 2010).
- **Royalty**—A share of the minerals produced from a lease paid in either money or "in-kind" to the landowner by the lessee.
- **Saltwater intrusion**—Saltwater invading a body of freshwater.
- **Sciaenids**—Fishes belonging to the croaker family (Sciaenidae).
- Seagrass beds—More or less continuous mats of submerged, rooted, marine, flowering vascular plants occurring in shallow tropical and temperate waters. Seagrass beds provide habitat, including breeding and feeding grounds, for adults and/or juveniles of many of the economically important shellfish and finfish.
- **Sediment**—Material that has been transported and deposited by water, wind, glacier, precipitation, or gravity; a mass of deposited material.
- **Seeps (hydrocarbon)**—Gas or oil that reaches the surface along bedding planes, fractures, unconformities, or fault planes.
- **Sensitive area**—An area containing species, populations, communities, or assemblages of living resources, that is susceptible to damage from normal OCS oil- and gas-related activities. Damage includes interference with established ecological relationships.
- **Shear ram**—The component in a BOP that cuts, or shears, through the drill pipe and forms a

seal against well pressure. Shear rams are used in floating offshore drilling operations to provide a quick method of moving the rig away from the hole when there is no time to trip the drill stem out of the hole.

- **Shoreline Cleanup and Assessment Team**—The on-the-scene responders for post-spill shoreline protection who established priorities, standardized procedures, and terminology.
- **Spill of National Significance**—Designation by the USEPA Administrator under 40 CFR § 300.323 for discharges occurring in the inland zone and the Commandant of the U.S. Coast Guard for discharges occurring in the coastal zone, authorizing the appointment of a National Incident Commander for spillresponse activity.
- State coastal zone boundary—The State coastal zone boundaries for each CZMA-affected State are defined at <u>http://</u> <u>coastalmanagement.noaa.gov/mystate/docs/</u> <u>StateCZBoundaries.pdf</u>.
- **Structure**—Any OCS facility that extends from the seafloor to above the waterline; in petroleum geology, any arrangement of rocks that may hold an accumulation of oil or gas.
- Subarea—A discrete analysis area.
- **Subsea isolation device**—An emergency disconnection and reconnection assembly for the riser at the seafloor.
- **Supply vessel**—A boat that ferries food, water, fuel, and drilling supplies and equipment to an offshore rig or platform and returns to land with refuse that cannot be disposed of at sea.

- **Taking**—To harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect any endangered or threatened species, or to attempt to engage in any such conduct (including actions that induce stress, adversely impact critical habitat, or result in adverse secondary or cumulative impacts). Harassments are the most common form of taking associated with OCS Program activities.
- **Tension-leg platform** (**TLP**)—A production structure that consists of a buoyant platform tethered to concrete pilings on the seafloor with flexible cable.
- **Total dissolved solids**—The total amount of solids that are dissolved in water.
- **Total suspended particulate matter**—The total amount of suspended solids in water.
- **Total suspended solids**—The total amount of suspended solids in water.
- **Trunkline**—A large-diameter pipeline receiving oil or gas from many smaller tributary gathering lines that serve a large area; common-carrier line; main line.
- **Turbidity**—Reduced water clarity due to the presence of suspended matter.
- **Volatile organic compound (VOC)**—Any organic compound that is emitted to the atmosphere as a vapor.
- Water test areas—Areas within the eastern Gulf where U.S. Department of Defense research, development, and testing of military planes, ships, and weaponry take place.
- Weathering (of oil)—The aging of oil due to its exposure to the atmosphere, causing marked alterations in its physical and chemical makeup.

FIGURES

Figure 1-1. Gulf of Mexico Planning Areas, Proposed CPA Lease Sale Area, and Locations of Major Cities.

Figures

Figure 2-1. Location of Proposed Stipulations and Deferrals.

Figures-4

Figure 2-2. Military Warning Areas and Eglin Water Test Areas in the Gulf of Mexico.

Figures

Figure 3-1. Offshore Subareas in the Gulf of Mexico.

Figures-6

TABLES

Projected Oil and Gas in the Gulf of Mexico OCS

	Typical Lease Sale	OCS Cumulative (2012-2051)
Western Planning Area		
Reserve/Resource Production		
Oil (BBO)	0.116-0.200	2.510-3.696
Gas (Tcf)	0.538-0.938	12.539-18.434
Central Planning Area		
Reserve/Resource Production		
Oil (BBO)	0.460-0.894	15.825-21.733
Gas (Tcf)	1.939-3.903	63.347-92.691
Eastern Planning Area		
Reserve/Resource Production		
Oil (BBO)	0-0.071	0-0.211
Gas (Tcf)	0-0.162	0-0.502

BBO = billion barrels of oil.

Tcf = trillion cubic feet.

Offshore Scenario Information Related to a Typical Lease Sale in the Central Planning Area

	Offshore Subareas ¹						Tatal CDA ²
	0-60 m	60-200 m	200-800 m	800-1,600 m	1,600-2,400 m	>2,400 m	Total CPA
Wells Drilled							
Exploration and Delineation Wells	62-121	24-46	21-42	15-29	18-36	28-55	168-329
Development and Production Wells	78-152	32-58	26-53	20-38	24-46	35-70	215-417
Producing Oil Wells	11-21	5-8	16-32	12-23	15-29	22-43	81-156
Producing Gas Wells	58-115	23-44	7-15	5-10	6-11	9-19	108-241
Production Structures							
Installed	28-54	3-6	1-2	1	1-2	1-2	35-67
Removed Using Explosives	18-36	2-4	0	0	0	0	20-40
Total Removed	25-49	3-5	1-2	1	1-2	1-2	32-61
Method of Transportation ³							
Percent Piped	>99%	>99%	>99%	>99%	90->9	9%	93->99%
Percent Barged	<1%	0%	0%	0%	0%		<1%
Percent Tankered ⁴	0%	0%	0%	0%	0-10%		0-6%
Length of Installed Pipelines (km) ⁵	216-586	NA	NA	NA	NA	NA	628-1,870
Service-Vessel Trips (1,000's round trips)	32-61	5-10	3-6	17-19	18-35	19-37	94-168
Helicopter Operations (1,000's operations)	557-1,470	63-163	21-54	14-36	21-54	21-54	696-1,815

¹ See **Figure 3-1**.

² Subareas totals may not add up to the planning area total because of rounding.

³ 100% of gas is assumed to be piped.

⁴ Tankering is forecasted to occur only in water depths >1,600 m (5,249 ft).

⁵ Projected length of pipelines does not include length in State waters.

NA = not available.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Tables-4

Offshore Scenario Information Related to OCS Program Activities in the Gulf of Mexico (WPA, CPA, and EPA) for 2012-2051

	Offshore Subareas ¹				Tatal OCS^2		
	0-60 m	60-200 m	200-800 m	800-1,600 m	1,600-2,400 m	>2,400 m	Total OCS
Wells Drilled							
Exploration and Delineation Wells	2,730-3,900	990-1,390	920-1,350	700-960	770-1,030	790-1,170	6,910-9,827
Development and Production Wells	3,380-4,820	1,240-1,730	1,130-1,670	860-1,190	950-1,280	970-1,450	8,530-12,180
Producing Oil Wells	520-701	215-278	704-1,030	574-783	663-873	620-915	3,296-4,605
Producing Gas Wells	2,510-3,629	885-1,272	306-470	196-287	187-267	250-385	4,334-6,320
Production Structures							
Installed	1,210-1,720	110-160	26-40	25-30	32-33	32-38	1,435-2,026
Removed Using Explosives	796-1,139	69-104	3-4	0	0	0	868-1,247
Total Removed	1,090-1,560	100-150	24-34	20-28	23-30	22-33	1,279-1,837
Method of Transportation ³							
Percent Piped	>99%	>99%	>99%	>99%	87->9	9%	92->99%
Percent Barged	<1%	0%	0%	0%	0%	, D	<1%
Percent Tankered ⁴	0%	0%	0%	0%	0-13%		0-7%
Length of Installed Pipelines (km) ⁵	10,482-21,121	NA	NA	NA	NA	NA	30,428-69,749
Service-Vessel Trips (1,000's round trips)	1,366-1,942	196-280	111-162	466-619	584-626	587-719	3,310-4,382
Helicopter Operations (1,000's operations)	24,221-47,322	2,297-4,444	595-1,174	574-1,111	676-1,287	888-1,738	28,710-55,605

¹ See Figure 3-1.

² Subareas totals may not add up to the planning area total because of rounding.

³ 100% of gas is assumed to be piped.

⁴ Tankering is forecasted to occur only in water depths >1,600 m (5,249 ft).

⁵ Projected length of pipelines does not include length in State waters.

NA = not available.

Offshore Scenario Information Related to OCS Program Activities in the Central Planning Area for 2012-2051

	Offshore Subareas ¹					Total CDA^2	
	0-60 m	60-200 m	200-800 m	800-1,600 m	1,600-2,400 m	>2,400 m	Total CFA
Wells Drilled							
Exploration and Delineation Wells	2,230-3,160	820-1,160	700-1,030	540-730	700-940	730-1,090	5,720-8,110
Development and Production Wells	2,760-3,900	1,020-1,440	860-1,270	670-900	870-1,160	900-1,350	7,080-10,020
Producing Oil Wells	446-592	188-240	534-775	449-592	609-796	575-848	2,801-3,843
Producing Gas Wells	2,034-2,918	722-1,050	236-365	151-218	171-244	235-362	3,549-5,157
Production Structures							
Installed	990-1,390	90-130	20-30	20-25	30	30-35	1,180-1,640
Removed Using Explosives	650-920	55-83	2-3	0	0	0	707-1,006
Total Removed	890-1,260	80-120	18-26	16-21	21-27	21-31	1,046-1,485
Method of Transportation ³							
Percent Piped	>99%	>99%	>99%	>99%	90->9	9%	93->99%
Percent Barged	<1%	0%	0%	0%	0%)	>1%
Percent Tankered ⁴	0%	0%	0%	0%	0-10%		0-6%
Length of Installed Pipelines (km) ⁵	8,515-16,993	NA	NA	NA	NA	NA	25,204-57,177
Service-Vessel Trips (1,000's round trips)	1,117-1,570	161-230	85-126	371-469	546-569	549-663	2,829-3,627
Helicopter Operations (1,000's operations)	19,975-37,825	1,902-3,560	404-801	404-668	595-801	595-890	23,780-44,500

¹ See Figure 3-1.

² Subareas totals may not add up to the planning area total because of rounding.

³ 100% of gas is assumed to be piped.

⁴ Tankering is forecasted to occur only in water depths >1,600 m (5,249 ft).

⁵ Projected length of pipelines does not include length in State waters.

NA = not available.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Tables-6

Year	Shelf 0-60 m	Shelf 60-200 m	Slope 200-400 m	Deepwater 400-800 m	Deepwater 800-1,600 m	Ultra- Deepwater 1,601-2,400 m	Ultra- Deepwater >2,400 m	Total
2000	370.6	193.1	35.5	25.6	12.2	0.0	0.0	637.0
2001	364.2	185.2	35.0	32.0	16.6	0.0	0.0	633.0
2002	344.6	180.4	32.5	35.2	21.4	0.0	0.0	614.1
2003	359.4	182.9	31.2	39.0	35.5	0.2	0.0	648.2
2004	346.7	160.5	29.3	36.9	39.2	1.9	0.0	614.5
2005	270.1	113.5	23.1	33.5	43.0	5.8	0.0	489.0
2006	260.3	99.7	20.6	35.1	61.5	12.4	0.0	489.6
2007	307.0	139.4	22.2	40.0	70.3	15.5	0.1	594.5
2008	252.7	118.6	15.9	32.7	60.1	16.5	0.1	496.6
2009	263.9	108.3	19.9	39.2	65.3	25.0	0.1	521.7
2010	275.8	115.7	20.9	40.7	56.7	32.5	0.1	542.4
2011	271.3	116.9	20.5	39.7	67.7	32.2	0.1	548.4
2012	237.2	109.0	20.8	35.0	71.3	31.8	0.1	505.2
2013	242.0	103.0	19.9	31.8	75.4	35.3	0.3	507.7

Annual Volume of Produced Water Discharged by Depth (millions of bbl)

Source: Langley, official communication, 2014.

Table 3-6

Annual Summary of Number and Total Volume of Oil Spilled into the Gulf of Mexico, 2001-2011

Year	Number of Spills in the Gulf of Mexico	Volume of Spills in the Gulf of Mexico bbl (gallons)
2001	1,728	3,187 (133,872)
2002	733	2,535 (106,465)
2003	801	1,181 (49,617)
2004	908	760 (31,935)
2005	804	44,141 (1,853,919)
2006	868	2,947 (123,788)
2007	616	1,560 (65,511)
2008	523	355 (14,928)
2009	454	212 (8,898)
2010	455	4,928,389 (206,992,317)
2011	498	483 (20,276)

Note: The volume does not include oil spilled in rivers that enter the Gulf of Mexico. The reported spills include spills of crude and refined hydrocarbon products.

Source: U.S. Dept. of Homeland Security, CG, 2012.

	Canal Maintained Depth		Traffic	Number of Trips		
Waterway	Length (km)	(ft)	(1,000 short tons)	Foreign	Domestic	
Gulf Intracoastal Waterway (GIWW)						
Apalachee Bay to Panama City, FL	230	12	661	0	375	
Panama City to Pensacola Bay, FL	187	12	1,812	0	1,306	
Pensacola Bay, FL to Mobile Bay, AL	78	12	4,733	0	4,559	
Mobile Bay, AL to New Orleans, LA	228	12, 14	17,295	0	21,952	
Mississippi River, LA to Sabine River, TX	452	12, 10	63,384	0	52,470	
Sabine River to Galveston, TX	143	12	59,132	0	33,756	
Galveston to Corpus Christi, TX	322	11, 11, 10.2	25,561	0	19,333	
Corpus Christi, TX to Mexican Border	226	10, 12, 7	2,212	0	1,641	
Morgan City - Port Allen Route, LA	109	10	16,985	0	8,958	
Florida Ha	arbors, Ch	annels, and Waterways				
Escambia and Conecuh Rivers, FL and AL; Escambia Bay, FL	12	10	2,273	0	2,789	
La Grange Bayou, FL	3	9	249	0	81	
Panama City Harbor, FL	9	34, 32, 10	2,142	313	879	
Pensacola Harbor, FL	21	35, 33, 15, 14	752	33	336	
St. Marks River, FL	61	9	62	0	28	
Tampa Harbor, FL	140.5	45, 43, 34, 12, 9	31,408	1,190	822	
Port Manatee, FL	5.1	40	3,724	17	231	
Alabama H	Iarbors, Cl	nannels, and Waterways				
Mobile Harbor, AL	71	47, 45, 40, 13-39	55,552	1,480	27,110	
Theodore Ship Channel, AL	14	4	5,567	1,003	233	
Mississippi	Harbors, C	Channels, and Waterway	8			
Biloxi Harbor, MS	39	12, 10, 12	1,612	2	1,828	
Gulfport Harbor, MS	34	30, 32, 8	2,151	2,119	1,899	
Pascagoula Harbor, MS	18	40, 38, 38, 22, 12	36,863	637	3,216	
Bayou Casotte, MS	2	38	36,557	558	3,019	
Louisiana F	Harbors, C	hannels, and Waterways				
Atchafalaya River (Lower), LA	62	20	1,225	471	8,618	
Barataria Bay Waterway, LA	71	16	156	0	3,056	
Bayou Lafourche and Bayou Lafourche- Jump Waterway	85	28, 27, 27, 9	4,754	2,083	15,037	
Bayou Little Caillou, LA	56	12	134	0	473	
Bayou Teche, LA	181	3,3,4,7	733	0	576	
Bayou Teche and Vermilion River, LA	88	8,11,9,8,5	613	23	2,627	
Bayou Terrebonne, LA	61	10	174	0	681	
Calcasieu River and Pass, LA	186	42, 42, 41-42, 36, 12, 7	54,247	1,558	61,847	

Waterway Length, Depth, Traffic, and Number of Trips for 2011

	Canal	Maintained Depth	Traffic	Numbe	r of Trips
Waterway	Length (km)	(ft)	(1,000 short tons)	Foreign	Domestic
Louisiana Harbors, Channels, and Waterways (continued)					
Freshwater Bayou, LA	39	12	442	112	6,121
Houma Navigation Canal, LA	62	16, 15, 16	465	35	1,668
Mermentau River, LA	131	4, 7, 12, 10, 10, 9, 11, 6, 8, 4, 4, 7	321	0	1,298
Mermentau River, Bayou Nezpique, and Des Cannes, LA	122	9, 14, 10	394	0	499
Mississippi River, Baton Rouge LA to the Mouth of Passes	461	-	446,346	233,019	5,611
Port of New Orleans, LA	88	45, 30, 32, 36, 37, 12	77,175	25,881	1,789
Port of Baton Rouge, LA	152	45, 40, 9, 12	57,872	51,140	51,797
Port of South Louisiana	91	45	246,509	78,410	2,528
Port of Plaquemines, LA	138	45	54,093	71,245	604
Passes of the Mississippi River, LA	60.18	13, 45	227,981	3,264	5,596
Mississippi River Gulf Outlet via Venice Vicinity Consolidation	22	16, 14, 14	1,881	38	7,408
Petit Anse, Tigre, and Carlin Bayous	28	6, 9, 5, 7	2,724	0	2,943
Port of Iberia	14	13	2,200	NA	NA
Port of Morgan City, LA	-	12	1,558	212	10,363
Waterway from Empire, LA to the Gulf of Mexico	17	6, 9, 14	865	0	7,374
Waterway from Intracoastal Waterway to Bayou Dulac, LA	61	14	75	0	893
Texas H	arbors, Cha	nnels, and Waterways			
Brazos Island Harbor, TX	50	36.5, 31, 38, 12, 14, 7	5,907	236	1,273
Cedar Bayou, TX	23	11	1,177	0	1,075
Channel to Aransas Pass, TX	12	14	945	3	1,075
Channel to Port Bolivar, TX	17	12		0	18,111
Corpus Christi Ship Channel, TX	58	47, 45, 46, 47, 14, 9	70,538	1,415	99,280
Dickenson Bayou, TX	34	9	150	0	92
Freeport Harbor, TX	15	44, 37, 18, 40	23,312	866	2,966
Galveston Channel, TX	7	41	13,744	2,703	22,419
Houston Ship Channel, TX	119	45, 40, 32-39, 9, 7, 35-37, 7, 40, 12	237,799	6,029	79,118
Matagorda Ship Channel, TX	91	35, 9.8, 10, 12.8, 2	9,333	329	1,847
Sabine-Neches Waterway, TX	160	40, 37, 39, <u>32, 27, 20,</u> 9, 8	137,218	1,908	31,828
Texas City Channel, TX	14	43, 41, 42, 42	57,758	776	6,625

Table 3-7. Waterway Length, Depth, Traffic, and Number of Trips for 2011 (continued).

Source: U.S. Dept. of the Army, COE, 2011.

Spill Size	2005		2006		2007		2008	
(bbl)	Chemical	SBF	Chemical	SBF	Chemical	SBF	Chemical	SBF
50-<100	3	0	1	1	0	0	5	0
100-<500	2	5	1	4	0	1	4	1
500-<1,000	1	0	0	0	1	0	3	0
<u>≥</u> 1,000	0	0	0	0	0	1	0	1
Spill Size	2009		201	0	201	1	201	2
(bbl)	Chemical	SBF	Chemical	SBF	Chemical	SBF	Chemical	SBF
50-<100	1	1	0	2	0	1	1	2
100-<500	2	3	1	0	0	1	2	1
500-<1,000	0	0	0	0	0	0	1	0
<u>≥</u> 1,000	0	0	0	0	0	0	0	0

Number and Volume of Chemical and Synthetic-Based Fluid Spills in the Gulf of Mexico during 2005-2012

Notes: SBF = synthetic-based fluid.

The SBF fraction of the whole drilling fluid was recorded, not the total volume of drilling fluid.

Source: USDOI, BSEE, 2013.

Galveston District						
Veer	Amount Disposed of in ODMDS					
Y ear	yd ³	m ³				
2001	6,828,807	5,221,000				
2002	4,874,468	3,726,800				
2003	8,221,774	6,286,000				
2004	4,079,104	3,118,700				
2005	1,250,923	956,400				
2006	9,182,594	7,020,600				
2007	6,361,607	4,863,800				
2008	5,665,124	4,331,300				
2009	16,295,749	12,459,000				
2010	6,226,627	4,760,600				
Average	6,898,678	5,274,420				
	New Orleans District					
Voor	Amount Disposed of in ODMDS					
rear	yd ³	m ³				
2001	23,273,662	17,794,000				
2002	57,646,327	44,073,800				
2003	22,547,619	17,238,900				
2004	21,157,530	16,176,100				
2005	21,404,471	16,364,900				
2006	13,494,251	10,317,100				
2007	17,551,773	13,419,300				
2008	16,801,795	12,845,900				
2009	7,619,332	5,825,400				
2010	15,386,985	11,764,200				
Average	21,688,375	16,581,960				

Quantities of Dredged Materials Disposed of in Ocean Dredged-Material Disposal Sites between 2001 and 2010

ODMDS = ocean dredged-material disposal sites.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Vessel Type Tanker-Product^{2,3} 5,100 5,143 5,764 6,171 6,594 6,784 6,597 6,451 7,000 8,413 Tanker - Crude^{2,4} 3,698 4,303 4,343 4,227 4,361 4,614 4,574 4,502 5,150 5,626 Container 5 1,306 1,641 1,934 2,338 1,262 1,263 1,284 1,378 1,354 1,372 Dry Bulk⁶ 4,983 4,837 4,959 4,575 5,289 4,988 4,563 4,021 3,475 3,917 RO-RO (Roll-on 431 398 370 337 423 386 374 491 549 566 Roll-off)⁷ Gas⁸ 514 624 548 558 622 628 462 441 500 604 Combo⁹ 258 201 155 102 94 418 375 135 116 66 General¹⁰ 1,267 1,167 1,160 1,246 1,363 1,300 1,459 1,141 1,362 1,387 17,673 18,034 18,685 20,026 20,203 19,421 18,683 18,949 20,089 22,989 All Types

Table 3-10

Number of Vessel Calls at U.S. Gulf Ports Between 2002 and 2011¹

¹ The data in this report are only for oceangoing self-propelled vessels of 10,000 deadweight (DWT) capacity or greater. In 2005, these vessels accounted for 98% of the capacity calling at U.S. ports.

² Petroleum tankers and chemical tankers.

³ 10,000-69,999 DWT.

⁴ >70,000 DWT.

⁵ Container carriers and refrigerated container carriers.

⁶ Bulk vessels, bulk containerships, cement carriers, ore carriers, and wood-chip carriers.

⁷ RO/RO vessels, RO/RO containerships, and vehicle carriers.

⁸ Liquefied natural gas carriers, liquefied natural gas/liquefied petroleum gas carriers, and liquefied petroleum carriers.

⁹ Ore/bulk/oil carriers and bulk/oil carriers.

¹⁰ General cargo carriers, partial containerships, refrigerated ships, barge carriers, and livestock carriers.

Source: USDOT, MARAD, 2013.

Harbon Channel on Water	Veer	Volume	e Dredged
Harbor, Unannel, or Waterway	rear	yd ³	m ³
Sabine-Neches Waterway	2001	4,063,801	3,107,000
Freeport Harbor and Channel	2001	2,478,565	1,895,000
Matagorda Ship Channel	2001	285,656	218,400
Freeport Harbor and Channel	2002	1,996,455	1,526,400
Sabine-Neches Waterway	2002	2,878,013	2,200,400
Corpus Christi Ship Channel	2003	930,737	711,600
Sabine-Neches Waterway	2003	3,545,198	2,710,500
Freeport Harbor	2003	1,650,110	1,261,600
Galveston Harbor and Channel	2003	2,095,728	1,602,300
Freeport Harbor	2004	1,854,150	1,417,600
Matagorda Ship Channel	2004	365,180	279,200
Sabine-Neches Waterway	2004	1,859,774	1,421,900
Sabine-Neches Waterway	2005	1,062,709	812,500
Freeport Harbor	2005	188,214	143,900
Sabine-Neches Waterway	2006	1,523,762	1,165,000
Freeport Harbor	2006	3,427,221	2,620,300
Galveston Harbor and Channel	2006	3,744,661	2,863,000
Matagorda Ship Channel	2006	336,666	257,400
Corpus Christi Ship Channel	2006	149,760	114,500
Freeport Harbor	2007	2,427,817	1,856,200
Galveston Harbor	2007	2,939,094	2,247,100
Corpus Christi Ship Channel	2007	954,673	729,900
Sabine-Neches Waterway	2007	40,023	30,600
Sabine-Neches Waterway	2008	1,691,964	1,293,600
Freeport Harbor	2008	1,577,257	1,205,900
Galveston Harbor and Channel	2008	2,422,062	1,851,800
Freeport Harbor	2009	2,420,885	1,850,900
Corpus Christi Ship Channel	2009	118,108	90,300
Sabine-Neches Waterway	2009	5,811,876	4,443,500
Houston Ship Channel	2009	883,520	675,500
Galveston Harbor and Channel	2009	7,061,360	5,398,800
Corpus Christi Ship Channel	2010	791,964	605,500
Sabine-Neches Waterway	2010	2,669,395	2,040,900
Houston Ship Channel	2010	261,067	199,600
Galveston Harbor and Channel	2010	2,066,823	1,580,200
Freeport Harbor	2010	429,923	328,700
Total		69,004,172	52,757,500

Corps of Engineers' Galveston District Maintenance Dredging Activity for Federal Navigation Channels in Texas, 2001-2010*

* Dredged material disposed of in Ocean Dredged-Material Disposal Site.

		Volume Dredged			
Harbor, Channel, or Waterway	Year	yd ³	m ³		
Atchafalaya River Bar Channel, St. Mary Parish - Atchafalaya River and Bayous Chene, Boeuf, and Black, LA	2001	14,371,885	10,988,100		
Calcasieu River Bar Channel, Cameron Parish	2001	240,532	183,900		
Mississippi River Gulf Outlet Bar Channel	2001	1,449,732	1,108,400		
Mississippi River, Baton Rouge to Southwest Pass	2001	7,211,513	5,513,600		
Atchafalaya River Bar Channel, St. Mary Parish - Atchafalaya River and Bayous Chene, Boeuf, and Black, LA	2002	29,644,948	22,665,200		
Mississippi River, Baton Rouge to Southwest Pass	2002	15,758,312	12,048,100		
Mississippi River Gulf Outlet Bar Channel	2002	2,907,311	2,222,800		
Calcasieu River Bar Channel, Cameron Parish	2002	9,335,755	7,137,700		
Mississippi River Gulf Outlet	2003	2,265,369	1,732,000		
Calcasieu River and Pass Bar Channel, Cameron Parish	2003	1,703,736	1,302,600		
Atchafalaya River Bar Channel, St. Mary Parish - Atchafalaya River and Bayous Chene, Boeuf, and Black, LA	2003	11,700,921	8,946,000		
Mississippi River Southwest Pass	2003	6,877,593	5,258,300		
Mississippi River Gulf Outlet	2004	3,810,582	2,913,400		
Atchafalaya River Bar Channel	2004	10,818,708	8,271,500		
Calcasieu River and Pass Bar Channel, Cameron Parish	2004	688,766	526,600		
Mississippi River Southwest Pass	2004	5,839,474	4,464,600		
Mississippi River Gulf Outlet Bar Channel	2005	909,156	695,100		
Atchafalaya River Bar Channel	2005	12,811,239	9,794,900		
Calcasieu River and Pass Bar Channel	2005	1,683,724	1,287,300		
Mississippi River Southwest Pass	2005	6,000,351	4,587,600		
Atchafalaya River Bar Channel	2006	8,169,063	6,245,700		
Calcasieu River and Pass Bar Channel	2006	1,740,358	1,330,600		
Mississippi River Southwest Pass	2006	3,584,829	2,740,800		
Mississippi River Southwest Pass	2007	3,004,492	2,297,100		
Calcasieu River and Pass Bar Channel	2007	241,840	184,900		
Atchafalaya River Bar Channel	2007	14,305,442	10,937,300		
Atchafalaya River Bar Channel	2008	9,546,335	7,298,700		
Calcasieu River and Pass Bar Channel	2008	364,656	278,800		
Mississippi River Southwest Pass	2008	6,890,804	5,268,400		
Atchafalaya River Bar Channel	2009	672,417	514,100		
Calcasieu River and Pass Bar Channel	2009	1,149,426	878,800		
Mississippi River Southwest Pass	2009	5,797,488	4,432,500		
Calcasieu River and Pass Bar Channel	2010	829,502	634,200		
Mississippi River Southwest Pass	2010	6,070,588	4,641,300		
Total		208.396.847	159.330.900		

Corps of Engineers' New Orleans District Maintenance Dredging Activity for Federal Navigation Channels in Louisiana, 2001-2010*

* Dredged material disposed in Ocean Dredged-Material Disposal Site.

Volume Dredged Harbor, Channel, or Waterway Year yd³ m^3 2001 Mobile Harbor 4,594,174 3,512,500 Pascagoula Harbor 2001 3,200,030 2,446,600 2001 Pascagoula Harbor and Bayou Casotte Extension 294,812 225,400 Mobile Harbor 2002 4,101,600 3,135,900 Gulfport Harbor 2002 943,032 721,000 Pascagoula Harbor 2002 630,301 481,900 Mobile River 2003 1,580,800 2,067,607 Mobile Harbor 2003 1,723,355 1,317,600 2003 Mobile Bay Channel 2,741,725 2,096,200 Mobile Bay 2003 253,350 193,700 Gulfport Bar 2003 128,310 98,100 2003 123,340 94,300 Pascagoula Bar 427,200 Pascagoula Navy Channel 2003 558,756 Gulfport Harbor 2003 542,799 415,000 Bayou Casotte 2003 294,681 225,300 Pascagoula Sound 2003 120,855 92,400 2004 6,001,200 Mobile Harbor 7,849,270 2004 920,200 Pascagoula Harbor 1,203,576 2004 649,500 Gulfport Harbor 849,514 2005 2,465,000 Mobile Harbor 3,224,097 Pensacola Harbor 2005 63,043 48,200 2005 Pascagoula Bar 120,070 91,800 2005 Gulfport Bar 390,031 298,200 1,947,100 Mobile Harbor 2006 2,546,709 Pascagoula Harbor 2006 672,548 514,200 Mobile Harbor 2007 1,952,900 1,493,100 Mobile Harbor Federal Navigation Project 2008 3,725,303 2,848,200 Mobile Harbor 2009 5,980,209 4,572,200 2009 152,769 Pascagoula Harbor 116,800 Gulfport Harbor 2009 4,218,924 3,225,600 2010 Mobile Harbor 4,362,013 3,335,000 Gulfport Harbor 2010 8,486,895 6,488,700 Total 68,116,598 52,078,900

Corps of Engineers' Mobile District Maintenance Dredging Activity for Federal Navigation Channels in Mississippi, Alabama, and Florida, 2000-2010*

* Dredged material disposed in Ocean Dredged-Material Disposal Site.
Unusual Mortality Event Cetacean Data for the Northern Gulf of Mexico

Cetaceans Stranded	Phase of Oil-Spill Response	Dates
114 cetaceans stranded	Prior to the response phase for the oil spill	February 1, 2010-April 29, 2010
121 cetaceans stranded or	During the initial response phase to	April 30, 2010-November 2, 2010
were reported dead offshore	the oil spill	
993 cetaceans stranded*	After the initial response phase ended	November 3, 2010-June 15, 2014**

Note: Numbers are preliminary and may be subject to change. As of June 15, 2014, the unusual mortality event involves 1,228 cetacean "strandings" in the northern Gulf of Mexico (USDOC, NMFS, 2014a).

Table 4-2

Economic Significance of Commercial Fishing 2011

State	Landings Revenue (thousand \$) ¹	Sales Impacts (thousand \$) ¹	Job Impacts ¹	CFLQ ²
Alabama	50,941	499,805	11,011	0.87
Louisiana	333,619	1,801,568	32,818	1.58
Mississippi	30,300	247,106	5,550	ND
Texas	239,082	2,277,959	27,717	0.20
West Florida	164,076	14,250,006	72,341	1.00
Total	818,018	19,076,444	149,437	_
	. 1 (. 1 . 1			

Notes: CFLQ = commercial fishing location quotient.

ND = These data are confidential, thus not disclosable.

¹ Landings Revenue, Sales Impacts, and Job Impacts are based on 2011 data.

² The CFLQ data are based on 2010 data.

Source: USDOC, NMFS, 2013a.

^{*} This number includes six dolphins that were killed incidental to fish-related scientific data collection and one dolphin that was killed incidental to trawl relocation for a dredging project.

^{**} The initial response phase ended for all four states on November 3, 2010, but then reopened for eastern and central Louisiana on December 3, 2010, and closed again on May 25, 2011.

Angler Trips in the Gulf of Mexico by Location and Mode from 2008 through 2013

State	Area	2008	2009	2010	2011	2012	2013	% State Total in 2013
Alabama	Shore Ocean (< 3 nmi)	249,893	322,126	447,041	603,546	750,159	1,250,811	43.69%
	Shore Inland	452,192	449,470	365,234	598,700	461,221	515,982	18.02%
	Charter Ocean (<3 nmi)	9,967	9,166	8,860	19,874	15,785	20,615	0.72%
	Charter Ocean (>3 nmi)	38,046	36,259	17,424	48,616	28,340	56,145	1.96%
	Charter Inland	7,700	10,656	7,221	6,351	14,536	12,976	0.45%
	Private/Rental Ocean (<3 nmi)	247,876	131,997	114,816	191,563	137,321	118,801	4.15%
	Private/Rental Ocean (>3 nmi)	74,074	134,411	69,335	188,994	131,897	278,821	9.74%
	Private/Rental Inland	624,197	618,502	656,226	825,821	766,027	608,280	21.25%
	Total	1,703,945	1,712,587	1,686,157	2,483,465	2,305,286	2,862,431	
West Florida	Shore Ocean (< 9 nmi)	3,076,591	2,688,011	1,610,807	1,982,194	2,199,810	3,745,909	23.48%
	Shore Inland	3,704,990	3,793,756	4,034,208	3,862,665	4,016,544	3,191,141	20.00%
	Charter Ocean (<9 nmi)	187,810	196,753	159,317	179,880	242,666	199,908	1.25%
	Charter Ocean (>9 nmi)	255,300	262,005	203,201	236,088	307,121	322,185	2.02%
	Charter Inland	127,801	113,842	98,440	119,826	149,315	161,479	1.01%
	Private/Rental Ocean (<9 nmi)	3,624,073	2,605,196	2,257,349	1,901,217	2,087,991	2,572,325	16.12%
	Private/Rental Ocean (>9 nmi)	1,242,935	751,869	681,551	500,067	755,470	1,136,161	7.12%
	Private/Rental Inland	5,277,665	5,265,888	5,221,323	5,118,740	5,021,267	4,619,920	28.96%
	Total	17,497,165	15,677,320	14,266,196	13,900,677	14,780,184	15,949,028	
Louisiana	Shore Ocean (< 3 nmi)	62,712	38,930	11,664	48,893	152,094	247,502	5.31%
	Shore Inland	870,042	730,053	717,006	1,073,035	978,657	1,101,517	23.63%
	Charter Ocean (<3 nmi)	10,468	3,931	2,762	6,937	3,646	5,058	0.11%
	Charter Ocean (>3 nmi)	32,805	21,173	8,106	15,742	19,827	15,373	0.33%
	Charter Inland	135,915	157,692	68,018	90,057	91,192	101,935	2.19%
	Private/Rental Ocean (<3 nmi)	97,797	81,008	59,347	77,986	116,854	82,512	1.77%
	Private/Rental Ocean (>3 nmi)	89,859	99,352	11,568	80,952	88,503	65,730	1.41%
	Private/Rental Inland	3,320,459	2,995,875	2,984,016	3,182,645	2,685,791	3,041,527	65.25%
	Total	4,620,057	4,128,014	3,862,487	4,576,247	4,136,564	4,661,154	

% State Total State Area 2008 2009 2010 2011 2012 2013 in 2013 0 0 0 Shore Ocean (< 3 nmi) 143 811 43.39% Mississippi 763,983 Shore Inland 359,438 309,612 596,544 760,788 947,075 2,190 0.12% Charter Ocean (<3 nmi) 4,286 2,803 904 3,123 1,628 153 0.01% Charter Ocean (>3 nmi) 718 330 949 221 125 8.911 0.51% Charter Inland 8,229 7,656 4,989 7,891 9,738 6,124 0.35% Private/Rental Ocean (<3 nmi) 12,056 16,962 12,419 18,682 4,116 53,886 3.06% Private/Rental Ocean (>3 nmi) 28,007 12,974 41,137 925.512 52.56% 26,316 4,626 Private/Rental Inland 555,951 715,505 612,162 811,711 945,819 1,760,759 43.39% Total 968,685 1,079,327 1,232,593 1,615,390 1,950,449 763,983 Gulf Total Shore Ocean (< 3 nmi) 3,389,196 3,049,210 2,069,512 2,634,633 3,102,874 5,244,222 20.78% Shore Inland 5,386,662 5,282,891 5,712,992 6,295,188 6,403,497 5,572,623 22.08% Charter Ocean (<3 nmi) 212,531 212,653 171,843 209,814 263,725 227,771 0.90% Charter Ocean (>3 nmi) 326,869 319,767 229,680 300,667 355,413 393,856 1.56% Charter Inland 279,645 289,846 178,668 224,125 264,781 285,301 1.13% Private/Rental Ocean (<3 nmi) 3,981,802 2,835,163 2,443,931 2,189,448 2,346,282 2,779,762 11.02% Private/Rental Ocean (>3 nmi) 1,434,875 1,011,948 767,080 782,987 1,017,007 1,534,598 6.08% Private/Rental Inland 9,778,272 9,418,904 9,195,239 9,595,770 9,473,727 9,938,917 36.44% Total 24,789,852 22,597,248 21,047,433 22,575,779 23,172,483 25,233,372

Table 4-3. Angler Trips in the Gulf of Mexico by Location and Mode from 2008 through 2013 (continued).

Notes: This table presents the sum of fishing data from Louisiana, Mississippi, Alabama, and West Florida. State waters in Florida extend 9 nmi from the coast rather than the typical 3 nmi.

Source: USDOC, NMFS, 2014b.

Species/Year	2008	2009	2010	2011	2012	2013
		Panel A	A: Number of I	Fish		
Atlantic Croaker	5,020,732	5,029,701	5,337,312	7,950,146	5,226,056	4,999,883
Black Drum	1,975,432	1,770,479	1,763,633	1,884,447	1,742,449	2,692,521
Blackfin Tuna	137,887	84,978	32,147	53,829	108,196	92,471
Cobia	160,155	86,106	62,400	109,388	94,150	111,840
Dolphins	640,488	401,891	270,119	456,829	368,565	1,953,691
Gag	4,556,734	2,969,559	2,260,741	1,269,038	1,125,765	1,403,382
Gray Snapper	7,316,720	4,446,255	2,451,867	2,800,767	4,525,563	6,993,607
Great Amberjack	248,910	212,229	382,672	250,954	167,585	357,490
King mackerel	374,338	673,530	291,065	244,812	367,142	415,939
Little Tunny	203,560	168,356	140,474	201,761	336,497	174,729
Pinfishes	16,112,529	9,876,807	10,415,589	8,851,759	13,360,140	10,902,513
Red Drum	10,310,311	8,132,874	9,718,538	9,992,160	9,018,589	11,570,046
Red Grouper	3,105,159	3,172,238	2,242,746	2,009,532	2,010,089	3,169,112
Red Snapper	2,789,675	2,941,448	1,769,536	2,041,512	2,015,848	4,065,837
Sand Seatrout	5,335,003	6,632,448	6,329,040	8,268,113	7,352,122	4,667,563
Sheepshead	3,055,781	2,911,901	2,884,114	3,849,215	2,968,888	2,942,730
Southern Flounder	594,926	837,108	991,760	987,796	1,050,315	1,349,601
Southern Kingfish	1,590,202	1,417,523	1,450,408	1,163,302	835,582	1,273,498
Spanish Mackerel	3,938,013	3,138,754	4,040,757	3,475,966	3,278,437	7,512,363
Spotted Seatrout	35,141,138	30,700,217	24,703,470	32,700,839	32,997,778	31,493,205
Striped Mullet	1,405,717	967,398	1,791,862	2,214,375	2,559,404	3,178,636
White Grunt	3,721,050	2,285,007	2,494,075	2,852,807	3,405,536	4,701,436
		Pa	nel B: Pounds			
Atlantic Croaker	746,737	417,298	529,427	816,562	608,874	630,230
Black Drum	3,329,225	2,720,006	2,433,846	2,487,203	3,195,532	2,905,554
Blackfin Tuna	854,254	1,225,530	276,947	415,204	1,450,081	807,628
Cobia	797,585	510,151	483,465	1,132,455	876,210	1,149,572
Dolphins	1,758,506	2,114,876	685,194	1,295,453	1,435,715	2,746,618
Gag	3,250,623	1,485,256	1,630,999	665,580	1,018,029	1,552,441
Gray Snapper	2,016,456	1,525,684	882,715	1,250,520	1,506,738	1,911,906
Great Amberjack	1,407,076	1,523,734	1,483,609	946,467	1,326,805	1,698,275
King Mackerel	1,804,192	3,677,465	1,808,493	1,679,476	2,501,381	2,711,213
Little Tunny	439,608	517,938	418,973	455,612	1,195,713	566,968
Pinfishes	2,029,509	801,445	2,028,069	1,574,080	1,172,020	554,149
Red Drum	14,496,283	11,773,528	13,509,248	15,340,878	11,964,241	17,391,955
Red Grouper	879,028	981,966	762,208	640,002	1,784,678	2,707,914
Red Snapper	2,806,925	3,648,516	1,655,857	3,486,486	4,446,272	9,058,862

Fish Species Caught by Recreational Anglers from 2008 through 2013

Species/Year	2008	2009	2010	2011	2012	2013						
	Species/Year 2008 2009 2010 2011 2012 2013 Panel B: Pounds and Seatrout 1,880,159 2,308,490 2,579,227 3,412,201 2,545,250 1,398,875 heepshead 4,415,722 3,904,616 3,296,696 6,990,784 3,816,260 3,354,101 outhern Flounder 687,368 910,196 1,104,725 1,120,655 1,039,927 1,586,243 outhern Kingfish 553,205 638,419 568,799 390,627 292,906 392,048 panish Mackerel 2,943,974 2,072,995 2,546,029 2,132,604 2,677,171 4,499,857 potted Seatrout 16,156,781 15,393,934 12,259,023 17,924,543 16,211,441 14,026,320											
Sand Seatrout	1,880,159	2,308,490	2,579,227	3,412,201	2,545,250	1,398,875						
Sheepshead	4,415,722	3,904,616	3,296,696	6,990,784	3,816,260	3,354,101						
Southern Flounder	687,368	910,196	1,104,725	1,120,655	1,039,927	1,586,243						
Southern Kingfish	553,205	638,419	568,799	390,627	292,906	392,048						
Spanish Mackerel	2,943,974	2,072,995	2,546,029	2,132,604	2,677,171	4,499,857						
Spotted Seatrout	16,156,781	15,393,934	12,259,023	17,924,543	16,211,441	14,026,320						
Striped Mullet	1,614,209	899,038	2,674,277	2,055,630	1,981,230	3,427,196						
White Grunt	1,131,685	1,030,272	930,723	1,266,126	1,407,171	1,694,216						

Table 4-4. Fish Species Caught by Recreational Anglers from 2008 through 2013 (continued).

Source: USDOC, NMFS, 2014c.

Table 4-5

Economic Impact of Recreational Fishing in the Gulf of Mexico in 2012

	Expenditures (thousand \$)	Sales (thousand \$)	Value Added (thousand \$)	Employment
Alabama	719,416	691,547	425,328	7,501
West Florida	6,228,719	9,142,920	5,259,726	75,268
Mississippi	177,755	143,890	85,497	1,649
Louisiana	1,790,653	1,964,494	1,099,216	16,972
Texas	1,455,623	1,719,709	1,005,040	13,944
Total	10,372,166	13,662,560	7,874,807	115,334

Source: USDOC, NMFS, 2014d.

Region	2008	2009	2010	2011	2012	2013
	Par	nel A: Econom	ic Impact Area	(EIA)		
TX-1	54,551	53,772	54,750	56,753	60,670	62,260
TX-2	16,883	16,718	16,934	18,197	19,915	20,384
TX-3	240,231	240,425	244,821	253,071	267,390	280,953
LA-1	14,295	14,214	13,979	14,489	14,635	14,693
LA-2	21,364	20,675	20,618	21,345	22,137	23,054
LA-3	46,037	44,414	44,796	47,121	48,930	50,014
LA-4	68,605	68,161	72,757	76,552	78,978	80,842
MS-1	27,702	26,904	26,981	27,826	28,409	29,064
AL-1	26,516	25,872	26,925	27,300	28,307	29,867
FL-1	40,001	41,002	42,550	45,160	46,720	48,519
FL-2	22,502	21,689	22,111	22,466	23,579	24,424
FL-3	146,368	142,302	145,324	148,103	158,030	166,107
FL-4	283,359	279,839	289,247	304,093	319,912	333,866
TX EIA total	311,665	310,915	316,505	328,021	347,975	363,597
LA EIA total	150,301	147,464	152,150	159,507	164,680	168,603
MS EIA total	27,702	26,904	26,981	27,826	28,409	29,064
AL EIA total	26,516	25,872	26,925	27,300	28,307	29,867
FL EIA total	492,230	484,832	499,232	519,822	548,241	572,916
EIA total	1,008,414	995,987	1,021,793	1,062,476	1,117,612	1,164,047
		Panel E	B: Coastal			
TX	67,087	67,818	68,260	71,041	75,895	77,772
LA	45,545	45,418	49,432	51,742	53,802	55,479
MS	25,575	25,055	25,186	25,900	26,353	27,015
AL	24,319	23,825	24,816	25,145	25,941	27,354
FL	386,892	383,959	396,485	415,379	437,509	454,677
Coastal total	549,418	546,075	564,179	589,207	619,500	1,164,047
		Panel C:	Statewide			
TX	995,445	982,840	1,006,277	1,039,839	1,094,916	1,137,190
LA	194,905	190,589	194,387	202,704	208,284	213,627
MS	121,033	115,868	116,204	117,874	120,472	123,294
AL	168,413	165,953	165,230	166,671	170,854	176,078
FL	922,534	896,383	929,448	962,616	1,011,874	1,050,263
State total	2,402,330	2,351,633	2,411,546	2,489,704	2,606,400	2,700,452

Employment in the Leisure/Hospitality Industry in Selected Geographic Regions

Notes: (1) The EIA's are defined in Figure 4-20 of the 2012-2017 WPA/CPA Multisale EIS.

(2) The "Coastal" category refers to the counties/parishes within the EIA's that are directly along the coast of the U.S.

(3) The "Statewide" category refers to the number of employees within the borders of the entire state.

(4) The leisure/hospitality industry is defined according to the North American Industrial Classification System (NAICS).

- (5) The employment figure for any given year corresponds to the total number of employees in December of that year.
- (6) Data for 2013 are preliminary.

Source: U.S. Dept. of Labor, Bureau of Labor Statistics, 2014.

		Low	Case			High	Case	
EIA	Peak Annual	Peak Year	Baseline in Peak Year	Percent	Peak Annual	Peak Year	Baseline in Peak Year	Percent
			Low Case High Case Peak Year Baseline in Peak Year Percent Peak Annual Peak Year Baseline in Peak Year Peak Year 2030 2,453,620 0.66% 25,369 2031 2,485,990 1 2031 854,250 0.77% 10,759 2031 854,250 1 2030 8,927,830 1.54% 203,022 2031 9,061,710 2 2030 410,370 2.18% 14,763 2031 413,690 3 2030 792,830 3.27% 40,748 2031 1,387,050 3 2030 1,375,330 2.46% 54,048 2031 1,387,050 3 2030 1,389,220 1.26% 27,980 2031 1,396,050 2 Florida (FL) 2031 1,119,900 0.43% 7,726 2031 1,119,900 0 2031 1,385,070 1.13% 15,307 2031 4,857,480 0 2031 <td< td=""></td<>					
TX-1	16,250	2030	2,453,620	0.66%	25,369	2031	2,485,990	1.02%
TX-2	6,620	2031	854,250	0.77%	10,759	2031	854,250	1.26%
TX-3	137,573	2030	8,927,830	1.54%	203,022	2031	9,061,710	2.24%
			L	ouisiana (l	LA)			
LA-1	8,959	2030	410,370	2.18%	14,763	2031	413,690	3.57%
LA-2	25,960	2030	792,830	3.27%	40,748	2031	803,500	5.07%
LA-3	33,867	2030	1,375,330	2.46%	54,048	2031	1,387,050	3.90%
LA-4	17,490	2030	1,389,220	1.26%	27,980	2031	1,396,050	2.00%
				Florida (F	L)			
FL-1	4,773	2031	1,119,900	0.43%	7,726	2031	1,119,900	0.69%
FL-2	9,402	2031	835,070	1.13%	15,307	2031	835,070	1.83%
FL-3	8,265	2031	4,857,480	0.17%	13,509	2031	4,857,480	0.28%
FL-4	5,916	2031	8,090,210	0.07%	9,658	2031	8,090,210	0.12%
			A	Alabama (A	AL)			
AL-1	11,251	2030	848,420	1.33%	18,405	2031	854,710	2.15%
			М	ississippi ((MS)			
MS-1	8,726	2030	546,670	1.60%	14,116	2031	549,830	2.57%

Peak Population Projected from Cumulative OCS Programs as a Percent of Total Population

EIA = Economic Impact Area.

Sources: Peak employment output from BOEM's economic impact model (MAG-PLAN). Baseline employment projections based on Woods & Poole Economics, Inc. (2013).

Baseline Population Projections (in thousands) by Economic Impact Area

Calendar Year	TX-1	TX-2	TX-3	LA-1	LA-2	LA-3	LA-4	MS-1	AL-1	FL-1	FL-2	FL-3	FL-4	Total
2010	1,799.29	626.91	6,202.21	346.02	585.06	1,142.41	1,242.69	482.30	725.87	882.80	659.96	3,626.40	6,170.12	24,492.03
2011	1,827.28	633.41	6,309.03	346.51	588.41	1,147.53	1,260.01	486.36	727.78	889.79	661.80	3,663.94	6,273.04	24,814.88
2012	1,856.04	642.00	6,421.63	349.98	596.10	1,162.47	1,267.26	490.07	734.42	900.02	669.64	3,716.36	6,352.84	25,158.82
2013	1,885.42	650.77	6,536.83	353.51	603.94	1,177.70	1,274.66	493.86	741.19	910.45	677.64	3,769.85	6,434.20	25,510.00
2014	1,915.39	659.71	6,654.44	357.09	611.91	1,193.18	1,282.17	497.70	748.05	921.04	685.77	3,824.28	6,516.92	25,867.66
2015	1,945.76	668.77	6,773.88	360.70	619.95	1,208.79	1,289.69	501.55	754.94	931.71	693.97	3,879.31	6,600.40	26,229.40
2016	1,976.53	677.92	6,895.11	364.32	628.07	1,224.52	1,297.18	505.40	761.85	942.45	702.22	3,934.90	6,684.57	26,595.04
2017	2,007.70	687.19	7,018.20	367.96	636.25	1,240.39	1,304.67	509.25	768.79	953.27	710.54	3,991.09	6,769.48	26,964.77
2018	2,039.30	696.57	7,143.18	371.61	644.52	1,256.39	1,312.15	513.12	775.75	964.17	718.93	4,047.88	6,855.15	27,338.71
2019	2,071.28	706.06	7,269.96	375.28	652.85	1,272.50	1,319.60	516.98	782.72	975.13	727.37	4,105.22	6,941.47	27,716.42
2020	2,103.58	715.61	7,398.25	378.95	661.22	1,288.68	1,326.97	520.81	789.68	986.10	735.84	4,162.92	7,028.15	28,096.76
2021	2,135.87	725.16	7,526.82	382.55	669.51	1,304.66	1,334.05	524.53	796.47	996.93	744.21	4,220.25	7,113.95	28,474.96
2022	2,168.66	734.83	7,657.62	386.18	677.90	1,320.85	1,341.17	528.27	803.33	1,007.88	752.67	4,278.36	7,200.81	28,858.52
2023	2,201.95	744.63	7,790.70	389.85	686.40	1,337.24	1,348.33	532.04	810.24	1,018.94	761.23	4,337.28	7,288.72	29,247.53
2024	2,235.76	754.56	7,926.09	393.55	695.00	1,353.83	1,355.52	535.84	817.21	1,030.13	769.88	4,397.01	7,377.71	29,642.07
2025	2,270.08	764.62	8,063.83	397.29	703.71	1,370.62	1,362.75	539.66	824.24	1,041.44	778.64	4,457.56	7,467.78	30,042.22
2026	2,303.74	774.46	8,199.25	400.82	712.11	1,386.74	1,369.29	543.19	830.83	1,052.24	787.03	4,516.22	7,554.49	30,430.40
2027	2,337.89	784.42	8,336.94	404.39	720.60	1,403.06	1,375.85	546.75	837.47	1,063.16	795.52	4,575.65	7,642.20	30,823.90
2028	2,372.55	794.51	8,476.95	407.99	729.20	1,419.56	1,382.44	550.32	844.17	1,074.19	804.10	4,635.86	7,730.93	31,222.78
2029	2,407.73	804.73	8,619.31	411.62	737.89	1,436.26	1,389.07	553.93	850.92	1,085.34	812.77	4,696.86	7,820.70	31,627.13
2030	2,443.43	815.09	8,764.06	415.28	746.69	1,453.15	1,395.73	557.55	857.73	1,096.60	821.53	4,758.67	7,911.50	32,037.01
2031	2,478.42	825.19	8,906.20	418.73	755.15	1,469.33	1,401.68	560.87	864.08	1,107.33	829.92	4,818.43	7,998.73	32,434.07
2032	2,513.92	835.42	9,050.64	422.21	763.70	1,485.69	1,407.66	564.21	870.48	1,118.16	838.39	4,878.94	8,086.92	32,836.35
2033	2,549.93	845.78	9,197.43	425.72	772.35	1,502.22	1,413.67	567.56	876.92	1,129.10	846.95	4,940.22	8,176.08	33,243.94

Tables-23

Tables-24

Central Planning Area Lease Sales 235, 241, and 247 EIS

Calendar Year	TX-1	TX-2	TX-3	LA-1	LA-2	LA-3	LA-4	MS-1	AL-1	FL-1	FL-2	FL-3	FL-4	Total
2034	2,586.45	856.27	9,346.60	429.26	781.10	1,518.95	1,419.70	570.94	883.42	1,140.15	855.59	5,002.26	8,266.22	33,656.90
2035	2,623.50	866.88	9,498.19	432.83	789.95	1,535.86	1,425.76	574.34	889.96	1,151.30	864.33	5,065.08	8,357.36	34,075.32
2036	2,660.18	877.35	9,648.20	436.24	798.54	1,552.22	1,431.30	577.50	896.15	1,162.06	872.78	5,126.41	8,445.87	34,484.81
2037	2,697.38	887.95	9,800.57	439.68	807.22	1,568.76	1,436.88	580.69	902.39	1,172.92	881.32	5,188.48	8,535.33	34,899.56
2038	2,735.09	898.67	9,955.36	443.14	816.00	1,585.48	1,442.47	583.89	908.67	1,183.87	889.94	5,251.30	8,625.73	35,319.62
2039	2,773.34	909.53	10,112.59	446.63	824.88	1,602.38	1,448.08	587.10	915.00	1,194.93	898.64	5,314.89	8,717.09	35,745.07
2040	2,812.12	920.51	10,272.30	450.15	833.85	1,619.45	1,453.72	590.34	921.37	1,206.10	907.43	5,379.25	8,809.42	36,175.99
2041	2,851.44	931.63	10,434.53	453.69	842.92	1,636.71	1,459.38	593.59	927.78	1,217.36	916.31	5,444.38	8,902.73	36,612.44
2042	2,891.31	942.88	10,599.33	457.27	852.08	1,654.15	1,465.06	596.86	934.24	1,228.74	925.27	5,510.30	8,997.02	37,054.50
2043	2,931.73	954.27	10,766.73	460.87	861.35	1,671.78	1,470.76	600.15	940.74	1,240.22	934.32	5,577.02	9,092.31	37,502.25
2044	2,972.73	965.79	10,936.77	464.50	870.72	1,689.59	1,476.49	603.46	947.29	1,251.80	943.46	5,644.55	9,188.62	37,955.76
2045	3,014.29	977.46	11,109.50	468.16	880.19	1,707.59	1,482.24	606.79	953.88	1,263.50	952.69	5,712.90	9,285.94	38,415.11
2046	3,056.44	989.26	11,284.95	471.84	889.76	1,725.79	1,488.01	610.13	960.52	1,275.30	962.01	5,782.07	9,384.29	38,880.38
2047	3,099.18	1,001.21	11,463.18	475.56	899.44	1,744.18	1,493.80	613.49	967.21	1,287.22	971.41	5,852.09	9,483.69	39,351.64
2048	3,142.51	1,013.30	11,644.22	479.31	909.22	1,762.77	1,499.61	616.87	973.94	1,299.24	980.92	5,922.95	9,584.13	39,828.99
2049	3,186.45	1,025.54	11,828.12	483.08	919.11	1,781.55	1,505.45	620.27	980.72	1,311.38	990.51	5,994.66	9,685.65	40,312.49
2050	3,231.01	1,037.93	12,014.93	486.88	929.10	1,800.54	1,511.31	623.69	987.55	1,323.63	1,000.20	6,067.25	9,788.23	40,802.24
2051	3,276.18	1,050.46	12,204.68	490.72	939.21	1,819.72	1,517.19	627.13	994.42	1,336.00	1,009.98	6,140.71	9,891.91	41,298.32
2052	3,321.99	1,063.15	12,397.44	494.58	949.42	1,839.11	1,523.10	630.58	1,001.34	1,348.48	1,019.86	6,215.07	9,996.68	41,800.81
2053	3,368.44	1,075.99	12,593.23	498.48	959.75	1,858.71	1,529.03	634.06	1,008.31	1,361.07	1,029.84	6,290.32	10,102.56	42,309.80
2054	3,415.54	1,088.98	12,792.12	502.41	970.19	1,878.52	1,534.98	637.55	1,015.33	1,373.79	1,039.91	6,366.49	10,209.56	42,825.37
2055	3,463.30	1,102.13	12,994.15	506.36	980.74	1,898.54	1,540.95	641.06	1,022.40	1,386.62	1,050.08	6,443.58	10,317.70	43,347.62
2014/2055 growth	1.46%	1.26%	1.65%	0.86%	1.16%	1.14%	0.45%	0.62%	0.76%	1.00%	1.04%	1.28%	1.13%	1.27%

Table 4-8. Baseline Population Projections (in thousands) by Economic Impact Area (continued).

Notes: Actual Woods & Poole data for 2010 through 2020, 2025, 2030, 2035, and 2040.

Missing estimates through 2040 calculated using average annual growth rate for the 5-year period; projections after 2040 calculated using the average annual growth rate from 2035 to 2040.

Source: Woods & Poole Economics, Inc., 2014.

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	692.65	725.87	727.78	734.42	741.19	748.05	754.94	782.72	824.24	857.73	921.37
Age under 19 years	28.1%	27.1%	26.7%	26.6%	26.5%	26.4%	26.3%	26.2%	25.9%	25.5%	24.6%
Age 20 to 34	18.7%	18.6%	18.8%	18.8%	18.7%	18.6%	18.4%	17.5%	16.7%	16.4%	16.9%
Age 35 to 49	21.3%	19.7%	19.3%	19.0%	18.8%	18.6%	18.5%	18.5%	18.6%	18.5%	17.4%
Age 50 to 64	18.3%	20.1%	20.4%	20.5%	20.6%	20.6%	20.7%	20.1%	18.6%	17.8%	18.5%
Age 65 and over	13.5%	14.4%	14.7%	15.1%	15.5%	15.8%	16.2%	17.6%	20.2%	21.8%	22.6%
Median Age of Population (years)	38.2	39.9	40.2	40.5	40.8	41.0	41.2	41.8	43.0	43.8	45.1
White Population (in thousands)	66.2%	65.2%	65.0%	65.0%	64.9%	64.8%	64.7%	64.4%	63.7%	63.2%	62.2%
Black Population (in thousands)	29.6%	29.6%	29.6%	29.6%	29.5%	29.5%	29.5%	29.5%	29.5%	29.5%	29.2%
Native American Population (in thousands)	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.2%	1.2%
Asian and Pacific Islander Population (in thousands)	1.2%	1.4%	1.4%	1.5%	1.5%	1.5%	1.5%	1.6%	1.8%	1.9%	2.1%
Hispanic or Latino Population (in thousands)	1.9%	2.7%	2.8%	2.9%	3.0%	3.1%	3.1%	3.4%	3.9%	4.3%	5.4%
Male Population (in thousands)	48.3%	48.4%	48.4%	48.4%	48.4%	48.4%	48.4%	48.5%	48.5%	48.5%	48.4%
Total Employment (in thousands of jobs)	363.84	374.37	375.73	381.01	386.35	391.77	397.25	419.86	455.94	488.10	558.68
Farm Employment	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.2%	1.1%	1.0%
Forestry, Fishing, Related Activities	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	0.9%	0.9%	0.8%	0.8%
Mining	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.5%	0.5%	0.5%	0.5%
Utilities	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%
Construction	8.5%	7.4%	6.3%	6.3%	6.2%	6.2%	6.2%	6.0%	5.8%	5.7%	5.3%
Manufacturing	8.7%	7.2%	7.5%	7.4%	7.2%	7.1%	7.0%	6.5%	5.9%	5.4%	4.5%
Wholesale Trade	3.5%	3.0%	3.2%	3.1%	3.1%	3.1%	3.1%	3.0%	2.9%	2.8%	2.6%
Retail Trade	12.4%	11.8%	11.9%	11.9%	11.8%	11.8%	11.7%	11.6%	11.3%	11.0%	10.5%
Transportation and Warehousing	3.7%	3.6%	3.6%	3.6%	3.6%	3.6%	3.6%	3.5%	3.3%	3.2%	3.0%
Information Employment	1.3%	1.0%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.8%	0.8%
Finance and Insurance	3.4%	3.8%	4.3%	4.3%	4.3%	4.3%	4.3%	4.3%	4.3%	4.2%	4.1%
Real Estate/Rental and Lease	4.4%	5.1%	5.1%	5.1%	5.1%	5.1%	5.1%	5.1%	5.1%	5.0%	5.0%
Professional and Technical Services	4.4%	4.6%	4.6%	4.6%	4.7%	4.7%	4.7%	4.8%	5.0%	5.1%	5.3%

Tables-25

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Management	0.2%	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.5%	0.5%	0.6%
Administrative and Waste Services	6.4%	7.2%	7.1%	7.2%	7.2%	7.3%	7.3%	7.6%	7.9%	8.2%	8.8%
Educational Services	1.4%	1.7%	1.8%	1.9%	1.9%	1.9%	1.9%	2.0%	2.2%	2.4%	2.6%
Health Care and Social Assistance	8.5%	9.4%	9.5%	9.6%	9.7%	9.8%	10.0%	10.4%	11.1%	11.7%	12.9%
Arts, Entertainment, and Recreation	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.4%	1.4%	1.4%
Accommodation and Food Services	6.8%	7.3%	7.6%	7.7%	7.8%	7.8%	7.9%	8.2%	8.7%	9.1%	9.8%
Other Services, Except Public Administration	7.7%	8.1%	8.1%	8.2%	8.3%	8.3%	8.4%	8.7%	9.1%	9.4%	10.1%
Federal Civilian Government	0.9%	1.0%	0.9%	0.9%	0.9%	0.9%	0.8%	0.8%	0.8%	0.7%	0.6%
Federal Military	1.3%	1.2%	1.2%	1.2%	1.2%	1.2%	1.1%	1.1%	1.0%	0.9%	0.8%
State and Local Government	12.0%	11.6%	11.4%	11.3%	11.2%	11.1%	11.0%	10.6%	10.1%	9.6%	8.7%
Total Earnings (in millions of 2005 dollars)	14,014.96	14,966.90	15,143.01	15,422.61	15,761.05	16,106.59	16,459.36	17,945.78	20,419.98	22,730.96	28,142.17
Farm	0.8%	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%
Forestry, Fishing, Related Activities	1.0%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.1%	1.1%	1.0%	0.9%
Mining	0.4%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.7%
Utilities	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	0.9%	0.9%	0.8%
Construction	8.9%	8.6%	6.9%	6.9%	6.8%	6.7%	6.7%	6.4%	6.0%	5.6%	5.0%
Manufacturing	13.6%	12.4%	13.1%	13.0%	12.9%	12.7%	12.6%	12.0%	11.1%	10.4%	9.1%
Wholesale Trade	5.2%	4.7%	4.8%	4.8%	4.8%	4.8%	4.8%	4.7%	4.7%	4.6%	4.4%
Retail Trade	8.9%	8.1%	8.1%	8.1%	8.0%	7.9%	7.8%	7.5%	7.0%	6.5%	5.8%
Transportation and Warehousing	4.8%	5.3%	5.5%	5.4%	5.4%	5.4%	5.3%	5.1%	4.9%	4.7%	4.2%
Information	1.6%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.3%	1.3%
Finance and Insurance	4.9%	4.2%	6.0%	6.1%	6.1%	6.1%	6.1%	6.2%	6.3%	6.4%	6.4%
Real Estate/Rental and Lease	2.3%	2.1%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	1.9%
Professional and Technical Services	5.5%	5.7%	5.7%	5.8%	5.9%	5.9%	6.0%	6.2%	6.6%	6.9%	7.6%
Management	0.3%	0.5%	0.6%	0.5%	0.5%	0.5%	0.5%	0.6%	0.8%	0.9%	1.2%
Administrative and Waste Services	3.7%	4.3%	3.9%	4.0%	4.1%	4.1%	4.2%	4.4%	4.7%	4.9%	5.5%
Educational Services	0.9%	1.0%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.3%	1.4%	1.7%
Health Care and Social Assistance	9.8%	10.9%	10.8%	11.0%	11.2%	11.3%	11.5%	12.1%	13.1%	14.0%	15.8%
Arts, Entertainment, and Recreation	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%
Accommodation and Food Services	3.2%	3.4%	3.5%	3.6%	3.6%	3.7%	3.7%	3.9%	4.1%	4.3%	4.7%
Other Services, Except Public Administration	4.8%	5.1%	5.1%	5.1%	5.2%	5.2%	5.3%	5.4%	5.7%	5.9%	6.3%

Table 4-9. Demographic and Employment Baseline Projections for Economic Impact Area AL-1 (continued).

	r	·	r	r						r	
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Federal Civilian Government	2.2%	2.3%	2.2%	2.2%	2.2%	2.2%	2.2%	2.2%	2.2%	2.1%	2.0%
Federal Military	1.8%	1.7%	1.7%	1.4%	1.4%	1.4%	1.4%	1.5%	1.5%	1.5%	1.5%
State and Local Government	13.8%	14.6%	14.1%	14.1%	14.0%	14.0%	13.9%	13.7%	13.3%	13.0%	12.2%
Total Personal Income per Capita (in 2005 dollars)	29,183	31,525	32,073	32,315	32,647	33,020	33,425	35,293	38,730	42,084	50,167
Woods & Poole Economics Wealth Index (U.S. = 100)	68.7	73.2	72.6	72.6	72.6	72.6	72.6	72.6	72.6	72.6	72.7
Persons per Household (in number of people)	2.5	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.6
Mean Household Total Personal Income (in 2005 dollars)	74,227	80,979	82,094	83,334	83,643	84,101	84,687	88,368	96,803	105,827	128,090
Number of Households (in thousands)	272.33	282.58	284.33	284.79	289.29	293.70	297.97	312.61	329.76	341.10	360.86
Income <\$10,000 (thousands of households, 2000\$)	11.7%	12.0%	11.7%	11.4%	11.4%	11.2%	11.1%	10.5%	9.2%	8.1%	6.3%
Income \$10,000 to \$19,999	14.3%	14.4%	14.5%	14.4%	14.3%	14.1%	13.9%	13.2%	11.7%	10.4%	8.2%
Income \$20,000 to \$29,999	12.7%	12.9%	12.8%	12.9%	12.9%	12.7%	12.6%	12.0%	10.8%	9.6%	7.7%
Income \$30,000 to \$44,999	16.3%	15.6%	15.7%	15.4%	15.4%	15.3%	15.2%	14.8%	13.6%	12.4%	9.9%
Income \$45,000 to \$59,999	13.0%	12.9%	12.7%	12.8%	12.9%	13.0%	13.1%	13.5%	14.2%	14.0%	12.0%
Income \$60,000 to \$74,999	9.0%	9.2%	9.7%	9.8%	9.8%	9.9%	10.0%	10.6%	11.9%	13.2%	14.8%
Income \$75,000 to \$99,999	10.4%	10.3%	10.3%	10.5%	10.6%	10.7%	10.8%	11.4%	12.9%	14.5%	18.4%
Income \$100,000 or more	12.6%	12.7%	12.6%	12.8%	12.9%	13.0%	13.2%	14.0%	15.8%	17.8%	22.7%

Table 4-9. Demographic and Employment Baseline Projections for Economic Impact Area AL-1 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Demographic and Employment Baseline Projections for Economic Impact Area FL-1

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	861.80	882.80	889.79	900.02	910.45	921.04	931.71	975.13	1,041.44	1,096.60	1,206.10
Age Under 19 Years	26.1%	25.0%	24.5%	24.3%	24.2%	24.1%	24.1%	24.3%	24.5%	24.3%	23.6%
Age 20 to 34	20.1%	20.5%	20.9%	21.1%	21.1%	21.1%	20.9%	19.8%	18.0%	17.4%	18.6%
Age 35 to 49	22.3%	20.1%	19.5%	18.9%	18.4%	18.0%	17.8%	17.9%	19.1%	19.7%	17.4%
Age 50 to 64	18.2%	20.1%	20.6%	20.7%	20.8%	20.9%	21.0%	20.4%	18.3%	16.4%	17.9%
Age 65 and over	13.3%	14.3%	14.6%	15.0%	15.5%	15.8%	16.2%	17.5%	20.1%	22.2%	22.6%
Median Age of Population (years)	39.5	40.3	40.5	40.6	40.7	40.8	40.8	41.1	41.7	42.4	42.7
White Population (in thousands)	79.1%	77.2%	76.8%	76.6%	76.4%	76.2%	76.0%	75.1%	73.8%	72.6%	70.1%
Black Population (in thousands)	13.5%	14.0%	14.2%	14.2%	14.2%	14.3%	14.3%	14.5%	14.7%	14.9%	15.1%
Native American Population (in thousands)	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.7%	0.6%	0.5%
Asian and Pacific Islander Population (in thousands)	2.5%	2.8%	2.8%	2.9%	2.9%	2.9%	2.9%	3.0%	3.2%	3.3%	3.4%
Hispanic or Latino Population (in thousands)	4.0%	5.1%	5.4%	5.6%	5.7%	5.9%	6.0%	6.7%	7.7%	8.7%	10.9%
Male Population (in thousands)	50.1%	50.2%	50.2%	50.2%	50.3%	50.3%	50.3%	50.4%	50.7%	50.8%	51.1%
Total Employment (in thousands of jobs)	487.45	474.27	481.21	487.94	494.78	501.71	508.69	537.52	583.42	624.20	713.24
Farm Employment	0.5%	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Forestry, Fishing, Related Activities	0.5%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.5%
Mining	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Utilities	0.3%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.5%	0.5%	0.5%
Construction	9.0%	6.1%	5.8%	5.8%	5.8%	5.7%	5.7%	5.6%	5.4%	5.3%	4.9%
Manufacturing	3.4%	2.9%	2.8%	2.8%	2.7%	2.7%	2.6%	2.4%	2.1%	1.9%	1.5%
Wholesale Trade	2.6%	2.2%	2.1%	2.1%	2.1%	2.1%	2.0%	2.0%	1.9%	1.9%	1.7%
Retail Trade	12.0%	11.2%	11.3%	11.3%	11.3%	11.3%	11.3%	11.2%	11.0%	10.9%	10.5%
Transportation and Warehousing	1.8%	1.7%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%	1.7%
Information Employment	1.9%	1.5%	1.4%	1.4%	1.3%	1.3%	1.3%	1.3%	1.2%	1.2%	1.1%
Finance and Insurance	3.6%	4.2%	4.1%	4.1%	4.2%	4.2%	4.2%	4.3%	4.4%	4.4%	4.6%
Real Estate/Rental and Lease	5.5%	5.6%	5.6%	5.6%	5.6%	5.6%	5.6%	5.7%	5.7%	5.7%	5.7%

Central Planning Area Lease Sales 235, 241, and 247 EIS

Table 4-10. Demographic and Employment Baseline Projections for Economic Impact Area FL-1 (continued).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Professional and Technical Services	5.2%	5.8%	5.8%	5.9%	6.0%	6.0%	6.1%	6.4%	6.8%	7.2%	8.0%
Management	0.5%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%	0.9%	1.0%	1.1%	1.3%
Administrative and Waste Services	7.0%	6.6%	6.8%	6.9%	6.9%	7.0%	7.0%	7.3%	7.6%	7.9%	8.5%
Educational Services	1.0%	1.3%	1.3%	1.3%	1.3%	1.4%	1.4%	1.4%	1.5%	1.6%	1.8%
Health Care and Social Assistance	8.9%	10.3%	10.1%	10.2%	10.2%	10.3%	10.4%	10.6%	11.0%	11.3%	11.8%
Arts, Entertainment, and Recreation	1.7%	2.0%	2.0%	2.0%	2.1%	2.1%	2.1%	2.2%	2.3%	2.4%	2.6%
Accommodation and Food Services	8.8%	9.4%	10.0%	10.1%	10.1%	10.2%	10.2%	10.4%	10.7%	10.9%	11.3%
Other Services, Except Public Administration	6.2%	6.1%	6.0%	6.0%	6.0%	6.1%	6.1%	6.2%	6.3%	6.3%	6.5%
Federal Civilian Government	3.5%	4.0%	4.0%	3.9%	3.9%	3.8%	3.8%	3.6%	3.4%	3.2%	2.9%
Federal Military	6.9%	7.0%	6.9%	6.8%	6.7%	6.6%	6.5%	6.2%	5.8%	5.4%	4.8%
State and Local Government	9.1%	9.6%	9.4%	9.3%	9.2%	9.2%	9.1%	8.8%	8.3%	7.9%	7.2%
Total Earnings (in millions of 2005 dollars)	20,751.11	20,572.00	20,811.53	21,392.36	21,898.20	22,415.45	22,944.36	25,181.93	28,935.09	32,468.98	40,831.98
Farm	0.1%	0.2%	0.3%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Forestry, Fishing, Related Activities	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Mining	0.1%	0.1%	0.1%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%
Utilities	0.5%	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.9%	0.9%	1.0%
Construction	8.1%	5.4%	5.3%	5.2%	5.1%	5.0%	5.0%	4.7%	4.4%	4.1%	3.6%
Manufacturing	4.8%	4.2%	4.1%	4.0%	3.9%	3.9%	3.8%	3.5%	3.2%	2.9%	2.4%
Wholesale Trade	3.0%	2.7%	2.7%	2.7%	2.7%	2.7%	2.6%	2.6%	2.5%	2.5%	2.3%
Retail Trade	7.9%	7.0%	7.1%	7.0%	6.9%	6.9%	6.8%	6.5%	6.1%	5.7%	5.0%
Transportation and Warehousing	1.8%	1.7%	2.0%	1.9%	1.9%	1.9%	1.9%	1.8%	1.8%	1.7%	1.6%
Information	2.4%	1.9%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%
Finance and Insurance	3.9%	3.9%	3.7%	3.7%	3.7%	3.7%	3.8%	3.8%	4.0%	4.0%	4.2%
Real Estate/Rental and Lease	3.1%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%	1.7%
Professional and Technical Services	6.6%	7.4%	7.6%	7.7%	7.8%	7.9%	8.0%	8.5%	9.3%	10.0%	11.4%
Management	0.8%	0.3%	0.5%	1.1%	1.1%	1.2%	1.2%	1.3%	1.6%	1.8%	2.4%
Administrative and Waste Services	4.5%	4.1%	4.1%	4.2%	4.2%	4.3%	4.3%	4.5%	4.8%	5.0%	5.4%
Educational Services	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%	0.9%	0.9%	1.1%
Health Care and Social Assistance	10.0%	11.7%	11.6%	11.6%	11.7%	11.8%	11.9%	12.2%	12.7%	13.1%	13.8%

Tables

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Arts, Entertainment, and Recreation	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%	0.9%
Accommodation and Food Services	4.6%	4.5%	4.9%	4.9%	4.9%	4.9%	5.0%	5.0%	5.2%	5.3%	5.4%
Other Services, Except Public Administration	4.4%	4.1%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	4.0%
Federal Civilian Government	6.8%	8.3%	8.4%	8.3%	8.3%	8.3%	8.2%	8.1%	7.9%	7.7%	7.4%
Federal Military	14.5%	17.1%	17.1%	17.0%	16.9%	16.9%	16.9%	16.7%	16.4%	16.1%	15.6%
State and Local Government	10.5%	11.3%	10.9%	10.8%	10.7%	10.7%	10.6%	10.4%	10.0%	9.6%	8.9%
Total Personal Income per Capita (in 2005 dollars)	33,680	35,157	35,821	36,140	36,444	36,802	37,200	39,089	42,648	46,133	54,499
Woods & Poole Economics Wealth Index (U.S. = 100)	85.9	87.6	87.2	87.3	87.2	87.1	87.0	86.7	86.4	86.3	86.1
Persons per Household (in number of people)	2.5	2.5	2.5	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Mean Household Total Personal Income (in 2005 dollars)	85,186	89,563	90,928	92,459	92,646	93,020	93,549	97,201	105,968	115,420	138,697
Number of Households (in thousands)	340.73	346.54	350.54	351.79	358.14	364.40	370.50	392.14	419.13	438.31	473.92
Income < \$10,000 (thousands of households, 2000\$)	7.3%	7.6%	7.5%	7.5%	7.5%	7.4%	7.3%	6.9%	6.1%	5.4%	4.3%
Income \$10,000 to \$19,999	11.5%	11.9%	12.0%	12.0%	12.0%	11.8%	11.7%	11.0%	9.8%	8.7%	6.9%
Income \$20,000 to \$29,999	12.1%	11.6%	11.4%	11.6%	11.6%	11.5%	11.3%	10.7%	9.5%	8.5%	6.8%
Income \$30,000 to \$44,999	17.4%	16.6%	17.8%	17.5%	17.4%	17.2%	17.1%	16.2%	14.4%	12.9%	10.3%
Income \$45,000 to \$59,999	14.3%	13.7%	13.7%	13.4%	13.4%	13.5%	13.6%	13.9%	13.7%	12.9%	10.3%
Income \$60,000 to \$74,999	10.8%	11.1%	11.1%	11.2%	11.3%	11.4%	11.5%	12.2%	13.6%	14.7%	14.9%
Income \$75,000 to \$99,999	11.9%	12.2%	11.6%	12.0%	12.1%	12.2%	12.4%	13.1%	14.8%	16.5%	20.7%
Income \$100,000 or more	14.7%	15.2%	15.0%	14.7%	14.8%	15.0%	15.1%	16.1%	18.2%	20.4%	25.8%

Table 4-10. Demographic and Employment Baseline Projections for Economic Impact Area FL-1 (continued).

Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using Notes: personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Demographic and Employment Baseline Projections for Economic Impact Area FL-2

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	861.80	882.80	889.79	900.02	910.45	921.04	931.71	975.13	1,041.44	1,096.60	1,206.10
Age Under 19 Years	26.1%	25.0%	24.5%	24.3%	24.2%	24.1%	24.1%	24.3%	24.5%	24.3%	23.6%
Age 20 to 34	20.1%	20.5%	20.9%	21.1%	21.1%	21.1%	20.9%	19.8%	18.0%	17.4%	18.6%
Age 35 to 49	22.3%	20.1%	19.5%	18.9%	18.4%	18.0%	17.8%	17.9%	19.1%	19.7%	17.4%
Age 50 to 64	18.2%	20.1%	20.6%	20.7%	20.8%	20.9%	21.0%	20.4%	18.3%	16.4%	17.9%
Age 65 and over	13.3%	14.3%	14.6%	15.0%	15.5%	15.8%	16.2%	17.5%	20.1%	22.2%	22.6%
Median Age of Population (years)	39.5	40.3	40.5	40.6	40.7	40.8	40.8	41.1	41.7	42.4	42.7
White Population (in thousands)	79.1%	77.2%	76.8%	76.6%	76.4%	76.2%	76.0%	75.1%	73.8%	72.6%	70.1%
Black Population (in thousands)	13.5%	14.0%	14.2%	14.2%	14.2%	14.3%	14.3%	14.5%	14.7%	14.9%	15.1%
Native American Population (in thousands)	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.7%	0.6%	0.5%
Asian and Pacific Islander Population (in thousands)	2.5%	2.8%	2.8%	2.9%	2.9%	2.9%	2.9%	3.0%	3.2%	3.3%	3.4%
Hispanic or Latino Population (in thousands)	4.0%	5.1%	5.4%	5.6%	5.7%	5.9%	6.0%	6.7%	7.7%	8.7%	10.9%
Male Population (in thousands)	50.1%	50.2%	50.2%	50.2%	50.3%	50.3%	50.3%	50.4%	50.7%	50.8%	51.1%
Total Employment (in thousands of jobs)	487.45	474.27	481.21	487.94	494.78	501.71	508.69	537.52	583.42	624.20	713.24
Farm Employment	0.5%	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Forestry, Fishing, Related Activities	0.5%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.5%
Mining	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Utilities	0.3%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.5%	0.5%	0.5%
Construction	9.0%	6.1%	5.8%	5.8%	5.8%	5.7%	5.7%	5.6%	5.4%	5.3%	4.9%
Manufacturing	3.4%	2.9%	2.8%	2.8%	2.7%	2.7%	2.6%	2.4%	2.1%	1.9%	1.5%
Wholesale Trade	2.6%	2.2%	2.1%	2.1%	2.1%	2.1%	2.0%	2.0%	1.9%	1.9%	1.7%
Retail Trade	12.0%	11.2%	11.3%	11.3%	11.3%	11.3%	11.3%	11.2%	11.0%	10.9%	10.5%
Transportation and Warehousing	1.8%	1.7%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%	1.7%
Information Employment	1.9%	1.5%	1.4%	1.4%	1.3%	1.3%	1.3%	1.3%	1.2%	1.2%	1.1%
Finance and Insurance	3.6%	4.2%	4.1%	4.1%	4.2%	4.2%	4.2%	4.3%	4.4%	4.4%	4.6%

	2005	2010	2011	2012	2012	2014	2015	2020	2025	2020	2040	es
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040	ယ်
Real Estate/Rental and Lease	5.5%	5.6%	5.6%	5.6%	5.6%	5.6%	5.6%	5.7%	5.7%	5.7%	5.7%	
Professional and Technical Services	5.2%	5.8%	5.8%	5.9%	6.0%	6.0%	6.1%	6.4%	6.8%	7.2%	8.0%	
Management	0.5%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%	0.9%	1.0%	1.1%	1.3%	
Administrative and Waste Services	7.0%	6.6%	6.8%	6.9%	6.9%	7.0%	7.0%	7.3%	7.6%	7.9%	8.5%	
Educational Services	1.0%	1.3%	1.3%	1.3%	1.3%	1.4%	1.4%	1.4%	1.5%	1.6%	1.8%	
Health Care and Social Assistance	8.9%	10.3%	10.1%	10.2%	10.2%	10.3%	10.4%	10.6%	11.0%	11.3%	11.8%	
Arts, Entertainment, and Recreation	1.7%	2.0%	2.0%	2.0%	2.1%	2.1%	2.1%	2.2%	2.3%	2.4%	2.6%	
Accommodation and Food Services	8.8%	9.4%	10.0%	10.1%	10.1%	10.2%	10.2%	10.4%	10.7%	10.9%	11.3%	
Other Services, Except Public Administration	6.2%	6.1%	6.0%	6.0%	6.0%	6.1%	6.1%	6.2%	6.3%	6.3%	6.5%	
Federal Civilian Government	3.5%	4.0%	4.0%	3.9%	3.9%	3.8%	3.8%	3.6%	3.4%	3.2%	2.9%	
Federal Military	6.9%	7.0%	6.9%	6.8%	6.7%	6.6%	6.5%	6.2%	5.8%	5.4%	4.8%	Cer
State and Local Government	9.1%	9.6%	9.4%	9.3%	9.2%	9.2%	9.1%	8.8%	8.3%	7.9%	7.2%	ntra
Total Earnings (in millions of 2005 dollars)	20,751.11	20,572.00	20,811.53	21,392.36	21,898.20	22,415.45	22,944.36	25,181.93	28,935.09	32,468.98	40,831.98	I Pla
Farm	0.1%	0.2%	0.3%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	nni
Forestry, Fishing, Related Activities	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	ng
Mining	0.1%	0.1%	0.1%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	An
Utilities	0.5%	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.9%	0.9%	1.0%	ea
Construction	8.1%	5.4%	5.3%	5.2%	5.1%	5.0%	5.0%	4.7%	4.4%	4.1%	3.6%	Le
Manufacturing	4.8%	4.2%	4.1%	4.0%	3.9%	3.9%	3.8%	3.5%	3.2%	2.9%	2.4%	ase
Wholesale Trade	3.0%	2.7%	2.7%	2.7%	2.7%	2.7%	2.6%	2.6%	2.5%	2.5%	2.3%	S
Retail Trade	7.9%	7.0%	7.1%	7.0%	6.9%	6.9%	6.8%	6.5%	6.1%	5.7%	5.0%	ale
Transportation and Warehousing	1.8%	1.7%	2.0%	1.9%	1.9%	1.9%	1.9%	1.8%	1.8%	1.7%	1.6%	Š
Information	2.4%	1.9%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	35
Finance and Insurance	3.9%	3.9%	3.7%	3.7%	3.7%	3.7%	3.8%	3.8%	4.0%	4.0%	4.2%	N
Real Estate/Rental and Lease	3.1%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%	1.7%	41,
Professional and Technical Services	6.6%	7.4%	7.6%	7.7%	7.8%	7.9%	8.0%	8.5%	9.3%	10.0%	11.4%	ar
Management	0.8%	0.3%	0.5%	1.1%	1.1%	1.2%	1.2%	1.3%	1.6%	1.8%	2.4%	bL
Administrative and Waste Services	4.5%	4.1%	4.1%	4.2%	4.2%	4.3%	4.3%	4.5%	4.8%	5.0%	5.4%	24;

Table 4-11. Demographic and Employment Baseline Projections for Economic Impact Area FL-2 (continued).

Health Care and Social Assistance	10.0%	11.7%	11.6%	11.6%	11.7%	11.8%	11.9%	12.2%	12.7%	13.1%	13.8%
Arts, Entertainment, and Recreation	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%	0.9%
Accommodation and Food Services	4.6%	4.5%	4.9%	4.9%	4.9%	4.9%	5.0%	5.0%	5.2%	5.3%	5.4%
Other Services, Except Public Administration	4.4%	4.1%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	4.0%
Federal Civilian Government	6.8%	8.3%	8.4%	8.3%	8.3%	8.3%	8.2%	8.1%	7.9%	7.7%	7.4%
Federal Military	14.5%	17.1%	17.1%	17.0%	16.9%	16.9%	16.9%	16.7%	16.4%	16.1%	15.6%
State and Local Government	10.5%	11.3%	10.9%	10.8%	10.7%	10.7%	10.6%	10.4%	10.0%	9.6%	8.9%
Total Personal Income per Capita (in 2005 dollars)	33,680	35,157	35,821	36,140	36,444	36,802	37,200	39,089	42,648	46,133	54,499
Woods & Poole Economics Wealth Index (U.S. = 100)	85.9	87.6	87.2	87.3	87.2	87.1	87.0	86.7	86.4	86.3	86.1
Persons per Household (in number of people)	2.5	2.5	2.5	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Mean Household Total Personal Income (in 2005 dollars)	85,186	89,563	90,928	92,459	92,646	93,020	93,549	97,201	105,968	115,420	138,697
Number of Households (in thousands)	340.73	346.54	350.54	351.79	358.14	364.40	370.50	392.14	419.13	438.31	473.92
Income < \$10,000 (thousands of households, 2000\$)	7.3%	7.6%	7.5%	7.5%	7.5%	7.4%	7.3%	6.9%	6.1%	5.4%	4.3%
Income \$10,000 to \$19,999	11.5%	11.9%	12.0%	12.0%	12.0%	11.8%	11.7%	11.0%	9.8%	8.7%	6.9%
Income \$20,000 to \$29,999	12.1%	11.6%	11.4%	11.6%	11.6%	11.5%	11.3%	10.7%	9.5%	8.5%	6.8%
Income \$30,000 to \$44,999	17.4%	16.6%	17.8%	17.5%	17.4%	17.2%	17.1%	16.2%	14.4%	12.9%	10.3%
Income \$45,000 to \$59,999	14.3%	13.7%	13.7%	13.4%	13.4%	13.5%	13.6%	13.9%	13.7%	12.9%	10.3%
Income \$60,000 to \$74,999	10.8%	11.1%	11.1%	11.2%	11.3%	11.4%	11.5%	12.2%	13.6%	14.7%	14.9%
Income \$75,000 to \$99,999	11.9%	12.2%	11.6%	12.0%	12.1%	12.2%	12.4%	13.1%	14.8%	16.5%	20.7%
Income \$100,000 or more	14.7%	15.2%	15.0%	14.7%	14.8%	15.0%	15.1%	16.1%	18.2%	20.4%	25.8%

Table 4-11. Demographic and Employment Baseline Projections for Economic Impact Area FL-2 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Tables-33

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	3,435.22	3,626.40	3,663.94	3,716.36	3,769.85	3,824.28	3,879.31	4,105.22	4,457.56	4,758.67	5,379.25
Age Under 19 Years	23.9%	23.2%	22.8%	22.7%	22.7%	22.6%	22.6%	22.5%	22.6%	22.6%	22.9%
Age 20 to 34	18.5%	18.6%	18.9%	19.0%	19.1%	19.2%	19.2%	19.1%	18.4%	18.0%	18.4%
Age 35 to 49	21.3%	19.8%	19.4%	18.9%	18.5%	18.2%	17.9%	17.5%	17.8%	18.3%	17.7%
Age 50 to 64	18.5%	20.2%	20.6%	20.7%	20.7%	20.8%	20.8%	20.3%	18.5%	16.8%	16.8%
Age 65 and over	17.8%	18.2%	18.3%	18.6%	18.9%	19.2%	19.5%	20.6%	22.7%	24.2%	24.1%
Median Age of Population (years)	41.7	42.9	43.3	43.5	43.7	43.8	43.9	44.3	44.7	45.0	45.1
White Population (in thousands)	73.9%	70.0%	69.4%	68.9%	68.3%	67.8%	67.2%	65.0%	61.8%	59.0%	53.3%
Black Population (in thousands)	11.4%	12.0%	12.3%	12.4%	12.4%	12.5%	12.6%	12.8%	13.1%	13.4%	13.8%
Native American Population (in thousands)	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%
Asian and Pacific Islander Population (in thousands)	2.6%	3.1%	3.2%	3.3%	3.3%	3.4%	3.5%	3.8%	4.3%	4.7%	5.5%
Hispanic or Latino Population (in thousands)	11.8%	14.5%	14.8%	15.2%	15.6%	16.0%	16.4%	18.1%	20.6%	22.7%	27.2%
Male Population (in thousands)	48.6%	48.6%	48.6%	48.6%	48.7%	48.7%	48.7%	48.8%	48.9%	48.9%	48.9%
Total Employment (in thousands of jobs)	1,944.15	1,832.29	1,846.30	1,875.79	1,905.67	1,935.91	1,966.53	2,092.90	2,294.56	2,474.26	2,867.83
Farm Employment	1.0%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%	0.9%	0.9%
Forestry, Fishing, Related Activities	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Mining	0.1%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Utilities	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Construction	7.3%	5.1%	4.9%	4.9%	4.9%	4.9%	5.0%	5.0%	5.1%	5.2%	5.4%
Manufacturing	5.0%	4.1%	4.2%	4.1%	4.0%	4.0%	3.9%	3.7%	3.4%	3.2%	2.8%
Wholesale Trade	3.4%	3.2%	3.2%	3.2%	3.2%	3.2%	3.2%	3.1%	3.1%	3.1%	3.0%
Retail Trade	11.4%	11.2%	11.3%	11.3%	11.3%	11.4%	11.4%	11.5%	11.7%	11.8%	11.9%
Transportation and Warehousing	2.3%	2.2%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.4%	2.4%
Information Employment	2.2%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.8%	1.7%	1.7%	1.6%
Finance and Insurance	5.8%	6.5%	6.8%	6.8%	6.8%	6.8%	6.7%	6.7%	6.6%	6.6%	6.4%

ĺ	-
	at
	Уe
	Ś

Table 4-12. Demographic and Employment Baseline Projections for Economic Impact Area FL-3 (continued).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Real Estate/Rental and Lease	4.5%	4.5%	4.6%	4.5%	4.5%	4.5%	4.5%	4.4%	4.3%	4.1%	3.9%
Professional and Technical Services	6.4%	7.2%	7.3%	7.3%	7.3%	7.3%	7.3%	7.3%	7.2%	7.2%	7.1%
Management	0.8%	1.2%	1.2%	1.2%	1.3%	1.3%	1.3%	1.3%	1.4%	1.5%	1.6%
Administrative and Waste Services	10.8%	7.9%	7.5%	7.6%	7.7%	7.8%	7.8%	8.1%	8.6%	9.0%	9.8%
Educational Services	1.3%	1.8%	1.9%	1.9%	2.0%	2.0%	2.0%	2.2%	2.5%	2.7%	3.3%
Health Care and Social Assistance	10.3%	12.4%	12.5%	12.6%	12.6%	12.7%	12.8%	13.0%	13.3%	13.5%	14.0%
Arts, Entertainment, and Recreation	2.0%	2.4%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Accommodation and Food Services	6.8%	7.1%	7.2%	7.2%	7.1%	7.1%	7.1%	7.0%	6.8%	6.7%	6.4%
Other Services, Except Public Administration	5.9%	5.9%	6.0%	6.0%	6.0%	6.0%	6.1%	6.1%	6.2%	6.2%	6.3%
Federal Civilian Government	1.3%	1.6%	1.5%	1.5%	1.5%	1.5%	1.5%	1.4%	1.3%	1.3%	1.1%
Federal Military	0.7%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.6%	0.6%	0.5%
State and Local Government	9.9%	10.6%	10.4%	10.3%	10.2%	10.1%	10.1%	9.7%	9.2%	8.9%	8.1%
Total Earnings (in millions of 2005 dollars)	85,752.60	82,664.03	83,293.04	85,719.91	87,934.35	90,200.08	92,518.16	102,336.23	118,829.95	134,369.43	171,103.77
Farm	0.5%	0.3%	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%
Forestry, Fishing, Related Activities	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Mining	0.3%	0.1%	0.1%	0.3%	0.3%	0.3%	0.3%	0.3%	0.4%	0.4%	0.4%
Utilities	1.0%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%
Construction	7.5%	4.8%	4.6%	4.6%	4.5%	4.5%	4.5%	4.4%	4.3%	4.2%	4.1%
Manufacturing	6.8%	5.9%	5.8%	5.8%	5.7%	5.6%	5.6%	5.4%	5.0%	4.7%	4.2%
Wholesale Trade	4.9%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%
Retail Trade	8.3%	7.8%	7.9%	7.8%	7.8%	7.7%	7.7%	7.5%	7.1%	6.9%	6.3%
Transportation and Warehousing	2.2%	2.1%	2.2%	2.1%	2.1%	2.1%	2.1%	2.1%	2.1%	2.1%	2.0%
Information	3.3%	3.0%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.2%
Finance and Insurance	8.0%	8.0%	8.4%	8.4%	8.4%	8.4%	8.4%	8.3%	8.3%	8.3%	8.1%
Real Estate/Rental and Lease	2.3%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.8%	1.8%	1.7%	1.6%
Professional and Technical Services	8.1%	9.7%	9.7%	9.7%	9.7%	9.8%	9.8%	9.9%	10.1%	10.2%	10.4%
Management	1.6%	2.2%	2.4%	2.4%	2.5%	2.5%	2.6%	2.8%	3.1%	3.4%	4.2%

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Administrative and Waste Services	7.1%	5.0%	4.8%	4.8%	4.9%	4.9%	5.0%	5.2%	5.6%	5.9%	6.6%
Educational Services	0.8%	1.2%	1.3%	1.3%	1.3%	1.4%	1.4%	1.5%	1.8%	2.0%	2.5%
Health Care and Social Assistance	12.1%	14.8%	14.8%	14.8%	14.9%	15.0%	15.0%	15.3%	15.7%	16.1%	16.7%
Arts, Entertainment, and Recreation	1.5%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%
Accommodation and Food Services	3.9%	3.6%	3.6%	3.6%	3.6%	3.6%	3.5%	3.5%	3.4%	3.3%	3.2%
Other Services, Except Public Administration	4.0%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%
Federal Civilian Government	2.7%	3.5%	3.4%	3.4%	3.4%	3.4%	3.4%	3.3%	3.3%	3.2%	3.1%
Federal Military	1.2%	1.6%	1.6%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.4%
State and Local Government	11.8%	13.1%	12.7%	12.6%	12.5%	12.4%	12.4%	12.1%	11.7%	11.4%	10.7%
Total Personal Income per Capita (in 2005 dollars)	35,810	35,952	36,280	36,533	36,788	37,105	37,466	39,232	42,635	45,972	53,929
Woods & Poole Economics Wealth Index (U.S. = 100)	78.9	79.4	78.7	78.7	78.6	78.6	78.5	78.2	77.8	77.5	76.9
Persons per Household (in number of people)	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.5
Mean Household Total Personal Income (in 2005 dollars)	84,866	87,077	87,589	88,922	89,017	89,311	89,765	93,124	101,406	110,345	132,237
Number of Households (in thousands)	1,449.50	1,497.25	1,517.61	1,526.86	1,557.98	1,588.81	1,619.14	1,729.47	1,874.15	1,982.57	2,193.76
Income < \$10,000 (thousands of households, 2000\$)	7.6%	8.1%	8.6%	8.6%	8.5%	8.5%	8.4%	7.9%	7.0%	6.3%	5.1%
Income \$10,000 to \$19,999	12.6%	13.0%	13.1%	13.2%	13.1%	13.0%	12.8%	12.2%	10.7%	9.6%	7.8%
Income \$20,000 to \$29,999	13.0%	13.1%	12.9%	13.2%	13.1%	13.0%	12.9%	12.2%	10.8%	9.6%	7.8%
Income \$30,000 to \$44,999	17.3%	17.5%	17.5%	17.3%	17.2%	17.1%	17.0%	16.3%	14.4%	12.9%	10.4%
Income \$45,000 to \$59,999	13.5%	13.1%	13.4%	13.5%	13.5%	13.6%	13.8%	14.3%	15.0%	14.6%	12.1%
Income \$60,000 to \$74,999	9.6%	9.9%	9.8%	9.6%	9.7%	9.8%	9.9%	10.4%	11.9%	13.3%	15.0%
Income \$75,000 to \$99,999	10.8%	10.6%	10.5%	10.6%	10.6%	10.7%	10.8%	11.4%	13.0%	14.5%	18.1%
Income \$100,000 or more	15.6%	14.7%	14.1%	14.1%	14.1%	14.3%	14.5%	15.2%	17.2%	19.2%	23.8%

Table 4-12. Demographic and Employment Baseline Projections for Economic Impact Area FL-3 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Demographic and Employment Baseline Projections for Economic Impact Area FL-4

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	5,934.95	6,170.12	6,273.04	6,352.84	6,434.20	6,516.92	6,600.40	6,941.47	7,467.78	7,911.50	8,809.42
Age Under 19 Years	24.4%	23.3%	23.0%	22.8%	22.7%	22.5%	22.4%	22.3%	22.1%	21.9%	21.6%
Age 20 to 34	18.4%	18.3%	18.6%	18.7%	18.7%	18.8%	18.8%	18.5%	17.9%	17.4%	17.3%
Age 35 to 49	22.2%	21.1%	20.7%	20.3%	19.9%	19.5%	19.2%	18.5%	18.2%	18.5%	17.6%
Age 50 to 64	17.8%	19.4%	19.7%	19.8%	19.9%	20.1%	20.2%	20.1%	19.2%	17.6%	16.8%
Age 65 and over	17.1%	17.9%	18.1%	18.4%	18.7%	19.0%	19.3%	20.6%	22.7%	24.6%	26.6%
Median Age of Population (years)	44.0	45.5	45.9	46.0	46.2	46.3	46.4	46.9	46.9	46.8	46.5
White Population (in thousands)	45.8%	42.3%	42.1%	41.5%	41.0%	40.5%	40.0%	38.1%	35.3%	33.1%	29.2%
Black Population (in thousands)	16.7%	16.7%	16.8%	16.8%	16.8%	16.9%	16.9%	16.9%	17.1%	17.1%	17.2%
Native American Population (in thousands)	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
Asian and Pacific Islander Population (in thousands)	2.0%	2.2%	2.2%	2.3%	2.3%	2.4%	2.4%	2.5%	2.7%	2.9%	3.2%
Hispanic or Latino Population (in thousands)	35.3%	38.6%	38.7%	39.2%	39.7%	40.1%	40.6%	42.3%	44.7%	46.7%	50.4%
Male Population (in thousands)	48.6%	48.6%	48.7%	48.7%	48.7%	48.7%	48.7%	48.7%	48.7%	48.6%	48.3%
Total Employment (in thousands of jobs)	3,395.35	3,367.36	3,430.32	3,489.82	3,550.17	3,611.37	3,673.45	3,930.55	4,343.66	4,714.39	5,533.20
Farm Employment	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Forestry, Fishing, Related Activities	0.4%	0.4%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%
Mining	0.1%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Utilities	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
Construction	8.0%	5.0%	4.8%	4.8%	4.8%	4.8%	4.8%	4.9%	4.9%	5.0%	5.0%
Manufacturing	3.6%	2.7%	2.7%	2.7%	2.6%	2.6%	2.5%	2.4%	2.1%	1.9%	1.6%
Wholesale Trade	4.5%	4.3%	4.3%	4.3%	4.3%	4.2%	4.2%	4.1%	4.0%	3.8%	3.6%
Retail Trade	11.2%	11.0%	11.1%	11.2%	11.2%	11.2%	11.2%	11.2%	11.2%	11.1%	11.1%
Transportation and Warehousing	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%
Information Employment	2.0%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.5%	1.4%	1.4%	1.3%
Finance and Insurance	5.0%	5.7%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%

Tables-38

Central Planning Area Lease Sales 235, 241, and 247 EIS

2005	2010	2011	2012	2013	2014	2015	20

Table 4-13. Demographic and Employment Baseline Projections for Economic Impact Area FL-4 (continued).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040	
Real Estate/Rental and Lease	6.0%	6.5%	6.5%	6.4%	6.4%	6.4%	6.4%	6.4%	6.4%	6.4%	6.4%	
Professional and Technical Services	6.5%	7.1%	7.1%	7.1%	7.2%	7.2%	7.2%	7.2%	7.3%	7.3%	7.4%	
Management	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%	
Administrative and Waste Services	9.0%	8.1%	8.1%	8.2%	8.3%	8.3%	8.4%	8.7%	9.0%	9.4%	10.1%	
Educational Services	1.8%	2.4%	2.5%	2.5%	2.5%	2.6%	2.6%	2.7%	2.8%	2.9%	3.2%	
Health Care and Social Assistance	9.1%	10.7%	10.7%	10.7%	10.8%	10.8%	10.9%	11.0%	11.3%	11.5%	11.9%	
Arts, Entertainment, and Recreation	2.2%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	
Accommodation and Food Services	7.2%	7.7%	7.9%	7.9%	7.9%	7.9%	7.9%	7.9%	7.9%	7.8%	7.8%	
Other Services, Except Public Administration	7.7%	8.1%	8.2%	8.2%	8.2%	8.3%	8.3%	8.4%	8.6%	8.8%	9.1%	
Federal Civilian Government	1.0%	1.1%	1.0%	1.0%	1.0%	1.0%	1.0%	0.9%	0.9%	0.9%	0.8%	
Federal Military	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%	0.3%	
State and Local Government	9.0%	9.0%	8.7%	8.6%	8.5%	8.4%	8.3%	8.0%	7.5%	7.1%	6.3%	
Total Earnings (in millions of 2005 dollars)	158,627.01	149,490.08	151,501.99	155,403.01	159,468.65	163,630.35	167,890.18	185,951.93	216,353.63	245,046.34	312,977.23	
Farm	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	
Forestry, Fishing, Related Activities	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	
Mining	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	9
Utilities	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	
Construction	9.4%	5.5%	5.1%	5.1%	5.1%	5.1%	5.1%	5.0%	4.8%	4.7%	4.5%	2
Manufacturing	4.4%	3.5%	3.6%	3.5%	3.5%	3.4%	3.4%	3.2%	2.9%	2.7%	2.4%	
Wholesale Trade	6.8%	7.0%	7.2%	7.2%	7.2%	7.1%	7.1%	7.0%	6.9%	6.7%	6.5%	-
Retail Trade	8.5%	8.2%	8.4%	8.3%	8.3%	8.2%	8.1%	7.9%	7.5%	7.2%	6.6%	Ì
Transportation and Warehousing	4.0%	4.1%	4.1%	4.1%	4.1%	4.1%	4.1%	4.1%	4.0%	3.9%	3.8%	
Information	3.6%	3.0%	3.0%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	
Finance and Insurance	6.9%	7.1%	7.2%	7.1%	7.2%	7.2%	7.2%	7.2%	7.3%	7.4%	7.5%	
Real Estate/Rental and Lease	3.7%	3.0%	2.9%	2.9%	2.9%	2.9%	2.9%	2.8%	2.8%	2.8%	2.7%	9
Professional and Technical Services	8.3%	9.5%	9.7%	9.7%	9.8%	9.8%	9.9%	10.1%	10.5%	10.8%	11.3%	
Management	1.3%	1.6%	1.7%	1.7%	1.7%	1.7%	1.8%	1.9%	2.1%	2.2%	2.6%	:
Administrative and Waste Services	6.2%	4.9%	4.9%	5.0%	5.0%	5.1%	5.1%	5.3%	5.6%	5.8%	6.4%	lli

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Educational Services	1.5%	2.0%	2.1%	2.2%	2.2%	2.2%	2.2%	2.3%	2.5%	2.7%	3.0%
Health Care and Social Assistance	9.5%	12.1%	12.1%	12.2%	12.2%	12.3%	12.4%	12.7%	13.1%	13.4%	14.1%
Arts, Entertainment, and Recreation	1.6%	1.7%	1.7%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%
Accommodation and Food Services	4.3%	4.5%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%
Other Services, Except Public Administration	4.2%	4.6%	4.6%	4.6%	4.7%	4.7%	4.7%	4.8%	4.8%	4.9%	5.0%
Federal Civilian Government	2.2%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.4%	2.4%
Federal Military	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.6%	0.6%
State and Local Government	11.8%	13.1%	12.6%	12.5%	12.4%	12.3%	12.3%	11.9%	11.4%	11.0%	10.1%
Total Personal Income per Capita (in 2005 dollars)	40,637	40,179	40,450	40,704	41,055	41,486	41,976	44,366	49,014	53,636	64,938
Woods & Poole Economics Wealth Index (U.S. = 100)	118.7	115.8	114.7	114.6	114.5	114.5	114.6	115.1	116.6	118.1	121.3
Persons per Household (in number of people)	2.5	2.6	2.6	2.6	2.6	2.6	2.6	2.5	2.5	2.6	2.6
Mean Household Total Personal Income (in 2005 dollars)	102,546	104,107	104,480	106,007	106,300	106,859	107,629	112,733	124,847	137,930	170,766
Number of Households (in thousands)	2,351.92	2,381.27	2,428.65	2,439.31	2,484.99	2,530.07	2,574.19	2,731.85	2,931.79	3,076.48	3,350.01
Income < \$10,000 (thousands of households, 2000\$)	7.6%	8.2%	8.6%	8.7%	8.7%	8.6%	8.5%	7.9%	7.1%	6.4%	5.1%
Income \$10,000 to \$19,999	11.2%	12.2%	12.6%	12.6%	12.5%	12.4%	12.3%	11.5%	10.3%	9.3%	7.4%
Income \$20,000 to \$29,999	11.3%	11.9%	12.0%	12.2%	12.1%	12.0%	11.9%	11.1%	10.0%	9.0%	7.2%
Income \$30,000 to \$44,999	15.5%	16.1%	16.3%	16.2%	16.1%	16.0%	15.9%	14.9%	13.3%	12.1%	9.6%
Income \$45,000 to \$59,999	13.2%	12.8%	12.7%	12.6%	12.7%	12.8%	12.8%	13.2%	13.1%	12.3%	9.8%
Income \$60,000 to \$74,999	9.8%	9.8%	10.0%	9.8%	9.8%	9.9%	10.0%	10.7%	12.0%	13.0%	13.0%
Income \$75,000 to \$99,999	11.7%	10.9%	10.6%	10.7%	10.8%	10.9%	11.0%	11.8%	13.2%	14.7%	18.4%
Income \$100,000 or more	19.8%	18.1%	17.2%	17.1%	17.2%	17.3%	17.5%	18.7%	21.0%	23.3%	29.4%

Table 4-13. Demographic and Employment Baseline Projections for Economic Impact Area FL-4 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Demographic and Employment Baseline Projections for Economic Impact Area LA-1

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	338.48	346.02	346.51	349.98	353.51	357.09	360.70	375.28	397.29	415.28	450.15
Age Under 19 Years	29.3%	28.5%	28.0%	28.2%	28.3%	28.3%	28.3%	28.7%	28.9%	28.5%	27.5%
Age 20 to 34	21.6%	21.3%	21.5%	21.2%	20.9%	20.7%	20.4%	18.8%	17.8%	18.2%	19.5%
Age 35 to 49	20.9%	19.3%	19.0%	18.8%	18.6%	18.5%	18.5%	19.1%	19.4%	18.5%	16.6%
Age 50 to 64	16.4%	18.5%	18.9%	18.9%	19.1%	19.2%	19.2%	18.7%	17.3%	16.8%	18.0%
Age 65 and over	11.8%	12.4%	12.6%	12.9%	13.1%	13.3%	13.5%	14.7%	16.7%	17.9%	18.3%
Median Age of Population (years)	34.9	36.2	36.3	36.4	36.5	36.6	36.8	37.4	38.0	38.2	38.4
White Population (in thousands)	74.8%	73.4%	73.0%	72.8%	72.7%	72.6%	72.5%	72.0%	71.2%	70.5%	69.1%
Black Population (in thousands)	20.7%	21.4%	21.6%	21.6%	21.6%	21.6%	21.6%	21.6%	21.6%	21.7%	21.7%
Native American Population (in thousands)	0.7%	0.9%	0.8%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%
Asian and Pacific Islander Population (in thousands)	1.0%	1.2%	1.2%	1.3%	1.3%	1.3%	1.3%	1.4%	1.6%	1.7%	1.9%
Hispanic or Latino Population (in thousands)	2.7%	3.1%	3.3%	3.4%	3.5%	3.6%	3.7%	4.1%	4.6%	5.2%	6.4%
Male Population (in thousands)	50.0%	50.0%	49.9%	49.9%	50.0%	50.0%	50.0%	50.1%	50.1%	50.1%	50.1%
Total Employment (in thousands of jobs)	171.65	177.97	179.50	181.84	184.23	186.63	189.07	199.12	215.11	229.33	260.40
Farm Employment	1.9%	2.0%	1.9%	1.9%	1.9%	1.9%	1.8%	1.8%	1.7%	1.6%	1.4%
Forestry, Fishing, Related Activities	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	0.9%	0.9%	0.9%
Mining	1.1%	1.3%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.5%	1.5%	1.5%
Utilities	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.2%
Construction	8.7%	8.0%	7.9%	7.9%	7.9%	7.9%	7.9%	8.0%	8.0%	8.0%	7.9%
Manufacturing	6.7%	6.5%	6.4%	6.3%	6.2%	6.1%	5.9%	5.5%	4.9%	4.4%	3.5%
Wholesale Trade	2.2%	2.1%	2.2%	2.2%	2.1%	2.1%	2.1%	2.0%	1.9%	1.8%	1.6%
Retail Trade	11.0%	10.2%	10.1%	10.2%	10.2%	10.2%	10.3%	10.4%	10.6%	10.8%	11.0%
Transportation and Warehousing	3.2%	2.8%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.1%	3.1%	3.1%
Information Employment	1.0%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.6%
Finance and Insurance	2.5%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	2.9%	2.8%	2.7%
Real Estate/Rental and Lease	2.4%	3.0%	3.2%	3.2%	3.2%	3.2%	3.2%	3.2%	3.3%	3.3%	3.4%
Professional and Technical Services	4.7%	4.3%	4.4%	4.4%	4.5%	4.5%	4.5%	4.7%	4.9%	5.1%	5.4%

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Management	0.7%	0.8%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%
Administrative and Waste Services	3.8%	4.2%	4.3%	4.3%	4.4%	4.4%	4.4%	4.6%	4.9%	5.1%	5.6%
Educational Services	1.0%	1.1%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
Health Care and Social Assistance	9.5%	10.3%	10.3%	10.4%	10.6%	10.7%	10.8%	11.4%	12.2%	12.9%	14.4%
Arts, Entertainment, and Recreation	2.3%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.3%	1.2%	1.1%
Accommodation and Food Services	7.9%	7.8%	7.9%	8.0%	8.0%	8.1%	8.1%	8.3%	8.5%	8.7%	9.1%
Other Services, Except Public Administration	6.2%	6.2%	6.2%	6.2%	6.3%	6.4%	6.4%	6.6%	6.9%	7.2%	7.7%
Federal Civilian Government	2.1%	2.2%	2.1%	2.1%	2.1%	2.1%	2.0%	2.0%	1.8%	1.8%	1.6%
Federal Military	5.7%	6.3%	6.4%	6.3%	6.3%	6.2%	6.1%	5.8%	5.4%	5.1%	4.5%
State and Local Government	14.0%	14.2%	13.9%	13.8%	13.7%	13.6%	13.4%	13.0%	12.3%	11.8%	10.7%
Total Earnings (in millions of 2005 dollars)	7,449.88	8,254.72	8,481.64	8,757.57	8,945.94	9,138.23	9,334.50	10,160.97	11,534.46	12,814.51	15,798.99
Farm	0.5%	0.3%	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%
Forestry, Fishing, Related Activities	0.7%	0.8%	0.8%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.6%
Mining	1.7%	1.4%	1.5%	1.8%	1.8%	1.8%	1.9%	1.9%	1.9%	2.0%	2.0%
Utilities	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.7%	0.6%
Construction	7.6%	8.6%	8.4%	8.2%	8.2%	8.2%	8.1%	8.0%	7.7%	7.5%	7.0%
Manufacturing	14.6%	14.0%	14.2%	13.8%	13.6%	13.3%	13.1%	12.2%	11.0%	10.1%	8.3%
Wholesale Trade	2.7%	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%	2.5%	2.4%	2.3%	2.2%
Retail Trade	6.3%	5.6%	5.5%	5.4%	5.4%	5.4%	5.4%	5.3%	5.1%	5.0%	4.7%
Transportation and Warehousing	3.6%	3.3%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%	3.3%	3.3%	3.3%
Information	2.6%	1.0%	0.9%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.2%
Finance and Insurance	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.2%	2.2%	2.2%	2.2%
Real Estate/Rental and Lease	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
Professional and Technical Services	5.4%	5.0%	5.0%	5.0%	5.1%	5.1%	5.2%	5.5%	5.9%	6.3%	7.0%
Management	1.5%	0.6%	0.6%	0.7%	0.7%	0.7%	0.8%	0.8%	0.8%	0.9%	0.9%
Administrative and Waste Services	2.3%	2.3%	2.4%	2.4%	2.4%	2.4%	2.5%	2.6%	2.9%	3.1%	3.5%
Educational Services	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%
Health Care and Social Assistance	8.7%	10.2%	10.3%	10.4%	10.5%	10.7%	10.9%	11.5%	12.6%	13.5%	15.5%
Arts, Entertainment, and Recreation	1.5%	0.6%	0.7%	0.7%	0.7%	0.6%	0.6%	0.6%	0.6%	0.6%	0.5%
Accommodation and Food Services	3.7%	3.8%	3.7%	3.7%	3.7%	3.8%	3.8%	3.9%	4.1%	4.2%	4.4%
Other Services, Except Public Administration	3.7%	3.6%	3.5%	3.5%	3.5%	3.6%	3.6%	3.7%	3.9%	4.1%	4.4%

Table 4-14. Demographic and Employment Baseline Projections for Economic Impact Area LA-1 (continued).

Tables-41

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Federal Civilian Government	3.8%	3.9%	3.8%	3.8%	3.8%	3.8%	3.7%	3.7%	3.7%	3.6%	3.5%
Federal Military	10.6%	13.2%	14.1%	14.0%	14.0%	14.0%	14.0%	14.1%	14.2%	14.3%	14.4%
State and Local Government	13.8%	14.1%	13.4%	13.2%	13.1%	13.1%	13.0%	12.8%	12.4%	12.1%	11.4%
Total Personal Income per Capita (in 2005 dollars)	29,511	32,958	34,005	34,470	34,772	35,111	35,480	37,175	40,274	43,278	50,426
Woods & Poole Economics Wealth Index (U.S. = 100)	69.2	81.0	81.4	81.8	81.8	81.8	81.8	81.6	81.3	80.9	80.3
Persons per Household (in number of people)	2.6	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.6	2.6	2.6
Mean Household Total Personal Income (in 2005 dollars)	77,937	88,001	90,444	92,356	92,519	92,834	93,279	96,428	104,035	112,254	132,305
Number of Households (in thousands)	128.17	129.59	130.28	130.62	132.86	135.06	137.19	144.68	153.80	160.11	171.57
Income < \$10,000 (thousands of households, 2000\$)	10.4%	9.4%	9.6%	9.4%	9.3%	9.2%	9.1%	8.7%	7.9%	7.1%	5.8%
Income \$10,000 to \$19,999	15.0%	14.3%	14.0%	13.9%	13.9%	13.7%	13.6%	12.9%	11.7%	10.5%	8.6%
Income \$20,000 to \$29,999	12.8%	12.8%	13.4%	13.3%	13.2%	13.1%	13.0%	12.4%	11.1%	10.1%	8.2%
Income \$30,000 to \$44,999	17.5%	16.5%	16.3%	15.9%	15.8%	15.7%	15.6%	14.9%	13.5%	12.1%	9.9%
Income \$45,000 to \$59,999	12.5%	12.7%	12.3%	12.4%	12.4%	12.6%	12.7%	13.2%	13.7%	13.5%	11.3%
Income \$60,000 to \$74,999	9.1%	9.9%	9.7%	9.7%	9.8%	9.9%	10.0%	10.5%	11.6%	12.7%	14.4%
Income \$75,000 to \$99,999	10.6%	10.9%	11.1%	11.2%	11.2%	11.4%	11.5%	12.1%	13.5%	15.0%	18.3%
Income \$100,000 or more	12.0%	13.5%	13.5%	14.2%	14.3%	14.5%	14.6%	15.4%	17.1%	19.0%	23.3%

Table 4-14. Demographic and Employment Baseline Projections for Economic Impact Area LA-1 (continued).

Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using Notes: personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	558.42	585.06	588.41	596.10	603.94	611.91	619.95	652.85	703.71	746.69	833.85
Age Under 19 Years	30.0%	29.0%	28.6%	28.5%	28.5%	28.5%	28.5%	28.6%	28.5%	28.1%	26.9%
Age 20 to 34	20.6%	21.1%	21.4%	21.3%	21.2%	21.0%	20.7%	19.4%	17.9%	17.9%	19.0%
Age 35 to 49	21.8%	19.5%	19.1%	18.7%	18.4%	18.2%	18.2%	18.5%	19.7%	19.4%	17.5%
Age 50 to 64	16.1%	18.6%	19.0%	19.3%	19.5%	19.6%	19.6%	19.3%	17.3%	16.4%	18.3%
Age 65 and over	11.5%	11.9%	12.0%	12.2%	12.5%	12.7%	13.0%	14.1%	16.6%	18.1%	18.4%
Median Age of Population (years)	35.0	35.7	35.7	35.8	36.0	36.1	36.2	37.0	38.1	38.9	39.2
White Population (in thousands)	69.3%	67.6%	67.4%	67.2%	67.1%	66.9%	66.8%	66.2%	65.2%	64.4%	62.6%
Black Population (in thousands)	27.1%	27.9%	27.9%	28.0%	28.0%	28.0%	28.0%	28.1%	28.3%	28.4%	28.7%
Native American Population (in thousands)	0.3%	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Asian and Pacific Islander Population (in thousands)	1.2%	1.3%	1.4%	1.4%	1.4%	1.4%	1.4%	1.5%	1.7%	1.8%	1.9%
Hispanic or Latino Population (in thousands)	2.1%	2.8%	3.0%	3.1%	3.2%	3.3%	3.4%	3.8%	4.4%	5.1%	6.4%
Male Population (in thousands)	48.7%	48.8%	48.8%	48.8%	48.8%	48.8%	48.9%	49.0%	49.1%	49.1%	49.2%
Total Employment (in thousands of jobs)	297.51	328.88	333.42	339.08	344.80	350.61	356.48	380.77	419.58	454.23	530.17
Farm Employment	1.9%	1.8%	1.7%	1.7%	1.7%	1.7%	1.6%	1.5%	1.4%	1.3%	1.1%
Forestry, Fishing, Related Activities	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%
Mining	6.9%	7.8%	8.1%	8.0%	7.9%	7.9%	7.8%	7.5%	7.1%	6.8%	6.2%
Utilities	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Construction	6.7%	6.3%	6.1%	6.1%	6.1%	6.1%	6.0%	6.0%	6.0%	5.9%	5.8%
Manufacturing	6.1%	5.8%	6.2%	6.1%	6.0%	6.0%	5.9%	5.6%	5.2%	4.9%	4.3%
Wholesale Trade	3.7%	3.6%	3.6%	3.6%	3.6%	3.5%	3.5%	3.5%	3.4%	3.3%	3.1%
Retail Trade	11.5%	10.8%	10.8%	10.8%	10.8%	10.8%	10.8%	10.9%	10.9%	10.9%	10.9%
Transportation and Warehousing	3.5%	2.9%	2.8%	2.8%	2.9%	2.9%	2.9%	2.9%	2.9%	3.0%	3.1%
Information Employment	1.5%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%
Finance and Insurance	3.4%	3.6%	3.6%	3.6%	3.6%	3.6%	3.5%	3.4%	3.3%	3.2%	2.9%
Real Estate/Rental and Lease	4.0%	4.5%	4.6%	4.6%	4.6%	4.6%	4.6%	4.6%	4.6%	4.7%	4.7%

Tables

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Professional and Technical Services	4.7%	5.2%	5.2%	5.2%	5.3%	5.3%	5.3%	5.3%	5.4%	5.5%	5.6%
Management	1.1%	1.3%	1.3%	1.3%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
Administrative and Waste Services	4.6%	4.8%	4.8%	4.8%	4.8%	4.8%	4.8%	4.9%	5.1%	5.2%	5.3%
Educational Services	1.2%	1.3%	1.3%	1.3%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.5%
Health Care and Social Assistance	11.2%	12.0%	12.2%	12.4%	12.5%	12.7%	12.9%	13.5%	14.5%	15.4%	17.1%
Arts, Entertainment, and Recreation	1.5%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.8%	1.9%	2.0%	2.1%
Accommodation and Food Services	6.4%	6.1%	6.1%	6.2%	6.2%	6.2%	6.2%	6.3%	6.4%	6.5%	6.6%
Other Services, Except Public Administration	7.0%	6.7%	6.5%	6.6%	6.6%	6.7%	6.7%	6.9%	7.2%	7.4%	7.9%
Federal Civilian Government	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.3%	0.3%
Federal Military	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.6%	0.5%
State and Local Government	10.8%	10.4%	9.9%	9.9%	9.8%	9.7%	9.7%	9.4%	9.0%	8.6%	7.9%
Total Earnings (in millions of 2005 dollars)	12,447.44	15,056.94	15,441.31	15,733.44	16,146.69	16,569.39	17,001.76	18,831.45	21,898.55	24,779.07	31,546.99
Farm	0.8%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.1%	1.0%	0.9%	0.8%
Forestry, Fishing, Related Activities	0.3%	0.3%	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%
Mining	13.7%	14.1%	14.5%	14.2%	14.1%	14.1%	14.0%	13.7%	13.3%	13.0%	12.2%
Utilities	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%
Construction	7.1%	7.4%	7.4%	7.3%	7.2%	7.2%	7.1%	6.9%	6.6%	6.3%	5.8%
Manufacturing	7.5%	7.8%	8.6%	8.5%	8.4%	8.4%	8.3%	8.1%	7.8%	7.5%	7.0%
Wholesale Trade	4.7%	4.7%	4.7%	4.8%	4.8%	4.8%	4.8%	4.7%	4.6%	4.6%	4.4%
Retail Trade	7.9%	6.8%	6.9%	6.9%	6.8%	6.8%	6.7%	6.5%	6.2%	5.9%	5.4%
Transportation and Warehousing	4.6%	4.3%	4.1%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.8%	3.8%
Information	1.7%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.2%	1.3%	1.3%
Finance and Insurance	4.1%	2.9%	2.8%	2.9%	2.8%	2.8%	2.8%	2.7%	2.7%	2.6%	2.4%
Real Estate/Rental and Lease	3.5%	3.6%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.8%	3.8%	3.8%
Professional and Technical Services	6.0%	6.4%	6.7%	6.8%	6.8%	6.9%	6.9%	7.2%	7.5%	7.8%	8.3%
Management	1.6%	1.6%	1.5%	1.5%	1.6%	1.6%	1.6%	1.6%	1.7%	1.8%	1.9%
Administrative and Waste Services	3.1%	3.2%	3.0%	3.1%	3.1%	3.1%	3.1%	3.2%	3.4%	3.5%	3.7%
Educational Services	0.7%	0.8%	0.8%	0.8%	0.9%	0.9%	0.9%	0.9%	0.9%	1.0%	1.1%
Health Care and Social Assistance	11.3%	12.6%	12.2%	12.5%	12.7%	12.9%	13.0%	13.8%	14.9%	15.9%	17.9%
Arts, Entertainment, and Recreation	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.6%	0.6%

Table 4-15. Demographic and Employment Baseline Projections for Economic Impact Area LA-2 (continued).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Accommodation and Food Services	2.5%	2.5%	2.5%	2.5%	2.5%	2.6%	2.6%	2.6%	2.7%	2.7%	2.8%
Other Services, Except Public Administration	4.5%	4.6%	4.4%	4.4%	4.4%	4.5%	4.5%	4.6%	4.8%	5.0%	5.3%
Federal Civilian Government	1.2%	1.1%	1.0%	1.0%	1.0%	1.0%	1.0%	0.9%	0.9%	0.8%	0.7%
Federal Military	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
State and Local Government	11.3%	11.2%	10.6%	10.6%	10.6%	10.5%	10.5%	10.3%	10.1%	9.8%	9.3%
Total Personal Income per Capita (in 2005 dollars)	30,899	36,282	37,161	37,038	37,371	37,748	38,158	40,046	43,488	46,795	54,565
Woods & Poole Economics Wealth Index (U.S. = 100)	72.9	84.2	84.3	83.5	83.5	83.5	83.4	83.2	82.8	82.4	81.6
Persons per Household (in number of people)	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.6
Mean Household Total Personal Income (in 2005 dollars)	81,039	95,267	97,212	97,581	97,754	98,095	98,577	101,968	110,105	118,808	139,762
Number of Households (in thousands)	212.92	222.81	224.93	226.26	230.88	235.47	239.98	256.40	277.94	294.10	325.54
Income < \$10,000 (thousands of households, 2000\$)	13.9%	12.3%	12.2%	11.5%	11.4%	11.2%	11.1%	10.7%	9.6%	8.7%	7.1%
Income \$10,000 to \$19,999	15.5%	15.5%	15.7%	15.6%	15.5%	15.3%	15.2%	14.5%	13.0%	11.8%	9.6%
Income \$20,000 to \$29,999	12.6%	12.0%	11.4%	11.8%	11.7%	11.6%	11.5%	11.0%	9.9%	9.0%	7.4%
Income \$30,000 to \$44,999	15.4%	15.0%	15.4%	14.9%	14.8%	14.8%	14.7%	14.4%	13.2%	12.0%	9.9%
Income \$45,000 to \$59,999	11.7%	11.6%	11.6%	11.8%	11.8%	11.9%	12.0%	12.4%	13.1%	13.0%	11.4%
Income \$60,000 to \$74,999	8.7%	9.2%	9.2%	8.9%	8.9%	9.0%	9.1%	9.5%	10.5%	11.6%	13.2%
Income \$75,000 to \$99,999	9.7%	10.2%	10.1%	10.9%	11.0%	11.1%	11.2%	11.7%	12.9%	14.3%	17.4%
Income \$100,000 or more	12.6%	14.3%	14.3%	14.7%	14.9%	15.0%	15.2%	15.8%	17.6%	19.6%	24.0%

Table 4-15. Demographic and Employment Baseline Projections for Economic Impact Area LA-2 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Tables-45

Demographic and Employment Baseline Projections for Economic Impact Area LA-3

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	1,051.06	1,142.41	1,147.53	1,162.47	1,177.70	1,193.18	1,208.79	1,272.50	1,370.62	1,453.15	1,619.4
Age Under 19 Years	29.6%	28.3%	28.0%	27.9%	27.9%	27.9%	27.9%	27.9%	28.0%	27.6%	26.6%
Age 20 to 34	22.3%	22.8%	22.9%	22.8%	22.7%	22.5%	22.2%	20.7%	18.8%	18.4%	19.1%
Age 35 to 49	21.5%	19.6%	19.2%	18.9%	18.7%	18.5%	18.4%	19.0%	20.1%	20.0%	17.8%
Age 50 to 64	16.4%	18.3%	18.6%	18.7%	18.9%	18.9%	19.0%	18.4%	16.9%	16.3%	18.4%
Age 65 and over	10.3%	11.0%	11.3%	11.6%	11.9%	12.2%	12.6%	13.9%	16.2%	17.6%	18.0%
Median Age of Population (years)	34.6	35.7	35.8	36.0	36.2	36.4	36.5	37.5	38.9	39.9	40.
White Population (in thousands)	65.3%	62.4%	62.2%	61.9%	61.7%	61.5%	61.2%	60.3%	59.0%	57.9%	55.5%
Black Population (in thousands)	29.4%	31.1%	31.1%	31.2%	31.3%	31.4%	31.4%	31.7%	32.2%	32.5%	33.0%
Native American Population (in thousands)	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.2%	1.29
Asian and Pacific Islander Population (in thousands)	1.5%	1.7%	1.7%	1.7%	1.8%	1.8%	1.8%	2.0%	2.1%	2.2%	2.5%
Hispanic or Latino Population (in thousands)	2.6%	3.7%	3.9%	4.0%	4.1%	4.3%	4.4%	4.9%	5.5%	6.2%	7.9%
Male Population (in thousands)	48.7%	48.9%	48.8%	48.8%	48.8%	48.9%	48.9%	48.9%	49.0%	49.0%	49.1%
Total Employment (in thousands of jobs)	606.81	674.25	681.06	691.34	701.78	712.40	723.17	767.88	840.17	905.55	1,051.7
Farm Employment	0.7%	0.7%	0.7%	0.6%	0.6%	0.6%	0.6%	0.6%	0.5%	0.5%	0.49
Forestry, Fishing, Related Activities	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.6%	0.6%	0.6%
Mining	1.5%	2.0%	1.9%	1.9%	1.9%	1.8%	1.8%	1.7%	1.6%	1.5%	1.39
Utilities	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	0.29
Construction	9.8%	8.9%	8.9%	8.8%	8.8%	8.7%	8.6%	8.4%	8.0%	7.6%	7.09
Manufacturing	6.8%	6.2%	6.4%	6.3%	6.2%	6.1%	6.0%	5.7%	5.2%	4.7%	4.09
Wholesale Trade	3.2%	2.8%	2.9%	2.9%	2.8%	2.8%	2.8%	2.7%	2.6%	2.5%	2.39
Retail Trade	10.9%	10.3%	10.2%	10.2%	10.1%	10.1%	10.0%	9.8%	9.5%	9.2%	8.59
Transportation and Warehousing	4.4%	4.3%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.5%	4.5%	4.59
Information Employment	1.4%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%	1.0%	0.99
Finance and Insurance	3.5%	3.9%	4.1%	4.1%	4.0%	4.0%	4.0%	4.0%	3.9%	3.8%	3.59
Real Estate/Rental and Lease	3.6%	4.2%	4.2%	4.2%	4.2%	4.2%	4.2%	4.2%	4.2%	4.2%	4.29

Table 4-16. Demographic and Employment Baseline Projections for Economic Impact Area LA-3 (continued).

				-							
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Professional and Technical Services	4.8%	5.2%	5.1%	5.2%	5.2%	5.3%	5.3%	5.5%	5.7%	5.9%	6.3%
Management	1.0%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.3%	1.3%
Administrative and Waste Services	5.8%	6.2%	6.3%	6.4%	6.5%	6.7%	6.8%	7.2%	7.9%	8.5%	9.8%
Educational Services	1.1%	1.4%	1.4%	1.4%	1.4%	1.5%	1.5%	1.5%	1.7%	1.8%	2.0%
Health Care and Social Assistance	8.8%	9.8%	9.9%	10.0%	10.2%	10.3%	10.4%	11.0%	11.8%	12.5%	13.9%
Arts, Entertainment, and Recreation	1.3%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.7%	1.7%	1.8%	1.9%
Accommodation and Food Services	6.6%	6.3%	6.6%	6.7%	6.7%	6.8%	6.8%	7.0%	7.2%	7.5%	7.9%
Other Services, Except Public Administration	6.7%	6.9%	6.8%	6.9%	7.0%	7.0%	7.1%	7.4%	7.9%	8.3%	9.0%
Federal Civilian Government	0.6%	0.7%	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Federal Military	0.8%	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.6%
State and Local Government	15.6%	14.5%	14.0%	13.8%	13.7%	13.5%	13.4%	12.8%	11.9%	11.2%	9.8%
Total Earnings (in millions of 2005 dollars)	26,073.66	31,814.85	32,091.25	32,704.47	33,455.43	34,223.77	35,009.88	38,340.94	43,948.74	49,252.34	61,885.78
Farm	0.3%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%
Forestry, Fishing, Related Activities	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Mining	2.6%	3.0%	2.7%	2.8%	2.8%	2.7%	2.7%	2.6%	2.5%	2.4%	2.1%
Utilities	0.7%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Construction	10.3%	11.0%	11.0%	10.7%	10.5%	10.4%	10.3%	9.8%	9.0%	8.4%	7.3%
Manufacturing	12.4%	11.7%	12.3%	12.4%	12.2%	12.1%	11.9%	11.4%	10.5%	9.9%	8.5%
Wholesale Trade	4.4%	3.9%	4.0%	4.0%	4.0%	4.0%	4.0%	3.9%	3.8%	3.7%	3.5%
Retail Trade	7.2%	6.2%	6.2%	6.2%	6.1%	6.0%	5.9%	5.6%	5.2%	4.8%	4.2%
Transportation and Warehousing	6.0%	7.3%	7.5%	7.7%	7.7%	7.7%	7.7%	7.8%	7.8%	7.8%	7.7%
Information	1.7%	1.3%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%
Finance and Insurance	4.3%	4.2%	4.5%	4.2%	4.2%	4.3%	4.3%	4.3%	4.3%	4.3%	4.2%
Real Estate/Rental and Lease	2.1%	2.3%	2.2%	2.1%	2.1%	2.1%	2.1%	2.1%	2.0%	2.0%	1.9%
Professional and Technical Services	6.0%	6.4%	6.3%	6.5%	6.5%	6.6%	6.7%	7.1%	7.7%	8.1%	9.1%
Management	1.4%	1.7%	1.7%	1.8%	1.8%	1.8%	1.9%	2.0%	2.2%	2.4%	2.8%
Administrative and Waste Services	3.5%	3.9%	3.9%	3.9%	4.0%	4.1%	4.2%	4.6%	5.3%	5.8%	7.1%
Educational Services	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.9%	0.9%	1.1%
Health Care and Social Assistance	9.2%	9.6%	9.6%	9.8%	10.0%	10.2%	10.3%	11.0%	12.1%	12.9%	14.7%
Arts, Entertainment, and Recreation	0.7%	0.6%	0.6%	0.5%	0.5%	0.5%	0.6%	0.6%	0.6%	0.6%	0.7%

Cable 4-16. Demographic and Employment Baseline Projections for Economic Impact Area LA-3 (continued). Image: Continued of the second seco														
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040	-Se		
Accommodation and Food Services	2.7%	2.5%	2.6%	2.7%	2.7%	2.7%	2.7%	2.8%	3.0%	3.1%	3.3%	18		
Other Services, Except Public Administration	4.1%	4.0%	4.0%	4.0%	4.1%	4.1%	4.2%	4.3%	4.6%	4.8%	5.2%			
Federal Civilian Government	1.2%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%			
Federal Military	0.9%	1.0%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%			
State and Local Government	17.5%	16.5%	15.8%	15.7%	15.6%	15.5%	15.4%	15.0%	14.4%	13.8%	12.6%			
Total Personal Income per Capita (in 2005 dollars)	32,957	36,886	37,501	37,603	37,902	38,242	38,616	40,361	43,609	46,795	54,473			
Woods & Poole Economics Wealth Index (U.S. = 100)	78.2	89.3	89.2	88.6	88.5	88.5	88.4	88.1	87.7	87.4	87.2			
Persons per Household (in number of people)	2.7	2.7	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.6	2.6			
Mean Household Total Personal Income (in 2005 dollars)	87,838	98,809	100,044	101,039	101,133	101,396	101,805	104,964	112,932	121,677	143,312	ດ ດ		
Number of Households (in thousands)	394.36	426.46	430.14	432.63	441.37	450.02	458.52	489.30	529.27	558.86	615.56	ent		
Income < \$10,000 (thousands of households, 2000\$)	10.7%	9.7%	9.7%	9.2%	9.2%	9.1%	9.0%	8.6%	7.7%	7.0%	5.8%	ral P		
Income \$10,000 to \$19,999	13.1%	13.4%	13.4%	13.5%	13.4%	13.3%	13.2%	12.5%	11.3%	10.3%	8.5%	an		
Income \$20,000 to \$29,999	11.6%	11.3%	11.3%	11.2%	11.2%	11.1%	10.9%	10.4%	9.4%	8.6%	7.1%	nin		
Income \$30,000 to \$44,999	15.6%	14.9%	15.1%	14.6%	14.6%	14.5%	14.4%	13.8%	12.5%	11.4%	9.5%	∕ B		
Income \$45,000 to \$59,999	12.3%	12.1%	11.9%	11.8%	11.8%	11.9%	11.9%	12.1%	12.1%	11.4%	9.5%	Irea		
Income \$60,000 to \$74,999	9.6%	9.7%	9.9%	9.8%	9.8%	9.9%	10.0%	10.5%	11.5%	12.3%	12.5%	a L		
Income \$75,000 to \$99,999	11.6%	11.6%	11.5%	12.2%	12.2%	12.3%	12.5%	13.1%	14.5%	15.9%	19.2%	ea		
Income \$100,000 or more	15.6%	17.3%	17.2%	17.7%	17.8%	18.0%	18.1%	19.0%	21.0%	23.0%	27.9%	Se		

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	1,431.31	1,242.69	1,260.01	1,267.26	1,274.66	1,282.17	1,289.69	1,319.60	1,362.75	1,395.73	1,453.72
Age Under 19 Years	28.0%	26.1%	25.8%	25.8%	25.7%	25.7%	25.7%	26.0%	26.0%	25.7%	24.8%
Age 20 to 34	20.6%	21.3%	21.5%	21.4%	21.3%	21.1%	20.8%	19.1%	17.2%	17.3%	18.5%
Age 35 to 49	22.2%	20.1%	19.6%	19.3%	19.1%	19.0%	18.9%	19.6%	20.8%	20.3%	17.3%
Age 50 to 64	17.9%	20.3%	20.6%	20.7%	20.7%	20.8%	20.8%	20.0%	18.1%	17.5%	19.7%
Age 65 and over	11.4%	12.3%	12.5%	12.8%	13.1%	13.4%	13.8%	15.3%	17.8%	19.3%	19.6%
Median Age of Population (years)	36.0	36.7	36.8	37.0	37.1	37.2	37.3	38.1	39.3	39.8	40.0
White Population (in thousands)	53.7%	54.8%	54.5%	54.3%	54.1%	53.8%	53.6%	52.8%	51.5%	50.4%	48.4%
Black Population (in thousands)	38.1%	34.5%	34.6%	34.6%	34.6%	34.5%	34.5%	34.4%	34.1%	33.9%	33.2%
Native American Population (in thousands)	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.5%	0.5%	0.5%
Asian and Pacific Islander Population (in thousands)	2.4%	2.8%	2.8%	2.9%	2.9%	2.9%	3.0%	3.1%	3.4%	3.6%	3.8%
Hispanic or Latino Population (in thousands)	5.4%	7.6%	7.7%	7.9%	8.1%	8.3%	8.5%	9.3%	10.5%	11.6%	14.2%
Male Population (in thousands)	48.1%	48.7%	48.7%	48.7%	48.7%	48.8%	48.8%	48.9%	48.9%	49.0%	49.0%
Total Employment (in thousands of jobs)	740.50	750.90	758.43	766.12	773.87	781.67	789.50	821.31	870.47	912.81	1,001.64
Farm Employment	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%
Forestry, Fishing, Related Activities	0.5%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%
Mining	1.3%	1.5%	1.5%	1.5%	1.5%	1.5%	1.4%	1.4%	1.3%	1.2%	1.0%
Utilities	0.5%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%
Construction	6.2%	6.6%	6.5%	6.5%	6.5%	6.4%	6.4%	6.3%	6.1%	6.0%	5.7%
Manufacturing	5.6%	5.0%	4.8%	4.7%	4.6%	4.5%	4.4%	4.1%	3.6%	3.3%	2.6%
Wholesale Trade	3.6%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.2%
Retail Trade	10.0%	9.4%	9.5%	9.5%	9.5%	9.5%	9.4%	9.4%	9.3%	9.3%	9.1%
Transportation and Warehousing	4.1%	4.0%	4.1%	4.1%	4.1%	4.1%	4.1%	4.1%	4.0%	4.0%	3.9%
Information Employment	1.6%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.1%
Finance and Insurance	3.9%	4.2%	4.3%	4.3%	4.3%	4.2%	4.2%	4.0%	3.8%	3.6%	3.3%
Real Estate/Rental and Lease	4.0%	4.5%	4.6%	4.6%	4.6%	4.6%	4.6%	4.6%	4.7%	4.7%	4.7%
Professional and Technical Services	5.7%	6.5%	6.5%	6.5%	6.5%	6.5%	6.5%	6.4%	6.4%	6.4%	6.2%
Management	1.1%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%

Tables

Table 4-17. Demographic and Employment Baseline Projections for Economic Impact Area LA-4 (continued).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Administrative and Waste Services	6.4%	6.7%	6.6%	6.6%	6.7%	6.7%	6.8%	7.0%	7 3%	7 5%	8.1%
Educational Services	3.1%	3.2%	3.3%	3 3%	3 3%	3.4%	3.4%	3.4%	3.6%	3.6%	3.8%
Health Care and Social Assistance	3.170 8.8%	9.3%	9.4%	9.5%	9.6%	9.7%	9.4%	10.2%	10.8%	11.4%	12.6%
Arts Entertainment and Recreation	2.5%	2.5%	2.5%	2.5%	2.5%	2.6%	2.6%	2 7%	2.8%	2 9%	3 1%
Arts, Entertainment, and Recreation	2.370	2.3%	0.4%	0.4%	0.5%	0.5%	2.070	0.8%	2.070	2.9%	10 7%
Other Services Except Public Administration	6.5%	9.0%	5.4%	9.470 6.8%	9.370 6.0%	9.370 6.0%	7.0%	7 20%	7 5%	7 8%	10.770 8.404
Endered Civilian Covernment	0.5%	1.904	1.70/	1.6%	0.970	0.970	1.6%	1.270	1.5%	1.5%	0.470
Federal Military	2.1%	1.0%	1.7%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.3%	0.0%
State and Local Covernment	1.4%	1.2%	10.5%	10.4%	10.2%	10.2%	10.1%	0.8%	0.2%	1.0% 8.7%	0.9%
Total Earnings (in millions of 2005 dollars)	26 400 42	28 052 60	28 250 52	20 141 10	20 862 24	10.270	10.170	<i>44</i> 420 04	9.270	0.770 54.052.00	7.370 64 272 74
Form	0.1%	0.1%	0.1%	0.1%	0.1%	40,394.91	41,339.39	44,439.04	49,474.33	0.1%	04,373.74
Failin Forestry, Fishing, Poloted Activities	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Mining, Kelated Activities	0.2%	0.2%	2.50/	0.2%	0.2%	0.2%	2.40	2.2%	0.2%	0.2%	0.2%
	4.4%	5.4%	5.5%	5.4%	3.4%	3.4%	3.4%	3.2%	5.1%	2.9%	2.0%
	1.2%	1.1%	1.1%	1.1%	1.0%	1.0%	1.0%	7.10	0.9%	0.9%	0.8%
Construction	0.5%	7.4%	7.5%	7.0%	7.5%	7.4%	7.4%	7.1%	0.0%	0.3%	5.0%
Manufacturing	8.6%	9.2%	9.0%	8.7%	8.6%	8.5%	8.3%	7.8%	7.0%	6.5%	5.4%
wholesale Irade	5.3%	5.1%	5.2%	5.2%	5.2%	5.2%	5.3%	5.4%	5.5%	5.6%	5.7%
Retail Irade	6.2%	5.7%	5.8%	5.7%	5.7%	5.6%	5.6%	5.4%	5.1%	4.9%	4.4%
Transportation and Warehousing	5.1%	5.3%	5.4%	5.4%	5.3%	5.3%	5.2%	5.1%	4.9%	4.7%	4.3%
Information	1.7%	1.4%	1.3%	1.3%	1.4%	1.4%	1.4%	1.4%	1.4%	1.5%	1.5%
Finance and Insurance	5.1%	4.4%	4.6%	4.8%	4.8%	4.8%	4.7%	4.6%	4.4%	4.2%	3.9%
Real Estate/Rental and Lease	2.6%	1.5%	1.5%	1.5%	1.5%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%
Professional and Technical Services	8.0%	9.5%	9.6%	9.7%	9.7%	9.8%	9.8%	10.0%	10.2%	10.4%	10.6%
Management	1.8%	1.8%	1.9%	2.0%	2.0%	2.0%	2.1%	2.2%	2.3%	2.4%	2.7%
Administrative and Waste Services	4.0%	4.3%	4.0%	4.1%	4.1%	4.2%	4.2%	4.4%	4.7%	5.0%	5.6%
Educational Services	2.2%	2.5%	2.5%	2.5%	2.6%	2.6%	2.6%	2.7%	2.9%	3.0%	3.3%
Health Care and Social Assistance	8.7%	9.5%	9.5%	9.6%	9.7%	9.8%	10.0%	10.5%	11.3%	12.0%	13.4%
Arts, Entertainment, and Recreation	2.1%	1.7%	1.7%	1.7%	1.8%	1.8%	1.8%	1.9%	1.9%	2.0%	2.2%
Accommodation and Food Services	4.4%	4.5%	4.7%	4.7%	4.8%	4.8%	4.8%	5.0%	5.1%	5.3%	5.6%
Other Services, Except Public Administration	3.7%	3.9%	3.9%	4.0%	4.0%	4.0%	4.1%	4.2%	4.4%	4.6%	4.9%

Central Planning Area Lease Sales 235, 241, and 247 EIS

Table 4-17. Demographic and Employment Baseline Projections for Economic Impact Area LA-4 (continued).												IaDia
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040	8
Federal Civilian Government	4.2%	3.6%	3.5%	3.5%	3.5%	3.5%	3.5%	3.6%	3.7%	3.7%	3.9%	
Federal Military	1.8%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.7%	1.7%	1.8%	
State and Local Government	12.1%	12.3%	11.7%	11.6%	11.6%	11.5%	11.5%	11.3%	10.9%	10.7%	10.1%	
Total Personal Income per Capita (in 2005 dollars)	34,100	41,089	41,125	41,603	41,989	42,430	42,914	45,159	49,294	53,302	62,818	
Woods & Poole Economics Wealth Index (U.S. = 100)	77.3	93.7	91.3	90.1	89.9	89.8	89.7	89.1	88.4	87.8	86.7	
Persons per Household (in number of people)	2.7	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.5	
Mean Household Total Personal Income (in 2005 dollars)	91,188	105,654	105,247	107,289	107,566	108,042	108,686	112,963	122,998	133,719	159,824	
Number of Households (in thousands)	535.25	483.28	492.35	491.40	497.57	503.54	509.23	527.53	546.16	556.36	571.38	
Income < \$10,000 (thousands of households, 2000\$)	10.8%	9.8%	10.7%	10.6%	10.5%	10.4%	10.3%	9.7%	8.6%	7.7%	6.2%	
Income \$10,000 to \$19,999	13.8%	13.2%	13.3%	13.4%	13.4%	13.2%	13.1%	12.4%	11.1%	10.0%	8.2%	
Income \$20,000 to \$29,999	12.3%	11.9%	11.8%	12.0%	12.0%	11.9%	11.7%	11.2%	10.1%	9.1%	7.6%	
Income \$30,000 to \$44,999	16.0%	15.1%	15.4%	14.9%	14.9%	14.8%	14.7%	14.3%	13.1%	12.0%	10.0%	
Income \$45,000 to \$59,999	12.0%	12.0%	11.9%	11.8%	11.8%	11.9%	12.0%	12.2%	12.3%	12.0%	10.5%	
Income \$60,000 to \$74,999	8.8%	9.5%	9.4%	9.2%	9.2%	9.3%	9.4%	9.9%	10.9%	11.6%	11.9%	
Income \$75,000 to \$99,999	10.6%	11.0%	10.8%	11.0%	11.1%	11.2%	11.3%	11.9%	13.3%	14.7%	17.6%	
Income \$100,000 or more	16.1%	17.5%	16.7%	17.0%	17.1%	17.3%	17.5%	18.5%	20.7%	22.9%	27.9%	

Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using Notes: personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.
Demographic and Employment Baseline Projections for Economic Impact Area MS-1

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	483.49	482.30	486.36	490.07	493.86	497.70	501.55	516.98	539.66	557.55	590.34
Age Under 19 Years	28.4%	27.7%	27.4%	27.3%	27.2%	27.2%	27.2%	27.6%	27.6%	27.2%	26.4%
Age 20 to 34	19.8%	19.9%	20.1%	20.1%	20.0%	19.8%	19.6%	18.4%	17.6%	17.6%	18.6%
Age 35 to 49	22.0%	20.3%	19.9%	19.6%	19.3%	19.1%	18.9%	19.0%	19.1%	18.9%	17.5%
Age 50 to 64	17.8%	19.4%	19.7%	19.8%	19.9%	20.1%	20.1%	19.7%	18.4%	17.5%	18.1%
Age 65 and over	12.0%	12.7%	12.9%	13.2%	13.6%	13.8%	14.2%	15.3%	17.3%	18.8%	19.3%
Median Age of Population (years)	36.4	37.4	37.5	37.7	37.8	37.9	38.0	38.5	39.0	39.6	39.7
White Population (in thousands)	75.8%	73.9%	73.2%	73.0%	72.8%	72.7%	72.5%	71.8%	70.7%	69.7%	67.9%
Black Population (in thousands)	18.7%	19.3%	19.8%	19.9%	19.9%	20.0%	20.0%	20.3%	20.7%	21.0%	21.5%
Native American Population (in thousands)	0.5%	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%
Asian and Pacific Islander Population (in thousands)	2.0%	2.1%	2.1%	2.1%	2.1%	2.2%	2.2%	2.2%	2.3%	2.3%	2.3%
Hispanic or Latino Population (in thousands)	3.0%	4.2%	4.4%	4.5%	4.6%	4.7%	4.8%	5.3%	5.9%	6.6%	7.9%
Male Population (in thousands)	49.7%	49.9%	49.9%	49.9%	49.8%	49.8%	49.8%	49.8%	49.8%	49.8%	49.7%
Total Employment (in thousands of jobs)	238.83	241.07	237.96	240.09	242.26	244.42	246.60	255.42	269.01	280.64	304.84
Farm Employment	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.3%	1.3%	1.3%	1.3%	1.2%
Forestry, Fishing, Related Activities	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
Mining	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%
Utilities	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.7%
Construction	7.5%	8.0%	7.5%	7.5%	7.5%	7.5%	7.5%	7.5%	7.4%	7.3%	7.2%
Manufacturing	9.5%	9.4%	8.7%	8.6%	8.5%	8.3%	8.2%	7.7%	7.1%	6.5%	5.6%
Wholesale Trade	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.3%
Retail Trade	10.9%	10.3%	10.5%	10.5%	10.6%	10.6%	10.6%	10.6%	10.7%	10.7%	10.7%
Transportation and Warehousing	2.4%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.2%	2.2%
Information Employment	1.4%	0.9%	0.9%	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
Finance and Insurance	2.5%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%
Real Estate/Rental and Lease	3.1%	3.4%	3.6%	3.6%	3.6%	3.6%	3.6%	3.7%	3.8%	3.9%	4.0%

Tables-52

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Professional and Technical Services	3.8%	4.1%	4.1%	4.2%	4.2%	4.2%	4.2%	4.3%	4.5%	4.6%	4.8%
Management	0.5%	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%
Administrative and Waste Services	5.4%	6.7%	6.4%	6.5%	6.5%	6.6%	6.7%	7.1%	7.6%	8.1%	9.1%
Educational Services	0.5%	0.7%	0.8%	0.8%	0.9%	0.9%	0.9%	1.0%	1.2%	1.3%	1.7%
Health Care and Social Assistance	6.3%	6.4%	6.6%	6.7%	6.7%	6.8%	6.9%	7.1%	7.5%	7.8%	8.4%
Arts, Entertainment, and Recreation	2.2%	2.2%	2.2%	2.2%	2.2%	2.3%	2.3%	2.3%	2.4%	2.5%	2.6%
Accommodation and Food Services	12.0%	10.4%	11.0%	10.9%	10.9%	10.8%	10.8%	10.6%	10.4%	10.1%	9.6%
Other Services, Except Public Administration	5.5%	5.0%	5.1%	5.1%	5.2%	5.3%	5.4%	5.7%	6.1%	6.5%	7.4%
Federal Civilian Government	3.9%	3.9%	3.9%	3.9%	3.8%	3.8%	3.8%	3.7%	3.5%	3.4%	3.2%
Federal Military	5.7%	5.5%	5.4%	5.4%	5.3%	5.3%	5.2%	5.1%	4.9%	4.7%	4.3%
State and Local Government	12.3%	12.9%	12.9%	12.8%	12.8%	12.7%	12.7%	12.4%	12.0%	11.7%	11.0%
Total Earnings (in millions of 2005 dollars)	10,100.79	10,982.84	10,749.28	10,953.83	11,146.80	11,342.69	11,541.49	12,366.85	13,699.64	14,902.96	17,585.88
Farm	0.3%	0.0%	0.0%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%
Forestry, Fishing, Related Activities	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%
Mining	0.2%	0.2%	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%
Utilities	2.1%	1.7%	1.8%	1.8%	1.8%	1.8%	1.8%	1.9%	1.9%	1.9%	2.0%
Construction	6.0%	8.1%	7.7%	7.7%	7.6%	7.6%	7.5%	7.3%	7.0%	6.7%	6.2%
Manufacturing	15.4%	16.6%	16.0%	15.7%	15.5%	15.3%	15.2%	14.4%	13.4%	12.5%	10.9%
Wholesale Trade	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.5%
Retail Trade	7.0%	6.2%	6.4%	6.3%	6.3%	6.3%	6.2%	6.0%	5.8%	5.5%	5.1%
Transportation and Warehousing	2.3%	2.2%	2.2%	2.2%	2.2%	2.2%	2.1%	2.1%	2.1%	2.0%	1.9%
Information	1.4%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	1.0%	1.0%	1.0%
Finance and Insurance	2.1%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.4%	2.4%	2.4%	2.4%
Real Estate/Rental and Lease	1.0%	0.9%	0.9%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.1%
Professional and Technical Services	4.6%	4.9%	5.0%	5.0%	5.1%	5.1%	5.2%	5.4%	5.7%	6.0%	6.6%
Management	0.6%	0.6%	0.9%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%	0.9%	1.0%
Administrative and Waste Services	3.1%	3.9%	3.5%	3.6%	3.6%	3.7%	3.7%	3.9%	4.3%	4.6%	5.2%
Educational Services	0.3%	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.6%	0.7%	0.8%	1.1%
Health Care and Social Assistance	6.7%	6.7%	6.8%	6.8%	6.9%	7.0%	7.1%	7.4%	7.8%	8.2%	8.9%
Arts, Entertainment, and Recreation	1.5%	1.1%	1.2%	1.2%	1.2%	1.2%	1.2%	1.3%	1.3%	1.3%	1.4%

Table 4-18. Demographic and Employment Baseline Projections for Economic Impact Area MS-1 (continued).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Accommodation and Food Services	7.9%	5.9%	6.1%	6.1%	6.1%	6.0%	6.0%	5.9%	5.8%	5.7%	5.4%
Other Services, Except Public Administration	3.3%	3.2%	3.2%	3.3%	3.3%	3.3%	3.4%	3.6%	3.9%	4.1%	4.6%
Federal Civilian Government	8.4%	7.9%	8.1%	8.1%	8.1%	8.1%	8.1%	8.2%	8.3%	8.3%	8.4%
Federal Military	10.2%	9.9%	9.8%	9.8%	9.8%	9.9%	9.9%	10.0%	10.2%	10.4%	10.7%
State and Local Government	13.2%	14.4%	14.5%	14.5%	14.5%	14.5%	14.4%	14.3%	14.2%	14.0%	13.7%
Total Personal Income per Capita (in 2005 dollars)	29,738	32,644	32,301	32,500	32,751	33,038	33,352	34,810	37,493	40,086	46,208
Woods & Poole Economics Wealth Index (U.S. = 100)	67.8	74.6	71.8	71.8	71.7	71.7	71.6	71.1	70.2	69.5	67.9
Persons per Household (in number of people)	2.6	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.6	2.6	2.7
Mean Household Total Personal Income (in 2005 dollars)	78,314	87,120	85,836	87,060	87,186	87,453	87,845	90,693	97,647	105,151	123,335
Number of Households (in thousands)	183.59	180.72	183.02	182.95	185.52	188.02	190.43	198.43	207.21	212.55	221.17
Income < \$10,000 (thousands of households, 2000\$)	9.5%	8.9%	9.3%	9.3%	9.3%	9.2%	9.1%	8.7%	7.8%	7.0%	5.6%
Income \$10,000 to \$19,999	13.4%	13.5%	13.5%	13.8%	13.8%	13.7%	13.5%	13.0%	11.7%	10.6%	8.5%
Income \$20,000 to \$29,999	13.0%	12.5%	12.9%	12.7%	12.6%	12.5%	12.4%	11.8%	10.6%	9.5%	7.6%
Income \$30,000 to \$44,999	17.9%	16.3%	16.2%	16.2%	16.2%	16.0%	15.9%	15.3%	13.6%	12.3%	9.8%
Income \$45,000 to \$59,999	13.8%	13.4%	13.5%	13.2%	13.2%	13.4%	13.5%	14.0%	14.6%	14.3%	11.9%
Income \$60,000 to \$74,999	9.5%	10.6%	10.6%	10.4%	10.4%	10.5%	10.6%	11.1%	12.4%	13.8%	15.7%
Income \$75,000 to \$99,999	10.7%	11.4%	10.9%	11.4%	11.5%	11.6%	11.7%	12.3%	13.7%	15.3%	19.3%
Income \$100,000 or more	12.3%	13.3%	13.1%	13.0%	13.0%	13.2%	13.3%	13.9%	15.6%	17.3%	21.6%

Table 4-18. Demographic and Employment Baseline Projections for Economic Impact Area MS-1 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Tables-54

Demographic and Employment Baseline Projections for Economic Impact Area TX-1

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	1,643.97	1,799.29	1,827.28	1,856.04	1,885.42	1,915.39	1,945.76	2,071.28	2,270.08	2,443.43	2,812.12
Age Under 19 Years	35.4%	34.9%	34.7%	34.5%	34.3%	34.2%	34.1%	33.7%	32.6%	32.2%	31.1%
Age 20 to 34	21.4%	20.5%	20.6%	20.5%	20.5%	20.4%	20.3%	20.0%	20.4%	20.2%	20.2%
Age 35 to 49	18.9%	18.7%	18.5%	18.5%	18.4%	18.2%	18.1%	17.9%	17.0%	16.8%	16.9%
Age 50 to 64	13.7%	15.1%	15.1%	15.2%	15.3%	15.4%	15.4%	15.4%	15.4%	15.2%	14.5%
Age 65 and over	10.6%	10.9%	11.1%	11.3%	11.5%	11.8%	12.0%	13.0%	14.6%	15.7%	17.2%
Median Age of Population (years)	33.8	35.7	35.4	35.5	35.6	35.7	35.8	36.2	36.7	37.0	37.4
White Population (in thousands)	18.2%	16.1%	15.8%	15.5%	15.3%	15.0%	14.8%	13.8%	12.5%	11.5%	9.8%
Black Population (in thousands)	1.2%	1.2%	1.3%	1.3%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
Native American Population (in thousands)	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Asian and Pacific Islander Population (in thousands)	0.9%	1.0%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%
Hispanic or Latino Population (in thousands)	79.5%	81.6%	81.7%	82.0%	82.3%	82.5%	82.8%	83.7%	85.1%	86.1%	87.9%
Male Population (in thousands)	48.8%	48.8%	48.9%	48.9%	48.9%	48.9%	48.8%	48.8%	48.7%	48.6%	48.3%
Total Employment (in thousands of jobs)	728.91	806.89	820.21	834.82	849.66	864.76	880.09	943.92	1,047.62	1,141.91	1,354.68
Farm Employment	1.7%	1.6%	1.5%	1.5%	1.5%	1.4%	1.4%	1.3%	1.1%	1.0%	0.7%
Forestry, Fishing, Related Activities	1.2%	1.2%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%	1.0%	0.9%
Mining	1.8%	2.2%	2.6%	2.6%	2.6%	2.5%	2.5%	2.4%	2.2%	2.0%	1.8%
Utilities	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Construction	7.2%	6.3%	6.0%	6.0%	5.9%	5.9%	5.8%	5.6%	5.4%	5.1%	4.7%
Manufacturing	4.0%	3.1%	3.1%	3.0%	3.0%	2.9%	2.9%	2.7%	2.4%	2.1%	1.8%
Wholesale Trade	2.8%	2.6%	2.7%	2.7%	2.6%	2.6%	2.6%	2.5%	2.4%	2.3%	2.0%
Retail Trade	12.0%	11.6%	11.5%	11.5%	11.5%	11.5%	11.5%	11.5%	11.5%	11.5%	11.4%
Transportation and Warehousing	3.3%	3.3%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%
Information Employment	1.2%	1.0%	1.0%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.8%
Finance and Insurance	3.1%	3.7%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	4.0%	4.0%	4.0%
Real Estate/Rental and Lease	3.0%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.0%	3.0%	2.9%

Tables-55

Tables

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Professional and Technical Services	3.3%	3.3%	3.3%	3.3%	3.3%	3.4%	3.4%	3.4%	3.5%	3.5%	3.6%
Management	0.2%	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Administrative and Waste Services	5.4%	5.6%	5.7%	5.8%	5.8%	5.9%	5.9%	6.1%	6.3%	6.5%	6.8%
Educational Services	0.9%	1.0%	1.0%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.2%	1.3%
Health Care and Social Assistance	15.6%	17.4%	17.6%	17.8%	18.0%	18.3%	18.5%	19.4%	20.8%	22.0%	24.5%
Arts, Entertainment, and Recreation	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%
Accommodation and Food Services	7.2%	7.4%	7.5%	7.5%	7.5%	7.5%	7.6%	7.6%	7.8%	7.8%	7.9%
Other Services, Except Public Administration	6.5%	6.1%	6.1%	6.1%	6.1%	6.1%	6.1%	6.2%	6.2%	6.3%	6.4%
Federal Civilian Government	1.7%	2.0%	1.9%	1.9%	1.8%	1.8%	1.8%	1.7%	1.6%	1.5%	1.3%
Federal Military	1.3%	1.0%	1.0%	1.0%	1.0%	1.0%	0.9%	0.9%	0.8%	0.7%	0.6%
State and Local Government	15.1%	14.9%	14.5%	14.4%	14.3%	14.2%	14.1%	13.7%	13.1%	12.6%	11.5%
Total Earnings (in millions of 2005 dollars)	26,195.82	30,353.80	31,195.76	31,890.93	32,754.54	33,640.93	34,550.73	38,436.40	45,079.92	51,469.18	67,061.12
Farm	1.6%	1.2%	1.1%	1.0%	1.0%	1.0%	1.0%	0.9%	0.8%	0.7%	0.5%
Forestry, Fishing, Related Activities	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.6%	0.6%	0.5%
Mining	3.6%	4.5%	5.7%	5.5%	5.5%	5.4%	5.4%	5.2%	4.9%	4.6%	4.1%
Utilities	0.6%	0.7%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.7%	0.7%
Construction	7.5%	7.1%	6.9%	6.8%	6.7%	6.6%	6.5%	6.2%	5.6%	5.2%	4.4%
Manufacturing	5.9%	4.9%	5.0%	5.0%	4.9%	4.8%	4.7%	4.4%	4.0%	3.7%	3.1%
Wholesale Trade	4.2%	3.8%	4.1%	4.1%	4.0%	4.0%	4.0%	3.9%	3.8%	3.7%	3.4%
Retail Trade	8.8%	8.0%	8.0%	8.0%	8.0%	7.9%	7.8%	7.6%	7.2%	6.8%	6.1%
Transportation and Warehousing	3.6%	4.3%	4.5%	4.5%	4.5%	4.5%	4.5%	4.4%	4.3%	4.3%	4.1%
Information	1.5%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.2%	1.2%	1.3%
Finance and Insurance	3.4%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.1%	3.2%	3.2%	3.4%
Real Estate/Rental and Lease	1.4%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.2%	1.2%	1.2%	1.1%
Professional and Technical Services	4.6%	3.8%	3.7%	3.8%	3.8%	3.8%	3.9%	4.0%	4.2%	4.3%	4.6%
Management	0.1%	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.3%
Administrative and Waste Services	3.0%	3.2%	3.3%	3.4%	3.4%	3.5%	3.5%	3.7%	3.9%	4.0%	4.4%
Educational Services	0.6%	0.7%	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%	0.9%
Health Care and Social Assistance	14.9%	17.0%	16.6%	17.0%	17.2%	17.5%	17.8%	18.9%	20.7%	22.2%	25.4%
Arts, Entertainment, and Recreation	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%

Table 4-19. Demographic and Employment Baseline Projections for Economic Impact Area TX-1 (continued).

Tables-56

2010 2012 2013 2015 2020 2025 2030 2040 2005 2011 2014 Accommodation and Food Services 3.4% 3.3% 3.4% 3.4% 3.4% 3.4% 3.5% 3.5% 3.6% 3.7% 3.7% Other Services, Except Public 4.5% 4.3% 4.3% 4.3% 4.3% 4.3% 4.3% 4.4% 4.4% 4.4% 4.5% Administration Federal Civilian Government 4.9% 5.4% 5.4% 5.5% 5.4% 5.4% 5.4% 5.3% 5.1% 4.9% 4.6% 2.2% 2.8% 2.4% 2.3% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 2.0% Federal Military State and Local Government 17.8% 18.4% 17.6% 17.6% 17.6% 17.6% 17.6% 17.5% 17.2% 17.0% 16.4% Total Personal Income per Capita 22,661 25,356 25,749 25,916 26,191 26,491 26,810 28,248 30,827 33,327 39,329 (in 2005 dollars) Woods & Poole Economics Wealth Index 67.9 76.7 79.3 78.6 79.0 79.3 79.5 80.5 81.4 82.1 83.1 (U.S. = 100)3.3 Persons per Household 3.2 3.3 3.2 3.3 3.2 3.2 3.2 3.2 3.2 3.2 (in number of people) Mean Household Total Personal Income 72.965 82.534 83.514 84.735 85.625 89.976 98.320 107.222 129.227 85.117 86.245 (in 2005 dollars) Number of Households (in thousands) 855.84 510.57 552.77 563.40 567.67 580.16 592.58 604.86 650.28 711.76 759.46 Income < \$10,000 15.0% 14.5% 14.3% 13.7% 13.6% 13.5% 13.3% 11.1% 9.9% 12.6% 8.0% (thousands of households, 2000\$) Income \$10,000 to \$19,999 17.9% 17.7% 17.3% 17.1% 16.9% 16.7% 15.8% 13.9% 10.0% 18.0% 12.4% Income \$20,000 to \$29,999 14.5% 13.6% 13.7% 13.6% 13.5% 13.4% 13.2% 12.6% 11.0% 9.8% 7.8% 15.4% 16.0% 16.1% 16.1% 16.2% 16.3% 16.4% 15.9% 14.5% 11.7% Income \$30,000 to \$44,999 16.1% Income \$45,000 to \$59,999 11.0% 11.2% 11.1% 11.2% 11.2% 11.4% 11.5% 12.1% 13.6% 14.7% 14.8% Income \$60,000 to \$74,999 14.4% 7.6% 8.0% 8.4% 8.5% 8.6% 8.7% 8.8% 9.2% 10.6% 11.8% Income \$75.000 to \$99.999 8.2% 8.1% 7.9% 8.5% 8.6% 8.7% 8.8% 9.2% 10.5% 11.8% 14.6% Income \$100,000 or more 10.3% 10.6% 10.7% 11.1% 11.2% 11.3% 11.4% 12.0% 13.6% 15.1% 18.7%

Table 4-19. Demographic and Employment Baseline Projections for Economic Impact Area TX-1 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Tables

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	581.75	626.91	633.41	642.00	650.77	659.71	668.77	706.06	764.62	815.09	920.51
Age Under 19 Years	29.6%	29.1%	29.0%	29.0%	29.0%	29.0%	29.1%	29.3%	29.3%	29.2%	29.1%
Age 20 to 34	18.6%	18.3%	18.5%	18.4%	18.4%	18.3%	18.3%	17.9%	18.5%	18.9%	19.8%
Age 35 to 49	22.3%	20.6%	20.1%	19.8%	19.4%	19.2%	19.0%	18.6%	17.5%	17.2%	17.4%
Age 50 to 64	17.1%	19.2%	19.4%	19.6%	19.6%	19.7%	19.7%	19.0%	17.4%	16.4%	15.3%
Age 65 and over	12.4%	12.8%	13.0%	13.2%	13.5%	13.8%	14.0%	15.2%	17.2%	18.3%	18.5%
Median Age of Population (years)	39.1	40.5	40.5	40.6	40.6	40.5	40.4	40.2	39.2	38.2	36.4
White Population (in thousands)	58.3%	54.0%	53.3%	52.6%	52.0%	51.3%	50.7%	48.2%	44.4%	41.3%	35.2%
Black Population (in thousands)	9.3%	10.2%	10.3%	10.4%	10.4%	10.5%	10.6%	10.8%	11.2%	11.6%	12.5%
Native American Population (in thousands)	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Asian and Pacific Islander Population (in thousands)	2.4%	3.4%	3.4%	3.5%	3.6%	3.6%	3.7%	4.0%	4.3%	4.6%	5.0%
Hispanic or Latino Population (in thousands)	29.6%	32.1%	32.6%	33.2%	33.7%	34.2%	34.7%	36.7%	39.7%	42.2%	47.0%
Male Population (in thousands)	50.2%	50.2%	50.2%	50.2%	50.1%	50.1%	50.1%	50.1%	50.0%	49.9%	49.6%
Total Employment (in thousands of jobs)	287.61	305.43	312.06	316.94	321.93	326.99	332.14	353.64	388.77	420.92	493.98
Farm Employment	7.4%	6.9%	6.6%	6.6%	6.5%	6.5%	6.4%	6.2%	5.8%	5.6%	5.0%
Forestry, Fishing, Related Activities	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%	1.0%	0.9%	0.8%
Mining	2.4%	3.2%	3.6%	3.6%	3.6%	3.6%	3.7%	3.8%	3.9%	4.0%	4.2%
Utilities	1.0%	1.0%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.8%	0.8%	0.7%
Construction	9.6%	8.9%	9.2%	9.2%	9.3%	9.3%	9.3%	9.5%	9.6%	9.8%	10.1%
Manufacturing	9.8%	8.7%	8.9%	8.8%	8.7%	8.6%	8.5%	8.1%	7.6%	7.2%	6.3%
Wholesale Trade	2.7%	2.7%	2.7%	2.7%	2.7%	2.7%	2.8%	2.8%	2.8%	2.8%	2.8%
Retail Trade	11.3%	11.1%	10.9%	10.9%	10.9%	10.9%	10.9%	11.0%	11.0%	11.1%	11.1%
Transportation and Warehousing	2.8%	2.7%	2.7%	2.7%	2.7%	2.7%	2.7%	2.6%	2.6%	2.5%	2.4%
Information Employment	0.8%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.6%	0.6%	0.6%	0.5%
Finance and Insurance	3.4%	4.2%	4.2%	4.3%	4.3%	4.3%	4.4%	4.5%	4.7%	4.9%	5.3%
Real Estate/Rental and Lease	3.4%	3.7%	3.8%	3.8%	3.9%	3.9%	3.9%	4.0%	4.1%	4.1%	4.3%
Professional and Technical Services	3.9%	4.1%	4.2%	4.2%	4.2%	4.2%	4.2%	4.3%	4.3%	4.4%	4.5%
Management	0.2%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.5%	0.5%

Central Planning Area Lease Sales 235, 241, and 247 EIS

Tables-58

Table 4-20.	Demographic and	l Employment Ba	aseline Projections for	r Economic Impact	Area TX-2 (continued).
14010 1 20.	Demographic and	· Employment Bt	usenne i rojections ro.	i Deonomie impaet	neu m 2 (commaca).

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Administrative and Waste Services	4.6%	4.2%	4.3%	4.3%	4.3%	4.4%	4.4%	4.5%	4.7%	4.8%	5.1%
Educational Services	0.9%	1.0%	1.1%	1.1%	1.1%	1.1%	1.1%	1.2%	1.3%	1.3%	1.4%
Health Care and Social Assistance	7.4%	8.2%	8.0%	8.1%	8.2%	8.3%	8.4%	8.7%	9.2%	9.6%	10.5%
Arts, Entertainment, and Recreation	1.2%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%	1.2%
Accommodation and Food Services	5.6%	5.9%	6.1%	6.1%	6.2%	6.2%	6.2%	6.4%	6.7%	6.9%	7.4%
Other Services, Except Public Administration	6.5%	6.0%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.8%	5.7%
Federal Civilian Government	0.5%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.2%
Federal Military	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%	0.3%
State and Local Government	12.9%	13.0%	12.5%	12.4%	12.2%	12.1%	12.0%	11.6%	11.0%	10.4%	9.4%
Total Earnings (in millions of 2005 dollars)	11,144.90	12,256.96	12,903.46	13,073.11	13,410.85	13,757.68	14,113.81	15,636.58	18,246.55	20,763.13	26,920.43
Farm	3.5%	1.7%	2.0%	2.0%	2.0%	1.9%	1.9%	1.8%	1.7%	1.6%	1.4%
Forestry, Fishing, Related Activities	0.7%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.5%	0.5%
Mining	4.3%	4.6%	5.2%	5.3%	5.4%	5.4%	5.5%	5.7%	6.0%	6.3%	6.9%
Utilities	2.7%	2.8%	2.4%	2.5%	2.5%	2.5%	2.6%	2.6%	2.7%	2.7%	2.8%
Construction	11.7%	11.7%	12.3%	12.2%	12.2%	12.2%	12.1%	12.0%	11.7%	11.5%	11.0%
Manufacturing	20.2%	18.5%	19.0%	19.0%	18.8%	18.6%	18.4%	17.7%	16.6%	15.7%	13.9%
Wholesale Trade	3.5%	4.3%	4.3%	3.8%	3.8%	3.8%	3.9%	4.0%	4.1%	4.3%	4.5%
Retail Trade	8.1%	8.1%	7.8%	7.8%	7.8%	7.7%	7.6%	7.4%	7.0%	6.7%	6.1%
Transportation and Warehousing	3.2%	3.4%	3.5%	3.1%	3.1%	3.0%	3.0%	2.9%	2.8%	2.7%	2.5%
Information	0.8%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%
Finance and Insurance	3.0%	2.9%	2.9%	3.1%	3.1%	3.1%	3.2%	3.4%	3.6%	3.9%	4.4%
Real Estate/Rental and Lease	1.5%	1.7%	2.0%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	2.0%	2.0%
Professional and Technical Services	3.9%	3.9%	3.9%	3.9%	3.9%	4.0%	4.0%	4.2%	4.4%	4.6%	5.0%
Management	0.1%	0.2%	0.2%	0.4%	0.5%	0.5%	0.5%	0.5%	0.6%	0.7%	0.8%
Administrative and Waste Services	2.5%	2.4%	2.4%	2.5%	2.6%	2.6%	2.6%	2.7%	2.9%	3.1%	3.4%
Educational Services	0.4%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.6%	0.6%	0.7%
Health Care and Social Assistance	6.8%	8.1%	7.7%	7.8%	8.0%	8.1%	8.2%	8.7%	9.5%	10.1%	11.5%
Arts, Entertainment, and Recreation	0.4%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Accommodation and Food Services	2.2%	2.4%	2.4%	2.5%	2.5%	2.5%	2.5%	2.6%	2.8%	2.9%	3.2%
Other Services, Except Public Administration	5.2%	4.9%	4.7%	4.8%	4.8%	4.8%	4.8%	4.8%	4.8%	4.8%	4.7%

Tables-59

Tables

	2005	2010	2011	2012	2012	2014	2015	2020	2025	2020	20.40
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Federal Civilian Government	0.9%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.7%	0.6%	0.6%
Federal Military	0.6%	0.6%	0.5%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.5%
State and Local Government	13.9%	14.7%	13.8%	13.9%	13.9%	13.8%	13.8%	13.6%	13.3%	13.0%	12.4%
Total Personal Income per Capita (in 2005 dollars)	32,034	35,398	36,450	36,559	36,972	37,417	37,889	40,006	43,822	47,528	56,453
Woods & Poole Economics Wealth Index (U.S. = 100)	78.4	86.3	87.2	87.2	87.5	87.7	88.0	89.0	90.7	92.2	95.5
Persons per Household (in number of people)	2.7	2.8	2.8	2.8	2.8	2.8	2.8	2.7	2.7	2.8	2.8
Mean Household Total Personal Income (in 2005 dollars)	88,006	98,664	101,206	102,374	102,941	103,653	104,498	109,413	120,299	131,909	160,791
Number of Households (in thousands)	211.75	224.92	228.13	229.27	233.73	238.15	242.49	258.17	278.53	293.69	323.19
Income < \$10,000 (thousands of households, 2000\$)	7.6%	7.0%	7.0%	6.9%	6.8%	6.8%	6.7%	6.2%	5.5%	5.0%	4.0%
Income \$10,000 to \$19,999	12.3%	11.9%	11.8%	12.1%	12.0%	11.8%	11.7%	10.9%	9.6%	8.7%	6.9%
Income \$20,000 to \$29,999	11.7%	11.2%	11.2%	10.9%	10.8%	10.7%	10.6%	9.9%	8.8%	8.0%	6.3%
Income \$30,000 to \$44,999	15.2%	14.3%	14.4%	14.1%	14.1%	14.0%	13.8%	13.0%	11.6%	10.6%	8.6%
Income \$45,000 to \$59,999	12.7%	12.4%	12.8%	13.0%	13.0%	13.0%	13.0%	13.1%	12.7%	11.8%	9.4%
Income \$60,000 to \$74,999	9.9%	10.1%	10.0%	9.9%	9.9%	10.0%	10.1%	10.5%	11.0%	11.3%	10.6%
Income \$75,000 to \$99,999	12.4%	12.2%	11.7%	11.9%	12.0%	12.1%	12.2%	13.0%	14.5%	15.8%	18.6%
Income \$100,000 or more	18.2%	20.8%	21.0%	21.3%	21.4%	21.7%	21.9%	23.3%	26.2%	28.7%	35.6%

Table 4-20. Demographic and Employment Baseline Projections for Economic Impact Area TX-2 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Tables-60

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Total Population (in thousands)	5,518.20	6,202.21	6,309.03	6,421.63	6,536.83	6,654.44	6,773.88	7,269.96	8,063.83	8,764.06	10,272.30
Age Under 19 Years	30.7%	30.3%	30.1%	30.1%	30.1%	30.1%	30.1%	30.1%	29.7%	29.5%	29.1%
Age 20 to 34	22.2%	21.8%	21.8%	21.7%	21.6%	21.5%	21.4%	20.8%	21.0%	21.1%	21.3%
Age 35 to 49	22.8%	21.3%	21.0%	20.8%	20.5%	20.4%	20.3%	20.1%	19.2%	18.7%	18.4%
Age 50 to 64	15.8%	17.5%	17.7%	17.8%	17.9%	17.9%	17.9%	17.4%	16.4%	15.9%	15.4%
Age 65 and over	8.5%	9.1%	9.3%	9.6%	9.8%	10.1%	10.4%	11.6%	13.6%	14.7%	15.7%
Median Age of Population (years)	37.4	38.2	38.3	38.4	38.5	38.5	38.5	38.6	38.7	38.7	38.3
White Population (in thousands)	45.8%	41.7%	41.3%	40.6%	39.9%	39.3%	38.6%	36.1%	32.5%	29.8%	24.9%
Black Population (in thousands)	17.6%	17.8%	17.6%	17.5%	17.4%	17.3%	17.2%	16.7%	16.0%	15.4%	14.2%
Native American Population (in thousands)	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Asian and Pacific Islander Population (in thousands)	5.7%	6.5%	6.5%	6.7%	6.8%	6.9%	7.1%	7.6%	8.4%	9.0%	10.1%
Hispanic or Latino Population (in thousands)	30.6%	33.8%	34.2%	34.9%	35.5%	36.2%	36.8%	39.3%	42.8%	45.5%	50.5%
Male Population (in thousands)	49.8%	49.8%	49.8%	49.8%	49.8%	49.8%	49.8%	49.7%	49.6%	49.5%	49.2%
Total Employment (in thousands of jobs)	3,218.66	3,598.02	3,682.63	3,752.42	3,823.50	3,895.93	3,969.75	4,279.26	4,789.21	5,260.12	6,344.46
Farm Employment	0.6%	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%
Forestry, Fishing, Related Activities	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
Mining	2.8%	3.2%	3.5%	3.5%	3.5%	3.5%	3.5%	3.6%	3.6%	3.6%	3.6%
Utilities	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.4%
Construction	8.0%	7.5%	7.3%	7.3%	7.3%	7.4%	7.4%	7.4%	7.4%	7.5%	7.5%
Manufacturing	7.4%	6.8%	7.0%	6.9%	6.8%	6.7%	6.6%	6.2%	5.7%	5.3%	4.6%
Wholesale Trade	4.5%	4.4%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%
Retail Trade	10.2%	9.5%	9.4%	9.4%	9.4%	9.4%	9.3%	9.2%	9.1%	9.0%	8.7%
Transportation and Warehousing	4.3%	4.2%	4.2%	4.1%	4.1%	4.1%	4.1%	4.0%	3.9%	3.8%	3.5%
Information Employment	1.5%	1.2%	1.2%	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%	0.9%	0.8%
Finance and Insurance	4.5%	5.1%	5.2%	5.2%	5.2%	5.3%	5.3%	5.3%	5.4%	5.4%	5.4%

Tables-61

Tables

												Ī
	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040	
Real Estate/Rental and Lease	4.1%	4.3%	4.3%	4.3%	4.3%	4.3%	4.3%	4.3%	4.2%	4.2%	4.2%	í
Professional and Technical Services	7.8%	7.9%	7.9%	8.0%	8.0%	8.0%	8.0%	8.2%	8.3%	8.5%	8.7%	
Management	0.6%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	
Administrative and Waste Services	7.4%	7.3%	7.6%	7.6%	7.7%	7.7%	7.8%	7.9%	8.2%	8.4%	8.8%	
Educational Services	1.6%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.8%	1.8%	1.8%	
Health Care and Social Assistance	8.2%	9.2%	9.2%	9.3%	9.4%	9.5%	9.6%	10.1%	10.9%	11.5%	12.7%	
Arts, Entertainment, and Recreation	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	
Accommodation and Food Services	6.5%	6.6%	6.7%	6.8%	6.8%	6.8%	6.9%	7.0%	7.2%	7.3%	7.6%	
Other Services, Except Public Administration	6.0%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	6.0%	6.1%	6.2%	6.2%	
Federal Civilian Government	1.0%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.7%	0.6%	0.6%	0.5%	
Federal Military	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	Ś
State and Local Government	10.3%	9.9%	9.5%	9.4%	9.4%	9.3%	9.2%	8.8%	8.4%	8.0%	7.2%	2
Total Earnings (in millions of 2005 dollars)	202,185.34	226,898.60	237,509.70	244,420.42	251,920.11	259,653.01	267,626.35	302,075.94	362,333.17	421,701.96	571,319.56	
Farm	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.0%	0.0%	0.0%	2
Forestry, Fishing, Related Activities	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	
Mining	12.3%	9.6%	10.5%	10.3%	10.3%	10.4%	10.4%	10.5%	10.7%	10.8%	10.8%	Ğ
Utilities	1.6%	1.9%	1.8%	1.9%	1.9%	1.9%	1.9%	1.9%	2.0%	2.0%	2.1%	i i
Construction	8.2%	8.3%	8.0%	8.0%	8.0%	7.9%	7.9%	7.6%	7.3%	7.0%	6.5%	2
Manufacturing	11.7%	10.8%	11.0%	10.9%	10.7%	10.6%	10.4%	9.8%	8.9%	8.3%	7.0%	
Wholesale Trade	6.2%	6.7%	6.9%	7.0%	7.0%	7.1%	7.1%	7.2%	7.3%	7.5%	7.7%	Ċ
Retail Trade	5.2%	4.8%	4.8%	4.7%	4.7%	4.6%	4.6%	4.3%	4.0%	3.7%	3.2%	6
Transportation and Warehousing	5.6%	6.1%	6.1%	6.1%	6.1%	6.0%	6.0%	5.7%	5.4%	5.1%	4.6%	ġ
Information	1.7%	1.3%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	ŗ
Finance and Insurance	5.5%	5.4%	5.4%	5.4%	5.4%	5.4%	5.5%	5.6%	5.7%	5.8%	6.0%	Ç,
Real Estate/Rental and Lease	2.4%	1.9%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.8%	1.7%	1.7%	1
Professional and Technical Services	10.8%	11.5%	11.4%	11.5%	11.6%	11.7%	11.9%	12.3%	12.9%	13.4%	14.5%	,
Management	0.6%	1.2%	1.3%	1.3%	1.3%	1.3%	1.4%	1.5%	1.6%	1.7%	2.1%	2
Administrative and Waste Services	4.4%	4.4%	4.7%	4.7%	4.8%	4.8%	4.8%	5.0%	5.3%	5.5%	5.9%	1
Educational Services	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.1%	1.1%	1.2%	1.2%	
Health Care and Social Assistance	6.5%	7.6%	7.4%	7.5%	7.6%	7.8%	7.9%	8.3%	9.0%	9.6%	10.8%	[

Table 4-21. Demographic and Employment Baseline Projections for Economic Impact Area TX-3 (continued).

Tables-62

	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Ante Ententeinment and Desmertion	2005	2010	2011	2012	2013	2014	2015	2020	2025	2030	2040
Arts, Entertainment, and Recreation	0.7%	0.7%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%
Accommodation and Food Services	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.3%	2.4%	2.4%	2.5%	2.6%
Other Services, Except Public Administration	3.1%	3.4%	3.3%	3.3%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%
Federal Civilian Government	1.7%	1.6%	1.5%	1.5%	1.4%	1.4%	1.4%	1.3%	1.2%	1.1%	1.0%
Federal Military	0.3%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
State and Local Government	8.3%	8.9%	8.3%	8.3%	8.2%	8.2%	8.1%	8.0%	7.7%	7.5%	7.0%
Total Personal Income per Capita (in 2005 dollars)	42,471	43,854	45,374	46,029	46,517	47,060	47,647	50,340	55,300	60,188	72,156
Woods & Poole Economics Wealth Index (U.S. = 100)	84.6	93.3	93.5	93.6	93.6	93.7	93.7	93.6	93.5	93.5	93.7
Persons per Household (in number of people)	2.8	2.8	2.8	2.9	2.8	2.8	2.8	2.8	2.8	2.9	2.9
Mean Household Total Personal Income (in 2005 dollars)	116,971	124,887	128,705	131,731	132,446	133,388	134,530	141,237	156,159	172,160	212,416
Number of Households (in thousands)	2,003.61	2,177.90	2,224.21	2,243.83	2,295.85	2,347.73	2,399.14	2,591.20	2,855.59	3,063.95	3,489.41
Income < \$10,000 (thousands of households, 2000\$)	7.0%	7.3%	7.5%	7.3%	7.3%	7.2%	7.1%	6.7%	6.0%	5.5%	4.3%
Income \$10,000 to \$19,999	10.4%	11.0%	11.0%	10.8%	10.7%	10.6%	10.5%	9.8%	8.8%	8.1%	6.4%
Income \$20,000 to \$29,999	10.6%	11.0%	10.7%	10.9%	10.8%	10.7%	10.6%	10.0%	9.0%	8.2%	6.6%
Income \$30,000 to \$44,999	14.5%	14.9%	15.0%	14.7%	14.7%	14.6%	14.4%	13.5%	12.2%	11.2%	9.0%
Income \$45,000 to \$59,999	12.4%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	11.8%	11.0%	10.2%	8.2%
Income \$60,000 to \$74,999	9.5%	9.6%	9.9%	9.7%	9.7%	9.8%	9.9%	10.4%	11.1%	11.3%	9.8%
Income \$75,000 to \$99,999	12.5%	11.7%	11.7%	12.0%	12.1%	12.2%	12.3%	13.1%	14.4%	15.5%	17.8%
Income \$100,000 or more	23.0%	22.6%	22.2%	22.5%	22.6%	22.9%	23.1%	24.7%	27.5%	30.0%	37.9%

Table 4-21. Demographic and Employment Baseline Projections for Economic Impact Area TX-3 (continued).

Notes: Median Age and The Wealth Index are defined using averages of the original Woods & Poole values for the counties in the EIA; income per capita calculated using personal income/total population for the EIA; persons per household calculated using total population/number of households for the EIA.

Source: Woods & Poole Economics, Inc., 2014.

Tables-63

Tables

		Low	Case			High	Case	
EIA	Peak Annual	Peak Year	Baseline in Peak Year	Percent	Peak Annual	Peak Year	Baseline in Peak Year	Percent
				Texas (TX	K)			
TX-1	6,274	2030	1,132,220	0.55%	9,795	2031	1,151,200	0.85%
TX-2	2,556	2031	421,620	0.61%	4,154	2031	421,620	0.99%
TX-3	53,117	2030	5,301,860	1.00%	78,387	2031	5,402,030	1.45%
			L	ouisiana (l	LA)			
LA-1	3,459	2030	220,300	1.57%	5,700	2031	223,080	2.56%
LA-2	10,023	2030	448,580	2.23%	15,733	2031	455,290	3.46%
LA-3	13,076	2030	871,690	1.50%	20,868	2031	883,890	2.36%
LA-4	6,753	2030	878,380	0.77%	10,803	2031	885,790	1.22%
				Florida (F	L)			
FL-1	1,843	2031	633,130	0.29%	2,983	2031	633,130	0.47%
FL-2	3,630	2031	409,990	0.89%	5,910	2031	409,990	1.44%
FL-3	3,191	2031	2,550,120	0.13%	5,216	2031	2,550,120	0.20%
FL-4	2,284	2031	4,873,290	0.05%	3,729	2031	4,873,290	0.08%
			I	Alabama (A	AL)			
AL-1	4,344	2030	482,560	0.90%	7,106	2031	488,970	1.45%
			М	ississippi (MS)			
MS-1	3,369	2030	284,280	1.19%	5,450	2031	286,640	1.90%

Peak Employment Projected from Cumulative OCS Programs as a Percent of Total Employment

EIA = Economic Impact Area.

Sources: Peak employment output from BOEM's economic impact model (MAG-PLAN). Baseline employment projections based on Woods & Poole Economics, Inc. (2013).

Calendar Year	TX-1	TX-2	TX-3	LA-1	LA-2	LA-3	LA-4	MS-1	AL-1	FL-1	FL-2	FL-3	FL-4	Total
2010	806.89	305.43	3,598.02	177.97	328.88	674.25	750.90	241.07	374.37	474.27	320.53	1,832.29	3,367.36	13,252.22
2011	820.21	312.06	3,682.63	179.50	333.42	681.06	758.43	237.96	375.73	481.21	320.83	1,846.30	3,430.32	13,459.65
2012	834.82	316.94	3,752.42	181.84	339.08	691.34	766.12	240.09	381.01	487.94	324.64	1,875.79	3,489.82	13,681.85
2013	849.66	321.93	3,823.50	184.23	344.80	701.78	773.87	242.26	386.35	494.78	328.48	1,905.67	3,550.17	13,907.48
2014	864.76	326.99	3,895.93	186.63	350.61	712.40	781.67	244.42	391.77	501.71	332.38	1,935.91	3,611.37	14,136.55
2015	880.09	332.14	3,969.75	189.07	356.48	723.17	789.50	246.60	397.25	508.69	336.34	1,966.53	3,673.45	14,369.05
2016	895.67	337.37	4,044.98	191.54	362.44	734.10	797.39	248.79	402.81	515.77	340.34	1,997.53	3,736.39	14,605.11
2017	911.50	342.70	4,121.61	194.03	368.47	745.18	805.31	250.99	408.42	522.94	344.38	2,028.94	3,800.21	14,844.68
2018	927.59	348.13	4,199.69	196.56	374.58	756.44	813.30	253.19	414.11	530.18	348.47	2,060.72	3,864.92	15,087.90
2019	943.92	353.64	4,279.26	199.12	380.77	767.88	821.31	255.42	419.86	537.52	352.62	2,092.90	3,930.55	15,334.76
2020	960.54	359.26	4,360.32	201.70	387.03	779.48	829.39	257.66	425.70	544.94	356.83	2,125.50	3,997.07	15,585.39
2021	977.35	364.98	4,442.91	204.31	393.33	791.25	837.44	259.89	431.58	552.43	361.09	2,158.28	4,064.10	15,838.95
2022	994.46	370.78	4,527.06	206.96	399.74	803.21	845.58	262.14	437.55	560.02	365.40	2,191.57	4,132.26	16,096.73
2023	1,011.88	376.69	4,612.81	209.64	406.25	815.34	853.79	264.41	443.59	567.71	369.76	2,225.38	4,201.56	16,358.81
2024	1,029.59	382.68	4,700.18	212.36	412.86	827.66	862.09	266.70	449.73	575.51	374.18	2,259.70	4,272.02	16,625.26
2025	1,047.62	388.77	4,789.21	215.11	419.58	840.17	870.47	269.01	455.94	583.42	378.64	2,294.56	4,343.66	16,896.16
2026	1,065.83	395.00	4,879.89	217.88	426.29	852.86	878.77	271.29	462.20	591.35	383.19	2,329.42	4,415.40	17,169.39
2027	1,084.36	401.33	4,972.29	220.69	433.11	865.74	887.16	273.60	468.54	599.40	387.79	2,364.82	4,488.32	17,447.15
2028	1,103.22	407.75	5,066.44	223.54	440.04	878.81	895.63	275.93	474.98	607.55	392.45	2,400.75	4,562.45	17,729.52
2029	1,122.40	414.28	5,162.37	226.42	447.08	892.08	904.18	278.28	481.50	615.82	397.16	2,437.23	4,637.80	18,016.58
2030	1,141.91	420.92	5,260.12	229.33	454.23	905.55	912.81	280.64	488.10	624.20	401.93	2,474.26	4,714.39	18,308.39
2031	1,161.64	427.70	5,359.67	232.27	461.37	919.22	921.38	282.99	494.76	632.61	406.78	2,511.31	4,791.08	18,602.79
2032	1,181.71	434.58	5,461.10	235.25	468.62	933.09	930.04	285.36	501.51	641.14	411.69	2,548.92	4,869.01	18,902.03
2033	1,202.13	441.58	5,564.46	238.27	475.98	947.17	938.78	287.75	508.35	649.79	416.66	2,587.09	4,948.21	19,206.22

Tables

Tables-66

Central Planning Area Lease Sales 235, 241, and 247 EIS

Calendar Year	TX-1	TX-2	TX-3	LA-1	LA-2	LA-3	LA-4	MS-1	AL-1	FL-1	FL-2	FL-3	FL-4	Total
2034	1,222.90	448.69	5,669.77	241.33	483.46	961.46	947.60	290.16	515.28	658.55	421.69	2,625.83	5,028.70	19,515.43
2035	1,244.03	455.92	5,777.07	244.42	491.06	975.97	956.50	292.59	522.31	667.43	426.78	2,665.15	5,110.50	19,829.74
2036	1,265.41	463.29	5,886.34	247.54	498.64	990.68	965.36	295.00	529.39	676.35	431.97	2,704.51	5,192.38	20,146.85
2037	1,287.16	470.78	5,997.67	250.69	506.34	1,005.61	974.31	297.43	536.57	685.39	437.21	2,744.45	5,275.56	20,469.17
2038	1,309.29	478.39	6,111.11	253.89	514.16	1,020.77	983.33	299.88	543.84	694.55	442.53	2,784.97	5,360.08	20,796.79
2039	1,331.79	486.12	6,226.69	257.13	522.10	1,036.15	992.44	302.35	551.21	703.83	447.90	2,826.10	5,445.95	21,129.78
2040	1,354.68	493.98	6,344.46	260.40	530.17	1,051.77	1,001.64	304.84	558.68	713.24	453.34	2,867.83	5,533.20	21,468.24
2041	1,377.97	501.97	6,464.46	263.72	538.35	1,067.62	1,010.92	307.36	566.25	722.77	458.85	2,910.18	5,621.85	21,812.27
2042	1,401.65	510.09	6,586.73	267.08	546.67	1,083.72	1,020.29	309.89	573.93	732.43	464.42	2,953.15	5,711.91	22,161.95
2043	1,425.74	518.33	6,711.30	270.49	555.11	1,100.05	1,029.74	312.44	581.71	742.22	470.06	2,996.76	5,803.42	22,517.38
2044	1,450.25	526.72	6,838.24	273.94	563.68	1,116.63	1,039.28	315.02	589.59	752.14	475.77	3,041.01	5,896.40	22,878.66
2045	1,475.18	535.23	6,967.58	277.43	572.39	1,133.46	1,048.91	317.61	597.58	762.19	481.55	3,085.92	5,990.86	23,245.89
2046	1,500.53	543.89	7,099.36	280.96	581.23	1,150.55	1,058.63	320.23	605.68	772.38	487.40	3,131.49	6,086.84	23,619.16
2047	1,526.32	552.68	7,233.63	284.55	590.20	1,167.89	1,068.43	322.87	613.89	782.70	493.32	3,177.73	6,184.35	23,998.57
2048	1,552.56	561.62	7,370.45	288.17	599.32	1,185.49	1,078.33	325.53	622.21	793.16	499.32	3,224.65	6,283.43	24,384.24
2049	1,579.24	570.70	7,509.85	291.85	608.58	1,203.36	1,088.32	328.21	630.65	803.76	505.38	3,272.27	6,384.10	24,776.26
2050	1,606.39	579.92	7,651.89	295.57	617.97	1,221.50	1,098.41	330.92	639.19	814.50	511.52	3,320.59	6,486.37	25,174.74
2051	1,634.00	589.30	7,796.62	299.33	627.52	1,239.91	1,108.58	333.64	647.86	825.39	517.73	3,369.62	6,590.29	25,579.79
2052	1,662.08	598.83	7,944.08	303.15	637.21	1,258.59	1,118.86	336.39	656.64	836.42	524.02	3,419.38	6,695.87	25,991.53
2053	1,690.65	608.51	8,094.33	307.01	647.05	1,277.56	1,129.22	339.16	665.54	847.60	530.39	3,469.87	6,803.14	26,410.05
2054	1,719.71	618.35	8,247.43	310.93	657.04	1,296.82	1,139.68	341.96	674.56	858.93	536.83	3,521.11	6,912.14	26,835.48
2055	1,749.27	628.35	8,403.42	314.89	667.19	1,316.37	1,150.24	344.78	683.70	870.41	543.35	3,573.11	7,022.87	27,267.94
2014-2055 growth	1.73%	1.61%	1.89%	1.28%	1.58%	1.51%	0.95%	0.84%	1.37%	1.35%	1.21%	1.51%	1.64%	1.62%

Table 4-23. Baseline Employment Projections (in thousands) by Economic Impact Area (continued).

Notes: Actual Woods & Poole data for 2010 through 2020, 2025, 2030, 2035, and 2040.

Missing estimates through 2040 calculated using average annual growth rate for the 5-year period; projections after 2040 calculated using the average annual growth rate from 2035 to 2040.

Source: Woods & Poole Economics, Inc., 2014.

Infrastructure	Texas	Louisiana	Mississippi	Alabama	Florida	Total
Pipeline Landfalls ¹	13	109	3	4	0	129
Platform Fabrication Yards ²	12	37	4	1	0	54
Shipyards ²	32	64	9	18	14	137
Pipe-Coating Facilities ²	9	6	0	2	2	19
Supply Bases ²	32	55	2	7	0	96
Ports ²	11	14	3	1	5	34
Waste Disposal Facilities ²	16	29	3	3	2	53
Natural Gas Storage Facilities ²	13	8	0	1	0	22
Helicopter Hubs ²	118	115	4	4	0	241
Pipeline Shore Facilities ²	13	40	0	0	0	53
Barge Terminals ²	110	122	6	6	8	252
Tanker Ports ²	4	6	0	0	0	10
Gas Processing Plants ²	39	44	1	13	1	98
Refineries ²	18	15	1	3	0	37
Petrochemical Plants ²	126	66	2	9	13	216

Existing Coastal Infrastructure Related to OCS Oil- and Gas-Related Activities in the Gulf of Mexico

¹Source: USDOI, BOEMRE, 2011. ²Source: Dismukes, 2011.

Table 4-25

Gulf of Mexico Counties and Parishes with Concentrated Levels of Oil- and Gas-Related Infrastructure

Low Concentration		Medium Concentr	ation	High Concentrat	ion
County/Parish	State	County/Parish	State	County/Parish	State
Escambia	FL	Bay	FL	Mobile	AL
Manatee	FL	Hillsborough	FL	Cameron	LA
Lafayette	LA	Calcasieu	LA	Jefferson	LA
St. John the Baptist	LA	Iberia	LA	Lafourche	LA
West Baton Rouge	LA	Orleans	LA	Plaquemines	LA
Harrison	MS	St. Bernard	LA	St. Mary	LA
Aransas	TX	St. Charles	LA	Brazoria	TX
Cameron	TX	St. James	LA	Galveston	TX
Fort Bend	TX	Vermilion	LA	Harris	TX
Matagorda	TX	Jackson	MS	Jefferson	TX
Montgomery	TX	Calhoun	ΤX		
Orange	TX	Nueces	ΤX		
		San Patricio	TX		

Source: Kaplan et al., 2011.

	Percent Minority	Total Population	Percentage of Total	Percentage of Total
Landfill Name and Location	Living within	Living within	Deepwater Horizon Liquid	Deepwater Horizon
	Radius of	of Site	Waste	Solid Waste
	Site	(2000 Census)	Collected	Collected
Liquid Environmental Solutions, Mobile, LA	95.80%	4,257	13.17%	0.00%
Oil Recovery Company, Mobile, LA	93.90%	3,238	0.08%	0.00%
Cliff Berry, Inc. – Miami, FL	92.80%	24,768	>0.58%	0.00%
River Birch Industries Landfill, Avondale, LA	92.20%	167	16.99%	8.67%
Jefferson Parish Waste Management, Avondale, LA	91.40%	120	0.00%	0.02%
Sunbelt Crushing, Mobile, LA	76.80%	3,173	0.00%	0.29%
Chemical Waste Management, Emelle, LA	75.20%	33	1.02%	0.00%
WM Springhill Regional Landfill, Campbelton, FL	74.30%	109	0.00%	23.67%
Allied Waste/BFI Colonial Landfill, Sorrento, LA	74.10%	153	0.00%	21.98%
Allied Waste Recycling Center, Metairie, LA	63.50%	14,420	0.00%	0.06%
WH Chastang Landfill, Mount Vernon, AL	62.50%	123	0.00%	8.93%
Clearview Landfill Lake, MS	50.90%	55	0.44%	14.92%
Cliff Berry, Inc. – Tampa, FL	50.50%	1,817	>0.58%	0.00%
Apex Environmental Services, Theodore, AL	50.40%	383	17.44%	0.00%
Newpark Environmental Services Site Code 5102, Morgan City, LA	35.90%	4,237	2.74%	0.00%
Liquid Environmental Solutions, Mobile, AL	63.30%	4,257	13.17%	0.00%
Newpark Environmental Mud Facility, Venice, LA	50.00%	2	10.90%	0.00%
Oil Recovery Company, Mobile, AL	41.70%	3,238	0.08%	0.00%
Chemical Waste Management, Emelle, LA	36.40%	33	1.02%	0.00%
Newpark Environmental Services Site Code 2913, Fourchon, LA	33.30%	3	30.14%	0.00%
Vacco Marine, Houma, LA	29.20%	525	0.16%	0.00%
River Birch Industries Landfill, Avondale, LA	28.10%	167	16.99%	8.67%
Jefferson Parish Waste Management, Avondale, LA	26.70%	120	0.00%	0.02%
Apex Environmental Services, Theodore, AL	26.20%	383	17.44%	0.00%
Allied Waste/BFI Colonial Landfill, Sorrento, LA	25.00%	153	0.00%	21.98%
WM Pecan Grove, Pass Christian, MS	14.40%	290	0.00%	3.28%
Baldwin County Magnolia Landfill, Summerdale, AL	13.70%	446	0.00%	11.18%
MBO LLC (Lacassine Oilfield Services), Lacassine, LA	12.90%	85	3.82%	0.00%
Coast Guard Rd Sanitary Landfill, Sorrento, LA	0.00%	0	0.00%	8.05%

Deepwater Horizon Waste Landfill Destination

Source: British Petroleum, 2010.

References

- British Petroleum. 2010. Unified Area Command Plan: Deepwater Horizon MC252: Waste and material tracking system and reporting plan. 22 pp. Internet website: <u>http://www.epa.gov/bpspill/waste/bp_waste_tracking_plan.pdf</u>. Accessed November 26, 2011.
- Dismukes, D.E. 2011. OCS-related infrastructure fact book. Volume I: Post-hurricane impact assessment. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2011-043.
- Kaplan, M.F., A. Laughland, and J. Mott. 2011. OCS-related infrastructure fact book. Volume II: Communities in the Gulf of Mexico. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2011-044.
- Langley, C. 2014. Official communication. E-mail regarding updated produced water data through 2013. March 18, 2014.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014a. 2010-2014 cetacean unusual mortality event in the northern Gulf of Mexico. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/mmume/cetacean_gulfofmexico.htm</u>. Updated June 15, 2014. Accessed June 17, 2014.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014b. Marine recreational information program query results; angler trips in the Gulf of Mexico by location and mode from 2008 through 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014c. Marine recreational information program query results; fish species caught by recreational anglers from 2008 through 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014d. Fisheries economics of the U.S.— 2014. Internet website: <u>http://www.st.nmfs.noaa.gov/economics/publications/feus/fisheries</u> <u>economics_2012</u>. Accessed July 30, 2014.
- U.S. Dept. of Homeland Security. Coast Guard. 2012. Polluting incidents in and around U.S. waters. A spill/release compendium: 1969-2011. U.S. Dept. of Homeland Security, Coast Guard, Office of Investigations & Compliance Analysis (CG-INV), Washington, DC.
- U.S. Dept. of Labor. Bureau of Labor Statistics. 2014. Quarterly census of employment and wages. Internet website: <u>http://www.bls.gov/cew/</u>. Accessed July 8-9, 2014.
- U.S. Dept. of the Army. Corps of Engineers. 2002. United States of America ocean dumping report for calendar year 2001 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2001.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2003. United States of America ocean dumping report for calendar year 2002 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2002.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2004. United States of America ocean dumping report for calendar year 2003 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2003.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2005. United States of America ocean dumping report for calendar year 2004 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2004.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2006. United States of America ocean dumping report for calendar year 2005 dredged material.
 U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2005.pdf. Accessed June 19, 2013.

- U.S. Dept. of the Army. Corps of Engineers. 2007. United States of America ocean dumping report for calendar year 2006 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2006.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2008. United States of America ocean dumping report for calendar year 2007 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2007.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2009. United States of America ocean dumping report for calendar year 2008 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2008.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Army. Corps of Engineers. 2010a. United States of America ocean dumping report for calendar year 2009 dredged material.
 U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2009.pdf.
- U.S. Dept. of the Army. Corps of Engineers. 2010b. United States of America ocean dumping report for calendar year 2010 dredged material. U.S. Dept. of the Army, Corps of Engineers, Headquarters, Washington, DC. Internet website: <u>http://el.erdc.usace.army.mil/odd/Download_Sites/LC_files/LC_2010.pdf</u>. Accessed June 19, 2013.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management, Regulation and Enforcement. 2011. Technical Information Management System. Pipelines (June 2011) and OCS spill database (May 2011). U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Gulf of Mexico OCS Region, New Orleans, LA.
- U.S. Department of Interior. Bureau of Safety and Environmental Enforcement. 2013. Spills -- statistics and summaries through 2012. Internet website: <u>http://www.bsee.gov/Inspection-and-Enforcement/</u><u>Accidents-and-Incidents/Spills.aspx</u>. Accessed August 8, 2013.
- U.S. Dept. of Transportation. Maritime Administration (MARAD). 2013. Vessel calls at U.S. ports by vessel type. Internet website: <u>http://www.marad.dot.gov/documents/US_Port_Calls_by_Vessel_Type.xls</u>. Current as of March 28, 2013. Accessed June 19, 2013.
- Woods & Poole Economics, Inc. 2013. The 2013 complete economic and demographic data source (CEDDS) on CD-ROM.
- Woods & Poole Economics, Inc. 2014. The 2014 complete economic and demographic data source (CEDDS) on CD-ROM.

APPENDIX A

AIR QUALITY OFFSHORE MODELING ANALYSIS

A. AIR QUALITY OFFSHORE MODELING ANALYSIS

Introduction

This Appendix discusses the coastal dispersion modeling analysis and the potential impacts of offshore emission from a CPA proposed action to onshore air quality. The latest version of the Offshore and Coastal Dispersion Model (Version 5.0, dated May 16, 2005) was used to calculate impacts. The objective of the analysis was to determine if the impacts from the proposed actions would significantly affect the environment, particularly public health and public welfare.

Background

The Clean Air Act, which was last amended in 1990, requires the U.S. Environmental Protection Agency (USEPA) to set National Ambient Air Quality Standards (NAAQS, [40 CFR part 50]) for pollutants considered harmful to public health and the environment. The USEPA has set NAAQS for six principal pollutants, which are called "criteria" pollutants. These pollutants are carbon monoxide, lead, nitrogen dioxide, ozone, particle pollution (listed as $PM_{2.5}$ and PM_{10}), and sulfur dioxide.

The NAAQS were developed to protect the public health and welfare while allowing for an adequate margin of safety. Primary NAAQS protect the public health including sensitive subpopulations such as infants and the elderly. Secondary NAAQS standards protect public welfare such as the prevention of aquatic acidification, plant leaf damage, or visibility impairment. Thus, for NEPA evaluation purposes, it is reasonable to presume that concentrations of emissions from offshore activities that, following transport to shore, which do not cause exceedances of the NAAQS and are below BOEM's maximum allowable increases, will have minimal impacts to onshore air quality.

The Outer Continental Shelf Lands Act requires the Secretary of the Interior to promulgate and administer regulations for compliance with the NAAQS to the extent that the authorized activities significantly affect the air quality of any state. These regulations apply in the area of the proposed actions and alternatives.

BOEM-regulated pollutants include carbon monoxide (CO), suspended particulates, sulfur dioxide (SO_2) , nitrogen oxides (NO_x) , and volatile organic compounds (VOC's). The original NAAQS particulate standard was for total suspended particulates (TSP's), which BOEM adopted. This standard has been replaced by USEPA in their regulations with the PM₁₀ and PM_{2.5} (particulate matter equal to or below 10 µm and equal to or below 2.5µm in size) because these specific size classifications better define the size range that has the greatest environmental impact. BOEM's regulations use the TSP designation, but for purposes of this NEPA analysis, BOEM determined levels of PM₁₀ and PM_{2.5} so that our data are compatible with the NAAQS. This is one example of where the U.S. Environmental Protection Agency's NAAQS and BOEM's regulations may be somewhat different. As another example, BOEM's regulations employ 3-hour, 24-hour, and annual standards while USEPA has set 1-hour standards to limit pollutant spikes that are not detectable when concentrations are averaged over a longer time period. Both types of particulate designations are included in this Appendix.

For OCS oil- and gas-related activities in the GOM west of 87.5° W. longitude, which are under BOEM's jurisdiction for air quality purposes, BOEM has developed evaluation criteria and screening tools. Refer to Chapter 4.2.1.1 of *Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement* (WPA 233/CPA 231 Supplemental EIS).

According to the Clean Air Act Amendments, the air quality in national parks, national wilderness areas, national monuments, and national seashores (42 U.S.C. § 7470) must be preserved. The Clean Air Act Amendments establish Class I and II areas, where emissions of particulate matter and sulfur dioxide are to be restricted. The restrictions are most stringent in Class I areas and are progressively less restrictive in Class II areas. In the Gulf of Mexico, the Breton National Wilderness Area, 95 mi (153 km) from the proposed CPA lease sale area, is the Class I area most likely to be impacted by OCS oil- and gas-related activity. At the Breton National Wilderness Area, if modeled emissions from offshore activities result below the U.S. Environmental Protection Agency's SIL's, it is reasonable to presume for NEPA evaluation purposes that they have negligible impacts to the air quality on this pristine Federal area.

Offshore Coastal Dispersion Model

The Offshore and Coastal Dispersion Model Version 5 (OCD 5 model) was developed by USEPA in conjunction with BOEM's predecessor agency, the Minerals Management Service, in the late 1980's, and the model was formally approved for use in January 1988. The OCD 5 model is a coastal dispersion model that was formulated to estimate shoreline concentrations resulting from releases taking place from offshore petroleum drilling platforms. The developers suggest that direct turbulence measurements be used to estimate the dispersion parameters over water. As the plume comes ashore, dispersion is estimated for the effect of transport over land using traditional techniques (Turner and Schulze, 2007).

The OCD 5 model input data comprises source-specific data as well as meteorological data. The source-specific data includes location of activities, emission rate information for all sources associated with activities at the given location, and stack parameters for each source. The model requires both overland and over-water meteorological data to determine the potential onshore impacts of the offshore operations. These data include overland surface characteristics such as surface roughness and over-water data such as water temperature, over-water air temperature, over-water dew point, over-water wind speed, and over-water wind direction. These data are usually obtained from overland meteorological stations, radiosonde observations, and offshore buoys closest to emission sources.

The model parameters are arranged to consider onshore locations (receptors) at which the OCD 5 model will predict the pollutant concentrations of the modeled emission sources. Receptors are identified on the shoreline and at nearby Class I areas. Although the OCD 5 model does not include algorithms for parameters such as regional haze and acid deposition, its relatively simpler data processing makes it an efficient model for use in predicting pollutant impacts from offshore sources.

The OCD 5 model was chosen to analyze the proposed impacts because it performs best when meteorological data is collected over the water. The OCD 5 model was approved for use by the Director of the Minerals Management Service (currently BOEM), and it is listed as an approved air quality model in Appendix W of 40 CFR part 51. More recently, BOEM's Director approved the use of the California-PUFF model (CALPUFF), another approved dispersion model listed in Appendix W of 40 CFR part 51. However, the OCD 5 model was chosen for purposes of this analysis because BOEM continues to believe it is the more conservative of the two models.

The OCD model does not include a simulation of onshore ozone levels. Several prior studies have demonstrated that OCS activities have only a small contribution to onshore ozone formation. Because the offshore activities' contribution to onshore ozone have been shown to be very small, BOEM chose to run the OCD model despite this limitation and then refer to the applicable studies for the analysis of potential ozone impacts. The studies that support this decision include the Gulf of Mexico Air Quality Study (Systems Applications International et al., 1995), in which this Agency used the Urban Airshed Model (UAM-V) to assess the potential impacts of OCS oil- and gas-related activity in the WPA/CPA on USEPA-designated ozone nonattainment areas in urban onshore Texas and Louisiana. Relative to onshore contributors, OCS contributors to onshore ozone formation were low. The Gulf of Mexico Air Quality Study was followed by a study in 2000 that used the year 2000 Gulfwide emissions to assess the OCS contribution to onshore ozone in the Houston/Brazoria/Galveston region of Texas. The Comprehensive Air Quality Model with extensions (CAMx) was used to model contribution during an August 2000 ozone episode (Yarwood et al., 2004). The OCS contributions to ozone exceedances were minor. Yarwood et al. (2004) used a photochemical model to analyze the Year 2000 Gulfwide Emissions Inventory (GWEI) and selected the Houston-Galveston-Brazoria nonattainment area since it has the most severe ozone problem in the Gulf of Mexico region (System Applications International et al., 1995). One of the main relevant findings in Yarwood et al. (2004) is as follow: "The average impact of the year 2000 GWEI emissions on 8-hour ozone levels above 85 ppb in Houston area is 0.2 ppb; although larger impacts may occur over the Gulf of Mexico." Haney et al. (2008) performed a modeling investigation using the year 2000 and year 2005 GWEI's in the CPA to evaluate the impact of offshore emissions on offshore and onshore ozone air quality, in which they proposed an emission-reduction scenario. They found a particular ozone episode that the onshore impact from all offshore oil-and-gas-related sources was small but generally larger than those estimates using the year 2000 inventory. They noticed higher simulated ozone concentrations from the year 2005 emissions due to increases in NO_x and VOC concentrations.

A second follow-up study was conducted in 2008 using the updated year 2005 Gulfwide Emission Inventory Study to model ozone formation in Louisiana, Mississippi, Alabama, and Florida based on an August 1999 ozone episode (Haney et al., 2008). In this study, OCS oil- and gas-related activity contributed only slightly to the simulated onshore ozone exceedances.

A third follow-up study will be conducted by Fall 2014. This study will use the updated *Year 2008 Gulfwide Emission Inventory Study* (Wilson et al., 2010) to model ozone formation, and it will include a 1-hour inventory.

OCD Model Protocol

The OCD 5 model was used to analyze a CPA proposed action's impacts on the onshore community. BOEM's regulations at 30 CFR § 550.303 cite that an approved model should be used to assess impacts. The USEPA lists approved models in 40 CFR part 51, appendix W "Modeling Guidance for Other Governmental Programs." The model was used to compute concentrations of sulfur dioxide (SO₂), nitrogen oxides (NO_x), volatile organic carbon compounds (VOC's), carbon monoxide (CO), and particulate matter below 10 micrometers (PM₁₀) and below 2.5 micrometers (PM_{2.5}) in size.

BOEM's regulations do not include ozone as it is not directly emitted into the air from OCS oil- and gas-related activities. BOEM does regulate the pollutants, VOC and NO₂, which are precursors to ozone. Ozone formation from VOC's and NO₂ is dependent upon a photochemical reaction in the ambient air that includes heat and sunlight. Ozone formation is a problem in onshore urban areas with many sources of pollutants. The OCD model cannot simulate ozone generation. Several studies that BOEM has conducted and that are discussed above have shown that OCS activities are only a small contributor to onshore ozone exceedance so there was no need to perform ozone modeling. Estimates of the amount of activity that will result from a proposed CPA lease sale was made using the scenarios for an individual typical lease sale and all cumulative OCS activities in the CPA (**Tables A-1 and A-2**). BOEM can attribute an amount of emissions generated by each activity through information collected in the *Year 2008 Gulfwide Emission Inventory Study* (Wilson et al., 2010) and Rigzone (2009). A spreadsheet was developed based on the findings of this study (Billings et al., official communication, 2012). Using the level of activity and the activity's estimated emissions (based on emission factors for equipment), total emissions were determined for each type of activity for each of the 40 years of the analysis period for a CPA proposed action.

Yearly emissions from all of these activities and sources were summed together and modeled: exploration and delineation drilling; development and production drilling; platform installation and removal; pipeline installation; production platform operations; tanker loading; tanker in transit; tanker unloading; and helicopters and support vessels. Drilling comprises approximately 60-75 percent of the total emissions. Emissions for the year with the highest annual emissions during the 40-year analysis period (tons/year) and the cumulative sum of all emissions from all OCS oil- and gas-related activities in the CPA during the 40-year analysis period (tons) are shown in **Tables A-2**. The data in the EIS spreadsheets were based on an average drillship as reported in Wilson et al. (2010) and Rigzone (2009) for the Gulf of Mexico. Drilling days and average kilowatts were used to calculate reasonably foreseeable emissions. Specific drillships can be significantly larger or smaller than the average value used in the spreadsheet and greater total emissions could be generated if the drillship stays on location longer. These averages may not, in every situation, directly translate to the short-term (as opposed to annual) NAAQS; nevertheless, BOEM's subject-matter experts believe that the analysis remains conservative with regards to reasonably foreseeable emissions expected to result from a CPA proposed action.

The single sale projected emissions were then assigned to a block within the CPA for OCD 5 modeling. Modeling emissions from cumulative sales was not performed because although the cumulative emissions are greater than the lease sale emissions, the emissions would be widely distributed across the planning areas and would be the result of activities based on all stages of the life of the lease. Since drilling is the activity with the greatest emissions and is most concentrated in a new lease, modeling for a single lease sale was considered sufficient. At the time of a CPA lease sale, BOEM can only generally predict where or when the activities that generate air pollutants will occur during the 40-year analysis period within the planning areas. Of the various types of drilling rigs, the drillship was chosen because it generates the greatest amount of emissions since it is not anchored to the seafloor. Instead, the drillship depends on engines to stay on location. Thus, the drillship's emissions result from both drilling and the thrusters used to maintain location. A drillship generates 773 tons of NO_x per well whereas a jack-up rig generates 47 tons of NO_x per well. The selected CPA source (Mississippi Canyon Block 856

[MC 856]) is about 56 miles (90 kilometers) from the closest shoreline and 95 miles (153 kilometers) from the Breton Class I area. All of the emissions from the year with the highest activity were placed in one location rather than distributed across the proposed CPA lease sale area. The modeling scenarios are presented in **Table A-3**.

The meteorological data used are described in BOEM's *Five-Year Meteorological Datasets for CALMET/CALPUFF and OCD5 Modeling of the Gulf of Mexico Region* (Douglas and Hudischewskyj, 2008). The meteorological files to use in the OCD 5 model were prepared using onshore surface and upper-air data from the National Weather Service, mixing height estimates obtained from the National Climatic Data Center, and offshore buoy data from the National Data Buoy Center (Douglas and Hudischewskyj, 2008). The meteorological data used were from the period 2000 through 2004. For MC 856, surface data come from Patterson, Louisiana, and upper air data come from Slidell, Louisiana. Buoy data for MC 856 come from Buoy 42040. These meteorological data points are the closest, physically, to the proposed lease sale area available to BOEM and, therefore, are the best approximation available.

The modeling domain was selected to include the closest shoreline area potentially impacted by emissions. Receptors were set at the Breton Class I area and the shoreline for the CPA. State's shoreline and the Breton Class I area were included. For the MC 856 source, 2 Florida, 3 Alabama, 3 Mississippi, 17 Louisiana, and 10 Breton Class I receptors were used.

Limitations

There are limitations associated with this modeling effort. The OCD 5 model was selected because it was specifically designed to include overwater conditions. The other models, which might have been selected, would possibly have included features such as the ability to determine ozone formation and the ability to model vessel emissions as a moving rather than stationary source. These models were not chosen because they are either not approved in USEPA's Appendix W or they do not reflect overwater conditions.

Furthermore, a more realistic estimation of shoreline impacts could have been obtained by distributing the sources of emissions across the OCS rather than using the assumption that all emissions occur at a single location in the CPA (MC 856). Results are not available for every point on the coast. The inclusion of more receptor locations would provide greater detail to the results. Modeling did not include every type of exploration and production activity or accidental event. Modeling did not include drilling at a location closer to shore with emissions representative of a more appropriate bottom-founded rig.

Nevertheless, by using a reasonable conservative approach, which includes the overestimation of reasonable emissions, and attribution of the source of these emissions to a single point in each of the proposed lease sale areas rather than at more dispersed source points throughout the proposed lease sale areas, and by using the conservative OCD 5 model, which is specifically designed to represent the offshore and coastal environment, the results of this modeling effort adequately represent a demonstration of the impacts of offshore emissions to the shoreline and to the Class I area.

OCD Model Results

The major pollutant emitted from a CPA proposed action is NO_x , while PM_{10} is the least emitted pollutant. Platform operations are contributors of VOC emissions. Commercial marine vessels are contributors of SO_2 and PM emissions. Support activities for OCS activities including crew and supply boats, helicopters, and pipeline vessels consist mainly of NO_x and CO emissions. Combustion-intensive operations such as platform operations, well drilling, and service-vessel activities contribute mostly to NO_x .

Since NO_x has the highest potential emissions for OCS activities, annual NO_2 and 1-hour NO_2 were analyzed and compared with the NAAQS. To be conservative, all emissions of NO_x were assumed to be equal to NO_2 for modeling purposes. Results are provided in **Table A-4** for the CPA Class I and Class II areas.

The results for the Class I (Breton National Wilderness) and Class II areas also demonstrate that a CPA proposed action's modeled impacts are below BOEM's Significance Levels and Maximum Allowable Increases, NAAQS, and the U.S. Environmental Protection Agency's SIL's for all the criteria

pollutants except for the annual NO_x and the 24-hour $PM_{2.5}$. Although the SIL's were exceeded, BOEM expects in practice, if the emissions were distributed more realistically across the CPA, that emissions would not exceed the SIL; and thus, actual emissions likely to result from a CPA proposed action would likely not be significant. The modeling that was conducted was overly conservative. All the emissions during 1 year for the entire CPA, which would actually be dispersed throughout the CPA, were modeled as if they originated in Mississippi Canyon Block 856. BOEM is confident that the modeled impacts from OCS oil- and gas-related activity continue to support its conclusion that the proposed action will only minimally impact onshore air quality.

The results also indicate that the maximum modeled concentrations for the 1-hour averaging period for the NO_2 combined with the nearest representative onshore NO_2 monitored concentrations do not exceed the NO_2 1-hour NAAQS for the Breton National Wilderness Area as well as for the entire CPA (**Table A-4**). Although BOEM's regulations do not include a 1-hour NO_2 standard, BOEM modeled 1-hour NO_2 impacts from a CPA proposed action because the 1-hour standard is harder to meet than BOEM's annual NO_x maximum allowable increase. The results of the modeled impacts support the conclusion that there will be minimal impacts to onshore air quality.

Conclusion

Based on studies conducted in 1995, 2000, and 2008, BOEM has determined that OCS activities contributed only slightly to onshore ozone exceedances in the Houston/Brazoria/Galveston areas of Texas, and the States of Louisiana, Mississippi, Alabama, and Florida. The OCD model was selected to model for the pollutants CO, NO_x , SO_x , $PM_{2.5}$, and PM_{10} . BOEM used a conservative approach in choosing and populating the OCD model for this analysis, which includes the overestimation of reasonable emissions and the attribution of the source of these emissions to a single point in each of the proposed lease sale areas rather than at more realistic source points throughout the proposed lease sale areas. The conservative OCD 5 model is specifically designed to represent the offshore and coastal environments. The results of this modeling effort adequately represent a demonstration of the impacts of offshore emissions to the shoreline and to the Class I area.

The OCD 5 modeling was performed for the CPA Class I area and the CPA Class II areas. The CPA hypothetical source location was chosen approximately 56 miles (90 kilometers) from shore. Even with all the emissions being attributed to a single point, which would not be the case in reality, CPA emissions would minimally impact onshore air quality. Significant impacts to air quality are not expected to result from a CPA proposed action.

Preparers

Margaret Metcalf, Chief, Physical/Chemical Sciences Section Stacie Merritt, Physical Scientist Chester Huang, Meteorologist Eric Wolvovsky, Physical Scientist

References

- Billings, R., B. Lange, and D. Wilson. 2012. Official communication. Emission estimates for Eastern Planning Area Sales 225-226. Memorandum to Holli Ensz, U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. Eastern Research Group, Inc., September 7, 2012. 9 pp.
- Douglas, S.G. and A.B. Hudischewskyj. 2008. Five-year meteorological datasets for CALMET/CALPUFF and OCD5 modeling of the Gulf of Mexico Region. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2008-029. 53 pp.
- Haney, J.L., Y. Wei, T. Myers, and S. Douglas. 2008 (unpublished). An assessment of onshore air quality impacts for the eastern Gulf Coast (Louisiana to Florida) using the 2005 Gulfwide emissions inventory. Prepared for the U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- Rigzone. 2009. Offshore rig search. Internet website: http://www.rigzone.com. Accessed November 7, 2013.
- Systems Applications International, Sonoma Technology, Inc., Earth Tech, Alpine Geophysics, and A.T. Kearney. 1995. Gulf of Mexico air quality study: Final report. Volumes I-III. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0038, 95-0039, and 95-0040. 650, 214, and 190 pp., respectively.
- Turner, D.B. and R.H. Schulze. 2007. Practical guide to atmospheric dispersion modeling. Dallas, TX: Trinity Consultants.
- Wilson, D.L., R, Billing, R. Oommen, and B. Lange. 2010. Year 2008 Gulfwide emission inventory study. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEMRE 2010-045. 185 pp.
- Yarwood, G., G. Mansell, M. Jimenez, and S. Lau. 2004 (unpublished). 2000 Gulf-wide emissions inventory – OCS on-shore impacts modeling (Texas), a preliminary look. Prepared for the U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. Prepared by ENVIRON International Corporation, Novato, CA. September 1, 2004.

Central Planning Area – Estimate of High-Case Emissions for a Single Sale: Highest Year of Emissions during the 40-Year Period of Activity (tons/year)

	NO _x	SO _x	PM_{10}	PM _{2.5}	VOC	СО	CO_2	CH_4	N ₂ O
Exploration/Delineation Well Drilling	10,568.34	246.01	380.32	368.91	207.04	2,327.83	802,296.17	6.63	24.85
Development/Production Well Drilling	4,561.63	5.02	152.84	148.26	91.83	1,133.34	408,984.93	3.38	12.67
Platform Installation and Removal	216.56	2.73	7.42	7.20	3.17	57.68	17,257.87	0.10	0.79
Pipeline Installation	133.88	1.85	3.79	3.68	3.91	27.73	14,406.80	0.17	0.66
Production Platforms	3,157.65	43.40	33.16	32.69	2,576.37	3,491.76	357,786.08	17,940.43	5.32
Tankers Loading	0.14	0.02	0.0034	0.0031	31.51	0.0136	5.98	6.16E-05	0.0002
Tankers in Transit	5.08	0.60	0.12	0.11	0.58	0.50	221.61	0.0011	0.01
Tankers Unloading	0.14	0.01	0.0034	0.0031	9.68	0.0136	5.98	6.16E-05	0.0002
Helicopters	33.5310	8.2700	6.6166	6.6166	81.6128	408.83	41,353.82	0.00E+00	0.00E+00
Support Vessels	2,038.47	2.49	69.85	67.76	29.84	542.92	162,447.60	0.99	7.42
Total	20,715.42	310.41	654.13	635.23	3,035.54	7,990.61	1,804,766.85	17,951.70	51.71

 CH_4 – methane

CO – carbon monoxide

CO₂ – carbon dioxide

N₂O – nitrous oxide

NO_x – nitrogen oxides

 PM_{10} – particulate material less than 10µm in size

 $PM_{2.5}$ – particulate material less than 2.5µm in size

SO_x – sulfur oxides

VOC – volatile organic compound

Central Planning Area – Estimate of High-Case Emissions for Cumulative Sales: Total Emissions during the 40-Year Period of Activity (tons)

	NO _x	SO _x	PM ₁₀	PM _{2.5}	VOC	СО	CO ₂	CH_4	N ₂ O
Exploration/Delineation Well Drilling	1,418,906.52	3,797.42	47,632.79	46,203.81	28,854.46	347,702.69	126,296,548.05	1,058.08	3,799.01
Development/Production Well Drilling	1,73,8078.63	2,390.40	58,097.52	56,354.60	35,394.37	428,711.63	156,091,192.49	1,307.67	4,694.93
Platform Installation and Removal	59,513.87	126.70	2,053.02	1,991.43	869.36	15,726.68	4,698,377.58	27.67	214.46
Pipeline Installation	60,497.90	177.59	1,728.99	1,677.12	1,770.85	12,456.98	6,432,426.19	75.80	293.74
Production Platforms	2,192,552.79	30,138.08	23,021.72	22,697.05	1,788,929.87	2,424,540.85	248,432,794.68	12,457,138.92	3,694.40
Tankers Loading	7.71	0.11	0.19	0.17	1,774.84	0.76	336.78	0.00	0.01
Tankers in Transit	285.97	4.01	7.02	6.43	32.81	28.31	12,484.17	0.06	0.50
Tankers Unloading	7.71	0.08	1.89E-01	1.73E-01	545.14	0.76	336.78	0.0035	0.0134
Helicopters	22,772.43	5,616.57	4.49E+03	4.49E+03	55,426.98	277,657.75	28,085,285.00	0.0000	0.00
Support Vessels	1,233,296.32	1,059.64	4.23E+04	4.10E+04	18,047.48	328,241.63	98,199,575.43	597.3796	4,482.4038
Total	6,725,919.86	43,310.60	179,321.24	174,442.00	1,931,646.16	3,835,068.04	668,249,357.14	12,460,205.60	17,179.46

 CH_4 – methane

CO – carbon monoxide

CO₂ – carbon dioxide

 N_2O – nitrous oxide

NO_x – nitrogen oxides

 PM_{10} – particulate material less than 10µm in size

 $PM_{2.5}$ – particulate material less than 2.5µm in size

 SO_x – sulfur oxides

VOC - volatile organic compound

Modeling Scenarios

Modeling Source Location		ce Location	Activity Poprosontod	NO _x	SO _x	PM ₁₀	PM _{2.5}	VOC	СО
Scenarios	Area	Area/ Block	Activity Represented	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
1	СРА	MC 856	All activity during the year with the highest lease sale emissions	595.9	8.9	18.8	18.3	87.3	229.9

CO – carbon monoxide

CPA – Central Planning Area

g/sec – grams per second MC – Mississippi Canyon

NO_x – nitrogen oxides

 PM_{10}^{-} – particulate material less than 10µm in size $PM_{2.5}$ – particulate material less than 2.5µm in size

 SO_x – sulfur oxides VOC – volatile organic compound

Pollutant	Averaging Times	BOEM Significance Levels (µg/m ³)	BOEM Maximum Allowable Increases (µg/m ³)		NAAQS (µg/m ³)	USEPA PSD Significance Impact Levels (µg/m ³)		BOEM Modeled Impacts for the CPA (µg/m ³)	
СО	8-hour	500	None	None	10,000	None	500	None	None
	1-hour	2,000	None	None	40,000	None	2,000	None	None
NO_2	Annual	1	None	None	100	0.1	1	0.4	0.6
	1-hour	None	None	None	188	TBD	7.5	55.4	177.67
SO_2	Annual	1	2	20	80	0.1	1	0.01	0.0
	24-hour	5	5	91	365	0.2	5	0.1	0.2
	3-hour	25	2	512	1,300	1	25	0.5	0.5
	1-hour	None	None	None	196	TBD	7.86	0.8	1.3
PM _{2.5}	Annual	1	5	19	12	0.06	0.3	0.0	0.0
	24-hour	5	10	37	35	0.07	1.2	0.3	0.4
PM ₁₀	Annual					0.2	1	0.0	0.0
	24-hour					0.3	5	0.3	0.4

OCD Modeling Results for a CPA Proposed Action Compared with USEPA's Significance Impact Levels and the NAAQS

 $\mu g/m^3$ – micrograms per cubic meter

BOEM – Bureau of Ocean Energy Management

CO – carbon monoxide

CPA - Central Planning Area

NAAQS - National Ambient Air Quality Standards

 NO_2 – nitrogen dioxide

OCD – Offshore and Coastal Dispersion

 PM_{10} – particulate material less than 10µm in size

 $PM_{2.5}$ – particulate material less than 2.5µm in size

 SO_2 – sulfur dioxide

TBD - to be determined

USEPA – U.S. Environmental Protection Agency

APPENDIX B

CATASTROPHIC SPILL EVENT ANALYSIS: HIGH-VOLUME, EXTENDED-DURATION OIL SPILL RESULTING FROM LOSS OF WELL CONTROL ON THE GULF OF MEXICO OUTER CONTINENTAL SHELF

TABLE OF CONTENTS

					Page
FI	GURES	5			B-v
ΤA	BLES				B-vi
в	САТА	STROP	HIC SDILL	EVENT ANALYSIS: HIGH VOLUME EXTENDED	
D.		ATION (M SPH I	RESULTING FROM LOSS OF WELL CONTROL ON THE	
	GUL	F OF MF		TER CONTINENTAL SHELF	B _1
	B 1	Introdu	ction		B-1
	2	B.1.1.	What is a	Catastrophic Event?	
		B.1.2.	Methodo	logy	
		2112	B.1.2.1.	Geographic Scope	
			B.1.2.2.	Impact-Producing Factors and Scenario	B-3
			B.1.2.3.	OSRA Catastrophic Run	B-3
			B.1.2.4.	Environmental and Socioeconomic Impacts	B-3
		B.1.3.	How to U	Jse This Analysis	B-3
	B.2.	Impact-	Producing	Factors and Scenario (Phases 1-4)	B-4
		B.2.1.	Phase 1–	-Initial Event	B-4
		B.2.2.	Phase 2–	–Offshore Spill	B-4
			B.2.2.1.	Duration of Spill	B-4
				B.2.2.1.1. Shallow Water	B-5
				B.2.2.1.2. Deep Water	B-5
			B.2.2.2.	Area of Spill	B-5
			B.2.2.3.	Volume of Spill	B-5
				B.2.2.3.1. Shallow Water	B-6
				B.2.2.3.2. Deep Water	B-6
			B.2.2.4.	Oil in the Environment: Properties and Persistence	B-6
			B.2.2.5.	Release of Natural Gas	B-7
			B.2.2.6.	Deepwater Subsea Containment	B-7
			B.2.2.7.	Offshore Cleanup Activities	B-8
				B.2.2.7.1. Shallow Water	B-8
				B.2.2.7.2. Deep Water	B-9
				B.2.2.7.3. Vessel Decontamination Stations	B-10
			B.2.2.8.	Severe Weather	B-10
		B.2.3.	Phase 3–	-Onshore Contact	B-11
			B.2.3.1.	Duration	B-11
				B.2.3.1.1. Shallow Water	B-11
				B.2.3.1.2. Deep Water	B-11
			B.2.3.2.	Volume of Oil Contacting Shore	B-11
			B.2.3.3.	Length of Shoreline Contacted	B-12
				B.2.3.3.1. Shallow Water	B-12
				B.2.3.3.2. Deep Water	B-12
			B.2.3.4.	Severe Weather	B-13
			В.2.3.5.	Onshore Cleanup Activities	B-13
				B.2.3.5.1. Shallow Water	B-13
				B.2.3.5.2. Deep Water	B-13

			B.2.3.5.3.	Response Considerations for Sand Beaches for Both	
				Shallow-Water and Deepwater Spills	B-14
			B.2.3.5.4.	Response Considerations for Marshes for Both	
				Shallow-Water and Deepwater Spills	B-14
			B.2.3.5.5.	Response Considerations for Nearshore Waters for	
				Both Shallow-Water and Deepwater Spills	B-14
	B.2.4.	Phase 4—	-Post-Spill, L	ong-Term Recovery	B-15
		B.2.4.1.	Response C	onsiderations for Sand Beaches, Marshes, and	
			Nearshore V	Vaters for both Shallow-Water and Deepwater Spills	B-16
B.3.	Descrip	tion of the	Environment	and Impact Analysis	B-16
	B.3.1.	Long Dur	ation—Large	Volume Spill within the Gulf of Mexico	B-16
		B.3.1.1.	Air Quality	-	B-17
		B.3.1.2.	Water Quali	ity	B-19
		B.3.1.3.	Coastal Bar	rier Beaches and Associated Dunes	B-23
		B.3.1.4.	Wetlands		B-25
		B.3.1.5.	Seagrass Co	ommunities	B-27
		B.3.1.6.	Live Botton	ns (Pinnacle Trend and Low Relief)	B-29
		B.3.1.7.	Topographi	c Features	B-36
		B.3.1.8.	Sargassum	Communities	B-41
		B.3.1.9.	Chemosynth	netic Deepwater Benthic Communities	B-44
		B.3.1.10.	Nonchemos	ynthetic Deepwater Benthic Communities	B-48
		B.3.1.11.	Soft Bottom	Benthic Communities	B-52
		B.3.1.12.	Marine Mar	nmals	B-58
		B.3.1.13.	Sea Turtles.		B-6 1
		B.3.1.14.	Diamondba	ck Terrapins	B-64
		B.3.1.15.	Beach Mice	*	B-67
		B.3.1.16.	Coastal, Ma	rine, and Migratory Birds	B-68
		B.3.1.17.	Fish Resour	ces and Essential Fish Habitat	B-74
		B.3.1.18.	Commercial	l Fisheries	B-76
		B.3.1.19.	Recreationa	1 Fishing	B-78
		B.3.1.20.	Recreationa	1 Resources	B-80
		B.3.1.21.	Archaeolog	ical Resources	B-82
		B.3.1.22.	Land Use an	nd Coastal Infrastructure	B-8 4
		B.3.1.23.	Demograph	ics	B-86
		B.3.1.24.	Economic F	actors	B-87
		B.3.1.25.	Environmen	tal Justice	B-88
		B.3.1.26.	Species Cor	sidered due to U.S. Fish and Wildlife Service	
			Concerns		B-91
B.4.	Prepare	ers			B-93
B.5.	Referen	nces			B-94

FIGURES

		Page
Figure B-1.	Location of Five Hypothetical Oil-Spill Launch Points for OSRA within the Study Area.	B-121
Figure B-2.	Spatial Frequency (%) of the Watermass Associated with the Loop Current in the Eastern Gulf of Mexico based on Data for the Period 1976-2003	B-122
Figure B-3.	Summary of Avian Species Collected by Date Obtained from the U.S. Fish and Wildlife Service as Part of the <i>Deepwater Horizon</i> Post-Spill Monitoring and Collection Process through May 12, 2011	B-123
TABLES

		Page
Table B-1.	Blowout Scenarios and Key Differences in Impacts, Response, and/or Intervention	B-124
Table B-2.	Properties and Persistence by Oil Component Group	B-125
Table B-3.	Annual Volume of Produced Water Discharged by Depth (millions of barrels)	B-126
Table B-4.	Description of the Scenario for a Catastrophic Spill Event Occurring in Shallow Water or Deep Water	B-127
Table B-5.	Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post- Deepwater Horizon Explosion, Oil Spill, and Response in the Gulf of Mexico	B-130
Table B-6.	Federally Listed Avian Species Considered by State and Associated Planning Area in the Gulf of Mexico	B-137

B. CATASTROPHIC SPILL EVENT ANALYSIS: HIGH-VOLUME, EXTENDED-DURATION OIL SPILL RESULTING FROM LOSS OF WELL CONTROL ON THE GULF OF MEXICO OUTER CONTINENTAL SHELF

B.1. INTRODUCTION

In 1986, the Council on Environmental Quality (CEQ) regulations were amended to rescind the requirement to prepare a "worst-case analysis" for an environmental impact statement (EIS) (refer to 40 CFR § 1502.22(b)(4)). The regulation, as amended, states that catastrophic, low-probability impacts must be analyzed if the analysis is "supported by credible scientific evidence, is not based on pure conjecture, and is within the rule of reason."

The August 16, 2010, CEQ report, prepared following the *Deepwater Horizon* explosion, oil spill, and response in the Gulf of Mexico, recommended that the Bureau of Ocean Energy Management (BOEM), formerly the Minerals Management Service (MMS) and Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), should "ensure that National Environmental Policy Act (NEPA) documents provide decisionmakers with a robust analysis of reasonably foreseeable impacts, including an analysis of reasonably foreseeable impacts associated with low-probability catastrophic spills for oil and gas activities on the Outer Continental Shelf" (CEQ, 2010). This evaluation is a robust analysis of the impacts from low-probability catastrophic spills and will be made available to all applicable decisionmakers including, but not limited to, the Secretary of the Department of the Interior (USDOI) for the National Five-Year Program, the Assistant Secretary of Land and Minerals Management for an oil and gas lease sale, and the Regional Supervisors of the Gulf of Mexico OCS Region's Office of Environment and Office of Leasing and Plans.

It should be noted that the analysis presented here is intended to be a general overview of the potential effects of a catastrophic spill in the Gulf of Mexico. As such, the *Catastrophic Spill Event Analysis* should be read with the understanding that further detail about accidental oil impacts on a particular resource may be found in the *Gulf of Mexico OCS Oil and Gas Lease Sales: 2015-2017 Central Planning Area Lease Sales 235, 241, and 247, Draft Supplemental Environmental Impact Statement (CPA 235, 241, and 247 Supplemental EIS) analysis or previous relevant NEPA analyses (e.g., the <i>Gulf of Mexico OCS Oil and Gas Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247, Final Environmental Impact Statement [2012-2017 WPA/CPA Multisale EIS]; USDOI, BOEM, 2012; the <i>Gulf of Mexico OCS Oil and Gas Lease Sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sale 231, Final Supplemental Environmental Impact Statement* [WPA 233/CPA 231 Supplemental EIS]; USDOI, BOEM, 2013a; and the *Gulf of Mexico OCS Oil and Gas Lease Sales 225 and 226, Final Environmental Impact Statement* [EPA 225/226 EIS]; USDOI, BOEM, 2013b).

B.1.1. What is a Catastrophic Event?

As applicable to NEPA, Eccleston (2008) defines a catastrophic event as "large-scale damage involving destruction of species, ecosystems, infrastructure, or property with long-term effects, and/or major loss of human life." For oil and gas activities on the Outer Continental Shelf (OCS), a catastrophic event is a high-volume, extended-duration oil spill regardless of the cause, whether natural disaster (i.e., hurricane) or manmade (i.e., human error and terrorism). This high-volume, extended-duration oil spill, or catastrophic spill, has been further defined by the National Oil and Hazardous Substances Pollution Contingency Plan as a "spill of national significance" or "a spill which, because of its severity, size, location, actual or potential impact on the public health and welfare or the environment, or the necessary response effort, is so complex that it requires extraordinary coordination of Federal, State, local, and responsible party resources to contain and cleanup the discharge" (40 CFR part 300, Appendix E).

Each oil-spill event is unique; its outcome depends on several factors, including time of year and location of release relative to winds, currents, land, and sensitive resources; specifics of the well (i.e., flow rates, hydrocarbon characteristics, and infrastructure damage); and response effort (i.e., speed and

effectiveness). For this reason, the severity of impacts from an oil spill cannot be predicted based on volume alone, although a minimum volume of oil must be spilled to reach catastrophic impacts.

Though large spills may result from a pipeline rupture, such events will not result in a catastrophic spill because the ability to detect leaks and shut off pipelines limits the amount of the spill to the contents of the pipeline. The largest, non-blowout-related spill on the Gulf of Mexico OCS occurred in 1967, a result of internal pipeline corrosion following initial damage by an anchor. In 13 days, 160,638 barrels (bbl) of oil leaked (USDOI, BSEE, 2012); however, no significant environmental impacts were recorded as a result of this spill.

Although loss of well control is defined as the uncontrolled flow of reservoir fluid that may result in the release of gas, condensate, oil, drilling fluids, sand, or water, it is a broad term that includes very minor well control incidents as well as the most severe well control incidents. Historically, loss of well control incidents occurred during development drilling operations, but loss of well control incidents can occur during exploratory drilling, production, well completions, or workover operations. These losses of well control incidents may occur between formations penetrated in the wellbore or at the seafloor.

Prior to the *Deepwater Horizon* explosion, oil spill, and response, the two largest spills resulting from a loss of well control in U.S. waters of the Gulf of Mexico occurred in 1970 and released 30,000 and 53,000 bbl of oil, respectively (USDOI, BSEE, 2012). These incidents resulted in four human fatalities. Although these incidents occurred only 8-14 miles (mi) (13-26 kilometers [km]) from shore, there was minor shoreline contact with oil (USDOC, NOAA, Office of Response and Restoration, 2010a and 2010b). In 1987, a blowout of the Mexican exploratory oil well, YUM II, resulted in a spill of 58,640 bbl and 75 mi (121 km) of impacted shoreline (USDOC, NOAA, Hazardous Materials Response and Assessment Division, 1992). However, none of these spills met the previously described definitions of a catastrophic event or spill.

A blowout is a more severe loss of well control incident that creates a greater risk of a large oil spill and serious human injury. Two blowouts that resulted in catastrophic spills have occurred in U.S. and Mexican waters of the Gulf of Mexico. On June 3, 1979, the *Ixtoc I* well blowout in shallow water (water depth of 164 feet [ft] [50 meters [m]] and 50 mi [80 km] offshore in the Bay of Campeche, Mexico) spilled 3.5 million barrels (MMbbl) of oil in 10 months (USDOC, NOAA, Office of Response and Restoration, 2010c; USDOC, NOAA, Hazardous Materials Response and Assessment Division, 1992; ERCO, 1982). On April 20, 2010, the *Macondo* well blowout (*Deepwater Horizon* explosion, oil spill, and response) in deep water (4,992 ft; 1,522 m) 48 mi (77 km) offshore in Mississippi Canyon Block 252, spilled an estimated 4.9 MMbbl of oil until it was capped approximately 3 months later. Due to being classified as catastrophic, the *Ixtoc I* and *Macondo* well blowouts and spills were utilized to develop the catastrophic spill event scenario in this analysis.

B.1.2. Methodology

Two general approaches are utilized to analyze a catastrophic event under NEPA. The first approach is a bounding analysis for each individual resource category (e.g., marine mammals and sea turtles). A bounding analysis involves selecting and evaluating a different set of factors and scenarios for each resource in the context of a worst-case analysis. The second approach involves the selection of a single set of key circumstances that, when combined, result in catastrophic consequences. The second approach is used for a site-specific analysis and, consequently, its possible application is more limited. Accordingly, this analysis combines the two approaches, relying on a generalized scenario while identifying site-specific severity factors for individual resources. This combined approach allows for the scientific investigation of a range of possible, although not necessarily probable, consequences of a catastrophic blowout and oil spill in the Gulf of Mexico.

B.1.2.1. Geographic Scope

The Gulf of Mexico is a semi-enclosed basin with an extensive history of oil and gas activities and unique environmental conditions and hydrocarbon reservoir properties; consequently, this analysis is only applicable to the Gulf of Mexico OCS and is not intended for other OCS regions.

B.1.2.2. Impact-Producing Factors and Scenario

A hypothetical, yet feasible, scenario (**Chapter B.2**) was developed to provide a framework for identifying the impacts of an extended oil spill from an uncontrolled blowout. Unless noted, this scenario is based on the large magnitude, blowout-related oil spills that have occurred in the Gulf of Mexico, i.e., *Ixtoc I* and *Macondo* well blowouts and spills (discussed in **Chapter B.1.1**). As noted above, because each spill event is unique, its outcome depends on many factors. Therefore, the specific impacts from future spills cannot be predicted based on this scenario.

B.1.2.3. OSRA Catastrophic Run

A special Oil-Spill Risk Analysis (OSRA) model run was conducted to estimate the impacts of a possible future catastrophic or high-volume, extended-duration oil spill. This analysis emphasized modeling a spill that continued for 90 consecutive days by launching spills on each of 90 consecutive days, with each trajectory tracked for up to 60 days. The OSRA was conducted for only the trajectories of oil spills from hypothetical spill locations to various onshore and offshore environmental resources. Data from three hypothetical spill locations located in the Central Planning Area (CPA) (**Figure B-1**) were included and are intended for use as examples of this type of exercise. Information on previous catastrophic OSRA runs for the CPA can be found in **Appendix C** of this Supplemental EIS and in Appendix C of the 2012-2017 WPA/CPA Multisale EIS.

The probability of an oil spill contacting a specific resource within a given time of travel from a spill point is termed a conditional probability; the condition being that a spill is assumed to have occurred. Each trajectory was allowed to continue for as long as 60 days. However, once a hypothetical spill contacts land, the spill trajectory is terminated and the contact is recorded. Although, overall OSRA is designed for use as a risk-based assessment, for this analysis, only the conditional probability, the probability of contact to the resource, was calculated. The probability of a catastrophic spill occurring was not calculated; thus, the combination of the probability of a spill and the probability of contact to the resources from the hypothetical spill locations were not calculated. Results from this trajectory analysis provide input to the final product by estimating where spills might travel on the ocean's surface and what environmental resources might be contacted if and when another catastrophic spill occurs, but it does not provide input on the probability of another catastrophic spill occurring. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

B.1.2.4. Environmental and Socioeconomic Impacts

This analysis evaluates the impacts to the Gulf of Mexico's biological, physical, and socioeconomic resources from a catastrophic blowout, oil spill, and associated cleanup activities.

Although the most recent EISs prepared by this Agency for oil and gas lease sales in the Gulf of Mexico analyze the potential impacts from smaller oil spills that are more reasonably foreseeable (USDOI, MMS, 2007 and 2008), this analysis focuses on the most likely and most significant impacts created by a high-volume, extended-duration spill. Because catastrophic consequences may not occur for all resources, factors affecting the severity of impacts are identified by the individual resource.

B.1.3. How to Use This Analysis

The purpose of this technical analysis is to assist BOEM in meeting CEQ requirements that require a discussion of impacts from catastrophic events. This analysis, based on credible scientific evidence, identifies the most likely and most significant impacts from a high-volume blowout and oil spill that continues for an extended period of time. The scenario and impacts discussed in **Chapters B.2 and B.3** should not be confused with the scenario and impacts anticipated to result from routine activities or the more reasonably foreseeable accidental events of a CPA proposed action.

Chapter B.2 is intended to clearly describe the scenario presented for all four phases of a catastrophic blowout event and identify the impact-producing factors associated with each phase. **Chapter B.3** is intended to analyze the impacts of each phase of a catastrophic blowout on various environmental resources. These chapters can be used to differentiate the conditions of a catastrophic spill from the routine activities and accidental events described in this Supplemental EIS.

This technical analysis is designed to be incorporated by reference in future NEPA documents and consultations. Therefore, factors that affect the severity of impacts of a high-volume, extended-duration spill on individual resources are highlighted for use in subsequent site-specific analyses.

To analyze a hypothetical catastrophic event in an area such as the Gulf of Mexico, several assumptions and generalizations were made. However, future project-specific analyses should also consider specific details such as potential flow rates for the specific proposed activity, the properties of the targeted reservoir, and the proximity to environmental resources of the proposed activities.

B.2. IMPACT-PRODUCING FACTORS AND SCENARIO (PHASES 1-4)

For the purposes of this analysis, an event similar to the *Ixtoc I* well blowout and spill that occurred in 1979 in 160-ft (50-m) water depth will be used as the basis for a shallow water spill and an event similar to the *Macondo* well blowout and spill that occurred in 2010 in the Mississippi Canyon area in 5,000-ft (1,524-m) water depth will be used to represent a deepwater spill.

B.2.1. Phase 1—Initial Event

Phase 1 of the scenario is the initiation of a catastrophic blowout incident. While most of the environmental and socioeconomic impacts of a catastrophic blowout would occur during the ensuing high-volume, extended-duration spill (refer to **Chapter B.3**), it is important to acknowledge the deadly events that could occur in the initial phase of a catastrophic blowout. The following scenario was developed to provide a framework for identifying the most likely and most significant impacts during the initial phase.

Impacts, response, and intervention depend on the spatial location of the blowout and release. While there are several points where a blowout could occur, four major distinctions that are important to the analysis of impacts are described in **Table B-1**.

For this analysis, an explosion and subsequent fire are assumed to occur. If a blowout associated with the drilling of a single exploratory well occurs, a fire could result that would burn for 1 or 2 days. If a blowout occurs on a production platform, other wells could feed the fire, allowing it to burn for over a month (USDOC, NOAA, Office of Response and Restoration, 2010b). The drilling rig or platform may sink. If the blowout occurs in shallow water, the sinking rig or platform may land in the immediate vicinity; if the blowout occurs in deep water, the rig or platform could land a great distance away, beyond avoidance zones. For example, when the drilling rig *Deepwater Horizon* sank, it landed 1,500 ft (457 m) away on the seafloor. Regardless of water depth, the immediate response would be from search and rescue vessels and aircraft, such as U.S. Coast Guard (USCG) cutters, helicopters, and rescue planes.

B.2.2. Phase 2—Offshore Spill

Phase 2 of the analysis focuses on the spill and response in Federal and State offshore waters.

B.2.2.1. Duration of Spill

The duration of the offshore spill from a blowout depends on the time needed for intervention and the time the remaining oil persists offshore. If a blowout occurs and the damaged surface facilities preclude well reentry operations, a relief well may be needed to regain control. The time required to drill the relief well depends on the complexity of the intervention, the location of a suitable rig, the type of operation that must be terminated to release the rig (e.g., casing may need to be run before releasing the rig), and the logistics in mobilizing personnel and equipment to the location. A blown-out well may also be successfully capped prior to completion of relief wells, as occurred in the *Macondo* well blowout. In terms of persistence of spilled oil on surface waters, oil from the *Macondo* well blowout did not persist for more than 30 days (OSAT, 2010). However, based on BOEM's weathering modeling (refer to **Appendix C**), it is assumed that oil could persist on surface waters for as long as 1-2 months, depending on the season and year.

B.2.2.1.1. Shallow Water

If a blowout occurs in shallow water, it is estimated that the entire well intervention effort including drilling relief wells, if deemed necessary, could take 2 weeks to 3 months. This estimate would include 1-3 weeks to transport the drilling rig to the well site. Spilled surface oil is not expected to persist more than 1-2 months (depending upon the season and environmental conditions) after the flow is stopped. Spilled oil is more likely to persist in the offshore environment during colder weather and during wind and hydrodynamic conditions that keep the oil offshore. Therefore, the estimated spill duration resulting from a shallow water blowout is 1½-5 months (approximately 2 weeks to 3 months for active spillage and 1-2 months for oil persistence in the environment).

B.2.2.1.2. Deep Water

If a blowout occurs in deep water, it is estimated that it would take 2-4 weeks to remove debris and to install a capping stack or a cap and flow system on a well, if conditions allow this type of intervention. The entire intervention effort, if it required drilling relief wells, could take 3-4 months (USDOI, MMS, 2000; Regg, 2000). This includes 2-4 weeks to transport the drilling rig to the well site. Spilled surface oil is not expected to persist more than 1-2 months (depending upon the season and environmental conditions) after the flow is stopped. Spilled oil is more likely to persist in the offshore environment during colder weather and during wind and hydrodynamic conditions that keep the oil offshore. Therefore, the estimated spill duration from a deepwater blowout is 1½-6 months (approximately 2 weeks to 4 months for active spillage and 1-2 months for oil persistence in the environment).

B.2.2.2. Area of Spill

When oil reaches the sea surface, it spreads. The speed and extent of spreading depends on the type and volume of oil that is spilled. However, a catastrophic spill would likely spread to hundreds of square miles. Also, the oil slick may break into several smaller slicks, depending on local wind patterns that drive the surface currents in the spill area.

Subsurface oil observed during both the *Ixtoc I* and *Macondo* well blowouts and spills could also spread to significant distances depending on environmental conditions (such as hydrodynamics), oil chemistry and weathering, and the application of subsea dispersants or mechanical conditions at the release point that would diffuse the oil.

B.2.2.3. Volume of Spill

After 50 years of oil and gas exploration and development activity on the continental shelf of the Gulf of Mexico, most of the largest oil and natural gas reservoirs thought to exist in shallow-water areas of the GOM at drill depths less than 15,000 ft (4,572 m) subsea have been identified. Large undiscovered hydrocarbon reservoirs are still thought to exist in shallow-water areas. However, results taken from BOEM's most recent resource assessment study and a review of the more recent shallow-water drilling and leasing activity suggest that future discoveries of large reservoirs in the shallow-water areas of the GOM are likely to exist greater than 15,000 ft (4,572 m) below sea level where geologic conditions are more favorable for natural gas reservoirs to exist than oil reservoirs. In contrast to the shallow-water areas of the GOM where the discovery of a new, large, prolific oil reservoir is considered a lowprobability event, the results from BOEM's resource assessment study pertaining to the deeper water areas of the GOM suggest that there is a high probability that many large oil and gas reservoirs have yet to be discovered in deep water. BOEM's forecast for deep water has support from other public and private sector resource studies. The forecast is also supported by the results of BOEM's analysis of deepwater leasing and drilling activity, which indicates that the industry is leasing acreage in deepwater areas of the GOM where large prospects can be identified and where the majority of exploration and development drilling activity targets potentially thick oil reservoirs capable of achieving the high production rates necessary to offset the high costs associated with deep water oil development in the GOM.

B.2.2.3.1. Shallow Water

For this analysis, an uncontrolled flow rate of 30,000 bbl per day is assumed for a catastrophic blowout in shallow water. This assumption is based upon the results of well tests in shallow water and the maximum flow rate from the 1979 *Ixtoc I* well blowout, which occurred in shallow water. Using this flow rate, the total volume of oil spilled from a catastrophic blowout in shallow water is estimated at 900,000 bbl to 3 MMbbl from spillage occurring over 1-3 months. In addition to the flow rate, it is assumed that any remaining diesel fuel from a sunken drilling rig or platform would also leak.

B.2.2.3.2. Deep Water

For the purposes of this analysis, an uncontrolled flow rate of 30,000-60,000 bbl per day is assumed for a catastrophic blowout in deep water. This flow rate is based on the assumption in **Chapter B.2.2.3.1** above, well test results, and the maximum flow rate estimated for the *Macondo* well blowout and spill, which occurred in deep water. Therefore, the total volume of oil spilled is estimated to be 0.9-7.2 MMbbl over 1-4 months. In addition, deepwater drilling rigs or platforms hold a large amount of diesel fuel (10,000-20,000 bbl). Therefore, it is assumed that any remaining diesel fuel from a sunken structure would also leak and add to the spill.

B.2.2.4. Oil in the Environment: Properties and Persistence

The fate of oil in the environment depends on many factors, such as the source and composition of the oil, as well as its persistence (NRC, 2003). Persistence can be defined and measured in different ways (Davis et al., 2004), but the National Research Council (NRC) generally defines persistence as how long oil remains in the environment (NRC, 2003; page 89). Once oil enters the environment, it begins to change through physical, chemical, and biological weathering processes (NRC, 2003). These processes may interact and affect the properties and persistence of the oil through the following:

- evaporation (volatilization);
- emulsification (the formation of a mousse);
- dissolution;
- oxidation (including respiration); and
- transport processes (NRC, 2003; Scholz et al., 1999).

Horizontal transport takes place via spreading, advection, dispersion, and entrainment while vertical transport takes place via dispersion, entrainment, Langmuir circulation, sinking, overwashing, partitioning, and sedimentation (NRC, 2003). The persistence of an oil slick is influenced by the effectiveness of oil-spill response efforts and affects the resources needed for oil recovery (Davis et al., 2004). The persistence of an oil slick may also affect the severity of environmental impacts as a result of the spilled oil.

Crude oils are not a single chemical, but instead are complex mixtures with varied compositions. Thus, the behavior of the oil and the risk the oil poses to natural resources depends on the composition of the specific oil encountered (Michel, 1992). Generally, oils can be divided into three groups of compounds: (1) light-weight; (2) medium-weight; and (3) heavy-weight components. On average, these groups are characterized as outlined in **Table B-2**.

Ôf the oil reservoirs sampled in the Gulf of Mexico OCS, the majority fall within the light-weight category, while less than one quarter are considered medium-weight and a small portion are considered heavy-weight. Oil with an API gravity of 10.0 or less would sink and has not been encountered in the Gulf of Mexico OCS; therefore, it is not analyzed in this Appendix (USDOI, BOEMRE, 2010a).

Heavy-weight oil may persist in the environment longer than the other two types of oil, but the medium-weight components within oil present the greatest risks to organisms because, with the exception of the alkanes, these medium-weight components are persistent, bioavailable, and toxic (Michel, 1992).

Previous studies (e.g., Johansen et al., 2001) supported the theory that most, if not all, released oil would reach the surface of the water column. However, data and observations from the *Macondo* well

blowout and spill challenge that theory. While analyses are in their preliminary stages, it appears that measurable amounts of hydrocarbons (dispersed or otherwise) were detected in the water column as subsurface "plumes" and on the seafloor in the vicinity of the release. While not all of these hydrocarbons have been definitively traced back to releases from the *Macondo* well, these early measurements and results warrant a reassessment of previous theories of the ultimate fate of hydrocarbons from unintended subsurface releases. It is important to note that the North Sea experiment (Johansen et al., 2001) did not include the use of dispersants at or near the source of the subsea oil discharge.

B.2.2.5. Release of Natural Gas

The quality and quantity of components in natural gas vary widely by the field, reservoir, or location from which the natural gas is produced. Although there is not a "typical" makeup of natural gas, it is primarily composed of methane (NaturalGas.org, 2012). Thus, if natural gas were to leak into the environment, methane may be released into the environment. Limited research is available for the biogeochemistry of hydrocarbon gases in the marine environment (Patin, 1999, page 233). Theoretically, methane could stay in the marine environment for long periods of time (Patin, 1999, page 237) as methane is highly soluble in seawater at the high pressures and cold temperatures found in deepwater environments (NRC, 2003, page 108). Methane diffusing through the water column would likely be oxidized in the aerobic zone and would rarely reach the air-water interface (Mechalas, 1974, page 23). Methane is a carbon source and its introduction into the marine environment could result in diminished dissolved oxygen concentrations due to microbial degradation.

The *Macondo* well blowout and spill resulted in the emission of an estimated 9.14 x 10^9 to 1.29 x 10^{10} moles of methane from the wellhead (Kessler et al., 2011; Valentine et al., 2010) with maximum subsurface methane concentrations of 183-315 micromoles measured in May/June 2010 (Valentine et al., 2010; Joye et al., 2011). This methane release corresponded to a measurable decrease in oxygen in the subsurface plume due to respiration by a community of methanotrophic bacteria. During the Macondo well blowout and spill, methane and oxygen distributions were measured at 207 stations throughout the affected region (Kessler et al., 2011). Based on these measurements, it was concluded that within ~120 days from the onset of release ~3.0 x 10^{10} to 3.9 x 10^{10} moles of oxygen were respired, primarily by methanotrophs, and left behind a residual microbial community containing methanotrophic bacteria. The researchers further suggested that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time and that by analogy, large-scale releases of methane from hydrates in the deep ocean are likely to be met by a similarly rapid methanotrophic response. However, hypoxic conditions were never reached (OSAT, 2010). Hypoxic conditions are generally agreed to occur when dissolved oxygen falls below 2 milligrams/liter (1.4 milliliter/liter) (OSAT, 2010). Note that methane released from the Macondo well blowout and spill was generally confined to the subsurface, with minimal amounts reaching the atmosphere (Kessler et al., 2011; Ryerson et al., 2011).

B.2.2.6. Deepwater Subsea Containment

To address the new improved containment systems' expectations to rapidly contain a spill as a result of a loss of well control from a subsea well as addressed in Notice to Lessees and Operators (NTL) 2010-BSEE-N10, the Marine Well Containment Company (MWCC) and Helix Well Containment Group (HWCG) initiated the development of new, rapid response systems. These systems are designed to fully contain oil flow in the event of a potential future underwater blowout and to address a variety of scenarios. The systems consist of specially designed equipment constructed, tested, and available for rapid response. Both the MWCC and HWCG systems are anticipated to be fully operational within days to weeks after a spill event occurs. The availability of these systems can significantly reduce the length of time a blowout continues, thereby reducing the amount of oil potentially spilled during a catastrophic spill. However, this assumes that a particular blowout situation lends itself to the use of this subsea containment technology, whereas there are some situations that may delay or make its use improbable, such as the location of debris resulting from the blowout and the condition of the well.

The MWCC system is designed to operate in up to a 10,000-ft (3,048-m) water depth and adds containment capability of 60,000 bbl of oil per day. In November 2013, the MWCC announced that the single ram capping stack, which is part of the company's interim containment system, can now cap a well that has fluids with temperatures up to 350 °F (177 °C). The MWCC is the only well containment

provider that has this industry-first capping stack capable of handling temperatures of 350 °F (177 °C) at pressures up to 15,000 pounds per square inch (Marine Well Containment Company, 2014). The HWCG system focuses on the utilization of the *Helix Producer I* and the *Q4000* vessels. Each of these vessels played a role in the *Macondo* well blowout and spill response, and each of these vessels are continually working in the Gulf. The HWCG system has the ability to fully operate in up to 10,000 ft (3,048 m) of water and has intervention equipment to cap and contain a well with the mechanical integrity to be shut-in. The HWCG system also has the ability to capture and process 57,000 bbl of oil per day and 72,000 bbl of liquid per day at 10,000 pounds per square inch (Helix Energy Solutions Group, 2014).

In addition, industry has a multitude of vendors available within the GOM region that can provide the services and supplies necessary for debris removal capability, dispersant injection capability, and top-hat deployment capability. Many of these vendors are already cited for use by MWCC and HWCG.

The BSEE has indicated to BOEM that, it will not allow an operator to begin drilling operations until adequate subsea containment and collection equipment, as well as subsea dispersant capability is determined by BSEE to be available to the operator and is sufficient for use in response to a potential incident from the proposed well(s) (refer to NTL 2010-N10). The BSEE conducted a successful deployment drill of the MWCC's subsea containment capping stack in the summer of 2012. A successful deployment drill of the HWCG's subsea containment capability was conducted in the spring of 2013. The HWCG was required to lower its capping stack through some 5,047 ft (1,538 m) of water to the seafloor by wire and then latch it to a test wellhead and pressurize the system. These types of exercises assist BSEE by spotlighting potential problems before an emergency and by identifying lessons that can be shared with the oil and gas industry to protect the environment and improve the safety of offshore operations. For instance, during the test of the MWCC equipment, it was discovered that a containment response should have "mud mats" on hand to ensure a stable platform for heavy equipment that otherwise might sink into soft seabed.

B.2.2.7. Offshore Cleanup Activities

As demonstrated by the *Ixtoc I* and *Macondo* well blowouts and spills, a large-scale response effort is certain to follow a catastrophic blowout. The number of vessels and responders would steadily increase as the spill continued. In the event of a spill, particularly a loss of well control, there is no single method of containment and removal that would be 100 percent effective. Removal and containment efforts to respond to an ongoing spill offshore would likely require multiple technologies, including source containment, mechanical cleanup, in-situ burning of the slick, and chemical dispersants. Even with the deployment of all of these spill-response technologies, it is likely that, with the operating limitations of today's spill-response technology, not all of the oil could be contained and removed offshore.

B.2.2.7.1. Shallow Water

The following are estimates for the deployment of equipment and personnel during a shallow-water spill response. Within the first week of an oil spill originating in shallow water, 25 vessels are estimated to respond, which would steadily increase to over 3,000 by the end of the spill. This includes about 25 skimmers in the vicinity of the well at any given time. In addition, recovered oil may be barged to shore from recovery vessels. Within the first week, over 500 responders are estimated to be deployed to a spill originating in shallow water, which would steadily increase up to 25,000 before the well is capped or killed within 2-4 months. Up to 25 planes and 50 helicopters are estimated to respond per day by the end of a shallow-water spill. Response to an oil spill in shallow water is expected to involve over 10,000 ft (3,048 m) of boom within the first week and would steadily increase up to 5 million feet (~950 mi; ~1,520 km) for use offshore and nearshore; the amount is dependent upon the location of the potentially impacted shoreline, environmental considerations, and agreed upon protection strategies involving the local potentially impacted communities.

Dispersant use must be in accordance with the Regional Response Team's (RRT) Preapproved Dispersant Use Manual and with any conditions outlined within an RRT's site-specific, dispersant approval given after a spill event. Consequently, dispersant use would be in accordance with the restrictions for specific water depths, distances from shore, and monitoring requirements. At this time, this manual does not give preapproval for the application of dispersant use subsea. Aerial dispersants would likely be applied from airplanes as a mist, which settles on the oil on the water's surface. Along the Gulf Coast, surface dispersants are presently preapproved for use greater than 3 nautical miles (nmi) (3.5 mi; 5.6 km) from shore and in water depths greater than 33 ft (10 m), with the exception of Florida (U.S. Dept. of Homeland Security, CG, 2010). At this time, pursuant to a letter from the Florida Department of Environmental Protection dated May 5, 2011, sent to USCG, preapproval for dispersant use is not approved for any Florida State waters. However, the U.S. Environmental Protection Agency (USEPA) is presently revisiting these RRT preapprovals in light of the dispersant issues, such as subsea application that arose during the *Macondo* well blowout and spill response. In addition, revisions are presently being made to the RRT IV and VI's Preapproved Dispersant Use Manuals. The USEPA issued a letter dated December 2, 2010, that provided interim guidance on the use of dispersants for major spills that are continuous and uncontrollable for periods greater than 7 days and for expedited approval of subsurface applications. This letter outlined the following exceptions to the current preapprovals until they are updated:

- dispersants may not be applied to major spills that are continuous in nature and uncontrollable for a period greater than 7 days;
- additional dispersant monitoring protocols and sampling plans may be developed that meet the unique needs of the incident; and
- subsurface dispersants may be approved on an incident-specific basis as requested by the USCG On-Scene Commander.

More robust documentation of dispersant usage may be required. This documentation would include daily reports that contain the products used, the specific time and locations of application, equipment used for each application, spotter aircraft reports, photographs, vessel data, and analytical data. In addition to dispersants, controlled burns may also occur. It is estimated that 5-10 controlled burns would be conducted per day in suitable weather. About 500 burns in all would remove 5-10 percent of the oil.

B.2.2.7.2. Deep Water

The following are estimates for the deployment of equipment and personnel during a deepwater spill response. Within the first week of an oil spill originating in deep water, 50 vessels are estimated to respond, which would steadily increase to over 7,000 by the end of the spill. This includes about 25 skimmers in the vicinity of the well at a time. In addition, recovered oil may be shuttle tankered to shore from recovery vessels. For an oil spill in deep water, over 1,000 responders are estimated to be deployed within the first week, which would steadily increase up to 50,000 before capping or killing the well within 4-5 months. Over 20,000 ft (6,096 m) of boom is estimated to be deployed within the first would steadily increase up to 13.5 million feet (~2,257 mi; ~4,115 km) offshore and nearshore. The amount of boom would be dependent upon the location of the potentially impacted shoreline, environmental considerations, and agreed upon protection strategies involving the local potentially impacted communities. Up to 50 planes and 100 helicopters are estimated to respond per day by the end of a deepwater spill.

With the exception of special Federal management areas or designated exclusion areas, dispersants have been preapproved in the vicinity of a deepwater blowout (U.S. Dept. of Homeland Security, CG, 2010). However, USEPA is presently examining these preapprovals, and restrictions are anticipated regarding the future use of dispersants as a result. No preapproval presently exists for the use of subsea dispersants depends on the location of the blowout, as discussed in **Table B-1**. Aerial dispersants are usually applied from airplanes as a mist, which settles on the oil on the water's surface. Major spills that are continuous and uncontrollable for periods greater than 7 days and the approval of subsurface dispersant application are presently subject to the guidance outlined in USEPA's letter dated December 2, 2010. This letter provides interim guidance on the use of dispersants for major spills and outlines exceptions to the current preapprovals until they are updated, as discussed more fully in **Chapter B.2.2.7.1**. For a deepwater spill, dispersant application may be a preferred response in the open-water environment to prevent oil from reaching a coastal area, in addition to mechanical response. However, the window of opportunity for successful dispersant application may be somewhat narrower for some deepwater locations depending on the physical and chemical properties of the oil, which tend to be

somewhat heavier or more likely to emulsify than those found closer to shore. A significant reduction in the window of opportunity for dispersant application may render this response option ineffective.

In addition to dispersants, controlled burns may also occur. It is estimated that 5-10 controlled burns would be conducted per day in suitable weather. About 500 burns in all would remove 5-10 percent of the oil.

B.2.2.7.3. Vessel Decontamination Stations

To avoid contaminating inland waterways, multiple vessel decontamination stations may be established offshore in Federal and State waters. The selected locations to conduct decontamination of oiled vessels will, due to the unique aspects of each spill response, be decided by the Unified Command during the spill response effort. Since the Unified Command includes representatives of the affected state(s), the states will have a prominent voice regarding whether a location in State waters will be acceptable.

Vessels responding to the spill and commercial and recreational vessels passing through the spill would anchor, awaiting inspection. If decontamination is required, work boats would use fire hoses to clean oil from the sides of the vessels. This could result in some oiling of otherwise uncontaminated waters. While these anchorage areas would be surveyed for buried pipelines that could be ruptured by ship anchors, they may not be surveyed adequately for benthic communities or archaeological sites. Therefore, some damage to benthic communities or archaeological sites may occur because of vessel decontamination activities associated with an oil spill (Alabama State Port Authority, 2010; State of Florida, Office of the Governor, 2010; Nodar, 2010; Unified Incident Command, 2010a-c; USDOC, NOAA, 2010a; USEPA, 2012).

B.2.2.8. Severe Weather

A hurricane could accelerate biodegradation, increase the area affected by the spill, and slow or stop the response effort. The movement of oil would depend on the track, wind speed, and size of a hurricane. The official Atlantic hurricane season runs from June 1st through November 30th, with a peak of hurricane probability in September. In an average Atlantic season, there are 11 named storms, 6 hurricanes, and 2 Category 3 or higher storms (USDOC, NOAA, National Weather Service, 2010). As a result of a hurricane, high winds and seas would mix and weather the oil from an oil spill. This can help accelerate the biodegradation process (USDOC, NOAA, National Weather Service, 2012). The high winds may distribute oil over a wider area (USDOC, NOAA, National Weather Service, 2012).

Weather has been recognized as one of the most important factors in predicting oil-spill fate and behavior and in predicting the success of an oil-spill response. During an oil spill, booms, skimmers, oil burn, and the use of dispersants have been used to remove oil from the water surface. Adverse weather conditions will affect the use, performance and effectiveness of booms and skimmers. Skimmers work best in calm wind; for wave heights greater than 1 m (3 ft), some skimmers will not work effectively. Conventional booms will not work at a current velocity of 0.5 meters per second (m/sec) (1.6 feet per second [ft/sec]) or greater. For oil burn, ignition cannot be carried out at wind speeds greater than 10 m/sec (33 ft/sec). The minimum wind speed for dispersant use is about 5 m/sec (16 ft/sec), and the maximum wind speed for the limit of dispersant applications is about 12-14 m/sec (39-46 ft/sec) (Fingas, 2004).

There are tradeoffs in deciding where and when to place boom because, once deployed, boom is time consuming to tend and to relocate. As previously noted, booming operations are sensitive to wind, wave, and currents, and those sections of boom need to be tethered and secured to keep them from moving. Furthermore, it was discovered during the *Deepwater Horizon* explosion, oil spill, and response that hard boom often did more damage than anticipated in the marsh it was intended to protect after weather conditions ended up stranding the boom back into the marsh. Due to time constraints prior to a hurricane event, it is therefore unlikely that much effort could be expended to move large amounts of deployed boom, particularly given the effort that would be required to move skimming equipment to safer locations inland and to move large numbers of response personnel to safer areas. However, since the conditions for each spill response are unique, these considerations would be examined and a site-specific hurricane response plan developed during the actual spill response effort by the Unified Command at the beginning of the official hurricane season.

In addition, adverse weather would reduce ability to respond to the spill and could result in delayed transport and placement of the capping stack. The action of wind on the water surface will generate waves. Typically, waves greater than 3 ft (1 m) will prevent smaller vessels from skimming in offshore waters; waves greater than 5 ft (1.5 m) will prevent even the larger vessels from getting offshore to skim. The new high-speed skimmers under development are very promising; some skimmers have recovered oil with wave heights of up to 10 ft (3 m) with corresponding winds of up to 15 m/sec (49 ft/sec).

In the event of a hurricane, vessels would evacuate the area, delaying response efforts, including the drilling of relief wells and any well capping or collection efforts. Severe weather, such as a hurricane, would delay the transport and placement of the capping stack. If a cap is applied and oil is flowed to a collection vessel, severe weather would cause the collection vessel to vacate its location and the oil would flow until the collection vessel could return and resume collection. Severe weather could also require that response assets be relocated inland. The response would be delayed because following the severe weather event the assets would need to be transported back to the staging areas. The speed with which the assets could be brought back to the locations would depend upon on the condition of the roads and bridges for traffic resumption and the amount of debris potentially blocking the roads.

B.2.3. Phase 3—Onshore Contact

B.2.3.1. Duration

The duration of shoreline oiling is measured from initial shoreline contact until the well is capped or killed and the remaining oil dissipates offshore. The time needed to cap or kill a well may vary, depending on, among other things, the well's water depth, its location, the well and geologic formation characteristics, and the associated debris. Depending on the spill's location in relation to winds and currents and the well's distance to shore, oil could reach the coast within 1 week to 1 month, based on evidence from previous spills in the Gulf of Mexico OCS (e.g., it was nearly 4 weeks after the *Macondo* well blowout and spill). While it is assumed that the majority of spilled oil would dissipate offshore within 30-60 days of stopping the flow, some oil may remain in coastal areas for some time after a spill, as was observed along the Gulf Coast following the *Macondo* well blowout and spill.

B.2.3.1.1. Shallow Water

Due to the distance from shore, oil spilled as a result of a blowout in shallow water could reach shore within 1-3 weeks and could continue until the well is killed or capped and the oil dissipates offshore. Therefore, it is estimated that initial shoreline oiling would likely occur for 2-5 months following a catastrophic blowout. Some shoreline areas could be re-oiled during this timeframe dependent upon the weather conditions at the time of the spill as well as the persistence of the spilled oil.

B.2.3.1.2. Deep Water

Intervention is more difficult and would take longer in deeper water, in part, because at these water depths these intervention efforts are conducted by remotely operated vehicles. In general, most of the deep water in the Gulf of Mexico is located farther from shore and, therefore, it is assumed that oil would reach shore within 2-4 weeks. However, for the few deepwater areas that are located closer to shore, such as in the Mississippi Canyon Area, the amount of estimated time until shoreline contact could be the same as the shallow-water scenario above (1-3 weeks). The length of shoreline oiled would continue to increase and previously oiled areas could be re-oiled until the well is killed or capped (3-4 months) and the oil dissipates offshore (1-2 months). Therefore, initial shoreline oiling could occur from 3 months up to 6 months following a catastrophic blowout. Persistent shoreline oiling is discussed in **Chapter B.2.4** (Phase 4) below.

B.2.3.2. Volume of Oil Contacting Shore

In the event of a catastrophic spill, not all of the oil spilled would contact shore. The amount of oil recovered and chemically or naturally dispersed would vary. For example, the following are recovery and cleanup rates from previous high-volume, extended spills:

- 10-40 percent of oil recovered or cleaned up (including burned, chemically dispersed, and skimmed);
- 25-40 percent of oil naturally dispersed, evaporated, or dissolved; and
- 20-65 percent of the oil remains available for offshore or inshore contact.

In the case of the *Macondo* well blowout and spill, the "expected" scenario, developed by the Oil Budget Calculator Science and Engineering Team of The Federal Interagency Solutions Group, suggests that more than one quarter (29%) was naturally or chemically dispersed into Gulf waters, while burning, skimming, and direct recovery from the wellhead removed one quarter (25%) of the oil released. Less than one quarter (23%) of the total oil naturally evaporated or dissolved. The residual amount, just under one quarter (23%), remained in the Gulf of Mexico as a light sheen or as tarballs that have washed ashore or are buried in sand and other sediments (The Federal Interagency Solutions Group, 2010).

For planning purposes, USCG estimates that 5-30 percent of oil will reach shore in the event of an offshore spill (33 CFR part 154, Appendix C, Table 2). Using the USCG assumptions, a catastrophic spill could result in a large amount of oil reaching shore.

B.2.3.3. Length of Shoreline Contacted

While larger spill volumes increase the chance of oil reaching the coast, other factors that influence the length and location of shoreline contacted include the duration of the spill and the well's location in relation to winds, currents, and the shoreline. Depending upon winds and currents throughout the spill event, already impacted areas could be re-oiled. As seen with the *Deepwater Horizon* oil spill, as the spill continued, the length of oiled shoreline at any one time increased by orders of magnitude as follows:

Duration of Spill	Length of Shoreline Oiled ¹		
30 days	0-50 miles		
60 days	50-100 miles		
90 days	100-1,000 miles		
120 days	>1,000 miles ²		

¹ Not cumulative.

² Length was extrapolated.

Source: USDOC, NOAA, 2011a.

B.2.3.3.1. Shallow Water

While a catastrophic spill from a shallow-water blowout is expected to be lower in volume than a deepwater blowout, as explained in **Chapter B.2.2.3**, the site would typically be closer to shore, allowing less time for oil to be weathered, dispersed, and recovered. This could result in a more concentrated and toxic oiling of the shoreline.

B.2.3.3.2. Deep Water

While a catastrophic spill from a deepwater blowout is expected to have a much greater volume than a shallow-water blowout (refer to **Chapter B.2.2.3**), the site would typically be farther from shore, allowing more time for oil to be weathered, dispersed, and recovered. This could result in broader, patchier oiling of the shoreline.

Translocation of the spilled oil via winds and currents is also a factor in the length of shoreline contacted. For example, oil could enter the Loop Current and then the Gulf Stream. However, the longer it takes oil to travel, the more it would degrade, disperse, lose toxicity, and break into streamers and tarballs (USDOC, NOAA, Office of Response and Restoration, 2010d).

B.2.3.4. Severe Weather

The official Atlantic hurricane season runs from June 1st through November 30th, with a peak in hurricane probability in September. In an average Atlantic season, there are 11 named storms, 6 hurricanes, and 2 Category 3 or higher storms (USDOC, NOAA, National Weather Service, 2010). In the event of a hurricane, vessels would evacuate the area, delaying response efforts, including the drilling of relief wells. The storm surge may push oil to the coastline and inland as far as the surge reaches, or the storm surge may remove the majority of oil from shore, as seen in some of the previous spills reviewed.

Movement of oil during a hurricane would depend greatly on the track of the hurricane in relation to the slick. A hurricane's winds rotate counter-clockwise. In general, a hurricane passing to the west of the slick could drive oil to the coast, while a hurricane passing to the east of the slick could drive the oil away from the coast.

Severe weather may distribute spilled oil over a wide area. Storm surge may carry oil into the coastal and inland waters and shore. Debris resulting from severe weather may be contaminated by oil. Thus, the responders need to take proper precautions if weathered oil is present. Weather that results in waves greater than 3 ft (1 m) prevents skimming in coastal waters so there is greater likelihood of contact with the shoreline. Severe weather would also displace or destroy shoreline boom so that oil could come into contact with the shoreline until responders put the boom back in place. Severe weather could require that assets be relocated inland. The response would be delayed because following the severe weather event the assets would need to be transported back to the staging areas. The speed with which the assets could be brought back to the locations would depend upon on the condition of the roads and bridges for traffic resumption and the amount of debris potentially blocking the roads.

The USEPA, U.S. Coast Guard, other Federal response agencies, and applicable State agencies would work together to address oil spills reported to the National Response Center or reported by emergency responders before, during, or after a hurricane occurs. Response personnel will cleanup significant spills and take other actions appropriate to protect public health and the environment. This response would cover any OCS spills that may occur as a result of the hurricane or preexisting at the time of the hurricane. Response activities may be interrupted or complicated during a hurricane event. Oil from an ongoing OCS spill event may be washed ashore during a hurricane event; could be weathered, diluted, or washed farther inland; and could be mixed with other contaminants from other sources released during a hurricane event (e.g., heating oil or industrial chemicals). For example, onshore sources account for most of the oil spilled during the past few hurricane seasons that has resulted in oiled property. After Hurricane Sandy, some oil heating tanks flooded and caused oiling of a property owner's own building(s). As such, depending on circumstances, a hurricane event during an OCS spill event could complicate and exacerbate spill impacts and response operations, but could also increase weathering and dilution.

B.2.3.5. Onshore Cleanup Activities

A large-scale response effort would be expected for a catastrophic blowout. The number of vessels and responders would increase steadily as the spill continued. In addition to the response described in **Chapter B.2.2.7**, the following response is also estimated to occur once the spill contacts the shore.

B.2.3.5.1. Shallow Water

- There would be 5-10 staging areas established.
- Weathering permitting, about 200-300 skimmers could be deployed near shore to protect coastlines.

B.2.3.5.2. Deep Water

- There would be 10-20 staging areas established.
- Weather permitting, about 500-600 skimmers could be deployed near shore to protect coastlines. As seen in Louisiana following the *Macondo* well blowout and spill, a

few hundred coastal skimmers could still be in operation a few months after the well is capped or killed (State of Louisiana, 2010).

B.2.3.5.3. Response Considerations for Sand Beaches for Both Shallow-Water and Deepwater Spills

- No mechanical techniques allowed in some areas.
- Surface residence balls (SRBs), also commonly known as tarballs, and surface residence patties (SRPs) are subject to smearing during the day; therefore, much of the beach cleanup can be expected to be conducted at night, if the weather is warm.
- There are marked differences in the sediments on the central Louisiana coast as compared with the Gulf beaches of Alabama, Florida, and Mississippi; therefore, no single technique will be universally applicable for cleaning sand beaches.
- Typically, sand sieving, shaking, and sifting beach cleaning machines will be utilized. The depth of cut below the sand surface can be expected to typically range from 0 to 12 inches (in) (0 to 30 centimeters [cm]) when using this equipment.
- It is anticipated that the responders will be instructed that no disturbance will be allowed below 18 in (46 cm). However, oil can be expected down to a depth of 24-26 in (61-66 cm) below the sand surface.
- Repetitive tilling and mixing may be used at beaches such as Grand Isle, using agriculture plows and discs in combination with beach cleaning machines. Sand washing treatment also may take place at beaches such as Grand Isle's beach. Sand washing includes a sand sieve/shaker to remove debris and large oil particles and a heated washing system. Average daily throughput for these systems would be 290 cubic yards per day. Sand treated in this manner is typically treated by sediment relocation, which is where the sand is moved to an active intertidal zone

B.2.3.5.4. Response Considerations for Marshes for Both Shallow-Water and Deepwater Spills

- Lightly oiled marsh may be allowed to recover naturally; the oil may be allowed to degrade in place or to be removed by tidal or wave action.
- Moderately or heavily oiled marsh could be cleaned by vacuuming or skimming from boats in conjunction with flushing to enhance oil recovery rates, low pressure flushing (with water comparable to marsh type), manual removal by hand or mechanized equipment, or vegetation cutting.
- In some heavily oiled areas, in-situ burning may be an option if water covers the sediment surface. This technique is only considered when the source is contained due to potential re-oiling of the area. Surface washing agents are also a technique that might be utilized.
- Bioremediation may be utilized but mostly as a secondary treatment after bulk removal.

B.2.3.5.5. Response Considerations for Nearshore Waters for Both Shallow-Water and Deepwater Spills

• Nearshore submerged oil is difficult to recover and hard to locate; vacuums and snares could be used.

• In the vicinity of marsh areas, skimming techniques with flushing could be utilized where warranted. In areas too shallow to use skimmers, oil removal could be accomplished using vacuum systems, in conjunction with flushing as needed. Booming could also be used to temporarily contain mobile slicks until they are recovered.

B.2.4. Phase 4—Post-Spill, Long-Term Recovery

During the final phase of a catastrophic blowout and spill, it is presumed that the well has been capped or killed and that cleanup activities are concluding. While it is assumed that the majority of spilled oil floating on surface waters would be dissipated within 30-60 days of stopping the flow, oil has the potential to persist in the environment long after a spill event and has been detected in sediment 30 years after a spill dependent upon the impacted environment (USDOI, FWS, 2004). On sandy beaches, oil can sink deep into the sediments. In tidal flats and salt marshes, oil may seep into the muddy bottoms (USDOI, FWS, 2010a).

The multiple-year response required for the *Deepwater Horizon* explosion, oil spill, and response provided one example of a long-term recovery to a catastrophic spill in the Gulf of Mexico. After the *Deepwater Horizon* explosion, oil spill, and response, a multi-agency Operational Science Advisory Team (OSAT), under the direction of the USCG, was convened to provide information to help guide response activities and to provide a better understanding of the potential environmental and health risks after the *Deepwater Horizon* explosion, oil spill, and response. A summary of the OSAT findings include the following:

- OSAT, issued in December 2010, concluded that no recoverable *Macondo* oil remained in the water column. In addition, none of the roughly 17,000 water samples collected and analyzed exceeded the USEPA's benchmarks for protection of human health.
- OSAT-2, issued in February 2011, found that residual oil in nearshore and sandy shoreline areas was highly weathered, and concentrations of constituents of concern were well below levels of concern for human health (OSAT-2, 2011).
- The OSAT Ecotoxicity Addendum, issued in July 2011, found that, with respect to the indicators considered in the OSAT (2010) report, the results discussed in this addendum are consistent with the OSAT conclusions that "no exceedances of the USEPA's dispersant benchmarks were observed" and that "since 3 August 2010 (last day with potentially recoverable oil on the ocean surface), <1% of water samples and ~1% of sediment samples exceeded EPA's aquatic life benchmarks for polycyclic aromatic hydrocarbons (PAHs)." In addition, results of the toxicity tests support the conclusions of the OSAT report regarding the distribution of actionable (i.e., amenable to removal actions) oil and dispersant-related constituents (OSAT Addendum, 2011).
- OSAT-3, finalized in early 2014, used a sophisticated scientific approach to identify potential discrete pockets of subsurface material. The OSAT-3 information was used to locate and recover potential subsurface material (British Petroleum, 2014a). The OSAT-3 report also identified actions to be taken for reducing the potential recurrence of oil along the northeastern shores of the Gulf of Mexico. In addition, the report evaluated the feasibility of each action taken to recover or remove *Macondo* oil and the net environmental benefit of employing each recovery technique recommended. This scientific support was provided to the Federal On-Scene Coordinator with shoreline segment-specific information to facilitate the operational decisionmaking process to recover residual *Macondo* oil (OSAT-3, 2013).

If a shoreline is oiled, the selection of the type of shoreline remediation to be used will depend on the following: (1) the type and amount of oil on the shore; (2) the nature of the affected coastline; (3) the depth of oil penetration into the sediments; (4) the accessibility and the ability of vehicles to travel along

the shoreline; (5) the possible ecological damage of the treatment to the shoreline environment; (6) weather conditions; (7) the current state of the oil; and (8) jurisdictional considerations. To determine which cleanup method is most appropriate during a spill response, decisionmakers must assess the severity and nature of the injury using Shoreline Cleanup and Assessment Team survey observations. These onsite decisionmakers must also estimate the time it will take for an area to recover in the absence of cleanup (typically considering short term to be 1-3 years, medium term to be 3-5 years, and long term greater than 5 years) (National Response Team, 2010).

B.2.4.1. Response Considerations for Sand Beaches, Marshes, and Nearshore Waters for both Shallow-Water and Deepwater Spills

Once oiled, it can be expected that the shoreline response techniques employed in the initial phase of a response will become more extensive and continue for some time (Chapters B.2.3.5.3, B.2.3.5.4, and **B.2.3.5.5**). For example, spill response post-*Macondo* continued for years in some of the more heavily oiled areas in Louisiana and in other areas, such as Florida, Mississippi, and Alabama, which experienced periodic re-oiling from submerged oil mats that lie in the inshore surf zone in troughs between the sand bars or from buried oil onshore that resurfaces. The three types of oil residue that were identified as challenging or potentially damaging to the environment if removed includes the following: (1) supra-tidal buried oil (buried below the 6-in [15-cm] surface cleaning depth restriction near sensitive habitats); (2) small surface residual balls, which are oil residue left behind after beaches are cleaned; and (3) surf zone submerged oil mats. Active shoreline cleanup ended in June 2013 for the States of Florida, Mississippi, and Alabama. Active shoreline cleanup for Louisiana ended on April 15, 2014 (British Petroleum, 2014a). However, efforts will continue to clean up any reported re-oiled shoreline in the GOM area as it is reported to the USCG. Although the re-oiling of some areas was anticipated to sporadically continue, it was determined that a better and more efficient long-term cleanup effort at this stage could be handled through the USCG. As of April 15, 2014, aerial reconnaissance flights were flown across approximately 14,000 mi (22,531 km) of shoreline during this spill response effort. Nearly 4,400 mi (7,081 km) were ground-surveyed, with teams identifying 1,104 mi (1,777 km) that experienced some level of oiling and 778 mi (1,252 km) that required some measure of cleaning (British Petroleum, 2014a).

Amenity beaches were generally cleaned to depths of up to 5 ft (1.5 m) using mechanical equipment that sifts out residual oil and other debris from below the beach surface while returning clean sand to the beach. Nonrecreational beaches and environmentally sensitive areas were generally hand-cleaned to depths of up to 6 in (15 cm), but they were cleaned deeper if it was ecologically safe and approved by the USCG, stakeholders, and others. Multiple techniques were used to treat oiled marsh areas, with the goal of promoting natural attenuation without causing further damage. A scientific effort was launched in mid-2012 to locate and remove potential pockets of subsurface material in Louisiana. During this effort, more than 40,000 holes and pits were excavated across seven barrier islands. The vast majority either had no visible oil or levels so low that treatment was not appropriate or required. For example, just 3 percent of the more than 16,000 auger holes had oiling levels that required cleanup and less than 2 percent of the over 24,000 pits had heavy or moderate oiling. Assessment teams continuously surveyed the shoreline and recommended treatment options. More than 100,000 tons of material were collected from the The total consists of not only the mixed residual material, which was typically cleanup efforts. 10-15 percent residual oil and 85-90 percent sand, shells, and water, but, during the first year of operations, it also included other solid material such as debris and protective clothing (British Petroleum, 2014a). Additional information regarding shoreline response considerations can be found in **Chapter** 3.2.1.9.

B.3. DESCRIPTION OF THE ENVIRONMENT AND IMPACT ANALYSIS

B.3.1. Long Duration—Large Volume Spill within the Gulf of Mexico

The following resource descriptions and impact analyses examined only the applicable portions of the scenario (described fully in **Chapter 3** and summarized in **Table B-4**).

B.3.1.1. Air Quality

Phase 1—Initial Event

A catastrophic blowout close to the water surface would initially emit large amounts of methane and other gases into the atmosphere. If high concentrations of sulfur are present in the produced gas. hydrogen sulfide (H_2S) could present a hazard to personnel. The natural gas H_2S concentrations in the Gulf of Mexico OCS are generally low; however, there are areas such as the Norphlet formation in the northeastern Gulf of Mexico, for example, that contain levels of H_2S up to 9 percent. Ignition of the blowout gas and subsequent fire would result in emissions of nitrogen oxides (NO_x), sulfur oxides (SO_x), carbon monoxide (CO), volatile organic compounds (VOCs), particulate matter (PM₁₀), and fine particulate matter (PM_{25}). The fire could also produce PAHs, which are known to be hazardous to human health. The pollutant concentrations would decrease with downwind distance. A large plume of black smoke would be visible at the source and may extend a considerable distance downwind. However, with increasing distance from the fire, the gaseous pollutants would undergo chemical reactions, resulting in the formation of fine particulate matter ($PM_{2.5}$) that includes nitrates, sulfates, and organic matter. The PM_{2.5} concentrations in the plume would have the potential to temporarily degrade visibility in any affected Prevention of Significant Deterioration (PSD) Class I areas (i.e., National Wilderness Areas and National Parks) and other areas where visibility is of significant value. Organic aerosols formed downwind from the Macondo well blowout and spill (de Gouw et al., 2011), during which the lightest compounds, the VOCs, in the oil from the Macondo well blowout and spill evaporated within hours and during which the heavier compounds took longer to evaporate, contributing to the formation of air pollution particles downwind.

Phase 2—Offshore Spill

In the Gulf of Mexico, evaporation from the oil spill would result in concentrations of VOCs in the atmosphere, including chemicals that are classified as being hazardous. The VOC concentrations would occur anywhere where there is an oil slick, but they would be highest at the source of the spill because the rate of evaporation depends on the volume of oil present at the surface. The VOC concentrations would decrease with distance as the layer of oil gets thinner. The lighter compounds of VOCs would be most abundant in the immediate vicinity of the spill site. The heavier compounds would be emitted over a longer period of time and over a larger area. Some of the compounds emitted could be hazardous to workers in close vicinity of the spill site. The hazard to workers can be reduced by monitoring and using protective gear, including respirators, as well as limiting exposure through limited work shifts, rotating workers in close vicinity of the spill site. The hazard to workers can be reduced by monitoring and using protective gear, including respirators, as well as limiting exposure through limited work shifts, rotating workers out of high exposure areas, and pointing vessels into the wind. During the Macondo well blowout and spill, air samples collected by individual offshore workers of British Petroleum (BP), the Occupational Safety and Health Administration (OSHA), and USCG showed levels of benzene, toluene, ethylbenzene, and xylene that were mostly under detection levels. All samples had concentrations below the OSHA permissible exposure limits and the more stringent ACGIH (American Conference of Governmental Industrial Hygienists) threshold limit values (U.S. Dept. of Labor, OSHA, 2010a).

The VOC emissions that result from the evaporation of oil contribute to the formation of particulate matter ($PM_{2.5}$) in the atmosphere. In addition, VOCs could cause an increase in ozone levels, especially if the release were to occur on a hot, sunny day with sufficient concentrations of NO_x present in the lower atmosphere. However, because of the distance of the proposed CPA lease sale area from shore, the oil slick would not likely have any effects on onshore ozone concentrations; however, if there were any effects to onshore ozone concentrations, they would be likely only be temporary in nature and last at most the length of time of the spill duration.

It is assumed that response efforts would include hundreds of in-situ or controlled burns, which would remove an estimated 5-10 percent of the volume of oil spilled. This could be as much as 720,000 bbl of oil for a spill of 60,000 bbl per day for 90 days. In-situ burning would result in ambient concentrations of CO, NO_x , SO_2 , PM_{10} , and $PM_{2.5}$ very near the site of the burn and would generate a plume of black smoke. The levels of $PM_{2.5}$ could be a hazard to personnel working in the area, but this could be effectively mitigated through monitoring and relocating vessels to avoid areas of highest concentrations. In an experiment of an in-situ burn off Newfoundland, it was found that CO, SO_2 , and NO_2 were

measured only at background levels and were frequently below detection levels (Fingas et al., 1995). Limited amounts of formaldehyde and acetaldehyde were measured, but concentrations were close to background levels. Measured values of dioxins and dibenzofurans were at background levels. Measurements of PAH in the crude oil, the residues, and the air indicated that the PAH in the crude oil are largely destroyed during combustion (Fingas et al., 1995).

While containment operations may be successful in capturing some of the escaping oil and gas, recovery vessels may not be capable of storing the crude oil or may not have sufficient storage capacity. In this case, excess oil would be burned; captured gas cannot be stored or piped to shore so it would be flared. For example, in the *Macondo* well blowout and spill, gas was flared at the rate of 100-200 million cubic feet per day and oil burned at the rate of 10,000-15,000 bbl per day. The estimated NO_x emissions are about 13 tons per day. The SO₂ emissions would be dependent on the sulfur content of the crude oil. For crude oil with a sulfur content of 0.5 percent, the estimated SO₂ emissions are about 16 tons per day. Particulate matter in the plume would also affect visibility. Flaring or burning activities upwind of a PSD Class I area, e.g., the Breton National Wilderness Area, could adversely affect air quality there because of increased levels of SO₂, PM₁₀, and PM_{2.5}, and because of reduced visibility.

Phase 3—Onshore Contact

As the spill nears shore, there would be low-level concentrations of odor-causing pollutants associated with evaporative emissions from the oil spill. These may cause temporary eye, nose, or throat irritation, nausea, or headaches, but the doses are not thought to be high enough to cause long-term harm (USEPA, 2010a). However, responders could be exposed to levels higher than OSHA occupational permissible exposure levels (U.S. Dept. of Labor, OSHA, 2010b). During the *Deepwater Horizon* explosion, oil spill, and response, USEPA took air samples at various onshore locations along the length of the Gulf coastline. All except three measurements of benzene were below 3 parts per billion (ppb). The highest level was 91 ppb. Emissions of benzene to the atmosphere result from gasoline vapors, auto exhaust, and chemical production and user facilities. Ambient concentrations of benzene up to and greater than 5 ppb have been measured in industrial areas such as Houston, Texas; in various urban areas during rush hour; and inside the homes of smokers (U.S. Dept. of Health and Human Services, 2007). The following daily median benzene air concentrations were reported in the Volatile Organic Compound National Ambient Database (1975-1985): remote (0.16 ppb); rural (0.47 ppb); suburban (1.8 ppb); urban (1.8 ppb); and workplace air (2.1 ppb). The outdoor air data represent 300 cities in 42 states, while the indoor air data represent 30 cities in 16 states (Shah and Singh, 1988).

During the *Deepwater Horizon* explosion, oil spill, and response, air samples collected by BP, OSHA, and USCG near shore showed levels of benzene, toluene, ethylbenzene, and xylene that were mostly under detection levels. Among the 28,000 personal benzene samples taken by BP, there was only 1 sample where benzene exceeded the OSHA occupational permissible exposure limits, and 6 additional validated constituents were in excess of the ACGIH threshold limit value. All other sample concentrations were below the more stringent ACGIH threshold limit values (U.S. Dept. of Labor, OSHA, 2010a). All measured concentrations of toluene, ethylbenzene, and xylene were well within the OSHA occupational permissible exposure levels and ACGIH threshold limit values.

Phase 4—Post-Spill, Long-Term Recovery and Response

There would be some residual air quality impacts after the well is capped or killed. As most of the oil would have been burned, evaporated, or weathered over time, air quality would return to pre-oil spill conditions. While impacts to air quality are expected to be localized and temporary, adverse effects that may occur from the exposure of humans and wildlife to air pollutants could have long-term consequences.

Overall Summary and Conclusion (Phases 1-4)

The OCS oil- and gas-related catastrophic event could include the release of oil, condensate, or natural gas or chemicals used offshore or pollutants from the burning of these products. The air pollutants include criteria National Ambient Air Quality Standards (NAAQS) pollutants, volatile and semi-volatile organic compounds, H₂S, and methane. If a fire was associated with the event, it would produce a broad array of pollutants, including all NAAQS-regulated primary pollutants, including NO₂, CO, SO_x, VOC, PM₁₀, and PM_{2.5}. Response activities that could impact air quality include in-situ burning, the use of

flares to burn gas and oil, and the use of dispersants applied from aircraft. Measurements taken during an in-situ burning show that a major portion of compounds was consumed in the burn; therefore, pollutant concentrations would be expected to be within the NAAQS. In a recent analysis of air in coastal communities, low levels of dispersant components, which are also used in everyday household products, were identified. These response activities are temporary in nature and occur offshore; therefore, there are little expected impacts from these actions to onshore air quality. Catastrophic events involving high concentrations of H_2S could result in deaths as well as environmental damage. Regulations and NTLs

mandate safeguards and protective measures, which are in place, to protect workers from H_2S releases. Other emissions of pollutants into the atmosphere from catastrophic events are not projected to have significant impacts on onshore air quality because of the prevailing atmospheric conditions, emissions height, emission rates, and the distance of these emissions from the coastline.

Overall, since loss of well-control events, blowouts, and fires are rare events and of short duration, potential impacts to air quality are not expected to be significant except in the rare case of a catastrophic event. To date, air monitoring conducted following the *Macondo* well blowout and spill, has not found any pollutants at levels expected to cause long-term harm (USEPA, 2010b).

B.3.1.2. Water Quality

Phase 1—Initial Event

Offshore Water Quality

During the initial phase of a catastrophic blowout, water quality impacts include the disturbance of sediments and the release and suspension of oil and natural gas (primarily methane) into the water column. These potential impacts are discussed below. As this chapter deals with the immediate effects of a blowout that would be located at least 3 nmi (3.5 mi; 5.6 km) from shore, it is assumed that there would be no impacts on coastal water quality during this initial stage.

Disturbance of Sediments

A catastrophic blowout below the seafloor, outside the wellbore (**Table B-1**) has the potential to resuspend sediments and disperse potentially large quantities of bottom sediments. Some sediment could travel several kilometers, depending on particle size and subsea current patterns. In the deep Gulf of Mexico, surficial sediments are mostly composed of silt and clay, and, if resuspended, could stay in the water column for several hours to days. Bottom current measurements in the deep Gulf of Mexico were synthesized as part of the MMS Deepwater Reanalysis study and have been measured to reach 90 centimeters/second (cm/sec) (35.4 inches/second [in/sec]) with mean flows of 0.4-21 cm/sec (0.2-8.3 in/sec) (Nowlin et al., 2001). At these mean flow rates, resuspended sediment could be transported 0.3-18 km per day (0.2-11 mi per day).

Sediment resuspension can lead to a temporary change in the oxidation-reduction chemistry in the water column, including a localized and temporal release of any formally sorbed metals, as well as nutrient recycling (Caetano et al., 2003; Fanning et al., 1982). Sediments also have the potential to become contaminated with oil components.

A subsea release also has the potential to destabilize the sediments and create slumping or larger scale sediment movements along depth gradients. These types of events would have the potential to move and/or damage any infrastructure in the affected area.

Release and Suspension of Oil into the Water Column

A subsea release of hydrocarbons at a high flow rate has the potential to disperse and suspend plumes of oil droplets (chemically dispersed or otherwise) within the water column and to induce large patches of sheen and oil on the surface. These dispersed hydrocarbons may adsorb onto marine detritus (marine snow), suspended sediments, or may be mixed with drilling mud and deposited near the source. Mitigation efforts such as burning may introduce hydrocarbon byproducts into the marine environment, which would be distributed by surface currents. The acute and chronic sublethal effects of these dilute suspended "plumes" are not well understood and require future research efforts. As a result of the *Macondo* well blowout and spill, a subsurface oil and gas plume was discovered in deep waters between ~1,100 and 1,300 m (3,609 and 4,265 ft) (e.g., Diercks et al., 2010) in addition to the surface slick. Measurable amounts of hydrocarbons (dispersed or otherwise) were detected in the subsurface plumes and on the seafloor in the vicinity of the release (e.g., Diercks et al., 2010; OSAT, 2010). In the *Macondo* well blowout and spill subsurface plume, half-lives were estimated for petroleum hydrocarbons and n-alkanes on the order of 1 month and several days, respectively, indicating the impacts of various weathering processes (Reddy et al., 2011 and references therein). After the *Ixtoc I* well blowout and spill in 1979, which was located 50 mi (80 km) offshore in the Bay of Campeche, Mexico, some subsurface oil was also observed dispersed within the water column (Boehm and Fiest, 1982); however, the scientific investigations were limited (Reible, 2010). The water quality of offshore waters would be affected by the dissolved components and oil droplets that are small enough that they do not rise to the surface or are mixed down by surface turbulence. In the case of subsurface oil plumes, it is important to remember that these plumes would be affected by subsurface currents, dilution, and natural physical, chemical, and biological degradation processes including weathering.

Large quantities of oil put into offshore water may alter the chemistry of the sea with unforeseeable results. The properties and persistence of oil, including oil in the Gulf of Mexico, is further discussed in **Chapter B.2.2.4**. The VOCs, including benzene, toluene, ethylbenzene, and xylenes (also referred to as BTEX), are highly soluble and can have acutely toxic effects; however, VOCs are light-weight oil components and tend to evaporate rather than persist in the environment (Michel, 1992). Middle-weight organic components tend to pose the greatest risk in the environment because they are more persistent in the environment, are more bioavailable, and include PAHs, which have high toxicities (Michel, 1992). To determine the overall toxicity of PAHs in water or sediment, the contributions of every individual PAH compound in the petroleum mixture must be included (USEPA, 2011). This approach was used during the *Macondo* well blowout, spill and response in determining the potential risk of PAHs in both water and sediment to humans or animals in the environment (OSAT, 2010). Heavier components of crude oil tend to pose less risk of toxicity because they are not very soluble in water and therefore are less bioavailable.

The oil that entered the Gulf of Mexico from the *Macondo* well blowout and spill was a South Louisiana sweet crude oil (i.e., low in sulfur) (USDOC, NOAA, 2010b). This oil is less toxic than other crude oils in general because this oil is lower in PAHs than many other crude oils. Studies indicate that the oil contained approximately 3.9 percent PAHs by weight, which results in an estimated release of 2.1×10^{10} grams of PAHs (Reddy et al., 2011; Reddy, official communication, 2012). The oil was also fairly high in alkanes (organic compounds containing only carbon and hydrogen and single bonds, sometimes called paraffin or aliphatic compounds) (USDOC, NOAA, 2010b). Because alkanes are simple hydrocarbons, these oils are likely to undergo biodegradation more easily (USDOC, NOAA, 2010b).

Release of Natural Gas (Methane) into the Water Column

A catastrophic blowout could release natural gas into the water column; the amount of gas released is dependent upon the water depth, the natural gas content of the formation being drilled, and its pressure. Methane is the primary component of natural gas. Methane may stay in the marine environment for long periods of time (Patin, 1999; page 237), as methane is highly soluble in seawater at the high pressures and cold temperatures found in deepwater environments (NRC, 2003; page 108). However, methane diffusing through the water column would likely be oxidized in the aerobic zone and would rarely reach the air-water interface (Mechalas, 1974; page 23). In addition to methane, natural gas contains smaller percentages of other gases such as ethane, propane, and to a much lesser degree H_2S (NaturalGas.org, 2012), which can be toxic in the environment. The majority of natural gas components including methane are carbon sources, and their introduction into the marine environment could result in reducing the dissolved oxygen levels because of microbial degradation potentially creating hypoxic or "dead" zones. Unfortunately, little is known about methane toxicity in the marine environment, but there is concern as to how methane in the water column might affect fish. Further discussion of natural gas released during the *Macondo* well blowout and spill is given in **Chapter B.2.2.5**.

B-20

Phase 2—Offshore Spill

Offshore Water Quality

The water offshore of the Gulf's coasts can be divided into two regions: the continental shelf and slope (<1,000 ft; 305 m) and deep water (>1,000 ft; 305 m). Waters on the continental shelf and slope are heavily influenced by the Mississippi and Atchafalaya Rivers, the primary sources of freshwater, sediment, nutrients, and pollutants from a huge drainage basin encompassing 55 percent of the continental U.S. (Murray, 1998). Lower salinities are characteristic nearshore where freshwater from the rivers mix with Gulf waters. The presence or extent of a nepheloid layer, a body of suspended sediment at the sea bottom (Kennett, 1982, page 524), affects water quality on the shelf and slope. Deep waters east of the Mississippi River are affected by the Loop Current and associated warm-core (anti-cyclonic) eddies, which flush the area with clear, low-nutrient water (Muller-Karger et al., 2001) (**Figure B-2**). However, cold-core cyclonic eddies (counter-clockwise rotating) also form at the edge of the Loop Current and are associated with upwelling and nutrient-rich, high-productivity waters, although the extent of this flushing can vary seasonally.

While response efforts would decrease the fraction of oil remaining in Gulf waters, significant amounts of oil would remain. Natural processes will physically, chemically, and biologically aid the degradation of oil (NRC, 2003). The physical processes involved include evaporation, emulsification, and dissolution, while the primary chemical and biological degradation processes include photo-oxidation and biodegradation (i.e., microbial oxidation). Water quality would not only be impacted by the oil, gas, and their respective components, but also to some degree, from cleanup and mitigation efforts, such as from increased vessel traffic and the addition of dispersants and methanol to the marine environment.

In the case of a catastrophic subsea blowout in deep water, it is assumed that large quantities of subsea dispersants would be used. The positive effect of using dispersants is that the oil, once dispersed, may be more available to be degraded (however, we note that contrary findings for beached oil were presented by Hamdan and Fulmer, 2011). The negative effect is that the oil, once dispersed, is also more bioavailable to have toxic effects to microorganisms as well. The toxicity of dispersed oil in the environment would depend on many factors, including the effectiveness of the dispersion, temperature, salinity, degree of weathering, type of dispersant, and degree of light penetration in the water column (NRC, 2005). The toxicity of dispersed oil is primarily because of the toxic components of the oil itself (Australian Maritime Safety Authority, 2010).

As a result of the use of dispersants, it would be more likely for clouds or plumes of dispersed oil to occur near the blowout site as was seen during the *Macondo* well blowout and spill. Dissolved oxygen levels are a concern with any release of a carbon source, such as oil and natural gas, and became a particular concern during the *Macondo* well blowout and spill since dispersants were used in deep waters for the first time. In areas where plumes of dispersed oil were previously found, dissolved oxygen levels decreased by about 20 percent from long-term average values in the GOM of ~6.9 milligrams/liter (spring climatological mean at 1,500-m [4,921 -ft] depth); however, scientists reported that these levels stabilized and were not low enough to be considered hypoxic (Joint Analysis Group, 2010; USDOC, NOAA, 2010c). The drop in oxygen, which did not continue over time, has been attributed to microbial degradation of the oil.

Phase 3—Onshore Contact

Coastal Water Quality

Water quality governs the suitability of waters for plant, animal, and human use. Water quality is important in the bays, estuaries, and nearshore coastal waters of the Gulf because these waters provide feeding, breeding, and/or nursery habitat for many invertebrates and fishes, as well as sea turtles, birds, and marine mammals. A catastrophic spill would significantly impact coastal water quality in the Gulf of Mexico. Water quality prior to the *Macondo* well blowout and spill was rated as fair while sediment quality was rated as poor (USEPA, 2008). In addition, the coastal habitat index, a rating of wetlands habitat loss, was also rated as poor. Both the sediment quality and the coastal habitat index affect water quality.

Though response efforts would decrease the amount of oil remaining in Gulf waters and reduce the amount of oil contacting the coastline, significant amounts of oil would remain. Coastal water quality

would be impacted not only by the oil, gas, and their respective components but also to some degree from cleanup and mitigation efforts. Increased vessel traffic, hydromodification, and the addition of dispersants and methanol in an effort to contain, mitigate, or clean up the oil may also tax the environment.

The use of dispersants as a response tool involves a tradeoff. The purpose of chemical dispersants is to facilitate the movement of oil into the water column in order to encourage weathering and biological breakdown of the oil (i.e., biodegradation) (NRC, 2005; Australian Maritime Safety Authority, 2010). Thus, the tradeoff is generally considered to be oiling of the shoreline and surface of the water versus the water column and benthic resources (NRC, 2005). If the oil moves into the water column and is not on the surface of the water, it is less likely to reach sensitive shore areas (USEPA, 2010a). Since sea birds are often on the surface of the water or in shore areas, dispersants are also considered to be very effective in reducing the exposure of sea birds to oil (Australian Maritime Safety Authority, 2010). In addition to dispersion being enhanced by artificial processes, oil may also be dispersed from natural processes including both (bio)chemical and physical processes. For instance, microbial metabolism of crude oil results in the dispersion of oil (Bartha and Atlas, 1983), and conditions at the source of the oil/gas leak (e.g., orifice size and shape) may cause physical dispersion of the oil. Dispersion has both positive and negative effects. The positive effect is that the oil, once dispersed, is more available to be degraded. The negative effect is that the oil, once dispersed, is also more bioavailable to have toxic effects to microorganisms as well. For example, a recent study using mesocosm experiments suggested that dispersed oil could disrupt coastal microbial foodwebs in the northern Gulf of Mexico, reducing the flow of carbon to higher trophic levels (Ortmann et al., 2012). The toxicity of dispersed oil in the environment will depend on many factors, including the effectiveness of the dispersion, temperature, salinity, the degree of weathering, type of dispersant, and the degree of light penetration in the water column (NRC, 2005). The toxicity of dispersed oil is primarily because of the toxic components of the oil itself (Australian Maritime Safety Authority, 2010).

Oxygen and nutrient concentrations in coastal waters vary seasonally. The zone of hypoxia (depleted oxygen) on the Louisiana-Texas shelf occurs seasonally and is affected by the timing of freshwater discharges from the Mississippi and Atchafalaya Rivers. The hypoxic conditions continue until local wind-driven circulation mixes the water again. The 2010 hypoxic zone could not be linked to the *Macondo* well blowout and spill in either a positive or a negative manner (Louisiana Universities Marine Consortium, 2010). Nutrients from the Mississippi River nourished phytoplankton and contributed to the formation of the hypoxic zone.

Phase 4—Post-Spill, Long-Term Recovery and Response

The leading source of contaminants that impairs coastal water quality in the Gulf of Mexico is urban runoff. It can include suspended solids, heavy metals, pesticides, oil, grease, and nutrients (such as from lawn fertilizer). Urban runoff increases with population growth, and the Gulf Coast region has experienced a 109 percent population growth since 1970, with an additional expected 15 percent increase expected by 2020 (USDOC, NOAA, 2011b). Other pollutant source categories include (1) agricultural runoff, (2) municipal point sources, (3) industrial sources, (4) hydromodification (e.g., dredging), and (5) vessel sources (e.g., shipping, fishing, and recreational boating). The NRC (2003, Table I-4, page 237) estimated that, on average, approximately 26,324 bbl of oil per year entered Gulf waters from petrochemical and oil refinery industries in Louisiana and Texas. The Mississippi River introduced approximately 3,680,938 bbl per year (NRC, 2003, Table I-9, page 242) into the waters of the Gulf. Hydrocarbons also enter the Gulf of Mexico through natural seeps in the Gulf at a rate of approximately 980,392 bbl per year (a range of approximately 560,224-1,400,560 bbl per year) (NRC, 2003, page 191). Produced water (formation water) is, by volume, the largest waste stream from the oil and gas industry that enters Gulf waters (e.g., Table B-3). The NRC has estimated the quantity of oil in produced water entering the Gulf per year to be 473,000 bbl (NRC, 2003, page 200, Table D-8).¹ These sources total about 5.5 MMbbl of oil per year that routinely enters Gulf of Mexico waters. In comparison, a catastrophic spill of 30,000-60,000 bbl per day for 90-120 days would spill a total of 2.7-7.2 MMbbl of

¹ These numbers were generated from converting the units reported in the noted reference and do not imply any level of significance.

oil. When added to the other sources of oil listed above, this would result in a 48- to 129-percent increase in the volume of oil entering the water during the year of the spill. In addition, the oil from a catastrophic spill will be much more concentrated in some locations than the large number of other activities that release oil into the Gulf of Mexico. **Chapter B.2.2.4** discusses the properties and persistence of oil in the environment.

Overall Summary and Conclusion (Phases 1-4)

During Phase 1 of the catastrophic blowout scenario, impacts are not expected to coastal water quality. Instead, the initial impacts will include degradation of offshore water quality, disturbance and degradation of sediments, and the release and suspension of oil and natural gas into the water column, including the possible formation of plumes. Fine sediments could be transported away from the spill site.

As the spill continues during Phase 2, response efforts and natural degradation processes would decrease the amount of oil in the Gulf, but significant amounts of oil would remain to impact water and sediment quality. Water and sediment quality would not only be impacted by the oil, gas, and their respective components but also to some degree from cleanup and mitigation efforts. The use of dispersants as a response tool may make the oil more available to degradation, but it can also make the oil more bioavailable to have toxic effects on microorganisms as well. Furthermore, dispersed oil is more likely to form a plume.

Onshore contact is made during Phase 3, so coastal sediment and water quality will be significantly impacted during this phase despite response efforts. Response efforts may even tax the coast to some degree. Natural and chemical dispersion may reduce the contact of oil with the shoreline but result in more oil in the water column and greater bioavailability of the dispersed oil.

The long-term recovery (Phase 4) of the water and sediment quality of the Gulf will depend on the properties and persistence of the oil as noted in **Chapter B.2.2.4**. Though the spill will increase the amount of oil entering the Gulf of Mexico, oil regularly enters the Gulf through sources such as oil refineries, the Mississippi River, produced water, and natural seeps. However, oil from a spill will be more concentrated than the oil input from these other sources.

B.3.1.3. Coastal Barrier Beaches and Associated Dunes

Phase 1—Initial Event

There would likely be no adverse impacts to coastal barrier beaches and associated dunes as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because these resources would not be contacted until the oil reached the shoreline.

Phase 2—Offshore Spill

There would likely be no adverse impacts to coastal barrier beaches and associated dunes as a result of the events and the potential impact-producing factors that could occur throughout Phase 2 of a catastrophic spill event because these resources would not be contacted until the oil reached the shoreline.

Phase 3—Onshore Contact

Barrier islands make up more than two-thirds of the northern Gulf of Mexico shore. Each of the barrier islands is either high profile or low profile, depending on the elevations and morphology of the island (Morton et al., 2004). The distinguishing characteristics of the high- and low-profile barriers relate to the width of the islands along with the continuity of the frontal dunes. Low-profile barriers are narrow with discontinuous frontal dunes easily overtopped by storm surge, which makes the island susceptible to over wash and erosion. This over wash can create channels to bring sand onto the island or into lagoons formed on these islands. High-profile barrier islands are generally wider than the low-profile islands and have continuous, vegetated, frontal dunes with elevations high enough to prevent over wash from major storm surge and, therefore, are less susceptible to erosion. The sand stored in these high-profile dunes allows the island to withstand prolonged erosion and therefore prevents breaching, which could result in damaging the island core.

The effects from oil spills depend on the geographic location, volume, and rate of the spill; type of oil; oil-slick characteristics; oceanic conditions and season at the time of the spill; and response and cleanup efforts. The effects could include changes in plant species diversity that could result in changes in forage areas for species using microfauna as a food base (Teal and Howarth, 1984). Further detail on this catastrophic OSRA run is contained in **Appendix C**.

As a result of a catastrophic spill, many of the barrier islands and beaches would receive varying degrees of oiling. Oil disposal on sand and vegetated sand dunes was shown in experiments by Webb (1988) to have little deleterious effects on the existing vegetation or on the recolonization of the oiled sands by plants. However, other studies have documented toxic effects of oil on barrier beach vegetation (Ko and Day, 2004). The depth of oiling would be variable, based on the wave environment and sediment source at a particular beach head. Layering of oil and sand could occur if it was not cleaned before another tidal cycle. However, most areas of oiling are expected to be light, and sand removal during cleanup activities should be minimized. The severity of oiling dictates the appropriate cleanup method to be utilized (refer to **Table B-4**).

In areas designated as natural wilderness areas (e.g., Breton National Wildlife Refuge and Gulf Islands National Seashore), land managers may require little to no disruption of the natural system. In these environments, it is preferred to let the oil degrade naturally without aggressive and intrusive cleanup procedures. Manual rather than mechanized removal techniques would be used in these areas and only if heavy oiling has occurred. Thus, these areas may not be treated as thoroughly as other shorelines. Oil would remain in place longer, weathering gradually while continuing to contaminate habitat, though mechanical disturbance would be minimized.

Once oil has reached the beaches and barrier islands and becomes buried or sequestered, it becomes difficult to treat. During wave events when the islands and beaches erode, the oil can become remobilized and transported. Thus, the fate of oil is not as simple as either reaching land, becoming sequestered, or being treated; but, it must be considered in terms of a continuing process of sequestration, remobilization, and transport.

For spilled oil to move onto beaches or across dunes, strong southerly winds must persist for an extended time prior to or immediately after the spill to elevate water levels. Strong winds, however, could reduce the impact severity at a landfall site by accelerating the processes of oil-slick dispersal, spill spreading, and oil weathering.

Bik et al. (2012) found that, despite the disappearance of visible surface oil on heavily oiled Gulf beaches impacted by the *Macondo* well blowout and spill, microbial communities showed significant changes in community structure, with a decrease in diversity and a shift toward dominance by fungal taxa, particularly known hydrocarbon-degrading genera. Likewise, nematode communities showed decreased diversity and increased dominance by predatory and scavenger taxa alongside an increased abundance of juveniles.

Due to the distance of beaches from deepwater blowouts and the combination of weathering and dispersant treatment of the oil offshore, the toxicity and quantity of the oil reaching shore should be greatly reduced, thereby minimizing the chances of irreversible damage to the impacted areas. A blowout in shallower waters near shore may have equal or greater impacts because of a shorter period of weathering and dispersion prior to shoreline contact, even though a smaller volume of spilled oil would be expected.

Vessel traffic in close proximity to barrier islands has been shown to move considerably more bottom sediment than tidal currents, thus increasing coastal and barrier island erosion rates. If staging areas for cleanup of a catastrophic spill are in close proximity to these islands, recovery time of the barrier islands could be greatly extended because of the large number of response vessels.

Phase 4—Post-Spill, Long-Term Recovery and Response

Oil or its components that remain in the sand after cleanup may be (1) released periodically when storms and high tides resuspend or flush beach sediments, (2) decomposed by biological activity, or (3) volatilized and dispersed. While it is assumed that the majority of spilled oil would be dissipated offshore within 1-2 months (depending on season and temperature) of stopping the flow, oil has the potential to persist in the environment long after a spill event. For example on sandy beaches, oil can sink deep into the sediments. As stranded oil weathers, some oil may become buried through natural beach processes and appear as surface residual balls (SRBs; <10 cm [4 in]) or as surface residual patties (SRPs;

10 cm to 1 m [4 in to 3 ft]) (**Table B-4**). Such balls continue to provide a source of contamination with accompanying toxic effects.

The cleanup impacts of a catastrophic spill could result in short-term (up to 2 years) adjustments in beach profiles and configurations as a result of sand removal and disturbance during cleanup operations. Some oil contact to lower areas of sand dunes is expected. This contact would not result in significant destabilization of the dunes. The long-term stressors to barrier beach communities caused by the physical effects and chemical toxicity of an oil spill may lead to decreased primary production, plant dieback, and hence, further erosion (Ko and Day, 2004).

The protection once afforded to inland marshes by coastal barrier beaches has been greatly reduced because of decreased elevations and the continued effect of subsidence, sea-level rise, and saltwater intrusion. A catastrophic spill has the potential to contribute to this reduction through increased erosion as a result of plant dieback and cleanup efforts.

Overall Summary and Conclusion (Phases 1-4)

As a result of a catastrophic spill, many of the barrier islands and beaches would receive varying degrees of oiling. However, most areas of oiling are expected to be lightly oiled, and sand removal during cleanup activities should be minimal. The long-term stressors to barrier beach communities caused by the physical effects and chemical toxicity of an oil spill may lead to decreased primary production, plant dieback, and hence, further erosion.

B.3.1.4. Wetlands

Phase 1—Initial Event

There would likely be no adverse impacts to wetlands as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because these resources would not be contacted until the oil reached the shoreline.

Phase 2—Offshore Spill

There would likely be no adverse impacts to wetlands as a result of the events and the potential impact-producing factors that could occur throughout Phase 2 of a catastrophic spill event because these resources would not be contacted until the oil reached the shoreline.

Phase 3—Onshore Contact

Coastal wetland habitats in the Gulf of Mexico occur as bands around waterways; broad expanses of saline, brackish, and freshwater marshes; mud and sand flats; and forested wetlands of cypress-tupelo swamps and bottomland hardwoods. Offshore oil spills would have a low probability of contacting and damaging any wetlands along the Gulf Coast, except in the case of a catastrophic event. This is because of the distance of the spill to the coast, the likely weathered condition of oil (through evaporation, dilution, and biodegradation) should it reach the coast, and because wetlands are generally protected by barrier islands, peninsulas, sand spits, and offshore currents.

While a catastrophic spill from a shallow-water blowout is expected to be lower in volume than a deepwater blowout, a potential shallow-water site could be closer to shore, allowing less time for oil to be weathered, dispersed, and recovered before it impacted coastal resources. A spill from a catastrophic blowout could oil a few to several hundred acres of wetlands depending on the depth of inland penetration (Burdeau and Collins, 2010). This would vary from moderate to heavy oiling. One study of the impacts of the *Deepwater Horizon* explosion, oil spill, and response to salt marshes in Louisiana estimated the area affected to be between 350 and 400 km² (135 and 154 mi²) (Mishra et al., 2012). Further detail on this catastrophic OSRA run is contained in **Appendix C**.

The NOAA Environmental Sensitivity Index (ESI) ranks shorelines according to their sensitivity to oil, the natural persistence of oil, and the expected ease of cleanup after an oil spill. These factors cause oil to persist in coastal and estuarine areas (USDOI, MMS, 2010). According to the ESI, the most sensitive shoreline types (i.e., sheltered tidal flats, vegetated low banks, salt/brackish-water marshes,

freshwater marshes/swamps, and scrub-shrub wetlands) tend to accumulate oil and are difficult to clean, thus causing oil to persist in these coastal and estuarine areas (USDOI, MMS, 2010).

In the case of catastrophic spills in the GOM, preemptive oil-response strategies would be initiated and include the deployment of oil booms, skimmer ships, and barge barriers to protect the beaches and adjacent wetlands. Boom deployment must also include plans for monitoring and maintaining the protective boom systems to assure that these systems are installed and functioning properly and that they are not damaging the wetlands they are trying to protect. In most cases, the beach face would take the most oil; however, in areas where the marsh is immediately adjacent to the beach face or embayments, or in the case of small to severe storms, marshes would be oiled. For example, in Alabama, Mississippi, and Florida, severe weather could push oil into the tidal pools and back beach areas that support tidal marsh vegetation.

The primary factors that affect vegetation responses to oil are toxicity of the oil and extent of plant coverage, amount of contact with and penetration of the soil, plant species affected, oiling frequency, season, and cleanup activities (Mendelssohn et al., 2012). Previous studies of other large spills have shown that, when oil has a short residence time in the marsh and it is not incorporated into the sediments, the marsh vegetation has a high probability of survival, even though aboveground die-off of marsh vegetation may occur (Lin et al., 2002). However, if re-oiling occurs after the new shoots from an initial oiling are produced, such that the new shoots are killed, then the marsh plants may not have enough stored energy to produce a second round of new shoots. Other studies noted the utilization of dispersants in the proper dosages results in a reduction in marsh damage from oiling (Lin and Mendelssohn, 2009). The works of several investigators (Webb et al., 1981 and 1985; Alexander and Webb, 1983 and 1987; Lytle, 1975; Delaune et al., 1979; Fischel et al., 1989) evaluated the effects of potential spills to area wetlands. For wetlands along the central Louisiana coast, the critical oil concentration is assumed to be 0.025 gallons per ft² (1.0 liter per m^2) of marsh. Concentrations less than this may cause diebacks for one growing season or less, depending upon the concentration and the season during which contact occurs. The duration and magnitude of a spill resulting from a catastrophic blowout could result in concentrations above this critical level and would result in longer term effects to wetland vegetation, including some plant mortality and loss of land.

Due to the distance of deep water from shore, the possibility of a spill from a deepwater blowout reaching coastal wetlands with the toxicity to significantly impact the coastal wetlands is low because of the response procedures implemented during a catastrophic spill. (It is assumed that oil would reach shore within 2-4 weeks.) Therefore, a spill from a shallow-water blowout is more likely to contribute to wetland damage. However, for the few deepwater areas that are located closer to shore, such as in the Mississippi Canyon Area, the amount of time before shoreline contact could occur could be estimated to be the same as the estimate given for the shallow-water scenario, i.e., 1-3 weeks.

Offshore skimming, burning, and dispersal treatments for the oil near the spill site would result in capture, detoxification, and dilution of the majority of oil spilled. The utilization of nearshore booming protection for beaches and wetlands could also help to reduce oiling of these resources, if done correctly. Booms deployed adjacent to marsh shorelines can be lifted by wave action onto marsh vegetation, resulting in plant mortality under the displaced booms. The activity of oil cleanup can result in additional impacts on wetlands if not done properly. During the *Deepwater Horizon* explosion, oil spill, and response, aggressive onshore and marsh cleanup methods (such as the removal by mechanized equipment, in-situ burning, etc.) were not extensively utilized. The severity of oiling is the main factor that dictates the appropriate marsh cleanup method to be utilized (refer to **Table B-4**).

Phase 4—Post-Spill, Long-Term Recovery and Response

Wetlands serve a number of important ecological functions. For example, Louisiana's coastal wetlands support more than two-thirds of the wintering waterfowl population of the Mississippi Flyway (State of Louisiana, Dept. of Wildlife and Fisheries, 2012). Therefore, loss of wetlands would also impact a significant portion of the waterfowl population. Another important ecological function of wetlands is their use as a nursery for estuarine-dependent species of fish and shellfish. Wetland loss would reduce the available nursery habitat.

The duration and magnitude of a spill resulting from a catastrophic blowout could result in high concentrations of oil that would result in long-term effects to wetland vegetation, including some plant mortality and loss of land. Silliman et al. (2012) found that after the *Macondo* well blowout and spill, oil

coverage of Louisiana salt marshes was primarily concentrated on their seaward edges. Oil-driven plant death on the edges of these marshes more than doubled the rates of shoreline erosion, further driving marsh platform loss that is likely to be permanent. Eighteen months after the *Macondo* well blowout and spill, in previously oiled, noneroded areas, marsh grasses had largely recovered, and the elevated shoreline retreat rates observed at oiled sites had decreased to levels at reference marsh sites. Studies of impacted wetlands have demonstrated that wetlands can recover from the impacts of oil spills, but the recovery process varies from extremely slow in mangrove swamps (Burns et al., 1993 and 1994) to relatively rapid in grass-dominated marshes subject to in-situ burning of oil (Baustian et al., 2010).

Land loss caused by the oiling of wetlands would add to continuing impacts of other factors, such as hurricanes, subsidence, saltwater intrusion, and sea-level rise. The wetlands along the Gulf Coast have already been severely damaged by the 2005 and 2008 hurricane seasons, leaving the mainland less protected. It was estimated in 2000 that coastal Louisiana would continue to lose land at a rate of approximately 2,672 hectares/year (10 mi²/year) over the next 50 years. Further, it was estimated that an additional net loss of 132,794 hectares (512 mi²) may occur by 2050, which is almost 10 percent of Louisiana's remaining coastal wetlands (Barras et al., 2003). Barras (2006) indicated an additional 562 km² (217 mi²) of land lost during the 2005 hurricane season. A catastrophic spill occurring nearshore would contribute further to this landloss. Following Hurricanes Katrina and Rita, another series of hurricanes (Gustav and Ike) made landfall along the Louisiana and Texas coasts in September 2008. Hurricane Gustav made landfall as a Category 2 storm near Cocodrie, Louisiana, pushing large surges of saline water into the fresh marshes and coastal swamps of Louisiana from Grand Isle westward. While Hurricane Gustav did not impact the quantity of wetlands that Hurricanes Katrina and Rita impacted, it did have a severe and continuing effect on the coastal barrier islands and the wetlands associated with backshore (back of the island) and foreshore (front of the island). While Hurricane Gustav affected the eastern portion of the Louisiana coast closer to Grand Isle and Houma, Hurricane Ike concentrated on Louisiana's western coast. The Texas coast received the brunt of Hurricane Ike where it made landfall slightly east of Galveston. The storm surge heavily eroded the dune systems and significantly lowered the beach elevations along the eastern portion of the Texas coast near Galveston and the Bolivar Peninsula. The erosion and wash-over associated with Hurricane Ike's tidal surge breeched beach ridges and opened the inland freshwater ponds and their associated wetlands to the sea. As a result of the four successive storms, the Louisiana and Texas coasts have lost protective elevations, barrier islands, and wetlands, and they now have the potential for transitioning to a less productive salt-marsh system in areas where fresh-marsh systems once existed. In addition, the loss of these protective elevations has increased the vulnerability of coastal wetlands to catastrophic oil-spill events.

A poorly executed oil cleanup can result in additional impacts. Aggressive onshore and marsh cleanup methods (such as removal by mechanized equipment, in-situ burning, marsh cutting, and foot entry into the marsh for manual removal) probably would not be initiated until the oil spill has been stopped. Depending on the marsh remediation methods used, further impacts to the wetlands may occur from cleanup activities. Boat traffic in marsh areas from the thousands of response vessels associated with a catastrophic spill would produce an incremental increase in erosion rates, sediment resuspension, and turbidity (i.e., an adverse but not significant impact to coastal wetland and seagrass habitats).

Overall Summary and Conclusion (Phases 1-4)

A spill from a catastrophic blowout could impact a few to several hundred square kilometers of wetlands depending on the depth of inland penetration (Burdeau and Collins, 2010; Mishra et al., 2012). This would vary from moderate to heavy oiling. Impacts to wetlands would vary according to the severity of the oiling. The duration and magnitude of the spill could result in severe oiling of wetlands in some areas, causing long-term effects to wetland vegetation, including some plant mortality and loss of land.

B.3.1.5. Seagrass Communities

Phase 1—Initial Event

There would likely be no adverse impacts to submerged vegetation as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because of the likely distance from the spill event to the nearest submerged vegetation beds.

Phase 2—Offshore Spill

There would likely be no adverse impacts to submerged vegetation as a result of the events and the potential impact-producing factors that could occur throughout Phase 2 of a catastrophic spill because of the likely distance from the spill event to the nearest submerged vegetation beds.

Phase 3—Onshore Contact

According to the most recent and comprehensive data available, approximately 500,000 hectares (1.25 million acres; 505,857 hectares) of submerged seagrass beds are estimated to exist in exposed, shallow coastal waters and embayments of the northern Gulf of Mexico, and over 80 percent of this area is in Florida Bay and Florida coastal waters (calculated from Handley et al., 2007). Submerged vegetation distribution and composition depend on an interrelationship among a number of environmental factors that include water temperature, depth, turbidity, salinity, turbulence, and substrate suitability (Kemp, 1989; Onuf, 1996; Short et al., 2001). Marine seagrass beds generally occur in shallow, relatively clear, protected waters with predominantly sand bottoms (Short et al., 2001). Freshwater submerged aquatic vegetation (SAV) species occur in the low-salinity waters of coastal estuaries (Castellanos and Rozas, 2001). Seagrasses and freshwater SAVs provide important nursery and permanent habitat for sunfish, killifish, immature shrimp, crabs, drum, trout, flounder, and several other nekton species, and they provide a food source for species of wintering waterfowl and megaherbivores (Rozas and Odum, 1988; Rooker et al., 1998; Castellanos and Rozas, 2001; Heck et al., 2003; Orth et al., 2006). Further detail on this catastrophic OSRA run is contained in **Appendix C**.

If oil comes into areas with submerged beds, increased water turbulence from waves, storms, or vessel traffic could break apart the surface oil sheen and disperse some oil into the water column or mix oil with sediments that would settle and coat an entire plant. Coating of the plat from the oil and sediment mixture would cause reduced chlorophyll production and could lead to a decrease in vegetation (Teal and Howarth, 1984; Burns et al., 1994; Erftemeijer and Lewis, 2006). This coating situation also happens when oil is treated with dispersants because the dispersants break down the oil and it sinks into the water column (Thorhaug et al., 1986; Runcie et al., 2004). However, as reviewed in Runcie et al. (2004), oil mixed with dispersants has shown an array of effects on seagrass depending on the species and dispersant used. With a greater distance from shore, there is a greater chance of the oil being weathered by natural and mechanical processes by the time it reaches the nearshore habitat.

Depending on the species and environmental factors (e.g., temperature and wave action), seagrasses may exhibit minimal impacts, such as localized loss of pigmentation, from a spill; however, communities residing within the beds could accrue greater negative outcomes (den Hartog and Jacobs, 1980; Jackson et al., 1989; Kenworthy et al., 1993; Taylor et al., 2006). Community effects could range from either direct mortality due to smothering or indirect mortality from loss of food sources and habitat to a decrease in ecological performance of the entire system depending on the severity and duration of the spill event (Zieman et al., 1984).

Prevention and cleanup efforts could also affect the health of submerged vegetation communities (Zieman et al., 1984). Many physical prevention methods such as booms, barrier berms, and diversions can alter hydrology, specifically changing salinity and water clarity. These changes would harm certain species of submerged vegetation because they are tolerant to specific salinities and light levels (Zieman et al., 1984; Kenworthy and Fonseca, 1996; Frazer et al., 2006). With cleanup, there is increased boat and human traffic in these sensitive areas that generally are protected from this degree of human disturbance prior to the response. Increased vessel traffic would lead to elevated water turbidity and increased propeller scarring. While the elevated levels of water turbidity from vessels would be short-term and the possible damages from propellers could be longer, both events would be localized during the prevention and cleanup efforts (Zieman, 1976; Dawes et al., 1997).

Phase 4—Post-Spill, Long-Term Recovery and Response

According to the most recent and comprehensive data available, approximately 500,000 hectares (1.25 million acres; 505,857 hectares) of submerged seagrass beds are estimated to exist in exposed, shallow coastal waters and embayments of the northern Gulf of Mexico, and over 80 percent of this area is in Florida Bay and Florida coastal waters (calculated from Handley et al., 2007). Submerged vegetation distribution and composition depend on an interrelationship among a number of environmental

factors that include water temperature, depth, turbidity, salinity, turbulence, and substrate suitability (Kemp, 1989; Onuf, 1996; Short et al., 2001). Seagrasses and freshwater SAVs provide important nursery and permanent habitat for sunfish, killifish, immature shrimp, crabs, drum, trout, flounder, and several other nekton species, and they provide a food source for species of wintering waterfowl and megaherbivores (Rozas and Odum, 1988; Rooker et al., 1998; Castellanos and Rozas, 2001; Heck et al., 2003; Orth et al., 2006).

A source of potential long-term impacts to submerged beds from a catastrophic spill event is the possibility of buried or sequestered oil becoming resuspended after a disturbance, which would have similar effects as the original oiling event. This could occur in the event of hurricane impacts, which exacerbate the problem with numerous other short-terms stresses, such as turbidity, abrasion, breakage, uprooting SAV and seagrasses, and the alteration of bottom profiles and hydrology. Because different species have different levels of sensitivity to oil, it is difficult to compare studies and extrapolate what variables caused the documented differences in vegetation and community health (Thorhaug et al., 1986; Runcie et al., 2004). In general, studied seagrasses did not show significant negative effects from an oil spill (den Hartog and Jacobs, 1980; Kenworthy et al., 1993; Taylor et al., 2006 and 2007).

If bays and estuaries accrue oil, there is an assumption that there would be a decrease in seagrass cover and negative community impacts. Submerged vegetation serves important ecological functions. For example, seagrasses and freshwater SAVs provide important habitat and are a food source for a wide range of species in multiple life history stages (Castellanos and Rozas, 2001; Short and Coles, 2001; Caldwell, 2003). Therefore, loss of submerged vegetation would adversely impact these species with a loss of valuable habitat and food.

Overall Summary and Conclusion (Phases 1-4)

Because of the likely distance of an initial catastrophic spill event to submerged vegetation communities, there would be no adverse impacts to submerged vegetation resulting from the initial event (Phase 1). Also, with regards to an offshore spill event, there would likely be no adverse impacts to submerged vegetation before the spill reaches shore (Phase 2). An estimated probability of oil contacting its coastline from the CPA example OSRA run can be found in Appendix C (Phase 3). It is assumed when these coastlines are contacted with oil, all associated habitat are considered oiled. If oil comes into areas with submerged beds, oil mixed with sediments or with dispersants could settle and coat an entire plant and could cause reduced chlorophyll production and could lead to a decrease in vegetation. Depending on the species and environmental factors (e.g., temperature and wave action), seagrasses may exhibit minimal impacts, such as localized loss of pigmentation, from an oil spill; however, communities residing within the beds could accrue greater negative outcomes. Increased vessel traffic from cleanup efforts would lead to elevated water turbidity and increased propeller scarring. A source of potential long-term impacts to submerged beds from a catastrophic spill event is the possibility of buried or sequestered oil becoming resuspended after a disturbance, which would have similar effects as the original oiling event (Phase 4). While there are impacts on submerged vegetation from an oiling event, the probabilities of an event to occur and contact coastlines are generally low and any impacts that can occur depend on a variety of factors (e.g., plant species, oil type, current environmental conditions, etc.). In general, studied seagrasses did not show significant negative effects from a spill (den Hartog and Jacobs, 1980; Kenworthy et al., 1993; Taylor et al., 2006 and 2007).

B.3.1.6. Live Bottoms (Pinnacle Trend and Low Relief)

The Gulf of Mexico has hard bottom features upon which encrusting and epibenthic organisms attach on the continental shelf in water depths less than 300 m (984 ft). Live bottom features occur in the northeastern portion of the CPA and in the EPA. The Pinnacle Trend is located in the northeastern portion of the central Gulf of Mexico at the outer edge of the Mississippi-Alabama shelf between the Mississippi River and De Soto Canyon. Live bottom (Pinnacle Trend) features are defined in NTL 2009-G39 as "small, isolated, low to moderate relief carbonate reefal features or outcrops of unknown origin or hard substrates exposed by erosion that provide area for the growth of sessile invertebrates and attract large numbers of fish." Fish are attracted to outcrops that provide hard substrate for sessile invertebrates to attach. BOEM does not allow bottom-disturbing activities to occur within 30 m (98 ft) of any hard bottoms/pinnacles in 74 lease blocks in the CPA (each block is typically 3 mi x 3 mi). Live bottom (low relief) features are defined in NTL 2009-G39 as "seagrass communities; areas that contain biological assemblages consisting of sessile invertebrates living upon and attached to naturally occurring hard or rocky formations with rough, broken, or smooth topography; and areas where hard substrate and vertical relief may favor the accumulation of turtles, fishes, or other fauna". These features also include the reef communities like those found on the Florida Escarpment. BOEM has stipulations to protect these features from impacts, including bottom-disturbing activity. This chapter discusses the hard substrate, as seagrasses are covered in **Chapter B.3.1.5**.

Phase 1—Initial Event

A blowout from an oil well could result in a catastrophic spill event. A catastrophic blowout would result in released oil rapidly rising to the sea surface because all known reserves in the GOM have specific gravity characteristics that would preclude oil from sinking immediately after release at a blowout site. The oil would surface almost directly over the source location. However, if the oil is ejected under high pressure, micro-droplets of oil may form and become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). The upward movement of the oil may be reduced if methane mixed with the oil is dissolved into the water column, reducing the oil's buoyancy (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). Dispersed oil in the water column begins to biodegrade and may flocculate with particulate matter, promoting sinking of the particles. Subsea plumes or sinking oil on particulates may contact live bottom features.

A catastrophic blowout outside the well casing and below the seafloor or at the seafloor-water interface could resuspend large quantities of bottom sediments and create a large crater, destroying many organisms within a few hundred meters of the wellhead. Some fine sediment could travel up to a few thousand meters before redeposition, negatively impacting a localized area of benthic communities. If a blowout were to occur close enough to a live bottom feature, suspended sediment may impact the organisms living on the feature.

A catastrophic blowout that occurs above the seabed (at the rig, along the riser between the seafloor and sea surface, or through leak paths on the BOP/wellhead) would not disturb the sediment.

The use of subsea dispersants would increase the exposure of offshore benthic habitats to dispersed oil droplets in the water column, as well as the chemicals used in the dispersants. The use of subsea dispersants is not likely to occur for seafloor blowouts outside the well casing.

Impacts to Live Bottom Features

Impacts that occur to benthic organisms on live bottom features as a result of a blowout would depend on the type of blowout, distance from the blowout, relief of the biological feature, and surrounding physical characteristics of the environment (e.g., turbidity). The distancing of bottom-disturbing activities from Pinnacle and live bottom, low-relief features helps to prevent blowouts in the immediate vicinity of a live bottom feature or its associated biota. Much of the oil released from a blowout would rise to the sea surface, therefore minimizing the impact to benthic communities by direct oil exposure. However, small droplets of oil that are entrained in the water column for extended periods of time may migrate into areas that have live bottom features. Although these small oil droplets will not sink themselves, they may attach to suspended particles in the water column and then be deposited on the seafloor (McAuliffe et al., 1975). The resultant long-term impacts, such as reduced recruitment success, reduced growth, and reduced coral or other epibenthic cover, as a result of impaired recruitment, are discussed in Phase 4 ("Post-Spill, Long-Term Recovery and Response"). Also, if the blowout were to occur beneath the seabed, suspension and subsequent deposition of disturbed sediment may smother localized areas of live bottom communities.

Following a catastrophic, subsurface blowout, benthic communities on a live bottoms exposed to large amounts of resuspended and then deposited sediments could be subject to sediment suffocation, exposure to resuspended toxic contaminants and to reduced light availability. Impacts to fauna found on hard bottoms as a result of sedimentation would vary based on species, the height to which the organism grows, degree of sedimentation, length of exposure, burial depth, and the organism's ability to clear the sediment. Impacts may range from sublethal effects (such as reduced or slower growth, alteration in

B-30

form, and reduced recruitment and productivity) to suffocation and death (Rogers, 1990; Fucik et al., 1980).

The initial blowout impact would be greatest to communities located in clear waters that experience heavy sedimentation. The most sensitive organisms are typically elevated above soft sediments, making them less likely to be buried, and it is unlikely that corals would experience heavy sedimentation because they are located within Live Bottom (Low Relief) Stipulation blocks that distance bottom-disturbing activity from the features. None of the Live Bottom Stipulation blocks were included in the current proposed lease sale, farther distancing oil and gas activity from live bottoms. In addition, BOEM conducts case-by-case reviews of plans submitted by operators to ensure that the proposed activity will not impact sensitive seafloor features. It is possible, however, for some live bottoms to experience some turbidity or sedimentation impacts from a blowout if they are downstream of a current transporting sediment. Corals may experience discoloration or bleaching as a result of sediment exposure, although recovery from such exposure may occur within 1 month (Wesseling et al., 1999).

Initial impacts would be much less extreme in a turbid environment (Rogers, 1990). For example, the Pinnacle Trend community exists in a relatively turbid environment, starting just 65 km (37 mi) east of the mouth of the Mississippi River and trending to the northeast, and many low-relief live bottoms are frequently covered with a thin sand veneer that moves with waves and bottom currents, exposing and covering up areas with movement (Phillips et al., 1990; Gittings et al., 1992). Sediment from a blowout, if it occurred nearby, may have a reduced impact on these communities compared with an open-water reef community, as these organisms are more tolerant of suspended sediment (Gittings et al., 1992). Many of the organisms that predominate in this community also grow tall enough to withstand the sedimentation that results from their turbid environment or have flexible structures that enable the passive removal of sediments (Gittings et al., 1992). Those organisms that have a lesser relief could experience sedimentation, abrasion, and suffocation. However, many organisms present in the lower relief, live bottom habitat are motile, can burrow in the sediment, or have mechanisms for dealing with turbidity and can be tolerant of short-term high turbidity events. For example, bivalves can reduce their filtration rates if the suspended sediment concentrations become elevated and can reject excess sediment through pseudofeces (Clarke and Wilber, 2000). Many crustaceans are able to tolerate high levels of suspended sediment; for example, crabs and shrimp spend a portion of their lives in estuaries and nearshore waters that are turbid (Wilber et al., 2005). These organisms are also able to move away from turbid areas that have sediment concentrations that become too high (Clarke and Wilber, 2000; Wilber et al., 2005). Oysters, on the other hand, are not able to move away from turbidity, but they are tolerant of this environmental factor as they tend to live near the mouths of rivers that deposit sediment into their habitat (Wilber et al., 2005). Many of these organisms can also rapidly repopulate an area affected by sedimentation (Fucik et al., 1980).

A portion or the entire rig may sink to the seafloor as a result of a blowout. The benthic features and communities upon which the rig settles would be destroyed or smothered. Encrusting organisms would be crushed by a rig if it lands on a live bottom feature. A settling rig may suspend sediments, which may smother nearby benthic communities if the sediment is redeposited on sensitive features. The habitats beneath the rig may be permanently lost; however, the rig itself may become an artificial reef upon which epibenthic organisms may settle. The surrounding benthic communities that were smothered by sediment would repopulate from nearby stocks through spawning recruitment and immigration if the hard substrate upon which they live was not physically destroyed. Destruction of a live bottom community by a sinking rig is highly unlikely because BOEM requires infrastructure to be distanced from live bottoms.

Phase 2—Offshore Spill

A spill from a shallow-water blowout could impact benthic communities on the continental shelf because of the blowout's proximity to these habitats. The scenario (**Table B-4**) for a catastrophic spill on the continental shelf is assumed to last 2-5 months and to release 30,000 bbl per day. A total volume of 0.9-3.0 MMbbl of South Louisiana midrange paraffinic sweet crude oil could be released, which will float (API° >10). An anticipated 35,000 bbl of dispersant may be applied to the surface waters.

A spill from a deepwater blowout could also impact shelf communities if surface oil is transported to these areas. The scenario (**Table B-4**) for a catastrophic spill in deep water is assumed to last 4-6 months and to release 30,000-60,000 bbl per day. A total volume of 2.7-7.2 MMbbl of South Louisiana midrange paraffinic sweet crude oil will be released, which will float (API° >10). Oil properties may change as it

passes up the well and through the water column, and it may become emulsified. An anticipated 33,000 bbl of dispersant may be applied to the surface waters and 16,500 bbl may be applied subsea. Weathering and dilution of the oil will also occur as it travels from its release point. It is unlikely that a subsurface plume from a deepwater blowout would impact shelf communities. The oil is anticipated to remain in deep water and to be directed by water currents in the deep water. These currents do not typically transit from deep water up onto the shelf (Pond and Pickard, 1983; Inoue et al., 2008).

Impacts to Live Bottom Features

Impacts from Surface Oil

Sensitive live bottom communities can flourish on hard bottoms in the Gulf of Mexico. The eastern Gulf of Mexico contains scattered, low-relief live bottoms, including areas of flat limestone shelf rock and the Pinnacle Trend area, located on the Mississippi Alabama continental shelf, which includes lowand high-relief features that are 60-120 m (197-394 ft) below the sea surface. The depth at which Pinnacles and most live bottom, low-relief features flourish below the sea surface helps to protect these habitats from a surface oil spill. Rough seas may mix the oil into subsurface water layers, where it may impact sessile biota. The longer the seas are rough, the greater the amount of oil from a surface slick would be mixed into the water column. Measurable amounts of oil have been documented to mix from the surface down to a 10-m (33-ft) depth, although modeling exercises have indicated such oil may reach a depth of 20 m (66 ft). At this depth, however, the oil is found at concentrations several orders of magnitude lower than the amount shown to have an effect on corals and other benthic organisms (Lange, 1985; McAuliffe et al., 1975 and 1981; Knap et al., 1985; Scarlett et al., 2005; Hemmer et al., 2010; George-Ares and Clark, 2000). Low-relief, live bottom habitats located in shallow coastal water may be at greater risk of surface oil mixing to the depth where their active growth occurs; however, because oil and gas activities currently take place far from the coastlines where nearshore live bottoms are located, the surface oil will be well dispersed and diluted by the time it reaches waters above the shallow live bottoms. Further detail on this catastrophic OSRA run is contained in Appendix C.

Impacts from Subsurface Oil

The presence of a subsurface oil plume on the continental shelf from a shallow-water blowout may affect benthic communities on live bottom features. A majority of oil released is expected to rise rapidly to the sea surface above the release point because of the specific gravity characteristics of the oil reserves in the GOM, thus not impacting sensitive benthic communities. If oil is ejected under high pressure, oil droplets may become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). The upward movement of the oil may be reduced if methane mixed with the oil is dissolved into the water column, reducing the oil's buoyancy (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). Dispersed oil in the water column begins to biodegrade and may flocculate with particulate matter, promoting sinking of the particles. Subsurface plumes generated by high-pressure dissolution of oil may come in contact with live bottom habitats. A sustained spill would continuously create surface slicks and possibly subsurface spill plumes. Some of the oil in the water column will become diluted or evaporated over time, reducing any localized transport to the seafloor (Vandermeulen, 1982). In addition, microbial degradation of the oil occurs in the water column so that the oil would be less toxic as it travels from the source (Hazen et al., 2010). However, a sustained spill may result in elevated exposure concentrations to benthic communities if the plume reaches them. The longer the spill takes to stop, the longer the exposure time and the higher the exposure concentration may be.

Live bottom, low-relief features have a greater chance of being impacted by subsea plumes than some Pinnacle features because currents may sweep around the larger features, as they do with topographic features (Rezak et al., 1983; McGrail, 1982). The lower relief live bottoms (including low-relief features in the Pinnacle Trend) may fall in the path of the plume because the feature is not large enough to divert a current. Low-level exposures of organisms to oil from a subsea plume may result in chronic or temporary impacts. For example, feeding activity or reproductive ability may be reduced when coral is exposed to low levels of oil; however, impacts may be temporary or unable to be measured over time. Experiments indicated that oil exposure reduced the normal feeding activity of coral, and oiled reefs produced smaller

B-32

gonads than unoiled reefs, resulting in reproductive stress (Lewis, 1971; Guzmán and Holst, 1993). In addition, photosynthesis and growth may be reduced with oil exposure, and petroleum may be incorporated into coral tissue (Cook and Knap, 1983; Dodge et al., 1984; Burns and Knap, 1989; Knap et al., 1982; Kennedy et al., 1992). Sublethal responses of other marine invertebrates on live bottoms may result in population level changes (Suchanek, 1993) at concentrations as low as 1-10 ppb (Hyland and Schneider, 1976). Sublethal impacts may include reduced feeding rates, reduced ability to detect food, erratic movement, ciliary inhibition, tentacle retraction, reduced movement, decreased aggression, and altered respiration (Scarlett et al., 2005; Suchanek, 1993). Embryonic life stages of benthic organisms may experience toxic effects at lower levels than adult stages (Fucik et al., 1995; Suchanek, 1993; Beiras and Saco-Álvarez, 2006; Byrne, 1989).

It is unlikely that a subsurface plume from a deepwater blowout would impact live bottom shelf communities. The oil is anticipated to remain in deep water and be directed by water currents in the deep water. These currents do not typically transit from deep water up onto the shelf (Pond and Pickard, 1983; Inoue et al., 2008).

Impacts from Dispersed Oil

If dispersants are used at the sea surface, oil may mix into the water column. If applied subsea, they can travel with currents through the water, and they may contact or settle on sensitive features. Note that, as indicated above, a deepwater plume would not travel onto the continental shelf, but a plume formed on the continental shelf could impact live bottom features. If near the source, the dispersed oil could be concentrated enough to harm the community. If the oil remains suspended for a longer period of time, it would be more dispersed and present at lower concentrations. Reports on dispersant usage on surface oil indicate that a majority of the dispersed oil remains in the top 10 m (33 ft) of the water column, with 60 percent of the oil in the top 2 m (6 ft) (McAuliffe et al., 1981a). Dispersant usage also reduces the oil's ability to stick to particles in the water column, minimizing oil adhering to sediments and traveling to the seafloor (McAuliffe et al., 1981a). However, after the *Deepwater Horizon* oil spill, there was the formation of a dense layer of marine snow that aggregated and collected everything that it came in contact with it as it fell through the water column and settled on the seafloor (Passow et al., 2012).

Dispersed oil reaching live bottoms in the Gulf of Mexico would be expected to occur at very low concentrations (<1 part per million [ppm]) (McAuliffe et al., 1981a). Such concentrations would not be life threatening to larval or adult stages at this depth below the sea surface based on experiments conducted with benthic organisms. Any dispersed oil in the water column that comes in contact with live bottoms may evoke short-term negative responses by the organisms (Wyers et al., 1986; Cook and Knap, 1983; Dodge et al., 1984; Scarlett et al., 2005; Renzoni, 1973).

The impact of dispersants on benthic organisms is dependent on the dispersant used, length of exposure, and the physical barriers the organism has to protect itself from the dispersant. Organisms with shells appear to be more tolerant of dispersants than those with only a tissue barrier (Scarlett et al., 2005). In addition, organisms that produce mucus, such as coral, have an elevated tolerance for oil exposure (Mitchell and Chet, 1975; Ducklow and Mitchell, 1979). Concentrations of 100 ppm and 1,000 ppm oil plus dispersant in a ratio of 4:1 were necessary for oyster and mussel fertilization and development to become reduced when the larvae was exposed to the mixture (Renzoni, 1973). After 48 hours of exposure to dispersants, the blue mussel (*Mytilus edulis*) died at dispersant concentrations of 250 ppm, although reduced feeding rates were observed at 50 ppm (Scarlett et al., 2005). The snakelocks anemone (Anemonia viridis), which does not have a protective shell, was much more sensitive to dispersants. It retracted its tentacles and failed to respond to stimuli after 48 hours of exposure to 40 ppm dispersant (Scarlett et al., 2005). Corals exposed to dispersed oil showed mesenterial filament extrusion, extreme tissue contraction, tentacle retraction, localized tissue rupture, and reduced photosynthesis (Wyers et al., 1986; Cook and Knap, 1983). Respiratory damage to organisms does not appear to be reversible; however, if the exposure is short enough, nervous system damage may be reversed and organisms may recover (Scarlett et al., 2005). Experiments using both anemones and corals showed recovery after exposure to dispersants (Scarlett et al., 2005; Wyers et al., 1986)

Concentrations used in historical experiments are generally much higher than the exposure that would occur in the field (Renzoni, 1973; George-Ares and Clark, 2000). Although historical experiments seem to indicate that the toxicity of oil increases with the addition of the dispersant, the toxicity of the oil actually remains the same as it was when it was not dispersed, but exposure increases due to the dispersed

components of the oil (George-Ares and Clark, 2000). However, the increase of oil into the water column with the addition of dispersants is temporary, as the dispersed oil is more easily diluted with the surrounding water and biodegraded by bacteria (George-Ares and Clark, 2000). Therefore, concentrated dispersants are not anticipated to reach live bottoms, and any impacts that do occur should be sublethal and temporary.

Impacts from Oil Adhering to Sediments

BOEM's policy, described in NTL 2009-G39, prevents wells from being placed immediately adjacent to sensitive communities. In the event of a seafloor blowout, however, some oil could be carried to live bottoms as a result of oil droplets adhering to suspended particles in the water column. Oiled sediment that settles to the seafloor may affect organisms attached to hard bottom substrates. Impacts may include reduced recruitment success, reduced growth, and reduced benthic cover as a result of impaired recruitment. Experiments have shown that the presence of oil on available substrate for larval coral settlement has inhibited larval metamorphosis and larval settlement in the area. Oil exposure also increased the number of deformed polyps after metamorphosis occurred (Kushmaro et al., 1997). In addition, exposure to oiled sediment has also been shown to reduce the growth rate of clams (Dow, 1975).

The majority of organisms exposed to sedimented oil are expected to experience low-level concentrations because as oiled sediments settle to the seafloor they become widely dispersed. Many organisms on live bottoms will be able to protect themselves from low levels of oiled sediment that may settle out of the water column. Organisms with shells will not experience direct contact with the oil, and mobile organisms will be able to move away from areas where oiled sediment has accumulated. Coral may also be able to protect itself from low concentrations of sedimented oil that settles from the water column through mucus that will not only act as a barrier to protect coral from the oil in the water column but which also been shown to aid in the removal of oiled sediment on coral surfaces (Bak and Elgershuizen, 1976). In addition, because many organisms in live bottom habitats are tolerant of turbidity and sedimentation, slight addition of sediment to the area should not impact survival.

Impacts from Oil-Spill Response Activity

Oil-spill-response activity may also impact sessile benthic features. Booms anchored to the seafloor are sometimes used to control the movement of oil at the water surface. Boom anchors can physically impact sessile benthic organisms, especially when booms are moved around by waves (USDOC, NOAA, 2010d). Vessel anchorage and decontamination stations set up during response efforts may also break or kill live bottoms that have unmapped locations if anchors are set on the habitat. Injury to live bottom habitat as a result of anchor impact may result in long-lasting damage or failed recovery. Effort should be made to keep vessel anchorage areas as far from sensitive benthic features as possible to minimize impact.

Drilling muds comprised primarily of barite may be pumped into a well to stop a blowout. If a "kill" is not successful, the mud (possibly tens of thousands of barrels) may be forced out of the well and deposited on the seafloor near the well site. Any organisms beneath the extruded drilling mud would be buried. Based on stipulations as described in NTL 2009-G39, a well should be far enough away from a Pinnacle feature to prevent extruded drilling muds from smothering sensitive benthic communities. However, if drilling muds were to travel far enough or high enough in the water column to contact a sensitive community, the fluid would smother the existing community. Burial may lead to the elimination of a live bottom community.

Phase 3—Onshore Contact

There would likely be no adverse impacts to live bottom features as a result of the events and the potential impact-producing factors that could occur throughout Phase 3 of a catastrophic spill because the live bottom features are located offshore.

Phase 4—Post-Spill, Long-Term Recovery and Response

Live bottoms exposed to large amounts of resuspended sediments following a catastrophic, subsurface blowout could be subject to sediment suffocation, exposure to resuspended toxic

contaminants, and reduced light penetration. The greatest impacts would occur to communities that exist in clear water with very low turbidity, such as the live bottoms off Florida. The consequences of a blowout near one of these features could be long lasting, although the occurrence of a blowout near such sensitive communities is unlikely because of stipulations described in NTL 2009-G39, which distances bottom-disturbing activity from live bottom features. In addition, BOEM conducts case-by-case reviews of submitted plans and pipelines so that sensitive seafloor habitat is avoided. Impacts to a community in more turbid waters, such as those on the Mississippi-Alabama Shelf, would be greatly reduced, as the species are tolerant of suspended sediments, and recovery would occur quicker. Recovery time from sediment exposure would depend on the amount of sediment an organism was exposed to, if an entire population was demolished, and the extent of the loss.

Impacts may also occur from low-level or long-term oil exposure. This type of exposure has the potential to impact live bottom communities, resulting in impaired health. Long-term impacts such as reduced recruitment success, reduced growth, and reduced organism cover as a result of impaired recruitment may occur. Recovery may be fairly rapid from brief, low-level exposures, but it could be much longer if acute concentrations of oil contact organisms. Recovery time would then depend on recruitment from outside populations that were not affected by oiling.

Overall Summary and Conclusion (Phases 1-4)

A catastrophic spill on the continental shelf would have a greater impact on live bottom features than a deepwater spill. Surface oil from a deepwater spill would be weathered and diluted by the time it reaches the surface waters over live bottom features (if it ever reaches them), and it would be unlikely, except in shallow coastal waters, that it would mix to the depth of the live bottoms in concentrations that could cause toxicity. Subsea plumes formed in deep water would not travel onto the continental shelf because deep-sea currents do not travel up a slope.

A catastrophic blowout and spill on the continental shelf has a greater chance to impact live bottom features. If a blowout on the continental shelf occurs close enough to sensitive features, the organisms may be smothered by settling sediment that is displaced by the blowout. The farther a feature is from the blowout, the lower its chance of being covered with settling sediment or sediment upon which oil adhered. The distancing of oil and gas activity from live bottom features helps to prevent heavy sedimentation, as well as features being crushed by a sinking rig.

In most cases, the impacts from oil would be sublethal. Surface oil is not expected to mix to the zone of active growth, and any oil components that do reach that depth would be at sublethal concentrations. Subsea plumes may contact the live bottom features; however, because currents tend to travel around instead of over large seafloor features, the Pinnacle features should be protected from subsea plumes, while lower relief live bottoms may be impacted. The current oil and gas activity in the GOM, however, is distanced from low-relief live bottoms because no live bottom, low-relief blocks have been leased with the current proposed lease sales. Overall impacts of dispersed oil would be similar to subsea plumes. Spill response activity may impact low-relief, live bottom features if they are unmarked on nautical charts and vessels anchor on the features, but it is doubtful that a vessel would anchor on a marked Pinnacle feature.

Overall, a catastrophic spill would have a fairly low probability of impacting live bottom features because the bottom-disturbing activities of oil and gas activities are distanced from live bottom features within the Live Bottom Stipulation blocks, as described in NTL 2009-G39, and because BOEM conducts a case-by-case review of all plans to ensure that activities do not impact these seafloor features. In addition, the Live Bottom Stipulation blocks have not been leased as part of these proposed lease sales, creating farther distance between oil and gas activities and live bottoms. Also, live bottom features are protected by the limited mixing depth of surface oil compared with the depth of the live bottom features, currents sweeping around larger features, and the weathering and dispersion of oil that would occur with distance from the source as it travels toward the features. Low-relief features could have impacts from a blowout as their relief would not divert currents. In addition, the locations of these features are not all known so accidental anchor impacts may result in breakage of the features and possibly destruction. These low-relief features, however, would be protected by the regulated distance of current oil and gas activities, which increases the chance of oil becoming well dispersed before it reaches the features.
B.3.1.7. Topographic Features

The Gulf of Mexico has a series of topographic features (banks or seamounts) on the continental shelf in water depths less than 300 m (984 ft). Topographic features are isolated areas of moderate to high relief that provide habitat for hard bottom communities of high biomass and moderate diversity. These features support prolific algae, invertebrate, and fish communities, and they provide shelter and food for large numbers of commercially and recreationally important fish. There are 37 named topographic features in the Gulf of Mexico with specific BOEM protections, including the Flower Garden Banks. BOEM has created "No Activity Zones" around topographic features in order to protect these habitats from disruption by oil and gas activities. A "No Activity Zone" is a protective perimeter drawn around each feature that is associated with a specific isobath (depth contour) surrounding the feature in which structures, drilling rigs, pipelines, and anchoring are not allowed. These "No Activity Zones" are areas where activity is prohibited based on BOEM's policy. NTL 2009-G39 recommends that drilling should not occur within 152 m (500 ft) of a "No Activity Zone" of a topographic feature.

Potentially sensitive biological features (PSBFs) are features that have moderate to high relief (8 ft [2 m] or higher), provide hard surface for sessile invertebrates, and attract fish, but they are not located within the "No Activity Zone" of topographic features. These features are frequently located near topographic features. No bottom-disturbing activities that may cause impact to these features are permitted.

Phase 1—Initial Event

A blowout from an oil well could result in a catastrophic spill event. A catastrophic blowout would result in released oil rapidly rising to the sea surface because all known reserves in the GOM have specific gravity characteristics that would preclude oil from sinking immediately after release at a blowout site. The oil would surface almost directly over the source location. However, if the oil is ejected under high pressure, micro-droplets of oil may form and become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). The upward movement of the oil may be reduced if methane mixed with the oil is dissolved into the water column, reducing the oil's buoyancy and slowing its rise to the surface (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). Dispersed oil in the water column begins to biodegrade and may flocculate with particulate matter, promoting sinking of the particles. Subsea plumes or sinking oil on particulates may contact topographic features.

A catastrophic blowout outside the well casing and below the seafloor or at the seafloor-water interface could resuspend large quantities of bottom sediments and create a large crater, destroying many organisms within a few hundred meters of the wellhead. Fine sediment could travel up to a few thousand meters before redeposition, negatively impacting a localized area of benthic communities. If a blowout were to occur near a topographic feature, suspended sediment may impact the organisms living on the lower levels of the topographic feature (since water currents flow around the banks rather than traveling uphill).

A catastrophic blowout that occurs above the seabed (at the rig, along the riser between the seafloor and sea surface, or through leak paths on the BOP/wellhead) would not disturb the sediment.

The use of subsea dispersants would increase the exposure of offshore benthic habitats to dispersed oil droplets in the water column, as well as the chemicals used in the dispersants. The use of subsea dispersants is not likely to occur for seafloor blowouts outside the well casing.

Impacts to Topographic Features

Impacts that occur to benthic organisms on topographic features as a result of a blowout would depend on the type of blowout, distance from the blowout, relief of the biological feature, and surrounding physical characteristics of the environment (e.g., turbidity). The NTL 2009-G39 recommends the use of buffers to prevent blowouts in the immediate vicinity of a topographic feature or its associated biota. Much of the oil released from a blowout would rise to the sea surface, therefore minimizing the impact to benthic communities by direct oil exposure. However, small droplets of oil that are entrained in the water column for extended periods of time may migrate into No Activity Zones that

surround the topographic feature. In addition, they may come in contact with PSBFs. Although these small oil droplets will not sink themselves, they may attach to suspended particles in the water column and then be deposited on the seafloor (McAuliffe et al., 1975). The resultant long-term impacts, such as reduced recruitment success, reduced growth, and reduced coral cover as a result of impaired recruitment, are discussed in Phase 4 (Post-Spill, Long-Term Recovery and Response). Also, if the blowout were to occur beneath the seabed, suspension and subsequent deposition of disturbed sediment may smother localized areas of benthic communities, possibly including organisms within No Activity Zones or on PSBFs.

Benthic communities on a topographic feature or PSBF exposed to large amounts of resuspended and deposited sediments following a catastrophic, subsurface blowout could be subject to sediment suffocation, exposure to resuspended toxic contaminants, and reduced light availability. Impacts to corals as a result of sedimentation would vary based on coral species, the height to which the coral grows, degree of sedimentation, length of exposure, burial depth, and the coral's ability to clear the sediment. Impacts may range from sublethal effects such as reduced growth, alteration in form, and reduced recruitment and productivity to slower growth or death (Rogers, 1990). Corals may also experience discoloration or bleaching as a result of sediment exposure, although recovery from such exposure may occur within 1 month (Wesseling et al., 1999).

The initial blowout impact would be greatest to communities located in clear waters with little suspended sediment that experience heavy sedimentation as a result of the blowout. Reef-building corals are sensitive to turbidity and may be killed by heavy sedimentation (Rogers, 1990; Rice and Hunter, 1992). However, it is unlikely that reef-building corals would experience heavy sedimentation as a result of a blowout because drilling activity is not allowed near sensitive organisms in the No Activity Zones based on the lease stipulations as described in NTL 2009-G39. The most sensitive organisms are also typically elevated above soft sediments, making them less likely to be buried. The lower levels of topographic banks and the PSBFs, which are generally small features with only a few meters of relief, typically experience turbid conditions. Vigorous bottom currents (often generated by storms) frequently resuspend bottom sediments and bathe these features in turbid waters, which results in sedimentation. As a result, the organisms that live in this environment near the seafloor are those adapted to frequent sedimentation.

Initial impacts would be much less extreme in a turbid environment (Rogers, 1990). For example, the South Texas Banks exist in a relatively turbid environment (the Nepheloid Zone). They generally have lower relief than the farther offshore banks at the shelf edge, may have a sediment cover, and exhibit reduced biota. Sediment from a blowout, if it occurred nearby, may have a reduced impact on these communities compared with an open-water reef community, as these organisms are more tolerant of suspended sediment (Gittings et al., 1992). Many of the organisms that predominate in this community also grow tall enough to withstand the sedimentation that results from their turbid environment or have flexible structures that enable the passive removal of sediments (Gittings et al., 1992).

A portion or the entire rig may sink to the seafloor as a result of a blowout. The benthic features and communities upon which the rig settles would be destroyed or smothered. Encrusting organisms would be crushed by a rig if it lands on a topographic feature or PSBF. A settling rig may suspend sediments, which may smother nearby benthic communities if the sediment is redeposited on sensitive features. The habitats beneath the rig may be permanently lost; however, the rig itself may become an artificial reef upon which epibenthic organisms may settle. The surrounding benthic communities that were smothered by sediment would repopulate from nearby stocks through spawning recruitment and immigration if the hard substrate upon which they live was not physically destroyed.

Phase 2—Offshore Spill

A spill from a shallow-water blowout could impact benthic communities on the continental shelf because of the blowout's proximity to these habitats. The scenario (**Table B-4**) for a catastrophic spill on the continental shelf is assumed to last 2-5 months and to release 30,000 bbl per day. A total volume of 0.9-3.0 MMbbl of South Louisiana midrange paraffinic sweet crude oil could be released, which will float (API° >10). An anticipated 35,000 bbl of dispersant may be applied to the surface waters.

A spill from a deepwater blowout could also impact shelf communities if surface oil is transported to these areas. The scenario (**Table B-4**) for a catastrophic spill in deep water is assumed to last 4-6 months and to release 30,000-60,000 bbl per day. A total volume of 2.7-7.2 MMbbl of South Louisiana midrange

paraffinic sweet crude oil will be released, which will float (API° >10). Oil properties may change as it passes up the well and through the water column, and it may become emulsified. An anticipated 33,000 bbl of dispersant may be applied to the surface waters and 16,500 bbl may be applied subsea. Weathering and dilution of the oil will also occur as it travels from its release point. It is unlikely that a subsurface plume from a deepwater blowout would impact shelf communities. The oil is anticipated to remain in deep water and be directed by water currents in the deep water. These currents do not typically transit from deep water up onto the shelf (Pond and Pickard, 1983; Inoue et al., 2008).

Impacts to Topographic Features

Impacts from Surface Oil

Sensitive reef communities flourish on topographic features and PSBFs in the Gulf of Mexico. Their depth below the sea surface helps to protect these habitats from a surface oil spill. Rough seas may mix the oil into subsurface water layers, where it may impact sessile biota. The longer the amount of time the seas are rough, the greater the amount of oil from a surface slick would be mixed into the water column. Measurable amounts of oil have been documented to mix from the surface down to a 10-m (33-ft) water depth, although modeling exercises have indicated such oil may reach a water depth of 20 m (66 ft). At this depth, however, the oil is found at concentrations several orders of magnitude lower than the amount shown to have an effect on corals (Lange, 1985; McAuliffe et al., 1975 and 1981a; Knap et al., 1985). None of the topographic features or PSBFs in the GOM are shallower than 10 m (33 ft), and only the Flower Garden Banks are shallower than 20 m (66 ft). Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Impacts from Subsurface Oil

The presence of a subsurface oil plume on the continental shelf from a shallow-water blowout may affect benthic communities on topographic features and PSBFs. A majority of the oil released is expected to rise rapidly to the sea surface above the release point because of the specific gravity characteristics of the oil reserves in the GOM, thus not impacting sensitive benthic communities. If the oil is ejected under high pressure, oil droplets may become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). The upward movement of the oil may be reduced if methane mixed with the oil is dissolved into the water column, reducing the oil's buoyancy and slowing its rise to the surface (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). Dispersed oil in the water column begins to biodegrade and may flocculate with particulate matter, promoting sinking of the particles. Subsurface plumes generated by high-pressure dissolution of oil may come in contact with topographic features and PSBFs. A sustained spill would continuously create surface slicks and possibly subsurface spill plumes. Some of the oil in the water column will become diluted or evaporated over time, reducing any localized transport to the seafloor (Vandermeulen, 1982). In addition, microbial degradation of the oil occurs in the water column so that the oil would be less toxic as it travels from the source (Hazen et al., 2010). However, a sustained spill may result in elevated exposure concentrations to benthic communities if the plume reaches them. The longer the spill takes to stop, the longer the exposure time and higher the exposure concentration may be.

The PSBFs have a greater chance of being impacted by subsea plumes than topographic features because currents tend to sweep around topographic features (Rezak et al., 1983; McGrail, 1982). The lower relief PSBFs may fall in the path of the plume because the feature is not large enough to divert a current. Low-level exposures of corals to oil from a subsea plume may result in chronic or temporary impacts. For example, feeding activity or reproductive ability may be reduced when coral is exposed to low levels of oil; however, impacts may be temporary or unable to be measured over time. Experimental simulations of exposure indicated that normal feeding activity of *Porites porites* and *Madracis asperula* were reduced when exposed to 50 ppm oil (Lewis, 1971). In addition, reefs of *Siderastrea siderea* that were oiled in a spill produced smaller gonads than unoiled reefs, resulting in reproductive stress (Guzmán and Holst, 1993).

Elevated concentrations of oil may be necessary to measure reduced photosynthesis or growth in corals. Photosynthesis of the zooxanthellae in *Diplora strigosa* exposed to approximately 18-20 ppm

B-38

crude oil for 8 hours was not measurably affected, although other experiments indicate that photosynthesis may be impaired at higher concentrations (Cook and Knap, 1983). Measurable growth of *Diploria strigosa* exposed to oil concentrations up to 50 ppm for 6-24 hours did not show any reduced growth after 1 year (Dodge et al., 1984).

Corals exposed to subsea oil plumes may incorporate petroleum hydrocarbons into their tissue. Records indicate that *Siderastrea siderea*, *Diploria strigosa*, and *Montastrea annularis* accumulate oil from the water column and incorporate petroleum hydrocarbons into their tissues (Burns and Knap, 1989; Knap et al., 1982; Kennedy et al., 1992). Most of the petroleum hydrocarbons are incorporated into the coral tissues, not their mucus (Knap et al., 1982). However, hydrocarbon uptake may also modify lipid ratios of coral (Burns and Knap, 1989). If lipid ratios are modified, mucus synthesis may be impacted, adversely affecting the coral's ability to protect itself from oil through mucus production (Burns and Knap, 1989).

It is unlikely that a subsurface plume from a deepwater blowout would impact shelf communities. The oil is anticipated to remain in deep water and be directed by water currents in the deep water. These currents do not typically transit from deep water up onto the shelf (Pond and Pickard, 1983; Inoue et al., 2008).

Impacts from Dispersed Oil

If dispersants are used at the sea surface, oil may mix into the water column, or if applied subsea, they can travel with currents through the water and may contact or settle on sensitive features. Note that, as indicated above, a deepwater plume would not travel onto the continental shelf, but a plume formed on the continental shelf could impact topographic features and PSBFs. If located near the source, the dispersed oil could be concentrated enough to harm the community. If the oil remains suspended for a longer period of time, it would be more dispersed and exist at lower concentrations. Reports on dispersant usage on surface oil indicate that a majority of the dispersed oil remains in the top 10 m (33 ft) of the water column, with 60 percent of the oil in the top 2 m (6 ft) (McAuliffe et al., 1981a). Dispersant usage also reduces the oil's ability to stick to particles in the water column, minimizing oil adhering to sediments and traveling to the seafloor (McAuliffe et al., 1981a). However, after the *Deepwater Horizon* oil spill, there was the formation of a dense layer of marine snow that aggregated and collected everything that it came in contact with it as it fell through the water column and settled on the seafloor (Passow et al., 2012).

Dispersed oil reaching the topographic features and PSBFs in the Gulf of Mexico would be expected to be at very low concentrations (<1 ppm) (McAuliffe et al., 1981a). Such concentrations would not be life threatening to larval or adult stages at the depth of the features based on experiments conducted with coral. Any dispersed oil in the water column that comes in contact with corals may evoke short-term negative responses by the organisms (Wyers et al., 1986; Cook and Knap, 1983; Dodge et al., 1984).

Reductions in feeding and photosynthesis could occur in coral exposed to dispersed oil. Short-term, sublethal responses of *Diploria strigosa* were reported after exposure to dispersed oil at a concentration of 20 ppm for 24 hours. Although concentrations in this experiment were higher than what is anticipated for dispersed oil at depth, effects exhibited included mesenterial filament extrusion, extreme tissue contraction, tentacle retraction, and localized tissue rupture (Wyers et al., 1986). Normal behavior resumed within 2 hours to 4 days after exposure (Wyers et al., 1986). *Diploria strigosa* exposed to dispersed oil (20:1, oil:dispersant) showed an 85 percent reduction in zooxanthellae photosynthesis after 8 hours of exposure to the mixture (Cook and Knap, 1983). However, the response was short term, as recovery occurred between 5 and 24 hours after exposure and return to clean seawater. Investigations 1 year after *Diploria strigosa* was exposed to concentrations of dispersed oil between 1 and 50 ppm for periods between 6 and 24 hours did not reveal any impacts to growth (Dodge et al., 1984).

Historical studies indicate dispersed oil to be more toxic to coral species than oil or dispersant alone. The greater toxicity may be a result of an increased number of oil droplets caused by the use of dispersant, resulting in greater contact area between oil, dispersant, and water (Elgershuizen and De Kruijf, 1976). The dispersant causes a higher water-soluble amount of oil to contact the cell membranes of the coral (Elgershuizen and De Kruijf, 1976). The dispersant causes a higher water-soluble amount of oil to contact the cell membranes of the coral (Elgershuizen and De Kruijf, 1976). The mucus produced by coral, however, can protect the organism from oil. Both hard and soft corals have the ability to produce mucus, and mucus production has been shown to increase when corals are exposed to crude oil (Mitchell and Chet, 1975; Ducklow and Mitchell, 1979). Dispersed oil, however, which has very small oil droplets, does not appear

to adhere to coral mucus, and larger untreated oil droplets may become trapped by the mucus barrier (Knap, 1987; Wyers et al., 1986). However, entrapment of the larger oil droplets may increase the coral's long-term exposure to oil if the mucus is not shed in a timely manner (Knap, 1987; Bak and Elgershuizen, 1976). Additionally, more recent field studies, using more realistic concentrations of dispersants did not result in the toxicity historically reported (Yender and Michel, 2010).

Although historical studies indicated dispersed oil may be more toxic than untreated oil to corals during exposure experiments, untreated oil may remain in the ecosystem for long periods of time, while dispersed oil does not (Baca et al., 2005; Ward et al., 2003). Twenty years after an experimental oil spill in Panama, oil and impacts from untreated oil were still observed at oil treatment sites, but no oil or impacts were observed at dispersed oil or reference sites (Baca et al., 2005). Long-term recovery of the coral at the dispersed oil site had already occurred as reported in a 10-year monitoring update, and the site was not significantly different from the reference site (Ward et al., 2003).

Impacts from Oil Adhering to Sediments

BOEM's policy, as described in NTL 2009-G39, prevents wells from being placed immediately adjacent to sensitive communities. In the event of a seafloor blowout, however, some oil could be carried to topographic features or PSBFs as a result of oil droplets adhering to suspended particles in the water column. Oiled sediment that settles to the seafloor may affect organisms attached to hard bottom substrates. Impacts may include reduced recruitment success, reduced growth, and reduced coral cover as a result of impaired recruitment. Experiments have shown that the presence of oil on available substrate for larval coral settlement has inhibited larval metamorphosis and larval settlement in the area. An increase in the number of deformed polyps after metamorphosis also took place because of exposure to oil (Kushmaro et al., 1997).

The majority of organisms exposed to sedimented oil are expected to experience low-level concentrations because as the oiled sediments settle to the seafloor they are widely distributed. Coral may also be able to protect itself from low concentrations of sedimented oil that settles from the water column. Coral mucus may not only act as a barrier to protect coral from the oil in the water column, but it has also been shown to aid in the removal of oiled sediment on coral surfaces (Bak and Elgershuizen, 1976). Coral may use a combination of increased mucus production and the action of cilia to rid themselves of oiled sediment (Bak and Elgershuizen, 1976).

Impacts from Oil-Spill-Response Activity

Oil-spill-response activity may also impact sessile benthic features. Booms anchored to the seafloor are sometimes used to control the movement of oil at the water surface. Boom anchors can physically impact corals and other sessile benthic organisms, especially when booms are moved around by waves (USDOC, NOAA, 2010d). Vessel anchorage and decontamination stations set up during response efforts may also break or kill PSBFs if their location is unmapped and anchors are set on the features. Injury to coral reefs as a result of anchor impact may result in long-lasting damage or failed recovery (Rogers and Garrison, 2001). Effort should be made to keep vessel anchorage areas as far from sensitive benthic features as possible to minimize impact.

Drilling muds comprised primarily of barite may be pumped into a well to stop a blowout. If a "kill" is not successful, the mud (possibly tens of thousands of barrels) may be forced out of the well and deposited on the seafloor near the well site. Any organisms beneath the extruded drilling mud would be buried. Based on stipulations as described in NTL 2009-G39, a well should be far enough away from a topographic feature to prevent extruded drilling muds from smothering sensitive benthic communities. However, if drilling muds were to travel far enough or high enough in the water column to contact a sensitive community, the fluid would smother the existing community. Experiments indicate that corals perish faster when buried beneath drilling mud than when buried beneath carbonate sediments (Thompson, 1980). Burial may lead to the elimination of a live bottom community.

Phase 3—Onshore Contact

There would likely be no adverse impacts to topographic features and PSBFs as a result of the events and the potential impact-producing factors that could occur throughout Phase 3 of a catastrophic spill because the topographic features and PSBFs are located offshore.

Phase 4—Post-Spill, Long-Term Recovery and Response

Topographic features and PSBFs exposed to large amounts of resuspended sediments following a catastrophic, subsurface blowout could be subject to sediment suffocation, exposure to resuspended toxic contaminants, and reduced light penetration. The greatest impacts would occur to communities that exist in clear water with very low turbidity. The consequences of a blowout along, directly on, or near one of these features could be long lasting, although the occurrence of a blowout near such sensitive communities is unlikely because of stipulations described in NTL 2009-G39, which prevents drilling activity near sensitive hard bottom habitats. Impacts to a community in more turbid waters, such as the South Texas Banks, would be greatly reduced, as the species on these features are tolerant of suspended sediments, and recovery would occur quicker.

Impacts may also occur from low-level or long-term oil exposure. This type of exposure has the potential to impact reef communities, resulting in impaired health. Recovery may be fairly rapid from brief, low-level exposures, but it could be much longer with acute concentrations or long-term exposure to oil, such as in observations from Panama where untreated oil remained in the ecosystem for long periods of time, inhibiting coral recovery (Baca et al., 2005; Ward et al., 2003). Recovery time would therefore depend on recruitment from outside populations that were not affected by oiling and residence time of oil in an ecosystem.

Overall Summary and Conclusion (Phases 1-4)

A catastrophic spill on the continental shelf would have a greater impact on topographic features and PSBFs than a deepwater spill. Surface oil from a deepwater spill would be weathered and diluted by the time it reaches the surface waters over topographic features and PSBFs (if it ever reaches them), and it would be unlikely that it would mix to the depth of active growth in concentrations that could cause toxicity. Subsea plumes formed in deepwater would not travel onto the continental shelf because deepsea currents do not travel up a slope.

A catastrophic blowout and spill on the continental shelf has a greater chance to impact topographic features and PSBFs. If the blowout occurs close enough to sensitive features, the organisms may be smothered by settling sediment that was displaced by the blowout. The farther the feature is from the blowout, the less its chance of being covered with settling sediment or sediment upon which oil adhered. In addition, distancing oil and gas activities from topographic features prevents the settlement of a sinking rig on top of a topographic feature, although it may destroy a PSBF.

In most cases, impacts from oil would be sublethal. Surface oil is not expected to mix to the zone of active growth, and any oil components that do reach that depth would be in sublethal concentrations. Subsea plumes may contact the features; however, because currents tend to travel around, instead of over, topographic features, the topographic features should be protected from subsea plumes, while lower relief PSBFs may be impacted. Overall impacts of dispersed oil would be similar to subsea plumes. Spill response activity should not impact topographic features because it is unlikely that vessels would anchor on the features, but they could anchor on unmapped, lower relief PSBFs.

Overall, a catastrophic spill would have a low probability of impacting topographic features because of the distancing requirements included in leases, as described in NTL 2009-G39, of oil and gas activities from topographic features, the depth of mixing of surface oil compared with the depth of the active growing zone, currents that sweep around the topographic features, and the weathering and dispersion of oil that would occur with distance from the source as it travels toward the features. The PSBFs could have greater impacts from a blowout as oil and gas activities are not as far distanced from them as topographic features; they have a lower relief than topographic features, which would not divert currents; and the locations of these features are not all known so accidental anchor impacts may result in breakage of the features and possibly destruction. The PSBFs would, however, have similar protection as for topographic features from surface oil.

B.3.1.8. Sargassum Communities

Pelagic *Sargassum* algae is a floating brown algae that occurs in all parts of the GOM throughout the year. It has a seasonal cycle so that its abundance greatly increases spring through fall, when it is carried by water currents around the south of Florida and then up the east coast (Gower and King, 2011). It occurs in patches, floating on and near the sea surface. Wind and water currents commonly drive it into

long lines or windrows; when conditions are turbulent, it becomes more scattered and mixed into the upper water column. A key to understanding impacts to *Sargassum* is that the algae is ubiquitous and occurs in scattered patches in the very top part of the water column. *Sargassum* also provides habitat for pelagic species, including fish, invertebrates, and sea turtles.

Phase 1—Initial Event

During the initial phase of a catastrophic blowout, impacts may include disturbance of sediments, destruction of the drilling rig, release of oil and natural gas (methane), and emergency response efforts. This chapter deals with the immediate effects of a blowout that would be located at least 3 nmi (3.5 mi; 5.6 km) from shore.

Since *Sargassum* is a floating pelagic (open ocean) algae, it would only be affected by impacts that occur in the top-most part of the water column. In deep water (\geq 300 m, 984 ft), sediment disturbed by the blowout would not affect *Sargassum* because the sediment would not reach the surface waters. However, in shallow water, sediment from a blowout could have minor effects on *Sargassum* algae in the immediate vicinity. The sediment would have little effect on the algae itself, producing only slight, temporary silting that could reduce photosynthesis. If the sediment is contaminated with oil, then the oil could have adverse effects on the algae. Depending on the severity of oiling, the algae could be damaged or destroyed; but this would only affect the algae in the local vicinity of the blowout. Sediment and oil would have a more acute effect on the associated invertebrate, fish, and sea turtle community that utilizes the habitat of the *Sargassum*. Impacts to these organisms may include "changes in respiration rate, abrasion and puncturing of structures, reduced feeding, reduced water filtration rates, smothering, delayed or reduced hatching of eggs, reduced larval growth or development, abnormal larval development, or reduced response to physical stimulus" (Anchor Environmental CA, L.P., 2003).

Destruction of the oil drilling rig and associated equipment could have an acute effect on patches of *Sargassum* algae that happen to be caught in the structure (if it sinks) or destroyed by fuel leaks and possible fire on the sea surface. This could destroy local patches of *Sargassum*, but it would have no measurable effect on the *Sargassum* community as a whole.

The release of oil during the initial blowout event would be expected to cover local patches of *Sargassum* algae with oil, destroying the algae and associated organisms. Methane gas may also bathe local patches of algae as it rises through the sea surface; it would have little effect on the algae itself but may poison associated organisms. The initiation of oil and gas release (as defined for this phase) at the site of the blowout event would affect only local patches of *Sargassum*, but it would have no measurable effect on the *Sargassum* community as a whole.

Emergency response activities would have minor impacts to *Sargassum* algae that comes in contact with vessels. This is mostly the simple impingement of the algae on the ships' water intake screens, including water that may be pumped in fire-fighting efforts. This minor and local effect would have no measurable effect on the *Sargassum* community as a whole.

Phase 2—Offshore Spill

During the second phase of a catastrophic blowout, the major impact of concern is the release of oil and methane over time. Response efforts may produce additional minor impacts to *Sargassum*. This chapter deals with the growing effects of a blowout that releases oil and methane into the offshore environment.

Since *Sargassum* is a floating pelagic (open ocean) algae, it would be affected by impacts that occur in the top-most part of the water column. This makes *Sargassum* habitat particularly susceptible to damage from offshore oil spills. Oceanographic processes that concentrate *Sargassum* into mats and rafts would also concentrate toxic substances. Therefore, it may be assumed that *Sargassum* would be found in areas where oil, dispersants, and other chemicals have accumulated following a catastrophic spill. Oil spreads on the sea surface to form extremely thin layers (0.01-0.1 micrometers) that cover large areas (MacDonald et al., 1996). Since *Sargassum* is ubiquitous in surface waters of the GOM, oil spreading on the sea surface can be expected to coincide with floating mats of the algae. The larger the quantity of spill and the longer it flows, the larger the area of sea surface it would cover. A catastrophic spill would cover a large area and result in impacts to a large quantity of *Sargassum* algae. For example, *Macondo* well oil spill covered up to one-third of the northern GOM (McCrea-Strub and Pauly, 2011; USDOC, NMFS, 2011a) and may have affected about one-third of the *Sargassum* algae in the northern GOM at the time.

The severity of oiling to *Sargassum* depends largely on physical conditions. Factors include the quantity of oil at a particular launch point and its physical state, distance from the source, weather conditions, and the possible use of dispersants. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Obviously, more oil leads to increased oiling, but the physical state of the oil changes as it weathers, biodegrades, dissipates, and emulsifies over time and distance. Storms can mix oil into the water column (expected maximum of 10-20 m [33-66 ft]; Lange, 1985; McAuliffe et al., 1975 and 1981a; Knap et al., 1985; Scarlett et al., 2005; Hemmer et al., 2010; George-Ares and Clark, 2000), possibly increasing its contact with Sargassum as it also mixes the Sargassum into the water column. However, when storms are not mixing the oil, they are also not mixing the Sargassum, so the Sargassum would float near the sea surface, just as the oil would. Convergence zones, places in the ocean where strong opposing currents meet, would collect both oil and Sargassum. Sea turtles, especially post-hatchlings and juveniles, use these areas for food and cover. Witherington et al. (2012) surveyed sea turtles in the eastern Gulf of Mexico and Atlantic Ocean off Florida and found that 89 percent of the turtles documented were observed within 1 m (3 ft) of floating Sargassum. The use of dispersants on surface oil slicks could increase the exposure of *Sargassum* to oil by promoting mixing of oil into the upper few meters of the water column. This also promotes the dispersion of oil, speeding its decline toward low concentrations that would be less toxic. Regardless, any exposure that is enough to cause visible oiling can be expected to have significant detrimental effects on the organisms associated with Sargassum and, likely, effects on the Sargassum itself. Heavy oiling of Sargassum near the source of the spill would destroy the affected algae. Very light exposure far from the oil source may have little effect.

The specific effects of oil on *Sargassum* depend on the severity of oiling. High to moderate levels of oiling would likely cause complete mortality. Low levels of exposure may result in a range of sublethal effects to the algae and its associated community. Powers et al. (2013) suggest that exposure to oil and/or dispersants can result in direct, sublethal, and indirect effects to *Sargassum*, resulting in death or a decrease in *Sargassum*-related ecosystem services. Sublethal responses in organisms associated with *Sargassum* may occur at concentrations as low as 1-10 ppb (Hyland and Schneider, 1976). Rogers (1990) documented impacts such as reduced growth, alteration in form, and reduced recruitment and productivity. Other sublethal impacts may include reduced feeding rates, reduced ability to detect food, erratic movement, ciliary inhibition, tentacle retraction, reduced movement, decreased aggression, and altered respiration (Scarlett et al., 2005; Suchanek, 1993). Embryonic life stages of organisms may experience toxicity at lower levels than the adult stages (Fucik et al., 1995; Suchanek, 1993; Beiras and Saco-Álvarez, 2006; Byrne, 1989). The algae itself would be less sensitive than many of its associates, since the algae produces oils of its own and has a waxy coating that may protect it from physical oiling.

Response efforts aimed at removing oil from the affected area would have minor impacts on *Sargassum* algae as well. Response vessels would impinge a small amount of the algae on their propellers and cooling-water intakes. Cleanup processes such as booming, skimming, and in-situ burning would also trap and destroy patches of *Sargassum*; however, these activities would take place in areas of high concentration of surface oil, where *Sargassum* would likely be destroyed by oil contamination even if the cleanup activity were absent.

Phase 3—Onshore Contact

This third phase of a catastrophic blowout focuses on the approach of oil to the shoreline. This involves the possible oiling of coastal resources including beaches, wetlands, SAV and seagrasses, the shallow seafloor, and any resources drifting in the water column (e.g., *Sargassum*). Response efforts can produce additional serious impacts.

There would likely be little additional impact to pelagic *Sargassum* algae as oil approaches a shoreline. Since both the algae and surface oil approaching shore would be guided by the same forces (wind and water currents), they would likely be already traveling together, with the algae already contaminated. Once it is onshore, the *Sargassum* would die, regardless of oil contamination. *Sargassum* that washes ashore has some value to the ecosystem as it provides food and shelter for some organisms as it decays. This value would be mostly lost if the *Sargassum* is oiled when it reaches shore.

Phase 4—Post-Spill, Long-Term Recovery and Response

The final phase of a catastrophic blowout is the long-term response of the ecosystem and its recovery. Both, the natural rate of recovery and the persistence of oil in natural habitats over time determine the long-term effects. Contaminants biodegrade over time, but they may become sequestered as inert forms (e.g., buried in sediment) until disturbed (by storms) and re-activated, producing renewed impacts.

Sargassum algae has a yearly seasonal cycle of growth and a yearly cycle of migration from the GOM to the western Atlantic. A catastrophic spill could affect a large portion of the annual crop of the algae. A large event, such as the *Macondo* well blowout and spill, could reduce the standing crop of *Sargassum* in the GOM and subsequently in the western Atlantic if it coincided with a period when *Sargassum* distribution was limited to the northwestern GOM in an area known to be a nursery area. This could have a cascading effect down current (in the Atlantic) that would stress the cycles of other organisms that depend on the *Sargassum* habitat. However, the effect can be expected to diminish with remoteness from the direct impacts of the spill, i.e., the algae community itself would be most affected, with lesser effects on organisms that utilize the habitat as a nursery, for feeding, as shelter, or other purposes.

While a large spill event could affect a large portion of the standing crop of *Sargassum*, several factors contribute to the quick recovery of the habitat. *Sargassum* algae is predominately found in the open-ocean pelagic habitat. Once the spill event subsides, the pelagic habitat would quickly regain its typically very high water quality. The pelagic habitat far from shore is also far from land-based sources of pollution. Only part of the *Sargassum* stocks would be affected; algae not affected by the spill event would continue to grow normally and repopulate the habitat. Since *Sargassum* has a seasonal cycle of growth in the summer and reduction in the winter, populations in the winter following a catastrophic event may be similar to populations of any other year. Relatively small populations survive each winter, subsequently repopulating the habitat each year. With this pattern, recovery from the effects of a catastrophic event is expected within 1-2 growing seasons.

Overall Summary and Conclusion (Phases 1-4)

Pelagic *Sargassum* algae is one of the most likely habitats to be affected by a catastrophic offshore oil spill; however, because of its ubiquitous distribution and seasonal cycle, recovery is expected within 1-2 years. *Sargassum* algae floats on and near the sea surface and occurs in patches that can be collated into windrows by wind and water currents. Oil from a spill offshore would accumulate in the same waters, making it inevitable that some patches of *Sargassum* would be severely affected.

The initial catastrophic event (Phase 1) could destroy *Sargassum* patches in the immediate vicinity of the accident. Impingement, fire, and the initial concentrated spillage of oil and fuels would destroy local patches. Sediments disturbed by the accident would only affect *Sargassum* if the event occurred in shallow waters.

The duration of the spill event (Phase 2) would have the most effect on floating *Sargassum* algae. Patches of algae within the entire coverage of the oil slick would be subject to severe damage and death. Algae in areas farther from the spill, receiving lower level impacts, may still suffer damage, especially the sensitive invertebrate and fish communities associated with the habitat. Efforts to remove the oil could gather *Sargassum* with the oil, but these algae patches would likely be destroyed by the oil anyway since the collection activities would occur in areas of concentrated oil.

As oil approaches shore (Phase 3), impacts to floating *Sargassum* algae would not increase much, as the algae would likely already be exposed to the oil since wind and water currents drive both the algae and the oil.

The recovery of floating *Sargassum* algae (Phase 4) may occur within 1-2 years because the algae has a yearly cycle of subsidence and re-growth. As long as the nursery grounds are not completely saturated with oil, the pelagic habitat would quickly regain its high level of water quality after the cessation of a spill. Not all of the *Sargassum* habitat would be affected, even by a catastrophic spill; healthy algae would continue to grow and replenish the population. Within 1-2 years, the *Sargassum* algae community may have completely recovered from the impacts of a catastrophic spill.

B.3.1.9. Chemosynthetic Deepwater Benthic Communities

Deepwater benthic communities of the Gulf of Mexico include soft bottom, chemosynthetic, and coral habitats. Deep water, for ecology in the GOM, is defined as water depths over 300 m (984 ft)

because chemosynthetic communities and *Lophelia* coral habitats have not been found in waters shallower than these depths. The possible impacts to these benthic communities from a catastrophic blowout depend on the location and the nature of the event.

Phase 1—Initial Event

During the initial phase of a catastrophic blowout, impacts may include the disturbance of sediments, destruction of the drilling rig, release of oil and natural gas (methane), and emergency response efforts. This chapter deals with the immediate effects of a blowout located at least 3 nmi (3.5 mi; 5.6 km) from shore.

A catastrophic blowout outside the well casing and below the seafloor or at the seafloor-water interface could resuspend large quantities of bottom sediments and create a large crater, destroying many organisms within a few hundred meters of the wellhead. Some fine sediment could travel up to a few thousand meters before redeposition, negatively impacting a localized area of benthic communities. If a blowout were to occur close enough to a chemosynthetic community, suspended sediment may impact the organisms. Restrictions described in NTL 2009-G40 require drilling to be removed at least 610 m (2,000 ft) from possible chemosynthetic communities. During a blowout, sediment may become contaminated with oil and subsequently deposit that oil down-current from the source. The highest concentrations of contamination would be nearest the well, and concentrations would diminish with distance. A catastrophic blowout that occurs above the seabled (at the rig, along the riser between the seafloor and sea surface, or through leak paths on the BOP/wellhead) would not disturb the sediment.

Destruction of the oil drilling rig and associated equipment could have an acute effect on any chemosynthetic communities caught under the direct impact of the equipment when it falls to the seafloor. However, the restrictions described in NTL 2009-G40 require drilling locations to be 610 m (2,000 ft) from any possible indications of chemosynthetic communities, reducing the possibility that a rig would settle directly on sensitive habitat.

A catastrophic blowout would likely result in released oil rapidly rising to the sea surface because typical reserves in the GOM have specific gravity characteristics that are much lighter than water (refer to Chapter 3.2.1.3 of this Supplemental EIS; Environment Canada, 2011; Trudel et al., 2001). The oil would surface almost directly over the source location. Oil floating to the sea surface would be effectively removed from affecting chemosynthetic communities on the seafloor. Even oil treated with chemical dispersants on the sea surface would not be expected to have widespread impacts to deepwater communities. Reports on dispersant usage on surface oil indicate that a majority of the dispersed oil remains in the top 10 m (33 ft) of the water column, with 60 percent of the oil in the top 2 m (6 ft) (McAuliffe et al., 1981a; Lewis and Aurand, 1997). Lubchenco et al. (2010) reports that chemically dispersed surface oil from the Macondo well blowout and oil spill remained in the top 6 m (20 ft) of the water column where it mixed with surrounding waters and biodegraded. However, if the oil is ejected under high pressure, micro-droplets of oil may form and become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). Upward movement of oil may also be reduced if methane mixed with the oil is dissolved into the water column, reducing the buoyancy of the oil/gas stream (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). It is unlikely that any chemosynthetic community would be affected by the initial stage of a catastrophic event due to the required separation of drilling activities from sensitive habitats, because released oil would rise rapidly to a level above the habitat, and because surface oil would not mix to the depths of the chemosynthetic communities. The required separation distance would also allow for a subsea plume to mix with the surrounding water and become diluted before it reached a deepwater community.

Phase 2—Offshore Spill

During the second phase of a catastrophic blowout, the major impact of concern is the release of oil and methane over time. Response efforts may produce additional impacts. This chapter deals with the growing effects of a blowout that releases oil and methane into the offshore environment.

A spill resulting from a catastrophic blowout in deep water has the potential to impact offshore benthic communities; however, it is not likely that deepwater benthic communities would be affected by a

spill from a shallow-water blowout. Although subsurface plumes can be generated when oil is ejected under high pressure or dispersants are used subsea, a majority of the oil originating from a seafloor blowout in deep water is expected to rise rapidly to the sea surface. Upward movement of the oil may also be reduced if methane mixed with the oil is dissolved into the water (Adcroft et al., 2010). A sustained spill would continuously create surface slicks and possibly subsurface spill plumes. Some of the oil in the water column would become diluted over time, reducing transport to the seafloor (Vandermeulen, 1982). Concentrations of dispersed and dissolved oil in the Macondo well blowout and spill subsea plume were reported to be in the part per million range or less and were generally lower away from the water's surface and away from the wellhead (Adcroft et al., 2010; Haddad and Murawski, 2010; Joint Analysis Group, 2010; Lubchenco et al., 2010). In addition, microbial degradation of oil occurs in the water column rendering oil less toxic when it contacts the seafloor (Hazen et al., 2010). Oil can precipitate to the seafloor by adhering to other particles, much like rainfall (Kingston et al., 1995; International Tanker Owners Pollution Federation Limited, 2011). Oil would also reach the seafloor through planktonic consumption and associated excretion, which is distributed over the seafloor (International Tanker Owners Pollution Federation Limited, 2011). These mechanisms would result in a wide distribution of small amounts of oil. Throughout these processes, oil would be biodegraded from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010).

A sustained spill may result in elevated exposure concentrations to chemosynthetic features if a subsea oil plume contacts them directly. Dispersed oil is mixed with water, and its movement is then dictated by water currents and the physical, chemical, and biodegradation pathways. BOEM's policy (refer to NTL 2009-G39) prevents wells from being placed immediately adjacent to sensitive communities; however, in the event of a seafloor blowout, some oil could be carried to chemosynthetic communities by subsea plumes. Impacts may include reduced recruitment success, reduced growth, and reduced biological cover as a result of impaired recruitment. Concentrated oil plumes reaching chemosynthetic communities could cause oiling of organisms, resulting in the death of entire populations on localized sensitive habitats. The longer the oil remains suspended in the water column, the more dispersed, less concentrated, and more biodegraded it would become. Depending on how long oil remained suspended in the water column, it may be thoroughly degraded by biological action before contacting the seafloor (Hazen et al., 2010; Valentine et al., 2010). Biodegradation rates in cold, deepwater environments are not well understood at this time. In general, potential impacts to chemosynthetic communities would be localized due to the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution. While a few patch habitats may be affected, the Gulfwide ecosystem of chemosynthetic communities would be expected to suffer no significant effects.

Drilling muds comprised primarily of barite may be pumped into a well to stop a blowout. If a "kill" is not successful, the mud (possibly tens of thousands of barrels) may be forced out of the well and deposited on the seafloor near the well site. Any organisms beneath the extruded drilling mud would be buried. Based on stipulations as described in NTL 2009-G40, a well should be far enough away from a chemosynthetic community to prevent extruded drilling muds from smothering sensitive benthic communities.

Phase 3—Onshore Contact

The third phase of a catastrophic blowout focuses on the approach of oil to the shoreline. This involves the possible oiling of coastal resources including beaches, wetlands, SAV and seagrasses, the shallow seafloor, and any resources drifting in the water column. Response efforts can produce additional serious impacts. There would be no additional adverse impacts to chemosynthetic communities in deep water as a result of the events and the potential impact-producing factors that could occur throughout Phase 3 of a catastrophic spill because the chemosynthetic communities are located offshore in deep water (>300 m, 610 ft).

Phase 4— Post-Spill, Long-Term Recovery and Response

The final phase of a catastrophic blowout is the long-term response of the ecosystem and its recovery. Both the natural rate of recovery and the persistence of oil in natural habitats over time determine what long-term effects may occur. Contaminants degrade over time but may become sequestered as inert forms (e.g., buried in sediment) until disturbed and reactivated, producing renewed impacts.

If oil is ejected under high pressure or dispersants are applied at the source near the seafloor, oil would mix into the water column, be carried by underwater currents, and eventually contact the seafloor in some form, either concentrated (near the source) or dispersed and decayed (farther from the source). The oil could then impact patches of chemosynthetic community habitat in its path. The farther the dispersed oil travels, the more diluted it would become as it mixes with surrounding water. Chemosynthetic communities located at more than 610 m (2,000 ft) away from a blowout could experience minor impacts from suspended sediments that travel with currents, although the sediment concentration would be diluted with distance from the well. Studies indicate that periods of decades to hundreds of years are required to reestablish a seep community once it has disappeared (depending on the community type) (Powell, 1995; Fisher, 1995). There is evidence that substantial impacts on these communities could permanently prevent reestablishment, particularly if hard substrate required for recolonization is buried by resuspended sediments from a blowout. A catastrophic spill combined with the application of dispersant has the potential to cause devastating effects on local patches of habitat in the path of subsea plumes where they physically contact the seafloor. Sublethal effects are possible for communities that receive a lower level of impact. Examples of these effects could include temporary lack of feeding, expenditure of energy to remove the oil, loss of gametes and reproductive delays, and loss of tissue mass. Oil plumes that remain in the water column for longer periods would disperse and decay, having only minimal effect. Depending on how long it remains in the water column, oil may be thoroughly degraded by biological action before contacting the seafloor. Water currents can carry a plume to contact the seafloor directly but a more likely scenario would be for oil to adhere to other particles and precipitate to the seafloor, much like rainfall (Kingston et al., 1995; International Tanker Owners Pollution Federation Limited, 2011). Oil would also reach the seafloor through planktonic consumption and associated excretion, which is distributed over the seafloor (International Tanker Owners Pollution Federation Limited, 2011). These mechanisms would result in a wide distribution of small amounts of oil (or oil by-products). This oil would be in the process of biodegradation from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010). Habitats directly under the path of the oil plume as it disperses and "rains" down to the seafloor may experience minor effects, but since the oil would be deposited in a widely scattered and decayed state, little effect is anticipated.

Overall Summary and Conclusion (Phases 1-4)

Chemosynthetic communities would potentially be subject to detrimental effects from a catastrophic seafloor blowout. Sediment and oiled sediment from the initial event (Phase 1) are not likely to reach chemosynthetic communities in heavy amounts because of requirements described in NTL 2009-G40. Fine sediment from a blowout may reach the location of sensitive habitats, producing sublethal effects. The initial accident could result in the drilling rig and equipment falling on a sensitive seafloor habitat if the structure travels more than 610 m (2,000 ft) from the well site.

The ongoing spill event (Phase 2) would have the most effect on chemosynthetic communities. Chemosynthetic communities are at risk from subsea oil plumes that could directly contact localized patches of sensitive habitat. Oil plumes reaching chemosynthetic communities could cause oiling of organisms, resulting in the death of entire populations on localized sensitive habitats. However, potential impacts would be localized due to the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution. The more likely scenario would be exposure to widely dispersed, biodegraded particles that "rain" down from a passing oil plume. While a few patch habitats may be affected, the Gulfwide ecosystem of chemosynthetic communities would be expected to suffer no significant effects.

As oil approaches shore (Phase 3), there would be no additional adverse impacts to chemosynthetic communities because the chemosynthetic communities are located offshore in deep water (>300 m; 610 ft).

The recovery of chemosynthetic communities (Phase 4) depends on the severity of initial impacts. A catastrophic spill combined with the application of dispersant has the potential to cause devastating effects on local patches of habitat in the path of subsea plumes where they physically contact the seafloor. Studies indicate that periods from decades to hundreds of years are required to reestablish a seep

community once it has disappeared (depending on the community type) (Powell, 1995; Fisher, 1995). The burial of hard substrate could permanently prevent recovery. Sublethal effects are possible for communities that receive a lower level of impact. Examples of these effects could include temporary lack of feeding, expenditure of energy to remove the oil, loss of gametes and reproductive delays, and loss of tissue mass. However, most chemosynthetic community habitats are expected to experience no impacts from a catastrophic seafloor blowout because of the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution.

B.3.1.10. Nonchemosynthetic Deepwater Benthic Communities

Deepwater benthic communities of the Gulf of Mexico include soft bottom, chemosynthetic, and live bottom communities (mostly deepwater coral communities). Deep water, for ecology in the GOM, is defined as water depths over 300 m (984 ft) because nonchemosynthetic communities and *Lophelia* coral habitats have not been found in waters shallower than these depths. The possible impacts to nonchemosynthetic deepwater benthic communities from a catastrophic blowout depend on the location and the nature of the event.

Phase 1—Initial Event

During the initial phase of a catastrophic blowout, impacts may include disturbance of sediments, destruction of the drilling rig, release of oil and natural gas (methane), and emergency response efforts. This phase deals with the immediate effects of a blowout located at least 3 nmi (3.5 mi; 5.6 km) from shore.

A catastrophic blowout outside the well casing and below the seafloor or at the seafloor-water interface could resuspend large quantities of bottom sediments and create a large crater, destroying many organisms within a few hundred meters of the wellhead. A blowout that occurs outside the well casing can rapidly deposit 30 cm (12 in) or more of sediment within a few hundred meters and may smother much of the soft bottom community in a localized area. Some fine sediment could travel up to a few thousand meters before redeposition, negatively impacting a localized area of benthic communities. Many of the organisms on soft bottoms live within the sediment and have the ability to migrate upward in response to burial by sedimentation. In situations where soft bottom substrate would be expected over a relatively short period of time for all size ranges of organisms, in a matter of days for bacteria and probably less than 1 year for most macrofauna and megafauna species. Recolonization could take longer for areas affected by direct contact of concentrated oil.

If a blowout were to occur close enough to a sensitive deepwater live bottom community, suspended sediment may impact the organisms. Restrictions described in NTL 2009-G40 require drilling to be removed at least 610 m (2,000 ft) from possible live bottom communities. During a blowout, suspended sediment may become contaminated with oil and subsequently deposit that oil down-current from the source. The highest concentrations of contamination would be nearest the well, and concentrations would diminish with distance. A catastrophic blowout that occurs above the seabed (at the rig, along the riser between the seafloor and sea surface, or through leak paths on the BOP/wellhead) would not disturb the sediment.

Destruction of the oil drilling rig and associated equipment could have an acute effect on any nonchemosynthetic communities caught under the direct impact of the equipment when it falls to the seafloor. However, the restrictions described in NTL 2009-G40 require drilling locations to be 610 m (2,000 ft) from any possible indications of sensitive live bottom communities, reducing the possibility that a rig would settle directly on sensitive habitat.

A catastrophic blowout would likely result in released oil rapidly rising to the sea surface because typical reserves in the GOM have specific gravity characteristics that are much lighter than water (refer to **Chapter 3.2.1.3** of this Supplemental EIS; Environment Canada, 2011; Trudel et al., 2001). The oil would surface almost directly over the source location. Oil floating to the sea surface would be effectively removed from affecting nonchemosynthetic communities on the seafloor. Even oil treated with chemical dispersants on the sea surface would not be expected to have widespread impacts to deepwater communities. Reports on dispersant usage on surface oil indicate that a majority of the dispersed oil remains in the top 10 m (33 ft) of the water column, with 60 percent of the oil in the top 2 m

B-48

(6 ft) (McAuliffe et al., 1981a; Lewis and Aurand, 1997). Lubchenco et al. (2010) report that chemically dispersed surface oil from the *Macondo* well blowout and oil spill remained in the top 6 m (20 ft) of the water column where it mixed with surrounding waters and biodegraded. However, if the oil is ejected under high pressure, micro-droplets of oil may form and become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). Upward movement of the oil may also be reduced if methane mixed with the oil is dissolved into the water column, reducing the buoyancy of the oil/gas stream (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). It is unlikely that any deepwater live bottom community would be affected by the initial stage of a catastrophic event due to the required separation of drilling activities from sensitive habitats, because released oil would rapidly rise to a level above the habitat, and because surface oil would not mix to the depths of such communities. The required separation distance would also allow for a subsea plume to mix with the surrounding water and become diluted before it reached a deepwater community.

Phase 2—Offshore Spill

During the second phase of a catastrophic blowout, the major impact of concern is the release of oil and methane over time. Response efforts may produce additional impacts. This chapter deals with the growing effects of a blowout that releases oil and methane into the offshore environment.

A spill resulting from a catastrophic blowout in deep water has the potential to impact offshore benthic communities; however, it is not likely that deepwater benthic communities would be affected by a spill from a shallow-water blowout. Although subsurface plumes can be generated when oil is ejected under high pressure or when dispersants are used subsea, a majority of the oil originating from a seafloor blowout in deep water is expected to rise rapidly to the sea surface. Oil and chemical spills that originate at the sea surface are not considered to be a potential source of measurable impacts on deepwater, live bottom communities because of the water depths at which these communities are located. Oil spills at the surface would tend not to sink, and the risk of weathered components of a surface slick reaching the benthos in any measurable concentration would be very small. Surface oil also could not physically mix to depths of deepwater communities under natural conditions (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002).

Upward movement of the oil may also be reduced if methane mixed with the oil is dissolved into the water (Adcroft et al., 2010). A sustained spill would continuously create surface slicks and possibly subsurface spill plumes. One deepwater coral site at a depth of 1,370 m (4,495 ft) has been reported as severely damaged following the Macondo well blowout and oil spill. The site is in Mississippi Canyon Block 294, 11 km (7 mi) southwest of the spill location. The site includes hard substrate supporting coral in an area approximately 10 x 12 m (33 x 39 ft) (White et al., 2012). The published results document damage to the coral community. Forty-three coral colonies were analyzed via close-up imagery: 86 percent exhibited signs of impact; 46 percent exhibited impact to at least 50 percent of the colony; and 23 percent of the colonies sustained impact to more than 90 percent of the colony (White et al., 2012). Many other associated invertebrates also exhibited signs of stress. This appears to be an exceptional case, since the numerous other communities investigated since the spill remained healthy (White et al., 2012). Some of the oil in the water column would become diluted over time, reducing transport to the seafloor (Vandermeulen, 1982). Concentrations of dispersed and dissolved oil in the *Macondo* well blowout and spill subsea plume were reported to be in the part per million range or less and were generally lower away from the water's surface and away from the wellhead (Adcroft et al., 2010; Haddad and Murawski, 2010; Joint Analysis Group, 2010; Lubchenco et al., 2010). In addition, microbial degradation of the oil occurs in the water, rendering the oil less toxic when it contacts the seafloor (Hazen et al., 2010). However, as evidenced by the report of White et al. (2012), subsea plumes can still retain toxic concentrations over a distance of at least 11 km (7 mi). Oil in a plume can adhere to other particles and precipitate to the seafloor, much like rainfall (Kingston et al., 1995; International Tanker Owners Pollution Federation Limited, 2011). Oil also would reach the seafloor through consumption by plankton, with excretion distributed over the seafloor (International Tanker Owners Pollution Federation Limited, 2011). These mechanisms would result in a wide distribution of small amounts of oil. Throughout these processes, oil would be biodegraded from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010).

A sustained spill may result in elevated exposure concentrations to live bottom features if a subsea oil plume contacts them directly. Dispersed oil is mixed with water, and its movement is then dictated by water currents and the physical, chemical, and biological degradation pathways. BOEM's policy (refer to NTL 2009-G40) prevents wells from being placed immediately adjacent to sensitive communities; however, in the event of a seafloor blowout, some oil could be carried to live bottom communities by subsea plumes. Impacts may include reduced recruitment success, reduced growth, and reduced biological cover as a result of impaired recruitment. Concentrated oil plumes reaching live bottom communities could cause oiling of organisms, resulting in the death of entire populations on localized sensitive habitats. The longer the oil remains suspended in the water column the more dispersed, less concentrated, and more degraded it would become. Depending on how long oil remained suspended in the water column, it may be thoroughly degraded by biological action before contacting the seafloor (Hazen et al., 2010; Valentine et al., 2010). Biodegradation rates in cold, deepwater environments are not well understood at this time. In general, the potential impacts to deepwater live bottom communities would be localized due to the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution. While a few patch habitats may be affected, the Gulfwide ecosystem of deepwater live bottom communities would be expected to suffer no significant effects.

Drilling muds comprised primarily of barite may be pumped into a well to stop a blowout. If a "kill" is not successful, the mud (possibly tens of thousands of barrels) may be forced out of the well and deposited on the seafloor near the well site. Any organisms beneath the extruded drilling mud would be buried. Based on stipulations as described in NTL 2009-G40, a well should be far enough away from sensitive live bottom communities to prevent extruded drilling muds from smothering them.

Phase 3—Onshore Contact

The third phase of a catastrophic blowout focuses on the approach of oil to the shoreline. This involves the possible oiling of coastal resources including beaches, wetlands, SAV and seagrasses, the shallow seafloor, and any resources drifting in the water column. Response efforts can produce additional serious impacts. There would be no adverse impacts to nonchemosynthetic benthic communities in deep water as a result of the events and the potential impact-producing factors that could occur throughout Phase 3 of a catastrophic spill because the communities are located offshore in deep water (>300 m; 610 ft).

Phase 4—Post-Spill, Long-Term Recovery and Response

The final phase of a catastrophic blowout is the long-term response of the ecosystem and its recovery. Both the natural rate of recovery and the persistence of oil in natural habitats over time determine what long-term effects may occur. Contaminants degrade over time, but they may become sequestered as inert forms (e.g., buried in sediment) until disturbed and re-activated, producing renewed impacts.

Although deepwater coral and other live bottom communities often live in close association with hydrocarbon seeps (since the carbonate substrate is precipitated by chemosynthetic communities), this does not mean they are necessarily tolerant to the effects of oil contamination. Natural seepage is very constant and at very low rates as compared with the potential volume of oil released from a catastrophic event (blowout or pipeline rupture). In addition, live bottom organisms, such as *Lophelia pertusa*, inhabit areas around the perimeter of seeps and sites where hydrocarbon seepage has reduced its flow or stopped. Typical Gulf of Mexico oil is light and floats rapidly to the surface rather than being carried horizontally across benthic communities by water currents (Johansen et al., 2001; MacDonald et al., 1995; Trudel et al., 2001). So, although deepwater live bottom communities are found near oil seeps, they are not typically exposed to concentrated oil.

If oil is ejected under high pressure or dispersants are applied at the source near the seafloor, oil would mix into the water column, be carried by underwater currents, and eventually contact the seafloor in some form, either concentrated (near the source) or dispersed and decayed (farther from the source). The oil could then impact patches of live bottom community habitat in its path. The farther the dispersed oil travels, the more diluted it would become as it mixes with surrounding water. Sensitive live bottom communities located at more than 610 m (2,000 ft) away from a blowout could experience minor impacts

from suspended sediments that travel with currents, although the sediment concentration would be diluted with distance from the well.

There have been no experiments showing the response of deepwater corals to oil exposure. Experiments with shallow tropical corals indicate that corals have a high tolerance to oil exposure. The mucus layers on coral resist penetration of oil and slough off the contaminant. Longer exposure times and areas of tissue where oil adheres to the coral are more likely to result in tissue damage and death of polyps. Corals with branching growth forms appear to be more susceptible to damage from oil exposure (Shigenaka, 2001). The most common deepwater coral, Lophelia pertusa, is a branching species. Tests with shallow tropical gorgonians indicate relatively low toxic effects to the coral (Cohen et al., 1977), suggesting deepwater gorgonians may have a similar response. Depending on the level of exposure, the response of deepwater coral to oil from a catastrophic spill would vary. Exposure to widely dispersed oil adhering to organic detritus and partially degraded by bacteria may be expected to result in little effect. Direct contact with plumes of relatively fresh dispersed oil droplets in the vicinity of the incident could cause the death of affected coral polyps through exposure and potential feeding on oil droplets by polyps. Median levels of exposure to dispersed oil in a partly degraded condition may result in effects similar to those of shallow tropical corals, with often no discernible effects other than temporary contraction and some sloughing. The health of corals may be degraded by the necessary expenditure of energy as the corals respond to oiling (Shigenaka, 2001). Communities exposed to more concentrated oil may experience detrimental effects, including death of affected organisms, tissue damage, lack of growth, interruption of reproductive cycles, and loss of gametes. Many invertebrates associated with deepwater coral communities, particularly the crustaceans, would likely be more susceptible to damage from oil exposure. The recolonization of severely damaged or destroyed communities could take years or decades. Burial of hard substrate could permanently prevent recovery. However, because of the scarcity of deepwater hard bottoms, their comparatively low surface area, and the distancing requirements set by BOEM in NTL 2009-G40, it is unlikely that a sensitive habitat would be located adjacent to a seafloor blowout or that concentrated oil would contact the site.

A catastrophic spill combined with the application of dispersant has the potential to cause devastating effects on local patches of habitat in the path of subsea plumes where they physically contact the seafloor. Sublethal effects are possible for communities that receive a lower level of impact. Examples of these effects could include temporary lack of feeding, expenditure of energy to remove the oil, loss of gametes and reproductive delays, and loss of tissue mass. Oil plumes that remain in the water column for longer periods would disperse and decay, having only minimal effect. Depending on how long it remains in the water column, oil may be thoroughly degraded by biological action before contacting the seafloor. Water currents can carry a plume to contact the seafloor directly, but a more likely scenario would be for oil to adhere to other particles and precipitate to the seafloor, much like rainfall (Kingston et al., 1995; International Tanker Owners Pollution Federation Limited, 2011). Oil also would reach the seafloor through consumption by plankton with excretion distributed over the seafloor (International Tanker Owners Pollution Federation Limited, 2011). These mechanisms would result in a wide distribution of small amounts of oil (or oil by-products). This oil would be in the process of biodegradation from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010). Habitats directly under the path of the oil plume as it disperses and "rains" down to the seafloor may experience minor effects, but since the oil would be deposited in a widely scattered and decayed state, little effect is anticipated.

Overall Summary and Conclusion (Phases 1-4)

Nonchemosynthetic communities would potentially be subject to detrimental effects from a catastrophic seafloor blowout. Sediment and oiled sediment from the initial event (Phase 1) are not likely to reach sensitive live bottom communities in heavy amounts because of requirements described in NTL 2009-G40. Fine sediment from a blowout may reach the location of sensitive habitats, producing sublethal effects. The initial accident could result in the drilling rig and equipment falling on a sensitive seafloor habitat if the structure travels more than 610 m (2,000 ft) from the well site.

The ongoing spill event (Phase 2) would have the most effect on nonchemosynthetic communities. Deepwater live bottom communities are at risk from subsea oil plumes that could directly contact localized patches of sensitive habitat. Oil plumes reaching live bottom communities could cause oiling of organisms, resulting in the death of entire populations on localized sensitive habitats. However, the

potential impacts would be localized due to the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution. The more likely result would be exposure to widely dispersed, biodegraded particles that "rain" down from a passing oil plume. While a few patch habitats may be affected, the gulf-wide ecosystem of live bottom communities would be expected to suffer no significant effects.

As oil approaches shore (Phase 3), there would be no adverse impacts to nonchemosynthetic communities because the communities are located offshore in deep water (>300 m; 610 ft).

The recovery of nonchemosynthetic communities (Phase 4) depends on the severity of initial impacts. A catastrophic spill combined with the application of dispersant has the potential to cause devastating effects on local patches of sensitive habitat in the path of subsea plumes where they physically contact the seafloor. The recolonization of severely damaged or destroyed communities could take years or decades. Burial of hard substrate could permanently prevent recovery. Sublethal effects are possible for communities that receive a lower level of impact. Examples of these effects could include temporary lack of feeding, expenditure of energy to remove the oil, loss of gametes and reproductive delays, and loss of tissue mass. However, most live bottom community habitats are expected to experience no impacts from a catastrophic seafloor blowout because of the directional movement of oil plumes by the water currents and because the sensitive habitats have a scattered, patchy distribution.

B.3.1.11. Soft Bottom Benthic Communities

The seafloor on the continental shelf in the Gulf of Mexico consists primarily of muddy to sandy sediments. Benthic organisms found on the seafloor include infauna (animals that live in the substrate, including mostly burrowing worms, crustaceans, and mollusks) and epifauna (animals that live on or are attached to the substrate; mostly crustaceans, as well as echinoderms, mollusks, hydroids, sponges, soft and hard corals, and demersal fishes). Infauna is comprised of meiofauna, small organisms (63-500 μ m) that live among the grains of sediment; and macroinfauna, slightly larger organisms (>0.5 mm; 0.02 in) that live in the sediment (Dames and Moore, Inc., 1979). Shrimp and demersal fish are closely associated with the benthic community. The most abundant organisms on the continental shelf are the depositfeeding polychaetes. The slope and deep sea consist of vast areas of primarily fine sediments that support benthic communities with lower densities and biomass but higher diversity than the continental shelf (Rowe and Kennicutt, 2001).

Phase 1—Initial Event

A blowout from an oil well could result in a catastrophic spill event. A catastrophic blowout would result in released oil rapidly rising to the sea surface because all known reserves in the GOM have specific gravity characteristics that would preclude oil from sinking immediately after release at a blowout site. The oil would surface almost directly over the source location. However, if the oil is ejected under high pressure, micro-droplets of oil may form and become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). The upward movement of the oil may be reduced if methane mixed with the oil is dissolved into the water column, reducing the oil's buoyancy (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). Dispersed oil in the water column begins to biodegrade and may flocculate with particulate matter, promoting sinking of the particles. Subsea plumes or sinking oil on particulates may contact portions of the seafloor.

A catastrophic blowout outside the well casing and below the seafloor or at the seafloor-water interface could resuspend large quantities of bottom sediments and create a large crater, destroying many organisms within a few hundred meters of the wellhead. Some fine sediment could travel up to a few thousand meters before redeposition, negatively impacting a localized area of benthic communities. The localized seafloor habitat around which a seafloor blowout occurs would be impacted by suspended and redeposited sediment.

A catastrophic blowout that occurs above the seabed (at the rig, along the riser between the seafloor and sea surface, or through leak paths on the BOP/wellhead) would not disturb the sediment.

The use of subsea dispersants would increase the exposure of offshore benthic habitats to dispersed oil droplets in the water column, as well as the chemicals used in the dispersants. The use of subsea dispersants is not likely to occur for seafloor blowouts outside the well casing.

Impacts to Soft Bottom Benthic Communities

Impacts that occur to benthic organisms as a result of a blowout would depend on the type of blowout and their distance from the blowout. Also, if the blowout were to occur beneath the seabed, soft sediment habitat would be destroyed by the formation of a crater, and the suspension and subsequent deposition of disturbed sediment would smother localized areas of benthic communities. A blowout that occurs outside the well casing can rapidly deposit 30 cm (12 in) or more of sediment within a few hundred meters and may smother much of the soft bottom community in a localized area. Benthic communities exposed to large amounts of resuspended and deposited sediments following a catastrophic, subsurface blowout could be subject to smothering, sediment suffocation, and exposure to resuspended toxic contaminants. Impacts to organisms as a result of sedimentation would vary based on species tolerance, degree of sedimentation, length of exposure, burial depth, and vertical migration ability through sediment.

A portion or the entire rig may sink to the seafloor as a result of a blowout. The benthic features and communities upon which the rig settles would be destroyed or smothered. A settling rig may suspend sediments, which may smother nearby benthic communities. The habitats beneath the rig may be permanently lost; however, the rig itself may become an artificial reef upon which epibenthic organisms may settle. The surrounding benthic communities that were smothered by sediment would repopulate from nearby stocks through spawning recruitment and immigration if the hard substrate upon which they live was not physically destroyed.

Phase 2—Offshore Spill

A spill from a shallow-water blowout could impact benthic communities on the continental shelf. The scenario (**Table B-4**) for a catastrophic spill on the continental shelf is assumed to last 2-5 months and to release 30,000 bbl per day. A total volume of 0.9-3.0 MMbbl of South Louisiana midrange paraffinic sweet crude oil could be released, which would float (API° >10). An anticipated 35,000 bbl of dispersant may be applied to the surface waters.

A spill from a deepwater blowout could also impact shelf communities and deepwater communities. The scenario (**Table B-4**) for a catastrophic spill in deep water is assumed to last 4-6 months and to release 30,000-60,000 bbl per day. A total volume of 2.7-7.2 MMbbl of South Louisiana midrange paraffinic sweet crude oil could be released, which would float (API° >10). Oil properties may change as it passes up the well and through the water column, and it may become emulsified. An anticipated 33,000 bbl of dispersant may be applied to the surface waters and 16,500 bbl may be applied subsea. Weathering and dilution of the oil would also occur as it travels from its launch point. It is unlikely that a subsurface plume from a deepwater blowout would impact shelf communities. The oil is anticipated to remain in deep water and be directed by water currents in the deep water. These currents do not typically transit from deep water up onto the shelf (Pond and Pickard, 1983; Inoue et al., 2008).

Impacts to Soft Bottom Benthic Communities

Impacts from Surface Oil

Surface oil slicks can spread over a large area; however, the majority of the slick is comprised of a very thin surface layer of oil moved by winds and currents (Lewis and Aurand, 1997). The potential of surface oil slicks to affect benthic habitats is limited by its ability to mix into the water column. Soft bottom benthic communities below 10-m (33-ft) water depth are protected from surface oil because of its lack of ability to mix with water (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich and Chan, 2002). Benthic organisms would not become physically coated or smothered by surface oil. However, if this surface oil makes its way into the water column through physical mixing, the use of dispersants, or the sedimenting to particles in the water column, benthic communities may be impacted. These scenarios are discussed in later sections.

Disturbance of the sea surface by storms can mix surface oil into the water column, but the effects are generally limited to the upper 10-20 m (33-66 ft) (Lange, 1985; McAuliffe et al., 1975 and 1981a; Tkalich

and Chan, 2002). Therefore, soft bottom benthic communities located in shallow water have the potential to be fouled by oil that is floating on shallow water and mixes to the depth of the seafloor. Nearshore oil deposits that occur in sheltered areas, such as bays, may remain in the sediment and impact organisms for long periods. Oil in nearshore sediments was found in high concentrations 8 years following the *Exxon Valdez* spill (Dean and Jewett, 2001). Benthic communities located in deeper water would not be impacted by oil physically mixed into the water column. However, if dispersants are used, they would enable oil to mix into the water column and possibly impact organisms in deeper water. Dispersants are discussed later in this chapter. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Impacts from Subsurface Oil

The presence of a subsurface oil plume on the continental shelf from a shallow-water blowout may affect soft bottom benthic communities. A majority of the oil released is expected to rise rapidly to the sea surface above the launch point because of the specific gravity characteristics of the oil reserves in the GOM, thus not directly sinking to the seafloor and smothering benthic communities. If the oil is ejected under high pressure, oil droplets may become entrained in the water column (Boehm and Fiest, 1982; Adcroft et al., 2010). The upward movement of the oil may be reduced if methane mixed with the oil is dissolved into the water column, reducing the oil's buoyancy (Adcroft et al., 2010). Large oil droplets would rise to the sea surface, but smaller droplets, formed by vigorous turbulence in the plume or the injection of dispersants, may remain neutrally buoyant in the water column, creating a subsurface plume (Adcroft et al., 2010; Joint Analysis Group, 2010). Dispersed oil in the water column begins to biodegrade and may flocculate with particulate matter, promoting sinking of the particles. Subsurface plumes generated by high-pressure dissolution of oil may come in contact with portions of the seafloor as it travels from the source. A sustained spill would continuously create surface slicks and possibly subsurface plumes. Some of the oil in the water column will become diluted or evaporated over time, reducing any localized transport to the seafloor (Vandermeulen, 1982). In addition, microbial degradation of the oil occurs in the water column so that the oil would be less toxic as it travels from the source (Hazen et al., 2010). However, a sustained spill may result in elevated exposure concentrations to benthic communities if the plume reaches them. The longer the spill takes to stop, the longer the exposure time and higher the exposure concentration may be.

Soft bottom infaunal communities that come into direct contact with oil may experience sublethal and/or lethal effects. The greatest effects of oil exposure would occur close to the well and impacts would decrease with distance. A subsurface plume that contacts the seafloor may result in acute toxicity. The water accommodated fraction (WAF) or water soluble fraction (WSF) of oil that dissolves in water may be the most toxic to organisms, especially larvae and embryos in the water column or at the water sediment interface. Lethal effects for marine invertebrates have been reported at exposures between 0.10 ppm to 100 ppm WSF of oil (Suchanek, 1993). The WSF of petroleum hydrocarbons was reportedly highly toxic to the embryos of oysters and sea urchins, while sediment containing weathered fuel was not toxic to the same species (Beiras and Saco-Álvarez, 2006). Quahog clam embryos and larvae also experienced toxicity and deformation of several different crude oils at WSF concentrations between 0.10 ppm and 10 ppm (Byrne and Calder, 1977). An experiment indicated that the WSF of No. 2 fuel oil at a concentration of 5 ppm disrupted the cellular development of 270 out of 300 test organisms within 3 hours of exposure (Byrne, 1989). After 48 hours exposure, all of the test organisms died and the 48-hour LC₅₀ (lethal concentration for 50% of the test population) was calculated to be 0.59 ppm (Byrne, 1989). Another experiment indicated that a WSF of 0.6 ppm and greater of No. 2 fuel oil depressed respiration, reduced mobility of sperm, interfered with cell fertilization and embryonic cleavage, and retarded larval development of sand dollar eggs (Nicol et al., 1977). Experiments that exposed sea urchin embryos to 10-30 ppm WSF of diesel oil for 15-45 days resulted in defective embryonic development and nonviable offspring (Vashchenko, 1980). Therefore, any dissolved petroleum hydrocarbon constituents that reach larval benthic organisms may cause acute toxicity and other developmental effects to this life stage. The WAF and WSF, however, should be considered "worst-case scenario" values as they are based on a closed system at equilibrium with the contaminant and, due to its size and complexity, the GOM will not reach equilibrium with released oil.

Oil in the water column may impact pelagic eggs and larvae of invertebrates. Toxicity tests indicated that eggs of many species were killed by diesel oil in seawater, and in general, the smaller eggs died earlier (Chia, 1973). Bivalve fertilization and sperm fertility were depressed with exposure to crude oil

B-54

(Renzoni, 1975). The WSF of crude oil was also highly toxic to gametes, embryos, and larvae of bivalves (Renzoni, 1975). Oil concentrations of 0.1 and 1 ppm caused a decrease in fertilization, development of embryos, survival or larvae, and larval growth in the bivalves *Crassostrea virginica* and *Mulinia lateralis* (Renzoni, 1975). Another experiment, however, calculated the LC_{50} for a 6-hour exposure of the gametes, eggs, and larvae of three bivalves (*Crassostrea angulata*, *Crassostrea gigas*, and *Mytilus galloprovincialis*) to be 1,000 ppm oil and 1,000 ppm oil plus dispersant (Renzoni, 1973). Toxicity varies widely among species and oil types.

Sublethal responses of marine invertebrates may result in population level changes (Suchanek, 1993). Such sublethal responses may occur at concentrations as low as 1-10 ppb (Hyland and Schneider, 1976). Sublethal impacts may include reduced feeding rates, reduced ability to detect food, ciliary inhibition, reduced movement, decreased aggression, and altered respiration (Suchanek, 1993).

The farther a subsea plume travels, the more physical and biological changes occur to the oil before it reaches benthic organisms. Oil would become diluted as it physically mixes with the surrounding water, and significant evaporation occurs from surface slicks. The most toxic compounds of oil are lost within the first 24 hours of a spill, leaving the heavier, less toxic compounds in the system (Ganning et al., 1984). An even greater component of the lighter fuel oils dissipates through evaporation. Water currents could carry a plume to contact the seafloor directly, but a likely scenario would be for the oil to adhere to other particles and precipitate to the seafloor, much like rainfall (International Tanker Owners Pollution Federation Limited, 2011; Kingston et al., 1995). Oil also would reach the seafloor through consumption by plankton, with excretion distributed over the seafloor (International Tanker Owners Pollution Federation Limited, 2011). The longer and farther a subsea plume travels in the sea, the more dilute the oil would be (Vandermeulen, 1982; Tkalich and Chan, 2002). In addition, microbial degradation of the oil occurs in the water column, reducing toxicity (Hazen et al., 2010; McAuliffe et al., 1981b). The oil would move in the direction of prevailing currents (S.L. Ross Environmental Research Ltd., 1997) and, although the oil would weather with the distance it travels, low levels of oil transported in subsea plumes would impact benthic communities. These mechanisms would result in a wide distribution of small amounts of oil. This oil would be in the process of biodegradation from bacterial action, which would continue on the seafloor, resulting in scattered microhabitats with an enriched carbon environment (Hazen et al., 2010).

Localized areas of lethal effects would be recolonized by populations from neighboring soft bottom substrate once the oil in the sediment has been sufficiently reduced to a level able to support marine life (Sanders et al., 1980; Lu and Wu, 2006; Ganning et al., 1984; Gómez Gesteira and Dauvin, 2000; Dean and Jewett, 2001). This initial recolonization process may be fairly rapid, but full recovery may take up to 10 years depending on the species present, substrate in the area, toxicity of oil spilled, concentration and dispersion of oil spilled, and other localized environmental factors that may affect recruitment (Kingston et al., 1995; Gómez Gesteira and Dauvin, 2000; Sanders et al., 1980; Conan, 1982). Opportunistic species would take advantage of the barren sediment, repopulating impacted areas first. These species may occur within the first recruitment cycle of the surrounding populations or from species immigration from surrounding stocks and may maintain a stronghold in the area until community succession begins (Rhodes and Germano, 1982; Sanders et al., 1980).

It is unlikely that a subsurface plume from a deepwater blowout would impact shelf communities. The oil is anticipated to remain in deep water and be directed by water currents in the deep water. These currents do not typically transit from deep water up onto the shelf (Pond and Pickard, 1983; Inoue et al., 2008). However, the impacts to deepwater soft bottom benthic communities as a result of a blowout would similar to those on the continental shelf.

Impacts from Dispersed Oil

If dispersants are used at the sea surface, oil may mix into the water column, and if they are applied subsea, dispersed oil can travel with currents and contact the seafloor. Chemically dispersed oil from a surface slick is not anticipated to result in lethal exposures to organisms on the seafloor. The chemical dispersion of oil may increase the weathering process and allow surface oil to be diluted by greater amounts of water. Reports on dispersant usage on surface plumes indicate that a majority of the dispersed oil remains in the top 10 m (33 ft) of the water column, with 60 percent of the oil in the top 2 m (6 ft) (McAuliffe et al., 1981a). Dispersant usage also reduces the oil's ability to stick to particles in the water column, minimizing oiled sediments from traveling to the seafloor (McAuliffe et al., 1981a). If applied,

subsea benthic communities near the source could be exposed to dispersed oil that is concentrated enough to harm the benthic community. If the oil remains suspended for a longer period of time, it would be more dispersed and less concentrated. There is very little information on the behavior of subsea dispersants.

Dispersed oil used at the sea surface reaching the benthic communities in the Gulf of Mexico would be expected to be at very low concentrations (<1 ppm) (McAuliffe et al., 1981a). Such concentrations would not be life threatening to larval or adult stages on the seafloor based on experiments conducted with benthic and pelagic species (Scarlett et al., 2005; Hemmer et al., 2010; George-Ares and Clark, 2000). Any dispersed oil in the water column that comes in contact with benthic communities may evoke short-term negative responses by the organisms (Scarlett et al., 2005). Sublethal responses may include reduced feeding rate, erratic movement, and tentacle retraction (Scarlett et al., 2005). In addition, although dispersants were detected in waters off Louisiana after the *Macondo* well blowout and spill, they were below USEPA benchmarks of chronic toxicity (OSAT, 2010). The rapid dilution of dispersants in the water column and lack of transport to the seafloor was also reported by OSAT (2010) where no dispersants were detected in sediment on the Gulf floor following the *Macondo* well blowout and spill.

Impacts from Oil Adhering to Sediments

Oiled sediment that settles to the seafloor may affect organisms upon which it settles. The greatest impacts would be closest to the well where organisms may become smothered by particles and exposed to hydrocarbons. High concentrations of suspended sediment in the water column may lend to large quantities of oiled sediment (Moore, 1976). Deposition of oiled sediment is anticipated to begin occurring within days or weeks of the spill and may be fairly deep near the source (Ganning et al., 1984; Gómez Gesteira and Dauvin, 2000). Oily sand layers were reported to be 10 cm (4 in) deep on the seafloor near the *Amoco Cadiz* spill (Gómez Gesteira and Dauvin, 2000). Acute toxicity may occur near the spill, eliminating benthic communities.

Much of the oil released from a blowout would rise to the sea surface, therefore dispersing the released oil before it makes its way back to the seafloor through flocculation, by deposition from organisms that pass it through their systems with food, and by adhering to sinking particles in the water column. In addition, small droplets of oil that are entrained in the water column for extended periods of time may migrate a great distance from their point of release and may attach to suspended particles in the water column and later be deposited on the seafloor (McAuliffe et al., 1975). The majority of organisms exposed to oiled sediment are anticipated to experience low-level concentrations because as the oiled sediments settle to the seafloor they are widely dispersed. Impacts may include reduced recruitment success, reduced growth, and altered community composition as a result of impaired recruitment.

Impacts from Oil-Spill-Response Activity

Continued localized disturbance of soft bottom communities may occur during oil-spill response efforts. Anchors used to set booms to contain oil or vessel anchors in decontamination zones may affect infaunal communities in the response activity zone. Infaunal communities may be altered in the anchor scar, and deposition of suspended sediment may result from the setting and resetting of anchors. The disturbed benthic community should begin to repopulate from the surrounding communities during their next recruitment event and through immigration of organisms from surrounding stocks. Any decontamination activities, such as cleaning vessel hulls of oil, may also contaminate the sediments of the decontamination zone, as some oil may settle to the seabed, impacting the underlying benthic community.

If a blowout occurs at the seafloor, drilling muds (primarily barite) may be pumped into a well in order to "kill" it. If a kill is not successful, the mud (possibly tens of thousands of barrels) may be forced out of the well and deposited on the seafloor near the well site. Any organisms beneath heavy layers of the extruded drilling mud would be buried. Base fluids of drilling muds are designed to be low in toxicity and biodegradable in offshore marine sediments (Neff et al., 2000). However, as bacteria and fungi break down the drilling fluids, the sediments may temporarily become anoxic (Neff et al., 2000). Benthic macrofaunal recovery would occur when drilling mud concentrations are reduced to levels that enable the sediment to become re-oxygenated (Neff et al., 2000). Complete community recovery from drilling mud exposure may take 3-5 years, although microbial degradation of drilling fluids, followed by an influx of tolerant opportunistic species, is anticipated to begin almost immediately (Neff et al., 2000). In addition,

the extruded mud may bury hydrocarbons from the well, making them a hazard to the infaunal species and difficult to remove.

Phase 3—Onshore Contact

There would likely be no additional adverse impacts to soft bottom benthic communities as a result of events and the potential impact producing factors that could occur throughout Phase 3 of a catastrophic spill because these soft bottom benthic communities are located below the water line.

Phase 4—Post-Spill, Long-Term Recovery and Response

Benthic Habitats

In situations where soft bottom infaunal communities are negatively impacted, recolonization by populations from neighboring soft bottom substrate would be expected over a relatively short period. Recolonization would begin with recruitment and immigration of opportunistic species from surrounding stocks. More complex communities would follow with time. Repopulation could take longer for areas affected by direct oil contact in higher concentrations.

Many of the organisms on soft bottoms live within the sediment and have the ability to migrate upward in response to burial by sedimentation. A blowout that occurs outside the well casing can rapidly deposit 30 cm (12 in) or more of sediment within a few hundred meters and may smother much of the soft bottom community in a localized area. In situations where soft bottom infaunal communities are negatively impacted, recolonization by populations from neighboring soft bottom substrate would be expected over a relatively short period of time for all size ranges of organisms, in a matter of days for bacteria, and probably less than 1 year for most macrofauna and megafauna species. Recolonization could take longer for areas affected by direct contact of concentrated oil. Initial repopulation from nearby stocks of pioneering species, such as tube-dwelling polychaetes or oligochaetes, may begin with the next recruitment event (Rhodes and Germano, 1982). Full recovery would follow as later stages of successional communities overtake the pioneering species (Rhodes and Germano, 1982). The time it takes to reach a climax community may vary depending on the species and degree of impact. Full benthic community recovery may take years to decades if the benthic habitat is heavily oiled (Gómez Gesteira and Dauvin, 2000; Sanders et al., 1980; Conan, 1982). A slow recovery rate would result in a community with reduced biological diversity and possibly a lesser food value for predatory species.

Localized areas of lethal effects would be recolonized by populations from neighboring soft bottom substrate once the oil in the sediment has been sufficiently reduced to a level able to support marine life (Sanders et al., 1980; Lu and Wu, 2006; Ganning et al., 1984; Gómez Gesteira and Dauvin, 2000; Dean and Jewett, 2001). This initial recolonization process may be fairly rapid, but full recovery may take up to 10 years depending on the species present, substrate in the area, toxicity of oil spilled, concentration and dispersion of oil spilled, and other localized environmental factors that may affect recruitment (Kingston et al., 1995; Gómez Gesteira and Dauvin, 2000; Sanders et al., 1980; Conan, 1982). Opportunistic species would take advantage of the barren sediment, repopulating impacted areas first. These species may occur within the first recruitment cycle of the surrounding populations or from species immigration from surrounding stocks and may maintain a stronghold in the area until community succession begins (Rhodes and Germano, 1982; Sanders et al., 1980).

Overall Summary and Conclusion (Phases 1-4)

A catastrophic blowout and spill would have the greatest impact on the soft bottom benthic communities in the immediate vicinity of the spill. Turbidity, sedimentation, and oiling would be heaviest closest to the source, and decrease with distance from the source. Complete loss of benthic populations may occur with heavy sedimentation and oil deposition. Farther from the well, a less thick layer of sediment would be deposited and oil would be dispersed from the source, resulting in sublethal impacts. The recovery of benthic populations would begin with recruitment from surrounding areas fairly rapidly.

B.3.1.12. Marine Mammals

Phase 1—Initial Event

Phase 1 of the scenario is the initiation of a catastrophic blowout event. Impacts, response, and intervention depend on the spatial location of the blowout and leak. For this analysis, an explosion and subsequent fire are assumed to occur. If a blowout associated with the drilling of a single exploratory well occurs, this could result in a fire that would burn for 1 or 2 days. If a blowout occurs on a production platform, other wells could feed the fire, allowing it to burn for over a month. The drilling rig or platform may sink. If the blowout occurs in shallow water, the sinking rig or platform may land in the immediate vicinity; if the blowout occurs in deep water, the rig or platform could land a great distance away, beyond avoidance zones. Regardless of water depth, the immediate response would be from search and rescue vessels and aircraft, such as USCG cutters, helicopters, and rescue planes, and firefighting vessels. Potential impacts reflect the explosion, subsequent fire for 1-30 days, and the sinking of the platform in the immediate vicinity and up to 1 mi (1.6 km) from the well.

Depending on the type of blowout, the pressure waves and noise generated by the eruption of gases and fluids would likely be significant enough to harass, injure, or kill marine mammals, depending on the proximity of the animal to the blowout. A high concentration of response vessels could result in harassment or displacement of individuals and could place marine mammals at a greater risk of vessel collisions, which would likely cause fatal injuries.

The scenarios for each phase, including cleanup methods, can be found in Table B-4.

Phase 2—Offshore Spill

Phase 2 of the analysis focuses on the spill and response in Federal and State offshore waters. A catastrophic spill would likely spread hundreds of square miles. Also, the oil slick may break into several smaller slicks, depending on local wind patterns that drive the surface currents in the spill area. Potential impacts reflect spill and response in Federal and State offshore waters. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

An oil spill and related spill-response activities can impact marine mammals that come into contact with oil and remediation efforts. The marine mammals' exposure to hydrocarbons persisting in the sea may result in sublethal impacts (e.g., decreased health, reproductive fitness, longevity, and increased vulnerability to disease), some soft tissue irritation, respiratory stress from inhalation of toxic fumes, food reduction or contamination, direct ingestion of oil and/or tar, and temporary displacement from preferred habitats or migration routes. More detail on the potential range of effects to marine mammals from contact with spilled oil can be found in Geraci and St. Aubin (1990). The best available information does not provide a complete understanding of the effects of the spilled oil and active response/cleanup activities on marine mammals. For example, it is expected that the large amount of chemical dispersants being used on the oil may act as an irritant on the marine mammals' tissues and sensitive membranes.

The increased human presence after an oil spill (e.g., vessels) would likely add to changes in behavior and/or distribution, thereby potentially stressing marine mammals further and perhaps making them more vulnerable to various physiologic and toxic effects. In addition, the large number of response vessels could place marine mammals at a greater risk of vessel collisions, which could cause fatal injuries.

The potential biological removal (PBR) level is defined by the Marine Mammal Protection Act as the maximum number of animals, not including natural mortalities that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population. However, in the Gulf of Mexico, many marine mammal species have unknown PBRs or PBRs with outdated abundance estimates, which are considered undetermined. The biological significance of any injury or mortality would depend, in part, on the size and reproductive rates of the affected stocks, as well as the number, age, and size of the marine mammals affected.

The *Deepwater Horizon* explosion, oil spill, and response in Mississippi Canyon Block 252 (including use of dispersants) have impacted marine mammals that have come into contact with oil and remediation efforts. According to the "Dolphins and Whales of the Gulf of Mexico Oil Spill" website, within the designated *Deepwater Horizon* explosion, oil spill, and response area, 171 marine mammals (89% of which were deceased) were reported. This includes 155 bottlenose dolphins, 2 Kogia spp., 2 melon-headed whales, 6 spinner dolphins, 2 sperm whales, and 4 unknown species (USDOC, NMFS,

B-59

2011b). All marine mammals collected either alive or dead were found east of the Louisiana/Texas border through Apalachicola, Florida. The highest concentration of strandings has occurred off eastern Louisiana, Mississippi, and Alabama, with a significantly lesser number off western Louisiana and western Florida (USDOC, NMFS, 2011b). Due to known low-detection rates of carcasses, it is possible that the number of deaths of marine mammals is underestimated (Williams et al., 2011). It is also important to note that evaluations have not yet confirmed the cause of death, and it is possible that many, some, or no carcasses collected were related to the *Deepwater Horizon* explosion, oil spill, and response. These stranding numbers are significantly greater than reported in past years; though it should be further noted that stranding coverage (i.e., effort in collecting strategies) has increased considerably due to the *Deepwater Horizon* explosion, oil spill, and response. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Phase 3—Onshore Contact

Phase 3 focuses on nearshore (e.g., inside bays and in close proximity to shoreline) and onshore spill response and oil initially reaching the shoreline during the spill event or while the oil still persists in the offshore environment once the spillage has been stopped. It is likely that Phases 2 and 3 could occur simultaneously. The duration of the initial shoreline oiling is measured from initial shoreline contact until the well is capped or killed and the remaining oil dissipates offshore. Re-oiling of already cleaned or previously impacted areas could be expected during Phase 3. In addition to the response described in Phase 2, nearshore and onshore efforts would be introduced in Phase 3 as oil entered coastal areas and contacted shore. Potential impacts reflect the spill and response in very shallow coastal waters and once along the shoreline. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

A high-volume oil spill lasting 90 days could directly impact over 22 species of marine mammals. As a spill enters coastal waters, manatees and coastal and estuarine dolphins would be the most likely to be affected.

Manatees primarily inhabit open coastal (shallow nearshore) areas and estuaries, and they are also found far up in freshwater tributaries. Florida manatees have been divided into four distinct regional management units: the Atlantic Coast Unit that occupies the east coast of Florida, including the Florida Keys and the lower St. Johns River north of Palatka, Florida; the Southwest Unit that occurs from Pasco County, Florida, south to Whitewater Bay in Monroe County, Florida; the Upper St. Johns River Unit that occurs in the river south of Palatka, Florida; and the Northwest Unit that occupies the Florida Panhandle south to Hernando County, Florida (Waring et al., 2012). Manatees from the Northwest Unit are more likely to be seen in the northern GOM, and they can be found as far west as Texas; however, most sightings are in the eastern GOM (Fertl et al., 2005).

During warmer months (June to September), manatees are common along the Gulf Coast of Florida from the Everglades National Park northward to the Suwannee River in northwestern Florida. Although manatees are less common farther westward, manatee sightings increase during the warmer summer months. Winter habitat use is primarily influenced by water temperature as animals congregate at natural (springs) and/or artificial (power plant outflows) warm water sources (Alves-Stanley et al., 2010). Manatees are infrequently found as far west as Texas (Powell and Rathbun, 1984; Rathbun et al., 1990; Schiro et al., 1998). If a catastrophic oil spill reached the Florida coast when manatees were in or near coastal waters, the spill could have population-level effects.

It is possible that manatees could occur in coastal areas where vessels traveling to and from the spill site could affect them. A manatee present where there is vessel traffic could be injured or killed by a vessel strike (Wright et al., 1995). Due to the large number of vessels responding to a catastrophic spill both in coastal waters and traveling through coastal waters to the offshore site, manatees would have an increased risk of collisions with boats. Vessel strikes are the primary cause of death of manatees.

The best available count of Florida manatees is 4,824 animals, based on a January 2014 aerial survey of warm water refuges (Florida Fish and Wildlife Conservation Commission, 2014a). By February 2014, there were 114 manatee carcasses collected in Florida, 20 of these animals died of human causes (Florida Fish and Wildlife Conservation Commission, 2014b). Human causes included water control structures, entanglement in and ingestion of marine debris, entrapment in pipes/culverts, and collisions with watercraft. Seventy percent of the manatees that died of human causes were killed by watercraft (Florida

Fish and Wildlife Conservation Commission, 2014b). Therefore, if a catastrophic spill and response vessel traffic occurred near manatee habitats in the eastern Gulf of Mexico, population-level impacts could occur because the possibility exists for the number of mortalities to exceed the potential biological removal.

There have been no experimental studies and only a few observations suggesting that oil impacts have harmed any manatees (St. Aubin and Lounsbury, 1990). Types of impacts to manatees and dugongs from contact with oil include (1) asphyxiation because of inhalation of hydrocarbons, (2) acute poisoning because of contact with fresh oil, (3) lowering of tolerance to other stress because of the incorporation of sublethal amounts of petroleum components into body tissues, (4) nutritional stress through damage to food sources, and (5) inflammation or infection and difficulty eating because of oil sticking to the sensory hairs around their mouths (Preen, 1989, in Sadiq and McCain, 1993; Australian Maritime Safety Authority, 2003). For a population whose environment is already under great pressure, even a localized incident could be significant (St. Aubin and Lounsbury, 1990). Spilled oil might affect the quality or availability of aquatic vegetation, including seagrasses, upon which manatees feed.

Bottlenose dolphins were the most affected species of marine mammals from the *Deepwater Horizon* explosion, oil spill, and response. Bottlenose dolphins can be found throughout coastal waters in the Gulf of Mexico. Like manatees, dolphins could be affected, possibly to population level, by a catastrophic oil spill if it reaches the coast (as well as affecting them in the open ocean), through direct contact, inhalation, ingestion, and stress, as well as through collisions with cleanup vessels.

Phase 4—Post-Spill, Long-Term Recovery and Response

Phase 4 focuses on long term recovery once the well has been capped and the spill has stopped. During the final phase of a catastrophic blowout and spill, it is presumed that the well has been capped or killed and cleanup activities are concluding. While it is assumed that the majority of spilled oil would be dissipated offshore within 1-2 months (depending on season and temperature) of stopping the flow, oil has the potential to persist in the environment long after a spill event and has been detected in sediment 30 years after a spill. On sandy beaches, oil can sink deep into the sediments. In tidal flats and salt marshes, oil may seep into the muddy bottoms. Potential impacts reflect long-term persistence of oil in the environment and residual and long-term cleanup efforts.

Even after the spill is stopped, oilings or deaths of marine mammals would still likely occur because of oil and dispersants persisting in the water, past marine mammal/oil or dispersant interactions, and ingestion of contaminated prey. The animals' exposure to hydrocarbons persisting in the sea may result in sublethal impacts (e.g., decreased health, reproductive fitness, and longevity; and increased vulnerability to disease) and some soft tissue irritation, respiratory stress from inhalation of toxic fumes, food reduction or contamination, direct ingestion of oil and/or tar, and temporary displacement from preferred habitats or migration routes. A catastrophic oil spill could lead to increased mortalities, resulting in potential population-level effects for some species/populations (USDOC, NMFS, 2010a).

On December 13, 2010, NMFS declared an unusual mortality event (UME) for cetaceans (whales and dolphins) in the Gulf of Mexico. An UME is defined under the Marine Mammal Protect Act as a "stranding that is unexpected, involves a significant die-off of any marine mammal population, and demands immediate response." Evidence of the UME was first noted by NMFS as early as February 1, 2010, before the *Deepwater Horizon* explosion, oil spill, and response. As of March 30, 2014, a total of 1,156 cetaceans (5% stranded alive and 95% stranded dead) have stranded since the start of the UME, with a vast majority of these strandings between Franklin County, Florida, and the Louisiana/Texas border. After the initial response phase ended, there were six dolphins killed during a fish-related scientific study and one dolphin killed incidental to trawl relocation for a dredging project. More detail on the UME can be found on NMFS's website (USDOC, NMFS, 2014).

On May 9, 2012, NOAA declared an UME for bottlenose dolphins in five Texas counties. The cause of this UME is unknown and cannot be attributed directly to the *Deepwater Horizon* explosion, oil spill, and response. The strandings were coincident with a harmful algal bloom of *Karenia brevis* that started in September 2011 in southern Texas, but researchers have not determined that was the cause of the event. The UME lasted from November 2011-March 2012, when 126 bottlenose dolphins stranded in Aransas, Calhoun, Kleberg, Galveston, and Brazoria Counties in Texas. Of the 126 animals stranded, only 4 were found alive. Preliminary findings included infection in the lung, poor body condition, discoloration of the teeth, and in four animals, a black/grey, thick mud-like substance in the stomachs was

found. Currently, there are no red tide blooms occurring in the region, and stranding rates have returned to normal levels (USDOC, NMFS, 2013).

Overall Summary and Conclusion (Phases 1-4)

Accidental events related to a CPA proposed action have the potential to have adverse, but not significant impacts to marine mammal populations in the GOM. Accidental blowouts, oil spills, and spill-response activities may impact marine mammals in the GOM. Characteristics of impacts (i.e., acute vs. chronic impacts) depend on the magnitude, frequency, location, and date of accidents; characteristics of spilled oil; spill-response capabilities and timing; and various meteorological and hydrological factors.

B.3.1.13. Sea Turtles

Phase 1—Initial Event

Phase 1 of the scenario is the initiation of a catastrophic blowout incident. Impacts, response, and intervention depend on the spatial location of the blowout and leak. For this analysis, an explosion and subsequent fire are assumed to occur. If a blowout associated with the drilling of a single exploratory well occurs, this could result in a fire that would burn for 1-2 days. If a blowout occurs on a production platform, other wells could feed the fire, allowing it to burn for over a month. The drilling rig or platform may sink. If the blowout occurs in shallow water, the sinking rig or platform may land in the immediate vicinity; if the blowout occurs in deep water, the rig or platform could land a great distance away, beyond avoidance zones. Regardless of water depth, the immediate response would be from search and rescue vessels and aircraft, such as USCG cutters, helicopters, and rescue planes, and firefighting vessels. Potential impacts reflect the explosion, subsequent fire for 1-30 days, and the sinking of the platform in the immediate vicinity and up to 1 mi (1.6 km) from the well.

Five species of sea turtles are found in the waters of the Gulf of Mexico: green, leatherback, hawksbill, Kemp's ridley, and loggerhead. All species are protected under the Endangered Species Act (ESA), and all are listed as endangered except the loggerhead turtle, which is listed as threatened. Depending on the type of blowout, an eruption of gases and fluids may generate significant pressure waves and noise that may harass, injure, or kill sea turtles, depending on their proximity to the accident. A high concentration of response vessels could place sea turtles at a greater risk of fatal injuries from vessel collisions. All sea turtle species and life stages are vulnerable to the harmful effects of oil through direct contact or by fouling of their habitats and prey.

Further, mitigation by burning puts turtles at risk because they tend to be gathered up in the corralling process necessary to concentrate the oil in preparation for the burning. Trained observers should be required during any mitigation efforts that include burning. The scenarios for each phase, including cleanup methods, can be found in **Table B-4**.

Phase 2—Offshore Spill

Phase 2 of the analysis focuses on the spill and response in Federal and State offshore waters. A catastrophic spill would likely spread hundreds of square miles. Also, the oil slick may break into several smaller slicks, depending on local wind patterns that drive the surface currents in the spill area. Potential impacts reflect spill and response in Federal and State offshore waters. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

Sea turtles are more likely to be affected by a catastrophic spill in shallow water than in deep water because not all sea turtles occupy a deepwater habitat. For example, Kemp's ridley sea turtles are unlikely to be in water depths of 160 ft (49 m) or greater. Hawksbill sea turtles are commonly associated with coral reefs, ledges, caves, rocky outcrops, and high energy shoals. Green sea turtles are commonly found in coastal benthic feeding grounds, although they may also be found in the convergence zones of the open ocean. Convergence zones are areas that also may collect oil. Leatherback sea turtles are commonly pelagic and are the sea turtle species most likely to be affected by a deepwater oil spill. As the spilled oil moves toward land, additional species of sea turtles are more likely to be affected.

The *Deepwater Horizon* explosion, oil spill, and response in Mississippi Canyon Block (including use of dispersants) have impacted sea turtles that have come into contact with oil and remediation efforts. For

the latest available information on oiled or affected sea turtles documented in the area, refer to NMFS's "Sea Turtles and the Gulf of Mexico Oil Spill" website (USDOC, NMFS, 2011c).

According to this NMFS website, 1,146 sea turtles have been collected (537 alive, 609 deceased) as of February 15, 2011. Of these, 201 were greens, 16 Hawksbills, 809 Kemp's ridleys, 88 loggerheads, and the remaining 32 unknown (USDOC, NMFS, 2011c). Individuals were documented either through strandings or directed offshore captures. Due to low detection rates of carcasses in prior events, it is possible that the number of deaths of sea turtles is underestimated (Epperly et al., 1996). It is also important to note that evaluations have not yet confirmed the cause of death, and it is possible that not all carcasses were related to the *Deepwater Horizon* explosion, oil spill, and response. Over the last 2 years, NOAA has documented increased numbers of sea turtle strandings in the northern GOM. Many of the stranded turtles were reported from Mississippi and Alabama waters, and very few showed signs of external oiling (believed to be related to the *Deepwater Horizon* explosion, oil spill, and response). Necropsy results from many of the stranded turtles indicate mortality due to forced submergence, which is commonly associated with fishery interactions. In May 2012, NMFS published the Draft EIS to reduce incidental bycatch and mortality of sea turtles in the southeastern U.S. shrimp fishery (*Federal Register*, 2012). Further detail on this catastrophic OSRA run is contained in **Appendix C**.

The *Ixtoc I* well blowout and spill in the Bay of Campeche, Mexico, on June 3, 1979, resulted in the release of 500,000 metric tons (140 million gallons) of oil and the transport of this oil into the Gulf of Mexico (ERCO, 1982). Three million gallons of oil impacted Texas beaches (ERCO, 1982). According to the ERCO study, "Whether or not hypoxic conditions could, in fact, be responsible for areawide reductions in [invertebrate] faunal abundance is unclear, however." Of the three sea turtles found dead in the U.S., all had petroleum hydrocarbons in the tissues examined, and there was selective elimination of portions of this oil, indicating chronic exposure (Hall et al., 1983). Therefore, the effects of the *Ixtoc I* well blowout and spill on sea turtles in waters off Texas are still unknown.

Phase 3—Onshore Contact

Phase 3 focuses on nearshore (e.g., inside bays and in close proximity to shoreline) and onshore spill response, and on oil initially reaching the shoreline during the spill event or while the oil still persists in the offshore environment once the spillage has been stopped. It is likely that Phases 2 and 3 could occur simultaneously. The duration of the initial shoreline oiling is measured from initial shoreline contact until the well is capped or killed and the remaining oil dissipates offshore. The re-oiling of already cleaned or previously impacted areas could be expected during Phase 3. In addition to the response described in Phase 2, nearshore and onshore efforts would be introduced in Phase 3 as oil entered coastal areas and contacted shore. Potential impacts reflect the spill and response in very shallow coastal waters and once along the shoreline. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

Out of the five species of sea turtle that occur in the Gulf of Mexico, only four nest in the GOM. The largest nesting location for the Kemp's ridley sea turtle is in Rancho Nuevo, Mexico, but they also nest in Texas and Alabama. Loggerhead sea turtles nest in all states around the Gulf of Mexico. Green sea turtles have been cited nesting in Texas, Alabama, and Florida. Leatherback sea turtles mostly nest on the east coast of Florida but are recorded in Texas. Kemp's ridley, loggerhead, and green sea turtles are therefore most likely to be affected by a catastrophic oil spill when there is onshore and/or offshore contact.

Several recent reports are available concerning Gulf of Mexico loggerheads' nesting habitats and movements (Hart et al., 2013), post-nesting behavior (Foley et al., 2013), foraging sites (Foley et al., 2014), and body size effects on growth rates (Bjorndal et al., 2013). These reports confirm the importance of Gulf of Mexico beaches, specifically for loggerheads. On September 22, 2011, NMFS issued the final rule to list nine Distinct Population Segments (DPSs) of loggerhead sea turtles under the ESA and designated the GOM as the Northwest Atlantic Ocean DPS (*Federal Register*, 2011).

Female sea turtles seasonally emerge during the warmer summer months to nest on beaches. Thousands of sea turtles nest along the Gulf Coast, and turtles could build nests on oiled beaches. Nests could also be disturbed or destroyed by cleanup efforts. Untended booms could wash ashore and become a barrier to sea turtle adults and hatchlings (USDOC, NOAA, 2010c). Hatchlings, with a naturally high mortality rate, could traverse the beach through oiled sand and swim through oiled water to reach

preferred habitats of *Sargassum* floats. Response efforts could include mass movement of eggs from hundreds of nests or thousands of hatchlings from Gulf Coast beaches to the east coast of Florida or to the open ocean to prevent hatchlings entering oiled waters (Jernelöv and Lindén, 1981; USDOI, FWS, 2010b). Due to poorly understood mechanisms that guide female sea turtles back to the beaches where they hatched, it is uncertain if relocated hatchlings would eventually return to the Gulf Coast to nest (Florida Fish and Wildlife Conservation Commission, 2010). Therefore, shoreline oiling and response efforts may affect future population levels and reproduction (USDOI, NPS, 2010). Sea turtle hatchling exposure to, fouling by, or consumption of tarballs persisting in the sea following the dispersal of an oil slick would likely be fatal.

As a preventative measure during the *Deepwater Horizon* explosion, oil spill, and response, NMFS and FWS translocated a number of sea turtle nests and eggs that were located on beaches affected or potentially affected by spilled oil. The NMFS stranding network website (USDOC, NMFS, 2011c) translocated a total of 274 nests from GOM beaches to the east coast of Florida. These nests were mainly for hatchlings that would enter waters off Alabama and Florida's northwest Gulf Coast. Of these, 4 were from green turtles, 5 from Kemp's ridley, and 265 were loggerheads. The translocation effort ended August 19, 2010, at the time when biologists determined that risks to hatchlings emerging from beaches and entering waters off Alabama and Florida's northwest Gulf Coast had diminished significantly and that the risks of translocating nests during late incubation to the east coast of Florida outweighed the risks of letting hatchlings emerge into the Gulf of Mexico. The hatchlings resulting from the translocations were all released as of September 9, 2010.

In addition to the impacts from direct contact with hydrocarbons, spill-response activities could adversely affect sea turtle habitat and cause displacement from suitable habitat to inadequate areas. Impacting factors might include artificial lighting from night operations, booms, machine and human activity, equipment on beaches and in intertidal areas, sand removal and cleaning, and changed beach landscape and composition. Some of the resulting impacts from cleanup could include interrupted or deterred nesting behavior, crushed nests, entanglement in booms, and increased mortality of hatchlings because of predation during the increased time required to reach the water (Newell, 1995; Lutcavage et al., 1997). The strategy for cleanup operations should vary, depending on the season.

Phase 4—Post-Spill, Long-Term Recovery and Response

Phase 4 focuses on long-term recovery once the well has been capped and the spill has stopped. During the final phase of a catastrophic blowout and spill, it is presumed that the well has been capped or killed and that cleanup activities are concluding. While it is assumed that the majority of spilled oil would be dissipated offshore within 1-2 months (depending on season and temperature) of stopping the flow, oil has the potential to persist in the environment long after a spill event and has been detected in sediment 30 years after a spill. On sandy beaches, oil can sink deep into the sediments. In tidal flats and salt marshes, oil may seep into the muddy bottoms. Potential impacts reflect long-term persistence of oil in the environment and residual and long-term cleanup efforts.

Sea turtles take many years to reach sexual maturity. Green sea turtles reach maturity between 20 and 50 years of age; loggerheads may be 35 years old before they are able to reproduce; and hawksbill sea turtles typically reach lengths of 27 in (69 cm) for males and 31 in (79 cm) for females before they can reproduce (USDOC, NMFS, 2010a). Declines in the food supply for sea turtles, which include invertebrates and sponge populations, could also affect sea turtle populations. While all of the pathways that an oil spill or the use of dispersants can affect sea turtles is poorly understood, some pathways may include the following: (1) oil or dispersants on the sea turtle's skin and body can cause skin irritation, chemical burns, and infections; (2) inhalation of volatile petroleum compounds or dispersants can damage the respiratory tract and lead to diseases; (3) ingesting oil or dispersants may cause injury to the gastrointestinal tract; and (4) chemicals that are inhaled or ingested may damage internal organs. In most foreseeable cases, exposure to hydrocarbons persisting in the sea following the dispersal of an oil slick would result in sublethal impacts (e.g., decreased health, reproductive fitness, and longevity and increased vulnerability to disease) to sea turtles. Other possible internal impacts might include harm to the liver, kidney, and brain function, as well as causing anemia and immune suppression, or they could lead to reproductive failure or death. The deaths of subadult and adult sea turtles may also drastically reduce the population.

Since January 1, 2011, a notable increase in sea turtle strandings has occurred in the northern GOM, primarily in Mississippi. While turtle strandings in this region typically increase in the spring, the recent increase is a cause for concern. The Sea Turtle Stranding and Salvage Network is monitoring and investigating this increase. The network encompasses the coastal areas of the 18 states from Maine through Texas and includes portions of the U.S. Caribbean. There are many possible reasons for the increase in strandings in the northern GOM, both natural and human caused (USDOC, NMFS, 2012a). One sea turtle had a small amount of tar from the *Deepwater Horizon* explosion, oil spill, and response on its shell. No visible external or internal oil was observed in any other animals. These sea turtle species include loggerhead, green, Kemp's ridley, leatherback, hawksbill, and unidentified. The NMFS has also identified strandings in Texas (upper Texas coast—Zone 18). Refer to **Chapter 4.1.1.12** for updated turtle stranding data for the Gulf of Mexico.

Over the last 2 years, NOAA has documented necropsy results from many of the stranded turtles, indicating mortality due to forced submergence, which is commonly associated with fishery interactions, and acute toxicosis. On May 10, 2012, NMFS published the Draft EIS to reduce incidental bycatch and mortality of sea turtles in the southeastern U.S. shrimp fishery (*Federal Register*, 2012).

Overall Summary and Conclusion (Phases 1-4)

Accidental blowouts, oil spills, and spill-response activities resulting from a CPA proposed action have the potential to impact small to large numbers of sea turtles in the GOM, depending on the magnitude and frequency of accidents, the ability to respond to accidents, the location and date of accidents, and various meteorological and hydrological factors. Impacts on sea turtles from smaller accidental events are likely to affect individual sea turtles in the spill area, but they are unlikely to rise to the level of population effects (or significance) given the size and scope of such spills.

Unavailable information on the effects to sea turtles from the *Deepwater Horizon* explosion, oil spill, and response and increased stranding events (and thus changes to the sea turtle baseline in the affected environment) makes an understanding of the effects less clear.

For low-probability catastrophic spills, this analysis concludes that there is a potential for a lowprobability catastrophic event to result in significant, population-level effects on affected sea turtle species.

B.3.1.14. Diamondback Terrapins

Phase1—Initial Event

Phase 1 of the scenario is the initiation of a catastrophic blowout event. Impacts, response, and intervention depend on the spatial location of the blowout and leak. For this analysis, an explosion and subsequent fire are assumed to occur. If a blowout associated with the drilling of a single exploratory well occurs, this could result in a fire that would burn for 1-2 days. If a blowout occurs on a production platform, other wells could feed the fire, allowing it to burn for over a month. The drilling rig or platform may sink. If the blowout occurs in shallow water, the sinking rig or platform may land in the immediate vicinity; if the blowout occurs in deep water, the rig or platform could land a great distance away, beyond avoidance zones. Regardless of water depth, the immediate response would be from search and rescue vessels and aircraft, such as USCG cutters, helicopters, and rescue planes, and firefighting vessels. Potential impacts reflect the explosion, subsequent fire for 1-30 days and the sinking of the platform in the immediate vicinity and up to 1 mi (1.6 km) from the well.

The scenarios for each phase, including cleanup methods, can be found in Table B-4.

There would likely be no adverse impacts to diamondback terrapins as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because these species exclusively inhabit estuarine waters and salt marshes.

Phase 2—Offshore Spill

Phase 2 of the analysis focuses on the spill and response in Federal and State offshore waters. A catastrophic spill would likely spread hundreds of square miles. Also, the oil slick may break into several smaller slicks, depending on local wind patterns that drive the surface currents in the spill area. Potential impacts reflect spill and response in Federal and State offshore waters. Season and temperature variations

can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

There would likely be no adverse impacts to diamondback terrapins as a result of the events and the potential impact-producing factors that could occur throughout Phase 2 of a catastrophic spill event because these species exclusively inhabit estuarine waters and salt marshes.

Phase 3—Onshore Contact

Phase 3 focuses on nearshore (e.g., inside bays and in close proximity to shoreline) and onshore spill response and on oil initially reaching the shoreline during the spill event or while the oil still persists in the offshore environment once the spillage has been stopped. It is likely that Phases 2 and 3 could occur simultaneously. The duration of the initial shoreline oiling is measured from initial shoreline contact until the well is capped or killed and the remaining oil dissipates offshore. The re-oiling of already cleaned or previously impacted areas could be expected during Phase 3. In addition to the response described in Phase 2, nearshore and onshore efforts would be introduced in Phase 3 as oil entered coastal areas and contacted shore. Potential impacts reflect the spill and response in very shallow coastal waters and once along the shoreline. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in the potential exposure of the resources throughout various life cycle stages.

The major impact-producing factors resulting from the low-probability catastrophic event at may affect the five terrapin subspecies that occur in the WPA and CPA include offshore and coastal oil spills and spill-response activities.

Terrapins inhabit brackish waters including coastal marshes, tidal flats, creeks, and lagoons behind barrier beaches (Hogan, 2003). Their diet consists of fish, snails, worms, clams, crabs, and marsh plants (Cagle, 1952). Courtship and mating occur in March and April, and the nesting season extends through July, with possibly multiple clutches (U.S. Dept. of the Army, COE, 2002; Butler et al., 2006). Terrapins nest on dunes, beaches, sandy edges of marshes, islands, and dike roads (Roosenburg, 1994). The common factor for proper egg development is sandy soil, which does not clog eggshell pores, thus allowing sufficient gas exchange between the developing embryo and the environment (Roosenburg, 1994). Nesting occurs primarily in the daytime during high tide on high sand dunes with gentle slopes and minimal vegetation (Burger, 1977). Clutch size ranges from 4 to 22 eggs, and incubation time ranges from 61 to 104 days (Butler et al., 2006; Burger, 1977). Female terrapins may nest 2-3 times in the same nesting season. Gender determination is temperature dependent. Hatching occurs from July through October in northeastern Florida (Butler et al., 2004).

Spending most of their lives at the aquatic-terrestrial boundary in estuaries, terrapins are susceptible to habitat destruction from oil-spill cleanup efforts as well as direct contact with oil. However, most impacts cannot be quantified at this time. Even after oil is no longer visible, terrapins may still be exposed while they forage in the salt marshes lining the edges of estuaries, where oil may have accumulated under the sediments and within the food chain. Terrapin nests can also be disturbed or destroyed by cleanup efforts. The range of the possible chronic effects from contact with oil and dispersants include lethal or sublethal oil-related injuries that may include skin irritation from the oil or dispersants, respiratory problems from the inhalation of volatile petroleum compounds or dispersants, gastrointestinal problems caused by the ingestion of oil or dispersants, and damage to other organs because of the ingestion or inhalation of these chemicals.

Accidental blowouts, oil spills, and spill-response activities resulting from a CPA proposed action have the potential to impact small to large numbers of terrapins within their habitat, depending on the magnitude and frequency of accidents, the ability to respond to accidents, the location and date of accidents, and various meteorological and hydrological factors. Populations of terrapins in the Gulf may be exposed to residuals of oils spilled as a result of a CPA proposed action during their lifetimes. Chronic or acute exposure may result in the harassment, harm, or mortality to terrapins occurring in the GOM. In the most likely scenarios, exposure to hydrocarbons persisting within the wetlands following the dispersal of an oil slick could result in sublethal impacts (e.g., decreased health, reproductive fitness, and longevity; and increased vulnerability to disease). Terrapin hatchling exposure to, fouling by, or consumption of tarballs persisting inland following the dispersal of an oil slick could likely be fatal but unlikely. Impacts from the dispersants are unknown, but they may have similar irritants to tissues and sensitive membranes as are known to occur in seabirds and sea turtles (NRC, 2005). The impacts to diamondback terrapins

from chemical dispersants could include nonlethal injury (e.g., tissue irritation and inhalation), long-term exposure through bioaccumulation, and potential shifts in distribution from some habitats.

Burger (1994) described the behavior of 11 female diamondback terrapins that were oiled during the January 1990 spill of No. 2 fuel oil in Arthur Kill, New York. The terrapins were hibernating at the time of the spill, and when they emerged from hibernation, they were found to be oiled. The terrapins voided oil from their digestive tracks for 2 weeks in rehabilitation. At 3 weeks, the terrapins scored low on strength tests and were slow to right themselves when placed on their backs. At 4 weeks, they developed edema and appetite suppression. Eight of the 11 died; these animals had traces of oil in their tissues and exhibited lesions in their digestive tract consistent with oil exposure (Burger, 1994). Further detail on this catastrophic OSRA run is contained in **Appendix C**.

The *Deepwater Horizon* explosion, oil spill, and response may have potentially impacted the terrapin community. Impacts from a catastrophic spill may impact terrapin communities. Impacts can be either direct (mortality or injury) or indirect (e.g., reduced prey availability); however, most impacts cannot be quantified at this time. The best available information does not provide a complete understanding of the effects of the spilled oil and active response/cleanup activities on the potentially affected terrapin environment. Current available information includes photographic evidence of one terrapin found oiled on Grand Terre Island, Louisiana, on June 8, 2010 (State of Louisiana, Coastal Protection and Restoration, 2012).

Phase 4—Post-Spill, Long-Term Recovery and Response

Phase 4 focuses on long term recovery once the well has been capped and the spill has stopped. During the final phase of a catastrophic blowout and spill, it is presumed that the well has been capped or killed and cleanup activities are concluding. While it is assumed that the majority of spilled oil would be dissipated offshore within 1-2 months (depending on season and temperature) of stopping the flow, oil has the potential to persist in the environment long after a spill event and has been detected in sediment 30 years after a spill. On sandy beaches, oil can sink deep into the sediments. In tidal flats and salt marshes, oil may seep into the muddy bottoms. Potential impacts reflect long term persistence of oil in the environment and residual and long-term cleanup efforts.

The *Deepwater Horizon* explosion, oil spill, and response and associated oil spill may have impacted the terrapin community and associated brackish habitats. According to OSAT-2 (2011), possible environmental effects from the *Deepwater Horizon* explosion, oil spill, and response could occur within terrapin marsh habitat via food or to nesting habitat since no active intervention (natural remediation) is the preferred protocol.

Behavioral effects and nonfatal exposure to or intake of OCS oil- and gas-related contaminants or discarded debris may stress and/or weaken individuals of a local group or population and predispose them to infection from natural or anthropogenic sources. Even after the oil is no longer visible, terrapins may still be exposed while they forage in the salt marshes lining the edges of estuaries where oil may have accumulated under the sediments and within the food chain (Burger, 1994; Roosenburg et al., 1999). Nests can also be disturbed or destroyed by cleanup efforts. Through NRDA, ongoing research and analysis of the presence of contaminants in terrapin eggs following the *Deepwater Horizon* oil spill is being conducted (USDOC, NOAA, 2012a). Hatching success studies at various oiled nesting sites of the northern diamondback terrapin suggest that spills may result in a reduction in nest size and increased mortality of spring emergers (hatched turtles) at the oiled sites (Wood and Hales, 2001). However, research on the PAH exposure and toxicology of eggs in the vicinity of a spill site found no correlation to substrate PAHs when compared with egg toxicology. The level of PAHs found in the eggs may be the result of maternal transfer and represent the exposure level of the nesting female rather than environmental exposure to PAHs from oil at the site of the nest (Holliday et al., 2008).

Habitat destruction, road construction, drowning in crab traps, and nest predation are the most recent threats to diamondback terrapins. Tropical storms, hurricanes, and beach erosion threaten their preferred nesting habitats. Destruction of the remaining habitat because of a catastrophic spill and response efforts could drastically affect future population levels and reproduction.

Overall Summary and Conclusion (Phases 1-4)

Impacts on diamondback terrapins from smaller accidental events are likely to affect individual diamondback terrapins in the spill area, as described above, but are unlikely to rise to the level of population effects (or significance) given the probable size and scope of such spills. Possible catastrophic environmental effects from an oil spill and cleanup could occur within terrapin marsh habitat via food or to the nesting habitat. Since terrapins do not move far from where they are hatched, it is possible that entire subpopulations could incur high mortality rates and community disruptions, though this would be highly localized depending on the time, place, and size of the spill.

The OSRA analyses in this Supplemental EIS conclude that there is a low probability for catastrophic spills and that there is a potential for a low-probability catastrophic event to result in significant, population-level effects on affected diamondback terrapin species.

For those terrapin populations that may not have been impacted by the *Deepwater Horizon* explosion, oil spill, and response, it is unlikely that a future accidental event related to a CPA proposed action would result in significant impacts due to the distance of most terrapin habitat from offshore OCS energy-related activities.

B.3.1.15. Beach Mice

Phase 1—Initial Event

There would likely be no adverse impacts to beach mice as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because Phase 1 is the initiation of a catastrophic blowout incident, and initiation would occur well offshore from beach mouse habitat.

Phase 2—Offshore Spill

There would likely be no adverse impacts to beach mice as a result of the events and the potential impact-producing factors that could occur throughout Phase 2 of a catastrophic spill event because Phase 2 of the analysis focuses on the spill and response in Federal and State offshore waters away from beach mouse habitat.

Phase 3—Onshore Contact

Five subspecies of the field mouse, collectively known as beach mice, live along the Gulf Coast, and two beach mouse subspecies live on the Atlantic Coast of Florida. Five subspecies of beach mice (Alabama, Perdido Key, Choctawhatchee, St. Andrew, and Anastasia Island) are listed as State and federally endangered; also, the southeastern beach mouse is listed as federally threatened. Beach mice are restricted to the coastal barrier sand dunes along the Gulf Coasts of Alabama and Florida. Erosion caused by the loss of vegetation because of oiling would likely cause more damage than the direct oiling of beach mice because of the degradation or loss of habitat. In addition, vehicular traffic and activity associated with cleanup can trample or bury beach mice nests and burrows or cause displacement from preferred habitat. Improperly trained personnel and vehicle and foot traffic during shoreline cleanup of a catastrophic spill would disturb beach mouse populations and would degrade or destroy habitat.

The Alabama, Choctawhatchee, St. Andrew, Perdido Key, Anastasia Island, and southeastern beach mice are designated as protected species under the Endangered Species Act, mostly because of the loss and fragmentation of coastal habitat (*Federal Register*, 1989; USDOI, MMS, 2007). Some of the subspecies have coastal habitat that is designated as their critical habitat. For example, the endangered Alabama beach mouse's (*Peromyscus polionotus ammobates*) designated critical habitat is 1,211 acres (450 hectares) of frontal dunes covering just 10 mi (16 km) of shoreline (USDOI, FWS, 2007). Critical habitat is the specific geographic areas that are essential for the conservation of a threatened or endangered species.

All designated critical habitat for beach mice officially extends landward from the mean high water line (*Federal Register*, 2006; USDOI, FWS, 2007). Therefore, spilled oil could contact critical habitat even without a concurrent storm surge; contact would require only that the water level would be at mean high tide. However, a concurrent storm surge of considerable height would be required to oil the portion

of the critical habitat substantially landward of the mean high water line (over the tops of the primary, secondary, and tertial dunes). With the potential oiling of over 1,000 mi (1,609 km) of shoreline that could result from a catastrophic spill event and a concurrent storm surge of considerable height that occurs within a close proximity to the critical habitat, there is the potential for the entire critical habitat for a subspecies of beach mice to be completely oiled. Thus, destruction of critical habitat because of a catastrophic spill, a concurrent storm surge of considerable height and over a considerable length of shoreline, and cleanup activities would increase the threat of extinction of several subspecies of beach mice. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Phase 4—Post-Spill, Long-Term Recovery and Response

Within the last 20-30 years, the combination of habitat loss because of beachfront development, the isolation of the remaining beach mouse habitat areas and populations, and the destruction of the remaining habitat by tropical storms and hurricanes has increased the threat of extinction of several subspecies of beach mice. On sandy beaches, oil can sink deep into the sediments and become exposed again after erosion of sand by wave action. Oil may therefore persist near beach mouse habitat for the long term. The destruction of the remaining habitat because of a catastrophic spill and cleanup activities would increase the threat of extinction.

Overall Summary and Conclusion (Phases 1-4)

Impacts to beach mice would vary according to the severity of the oiling. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

B.3.1.16. Coastal, Marine, and Migratory Birds

Phase 1—Initial Event

Some migratory birds use offshore platforms or rigs as potential stopover sites during their longdistance migrations across the GOM during the spring and fall (Russell, 2005). In addition, it has been well documented that seabirds are attracted to offshore platforms and rigs for a myriad of reasons; i.e., concentrations of baitfish, roost sites, etc. (Tasker et al., 1986; Wiese et al., 2001; Burke et al., 2012). The numbers of birds present at a platform or rig tend to be greater on platforms or rigs closer to shore, particularly during drilling operations (Baird, 1990). Birds resting on the drilling rig or platform during a catastrophic blowout at the surface (similar to the Deepwater Horizon explosion, oil spill, and response) are more likely to be killed by the explosion. While it is assumed that most birds in trans-Gulf migration would likely avoid the fire and smoke plume during the day, it is possible that the light from the fire could interfere with nocturnal migration, especially during poor visibility conditions, i.e., fog or low clouds. It has been documented that seabirds are attracted to natural gas flares at rigs and platforms (Russell, 2005; Wiese et al., 2001); therefore, additional bird fatalities could result from the fire following the blowout. Though different species migrate differentially throughout the year, the largest number of species migrates through the proposed area from mid-April through mid-May (spring migration back north) and from mid-August through early November (fall migration south) (Russell, 2005, Table 6.12; Farnsworth and Russell, 2007). A blowout during this time would potentially result in a greater number of bird fatalities (see below).

Of the four phases considered herein, avian mortality associated with this Phase is certainly expected to be much lower than avian mortality associated with either Phase 2 or Phase 3. However, this anticipated result is highly dependent on the location of the platform and the timing of the event. The only scenario considered is the case where a blowout and explosion occurred at the surface (**Table B-4**). If the catastrophic event, in this case a blowout and explosion at the surface (refer to **Table B-4**), occurs more proximal to the coast during the breeding season or during a peak migration period (late March to late May and mid-August to early November), then the level of avian mortality is expected to be higher. In comparison, a blowout and explosion at the surface on a platform more distant from the coast (greater than or equal to the distance of the *Macondo* well from the coast) would result in much lower avian mortality, particularly if the event did not overlap temporally with either the breeding season or either of the trans-Gulf migrations.

While the species composition and species-specific mortality estimates are unknown and would be dependent on the blowout location and time of year, the initial mortalities would almost certainly not result in population-level impacts for species present at the time of the blowout and resulting fire (Arnold and Zink, 2011; also refer to Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS). If the event occurred during the breeding season or wintering period, species of seabirds or diving birds would have the greatest potential to be affected, whereas if the event occurred during either the spring or fall migration, species of passerines would most likely have the greatest potential to be affected due to the diversity and sheer numbers of individuals in this avian species group (Rappole and Ramos, 1994; Lincoln et al., 1998; Russell, 2005; also refer to **Chapter 4.1.1.16** of this Supplemental EIS, Chapter 4.2.1.16.1 of the 2012-2017 WPA/CPA Multisale EIS).

Phase 2—Offshore Spill

During Phase 2 of a catastrophic spill, the primary concern for marine and migratory birds would be their vulnerability to oiling or ingesting oil, which is primarily a function of their behavior and diets. Wading birds (e.g., herons, egrets, etc.) and species that feed by plunge-diving into the water to catch small fish (e.g., pelicans, gannets, terns, gulls, and pelagic birds) and those that use water as a primary means of locomotion, foraging (e.g., black skimmers), or resting and preening (e.g., diving ducks, cormorants, pelicans, etc.) are highly vulnerable to becoming oiled and also to ingesting oil (**Table B-5** of this Supplemental EIS; also refer to Table 4-13 and Figure 4-13 of the 2012-2017 WPA/CPA Multisale EIS). Seabirds, in particular, tend to feed and concentrate in convergence zones, eddies, upwellings, and near *Sargassum* mats (Haney, 1986a-c; Moser and Lee, 2012). In addition to concentrating prey, these areas are also known to aggregate oil (Unified Incident Command, 2010d). Oiling interferes with the birds' ability to fly (thus to obtain food) and compromises the insulative characteristics of down and contour feathers, making it difficult to regulate body temperature. Attempts by oiled birds to remove the oil via preening can cause them to ingest oil and may result in mortality. In addition, the ingestion of contaminated prey can result in physiological impairment and even death. Refer to Chapter 4.2.1.16.3 of the 2012-2017 WPA/CPA Multisale EIS for additional detailed information on oiling effects to birds.

Though several species or species groups are mentioned above, the most vulnerable species to spilled oil in the offshore environment in the GOM during Phase 2 would be representatives of the diving bird (≤10 species) and seabird (≥20 species) groups (King and Sanger, 1979; Ribic et al., 1997; Davis et al., 2000). Unlike Phase 1, where passerines may be affected depending on the timing of the catastrophic event, timing or seasonal effects would be less important under the Phase 2 scenario (Table B-4) due to the spilled oil being restricted to the offshore environment, thereby limiting the potential impacts to the several avian species groups relegated to the coastal and nearshore environment (Table B-5 of this Supplemental EIS: also refer to Chapter 4.1.1.16 of this Supplemental EIS. Chapter 4.2.1.16.1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS). However, it is highly probable that representative species of diving birds and seabirds would differentially be impacted (Table B-5 of this Supplemental EIS; also refer to Table 4-12 of the 2012-2017 WPA/CPA Multisale EIS). Table 4-12 of the 2012-2017 WPA/CPA Multisale EIS shows the actual number of birds identified to the species level for each of the species groups. This number is fairly representative of the suite of species available to be oiled. However, this number is dependent on efforts to correctly assign species to unidentified birds or unknowns, which is also a function of search effort. Search effort likely declined dramatically once the Macondo well was plugged/capped. The species composition and speciesspecific mortality estimates associated with a Phase 2 catastrophic event are unknown and would be dependent primarily on the blowout location, as well as the distribution, coverage, and proximity to the shoreline of spilled oil. Overall, avian mortalities for this Phase would probably not result in populationlevel impacts for species present at the time of the blowout (refer to **Table B-5** of this Supplemental EIS and to Figure 4-13 of the 2012-2017 WPA/CPA Multisale EIS). However, it should be clear that many species of seabirds and diving birds have life-history strategies that do not allow subpopulations to recover quickly from major mortality events or perturbations (Ricklefs, 1983 and 1990; Russell, 1999; Saether et al., 2004; also refer to Table 4-13 and Figure 4-18 of the 2012-2017 WPA/CPA Multisale EIS).

Some discussion of available information provided from the *Deepwater Horizon* explosion, oil spill, and response is relevant here with respect to temporal aspects of oiled birds (**Figure B-3**). The first oiled bird (northern gannet, a seabird) recovered after the *Macondo* well event was collected just 10 days postblowout. While gannets breed in coastal colonies in the Canadian North Atlantic, the population,

including a major concentration in the northern GOM, over-winters in the deeper waters of the offshore environment. Belanger et al. (2010) provided some interesting results relative to live versus dead birds collected based on the actual date each bird was collected. Interestingly, they documented a dramatic and statistically significant decline in the number of live birds collected after 110 days compared with live birds collected during the first 72 days. These authors also documented a dramatic and statistically significant increase in the number of dead birds collected after 110 days (Belanger et al., 2010, Figures 2 and 3). As a temporal reference, oil reached the shoreline near Venice, Louisiana, \geq 10 days postblowout, covering a distance of approximately 90 mi (145 km) (Oil Spill Commission, 2011; also refer to Chapter 4.2.1.3.1 of the 2012-2017 WPA/CPA Multisale EIS and Chapter 4.2.1.3 of the WPA 233/CPA 231 Supplemental EIS) (**Figure B-3**). It should be understood that, for the Phase 2 scenario considered here, it is assumed that spilled oil will not contact the shoreline.

Overall, avian mortality estimates are unknown and are difficult to predict given the uncertainty (Conroy et al., 2011, pages 1209-1210; Williams, 2011, page 1348) associated with the scenario and specific characteristics associated with the spill (refer to **Appendix C**), as well as environmental conditions that are probably a function of spill location and timing. Even recognizing the uncertainty associated with the scenario, spill characteristics, and the environmental conditions at the time of the spill, Phase 2 would likely be second only to Phase 3 in total avian mortality. Phase 3 would include much greater avian species diversity and abundance due to the oil reaching nearshore, coastal beach/dune, salt-and brackish marsh habitats (**Table B-5** of this Supplemental EIS; also refer to Table 4-12 of the 2012-2017 WPA/CPA Multisale EIS).

Phase 3—Onshore Contact

Gulf coastal habitats are essential to the annual cycles of many species of breeding, wintering, and migrating diving birds, seabirds, shorebirds, passerines, marsh- and wading birds, and waterfowl (refer to **Chapter 4.1.1.16** of this Supplemental EIS, Chapter 4.2.1.16.1 of the 2012-2017 WPA/CPA Multisale EIS, and Chapter 4.2.1.16 of the WPA 233/CPA 231 Supplemental EIS). For example, the northern Gulf Coast supports a large proportion of populations of several beach-nesting bird species (USDOI, FWS, 2010c). During Phase 3, oil is expected to contact not only the beach but also other important habitats used by a diverse and abundant assemblage of avian species. Habitats potentially impacted by a catastrophic spill would also likely include the nearshore environment, as well as the salt- and brackish marsh habitats. Potential impacts and total avian mortality from Phase 3 would be greater than any of the other phases considered herein due to (1) avian diversity and abundance in the nearshore environment (**Table B-5** of this Supplemental EIS; also refer to Tables 4-9 through 4-11 of the 2012-2017 WPA/CPA Multisale EIS) and (2) the dispersion of oil from a catastrophic spill, which would reach the shoreline and enter the salt- and brackish marsh environments. Similar to Phases 1 and 2, the timing and location of the spill are important factors in determining the severity of impacts to the avian community. In addition, the duration of potential oil exposure to various species of birds would also be important.

As the *Macondo* well blowout and spill is the only historic catastrophic oil spill to occur in U.S. waters in the GOM, the information obtained from the *Deepwater Horizon* explosion, oil spill, and response relative to avian mortality may be reasonably relevant for any future catastrophic spills, recognizing of course the variation and uncertainty associated with individual oil spills. At present, the estimates of avian mortality associated with the Exxon Valdez oil spill far exceed current estimates of avian mortality associated with the *Deepwater Horizon* explosion, oil spill, and response even though the Deepwater Horizon spill volume/size far exceed that of the Exxon Valdez (refer to Table 4-15 of the 2012-2017 WPA/CPA Multisale EIS). Based on data from the *Deepwater Horizon* explosion, oil spill, and response, a similar catastrophic spill would probably result in >10,000 carcasses collected (*Deepwater Horizon* explosion, oil spill, and response = 7,258 collected) representing >100 potentially impacted species (*Deepwater Horizon* explosion, oil spill, and response = 104 species identified) (refer to Table B-5, superscript 1 and also superscript b). It should be recognized that the number of avian carcasses collected post-spill represents some unknown fraction or proportion of the total modeled estimate of realized mortality (Flint et al., 1999; Byrd et al., 2009; Ford and Zafonte, 2009); the number of avian carcasses collected is biased low (Piatt et al., 1990a-b; Piatt and Ford, 1996; Castège et al., 2007). Figure 4-13 of the 2012-2017 WPA/CPA Multisale EIS should provide reasonable estimates of oiling rates for the seven avian species groups in the northern Gulf of Mexico if another catastrophic spill were to occur and the timing, oil spill characteristics, and spill behavior were similar to the Deepwater

Horizon explosion, oil spill, and response. It should be noted that the top five most impacted (based on number collected) avian species from the *Deepwater Horizon* explosion, oil spill, and response were all representatives of the seabird group: laughing gull (n = 2,981, 40% oiling rate); brown pelican (n = 826, 41% oiling rate); northern gannet (n = 475, 63% oiling rate); royal tern (n = 289, 52% oiling rate); and black skimmer (n = 253, 22% oiling rate) (**Table B-5** of this Supplemental EIS and Figure 4-13 of the 2012-2017 WPA/CPA Multisale EIS).

Additional information is provided herein from an OSRA catastrophic oil-spill analysis (refer to **Appendix C, Tables C-4 and C-5**).

It should be noted that oil from the *Deepwater Horizon* explosion and oil spill reached the shoreline less than 14 days after the blowout occurred (Oil Spill Commission, 2011). The OSRA does not take into account or consider the following with respect to avian resources and their habitats: (1) species-specific densities; (2) species-specific habitat preferences, food habits, or behavior; (3) relative vulnerabilities to oiling among the avian species groups or among species within each of the groups (**Table B-5** of this Supplemental EIS and Figure 4-13 of the 2012-2017 WPA/CPA Multisale EIS; also refer to Williams et al., 1995; Camphuysen, 2006); and (4) it does not take into account or consider species-specific life-history strategies, their demography, or a species' recovery potential (refer to Table 4-13 and Figures 4-18 and 4-19 of the 2012-2017 WPA/CPA Multisale EIS).

In summary, Phase 3 of a catastrophic oil spill has the greatest potential for negative impacts (i.e., direct mortality) to avian resources due to its contact with the shoreline and inundation of other habitats occupied by a much greater diversity and abundance of birds, particularly during the breeding season. Avian mortality estimates are presently unknown and are difficult to predict with any level of precision given the uncertainty associated with the scenario, specific characteristics associated with the spill, spatial and temporal variation in environmental conditions, and recognition that the avian resources (both species diversity and abundance) available to be oiled will also vary temporally and spatially. A worst-case scenario in the event of a catastrophic oil spill that reached the nearshore environment would occur in the presence of a hurricane with strength or magnitude similar to Hurricanes Katrina, Rita, or Ike during the breeding season. Such an overlap of two low-probability events during the breeding season could potentially push spilled oil even farther inland and also distribute oil vertically into the vegetation. Such an event would not only negatively impact diving birds, seabirds, shorebirds, marsh- and wading birds, and waterfowl but also the more terrestrial avian species groups including passerines and raptors. Such effects would most likely be long-term (due to direct mortality of individuals, but also due to major habitat loss) and could potentially result in population-level impacts to a number of avian species. Threatened and endangered avian species would likely be the most severely impacted by such an event depending on the spatial and temporal aspects of both the spill and the hurricane.

Endangered and Threatened Birds

A detailed discussion of threatened and endangered species is provided in Chapter 4.2.1.16.1 of the 2012-2017 WPA/CPA Multisale EIS. Of the 17 species considered, 11 species are known to occur in the CPA (**Table B-6**). However, only the piping plover (*Charadrius melodus*), roseate tern (*Sterna dougallii dougallii*), wood stork (*Mycteria americana*), whooping crane (*Grus americana*), Mississippi sandhill crane (*Grus canadensis pulla*), bald eagle (*Haliaeetus leucocephalus*), eastern brown pelican (*Pelecanus occidentalis*), and red knot (*Calidris canutus rufa*) were analyzed and are considered further here. Phase 3 would likely result in the greatest net negative impacts (primarily direct mortality) to threatened and endangered avian species due to contact with the shoreline and potential movement of spilled oil inland to other habitats during this phase (**Table B-4**). In addition, the presence of spilled oil would result in indirect and potentially long-term effects to threatened and endangered avian species' habitats and their preferred foods. Phases 1 and 2 would likely result in very limited impacts, if any, due to the scenarios as defined with oil restricted to the offshore environment.

In general, the potential direct impact (i.e., mortality) to any or all of these threatened or endangered (including recently delisted and candidate) species is directly a function of their presence at the time of a catastrophic oil spill. Indirect effects from a catastrophic oil spill could negatively affect the quality and functional availability of their habitats and the availability, distribution, and energetic benefits of their preferred foods in the absence of a given species. Of the species listed, the wood stork, Mississippi sandhill crane, bald eagle, eastern brown pelican, and Cape Sable seaside sparrows are year-round residents, whereas the piping plover, roseate tern, whooping crane, and red knot represent either wintering
species or transients that utilize coastal habitats in the GOM as staging areas during migration. There are "resident" whooping cranes considered as "nonessential, experimental flocks" within the Gulf Coast States of Alabama, Louisiana, Mississippi, and Florida. These birds would be considered as "resident," whereas the component of the ESA-listed species occurring primarily as a wintering flock in Texas (i.e., the Aransas National Wildlife Refuge) is considered a migratory flock. It is important to recognize these differences relative to whether or not individuals of a given species would be present and available to be oiled should a catastrophic oil spill event occur. Similarly, species-specific differences in habitat use and behavior would further separate which species would be most vulnerable to a spill given the timing of the spill, spill distribution, and other spill-related characteristics.

Of the species considered, probably only the eastern brown pelican and possibly the bald eagle (ingestion of contaminated fish and birds) would potentially be impacted during Phases 1 and 2. The other species are restricted to the nearshore, coastal, salt- and brackish, and upland habitats, which would not be impacted during these phases given the scenario (**Table B-4**). Phase 4 impacts to threatened and endangered avian species would probably be limited to short-term disturbance-related effects and potential impacts to habitats including destruction, alteration, or fragmentation from associated recovery activities (American Bird Conservancy, 2010; National Audubon Society, Inc., 2010).

As the *Macondo* well blowout and spill is the only historic catastrophic oil spill to occur in U.S. waters in the GOM, the information obtained from the *Deepwater Horizon* explosion, oil spill, and response relative to avian mortality may be reasonably relevant for any future catastrophic spills, recognizing of course the variation and uncertainty associated with individual oil spills. Of the threatened and endangered avian species considered, only a single, unoiled piping plover was collected as part of the post-*Deepwater Horizon* explosion, oil spill, and response monitoring program (**Table B-5**). There were 106 least terns (*Sterna antillarum*) collected (n = 106, 46% oiling rate), but these individuals were considered as members of the coastal breeding population and not the ESA-listed population (Interior or noncoastal population). Of the species considered, only the eastern brown pelican was impacted by the *Deepwater Horizon* explosion, oil spill, and response (n = 826, 41% oiling rate); this species was delisted on November 17, 2009 (*Federal Register*, 2009). No other carcasses of threatened and endangered as part of the post-*Deepwater Horizon* explosion, oil spill, and response (n = 826, 41% oiling rate); this species was delisted on November 17, 2009 (*Federal Register*, 2009). No other carcasses of threatened and endangered species were collected as part of the post-*Deepwater Horizon* explosion, oil spill, and response (n = 826, 41% oiling rate); this species was delisted on November 17, 2009 (*Federal Register*, 2009). No other carcasses of threatened and endangered species were collected as part of the post-*Deepwater Horizon* explosion, oil spill, and response monitoring efforts (**Table B-5**; USDOI, FWS, 2011b).

Additional information is provided herein from an OSRA catastrophic oil-spill analysis (refer to Appendix C, Tables C-4 and C-5).

Caveats regarding the OSRA catastrophic run with respect to avian resources were addressed above and would also apply to threatened and endangered avian resources considered here.

Phase 4—Post-Spill, Long-Term Recovery and Response

There is a high probability of underestimating the impacts of oil spills on avian species potentially encountering oil. Despite being oiled, some birds are capable of flight and may later succumb to the oiling for a myriad of reasons (refer to Chapter 4.2.1.16 of the 2012-2017 WPA/CPA Multisale EIS for additional detailed information). Often overlooked and understudied are the long-term, sublethal, chronic effects due to sublethal exposure to oil (Butler et al., 1988; Alonso-Alvarez et al., 2007; Pérez et al., 2010). Also, individuals having been oiled in the Gulf of Mexico as the result of a catastrophic oil spill during the overwinter period or while staging in the GOM could exhibit carry-over effects to the northern breeding grounds. Affected individuals in poor body condition may arrive at their breeding grounds later than nonaffected individuals, which could, in turn, negatively affect habitat-use decisions, territory establishment, pairing success, and ultimately lead to reduced reproductive success (Norris, 2005; Norris et al., 2010). If oil-affected, long-distance migrants represent important prey items for various species of raptors, then the ingestion of affected individuals could also negatively affect individual birds of prey (Zuberogoitia et al., 2006). Refer to Henkel et al. (2012) for a review of potential carry-over effects to shorebirds potentially impacted by the *Deepwater Horizon* explosion, oil spill, and response.

The long-term impacts of potential food-induced stress for bird species from an altered ecosystem due to a catastrophic spill are unknown, but disturbances to the ecosystem can cause long-term sublethal impacts, including reduced food intake, prey switching, increased energy expenditures, decreased reproductive success, and decreased survival. Decreases in either reproductive success or survival (or both) could result in population-level effects as was observed for certain avian species more than 10 years

B-72

after the *Exxon Valdez* catastrophic spill (Esler et al., 2002 and 2010; Golet et al., 2002). Long-term, sublethal, chronic effects may exceed immediate losses (i.e., direct mortality of oiled birds) if residual effects influence a significant proportion of the population or disproportionately impact an important aspect of the population demographic, i.e., breeding-age females (Croxall and Rothery, 1991; Oro et al., 2004). Depending on the effects and the life-history strategy of impacted species, some populations could take years or decades before reaching pre-spill population numbers and age-sex structure; some populations for some species may never recover (refer to Figure 4-13 of the 2012-2017 WPA/CPA Multisale EIS; refer to Peterson et al., 2003, but also to Wiens et al., 2010).

In general, potential effects associated with Phase 4 should be limited to short-term disturbance effects (personnel and equipment) and potential indirect effects to various avian species groups due to habitat loss, alteration, or fragmentation from restoration efforts. There may be cases whereby incubating individuals are flushed from nests exposing their eggs or young to either weather-related mortality or depredation by avian or mammalian predators (American Bird Conservancy, 2010; National Audubon Society, Inc., 2010). However, efforts to minimize potential effects of post-oil spill monitoring and restoration efforts, particularly during the breeding season, should be sufficient to protect nesting birds as a function of oversight by Federal and State agencies charged with the conservation of migratory bird resources.

Limited information available to date with respect to avian impacts from the *Deepwater Horizon* explosion, oil spill, and response suggests much lower mortality than would have been predicted by the spill size or volume alone (Belanger et al., 2010), though spill volume or size tends to be a poor predictor of avian mortality (Burger, 1993; Tan et al., 2010). The final modeled estimates of avian mortality will greatly exceed the number of avian carcasses collected (n = 7,258; **Table B-5**), but overall, the *Deepwater Horizon* explosion, oil spill, and response appears to have directly resulted in far fewer dead, oiled birds than the Exxon Valdez catastrophic spill (refer to Table 4-15 of the 2012-2017 WPA/CPA Multisale EIS). It should be recognized that the avian-related mortality associated with the *Deepwater Horizon* explosion, oil spill, and response (considered a catastrophic event) represents a small fraction of birds killed when compared with collisions with offshore oil and gas platforms. Russell (2005, page 304) states, "an average Gulf platform may cause 50 deaths by collision [only] per year," so using this number, the number of deaths the Deepwater Horizon rig would have caused through collisions had it remained intact for its 40-year term would be about 2,000. That is about 5,258 less than the number of avian carcasses collected due to the *Deepwater Horizon* explosion, oil spill, and response just given above. In the GOM, an estimated 200,000-321,000 avian deaths occur annually; primarily due to collisions with platforms (Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS; also refer to Russell, 2005). Over the life of the GOM platform archipelago, the estimated total avian mortality is on the order of 7-12 million birds (refer to Figure 4-15 of the 2012-2017 WPA/CPA Multisale EIS). Oil spills, regardless of size, are but one of a myriad of anthropogenic avian mortality sources. Even the cumulative total avian mortality associated with all the North American oil spills to date is only a small fraction when compared with estimates of annual avian mortality attributed to collisions with buildings and windows, predation by housecats, and collisions with powerlines and communication towers (Klem, 2009; Manville, 2009; Table 4-7 of the 2012-2017 WPA/CPA Multisale EIS).

Overall Summary and Conclusion (Phases 1-4)

While the species composition and species-specific mortality estimates are unknown and would be dependent on the blowout location and time of year, the mortalities for the initial event (Phase 1) would almost certainly not result in population-level impacts for species present at the time of the blowout and resulting fire. Seabirds are highly vulnerable to becoming oiled and also to ingesting oil during Phase 2 (the offshore spill). Even recognizing the uncertainty associated with the scenario, spill characteristics, and the environmental conditions at the time of the spill, Phase 2 would likely be second only to Phase 3 (onshore contact) in total avian mortality. Phase 3 would include impacts to much greater avian species' richness and abundance (particularly during the breeding season) due to oil reaching habitats, including the nearshore, coastal beaches and dunes, and salt and brackish marshes. In general, the potential effects associated with Phase 4 (long-term recovery and response) should be limited to short-term disturbance effects (by cleanup personnel and equipment) and potential indirect effects to various bird species groups from habitat loss, alteration, or fragmentation from restoration efforts.

Phases 1 (initial event) and 2 (offshore spill) would likely result in very limited impacts to threatened and endangered bird species because the two scenarios have oil restricted to the offshore environment. Phase 3 (onshore contact) would likely result in the greatest net negative impacts to threatened and endangered bird species due to contact with the shoreline and potential movement of spilled oil inland to other habitats during this phase.

B.3.1.17. Fish Resources and Essential Fish Habitat

Phase 1—Initial Event

Depending on the type of blowout and the proximity of marine life to it (**Table B-1**), an eruption of gases and fluids may generate not only a toxic effect but also pressure waves and noise significant enough to injure or kill local biota. Within a few thousand meters of the blowout, resuspended sediments may clog fish gills and interfere with respiration. Settlement of resuspended sediments may, in turn, smother invertebrates or interfere with their respiration. Essential fish habitat (EFH) in the vicinity of the blowout could have adverse effects from the event. These EFH resources are discussed in the water quality (**Chapter B.3.1.1.2**), live bottoms (**Chapter B.3.1.1.6**), topographic features (**Chapter B.3.1.1.7**), *Sargassum* communities (**Chapter B.3.1.1.8**), chemosynthetic and nonchemosynthetic deepwater benthic communities (**Chapter B.3.1.1.9** and **B.3.1.1.10**, respectively), and soft bottom benthic communities (**Chapter B.3.1.1.1**) chapters.

Phase 2—Offshore Spill

With the initiation of a catastrophic blowout incident, an explosion and subsequent fire are assumed to occur. If a blowout associated with the drilling of a single exploratory well occurs, this could result in a fire that would burn for 1 or 2 days, but if a blowout occurs on a production platform and other wells feed the fire, it could burn for over a month. The drilling rig or platform may sink, and if this occurs in shallow water, the sinking rig or platform may land in the immediate vicinity. If the blowout occurs in deep water, the rig or platform could land a great distance away and could be beyond avoidance zones. Regardless of water depth, the immediate response would be from search and rescue vessels and aircraft, such as USCG cutters, helicopters, rescue planes, and firefighting vessels.

Early life stages of animals are usually more sensitive to oil than adults (Boesch and Rabalais, 1987; NRC, 2005). Weathered crude oil has been shown in laboratory experiments to cause malformation, genetic damage, and even mortality at low levels in fish embryos of Pacific herring (Carls et al., 1999). Because natural crude oil found in the Gulf of Mexico would generally float on the surface, fish species whose eggs and larvae are found at or near the water surface are most at risk from an offshore spill. Species whose spawning periods coincide with the timing of the highest oil concentrations would be at greatest risk.

Adult fish may be less at risk than earlier life stages, in part because they are less likely to concentrate at the surface and may avoid contact with floating oil. The effects of oil on organisms can include direct lethal toxicity, sublethal disruption of physiological processes (internal lesions), the effects from direct coating by oil (suffocation by coating gills), incorporation of hydrocarbons in organisms (tainting or accumulation in the food chain), and changes in biological habitat (decreased dissolved oxygen) (Moore and Dwyer, 1974). The extent of the impacts of the oil would depend on the properties of the oil and the time of year of the event.

If there is a subsea catastrophic blowout, it is assumed dispersants would be used. Then there could be effects on multiple life history stages and trophic levels. There is limited knowledge of the toxicity of dispersants mixed with oil to specific species or life stages of ichthyoplankton and the likely extent of mortality because the combination of factors is difficult to determine. The combined toxic effects of the oil and any dispersants that may be used would not be apparent unless a significant portion of a year-class is absent from next year's fishery (e.g., shrimps, crabs, snapper, and tuna).

An example of a catastrophic event in the CPA was modeled using OSRA (Appendix C, Tables C-4 and C-5). Because fish occur throughout the GOM, it is assumed that some individuals would be contacted with oil. Specific habitats that are discussed with regards to the Western Planning Area OSRA example and in the Appendix are water quality (Chapter B.3.1.1.2), wetlands (Chapter B.3.1.1.4), seagrass communities (Chapter B.3.1.1.5), live bottoms (Chapter B.3.1.1.6), topographic features (Chapter B.3.1.1.7), Sargassum communities (Chapter B.3.1.1.8), chemosynthetic and

B-74

nonchemosynthetic deepwater communities (Chapters B.3.1.1.9 and B.3.1.1.10, respectively), and soft bottom benthic communities (Chapter B.3.1.1.11).

Studies by USEPA, Office of Research and Development (2010) using representative species provide some indication of the relative toxicity of Louisiana sweet crude oil, dispersants, and oil/dispersant mixes. Bioassays were conducted using two Gulf species—a mysid shrimp (*Amercamysis bahia*) and a small estuarine fish, the inland silverside (*Menidia beryllinina*)—to evaluate the acute toxic effects of oil, eight dispersants, and oil/dispersant mixtures. In addition, USEPA used standard *in vitro* techniques using the same dispersants to (1) evaluate the acute toxicity on three cell lines over a range of concentrations and (2) evaluate the effects of these dispersants on androgen and estrogen function using human cell lines (to see if they are likely to disrupt hormonal systems). All dispersants showed cytotoxicity in at least one cell type at concentrations between 10 and 110 ppm. Results of the *in vitro* toxicity tests were similar to the whole animal tests. For all eight dispersants, for both species, the dispersants alone were less toxic than the dispersant/oil mixture. Louisiana sweet crude oil alone was determined to be more toxic to both the mysid shrimp and silverside fish than the dispersants alone. The results of the testing for disruption of androgen and estrogen function indicate that the dispersants do not show biologically significant endocrine activity via androgen or estrogen pathways (USEPA, Office of Research and Development, 2010).

The GOM waters out to 100 fathoms (182 m; 600 ft) have EFHs described and identified for managed species (GMFMC, 2005; USDOC, NOAA, 2009). There are Fisheries Management Plans for shrimp, red drum, reef fishes, coastal migratory pelagics, spiny lobsters, coral and coral reefs, and highly migratory species (GMFMC, 2004; USDOC, NOAA, 2009). These species could use the GOM for EFH at different life history stages. The Highly Migratory Species Fisheries Management Plan was recently amended to update EFH and Habitat Areas of Particular Concerns for the Atlantic bluefin tuna spawning area (USDOC, NOAA, 2009).

These EFHs in the Gulf of Mexico are discussed in various chapters of this Appendix: water column (Chapter B.3.1.1.2); wetlands (Chapter B.3.1.1.4); seagrass communities (Chapter B.3.1.1.5), live bottoms (Chapter B.3.1.1.6); topographic features (Chapter B.3.1.1.7), *Sargassum* communities (Chapter B.3.1.1.8); chemosynthetic and nonchemosynthetic deepwater benthic communities (Chapters B.3.1.1.10, respectively), and soft bottom benthic communities (Chapter B.3.1.1.11); these EFHs are also summarized in Appendix D of the 2012-2017 WPA/CPA Multisale EIS. There are current NTLs (NTL 2009-G39 and NTL 2009-G40) and stipulations that provide guidance and clarification of the regulations with respect to many of these biologically sensitive underwater features and areas and benthic communities, which are considered EFH.

Plankton

Open-water organisms, such as phytoplankton and zooplankton, are essential to the marine food web. They play an important role in regulating climate, contribute to marine snow, and are an important source of nutrients for mesopelagic and benthic habitats. Also, monthly ichthyoplankton collections over the years 2004-2006 offshore of Alabama have confirmed that peak seasons for ichthyoplankton concentrations on the shelf are spring and summer (Hernandez et al., 2010). If a catastrophic blowout occurs in the spring and summer, it could cause greater harm to fish populations and not just individual fish. Therefore, an offshore oil spill would not only have an impact on these populations but also on the species that depend on them.

The microbial community can also be affected by an offshore oil spill. The microbial loop is an essential part of the marine ecosystem. Changes in the microbial community because of an oil spill could have significant impacts on the rest of the marine ecosystem. However, several laboratory and field experiments and observations have shown that impacts to planktonic and marine microbial populations are generally short lived and do not affect all groups evenly, and in some cases stimulate growth of important species (Gonzalez et al., 2009; Graham et al., 2010; Hing et al., 2011).

Phase 3—Onshore Contact

It is estimated that shoreline oiling would last 1-5 months from a shallow-water catastrophic spill event and 3-4 months from a deepwater catastrophic spill. It is estimated that there would be contact to the shoreline within 30 days of the spill for both shallow-water and deepwater spill locations. Though

response methods would be monitored, there would also be some impact from these efforts on contacted coastal habitats. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

The life history of estuarine-dependent species involves spawning on the continental shelf; the transportation of eggs, larvae, or juveniles back to the estuary nursery grounds; and migration of the adults back to the sea for spawning (Deegan, 1989; Beck et al., 2001). Estuaries in the Gulf of Mexico are extremely important nursery areas and are considered EFH for fish and other aquatic life (Beck et al., 2001). Oiling of these areas, depending on the severity, can destroy nutrient-rich marshes and erode coastlines that have been significantly damaged by recent hurricanes.

The Gulf of Mexico supports a wide variety of finfish, and most of the commercial finfish resources are linked either directly or indirectly to the estuaries that ring the Gulf of Mexico. Darnell et al. (1983) observed that the density distribution of fish resources in the Gulf was highest nearshore off of the central Gulf Coast. For all seasons, the greatest abundance occurred between Galveston Bay and the mouth of the Mississippi River. Oyster beds could be damaged by freshwater diversions that release tens of thousands of cubic feet of freshwater per second for months in an effort to keep oil out of the marshes. Adult oysters survive well physiologically in salinities from those of estuarine waters (about 7.5 parts per thousand sustained) to full strength seawater (Davis, 1958). While oysters may tolerate small changes in salinity for a few weeks, a rapid decrease in salinity over months would kill oysters. In the event of a catastrophic oil spill, at least 1 year's oyster production in the area receiving fresh water would be lost because of exposure to freshwater and/or oil.

Phase 4—Post-Spill, Long-Term Recovery and Response

In addition to possible small fish kills because of direct impacts (as described under Phases 2 and 3), a catastrophic spill could affect fish populations in the long term. Due to a catastrophic spill, a significant portion of a year class of fish could be absent from the following year's fishery, reducing overall population numbers. However, sublethal impacts, especially for long-lived species (e.g., snapper and grouper), could be masked by reduced fishing pressure because of closures. In addition healthy fish resources and fishery stocks depend on ideal habitat (EFH) for spawning, breeding, feeding, and growth to maturity. There could be long-term effects to coastal habitats from buried or sequestered oil becoming resuspended after a disturbance. Thus, a catastrophic spill that affects these areas could result in long-term impacts, including destruction to a portion of their natural habitats.

Overall Summary and Conclusion (Phases 1-4)

Depending on the type of blowout and the proximity of marine life to it, an eruption of gases and fluids may generate not only a toxic effect but also pressure waves and noise significant enough to injure or kill local biota and destroy habitat in the immediate vicinity (Phase 1). Adult fish may be less at risk than earlier life stages, in part because they are less likely to concentrate at the surface and may avoid contact with floating oil. Effects of oil on organisms can include direct lethal toxicity, sublethal disruption of physiological processes (internal lesions), the effects from direct coating by oil (suffocation by coating gills), incorporation of hydrocarbons in organisms (tainting or accumulation in the food chain), and changes in biological habitat (decreased dissolved oxygen) (Phase 2). Estuaries in the Gulf of Mexico are extremely important nursery areas and are considered EFH for fish and other aquatic life (Beck et al., 2001). Oiling of these areas, depending on the severity, can destroy nutrient-rich marshes and erode coastlines that have been significantly damaged by recent hurricanes (Phase 3). Due to a catastrophic spill, a significant portion of a year class of fish could be absent from the following year's fishery, reducing overall population numbers. However, sublethal impacts, especially for long-lived species (e.g., snapper and grouper), could be masked by reduced fishing pressure because of closures (Phase 4).

B.3.1.18. Commercial Fisheries

Phase 1—Initial Event

The initial explosion and fire could endanger commercial fishermen in the immediate vicinity of the blowout. Although commercial fishing vessels in the area would likely aid in initial search-and-rescue operations, the subsequent fire could burn for over a month, during which time commercial vessels would

be expected to avoid the area so as to not interfere with response activities. This could impact the livelihood and income of these commercial fishermen. The extent of the economic impact on the fishing community would depend largely on the season during which the blowout occurred, the depth of water in which it occurred, and its distance from shore.

Phase 2—Offshore Spill

The Gulf of Mexico is one of the largest producers of seafood in the continental United States. In 2010 the Gulf of Mexico provided 40 percent of the commercial fishery landings in the continental U.S. (excluding Alaska), with over 1.5 billion pounds valued at nearly \$670 million (USDOC, NMFS, 2012b). Various commercial species are fished from State waters through the Exclusive Economic Zone and are found throughout the water column as well as at the surface and near the seafloor. Commercial species occupy many different habitats throughout the area, and many commercial species occupy different habitats during different life stages. Most commercial species spend at least part of their life cycles in the productive shelf and estuarine habitat. In the event of a catastrophic offshore spill, it is assumed that a large quantity of oil would be released daily whether this spill occurred in State or Federal waters. Although the oil would generally float, it is also assumed that dispersants would be used preventing much of the oil from reaching the surface.

As an example of the areas that could be affected by such a catastrophic oil spill in the CPA, two OSRA model runs were performed using three different launch points as described in **Chapter B.1.2.3**. The resulting tables show conditional probabilities (expressed as percent chance) of an oil spill contacting resources in the GOM for each launch point and for each season, the condition being that a spill is assumed to have occurred at the given location. Because the commercial species are so widespread over the GOM, all of the tables are referenced (**Appendix C, Tables C-4 and C-5**).

Oil that is not volatilized, dispersed, or emulsified by dispersants has the potential to affect finfish through direct ingestion of hydrocarbons or ingestion of contaminated prey. Finfish are, however, mobile and generally avoid adverse conditions. Less mobile species or planktonic larval stages are more susceptible to the effects of oil and dispersants.

Actual effects of any oil that is released and comes in contact with populations of commercially important species will depend on the API gravity of the oil, its ability to be metabolized by microorganisms, and the time of year of the spill. The effects on the populations will be at a maximum during the spawning season of any commercially important population, exposing larvae and juveniles to oil. The effects on commercial species may also include tainting of flesh or the perception of tainting in the market. This can, depending on the extent and duration of the spill, affect marketability of commercial species.

Even though sensory testing may show no detectable oil or dispersant odors or flavors and the chemical test results could be well below the known levels of concern, NOAA Fisheries would be expected to close large portions of the Gulf of Mexico during a high-volume spill. This would be done as a precautionary measure to ensure public safety and to assure consumer confidence in Gulf seafood (USDOC, NMFS, 2010b). Up to 30-40 percent of the Gulf of Mexico's Exclusive Economic Zone could be closed to commercial fishing as the spill continues and expands (USDOC, NMFS, 2010c). This area could represent 50-75 percent of the Gulf's seafood production (Flynn, 2010). The size of the closure area may peak about 50 days into the spill and could persist another 2-3 months until the well is killed or capped and the remaining oil is recovered or dissipates. During this period, portions or all of individual State waters would also be closed to commercial fishing.

The economic impacts of closures on commercial fishing are difficult to predict because they are dependent on the season and would vary by fishery. If fishers cannot make up losses throughout the remainder of the season, a substantial part of their annual income would be lost. In some cases, commercial fishers will leave the industry and some may move to areas still open to fishing, but at a greater cost because of longer transit times. Marketing issues are also possible; even if the catch is uncontaminated, the public may lack confidence in the product. The duration of the public's perception of seafood tainting is also difficult to predict and depends to some extent on the duration of the spill and public awareness of the spill.

Phase 3—Onshore Contact

Shoreline contact of oil is estimated to persist from 1 to 5 months in the event of a shallow-water catastrophic spill and for up to 6 months from a deepwater catastrophic spill. The OSRA probability tables show the conditional probabilities (expressed as percent chance) for a shoreline contact for each season, the condition being that a spill is assumed to have occurred at the given location. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

This scenario, depending on the season of occurrence, would cause disruption in commercial fishing activity because many commercial fishermen operate inshore in State waters.

In addition to closures in Federal waters, portions of individual State waters would also be closed to commercial fishing. The economic impacts of closures on commercial fishing are complicated to predict because it is dependent on season and would vary by fishery. If fishers cannot make up losses in the remainder of the season, a substantial part of their annual income will be lost. In some cases, commercial fishers may move to areas still open to fishing, but at a greater cost because of longer transit times and, in some instances, additional license costs. Some commercial fishermen may also augment their income by aiding in the cleanup effort and/or renting the boats as vessels of opportunity.

Phase 4—Post-Spill, Long-Term Recovery and Response

The Gulf of Mexico is an important biological and economic area in terms of commercial seafood production and recreational fishing. Commercial fishermen in the Gulf of Mexico harvested over 1.5 billion pounds of finfish and shellfish in 2010 (USDOC, NMFS, 2012b). The economic impacts of closures on commercial fishing are complicated to predict because the economic effects are dependent on season and would vary by fishery. If fishermen cannot make up losses by fishing the remainder of the season or by participating as contractors in the cleanup, a substantial part of their annual income could be lost and may force them out of the industry. While the commercial fishing industry of Texas did not sustain measurable direct or indirect economic effects following the 1979 *Ixtoc I* blowout and spill (Restrepo et al., 1982), there is a documented phenomenon that, long after an incident, the perception of tainted fish and shellfish from the impacted area persists (Keithly and Diop, 2001). Data regarding the duration of the negative perception of Gulf seafood following the *Deepwater Horizon* explosion, oil spill, and response are not yet available. It is reasonable to assume that a negative perception could impact the value of commercial fish resources for several seasons.

Overall Summary and Conclusion (Phases 1-4)

The Gulf of Mexico is one of the largest producers of seafood in the continental United States. Various commercial species are fished from State waters through the Exclusive Economic Zone and are found throughout the water column. The primary economic impacts of oil spill on commercial fisheries are the closure of State or Federal waters to fishing and the perception of seafood tainting by the market. Both of these factors are difficult to predict. Closures depend on the size, timing, depth of water, and location of the spill as well as the fishery involved. Perception depends on length of the spill and public perception. Both of these factors could affect the livelihood of the fishing community.

B.3.1.19. Recreational Fishing

Phase 1—Initial Phase

About 20 percent of the recreational fishing activity in the Gulf of Mexico occurs within 300 ft (91 m) of oil and gas structures (Hiett and Milon, 2002). Therefore, an explosion and fire could endanger recreational fishermen and divers in the immediate vicinity of the blowout, especially if the blowout is located close to shore. Recreational vessels in the area would likely aid in initial search-and-rescue operations but they would also be in danger during the explosion and subsequent fire. The subsequent fire could burn for up to a month, during which recreational vessels would be expected to avoid the area and to not interfere with response activities. It is also possible that recreational fishing could be impacted in areas beyond the immediate area of the event due to the perceptions of the public.

Phase 2—Offshore Spill

If a catastrophic spill were to occur, a substantial portion of ocean waters could be closed. For example, 88,522 square miles (mi²) (229,271 square kilometers [km²]) were closed to recreational fishing activity at the peak of the *Macondo* well oil spill. However, the majority of recreational fishing activity occurs fairly close to shore. Therefore, while the spill remains offshore, the impacts would be particularly felt with respect to fishing of offshore species such as king mackerel and red snapper (the impacts of a catastrophic spill on fish populations are discussed in **Chapter B.3.1.17**). The NOAA's Center for Coastal Monitoring and Assessment (USDOC, NOAA, Center for Coastal Monitoring and Assessment, 2012) provides a set of maps that display the locations in the Gulf of Mexico where certain fish species are prevalent. However, even while the spill remains offshore, there could be impacts to inshore recreational fishing due to misperceptions regarding the extent of the spill or due to concerns regarding the tainting of fish species. These misperceptions could also reduce tourism activity, which would impact tourism-based recreational fishing activity.

In 2011, the percent of each Gulf Coast State's recreational fishing activity that occurred in State and Federal ocean waters combined (i.e., not inland waters) were as follows: Texas (6%); Louisiana (5%); Mississippi (2%); Alabama (42%); and West Florida (34%) (USDOC, NMFS, 2012c; Texas Parks and Wildlife Department, 2012). **Chapter 4.1.1.20** of this Supplemental EIS provides a further breakdown of recreational fishing activity by state. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Phase 3—Onshore Contact

If a catastrophic spill were to reach shore, there would likely be noticeable impacts to recreational fishing activity. Since most recreational fishing activity occurs fairly close to shore, there would be a number of direct impacts to angler activity due to the fishing closures that would likely arise. This is particularly true since anglers would find it more difficult to find substitute fishing sites in the case of a catastrophic spill. In 2011, the percent of each Gulf State's recreational fishing activity that occurred inland were as follows: Texas (94%); Louisiana (95%); Mississippi (98%); Alabama (58%); and West Florida (66%) (USDOC, NMFS, 2012c; Texas Parks and Wildlife Department, 2012). The impacts to recreational fishing would also depend on the time of year of the spill. In 2011, 31 percent of angler trips in the Gulf occurred between January and April, 41 percent of angler trips occurred between May and August, and 28 percent of angler trips occurred between September and December (USDOC, NMFS, 2012c). In addition, fishing tournaments are often scheduled for the summer months and would be difficult to reschedule in the aftermath of a catastrophic spill. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

There would also be various economic impacts along the recreational fishing supply chain. Gentner Consulting Group (2010) estimates that recreational fishing activity supports \$9.8 million in direct expenditures and \$23 million in total sales per day in the Gulf of Mexico. There could be further impacts if the fishing closures persisted long enough to affect purchases of boats and other durable fishing equipment. There could also be further impacts if the loss of opportunities for recreational fishing activity exacerbated the fall in tourism activity that would arise due to the spill.

Phase 4—Post-Spill, Long-Term Recovery and Response

The long-term impacts of a catastrophic spill on recreational fishing activity would primarily depend on the extent to which fish populations recover (refer to **Chapter B.3.1.1.17** for more information). However, the longer term impacts of a spill on recreational fishing activity would also depend on the extent to which public perceptions of fish tainting can be assuaged. In addition, the longer-term impacts would depend on the extent to which the various firms that serve the recreational fishing industry would be able to weather the downturn in activity resulting from the spill.

Overall Summary and Conclusion (Phases 1-4)

Recreational fishing activity could be noticeably impacted in the event of a catastrophic spill. This is particularly the case if the spill reached shore or if the spill occurred during peak times and places of recreational fishing activity. The long-term impacts of a catastrophic spill would depend on the extent to which fish populations recover and the length of time it would take to convince the public that it was again safe to fish in the affected areas.

B.3.1.20. Recreational Resources

Phase 1—Initial Event

The most immediate impacts of a catastrophic spill would be on the recreational fishing and recreational diving activity in the vicinity of the blowout. About 20 percent of the recreational fishing activity and 90 percent of the recreational diving activity in the Gulf of Mexico from Alabama to Texas occurs within 300 ft (91 m) of oil and gas structures (Hiett and Milon, 2002). The impacts on recreational fishing and recreational diving would be greater the closer the blowout occurred to shore. The immediate response activities could also impact ocean-based recreational activity. Finally, there could be impacts to tourism activity since a catastrophic spill would likely receive a large amount of media attention.

Phase 2—Offshore Spill

While the spill is still offshore, there could be some ocean-dependent recreation that is affected (e.g., fishing, diving, and boating), as discussed above. In addition, there may be some effects due either to perceived damage to onshore recreational resources that has not yet materialized or to general hesitation on the part of travelers to visit the overall region because of the spill. A Congressional hearing into this matter (U.S. House of Representatives, 2010) provides a broad overview of some of the effects that were felt along the Gulf Coast subsequent to the *Deepwater Horizon* explosion, oil spill, and response. For example, a representative of Pinellas County estimated that this area had lost roughly \$70 million in hotel revenue even though beaches in this area did not receive any oil damage. This type of effect could be due to misperceptions about the spill, uncertainty about the future of the spill, or concerns about whether a tourism experience will be affected even if the destination is only within close proximity to a spill.

As previously mentioned, recreational diving is one offshore recreational activity that would be particularly affected by a catastrophic oil spill. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Phase 3—Onshore Contact

A catastrophic spill has the potential to noticeably impact the Gulf Coast recreation and tourism industries. The water-dependent and beach-dependent components of these industries would be particularly vulnerable. Environmental Sensitivity Indexes (ESIs) provide overall measures of the sensitivity of a particular coastline to a potential oil spill. The ESIs rank coastlines from 1 (least sensitive) to 10 (most sensitive). Marshes and swamps are examples of resources that have ESIs of 10 due to the extreme difficulty of removing oil from these areas; marsh and swamp areas are particularly prevalent in Louisiana. The ESIs for beach areas generally range from 3 to 6, depending on the type of sand and the extent to which gravel is mixed into the beach area; beach areas are particularly prevalent in Texas, Mississippi, Alabama, and Florida. The ESI maps for any coastline along the Gulf of Mexico can be viewed using the National Oceanic and Atmospheric Administration's ERMA mapping system (USDOC, NOAA, 2012b; USDOC, NOAA, Office of Response and Restoration, 2014). The ESI maps also provide point indicators for recreational resources.

A catastrophic spill would also raise a number of issues regarding recreational activity that is based on tourism. One important point is that a spill of the *Deepwater Horizon*'s dimensions can influence a much broader range of individuals and firms than can a smaller spill. For example, a small, localized spill may lead some travelers to seek substitute recreational opportunities in nearby areas. However, a large spill is more likely to dissuade travelers from visiting a broader economic region. Similarly, small- and mid-sized restaurant chains and hotels may be able to find other customers or to simply weather a smaller spill. However, a spill the size of the *Deepwater Horizon* is more likely to affect these types of firms since they are less able to diversify their customer base. These effects can be seen in the makeup of those who filed damage claims with BP (Gulf Coast Claims Facility, 2012); the Gulf Coast Claims Facility closed in early 2012 subsequent to preliminary court approval of a settlement program. For example, the bulk of the claims by individuals have been made in the food, beverage, and lodging sector and in the retail, sales, and service sector. Claims have also been made by individuals and firms in a broad range of geographic regions, many of which were not directly impacted by oil.

Murtaugh (2010) provides data on the change in hotel and sales tax receipts for individual Gulf Coast counties in the months immediately following the *Deepwater Horizon* explosion, oil spill, and response. During the summer of 2010, the spill caused substantial declines in hotel receipts in the following counties: Baldwin, Alabama (33.2% decline); Santa Rosa, Florida (24.8% decline); Okaloosa, Florida (24.1% decline); Walton, Florida (12.3% decline); and Bay, Florida (7.4% decline). However, coastal counties west of Baldwin, Alabama (as far west as St. Mary, Louisiana), generally experienced noticeable increases in hotel receipts. This was particularly true in Mobile, Alabama; Jackson, Mississippi; and in the coastal parishes of Louisiana. For example, in Louisiana, St. Mary, Terrebonne, and Lafourche Parishes each reported increases in hotel tax receipts of over 80 percent in the summer of 2010. These effects are likely due to the influx of oil-spill relief workers to these areas in the immediate aftermath of the Deepwater Horizon explosion, oil spill, and response. Overall sales tax receipts in counties from Baldwin, Alabama, eastward also generally fell during 2010, although to a lesser extent than hotel tax receipts. Sales tax receipts in counties and parishes west of Baldwin, Alabama, did not show as clear a pattern as did hotel tax receipts. For example, overall sales tax receipts fell by 12.5 percent in Hancock County (Mississippi), receipts were almost unchanged in Harrison County (Mississippi), and receipts increased by 8.3 percent in Orleans Parish (Louisiana). These results suggest that the impacts of a future catastrophic spill will be influenced by the structure of a particular county/parish's recreational economy, as well as by the extent to which oil-spill-response activities will mitigate some of the negative impacts of the spill in certain areas.

There could also be effects on tourist activities in areas far away from the areas directly affected by oil. For example, in Texas subsequent to the *Deepwater Horizon* explosion, oil spill, and response, some tourists may have stayed away from Texas Gulf Coast beaches due to misperceptions regarding the extent to which these beaches were damaged due to the spill. Conversely, there may have been some substitution of beach visitation away from beaches in the eastern Gulf towards the beaches in Texas, which were farther from the spill. While it is difficult to quantify these effects, some anecdotal evidence regarding this substitution effect can be found in Pack (2010). Hotel occupancy data suggest that these two effects may have largely offset each other. Source Strategies Inc. (2010) reports that total hotel occupancy in the three metro regions in Texas closest to the Gulf Coast increased just 1.9 percent during the third quarter of 2010 compared with the third quarter of 2009. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

Phase 4—Post-Spill, Long-Term Recovery and Response

The longer-term implications of a catastrophic event on tourism would depend on the extent to which any structural/ecological damage can be repaired and the extent to which economic mitigation actions would occur. The long-term implications of a catastrophic spill would also depend on the extent to which public confidence in the various components of the recreational and tourism economies can be restored. For example, restaurants in the region would be impacted to the extent to which they are perceived to use seafood products caught or raised in contaminated waters. Similarly, although beaches can be decontaminated not long after a spill has been stopped, lingering perceptions can be expected to negatively impact tourism even after a spill has ended.

Oxford Economics (2010) attempts to quantify these effects by analyzing the impacts of recent catastrophic events on recreational economies. For example, they analyzed the *Ixtoc I* well blowout and spill of 1979, the scale and nature of which was reasonably similar to the *Macondo* well blowout and spill of 2010. In this example, it took approximately 3 years for beaches to be cleaned and for recreational activity to return to similar levels as before the spill. They also looked at the *Prestige* oil spill of 2002 off the coast of Spain. Given the nature and size of that spill, recreational activity was able to return to prespill levels in approximately 1 year. Alaska's tourism economy took approximately 2 years to recover from the *Exxon Valdez* spill.

Overall Summary and Conclusion (Phases 1-4)

A catastrophic spill can cause noticeable impacts to recreational resources such as beaches. A catastrophic spill can also have complex effects on recreational activity that depends on tourism. The

longer-term implications of a catastrophic oil spill on tourism would depend on the extent to which any structural/ecological damage can be repaired, the extent to which economic mitigation actions would occur, and the speed at which public confidence in the various components of the affected recreational and tourism economies would be restored.

B.3.1.21. Archaeological Resources

Phase 1—Initial Event

Offshore Archaeological Resources

BOEM protects all known, discovered, and potentially historic and prehistoric archaeological resources on the OCS by requiring appropriate avoidance criteria as well as directives to investigate these resources. Onshore archaeological resources, prehistoric and historic sites, would not be immediately impacted during the initial phase of a catastrophic blowout because the distance of a blowout site from shore is at least 3 nmi (3.5 mi; 5.6 km). However, offshore catastrophic blowouts, when compared with spills of lesser magnitude, may initially impact multiple archaeological resources. Resources adjacent to a catastrophic blowout could be damaged by the high volume of escaping gas, buried by large amounts of dispersed sediments, crushed by the sinking of the rig or platform, destroyed during emergency relief well drilling, or contaminated by the hydrocarbons.

Based on historical information, over 2,100 potential shipwreck locations have been identified on the Gulf of Mexico OCS (USDOI, MMS, 2007). This number is a conservative estimate and is heavily weighted toward post-19th century, nearshore shipwrecks, where historic records documenting the loss of the vessels were generated more consistently. BOEM currently has confirmed locational data for approximately 380 potential wreck sites, although the historic significance for the majority of these sites has not been determined.

BOEM's Regional Director may require the preparation of an archaeological report to accompany the exploration plan, development operations coordination document, or development and production plan, under 30 CFR § 550.194, and BSEE's Regional Director may do likewise under 30 CFR § 250.194 if a potential wreck is encountered during operations. As part of the environmental reviews conducted for postlease activities, available information is evaluated regarding the potential presence of archaeological resources within a WPA proposed action area to determine if additional archaeological resource surveys and mitigations are warranted. Having complete knowledge of seafloor resources before a spill occurs would enable responders to quickly plan countermeasures in a way that would minimize adverse effects occurring from the spill response.

Phase 2—Offshore Spill

Offshore Archaeological Resources

Due to the response methods (i.e., subsea dispersants) and magnitude of the response (i.e., thousands of vessels), a catastrophic blowout and spill have a greater potential to impact offshore archaeological resources than other accidental events.

Deep Water

In contrast to smaller spills or spills in shallow water, large quantities of subsea dispersants could be used for a catastrophic subsea blowout in deep water. This could result in currently unknown effects from dispersed oil droplets settling to the seafloor. Though information on the actual impacts to submerged cultural resources is inconclusive at this time, oil settling to the seafloor could come in contact with archaeological resources. At present, there is no evidence of this having occurred. A recent experimental study has suggested that, while the degradation of wood in terrestrial environments is initially retarded by contamination with crude oil, at later stages, the biodeterioration of wood is accelerated (Ejechi, 2003). While there are different environmental constraints that affect the degradation of wood in terrestrial and waterlogged environments, soft-rot fungal activity, one of the primary wood degrading organisms in submerged environments, was shown to be increased in the presence of crude oil (Ejechi, 2003). There is

a possibility that oil from a catastrophic blowout could come in contact with wooden shipwrecks and artifacts on the seafloor and accelerate their deterioration.

Ancillary damages from vessels associated with oil-spill-response activities (e.g., anchoring) in deep water are unlikely because of the use of dynamically positioned vessels responding to a deepwater blowout. If response and support vessels were to anchor near a deepwater blowout site, the potential to damage undiscovered vessels in the area would be high because of the required number and the size of anchors and the length of mooring chains needed to safely secure vessels. Additionally, multiple offshore vessel decontamination stations would likely be established in shallow water outside of ports or entrances to inland waterways, as seen for the *Deepwater Horizon* explosion, oil spill, and response. The anchoring of vessels could result in damage to both known and undiscovered archaeological sites; the potential to impact archaeological resources increases as the density of anchoring activities in these areas increases.

Shallow Water

The potential for damaging archaeological resources increases as the oil spill and related response activities progress landward. In shallower waters, most of the damage would be associated with oil cleanup and response activities. Thousands of vessels would respond to a shallow-water blowout and would likely anchor, potentially damaging both known and undiscovered archaeological sites. Additional anchoring would be associated with offshore vessel decontamination stations, as described above. As the spill moves into the intertidal zone, the chance of direct contact between the oil and archaeological resources increases. As discussed above, this could result in increased degradation of wooden shipwrecks and artifacts.

Additionally, in shallower waters, shipwrecks often act as a substrate to corals and other organisms, becoming an essential component of the marine ecosystem. These organisms often form a protective layer over the shipwreck, virtually encasing the artifacts and hull remains. If these fragile ecosystems were destroyed as a result of the oil spill and the protective layer was removed, the shipwreck would then be exposed to increased degradation until it reaches a new level of relative stasis with its surroundings.

Regardless of water depth, because oil is a hydrocarbon, heavy oiling could contaminate organic materials associated with archaeological sites, resulting in erroneous dates from standard radiometric dating techniques (e.g., ¹⁴C-dating). Interference with the accuracy of ¹⁴C-dating would result in the loss of valuable data necessary to understand and interpret the sites.

Phase 3—Onshore Contact

Onshore Archaeological Resources

Regardless of the water depth in which the catastrophic blowout occurs, it is assumed that more than 1,000 mi (1,609 km) of shoreline could be oiled to some degree. Onshore prehistoric and historic sites would be impacted to some extent by a high-volume spill from a catastrophic blowout that reaches shore. Sites on barrier islands could suffer the heaviest impact, and a few prehistoric sites located inland from the coastline, in the marsh, and along bayous could also experience some light oiling. Impacts would include the loss of ability to accurately date organic material from archaeological sites because of contamination or increased research costs to clean samples for analysis. Efforts to prevent coastal cultural resources from becoming contaminated by oil would likely be overwhelmed in the event of a hurricane and by the magnitude of shoreline impacted.

The most significant damage to archaeological sites could be related to cleanup and response efforts. Fortunately, important lessons were learned from the *Exxon Valdez* spill in Alaska in 1989, in which the greatest damage to archaeological sites was related to cleanup activities and looting by cleanup crews rather than from the oil itself (Bittner, 1996). As a result, cultural resources were recognized as significant early in the *Deepwater Horizon* response and cleanup, and archaeologists were embedded in Shoreline Cleanup Assessment Teams (SCAT) and consulting with cleanup crews. Historic preservation representatives were present at both the Joint Incident Command as well as each Area Command under the general oversight of the National Park Service to coordinate response efforts (Odess, official communication, 2010). Despite these efforts, some archaeological sites suffered damage from looting or from spill cleanup activities, most notably the parade ground at Fort Morgan, Alabama (Odess, official communication, 2011).

Phase 4—Post-Spill, Long-Term Recovery and Response

Onshore Archaeological Resources

Regardless of the water depth in which the catastrophic blowout occurs, it is assumed that more than 1,000 mi (1,609 km) of shoreline could be oiled to some degree. Onshore prehistoric and historic sites would be impacted to some extent by a high-volume spill from a catastrophic blowout that reaches shore. A few prehistoric sites in Louisiana, located inland from the coastline in the marsh and along bayous, could experience some light oiling. As discussed above, impacts would include the permanent loss of ability to accurately date organic material from archaeological sites because of contamination. The most significant damage to archaeological sites would be related to cleanup and response efforts. Long-term recovery would prove difficult if not impossible. Historic structures such as coastal forts that are exposed to oiling are generally constructed of brick or other porous, friable materials that are difficult to clean without causing further damage (Chin and Church, 2010). Funding for any sort or archaeological recovery is problematic outside of Federal lands because of existing laws and regulations (Varmer, 2014). Most coastal prehistoric sites in Louisiana, for example, are on private lands where there is no mechanism to recover damages. Section 106 of the National Historic Preservation Act is triggered by a Federal undertaking, which in the case of a spill, would be the response and not the actual spill. The Natural Resource Damage Assessment (NRDA) process codified by the Oil Pollution Act of 1990 is a legal process to determine the type and amount of restoration needed to compensate the public for harm to natural resources that occurs as a result of an oil spill, but it does not cover cultural, archaeological, or historic properties.

Overall Summary and Conclusion (Phases 1-4)

Archaeological resources are finite, unique, irreplaceable, nonrenewable records of mankind's past, which, once destroyed or damaged, are gone forever. In the event of a catastrophic oil spill, the most likely source of irreversible impact is, ironically, from the spill response, and the danger increases dramatically as the response approaches the shoreline. This damage can, to a large extent, be mitigated by the early integration of archaeologists and State and Tribal historic preservation officers in the response to protect sites from impact. Mitigation of impacts from the oil itself are likely to meet with varied success depending upon the type of site and availability of funding.

B.3.1.22. Land Use and Coastal Infrastructure

Phase 1—Initial Event

There would likely be no adverse impacts to land use and coastal infrastructure as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because of the long distance (>3 nmi; 3.5 mi; 5.6 km) from shore and the short duration of the initial event, fire, and/or explosion.

Phase 2—Offshore Spill

Impacts to tourism and recreational resources are addressed in **Chapter B.3.1.20**. Possible fisheries closures are addressed in **Chapters B.3.1.18 and B.3.1.19**. As cleanup and remediation efforts evolve, there would be increased activity at ports and coastal cities, leading to increased traffic on road infrastructure and at port facilities. This follows from consideration of BOEM's scenario estimates of up to 3,000 vessels, 25-50 planes/helicopters, and up to 25,000 workers for a shallow-water event and up to 7,000 vessels, 50-100 planes/helicopters, and up to 50,000 workers for a deepwater event. Waste disposal activities associated with boom deployment and retrieval would increase demand at waste disposal facilities. BOEM's scenario estimates 5 million feet (1.5 million meters) of boom deployment and 35,000 bbl of dispersant applied at the surface for a shallow-water event or 11 million feet (3.4 million meter) of boom deployment and 33,000 bbl of dispersant applied at the surface for a shallow-water event or 11 million feet (3.4 million meter) of boom deployment and 33,000 bbl of dispersant applied at the surface for a shallow-water event or 11 million feet (3.4 million meter) of boom deployment and 33,000 bbl of dispersant applied at the surface and 16,500 bbl of dispersant applied subsea for a deepwater event. Also, vessel decontamination sites would be set up offshore and the staffing/maintenance of these sites would contribute to increased activity at port facilities and traffic congestion on coastal waterways and highways.

Phase 3—Onshore Contact

In the event of a catastrophic spill, impacts on land use and infrastructure would be temporary and variable in nature. The scale of impact would depend on the nature of the event and whether it occurs in shallow or deep water. These impacts would include land use in staging areas, waste disposal locations and capacities, and potential delays because of vessel decontamination stations near ports, as described below.

For a shallow-water event, BOEM estimates 5-10 staging areas and 200-300 skimmers. For a deepwater event, scenario estimates call for 10-20 staging areas and 500-600 skimmers. Given these estimates and the several thousand responders that would be involved in the effort, BOEM expects a further increase in traffic congestion and some possible competing land-use issues near the staging areas, depending on the real estate market at the time of the event. Some infrastructure categories, such as vessels, ports, docks and wharves, would likely become very engaged in response activities and this could result in a shortage of space and functionality at infrastructure facilities if ongoing drilling activities were simultaneously occurring. However, if drilling were to be suspended, conflicting demands on infrastructure facilities would likely fail to materialize.

In the category of waste disposal, the impacts would be more visible as thousands of tons of oily liquid and solid wastes from the oil-spill cleanup would be disposed of in onshore landfills. As was the case in the *Deepwater Horizon* explosion, oil spill, and response, USEPA, in consultation with USCG, would likely issue solid-waste management directives to address the issue of contaminated materials and solid or liquid wastes that are recovered as a result of cleanup operations (USEPA, 2010c and 2010d).

For navigation and port use, there would also be the potential for delays in cargo handling and slow vessel traffic because of decontamination operations at various sites along the marine transportation system (USDOT, 2010). However, vessel decontamination activities most likely would be complete within a year of the event, so impacts would be expected to be limited in duration.

Phase 4—Post-Spill, Long-Term Recovery and Response

Based on the rapid recovery of infrastructure that was heavily damaged by the catastrophic 2005 hurricane season and the region's experience in the few years since the *Deepwater Horizon* explosion, oil spill, and response, BOEM would not expect any long-term impacts to land use and coastal infrastructure as a result of a catastrophic oil-spill event. However, if a catastrophic oil spill were to occur, BOEM would (as it is currently with regard to the *Deepwater Horizon* explosion, oil spill, and response) monitor the post-spill, long-term recovery phase of the event for any changes that indicate otherwise. A catastrophic spill could generate several thousand tons of oil-impacted solid materials disposed in landfills along the Gulf Coast. This waste may contain debris, beach, or marsh material (sand/silt/clay), vegetation, and personal protection equipment collected during cleanup activities. BOEM does not expect that landfill capacity would be an issue at any phase of the oil-spill event or the long-term recovery. In the case of the *Deepwater Horizon* explosion, oil spill, and response, that existing landfills receiving oil-spill waste had plenty of capacity to handle waste volumes; the *Deepwater Horizon* explosion, oil spill, and response that protect that and fills represented less than 7 percent of the total daily waste normally accepted at these landfills (USEPA, 2012).

It is not expected that any long-term, land-use impacts would arise from properties that are utilized for restoration activities and would somehow have their future economic use compromised. The rise or fall of property values would not be solely a function of some kind of economic impact from a catastrophic oil-spill event. There are many other factors that influence the value of property and its best economic use. To date, it is not clear from past experiences whether vegetation loss or erosion created by a spill could result in changes in land use. The amount and location of erosion and vegetation loss could be influenced by the time of year the spill occurs, its location, and weather patterns, including hurricane landfalls.

Overall Summary and Conclusion (Phases 1-4)

There would likely be no adverse impacts to land use and coastal infrastructure throughout Phase 1 of a catastrophic spill event. Response efforts in Phases 2 and 3 would require considerable mobilization of equipment and people. While these efforts might temporarily displace traditional users of coastal land and infrastructure, these interruptions would not be long lasting. The post-spill, long-term recovery and

response efforts during Phase 4 could generate several thousand tons of oil-impacted solid materials disposed in landfills along the Gulf Coast, but this would account for no more than 7 percent of the total daily waste normally accepted in these landfills. It is also not expected that any properties utilized for restoration activities throughout Phase 3 would not suffer any long-term land use or economic impacts.

B.3.1.23. Demographics

Phase 1—Initial Event

The impacts of a catastrophic spill on demographics would primarily be driven by the spill's impacts on employment (refer to **Chapter B.3.1.24**). Since the impacts of a catastrophic spill on employment would take time to evolve, the initial impacts on demographics would be minimal. Therefore, there would likely be no adverse impacts to demographics as a result of the events and the potential impactproducing factors that could occur throughout Phase 1 of a catastrophic spill event.

Phase 2—Offshore Spill

The impacts of a catastrophic spill on demographics would primarily be driven by the spill's impacts on employment (refer to **Chapter B.3.1.24**). For example, there could be some suspension of oil/gas activities in the immediate aftermath of the spill. This could cause some workers to seek employment outside of the OCS industry, for example in onshore oil/gas extraction or on overseas offshore projects. However, since the OCS oil and gas industry would likely eventually recover, the long-term impacts on demographics would be small. There could also be impacts on demographics if employment in recreation, tourism, or fishing industries were affected, due to either actual or perceived impacts of the spill. However, the impacts on these industries would become more acute if the spill were to reach shore.

Phase 3—Onshore Contact

The impacts of a catastrophic spill on demographics would primarily be driven by the spill's impacts on employment (refer to **Chapter B.3.1.24**). For example, impacts to recreation/tourism and recreational and commercial fishing activities would become more acute if the spill were to reach shore. There would also be a larger presence of cleanup workers in some areas if the spill were to reach shore. For example, 48,200 workers were employed in response activities at the peak of the response effort following the *Macondo* well blowout and spill (RestoreTheGulf.gov, 2011). However, these impacts would be temporary and would be governed by the dynamics of the particular spill. There could also be impacts to demographics if there were impacts on the response workers' health or if the demographics of the response workers were noticeably different from the local population.

Phase 4—Post-Spill, Long-Term Recovery and Response

The impacts of a catastrophic spill on demographics would primarily be driven by the spill's impacts on employment (refer to **Chapter B.3.1.24**). The spill's impacts on employment, and therefore demographics, would primarily be felt in the oil/gas, recreational fishing, commercial fishing, and recreation/tourism industries. However, it is unlikely that a catastrophic spill would cause substantial long-term changes to a region's demographics. For example, the demographics data in Woods and Poole Economics, Inc. (2011) did not suggest large demographic changes to any Gulf regions subsequent to the *Deepwater Horizon* explosion, oil spill, and response.

Overall Summary and Conclusion (Phases 1-4)

The impacts of a catastrophic spill on demographics would primarily be driven by the spill's impacts on employment (refer to **Chapter B.3.1.24**). These impacts would likely be temporary and would be governed by the particular dynamics of the spill.

B.3.1.24. Economic Factors

Phase 1—Initial Event

The most immediate economic impacts of a catastrophic spill would be on the oil/gas production and employment associated with the area of the spill. There could also be impacts on commercial fishing (Chapter B.3.1.18), recreational fishing (Chapter B.3.1.19), and recreational resources (Chapter B.3.1.20). However, the primary economic impacts of a catastrophic spill would depend how the spill evolves, which is discussed in subsequent sections.

Phase 2—Offshore Spill

In contrast to a less severe accidental event, suspension of some oil and gas activities would be likely following a catastrophic event. Depending on the duration and magnitude, this could impact hundreds of oil-service companies that supply the steel tubing, engineering services, drilling crews, and marine supply boats critical to offshore exploration. An interagency economic report estimated that the suspension arising from the *Deepwater Horizon* explosion, oil spill, and response may have directly and indirectly resulted in up to 8,000-12,000 fewer jobs along the Gulf Coast (USDOC, Economics and Statistics Administration, 2010). Greater New Orleans Inc. (2012) provides an overview of the impacts of decreased oil and gas industry operations subsequent to the Deepwater Horizon explosion, oil spill, and response. This report provides survey evidence regarding the various economic strains felt by businesses in Louisiana due to the *Deepwater Horizon* explosion, oil spill, and response. For example, this report found that 41 percent of the respondents were not making a profit due to the slowdown in operations. The economic impacts of a catastrophic spill would likely be more heavily concentrated in smaller businesses than in the larger companies due to their difficulty in finding substitute revenue sources. Much of the employment loss would be concentrated in coastal oil-service parishes in Louisiana (St. Mary, Terrebonne, Lafourche, Iberia, and Plaquemines Parishes) and counties/parishes where drilling-related employment is most concentrated (Harris County, Texas, in which Houston is located, and Lafavette Parish, Louisiana). There could also be economic impacts due to the impacts on commercial fishing (Chapter B.3.1.18), recreational fishing (Chapter B.3.1.19), and recreational resources (Chapter **B.3.1.20**).

Phase 3—Onshore Contact

By the end of a catastrophic spill, a large number of personnel (up to 25,000 in the event of a shallowwater spill and up to 50,000 in the event of a deepwater spill) would be expected to have responded to protect the shoreline and wildlife and to cleanup vital coastlines. The degree to which new cleanup jobs offset job losses would vary greatly from county to county (or parish to parish). However, these new jobs would not make up for lost jobs, in terms of dollar revenue. In most cases, cleanup personnel are paid less (e.g., \$15-\$18 per hour compared with roughly \$45 per hour on a drilling rig), resulting in consumers in the region having reduced incomes overall and thus, spending less money in the economy (Aversa, 2010). In addition, the economic impacts of relief workers would likely vary by county or parish, causing noticeable positive economic impacts to some counties or parishes while having fairly small positive impacts in other counties or parishes (Murtaugh, 2010). However, the influx of relief workers could also cause some negative impacts if it disrupted some of the normal functioning of economies. In addition, if the spill reaches shore, the impacts to commercial fishing (**Chapter B.3.1.18**), recreational fishing (**Chapter B.3.1.19**), and recreational resources (**Chapter B.3.1.20**) would likely be greater.

In the unfortunate event of a future disaster, the creation of a large financial claims administration process, similar to the Gulf Coast Claims Facility, would be likely. This administrative body would be responsible for distributing funds made available by the responsible party to parties financially hurt by the disaster. As demonstrated by the actions of Gulf Coast Claims Facility recipients following the *Deepwater Horizon* explosion, oil spill, and response, funds will likely be used by individuals to pay for necessities such as mortgages or groceries, while businesses who receive funds will likely use them to maintain payroll and current payments on equipment. As of March 2012, over \$6 billion had been paid through the Gulf Coast Claims Facility, which mitigated some of the economic impacts of the *Deepwater Horizon* explosion, oil spill, and response (Gulf Coast Claims Facility, 2012).

Phase 4—Post-Spill, Long-Term Recovery and Response

While a catastrophic spill could immediately impact several Gulf Coast States for several months through fishing closures, loss of tourism, and any suspension of oil and gas activities, anticipating the long-term economic and employment impacts in the Gulf of Mexico is a difficult task. Many of the potentially affected jobs, like fishing charters, are self-employed. Thus, they would not necessarily file for unemployment and will not be included in business establishment surveys used to estimate State unemployment levels. In addition, unemployment numbers in states are based on nonagricultural jobs, and the fishing industry is considered within the agriculture category. On the other side, it is also a challenge to estimate how many of these displaced workers have been hired to clean up the spill. For example, while thousands of vessels of opportunity would be active in the spill response, not all of these related to response activities are likely to be shorter term than the negative impacts discussed above. However, the long-term economic impacts of a catastrophic spill will likely depend on the speed at which the oil/gas, commercial fishing, recreational fishing, and recreational industries recover.

Overall Summary and Conclusion (Phases 1-4)

There would be a number of economic impacts that would arise from a catastrophic oil spill. The most direct effects would be on the recreation/tourism, commercial fishing, and recreational fishing industries that depend on damaged resources. There could also be substantial negative effects on the oil/gas industry due to moratoriums or rule changes that would arise. Finally, there could be substantial impacts due to the relief operations and economic mitigation activities that would occur in the aftermath of a catastrophic spill.

B.3.1.25. Environmental Justice

Phase 1—Initial Event

There would likely be no adverse impacts to environmental justice as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event because of the long distance (>3 nmi; 3.5 mi; 5.6 km) from shore and the short duration of the initial event, fire, and/or explosion.

Phase 2—Offshore Spill

The environmental justice policy, based on Executive Order 12898 of February 11, 1994, directs agencies to incorporate into NEPA documents an analysis of potentially disproportionate and detrimental environmental and health effects of their proposed actions on minorities and low-income populations and communities. While the spill is still offshore, the primary environmental justice concern would be large commercial fishing closures disproportionately impacting minority fishers. In the event of a catastrophic spill, Federal and State agencies would be expected to close substantial portions of the Gulf to commercial and recreational fishing (USDOC, NOAA, 2010e). While oystering occurs "onshore," oyster beds are also likely to be closed to harvests during Phase 2 of a catastrophic spill because of concerns about oil contamination and increased freshwater diversions to mitigate oil intrusion into the marshes. These closures would directly impact commercial fishermen and oystermen, and indirectly impact such downstream activities as shrimp processing facilities and oyster shucking houses. The mostly African-American communities of Phoenix, Davant, and Point a la Hache in Plaquemines Parish, Louisiana, are home to families with some of the few black-owned oyster leases. Just as these leases have been threatened by freshwater diversion projects for coastal restoration, they could be threatened by Phase 2 of a catastrophic spill (Mock, 2010).

The Gulf Coast hosts multiple minority and low-income groups whose use of natural resources of the offshore and coastal environments make them vulnerable to fishing closures. While not intended as an inventory of the area's diversity, we have identified several Gulf Coast populations of particular concern. An estimated 20,000 Vietnamese American fishermen and shrimpers live along the Gulf Coast; by 1990, over 1 in 20 Louisiana fishers and shrimpers had roots in Southeast Asia even though they comprised less than half a percent of the State's workforce (Bankston and Zhou, 1996). Vietnamese Americans account

for about one-third of all the fishermen in the central Gulf of Mexico (Ravitz, 2010). Islaños, African Americans, and Native American groups are also engaged in commercial fishing and oystering. Historically, Vietnamese Americans and African Americans have worked in the fish processing and oyster shucking industries. Shucking houses particularly, have provided an avenue into the mainstream economy for minority groups.

Therefore, fishing closures during Phase 2 of a catastrophic spill impacting the central Gulf of Mexico may disproportionately affect such minority groups as the Vietnamese Americans, Native Americans, African Americans, and Islaños (Hemmerling and Colten, 2003).

Phase 3—Onshore Contact

While most coastal populations along the Gulf Coast are not generally minority or low income, several communities on the coasts of St. Mary, Lafourche, Terrebonne, St. Bernard, and Plaquemines Parishes, Louisiana, have minority or low-income population percentages that are higher than their state average. These minority populations are predominately Native American, Islaños, or African American. For example, a few counties or parishes along the Gulf Coast have more than a 2-percent Native American population (USDOI, MMS, 2007); about 2,250 Houma Indians (a State of Louisiana recognized tribe) are concentrated in Lafourche Parish, Louisiana, comprising 2.4 percent of the parish's population, and about 800 Chitimacha (a federally recognized tribe) make up 1.6 percent of St. Mary Parish's population. While these are not significant numbers on their own, viewed in the context of Louisiana's overall 0.6 percent Native American average, these communities take on greater environmental justice importance.

Gulf Coast minority and low-income groups are particularly vulnerable to the coastal impacts of a catastrophic oil spill due to their greater than average dependence on the natural resources in the offshore and coastal environments. Besides their economic reliance on commercial fishing and oystering, coastal low-income and minority groups rely heavily on these fisheries and other traditional subsistence fishing, hunting, trapping, and gathering activities to augment their diets and household incomes (refer to Hemmerling and Colton, 2003, for an evaluation of environmental justice considerations for south Lafourche Parish). Regular commuting has continued this reliance on the natural resources of the coastal environments even when populations have been forced to relocate because of landloss and the destruction from hurricane events.

State fishery closures because of a catastrophic oil spill could disproportionately affect minority and low-income groups. Shoreline impacts could generate additional subsistence-related effects. Therefore, these minority groups may be disproportionately affected if these coastal areas were impacted by a catastrophic spill and the resulting response.

Phase 4—Post-Spill, Long-Term Recovery and Response

After the spill is stopped, the primary environmental justice concerns relate to possible long-term health impacts to cleanup workers, a predominately minority population, and to possible disposal of oil-impacted solid waste in predominantly minority areas.

An analysis of socioeconomic characteristics shows that people of Cajun ethnicity in the Gulf Coast States are often found to be of a comparatively low socioeconomic status and to work jobs in the textile and oil industries (Henry and Bankston, 1999). Past studies suggest that a healthy offshore petroleum industry also indirectly benefits low-income and minority populations (Tolbert, 1995). One BOEM-funded study in Louisiana found income inequality decreased during the oil boom of the 1980's and increased with the decline (Tolbert, 1995). If there is a suspension of oil and gas activities in response to a catastrophic spill, many oil- and gas-related service industries would attempt to avoid massive layoffs by cutting costs and deferring maintenance during the recovery. This was the case with the *Deepwater Horizon* explosion, oil spill, and response, and the long-term impacts are still not fully understood.

Onshore and Offshore Cleanup Workers

By the end of a catastrophic spill, up to 25,000 (shallow water) or 50,000 (deepwater) personnel would be expected to be responding to the spill. The majority of these would be field responders (United Incident Command, 2010e). As seen by the *Deepwater Horizon* explosion, oil spill, and response, the racial composition of cleanup crews was so conspicuous that Ben Jealous, the president of the National

Association for the Advancement of Colored People, sent a public letter to BP Chief Operations Officer Tony Hayward on July 9, 2010, demanding to know why African Americans were over-represented in "the most physically difficult, lowest paying jobs, with the most significant exposure to toxins" (National Association for the Advancement of Colored People, 2010). While regulations require the wearing of protective gear and only a small percentage of cleanup workers suffer immediate illness and injuries (Center for Disease Control and Prevention, 2010), exposure could have long-term health impacts (e.g., increased rates of some types of cancer) (Savitz and Engel, 2010; Kirkeleit et al., 2008). Aguilera et al. (2010) compiled and reviewed existing studies on the repercussions of spilled oil exposure on human health for patterns of health effects and found evidence of the relationship between exposure and "acute physical, psychological, genotoxic, and endocrine effects in the exposed individuals." Acute symptoms from exposure to oil, dispersants, and degreasers include headaches, nausea, vomiting, diarrhea, sore eyes, runny nose, sore throat, cough, nose bleeds, rash, blisters, shortness of breath, and dizziness (Sathiakumar, 2010). The USEPA's monitoring data have not shown that the use of dispersants during the Deepwater Horizon explosion, oil spill, and response resulted in a presence of chemicals that surpassed human health benchmarks (Trapido, 2010). The potential for the long-term human health effects are largely unknown. However, the National Institute of Environmental Health Sciences is conducting a study known as the "Gulf Long-Term Follow-Up Study" that should provide a better understanding of the long-term and cumulative health impacts, such as the consequences of working close to a spill and of consuming contaminated seafood. The "Gulf Long-Term Follow-up Study" will monitor oil-spill cleanup workers for 10 years and represents a national effort to determine if the Gulf oil spill led to physical or mental health problems (U.S. Dept. of Health and Human Services, NIEHS, 2010). The study has a target goal of 55,000 participants. As of October 2012, the National Institute of Environmental Health Sciences announced that over 29,000 cleanup workers and volunteers have enrolled in the "Gulf Long-Term Follow-up Study" (U.S. Dept. of Health and Human Services, NIEHS, 2012). Prior research on post-spill cleanup efforts found that the duration of cleaning work was a risk factor for acute toxic symptoms and that seamen had the highest occurrence of toxic symptoms compared with volunteers or paid workers. Therefore, participants in the "Vessels of Opportunity" program, which recruited local boat owners (including Cajun, Houma Indian, and Vietnamese American fishermen) to assist in cleanup efforts, would likely be one of the most exposed groups. African Americans are thought to have made up a high percentage of the cleanup workforce. The Occupational Safety and Health Administration (OSHA) released two matrices of gear requirements for onshore and offshore Gulf operations that were organized by task (U.S. Dept. of Labor, OSHA, 2010a). Of past oil-spill workers, uninformed and poorly informed workers were at more risk of exposure and symptoms, demonstrating the importance of education and proper training of workers (Sathiakumar, 2010). Therefore, a catastrophic spill may disproportionately affect seamen and onshore workers such as Cajuns, Vietnamese Americans, Houma Indian, and African Americans.

Solid-Waste Disposal

Following a catastrophic spill, environmental justice concerns arise related to the disposal of cleanuprelated wastes near minority and/or low-income communities (Schleifstein, 2010). It is estimated that a catastrophic spill could generate several thousand tons of oil-impacted solid materials that would be disposed in landfills along the Gulf Coast. While no new landfills would be built because of a catastrophic spill, the use of existing landfills might exacerbate existing environmental justice issues. For example, Mobile, Alabama, and Miami, Florida, are majority minority urban centers with a majority of minority residents living within a 1-mi (1.6-km) radius of chosen landfills or liquid processing centers. While only a small percentage of *Deepwater Horizon* explosion, oil spill, and response waste was sent to these facilities—13 percent of the liquid waste to Liquid Environmental Solutions in Mobile and only 0.28 percent of the total liquid waste to Cliff Berry in Miami-they may receive more from potential future spills. Disposal procedures for the *Deepwater Horizon* explosion, oil spill, and response involved sorting waste materials into standard "waste stream types" at small, temporary stations, and then sending each type to existing facilities that were licensed to dispose of them. The location of temporary sorting stations was linked to the location of containment and cleanup operations. Hence, future locations of any sorting stations are not predictable since they would be determined by the needs of cleanup operations. However, waste disposal locations were determined by the specializations of existing facilities and by contractual relationships between them and the cleanup and containment firms. Louisiana received about 82 percent of the *Deepwater Horizon* explosion, oil spill, and response liquid waste recovered; of this, 56 percent was manifested to mud facilities located in Venice in Plaquemines Parish, Louisiana, and to Port Fourchon in Lafourche Parish, Louisiana, and then transferred to a processing facility in Port Arthur, Texas. The waste remaining after processing was sent to deep well injection landfills located in Fannett and Big Hill, Texas. The sites located in Venice and Port Fourchon, Louisiana, and in Port Arthur, Fannett, and Big Hill, Texas, have low-minority populations, but a few of these areas have substantial poverty rates relative to State and parish/county means.

Overall Summary and Conclusion (Phases 1-4)

For Phase 1 (Initial Event) of a catastrophic spill, there would likely be no adverse impacts to minority and low-income communities because of the long distance (>3 nmi; 3.5 mi; 5.6 km) from shore, as well as the short duration of the initial event, fire, and/or explosion. The primary environmental justice concerns during Phase 2 (Offshore Spill) would be large-scale fishing closures, oyster bed contamination and closures, and subsequent impacts to downstream activities such as shrimp processing facilities and oyster shucking houses. These may disproportionately affect such minority groups as the Vietnamese Americans, Native Americans, African Americans, and Islaños. Phase 3 (Onshore Contact), depending on the location, could result in disproportional impacts to those groups that rely heavily on oystering, commercial fishing, and other traditional subsistence fishing, hunting, trapping, and gathering activities to augment their diets and household incomes. During Phase 4 (Post-Spill, Long-Term Recovery and Response), the primary environmental justice concerns relate to possible long-term health impacts to cleanup workers, a predominately minority population, and to the possible disposal of oil-impacted solid waste in predominantly minority areas. As in the case of the Deepwater Horizon explosion, oil spill, and response, understanding long-term impacts would be dependent on the outcome of ongoing research by various interested parties, such as the National Institutes of Health and BOEM. Overall, depending on a number of mainly geographic variables such as the location of fisheries closures and oyster bed contamination and closures, as well as the demographic composition of cleanup workers, and if waste disposal was not distributed across the region at many different facilities, a catastrophic oil-spill event may have disproportionate effects on minority and low-income populations.

B.3.1.26. Species Considered due to U.S. Fish and Wildlife Service Concerns

Phase 1—Initial Event

Phase 1 of the scenario is the initiation of a catastrophic blowout incident. Impacts, response, and intervention depend on the spatial location of the blowout and leak. For this analysis, an explosion and subsequent fire are assumed to occur. If a blowout associated with the drilling of a single exploratory well occurs, this could result in a fire that would burn for 1 or 2 days. If a blowout occurs on a production platform, other wells could feed the fire, allowing it to burn for over a month. The drilling rig or platform may sink. If the blowout occurs in shallow water, the sinking rig or platform may land in the immediate vicinity; if the blowout occurs in deep water, the rig or platform could land a great distance away, beyond avoidance zones. Regardless of water depth, the immediate response would be from search and rescue vessels and aircraft, such as USCG cutters, helicopters, and rescue planes, and firefighting vessels. The potential impacts reflect the explosion, subsequent fire for 1-30 days, and the sinking of the platform in the immediate vicinity and up to 1 mi (1.6 km) from the well.

The scenarios for each phase, including cleanup methods, can be found Table B-4.

BOEM has only focused on species within coastal counties and parishes because those are the species that could be potentially impacted by oil and gas development activities, including a potential OCS spill. There would likely be no adverse impacts to the species considered due to FWS concerns as a result of the events and the potential impact-producing factors that could occur throughout Phase 1 of a catastrophic spill event due to the distance of most activities, the heavy regulation of infrastructure and pipelines, and permitting and siting requirements.

Phase 2—Offshore Spill

Phase 2 of the analysis focuses on the spill and response in Federal and State offshore waters. A catastrophic spill would likely spread hundreds of square miles. Also, the oil slick may break into several

smaller slicks, depending on local wind patterns that drive the surface currents in the spill area. The potential impacts reflect spill and response in Federal and State offshore waters. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

There would likely be no adverse impacts to the species considered due to FWS concerns as a result of the events and the potential impact-producing factors that could occur throughout Phase 2 of a catastrophic spill event due to the distance of most activities, the heavy regulation of infrastructure and pipelines, and permitting and siting requirements.

Phase 3—Onshore Contact

Phase 3 focuses on nearshore (e.g., inside bays and in close proximity to shoreline) and onshore spill response and oil initially reaching the shoreline during the spill event or while the oil still persists in the offshore environment once the spillage has been stopped. It is likely that Phases 2 and 3 could occur simultaneously. The duration of the initial shoreline oiling is measured from initial shoreline contact until the well is capped or killed and the remaining oil dissipates offshore. Re-oiling of already cleaned or previously impacted areas could be expected during Phase 3. In addition to the response described in Phase 2, nearshore and onshore efforts would be introduced in Phase 3 as oil entered coastal areas and contacted shore. The potential impacts reflect the spill and response in very shallow coastal waters and once along the shoreline. Season and temperature variations can result in different resource impacts due to variations in oil persistence and oil and dispersant toxicity and because of differences in potential exposure of the resources throughout various life cycle stages.

The FWS has explicitly communicated interest in specific species within State boundaries along the Gulf Coast. The species within Louisiana, Mississippi, Alabama, and Florida have been designated as endangered, threatened, candidate, listed with critical habitat, proposed nonessential experimental population, or distinct vertebrate population. The greatest threats to the majority of these species are the loss of and/or modification to suitable habitat caused by urban and agricultural development. Further detail on this catastrophic OSRA run is contained in **Appendix C**.

At this time, there is no known record of a hurricane crossing the path of a large oil spill; the impacts of such have yet to be determined. The experience from Hurricanes Katrina and Rita in 2005 was that the oil released during the storms widely dispersed as far as the surge reached (USDOC, NOAA, National Weather Service, 2012). Due to their reliance on terrestrial habitats to carry out their life-history functions at a considerable distance from the GOM, the activities of a CPA proposed action are unlikely to have significant adverse effects on the size and recovery of any of the FWS-mentioned species or populations in Texas, Louisiana, Mississippi, Alabama, and Florida.

There would likely be no adverse impacts to the species considered due to FWS concerns as a result of the events and the potential impact-producing factors that could occur throughout Phase 3 of a catastrophic spill event due to the distance of most activities, the heavy regulation of infrastructure and pipelines, and permitting and siting requirements.

Phase 4—Post-Spill, Long-Term Recovery and Response

Phase 4 focuses on long-term recovery once the well has been capped and the spill has stopped. During the final phase of a catastrophic blowout and spill, it is presumed that the well has been capped or killed and cleanup activities are concluding. While it is assumed that the majority of spilled oil would be dissipated offshore within 1-2 months (depending on season and temperature) of stopping the flow, oil has the potential to persist in the environment long after a spill event and has been detected in sediment 30 years after a spill. On sandy beaches, oil can sink deep into the sediments. In tidal flats and salt marshes, oil may seep into the muddy bottoms. The potential impacts reflect long-term persistence of oil in the environment and residual and long-term cleanup efforts.

As data continue to be gathered and impact assessments completed, a better characterization of the full scope of impacts to populations in the GOM from the *Deepwater Horizon* explosion, oil spill, and response will be available. Relevant data on the status of populations after the *Deepwater Horizon* explosion, oil spill, and response may take years to acquire and analyze, and impacts from the *Deepwater Horizon* explosion, oil spill, and response may be difficult or impossible to discern from other factors.

Therefore, it is not possible for BOEM to obtain this information within the timeline contemplated in this Supplemental EIS, regardless of the cost or resources needed. In light of the incomplete or unavailable information, BOEM's subject-matter experts have used available scientifically credible evidence in this analysis and applied it using accepted methods and approaches. Nevertheless, a complete understanding of the missing information is not essential to a reasoned choice among alternatives for this Supplemental EIS. The CPA is an active oil and gas region with ongoing (or the potential for) exploration, drilling, and production activities. In addition, non-OCS energy-related activities will continue to occur in the CPA irrespective of a CPA proposed action (i.e., habitat loss and competition). The potential for effects from changes to the affected environment (post-*Deepwater Horizon* explosion, oil spill, and response), accidental spills (including low-probability catastrophic spills), and cumulative effects remains whether or not the No Action or an Action alternative is chosen under this Supplemental EIS.

There would likely be no adverse impacts to the species considered due to FWS concerns as a result of the events and the potential impact-producing factors that could occur throughout Phase 4 of a catastrophic spill event due to the distance of most activities, the heavy regulation of infrastructure and pipelines, and permitting and siting requirements.

Overall Summary and Conclusion (Phases 1-4)

Accidental blowouts, oil spills, and spill-response activities resulting from a CPA proposed action have the potential to impact small to large areas in the GOM, depending on the magnitude and frequency of accidents, the ability to respond to accidents, the location and date of accidents, and various meteorological and hydrological factors (including tropical storms). The incremental contribution of a CPA proposed action would not be likely to result in a significant incremental impact on the FWSmentioned species within the CPA; in comparison, non-OCS oil- and gas-related activities, such as habitat loss and competition, have historically proved to be of greater threat to the FWS-mentioned species.

In conclusion, within the WPA, which is directly adjacent to the CPA, there is a long-standing and well-developed OCS Program (more than 50 years); there are no data to suggest that activities from the preexisting OCS Program are significantly impacting the FWS mentioned species populations; therefore, a CPA proposed action would be expected to have little or no effect on the FWS mentioned species.

B.4. PREPARERS

Pat Adkins, Information Management Specialist Bruce Baird, Biologist Mark Belter, Marine Biologist Darice Breeding, Physical Scientist Sindey Chaky, Social Scientist Chris DuFore, Oceanographer Stephanie Gambino, Chief, Biological/Social Sciences Section Donald (Tre) W. Glenn III, Protected Species Biologist Gary D. Goeke, Chief, Environmental Assessment Section Allison Hernandez, Protected Species Biologist Chester Huang, Meteorologist Jack Irion, Unit Supervisor, Marine Archaeologist, Social Sciences Unit Mark D. Jensen, Economist Matthew Johnson, Marine Biologist Doug Jones, Marine Archaeologist Arie R. Kaller, Unit Supervisor, Environmental Scientist, Biological Sciences Unit Lissa Lyncker, Unit Supervisor, Environmental Scientist, Environmental Assessment Section Jessica Mallindine, Protected Species Biologist Megan Milliken, Economist Tershara Matthews, Unit Supervisor, Environmental Scientist, Environmental Assessment Section Margaret Metcalf, Chief, Physical/Chemical Sciences Unit Deborah H. Miller, Technical Editor David P. Moran, Biologist

Erin O'Reilly, Physical Scientist Catherine A. Rosa, Environmental Assessment Program Specialist

B.5. References

- Adcroft, A., R. Hallberg, J.P. Dunne, B.L. Samuels, J.A. Galt, C.H. Barker, and B. Payton. 2010. Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters. Vol. 37. 5 pp. L18605, doi:10.1029/2010GL044689.
- Aguilera, F., J. Méndez, E. Pásaro, and B. Laffon. 2010. Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology 30:291-301. doi:10.1002/jat.1521.
- Alabama State Port Authority. 2010. Spill continues to impact Gulf Coastal States, Port of Mobile will remain open. Media Update, July 2, 2010. Internet website: <u>http://www.asdd.com/pdf/</u> <u>ASPA_PortofMobile_OilSpillUpdate_07022010.pdf</u>. Accessed November 10, 2011.
- Alexander, S.K. and J.W. Webb. 1983. Effects of oil on growth and decomposition of *Spartina alterniflora*. In: Proceedings, 1983 Oil Spill Conference. February 28-March 3, 1983, San Antonio, TX. Washington, DC: American Petroleum Institute. Pp. 529-532.
- Alexander, S.K. and J.W. Webb. 1987. Relationship of *Spartina alterniflora* growth to sediment oil content following an oil spill. In: Proceedings, 1987 Oil Spill Conference . . . April 6-9, 1988, Baltimore, MD. Washington, DC: American Petroleum Institute. Pp. 445-450.
- Alonso-Alvarez, C., I. Munilla, M. Lopez-Alonso, and A. Velando. 2007. Sublethal toxicity of the *Prestige* oil spill on yellow-legged gulls. Environment International 33:773-781.
- Alves-Stanley, C.D., G.A.J. Worthy, and R.K. Bomde. 2010. Feeding preferences of West Indian manatees in Florida, Belize, and Puerto Rico as indicated by stable isotope analysis. Marine Ecology Progress Series 402:255-267.
- American Bird Conservancy. 2010. Gulf oil spill: Field survey report and recommendations. American Bird Conservancy, Washington, DC. 13 pp. Internet website: <u>http://www.abcbirds.org/newsandreports/ABC_Gulf_Oil_Spill_Report.pdf</u>. Accessed January 5, 2011.
- Anchor Environmental CA, L.P. 2003. Literature review of effects of resuspended sediments due to dredging operations. Prepared for the Los Angeles Contaminated Sediments Task Force, Los Angeles, CA. 140 pp.
- Arnold, T.W. and R.M. Zink. 2011. Collision mortality has no discernible effect on population trends of North American birds. PLoS ONE 6(9), 6 pp.
- Australian Maritime Safety Authority. 2003. The effects of oil on wildlife. Internet website: <u>http://www.amsa.gov.au/Marine_Environment_Protection/National_plan/General_Information/Oiled_Wildlife/Oil_Spill_Effects_on_Wildlife_and_Non-Avian_Marine_Life.asp. Accessed June 2011.</u>
- Australian Maritime Safety Authority. 2010. Oil spill dispersants: Top 20 frequently asked questions (FAQs). Internet website: <u>http://www.amsa.gov.au/Marine_Environment_Protection/National_plan/</u> <u>General_Information/Dispersants_Information/FAQ_Oil_Spills_Dispersants.asp</u>. Accessed November 10, 2011.
- Aversa, J. 2010. Oil spill's economic damage may not go beyond Gulf. Internet website: <u>http://www.businessweek.com/ap/financialnews/D9GK80MG0.htm</u>. Accessed November 17, 2011.
- Baca, B., G.A. Ward, C.H. Lane, and P.A. Schuler. 2005. Net environmental benefit analysis (NEBA) of dispersed oil on nearshore tropical ecosystems derived from the 20 year "TROPICS" field study. In: Proceedings 2005 International Oil Spill Conference, May 15-19, 2005, Miami Beach, FL. Washington, DC: American Petroleum Institute.
- Baird, P.H. 1990. Concentrations of seabirds at oil-drilling rigs. Condor 92:768-771.
- Bak, R.P.M. and J.H.B.W. Elgershuizen. 1976. Patterns of oil-sediment rejection in corals. Marine Biology 37:105-113.

- Bankston, C.L. and M. Zhou. 1996. Go fish: The Louisiana Vietnamese and ethnic entrepreneurship in an extractive industry. National Journal of Sociology 10(1):37-55.
- Barras, J.A. 2006. Land area change in coastal Louisiana after the 2005 hurricanes: A series of three maps. U.S. Dept. of the Interior, Geological Survey. Open-File Report 06-1274.
- Barras, J.A., S. Beville, D. Britsch, S. Hartley, S. Hawes, J. Johnston, P. Kemp, Q. Kinler, A. Martucci, J. Porthouse, D. Reed, K. Roy, S. Sapkota, and J. Suhayda. 2003. Historical and projected coastal Louisiana land changes: 1978-2050. U.S. Dept. of the Interior, Geological Survey. Open-File Report 03-334.
- Bartha, R. and R.M. Atlas. 1983. Transport and transformations of petroleum: Biological processes. In: Boesch, D.F. and N.N. Rabalais, eds. Long-term environmental effects of offshore oil and gas development. Taylor and Francis, Abingdon.
- Baustian, J., I. Mendelssohn, Q. Lin, and J. Rapp. 2010. In situ burning restores the ecological function and structure of an oil-impacted coastal marsh. Environmental Management 46:781-789.
- Beck, M.W., K.L. Heck, Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.P. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51(8):633-641.
- Beiras, R. and L. Saco-Álvarez. 2006. Toxicity of seawater and sand affected by the *Prestige* fuel-oil spill using bivalve and sea urchin embryogenesis bioassays. Water, Air, and Soil Pollution 177:457-466.
- Belanger, M., L. Tan, N. Askin, and C. Wittnich. 2010. Chronological effects of the *Deepwater Horizon* Gulf of Mexico oil spill on regional seabird casualties. Journal of Marine Animals and Their Ecology 3:10-14.
- Bik H.M., K.M. Halanych, J. Sharma, and W.K. Thomas. 2012. Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill. PLoS ONE 7(6):e38550. doi:10.1371/journal.pone.0038550.
- Bittner, J.E. 1996. Cultural resources and the *Exxon-Valdez* oil spill: An overview. Proceedings of the *Exxon-Valdez* Oil Spill Symposium. American Fisheries Society Symposium 18:814-818.
- Bjorndal, K.A., B.A. Schroeder, A.M. Foley, B. E. Witherington, M. Bresette, D. Clark, R. M. Herren, M.D. Arendt, J.R. Schmid, A.B. Meylan, P.A. Meylan, J.A. Provancha, K.M. Hart, M.M. Lamont, R.R. Carthy, and A.B. Bolten. 2013. Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (*Caretta caretta*) in northwest Atlantic. Marine Biology 160(10): 2711-2721. Internet website: <u>http://accstr.ufl.edu/accstr-resources/publications/Bjorndal_et_al_MarBiol_</u> 2013b.pdf.
- Boehm, P.D. and D.L. Fiest. 1982. Subsurface distributions of petroleum from an offshore well blowout. The *Ixtoc I* blowout, Bay of Campeche. Environmental Science and Technology 16(2):67-74.
- Boesch, D.F. and N.N. Rabalais, eds. 1987. Long-term environmental effects of offshore oil and gas development. London, UK: Elsevier Applied Science Publishers. 696 pp.
- British Petroleum. 2014a. Active shoreline cleanup operations from *Deepwater Horizon* accident end. Internet website: <u>http://www.bp.com/en/global/corporate/press/press-releases/active-shoreline-cleanup-operations-dwh-accident-end.html</u>. Released April 15, 2014. Accessed May 19, 2014.
- British Petroleum. 2014b. Deepwater Horizon accident and response. Internet website: <u>http://www.bp.com/en/global/corporate/gulf-of-mexico-restoration/deepwater-horizon-accident-and-response.html</u>. Accessed July 10, 2014.
- Burdeau C. and J. Collins. 2010. Marshes fouled by Gulf of Mexico oil spill show signs of regrowth. The Associated Press. August 12, 2010. Internet website: <u>http://www.nola.com/news/gulf-oil-spill/index.ssf/2010/08/marshes_fouled_by_gulf_of_mexi.html</u>. Accessed November 10, 2011.

- Burger, J. 1977. Determinants of hatching success in diamond-back terrapin, *Malaclemys terrapin*. American Midland Naturalist 97:444-464.
- Burger, A.E. 1993. Estimating the mortality of seabirds following oil spills: Effects of spill volume. Marine Pollution Bulletin 26:140-143.
- Burger, J. 1994. Immediate effects of oils spills on organisms in the Arthur Kill. In: Burger, J., ed. Before and after an oil spill: The Arthur Kill. New Brunswick, NJ: Rutgers University Press. Pp. 115-130.
- Burke, C.M., W.A. Montevecchi, and F.K. Wiese. 2012. Inadequate environmental monitoring around offshore oil and gas platforms on the Grand Bank of Eastern Canada: Are risks to marine birds known? Journal of Environmental Management 104:121-126.
- Burns, K.A. and A.H. Knap. 1989. The Bahía Las Minas oil spill: Hydrocarbon uptake by reef building corals. Marine Pollution Bulletin 20(8):391-398.
- Burns, K.A., S.D. Garrity, and S.C. Levings. 1993. How many years until mangrove ecosystems recover from catastrophic oil spills? Marine Pollution Bulletin 26: 239-248.
- Burns, K.A., S.D. Garrity, D. Jorissen, J. MacPherson, M. Stoelting, J. Tierney, and L. Yelle-Simmons. 1994. The *Galeta* oil spill. II. Unexpected persistence of oil trapped in mangrove sediments. Estuarine, Coastal and Shelf Science 38: 349-364.
- Butchart, S.H.M., A.J. Stattersfield, L.A. Bennun, S.M. Shutes, H.R. Akçakaya, J.E.M. Baillie, S.N. Stuart, C. Hilton-Taylor, and G.M. Mace. 2004. Measuring global trends in the status of biodiversity: Red List indices for birds. PLoS Biology 2(12), 11 pp.
- Butchart, S.H.M., A.J. Stattersfield, J.E.M. Baillie, L.A. Bennun, S.N. Stuart, H.R. Akçakaya, C. Hilton-Taylor, and G.M. Mace. 2005. Using Red List indices to measure progress towards the 2010 target and beyond. Philosophical Transactions of the Royal Society of London B 360:255-268.
- Butler, R.G., A. Harfenist, F.A. Leighton, and D.B. Peakall. 1988. Impact of sublethal oil and emulsion exposure on the reproductive success of Leach's storm-petrels: Short and long-term effects. Journal of Applied Ecology 25:125-143.
- Butler, J.A., C. Broadhurst, M. Green, and Z. Mullin. 2004. Nesting, nest predation, and hatchling emergence of the Carolina diamondback terrapin, *Malaclemys terrapin centrata*, in northeastern Florida. American Midland Naturalist 152:145-155.
- Butler, J.A., R.A. Seigel, and B. Mealey. 2006. *Malaclemys terrapin*—diamondback terrapin. In: Meylan, P.A., ed. Biology and conservation of Florida turtles. Chelonian Research Monographs 3:279-295.
- Byrd, G.V., J.H. Reynolds, and P.L. Flint. 2009. Persistence rates and detection probabilities of bird carcasses on beaches of Unalaska Island, Alaska, following the wreck of the M/V *Selendang Ayu*. Marine Ornithology 37:197-204.
- Byrne, C. 1989. Effects of the water-soluble fractions of No. 2 fuel oil on the cytokinesis of the Quahog clam (*Mercenaria mercenaria*). Bulletin of Environmental Contamination and Toxicology 42:81-86.
- Byrne, C.J. and J.A. Calder. 1977. Effect of the water-soluble fractions of crude, refined, and waste oils on the embryonic and larval stages of the Quahog clam *Mercenaria* sp. Marine Biology 40:225-231.
- Caetano, M., M.J. Madureira, and C. Vale. 2003. Metal remobilization during resuspension of anoxic contaminated sediment: Short-term laboratory study. Water, Air, and Soil Pollution 143:23-40.
- Cagle, F.R. 1952. A Louisiana terrapin population (Malaclemys). Copeia 1952:74-76.
- Caldwell, A.B. 2003. Do terraces and coconut mats affect seeds and submerges aquatic vegetation at Sabine National Wildlife Refuge? Master's thesis, Louisiana State University, Baton Rouge, LA. 41 pp.

- Camphuysen, C.J. 2006. Methods for assessing seabird vulnerability to oil pollution: Final report. Workshop on the Impact of Oil Spills on Seabirds (7-9 September 2006), Santa Cruz, Spain. 5 pp.
- Canadian Center for Energy Information. 2010. What are oil sands and heavy oil? Internet website: <u>http://www.centreforenergy.com/AboutEnergy/ONG/OilsandsHeavyOil/Overview.asp?page=1</u>. Accessed November 10, 2011.
- Carls, M.G., S.D. Rice, and J. Hose. 1999. Sensitivity of fish embryos to weathered crude oil: Part 1. Low-level exposure during incubation causes malformations, genetic damage and mortality in larval Pacific herring (*Clupea pallashi*). Environmental Toxicology and Chemistry 18(3):481-493.
- Castège, I., Y. Lalanne, V. Gouriou, G. Hèmery, M. Girin, F. D'Amico, C. Mouchès, J. D'Elbèe, L. Soulier, J. Pensu, D. Lafitte, and F. Pautrizel. 2007. Estimating actual seabirds mortality at sea and relationship with oil spills: Lesson from the "Prestige" oil spill in Aquitaine (France). Ardeola 54:289-307.
- Castellanos, D.L. and L.P. Rozas. 2001. Nekton use of submerged aquatic vegetation, marsh, and shallow unvegetated bottom in the Atchafalaya River Delta, a Louisiana tidal freshwater ecosystem. Estuaries 24(2):184-197.
- Centers for Disease Control and Prevention. 2010. NIOSH report of BP illness and injury data (April 23-June 6, 2010). Internet website: <u>http://www.cdc.gov/niosh/topics/oilspillresponse/pdfs/NIOSHRept-BPInjuryandIllnessDataApril23-June6.pdf</u>. Accessed November 10, 2011.
- Chia, F.S. 1973. Killing of marine larvae by diesel oil. Marine Pollution Bulletin 4(1):29-30.
- Chin, C. and J. Church. 2010. Field report: Fort Livingstone, Grand Terre Island, Jefferson Parish, Louisiana, site visit June 16, 2010. Report prepared for the National Center for Preservation Technology and Training, Natchitoches, LA.
- Clarke, D.G. and D.H. Wilber. 2000. Assessment of potential impacts of dredging operations due to sediment resuspension. DOER Technical Notes Collection (ERDC TN-DOER-E9), U.S. Dept. of the Army, Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS.
- Cohen, Y., A. Nissenbaum, and R. Eisler. 1977. Effects of Iranian crude oil on the Red Sea octocoral *Heteroxenia fuscescens*. Environmental Pollution 12:173-186.
- Cook, B.B. and A.H. Knap. 1983. The effects of crude oil and chemical dispersant on photosynthesis in the brain coral, *Diploria strigosa*. Marine Biology 78:21-27.
- Conan, G. 1982. The long-term effects of the Amoco Cadiz oil spill. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 297(1087).
- Conroy, M.J., M.C. Runge, J.D. Nichols, K.W. Stodola, and R.J. Cooper. 2011. Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty. Biological Conservation 144:1204-1213.
- Council of Environmental Quality (CEQ). 2010. Report regarding the Minerals Management Service's National Environmental Policy Act policies, practices, and procedures as they relate to Outer Continental Shelf oil and gas exploration and development. 41 pp.
- Croxall, J.P. and R. Rothery. 1991. Population regulation of seabirds: Implications of their demography for conservation. In: Perrins, C.M., J.-D. Lebreton, and G.J.M. Hirons, eds. Bird population studies-relevance to conservation and management. Oxford, UK: Oxford University Press. Pp. 272-296.
- Dames and Moore, Inc. 1979. Mississippi, Alabama, Florida outer continental shelf baseline environmental survey; MAFLA, 1977/78. Volume I-A. Program synthesis report. U.S. Dept. of the Interior, Bureau of Land Management, Washington, DC. BLM/YM/ES-79/01-Vol-1-A. 278 pp.
- Darnell, R.M., R.E. Defenbaugh, and D. Moore. 1983. Atlas of biological resources of the continental shelf, northwestern Gulf of Mexico. U.S. Dept. of the Interior, Bureau of Land Management, New Orleans, LA. BLM Open-File Report No. 82-04.

- Davis, H.C. 1958. Survival and growth of clam and oyster larvae at different salinities. Biological Bulletin, Marine Biological Laboratory 114(3):296-307.
- Davis, R.W., W.E. Evans, and B. Würsig, eds. 2000. Cetaceans, sea turtles, and seabirds in the northern Gulf of Mexico: Distribution, abundance, and habitat association. Prepared by Texas A&M University at Galveston and the U.S. Dept. of Commerce, National Marine Fisheries Service. U.S. Dept. of the Interior, Geological Survey, Biological Resources Division, USGS/BRD/CR-1999-0005 and Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA, OCS Study MMS 2000-002. 27 pp.
- Davis, B., D.S. Etkin, M. Landry, and K. Watts. 2004. Determination of oil persistence: A historical perspective. Proc. Fifth Biennial Freshwater Spills Symposium. Internet website: <u>http://</u> www.environmental-research.com/erc_papers/ERC_paper_19.pdf. Accessed November 10, 2011.
- Dawes, C.J., J. Andorfer, C. Rose., C. Uranowski, and N. Ehringer. 1997. Regrowth of seagrass *Thalassia testudinum* into propeller scars. Aquatic Botany 59:139-155.
- Dean, T.A. and S.C. Jewett. 2001. Habitat-specific recovery of shallow subtidal communities following the *Exxon Valdez* oil spill. Ecological Applications 11(5):1456-1471.
- Deegan, L.A. 1989. Nekton, the free-swimming consumers. In: Day, J.W. Jr., C.A.S. Hall, W.M. Kemp, and A. Yanez-Arancibia, eds. Estuarine ecology. New York, NY: Wiley and Sons, Inc. 400 pp.
- de Gouw, J.A., A.M. Middlebrook, C. Warneke, R. Ahmadov, E.L. Atlas, R. Bahreini, D.R. Blake, C.A. Brock, J. Brioude, D.W. Fahey, F.C. Fehsenfeld, J.S. Holloway, M. Le Henaff, R.A. Lueb, S.A. McKeen, J.F. Meagher, D.M. Murphy, C. Paris, D.D. Parrish, A.E. Perring, I.B. Pollack, A.R. Ravishankara, A.L. Robinson, T.B. Ryerson, J.P. Schwarz, J.R. Spackman, A. Srinivasan, and L.A. Watts. 2011. Organic aerosol formation downwind from the Deepwater Horizon oil spill. Science 331(6022):1273-1274.
- Delaune, R.D., W.H. Patrick, and R.J. Bureh. 1979. Effect of crude oil on a Louisiana Spartina alterniflora salt marsh. Environmental Pollution 20:21-31.
- den Hartog, C. and R.P.W.M. Jacobs. 1980. Effects of the "Amoco Cadiz" oil spill on an eelgrass community at Roscoff (France) with special reference to the mobile benthic fauna. Helgoländer Meeresunters 33:182-191.
- Diercks, A-R., R.C. Highsmith, V.L. Asper, D.J. Joung, Z. Zhou, L. Guo, A.M. Shiller, S.B. Joye, A.P. Teske, N. Guinasso, T.L. Wade, and S.E. Lohrenz. 2010. Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophysical Research Letters, Vol. 37, L20602, doi:10.1029/2010GL045046.
- Dodge, R.E., S.C. Wyers, A.H. Knap, H.R. Frith, T.D. Sleeter, and S.R. Smith. 1984. The effects of oil and oil dispersants on hermatypic coral skeletal growth (extension rate). Coral Reefs 3:191-198.
- Dow, R.L. 1975. Reduced growth and survival of clams transplanted to an oil spill site. Marine Pollution Bulletin 6(2):124-125.
- Ducklow, H.W. and R. Mitchell. 1979. Composition of mucus released by coral reef Coelenterates. Limnology and Oceanography 24(4):706-714.
- Eccleston, C.H. 2008. NEPA and environmental planning: Tools, techniques, and approaches for practitioners. Boca Raton, FL: CRC Press. 447 pp.
- Ejechi, B.O. 2003. Biodegradation of wood in crude oil-polluted soil. World Journal of Microbiology & Biotechnology 19(8):799-804. ISSN: 0959-3993.
- Elgershuizen, J.H.B.W. and H.A.M. De Kruijf. 1976. Toxicity of crude oils and a dispersant to the stony coral Madracis mirabilis. Marine Pollution Bulletin 7(2):22-25.
- Energy Resources Co. Inc. (ERCO). 1982. *Ixtoc* oil spill assessment: Executive summary. U.S. Dept. of the Interior, Bureau of Land Management, Contract No. AA851-CT0-71. Cambridge, MA. 39 pp.

- Environment Canada. 2011. Environmental Technology Centre. Oil properties database. Internet website: <u>http://www.etc-cte.ec.gc.ca/databases/OilProperties/oil_prop_e.html</u>. Accessed on June 21, 2011.
- Epperly, S.P., J. Braun, A.J. Chester, F.A. Cross, J.V. Merriner, P.A. Tester, and J.H. Churchill. 1996. Beach strandings as an indicator of at-sea mortality of sea turtles. Bulletin of Marine Science 59:289-297.
- Erftemeijer, P.L.A. and R.R.R. Lewis III. 2006. Environmental impacts of dredging on seagrass: A review. Marine Pollution Bulletin 52:1553-1572.
- Esler, D., T.D. Bowman, K.A. Trust, B.E. Ballachey, T.A. Dean, S.C. Jewett, and C.E. O'Clair. 2002. Harlequin duck population recovery following the *Exxon Valdez* oil spill: Progress, process and constraints. Marine Ecology Progress Series 241:271-286.
- Esler, D., K.A. Trust, B.E. Ballachey, S.A. Iverson, T.L. Lewis, D.J. Rizzolo, D.M. Mulcahy, A.K. Miles, B.R. Woodin, J.J. Stageman, J.D. Henderson, and B.W. Wilson. 2010. Cytochrome P4501 biomarker indication of oil exposure in harlequin ducks up to 20 years after the *Exxon Valdez* oil spill. Environmental Toxicology and Chemistry 29:1138-1145.
- Fanning, K., K.L. Carder, and P.R. Betzer. 1982. Sediment resuspension by coastal waters: A potential mechanism for nutrient re-cycling on the ocean's margins. Deep-Sea Research 29:953-965.
- Farnsworth, A. and R.W. Russell. 2007. Monitoring flight calls of migrating birds from an oil platform in the northern Gulf of Mexico. Journal of Field Ornithology 78:279-289.
- *Federal Register.* 1985. Endangered and threatened wildlife and plants; Interior population of the least tern determined to be endangered. Final rule. 50 FR 21784-21792.
- *Federal Register.* 1989. Endangered and threatened wildlife and plants; endangered status for the Anastasia Island beach mouse and threatened status for the southeastern beach mouse. Final rule. May 12, 1989, 54 FR 91, pp. 20598-20602.
- *Federal Register*. 2006. Endangered and threatened wildlife and plants; designation of critical habitat for the Perdido Key beach mouse, Choctawhatchee beach mouse, and St. Andrew beach mouse. Final rule. 71 FR 197, pp. 60238-60370.
- *Federal Register.* 2009. Endangered and threatened wildlife and plants; removal of the brown pelican (*Pelecanus occidentalis*) from the Federal list of endangered and threatened wildlife. Final rule. 74 FR 220, pp. 59444-59472.
- *Federal Register*. 2011. Endangered and threatened species: Determination of nine distinct population segments of loggerhead sea turtles as endangered or threatened. Final rule. 76 FR 184, p. 58868. September 22, 2011.
- *Federal Register.* 2012. Sea turtle conservation; shrimp trawling requirements. May 10, 2012. 50 CFR part 223. 77 FR 91, pp. 27411-27415.
- *Federal Register.* 2013. Endangered and threatened species: Designation of critical habitat for the northwest Atlantic Ocean loggerhead sea turtle distinct population segment (DPS) and determination regarding critical habitat for the North Pacific Ocean loggerhead DPS. July 18, 2013. 77 FR 138, pp. 43006-43054.
- Fertl, D., A.J. Shiro, G.T. Regan, C.A. Beck, N. Adimey, L. Price-May, A. Amos, G.A.J. Worthy, and R. Crossland. 2005. Manatee occurrence in the northern Gulf of Mexico, west of Florida. Gulf and Caribbean Research 17:69-94.
- Fingas, M. 2004. Weather windows for oil spill countermeasures. Environmental Technology Center, Environmental Canada.
- Fingas, M., F. Ackerman, P. Lambert, K. Li, Z. Wang, J. Mullin, L. Hannon, D. Wang, A. Steenkammer, R. Hiltabrand, R. Turpin, and P. Campagna. 1995. The Newfoundland offshore burn experiment: Further results of emissions measurement. In: Proceedings of the Eighteenth Arctic and Marine

Oilspill Program Technical Seminar, Volume 2, June 14-16, 1995, Edmonton, Alberta, Canada. Pp. 915-995.

- Fischel, M., W. Grip, and I.A. Mendelssohn. 1989. Study to determine the recovery of a Louisiana marsh from an oil spill. In: Proceedings, 1989 Oil Spill Conference, February 13-16, 1989, San Antonio, TX. Washington, DC: American Petroleum Institute. Pp. 383-387.
- Fisher, C.R. 1995. Characterization of habitats and determination of growth rate and approximate ages of the chemosynthetic symbiont-containing fauna. In: MacDonald, I.R., W.W. Schroeder, and J.M. Brooks, eds. 1995. Chemosynthetic ecosystems study: Final report. Volume 2: Technical report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0022. Pp. 5.1-5.47.
- Flint, P.L. and A.C. Fowler. 1998. A drift experiment to assess the influence of wind on recovery of oiled seabird on St. Paul Island, Alaska. Marine Pollution Bulletin 36:165-166.
- Flint, P.L., A.C. Fowler, and R.F. Rockwell. 1999. Modeling losses of birds associated with the oil spill from the M/V *Citrus* off St. Paul Island, Alaska. Ecological Modeling 117:261-267.
- Flint, P.L., E.W. Lance, K.M. Sowl, and T.F. Donnelly. 2010. Estimating carcass persistence and scavenging bias in a human-influenced landscape in western Alaska. Journal of Field Ornithology 81:206-214.
- Florida Fish and Wildlife Conservation Commission. 2010. Sea turtle nests to be moved Friday. News Release, June 22, 2010. 2 pp. Internet website: <u>http://myfwc.com/news/news-releases/2010/july/22/news_10_x_oilspill34/</u>. Accessed November 17, 2011.
- Florida Fish and Wildlife Conservation Commission. 2014a. Manatee synoptic surveys. Internet website: <u>http://myfwc.com/research/manatee/projects/population-monitoring/synoptic-surveys/</u>. Accessed June 13, 2014.
- Florida Fish and Wildlife Conservation Commission. 2014b. Manatee mortality statistics. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute. Internet website: <u>http://myfwc.com/media/1777172/YearToDate.pdf</u>. Accessed April 8, 2014.
- Flynn, D. 2010. NOAA closes Gulf spill area to fishing. Food safety news. May 3, 2010. Internet website: <u>http://www.foodsafetynews.com/2010/05/noaa-closes-spill-area-to-fishing/</u>. Accessed November 10, 2011.
- Foley, A.M., B.A. Schroeder, R. Hardy, S.L. MacPherson, M. Nicholas, and M.S. Coyne. 2013. Postnesting migratory behavior of loggerhead *Caretta caretta* from three Florida rookeries. Endangered Species Research 21(2):129-142. Internet website: <u>http://www.int-res.com/articles/esr_oa/n021p129.pdf</u>.
- Foley, A.M., B.A. Schroeder, R. Hardy, S.L. MacPherson, and M. Nicholas. 2014. Long-term behavior at foraging sites of adult female loggerhead sea turtles (*Caretta caretta*) from three Florida rookeries. Marine Biology 161(6): 1251-1262. Internet website: <u>http://link.springer.com/article/10.1007%</u> <u>2Fs00227-014-2415-9</u>. Accessed July 7, 2014.
- Ford, R.G. 2006. Using beached bird monitoring data for seabird damage assessment: The importance of search interval. Marine Ornithology 34:91-98.
- Ford, R.G. and M.A. Zafonte. 2009. Scavenging of seabird carcasses at oil spill sites in California and Oregon. Marine Ornithology 37:205-211.
- Ford, R.G., M.L. Bonnell, D.H. Varoujean, G.W. Page, H.R. Carter, B.E. Sharp, D. Heinemann, and J.L. Casey. 1996. Total direct mortality of seabirds from the *Exxon Valdez* oil spill. American Fisheries Society Symposium 18:684-711.
- Fowler, A.C. and P.L. Flint. 1997. Persistence rates and detection probabilities of oiled king eider carcasses on St. Paul Island, Alaska. Marine Pollution Bulletin 34:522-526.

- Frazer, T.K., S.K. Notestein, C.A. Jacoby, C.J. Littles, S.R. Keller, and R.A. Swift. 2006. Effects of storm-induced salinity changes on submersed aquatic vegetation in Kings Bay, Florida. Estuaries and Coasts 29(6A):943-953.
- Fucik, K.W., J.K. Hoover, and B.J. Morson. 1980. Effects of turbidity and sedimentation on tropical benthic communities: A literature review. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration. 25 pp.
- Fucik, K.W., K.A. Carr, and B.J. Balcom. 1995. Toxicity of oil and dispersed oil to the eggs and larvae of seven marine fish and invertebrates from the Gulf of Mexico. In: Lane, P., ed. The use of chemicals in oil spill response. STP 1252. Ann Arbor, MI. Pp. 135-171.
- Ganning, B., D.J. Reish, and D. Straughan. 1984. Recovery and restoration of rocky shores, sandy beaches, tidal flats, and shallow subtidal bottoms impacted by oil spill. In: Cairns, J., Jr. and A.L. Buikema, Jr., eds. Restoration of habitats impacted by oil spills. Boston, MA.
- Gentner Consulting Group. 2010. Economic impacts of recreational fishing closures resulting from the Deep Horizon oil spill: Preliminary estimates, May 19, 2010.
- George-Ares, A. and J.R. Clark. 2000. Aquatic toxicology of two Corexit® registered dispersants. Chemosphere 40(8):897-906.
- Geraci, J.R. and D.J. St. Aubin, eds. 1990. Sea mammals and oil: Confronting the risks. San Diego, CA: Academic Press.
- Gittings, S.R., T.J. Bright, W.W. Schroeder, W.W. Sager, J.S. Laswell, and R. Rezak. 1992. Invertebrate assemblages and ecological controls on topographic features in the northeast Gulf of Mexico. Bulletin of Marine Science 50(3):435-455.
- Golet, G.H., P.E. Seiser, A.D. McGuire, D.D. Roby, J.B. Fischer, K.J. Kuletz, D.B. Irons, T.A. Dean, S.C. Jewett, and S.H. Newman. 2002. Long-term direct and indirect effects of the *Exxon Valdez* oil spill on pigeon guillemots in Prince William Sound, Alaska. Marine Ecology Progress Series 241:287-304.
- Gómez Gesteira, J.L. and J.C. Dauvin. 2000. Amphipods are good bioindicators of the impact of oil spills on soft bottom macrobenthic communities. Marine Pollution Bulletin 40(11):1017-1027.
- González, J, F.G. Figueiras, M. Aranguren-Gassis, B.G. Crespo, E. Fernández, X.A.G. Morán, and M. Nieto-Cid. 2009. Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms. Estuarine, Coastal and Shelf Science 83(3):265-276.
- Gower, J.F.R. and S.A. King. 2011. Distribution of floating *Sargassum* in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. International Journal of Remote Sensing 32:7, 1917-1929.
- Graham, W.M., R.H. Condon, R.H. Carmichael, I. D'Ambra, H.K. Patterson, L.J. Linn, and F.J. Hernandez, Jr. 2010. Oil carbon entered the coastal planktonic food web during the *Deepwater Horizon* oil spill. Environ. Res. Lett. 5 045301:1-6.
- Greater New Orleans, Inc. 2012. The impact of decreased and delayed drilling permit approvals on Gulf of Mexico businesses. 28 pp.
- Gulf Coast Claims Facility. 2012. Overall program statistics.
- Gulf of Mexico Fishery Management Council (GMFMC). 2004. Final environmental impact statement for the generic essential fish habitat amendment to the following fishery management plans of the Gulf of Mexico: shrimp fishery of the Gulf of Mexico, red drum fishery of the Gulf of Mexico, reef fish fishery of the Gulf of Mexico, stone crab fishery of the Gulf of Mexico, coral and coral reef fishery of the Gulf of Mexico, spiny lobster fishery of the Gulf of Mexico and south Atlantic, coastal migratory pelagic resources of the Gulf of Mexico and south Atlantic. 678 pp.
- Gulf of Mexico Fishery Management Council (GMFMC). 2005. Generic amendment number 3 for addressing essential fish habitat requirements, habitat areas of particular concern, and adverse effects of fishing in the following fishery management plans of the Gulf of Mexico: shrimp fishery of the

Gulf of Mexico, United States waters red drum fishery of the Gulf of Mexico, reef fish fishery of the Gulf of Mexico coastal migratory pelagic resources (mackerels) in the Gulf of Mexico and South Atlantic, stone crab fishery of the Gulf of Mexico, spiny lobster in the Gulf of Mexico and South Atlantic, coral and coral reefs of the Gulf of Mexico. Gulf of Mexico Fishery Management Council, Tampa, FL.

- Guzmán, H.M. and I. Holst. 1993. Effects of chronic oil-sediment pollution on the reproduction of the Caribbean reef coral *Siderastrea siderea*. Marine Pollution Bulletin 26:276-282.
- Haddad, R. and S. Murawski. 2010. Analysis of hydrocarbons in samples provided from the cruise of the R/V Weatherbird II, May 23-26, 2010. U.S. Dept. of Commerce, National Oceanographic and Atmospheric Administration, Silver Spring, MD. 14 pp.
- Hall, R.J., A.A. Belisle, and L. Sileo. 1983. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the *Ixtoc I* oil spill. Journal of Wildlife Diseases 19(2):106-109.
- Hamdan, L.J. and P.A. Fulmer. 2011. Effects of COREXIT® EC9500A on bacteria from a beach oiled by the *Deepwater Horizon* spill. Aquatic Microbial Ecology 63:101-109, doi:10.3354/ame01482.
- Hampton, S. and M. Zafonte. 2005. Factors influencing beached bird collection during the Luckenbach 2001/02 oil spill. Marine Ornithology 34:109-113.
- Handley, D.A., D. Altsman, and R. DeMay, eds. 2007. Seagrass status and trends in the northern Gulf of Mexico: 1940-2002. U.S. Dept. of the Interior, Geological Survey Scientific Investigations Report 2006-5287 and U.S. Environmental Protection Agency 855-R-04-003. 6 pp.
- Haney, J.C. 1986a. Seabird segregation at Gulf Stream frontal eddies. Marine Ecology Progress Series 28:279-285.
- Haney, J.C. 1986b. Seabird affinities for Gulf Stream frontal eddies: responses of mobile marine consumers to episodic upwelling. Journal of Marine Research 44:361-84.
- Haney, J.C. 1986c. Seabird patchiness in tropical oceanic waters: The influence of *Sargassum* "reefs." Auk 103:141-151.
- Harris, J.B.C., J.L. Reid, B.R. Scheffers, T.C. Wanger, N.S. Sodhi, D.A. Fordham, and B.W. Brook. 2012. Conserving imperiled species: A comparison of the IUCN Red List and U.S. Endangered Species Act. Conservation Letters 5:64-72.
- Harrison, X.A., J.D. Blount, R. Inger, D.R. Norris, and S. Bearhop. 2011. Carry-over effects as drivers of fitness differences in animals. Journal of Animal Ecology 80:4-18.
- Hart, K.M., M.M. Lamont, A.R. Sartain, I. Fujisaki, and B.S. Stephens. 2013. Movements and habitatuse of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period. PLoS ONE 8(7):e66921. Internet website: <u>http://www.plosone.org/article/info%3Adoi%2F10.1371%</u> <u>2Fjournal.pone.0066921</u>.
- Hazen, T.C., E.A. Dubinsky, T.Z. DeSantis, G.L. Andersen, Y.M. Picento, N. Singh, J.K. Jansson, A. Probst, S.E. Borglin, J.L. Fortney, W.T. Stringfellow, M. Bill, M.S. Conrad, L.M. Tom, K.L. Chavarria, T.R. Alusi, R. Lamendella, D.C. Joyner, C. Spier, J. Baelum, M. Auer, M.L. Zelma, R. Chakraborty, E.L. Sonnenthal, P. D'haeseleer, H.N. Holman, S. Osman, Z. Lu, J.D. Van Nostrand, Y. Deng, J. Zhou, and O.U. Mason. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science Express. August 24, 2010.
- Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253:123-136.
- Helix Energy Solutions Group. 2014. Well intervention/well containment. Internet website: <u>http://helixesg.com/well-intervention/well-containment/</u>. Accessed May 19, 2014.
- Hemmer, M.J., M.G. Barron, and R.M. Greene. 2010. Comparative toxicity of Louisiana sweet crude oil (LSC) and chemically dispersed LSC to two Gulf of Mexico aquatic test species. U.S. Environmental Protection Agency, Office of Research and Development. July 31, 2010.

- Hemmerling, S.A. and C.E. Colten. 2003. Environmental justice considerations in Lafourche Parish, Louisiana: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2003-038. 348 pp.
- Henkel, J.R., B.J. Sigel, and C.M. Taylor. 2012. Large-scale impacts of the *Deepwater Horizon* oil spill: Can local disturbance affect distant ecosystems through migratory shorebirds? BioScience 62:676-685.
- Henry, J.M. and C.L. Bankston III. 1999. Louisiana Cajun ethnicity: Symbolic or structural? Sociological Spectrum: Mid-South Sociological Association, 1521-0707, 19(2):223-248.
- Hernandez, F.J., S. Powers, and W. Graham. 2010. Seasonal variability in ichthyoplankton abundance and seasonal composition in the northern Gulf of Mexico off Alabama. Fishery Bulletin 108:193-207.
- Hiett, R.L. and J.W. Milon. 2002. Economic impact of recreational fishing and diving associated with offshore oil and gas structures in the Gulf of Mexico: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2002-010. 98 pp.
- Hing, L.S., T. Ford, P. Finch, M. Crane, and D. Morritt. 2011. Laboratory stimulation of oil-spill effects on marine phytoplankton. Aquat. Toxicol. 103(1-2):32-7.
- Hogan, J.L. 2003. Occurrence of the diamondback terrapin (*Malaclemys terrapin littoralis*) at South Deer Island in Galveston Bay, Texas, April 2001–May 2002. U.S. Dept. of the Interior, Geological Survey. USGS Open-File Report 03-022. 30 pp.
- Holliday, D.K., W.M. Roosenburg, and A.A. Elskus. 2008. Spatial variation on polycyclic aromatic hydrocarbon concentrations in eggs of diamondback terrapins, *Malaclemys terrapin*, from the Patuxent River, Maryland. Bulletin of Environmental Contamination Toxicology 80:119-122.
- Hyland, J.L. and E.D. Schneider. 1976. Petroleum hydrocarbons and their effects on marine organisms, populations, communities, and ecosystems. In: Sources, effects and sinks of hydrocarbons in the aquatic environment. Proceedings of the Symposium, Washington, DC. August 9-11, 1976. Arlington, VA: American Institute of Biological Sciences. Pp. 465-506.
- Inoue, M., S.E. Welsh, L.J. Rouse, Jr., and E. Weeks. 2008. Deepwater currents in the eastern Gulf of Mexico: Observations at 25.5°N and 87°W. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2008-001. 95 pp.
- International Tanker Owners Pollution Federation Limited. 2011. Fate of marine oil spills. Technical Information Paper. London, UK. 12 pp. Internet website: <u>http://www.itopf.com/fileadmin/data/</u> Documents/TIPS%20TAPS/TIP2FateofMarineOilSpills.pdf.
- Jackson, J.B.C., J.D. Cubit, B.D. Keller, V. Batista, K. Burns, H.M. Caffey, R.L. Caldwell, S.D. Garrity, C.D. Getter, C. Gonzalez, H.M. Guzman, K.W. Kaufmann, A.H. Knap, S.C. Levings, M.J. Marshall, R. Steger, R.C. Thompson, and E. Weil. 1989. Ecological effects of a major oil spill on Panamanian coastal marine communities. Science 243:37-44.
- Jernelöv, A. and O. Lindén. 1981. Ixtoc I: A case study of the world's largest oil. Ambio 10(6):299-306.
- Johansen, O., H. Rye, and C. Cooper. 2001. DeepSpill JIP—field study of simulated oil and gas blowouts in deep water. In: Proceedings from the Fifth International Marine Environment Modeling Seminar, October 9-11, 2001, New Orleans, LA. 377 pp.

Joint Analysis Group. 2010. Review of R/V Brooks McCall data to examine subsurface oil. 58 pp.

Joye, S.B., I.R. MacDonald, I. Leifer, and V. Asper. 2011. Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nature Geoscience 4:160-164, doi:10.1038/ngeo1067.

- Keithly, W and H. Diop. 2001. The demand for eastern oysters, *Crassostrea virginica*, from the Gulf of Mexico in the presence of *Vibrio vulnificus*. Marine Fisheries Review 63(1):47-53.
- Kemp, W.M. 1989. Estuarine seagrasses. In: Day, J.W., Jr., C.A.S. Hall, W.M. Kemp, and A. Yanez-Arancibia, eds. Estuarine ecology. New York, NY: John Wiley & Sons. 558 pp.
- Kennedy, C.J., N.J. Gassman, and P.J. Walsh. 1992. The fate of benzo[a]pyrene in the Scleractinian corals *Favia fragrum* and *Montastrea annularis*. Marine Biology 113:313-318.
- Kennet, J.P. 1982. Marine geology. Englewood Cliff, NJ: Prentice-Hall. 752 pp.
- Kenworthy, W.J. and M.S. Fonseca. 1996. Light requirements of seagrasses *Halodule wrightii* and *Syringodium filiforme* derived from the relationship between diffuse light attenuation and maximum depth distribution. Estuaries 19(3):740-750. Internet website: <u>http://www.jstor.org/stable/1352533</u>.
- Kenworthy, W.J., M.J. Durako, S.M.R. Fatemy, H. Valavis, and G.W. Thayer. 1993. Ecology of seagrasses in northeastern Saudi Arabia one year after the Gulf War spill. Marine Pollution Bulletin 27:213-222.
- Kessler, J.D., D.L. Valentine, M.C. Redmond, M. Du., E.W. Chan, S.D. Mendes, E.W. Quiroz, C.J. Villanueva, S.S. Shusta, L.M. Werra, S.A. Yvon-Lewis, and T.C. Weber. 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science Express, 10.1126/science.1199697.
- King, J.G. and G.A. Sanger. 1979. Oil vulnerability index for marine oriented birds. In: Bartonek, J.C. and D.N. Nettleship, eds. Conservation of marine birds in North America. U.S. Dept. of the Interior, Fish and Wildlife Service, Wildlife Research Report Number 11, Washington, DC. Pp. 227-239.
- Kingston, P.F., I.M.T. Dixon, S. Hamilton, and D.C. Moore. 1995. The impact of the *Braer* oil spill on the macrobenthic infauna of the sediments off the Shetland Islands. Marine Pollution Bulletin 30(7):445-459.
- Kirkeleit J., T. Riise, M. Bråtveit and B.E. Moen. 2008. Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil. Cancer Causes Control. 2008 Feb, 19(1):13-23. Epub 2007 Sep 29.
- Klem, D., Jr. 2009. Avian mortality at windows: the second largest human source of bird mortality on earth. In: Rich, T.D., C. Arizmendi, D.W. Demarest, and C. Thompson, eds. Tundra to tropics: Connecting birds, habitats and people. Proceedings of the 4th International Partners in Flight Conference, 13-16 February 2008, McAllen, TX. Pp. 244-251.
- Knap, A.H. 1987. Effects of chemically dispersed oil on the brain coral, *Diploria strigosa*. Marine Pollution Bulletin 18(3):119-122.
- Knap, A.H., J.E. Solbakken, R.E. Godge, T.D. Sleeter, S.C. Wyers, and K.H. Palmork. 1982. Accumulation and elimination of (9-14C) phenanthrene in the reef-building coral (*Diploria strigosa*). Bulletin of Environmental Contamination and Toxicology 28:281-284.
- Knap, A.H., S.C. Wyers, R.E. Dodge, T.D. Sleeter, H.R. Frith, S.R. Smith, and C.B. Cook. 1985. The effects of chemically and physically dispersed oil on the brain coral, *Diploria strigosa* (Dana)—a summary review. In: Proceedings 1985 Oil Spill Conference, Los Angeles, CA. (USCG/API/EPA) API Publ. No. 4385:547-551.
- Ko, J-Y. and J.W. Day. 2004. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi delta. Ocean and Coastal Management 47(11-12):597-623.
- Kushmaro, A., G. Henning, D.K. Hofmann, and Y. Benayahu. 1997. Metamorphosis of *Heteroxenia fuscescens* Plaunlae (Cnidaria: Octocorallia) is inhibited by crude oil: A novel short term toxicity bioassay. Marine Environmental Research 43(4):295-302.
- Lange, R. 1985. A 100 ton experimental oil spill at Halten Bank, off Norway. In: Proceedings, 1985 Oil Spill Conference. February 25-28, 1985, Los Angeles, CA. Washington, DC: American Petroleum Institute.

- Lewis, A. and D. Aurand. 1997. Putting dispersants to work: Overcoming obstacles. 1997 International Oil Spill Conference. API 4652A. Technical Report IOSC-004.
- Lin Q. and I. Mendlessohn. 2009. Potential of restoration and phytoremediation with *Juncus roemerianus* for diesel-contaminated coastal wetlands. Ecological Engineering 8(1):85-91, January 8, 2009.
- Lin, Q., I.A. Mendelssohn, M.T. Suidan, K. Lee, and A.D. Venosa. 2002. The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, *Spartina alterniflora*. Marine Pollution Bulletin 44:897-902.
- Lincoln, F.C., S.R. Peterson, and J.L. Zimmerman. 1998. Migration of birds. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. Circular 16. 119 pp.
- Louisiana Universities Marine Consortium. 2010. 2010 dead zone—one of the largest ever. LUMCON News. Internet website: <u>http://www.gulfhypoxia.net/research/Shelfwide%20Cruises/2010/</u> <u>PressRelease2010.pdf</u>. Accessed November 17, 2011.
- Lu, L. and R.S.S. Wu. 2006. A field experimental study on recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with petroleum hydrocarbons. Estuarine, Coastal and Shelf Science 68:627-634.
- Lubchenco, J., M. McNutt, B. Lehr, M. Sogge, M. Miller, S. Hammond, and W. Conner. 2010. BP *Deepwater Horizon* oil budget: What happened to the oil? 5 pp.
- Lutcavage, M.E., P. Plotkin, B. Witherington, and P.L. Lutz. 1997. Human impacts on sea turtle survival. In: Lutz, P.L. and J.A. Musick, eds. The biology of sea turtles. Boca Raton, FL: CRC Press, Inc. Pp. 387-409.
- Lytle, J.S. 1975. Fate and effects of crude oil on an estuarine pond. In: Proceedings, Conference on Prevention and Control of Oil Pollution, San Francisco, CA. Pp. 595-600.
- MacDonald, I.R., W.W. Schroeder, and J.M. Brooks, eds. 1995. Chemosynthetic ecosystems study: Final report. Volume 2: Technical report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0022. 319 pp.
- MacDonald, I.R., J.F. Reilly Jr., W.E. Best, R. Vnkataramaiah, R. Sassen, N.S. Guinasso Jr., and J. Amos. 1996. Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern Gulf of Mexico. In: Schumacher, D. and M.A. Abrams, eds. Hydrocarbon migration and its nearsurface expression. American Association of Petroleum Geologists Memoir 66:27-37.
- Manville A.M., II. 2009. Towers, turbines, power lines, and buildings-steps being taken by the U.S. Fish and Wildlife Service to avoid or minimize take of migratory birds at these structures. In: Rich, T.D., C. Arizmendi, D.W. Demarest, and C. Thompson, eds. Tundra to tropics: Connecting birds, habitats and people. Proceedings of the 4th International Partners in Flight Conference, 13-16 February 2008, McAllen, TX. Pp. 262-272.
- Marine Well Containment Company (MWCC). 2013. Marine Well Containment Company's single ram capping stack can now handle temperatures up to 350 degrees Fahrenheit. News Release. 1 p. Internet website: <u>http://www.marinewellcontainment.com/pdfs/mwcc_release_11_14_13.pdf</u>. Accessed May 19, 2014.
- McAuliffe, C.D., A.E. Smalley, R.D. Groover, W.M. Welsh, W.S. Pickle, and G.E. Jones. 1975. Chevron Main Pass Block 41 oil spill: Chemical and biological investigation. In: Proceedings, 1975 Conference on Prevention and Control of Oil Pollution, March 25-27, 1975, San Francisco, CA. Washington, DC: American Petroleum Institute.
- McAuliffe, C.D., B.L. Steelman, W.R. Leek, D.F. Fitzgerald, J.P. Ray, and C.D. Barker. 1981a. The 1979 southern California dispersant treated research oil spills. In: Proceedings 1981 Oil Spill

Conference. March 2-5, 1981, Atlanta, GA. Washington, DC: American Petroleum Institute. Pp. 269-282.

- McAuliffe, C.D., G.P. Canevari, T.D. Searl, J.C. Johnson, and S.H. Greene. 1981b. The dispersion and weathering of chemically treated crude oils on the sea surface. In: Petroleum and the Marine Environment. Proceedings of Petromar '80. London: Graham and Trotman Ltd.
- McCrea-Strub, A. and D. Pauly. 2011. Oil and fisheries in the Gulf of Mexico. Ocean and Coastal Law Journal 16(2):473-480. Internet website: <u>http://www.seaaroundus.org/researcher/dpauly/PDF/2011/</u>JournalArticles/OilandFisheriesinthe%20GulfofMexico.pdf.
- McGrail, D. 1982. Water and sediment dynamics at the Flower Garden Banks. In: Norman, R., ed. Environmental studies at the Flower Gardens and selected banks: Northwestern Gulf of Mexico, 1979-1981. Executive summary. Technical Report No. 82-8-T. Pp. 27-29.
- Mechalas, B.J. 1974. Pathways and environmental requirements for biogenic gas production in the ocean. In: Kaplan, I.R., ed. Natural Gases in Marine Sediments. Marine Science, Volume 3. New York, NY: Plenum Press.
- Mendelssohn, I.A., G.L. Andersen, D.M. Baltz, R.H. Caffey, K.R. Carman, J.W. Fleeger, S.B. Joye, Q. Lin, E. Maltby, E.B. Overton, and L.P. Rozas. 2012. Oil impacts on coastal wetlands: Implications for the Mississippi River Delta ecosystem after the *Deepwater Horizon* oil spill. BioScience 62:562–574.
- Michel, J. 1992. Chapter 2. Oil behavior and toxicity. In: Introduction to coastal habitats and biological resources for spill response. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Response and Restoration. NOAA Report No. HMRAD 92-4.
- Mishra, D.R., H.J. Cho, S. Ghosh, A. Fox, C. Downs, P.B.T. Merani, P. Kirui, N. Jackson, and S. Mishra. 2012. Post-spill state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana salt marshes. Remote Sensing of Environment 118:176-185.
- Mitchell, R. and I. Chet. 1975. Bacterial attack of corals in polluted seawater. Microbial Ecology 2:227-233.
- Mock, B. 2010. Boats moored by the BP oil spill, a long-threatened community of black fishers fears for its future. The Lens: Investigating New Orleans and the Gulf Coast. Internet website: <u>http://www.projectnola.com/component/content/article/86-the-lens/90049-boats-moored-by-the-bp-oil-spill-a-long-threatened-community-of-black-fishers-fears-for-its-future</u>. Accessed November 10, 2011.
- Moore, S.F. 1976. Offshore oil spills and the marine environment. Technology Review 78(4):61-67.
- Moore, S.F. and R.L. Dwyer. 1974. Effects of oil on marine organisms: A critical assessment of published data. Water Research 8:819-827.
- Morton R.A., T.L. Miller, and L.J. Moore. 2004. Historical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline. U.S. Dept. of the Interior, Geological Survey. Open-File Report 2004-1089.
- Moser, M.L. and D.S. Lee. 2012. Foraging over *Sargassum* by western North Atlantic seabirds. Wilson Journal of Ornithology 124:66-73.
- Muller-Karger, F.E., F. Vukovich, R. Leben, B. Nababan, C. Hu, and D. Myhre. 2001. Surface circulation and the transport of the Loop Current into the northeastern Gulf of Mexico: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2001-102. 39 pp.
- Murray, S.P. 1998. An observational study of the Mississippi/Atchafalaya coastal plume: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 98-0040. 513 pp.

- Murtaugh, D. 2010. Short-term spill impacts leave both winners and losers. Internet website: <u>http://blog.al.com/press-register-business/2010/11/short_term_spill_impacts_leave.html</u>. Accessed August 20, 2012.
- National Association for the Advancement of Colored People. 2010. NAACP blasts BP for oil spill response. July 10, 2010.
- National Audubon Society, Inc. 2010. Oil and birds, too close for comfort: Louisiana's coast six months into the BP disaster. New York, NY: National Audubon Society, Inc. 28 pp. Internet website: <u>http://gulfoilspill.audubon.org/sites/default/files/documents/oilandbirds-toocloseforcomfort_october2010_1.pdf</u>. Accessed October 14, 2010.
- National Research Council (NRC). 2003. Oil in the sea III: Inputs, fates, and effects (Committee on Oil in the Sea: J.N. Coleman, J. Baker, C. Cooper, M. Fingas, G. Hunt, K. Kvenvolden, J. McDowell, J. Michel, K. Michel, J. Phinney, N. Rabalais, L. Roesner, and R.B. Spies). Washington, DC: National Academy Press. 265 pp.
- National Research Council (NRC). 2005. Oil spill dispersants: Efficacy and effects. Washington, DC: National Academy Press. 377 pp.
- National Response Team. 2010. Oil spill response strategies for coastal marshes during the Deepwater Horizon MC252 spill. Washington DC: National Response Team. 10 pp.
- NaturalGas.org. 2012. Background. Internet website: <u>http://naturalgas.org/overview/background/</u>. Accessed May 28, 2012.
- NatureServe Explorer. 2011. Endangered species. Internet website: <u>http://www.natureserve.org/</u> <u>explorer/servlet/NatureServe?sourceTemplate=tabular_report.wmt&loadTemplate=tabular_report.</u> <u>wmt&selectedReport=&summaryView=tabular_report.wmt&elKey=unknown&paging=prev&save=</u> <u>true&startIndex=21&nextStartIndex=1&reset=false&offPageSelectedElKey=102588&offPage</u> <u>SelectedElType=species&offPageYesNo=true&post_processes=&radiobutton=radiobutton&</u> <u>selectedIndexes=105391&selectedIndexes=102915&selectedIndexes=101508&selectedIndexes=</u> <u>103386&selectedIndexes=104315.</u> Accessed April 6, 2012.
- Neff, J.M., S. McKelvie, and R.C. Ayers, Jr. 2000. Environmental impacts of synthetic based drilling fluids. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2000-064. 118 pp.
- Newell, M.J. 1995. Sea turtles and natural resource damage assessment. In: Rineer-Garber, C., ed. Proceedings: The effects of oil on wildlife, Fourth International Conference, Seattle, WA. Pp. 137-142.
- Nicol, J.A.C., W.H. Donahue, R.T. Wang, and K. Winters. 1977. Chemical composition and effects of water extracts of petroleum and eggs of the sand dollar *Melitta quinquiesperforata*. Marine Biology 40:309-316.
- Nodar, J. 2010. Gulf tanker decontaminated before entering Mississippi. The Journal of Commerce Online. May 26, 2010. Internet website: <u>http://www.joc.com/maritime/tanker-requires-cleaningentering-mississippi-river</u>. Accessed November 10, 2011.
- Norris, D.R. 2005. Carry-over effects and habitat quality in migratory populations. Oikos 109:178-186.
- Norris, D.R., M.B. Wunder, and M. Boulet. 2006. Perspectives in migratory connectivity. In: Boulet, M., and D.R. Norris, eds. Patterns of migratory connectivity in two nearctic-neotropical songbirds: New insights from intrinsic markers. Washington, DC: American Ornithologists' Union. Pp. 79-88. Internet website: <u>http://www.bioone.org/doi/pdf/10.2307/40166838</u>.
- Nowlin, W.D., Jr., A.E. Jochens, S.F. DiMarco, R.O. Reid, and M.K. Howard. 2001. Deepwater physical oceanography reanalysis and synthesis of historical data: Synthesis report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2001-064. 528 pp.
- Odess, D. 2010. Official communication. Teleconference regarding Section 106 in relation to response to the oil spill.
- Odess, D. 2011. Official communication. Trustees meeting on January 12, 2011, New Orleans, LA.
- Oil Spill Commission. 2011. Oil and birds, too close for comfort: Louisiana's coast six months into the BP disaster. National Audubon Society, Inc., New York, NY, USA. 28 pp.
- Onuf, C.P. 1996. Biomass patterns in seagrass meadows of the Laguna Madre, Texas. Bulletin of Marine Science 58(2):404-420.
- Operational Science Advisory Team (OSAT). 2010. Summary report for sub-sea and sub-surface oil and dispersant detection: Sampling and monitoring. Unified Area Command, New Orleans, LA. Internet website: <u>http://www.restorethegulf.gov/sites/default/files/documents/pdf/OSAT_Report_FINAL_17DEC.pdf</u>. Released December 17, 2010. Accessed November 18, 2011.
- Operational Science Advisory Team (OSAT Addendum). 2011. Summary report for sub-sea and subsurface oil and dispersant detection: Ecotoxicity addendum. Unified Area Command, New Orleans, LA. 35 pp. Internet website: <u>http://www.restorethegulf.gov/sites/default/files/u306/FINAL%20</u> <u>OSAT%20Ecotox%20Addendum.pdf</u>. Released July 8, 2011. Accessed May 19, 2014.
- Operational Science Advisory Team (OSAT-2). 2011. Summary report for fate and effects of remnant oil in the beach environment. Operational Science Team (OSAT-2), Gulf Coast Incident Management Team. Prepared for Lincoln H. Stroh, CAPT, U.S. Coast Guard, Federal On-Scene Coordinator, Deepwater Horizon MC 252. February 10, 2011. 35 pp. Internet website: <u>http://www.dep.state.fl.us/deepwaterhorizon/files2/osat_2_report_10feb.pdf</u>.
- Operational Science Advisory Team (OSAT-3). 2013. Operational Science Advisory Team report III. Internet website: <u>http://www.restorethegulf.gov/release/2014/01/15/operational-science-advisory-team-report-iii</u>. Accessed May 28, 2014.
- Oro, D., J.S. Aguilar, J.M. Igual, and M. Louzao. 2004. Modelling demography and extinction risk in the endangered Balearic shearwater. Biological Conservation 116:93-102.
- Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. BioScience 56(12):987-996.
- Ortmann, A.C., J. Anders, N. Shelton, L. Gong, A.G. Moss, and R.H. Condon. 2012. Dispersed Oil Disrupts Microbial Pathways in Pelagic Food Webs. PLoS ONE 7(7):e42548. doi:10.1371/journal.pone.0042548.
- Oxford Economics. 2010. Potential impact of the Gulf oil spill on tourism. Prepared for the U.S. Travel Association. 27 pp.
- Pack, W. 2010. Oil spill may benefit Texas. My San Antonio Business. Internet website: <u>http://www.mysanantonio.com/default/article/Oil-spill-may-benefit-Texas-794644.php</u>. Accessed December 10, 2012.
- Passow, U., K. Ziervogel, V. Asper, and A. Diercks. 2012. Marine snow formation in the aftermath of the *Deepwater Horizon* oil spill in the Gulf of Mexico. Environmental Research Letters 7 (2012) 035301. 11 pp. Internet website: <u>http://iopscience.iop.org/1748-9326/7/3/035301/pdf/1748-9326 7 3 035301.pdf</u>.
- Patin, S. 1999. Gas impacts on fish and other marine organisms. In: Environmental impact of the offshore oil and gas industry. New York, NY: EcoMonitor Publishing. 425 pp.
- PCCI Marine and Environmental Engineering. 1999. Oil spill containment, remote sensing and tracking for deepwater blowouts: Status of existing and emerging technologies. Report prepared for the U.S. Dept. of the Interior, Minerals Management Service. TA&R Project 311. 66 pp. + apps.
- Perez, C., I. Munilla, M. Lopez-Alonso, and A. Velando. 2010. Sublethal effects on seabirds after the *Prestige* oil-spill are mirrored in sexual signals. Biological Letters 6:33-35.

- Peterson, C.H., S.D. Rice, J.W. Short, D. Esler, J.L. Bodkin, B.E. Ballachey, and D.B. Irons. 2003. Long-term ecosystem response to the *Exxon Valdez* oil spill. Science 302:2082-2086.
- Phillips, N.W., D.A. Gettleson, and K.D. Spring. 1990. Benthic biological studies of the southwest Florida shelf. American Zoologist 30:65-75.
- Piatt, J.F. and R.G. Ford. 1996. How many seabirds were killed by the *Exxon Valdez* oil spill? In: Rice, S.D., R.B. Spies, D.A. Wolfe, and B.A. Wright, eds. Proceedings of the *Exxon Valdez* Oil Spill Symposium. Am. Fisheries Soc. Symposium 18, Bethesda, MD. Pp. 712-719.
- Piatt, J.F., H.R. Carter, and D.N. Nettleship. 1990a. Effects of oil pollution on marine bird populations. In: White, J., ed. The effects of oil on wildlife: Research, rehabilitation and general concerns. Hanover, PA: Sheridan Press.
- Piatt, J.F., C.J. Lensink, W. Butler, M. Kendziorek, and D.R. Nysewander. 1990b. Immediate impact of the 'Exxon Valdez' oil spill on seabirds. Auk 107:387-397.
- Pond, S. and G.L. Pickard. 1983. Introductory dynamical oceanography, 2nd ed. New York, NY: Pergamon Press. 329 pp.
- Powell, E.N. 1995. Evidence for temporal change at seeps. In: MacDonald, I.R., W.W. Schroeder, and J.M. Brooks, eds. 1995. Chemosynthetic ecosystems study: Final report. Volume 2: Technical report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 95-0022. Pp. 8.1-8.65.
- Powell, J.A. and G.B. Rathbun. 1984. Distribution and abundance of manatees along the northern coast of the Gulf of Mexico. Northeast Gulf Sci. 7:1-28.
- Powers, S.P., F.J. Hernandez, R.H. Condon, J.M. Drymon, and C.M. Free. 2013. Novel pathways for injury from offshore oil spills: Direct, sublethal and indirect effects of the *Deepwater Horizon* oil spill on pelagic *sargassum* communities. PLoS ONE 8(9):e74802. doi:10.1371/journal.pone.0074802.
- Rappole, J.H. and M.A. Ramos. 1994. Factors affecting migratory bird routes over the Gulf of Mexico. Bird Conservation International 4:251-262.
- Rathbun, G.B., J.P. Reid, and G. Carowan. 1990. Distribution and movement patterns of manatees (*Trichechus manatus*) in northwestern peninsular Florida. Florida Marine Research Publication No. 48. 33 pp.
- Ravitz, J. 2010. Vietnamese fishermen in Gulf fight to not get lost in translation. CNN. June 25, 2010. Internet website: <u>http://www.flutrackers.com/forum/showthread.php?t=148708</u>. Accessed November 10, 2011.
- Reddy, C.M. 2012. Official communication. Email confirming the approximate percent of PAHs by weight. Woods Hole, MA. April 4, 2012.
- Reddy, C.M., J.S. Arey, J.S. Seewald, S.P. Sylva, K.L. Lemkau, R.K. Nelson, C.A. Carmichael, C.P. McIntyre, J. Fenwick, G.T. Ventura, B.A.S. Van Mooy, and R. Camilli. 2011. Composition and fate of gas and oil released to the water column during the *Deepwater Horizon* oil spill. Proceedings of the National Academy of Sciences (PNAS) 10.1073/pnas.1101242108.
- Regg, J. 2000. Deepwater development: A reference document for the deepwater environmental assessment, Gulf of Mexico OCS (1997 through 2000). U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Report MMS 99-0066.
- Reible, D. 2010. After the oil is no longer leaking. The University of Texas, Austin. Environmental Science & Technology 44(15):5685-5686.
- Renzoni, A. 1973. Influence of crude oil, derivatives, and dispersants on larvae. Marine Pollution Bulletin 4:9-13.
- Renzoni, A. 1975. Toxicity of three oils to bivalve gametes and larvae. Marine Pollution Bulletin 6(2):125-128.

- RestoreTheGulf.gov. 2011. Operations and ongoing response, June 30, 2011. Internet website: <u>http://www.restorethegulf.gov/release/2011/06/30/operations-and-ongoing-response-june-30-2011</u>. Accessed on June 14, 2012.
- Restrepo, C.E., F.C. Lamphear, C.A. Gunn, R.B. Ditton, J.P. Nichols, and L.S. Restrepo. 1982. IXTOC I oil spill economic impact study, executive summary. Report prepared by Restrepo and Associates for the U.S. Dept. of the Interior, Bureau of Land Management, New Orleans OCS Office, New Orleans, LA.
- Rezak, R., T.J. Bright, and D.W. McGrail. 1983. Reefs and banks of the northwestern Gulf of Mexico: Their geological, biological, and physical dynamics. Final Technical Report No. 83-1-T.
- Rhodes, D.C. and J.D. Germano. 1982. Characterization of organism-sediment relations using sediment profile imaging: An efficient method of remote ecological monitoring of the seafloor (RemotsTM System). Marine Ecology Progress Series 8:115-128.
- Ribic, C.A., R. Davis, N. Hess, and D. Peake. 1997. Distribution of seabirds in the northern Gulf of Mexico in relation to mesoscale features: Initial observations. ICES Journal of Marine Science 54:545-551.
- Rice, S.A. and C.L. Hunter. 1992. Effects of suspended sediment and burial on Scleractinian corals from west central Florida patch reefs. Bulletin of Marine Science 51(3):429-442.
- Ricklefs, R.E. 1983. Some considerations on the reproductive energetics of pelagic seabirds. Studies in Avian Biology 8:84-94.
- Ricklefs, R.E. 1990. Seabird life histories and the marine environment: Some speculations. Colonial Waterbirds 13:1-6.
- Rogers, C.S. 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series 62:185-202.
- Rogers, C.S. and V.H. Garrison. 2001. Ten years after the crime: Lasting effects of damage from a cruise ship anchor on a coral reef in St. John, U.S. Virgin Islands. Bulletin of Marine Science 69(2):793-803.
- Rooker, J.R., S.A. Holt, M.A. Soto, and G.J. Holt. 1998. Postsettlement patterns of habitat use by Sciaenid fishes in subtropical seagrass meadows. Estuaries 21(2):318-327.
- Roosenburg, W.M. 1994. Nesting habitat requirements of the diamondback terrapin: A geographic comparison. Wetland Journal 6(2):8-11.
- Roosenburg, W.M., K.L. Haley, and S. McGuire. 1999. Habitat selection and movements of diamondback terrapins, *Malaclemys terrapin*, in a Maryland estuary. Chelonian Conservation and Biology 3(3):425-429.
- Rowe, G.T. and M.C. Kennicutt II. 2001. Deepwater program: Northern Gulf of Mexico continental slope benthic habitat and ecology. Year I: Interim report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2001-091. 166 pp.
- Rozas, L.P. and W.E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes: Testing the roles of food and refuge. Oecologia 77:101-106.
- Runcie, J., C. Macinnis-Ng, and P. Ralph. 2004. The toxic effects of petrochemical on seagrasses. A literature review. Institute for Water and Environmental Resource Management, Sydney, Australia. 19 pp.
- Russell, R.W. 1999. Comparative demography and life-history tactics of seabirds: Implications for conservation and marine monitoring. American Fisheries Society Symposium 23:51-76.
- Russell, R.W. 2005. Interactions between migrating birds and offshore oil and gas platforms in the northern Gulf of Mexico: Final Report. U.S. Dept. of the Interior, Minerals Management Service,

U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2005-009. 348 pp.

- Ryerson, T.B., K.C. Aikin, W.M. Angevine, E.L. Atlas, D.R. Blake, C.A. Brock, F.C. Fehsenfeld, R.-S. Gao, J.A. de Gouw, D.W. Fahey, J.S. Holloway, D.A. Lack, R.A. Lueb, S. Meinardi, A.M. Middlebrook, D.M. Murphy, J.A. Neuman, J.B. Nowak, D.D. Parrish, J. Peischl, A.E. Perring, I.B. Pollack, A.R. Ravishankara, J.M. Roberts, J.P. Schwarz, J.R. Spackman, H. Stark, C. Warneke, and L.A. Watts. 2011. Atmospheric emissions from the *Deepwater Horizon* spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters, Vol. 38, L07803, 6 pp., doi:10.1029/2011GL046726.
- S.L. Ross Environmental Research Ltd. 1997. Fate and behavior of deepwater subsea oil well blowouts in the Gulf of Mexico. Prepared for the U.S. Dept. of the Interior, Minerals Management Service. 27 pp.
- Sadiq, M. and J.C. McCain. 1993. The Gulf War aftermath: An environmental tragedy. Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Saether, B.-E., S. Engen, A.P. Møller, H. Weimerskirch, M.E. Visser, W. Fiedler, E. Matthysen, M.M. Lambrechts, A. Badyaev, P.H. Becker, J.E. Brommer, D. Bukacinski, M. Bukacinska, H. Christensen, J. Dickinson, C. du Feu, F.R. Gehlbach, D. Heg, H. Hötker, J. Merilä, J.T. Nielsen, W. Rendell, R.J. Robertson, D.L. Thomson, J. Török, and P. Van Hecke. 2004. Life-history variation predicts the effects of demographic stochasticity on avian population dynamics. American Naturalist 164:793-802.
- Sanders, H.L., J.F. Grassle, G.R. Hamson, L.S. Morse, S. Garner-Price, and C.C. Jones. 1980. Anatomy of an oil spill: Long-term effects from the grounding of the barge Florida off West Falmouth, Massachusetts. Journal of Marine Research 38:265-380.
- Sathiakumar, N. 2010. Short-term physical effects of oil spills. Presentation, School of Public Health, University of Alabama at Birmingham. 31 pp.
- Savitz, D.A. and L.S. Engel. 2010. Lessons for study of the health effects of oil spills. Annals of Internal Medicine. August 23, 2010. Internet website: <u>http://www.annals.org/content/early/2010/08/</u> 23/0003-4819-153-8-201010190-00276.full. Accessed November 10, 2011.
- Scarlett, A., T.S. Galloway, M. Canty, E.L. Smith., J. Nilsson, and S.J. Rowland. 2005. Comparative toxicity of two oil dispersants, Superdispersant-25 and Corexit 9527, to a range of coastal species. Environmental Toxicology and Chemistry 24(5):1219-1227.
- Schiro, A.J., D. Fertl, L.P. May, G.T. Regan, and A. Amos. 1998. West Indian manatee (*Trichechus manatus*) occurrence in U.S. waters west of Florida. Presentation, World Marine Mammal Conference, 20-24 January, Monaco.
- Schleifstein, M. 2010. Environmental justice concerns arising from Gulf of Mexico oil spill aired. The Times-Picayune. June 15, 2010. Internet website: <u>http://www.nola.com/news/gulf-oil-spill/</u> <u>index.ssf/2010/06/environmental_justice_concerns.html</u>. Accessed November 10, 2011.
- Scholz, D.K., J.H. Kucklick, R.G. Pond, A.H. Walker, A. Bostrom, and P. Fischbeck. 1999. Fate of spilled oil in marine waters: Where does it go? What does it do? How do dispersants affect it? An information booklet for decision-makers. American Petroleum Institute Publication Number 4691.
- Shah J.J. and H.B. Singh. 1988. Distribution of volatile organic chemicals in outdoor and indoor air. Environmental Science & Technology 22:1381-1388. In: U.S. Dept. of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. Toxicological profile for benzene, August 2007.
- Shigenaka, G. 2001. Toxicity of oil to reef-building corals: A spill response perspective. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, WA. NOAA Technical Memorandum NOS OR&R 8. 95 pp.

- Short, F.T. and R.G. Coles, eds. 2001. Global seagrass research methods. Amsterdam, The Netherlands: Elsevier Science B.V. 473 pp.
- Short, F.T., R.G. Coles, and C. Pergent-Martini. 2001. Global seagrass distribution. In: Short, F.T. and R.G. Coles, eds. Global seagrass research methods. Amsterdam, The Netherlands: Elsevier Science B.V. Pp. 5-6, 20.
- Silliman, B.R., J. van de Koppel, M.W. McCoy, J. Diller, G.N. Kasozi, K. Earl, P.N. Adams, and A.R. Zimmerman. 2012. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences 109(28):11234-11239.
- Source Strategies Inc. 2010. Texas hotel performance report: Third quarter 2010. Data tables: By metro, by metro by county. 23 pp.
- St. Aubin, D.J. and V. Lounsbury. 1990. Oil effects on manatees: Evaluating the risks. In: Geraci, J.R. and D.J. St. Aubin, eds. Sea mammals and oil: Confronting the risk. San Diego, CA: Academic Press. Pp. 241-251.
- State of Florida. Office of the Governor. 2010. Gulf oil spill situation update. Florida Releases. July 18, 2010. Internet website: <u>http://www.icyte.com/system/snapshots/fs1/f/9/d/e/</u> <u>f9de6fa8fed6a9448a17b48d74864898e9f92d5d/index.html</u>. Accessed November 10, 2011.
- State of Louisiana. 2010. Report on coastal skimming activities in Louisiana. Press Release. September 17, 2010. Internet website: <u>http://emergency.louisiana.gov/Releases/</u> 91710Skimming.html. Accessed November 10, 2011.
- State of Louisiana. Coastal Protection and Restoration. 2012. Natural Resource Damage Assessment. Internet website: <u>http://coastal.louisiana.gov/index.cfm?md=pagebuilder&tmp=home&pid=157</u>. Accessed April 4, 2012.
- State of Louisiana. Dept. of Wildlife and Fisheries. 2012. Aerial waterfowl surveys. Internet website: <u>http://www.wlf.louisiana.gov/hunting/aerial-waterfowl-surveys</u>. Accessed February 7, 2013.
- Suchanek, T.H. 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist 33:510-523.
- Tan, L., M. Belanger, and C. Wittnich. 2010. Revisiting the correlation between estimated seabird mortality and oil spill size. Journal of Marine Animals and Their Ecology 3:20-26. Internet website: <u>http://www.oers.ca/journal/Volume3/Tan_Galley.pdf</u>.
- Tasker, M.L., P. Hope-Jones, B.F. Blake, T.J. Dixon, and A.W. Wallis. 1986. Seabirds associated with oil production platforms in the North Sea. Ringing and Migration 7:7-14.
- Taylor, H.A., M.A. Rasheed, and R. Thomas. 2006. Port Curtis post oil spill seagrass assessment, Gladstone-2006. DPI&F Information Series QI06046 (DPI&F, Cairns). 19 pp.
- Taylor, H.A., M.A. Rasheed, and R. Thomas. 2007. Long term seagrass monitoring in Port Cutis and Rodds Bay, Gladstone November-2006. DPI&F Publications PR07-2774 (DPI&F, Cairns). 30 pp.
- Teal, J.M. and R.W. Howarth. 1984. Oil spill studies: A review of ecological effects. Environmental Management 8:27-44.
- Texas Parks and Wildlife Department. 2012. Official communication. Email regarding effort and catch data obtained through communication with Mark Fisher.
- The Federal Interagency Solutions Group. 2010. Oil budget calculator: *Deepwater Horizon*. The Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team. 217 pp.
- Thompson, J.H. 1980. Effects of drilling mud on seven species of reef-building coral as measured in field and laboratory. Report to the U.S. Dept. of the Interior, Geological Survey by Texas A&M University, Department of Oceanography, College Station, TX.

- Tkalich, P. and E.S. Chan. 2002. Vertical mixing of oil droplets by breaking waves. Marine Pollution Bulletin 44:1219-1229.
- Tolbert, C.M. 1995. Oil and gas development and coastal income inequality: A comparative analysis. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 94-0052. 75 pp.
- Trapido, E.J. 2010. Health and the *Deepwater Horizon* Gulf oil spill. (October 5-6, 2010). JSOST *Deepwater Horizon* Oil Spill Principal Investigator (PI) Conference, St. Petersburg, FL.
- Trudel, K., S.L. Ross, R. Belore, G.B. Rainey, and S. Buffington. 2001. Technology assessment of the use of dispersants on spills from drilling and production facilities in the Gulf of Mexico outer continental shelf. In: Proceedings; Twenty-Third Arctic and Marine Oil Spill Conference, June 2001, Edmonton, Canada.
- Unified Incident Command. 2010a. Vessel decontamination stations available around Louisiana. Deepwater Horizon Incident Joint Information Center. June 20, 2010.
- Unified Incident Command. 2010b. Ask a responder: Q & A with Coast Guard Task Force leader for commercial vessel decontamination. September 29, 2010.
- Unified Incident Command. 2010c. Media availability: Media invited to observe commercial-vessel decontamination operations. June 23, 2010.
- Unified Incident Command. 2010d. Fish and Wildlife report, consolidated Fish and Wildlife collection report.
- Unified Incident Command. 2010e. Unified Area Command daily report, August 25, 2010.
- U.S. Dept. of Commerce. Economics and Statistics Administration. 2010. Estimating the economic effects of the deepwater drilling moratorium on the Gulf Coast economy: Inter-agency economic report. 25 pp.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2010a. Impacts of oil on marine mammals and sea turtles. 2 pp.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2010b. *Deepwater Horizon/BP* oil spill: Size and percent coverage of fishing area closures due to BP oil spill. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, NOAA Fisheries Service, Southeast Regional Office, St. Petersburg, FL.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2010c. Information about the Federal fishing closure in oil-affected portions of the Gulf of Mexico. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, NOAA Fisheries Service, Southeast Regional Office, St. Petersburg, FL. Southeast Fishery Bulletin, July 12, 2010.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2011a. *Deepwater Horizon/BP* oil spill: size and percent coverage of fishing area closures due to the BP oil spill. Internet website: <u>http://sero.nmfs.noaa.gov/deepwater_horizon/size_percent_closure/index.html</u>. Last modified April 29, 2011. Accessed on August 17, 2012.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2011b. Dolphins and whales and the Gulf of Mexico oil spill. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/oilspill/mammals.htm</u>. Accessed June 29, 2011.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2011c. Sea turtles and the Gulf of Mexico oil spill. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/oilspill/turtles.htm</u>. Accessed August 24, 2011.

- U.S. Dept. of Commerce. National Marine Fisheries Service. 2012a. Sea turtle strandings in the Gulf of Mexico. Internet website: <u>http://www.nmfs.noaa.gov/pr/species/turtles/gulfofmexico.htm</u>. Accessed April 4, 2012.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2012b. Information and databases on fisheries landings. Internet website (latest data for 2010): <u>http://www.st.nmfs.gov/st1/commercial/landings/annual_landings.html</u>. Accessed August 16, 2012.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2012c. Recreational fishing online Database. Internet website: <u>http://www.st.nmfs.noaa.gov/st1/recreational/queries/index.html</u>. Accessed April 24, 2012, and August 15, 2012.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2013. NOAA declares 2011-2012 bottlenose dolphin unusual mortality event in Texas. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/mmume/bottlenosedolphins_texas.htm</u>. Accessed July 1, 2013.
- U.S. Dept. of Commerce. National Marine Fisheries Service. 2014. 2010-2014 cetacean unusual mortality event in northern Gulf of Mexico. Internet website: <u>http://www.nmfs.noaa.gov/pr/health/mmume/cetacean_gulfofmexico2010.htm</u>. Accessed February 2, 2014.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2009. Final: Amendment 1 to the consolidated Atlantic highly migratory species fishery management plan; essential fish habitat. U.S. Dept. of the Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Sustainable Fisheries, Highly Migratory Species Management Division, Silver Spring, MD. xiii + 395 pp.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010a. NOAA assists with multi-agency effort to decontaminate ships passing through oil spill. Internet website: <u>http://www.noaanews.noaa.gov/stories2010/20100528 ships.html</u>. Accessed November 10, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010b. Deepwater Horizon oil spill: Characteristics and concerns. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Response and Restoration, Emergency Response Division. 2 pp. Last revised May 15, 2010.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010c. Using booms in response to oil spills. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service. 4 pp.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010d. Oil spills and coral reefs fact sheet. 2 pp. Internet website: <u>http://www.noaa.gov/factsheets/new%20version/</u> <u>coralreefs_oil.pdf</u>. Accessed November 10, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2010e. NOAA closes commercial and recreational fishing in oil-affected portion of Gulf of Mexico. May 2, 2010. Internet website: <u>http://www.noaanews.noaa.gov/stories2010/20100502_fisheries.html</u>. Accessed August 17, 2012.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011a. ERMA deepwater Gulf response. Internet website: <u>http://gomex.erma.noaa.gov/</u>. Accessed April 7, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2011b. The Gulf of Mexico at a glance: A second glance. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Washington, DC. 51 pp.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2012a. Natural Resource Damage Assessment; April 2012; status update for the *Deepwater Horizon* oil spill. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Gulf Spill Restoration. 91 pp. Internet website: <u>April2012-2.pdf</u>.

- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. 2012b. Environmental Response Management Application (ERMA). Internet website: <u>http://gomex.erma.noaa.gov</u>. Accessed June 14, 2012.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Center for Coastal Monitoring and Assessment. 2012. Gulf of Mexico essential fish habitat. Internet website: <u>http://</u>ccma.nos.noaa.gov/products/biogeography/gom-efh/. Accessed August 15, 2012.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Hazardous Materials Response and Assessment Division. 1992. Oil spill case histories, 1967-1991: Summaries of significant U.S. and international spills. HMRAD 92-11 to USCG Research and Development Center, Seattle, WA.
- U.S. Dept. of Commerce. National Oceanic Atmospheric Administration. National Weather Service. 2010. Tropical cyclone climatology. Internet website: <u>http://www.nhc.noaa.gov/pastprofile.shtml</u>. Accessed November 10, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. National Weather Service. 2012. NOAA's oil spill response: Hurricanes and the oil spill. U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration, National Weather Service, Silver Spring, MD. 2 pp.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Office of Response and Restoration. 2010a. Chevron Main Pass Block 41. Internet website <u>http://incidentnews.noaa.gov/incident/6209</u>. Accessed November 10, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Office of Response and Restoration. 2010b. Shell Platform 26. Internet website: <u>http://incidentnews.noaa.gov/incident/6211</u>. Accessed November 10, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Office of Response and Restoration. 2010c. Ixtoc I. Internet website: <u>http://incidentnews.noaa.gov/incident/6250</u>. Accessed November 10, 2011.
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Office of Response and Restoration. 2010d. Shoreline threat update: Southern Florida, Florida Keys and East Coast Deepwater Horizon/BP oil spill, July 30, 2010. Internet website: <u>http://archive.orr.noaa.gov/topic_subtopic_entry.php?RECORD_KEY(entry_subtopic_topic)=entry_id,subtopic_id,topic_id&entry_id(entry_subtopic_topic)=815&subtopic_id(entry_subtopic_topic)=8&topic_id(entry_subtopic_topic)=1. Accessed November 10, 2011.</u>
- U.S. Dept. of Commerce. National Oceanic and Atmospheric Administration. Office of Response and Restoration. 2014. Environmental sensitivity index (ESI) maps. Internet website: <u>http://</u><u>response.restoration.noaa.gov/maps-and-spatial-data/environmental-sensitivity-index-esi-maps.html</u>. Accessed July 3, 2014.
- U.S. Dept. of Health and Human Services. 2007. Toxicological profile for benzene. U.S. Dept. of Health and Human Services, Health Service Agency for Toxic Substances and Disease Registry. August 2007.
- U.S. Dept. of Health and Human Services. National Institute of Environmental Health Sciences. 2010. NIH to launch Gulf oil spill health study. Internet website: <u>http://www.nih.gov/news/health/sep2010/niehs-07.htm</u>. Accessed August 15, 2012.
- U.S. Dept. of Health and Human Services. National Institute of Environmental Health Sciences. 2012. Final opportunities to enroll in NIH oil spill health study. Internet website: <u>http://www.niehs.nih.gov/news/newsroom/releases/2012/october02/index.cfm</u>. Accessed October 17, 2012.
- U.S. Dept. of Homeland Security. Coast Guard. 2010. Dispersants/on-water oil removal capacity (CAPS). Internet website: <u>https://homeport.uscg.mil/mycg/portal/ep/contentView.do?contentTypeId</u> =2&channelId=-30095&contentId=125795&programId=114824&programPage=%2Fep%2Fprogram %2Feditorial.jsp&pageTypeId=13489. Accessed November 10, 2011.

- U.S. Dept. of Labor. Occupational Safety and Health Administration. 2010a. On-shore & off-shore PPE matrix for Gulf operations. Internet website: <u>http://www.osha.gov/oilspills/gulf-operations-ppe-matrix.pdf</u>. Accessed November 17, 2011.
- U.S. Dept. of Labor. Occupational Safety and Health Administration. 2010b. Keeping workers safe during oil spill response and cleanup operations: Gulf oil response and heat. Internet website: <u>http://www.osha.gov/oilspills/heatstress.html</u>. Accessed November 10, 2011.
- U.S. Dept. of the Army. Corps of Engineers. 2002. Diamondback terrapin (*Malaclemys terrapin* (spp)). Internet website: <u>http://el.erdc.usace.army.mil/emrrp/turtles/species/diamond.html</u>. Accessed June 11, 2014.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2012. Gulf of Mexico OCS oil and gas lease sales: 2012-2017; Western Planning Area Lease Sales 229, 233, 238, 246, and 248; Central Planning Area Lease Sales 227, 231, 235, 241, and 247; final environmental impact statement. 3 vols. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA BOEM 2012-019.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2013a. Gulf of Mexico OCS oil and gas lease sales: 2013-2014; Western Planning Area Lease Sale 233; Central Planning Area Lease Sales 231—final supplemental environmental impact statement. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA BOEM 2013-0118.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management. 2013b. Gulf of Mexico OCS oil and gas lease sales: 2014 and 2016; Eastern Planning Area Lease Sales 225 and 226—final environmental impact statement. 2 vols. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA BOEM 2013-200.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management, Regulation and Enforcement. 2010a. Oil reservoirs in the Gulf of Mexico with API gravity data available, including those with a gas cap, collected by querying the Reserve Reservoirs Tables from the Technical Information Management (TIMS). Accessed November 10, 2011.
- U.S. Dept. of the Interior. Bureau of Ocean Energy Management, Regulation and Enforcement. 2010b. Annual volume of produced water discharged by depth (in millions of barrels). Accessed in the Technical Information Management System on December 30, 2010.
- U.S. Dept. of the Interior. Bureau of Safety and Environmental Enforcement. 2012. Spills ≥50 barrels (2,100 gallons)—1967 to 2012.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2004. Effects of oil spills on wildlife and habitat, December 2004. U.S. Dept. of the Interior, Fish and Wildlife Service, Regional Spill Response Coordinator, Anchorage, AK. Internet website: <u>http://docs.lib.noaa.gov/noaa_documents/NOAA_related_docs/oil_spills/Oil_Spill_Wildlife_Habitat.pdf</u>.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2007. Alabama beach mouse—revision of critical habitat. January 2007. U.S. Dept. of the Interior, Fish and Wildlife Service, Daphne Ecological Services Field Office, Daphne, AL. 2 pp.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2010a. Effects of oil on wildlife and habitat. Fact Sheet, June 2010. Internet website: <u>http://www.fws.gov/home/dhoilspill/pdfs/</u> DHJICFWSOilImpactsWildlifeFactSheet.pdf. Accessed November 10, 2011.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2010b. State and Federal wildlife agencies, other partners, move to safeguard sea turtle nests; FedEx providing transportation to Florida's Space Coast. News Release, July 9, 2010. Internet website: <u>http://www.fws.gov/southeast/news/2010/r10-048.html</u>. Accessed November 10, 2011.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2010c. Beach-nesting birds of the Gulf. U.S. Dept. of the Interior, Fish and Wildlife Service, Region 4, Division of Migratory Bird Management,

Atlanta, GA. 1 p. Internet website: DHBirdsOfTheGulf.pdf. Accessed January 5, 2011.

- U.S. Dept. of the Interior. Fish and Wildlife Service. 2010d. Bird impact data and consolidated wildlife reports (wildlife collection reports). Internet website: <u>http://www.fws.gov/home/dhoilspill/</u> <u>collectionreports.html</u>. Accessed July 9, 2014.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2011a. Bird impact data from DOI-ERDC database download 12 May 2011: weekly bird impact data and consolidated wildlife reports (accessed 21 March 2012). U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC. Internet website: http://www.fws.gov/home/dhoilspill/pdfs/Bird%20Data%20Species%20Spreadsheet%20 05122011.pdf. Accessed March 12, 2012.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2011b. Endangered species program. Internet website: <u>http://www.fws.gov/endangered/</u>. Accessed February 16, 2011.
- U.S. Dept. of the Interior. Fish and Wildlife Service. 2012. Preliminary federally listed species to be considered by state. Official correspondence (date received April 6, 2012). U.S. Dept. of the Interior, Fish and Wildlife Service, Region 4, Ecological Services Field Office, Lafayette, LA.
- U.S. Dept. of the Interior. Minerals Management Service. 2000. Gulf of Mexico deepwater operations and activities: Environmental assessment. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA MMS 2000-001.
- U.S. Dept. of the Interior. Minerals Management Service. 2007. Gulf of Mexico OCS oil and gas lease sales: 2007-2012; Western Planning Area Sales 204, 207, 210, 215, and 218; Central Planning Area Sales 205, 206, 208, 213, 216, and 222—final environmental impact statement. 2 vols. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA MMS 2007-018.
- U.S. Dept. of the Interior. Minerals Management Service. 2008. Gulf of Mexico OCS oil and gas lease sales: 2009-2012; Central Planning Area Sales 208, 213, 216, and 222; Western Planning Area Sales 210, 215, and 218—final supplemental environmental impact statement. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS EIS/EA MMS 2008-041.
- U.S. Dept. of the Interior. Minerals Management Service. 2010. Preliminary revised program Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012. U.S. Dept. of the Interior, Minerals Management Service, Herndon, VA. iv + 215 pp.
- U.S. Dept. of the Interior. National Park Service. 2010. Managing sea turtles during the oil spill response. 2 pp.
- U.S. Dept. of Transportation. 2010. Gulf Coast ports surrounding the *Deepwater Horizon* oil spill. Fact Sheet, June 2010. U.S. Dept. of Transportation, Research and Innovative Technology Administration. 4 pp.
- U.S. Environmental Protection Agency. 2008. Coastal condition report III. U.S. Environmental Protection Agency, Office of Research and Development/Office of Water, Washington, DC. EPA/842-R-08-002. 329 pp.
- U.S. Environmental Protection Agency. 2010a. BP's analysis of subsurface dispersant use. Internet website: <u>http://www.epa.gov/bpspill/dispersants-bp.html.</u> Accessed November 10, 2011.
- U.S. Environmental Protection Agency. 2010b. Odors from the BP oil spill. Internet website: <u>http://www.epa.gov/BPSpill/odor.html</u>. Accessed November 10, 2011.
- U.S. Environmental Protection Agency. 2010c. Recovered oil, contaminated materials and liquid and solid wastes management directive, Louisiana, June 29, 2010. Internet website: <u>http://www.epa.gov/bpspill/waste/wastemanagementdirective_la.pdf</u>. Accessed November 10, 2011.
- U.S. Environmental Protection Agency. 2010d. Recovered oil, contaminated materials and liquid and solid wastes management directive, Mississippi, Alabama, Florida, June 29, 2010. Internet website:

http://www.fws.gov/home/dhoilspill/pdfs/

http://www.epa.gov/bpspill/waste/wastemanagementdirective_msalfl.pdf. Accessed November 10, 2011.

- U.S. Environmental Protection Agency. 2011. Water quality benchmarks for aquatic life. Internet website: <u>http://www.epa.gov/bpspill/water-benchmarks.html</u>. Accessed August 17, 2012.
- U.S. Environmental Protection Agency. 2012. Questions and answers about the BP oil spill in the Gulf Coast. Internet website: <u>http://www.epa.gov/BPSpill/qanda.html#waste19</u>. Accessed August 17, 2012.
- U.S. Environmental Protection Agency. Office of Research and Development. 2010. Comparative toxicity of Louisiana sweet crude oil (LSC) and chemically dispersed LSC to two Gulf of Mexico aquatic test species. July 31, 2010. U.S. Environmental Protection Agency, Office of Research and Development. 13 pp.
- U.S. House of Representatives. Committee on Energy and Commerce. Subcommittee on Commerce, Trade, and Consumer Protection. 2010. The BP oil spill and the Gulf Coast tourism: Assessing the impact.
- Valentine, D.L., J.D. Kessler, M.C. Redmond, S.D. Mendes, M.B. Heintz, C. Farwell, L. Hu, F.S. Kinnaman, S. Yvon-Lewis, M. Du, E.W. Chan, F. Garcia Tigreros, and C.J. Villaneuva. 2010. Propane respiration jump-starts microbial response to a deep oil spill. Science Express. 9 pp.
- Vandermeulen, J.H. 1982. Some conclusions regarding long-term biological effects of some major oil spills. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 297(1087).
- Varmer, O. 2014. Underwater cultural heritage law study. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Herndon, VA. OCS Study BOEM 2014-005. 115 pp.
- Vashcenko, M.A. 1980. Effects of oil pollution on the development of sex cells in sea urchins. Biologische Anstalt Helgoland 297-300.
- Vukovich, F.M. 2005. Climatology of ocean features in the Gulf of Mexico. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2005-031. 58 pp.
- Vukovich, F.M. 2007. Climatology of ocean features in the Gulf of Mexico using satellite remote sensing data. Journal of Physical Oceanography, Vol. 37, doi:10.1175/JPO2989.1.
- Ward, G.A., B. Baca, W. Cyriacks, R.E. Dodge, and A. Knap. 2003. Continuing long-term studies of the TROPICS Panama oil and dispersed oil spill sites. In: Proceedings 2003 International Oil Spill Conference, April 6-11, 2003, Vancouver, Canada. Washington, DC: American Petroleum Institute.
- Waring, G.T., E. Josephson, K. Maze-Foley, and P.E. Rosel, eds. 2012. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments -- 2011. NOAA Technical Memorandum NMFS-NE-221. 319 pp.
- Webb, J.W. 1988. Establishment of vegetation on oil-contaminated dunes. Shore and Beach, October. Pp. 20-23.
- Webb, J.W., G.T. Tanner, and B.H. Koerth. 1981. Oil spill effects on smooth cordgrass in Galveston Bay, Texas. Contributions in Marine Science 24:107-114.
- Webb, J.W., S.K. Alexander, and J.K. Winters. 1985. Effects of autumn application of oil on *Spartina alterniflora* in a Texas salt marsh. Environmental Pollution Series A 38(4):321-337.
- Wesseling, I., A.J. Uychiaoco, P.M. Aliño, T. Aurin, and J.E. Vermaat. 1999. Damage recovery of four Philippine corals from short-term sediment burial. Marine Ecology Progress Series 176:11-15.
- White, H.K., P. Hsing, W. Cho, T.M. Shank, E.E. Cordes, A.M. Quattrini, R.K. Nelson, R. Camilli, A.W.J. Demopoulos, C.R. German, J.M. Brooks, H.H. Roberts, W. Shedd, C.M. Reddy, and C.R. Fisher. 2012. Impact of the Deepwater Horizon oil spill on a deep-water coral community in

the Gulf of Mexico. Proceedings of the National Academy of Sciences of the United States of America, PNAS Early Edition, Special Feature, March 27, 2012. 6 pp.

- Wiens, J.A., R.H. Day, S.M. Murphy, and M.A. Fraker. 2010. Assessing cause-effect relationships in environmental accidents: Harlequin ducks and the *Exxon Valdez* oil spill. Current Ornithology 17:131-189.
- Wiese, F.K. and I.L. Jones. 2001. Experimental support for a new drift block design to assess seabird mortality from oil pollution. Auk 118:1062-1068.
- Wiese, F.K., W.A. Montevecchi, G.K. Davoren, F. Huettman, A.W. Diamond and J. Linke. 2001. Seabirds at risk around offshore oil platforms in the Northwest Atlantic. Marine Pollution Bulletin 42:1285-1290.
- Wilber, D.H., W. Brostoff, D.G. Clarke, and G.L. Ray. 2005. Sedimentation: Potential biological effects from dredging operations in estuarine and marine environments. DOER Technical Notes Collection (ERDC TN-DOER-E20), U.S. Dept. of the Army, Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS.
- Wilhelm, S.I., G.J. Robertson, P.C. Ryan, and D.C. Schneider. 2007. Comparing an estimate of seabirds at risk to a mortality estimate from the November 2004 Terra Nova FPSO oil spill. Marine Pollution Bulletin 54:537-544.
- Williams, B.K. 2011. Adaptive management of natural resources-framework and issues. Journal of Environmental Management 92:1346-1353.
- Williams, J.M., M.L. Tasker, I.C. Carter, and A. Webb. 1995. A method of assessing seabird vulnerability to surface pollutants. Ibis 137:S147-S152.
- Williams, R., S. Gero, L. Bejder, J. Calambokidis, S. Kraus, D. Lusseau, A. Read, and J. Robbins. 2011. Underestimating the damage: Interpreting cetacean carcass recoveries in the context of the *Deepwater Horizon*/BP incident. Conservation Letters, doi:10.1111/j.1755-263x2011.00168x.
- Witherington, B., S. Hirama, and R. Hardy. 2012. Young sea turtles of the pelagic *Sargassum*dominated drift community: habitat use, population density, and threats. Marine Ecology Progress Series 463:1-22.
- Wood, R.C. and L.S. Hales. 2001. Comparison of northern diamondback terrapin (*Malaclemys terrapin terrapin*) hatching success among variably oiled nesting sites along the Patuxent River following the Chalk Point oil spill of April 7, 2000: Final report. 16 pp.
- Woods & Poole Economics, Inc. 2011. The 2012 complete economic and demographic data source (CEDDS) on CD-ROM.
- Wright, S.D., B.B. Ackerman, R.K. Bonde, C.A. Beck, and D.J. Banowetz. 1995. Analysis of watercraft-related mortality of manatees in Florida, 1979-1991. In: O'Shea, T.J., B.B. Ackerman, and H.F. Percival, eds. Population biology of the Florida manatee. National Biological Service Information and Technology Report 1. Pp. 259-268.
- Wyers, S.C., H.R. Frith, R.E. Dodge, S.R. Smith, A.H. Knap, and T.D. Sleeter. 1986. Behavioral effects of chemically dispersed oil and subsequent recovery in *Diploria strigosa*. Marine Ecology 7:23-42.
- Yender, R.A. and J. Michel, eds. 2010. Oil spills in coral reefs: Planning and response considerations. Second edition. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Response and Restoration. 82 pp. Internet website: <u>http://response.restoration.noaa.gov/sites/ default/files/Oil_Spill_Coral.pdf</u>.
- Zabala, J., I. Zuberogoitia, J.A. Martinez-Climent, and J. Etxezarreta. 2010. Do long lived seabirds reduce the negative effects of acute pollution on adult survival by skipping breeding? A study with European storm petrels (*Hydrobates pelagicus*) during the *Prestige* oil-spill. Marine Pollution Bulletin 62:109-115.

- Zieman, J.C. 1976. The ecological effects of physical damage from motor boats on turtle grass beds in Southern Florida. Aquatic Botany 2:127-139.
- Zieman, J.C., R. Orth, R.C. Phillips, G. Thayer, and A. Thorhaug. 1984. The effects of oil on seagrass ecosystems. In: Cairns, J., Jr. and A.L. Buikema, Jr., eds. Restoration of habitats impacted by oil spills. Boston, MA: Butterworth Publishers.
- Zuberogoitia, I., J.A. Martinez, A. Iraeta, A. Azkona, J. Zabala, B. Jimenez, R. Merino, and G. Gomez. 2006. Short-term effects of the *Prestige* oil spill on the peregrine falcon (*Falco peregrinus*). Marine Pollution Bulletin 52:1176-1181.

Figure B-1. Location of Five Hypothetical Oil-Spill Launch Points for OSRA within the Study Area. (Spatial variability of the Loop Current is from Vukovich [2007] and is shown as percent of time that the Loop Current watermass is associated with a particular location.)

Figure B-2. Spatial Frequency (%) of the Watermass Associated with the Loop Current in the Eastern Gulf of Mexico based on Data for the Period 1976-2003 (Vukovich, 2005).

Figure B-3. Summary of Avian Species Collected by Date Obtained from the U.S. Fish and Wildlife Service as Part of the *Deepwater Horizon* Post-Spill Monitoring and Collection Process through May 12, 2011 (USDOI, FWS, 2011b). (This figure represents the date the data were released and reported and does not represent the actual date individual birds were collected. Data on the Y-axis reflects the cumulative # of individual birds collected, identified, and summarized by date; data on the Z-axis reflects proportional change from one reporting date to the next. The data used in this figure are verified as per FWS's QA/QC processes. The mean # of birds collected between intervals is 184.4 + 89.3 SE [-807 min, 526 max for 13 collection intervals] and the mean % change between intervals is 3.0 + 1.3% [-11.12% min., 8.27% max]. Unfortunately, we have no data on change in search effort temporally (or spatially) and also lack data prior to September 14, 2010; therefore, data at that point represent the baseline or "0" for determining interval differences. Disclaimer: All data should be considered provisional, incomplete, and subject to change. For more information, refer to FWS's Weekly Bird Impact Data and Consolidated Wildlife Reports [USDOI, FWS, 2011b]; for additional information on the chronological change in number of birds collected, refer to Belanger et al., 2010).

Blowout Scenarios and Key Differences in Impacts, Response, and/or Intervention

Location of Blowout and Leak	Key Differences in Impacts, Response, and/or Intervention
Blowout occurs at the sea surface (i.e., at the rig)	Offers the least chance for oil recovery because of the restricted access to the release point; therefore, greater impacts to coastal ecosystems. In addition to relief wells, there is potential for other intervention measures such as capping and possible manual activation of blowout-preventer (BOP) rams.
Blowout occurs along the riser anywhere from the seafloor to the sea surface. However, a severed riser would likely collapse, resulting in a leak at the seafloor.	In deep water, the use of subsea dispersants, if approved, may reduce impacts to coastal ecosystems; however, their use may increase exposure of deepwater marine resources to dispersed oil. There is a possibility for limited recovery of oil at the source. In addition to relief wells, there is potential for other intervention measures, such as capping and possible manual activation of BOP rams.
At the seafloor, through leak paths on the BOP/wellhead	In deep water, the use of subsea dispersant, if approved, may reduce impacts to coastal ecosystems; however, their use may increase exposure of deepwater marine resources to dispersed oil. With an intact subsea BOP, intervention may involve the use of drilling mud to kill the well. If the BOP and well stack are heavily compromised, the only intervention method may be relief wells. Greatest possibility for recovery of oil at the source, until the well is capped or killed.
Below the seafloor, outside the wellbore (i.e., broached)	Disturbance of a large amount of sediments resulting in the burial of benthic resources in the immediate vicinity of the blowout. The use of subsea dispersants would likely be more difficult (PCCI Marine and Environmental Engineering, 1999). Stopping this kind of blowout would probably involve relief wells. Any recovery of oil at the seabed would be very difficult.

Properties and Persistence by Oil Component Group

Properties and Persistence	Light-Weight	Medium-Weight	Heavy-Weight
Hydrocarbon Compounds	Up to 10 carbon atoms	10-22 carbon atoms	>20 carbon atoms
API °	>31.1°	31.1°-22.3°	<22.3°
Evaporation Rate	Rapid (within 1 day) and complete	Up to several days; not complete at ambient temperatures	Negligible
Solubility in Water	High	Low (at most a few milligrams/liter)	Negligible
Acute Toxicity	High because of monoaromatic hydrocarbons (BTEX)	Moderate because of diaromatic hydrocarbons (naphthalenes—2 ring PAHs)	Low except because of smothering (i.e., heavier oils may sink)
Chronic Toxicity	None, does not persist because of evaporation	PAH components (e.g., naphthalenes—2 ring PAHs)	PAH components (e.g., phenanthrene, anthracene— 3 ring PAHs)
Bioaccumulation Potential	None, does not persist because of evaporation	Moderate	Low, may bioaccumulate through sediment sorption
Compositional Majority	Alkanes and cycloalkanes	Alkanes that are readily degraded	Waxes, asphaltenes, and polar compounds (not significantly bioavailable or toxic)
Persistence	Low because of evaporation	Alkanes readily degrade, but the diaromatic hydrocarbons are more persistent	High; very low degradation rates and can persist in sediments as tarballs or asphalt pavements

API = American Petroleum Institute.

BTEX = benzene, ethylbenzene, toluene, and xylene PAH = polycyclic aromatic hydrocarbon

Sources: Michel, 1992; Canadian Center for Energy Information, 2010.

Year	Shelf 0-60 m	Shelf 60-200 m	Slope 200-400 m	Deepwater 400-800 m	Deepwater 800-1,600 m	Ultra- Deepwater 1,601-2,400 m	Ultra- Deepwater >2,400 m	Total
2000	370.6	193.1	35.5	25.6	12.2	0.0	0.0	637.0
2001	364.2	185.2	35.0	32.0	16.6	0.0	0.0	633.0
2002	344.6	180.4	32.5	35.2	21.4	0.0	0.0	614.1
2003	359.4	182.9	31.2	39.0	35.5	0.2	0.0	648.2
2004	346.7	160.5	29.3	36.9	39.2	1.9	0.0	614.5
2005	270.1	113.5	23.1	33.5	43.0	5.8	0.0	489.0
2006	260.3	99.7	20.6	35.1	61.5	12.4	0.0	489.6
2007	307.0	139.4	22.2	40.0	70.3	15.5	0.1	594.5
2008	252.7	118.6	15.9	32.7	60.1	16.5	0.1	496.6
2009	263.9	108.3	19.9	39.2	65.3	25.0	0.1	521.7

Annual Volume of Produced Water Discharged by Depth (millions of barrels)

Source: USDOI, BOEMRE, 2010b.

Description of the Scenario for a Catastrophic Spill Event Occurring in Shallow Water or Deep Water (assumptions are described in detail in the text)

Scenario	Shallow-Water Location	Deepwater Location
	Phase 1. Initial Event	· ·
Vertical Location of Blowout	4 possible locations including sea surface, along	4 possible locations including sea surface, along the riser, at
	the riser, at the seafloor, and below the seafloor	the seafloor, and below the seafloor
Duration of Uncontrolled Fire	1-30 days	1-30 days
	Phase 2. Offshore Spill	
Duration of Spill	2-5 months	4-6 months
Rate of Spill	30,000 bbl per day*	30,000-60,000 bbl per day
Total Volume of Spill (1)	0.9-3.0 MMbbl crude oil	2.7-7.2 MMbbl crude oil
		10,000-20,000 bbl diesel fuel
API ^o Gravity	Fresh oil will float (API° >10)	Fresh oil will float (API° >10)
Characteristics of Oil Released	Typical South Louisiana midrange paraffinic sweet crude oil	Typical South Louisiana midrange paraffinic sweet crude oil; crude properties changed after oil traveled up the wellbore and passed through the water column, undergoing rapid depressurization and turbulence. Oil reached the surface as an emulsion stripped of many of its volatile components.
Response		
Number of Vessels	Up to 3,000	Up to 7,000
Number of Workers	Up to 25,000	Up to 50,000
Number of Planes/Helicopters	25/50	50/100
Boom (million feet)	5	13.5
Dispersant Application (surface application) (2)	35,000 bbl	33,000-bbl surface application and 16,500-bbl subsea application
Number of Miles of Shoreline Requiring Some Measure of Mechanical or Manual Cleaning	778	778
In-situ Burn	Yes, will occur	Yes, will occur
Vessel Decontamination Stations	Yes	Yes
Severe Weather	The potential for severe weather is noted, which could temporarily halt containment and response efforts.	The potential for severe weather is noted, which could temporarily halt containment and response efforts.
Fisheries Closure		During the peak, anticipate approximately 37% or 88,522 mi ² (229,270 km ²) closed to recreational and commercial fishing.

~ .		
Scenario	Shallow-Water Location	Deepwater Location
	Phase 3. Onshore Contact	1
Shoreline Oiling Duration	1-5 months	3-6 months
Response		
Number of Staging areas	5-10	10-20
Number of Skimmers	200-300	500-600
Length of Shoreline Contacted		
	$30 \text{ days}^1 = 0.50 \text{ miles}^2$	$30 \text{ days}^1 = 0.50 \text{ miles}^2$
	60 days = 50-100 miles	60 days = 50-100 miles
	90 days = 100-1,000 miles	90 days = 100-1,000 miles
	120 days = >1,000 miles	120 days = >1,000 miles
	¹ Not cumulative.	
	2 Length was extrapolated	
Oil Characteristics and Appearance		-Essentially stable emulsions mixed with sand.
		discrete droplets/summer 2010.
Response Considerations for Sand Beaches	—No mechanical techniques allowed in some areas.	No mechanical techniques allowed in some areas
Describer time for Marker	 Much of the beach cleanup conducted at night. Typically sand sieving, shaking, and sifting beach cleaning machines. Repetitive tilling and mixing using agriculture plows and discs in combination with beach cleaning machines. Sand washing treatment—sand sieve/shaker to remove debris and large oil particles and heated washing systems. Nearshore submerged oil difficult to recover and hard to locate; vacuums and snares could be used. 	 Much of the beach cleanup conducted at hight. Typically sand sieving, shaking, and sifting beach cleaning machines. Repetitive tilling and mixing using agriculture plows and discs in combination with beach cleaning machines. Sand washing treatment—sand sieve/shaker to remove debris and large oil particles and heated washing systems. Nearshore submerged oil difficult to recover and hard to locate; vacuums and snares could be used.
Response Considerations for Marshes	 —Lightly oiled—allowed to recovery naturally; degrade in place or removed by tidal or wave action. —Moderately/heavily oiled—vacuumed or skimmed from boats possibly in conjunction with flushing; low-pressure flushing (with water comparable to marsh type); manual removal by hand or mechanized equipment; and vegetation cutting. 	 Lightly oiled—allowed to recovery naturally; degrade in place or removed by tidal or wave action. Moderately or heavily oiled—vacuumed or skimmed from boats possibly in conjunction with flushing; low-pressure flushing (with water comparable to marsh type); manual removal by hand or mechanized equipment; and vegetation cutting. Heavily oiled areas—in-situ burning may be an option if

Table B-4. Description of the Scenario for a Catastrophic Spill Event Occurring in Shallow Water or Deep Water (continued).

Catastrophic Spill Event Analysis

Table B-4. Description of the Scenario for a Catastrophic Spill Event Occurring in Shallow Water or Deep Water (continued).

Scenario	Shallow-Water Location	Deepwater Location
	 Heavily oiled areas—in-situ burning may be an option if water covers the sediment surface. Bioremediation may be utilized but mostly as a secondary treatment after bulk removal. 	water covers the sediment surface. —Bioremediation may be utilized but mostly as a secondary treatment after bulk removal.
Response Considerations for Nearshore waters	Marsh areas—skimming and vacuum (in areas too shallow to use skimmers) systems used in conjunction with flushing, and booming to temporarily contain mobile slicks.	Marsh areas—skimming and vacuum (in areas too shallow to use skimmers) systems used in conjunction with flushing, and booming to temporarily contain mobile slicks.
	Phase 4. Recovery Phase	
Response		
Number of Vessels – 24-36 months post-spill/greater than 36 months	Fewer than 10/0 designated—called up only if new residual oil reported	Fewer than 10/0 designated—called up only if new residual oil reported
Number of Workers – 24-36 months post-spill/greater than 36 months	230/0 designated—called up only if new residual oil reported	230/0 designated—called up only if new residual oil reported
Miles of Shoreline Undergoing Regular Patrolling and Maintenance – 30-36 months post-spill/greater than 36 months	Fewer than 20/0	Fewer than 20/0
End Date for Dispersant Application	No dispersant usage 2 weeks after spillage ends	No dispersant usage 2 weeks after spillage ends
Remaining Sources of Unrecoverable Weathered Oil	Buried or in surface pockets in coastal sand, sediment, or muddy bottoms and in pockets on the seafloor.	Buried or in surface pockets in coastal sand, sediment, or muddy bottoms and in pockets on the seafloor.
Oil Characteristics and Appearance		As stranded oil weathered, some became buried through natural beach processes and appeared as surface residual balls (SRB) <10 cm (4 in) or as patties (SRP) 10 cm-1 m (4 in-3 ft).
Response Considerations for Sand Beaches, Marshes, and Nearshore Waters	See Phase 3 above.	See Phase 3 above.

A blowout may contain crude oil, natural gas, and condensate. Because the majority of environmental damage is due to the release of oil, this text assumes the spill to be an oil spill. However, a natural gas release would result in a less visible and less persistent adverse impact than an oil release.
 Subsea dispersal application must be individually approved.

Source: British Petroleum, 2014b.

	Species	Grand		Visibly Oil	ed	No	t Visibly C	Diled	U	nknown Oilin	ıg	Oiling	
Common Name	Group ³	Total	Dead	Alive	Total	Dead	Alive	Total	Dead	Alive	Total	Rate ⁴	
Amer. Coot	Marsh/Wading	3	2	2	2	0	0	0	1	0	1	0.67	
Amer. Oystercatcher	Shorebird	13	7	3	7	3	0	3	1	3	3	0.54	
Amer. Redstart	Passerine	1	0	0	0	1	0	1	0	0	0	0.00	
Amer. White Pelican	Seabird	19	5	3	8	4	0	4	4	8	7	0.42	
Audubon's Shearwater	Seabird	36	1	1	1	35	0	35	0	2	0	0.03	
Barn Owl	Raptor	1	0	0	0	1	0	1	0	0	0	0.00	
Barn Swallow	Passerine	1	1	0	1	0	0	0	0	0	0	1.00	Q
Belted Kingfisher	Passerine	1	0	0	0	1	0	1	0	1	0	0.00	enti
Blcrown. Night Heron	Marsh/Wading	18	6	3	8	7	0	7	1	4	3	0.44	ral I
Black Skimmer	Seabird	253	51	16	55	153	0	153	40	14	45	0.22	Pla
Black Tern	Seabird	9	1	0	1	7	0	7	1	3	1	0.11	nnii
Blbell. Whistl. Duck	Waterfowl	2	0	0	0	0	0	0	0	2	2	0.00	, bu
Black-necked Stilt	Shorebird	3	0	0	0	3	0	3	0	0	0	0.00	4re.
Blue-winged Teal	Waterfowl	6	0	0	0	6	0	6	0	0	0	0.00	a L
Boat-tailed Grackle	Passerine	1	0	0	0	1	0	1	0	1	0	0.00	eas
Broad-winged Hawk	Raptor	1	0	0	0	1	0	1	0	1	0	0.00	e G
Brown Pelican	Seabird	826	152	227	339	248	0	248	177	149	239	0.41	ale
Brown-headed Cowbird	Passerine	1	0	0	0	0	0	0	0	1	1	0.00	N N
Bufflehead	Waterfowl	1	0	1	1	0	0	0	0	0	0	1.00	35
Canada Goose	Waterfowl	4	0	1	1	1	0	1	1	2	2	0.25	24
Caspian Tern	Seabird	17	7	3	8	4	0	4	2	6	5	0.47	! <u>1,</u> 6
Cattle Egret	Marsh/Wading	36	4	4	7	25	0	25	3	4	4	0.19	ana
Clapper Rail	Marsh/Wading	120	27	5	29	64	0	64	20	14	27	0.24	24

Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post-Deepwater Horizon Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2}

247 EIS

Common Nome	Species	Grand		Visibly Oil	ed	No	ot Visibly O	oiled	U	nknown Oilin	g	Oiling
Common Name	Group ³	Total	Dead	Alive	Total	Dead	Alive	Total	Dead	Alive	Total	Rate ⁴
Common Loon	Diving	75	33	27	39	24	0	24	4	20	12	0.52
Common Moorhen	Marsh/Wading	4	1	0	1	3	0	3	0	0	0	0.25
Common Nighthawk	Passerine	1	0	0	0	0	0	0	0	1	1	0.00
Common Tern	Seabird	25	15	12	16	9	0	9	0	0	0	0.64
Common Yellowthroat	Passerine	2	0	0	0	2	0	2	0	0	0	0.00
Cooper's Hawk	Raptor	1	0	0	0	1	0	1	0	1	0	0.00
Cory's Shearwater	Seabird	4	0	0	0	3	0	3	0	1	1	0.00
Dbl-crest. Cormorant	Diving	23	2	1	2	17	0	17	2	7	4	0.09
Eastern Kingbird	Passerine	2	1	0	1	1	0	1	0	0	0	0.50
Eastern Meadowlark	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Eur. Collared-dove	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Eur. Starling	Passerine	2	0	1	1	1	0	1	0	0	0	0.50
Forster's Tern	Seabird	40	17	8	20	12	0	12	6	7	8	0.50
Fulvous Whistl. Duck	Waterfowl	1	0	0	0	0	0	0	0	1	1	0.00
Glossy Ibis	Marsh/Wading	2	1	1	1	1	0	1	0	0	0	0.50
Great Blue Heron	Marsh/Wading	42	5	3	6	26	0	26	4	16	10	0.14
Great Cormorant	Diving	1	0	0	0	1	0	1	0	0	0	0.00
Great Egret	Marsh/Wading	31	6	6	7	15	0	15	8	3	9	0.23
Great-horned Owl	Raptor	1	0	0	0	1	0	1	0	0	0	0.00
Greater Shearwater	Seabird	89	7	4	7	55	0	55	27	4	27	0.08
Green Heron	Marsh/Wading	16	2	0	2	8	0	8	1	6	6	0.13
Gull-billed Tern	Seabird	4	0	0	0	2	0	2	2	4	2	0.00
Herring Gull	Seabird	31	10	11	13	10	0	10	2	13	8	0.42
House Sparrow	Passerine	2	0	0	0	2	0	2	0	1	0	0.00
Killdeer	Shorebird	3	0	0	0	3	0	3	0	0	0	0.00

Table B-5. Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post-*Deepwater Horizon* Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2} (continued).

Common Nome	Species	Grand		Visibly Oil	ed	No	ot Visibly C	oiled	U	nknown Oilin	ıg	Oiling
Common Name	Group ³	Total	Dead	Alive	Total	Dead	Alive	Total	Dead	Alive	Total	Rate ⁴
King rail	Marsh/Wading	1	0	0	0	0	0	0	0	1	1	0.00
Laughing Gull	Seabird	2,981	1,025	355	1,182	1,390	0	1,390	304	371	409	0.40
Leach's Storm-petrel	Seabird	1	1	0	1	0	0	0	0	1	0	1.00
Least Bittern	Marsh/Wading	4	0	0	0	4	0	4	0	2	0	0.00
Least Tern	Seabird	106	46	7	49	43	0	43	12	3	14	0.46
Less. Blbacked Gull	Seabird	4	1	1	1	1	0	1	1	2	2	0.25
Less. Scaup	Waterfowl	1	0	0	0	0	0	0	1	0	1	0.00
Little Blue Heron	Marsh/Wading	5	0	0	0	4	0	4	1	1	1	0.00
Long-bill. Dowitcher	Shorebird	1	0	0	0	0	0	0	0	1	1	0.00
Magnif. Frigatebird	Seabird	8	3	3	4	2	0	2	1	2	2	0.50
Mallard	Waterfowl	26	5	4	6	16	0	16	0	7	4	0.23
Manx Shearwater	Seabird	6	1	0	1	5	0	5	0	0	0	0.17
Masked Booby	Seabird	9	4	3	4	1	0	1	0	4	4	0.44
Mottled Duck	Waterfowl	6	0	0	0	5	0	5	1	1	1	0.00
Mourning Dove	Passerine	15	3	1	3	8	0	8	0	6	4	0.20
Muscovy Duck	Waterfowl	1	0	0	0	1	0	1	0	1	0	0.00
Neotropic Cormorant	Diving	5	0	0	0	2	0	2	3	0	3	0.00
Northern Cardinal	Passerine	3	0	0	0	3	0	3	0	0	0	0.00
Northern Gannet	Seabird	475	225	189	297	99	0	99	30	107	79	0.63
Northern Mockingbird	Passerine	5	0	0	0	4	0	4	0	2	1	0.00
Osprey	Raptor	11	2	1	3	6	0	6	0	3	2	0.27
Pied-billed Grebe	Diving	32	18	24	24	7	0	7	1	3	1	0.75
Piping Plover	Shorebird	1	0	0	0	1	0	1	0	0	0	0.00
Purple Gallinule	Marsh/Wading	2	0	0	0	2	0	2	0	0	0	0.00
Purple Martin	Passerine	5	1	0	1	3	0	3	0	1	1	0.20

Table B-5. Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post-*Deepwater Horizon* Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2} (continued).

Common Nome	Species	Grand		Visibly Oil	ed	No	ot Visibly O	iled	U	nknown Oilir	ng	Oiling
Common Name	Group ³	Total	Dead	Alive	Total	Dead	Alive	Total	Dead	Alive	Total	Rate ⁴
Red-breasted Merg.	Waterfowl	2	1	1	1	1	0	1	0	1	0	0.50
Reddish Egret	Marsh/Wading	2	1	1	1	1	0	1	0	1	0	0.50
Red-shouldered Hawk	Raptor	1	0	0	0	0	0	0	0	1	1	0.00
Red-tailed Hawk	Raptor	1	0	0	0	1	0	1	0	0	0	0.00
Red-winged Blackbird	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Ring-billed Gull	Seabird	2	0	1	1	1	0	1	0	0	0	0.50
Rock Dove (pigeon)	Passerine	16	2	2	3	4	0	4	2	10	9	0.19
Roseate Spoonbill	Marsh/Wading	15	7	3	7	3	0	3	5	1	5	0.47
Royal Tern	Seabird	289	116	66	149	104	0	104	19	47	36	0.52
Ruddy Duck	Waterfowl	1	1	0	1	0	0	0	0	0	0	1.00
Ruddy Turnstone	Shorebird	13	1	3	3	8	0	8	1	5	2	0.23
Sanderling	Shorebird	26	4	2	4	20	0	20	1	6	2	0.15
Sandwich Tern	Seabird	70	28	20	34	25	0	25	8	14	11	0.49
Seaside Sparrow	Passerine	9	4	0	4	5	0	5	0	0	0	0.44
Semipalm. Sandpiper	Shorebird	3	2	1	3	0	0	0	0	0	0	1.00
Short-bill. Dowitcher	Shorebird	1	0	0	0	1	0	1	0	0	0	0.00
Snowy Egret	Marsh/Wading	22	12	9	14	6	0	6	2	3	2	0.64
Sooty Shearwater	Seabird	1	0	0	0	0	0	0	0	1	1	0.00
Sooty Tern	Seabird	3	0	1	1	2	0	2	0	1	0	0.33
Sora	Marsh/Wading	5	2	1	2	1	0	1	2	0	2	0.40
Spotted Sandpiper	Shorebird	1	0	0	0	1	0	1	0	0	0	0.00
Surf Scoter	Waterfowl	1	1	1	1	0	0	0	0	0	0	1.00
Tri-colored Heron	Marsh/Wading	31	9	5	11	7	0	7	11	2	13	0.35
Virginia Rail	Marsh/Wading	3	0	0	0	3	0	3	0	1	0	0.00
White Ibis	Marsh/Wading	7	1	1	1	4	0	4	2	3	2	0.14

Table B-5. Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post-*Deepwater Horizon* Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2} (continued).

Common Nome	Species	Grand		Visibly Oil	ed	No	ot Visibly O	iled	U	nknown Oilir	ıg	Oiling
Common Name	Group ³	Total	Dead	Alive	Total	Dead	Alive	Total	Dead	Alive	Total	Rate ⁴
White-tail. Tropicbird	Seabird	1	0	0	0	1	0	1	0	0	0	0.00
White-wing. Dove	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Willet	Shorebird	13	2	1	3	8	0	8	1	3	2	0.23
Wilson's Plover	Shorebird	3	0	0	0	2	0	2	1	0	1	0.00
Yellow-billed Cuckoo	Passerine	2	2	0	2	0	0	0	0	0	0	1.00
Yelcr. Night Heron	Marsh/Wading	9	1	0	1	7	0	7	0	3	1	0.11
Unid. Blackbird	Passerine	1	0	0	0	0	0	0	0	1	1	0.00
Unid. Booby	Seabird	1	0	0	0	1	0	1	0	1	0	0.00
Unid. Cormorant	Diving	14	3	0	3	10	0	10	1	0	1	0.21
Unid. Dowitcher	Shorebird	2	1	0	1	1	0	1	0	1	0	0.50
Unid. Duck	Waterfowl	2	0	0	0	1	0	1	1	0	1	0.00
Unid. Egret	Marsh/Wading	15	2	0	2	11	0	11	2	1	2	0.13
Unid. Flycatcher	Passerine	1	1	0	1	0	0	0	0	0	0	1.00
Unid. Grebe	Diving	4	2	1	2	2	0	2	0	0	0	0.50
Unid. Gull	Seabird	248	79	1	80	134	0	134	33	4	34	0.32
Unid. Hawk	Raptor	2	0	0	0	2	0	2	0	0	0	0.00
Unid. Heron	Marsh/Wading	15	5	0	5	8	0	8	1	1	2	0.33
Unid. Loon	Diving	7	2	2	4	3	0	3	0	1	0	0.57
Unid. Mockingbird	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Unid. Owl	Raptor	1	0	0	0	1	0	1	0	0	0	0.00
Unid. Passerine	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Unid. Pelican	Seabird	25	5	1	5	15	0	15	4	1	5	0.20
Unid. Pigeon	Passerine	14	2	1	3	6	0	6	1	6	5	0.21
Unid. Rail	Marsh/Wading	4	1	0	1	3	0	3	0	0	0	0.25
Unid. Raptor	Raptor	1	0	0	0	1	0	1	0	0	0	0.00

Table B-5. Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post-*Deepwater Horizon* Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2} (continued).

Common Nomo	Species	Grand		Visibly Oil	ed	No	ot Visibly C	oiled	U	Oiling		
Common Name	Group ³	Total	Dead	Alive	Total	Dead	Alive	Total	Dead	Alive	Total	Rate ⁴
Unid. Sandpiper	Shorebird	2	0	0	0	2	0	2	0	2	0	0.00
Unid. Shearwater	Seabird	6	0	0	0	5	0	5	1	0	1	0.00
Unid. Shorebird	Shorebird	3	2	0	2	0	0	0	1	0	1	0.67
Unid. Skimmer	Seabird	6	0	0	0	5	0	5	1	0	1	0.00
Unid. Sparrow	Passerine	3	0	0	0	1	0	1	2	0	2	0.00
Unid. Swallow	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Unid. Tern	Seabird	132	38	1	39	79	0	79	13	2	14	0.30
Unid. Warbler	Passerine	1	0	0	0	1	0	1	0	0	0	0.00
Unknown spp.		593	51	2	53	451	0	451	88	1	89	0.09
Other		106	31	3	34	52	0	52	7	14	20	0.32
Column Totals		7.258	2.121		2,642	3.387		3.387	873		1.229	0.24

Table B-5. Birds Collected and Summarized by the U.S. Fish and Wildlife Service: Post-*Deepwater Horizon* Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2} (continued).

Data obtained from the U.S. Fish and Wildlife Service (FWS) as part of the *Deepwater Horizon* post-spill monitoring and collection process are summarized for May 12, 2011 (USDOI, FWS, 2011a). The data used in this table are verified as per FWS's QA/QC processes. Disclaimer: All data should be considered provisional, incomplete, and subject to change (USDOI, FWS, 2011a). For more information, refer to the Weekly Bird Impact Data and Consolidated Wildlife Reports. Numbers in this table have been verified against the original data from FWS's website (USDOI, FWS, 2011a).

² As of May 12, 2011, 104 avian species had been collected and identified through the *Deepwater Horizon* post-spill monitoring and collection process (USDOI, FWS, 2011a). Note: Though the process was triggered by the *Deepwater Horizon* explosion and oil spill, not all birds recovered were oiled (36% = oiled, 47% = unoiled, 17% = unknown), suggesting that "search effort" alone accounted for a large proportion of the total (n = 7,258) birds collected (Piatt et al., 1990a, page 127). Some of the live birds collected may have been incapable of flight due to age or molt, and some of the dead birds collected may have died due to natural mortality, predation, or other anthropogenic sources of mortality. The overall oiling rate across species including "others" and "unknowns" was 0.24 versus 0.25 for individuals identified to species. The oiling rate for the **Top 5** (see bold rows in table) most-impacted avian species was 0.43 and included representatives only from the seabird group. These are listed in descending order based on the number collected: laughing gull (2,981 collected, 0.40 oiling rate); brown pelican (826 collected, 0.41 oiling rate); northern gannet (475 collected, 0.63 oiling rate); royal tern (289 collected, 0.52 oiling rate); and black skimmer (253 collected, 0.22 oiling rate). Note: There is a difference between the table structure here compared with the original table on FWS's website. Herein, columns for live birds that later died were not included. Totals associated with each larger grouping are correct and sum to those column totals for the May 12, 2011, Collection Report values. Six new species or rows were added and 3 species were removed between the December 14, 2010, Collection Report (USDOI, FWS, 2010d) and the May 12, 2011, Collection Report (USDOI, FWS, 2011a). The major difference in number (-807) between the more recent and older versions was due to an ~10% overestimate in the previous report representing live birds that later died, as these individuals were counted twice in the D

³ For additional information on oiling rates by Species Group and additional statistics, refer to Table 4-12 of the 2012-2017 WPA/CPA Multisale EIS.

Table B-5. Birds Collected and Summarized by the U.S. Fish and Wildlife Service Post-*Deepwater Horizon* Explosion, Oil Spill, and Response in the Gulf of Mexico^{1, 2} (continued).

⁴ Oiling Rate: For each species, an oiling rate was calculated by dividing the "total" number of oiled individuals (Σ alive + dead) / Σ of total individuals collected for a given species/row. In general, it has been well documented that the number of birds collected after a spill event represents a small fraction of the total oiled population (direct mortality) due to various factors: species-specific differences in vulnerability to spilled oil, species-specific differences in distribution, habitat use and behavior; speciesspecific differences in abundance; species-specific differences in carcass deposition rates, persistence rates, and detection probabilities; overall search effort and temporal and spatial variation in search effort; and carcass loss due to predation, habitat, weather, tides, and currents (Piatt et al., 1990a and 1990b; Ford et al., 1996; Piatt and Ford, 1996; Fowler and Flint, 1997; Flint and Fowler, 1998; Flint et al., 1999; Hampton and Zafonte, 2005; Ford, 2006; Castege et al., 2007; Ford and Zafonte, 2009; Byrd et al., 2009; Flint et al., 2010). For example, Piatt and Ford (1996, Table 1) estimated a mean carcass recovery rate of only 17% for a number of previous oil-bird impact studies. Burger (1993) and Weise and Jones (2001) estimated recovery rates of 20% with the latter study based on a drift-block design to estimate carcass recovery rate from beached-bird surveys. Due to the fact that the coastline directly inshore of the well blowout location is primarily marsh and not sandy beaches, due to the distance from the blowout location to the coast, and due to predominant currents and wind directions during the event, the number of birds collected will likely represent a recovery estimate in the lower ranges of those provided in the literature to date ($\leq 10\%$). A range of mortality estimates given the total number of dead birds collected through May 12, 2011, of 7,258 birds x recovery rates from the literature (0-59% in Piatt and Ford, 1996, Table 1) suggests a lower range of 12,302 birds* (59% recovery rate), an upper range of 725,800 birds* (0% recovery rate), and 42,694 birds based on the 17% mean recovery rate from Piatt and Ford (1996). The lower range of estimates (i.e., high carcass recovery rates) is likely biased low because it assumes no search effort after May 2011 (i.e., no more birds were collected after that date) and does not account for any of the detection probability parameters that are currently unknown. The actual avian mortality estimate will likely not be available until the Natural Resource Damage Assessment (NRDA) process has been completed; this should include a combination of carcass drift experiments, drift-block experiments, corrections for carcass deposition and persistence rates, scavenger rates, and detection probability with additional modeling to more precisely derive an estimate. For additional information on oiling rates by Species Group and additional statistics, refer to Table 4-12 of the 2012-2017 WPA/CPA Multisale EIS. Note: Spill volume tends to be a poor predictor of bird mortality associated with an oil spill (Burger, 1993), though it should be considered for inclusion in any models to estimate total bird mortality, preferably with some metric of species composition and abundance (preferably density) pre-spill (Wilhelm et al., 2007).

* Corrected values are based on revisiting the original calculations after publication of the 2012-2017 WPA/CPA Multisale EIS. An additional estimate for total mortality based on Piatt and Ford (1996) is also provided.

Species	Status	Critical Habitat	IUCN Red List Status ²	States	Planning Area
Red-cockaded Woodpecker	Endangered	No rules published	Vulnerable	AL, FL, LA, MS, TX	WPA, CPA, EPA
Least Tern ³	Endangered	No rules published	Least Concern	AL, LA, TX (FL, MS)	WPA, CPA, EPA
Piping Plover	Threatened	Designated	Near Threatened	AL, FL, LA, MS, TX	WPA, CPA, EPA
Roseate Tern	Threatened	No rules published	Least Concern	FL only	EPA
Wood Stork	Endangered	No rules published	Least Concern	AL, FL, MS	CPA, EPA
Whooping Crane	Endangered	Designated	Endangered	TX, LA^4, FL^4	WPA, CPA, EPA
Mississippi Sandhill Crane	Endangered	Designated	Not Yet Assessed	MS only	CPA
Attwater's Prairie Chicken	Endangered	No rules published	Not Yet Assessed	TX only	WPA
N. Aplomado Falcon	Endangered	No rules published	Not Yet Assessed	TX only	WPA
Everglades Snail Kite	Endangered	Designated	Not Yet Assessed	FL only	EPA
Cape Sable Seaside Sparrow	Endangered	Designated	Not Yet Assessed	FL only	EPA
Audubon's Crested Caracara	Threatened	No rules published	Not Yet Assessed	FL only	EPA
Sprague's Pipit	Candidate	NA – Priority 2	Vulnerable	LA, TX	WPA, CPA
Bald Eagle	Delisted	No rules published	Least Concern	AL, FL, LA, MS, TX	WPA, CPA, EPA
Peregrine Falcon	Delisted	Designated	Least Concern	AL, FL, LA, MS, TX	WPA, CPA, EPA
Eastern Brown Pelican	Delisted	No rules published	Least Concern	AL, FL, LA, MS, TX	WPA, CPA, EPA
Red Knot	Proposed Threatened	NA – proposed threatened	Least Concern	FL, LA, TX	WPA, CPA, EPA

Federally Listed Avian Species Considered by State and Associated Planning Area in the Gulf of Mexico¹

¹ Information contained in this table was obtained via an email attachment from the U.S. Fish and Wildlife Service (FWS) on April 6, 2012 (USDOI, FWS, 2012) and from FWS's "Endangered Species" website and associated queries for "species" available from FWS's website (USDOI, FWS, 2011c). Additional information for each species can be found at NatureServe Explorer (2011). Note: All species listed in this table are considered, but only the piping plover, roseate tern, whooping crane, wood stork, Mississippi sandhill crane, bald eagle, eastern brown pelican, and red knot will be analyzed.

² International Union for Conservation of Nature (IUCN) – The Red List classifies species as imperiled (Critically Endangered, Endangered, or Vulnerable), not imperiled (Near Threatened or Least Concern), extinct (Extinct, Extinct in the Wild), or Data Deficient (Butchart et al., 2004 and 2005; Harris et al., 2012). If species meet the quantitative thresholds of any of the following criteria, they will be added to the Red List: (1) decline in population size; (2) small geographic range; (3) small population size plus decline; (4) very small population size; or (5) quantitative analysis.

³ The Interior population of the least tern was listed as endangered on May 28, 1985 (*Federal Register*, 1985) throughout much of its breeding range in the Midwest. This designation does not provide or extend Endangered Species Act (ESA) protection to the breeding population of Gulf Coast "population" of least terns. Similarly, ESA protection for breeding least terns only applies to certain segments or areas (inland rivers and lakes ~50 mi [80 km] inland) of Louisiana, Mississippi, and Texas.

⁴ The whooping crane is considered endangered throughout its range in the U.S. except where nonessential, experimental flocks have been established. More recently, a release site (White Lake Wetlands Conservation Area, Vermilion Parish) was added in Louisiana (Table 4-14 of the 2012-2017 WPA/CPA Multisale EIS) with a release of 10 birds on February 22, 2011. To date, only 3 of the original 10 released cranes remain; an additional release of 16 cranes occurred on December 1, 2011. The Gulf Coast States that have these nonessential, experimental flocks include Alabama, Louisiana, Mississippi, and Florida; as well, wild whooping cranes may rarely occur as transients in Mississippi and Alabama, but they are not known to breed in either state.

⁵ The red knot is currently a proposed threatened species as of September 30, 2013 (*Federal Register*, 2013).

APPENDIX C

BOEM-OSRA CATASTROPHIC RUN

C. BOEM-OSRA CATASTROPHIC RUN

A special Oil-Spill Risk Analysis (OSRA) run was conducted in order to estimate the impacts of a possible future catastrophic or high-volume, long-duration oil spill. Thus, assuming a hypothetical highvolume, long-duration oil spill occurred, this analysis emphasized modeling a spill that continued for 90 consecutive days, with each trajectory tracked for up to 60 days. The analysis was conducted for the trajectories of oil spills from seven hypothetical spill locations to various onshore and offshore environmental resources. The probability of an oil spill contacting a specific resource within a given time of travel from a spill point is termed a conditional probability; the condition being that a spill is assumed to have occurred. Each trajectory was allowed to continue for as long as 60 days. However, if the hypothetical spill contacted shoreline sooner than 60 days after the start of the spill, the spill trajectory was terminated, and the contact was recorded. Although, overall OSRA is designed for use as a riskbased assessment, for this analysis, only the conditional probability, the probability of contact to the resource, was calculated. The probability of a catastrophic spill occurring was not calculated; thus, the combination of the probability of a spill and the probability of contact to the resources from the hypothetical spill locations were not calculated. Results from this trajectory analysis provide input to the final product by estimating where spills might travel on the ocean's surface and what environmental resources might be contacted if and when another catastrophic spill occurs, but it does not provide input on the probability of another catastrophic spill occurring.

Catastrophic OSRA Run Methods

The OSRA model, originally developed by Smith et al. (1982) and enhanced by this Agency over the years (Ji et al., 2002, 2004a, 2004b, and 2011), simulates oil-spill transport using model-simulated winds and ocean currents in the Gulf of Mexico. An oil spill on the ocean surface is moved around by the complex surface ocean currents exerting a shear force on the spilled oil from below. In addition, the prevailing wind exerts an additional shear force on the spill from above, and the combination of the two forces causes the transportation of the oil spill away from its initial spill location. In the OSRA model, the velocity of a hypothetical oil spill is the linear superposition of the surface ocean current and the wind drift caused by the winds. The model calculates the movement of hypothetical spills by successively integrating time sequences of two spatially gridded input fields: the surface ocean currents and the sealevel winds. Thus, the OSRA model generates time sequences of hypothetical oil-spill locations— essentially, oil-spill trajectories.

At each successive time step, the OSRA model compares the location of the hypothetical spills against the geographic boundaries of onshore and offshore environmental resources. Resource locations are the same as for the typical OSRA run. The frequencies of oil-spill contact are computed for designated oil-spill travel times (e.g., 3, 10, 30, or 60 days) by dividing the total number of oil-spill contacts by the total number of hypothetical spills initiated in the model from a given hypothetical spill location. The frequencies of oil-spill contact are the model-estimated probabilities of oil-spill contact. The OSRA model output provides the estimated probabilities of contact to resources from five launch points (LP) in the Western and Central Planning Areas (**Figure C-1**).

The trajectories simulated by the OSRA model represent only hypothetical pathways of oil slicks; they do not involve any direct consideration of cleanup, dispersion, or weathering processes that could alter the quantity or properties of oil that might eventually contact the environmental resource locations. However, an implicit analysis of weathering and spill degradation can be considered by choosing a travel time for the simulated oil spills when they contact environmental resource locations that represent the likely persistence of the oil slick on the water surface.

Oil spill runs with weathering were performed using the Spill Impact Model System (SIMAP) software (Applied Science Associates, Inc., 2012) in order to determine a reasonable length of time for simulating the trajectories for the catastrophic OSRA runs. Based on the SIMAP spill scenario runs, 60 days was chosen as the longest spill travel time for the catastrophic OSRA runs. For each scenario run, SIMAP was used to simulate surface oil trajectories from input current and wind fields and weathering processes, including evaporation, dispersion, dissolution, and natural degradation. To compute the weathering assumption for the catastrophic OSRA run, 12 different scenarios were performed (1 in each season from 1993 through 1995), using a spill size of 60,000 bbl, a spill duration of

24 hours, and a South Louisiana Crude (light) oil. Based on these runs, a conservative estimate of 60 days was chosen as the length of time that oil would likely persist floating on the surface following a catastrophic spill. For comparison, 19 days was the calculated persistence time of *Deepwater Horizon* oil on the water's surface (**Chapter 3.2.1.5.4**), and a 30-day catastrophic OSRA run has previously been used to simulate that particular spill event, which occurred in spring through early summer (Ji et al., 2011).

In the trajectory simulation portion of the OSRA model, many hypothetical oil-spill trajectories are produced by numerically integrating a temporally and spatially varying ocean current field, and superposing on that an empirical wind-induced drift of the hypothetical oil spills (Samuels et al., 1982). Collectively, the trajectories represent a statistical ensemble of simulated oil-spill displacements produced by a field of numerically derived winds and ocean currents. The winds and currents are assumed to be statistically similar to those that will occur in the Gulf during future offshore activities. In other words, the oil-spill risk analysts assume that the frequency of strong wind events in the wind field is the same as what will occur during future offshore activities. By inference, the frequencies of contact by the simulated oil spills are the same as what could occur from actual oil spills during future offshore activities.

Another portion of the OSRA model tabulates the contacts by the simulated oil spills. A contact to shore will stop the trajectory of an oil spill; no re-washing is assumed in this model. After specified periods of time, the OSRA model will divide the total number of contacts to the environmental resources by the total number of simulated oil spills from each of the LP's. These ratios are the estimated probabilities of oil-spill contact from offshore activities at that geographic location, assuming spill occurrence.

Detailed information on ocean currents and wind fields is needed when conducting an oil-spill risk analysis (Ji, 2004). The ocean currents used are numerically computed from an ocean circulation model of the Gulf of Mexico driven by analyzed meteorological forces (the near-surface winds and the total heat fluxes) and observed river inflow into the Gulf of Mexico (Oey, 2005 and 2008). The models used are versions of the Princeton Ocean Model, which is an enhanced version of the earlier constructed Mellor-Blumberg Model.

The ocean model calculation was performed by Princeton University (Oey, 2005 and 2008). This simulation covered the 14-year period of 1993 through 2006, and the results were saved at 3-hour intervals. This run included the assimilation of sea-surface altimeter observations to improve the ocean model results. The surface currents were then computed for input into the OSRA model, along with the concurrent wind field. The OSRA model used the same wind field to calculate the empirical wind drift of the simulated spills. The statistics for the contacts by the trajectories forced by the currents and winds were combined for the average probabilities.

Trajectories of hypothetical spills were initiated every 1.0 day from each of the launch points over the 14-year simulation period from January 1, 1993, to December 31, 2006. The chosen number of trajectories per site was small enough to be computationally practical and large enough to reduce the random sampling error to an insignificant level. Also, the weather-scale changes in the winds are at least minimally sampled, with simulated spills started every 1.0 day.

Five launch point locations (LP 1-5) were developed for the Western and Central Planning Areas. The locations were determined based on the approximate areas with the possibility of finding the largest oil volume within each planning area. The launch point locations are as follows:

Description	Longitude (DD)	Latitude (DD)	Launch Point (LP)
Central Planning Area (west of Mississippi River)	-92.17851	28.98660	1
Central Planning Area (east of Mississippi River)	-88.15338	29.91388	2
Central Planning Area (slope area)	-90.22203	27.31998	3
Western Planning Area (shelf area)	-96.76627	27.55423	4
Western Planning Area (slope area)	-94.51836	27.51367	5

DD = decimal degrees.

The methodology used for launch point selection is not part of the OSRA model in the manner it has been typically run for this Agency's spill analyses. Gulf of Mexico OCS Region geologists and engineers used the following methodology to select launch point locations. BOEM's Office of Resource Evaluation applied their Undiscovered Resource Distribution Methodology to identify a location within the proposed lease sale area where the potential for a large undiscovered oil volume may exist. For each geologic play, the undiscovered technically recoverable resource volume is distributed throughout the play using a statistical allocation process that is based on the likelihood of future oil discovery potential. The probability factors used to allocate undiscovered oil volumes to specific areas within the geologic play is based on the pool-density of existing discoveries, the density of undrilled prospects on leased acreage, and the results from recent exploration drilling activity. In areas where the potential for undiscovered technically recoverable resource volume exists for more than one geologic play, the oil volumes are aggregated. Results from the aggregation were used to identify geographic areas of high potential for future oil discoveries: three in the Central Planning Area and two in the Western Planning Area of the Gulf of Mexico. Although these areas may encompass hundreds of square miles, the coordinates for the five launch points were selected qualitatively to correspond with the centroid of these areas.

Catastrophic OSRA Results

Based on the weathering analyses (described above), OSRA model trajectories were analyzed up to 60 days, and any spill contacts occurring during this elapsed time are reported in the probability tables (**Tables C-1 through C-10**). Conditional probabilities of contact with environmental resources within 60 days of travel time were calculated for each of the hypothetical spill sites. The probability estimates were tabulated for the 60-day trajectories, as averages for the 14 years of the analysis from 1993 to 2006. The groupings were treated as seasonal probabilities that corresponded with quarters of the year: Spring, (April, May, and June); Summer, (July, August, and September); Fall, (October, November, and December); and Winter, (January, February, and March). These 3-month probabilities can be used to estimate the average contact with environmental resources during a spill, treated as one spill occurring each day for 90 days, within the quarter. The seasonal quarterly groupings take account of the differing meteorological and oceanographic conditions (wind and current patterns) during the year (**Figures C-2 through C-6**). As well, annualized conditional probabilities provide a useful single picture of average probabilities across the entire year from each launch point (**Figures C-7 through C-11**).

As one might expect, environmental resources closest to the spill sites typically have the greatest risk of contact (**Tables C-1 through C-10**). As the model run duration increases, more of the resources could have meaningful probabilities of contact ($\geq 0.5\%$). It should be reiterated that these are conditional probabilities; the condition being that a spill is assumed to have occurred. The longer transit times up to 60 days allowed by the model enable hypothetical spills to reach the environmental resources and the shoreline from more distant spill locations. With increased travel time, the complex patterns of wind and ocean currents produce eddy-like motions of the oil spills and multiple opportunities for a spill to make contact with shoreline segments. For some launch points and for the travel times greater than 30 days, the probability of contact to land decreases very slowly or remains constant because the early contacts to land have occurred within 30 days, and the trajectories that have not contacted land within 30 days will remain at sea for 60 days or more.

References Cited

- Applied Science Associates, Inc. 2012. SIMAP—Integrated oil spill impact model system. Internet website: <u>http://www.asascience.com/software/simap/index.shtml</u>. Accessed February 15, 2012.
- Ji, Z.-G. 2004. Use of physical sciences in support of environmental management. Environmental Management 34(2). Pp. 159-169.
- Ji, Z.-G., W.R. Johnson, C.F. Marshall, G.B. Rainey, and E.M. Lear. 2002. Oil-spill risk analysis: Gulf of Mexico outer continental shelf (OCS) lease sales, Central Planning Area and Western Planning Area, 2003-2007, and Gulfwide OCS program, 2003-2042. U.S. Dept. of the Interior, Minerals Management Service, Herndon, VA. OCS Report MMS 2002-032. 61 pp.
- Ji, Z.-G., W.R. Johnson, and C.F. Marshall. 2004a. Deepwater oil-spill modeling for assessing environmental impacts. Coastal Environment V. Southampton, MA: WIT Press. Pp. 349-358.
- Ji, Z.-G., W.R. Johnson, C.F. Marshall, and E.M. Lear. 2004b. Oil-spill risk analysis: Contingency planning statistics for Gulf of Mexico OCS activities. U.S. Dept. of the Interior, Minerals Management Service, Herndon, VA. OCS Report MMS 2004-026. 62 pp.
- Ji, Z.-G., W.R. Johnson, and Z. Li. 2011. Oil spill risk analysis model and its application to the *Deepwater Horizon* oil spill using historical current and wind data. In: Monitoring and modeling the *Deepwater Horizon* oil spill: A record-breaking enterprise. Geophysical Monograph Series, doi:10.1029/2011GM001117. Pp. 227-236. Internet website: <u>http://www.agu.org/books/gm/v195/</u>2011GM001117/2011GM001117.shtml.
- Oey, L.-Y. 2005. Circulation model of the Gulf of Mexico and the Caribbean Sea: Development of the Princeton Regional Ocean Forecast (& Hindcast) System—PROFS and Hindcast experiment for 1992-1999: Final report. U.S. Dept. of the Interior, Minerals Management Service, Environmental Division, Herndon, VA. OCS Study MMS 2005-049. 174 pp.
- Oey, L.-Y. 2008. Loop Current and deep eddies. Journal of Physical Oceanography 38:1426-1449.
- Rhodes, R.C., J.D. Thompson, and A.J. Wallcraft. 1989. Buoys-calibrated winds over the Gulf of Mexico. Journal Atmospheric and Oceanic Technology 6(4):608-623.
- Samuels, W.B., N.E. Huang, and D.E. Amstutz. 1982. An oil spill trajectory analysis model with a variable wind deflection angle. Ocean Engineering 9:347-360.
- Smith, R.A., J.R. Slack, T. Wyant, and K.J. Lanfear. 1982. The oil spill risk analysis model of the U.S. Geological Survey. U.S. Dept. of the Interior, Geological Survey Professional Paper 1227.
- Vukovich, F.M. 2007. Climatology of ocean features in the Gulf of Mexico using satellite remote sensing data. Journal of Physical Oceanography 37:689-707.

BOEM-OSRA Catastrophic Run

Figure C-1. Launch Point Locations Selected for Modeling the Trajectories of Five Hypothetical Oil Spills. (The blue lines show the frequency (% of time) of the watermass associated with the Loop Current occupied an area based on data for the period 1976-2003. Adapted from Vukovich, 2007.)

Figure C-2. Seasonal Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 1 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-3. Seasonal Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 2 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-4. Seasonal Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 3 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-5. Seasonal Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 4 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-6. Seasonal Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 5 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-7. Annual Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 1 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-8. Annual Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 2 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

BOEM-OSRA Catastrophic Run

Figure C-9. Annual Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 3 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-10. Annual Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 4 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Figure C-11. Annual Conditional Probabilities for a Hypothetical Oil Spill Initiated at Launch Point 5 with Each Simulated Trajectory Tracked for Up to 60 Days or Until Contacting Land.

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	ıual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Cameron, TX	_	_	_	_	-	_	_	_	-	_	_	1	_	-	1	2	_	-	_	1
Willacy, TX	_	_	_	_	I	_	_	_	I	_	_	1	I	I	_	1	_	I	_	1
Kenedy, TX	_	-	_	_	I	_	2	2	I	_	1	2	I	I	1	4	_	I	1	2
Kleberg, TX	_	_	_	_	-	_	1	1	Ι	_	1	1	_	Ι	1	2	_	Ι	1	1
Nueces, TX	_	_	_	_	-	_	1	1	-	_	1	2	-	-	1	3	_	-	1	2
Aransas, TX	_	_	_	_	_	_	1	2	-	_	2	2	_	-	1	3	_	-	1	2
Calhoun, TX	_	_	_	_	_	_	5	5	_	_	2	3	_	_	3	7	_	_	2	4
Matagorda, TX	_	_	1	1	_	1	5	6	-	1	9	9	_	-	9	14	_	1	6	7
Brazoria, TX	_	1	3	3	_	1	3	4	-	1	5	5	_	1	7	9	_	1	4	5
Galveston, TX	_	3	9	9	_	3	9	11	_	2	9	9	_	3	10	13	_	3	9	10
Chambers, TX	_	_	_	_	_	_	_	1	-	_	_	_	_	-	_	_	_	-	—	_
Jefferson, TX	_	5	10	10	_	3	8	8	_	3	6	6	-	2	5	6	-	3	7	7
Cameron, LA	8	36	42	42	1	12	21	23	2	11	13	15	2	9	11	12	3	17	22	23
Vermilion, LA	10	22	23	23	2	10	13	14	3	7	8	8	3	7	8	8	5	12	13	13
Iberia, LA	1	5	6	6	_	4	7	7	_	1	1	1	_	1	1	2	1	3	4	4
St. Mary, LA	_	1	1	1	_	_	1	1	_	_	_	_	_	_	_	_	_	_	1	1
Terrebonne, LA	_	2	3	3	1	3	6	6	_	1	2	2	-	_	2	2	-	2	3	3
Lafourche, LA	_	_	_	_	_	_	1	1	_	_	_	_	-	_	_	_	_	_	—	-
Jefferson, LA	_	-	-	-	_	_	-	_	-	_	-	_	-	-	_	-	-	-	—	—
Plaquemines, LA	_	_	_	_	_	_	1	1	_	_	_	_	_	_	_	_	_	_	—	—

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•					•	F	Percent	Chanc	e	•			•		•		
St. Bernard, LA	_	_	_	_	_	_	_	_	-	-	-	_	_	-	-	_	_	_	_	—
Hancock, MS	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Harrison, MS	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	—
Jackson, MS	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Mobile, AL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Baldwin, AL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Escambia, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Santa Rosa, FL	_	_	_	_	_	—	-	_	_	_	_	_	_	_	_	_	_	_	_	
Okaloosa, FL	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	
Walton, FL	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	
Bay, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Gulf, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Franklin, FL	_	_	_	_	_	—	-	_	_	_	_	_	_	_	_	_	_	_	_	
Wakulla, FL	_	_	_	-	_	_	-	_	-	-	-	-	_	-	_	_	_	_	_	
Jefferson, FL	_	_	_	-	_	_	-	_	-	-	-	-	_	-	_	_	_	_	_	
Taylor, FL	_	_	_	-	_	_	-	_	-	-	-	-	_	-	_	_	_	_	_	
Dixie, FL	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_
Levy, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	—
Citrus, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	—
Hernando, FL	_	_	_	-	-	-	-	-	_	_	_	-	_	_	-	_	-	_	-	—
Pasco, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
Pinellas, FL	_	_	_	_	_	_	_	-	-	-	_	_	-	_	-	-	_	_	-	—
Hillsborough, FL	_	_	_	_	_	_	_	-	-	-	_	_	-	_	-	-	_	_	-	—
Manatee, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—

 Table C-1.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
Sarasota, FL	_	-	-	_	-	_	_	-	-	_	_	_	_	_	_	-	_	_	_	—
Charlotte, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Lee, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Collier, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Monroe, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Dade, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Broward, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_
Palm Beach, FL	_	_	-	-	-	_	-	-	_	-	-	-	_	_	_	-	_	_	_	_
Martin, FL	_	-	-	-	-	_	-	-	_	-	-	-	_	_	_	-	_	_	_	_
St. Lucie, FL	_	-	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_	_	_	_
Indian River, FL	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_
Brevard, FL	_	-	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_	_	_	_
Volusia, FL	_	_	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_	_	_	_
Flagler, FL	_	_	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_	_	_	_
St. Johns, FL	_	_	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_	_	_	_
Duval, FL	_	-	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_	_	_	_
Nassau, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ТХ	_	11	23	23	_	7	36	41	_	7	36	41	-	6	39	64	_	8	33	43
LA	19	66	76	76	5	30	49	52	6	20	25	27	5	17	22	24	9	33	43	45
MS	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Tamaulipas, Mexico	_	_	_	_	_	_	1	1	_	_	_	1	_	_	_	_	_	_	_	1

Table C-1.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Veracruz-Llave, Mexico	I	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tabasco, Mexico	-	_	-	_	-	-	_	_	_	_	_	_	-	-	_	_	_	_	_	_
Campeche, Mexico	-	_	-	_	Ι	-	_	_	_	-	-	_	Ι	Ι	-	_	_	-	_	—
Yucatan, Mexico	-	_	-		Ι		_	_		Ι	Ι		Ι	Ι	Ι			Ι	Ι	-
Quintana Roo, Mexico		_	I	-		I	_	_	-	_	_	_			_	-	-	_	_	_
Belize (country)	-	_	-	_	Ι	-	_	_	_	-	-	_	Ι	Ι	-	-	_	-	_	—
Cuba	-	_	_	-	Ι	-	_	_	-	Ι	Ι	-	Ι	Ι	Ι	-	-	Ι	-	—
Passerines	_	4	5	5	_	1	15	17	_	2	11	16	_	1	11	28	_	2	11	17
Raptors	_	10	18	18	_	4	27	30	_	6	23	28	_	5	23	43	_	6	23	30
Shorebirds	6	28	39	39	2	14	45	50	2	13	35	40	1	10	34	56	3	16	38	46
Wading Birds	_	_	_	_	-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_
Waterfowl	19	63	75	76	5	29	62	66	6	20	39	45	5	17	38	58	9	32	53	61
Diving Birds	19	70	88	88	5	33	75	81	6	24	49	56	5	20	48	71	9	37	65	74
Gulls/Terns	19	71	90	90	5	34	77	83	6	25	53	59	5	21	51	75	9	38	68	77
Piping Plover	6	14	16	16	3	15	36	39	5	19	32	35	5	15	29	37	5	16	29	32
Sea Turtle Nesting Habitat I		11	23	23		7	24	28	-	_	_	_		1	9	15	-	5	14	16
Sea Turtle Nesting Habitat II	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sea Turtle Sporadic Nesting Habitat I	19	66	76	76	5	30	49	51	-	_	_	_	I	1	3	4	6	24	32	33
Sea Turtle Sporadic Nesting Habitat II	_	_	_	_		_	_		_	_	_	_	_	_	_	_	_	_	_	
West Indian Manatee Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-1.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sum	mer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
West Indian Manatee Sporadic Habitat	_	_	_	_	_	_	_		_	_	_	_	_	_	_			_	-	_
West Indian Manatee Rare	10	77	00	00	E	27	95	02	2	0	17	17		2	12	10	(21	50	57
Habitat	19	11	99	99	5	37	85	92	2	9	17	17	_	2	12	19	6	31	53	57
Mouse	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Perdido Key Beach Mouse	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Santa Rosa Beach Mouse	_	_	_	_	_	_	1	I	-	I	_	_	_	-	-	-	-	-	I	_
Choctawhatchee Beach Mouse	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
St. Andrews Beach Mouse	_	_	_	_	_	_		I	I	I	_	_	_	I	I	I	I	I	I	_
Southeastern Beach Mouse	_	_	_	_	_	_		-	-	-	_	_	_	-	_	-	-	_	-	_
Anastasia Island Beach Mouse	_	_	_	_	_	_	١	I	١	١	_	_	_	١	I	I	I	Ι	I	_
Smalltooth Sawfish Critical Habitat	-	_	_	_	-	-	١	I	١	١	-	_	-	١	I	I	I	I	I	_
Short Nose Sturgeon	_	_	_	_	_	_	-	Ι	-	-	_	_	_	-	-	Ι	Ι	-	Ι	_
Gulf Sturgeon Critical Habitat	_	_	_	_	_	_	١	I	١	١	_	_	_	١	Ι	I	I	Ι	I	_
Gulf Sturgeon	_	-	-	_	_	_	-	Ι	-	-	_	_	_	-	Ι	I		Ι		-
TX Coastal Bend Beach Area	_	_	_	_	_	_	5	7	_	_	5	9	_	_	4	16	_		4	8
TX Matagorda Beach Area	_	_	1	1	_	1	9	10	_	1	11	12	_	_	12	20	_	1	9	11

 Table C-1.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
TX Galveston																				
Beach Area	_	5	12	12	-	4	13	16	_	3	14	14	-	4	17	22	_	4	14	16
TX Sea Rim State																				
Park	_	5	10	10	_	3	8	8	_	3	6	6	_	2	5	6	_	3	7	7
LA Beach Areas	8	36	42	42	1	12	22	24	2	11	14	15	2	9	11	13	3	17	22	23
AL/MS Gulf																				
Islands	_	-	-	-	-	-	-	_	-	-		-	-	_	-	-	-	-	-	_
AL Gulf Shores	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Panhandle																				
Beach Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Big Bend Beach																				
Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Southwest																				
Beach Area	_	_	_	_	_	_	-	_	-	-	Ι	_	-	-	-	-	-	_	-	-
FL Ten Thousand																				
Islands Area	_	_	_	-	-	-	-	_	_	-	-	_	-	-	_	_	_	_	_	-
FL Southeast Beach																				
Area	—	-	-	-	-	-	-	—	_	-	_	—	—	—	_	—	_	—	—	-
FL Central East																				
Beach Area	_	_	-	-	_	-	-	_	_	-	-	_	-	-	_	_	_	_	_	-
FL Northeast Beach																				
Area	—	-	-	-	-	-	-	—	-	-	-	—	-	-	_	-	-	_	_	-
FL Gulf Coast																				
Jaguarondi and							~	7			-	0				16			4	
Ucelot	_	-	-	-	-	-	5	/	_	-	5	9	_	-	4	16	_	_	4	8
Louisiana Black	1	6	0	0		5	7	7		1	2	2		2	2	2	1	2	5	5
Dear Northann Arlana 1	1	0	ð	ð	-	3	/	/	-	1	2	2	-	2	2	2	1	3	3	2
Folcon								1			1	n			1	2				1
raicon	-			-			-	1	_	-	1	Z	_	_	1	3	_	_	_	1
Whooping Crane 1							6	6	_	-	4	5	_	-	4	10	_	_	4	5
Whooping Crane 2	10	22	23	23	2	10	13	14	3	7	8	8	3	7	8	8	5	12	13	13

 Table C-1.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	mer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Wood Stork	-	_	_	_	-	-	-	_	-	-	-	-	-	-	_	_	_	_	-	_
Alabama Red- bellied Turtle	-	-	_	_	-	-	-	_	-	-	-	-	-	-	_	_	_	_	-	_
Gopher Tortoise and Louisiana Quillwort	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Eastern Indigo Snake	-	_	_	_	-	-	-	_	I	-	-	-	-	-	_	_	_	_	-	_
Mississippi Gopher Frog	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_
Flatwoods Salamander	-	_	_	_	-	-	-	_	-	-	-	-	-	-	_	_	_	_	-	_
Telephus Spurge	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mississippi Sandhill Crane	١	_	_	_	١	١	١	_	Ι	١	١	١	١	١	_	-	_	_	١	_
Everglades Snail Kite	_	_	_	_	_	-	-	_	-	-	-	-	-	-	_	_	_	_	-	_
Cape Sable Seaside Sparrow	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Roseate Tern		-	-		-	-	-	_	-	-	-	_	-	-	_	_	_	-	-	-

 Table C-1.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of < 0.5% are indicated by •

Table C-2

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Cameron, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Willacy, TX	_	_	_	_	_	_	_	_	I	I	_	_	_	_	_	_	_	_	_	_
Kenedy, TX	_	-	_	_	_	_	_	_	I	I	-	_	_	_	_	_	_	-	-	_
Kleberg, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nueces, TX	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_
Aransas, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Calhoun, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Matagorda, TX	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	1	_	_	_	_
Brazoria, TX	_	_	_	-	-	_	_	-	_	_	_	-	_	_	_	_	-	_	-	_
Galveston, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chambers, TX	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_
Jefferson, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Cameron, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Vermilion, LA	_	_	_	-	-	_	_	-	_	_	_	-	_	_	_	1	-	_	-	_
Iberia, LA	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_
St. Mary, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Terrebonne, LA	_	_	_	-	-	_	_	1	_	_	_	-	_	_	2	2	-	_	1	1
Lafourche, LA	_	_	_	_	_	_	_	_	_	_	1	1	_	_	_	1	_	_	_	
Jefferson, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1	_	_	_	_
Plaquemines, LA	_	2	3	3	2	9	17	19	2	17	24	24	1	12	18	20	1	10	15	17

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
St. Bernard, LA	-	5	6	6	1	8	13	14	1	8	10	10	1	5	8	8	1	7	9	10
Hancock, MS	_	2	3	3	_	2	2	2	1	2	3	3	_	1	2	3	_	2	3	3
Harrison, MS	2	5	5	5	1	4	5	5	1	2	3	3	2	3	4	4	1	3	4	4
Jackson, MS	7	13	14	14	3	6	8	8	6	11	12	13	6	10	12	13	6	10	11	12
Mobile, AL	13	18	19	19	4	9	10	10	8	12	12	13	9	12	13	13	9	13	14	14
Baldwin, AL	8	15	18	18	2	8	9	9	1	2	3	3	3	6	7	7	3	8	9	9
Escambia, FL	1	6	9	10	1	4	6	6	_	1	1	1	_	2	2	3	_	3	5	5
Santa Rosa, FL	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Okaloosa, FL	_	1	2	2	_	1	2	2	_	_	-	_	_	_	_	_	_	_	1	1
Walton, FL	-	_	1	1	_	1	1	1	_	_	_	1	_	_	_	_	_	_	1	1
Bay, FL	_	2	3	3	_	1	2	3	_	_	_	_	_	_	_	1	_	1	1	2
Gulf, FL	_	1	3	4	_	_	2	2	_	_	_	_	_	_	_	_	_	_	1	1
Franklin, FL	_	_	1	2	_	_	1	1	_	_	-	_	_	_	_	_	_	_	_	1
Wakulla, FL	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Jefferson, FL	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Taylor, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Dixie, FL	_	-	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Levy, FL	_	-	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Citrus, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Hernando, FL	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_
Pasco, FL	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_
Pinellas, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Hillsborough, FL	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Manatee, FL	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	_	_	-	-	_

 Table C-2.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
Sarasota, FL	_	_	_	_		-	_	_				-			_	_	I		_	—
Charlotte, FL	_	_	_	_	-	_	_	_	-	-	-	_	-	-	_	_	-	-	_	—
Lee, FL	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	—
Collier, FL	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Monroe, FL	-	_	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	—
Dade, FL	_	_	_	_	-	_	_	_	-	-	_	_	-	-	_	_	_	-	_	_
Broward, FL	_	_	_	_	-	_	_	_	-	-	_	_	-	-	_	_	_	-	_	_
Palm Beach, FL	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Martin, FL	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
St. Lucie, FL	_	_	_	_	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_
Indian River, FL	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Brevard, FL	_	_	_	_	-	_	-	_	-	_	_	_	_	_	_	-	_	_	_	_
Volusia, FL	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Flagler, FL	_	_	_	_	-	_	-	_	-	_	_	_	_	_	_	-	_	_	_	_
St. Johns, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Duval, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nassau, FL	_	_	_	_	-	_	-	_	-	_	_	_	_	_	_	-	_	_	_	_
TX	_	_	_	_	-	_	-	1	-	_	1	2	_	_	_	2	_	_	_	1
LA	_	6	8	9	3	17	30	35	3	25	36	36	2	18	29	33	2	17	26	28
MS	9	20	22	22	5	12	15	15	8	15	18	19	8	15	18	20	7	15	18	19
AL	21	33	37	37	6	17	20	20	9	14	15	15	12	18	20	20	12	20	23	23
FL	1	11	19	26	1	7	14	16	_	1	3	3	_	2	4	5	1	5	10	13
Tamaulipas, Mexico	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-2.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sun	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•					•	•	I	Percent	Chanc	e				•				
Veracruz-Llave, Mexico	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tabasco, Mexico	_	_	-	-	-	-	_	_	-	_	-	-	-	-	-	_	-	-	-	_
Campeche, Mexico	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Yucatan, Mexico	_	_	-	-		_	_	_	-	_		-	-	-	-	_	-	-	-	—
Quintana Roo, Mexico	_	_	I	I	I	I	_	_	Ι	_	I	I	I	Ι	I	_	I	I	Ι	_
Belize (country)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Cuba	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Passerines	28	53	61	62	12	33	42	45	17	31	37	39	19	33	39	44	19	38	45	48
Raptors	22	37	42	46	7	17	24	26	13	19	22	23	15	22	24	27	14	24	28	31
Shorebirds	23	44	53	58	8	24	34	38	13	23	28	30	15	26	33	39	15	29	37	41
Wading Birds	27	48	54	55	11	28	36	37	17	30	34	36	19	31	36	40	18	34	40	42
Waterfowl	19	37	43	45	9	33	50	56	13	41	54	56	13	35	48	56	14	36	49	53
Diving Birds	31	60	67	68	14	46	65	72	20	54	69	72	22	50	66	75	22	52	67	72
Gulls/Terns	31	61	72	76	13	36	52	58	19	42	55	58	22	43	57	67	21	46	59	65
Piping Plover	11	18	20	20	7	23	32	35	17	31	39	42	19	32	41	46	14	26	33	36
Sea Turtle Nesting Habitat I	_	_	_	1	_	-	_	_	-	_	_	-	_	-	_	1	-	_	-	_
Sea Turtle Nesting Habitat II	32	64	77	83	12	35	48	51	11	19	20	21	1	3	4	8	14	30	37	41
Sea Turtle Sporadic Nesting Habitat I	_	_	1	1	_	_	_	1	_	_	_	_	_	_	1	2	_	_	1	1
Sea Turtle Sporadic Nesting Habitat II	_	6	9	10	3	17	29	33	2	18	24	24	_	1	4	4	2	11	17	18

 Table C-2.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Table C-2. Condi Enviro	tional l	Probabi al Resc	ilities (ource w	express ithin th	sed as e Spec	percent ified N	t chanc umber	e) that of Days	an Oil s (conti	Spill nued).	Occurr	ing at l	Launch	Point	2 Will	Make	Conta	ct with	an Or	shore
Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			An	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
West Indian Manatee Habitat	1	11	19	26	1	7	14	16	_	1	3	3	_	2	4	5	1	5	10	13
West Indian Manatee Sporadic Habitat	31	58	65	66	13	38	50	52	5	13	14	14	1	3	5	8	12	28	34	35
West Indian Manatee Rare Habitat	_	2	2	3	2	8	15	19	1	6	6	6	_	1	3	5	1	4	7	8
Alabama Beach Mouse	8	15	18	18	2	8	9	9	1	2	3	3	3	6	7	7	3	8	9	9
Perdido Key Beach Mouse	9	21	27	28	3	12	15	16	1	3	4	4	3	7	9	10	4	11	14	15
Santa Rosa Beach Mouse	_	3	5	6	_	3	4	5	_	1	1	1	_	1	2	2	_	2	3	3
Choctawhatchee Beach Mouse	_	3	6	7	_	2	5	6	_	_	1	1	_	1	1	1	_	2	3	4
St. Andrews Beach Mouse	_	3	5	7	_	1	4	5	_	_	_	_	_	-	_	1	_	1	2	3
Southeastern Beach Mouse	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Anastasia Island Beach Mouse	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Smalltooth Sawfish Critical Habitat	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Short Nose Sturgeon	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Gulf Sturgeon Critical Habitat	32	69	83	89	13	44	62	65	18	40	47	48	21	40	49	54	21	48	60	64
Gulf Sturgeon	32	70	86	92	15	52	78	83	20	55	68	70	22	51	65	71	22	57	74	79
TX Coastal Bend Beach Area	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	1	_	_	_	1

 Table C-2.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sun	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
TX Matagorda Beach Area	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	_
TX Galveston Beach Area																1	_		_	
TX Sea Rim State Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LA Beach Areas	_	_	_	_	_	_	_	1	_	_	1	1	_	_	1	2	_	_	1	1
AL/MS Gulf Islands	23	38	41	41	9	21	25	26	16	27	30	32	17	27	30	33	16	28	32	33
AL Gulf Shores	8	15	18	18	2	8	9	9	1	2	3	3	3	6	7	7	3	8	9	9
FL Panhandle Beach Area	1	11	18	23	1	7	14	15	-	1	ſ	3	_	2	4	5	1	5	10	11
FL Big Bend	1	11	10	25	1	,		15		1	5	5				5	1	5	10	1
FL Southwest	_	_	1	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Beach Area	-	-	-	-	-	_	_	_	-	-	-	_	_	-	_	-	-	_	-	-
Islands Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Southeast				1				1												1
FL Central East	_	_	_	1	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1
FL Northeast				_		_	_	_				_	_		_	_	_	_	_	
Beach Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Jaguarondi and Ocelot	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	1	_	_	_	1
Louisiana Black Bear	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Northern Aplomado Falcon	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-2.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•			•	•	•	I	Percent	Chanc	e	•		•	•			•	
Whooping Crane 1	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Whooping Crane 2	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	1	_	_	_	_
Wood Stork	22	44	56	63	7	24	34	36	9	15	18	18	12	20	23	25	13	26	33	36
Alabama Red- bellied Turtle	30	51	56	57	11	27	32	33	16	27	30	31	20	31	35	37	19	34	38	39
Gopher Tortoise and Louisiana Quillwort	9	20	22	22	5	12	15	15	8	15	18	19	8	15	18	20	7	15	18	19
Eastern Indigo Snake	1	11	19	26	1	7	14	16	_	1	3	3	_	2	4	5	1	5	10	13
Mississippi Gopher Frog	9	18	19	19	4	10	13	13	7	13	15	16	8	13	16	17	7	14	16	16
Flatwoods Salamander	_	_	1	2	_	_	1	1	_	_	-	_	_	-	_	_	_	_	_	1
Telephus Spurge	_	3	6	9	_	1	5	5	_	_	_	_	_	_	_	1	_	1	3	4
Mississippi Sandhill Crane	9	18	19	19	4	10	13	13	7	13	15	16	8	13	16	17	7	14	16	16
Everglades Snail Kite	_	_	_	1	_	_	_	1	_	_	-	_	_	-	_	_	_	_	_	1
Cape Sable Seaside Sparrow	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Roseate Tern	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

Table C-2.	Conditional Probabilities	(expressed as percent	chance) that an	Oil Spill	Occurring a	at Launch	Point 2	Will Mak	e Contact	with a	1 Onshore
	Environmental Resource v	within the Specified N	umber of Days (c	ontinued).							

Note: Values of <0.5% are indicated by "-".

Table C-3

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			An	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
Cameron, TX	_	-	_	_	_	_	_	2	_	_	_	1	_	-	_	1	-	-	_	1
Willacy, TX	-	-	_	-	_	_	_	1	_	_	_	1	-	_	_	2	-	_	_	1
Kenedy, TX	_	_	_	_	_	_	1	5	_	_	_	2	_	_	_	3	_	_	_	3
Kleberg, TX	_	_	_	_	_	-	1	3	_	-	1	2	_	_	_	2	_	_	_	2
Nueces, TX	_	_	_	_	_	_	_	2	_	_	1	2	_	_	_	3	-	_	_	1
Aransas, TX	_	_	_	_	_	-	_	2	_	-	1	2	_	_	_	3	_	_	_	2
Calhoun, TX	_	_	_	_	_	_	_	3	_	_	1	2	_	_	1	4	-	_	1	2
Matagorda, TX	_	_	3	5	-	-	1	4	_	-	2	5	_	_	3	10	_	_	2	6
Brazoria, TX	_	_	3	3	_	_	2	5	_	_	1	2	_	_	3	8	-	_	2	5
Galveston, TX	_	_	3	5	-	-	2	3	_	-	1	2	_	_	2	5	_	_	2	4
Chambers, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Jefferson, TX	_	_	4	5	-	-	1	1	_	-	_	-	_	_	1	2	_	_	1	2
Cameron, LA	_	_	9	11	_	_	1	3	_	_	_	2	_	_	1	3	_	_	3	5
Vermilion, LA	_	1	5	6	_	_	1	1	_	_	_	_	_	_	1	2	_	_	2	2
Iberia, LA	_	1	3	3	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1	1
St. Mary, LA	_	_	1	1	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Terrebonne, LA	_	5	12	13	_	-	1	2	_	_	1	1	_	1	2	2	_	2	4	5
Lafourche, LA	_	2	5	6	_	_	1	2	_	_	_	_	_	_	1	2	_	1	2	2
Jefferson, LA	_	_	1	1	_	_	_	1	_	_	_	_	_	_	_	_	_	_	1	1
Plaquemines, LA	_	3	10	10	_	_	2	3	_	_	_	-	_	_	2	2	_	1	3	4

Central Planning Area Lease Sales 235, 241, and 247 EIS

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•			•	•		F	Percent	Chanc	e				•	•			
St. Bernard, LA	-	_	1	1	_	_	-	_	I	I			I		I	_	_	_	_	_
Hancock, MS	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Harrison, MS	_	_	_	_	_	-	_	_	_	_	_	-	_	_	-	_	_	_	-	
Jackson, MS	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	
Mobile, AL	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	
Baldwin, AL	_	_	1	1	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Escambia, FL	_	-	1	1	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_
Santa Rosa, FL	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Okaloosa, FL	_	-	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Walton, FL	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Bay, FL	_	_	_	1	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Gulf, FL	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	_	_	_	_	—
Franklin, FL	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	_	_	_	_	—
Wakulla, FL	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Jefferson, FL	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	_	_	_	_	—
Taylor, FL	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	_	_	_	_	—
Dixie, FL	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Levy, FL	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Citrus, FL	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Hernando, FL	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	
Pasco, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Pinellas, FL	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	
Hillsborough, FL	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	
Manatee, FL	-	-	-	-	-	-	-	-	_	_	_	_	_	_	_	-	_	-	-	—

 Table C-3.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			An	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
Sarasota, FL	-	_	_	_	_	_	_	_	I	_	_	_	_	_	-	-	_	-	_	—
Charlotte, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Lee, FL	_	-	_	-	_	-	_	-	_	_	_	-	-	_	-	-	-	-	_	—
Collier, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Monroe, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	-	-	—
Dade, FL	_	_	_	_	_	_	_	1	_	_	_	_	_	_	-	-	_	-	-	_
Broward, FL	_	-	_	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	-	—
Palm Beach, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
Martin, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
St. Lucie, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
Indian River, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
Brevard, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	-	-	—
Volusia, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	-	-	—
Flagler, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
St. Johns, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
Duval, FL	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	—
Nassau, FL	_	-	_	-	_	-	_	-	_	_	_	-	-	_	-	-	-	-	_	—
ТХ	_	_	13	19	_	_	7	30	_	_	7	21	_	_	11	44	_	_	10	28
LA	_	12	46	52	_	2	6	12	_	1	2	4	_	2	8	12	_	4	16	20
MS	_	_	1	1	_	_	_	1	_	_	_	-	_	_	_	_	_	_	_	—
AL	_	_	1	1	_	_	_	_	_	_	_	_	_	_	-	-	_	-	_	_
FL	_	_	2	5	-	_	_	2	_	_	_	-	_	_	-	1	_	-	1	2
Tamaulipas, Mexico	_	_	_	_	_	_	_	4	_	_	_	3	_	_	_	1	_	_	_	2

Table C-3.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore
	Environmental Resource within the Specified Number of Days (continued).

Central Planning Area Lease Sales 235, 241, and 247 EIS

Season		Spr	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Veracruz-Llave, Mexico	I	_	_	_	_	_	_	2	_	_	_	2	_	_	_	_	_	_	_	1
Tabasco, Mexico	I	_	_	I	١	_	_	_		-	I	_	-	I		I		-	_	—
Campeche, Mexico	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	-	_	—
Yucatan, Mexico	_	_	_	_	_	_	_	_	_	_	_	_	Ι	_	-	_	_	Ι	-	—
Quintana Roo, Mexico		_	_	I	I	_	_	_	I	I	I	_	_	I	-	I	I	_	_	_
Belize (country)	-	_	_	-	-	_	_	_	_	-	I	_	_	Ι	-	-	_	_	_	—
Cuba	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	-	_	—
Passerines	_	_	5	7	_	_	3	21	_	_	5	14	-	-	3	23	_	-	4	16
Raptors	-	_	10	15	-	_	6	25	_	_	6	16	_	I	5	29	_	_	7	21
Shorebirds	-	8	36	44	-	1	10	34	_	1	8	19	_	1	11	40	_	3	16	35
Wading Birds	_	_	1	2	_	_	_	1	_	_	-	_	-	-	_	_	_	-	_	1
Waterfowl	_	12	49	57	_	2	11	35	_	1	8	20	_	2	12	38	_	4	20	38
Diving Birds	-	12	56	66	-	2	12	39	_	1	8	21	_	2	15	47	_	4	23	43
Gulls/Terns	-	13	58	69	-	2	13	41	_	1	8	22	_	2	16	50	_	4	24	46
Piping Plover		2	4	6		1	6	16	_	1	5	10	-	1	8	18	_	1	6	12
Sea Turtle Nesting Habitat I		_	13	19		_	3	11	-	_		_	_		7	24	-	_	6	13
Sea Turtle Nesting Habitat II	-	_	3	7	-	_	1	3	Ι	Ι	_	Ι	Ι	_	Ι	1	Ι	Ι	1	3
Sea Turtle Sporadic Nesting Habitat I		11	43	48		1	6	10	_	_		_	_		3	7	_	3	13	16
Sea Turtle Sporadic Nesting Habitat II	_	1	3	4	_	_	1	2	_	_	_	_	_	_	_	_	_	_	1	2
West Indian Manatee Habitat	_	_	2	5	_	_	_	2	_	_	_	_	_	_	_	1	_	_	1	2

 Table C-3.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sum	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
West Indian																				
Manatee Sporadic																				
Habitat	_	-	2	3	_	_	_	1	_	—	-	_	-	_	-	-	_	_	1	1
West Indian																				
Manatee Rare																				
Habitat	_	12	59	70	_	2	13	36	_	_	2	2	_	_	11	30	_	4	21	34
Alabama Beach																				
Mouse	_	-	1	1	_	_	-	_	_	_	-	_	_	_	_	_	_	_	-	—
Perdido Key Beach																				
Mouse	_	_	2	2	-	_	—	-	_	—	_	_	_	_	_	_	-	-	—	1
Santa Rosa Beach																				
Mouse	-	_	1	1	_	-	—	—	-	_	_	_	-	-	_	-	_	—	_	—
Choctawhatchee																				
Beach Mouse	-	_	1	2	_	-	—	—	-	_	_	_	-	-	_	-	_	—	_	1
St. Andrews Beach																				
Mouse	_	-	-	1	_	_	_	_	_	_	-	_	_	_	_	_	_	-	-	-
Southeastern Beach																				
Mouse	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	—
Anastasia Island																				
Beach Mouse	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Smalltooth Sawfish																				
Critical Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Short Nose																				
Sturgeon	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Gulf Sturgeon																				
Critical Habitat	-	_	4	7	_	-	1	2	-	_	-	-	Ι	-	-	Ι	_	_	1	2
Gulf Sturgeon	_	1	6	10	_	_	1	3	_	-	_	_	_	_	1	1	_	_	2	3
TX Coastal Bend																				
Beach Area	_	-	-	-	-	_	2	14	_	_	3	10	_	_	1	14	-	_	2	10
TX Matagorda																				
Beach Area	-	-	3	5	-	-	1	7	-	-	3	7	-	-	3	15	-	—	3	8

 Table C-3.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	ıll			Wii	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•	•	•		•		F	Percent	Chanc	e								•
TX Galveston																				
Beach Area	-	_	6	9	_	_	3	8	_	_	1	5	-	-	5	13	-	_	4	8
TX Sea Rim State																				
Park	_	-	4	5	-	—	1	1	_	-	-	-	-	-	1	2	-	-	1	2
LA Beach Areas	_	3	15	18	_	1	3	5	_	_	1	3	_	_	2	5	_	1	5	8
AL/MS Gulf																				
Islands	_	_	1	1	-	_	_	1	_	_	-	_	-	-	_	-	_	_	_	_
AL Gulf Shores	_	-	1	1	-	_	-	_	_	_		-	-	-	-	-	Ι		-	_
FL Panhandle																				
Beach Area	_	_	2	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1
FL Big Bend Beach																				
Area	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
FL Southwest																				
Beach Area	_	-	-	_	-	_	-	_	_	_	-	-	-	-	-	-	-	-	-	_
FL Ten Thousand																				
Islands Area	-	-	-	-	-	_	_	-	_	_	-	-	-	-	-	-	-	-	-	-
FL Southeast Beach																				
Area	_	-	-	-	-	—	-	1	—	—	-	-	-	-	-	1	—	_	—	1
FL Central East																				
Beach Area	_	-	-	-	-	—	_	-	_	-	-	-	-	-	-	-	-	-	-	-
FL Northeast Beach																				
Area	_	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	_	-
FL Gulf Coast																				
Jaguarondi and								1.4			2	10			1	14			~	10
Ucelot	—	-	-	-	-	-	2	14	—	_	3	10	-	-	I	14	-	_	2	10
Louisiana Black		1	А	1												1			1	1
Bear	-	1	4	4	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	1
Folcon								2				n				2				2
	_	-	_	-	-	-	-		_	_	-		-	-	-	3	_	_	_	
Whooping Crane 1	_		-	-		-	1	5	-	-	2	4	-	-	1	7	-	_	1	4
Whooping Crane 2	—	1	5	6	_	—	1	1	—	—	-	—	-	-	1	2	_	_	2	2

 Table C-3.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter		Annual			
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Wood Stork	I	-	3	7	-	_	1	2	I	I	-	١	_	_	-	1	_	I	1	3
Alabama Red- bellied Turtle	_	_	1	2	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1
Gopher Tortoise and Louisiana Quillwort		_	1	1	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Eastern Indigo Snake	-	_	2	5	_	_	_	2		-	_		_	_	_	1	_	-	1	2
Mississippi Gopher Frog	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Flatwoods Salamander	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Telephus Spurge	-	_	_	2	_	_	_	_	-	-	_	-	_	_	_	_	_	I	_	_
Mississippi Sandhill Crane	١	_	_	_	_	_	-	-	١	١	-	١	-	_	-	_	-	I	-	-
Everglades Snail Kite	-	_	_	_	_	_	_	1	-	-	_	-	_	_	_	1	_	_	_	1
Cape Sable Seaside Sparrow	-	_	_	_	_	_	_	1	-	-	_	-	_	_	_	_	_	-	_	_
Roseate Tern	_	-			-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_

 Table C-3.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by •

Table C-4

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days

Season		Spr	ing		Summer					Fa	all			Wi	nter		Annual				
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	
Resource									I	Percent	Chanc	e									
Cameron, TX	_	_	_	_	-		_	_	-	2	2	2	1	2	2	2	_	1	1	1	
Willacy, TX	1	1	1	1	I	1	1	1	2	5	6	6	2	3	3	3	1	2	3	3	
Kenedy, TX	5	7	7	7	5	9	9	9	10	22	23	24	10	22	23	23	8	15	16	16	
Kleberg, TX	8	11	11	11	8	13	13	13	7	12	12	12	9	14	14	14	8	12	13	13	
Nueces, TX	23	27	27	27	12	19	19	19	13	18	19	19	12	19	20	20	15	21	21	21	
Aransas, TX	33	36	36	36	18	26	26	26	10	13	14	14	10	16	17	17	18	23	23	23	
Calhoun, TX	11	14	14	14	15	22	23	23	7	11	12	13	5	10	11	11	10	14	15	15	
Matagorda, TX	1	2	2	2	1	4	5	5	_	1	2	2	_	2	2	2	1	2	3	3	
Brazoria, TX	_	_	_	_	_	_	_	_	_	_	1	1	_	_	1	1	_	_	_	_	
Galveston, TX	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Chambers, TX	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	_	-	
Jefferson, TX	_	_	_	_	-	-	_	-	_	_	-	_	_	_	_	_	_	_	_	_	
Cameron, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Vermilion, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Iberia, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
St. Mary, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Terrebonne, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Lafourche, LA	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	-	_	
Jefferson, LA	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	-	_	
Plaquemines, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter		Annual			
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
St. Bernard, LA	-	I	_	_	I	-	_	_	I	_	I	I	I	I	I	-	-	_	_	_
Hancock, MS	_	-	_	_	-	_	_	_	-	_	-	_	-	-	-	_	_	_	_	_
Harrison, MS	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	-	_	-
Jackson, MS	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	—
Mobile, AL	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	—
Baldwin, AL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Escambia, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Santa Rosa, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Okaloosa, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Walton, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_
Bay, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Gulf, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	—
Franklin, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_
Wakulla, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	—
Jefferson, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Taylor, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_
Dixie, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Levy, FL	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
Citrus, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_
Hernando, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	—
Pasco, FL	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	—
Pinellas, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hillsborough, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manatee, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-4.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sun	nmer			Fa	all			Wi	nter		Annual				
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	
Resource								•	F	Percent	Chanc	e				•					
Sarasota, FL	_	_		_			_	_				_	_	_		_	_		_	—	
Charlotte, FL	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	
Lee, FL	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
Collier, FL	_	_	_	_	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	—	
Monroe, FL	_	_	_	_	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	—	
Dade, FL	_	_	-	_	-	_	_	_	-	_	-	_	_	_	_	_	_	-	_	_	
Broward, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Palm Beach, FL	_	_	-	_	-	_	_	_	-	_	-	_	_	_	_	_	_	-	_	_	
Martin, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
St. Lucie, FL	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Indian River, FL	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Brevard, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Volusia, FL	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	_	
Flagler, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
St. Johns, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Duval, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Nassau, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
ТХ	82	97	97	98	58	94	96	96	49	84	92	93	48	87	93	93	60	91	95	95	
LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
MS	_	_	-	_	-	_	-	_	-	_	_	_	_	_	_	_	_	-	_	—	
AL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
FL	_	-	_	-	_	_	_	_	_	_	-	-	-	_	_	_	-	_	-	_	
Tamaulipas, Mexico	_	_	_	_	_	-	_	_	_	_	1	1	_	_	1	1	-	_	_	—	

 Table C-4.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).
Season		Spr	ing			Sum	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource							•	•	I	Percent	Chanc	e							•	
Veracruz-Llave, Mexico	-	_	-	_	-	_	_	_	-	_	_	_	_	-	_	_	-	-	_	_
Tabasco, Mexico	_	I	-	-	-	-	_	_	-	_		-	Ι	-	-	-	-	-	_	—
Campeche, Mexico	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Yucatan, Mexico	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	—
Quintana Roo, Mexico	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Belize (country)	_	-	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_	—
Cuba	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Passerines	82	96	97	97	58	91	93	93	49	83	90	91	48	87	91	92	59	89	93	93
Raptors	82	96	97	97	58	92	93	93	49	84	91	91	48	87	92	92	59	90	93	94
Shorebirds	82	96	97	97	58	92	94	94	49	84	91	92	48	87	92	93	59	90	93	94
Wading Birds	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Waterfowl	82	96	97	97	58	92	93	93	49	84	91	91	48	87	92	92	59	90	93	94
Diving Birds	82	96	97	97	58	92	94	94	49	84	91	92	48	87	92	93	59	90	93	94
Gulls/Terns	82	96	97	97	58	92	94	94	49	84	92	92	48	87	92	93	59	90	94	94
Piping Plover	9	11	11	11	12	22	23	23	14	23	26	26	14	24	25	25	12	20	21	21
Sea Turtle Nesting Habitat I	82	97	97	98	56	89	90	90	-	_	_	_	2	3	3	3	35	47	48	48
Sea Turtle Nesting Habitat II	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sea Turtle Sporadic Nesting Habitat I	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sea Turtle Sporadic Nesting Habitat II	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-4.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•	•			•		I	Percent	Chanc	e	•	•	•	•	•		•	
West Indian Manatee Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
West Indian Manatee Sporadic Habitat	_	-	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_
West Indian Manatee Rare Habitat	82	97	97	98	58	94	96	96	21	28	28	28	2	3	3	3	41	56	56	56
Alabama Beach Mouse	_	I	-	_	I	_	_	_	_	I	I	_	-	-	_	-	_	I	-	_
Perdido Key Beach Mouse	_	Ι	_	_	-	_	_	_	_	-	-	_	_	_	_	_	_	-	_	_
Santa Rosa Beach Mouse	_	I	-	_	I	_	_	_	_	I	I	_	-	-	_	-	_	I	-	_
Choctawhatchee Beach Mouse	_	Ι	_	_	-	_	_	_	_	-	-	_	_	_	_	_	_	-	_	_
St. Andrews Beach Mouse	_		_	_		_	_	_	_	_	-	_	_	_	_	_	_		_	_
Southeastern Beach Mouse	_		_	_		_	_	_	_	_	-	_	_	_	_	_	_		_	_
Anastasia Island Beach Mouse	_	-	_	_	-	_	_	_	_			_	_	_	_	_	_	-	_	_
Smalltooth Sawfish Critical Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Short Nose Sturgeon	_		_	_		_	_	_	_			_	_	_	_	_	_		_	_
Gulf Sturgeon Critical Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Gulf Sturgeon	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_
TX Coastal Bend Beach Area	71	81	81	82	43	67	68	68	42	72	77	77	42	75	79	79	49	74	76	76

 Table C-4.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•				•	•	•	I	Percent	Chanc	e				•		•	•	
TX Matagorda									_				_							
Beach Area	12	16	16	16	16	27	28	28	7	12	14	15	6	12	13	13	10	17	18	18
TX Galveston Beach Area	_	_	_	_	_	1	1	1	_	_	1	1	_	_	1	1	_	_	1	1
TX Sea Rim																				
State Park	-	_	_	_	_	-	-	-	_	_	-	—	_	-	_	-	-	-	—	_
LA Beach Areas	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AL/MS Gulf																				
Islands	-	-	-	-	—	-	-	-	-	-	-	-	-	-	-	-	-	-	-	—
AL Gulf Shores	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
FL Panhandle																				
Beach Area	_	-	_	-	_	-	-	-	-	-	_	-	_	_	_	-	_	-	-	_
FL Big Bend Beach Area																				
EL Southwost	_		_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_
Beach Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Ten Thousand																				
Islands Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Southeast																				
Beach Area	-	_	-	—	-	_	_	_	-	-	-	_	-	_	-	_	_	_	_	—
FL Central East																				
Beach Area	—	—	—	—	_	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—
FL Northeast																				
Beach Area	_	-	_	-	_	-	-	-	-	-	_	-	_	_	_	-	_	-	-	_
FL Gulf Coast																				
Jaguarondi and	71	01	01	0 2	12	67	60	60	40	70	77	77	40	75	70	70	40	74	76	76
Louisiana Plast	/1	01	01	02	43	07	00	08	42	12	//	//	42	15	19	19	49	/4	/0	/0
Bear	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Northern		_	_	_	-		_		_			_	_	_	_		_		_	
Aplomado																				
Falcon	1	1	1	1	_	1	1	1	3	7	8	8	2	5	5	5	1	3	4	4

 Table C-4.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•		•		•	•	I	Percent	Chance	e				•				
Whooping																				
Crane 1	10	12	12	12	5	8	9	9	17	24	27	27	15	26	28	28	12	18	19	19
Whooping Crane 2	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
Wood Stork	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_
Alabama Red- bellied Turtle	_	١	_	-	_	-	_	_	_	-	I	١	-	-	-	_	Ι	I	Ι	_
Gopher Tortoise and Louisiana Quillwort	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	I	_		_
Eastern Indigo Snake	_		_	_	_	_	_	_	_	_			_	_	_	_	_		_	_
Mississippi Gopher Frog	_	١	_	-	_	-	_	_	_	-	I	١	-	-	-	_	I	I	Ι	_
Flatwoods Salamander	_	Ι	_	_	_	_	_	-	_	_	-	Ι	_	_	_	_	-	I	Ι	_
Telephus Spurge	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_
Mississippi Sandhill Crane	_	-	_	_	_	_	_	_	_	_	Ι	-	_	_	_	_	Ι		Ι	_
Everglades Snail Kite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Cape Sable Seaside Sparrow	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Roseate Tern	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Table C-4.	Conditional Probabilities	(expressed as percent	chance) that an	Oil Spill	Occurring a	t Launch	Point 4	Will Mal	e Contact	with an	1 Onshore
	Environmental Resource v	within the Specified Nu	mber of Days (co	ontinued).							

Note: Values of <0.5% are indicated by "-".

Table C-5

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			An	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
Cameron, TX	_		_	_	_	_	2	3		1	5	6	_	_	3	4	I	_	2	3
Willacy, TX	-	_	-	-	_	_	2	3	_	_	3	3	_	_	2	3	_	_	2	2
Kenedy, TX	_	_	_	-	_	-	3	8	_	1	7	9	-	1	9	12	_	1	5	7
Kleberg, TX	_	1	1	1	_	_	2	3	-	1	4	4	_	_	5	6	_	_	3	3
Nueces, TX	_	1	2	2	_	_	1	2	-	1	4	4	_	1	5	6	_	1	3	4
Aransas, TX	_	1	3	3	_	_	2	3	-	1	4	5	_	1	7	8	_	1	4	5
Calhoun, TX	_	5	10	10	_	-	5	7	-	2	6	7	_	2	10	13	-	2	8	9
Matagorda, TX	_	17	28	28	_	1	9	13	-	3	9	11	_	3	12	15	_	6	14	17
Brazoria, TX	_	8	13	13	_	1	6	9	-	1	3	4	_	1	3	5	_	3	6	8
Galveston, TX	_	5	16	17	_	1	7	11	-	1	2	2	_	1	2	3	-	2	7	8
Chambers, TX	_	-	_	—	_	_	_	_	-	_	—	_	—	_	_	_	_	_	_	_
Jefferson, TX	_	-	10	11	_	-	2	4	-	_	_	1	_	_	-	1	-	_	3	4
Cameron, LA	_	1	5	5	_	-	4	6	-	_	_	-	_	_	-	_	-	_	2	3
Vermilion, LA	_	-	1	2	_	_	1	2	-	_	_	_	_	_	_	_	_	_	1	1
Iberia, LA	_	-	_	_	_	-	_	1	-	_	_	-	_	_	-	_	-	_	_	—
St. Mary, LA	_	-	_	_	_	-	_	_	-	_	_	-	_	_	-	_	-	_	_	—
Terrebonne, LA	_	-	_	_	_	_	1	1	-	_	_	_	_	_	_	_	_	_	_	_
Lafourche, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Jefferson, LA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Plaquemines, LA	_	_	_	-	_	-	_	1	_	_	_	_	_	_	_	_	_	_	_	

Central Planning Area Lease Sales 235, 241, and 247 EIS

Season		Spr	ring			Sum	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
St. Bernard, LA	-	-	I	-	I	-	_	-	_	-	-	-	_	-	-	-	-	-	_	_
Hancock, MS	-	-	_	-	-	-	_	-	_	-	-	-	-	-	_	-	-	-	-	-
Harrison, MS	_	-	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	-	-
Jackson, MS	_	-	-	-	-	-	_	-	_	-	-	-	_	-	_	-	-	_	-	_
Mobile, AL	_	-	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	-	-	-
Baldwin, AL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Escambia, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Santa Rosa, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Okaloosa, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Walton, FL	_	-	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	-	-
Bay, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Gulf, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Franklin, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Wakulla, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Jefferson, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Taylor, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Dixie, FL	_	_	-	_	-	-	_	_	_	-	-	-	_	-	-	_	-	-	_	_
Levy, FL	_	_	-	_	-	-	_	_	_	-	-	-	_	-	-	_	-	-	_	_
Citrus, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hernando, FL	_	_	-	_	-	-	_	_	_	-	-	-	_	-	-	_	-	-	_	_
Pasco, FL	-	-	_	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	-	-
Pinellas, FL	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hillsborough, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manatee, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_

 Table C-5.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•		•			•	•	F	Percent	Chanc	e		•	•	•		•	•	
Sarasota, FL	_	_	_	_		I	-	_		_				-	_	-	I	-	_	—
Charlotte, FL	_	_	_	_	-	-	_	_	-	_	-	-	-	_	_	_	-	_	_	-
Lee, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Collier, FL	-	-	-	-	_	_	_	-	_	-	_	_	_	_	-	_	_	_	_	-
Monroe, FL	-	-	-	-	_	_	_	-	_	-	_	_	_	_	-	_	_	_	_	-
Dade, FL	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	—
Broward, FL	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	—
Palm Beach, FL	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	—
Martin, FL	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	—
St. Lucie, FL	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	—
Indian River, FL	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	—
Brevard, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Volusia, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Flagler, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
St. Johns, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Duval, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_
Nassau, FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ТХ	_	39	84	88	_	5	40	66	_	12	47	55	_	9	58	76	_	16	57	71
LA	_	1	7	8	_	_	7	11	_	_	_	_	_	_	_	_	_	_	3	5
MS	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
AL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tamaulipas, Mexico	_	_	_	_	_	_	2	5	_	_	2	5	_	_	2	4	_	_	2	4

Table C-5.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Veracruz-Llave, Mexico	_	_	_	-	-	-	_	1	-	_	-	_	-	-	_	_	_	_	-	_
Tabasco, Mexico	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-
Campeche, Mexico	_	_	_	-	1	1	_	_	-	_	-	_	-	I	-	_	_	_	-	_
Yucatan, Mexico	_	_	_	_	_	-	_	_	_	_	_	_	-	-		_	_	_	_	—
Quintana Roo, Mexico	_	_	_	I	I	I	_	_	Ι	_	Ι	_	I	I	I	_	_	_	Ι	_
Belize (country)	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_
Cuba	_	_	_	-	-	-	_	_	-	_	-	_	-	-	-	_	_	_	-	—
Passerines	_	12	23	24	-	2	20	33	-	8	36	41		6	45	58	_	7	31	39
Raptors	_	18	46	49	I	3	28	46	I	9	39	45	I	6	48	62	_	9	40	50
Shorebirds	_	25	58	61	_	4	33	54	-	9	41	48	-	8	51	66	_	11	46	57
Wading Birds	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_
Waterfowl	_	19	44	46	_	3	33	51	_	9	39	45	_	6	48	62	_	9	41	51
Diving Birds	_	27	64	67	_	4	39	63	_	10	42	49	_	8	52	67	_	12	49	62
Gulls/Terns	_	31	73	77	_	4	41	68	-	10	43	51	-	9	54	71	_	14	53	66
Piping Plover	_	4	7	7	-	2	15	24	-	3	14	16		4	19	24	_	3	14	18
Sea Turtle Nesting Habitat I	_	39	84	88	I	4	30	45	Ι	_	Ι	_	I	3	15	23	_	12	32	39
Sea Turtle Nesting Habitat II	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sea Turtle Sporadic Nesting Habitat I	_	1	7	8	_	_	7	10	_	_	_	_	_	_	_	_	_	_	3	4
Sea Turtle Sporadic Nesting Habitat II	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_

 Table C-5.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

BOEM-OSRA Catastrophic Run

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource				•		•	•		I	Percent	Chanc	e								
West Indian Manatee Habitat	I	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
West Indian Manatee Sporadic Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
West Indian Manatee Rare Habitat	_	40	90	95	_	5	47	74	_	5	13	13	_	3	15	23	_	13	41	51
Alabama Beach Mouse	_		-	_	-	_	_	_	-	_	-	-			_	_	_	-	_	_
Perdido Key Beach Mouse	I	I	I	_	I	_	_	_	I	_	I	I		I	_	_	_	I	_	_
Santa Rosa Beach Mouse	Ι	I	I	_	I	_	_	_	Ι	_	Ι	I	I	I	_	_	_	I	_	_
Choctawhatchee Beach Mouse	-	_	-	_	-	_	_	_	-	_	-	-	-	_	_	_	_	-	_	_
St. Andrews Beach Mouse	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_
Southeastern Beach Mouse	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_
Anastasia Island Beach Mouse	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Smalltooth Sawfish Critical Habitat	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Short Nose																				
Sturgeon Gulf Sturgeon	_	_	_	_	_	_	_	—	_	—	_	_	_	_	—	_	—	_	—	
Critical Habitat	_	-	_	-	_	_	_	-	_	-	_	-	-	-	-	_	-	_	-	
Gulf Sturgeon	_	-	_	-	_	_	_	1	_	_	_	_	-	-	_	_	-	_	_	
Beach Area	_	4	7	7	-	1	12	22	-	4	27	31	-	3	31	40	_	3	19	25

 Table C-5.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•	•	•		•		F	Percent	Chanc	e								
TX Matagorda																				
Beach Area	-	22	38	38	-	1	14	20	_	5	15	17	—	5	22	28	-	8	22	26
TX Galveston																				
Beach Area	-	13	30	31	-	2	13	20	—	2	6	6	_	2	5	8	—	5	13	16
TX Sea Rim																				
State Park	_	_	10	11	-	_	2	4	_	_	_	1	-	-	_	1	_	_	3	4
LA Beach Areas	_	1	5	6	_	_	4	6	_	_	_	_	_	_	_	_	_	_	2	3
AL/MS Gulf																				
Islands	_	_	-	-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
AL Gulf Shores	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Panhandle																				
Beach Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Big Bend																				
Beach Area	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Southwest																				
Beach Area	_	_	-	-	-	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_
FL Ten Thousand																				
Islands Area	-	_	-	_	-	—	—	_	_	_	_	_	_	_	-	_	_	_	_	—
FL Southeast																				
Beach Area	_	_	-	-	-	_	_	_	-	-	_	-	-	-	-	-	_	-	_	_
FL Central East																				
Beach Area	_	_	-	-	-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_
FL Northeast																				
Beach Area	-	_	-	-	-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_
FL Gulf Coast																				
Jaguarondi and				_														_		
Ocelot	-	4	7	7	-	1	12	22	-	4	27	31	-	3	31	40	-	3	19	25
Louisiana Black																				
Bear	_	—	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	-	-	_
Northern																				
Aplomado								_			_	<u>_</u>			_					
Falcon	—	-	-	-	-	-	3	5	-	1	7	9	—	-	5	8	-	-	4	6

Table C-5.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									I	Percent	Chanc	e								
Whooping																				
Crane 1	—	3	4	4	—	1	7	10	—	3	10	11	—	3	16	20	—	2	9	11
Whooping																				
Crane 2	—	-	1	2	—	—	1	2	—	—	—	-	_	—	—	-	—	—	1	1
Wood Stork	_		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	—
Alabama Red-																				
bellied Turtle	_	-	-	_	_	—	-	_	_	_	_	_	-	_	—	-	_	_	-	—
Gopher Tortoise																				
and Louisiana																				
Quillwort	—	_	_	-	-	-	_	-	-	-	-	-	_	-	—	-	-	_	_	—
Eastern Indigo																				
Snake	—	_	_	—	—	—	-	—	—	-	—	-	—	—	—	-	—	—	_	—
Mississippi																				
Gopher Frog	—	_	_	—	—	—	-	—	—	-	—	-	-	—	—	-	—	_	-	—
Flatwoods																				
Salamander	—	_	_	—	—	—	-	—	—	-	—	-	-	—	—	-	—	_	-	—
Telephus Spurge	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Mississippi																				
Sandhill Crane	_	Ι	-	_	_	_	_	_	_	-	_	-	_	_	_	-	_	-		—
Everglades Snail																				
Kite	_	-	-	—	—	—	_	—	—	-	—	-	-	—	—	-	—	_	-	—
Cape Sable Seaside Sparrow	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Roseate Tern	_	_	_	-	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_

Table C-5.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Onshore
	Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by "-".

Table C-6

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Cayman Islands	_	-	-	_	_	_	_	_	-	_	1	-	-	-	_	_	-	_	1	—
Bahamas 1	-	_	_	_	_	-	_	_	I	_	I	I	_	_	_	_	_	_	١	—
Bahamas 2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Bahamas 3	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Bahamas 4	_	-	-	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	—
Bahamas 5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Jamaica	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TX State Waters	_	13	24	24	_	10	38	43	_	10	39	43	_	10	44	67	-	11	36	44
West LA State Waters	26	72	80	80	7	35	55	57	8	25	30	33	9	22	27	29	13	38	48	50
East LA State Waters	_	-	-	_	_	-	_	_	_	_	_	_	-	-	_	_	-	_	_	—
MS State Waters	_	_	_	_	_	-	_	_	_	_	_	_	-	-	_	_	-	_	-	_
AL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL Panhandle State Waters	_	_	_	_	_	_	_	1	-	_	_	-	_	_	_	_	_	_	_	_
West FL State Waters	_	_	_	_	_	_	_	_	-	_	-	-	_	_	_	_	_	_	-	—
Tortugas State Waters	_	_	_	_	_	_	_	_	-	_	-	-	_	_	_	_	_	_	-	—
Southeast FL State Waters	_	_	_	_	_	_	_	_	-	_	-	-	_	_	_	_	_	_	-	_
Northeast FL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mexican Waters	_	_	_	_	_	_	1	1	_	_	_	3	_	_	_	1	_	_	_	1

Season		Spr	ring			Sum	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	Percent	Chanc	e								
Texas West Waters																				
(0-200 m) for EFH	_	-	_	-	-	1	13	14	-	_	14	20	_	—	15	28	-	1	11	16
Texas East Waters	1	20	24	24		20		16		47	60	<i>(</i>)	2	47	60	7.4	2	26	10	50
(0-200 m) for EFH	1	20	24	24	4	29	44	46	4	4/	60	62	2	4/	69	/4	3	36	49	52
Louisiana waters																				
River (0.200 m)	<u>\00</u>	\00	\00	\00	\00	\00	\00	\00	\00	\00										
Louisiana Waters Fast	~>>>	/))	~ > > > >	~>>>	~>>	~>>>	~>>	~>>	/))	~})	/))	~>>>	~>>	~>>	~>>>	~ > > > >	/33	~>>>	~>>>	~))
of Mississippi River																				
(0-200 m)	_	_	_	_	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_
Mississippi Waters																				
(0-200 m)	-	-	_	-	-	_	2	2	-	-	-	_	_	_	_	_	-	_	_	1
Alabama Waters																				
(0-200 m)	-	-	_	-	-	_	2	2	-	-	-	_	_	_	_	_	-	_	-	1
Florida Panhandle																				
Waters (0-200 m)	-	-	_	-	-	_	1	2	-	-	-	_	_	_	_	_	-	_	-	1
Florida Bend Waters																				
(0-200 m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_
Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Florida Keys Waters																				
(0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Southeast																				
Waters (0-200 m)	_	-	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_
Florida Northeast																				
Waters (0-200 m)	-	-	_	-	-	_	_	-	-	-	-	—	_	—	_	_	-	_	_	-
Shoreline - 20 m (1)	-	_	_	_	_	_	1	1	-	_	_	2	_	_	_	1	_	_	_	1
Shoreline - 20 m (2)	-	-	-	-	_	-	12	13	-	_	9	14	-	-	9	25	-	_	8	13
Shoreline - 20 m (3)	1	19	24	24	2	18	34	37	1	26	43	45	1	27	51	55	1	22	38	40
Shoreline - 20 m (4)	84	95	96	96	68	82	85	86	55	68	70	71	63	76	78	78	68	80	82	83
Shoreline - 20 m (5)	1	3	4	4	4	11	15	16	_	3	5	6	1	5	7	8	2	6	8	8

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	ercent	Chanc	e								
Shoreline - 20 m (6)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (7)	-	١	_	_	_	_	_	_	١	I	١	_	_	I	_	_	_	_	I	—
Shoreline - 20 m (8)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (9)	-	_	_	_	_	-	_	1	_	_	_	-	_	_	_	_	_	_	_	-
Shoreline - 20 m (10)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (11)	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-
Shoreline - 20 m (12)	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-
Shoreline - 20 m (13)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Shoreline - 20 m (14)	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-
Shoreline - 20 m (15)	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-
20 m - 300 m (1)	_	_	_	_	_	1	12	12	_	_	14	20	_	_	15	27	_	1	10	15
20 m - 300 m (2)	-	8	10	10	3	20	30	32	3	40	55	57	2	39	62	67	2	27	39	41
20 m - 300 m (3)	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
20 m - 300 m (4)	-	1	1	2	1	8	11	12	1	4	9	10	2	7	9	10	1	5	8	8
20 m - 300 m (5)	-	_	_	_	_	-	1	2	_	_	_	-	_	_	_	_	_	_	_	-
20 m - 300 m (6)	-	_	_	_	_	-	2	2	_	_	_	-	_	_	_	_	_	_	_	1
20 m - 300 m (7)	_	_	_	_	_	_	2	2	_	_	_	_	_	_	_	_	_	_	_	1
20 m - 300 m (8)	-	_	_	_	_	-	1	2	_	_	_	-	_	_	_	_	_	_	_	1
20 m - 300 m (9)	_	-	_	_	_	-	_	_	-	_	_	-	_	_	_	_	_	_	_	—
20 m - 300 m (10)	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-
20 m - 300 m (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (12)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (13)	-	-	-	-	_	_	_	-	-	_	_	_	-	_	_	-	_	-	_	-
20 m - 300 m (14)	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	—

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wii	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
300 m - outer																				
jurisdiction (1)	-	-	-	-	-	1	5	5	-	2	13	19	-	-	15	23	-	1	8	12
300 m - outer																				
jurisdiction (2)	—	-	—	_	—	1	4	4	-	1	11	19	-	-	8	12	-	-	6	9
300 m - outer																				
jurisdiction (3)	-	_	—	—	—	2	5	6	-	8	21	25	-	6	22	27	_	4	12	15
300 m - outer																				
jurisdiction (4)	-	_	_	_	_	1	4	4	-	3	16	24	-	2	11	15	—	2	8	11
300 m - outer																				
jurisdiction (5)	-	_	_	-	_	-	1	2	-	-	7	17	-	—	5	7	—	_	3	6
300 m - outer																				
jurisdiction (6)	-	_	-	-	-	2	3	3	1	12	25	27	-	6	14	17	—	5	11	12
300 m - outer																				
jurisdiction (7)	-	-	_	—	—	—	1	2	_	3	16	20	_	2	8	11	_	1	6	8
300 m - outer																				
jurisdiction (8)	—	-	—	—	—	—	_	1	_	1	9	13	_	_	5	7	_	_	3	5
300 m - outer																				
jurisdiction (9)	-	-	_	1	_	_	1	2	-	6	15	17	-	5	9	11	_	3	6	8
300 m - outer																				
jurisdiction (10)	-	_	_	_	_	_	1	2	_	4	14	17	_	3	8	9	_	2	6	7
300 m - outer																				
jurisdiction (11)	-	_	_	-	-	-	1	1	-	1	10	12	-	_	3	5	_	_	3	5
300 m - outer																				
jurisdiction (12)	-	_	_	_	_	2	4	4	-	-	3	5	-	1	3	3	_	1	2	3
300 m - outer																				
jurisdiction (13)	-	_	_	_	_	1	2	2	-	1	4	6	-	2	3	4	_	1	2	3
300 m - outer																				
jurisdiction (14)	-	-	_	_	_	_	1	1	-	-	3	5	-	_	2	3	_	_	1	2
300 m - outer																				
jurisdiction (15)	-	_	_	_	_	_	2	2	-	_	_	_	-	—	_	_	_	—	-	1
300 m - outer																				
jurisdiction (16)	_	-	_	_	_	_	2	2	-	-	-	2	-	-	1	2	-	-	1	2

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•		•		•		P	ercent	Chanc	e			•					
300 m - outer																				
jurisdiction (17)	-	-	-	_	-	-	1	2	-	-	1	2	-	-	2	3	-	-	1	2
300 m - outer																				
jurisdiction (18)	-	—	—	_	—	-	—	1	—	_	-	1	_	-	—	—	_	_	-	
300 m - outer																				
jurisdiction (19)	-	—	—	_	—	-	—	_	—	_	-	_	_	-	—	—	_	_	-	
300 m - outer																				
jurisdiction (20)	-	-	_	—	_	_	_	_	—	_	-	1	_	_	1	2	_	_	-	1
300 m - outer																				
jurisdiction (21)	-	-	_	_	_	-	_	_	_	_	-	1	_	-	_	_	_	_	-	
300 m - outer								_												
jurisdiction (22)	-	-	_	_	_	-	1	2	_	_	-	_	_	-	_	_	_	_	-	1
300 m - outer																				
jurisdiction (23)	-	-	_	_	_	-	_	_	_	_	-	_	_	-	_	_	_	_	-	
300 m - outer																				
jurisdiction (24)	-	-	_	_	_	_	_	_	_	_	_	1	_	_	1	2	_	_	-	1
300 m - outer																				
jurisdiction (25)	-	-	_	_	_	-	_	_	_	_	-	1	_	-	_	1	_	_	-	
300 m - outer																				
jurisdiction (26)	-	-	_	_	_	_	_	_	_	_	_	_	_	_	1	1	_	_	-	
300 m - outer																				
jurisdiction (27)	-	-	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	-	
300 m - outer																				
jurisdiction (28)	-	-	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	-	
300 m - outer																				
jurisdiction (29)	-	-	_	_	_	-	_	-	_	-	-	_	-	-	_	_	-	_	-	
300 m - outer																				
jurisdiction (30)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
North Atlantic Right																				
Whale	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Southeastern SMA	-	-	-	-	—	—	—	—	-	—	—	-	—	—	—	-	—	—	-	_

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•	•		•		•	F	Percent	Chanc	e		•	•					
Sargassum (March/April)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	1	1	_	_	_	_
Sargassum (May/June)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sargassum (July/August)	_	_	_	1	1	6	10	10	_	_	_	_	_	_	_	_	_	2	2	3
Seagrass-Wakulla County	_	_	_	_	_	_	_	_	-	-	-	_	-	_	_	_	-	-	_	_
Seagrass-Jefferson County	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Seagrass-Taylor County	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	_	-	_	-	_
Seagrass-Dixie County	_	_	_	_	_	_	_	_		-	I	_		_	_	_	-	I	_	_
Seagrass-Levy County	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (1)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	1		_	_	_
Topographic Features (2)	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_	_
Topographic Features (3)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_
Topographic Features (4)	_	_	_	_	_	_	_	_	-	-	I	_	-	_	_	_	-	I	_	_
Topographic Features (5)	_	_	_	_	_	_	_	_	_	_	I	_	-	_	_	1	_	I	_	_
Topographic Features (6)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Topographic Features (7)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Topographic Features (8)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource				•		•			F	ercent	Chanc	e								
Topographic Features (9)	_	I	_	_	_	_	_	_	I	I	-	_	I	I	1	1	I		-	_
Topographic Features (10)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Topographic Features (12)	_	-	_	_	_	_	_	_	-	-	1	1	-	-	2	2	-	-	1	1
Stetson Bank	_	-	_	_	_	_	_	_	-	-	_	1	-	-	1	2	_	I	-	1
Topographic Features (13)	_	١	-	-	-	_	1	1	١	١	2	2	١	١	3	4	I	I	2	2
Topographic Features (14)	_	-	_	_	_	_	_	_	-	-	1	1	-		1	1	Ι	Ι	Ι	1
Topographic Features (15)	_	-	_	_	_	_	1	1	-	1	2	3	-	1	4	4	I	1	2	2
East Flower Garden Bank	_	_	_	_	_	_	1	1	_	2	4	5	_	2	5	6	_	1	3	3
West Flower Garden Bank	_	-	_	_	_	1	1	1	-	2	5	6	-	1	3	4	-	1	2	3
Topographic Features (16)	_	-	_	_	_	_	_	_	-	1	3	3	-	1	2	3	_	1	1	2
Topographic Features (17)	_	_	_	_	_	_	1	1	_	1	2	3	_	1	2	2	_	1	1	1
Topographic Features (18)	_	_	_	_	_	_	_	_	_	1	1	1	_	_	1	1	_	_	1	1
Topographic Features (19)	_	_	_	_	_	_	_	_	_	1	2	2	_	1	1	1	_	1	1	1
Topographic Features (20)	_	_	_	_	_	1	1	1	_	1	3	3	_	1	2	2	_	1	1	2
Topographic Features (21)	_	_	_	_	_	_	1	1	_	2	4	5	_	1	2	3	_	1	2	2

Table C-6.	onditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshor	e
	nvironmental Resource within the Specified Number of Days (continued).	

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e								
Topographic Features (22)	_	_	_	-	_	_	_	_	-	_	1	1	_	-	1	1	_	_	_	1
Topographic Features (23)	_	_	_	_	_	_	_	_	_	1	3	3	_	1	2	2	_	_	1	1
Sonnier Bank	_	-	-	_	_	_	1	1	1	3	3	3	1	2	3	3	1	1	2	2
Topographic Features (24)	_	_	_	_	_	_	1	1	1	2	3	3	_	2	2	3	_	1	2	2
Topographic Features (25)	-	_	_	-	_	_	-	Ι	-	1	2	3	I	1	2	2	Ι	1	1	1
Topographic Features (26)	_	_	_		_	_	I		l	1	2	2	I	l	1	1			1	1
Topographic Features (27)	_	-	-	I	_	_	I	1	I	1	2	2	I	1	2	3	I	1	1	1
Topographic Features (28)	_	_	_	_	_	_	_	_	_	1	2	2	_	1	2	2	_	1	1	1
Topographic Features (29)	_	_	_	-	_	_	-	-	-	_	1	1	-	-	1	1	-	_	-	_
Topographic Features (30)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (31)	_	_	_	-	_	_	-	-	-	_	1	1	-	-	-	_	-	_	-	_
Topographic Features (32)	_	_	_	-	_	_	-	1	-	_	1	1		-	1	1		_	1	1
Topographic Features (33)	_	_	_	-	_	_	-	1	-	_		_		-	-	1	-	_	Ι	_
Topographic Features (34)	_	_	_	-	_	_	-	-	-	_	-	_	-	-	1	1	-	_	-	_
Topographic Features (35)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pinnacle Trend	_	_	_	_	_	_	1	2	_	_	_	_	_	_	_	_	_	_	_	_
Chandeleur Islands	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sum	mer			Fa	ıll			Wii	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•	•					P	ercent	Chanc	e				•				
Florida Middle Ground	_	_	_	_	-	-	-	-	_	_	_	_	_	_	-	_	_	_	_	_
Pulley Ridge	_	_	_	_	-	-	-	-	-	_	-	-	-	-	-	_	_	_	_	_
Madison Swanson	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Steamboat Lumps	-	_	_	_	_	-	_	_	-	_	_	-	_	-	_	_	-	_	_	_
Dry Tortugas	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Tortugas Ecological Reserve North	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve South	_	_	_	_		-		I	-	_		-		-		_	-	_	_	_
Florida Keys National Marine Sanctuary (year round)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL State Waters	-	_	_	_	-	-	-	-	-	Ι	Ι	-	Ι	-	-	_	-	Ι	_	_
Key Biscayne National Park	_	_	_	_	-		-			Ι	_		_		-	_		Ι	_	-
Texas Clipper and South Texas Platform	_	_	_	_	-		1	2	-	Ι	1	1	_	-	-	_	-	Ι	_	1
Port Lavaca/Liberty Ship Reef	_	3	4	4	-	7	16	17		7	17	17	_	1	4	4		4	10	11
High Island	_	8	13	13	1	6	13	14	_	10	15	15	_	1	4	4	_	6	11	11
West Cameron	12	27	30	30	11	31	38	40	12	32	33	33	Ι	3	4	4	9	23	26	27
Galveston Area (GA 393)	_	_	_	_	_	1	2	2	_	_	2	2	_	_	1	1	_	_	1	1
Cognac Platform (MC 194)	_	_	_	_	-		-			Ι	_		_		-	_	-	Ι	_	-
Horseshoe Rigs (MP 306)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Vermilion Area	>99	>99	>99	>99	>99	>99	>99	>99	66	66	66	66	1	1	1	1	67	67	67	67

Table C-6.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	Percent	Chanc	e								
Vermilion Area, South Addition	3	6	6	6	3	8	9	10	7	11	13	13	_	_	_	_	3	6	7	7
Bay Marchand	_	_	_	-	_	_	1	1	_	_	-	_	-	_	-	_	-	-	_	_
South Timbalier	_	1	1	1	_	6	8	8	_	_	-	_	-	_	-	1		2	2	3
South Timbalier Area, South Addition	_	_	_	I	_	2	3	3	-	_	I	_	I	_	I	-	I	1	1	1
Panhandle FL	_	_	_	-	_	_	-	2	_	_	-	_	-	_	-	_	-	-	_	_
Tampa	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Southeast FL	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	Ι	_
Daytona Beach	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Jacksonville	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	Ι	_
Stetson Bank (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		I	_	_
East Flower Garden Bank (April-Nov)	_	_	_	_	_	_	1	1	_	1	2	2	_	_	_	_	_	_	1	1
West Flower Garden Bank (April-Nov)	_	_	_	_	_	1	1	1	_	1	2	2	_	_	_	_	_	1	1	1
Chandeleur Islands (April-Nov)	_	_	_		_	_		_	_	_		_		_		-			_	_
Tortugas Ecological Reserve 1 (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve 2 (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Keys National Marine Sanctuary (April-Nov)	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_			_	_
TX Gulf State Waters (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
LA Gulf State Waters (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LA Gulf State Waters (Nov-April)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
MS Gulf State Waters (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AL Gulf State Waters (Nov-April)	_	_	_	_	_	_	_	_	I	_	_	_	_	_	_	_	_	_		_
FL (East Coast and Gulf)1 (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL (East Coast and Gulf)2 (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL (East Coast and Gulf)3 (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL (East Coast and Gulf)4 (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL (East Coast and Gulf)5 (Nov-April)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	-	_

 Table C-6.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 1 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by "-".

Table C-7

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days

Season		Spi	ring			Sum	mer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Cayman Islands	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Bahamas 1	_	1	_	_		1	1	_	-	_	1		_	-	_	_	_	-	_	—
Bahamas 2	_	-	_	_	-	-	-	_	-	_	-	-	_	-	-	_	_	-	-	—
Bahamas 3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Bahamas 4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Bahamas 5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Jamaica	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
TX State Waters	_	-	_	_	-	-	-	2	-	_	1	2	_	-	_	2	_	-	-	2
West LA State Waters	_	_	1	1	_	1	3	5	_	4	8	8	_	3	9	12	_	2	5	6
East LA State	6	15	17	17	12	20	29	41	14	27	42	42	12	20	29	40	11	20	24	25
MS State Waters	12	22	22	22	7	15	10	10	14	10	42	43 21	12	10	20	24	10	10	21	22
MS State Waters	12	42	25 16	47	/	15	10	19	10	10	10	20	11	19	22	24	10	10	20	22
FL Panhandle State	29	43	40	47	11	22	20	20	15	18	19	20	1 /	23	27	28	17	21	30	30
Waters	5	17	23	27	3	13	21	22	1	3	5	5	1	4	6	7	3	9	14	15
West FL State Waters	_	_	2	4	_	_	_	1	_	_	_	_	_	_	_	1	_	_	1	2
Tortugas State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Southeast FL State Waters	_	-	_	1		I	-	1	I	_	I	-	_	I	-	1	_	I	-	1
Northeast FL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mexican Waters	_	_	_	_	-	-	_	_	_	_	_	-	_	_	_	_	_	_	_	

Central Planning Area Lease Sales 235, 241, and 247 EIS

Season		Spr	ring			Sum	mer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
Texas West Waters (0-200 m) for EFH	_	_	_	_	_	_	_	2	_	_	1	2	_	_	_	1	_	_	_	1
Texas East Waters (0-200 m) for EFH	_	_	_	_	_	_	1	2	_	_	2	3	_	_	1	3	_	_	1	2
Louisiana Waters West of Mississippi River (0-200 m)	_	_	1	1	_	2	4	7	1	7	13	16	_	5	13	17	_	4	8	10
Louisiana Waters East of Mississippi River (0-200 m)	7	16	18	18	15	30	40	43	19	43	49	50	16	35	44	46	14	31	38	39
Mississippi Waters (0-200 m)	30	39	40	41	36	50	57	60	52	67	71	71	46	60	65	66	41	54	58	60
Alabama Waters (0-200 m)	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
Florida Panhandle Waters (0-200 m)	17	30	34	35	15	36	40	40	6	12	15	15	9	19	22	23	12	24	28	28
Florida Bend Waters (0-200 m)	_	1	7	9	_	2	6	7			2	2	_	1	2	3		1	4	5
Florida Southwest Waters (0-200 m)	_		2	2	-	-	1	1	I	١	1	1	-	I	I	2	I	١	1	2
Florida Keys Waters (0-200 m)	_	-	I	1	-	_	_	1	I	I	I	I	-	I	I	1	I	I	I	1
Florida Southeast Waters (0-200 m)	_	_	_	1	_	_	_	1	_	_	_	_	_	_	_	1	_	_	_	1
Florida Northeast Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (1)	_	_	_	_	_	_	_	_	-	_	_	_	_	-	-	_	-	_	_	_
Shoreline - 20 m (2)	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	1	_	_	_	1
Shoreline - 20 m (3)	-	_	_	_	_	_	-	1	_	_	1	1	_	_	-	1	_	_	-	1
Shoreline - $20 \text{ m}(4)$ Shoreline - $20 \text{ m}(5)$	_	_	- 1	-	_	-	1	2	_	-	1	2 9	_	- 2	9	2 11	_	- 2	5	1 7

Table C-7.	Conditional Probabilities	(expressed as percent	chance) that an	Oil Spill Occurrin	g at Launch	Point 2	Will Make	Contact with a	n Offshore
	Environmental Resource	within the Specified Nu	umber of Days (c	continued).					

BOEM-OSRA Catastrophic Run

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
Shoreline - 20 m (6)	7	16	17	18	14	29	38	40	17	39	43	44	15	31	39	41	13	29	34	36
Shoreline - 20 m (7)	22	33	34	35	27	42	49	51	33	49	52	53	30	43	48	50	28	42	46	47
Shoreline - 20 m (8)	52	63	66	67	30	43	47	47	26	33	34	35	35	44	46	47	35	46	48	49
Shoreline - 20 m (9)	3	13	21	26	2	10	18	19	_	2	4	4	1	3	5	6	1	7	12	14
Shoreline - 20 m (10)	_	_	2	5	_	_	1	2	_	-	_	_	_	_	_	_	_	_	1	2
Shoreline - 20 m (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (12)	-	-	_	1	-	_	-	1	_	-	-	-	_	-	_	1	_	_	-	1
Shoreline - 20 m (13)	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (14)	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (15)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (1)	_	_	_	_	_	_	_	2	_	-	1	2	_	_	_	2	_	_	_	1
20 m - 300 m (2)	_	_	_	_	_	_	1	2	_	-	2	3	_	_	1	3	_	_	1	2
20 m - 300 m (3)	_	_	_	_	_	_	2	3	_	1	3	5	_	_	2	4	_	_	2	3
20 m - 300 m (4)	_	-	1	1	_	2	5	7	1	8	13	16	-	5	14	17	_	4	8	10
20 m - 300 m (5)	1	3	5	5	2	5	10	13	3	20	26	28	4	17	24	26	2	11	16	18
20 m - 300 m (6)	21	28	30	30	31	42	49	52	47	62	65	66	40	52	58	60	35	46	51	52
20 m - 300 m (7)	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
20 m - 300 m (8)	16	28	32	32	15	36	39	39	6	12	15	15	9	19	22	23	11	24	27	28
20 m - 300 m (9)	_	1	7	9	_	3	7	7	_	1	3	3	-	1	3	5	_	1	5	6
20 m - 300 m (10)	_	-	2	2	_	-	1	1	_	_	1	1	-	-	_	2	_	_	1	2
20 m - 300 m (11)	_	-	_	1	-	_	_	1	_	_	—	_	_	_	_	1	_	_	-	1
20 m - 300 m (12)	_	-	_	1	-	_	_	1	_	_	—	_	_	_	_	1	_	_	-	1
20 m - 300 m (13)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (14)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
300 m - outer																				
jurisdiction (1)	-	-	-	-	—	-	—	1	-	—	-	2	-	—	-	2	-	-	-	1
300 m - outer																				
jurisdiction (2)	-	-	_	-	-	-	-	1	_	-	1	2	_	-	_	2	-	-	_	1
300 m - outer																				
jurisdiction (3)	-	_	_	_	-	—	-	1	-	-	1	2	_	-	_	2	_	_	_	1
300 m - outer																				
jurisdiction (4)	-	—	-	-	-	—	—	1	-	_	1	4	-	_	_	3	_	-		2
300 m - outer																				
jurisdiction (5)	-	_	_	_	-	—	-	-	-	-	1	3	_	-	_	3	_	_	_	2
300 m - outer																				
jurisdiction (6)	-	—	-	-	-	—	—	1	-	_	2	5	-	_	1	2	_	-	1	2
300 m - outer																				
jurisdiction (7)	-	-	-	-	—	-	—	1	-	—	1	5	-	—	1	4	-	-	1	2
300 m - outer																				
jurisdiction (8)	-	_	_	_	-	—	-	1	-	—	1	5	-	_	-	3	_	-	-	2
300 m - outer																				
jurisdiction (9)	-	_	_	_	-	—	1	1	-	—	3	6	-	_	3	5	_	-	1	3
300 m - outer																				
jurisdiction (10)	-	-	-	-	—	-	1	1	-	—	4	8	-	—	3	6	-	-	2	4
300 m - outer																				
jurisdiction (11)	-	—	-	-	-	—	1	1	-	_	3	9	-	_	2	5	_	-	1	4
300 m - outer																				
jurisdiction (12)	-	—	1	1	-	1	2	5	-	6	14	18	-	4	12	15	_	3	7	10
300 m - outer																				
jurisdiction (13)	_	_	-	-	-	_	1	3	_	3	14	17	_	1	6	10	-	1	5	7
300 m - outer																				
jurisdiction (14)	_	_	-	_	_	_	1	3	-	_	7	12	-	-	4	7	-	_	3	6
300 m - outer																				
jurisdiction (15)	1	5	7	7	-	3	7	9	7	23	27	28	7	20	28	30	4	13	17	18
300 m - outer																				
iurisdiction (16)	_	2	4	4	_	1	5	8	2	16	25	26	3	15	24	26	1	9	14	16

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sum	mer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
300 m - outer																				
jurisdiction (17)	-	1	1	1	-	-	1	5	-	4	16	17	-	4	15	19	-	2	8	11
300 m - outer												15		ō		•			10	
jurisdiction (18)	-	l	2	2	_	1	3	6	-	6	16	17	1	8	17	20	-	4	10	11
300 m - outer			•	•			2	<i>.</i>		2	10	10			15	1.6		•	0	
jurisdiction (19)	-	-	2	2	_	-	3	6	-	3	12	12	-	4	15	16	-	2	8	9
300 m - outer								2			2	6			2	~			1	
jurisdiction (20)	_	_	_	-	_	_	-	2	-	-	3	6	_	-	2	5	_	_	I	3
300 m - outer			1	1			n	4		1	6	0		2	0	10		1	5	6
300 m outor	-	_	1	1	_	-	Z	4	-	1	0	0	-	Z	9	10	_	1	3	0
jurisdiction (22)	1	8	12	12	1	0	15	17	4	14	18	18	5	18	24	24	3	12	17	18
300 m outer	1	0	12	12	1	9	15	17	4	14	10	10	5	10	24	24	5	12	17	10
iurisdiction (23)	_	_	1	2	_	_	2	3	_	_	2	4	_	1	5	6	_	_	2	4
300 m - outer			1					5				-		1	5	0			2	
jurisdiction (24)	_	_	_	1	_	_	1	3	_	_	3	7	_	_	7	8	_	_	3	5
300 m - outer											_					-			-	
jurisdiction (25)	_	_	_	1	_	_	_	1	_	_	1	2	_	_	1	3	_	_	1	2
300 m - outer																				
jurisdiction (26)	_	_	_	_	_	_	_	1	_	_	1	3	_	_	1	4	_	_	1	2
300 m - outer																				
jurisdiction (27)	-	-	-	1	-	-	Ι	1	_		-	1	-	-	-	1	-	-	_	1
300 m - outer																				
jurisdiction (28)	-	-	-	-	-	-	_	1	-	_	-	_	-	-	-	1	-	-	-	1
300 m - outer																				
jurisdiction (29)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	—
300 m - outer																				
jurisdiction (30)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
North Atlantic Right																				
Whale	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	
Southeastern SMA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Table C-7.	Conditional Probabilities	(expressed as percent	chance) that an	Oil Spill Occurring	g at Launch Po	oint 2 Will Make	Contact with an Offsh	iore
	Environmental Resource v	within the Specified Nu	umber of Days (continued).				

Season	Spring Summer Fall Winter 3 10 30 60 3															Anı	nual			
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e								
Sargassum (March/April)	_	_	_	-	١	_	I		-		I	I	I	١	١	1	I	I	-	_
Sargassum (May/June)	_	-	_	-	١	_	١	Ι	-	Ι	١	١	١	١	١	-	١	١	-	_
Sargassum (July/August)	_	_	1	1	-	_	3	4	-	-	-	-	-	-	-	_	-	-	1	1
Seagrass-Wakulla County	_	_	_	_	-	_	-	-	Ι	-	-	-	-	-	-	-	-	-	Ι	_
Seagrass-Jefferson County	_	_	_	_	-	_	-	I	_	I	-	-	-	-	-	_	-	-	_	_
Seagrass-Taylor County	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Seagrass-Dixie	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Seagrass-Levy County	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (1)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (2)	_	_	_	_	_	_	_		_		_	_	_	_	_	_	_	_	_	_
Topographic Features (3)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (4)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (5)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (6)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (7)	_	_	_	_	_	_	_				_	_	_	_	_	_	_	_		
Topographic Features (8)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource				•			•	•	F	Percent	Chanc	e	•	•		•				
Topographic Features (9)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (10)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (11)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Topographic Features (12)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Stetson Bank	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	-	_	-	_
Topographic Features (13)	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	-	_	-	_
Topographic Features (14)	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	-	_	Ι	_
Topographic Features (15)	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	-	_	_	_
East Flower Garden Bank	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_
West Flower Garden Bank	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	-	_	I	_
Topographic Features (16)	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	-	_	I	_
Topographic Features (17)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Topographic Features (18)	_	-	-	_	I	-	_	-	I	-	-	_	_	-	I	-	I	-		_
Topographic Features (19)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (20)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (21)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Topographic Features (22)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (23)	_	١	_	_	_	١	-	١	١	I	Ι	I	١	-	١	١	١	١	_	_
Sonnier Bank	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (24)	_	_	_	_	_	-	_	-	_	_	-	_	-	_	-	-	_	-	_	_
Topographic Features (25)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (26)	_	I	_	_	_	I	_	I	I	I	I	I	I	_	I	I	I	I	_	_
Topographic Features (27)	_	١	_	_	_	١	-	١	١	I	Ι	1	١	-	١	1	١	١	_	_
Topographic Features (28)	_	-	_	_	_	-	_	-	-	I		Ι	-	_	-	-	-	-	_	-
Topographic Features (29)	_	_	_	_	_	_	_	_	_	_	I	-	_	_	_	-	_	_	_	_
Topographic Features (30)	_	-	_	_	_	-	_	-	-	-	I	-	-	_	-	-	-	-	_	_
Topographic Features (31)	_	I	_	_	_	-	_	-	I	-	I	-	-	_	-		I	-	_	_
Topographic Features (32)	_		_	_	_		_			-		_		_					_	_
Topographic Features (33)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (34)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (35)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_
Pinnacle Trend	7	13	15	15	5	13	19	20	24	36	38	38	25	38	42	42	15	25	28	29
Chandeleur Islands	6	14	15	15	12	25	31	33	13	28	30	31	11	24	30	31	11	23	27	28

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource				•					Р	ercent	Chanc	e				•	•	•		
Florida Middle Ground	_	_	_	1	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1
Pulley Ridge	_	_	1	2	-	-	_	1	_	_	_	1	Ι	-	_	1	_	_	_	1
Madison Swanson	_	1	3	4	-	1	2	3	_	1	2	2	-	1	2	2	_	1	2	3
Steamboat Lumps	_	_	1	1	-	-	_	1	_	_	_	1	Ι	-	1	1	_	_	-	1
Dry Tortugas	_	_	-	_	-	-	_	_	Ι	Ι	Ι	-	Ι	-	_	_	_	_	-	-
Tortugas Ecological Reserve North	-	_	I	_	١	I	_	_	-	-	-	I		١	_	_	_	_	I	_
Tortugas Ecological Reserve South	_	-	I	1	I	I	_	-	-	-	-	I	I	I	-	1	_	_	I	_
Florida Keys National Marine Sanctuary (year round)	_	_	_	2	_	_	_	1	_	_	_	_	_	_	_	1	_	_	_	1
FL State Waters	_	_		_			_	_	-	-	-	-		-	_	_	_	_	-	_
Key Biscayne National Park	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_
Texas Clipper and South Texas Platform	_	_	I	_	I	I	_	_	_	_	_		I	I	_	_	_	_		_
Port Lavaca/Liberty Ship Reef	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
High Island	_	_	_	_	_	_	-	_	_	_	1	1	-	_	_	_	_	_	_	-
West Cameron	_	_	-	_	-	-	_	_	_	_	_	_	-	-	_	_	_	_	_	-
Galveston Area (GA 393)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Cognac Platform (MC 194)	_	_	_	_	_	_	_	1	_	1	1	1	_	_	_	_	_	_	1	1
Horseshoe Rigs (MP 306)	_	_	1	1	_	_	1	2	1	2	2	2	_	1	1	1	_	1	1	1
Vermilion Area	_	_	_	_	_	_	1	2	_	_	1	1	_	_	_	_	_	_	_	1

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
Vermilion Area, South Addition	_	_	_	_	_	_	_	1	_	_	1	1	_	_	_	_	_	_	_	1
Bay Marchand	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_
South Timbalier	_	-	_	-	_	_	2	3	-	1	2	2	_	-	-	1	_	_	1	2
South Timbalier Area, South Addition	_	_	_	_	_	_	1	2	_	_	2	2	_	_	_	_	_	_	1	1
Panhandle FL	6	17	23	24	5	20	24	25	1	3	4	4	-	_	1	1	3	10	13	14
Tampa	_	-	-	1	_	_	-	_	-	I	-	-	-	-	I	I	_	_	_	_
Southeast FL	_	١	١	_	_	_	١	1	-	I	-	١	١	١	I	I	I	-	_	_
Daytona Beach	_	١	١	_	_	_	١	_	-	I	-	١	١	١	I	I	I	-	_	_
Jacksonville	_		-	_	_	_	-	_	Ι	Ι	Ι		-		Ι	Ι		Ι	_	_
Stetson Bank (April-Nov)	_	-	-	_	_	_	-	_	-	_	-	-	-	-	_	_	_	Ι	_	_
East Flower Garden Bank (April-Nov)	_	_	_	_	_	_	_	_	_	I	_	_	_	_	I	I	_	_	_	_
West Flower Garden Bank (April-Nov)	_			_	_	_		_	_		_						-	_	_	_
Chandeleur Islands (April-Nov)	6	14	15	15	12	25	31	33	10	20	21	21	_	1	3	4	7	15	18	18
Tortugas Ecological Reserve 1 (April-Nov)	_	_	_	_	_	_	_	_	Ι	_		_	_	_	_	_			_	_
Tortugas Ecological Reserve 2 (April-Nov)	_	_	_	1	_	_	_	_		_		_	_	_	_		_	_	_	_
Florida Keys National Marine Sanctuary (April-Nov)	_			2		_		1										_		1

Table C-7.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			An	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
TX Gulf State Waters																				
(Nov-April)	_	_	-	_	_	-	-	_	_	_	_	-	-	-	-	-	-	-	_	—
LA Gulf State Waters																				
(Nov-April)	_	-	—	-	—	_	—	—	-	—	-	—	—	—	_	—	—	—	_	—
LA Gulf State Waters																				
(Nov-April)	-	-	-	_	_	-	-	_	_	_	_	-	-	-	_	-	-	-	_	-
MS Gulf State																				
Waters (Nov-April)	-	—	—	_	_	—	—	_	_	_	_	—	—	—	—	—	—	—		—
AL Gulf State Waters																				
(Nov-April)	-	-	-	_	_	-	-	_	_	_	_	-	-	-	_	-	-	-	_	-
FL (East Coast and																				
Gulf)1 (Nov-April)	-	_	—	_	—	—	—	_	_	_	_	—	—	—	—	—	—	—		—
FL (East Coast and																				
Gulf)2 (Nov-April)	-	-	—	—	—	_	—	—	—	—	—	—	—	—	_	—	—	—	-	—
FL (East Coast and																				
Gulf)3 (Nov-April)	-	—	_	—	-	-	-	_	—	-	_	-	-	-	—	_	-	_	-	—
FL (East Coast and																				
Gulf)4 (Nov-April)	_	-	-	_	_	_	-	_	_	_	_	-	-	-	_	-	-	-	_	—
FL (East Coast and																				
Gulf)5 (Nov-April)	_	—	-	_	_	_	-	_	_	_	_	-	_	_	_	-	-	-	_	_

 Table C-7.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 2 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by "-".

Table C-8

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Cayman Islands	-	_	_	-	-	-	-	-	-	_	_	-	-	-	-	-	_	1	_	_
Bahamas 1	_	-	-	_	_	_	_	_	I	-	_	_	_	_	_	_	_	I	_	—
Bahamas 2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Bahamas 3	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Bahamas 4	_	-	-	-	-	_	_	-	_	_	_	-	-	_	-	-	_	_	_	-
Bahamas 5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Jamaica	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TX State Waters	_	-	15	19	-	_	8	32	_	_	10	22	-	_	13	45	_	_	11	30
West LA State Waters	_	15	50	54	_	2	7	12	_	1	3	6	_	2	9	13	_	5	17	21
East LA State Waters	_	1	3	3	_	_	1	2	_	_	_	1	_	_	1	1	_	_	1	2
MS State Waters	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AL State Waters	_	_	1	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
FL Panhandle State Waters	_	_	3	5	_	_	_	1	-	_	_	_	_	_	_	_	_	-	1	2
West FL State Waters	_	_	_	2	_	_	_	2	-	_	_	_	_	_	_	1	_	-	_	1
Tortugas State Waters	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Southeast FL State Waters	_	_	_	_	_	_	_	2	-	_	_	_	_	_	_	1	_	-	_	1
Northeast FL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Mexican Waters	_	_	_	_	_	_	1	5	_	_	_	5	_	_	_	2	_	_	_	3

BOEM-OSRA Catastrophic Run

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Texas West Waters																				
(0-200 m) for EFH	-	_	1	1	_	—	7	23	_	_	10	22	-	_	4	24	_	-	6	18
Texas East Waters		1	10	21		2	10	22		1	20	22			27	47		1	21	22
(0-200 m) for EFH	-	1	18	21	_	2	18	33	_	1	20	33	-	_	27	47	_	1	21	33
Louisiana Waters																				
West of Mississippi	14	57	75	70	2	10	20	47	2	12	25	22	4	25	17	<i></i>	6	20	10	52
River (0-200 m)	14	57	/5	/9	3	18	38	47	Z	15	25	33	4	25	47	33	0	28	40	55
East of Mississippi																				
$R_{iver} = (0.200 \text{ m})$	_	2	7	8	_	_	2	3	_	_	_	_	_	_	2	2	_	1	3	3
Mississippi Waters		2	/	0		_	2	5						_	2	2		1	5	5
(0-200 m)	_	2	8	9	_	_	2	3	_	_	_	_	_	_	1	1	_	_	3	3
Alabama Waters																				
(0-200 m)	-	2	8	10	_	_	2	3		_	-	_	-	_	1	1	_	-	3	4
Florida Panhandle																				
Waters (0-200 m)	-	1	7	9	_	_	1	2	_	_	_	-	_	_	1	1	-	-	2	3
Florida Bend Waters																				
(0-200 m)	-	-	1	5	_	-	1	3	-	_	-	-	-	-	1	1	-	-	1	2
Florida Southwest																				
Waters (0-200 m)	-	_	-	3	_	-	2	4	-	_	-	1	-	-	1	3	_	-	1	2
Florida Keys Waters								_								_				_
(0-200 m)	-	_	-	1	—	-	1	2	_	—	-	1	_	-	-	2	_	-	-	2
Florida Southeast																				
Waters (0-200 m)	-	-	-	-	-	-	1	2	-	-	-	-	-	-	-	1	-	-	-	1
Florida Northeast																				
waters (0-200 m)	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	_
Shoreline - 20 m (1)	-	_	-	_	_	_	1	4	_	_	_	3	_	_	-	1	_	-	_	2
Shoreline - 20 m (2)	_	_	1	1	-	-	3	19	_	-	5	12	-	_	3	21	_	_	3	13
Shoreline - 20 m (3)	_		16	20	_	1	8	18	_	_	7	16	_	_	13	30		_	11	21
Shoreline - 20 m (4)	-	6	28	30	_	1	6	11	_	1	3	5	_	_	9	13	_	2	12	15
Shoreline - 20 m (5)	1	20	39	41	_	2	8	12	_	2	3	4	_	3	8	11	_	7	15	17

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
Shoreline - 20 m (6)	_	1	3	3	_	_	1	2	_	_	_	_	_	_	_	1	_	_	1	1
Shoreline - 20 m (7)	_	_	2	3	_	_	1	1	_	_	_	_	_	_	_	_	_	_	1	1
Shoreline - 20 m (8)	_	_	2	2	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1
Shoreline - 20 m (9)	_	_	3	5	_	_	_	1	_	_	_	_	_	_	_	_	_	_	1	2
Shoreline - 20 m (10)	-	-	_	1	_	I	_	Ι	Ι	Ι	Ι	Ι	_	_	I	_	-	I	Ι	_
Shoreline - 20 m	_	I	_	I	I	I	_	_	-	-	-	-	_	I	I	_	I	I	-	_
Shoreline - 20 m (12)	_	_	_	1	_	_	1	2	_	_	_	_	_	_	_	2	_	_	_	1
Shoreline - 20 m (13)	_	-	_	_	-	_	_	_	_	_	_	_	_	-	-	_	-	-	_	_
Shoreline - 20 m (14)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (15)	-	١	_	I	Ι	١	_	_	-	-	-	-	_	Ι	١	1	١	١	-	_
20 m - 300 m (1)	_	I	1	1	I	١	7	23	-	-	10	22	_	I	4	24	I	I	6	18
20 m - 300 m (2)	-	1	14	16	I	2	19	32	_	1	21	36	_	I	27	46	I	1	20	33
20 m - 300 m (3)	1	20	36	39	1	11	28	37	-	11	23	32	_	14	39	47	_	14	32	39
20 m - 300 m (4)	17	52	63	65	4	16	30	35	3	7	10	12	5	20	29	32	7	24	33	36
20 m - 300 m (5)	-	3	7	8	_	_	2	3	-	-	-	-	_	1	2	2	_	1	3	3
20 m - 300 m (6)	-	2	8	10	_	_	2	3	-	-	-	-	_	_	1	2	_	1	3	4
20 m - 300 m (7)	-	2	9	11	_	_	2	3	-	-	-	-	_	_	1	1	_	_	3	4
20 m - 300 m (8)	_	1	7	10	_	_	1	2	_	_	_	-	_	_	1	1	_	_	2	4
20 m - 300 m (9)	_	_	1	6	_	_	2	5	_	_	_	-	_	_	1	1	_	_	1	3
20 m - 300 m (10)	-	-	-	3	_	-	2	4	-	-	-	1	_	_	1	4	-	-	1	3
20 m - 300 m (11)	-	_	-	1	_	_	1	3	-	_	-	1	_	_	_	2	_	_	-	2

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).
Season		Spr	ring			Sum	mer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
20 m - 300 m (12)	_	_	_	1	_		-	2	-		-	1	-	-		2	_		-	1
20 m - 300 m (13)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	—
20 m - 300 m (14)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
300 m - outer jurisdiction (1)	_	_	_	1	_	_	8	20	_	_	11	25	_	_	4	20	_	_	6	17
300 m - outer jurisdiction (2)	_	_	_	2	Ι	_	9	22	Ι	_	13	27	Ι	-	4	17	_	_	7	17
300 m - outer jurisdiction (3)	_	_	3	5	-	I	9	19	_	1	18	31		I	12	25	_	I	11	20
300 m - outer jurisdiction (4)	_	_	1	3	-	1	16	28	_	1	23	38			12	28	_	1	13	24
300 m - outer jurisdiction (5)	_	_	1	3	-	1	14	26	_	2	17	30	-	_	9	23	_	1	10	21
300 m - outer jurisdiction (6)	_	6	12	14	_	3	19	27	_	10	27	38	_	8	31	42	_	6	22	30
300 m - outer jurisdiction (7)	_	4	11	14	_	7	27	34	_	13	36	44	_	5	30	40	_	7	26	33
300 m - outer jurisdiction (8)	_	2	8	11	_	10	27	36	_	15	37	45		3	23	31	_	7	24	31
300 m - outer jurisdiction (9)	20	37	45	46	9	26	39	43	9	20	26	31	10	34	47	50	12	29	39	43
300 m - outer jurisdiction (10)	24	37	44	45	32	50	63	66	42	55	63	67	39	59	67	71	34	50	59	62
300 m - outer jurisdiction (11)	3	13	19	21	6	30	44	48	17	44	60	63	8	29	44	47	8	29	42	45
300 m - outer jurisdiction (12)	42	56	61	63	14	26	35	38	8	12	13	14	18	27	32	34	21	31	35	37
300 m - outer jurisdiction (13)	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
300 m - outer jurisdiction (14)	18	23	26	27	29	42	47	49	48	60	63	64	36	47	50	52	33	43	47	48

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	nmer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e				•	•			
300 m - outer jurisdiction (15)	2	7	14	17	_	1	6	7	_	_	_	_	_	1	4	5	_	3	6	7
300 m - outer jurisdiction (16)	4	17	22	23	6	17	26	27	-	2	2	3	4	10	14	16	3	11	16	17
300 m - outer jurisdiction (17)	3	13	19	19	9	20	27	29	2	8	14	17	6	14	19	21	5	14	20	22
300 m - outer jurisdiction (18)	_	4	10	12	_	5	10	12		1	1	2	_	1	3	5	_	3	6	8
300 m - outer jurisdiction (19)	_	2	5	9	_	2	6	8	-	_	1	1	_	1	3	4	_	1	4	5
300 m - outer jurisdiction (20)	_	2	5	8	_	5	10	12	-	1	5	8	_	5	9	10	_	3	7	10
300 m - outer jurisdiction (21)	_	_	3	6	_	1	3	5	_	_	_	1	_	_	2	3	_	_	2	3
300 m - outer jurisdiction (22)	_	1	7	12	-	_	3	5	_	-	_	1	_	-	2	2	_	-	3	5
300 m - outer jurisdiction (23)	_	_	1	5	_	_	4	7	_	_	_	1	_	_	1	3	_	_	2	4
300 m - outer jurisdiction (24)	_	1	5	9	_	3	11	13	_	1	5	8	_	4	9	11	_	2	7	10
300 m - outer jurisdiction (25)	_	_	1	3		_	2	5	_		1	2	_	_	2	6	_		2	4
300 m - outer jurisdiction (26)	_	_	2	4	_	_	3	5	_	_	2	3	_	1	5	8	_	_	3	5
300 m - outer jurisdiction (27)	_	_	_	1	_	_	1	3	_	_	_	2	_	_	_	1	_	_	_	2
300 m - outer jurisdiction (28)	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	1	_	_	_	1
300 m - outer jurisdiction (29)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (30)	_	_	_	_	_		_	_	-	_		-	_	-	_	_	_	_	_	_

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

BOEM-OSRA Catastrophic Run

Season		Spr	ing			Sum	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
North Atlantic Right Whale	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Southeastern SMA	_	_	_	_	_	-	_	_	_	_	_	_	-	_		_	_		_	_
Sargassum (March/April)	_	-	-	-	-	I	_	-	-	-	-	-	I	-	1	8	_	I	-	2
Sargassum (May/June)	_	3	8	10	_	_	_	_	_	_	_	_	_	_	_	_	_	1	2	3
Sargassum (July/August)	1	1	1	1	66	66	66	66	_	-	-	-	-	-	-	_	17	17	17	17
Seagrass-Wakulla County	_	-	Ι	-	Ι	I	_	Ι	-	Ι	-	-	Ι	-	I	_	_	I	Ι	_
Seagrass-Jefferson County	_	-	-	_	_	-	_	-	_	_	_	_	-	_	-	_	_	-	-	_
Seagrass-Taylor County	_		Ι	-	-	-	_	Ι	_	-	-	-	-	-	-	_	_	-		_
Seagrass-Dixie County	_	Ι	Ι	Ι	Ι	-	_	Ι	Ι	Ι	Ι	Ι	-	Ι		_	_		Ι	_
Seagrass-Levy County	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (1)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	1
Topographic Features (2)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (3)	_	_	_	_	_	_	_	1	_	_	_	_	-	_	-	_	_	-	_	_
Topographic Features (4)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Topographic Features (5)	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	1	_	_	_	1
Topographic Features (6)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1	_	_	_	1

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wii	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Topographic Features (7)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Topographic Features (8)	-	-	_			_	-	-	_	-	Ι	1	Ι	Ι	Ι	Ι	-	Ι	-	_
Topographic Features (9)	-	-	_	-	-	_	-	1	_	_	Ι	1	Ι	-	Ι	1	Ι	Ι	Ι	1
Topographic Features (10)	-	-	_	-	-	_	-	1	_	_	Ι	-	Ι	-	Ι	-	Ι	Ι	Ι	_
Topographic Features (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (12)	_	_	_	_	_	_	_	1	_	_	1	2	_	_	_	1	_	_	_	1
Stetson Bank	_	_	_	-	-	-	_	_	-	_	_	-	_	_	1	1	_	_	_	_
Topographic Features (13)	Ι	-	_	-	Ι	_	1	1	_	-	1	1	Ι	Ι	1	1	Ι	Ι	1	1
Topographic Features (14)	-	-	_	I		I	-	-	I	_	1	1	_	_	1	1	_	_	_	1
Topographic Features (15)	_	_	1	1	_	_	1	2	_	_	2	3	_	_	2	3	_	_	1	2
East Flower Garden Bank	_		1	1			1	2		_	3	5	_	_	3	5	_	_	2	3
West Flower Garden Bank	_	_	1	1	_	_	1	2	_	_	3	4	_	_	3	5	-	_	2	3
Topographic Features (16)	_	_	_	1	_	_	_	_	_	_	2	2	_	_	2	3	_	_	1	1
Topographic Features (17)	_	_	_	1	_	_	_	1	_	_	1	2	_	_	1	2	_	_	1	1
Topographic Features (18)	_	_	_	_	_	_	_	_	_	_	1	2	_	_	1	2	_	_	1	1
Topographic Features (19)	_	_	1	1	_	_	_	1	_	_	1	2	_	_	2	3	_	_	1	2

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
Topographic Features (20)	_	_	1	1	_	_	1	1	_	_	2	3	_	_	2	3	_	_	1	2
Topographic Features (21)	_	_	_	1	_	_	2	3	_	_	3	4	_	_	2	4	_	_	2	3
Topographic Features (22)	_	_	_	_	_	_	_	_	_	_	1	1	_	_	1	1	_	_	_	1
Topographic Features (23)	_	_	1	1	_	_	1	2	_	_	2	2	_	_	2	2	_	_	1	2
Sonnier Bank	_	_	1	1	_	_	1	1	-	-	1	1	_	_	1	2	_	_	1	1
Topographic Features (24)	_	1	1	2	-	_	1	1	_	_	2	2	-	-	3	3	-	-	2	2
Topographic Features (25)	_	-	1	1	-	-	1	2	_	1	2	2	-	1	2	3	-	-	2	2
Topographic Features (26)	_	-	_	1	Ι	-	1	1	_	_	1	1		-	2	2	-		1	1
Topographic Features (27)	_	1	2	2	Ι		2	3	Ι	1	2	3		1	4	5	-	1	2	3
Topographic Features (28)	_	1	1	2	-	_	1	1	-	Ι	1	2		1	2	2	-	1	1	2
Topographic Features (29)	_	-	1	1	-	_	-	1	Ι	Ι	Ι	-	-	-	1	1	-	-	1	1
Topographic Features (30)	_	-	_	-	-	_	-	Ι	-	Ι	Ι	1		-	1	1	-		Ι	1
Topographic Features (31)	_	1	1	1	_	_	1	2	_	_	1	1	_	_	1	1	_	_	1	1
Topographic Features (32)	_	2	2	3	_	1	2	3	_	1	1	1	_	_	2	2	_	1	2	2
Topographic Features (33)	_	1	2	2	_	_	2	2	-	_	_	-	_	-	1	1	-	1	1	1
Topographic Features (34)	_	1	2	2	_	_	1	1	_	_	_	_	_	1	1	2	_	1	1	1

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e								
Topographic Features (35)	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pinnacle Trend	_	1	7	9	-	_	2	2	-	_	_	_		-	1	1	_	-	2	3
Chandeleur Islands	_	_	2	2	_	_	1	1	_	_	_	_	_	_	_	_	_	_	1	1
Florida Middle Ground	_	_	_	1	-	_	-	_	-	_	_	_	I	-	I	_	_	_	_	_
Pulley Ridge	_	_	_	2	-	_	1	2	-	_	_	_	-	-	-	2	_	_	_	1
Madison Swanson	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Steamboat Lumps	_	_	_	1	_	_	_	_	_	_	Ι	_	_	_	_	_	-	-	-	—
Dry Tortugas	_	_	_	_	_	_	-	_	-	_	_	_		-		1	_	_	_	_
Tortugas Ecological Reserve North	_	_	_	_	-	_	-	_	_	_	_	_		_		1	_	_	_	_
Tortugas Ecological Reserve South	_	_	_	1		_	-	_	-	-	Ι		_	-	_	1	Ι	Ι	Ι	1
Florida Keys National Marine Sanctuary (year round)	_	_	_	1	_	_	1	3	_	_	_	_	_	_	_	2	_	_	_	2
FL State Waters	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
Key Biscayne National Park	_	_	_	_	_	_	-	1	_	_	_	_	_	_	_	_	_	_	_	_
Texas Clipper and South Texas Platform	_	_	_	_	-	_	1	5	-		1	1	_	-	_	-	_	_	_	2
Port Lavaca/Liberty Ship Reef	_	_	6	7	_	_	7	14	_	_	5	6	_	_	5	10	_	_	6	9
High Island	_	_	6	7	_	_	3	4	_	_	1	1	_	_	2	4	_	_	3	4
West Cameron	_	1	12	14	_	2	4	9	_	_	2	2	_	_	5	6	_	1	6	8
Galveston Area (GA 393)	_	_	1	1	_	_	1	2	_	_	_	1	_	_	1	2	_	_	1	1

Table C-8.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sun	nmer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource							•		P	ercent	Chanc	e								
Cognac Platform (MC 194)	_	1	2	2	_	_	1	1	_	_	_	_	_	_	_	_	_	_	1	1
Horseshoe Rigs (MP 306)	_	-	2	2	_	-	_	_	-	-	-	-	_	-	_	_	_	-	-	1
Vermilion Area	_	5	22	24	_	2	9	13	_	1	3	3	_	_	5	7	_	2	10	12
Vermilion Area, South Addition	-	6	13	15	-	3	12	16	Ι	4	9	9	_	١	6	8	_	3	10	12
Bay Marchand	_	1	3	3	Ι	-	_	1	I		-	-	_	-	_	1	_	-	1	1
South Timbalier	2	17	27	28	_	2	7	11	_	2	2	2	_	1	2	3	1	5	9	11
South Timbalier Area, South Addition	7	25	30	31	1	5	11	14	1	3	4	4	_	1	2	3	2	9	12	13
Panhandle FL	_	_	4	6	-	_	-	1	_	_	_	_	_	_	_	_	_	_	1	2
Tampa	_	_	-	1	Ι	-	_	_	Ι	-	-	_	_	-	_	_	_	-	-	—
Southeast FL	_	I	I	I	-	I	_	1	I	I	١	I	_	I	_	_	-	I	١	—
Daytona Beach	_	I	١	I	-	I	_	_	I	I	١	I	_	I	_	_	_	I	١	—
Jacksonville	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Stetson Bank (April-Nov)	_	-	-	-	_	-	_	_	_	-	-	-	_	-	_	_	_	-	-	_
East Flower Garden Bank (April-Nov)	_	-	1	1	-	-	1	2	-	Ι	2	2	_	-	1	2	_	-	1	2
West Flower Garden Bank (April-Nov)	-	I	1	1	-	I	1	2	Ι	Ι	2	2	-	I	1	2	-	I	1	2
Chandeleur Islands (April-Nov)	_	_	2	2	_	_	1	1	_	_	_	_	_	_	_	_	_	_	1	1
Tortugas Ecological Reserve 1 (April-Nov)	_	-	-	-	_		_	_	_	-	-	-	_		_	_	_	-	-	_

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	mer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Tortugas Ecological																				
Reserve 2																				
(April-Nov)	-	-	-	1	_	_	_	_	_	-	_	-	_	_	-	-	-	-	—	—
Florida Keys																				
National Marine																				
Sanctuary																				
(April-Nov)	-	_	-	1	-	-	1	3	-	_	-	_	-	-	-	1	-	-		1
TX Gulf State																				
Waters (Nov-April)	-	-	-	-	_	_	_	_	_	-	_	-	_	_	-	-	-	-	—	—
LA Gulf State																				
Waters (Nov-April)	_	_	—	_	-	_	-	_		_	_	_	-	—	—	-	—	-	_	—
LA Gulf State																				
Waters (Nov-April)	—	_	—	_	-	_	-	_		_	_	_	-	—	—	-	—	-	_	—
MS Gulf State																				
Waters (Nov-April)	—	_	_	_	-	—	-	_	-	_	—	_	-	-	_	-	_	-	—	—
AL Gulf State																				
Waters (Nov-April)	—	_	_	_	-	—	-	_	-	_	—	_	-	-	_	-	_	-	—	—
FL (East Coast and																				
Gulf)1 (Nov-April)	—	_	—	_	-	_	-	_		_	_	_	-	—	—	-	—	-	_	—
FL (East Coast and																				
Gulf)2 (Nov-April)	-	—	—	—	-	—	-	—	-	_	—	—	-	—	—	_	—	_	—	—
FL (East Coast and																				
Gulf)3 (Nov-April)	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	-	—
FL (East Coast and																			1	
Gulf)4 (Nov-April)	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-		—
FL (East Coast and																			1	
Gulf)5 (Nov-April)	-	_	-	_	-	—	_	—	_	-	—	_	_	-	-	-	-	-	_	—

 Table C-8.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 3 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by "-".

Table C-9

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days

Season		Sp	oring			Su	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	Percent	Chanc	e								
Cayman Islands	_	I	_	_	I	_	_	_	-	_	1		_	-	_	_	_	_	1	—
Bahamas 1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Bahamas 2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Bahamas 3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Bahamas 4	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-
Bahamas 5	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	—
Jamaica	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-
TX State Waters	97	>99	>99	>99	88	>99	>99	>99	76	94	99	99	77	97	99	99	84	98	99	99
West LA State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
East LA State Waters	_	-	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	-	_
MS State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
AL State Waters	_	I	_	_	I	_	_	_	-	_	1		_	-	_	_	_	_	1	—
FL Panhandle State Waters		I	_	_	_	_	_	_	I	I	I	I	_	I	_	_	_	_	I	_
West FL State Waters	_	I	_	_	_	_	_	_	I	-	I		_	I	_	_	_	_	I	_
Tortugas State Waters	_		_	_	_	_	_	_		_			_		_	_	_	_		_
Southeast FL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Northeast FL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mexican Waters	_	_	_	_	_	_	_	_	_	1	1	1	_	1	1	1	_	1	1	1

Central Planning Area Lease Sales 235, 241, and 247 EIS

Season		Spr	ring			Sum	nmer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Texas West Waters (0-200m) for EFH	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
Texas East Waters (0-200 m) for EFH	1	2	2	2	4	5	5	5	1	5	6	6	1	5	6	6	2	4	5	5
Louisiana Waters West of Mississippi River (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_
Louisiana Waters East of Mississippi River (0-200 m)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mississippi Waters (0-200 m)	_		_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	I	_	_
Alabama Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Panhandle Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Bend Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Southwest Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Keys Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Southeast Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Northeast Waters (0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (1)	_	_	—	_	_	_	_	—	_	1	1	1	_	1	1	1	_	_	1	1
Shoreline - 20 m (2)	95	99	99	99	84	96	97	97	70	92	96	96	73	96	98	98	81	96	98	98
Shoreline - 20 m (3)	1	2	2	2	2	5	5	5	—	2	4	4	-	3	3	3	1	3	3	3
Shoreline - $20 \text{ m}(4)$	—	_	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	_	—	
Shoreline - $20 \text{ m}(5)$	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	-	—	—	—

Table C-9.	Conditional Probabilities	(expressed as percent	chance) that an	Oil Spill (Occurring at	Launch 1	Point 4 V	Will Make	Contact with	an Offshore
	Environmental Resource	within the Specified N	umber of Days (c	continued).						

BOEM-OSRA Catastrophic Run

Season		Spr	ring			Sum	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	Percent	Chanc	e								
Shoreline - 20 m (6)	-	_	_	_	_	-	_	_	-	-	-	-	_	_	_	_	_	_	_	—
Shoreline - 20 m (7)	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	-	_	—
Shoreline - 20 m (8)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (9)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Shoreline - 20 m (10)	_	_	_	_	_	-	_	_	-	-	-	-	_	_	_	_	_	_	_	_
Shoreline - 20 m (11)	-	_	_	_	_	-	_	_	I	-	-	-	_	_	_	_	_	_	_	_
Shoreline - 20 m (12)	_	_	_	_	_		_	_	-				_	_	_	_	_	_	_	_
Shoreline - 20 m (13)	-	_	_	_	_	I	_	_	I	I	I	١	_	_	_	_	_	_	_	_
Shoreline - 20 m (14)	-	_	_	_	_	-	_	_	Ι	-	-	-	_	_	_	_	_	_	_	_
Shoreline - 20 m (15)	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_
20 m - 300 m (1)	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
20 m - 300 m (2)	1	1	1	1	3	4	4	4	1	5	6	7	1	5	5	5	1	3	4	4
20 m - 300 m (3)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	—
20 m - 300 m (4)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
20 m - 300 m (5)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (6)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
20 m - 300 m (7)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
20 m - 300 m (8)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
20 m - 300 m (9)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	
20 m - 300 m (10)	_	_	_	_	-	-	_	-	-	_	-	_	_	-	_	_	_	_	_	
20 m - 300 m (11)	-	_	_	-	_	_	_	_	-	_	_	_	_	_	-	_	_	-	-	—

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
20 m - 300 m (12)	_	_	_	_	-	-	_	-	-	-	_	_	_	-	-	_	_	-	-	_
20 m - 300 m (13)	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (14)	-	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-
300 m - outer jurisdiction (1)	_	_	_	_	_	_	_	_	1	3	5	5	1	2	3	3	1	2	2	2
300 m - outer jurisdiction (2)	_	_	_	_	_	I	_	I	I	1	2	2	_	1	2	2	_	I	1	1
300 m - outer jurisdiction (3)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1	1	_	_	_	_
300 m - outer jurisdiction (4)	_	_	_	_	_	_	_	_	_	_	1	1	_	_	2	2	_	_	1	1
300 m - outer jurisdiction (5)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1	1	_	_	_	1
300 m - outer jurisdiction (6)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	1	_	_	_	_
300 m - outer												1			1	1				
300 m - outer	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1	1	_	_	_	_
300 m - outer	_	_	_	_	_	_	_		_	_	_	_	_	_	1	1	_		_	_
300 m - outer	_	_	-	-	-	_	-	_	_	-	-	-	-	_	_	-	-	_	_	_
jurisdiction (10)	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-
300 m - outer jurisdiction (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_
300 m - outer jurisdiction (12)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer		_	_	_	_		_			_	_	_	_			_	_			
300 m - outer jurisdiction (14)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sum	mer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									Р	ercent	Chanc	e								
300 m - outer jurisdiction (15)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (16)	_	١	١	I	-	١	١	_	I	١	-	_	_	١	-	-	_	Ι	-	_
300 m - outer jurisdiction (17)	-	-	-	Ι	Ι	-	-	_	Ι	-	_	_	_	-		_	_	Ι	Ι	_
300 m - outer jurisdiction (18)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (19)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
300 m - outer jurisdiction (20)	_			-	_			_	-		_	_	_		_	_	_		_	_
300 m - outer jurisdiction (21)	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (22)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (23)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (24)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (25)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (26)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
300 m - outer jurisdiction (27)	_		I	-	_	I		_	-	I	_	_	_	I	_	_	_	I	_	_
300 m - outer jurisdiction (28)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (29)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer jurisdiction (30)	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•	•			•		Р	ercent	Chanc	e							•	
North Atlantic Right Whale	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Southeastern SMA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Sargassum (March/April)	_	I	_	_		١	_	_	-	-	_	-	-	-		I	-		-	_
Sargassum (May/June)	-	١	-	-	I	١	-	-	-	-	_	-	Ι	Ι	I	I	Ι	I	-	_
Sargassum (July/August)	_	-	_	_		-	_	Ι	Ι	Ι	_	Ι	Ι	Ι		Ι	Ι		Ι	_
Seagrass-Wakulla County	_	I	_	_	Ι		_	-	_	-	_	-	-	-	Ι		-	Ι	-	_
Seagrass-Jefferson County	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Seagrass-Taylor County	_	-	_	_	-	-	_	_	_	_	_	_	-	-	-	Ι	-	-	_	_
Seagrass-Dixie County	_	-	_	_	_	-	_	-	Ι	Ι	_	Ι	-	-	_	-	-	_	Ι	_
Seagrass-Levy County	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (1)	_	-	_	_	_	-	_	-	-	1	1	1	1	1	1	1	Ι	_	-	_
Topographic Features (2)	_	I	_	_		١	_	_	-	-	_	-	-	1	1	1	-		-	_
Topographic Features (3)	-	١	-	-	I	١	-	-	-	1	1	1	Ι	Ι	1	1	Ι	I	-	_
Topographic Features (4)	_	-	_	_	_	-	_	_	1	1	1	1	1	1	1	1	_	1	1	1
Topographic Features (5)	_	_	_	_	_	_	_	_	1	2	2	2	1	2	2	2	_	1	1	1
Topographic Features (6)	_	_	_	_	_	_	_	_	1	1	1	1	_	1	1	1	_	1	1	1

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource			•	•			•		P	ercent	Chanc	e								
Topographic Features (7)	_	_	_	_	_	_	_	_	1	1	1	1	_	1	1	1	_	_	1	1
Topographic Features (8)	-	I	_	_	I	I	_	-	Ι	1	1	1	I	I	I	I	_	I	Ι	_
Topographic Features (9)	_	_	_	_	-	-	_	_	_	1	2	2	-	-	-	-	_	-	1	1
Topographic Features (10)	_	-	_	_	-	-	_	_	_	-	Ι	-	-	-	-	-	_	-	_	_
Topographic Features (11)	-	I	_	-	I	I	_	-	-	-	I	I	I	I	I	I	_	I	-	_
Topographic Features (12)			_	_			_	Ι	Ι	Ι	Ι	-		-			_		Ι	_
Stetson Bank	_	-	_	_		1	_	_	_	_	_			1		1	_		_	_
Topographic Features (13)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (14)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (15)	_		_	_	-	-	_	_	_	_	_	-	-	-	-	-	_	-	_	_
East Flower Garden Bank	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
West Flower Garden Bank	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (16)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (17)	_	_	_	_	-	-	_	_	_	-	-	-	-	-	-	-	_	-	_	_
Topographic Features (18)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (19)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•						P	ercent	Chanc	e				•				
Topographic Features (20)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (21)	_	_	_	-	-	١	_	١	Ι	Ι	-	I	Ι	Ι	_	_	١	١	_	_
Topographic Features (22)	_	_	_	_	_	-	_	-	_	-	_	Ι	-	-	_	_	-	-	_	_
Topographic Features (23)	_	-	_	-		١	_	١	Ι	I	-	I	I	I	-	_	١	١	-	_
Sonnier Bank	_	_	_	_	-	-	_	-	Ι	Ι	-		Ι	Ι	_	_	-	-	_	-
Topographic Features (24)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (25)	_	_	_	_	_	_	_	_	_		_	_			_	_	_	_	_	_
Topographic Features (26)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (27)	_	_	_	_	_	-	_		_	I	_	_	I	I	_	_	-	-	_	_
Topographic Features (28)	_	_	_	_	_	I	_		-		_	-			_	_		I	_	_
Topographic Features (29)	_	_	_	_	_	-	_	-	_	I	_	_	I	I	_	_	-	-	_	_
Topographic Features (30)	_	_	_	_	_	_	_	_	_		_	_			_	_	_	_	_	_
Topographic Features (31)	_	_	_	_	_	_	_	_	_		_	_			_	_	_	_	_	_
Topographic Features (32)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (33)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (34)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sum	mer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Topographic Features (35)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Pinnacle Trend	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	-	-	_
Chandeleur Islands	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	-	-	_
Florida Middle Ground	-	_	_	_	I	I	I	I	I	_	_	_	_	I	_	_	_	I	-	_
Pulley Ridge	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	-	_	-	_	—
Madison Swanson	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	Ι	_	_
Steamboat Lumps	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	Ι	-	_
Dry Tortugas	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve North	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve South	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	_	-	_
Florida Keys National Marine Sanctuary (year round)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	
FL State Waters	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Key Biscayne National Park	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	_	-	_
Texas Clipper and South Texas Platform	_	1	1	1		-			-	1	1	1	_		_	_	_		-	_
Port Lavaca/Liberty Ship Reef	_	_	_	_	-	-	1	-	-	_	_	_	_	1	_	_	_	-	-	_
High Island	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-
West Cameron	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Galveston Area (GA 393)	_	_	_	_	-	-	-	-	-	_	_	_	_	-	_	_	_	-	-	_

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•						F	Percent	Chanc	e								
Cognac Platform (MC 194)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Horseshoe Rigs (MP 306)	_	_	_	_		_	_	_		_	_	_	_	_	_	_	_	_	_	_
Vermilion Area	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Vermilion Area, South Addition	_	_	_	_	-	-	-	_	-	_	_	-	-	_	-	_	_	_	-	_
Bay Marchand	_	_	_	_		-	-	_		_	_	-	-	_	-	_	_	_	-	_
South Timbalier	_	_	_	_	I	-	_	_		_	_	_	-	_	-	_	_	_	-	_
South Timbalier Area, South Addition	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_
Panhandle FL	_	_	_	_	I	١	I	-	I	I	-	I	I	_	١	_	_	_	١	—
Tampa	_	_	_	_	Ι	-	-	Ι	Ι	-	Ι	-	-	_	-	_	_	_	-	—
Southeast FL	_	_	_	_	I	١	١	-	١		-	١	١	_	١	_	_	_	١	—
Daytona Beach	-	_	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	—
Jacksonville	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Stetson Bank (April-Nov)	_	_	_	_	_	-	-	-	_	-	-	-	-	_		_	_	_	-	_
East Flower Garden Bank (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
West Flower Garden Bank (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chandeleur Islands (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve 1 (April-Nov)	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sun	nmer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
Tortugas Ecological																				
Reserve 2																				
(April-Nov)	-	_	_	—	-	—	—	—	-	_	_	—	_	_	_	_	_	-	-	—
Florida Keys																				
National Marine																				
Sanctuary																				
(April-Nov)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	—
TX Gulf State																				
Waters (Nov-April)	-	-	-	-	-	-	-	—	-	_	-	-	—	-	_	_	—	_	-	—
LA Gulf State																				
Waters (Nov-April)	-	-	-	-	-	-	-	—	-	_	-	-	—	-	_	_	—	_	-	—
LA Gulf State																				
Waters (Nov-April)	_	-	-	-	-	-	_	-	-	_	—	-	-	—	_	_	_	_	-	
MS Gulf State																				
Waters (Nov-April)	-	_	-	-	-	-	-	-	-	—	-	-	-	-	—	_	_	_	_	
AL Gulf State																				
Waters (Nov-April)	-	_	-	-	-	-	-	-	-	—	-	-	-	-	—	_	_	_	_	
FL (East Coast and																				
Gulf)I (Nov-April)	-	-	-	-	-	-	_	-	-	_	-	-	-	-	_	-	_	-	-	—
FL (East Coast and																				
Gulf)2 (Nov-April)	-	-	_	-	_	-	-	-	_	_	—	_	-	—	_	—	_	_	-	
FL (East Coast and																				
Gult)3 (Nov-April)	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	
FL (East Coast and																				
Gulf)4 (Nov-April)	-	-	_	-	-	-	-	-	_	_	—	_	-	—	_	_	_	-	_	
FL (East Coast and																				
Gult)5 (Nov-April)	<u> </u>		<u> </u>		—	-	-	-	—	—	—	—	-	—	—	—	—	—	—	

 Table C-9.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 4 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by "-".

Central Planning Area Lease Sales 235, 241, and 247 EIS

Table C-10

Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			An	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	Percent	Chanc	e								
Cayman Islands	_	_	-	-	-	-	_	-	1	_	1	-	-	_	1	I	1	-	_	_
Bahamas 1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Bahamas 2	_	_	_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	-	_	_
Bahamas 3	_	_	_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	-	_	_
Bahamas 4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Bahamas 5	_	_	_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	-	_	_
Jamaica	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TX State Waters	_	47	87	90	_	8	44	69	_	18	53	58	_	16	63	80	_	22	62	74
West LA State Waters	_	1	7	8	_	_	8	12	_	_	_	2	_	_	_	_	_	_	4	5
East LA State Waters	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	-	-	_	_
MS State Waters	_	_	_	-	-	_	_	-	_	_	_	-	-	_	_	_	_	_	_	_
AL State Waters	_	_	-	-	-	-	_	-	-	_	1	-	-	_	1	I	1	-	_	_
FL Panhandle State Waters	_	_	_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	-	_	-
West FL State Waters	_	-	_	-	-	_	_	-	_	_	_	-	-	_	_	_	_	_	_	_
Tortugas State Waters	_	_	_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	-	_	_
Southeast FL State Waters	_	_	_	_	_	_	-	_	١	_	١	_	_	_	١	١	١	١	_	_
Northeast FL State Waters	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_	_	-	_	-
Mexican Waters	_	_	_	_	_	_	4	7	-	_	6	10	_	_	4	8	-	-	4	6

Season		Spi	ring			Sun	nmer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e								
Texas West Waters																				
(0-200 m) for EFH	1	16	22	23	-	8	29	40	2	31	55	59	1	32	55	66	1	22	40	47
Texas East Waters (0-200 m) for EFH	60	86	92	94	30	54	67	73	36	54	60	62	38	60	67	73	41	63	72	75
Louisiana Waters																				
West of Mississippi																				
River (0-200 m)	1	9	13	15	2	27	42	43	-	3	5	7	-	2	5	9	1	10	16	18
Louisiana Waters																				
East of Mississippi Biver (0, 200 m)								1												
Mississippi Waters	_	-	_	_	_	_	-	1	-	_	_	_	_	_	_	_	_	_	_	
(0-200 m)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Alabama Waters																				
(0-200 m)	-	-	_	_	_	-	-	1	_	_	_	_	_	_	_	_	_	_	_	_
Florida Panhandle																				
Waters (0-200 m)	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	
Florida Bend Waters																				
(0-200 m)	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	
Florida Southwest Waters (0, 200 m)																				
Florida Keys Waters	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_	_	
(0-200 m)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Florida Southeast																				
Waters (0-200 m)	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	-	-	_
Florida Northeast																				
Waters (0-200 m)	-	-	_	-	_	-	-	-	-	_	-	_	-	-	_	_	_	-	-	
Shoreline - 20 m (1)	_	_	_	_	_	_	3	6	_	-	4	7	_	_	3	6	_	_	3	5
Shoreline - 20 m (2)	_	12	20	20	_	3	20	32	_	9	37	42	_	8	45	58	_	8	31	38
Shoreline - 20 m (3)	_	49	75	77	_	10	33	45	_	12	20	23	—	10	22	28	_	20	38	43
Shoreline - 20 m (4)	_	3	8	10	_	1	15	20	_	_	1	2	_	_	_	1	_	1	6	8
Shoreline - 20 m (5)	-	-	_	1	—	-	3	5	_	-	-	1	-	_	—	_	_	-	1	2

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ing			Sum	mer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	ercent	Chanc	e								
Shoreline - 20 m (6)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (7)	_	_	I	_	_	١	I	I	I	I	I	_	_	_	_	_	_	_	I	—
Shoreline - 20 m (8)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (9)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (10)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (12)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Shoreline - 20 m (13)	_	_	-	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	-	_
Shoreline - 20 m (14)	_	_	-	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	-	_
Shoreline - 20 m (15)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (1)	1	15	21	21	_	9	29	39	2	32	56	59	1	33	55	65	1	22	40	46
20 m - 300 m (2)	64	87	93	94	37	60	71	76	39	57	62	64	41	63	70	75	45	67	74	77
20 m - 300 m (3)	1	8	11	13	3	28	41	42	_	3	5	7	_	2	6	9	1	10	16	18
20 m - 300 m (4)	_	_	_	1	_	1	8	9	_	_	1	2	_	_	1	1	_	_	3	3
20 m - 300 m (5)	_	_	_	_	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (6)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (7)	_	_	_	_	_	_	_	1	_	_	-	_	_	_	_	_	_	_	-	_
20 m - 300 m (8)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (9)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (10)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (11)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (12)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20 m - 300 m (13)	-	-	-	-	_	_	-	-	-	-	_	-	-	-	_	-	-	-	_	_
20 m - 300 m (14)	_	_	_	_	_	-	-	_	-	-	-	_	_	_	_	_	_	_	_	_

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e								
300 m - outer																				
jurisdiction (1)	15	27	31	32	5	18	32	38	28	64	76	78	20	47	59	65	17	39	49	53
300 m - outer																				
jurisdiction (2)	10	18	22	22	10	24	34	38	43	66	73	75	23	40	50	53	21	37	45	47
300 m - outer																				
jurisdiction (3)	85	92	93	93	72	81	85	85	63	67	69	70	69	77	80	82	72	79	82	83
300 m - outer																				
jurisdiction (4)	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99	>99
300 m - outer																				
jurisdiction (5)	—	3	6	6	4	14	20	25	1	9	20	26	3	14	21	27	2	10	17	21
300 m - outer																				
jurisdiction (6)	4	6	8	9	11	22	29	29	—	3	6	9	_	7	14	15	4	9	14	15
300 m - outer																				
jurisdiction (7)	1	4	5	6	6	13	18	20	—	1	5	9	_	10	18	19	2	7	12	14
300 m - outer																				
jurisdiction (8)	-	2	3	4	-	3	8	11	_	_	4	7	_	6	15	18	-	3	8	10
300 m - outer																				
jurisdiction (9)	-	-	1	2	-	3	10	11	_	_	2	4	_	1	4	5	-	1	4	6
300 m - outer																				
jurisdiction (10)	-	1	2	3	-	4	9	10	_	_	3	5	_	2	8	9	-	2	6	7
300 m - outer																				
jurisdiction (11)	-	-	1	2	_	1	4	6	-	-	2	5	_	2	10	12	-	1	4	6
300 m - outer																				
jurisdiction (12)	-	-	_	1	_	_	4	5	-	-	1	2	_	-	1	1	-	_	1	2
300 m - outer																				
jurisdiction (13)	-	-	_	1	-	-	3	4	_	_	1	1	_	-	1	2	-	_	1	2
300 m - outer																				
jurisdiction (14)	-	-	_	1	_	_	2	3	-	_	1	1	_	_	1	2	_	_	1	2
300 m - outer																				
jurisdiction (15)	-	-	-	-	-	-	1	3	-	_	_	-	-	-	_	-	-	-	-	1
300 m - outer								_												
jurisdiction (16)	—	-	-	-	—	—	2	3	-	—	-	1	—	_	—	—	_	—	1	1

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource				•					P	Percent	Chanc	e		•			•			
300 m - outer																				
jurisdiction (17)	_	-	_	_	_	-	2	3	-	-	-	1	_	_	1	1	_	-	1	1
300 m - outer																				
jurisdiction (18)	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-	-	-	-	-	1
300 m - outer																				
jurisdiction (19)	_	-	_	-	_	-	_	1	-	-	-	1	_	_	-	_	_	-	-	
300 m - outer																				
jurisdiction (20)	-	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-	-	-	1
300 m - outer								1				1								
Jurisdiction (21)	-	_	-	-	-	-	-	1	-	_	-	1	-	-	_	_	-	-	-	_
500 III - Outer								1												
300 m outer	-	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	
jurisdiction (23)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
300 m - outer								1												
jurisdiction (24)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1	_	_	_	1
300 m - outer																				
jurisdiction (25)	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_
300 m - outer																				
jurisdiction (26)	_	-	_	-	_	-	_	_	-	-	-	_	_	_	-	_	_	-	_	_
300 m - outer																				
jurisdiction (27)	-	-	_	-	-	-	_	-	-	-	-	1	_	_	-	-	_	-	-	_
300 m - outer																				
jurisdiction (28)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
300 m - outer																				
jurisdiction (29)	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_
300 m - outer																				
jurisdiction (30)	-	-	_	—	_	-	_	_	-	_	-	_	_	_	_	_	_	-	-	
North Atlantic Right																				
Whale	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Southeastern SMA	-	-	—	-	—	—	_	_	-	-	-	_	_	_	-	_	_	-	-	-

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sum	mer			Fa	all			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									P	ercent	Chanc	e								
Sargassum (March/April)	_	_	1	1	_	_	_	_	_	_	_	_	_	2	7	9	_	1	2	3
Sargassum (May/June)	67	67	67	67	_	_	_	_	_	_	_	_	_	_	_	_	17	17	17	17
Sargassum (July/August)	1	1	1	1	66	66	66	66	_	_	_	_	_	_	_	_	17	17	17	17
Seagrass-Wakulla County	_	_	_	_	_	_	_	-	_	_	_	-	_	-	_	_	_	_	_	_
Seagrass-Jefferson County	_	_	_	_	_	_	_	Ι	-	_	-	Ι	-	-	-	_	_	_	_	_
Seagrass-Taylor County	_	_	_	_	_	_	_	Ι	Ι	Ι	Ι	Ι	Ι		Ι	_	-	Ι	Ι	_
Seagrass-Dixie County	_	_	_	_	_	_	_	-	-	Ι	-	-	-	_	-	_	_	Ι	Ι	_
Seagrass-Levy County	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (1)	_	_	_	_	_	_	_	1	_	_	2	2	_	_	2	2	_	_	1	1
Topographic Features (2)	_	_	_	_	_	_	_	_	_	_	1	1	-	I	1	1	_	_	_	1
Topographic Features (3)	_	_	_	_	_	_	_	_	_	_	1	2	_		1	2	_	_	1	1
Topographic Features (4)	_	_	_	_	_	_	_	1	_	_	1	1	_		1	2	_	_	1	1
Topographic Features (5)	_	_	_	_	_	_	1	1	_	1	2	2	-		2	3	_	_	1	2
Topographic Features (6)	_	_	1	1	_	_	_	1	_	_	1	2	_	_	1	2	_	_	1	1
Topographic Features (7)	_	_	_	_	_	_	1	1	_	_	1	1	_	_	1	1	_	_	1	1
Topographic Features (8)	_	_	_	_	_	_	_	_	_	_	1	1	_	_	1	1	_	_	1	1

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spring				Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•				•	•		F	Percent	Chanc	e					•			
Topographic Features (9)	_	_	1	1	١	_	1	1	١	1	2	2	I	1	2	2	-	1	1	1
Topographic Features (10)	_	_	1	1	I	_	1	1	I	I	1	1	I	1	1	2	_	I	1	1
Topographic Features (11)	_	_	_	_	-	_	1	1	-	-	1	1	-	1	2	2	_	-	1	1
Topographic Features (12)	1	3	3	3	1	2	2	2	1	2	2	3	-	2	3	3	1	2	3	3
Stetson Bank	_	2	2	2	-	1	1	1	-	-	-	1	-	-	1	1	_	1	1	1
Topographic Features (13)	_	1	1	1	-	1	2	3		-	1	1			1	1	_	1	1	1
Topographic Features (14)	_	1	1	1	1	1	2	2	-	1	1	1		1	1	1	_	1	1	1
Topographic Features (15)	1	2	2	2	-	3	4	4	-	1	1	1	-	1	1	2	_	2	2	2
East Flower Garden Bank	1	2	2	2	4	7	8	8	1	1	2	3	_	1	3	4	1	3	4	4
West Flower Garden Bank	_	1	1	2	2	7	8	9	-	-	1	2	-	-	2	3	1	2	3	4
Topographic Features (16)	_	_	_	_	_	3	4	4	_	_	_	1	_	_	_	1	_	1	1	2
Topographic Features (17)	_	1	1	1	_	1	1	2	_	_	_	_	_	_	_	1	_	1	1	1
Topographic Features (18)	_	-	1	1	١	1	2	2	١	١	١	١	١	١	١	1	-	1	1	1
Topographic Features (19)	_	_	_	1	_	2	3	3	_	_	_	1	_	_	_	1	_	1	1	1
Topographic Features (20)	_	1	1	1	_	3	4	4	_	1	1	1	_	_	_	1	_	1	2	2
Topographic Features (21)	_	_	_	_	_	3	4	5	_	_	1	1	_	_	1	1	_	1	1	2

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

BOEM-OSRA Catastrophic Run

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	ercent	Chanc	e								
Topographic Features (22)	_	_	_	_	_	_	1	1	_	_	_	1	_	_	_	_	_	_	_	_
Topographic Features (23)	_	_	_	_	_	_	2	2	_	-	1	1	_	_	1	1	_	_	1	1
Sonnier Bank	-	_	_	_	_	_	1	1	_	_	_	-	_	_	_	-	-	_	_	-
Topographic Features (24)	_	_	_	_	_	1	2	2	_	-	1	1	-	Ι	-	_	_	_	1	1
Topographic Features (25)	_	_	_	_	_	_	2	2	_	_	_	_	_	_	_	_	_	_	1	1
Topographic Features (26)	_	_	_	_	_	1	2	2	I	I	1	1	I		I	_	_	_	1	1
Topographic Features (27)	_	_	_	_	_	_	2	2	I	I	I	1	I	Ι	I	_	_	Ι	1	1
Topographic Features (28)	_	_	_	_	_	_	1	1	-	-	-	_	-	Ι	-	_	_	-	_	_
Topographic Features (29)	_	_	_	_	_	_	_	_		-	Ι	_	-	Ι		_	_	Ι	Ι	_
Topographic Features (30)	_	_	-	_	_	-	-	-	I	١	I	-	١	I	I	-	-	Ι	-	_
Topographic Features (31)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Topographic Features (32)	_	_	_	_	_	_	1	1	_	-	_	_	-	-	_	_	_	_	_	_
Topographic Features (33)	_	_	_	_	_	_	1	1	_	-	-	_	-	-	_	_	_	_	_	_
Topographic Features (34)	_	_	_	_	_	_	_	_	-	-	-	_		Ι	-	_	_	-	_	_
Topographic Features (35)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pinnacle Trend	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Chandeleur Islands	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spring				Sum	mer			Fa	ıll			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•	•				•		F	Percent	Chanc	e			•	•		•		
Florida Middle Ground		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pulley Ridge	_	_	_	-	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Madison Swanson	_	_	_	-	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Steamboat Lumps	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Dry Tortugas	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve North	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve South	I	-	-			I	-	-			-	-	-	I	-	_	I	-	-	_
Florida Keys National Marine Sanctuary (year round)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL State Waters	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	-	_	_	-	_
Key Biscayne National Park	-	_	_		_		_	_	_	-	Ι	Ι	Ι	-	_	_	-	_	Ι	-
Texas Clipper and South Texas Platform	-	_	_	-	_	1	5	8	_	2	5	6	Ι	-	_	_	-	1	3	4
Port Lavaca/Liberty Ship Reef	6	27	34	35	_	7	18	23	1	7	8	8	Ι	1	2	3	2	10	15	17
High Island	١	7	19	20	I	2	9	15	١	1	1	1	-	١	_	_	١	3	7	9
West Cameron	-	4	7	9	Ι	5	17	22	Ι		Ι	Ι	Ι	-	_	1	-	2	6	8
Galveston Area (GA 393)	١	2	3	3	Ι	1	2	3	Ι	I	1	1	-	١	1	1	١	1	2	2
Cognac Platform (MC 194)	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_
Horseshoe Rigs (MP 306)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Vermilion Area	_	_	3	4	_	1	12	14	_	_	_	_	_	_	_	_	_	_	4	5

Table C-10.	Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore
	Environmental Resource within the Specified Number of Days (continued).

Season		Spr	ring			Sum	mer			Fa	ıll			Wi	nter			Anr	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource		•							P	Percent	Chanc	e								
Vermilion Area, South Addition	_	1	3	4	_	8	17	18	_	_	_	_	_	_	_	_	_	2	5	6
Bay Marchand	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
South Timbalier	_	_	-	-	-	_	3	4	Ι		Ι	_	Ι	Ι		_	_	Ι	1	1
South Timbalier Area, South Addition	_	_	-	1	-	_	5	5	_	_	_	_	_	_	_	_	_	_	1	1
Panhandle FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tampa	_	-	-	_	_	_	_	_	Ι	_	Ι	_	-	Ι	_	_	_	-	-	_
Southeast FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daytona Beach	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_	_	_
Jacksonville	_	_	-		-	_	_	_	Ι		Ι	_	Ι	Ι		_	_	Ι		_
Stetson Bank		2	2	2		1	1	1										1	1	1
(April-Nov)	-	2	2	2	_	1	1	1	-	_	-	_	_	-	_	_	_	1	1	1
Bank (April-Nov)	1	2	2	2	4	7	8	8	_	_	1	1	_	_	_	_	1	2	3	3
West Flower Garden Bank (April-Nov)	_	1	1	2	2	7	8	9	_	_	_	_	_	_	_	_	1	2	3	3
Chandeleur Islands		1	1	2	2	/	0	,									1	2	5	5
(April-Nov)	_	-	_	_	_	_	_	_	-	-	-	_	_	-	-	_	_	_	-	-
Tortugas Ecological Reserve 1 (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tortugas Ecological Reserve 2																				
Florida Keys National	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_	_	_
Marine Sanctuary (April-Nov)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TX Gulf State Waters (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Season		Spi	ring			Sun	nmer			Fa	all			Wi	nter			Anı	nual	
Days	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60	3	10	30	60
Resource									F	Percent	Chanc	e								
LA Gulf State Waters																				
(Nov-April)	-	_	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	_
LA Gulf State Waters																				
(Nov-April)	-	-	-	-	-	-	-	-	_	-	_	_	-	_	-	-	-	-	_	_
MS Gulf State Waters																				
(Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AL Gulf State Waters																				
(Nov-April)	_	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_
FL (East Coast and																				
Gulf)1 (Nov-April)	_	-	_	-	-	_	-	-	-	_	-	-	_	-	-	_	-	_	_	-
FL (East Coast and																				
Gulf)2 (Nov-April)	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	_	-
FL (East Coast and																				
Gulf)3 (Nov-April)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FL (East Coast and																				
Gulf)4 (Nov-April)	—	-	-	-	-	-	_	_	_	_	_	_	—	_	_	—	-	_	-	_
FL (East Coast and																				
Gulf)5 (Nov-April)	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	_	-

 Table C-10.
 Conditional Probabilities (expressed as percent chance) that an Oil Spill Occurring at Launch Point 5 Will Make Contact with an Offshore Environmental Resource within the Specified Number of Days (continued).

Note: Values of <0.5% are indicated by "-".

APPENDIX D

COMMONLY APPLIED MITIGATING MEASURES

D. COMMONLY APPLIED MITIGATING MEASURES

Postlease mitigating measures have been implemented for over 40 years in the Gulf of Mexico region, as they relate to OCS plans and pipeline applications. These mitigating measures have been amended over time to address changes in regulations, new technology, and new methods of operating. Many of these mitigating measures have been adopted and incorporated into regulations and/or guidelines governing OCS oil and gas exploration, development, and production activities. All plans for OCS oil-and gas-related activities (e.g., exploration and development plans, pipeline applications, geological and geophysical activities, and structure-removal applications) go through rigorous BOEM review and approval to ensure compliance with established laws and regulations. Existing mitigating measures must be incorporated and documented in plans submitted to BOEM. Operational compliance of the mitigating measures is enforced through the Bureau of Safety and Environmental Enforcement's (BSEE's) onsite inspection program.

Mitigating measures are an integral part of BOEM's program to ensure that postlease operations are always conducted in an environmentally sound manner (with an emphasis on minimizing any adverse impact of routine operations on the environment). For example, post-activity surveys are carried out to ensure that a site has been cleared of potential snags to commercial fishing gear, and pre-activity surveys seek to avoid archaeological sites and biologically sensitive areas such as pinnacles, topographic features, and chemosynthetic communities.

Some BOEM-identified mitigating measures are incorporated into OCS operations through cooperative agreements or efforts with industry and State and Federal agencies. These mitigating measures include the National Marine Fisheries Service's (NMFS's) Observer Program to protect marine mammals and sea turtles during explosive removals, labeling operational supplies to track possible sources of debris or equipment loss, development of methods of pipeline landfall to eliminate impacts to beaches or wetlands, and beach cleanup events.

Site-specific mitigating measures are also applied by BOEM during plan and permit reviews. BOEM realized that many of these site-specific mitigations were recurring and developed a list of "standard" or commonly applied mitigations. There are currently over 120 standard mitigations. The wording of a standard mitigation is developed by BOEM in advance and may be applied whenever conditions warrant. Standard mitigation text is revised as often as is necessary (e.g., to reflect changes in regulatory citations, agency/personnel contact numbers, and internal policy). Site-specific mitigation "categories" include the following: air quality; archaeological resources; artificial reef material; chemosynthetic communities; Flower Garden Banks; topographic features; hard bottoms/pinnacles; military warning areas and Eglin Water Test Areas (EWTAs); hydrogen sulfide (H₂S); drilling hazards; remotely operated vehicle surveys; geophysical survey reviews; and general safety concerns. Site-specific mitigation "types" include the following: advisories; conditions of approval; hazard survey reviews; inspection requirements; notifications; post-approval submittals; and safety precautions. In addition to standard mitigations, BOEM may also apply nonrecurring mitigating measures that are developed on a case-by-case basis.

Following a lease sale, an applicant seeks approvals to develop their lease by preparing and submitting OCS plans. The OCS plans are reviewed by BOEM and, depending on what is proposed to take place in a specific place, BOEM may assign conditions of approval (COA). The COAs become part of the approved postlease authorization and include environmental protections, requirements that maintain conformance with law, the requirements of other agencies having jurisdiction, or safety precautions.

Some of BOEM's conditions of approval include the following:

- (1) other approvals prerequisite to BOEM's approval (e.g., the Coastal Zone Management Act);
- (2) safety precautions (e.g., H_2S present);
- (3) post-approval submittals (e.g., surveys and interpretive reports);
- (4) inspection requirements (e.g., pipeline pressure testing);
- (5) pre-deployment notifications (e.g., U.S. Department of Defense use restrictions & Military Warning Areas); and

(6) reduce or avoid environmental impacts on resources identified in NEPA or other laws (e.g., the National Historic Preservation Act).

BOEM is continually revising applicable mitigations to allow the Gulf of Mexico OCS Region to more easily and routinely track mitigation compliance and effectiveness. A primary focus of this effort is requiring post-approval submittal of information within a specified timeframe or after a triggering event (e.g., end of operations reports for plans, construction reports for pipelines, and removal reports for structure removals).

Table D-1 provides a list and description of standard postlease mitigating measures that may be required by BOEM or BSEE as a result of plan and permit review processes for the Gulf of Mexico OCS Region.

Table D-1

Commonly Applied or "Standard" Mitigating Measures

Mitigation Number	Mitigating Measure Title	Description of Mitigation	
0.0	Non-Recurring Mitigation	A non-recurring mitigation is a mitigation measure that is used for a unique, special, one-time-only mitigation that is added to certain plans.	
		Boat Traffic Mitigations	
1.04	Seismic Vessels (protected species requirements)	The applicant will comply with Notice to Lessees and Operators (NTL) 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program." Additionally, the applicant will comply with the guidance under this NTL when operating in all water depths (not just in water depths >200 m [656 ft] or in the Eastern Planning Area), and the NTL's "Shut-Down Conditions" will be applied towards manatees.	
1.05	Seismic Vessels (vessel-strike avoidance/reporting)	The applicant will follow the guidance provided under NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting." This provides guidance on how a seismic applicant should implement monitoring programs to minimize the risk of vessel strikes to protected species and report observations of injured or dead protected species. In lieu of a formal observer program, NTL 2012-JOINT-G01 provides specific guidelines that should be followed to identify and avoid injury to marine mammals and sea turtles.	
1.06	Progressive-Transport/"Hopping" (structure removals)	In accordance with the Outer Continental Shelf Lands Act (OCSLA) requirements (30 CFR § 250.1727(g)), if at any point in the decommissioning schedule progressive-transport/"hopping" activities are required to section the jacket assembly or support material barge loading, a prior written request must be submitted and approval must be obtained from the Bureau of Safety and Environmental Enforcement's (BSEE's) Regional Supervisor, Field Operations. The applicant's request to use progressive-transport must include a detailed procedural narrative and separate location plat for each "set-down" site, showing pipelines, anchor patterns for the derrick barge, and any known archaeological and/or potentially sensitive biological features. The diagram/map of the route to be taken from the initial structure location along the transport path to each site must also be submitted with the request. If the block(s) that the applicant intends to use as "set-down" sites have not been surveyed as per NTL 2009-G39, "Biologically-Sensitive Underwater Features and Areas," and NTL 2005-G07, "Archaeological Resource Surveys and Reports," the applicant may be required to conduct the necessary surveys/reporting prior to mobilizing on site and conducting any seafloor-disturbing activities.	
1.07	Seismic Vessels (notification requirements)	In accordance with 30 CFR § 550.208(b)(2), the applicant is hereby required to notify other users of the Outer Continental Shelf (OCS) before conducting the proposed ancillary activities. Prior to commencing the survey(s), the applicant must inform the operators of all leases affected by the proposed activities of when and where the applicant intends to conduct the vessel operations to ensure that proper navigation and safety protocol are observed.	
Mitigation Number	Mitigating Measure Title	Description of Mitigation	
----------------------	--	---	--
	Air Quality Mitigations		
2.05	Fuel Usage or Run Time Documentation	The projected nitrogen oxides (NO_x) emissions amounts in the plan were calculated using historic (insert fuel consumption rates, run times). Maintain monthly records of the total annual (insert fuel consumption, run times) for the (specify the affected vessels or equipment) with a limit of (insert limit in gallons/year, limit in hours/year) and provide the information to the Bureau of Ocean Energy Management's (BOEM's) Regional Supervisor, Office of Leasing and Plans, Plans Section annually by February 1st of each year, beginning in the year (insert year). If no activities were conducted during a calendar year, provide a statement to that effect in lieu of the required records. If at any time during the applicant's activities these records indicate that the NO _x annual emissions may exceed the annual limit approved in your plan or the total annual (insert fuel consumption, run time) limit, the applicant must immediately prepare a revised plan pursuant to 30 CFR § 550.283 to include the recalculated emissions amounts. The applicant will not proceed with the actions that could cause the potential annual increase in emissions until the revised plan has been submitted to and approved by BOEM.	
2.08	Potential to Exceed SO ₂ Significance Levels (flaring)	Should hydrogen sulfide (H ₂ S) concentrations greater than (insert number) ppm be encountered, the 3- and 24-hour sulphur oxides (SO ₂) onshore ambient air concentration significance levels as prescribed by 30 CFR § 550.303(e) could be exceeded during the proposed well test flaring. Therefore, the applicant is advised that, should H ₂ S concentrations greater than (insert number) ppm be encountered, they shall use the graph included in their plan to determine the maximum allowable flow rate for the flaring operation. The applicant is responsible for ensuring that their maximum emission concentrations remain below the aforementioned significance levels. In accordance with 30 CFR § 250.1164(c), the applicant is hereby required to submit monthly reports that contain the following: (1) the daily volume and duration (number of hours) of each flaring episode; (2) the H ₂ S concentration (ppm) in the flared gas; and (3) the calculated amount of SO ₂ emitted.	
2.11	Using Ultra-Low Sulfur Content Fuel	As proposed, use ultra-low sulfur content diesel fuel (sulfur concentration 0.0015% or less by weight) while conducting these operations. Sulfur content records must be maintained on the platform and made available to authorized BSEE personnel upon request.	
2.12	Verification of Emissions Factors (clean burn engines)	The rating, manufacturer, and type of engine(s) proposed in the applicant's plan will be operated and maintained in accordance with the manufacturer's specifications. Using a U.S. Environmental Protection Agency (USEPA)-approved or equivalent method, perform an emissions stack test on the subject engine(s) within 60 days following installation and at least every 3 years thereafter. These tests will be performed at loads representing 25, 50, 75, and 100 percent of the rated capacity or at minimum, average, and highest operational loads to verify that the emission factors are not exceeding those used in calculating the proposed emissions in the plan. Prepare a report of the results of each stack test and submit it to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section within 45 days of the test. During engine operation, the applicant will maintain the baseline parameters (such as air-fuel rations) established during the most	

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		recent successful stack test. The applicant must monitor and record these parameters daily to ensure consistency with those observed during the most recent successful stack test. Records of these parameters must be maintained on the platform and made available to authorized BSEE personnel upon request. In addition, the applicant must submit this information to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section annually by February 1st of each year, beginning in the year (insert year). If no activities were conducted during a calendar year, provide a statement to that effect in lieu of the required records.
2.13	Monitoring of NO _x Emissions (catalytic converters)	The rating, manufacturer, and type, and catalytic converter(s) proposed in the plan must be operated and maintained in accordance with the manufacturer's specifications. Using a USEPA-approved or equivalent method, perform an emissions stack test on the subject engine(s) and catalytic converter(s) within 60 days following installation and at least every 3 years thereafter. These tests will be performed at loads representing 25, 50, 75, and 100 percent of the rated capacity or at minimum, average, and highest operational loads to verify that the emissions factors are not exceeding those used in calculating the proposed emissions in the plan. The applicant must contact BSEE at least 30 days prior to conducting the test to determine proper protocol for the stack test and also to have the BSEE representative witness the test. Prepare a report of the results of each stack test and submit it to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section within 45 days of the test.
		During operation, the applicant will maintain the baseline parameters, such as air-fuel ratios for the engine(s) and the pressure drop and temperature increase across the catalytic converter(s) established during the most recent successful stack test. The applicant must monitor and record these parameters daily to ensure they remain consistent with those observed during the most recent successful stack test. The records of these parameters will be maintained on the platform and made available to authorized BSEE personnel upon request. In addition, the applicant must submit this information to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section annually by February 1st of each year, beginning in the year (insert year). If no activities were conducted during a calendar year, the applicant must provide a statement to that effect in lieu of the required records.
2.15	Sulfur Recovery Unit, Flaring Episodes, Production Curtailment	If a shutdown of the sulfur recovery unit necessitates diverting the acid gas stream and if the resulting increased emissions would cause the SO_2 onshore ambient air concentration significance levels as prescribed by 30 CFR § 550.303(e) to be exceeded, begin curtailing production within 6 hours of the onset of the increased emissions. If curtailment is necessary, the appropriate reduced production rate will be reached no later than 8 hours from the onset of the increased emissions and will continue until such time that normal operation of the sulfur recovery unit can resume.
2.16	Monitoring of SO ₂ Emissions (sulfur recovery units)	The amine unit and the (specify name of sulfur recovery unit) proposed in the plan must be operated and maintained in accordance with the manufacturer's specifications. Using a USEPA-approved or equivalent method, perform an emissions stack test on the subject sulfur recovery unit within 60 days following installation. This test will be performed at loads representing 25, 50, 75, and 100 percent of the rated capacity of the amine unit or at minimum, average, and highest

Commonly Applied Mitigating Measures

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		operational loads of the amine unit to verify that the emission factors are not exceeding those used in calculating the proposed emissions in the plan. Contact BSEE's Environmental Enforcement Division at least 30 days prior to conducting the test to determine proper protocol for the stack test and also to have the BSEE representative witness the test. Prepare a report of the results of each stack test and submit it to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section within 45 days of the test.
		The applicant must monitor and record these parameters daily to ensure they remain consistent with the approved baseline parameters from the most recent successful stack test. Records of these parameters must be maintained on the platform and made available to authorized BSEE personnel upon request. In addition, the applicant must submit this information to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section annually by February 1st of each year, beginning in the year (insert year). If no activities were conducted during a calendar year, provide a statement to that effect in lieu of the required records.
2.17	Verification of Emissions Factors (general)	The rating, manufacturer, and type of engine(s) proposed in the plan will be operated and maintained in accordance with the manufacturer's specifications. Using a USEPA-approved of equivalent method, perform an emissions stack test on the subject engine(s) within 60 day following installation and at least every 3 years thereafter. These tests will be performed at load representing 25, 50, 75, and 100 percent of the rated capacity or at minimum, average, and highes operational loads to verify that the emission factors are not exceeding those used in calculating the proposed emissions in the plan. Contact BSEE's Environmental Enforcement Division at least 30 days prior to conducting the test to determine proper protocol for the stack test and also to have the BSEE representative witness the test.
		Prepare a report of the results of each stack test and submit it to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section within 45 days of the test. During engine operation, the applicant will maintain the baseline parameters (such as air-fuel rations) established during the most recent successful stack test. The applicant must monitor and record these parameters daily to ensure consistency with those observed during the most recent successful stack test. Records of these parameters must be maintained on the platform and made available to authorized BSEE personnel upon request. In addition, the applicant must submit this information to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section annually by February 1st of each year, beginning in the year (insert year). If no activities were conducted during a calendar year, provide a statement to that effect in lieu of the required records.
2.18	Alternative Monitoring of NO _x Emissions (catalytic converters)	Using your established baseline parameters listed below, monitor the performance of the engine(s) and catalytic converter(s) and record daily to ensure that performance remains consistent. Air to fuel ratio for engine: (insert baseline parameters); pressure drop across catalytic converter: (insert baseline parameters); and temperature increase across catalytic converter: (insert baseline parameters).

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		Records of these parameters must be maintained on the platform and made available to authorized BSEE personnel upon request. In addition, the applicant must submit a summary of these data to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section annually by February 1st of each year, beginning in the year (insert year). The summary will report minimum, average, and maximum values for the above-listed parameters, on a monthly basis, for the year. If no activities were conducted during a calendar year, provide a statement to that effect in lieu of the required records. Notify BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section as soon as practical but no later than 24 hours after the event, whenever the engine(s) or catalytic converter(s) exceed these parameters for periods greater than a day. File a detailed report with this office within 5 days of the termination of any such event. At a minimum, this report will include a chronology of the event, NO _x emissions rates in pounds per hour, total NO _x emissions for the duration of the event, and any measures taken to regain operation within these parameters or to prevent a recurrence of similar events. If exceeding the above parameters results in increased emissions that would cause onshore NO _x concentration to exceed BOEM significance levels (30 CFR § 550.303(e)), curtail the use of the (identify equipment associated with catalytic converter) within 2 days of the onset of the increased emissions and continue curtailment until such time that normal operation of the catalytic converter can resume.
	·	Archaeology Mitigations
3.00	Archaeology Non-Recurring Mitigation	A non-recurring mitigation is a mitigation measure that is used for a unique, special, one-time-only mitigation that is added to certain plans.
3.02	Buried Channels (pipeline applications)	BOEM's review indicates that the proposed activities are in the vicinity of buried channel margin features that may contain significant archaeological resources. In accordance with 30 CFR § 250.1007(a)(5), the applicant must either (1) conduct an underwater archaeological investigation (diver and/or remotely operated vehicle (ROV) investigations) prior to commencing activities to determine whether these features represent archaeological resources or (2) ensure that the depth of the pipeline trench in the vicinity of these features does not exceed 3 ft and that all other seafloor-disturbing actions resulting from the proposed activities avoid the subject channel margins (see the enclosed map depicting the avoidance area in the application). If the applicant conducts an underwater archaeological investigation prior to commencing operations, the applicant should contact BOEM, Gulf of Mexico OCS Region, Office of Environment, and BSEE, Environmental Enforcement Branch at least 2 weeks prior to performing operations to obtain the investigation methodology. If the applicant chooses to avoid the features, then the applicant should submit anchor position plats, at a scale of 1 in = 1,000 ft with differential global positioning system (DGPS) accuracy, with your pipeline construction report required by 30 CFR § 250.1008(b). These plats must depict the "as-placed" location of all anchors, anchor chains, wire ropes, and cables on the seafloor (including sweep) and demonstrate that the features and no anchoring activities were conducted during pipeline construction, provide a statement to that effect in lieu of the required anchor position plats. This mitigation may be applied by BSEE at the post-approval stage.

Mitigation Number	Mitigating Measure Title	Description of Mitigation
3.03	Buried Channels (plans)	BOEM's review indicates that the proposed activities are in the vicinity of buried channel margin features that may contain significant archaeological resources. In accordance with 30 CFR § 550.194, the applicant must either (1) conduct an underwater archaeological investigation (diver and/or ROV investigations) prior to commencing activities to determine whether these features represent archaeological resources or (2) ensure that all seafloor-disturbing actions resulting from the proposed activities avoid the subject features (see the enclosed map depicting the avoidance area in the application). If the applicant conducts an underwater archaeological investigation prior to commencing operations, contact BOEM's Office of Environment, Gulf of Mexico OCS Region least 2 weeks prior to performing operations to obtain the investigation methodology.
		If the applicant chooses to avoid the features, then submit an as-built map at a scale of 1 in = 1,000 ft with DGPS accuracy, showing the location of all seafloor disturbances (e.g., the rig or platform, anchors, anchor chains, wire ropes, cables, etc.) relative to these features, to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time that the applicant submits its (specify submittal type).
3.04 and 3.05	Magnetic Anomalies and/or Side- Scan Sonar Targets (pipeline applications - multiple features)	BOEM's review indicates that the proposed activities are in the vicinity of the unidentified (insert magnetic anomalies, side-scan sonar targets, magnetic anomalies and side-scan sonar targets) listed in the enclosure, features that may represent significant archaeological resources. In accordance with 30 CFR § 250.1007(a)(5), the applicant must either (1) conduct an underwater archaeological
	Magnetic Anomalies and/or Side- Scan Sonar Targets (pipeline application – singular feature)	investigation (diver and/or ROV investigations) prior to commencing activities to determine whether these features represent archaeological resources or (2) ensure that all seafloor-disturbing actions resulting from the proposed activities avoid the unidentified features by a distance greater than that listed in the enclosure. If the applicant conducts an underwater archaeological investigation prior to commencing operations, then the applicant must contact BOEM's Office of Environment, Gulf of Mexico OCS Region at least 2 weeks prior to performing operations to obtain the investigation methodology. If the applicant chooses to avoid the features, then submit anchor position plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, with the pipeline construction report required by 30 CFR § 250.1008(b). These plats must depict the "as-placed" location of all anchors, anchor chains, wire ropes, and cables on the seafloor (including sweep) and demonstrate that the features were not physically impacted by the construction activities. If the applicant chooses to avoid the features and no anchoring activities were conducted during pipeline construction, then provide a statement to that effect in lieu of the required anchor position plats. This mitigation may be applied by BSEE at the post-approval stage.
3.06 and	Magnetic Anomalies and/or Side-	BOEM's review indicates that the proposed activities are in the vicinity of the unidentified (insert
3.07	Scan Sonar Targets (plans – multiple features)	magnetic anomalies, side-scan sonar targets, magnetic anomalies and side-scan sonar targets) listed in the enclosure of the application, features that may represent significant archaeological resources. In accordance with 30 CFR § 550.194, the applicant must either (1) conduct an underwater
	Magnetic Anomalies and/or Side-	archaeological investigation (diver and/or ROV investigations) prior to commencing the activities
	singular feature)	seafloor-disturbing actions resulting from the proposed activities avoid the subject features by a

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		distance greater than that listed in the enclosure of the application. If the applicant conducts an underwater archaeological investigation, then the applicant must contact BOEM's Office of Environment, Gulf of Mexico OCS Region at least 2 weeks prior to performing operations to obtain the investigation methodology. If the applicant chooses to avoid the features, submit an as-built map at a scale of 1 in = 1,000 ft with DGPS accuracy, showing the location of all seafloor disturbances (e.g., the rig or platform, anchors, anchor chains, wire ropes, cables, etc.) relative to these features to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the plan.
3.08	Buried Channels (lease block survey review	BOEM's review of the archaeological assessment indicates that there are buried channel margin features that may contain significant archaeological resources in the lease block(s). The enclosed map in the application identifies the areas to be avoided during any future development within the block(s). In accordance with 30 CFR § 550.194, the applicant must either (1) conduct an underwater archeological investigation (diver and/or ROV investigations) to determine whether these features represent archaeological resources or (2) ensure that all seafloor-disturbing actions required by future exploration or development will avoid the subject features. If the applicant chooses to conduct an underwater archaeological investigation, then the applicant must contact BOEM's Office of Environment, Gulf of Mexico OCS Region at least 2 weeks prior to performing operations to obtain the investigation methodology.
3.09 and	Magnetic Anomaly and/or Side-	BOEM's review of the archaeological assessment indicates the presence of the unidentified
3.10	Scan Sonar Target (survey review – single feature)	magnetic anomaly(ies), side-scan sonar target(s), or magnetic anomaly(ies) and side-scan sonar target(s) listed in the enclosure of the application, features that may represent significant archaeological resources. In accordance with 30 CFR § 550.194, the applicant must either (1) conduct an underwater archaeological investigation (diver and/or ROV investigations) to
	Magnetic Anomaly and/or Side- Scan Sonar Target (survey review – multiple features)	determine whether these features represent archaeological resources or (2) ensure that all seafloor- disturbing actions required by future exploration and development avoid the unidentified features by a distance greater than that listed in the enclosure of the application. If the applicant conducts an underwater archaeological investigation, then the applicant must contact BOEM's Office of Environment, Gulf of Mexico OCS Region at least 2 weeks prior to performing operations to obtain the investigation methodology.
3.11	Unsurveyed Area (plans)	Avoid impacts to the seafloor in the unsurveyed area approximately (insert number) feet to the (insert direction) of the proposed (specifyWell X, Wells X and Y, Platform X, etc.). This area has been identified as requiring a (insert 50-meter or 300-meter) line spacing archaeological resource survey to determine the potential for archaeological resources. BOEM has no archaeological resource assessment on file for this area and, therefore, cannot determine the potential effects to archaeological resources outside of the applicant's survey coverage. Submit an as-built map at a scale of 1 in = 1,000 ft with DGPS accuracy, showing the location of all seafloor disturbances (e.g., the rig or platform, anchors, anchor chains, wire ropes, cables, etc.) relative to the unsurveyed area to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the plan

Mitigation Number	Mitigating Measure Title	Description of Mitigation
3.12 and 3.13	Magnetic Anomalies and/or Side- Scan Sonar Targets (structure removals – multiple features) Magnetic Anomalies and/or Side- Scan Sonar Targets (structure removals – single feature)	BOEM's review indicates that the proposed activities are in the vicinity of the unidentified magnetic anomaly(ies), side-scan sonar target(s), or magnetic anomaly(ies) and side-scan sonar target(s) listed in the table in the application, a feature that may represent a significant archaeological resource. In accordance with 30 CFR § 250.194(c), the applicant must either (1) conduct an underwater archaeological investigation (diver and/or ROV investigations) prior to commencing activities to determine whether this feature represents an archaeological resource or (2) ensure that all anchoring operations (e.g., anchors, anchor chains, wire ropes, cables, etc.) avoid the unidentified feature by a distance greater than that listed in the table in the application. If the applicant plans to conduct an underwater archaeological investigation prior to commencing operations, then the applicant must contact BOEM's Office of Environment, Gulf of Mexico OCS Region to obtain the investigation methodology at least 2 weeks prior to performing operations and contact BOEM, Gulf of Mexico OCS Region, Office of Environment, and BSEE, Environmental Enforcement Branch. If the applicant chooses to avoid the feature, then include in the post-removal report as-built plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, the position of anchors, anchor chains, wire ropes, and cables deployed during the structure removal relative to the feature. In addition, supply a copy of ALL vessel logs related to the removal operations (e.g., anchor handling vessels, lift boats, dive vessels, and tug boats). This mitigation may be applied by BSEE at the post-approval stage.
3.16	ROV Surveys (plans)	The proposed operations are in an area designated by BOEM's Regional Director as having a high potential for the location of historic shipwrecks. In accordance with 30 CFR § 550.194(a)(2), prior to commencing the operations, conduct an ROV investigation (using video, sector-scanning sonar, or multibeam bathymetry) of the seafloor areas that could be disturbed by the operations (e.g., the rig or platform, anchors, anchor chains, wire ropes, cables, etc.) to ensure that the applicant will avoid harming potentially significant archaeological sites. The applicant must contact BOEM's Office of Environment, Gulf of Mexico OCS Region at least 2 weeks prior to performing operations to obtain the investigation methodology. The applicant must submit a report of this investigation prepared by a qualified marine archaeologist, along with an "as-placed" anchor plat and copies of the ROV video and acoustic recordings of the investigation to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the plan. If the applicant discovers any potential archaeological resource (i.e., cannot be definitively identified as modern debris or refuse) while conducting this investigation or future operations, the applicant must immediately halt any seafloor-disturbing activities and report the discovery to BOEM's Regional Supervisor, Office of Environment.
3.17	Conditional Approval for ROV Surveys (plans)	Drilling permits will not be issued for proposed well(s) and well name(s) until the applicant submits an archaeological report to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section and receives approval. This report must be based on an ROV investigation (using video, sector-scanning sonar, or multibeam bathymetry) of the seafloor areas that could be disturbed by the operations. The report must be prepared by a qualified marine archaeologist and must include copies of the ROV video and acoustic recordings of the investigation, along with an "as-placed" anchor plat. If the applicant discovers any potential archaeological resource (i.e., cannot be

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		definitively identified as modern debris or refuse) while conducting this investigation, the applicant must immediately halt any seafloor-disturbing activities and report the discovery to BOEM's Regional Supervisor, Office of Environment. The applicant must contact BOEM's Office of Environment at least 2 weeks prior to performing this survey to obtain the investigation methodology.
3.18	Buried Channels (structure removal)	BOEM's review indicates that the proposed activities are in the vicinity of buried channel margin features that may contain significant archaeological resources. In accordance with 30 CFR § 250.194(c), the applicant must either (1) conduct an underwater archaeological investigation (diver and/or ROV investigations) prior to commencing activities to determine whether these features represent archaeological resources or (2) ensure that all seafloor-disturbing actions resulting from the proposed activities (e.g., site-clearance trawling, anchors, anchor chains, wire ropes, cables, etc.) avoid the subject features (see the enclosed map depicting the avoidance area in the application). If the applicant plans to conduct an underwater archaeological investigation prior to commencing operations, then the applicant must contact BOEM's Office of Environment at least 2 weeks prior to performing operations to obtain the investigation methodology and contact BOEM, Gulf of Mexico OCS Region, Office of Environment, and BSEE, Environmental Enforcement Branch. If the applicant chooses to avoid the features, then include in the Post- removal Report as-built plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, the position of anchors, anchor chains, wire ropes, and cables deployed during the structure removal relative to these features. In addition, supply a copy of ALL vessel logs related to the removal operations (e.g., anchor handling vessels, lift boats, dive vessels, and tug boats). This mitigation may be applied by BSEE at the post-approval stage.
3.20	Avoidance of Potential Archaeological Resources	BOEM's review indicates that the proposed operations have the potential to impact submerged archaeological resources that could be in the area of potential effect, which encompasses all portions of the seafloor where bottom-disturbing activities are to occur. Before conducting any authorized, bottom-disturbing activities, the company will follow the guidance provided at http://www.boem.gov/Environmental-Stewardship/Archaeology/Gulf-of-Mexico-Archaeological-Information.aspx , which includes minimum survey recommendations, requisite certification submittals, and post-activity reporting standards needed to ensure compliance with the regulations under 30 CFR § 550.194. This mitigation may be applied by BSEE at the post-approval stage.
3.21 and 3.22	Side-Scan Sonar Targets (site clearance – single features) Side-Scan Sonar Targets (site clearance – multiple features)	BOEM's review indicates that the proposed activities are in the vicinity of the unidentified side- scan sonar target(s) listed in the table in the application, features that may represent significant archaeological resources. In accordance with 30 CFR § 250.194(c), the applicant must conduct an underwater archaeological investigation (diver and/or ROV investigation) under the supervision of a professional archaeologist to determine whether these features represent archaeological resources potentially eligible to the National Register of Historic Places prior to conducting site-clearance trawling activities. This mitigation may be applied by BSEE at the post-approval stage.
3.23	Protection of Potential Archaeological Resources (all structure removals)	Per 30 CFR § 250.194(c) and clarified in 2005-G07, if, during site clearance operations the applicant discovers any object of potential archaeological significance, the applicant is required to immediately halt operations. In addition, the applicant must immediately report this discovery to

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		BSEE's Environmental Enforcement Branch. Additional guidance will be provided to the applicant as to what steps will be needed to protect any potentially submerged archaeological resources. In order for BSEE to ensure compliance with 30 CFR § 250.194(c) and as specified under 30 CFR § 250.1743, the applicant is required to provide the trawling logs for both heavy-duty nets and verification nets, with descriptions of each item recovered. Should the applicant only pull site-clearance verification nets, the applicant must clearly state this within the body of the Site Clearance Report. The applicant is also requested to provide the following as an appendix in the Site Clearance Report: a CD or DVD of all digital photographs of the items recovered during the use of both the heavy-duty trawl nets and the site-clearance verification trawl nets. This mitigation may be applied by BSEE at the post-approval stage.
4.01	Louisiana (artificial reef area)	The proposed anchoring operations are located within 500 ft of an artificial reef permit area
		established by the State of Louisiana. At least 2 weeks prior to conducting anchoring operations (including the use of anchors, anchor chains, and wire ropes) that could disturb the seafloor within 500 ft (152 m) of an artificial reef permit area, the applicant must contact the Louisiana Artificial Reef Coordinator to ensure that the proposed anchoring operations do not damage reefal material. Prior to conducting anchoring operations, the applicant must send an email to BSEE's Environmental Enforcement Branch confirming that the Louisiana Artificial Reef Coordinator has been contacted.
		If the anchoring operations intersect or cross-over the artificial reef permit area, then submit anchor position plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, depicting the "as-placed" location of all anchors, anchor chains, wire ropes, and cables (including sweep if applicable) on the seafloor relative to the reefal material. For plans, submit the plats to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the End of Operations Report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office and/or notification of platform installation date and final as-built location data as directed in 30 CFR § 250.900(e). For pipelines, submit the plats with the pipeline construction report required by 30 CFR § 250.1008(b). For structure removals, submit the plats with the post-removal report. This mitigation may be applied by BSEE at the post-approval stage.
4.02	Texas (artificial reef general permit area)	The proposed operations are located within an artificial reef General Permit Area established by the State of Texas. At least 2 weeks prior to conducting operations (including the use of anchors, anchor chains, and wire ropes) that could disturb the seafloor within the artificial reef General Permit Area, contact the Texas Artificial Reef Coordinator to ensure that the proposed operations do not damage reefal material. Prior to conducting operations, the applicant must send an email to PSEE's Environmental Enforcement Pranch confirming that the Texas Artificial Peef Coordinator
		has been contacted. This mitigation may be applied by BSEE at the post-approval stage.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
4.021	Texas (artificial reef permit area – anchoring)	The proposed anchoring operations are located within 1,000 ft of an artificial reef permit area established by the State of Texas. At least 2 weeks prior to conducting anchoring operations (including the use of anchors, anchor chains, and wire ropes) that could disturb the seafloor within 1,000 ft of the artificial reef permit area, contact the Texas Artificial Reef Coordinator to ensure that the proposed anchoring operations do not damage reefal material. Prior to conducting anchoring operations, the applicant must send an email to BSEE's Environmental Enforcement Branch confirming that the Texas Artificial Reef Coordinator has been contacted.
		If the anchoring operations intersect or cross-over the artificial reef permit area, submit anchor position plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, depicting the "as-placed" location of all anchors, anchor chains, wire ropes, and cables (including sweep if applicable) on the seafloor relative to the reefal material. For plans, submit the plats to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the End of Operations Report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office and/or notification of platform installation date and final as-built location data as directed in 30 CFR § 250.900(e). For pipelines, submit the plats with the pipeline construction report required by 30 CFR § 250.1008(b). For structure removals, submit the plats with the post-removal report. This mitigation may be applied by BSEE at the post-approval stage.
4.03	Mississippi (artificial reef area)	The proposed anchoring operations are located within 500 ft (152 m) of an artificial reef permit area established by the State of Mississippi. At least 2 weeks prior to conducting anchoring operations (including the use of anchors, anchor chains, and wire ropes) that could disturb the seafloor within 500 ft (152 m) of an artificial reef structure or an artificial reef permit area, contact the Mississippi Artificial Reef Coordinator to ensure that the proposed anchoring operations do not damage reefal material. Prior to conducting anchoring operations, the applicant must send an email to BSEE's Environmental Enforcement Branch confirming that the Mississippi Artificial Reef Coordinator has been contacted. This mitigation may be applied by BSEE at the post-approval stage.
4.04	Alabama (artificial reef general permit area)	The proposed operations are in a General Permit Area established by the State of Alabama for the placement of artificial reef material. At least 2 weeks prior to conducting operations, contact the Alabama Artificial Reef Coordinator to ensure that the proposed operations do not damage reefal material. Prior to conducting operations, the applicant must send an email to BSEE's Environmental Enforcement Branch confirming that the Alabama Artificial Reef Coordinator has been contacted. This mitigation may be applied by BSEE at the post-approval stage.
4.05	Florida (artificial reef general permit area)	The proposed operations are in a General Permit Area established by the State of Florida for the placement of artificial reef material. At least 2 weeks prior to conducting operations, contact the Florida Artificial Reef Coordinator to ensure that the proposed operations do not damage reefal material. Prior to conducting operations, the applicant must send an email to BSEE's Environmental Enforcement Branch confirming that the Florida Artificial Reef Coordinator has been contacted. This mitigation may be applied by BSEE at the post-approval stage.

Mitigation Number	Mitigating Measure Title	Description of Mitigation
4.06	Post-Reefing Survey Requirements	BOEM's review indicates that the structure proposed for decommissioning will be abandoned-in- place as an artificial reef under the Rigs-to-Reefs Program. In order to verify compliance with OCSLA reefing (30 CFR § 250.1727(g)) and obstruction clearance requirements (30 CFR § 250.1740(a)(2)), the applicant is required to conduct a high-resolution sonar survey (500 kHz or greater) of the permitted reefal material. The applicant must design the line spacing (for side-scan) or sonar drops (for sector-scanning) and the display range to ensure that 100 percent of the material permitted under this action is covered and that it is demonstrated that the associated seabed is clear of all obstructions apart from the reefal material. The applicant is required to submit the sonar data/survey report to BSEE's Environmental Enforcement Branch at the same time as the post- removal report. This mitigation may be applied by BSEE at the post-approval stage.
		Chemosynthetic Communities Mitigations
5.00	Chemosynthetic Communities Non-Recurring Mitigation	A non-recurring mitigation is a mitigation measure that is used for a unique, special, one-time-only mitigation that is added to certain plans.
5.01	Anchor Positioning (GPS) (plans)	The proposed activities are in the vicinity of areas that could support high-density deepwater benthic communities. Use a state-of-the-art positioning system (e.g., DGPS) on the anchor handling vessel to ensure that any seafloor disturbance resulting from the use of anchors (including that caused by the anchors, anchor chains, and wire ropes) does not occur within 250 ft (76 m) of such areas (see the enclosed map/Map xxx [specify map by name], submitted with the survey report, which depicts the areas). Submit plats for Well(s) (insert number[s] or name[s]), which depict the "as-placed" location of all anchors and any associated anchor chains and wire ropes on the seafloor, at a scale of 1 in = 1,000 ft with DGPS accuracy, to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the End of Operations Report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office to demonstrate that the features were not physically impacted by these anchoring activities. This mitigation may be applied by BSEE at the post-approval stage.
5.02	Conventional Pipeline Laying Vessels (GPS) (pipeline applications)	The proposed pipeline construction activities are in the vicinity of areas that could support high- density deepwater benthic communities. Use a state-of-the-art positioning system (e.g., DGPS) on the pipeline laying vessel and the anchor handling vessels to ensure that any seafloor disturbance (including that caused by anchors, anchor chains, and wire ropes) during pipeline construction activities does not occur within 250 ft of such areas (see the enclosed map/Map xxx [specify map by name], submitted with the pipeline application, which depicts the areas). Additionally, include lay barge anchor position plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, with the pipeline construction report required by 30 CFR § 250.1008(b), which depict the "as-placed" location of all anchors, anchor chains, and wire ropes on the seafloor and which demonstrate that the features were not physically impacted by the construction activities. This mitigation may be applied by BSEE at the post-approval stage.
5.03	Anchor Positioning (ROV) (plans)	The proposed activities are in the vicinity of areas that could support high-density deepwater benthic communities. Use an ROV to ensure that any seafloor disturbance resulting from the use of anchors (including that caused by the anchors, anchor chains, and wire ropes) does not occur within

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		250 ft of such areas (see the enclosed map/Map xxx [specify map by name], submitted with your survey report which depicts the areas). Submit plats for Well(s) (insert number[s] or name[s]), which depict the "as-placed" location of all anchors and any associated anchor chains and wire ropes on the seafloor, at a scale of 1 in = 1,000 ft with DGPS accuracy, along with the high-resolution ROV video on disc or removable drive, to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the End of Operations Report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office to demonstrate that the features were not physically impacted by these anchoring activities. The ROV video screen should show time, date, depth, heading, and location coordinates. Observational notes and a corresponding map showing the ROV heading shall also be provided. If still images are collected, include the same information in the images' integrated data. This mitigation may be applied by BSEE at the post-approval stage.
5.04	Conventional Pipeline Laying Vessels (ROV) (pipeline applications)	The proposed pipeline construction activities are in the vicinity of areas that could support high- density deepwater benthic communities. Use an ROV to ensure that any seafloor disturbance (including that caused by the anchors, anchor chains, and wire ropes) during pipeline construction activities does not occur within 250 ft of such areas (see the enclosed map/Map "xxx" [specify map by name], submitted with the pipeline application, which depicts the areas). Submit lay barge anchor position plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, with the pipeline construction report required by 30 CFR § 250.1008(b), which depict the "as-placed" location of all anchors, anchor chains, and wire ropes on the seafloor and which demonstrate that the features were not physically impacted by the construction activities. Additionally, submit the high-resolution ROV video on disc or removable drive. The ROV video screen should show time, date, depth, heading, and location coordinates. Observational notes and a corresponding map showing the ROV heading shall also be provided. If still images are collected, include the same information in the images' integrated data. This mitigation may be applied by BSEE at the post-approval stage.
5.05	Dynamically Positioned Pipeline Laying Vessels (GPS) (pipeline applications)	The proposed pipeline construction activities are in the vicinity of areas that could support high- density deepwater benthic communities. Use a state-of-the-art positioning system (e.g., DGPS) on the dynamically positioned pipeline laying vessel to ensure that any seafloor disturbance resulting from the pipeline construction activities does not occur within 250 ft of such areas (see the enclosed map/Map "xxx" [specify map by name], submitted with the pipeline application, which depicts the areas). Additionally, include "as-built" location plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, with the pipeline construction report required by 30 CFR § 250.1008(b), which depict the location of the pipeline(s) relative to these features to demonstrate that the features were not physically impacted by the construction activities. This mitigation may be applied by BSEE at the post-approval stage.
5.06	Well Positioning (ROV) (plans)	BOEM's review indicates that the applicant has stated in the plan that the proposed activities are in the vicinity of areas that could support high-density chemosynthetic communities. Use an ROV to ensure that any seafloor disturbance resulting from the activities does not occur in such areas that are within 1,500 ft of your proposed location (see the enclosed map/Map "xxx" [specify map by name], submitted with the survey report which depicts these areas). Submit plats for Wells(s)

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		(insert number[s] or name[s]), which depict the "as-drilled" location of the well(s), at a scale of 1 in = 1,000 ft with DGPS accuracy, at the same time the applicant submits the End of Operations report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office to demonstrate that the features were not physically impacted. This mitigation may be applied by BSEE at the post-approval stage.
5.07	Anchor Positioning (GPS and ROV)	The proposed activities are in the vicinity of areas that could support high-density deepwater benthic communities. Use a state-of-the-art positioning system (e.g., DGPS) on the anchor handling vessel and use an ROV to ensure that any seafloor disturbance resulting from the use of anchors (including that caused by the anchors, anchor chains, and wire ropes) does not occur within 250 ft of such areas. Submit plats for Well(s) (insert number[s] or name[s]), which depict the "as-placed" location of all anchors and any associated anchor chains and wire ropes on the seafloor, at a scale of 1 in = 1,000 ft with DGPS accuracy, along with the high-resolution ROV video on disc or removable drive, to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the End of Operations Report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office to demonstrate that the features were not physically impacted by these anchoring activities. The ROV video screen should show time, date, depth, heading, and location coordinates. Observational notes and a corresponding map showing the ROV heading shall also be provided. If still images are collected, include the same information in the images' integrated data. This mitigation may be applied by BSEE at the post-approval stage.
5.08	Well Placement Variance (plans)	There is an area capable of supporting high-density deepwater benthic communities within 2,000 ft of the proposed well(s), also known as the chemosynthetic well parameter. The proposed well(s) is/are (insert chemosynthetic distance parameter) from the area capable of supporting high-density deepwater benthic communities, which in this case provides adequate protection from muds and cuttings during operations. The actual well(s) shall not be placed closer than (CHEMO DISTANCE PARAMETER 1) from the potential habitat (see the chemosynthetic map parameter, which depicts the area). Provide a map showing the final as-placed well(s), potential habitat, and distance of the well(s) from the potential habitat to BOEM's Regional Supervisor, Office of Leasing and Plans, Plans Section at the same time the applicant submits the End of Operations Report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office to demonstrate that the feature(s) were not physically impacted by the drilling activity. This mitigation may be applied by BSEE at the post-approval stage.
5.09	Well Placement Variance – "Zero Discharge" (plans)	 There is an area capable of supporting high-density deepwater benthic communities within 2,000 ft of the proposed well(s) (insert chemosynthetic wells parameter). Since this area is (insert chemosynthetic distance parameter) from your well site(s), chemosynthetic reason parameter, BSEE permits the activity with the following mitigations added. 1. Do not move the well(s) any closer to the area capable of supporting high-density deepwater benthic communities (see chemosynthetic map parameter, which depicts the area).

Mitigation Mitigating Measure Title **Description** of Mitigation Number 2. Follow "zero discharge" practices (i.e., no muds or cuttings shall be discharged near the sea surface in the vicinity of the permitted activity). 3. In this instance, it is understood that the discharge of muds and cuttings will occur on or near the seafloor for the riserless portion of the drilling operations ONLY as part of the "zero discharge" practice. 4. No muds or cuttings shall be discharged near the seafloor or at the sea surface once the blowout preventer and marine riser have been installed. No additional or excess muds or cuttings beyond those necessary to properly accomplish the riserless portion of the drilling activity shall be discharged on or near the seafloor. 5. Perform an assessment survey after the drilling of the well(s) is complete. (a) Conduct an ROV survey to assess sedimentation and its effects on the area capable of supporting high-density deepwater benthic communities (see chemosynthetic map parameter 1, which depicts the area. Transects must be run no more than 50 ft apart). (b) Ensure that the imagery in the ROV survey is high enough quality to adequately assess drilling effects. (This can be accomplished by employing the use of high-resolution still photography, high-resolution video, and/or lower resolution imaging through the use of close-up photography.) (c) The surveyed areas shall be recorded and documented on disc or removable drive for review, and the screen should show time, date, depth, heading, and location coordinates. This mitigation may be applied by BSEE at the post-approval stage. **Coastal Zone Management Mitigations** Texas (Coastal Zone Management) Drilling permits cannot be issued for the proposed wells until concurrence with the coastal zone 6.01 management consistency certification has been received by BOEM's Office of Environment from the Texas General Land Office or until concurrence with the certification has been conclusively presumed. Louisiana (Coastal Zone 6.02 Drilling permits cannot be issued for the proposed wells until concurrence with the coastal zone management consistency certification has been received by BOEM's Office of Environment from Management) the Louisiana Department of Natural Resources or until concurrence with the certification has been conclusively presumed. Drilling permits cannot be issued for the proposed wells until concurrence with the coastal zone 6.03 Alabama (Coastal Zone management consistency certification has been received by BOEM's Office of Environment from Management) the Alabama Department of Environmental Management or until concurrence with the certification has been conclusively presumed.

Table D-1. Commonly Applied or "Standard" Mitigating Measures (continued).

Mitigation Number	Mitigating Measure Title	Description of Mitigation
6.04	Mississippi (Coastal Zone Management)	Drilling permits cannot be issued for the proposed wells until concurrence with the coastal zone management consistency certification has been received by BOEM's Office of Environment from the Mississippi Department of Marine Resources or until concurrence with the certification has been conclusively presumed.
6.05	Florida (Coastal Zone Management)	Drilling permits cannot be issued for the proposed wells until concurrence with the coastal zone management consistency certification has been received by BOEM's Office of Environment from the Florida Department of Environmental Protection or until concurrence with the certification has been conclusively presumed.
		Flower Garden Banks Mitigations
7.07	Environmental Monitoring Plan	Develop a plan for the early initiation of environmental monitoring of the effects of a hydrocarbon spill that may occur as a result of the proposed activities on the resources of the Flower Garden Banks National Marine Sanctuary, including water quality, pelagic fish, and benthic communities.
7.09	Pressure Sensor Testing	High- and low-pressure sensors protecting the proposed pipeline will be tested at least once bi-weekly with no more than 3 weeks elapsing between each test. The applicant will maintain these records on the platform and will make them available to BSEE personnel upon request.
7.10	Pressure Sensor Setting	The low-pressure sensor protecting the proposed pipeline will be set no lower than 10 percent below the lower limit of the normal operating pressure range.
		Hydrogen Sulfide Mitigations
8.01, 8.02, and 8.03	H ₂ S Present (plans) H ₂ S Unknown (plans)	In response to the request accompanying your plan for a hydrogen sulfide (H ₂ S) classification, the area in which the proposed drilling operations are to be conducted is hereby classified, in accordance with 30 CFR § $250.490(c)$, as "H ₂ S present," "H ₂ S unknown," or "H ₂ S absent."
	H ₂ S Absent (plans)	Accordingly, comply with the appropriate requirements of 30 CFR § 250.490 if H_2S is present or unknown.
8.04	H ₂ S Concentration Deviation	The plan indicates that the applicant anticipates H_2S at a concentration of approximately (specify the ppm). Should the applicant actually encounter H_2S at a concentration greater than 500 ppm, revise the plan in accordance with 30 CFR § 550.285 to include toxic modeling and an analysis of any potential environmental impacts. Contact BOEM's Office of Environment to obtain the methodology for modeling an H_2S plume. The applicant must receive approval of the revised plan before additional permits filed under the plan will be approved.
8.05	Corrosion Inspections (H ₂ S pipelines)	Inspect the pipeline(s) bi-annually, annually, or biennially for an indication of corrosion or other flaws. Report the results of these inspections to BSEE's Office of Field Operations within 30 days of completion. This mitigation may be applied by BSEE at the post-approval stage.
8.07	National Ocean Service Notification (H ₂ S pipelines)	When the applicant provides the National Ocean Service, Nautical Data Section with a copy of the pipeline construction report plat, the applicant must also request that the National Ocean Service, Nautical Data Section include the pipeline(s) on their navigation charts and identify it/them as (an) H_2S or toxic sour gas pipeline(s).

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
8.08	USCG Notification (H ₂ S pipelines)	Immediately after the applicant begins operation of the pipeline(s), the applicant must notify the U.S. Coast Guard Commander, Eighth Coast Guard District, that the pipeline(s) is/are in operation and request that the USCG publish information about the pipeline(s), including the fact that it is or they are transporting natural gas with a high concentration of H_2S , in the Eighth District Local Notice to Mariners, Gulf of Mexico.
8.09	H ₂ S Concentration Deviation (pipeline applications)	The application indicated that the applicant anticipates the H_2S concentration of the product to be transported in the proposed pipeline is approximately (specify the ppm). Should the applicant determine at some future date that the H_2S concentration is greater than 500 ppm, immediately submit an application to modify the pipeline in accordance with 30 CFR § 250.1007(b) to include toxic modeling and an analysis of any potential environmental impacts. Contact BOEM's Office of Environment to obtain the methodology for modeling an H_2S plume.
8.10	Notification to Federal Aviation Administration	Prior to initiating operations approved in your plan or pipeline application, the applicant shall update their emergency notification list in their H_2S contingency plan to include the Federal Aviation Administration (FAA: Houston Air Traffic Control/Traffic Management Control Desk). In the event of an above-water or below-water sour gas release greater than 100 standard cubic feet, notify the FAA that air traffic (except evacuation and medical aircraft) should be routed safely away from the site until further notice. For purposes of avoidance recommendations to the FAA, a distance of 10 nautical miles and an altitude of 4000 ft, as minimal, shall be used. In the case of a release of H_2S (that constitutes an emergency), notify all facilities that might be exposed to atmospheric concentrations of 20 ppm or more of H_2S (i.e., all facilities located within [insert number] miles of the H_2S release). The applicant must also assist in the removal of all personnel as well as any other persons observed within the affected area.
8.11	H ₂ S Absent and H ₂ S Present or Unknown below Certain Depths (plans)	In response to the request accompanying the plan for a H_2S classification, the area in which the proposed drilling operations are to be conducted above (specify depth) is hereby classified, in accordance with 30 CFR § 250.490(c), as H_2S absent. However, the area in which the proposed drilling operations are to be conducted below (specify depth) is hereby classified, in accordance with 30 CFR § 250.490(c), as H_2S present or unknown. Accordingly, comply with the appropriate requirements of 30 CFR § 250.490.
		Live Bottom Areas
9.00	Hard Bottoms/Pinnacles/Potentially Sensitive Biological Features Non- Recurring Mitigation	A non-recurring mitigation is a mitigation measure that is used for a unique, special, one-time-only mitigation that is added to certain plans.
9.01	Hard Bottoms/Pinnacles/Potentially Sensitive Biological Features (conventional lay barge) (pipeline applications)	BOEM's analysis indicates that there are hard bottoms/pinnacles/potentially sensitive biological features (PSBFs) that likely provide habitat for biological assemblages located within the scope of the anchor array of the pipeline lay barge. The pipeline construction activities (including the use of anchors, chains, and wire ropes) must avoid these hard bottoms/pinnacles/PSBFs as depicted on the enclosed map(s) in the application by a distance of at least 100 ft. Include lay barge anchor position plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, with the pipeline construction report required by 30 CFR § 250.1008(b), which depict the "as-placed" location of all anchors, anchor

Commonly Applied Mitigating Measures

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		chains, and wire ropes on the seafloor and which demonstrate that the features were not physically impacted by the construction activities. This mitigation may be applied by BSEE at the post-approval stage.
9.03	Hard Bottoms/Pinnacles/Potentially Sensitive Biological Features (plans)	BOEM's analysis indicates that there are hard bottoms/pinnacles/PSBFs located in the vicinity of the activities proposed in the plan that likely provide habitat for biological assemblages. Any bottom-disturbing activities associated with the activities proposed in the plan must avoid these hard bottoms/pinnacles/PSBFs as depicted on the enclosed map(s) in the application by a distance of at least 100 ft. Submit to BSEE's Office of Field Operations at the same time you submit your End of Operations report (Form BSEE-0125) to the appropriate BSEE, Gulf of Mexico OCS Region, District Office an as-built map at a scale of 1 in = 1,000 ft with DGPS accuracy, showing the location of any seafloor disturbance (e.g., jack-up rig, barge anchors, etc.) relative to these features. This mitigation may be applied by BSEE at the post-approval stage.
9.04	Hard Bottoms/Pinnacles/Potentially Sensitive Biological Features (DP lay barge) (pipeline applications)	BOEM's analysis indicates that there are hard bottoms/pinnacles/PSBFs that likely provide habitat for biological assemblages located on or near the proposed pipeline route. The pipeline construction activities must avoid these hard bottoms/pinnacles/PSBFs as depicted on the enclosed map(s) in the application by a distance of at least 100 ft. This mitigation may be applied by BSEE at the post-approval stage.
9.05	Hard Bottoms/Pinnacles/Potentially Sensitive Biological Features (structure removal)	BOEM's review of the application indicates that there are hard bottoms/pinnacles/PSBFs located in the vicinity of the activities proposed in the application that likely provide habitat for biological assemblages. Any bottom-disturbing activities associated with the activities proposed in the application must avoid these hard bottoms/pinnacles/PSBFs as depicted on the enclosed map(s) in the application by a distance of at least 100 ft. Include in the post-removal report the as-built plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, which depict the "as-placed" location of all anchors, anchor chains, and wire ropes on the seafloor deployed during the structure removal relative to these features. This mitigation may be applied by BSEE at the post-approval stage.
9.10	ROV Survey Required Non- Recurring Mitigation	A non-recurring mitigation is a mitigation measure that is used for a unique, special, one-time-only mitigation that is added to certain plans.
		Military Mitigations
10.09	Naval Coastal Systems Center	Please be reminded of the lease stipulation requires the applicant to enter into an agreement with the Coastal Test and Evaluation Division, Coastal System Station/Code E21, Panama City, Florida 32407, concerning the control of your electromagnetic emissions and use of boats and aircraft in the Naval Coastal Systems Center Area.
11.11	Military Warning Area (all)	BOEM's review indicates that the proposed pipeline route and/or the routes to be taken by boats and aircraft in support of the proposed activities are located in or could traverse Military Warning Area W-(insert number) or Eglin Water Test Area EWTA-(insert number) (see BOEM's Internet website at http://www.boem.gov/MWA-Boundaries/ for a map of the areas). Contact the appropriate individual military command headquarters (see BOEM's Internet website at http://www.boem.gov/MWA-Boundaries/ for a map of the areas). Contact the appropriate individual military command headquarters (see BOEM's Internet website at http://www.boem.gov/MWA-Boundaries/ for a list of the contacts) concerning the control of electromagnetic emissions and the use of boats and aircraft in this area(s) before commencing such traffic.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
12.01	Unexploded Ordnance	The proposed operations are located in an area that was used until 1970 by the U.S. Department of Defense as an explosives dumping area. Please be advised that precautions should therefore be taken while conducting operations that involve any disturbance of the seafloor in order to avoid possible unexploded ordnance.
12.02	Naval Mine Warfare Area (MU 732, 733, and 734)	The proposed operations are located within a stipulated area designated by the Naval Mine Warfare Command for mine operations. Therefore, surface structures for exploration activities are subject to approval by BOEM's Gulf of Mexico OCS Region's Regional Director after consultation with the Commander, Mine Warfare Command. No permanent structures or debris of any kind will be allowed in the area during exploration operations. Plans for any above seafloor development operations within the designated area must be coordinated with the Commander, Mine Warfare Command, 325 Fifth Street, SE, Corpus Christi, Texas 78491-5032.
		Shallow Drilling Hazards Mitigations (Plans)
14.01	Shallow Gas and/or Water Flow	Exercise caution while drilling due to indications of shallow gas (and/or faulting) (and/or possible water flow).
14.02	Seafloor Instability	Exercise caution during drilling rig placement due to indications of seafloor instability.
14.03	Insufficient Information	Exercise caution during drilling rig placement due to insufficient information regarding seafloor foundation integrity.
		Shallow Hazards Mitigations
15.01 and 15.02	Multiple Hazards (plans) Single Hazard (plans)	BOEM's review indicates that there are pipeline(s), unidentified magnetic anomaly(ies), unidentified side-scan sonar contact(s), or other specified hazard(s) in the vicinity of (insert name of platform(s) or well(s)) that may pose a hazard to the proposed operations. Therefore, take precautions in accordance with NTL 2008-G05 Section VI B prior to performing operations
15.05 and 15.06	Multiple Hazards (plans/pipelines) (anchoring activities) Single Hazard (plans) (anchoring)	BOEM's review indicates that there is a pipeline(s), unidentified magnetic anomaly(ies), unidentified side-scan sonar contact(s), or other specified hazard(s) in the vicinity of (insert name of platform(s) or well(s)) that may pose a hazard due to anchoring activities associated with the proposed operations. If any of these activities will take place within 150 m (490 ft) of the potential hazard, take precautions in accordance with NTL 2008-G05, Section VI.B, prior to performing operations
15.07	Pipeline Spanning	BOEM's review indicates areas of seafloor relief in the vicinity of the proposed pipeline route, which may cause spanning problems for the pipeline. Use an ROV in conjunction with the pipeline construction activities to ensure that these areas are avoided to the extent possible. Additionally, include a report with the pipeline construction report, which is required by 30 CFR § 250.1008(b) and which analyzes the as-laid pipeline with respect to spanning and describes the protective measures taken to ensure pipeline integrity for those portions of the pipeline where the areas of seafloor relief could not be avoided. This mitigation may be applied by BSEE at the post-approval stage.
15.00	Connet with Anchors	lease, block, area), which could potentially interfere with the proposed activities. Therefore, the

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		applicant should contact (insert contact name, company, address, phone number) prior to commencement of the activities in order to avoid any potential conflicts.
		Topographic Features Mitigations
16.00	Topographic Features Non- Recurring Mitigation	A non-recurring mitigation is a mitigation measure that is used for a unique, special, one-time-only mitigation that is added to certain plans.
16.01	Shunting All Wells (plans)	The proposed activities are within the "4-mile, 3-mile, 1-mile, or 1,000-meter zone" of (insert name of topographic feature). Shunt all drill cuttings and drilling fluids to the seafloor through a downpipe that terminates an appropriate distance, but no more than 10 m, from the bottom.
16.02	Shunting Some Wells (plans)	Some of the proposed activities are within the "4-mile, 3-mile, 1-mile, or 1,000-meter zone" of (insert name of topographic feature). For (insert name of wells to be shunted", shunt all drill cuttings and drilling fluids to the seafloor through a downpipe that terminates an appropriate distance, but no more than 10 m, from the bottom.
16.03	No Activity Zone (right-of-way pipeline applications)	BOEM's analysis indicates that the "no activity $zone(s)$ " of the biologically sensitive feature(s) shown on the enclosed map(s) in the application may be located within the scope of the anchor array of the pipeline lay barge. Anchors, anchor chains, and wire ropes associated with the proposed pipeline construction activities must avoid this/these "no activity $zone(s)$ " by a distance of at least 500 ft. Include lay barge anchor positions plats, at a scale of 1 in = 1,000 ft with DGPS accuracy, with the pipeline construction report required by 30 CFR § 250.1008(b), which depict the "as-placed" location of all anchors, anchor chains, and wire ropes on the seafloor, and which demonstrate that the "no activity $zone(s)$ " was/were not physically impacted by the construction activities. This mitigation may be applied by BSEE at the post-approval stage.
16.04	No Activity Zone (plans)	Bottom-disturbing activities associated with the activities proposed in the plan must avoid the "no activity zone" of the biologically sensitive feature shown on the enclosed map in the application by a distance of at least 500 ft. Submit to BSEE's Office of Field Operations, at the same time the End of Operations report (Form BSEE-0125) is submitted to the appropriate BSEE, Gulf of Mexico OCS Region, District Office, an as-built map at a scale of 1 in = 1,000 ft with DGPS accuracy, showing the location of any seafloor disturbance (e.g., jack-up rig placement, rig anchors, construction barge anchors, etc.) to demonstrate that the "no activity zone(s)" was not physically impacted. This mitigation may be applied by BSEE at the post-approval stage.
16.05	No Activity Zone (structure removal)	Bottom-disturbing activities associated with the activities proposed in the application must avoid the "no activity zone" of the biologically sensitive feature shown on the enclosed map in the application by a distance of at least 500 ft. Include in the post-removal report an as-built plat, at a scale of 1 in $= 1,000$ ft with DGPS accuracy, depicting the "as-placed" location of all anchors, anchor chains, and wire ropes on the seafloor deployed during the structure-removal activities to show that the "no activity zone" was not physically impacted. This mitigation may be applied by BSEE at the post-approval stage.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
	·	Non-Plan and Pipeline Mitigations
17.02	Fish (structure removals using explosives)	Under the Magnuson-Stevens Fisheries Conservation and Management Act, 50 CFR § 600.725 prohibits the use of explosives to take reef fish in the Exclusive Economic Zone. Consequently, those involved in explosive structure removals must not take such stunned or killed fish on board their vessels. Should this happen, they could be charged by the National Marine Fisheries Service (NMFS) with violation of the Act.
17.04	Site-Clearance Trawling Reporting	If trawling is used to comply with the site-clearance verification requirements under 30 CFR §§ 250.1740-1743, which mandates that turtle excluder devices (TED) be removed from the trawl nets to facilitate the collection of seabed debris, the applicant must abide by maximum trawl times of 30 minutes, allowing for the removal of any captured sea turtles. If, during trawling activities, the applicant captures a sea turtle in the nets, the applicant must (1) contact BSEE's Environmental Enforcement Branch and the National Marine Fisheries Services' (NMFS's) Southeast Regional Office immediately, (2) resuscitate and release any captured sea turtles as per NMFS's guidelines found online at http://www.sefsc.noaa.gov/turtles/TM_NMFS_SEFSC_580_2010.pdf (refer to page 3-6, Plate 3-1), and (3) photograph the turtle and complete a sea turtle stranding form for each sea turtle caught in the nets. The form can be found at http://www.sefsc.noaa.gov/species/turtles/strandings.htm and submitted to NMFS and BSEE.
	(Conservation Information Document Mitigations
18	Self-Burial Approval	BOEM hereby concurs with the determination that the subject pipeline will be installed in an area that is prone to self-burial. However, in the future, should it be determined that the pipeline(s) constitute(s) a hazard to navigation or commercial fishing operations or unduly interferes(s) with other uses of the OCS, the applicant will be required to bury it (them).
18.01	Conservation Information Document – Condition of Approval	Within 15 days after the proposed well is or wells are completed and logged, submit a revision to the plan consisting of the information required for a Conservation Information Document in accordance with NTL 2000-N05.
18.02	Conservation Information Document – Operations Approval	At the applicant's request, we are approving your development operation coordination document (DOCD) prior to the completion of our review of the accompanying Conservation Information Document (CID). However, please be advised that, if the CID review indicates that any of the proposed activities do not conform to sound conservation, engineering, and economic practices as cited in 30 CFR §§ 550.202(a) and 550.1101(a), we will, in accordance with 30 CFR § 550.281(4)(b), require such revisions to the DOCD as are necessary to make the activities conform to such practices.
		ROV Survey Mitigations
19.01	ROV Survey Required – Exploration Plans (EP)	In accordance with NTL 2008-G06, the applicant must conduct the two ROV surveys proposed in the plan. The first survey will be for the first well location approved under this plan which is actually drilled. The post-drilling survey can be conducted at the time the applicant is preparing to leave this location. The applicant must submit both survey reports within 60 days after the rig leaves the well location. This mitigation may be applied by BSEE at the post-approval stage.

Mitigation Number	Mitigating Measure Title	Description of Mitigation
19.02	ROV Survey Required – DOCD	In accordance with NTL 2008-G06, the applicant must conduct the ROV surveys proposed in the plan for the facility location approved under this plan. The applicant must submit the pre- and post-installation survey reports within 60 days after the facility installation is completed. This mitigation may be applied by BSEE at the post-approval stage.
19.03	ROV Survey Not Required	In accordance with NTL 2008-G06, BOEM has determined that the applicant will not need to conduct the two ROV surveys proposed in the plan. This mitigation may be applied by BSEE at the post-approval stage.
		Surveys Mitigations
21.01	Archaeology Assessment Not Acceptable	BOEM's review has determined that the archaeological analysis included in the survey report does not meet current BOEM requirements.
21.02	Archaeology Assessment Acceptable	BOEM's review has determined that the archaeological analysis included in the survey report meets current BOEM requirements.
21.03	Geophysical Review Acceptable	BOEM's review has determined that the subject survey report complies with the provisions of NTL 2008-G05 and, based on available data regarding any man-made hazards that may have been present at the time the survey was conducted, contains sufficient information to prepare an acceptable shallow hazards analysis for specific drilling or platform sites that the applicant may propose in future EPs or DOCDs. However, prior to submitting any such EPs or DOCDs, the applicant should update the accompanying anomaly map, if appropriate, to indicate the location of any man-made hazards, e.g., pipelines, abandoned wells, etc., that did not exist at the time the survey was performed. Additionally, please be reminded that under the guidelines of NTL 2008-G04, the applicant should submit high-resolution survey data from the line closest to any proposed well or platform location, with one copy of each such EP or DOCD.
21.04	Geophysical Survey Report Not Acceptable	BOEM's review has also determined the subject survey report does not comply with the provisions of NTL 2008-G05.
21.05	3D Survey Waiver	Use of three-dimensional (3D) seismic data in lieu of high-resolution survey data as per NTL 2008-G05 is acceptable for the requested locations.
		Pipeline Section Mitigations and Conditions
22	Concrete Mats	The applicant's request to install protective concrete mats over the pipeline crossings in water less than 200 ft deep is hereby approved pursuant to 30 CFR § 250.141.
25	Pipeline High-Pressure (PSH) Higher Than 15%	The applicant's request to set the PSH higher than 15 percent above the normal operating pressure range is hereby approved pursuant to 30 CFR § 250.142. The pipeline PSH shall be set no more than 5 percent above the latest shut-in tubing pressure of the well and will not be set above the maximum allowable operating pressure of the pipeline.
26	Denied Self-Burial	BOEM cannot concur with the applicant's determination that the subject pipeline will be installed in an area that is prone to self-burial. BOEM will only allow self-burial in areas with a soil strength that does not exceed 200 pounds per square foot. Therefore, the portions of the pipeline in water depths less than or equal to 200 ft shall be buried.

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
28	Hydrostatic Head to Raise Maximum Allowable Operating Pressure	The applicant's request to determine the internal design pressure of the submerged portion of the pipeline by considering the effects of the external hydrostatic pressure, in lieu of using the standard formula outlined in 30 CFR § 250.1002(a), is hereby approved pursuant to 30 CFR § 250.141(a).
		National Marine Fisheries Service Mitigations
28.001	Species Protective Measures	The applicant must comply with the following species protective measures in all activities conducted pursuant to the plan: NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting"; NTL 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program"; and NTL 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination." These measures are designed to promote environmental protection, consistent environmental policy, compliance with environmental laws, and safety.
29	Oil Spill Financial Responsibility (OSFR) Coverage	BOEM's review of the application indicates that, per 30 CFR §§ 553.3(1)-(3), the proposed right- of-way pipeline is classified as a covered offshore facility (COF) and requires oil-spill financial responsibility (OSFR) coverage. At this time, BSEE's records do not indicate that the required OSFR coverage is in place. The applicant is advised that they may begin construction of the proposed pipeline immediately. However, in accordance with 30 CFR § 553.15(b), the applicant may not begin operation of the pipeline until they have submitted an application showing evidence of OSFR coverage and that demonstration has been approved by BSEE.
99	Department of Transportation Right-of-Way Pipeline	The applicant shall construct, operate, and maintain the pipeline in accordance with the appropriate U.S. Department of Transportation regulations.
110	Spanning Potential	There are several fault scarps along with the proposed pipeline route. Include with the construction report a listing of the location and length of any pipeline "spanning," resulting from laying the pipeline over these fault scarps. Also include a description of any remedial action necessary to minimize "spanning" and prevent pipeline damage. This mitigation may be applied by BSEE at the post-approval stage.
	(Office of Structural Technical Support Mitigations
120.1	Reminder of NTL 2008-G05	If there are pipelines within the immediate proximity of the proposed platform site, precautions outlined in NTL 2008-G05, "Shallow Hazards Program," shall be taken while conducting operations.
120.15	Notify National Imagery and Mapping	In order to assure publication of onsite activity as it affects marine navigation safety, the applicant must notify the National Imagery and Mapping Agency in advance of commencement of platform installation.
120.2	Send Report to Office of Structural and Technical Support (OSTS)	Written notification shall be submitted to the Office of Structural and Technical Support (OSTS) and the Pipeline Section within 15 calendar days of completion of the platform installation operations, at which time the applicant will be provided with the "Complex Identification Number" (CPXID) that has been assigned to this structure. The CPXID should be included with other pertinent information (i.e., the right-of-way number, area code, block number, platform name, etc.) in all future correspondence related to this structure. Should significant problems occur during

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		structure installation operations, please inform OSTS immediately. If for any reason the applicant decides not to install this structure, they shall submit a written cancellation letter.
120.7	Downhole Well Plugging	In accordance with 30 CFR § 250.1710, the applicant must downhole plug and abandon all wells on (insert area/block platform name) (except [insert well names]), no later than (insert date). However, the applicant will not be required to sever the casings, remove the wellhead, or clear the site until the right-of-use expires.
	Geological	and Geophysical Mitigations (deep-penetration applications) (no assigned mitigation numbers)
Vessel-Strike Avoidance/Reporting		The applicant will follow the guidance provided under NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting." The NTL 2012-JOINT-G01 provides guidance on how a seismic operator should implement monitoring programs to minimize the risk of vessel strikes to protected species and should report observations of injured or dead protected species. In lieu of a formal observer program, this NTL provides specific guidelines that should be followed to identify and avoid injury to marine mammals and sea turtles.
Seismic Survey Operation, Monitoring, and Reporting Guidelines		The applicant will follow the guidance provided under NTL 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program." Additionally, the applicant will comply with the guidance under this NTL when operating in all water depths (not just in water depths >200 m or in the Eastern Planning Area), and the NTL's "shut-down conditions" will be applied towards manatees.
Pre-Activity Sound-Source and Array Calibration Verification		Prior to conducting survey activities, the applicant will verify in writing that the proposed airgun arrays to be used are of the lowest sound intensity level that still achieves the survey goals. The written verification must include confirmation that the airgun array has been calibrated/tuned to maximize subsurface illumination and minimize, to the extent practicable, horizontal propagation of noise.
Mandatory Separation Buffer between Survey Operations		The applicant will be required to maintain, to the extent it can practicably and safely do so, a minimum separation distance of 30 km from any other vessels concurrently conducting deep- penetration seismic surveys and 40 km when operating within an Area of Concern. To assist in implementation of this measure, BOEM will provide the applicant with contact information for all deep-penetration seismic applicants concurrently permitted/authorized to operate within or near the proposed survey area.
Supplemental Reporting Requirements		In addition to the reporting requirements under NTL 2012-JOINT-G02, the applicant is required to submit bi-weekly reports containing the information listed below. The reporting periods end on the 1st and 15th of each month. These bi-weekly reports are required for the total duration of the permit. When applicable, the reports must be submitted with survey navigation data for the 2-week reporting period. BOEM has a suggested format for the written report. If BOEM's suggested written format is not used, the following information must be submitted along with the navigation data: (1) the dates, locations, and duration of any deep-penetration seismic operations conducted during the reporting period (the navigation data provides this information); (2) any circumstances that caused the total energy output of the airgun source array to exceed that set forth in the permit

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation	
		application; (3) confirmation that the permittee maintained, to the extent they could practicably and safely do so, the minimum separation distance (If applicable, submit a written explanation of why the minimum separation distance was not maintained.); and (4) confirmation that the permittee complied with the other terms of Section V of the Settlement Agreement.	
Military Warning Area Coordination		BOÊM's review indicates that the routes to be taken by boats in support of the applicant's activities traversed Military Warning Areas W-92, W-147AB, and W-602. The applicant shall contact the appropriate individual military command headquarters concerning the control of electromagnetic emissions and use of boats in each of the areas before commencing the operations.	
Marine Trash and Debris Awareness and Elimination		The applicant will follow the guidance provided under NTL 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination." The NTL 2012-BSEE-G01 provides information on reducing, if not eliminating, trash intentionally jettisoned into the Gulf of Mexico. The programs described in the NTL to assist in the reduction of marine trash and debris are the marine trash and debris placards, marine trash and debris awareness training, and the marine trash and debris awareness training and certification process.	
Geological and Geophysical Mitigation Natural Resource Defense Council Area of Concern (equal to or greater than 20-m water depth) (no assigned mitigation numbers)			
Seismic Survey Restriction Period		BOEM's review indicates that the proposed survey area falls within a portion of an unusual mortality event area declared/established by the National Marine Fisheries Service for cetaceans (whales and dolphins). The applicant shall adhere to a restriction period between March 1 and April 30 (primary bottlenose dolphin calving season) for deep penetration seismic surveys on the Federal Outer Continental Shelf in coastal waters out to the 20-m isobath in the Northern Gulf of Mexico to avoid potential impacts to dolphins in regards to behavioral disruptions to mother/calf bonding or masking of important acoustic cues. No airgun use, including the use of mitigation guns, is permitted during the restriction period.	
Geological and Geophysical Mitigation Natural Resource Defense Council Area of Concern (equal to or greater than 100-m water depth) (no assigned mitigation numbers)			
Required Pass	ve Acoustic Monitoring (PAM)	BOEM requires that the applicant use passive acoustic monitoring (PAM) in water depths of 100 m or greater at times of reduced visibility (darkness, rain, fog, etc.) as part of their protected species observer program. The PAM will be monitored at all times of reduced visibility. Applicants will be required to provide BSEE with a description of the passive acoustic system, the software used, and the monitoring plan prior to its use. Additionally, after survey completion, the applicant will provide an assessment of the usefulness, effectiveness, and problems encountered with the use of PAM for marine mammal detection to BSEE for review.	
Mitigation for High-Resolution Surveys			
Vessel-Strike	Avoidance/Reporting	The applicant will follow the guidance provided under NTL 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting." The NTL 2012-JOINT-G01 provides	

Commonly Applied Mitigating Measures

Mitigation Number Mitigating Measure Title	Description of Mitigation
Marine Trash and Debris Awareness and Elimination	guidance on how a seismic operator should implement monitoring programs to minimize the risk of vessel strikes to protected species and should report observations of injured or dead protected species. In lieu of a formal observer program, this NTL provides specific guidelines that should be followed to identify and avoid injury to marine mammals and sea turtles. The applicant will follow the guidance provided under NTL 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination." The NTL 2012-BSEE-G01 provides information on reducing, if not eliminating, trash intentionally jettisoned into the Gulf of Mexico. The programs described in the NTL to assist in the reduction of marine trash and debris are the marine trash and debris placards, marine trash and debris awareness training, and the marine trash and debris awareness training and certification process.
Geo	logical and Geophysical Non-Recurring Mitigations
Benthic Communities	 Review of BOEM's 3D seismic database of water bottom anomalies identified both confirmed deepwater benthic communities and features that could potentially support communities within the area of the proposed activities. Based on BOEM's review of exploration activities proposed in the applicant's application, the following non-recurring mitigations are applied to the area encompassed by the plan: BOEM's 3D seismic database of water bottom anomalies and confirmed communities shall be used to identify features for the purpose of applying this mitigation. The following nine water bottom anomaly categories will be considered as supporting or potentially supporting deepwater benthic communities, unless proved otherwise through high- resolution surveys: anom_conf_coral;, anom_conf_mvol;, anom_conf_orgs,; anom_poss_oil_pos,; wb_anom_lith,; wb_anom_mvol,; wb_anom_neg;; wb_anom_pock,; and wb_anom_pos. These shape files may be downloaded from http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Map-Gallery/Seismic-Water-Bottom-Anomalies-Map-Gallery.aspx. Features shall be either avoided or surveyed to confirm the presence or absence of deepwater benthic communities. Per NTL 2009-G40, a minimum separation of 250 ft must be maintained between documented communities or features that could potentially support high-density deepwater benthic communities and bottom-disturbing activities (e.g., sensors deployed on the seafloor).

Central Planning Area Lease Sales 235, 241, and 247 EIS

Mitigation Number	Mitigating Measure Title	Description of Mitigation
		 a. Therefore, a minimum distance of separation for planned sensor deployment sites from any feature or community documented in BOEM's water bottom anomaly database must be at least 250 ft. b. If at any time it is determined that a node has landed within 250 ft of any feature or community documented in BOEM's water bottom anomaly database, an BOV must be used to document the seafloor surrounding the landing
		location. The seafloor beneath the node and arms must be surveyed visually with an ROV for damages. All images collected during this survey, showing the area within the footprint of the node, must be returned to BOEM's Gulf of Mexico OCS Region, Biological Sciences Unit for evaluation.
		6. As required by NTL 2009-G40, for bottom-disturbing activities occurring within 500 ft of a high-density deepwater benthic community, the operator must provide BOEM with an as-placed plat showing the actual location of the disturbance on the seafloor, in relation to documented anomalies and communities. This requirement will apply to sensors placed within 500 ft of a documented anomaly or community, as shown in BOEM's 3D seismic database.
		For sensor deployments requiring as-placed plats, prepare at a scale of $1 \text{ in} = 1,000 \text{ ft}$ and submit to BOEM's Regional Supervisor, Office of Resource Evaluation, Data Acquisition and Special Projects Unit.
Tethered Ocean Bottom Node Surveys		Acoustic buoy releases, tethered acoustic pingers, and nodal tethering lines pose an entanglement risk to sea turtles and other marine life. Implementing the following measures act to reduce the risk of entanglement and ensure proper reporting of entanglement situations. Reasonable measures are available to applicants using this deployment technique to reduce the risk of entanglement. These measures include the following: (1) shortening the acoustic buoy line and tethered acoustic pinger line to the shortest length practical; and (2) replacing tether rope lines equal to or greater than ¹ / ₄ -in diameter with a thicker, more rigid tether line, modifying the line by tying knots in the line to increase the diameter and rigidness in order to minimize the risk of entanglement. Additional measures include ensuring that a Protected Species Observer (PSO) is onboard each vessel during tethered node retrieval operations. The PSOs will document any entanglement of marine species in the nodal gear, specifically noting the location where entanglement occurred (e.g., pinger tether, acoustic buoy line, etc.). If a marine protected species becomes entangled, specifically a sea turtle, the PSO will immediately begin resuscitation procedures as described in the National Oceanic and Atmospheric Administration's guidelines that can be found at http://www.st.nmfs.noaa.gov/Assets/Observer-Program/pdf/Shrimp_Reef_fish_Manual 9_22_10.pdf . The PSO must also contact the sea turtle stranding network's State coordinator to report the incident, condition of the turtle, and request additional instructions to reduce risk of injury or mortality, including rehabilitation and salvage techniques.

Mitigation Number	Mitigating Measure Title	Description of Mitigation
Topographic Features		The applicant must adhere to the provisions of the topographic features lease stipulation and the policy described in NTL 2009-G39, which restrict any bottom-disturbing activities within 152 m of the designated "no activity zone" of a topographic feature, as well as all applicable requirements described in the NTL.
Potential Archae	ological Resource Protection	BOEM's review of the application indicates that numerous targets identified by existing remote- sensing data are located in the project area where the ocean bottom cables (OBCs) are proposed to be deployed. Therefore, in order to demonstrate compliance with 30 CFR § 551.6(a)(5), the applicant will either (1) ensure that all seafloor-disturbing actions required for the OBC deployment avoid the features by a distance greater than that listed in the tables or (2) conduct an underwater archaeological investigation prior to cable deployment to determine whether the feature represents an archaeological resource. If the applicant chooses to avoid the feature, they will be required to submit a plat, at a scale of 1 in = 1000 ff with DGPS accuracy, with their final report as required by 30 CFR § 551.8(c)(2), which demonstrates the feature was not physically impacted by the OBC deployment and retrieval or by any other associated bottom disturbances. If the applicant chooses to conduct an underwater archaeological investigation, they will be required to comply with the investigation methodology and reporting guidelines found on BOEM's website at <u>http://</u> www.boem.gov/gom-archaeology/. This is only a partial list of potential archaeological survey, and these areas are likely to contain additional archaeological materials that may be impacted by the proposed operations. If the applicant discovers additional man-made debris that appears to indicate the presence of a shipwreck (e.g., a sonar image or visual confirmation of an iron, steel, or wooden hull; wooden timbers; anchors; concentrations of man-made debris that appears to indicate the presence of a shipwreck (e.g., a sonar image or visual confirmation of an iron, steel, or wooden hull; wooden timbers; anchors; concentrations of man-made debries such as bottles or ceramics; and piles of ballast rock) within or adjacent to the proposed action area during the proposed survey operations, they will be required to immediately halt operations, take steps to ensure that the si

APPENDIX E

RECENT PUBLICATIONS OF THE ENVIRONMENTAL STUDIES PROGRAM, GULF OF MEXICO OCS REGION, 2006–PRESENT

E. RECENT PUBLICATIONS OF THE ENVIRONMENTAL STUDIES PROGRAM, GULF OF MEXICO OCS REGION, 2006–PRESENT

Published in 2014	
Study Number	Title
BOEM 2014-011	Determining the Geographical Distribution and Genetic Affinities of Corals on Offshore Platforms, Northern Gulf of Mexico
BOEM 2014-040	Analysis of Ocean Current Data from Gulf of Mexico Oil and Gas Platforms
BOEM 2014-058	Ecospatial Information Database: U.S. Atlantic Region
BOEM 2014-606	User's Guide for the 2014 Gulfwide Offshore Activities Data System (GOADS-2014)
BOEM 2014-617 BOEM 2014-618	Offshore Oil and Deepwater Horizon: Social Effects on Gulf Coast Communities Volume I: Methodology, Timeline, Context, and Communities Volume II: Key Economic Sectors, NGOs, and Ethnic Groups
	Published in 2013
Study Number	Title
BOEM 2013-0111	Socioeconomic Responses to Coastal Land Loss and Hurricanes: Measuring Resilience among Outer Continental Shelf Related Coastal Communities in Louisiana
BOEM 2013-01110	Meteorological and Wave Measurements for Improving Meteorological Modeling
BOEM 2013-011110	Archaeological Analysis of Submerged Sites on the Gulf of Mexico Outer Continental Shelf
BOEM 2013-0112	Offshore Drilling Industry and Rig Construction Market in the Gulf of Mexico
BOEM 2013-0113 BOEM 2013-0114	Energy Market and Infrastructure Information for Evaluating Renewable Energy Projects for the Atlantic and Pacific OCS Regions Volume I: Technical Report Volume II: Appendices
BOEM 2013-01157	South Atlantic Information Resources: Data Search and Literature Synthesis
BOEM 2013-0120	Platform Recruited Reef Fish, Phase II: Do Platforms Provide Habitat that Increases the Survival of Reef Fishes?
BOEM 2013-0123	Short-Term Movement, Home Range, and Behavior of Red Snapper around Petroleum Platforms in the Northern Gulf of Mexico, as Determined by High Resolution Acoustic Telemetry
BOEM 2013-214 BOEM 2013-215	Long-Term Monitoring at the East and West Flower Gardens Banks National Marine Sanctuary, 2009-2010 Volume I: Technical Report Volume II: Appendices

BOEM 2013-216	Corals on Oil and Gas Platforms near the Flower Garden Banks: Population Characteristics, Recruitment, and Genetic Affinity
BOEM 2013-217	Deepwater Coral Distribution and Abundance on Active Offshore Oil and Gas Platforms and Decommissioned "Rigs-to-Reefs" Platforms
BOEM 2013-222	Improving the Predictive Capability of 3-D Seismic Surface Amplitude Data for Identifying Chemosynthetic Communities
	Published in 2012
Study Number	Title
BOEM 2012-004	Ultra-Deepwater Circulation Processes in the Gulf of Mexico
BOEM 2012-006 BOEM 2012-007	Evaluation of Visual Impact on Cultural Resources/Historic Properties: North Atlantic, Mid-Atlantic, and Florida Straits Volume I: Technical Report of Findings Volume II: Appendices
BOEM 2012-008	Inventory and Analysis of Archaeological Site Occurrence on the Atlantic OCS
BOEM 2012-015	Seismic Survey Mitigation Measures and Marine Mammal Observer Reports
BOEM 2012-071	Long-Term Trends in Environmental Parameters along the Louisiana/Mississippi Outer Continental Shelf using Remote Sensing Data
BOEM 2012-102	Gulf of Mexico MAG-PLAN 2012: Updated and Revised Economic Impact Model
BOEM 2012-106	Exploration and Research of Northern Gulf of Mexico Deepwater Natural and Artificial Hard-Bottom Habitats, with Emphasis on Coral Communities: Reefs, Rigs, and Wrecks-"Lophelia II" Interim Report
BOEM 2012-107	Proceedings: Twenty-Sixth Gulf of Mexico Information Transfer Meeting
BOEM 2012-108	Integrated Bio-Physical Modeling of Louisiana-Texas (Latex) Shelf
BOEM 2012-109	Literature Search and Data Synthesis for Marine Mammals and Sea Turtles in the US Atlantic from Maine to the Florida Keys
	Published in 2011
Study Number	Title
BOEMRE 2011-001	Analysis of the Oil Services Contract Industry in the Gulf of Mexico Region
BOEMRE 2011-002	Status and Applications of Acoustic Mitigation and Monitoring Systems for Marine Mammals: Workshop Proceedings, November 17-19, 2009, Boston, Massachusetts
BOEMRE 2011-003	Impact of Recent Hurricane Activity on Historic Shipwrecks in the Gulf of Mexico Outer Continental Shelf
BOEMRE 2011-004	Archival Investigations for Potential Colonial-Era Shipwrecks in Ultra-Deepwater within the Gulf of Mexico
BOEMRE 2011-011	User's Guide for the 2011 Gulfwide Offshore Activities Data System (GOADS-2011)

E-4

BOEMRE 2011-012	Literature Synthesis for the North and Central Atlantic Ocean
BOEMRE 2011-028	Assessment of Opportunities for Alternative Uses of Hydrocarbon Infrastructure in the Gulf of Mexico
BOEMRE 2011-040	Shipwreck Research in the New Orleans Notarial Archives
BOEM 2011-043 BOEM 2011-044	OCS-Related Infrastructure Fact Book Volume I: Post-Hurricane Impact Assessment Volume II: Communities in the Gulf of Mexico
BOEM 2011-054	Diversifying Energy Industry Risk in the Gulf of Mexico: Post-2004 Changes in Offshore Oil and Gas Insurance Markets
	Published in 2010
Study Number	Title
MMS 2010-001	Proceedings: USA-Mexico Workshop on the Deepwater Physical Oceanography of the Gulf of Mexico, June 2007
MMS 2010-002	<i>Proof of Concept for Platform Recruited Reef Fish, Phase 1: Do Platforms</i> <i>Provide Habitat for Subadult Red Snapper?</i>
MMS 2010-007	Assessment of Marginal Production in the Gulf of Mexico and Lost Production from Early Decommissioning
MMS 2010-015	Low-Frequency Variability of Currents in the Deepwater Eastern Gulf of Mexico
MMS 2010-016	Trophic Aspects of Sperm Whales (Physeter macrocephalus) in the Northern Gulf of Mexico Using Stable Isotopes of Carbon and Nitrogen
BOEMRE 2010-039	Bank Erosion of Navigation Canals in the Western and Central Gulf of Mexico
BOEMRE 2010-041	Study of Deepwater Currents in the Eastern Gulf of Mexico
BOEMRE 2010-042	Fact Book: Offshore Oil and Gas Industry Support Sectors
BOEMRE 2010-043	Determination of Net Flux of Reactive Volatile Organic Compounds at the Air-Water Interface in the Gulf of Mexico
BOEMRE 2010-044	Full-Water Column Current Observations in the Western Gulf of Mexico
BOEMRE 2010-045	Year 2008 Gulfwide Emission Inventory Study
BOEMRE 2010-046	Multicomponent and Multifrequency Seismic for Assessment of Fluid-Gas Expulsion Geology and Gas-Hydrate Deposits: Gulf of Mexico Hydrates
BOEMRE 2010-050	Satellite Data Assimilation into Meteorological/Air Quality Models
BOEMRE 2010-051	Evaluation of NASA Aura's Data Products for Use in Air Quality Studies over the Gulf of Mexico
BOEMRE 2010-052 BOEMRE 2010-053	Long-Term Monitoring at the East and West Flower Garden Banks: 2004-2008 Volume 1: Technical Report Volume 2: Appendices

Published in 2009	
Study Number	Title
MMS 2009-010	Quality Control and Analysis of Acoustic Doppler Current Profiler Data Collected on Offshore Platforms of the Gulf of Mexico
MMS 2009-013	Foraminiferal Communities of Bathyal Hydrocarbon Seeps, Northern Gulf of Mexico: A Taxonomic, Ecologic, and Geologic Study
MMS 2009-023	Loop Current Frontal Eddies Based on Satellite Remote Sensing and Drifter Data
MMS 2009-032	Post-Hurricane Assessment of Sensitive Habitats of the Flower Garden Banks Vicinity
MMS 2009-039	Northern Gulf of Mexico Continental Slope Habitats and Benthic Ecology Study: Final Report
MMS 2009-043	Blue Crab (Callinectes sapidus) Use of the Ship/Trinity/Tiger Shoal Complex as a Nationally Important Spawning/Hatching/Foraging Ground: Discovery, Evaluation, and Sand Mining Recommendations Based on Blue Crab, Shrimp, and Spotted Seatrout Findings
MMS 2009-046	Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico, Interim Report 2
MMS 2009-048	Outer Continental Shelf (OCS)-Related Pipelines and Navigation Canals in the Western and Central Gulf of Mexico: Relative Impacts on Wetlands Habitats and Effectiveness of Mitigation
MMS 2009-050	Observation of the Deepwater Manifestation of the Loop Current and Loop Current Rings in the Eastern Gulf of Mexico
MMS 2009-051	Proceedings: Twenty-Fifth Gulf of Mexico Information Transfer Meeting, January 2009
MMS 2009-055 MMS 2009-056 MMS 2009-057 MMS 2009-058	Synthesis, Analysis, and Integration of Meteorological and Air Quality Data for the Gulf of Mexico Region Volume I: User's Manual for the Gulf of Mexico Air Quality Database (Version 1.0) Volume II: Technical Reference Manual for the Gulf of Mexico Air Quality Database Volume III: Data Analysis Volume IV: Cart Analysis of Modeling Episode Days
MMS 2009-059	Evaluation of Oil and Gas Platforms on the Louisiana Continental Shelf for Organisms with Biotechnology Potential
MMS 2009-060	Modeling Waves and Currents Produced by Hurricanes Katrina, Rita, and Wilma

Published in 2008	
Study Number	Title
MMS 2008-001	Deepwater Currents in the Eastern Gulf of Mexico: Observations at 25.5°N and 87°W
MMS 2008-006	Sperm Whale Seismic Study in the Gulf of Mexico: Synthesis Report
MMS 2008-009	Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico: Interim Report 1
MMS 2008-012	Proceedings: Twenty-Fourth Gulf of Mexico Information Transfer Meeting, January 2007
MMS 2008-015	Characterization of Northern Gulf of Mexico Deepwater Hard Bottom Communities with Emphasis on Lophelia Coral—Lophelia Reef Megafaunal Community Structure, Biotopes, Genetics, Microbial Ecology, and Geology (2004-2006) NOTE: This study was conducted by the U.S. Geological Survey (USGS) for the Agency's Headquarters' Office, and it was funded by USGS.
MMS 2008-017	Examination of the Development of Liquefied Natural Gas on the Gulf of Mexico
MMS 2008-018	Viosca Knoll Wreck: Discovery and Investigation of an Early Nineteenth- Century Wooden Sailing Vessel in 2,000 Feet of Water
MMS 2008-019	Post-Hurricane Assessment at the East Flower Garden Bank Long-Term Monitoring Site: November 2005
MMS 2008-022	Effects of Subsea Processing on Deepwater Environments in the Gulf of Mexico
MMS 2008-024	Executive Summary: 3rd International Deep-Sea Coral Symposium in Miami
MMS 2008-027 MMS 2008-028	Long-Term Monitoring at the East and West Flower Garden Banks, 2004-2005—Interim Report Volume I: Technical Report Volume II: Appendices
MMS 2008-029	Five-Year Meteorological Datasets for CALMET/CALPUFF and OCD5 Modeling of the Gulf of Mexico Region
MMS 2008-030 MMS 2008-031	Study of Deepwater Currents in the Northwestern Gulf of Mexico Volume I: Executive Summary Volume II: Technical Report

MMS 2008-042 MMS 2008-043 MMS 2008-044 MMS 2008-045 MMS 2008-046 MMS 2008-047	 History of the Offshore Oil and Gas Industry in Southern Louisiana Volume I: Papers on the Evolving Offshore Industry Volume II: Bayou Lafourche—Oral Histories of the Oil and Gas Industry Volume III: Morgan City's History in the Era of Oil and Gas—Perspectives of Those Who Were There Volume IV: Terrebonne Parish Volume V: Guide to the Interviews Volume VI: A Collection of Photographs
MMS 2008-048	Platform Debris Fields Associated with the Blue Dolphin (Buccaneer) Gas and Oil Field Artificial Reef Sites Offshore Freeport, Texas: Extent, Composition, and Biological Utilization
MMS 2008-050 MMS 2008-051	Labor Needs Survey Volume I: Technical Report Volume II: Survey Instruments
MMS 2008-052	Benefits and Burdens of OCS Activities on States, Labor Market Areas, Coastal Counties, and Selected Communities
MMS 2008-058	Cumulative Increment Analysis for the Breton National Wilderness Area
Published in 2007	
Study Number	Title
MMS 2007-015	Archaeological and Biological Analysis of World War II Shipwrecks in the Gulf of Mexico; Artificial Reef Effect in Deepwater
MMS 2007-019	Mixtures of Metals and Polynuclear Aromatic Hydrocarbons May Elicit Complex, Nonadditive Toxicological Interactions
MMS 2007-022	Full-Water Column Current Observations in the Central Gulf of Mexico: Final Report
MMS 2007-030	Incorporation of Gulf of Mexico Benthic Survey Data into the Ocean Biogeographic Information System
MMS 2007-030 MMS 2007-031	Incorporation of Gulf of Mexico Benthic Survey Data into the Ocean Biogeographic Information System Idle Iron in the Gulf of Mexico
MMS 2007-030 MMS 2007-031 MMS 2007-033	Incorporation of Gulf of Mexico Benthic Survey Data into the Ocean Biogeographic Information SystemIdle Iron in the Gulf of MexicoCooperative Research to Study Dive Patterns of Sperm Whales in the Atlantic Ocean
MMS 2007-030 MMS 2007-031 MMS 2007-033 MMS 2007-034	Incorporation of Gulf of Mexico Benthic Survey Data into the Ocean Biogeographic Information SystemIdle Iron in the Gulf of MexicoCooperative Research to Study Dive Patterns of Sperm Whales in the Atlantic OceanCompetition and Performance in Oil and Gas Lease Sales and Development in the U.S. Gulf of Mexico OCS Region, 1983-1999
MMS 2007-030 MMS 2007-031 MMS 2007-033 MMS 2007-034 MMS 2007-035	Incorporation of Gulf of Mexico Benthic Survey Data into the Ocean Biogeographic Information SystemIdle Iron in the Gulf of MexicoCooperative Research to Study Dive Patterns of Sperm Whales in the Atlantic OceanCompetition and Performance in Oil and Gas Lease Sales and Development in the U.S. Gulf of Mexico OCS Region, 1983-1999Seafloor Characteristics and Distribution Patterns of Lophelia pertusa and Other Sessile Megafauna at Two Upper-Slope Sites in the Northeastern Gulf of Mexico

MMS 2007-056	Full-Water Column Currents Near the Sigsbee Escarpment (91-92° W. Longitude) and Relationships with the Loop Current and Associated Warm- and Cold-Core Eddies
MMS 2007-061	Study of Barite Solubility and the Release of Trace Components to the Marine Environment
MMS 2007-067	Year 2005 Gulfwide Emission Inventory Study
MMS 2007-068	User's Guide for the 2008 Gulfwide Offshore Activities Data System (GOADS-2008)
	Published in 2006
Study Number	Title
MMS 2006-005	Fidelity of Red Snapper to Petroleum Platforms and Artificial Reefs in the Northern Gulf of Mexico
MMS 2006-011	Sustainable Community in Oil and Gas Country: Final Report
MMS 2006-028	Degradation of Synthetic-Based Drilling Mud Base Fluids by Gulf of Mexico Sediments, Final Report
MMS 2006-030	Accounting for Socioeconomic Change from Offshore Oil and Gas: Cumulative Effects on Louisiana's Coastal Parishes, 1969-2000
MMS 2006-034	Sperm Whale Seismic Study in the Gulf of Mexico, Summary Report: 2002-2004
MMS 2006-035	Long-Term Monitoring at the East and West Flower Garden Banks National Marine Sanctuary, 2002-2003
MMS 2006-036	Study to Conduct National Register of Historic Places Evaluations of Submerged Sites on the Gulf of Mexico Outer Continental Shelf
MMS 2006-037	Effect of Depth, Location, and Habitat Type, on Relative Abundance and Species Composition of Fishes Associated with Petroleum Platforms and Sonnier Bank in the Northern Gulf of Mexico
MMS 2006-044 MMS 2006-045 MMS 2006-046	Effects of Oil and Gas Exploration and Development at Selected Continental Slope Sites in the Gulf of Mexico Volume I: Executive Summary Volume II: Technical Report Volume III: Appendices
MMS 2006-063	Economic Effects of Petroleum Prices and Production in the Gulf of Mexico OCS on the U.S. Gulf Coast Economy
MMS 2006-064	Capital Investment Decisionmaking and Trends in Petroleum Resource Development in the U.S. Gulf of Mexico
MMS 2006-067	Sperm Whale Seismic Study in the Gulf of Mexico, Annual Report: Years 3 and 4
MMS 2006-071	Annotated Bibliography of the Potential Environmental Impacts of Chlorination and Disinfection Byproducts Relevant to Offshore Liquefied Natural Gas Port Facilities
------------------------------	--
MMS 2006-072	Mica Shipwreck Project Report: Deepwater Archaeological Investigation of a 19th Century Shipwreck in the Gulf of Mexico
MMS 2006-073 MMS 2006-074	Exploratory Study of Deepwater Currents in the Gulf of Mexico Volume I: Executive Summary Volume II: Technical Report

KEYWORD INDEX

KEYWORD INDEX

- Air Quality, viii, x, xi, 1-11, 2-6, 2-7, 2-8, 3-11, 4-6, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15, 4-16, 4-111, 4-133, 4-137, 4-173, 4-223, 4-227, 5-5
- Alternative Energy, 4-18, 4-19, 4-24
- Archaeological Resources, xi, xiv, 1-11, 2-6, 2-7, 2-9, 4-8, 4-175, 4-176, 4-177, 4-178, 4-179, 4-180, 4-181, 4-182, 4-183, 4-184, 4-185, 4-186, 4-223, 4-228, 4-229
- Artificial Reefs, xiv, 1-11, 2-6, 3-28, 3-31, 3-32, 4-151, 4-153, 4-159, 4-161, 4-167, 4-169, 4-170, 4-176, 4-177, 4-178, 4-179, 4-180, 4-183, 4-184, 4-231
- Beach Mice, xi, xiii, 2-7, 2-8, 4-127, 4-128, 4-129, 4-130, 4-131, 4-223
- Blowout Preventer, 3-24, 3-25
- Blowouts, viii, xiv, xv, 2-10, 3-24, 4-24, 4-31, 4-49, 4-55, 4-56, 4-57, 4-58, 4-62, 4-64, 4-65, 4-66, 4-71, 4-72, 4-77, 4-78, 4-79, 4-80, 4-82, 4-84, 4-85, 4-86, 4-89, 4-91, 4-92, 4-94, 4-97, 4-99, 4-100, 4-110, 4-151, 4-154, 4-155, 4-159, 4-160, 4-162, 4-165, 4-182, 4-199, 4-220, 4-222, 4-223, 4-227
- Chemosynthetic Communities, xii, 1-11, 2-6, 3-10, 4-76, 4-77, 4-78, 4-79, 4-80, 4-81, 4-82, 4-83, 4-84, 4-153, 5-4
- Chemosynthetic Deepwater Benthic Communities, 2-8, 4-76, 4-78, 4-150, 4-152, 4-154, 4-155
- Coastal and Marine Birds, xi, xiii, 2-7, 2-8, 2-9, 4-5, 4-131, 4-132, 4-133, 4-134, 4-135, 4-137, 4-138, 4-140, 4-141, 4-142, 4-143, 4-144, 4-223, 4-227
- Coastal Barrier Beaches, x, xi, 2-7, 2-8, 4-30, 4-31, 4-32, 4-35, 4-37, 4-38, 4-111, 4-223
- Coastal Infrastructure, xv, 2-7, 2-9, 3-3, 3-13, 3-14, 3-26, 4-8, 4-40, 4-42, 4-45, 4-111, 4-150, 4-176, 4-187, 4-188, 4-189, 4-190, 4-196, 4-197, 4-198, 4-199, 4-206, 4-209
- Coastal Spills, 3-12, 3-18, 3-19, 3-20, 4-17, 4-138, 4-147, 4-148, 4-155, 4-162, 4-176, 4-178, 4-182, 4-192
- Coastal Zone Management, x, 1-5, 1-8, 1-11, 4-4, 4-5, 4-36, 4-42, 4-45, 5-4, 5-6, 5-7, 5-9
- Collisions, viii, xv, 3-25, 3-42, 4-17, 4-24, 4-31, 4-34, 4-40, 4-48, 4-81, 4-87, 4-102, 4-110, 4-113, 4-120, 4-123, 4-133, 4-135, 4-140, 4-144, 4-145, 4-188, 4-189, 4-199, 4-206, 4-207, 4-227
- Commercial Fisheries, xi, xiv, 2-7, 2-9, 4-92, 4-105, 4-142, 4-158, 4-159, 4-160, 4-161, 4-162, 4-163, 4-164, 4-165, 4-181, 4-186, 4-223, 4-228, 4-229
- Commercial Fishing, x, xiii, xiv, 2-6, 3-15, 4-20, 4-27, 4-56, 4-58, 4-68, 4-95, 4-98, 4-99, 4-101, 4-104, 4-105, 4-114, 4-117, 4-120, 4-121, 4-140, 4-143, 4-148, 4-156, 4-159, 4-160, 4-161, 4-162, 4-163, 4-165, 4-167, 4-169, 4-172, 4-176, 4-178, 4-181, 4-183, 4-184, 4-185, 4-229, 4-230
- Consultation and Coordination, viii, 1-5, 1-6, 3-15, 5-12
- Cumulative Activities, viii, xiii, 3-26, 3-27, 3-28, 3-29, 3-30, 3-31, 3-32, 3-38, 3-40, 4-3, 4-41, 4-111, 4-126, 4-131, 4-136, 4-138, 4-177, 4-183, 4-221
- Cumulative Impacts, viii, xi, xiii, 3-26, 3-28, 3-34, 3-37, 4-3, 4-4, 4-9, 4-13, 4-14, 4-16, 4-17, 4-18, 4-19, 4-20, 4-23, 4-24, 4-25, 4-27, 4-30, 4-32, 4-38, 4-40, 4-48, 4-50, 4-54, 4-56, 4-63, 4-65, 4-72, 4-73, 4-76, 4-78, 4-79, 4-80, 4-83, 4-84, 4-85, 4-86, 4-89, 4-90, 4-92, 4-93, 4-94, 4-97, 4-98, 4-99, 4-100, 4-101, 4-108, 4-110, 4-120, 4-122, 4-123, 4-126, 4-127, 4-128, 4-130, 4-131, 4-132, 4-138, 4-142, 4-144, 4-146, 4-147, 4-148, 4-149, 4-150, 4-152, 4-153, 4-158, 4-160, 4-165, 4-166, 4-170, 4-171, 4-172, 4-175, 4-176, 4-181, 4-182, 4-186, 4-187, 4-188, 4-198, 4-199, 4-202, 4-205, 4-206, 4-208, 4-210, 4-214, 4-219, 4-220, 4-222, 4-224, 4-230, 5-5
- Deepwater, x, xi, xiv, 1-6, 2-7, 2-8, 3-7, 3-11, 3-12, 3-13, 3-15, 3-16, 3-17, 3-18, 3-21, 3-23, 3-24, 3-25, 3-26, 3-29, 3-30, 3-32, 3-33, 3-38, 3-41, 4-4, 4-5, 4-6, 4-7, 4-9, 4-11, 4-14, 4-16, 4-18, 4-19, 4-20, 4-21,

4-22, 4-27, 4-28, 4-29, 4-30, 4-33, 4-36, 4-37, 4-38, 4-40, 4-41, 4-46, 4-47, 4-50, 4-51, 4-52, 4-53, 4-58, 4-59, 4-60, 4-61, 4-66, 4-67, 4-68, 4-69, 4-70, 4-74, 4-75, 4-76, 4-78, 4-79, 4-80, 4-81, 4-82, 4-83, 4-84, 4-85, 4-86, 4-87, 4-88, 4-89, 4-94, 4-96, 4-97, 4-101, 4-104, 4-106, 4-107, 4-108, 4-109, 4-119, 4-120, 4-121, 4-124, 4-125, 4-126, 4-130, 4-132, 4-135, 4-143, 4-144, 4-145, 4-148, 4-149, 4-151, 4-153, 4-154, 4-155, 4-157, 4-158, 4-160, 4-162, 4-163, 4-164, 4-165, 4-168, 4-170, 4-174, 4-177, 4-179, 4-185, 4-187, 4-188, 4-189, 4-190, 4-192, 4-196, 4-197, 4-204, 4-207, 4-208, 4-209, 4-210, 4-211, 4-212, 4-217, 4-218, 4-221, 4-230, 5-4, 5-9, 5-10

Deepwater Horizon, xi, xiv, 1-6, 2-8, 3-12, 3-13, 3-15, 3-16, 3-17, 3-18, 3-21, 3-23, 3-24, 3-29, 3-30, 3-33, 3-41, 4-4, 4-5, 4-6, 4-7, 4-9, 4-14, 4-16, 4-18, 4-19, 4-20, 4-21, 4-22, 4-27, 4-28, 4-29, 4-30, 4-33, 4-36, 4-37, 4-38, 4-40, 4-41, 4-46, 4-47, 4-50, 4-51, 4-52, 4-53, 4-58, 4-59, 4-60, 4-61, 4-66, 4-67, 4-68, 4-69, 4-70, 4-74, 4-75, 4-79, 4-80, 4-81, 4-82, 4-86, 4-87, 4-88, 4-94, 4-96, 4-97, 4-104, 4-106, 4-107, 4-108, 4-109, 4-119, 4-120, 4-121, 4-124, 4-125, 4-126, 4-130, 4-132, 4-135, 4-143, 4-145, 4-145, 4-148, 4-149, 4-151, 4-154, 4-155, 4-157, 4-158, 4-162, 4-163, 4-164, 4-165, 4-168, 4-170, 4-174, 4-179, 4-185, 4-187, 4-188, 4-196, 4-197, 4-204, 4-207, 4-208, 4-210, 4-211, 4-212, 4-217, 4-218, 4-221, 5-4, 5-9, 5-10

Demographics, xv, 2-7, 2-9, 4-8, 4-124, 4-199, 4-201, 4-205

Diamondback Terrapins, xi, xiii, 2-7, 2-9, 4-121, 4-122, 4-123, 4-124, 4-125, 4-126, 4-127, 4-223

- Discharges, x, xi, xii, xiv, 2-10, 3-8, 3-10, 3-11, 3-12, 3-15, 3-23, 4-17, 4-18, 4-19, 4-20, 4-21, 4-22, 4-23, 4-24, 4-25, 4-26, 4-30, 4-54, 4-55, 4-57, 4-62, 4-63, 4-64, 4-65, 4-66, 4-71, 4-72, 4-73, 4-74, 4-76, 4-78, 4-79, 4-80, 4-83, 4-85, 4-89, 4-90, 4-92, 4-99, 4-100, 4-103, 4-110, 4-111, 4-114, 4-131, 4-133, 4-139, 4-144, 4-146, 4-147, 4-148, 4-150, 4-153, 4-154, 4-156, 4-159, 4-161, 4-165, 4-167, 4-220, 4-221, 4-227, 4-228
- Dispersants, xiii, 3-18, 3-21, 3-22, 3-23, 4-12, 4-17, 4-19, 4-20, 4-21, 4-22, 4-24, 4-25, 4-27, 4-28, 4-29, 4-30, 4-31, 4-33, 4-36, 4-37, 4-40, 4-59, 4-60, 4-64, 4-67, 4-69, 4-70, 4-77, 4-78, 4-79, 4-80, 4-84, 4-86, 4-89, 4-100, 4-104, 4-147, 4-148, 4-176, 4-178, 4-206, 4-210, 4-224, 4-227, 4-228
- Dunes, x, xi, 2-7, 2-8, 4-30, 4-31, 4-32, 4-34, 4-35, 4-36, 4-37, 4-38, 4-45, 4-111, 4-123, 4-124, 4-125, 4-128, 4-129, 4-130, 4-141, 4-145, 4-172, 4-194, 4-216, 4-223
- Economic Factors, xv, 2-7, 2-9, 4-8, 4-168, 4-171, 4-173, 4-175, 4-202, 4-204, 4-205, 4-209
- Employment, xv, 4-169, 4-171, 4-174, 4-199, 4-200, 4-201, 4-202, 4-203, 4-204, 4-205, 4-206, 4-208, 4-209, 4-225
- Endangered Species Act, 1-5, 2-11, 3-12, 4-4, 4-5, 4-7, 4-60, 4-69, 4-75, 4-102, 4-110, 4-111, 4-114, 4-122, 4-128, 4-143, 4-227, 5-10
- Environmental Justice, x, xv, 1-6, 2-7, 2-9, 4-8, 4-195, 4-196, 4-205, 4-206, 4-207, 4-208, 4-209, 4-210, 4-211, 4-213, 4-214, 4-215, 4-216, 4-217, 4-218, 4-219, 5-5
- Essential Fish Habitat, xi, xiii, 1-5, 2-7, 2-9, 4-5, 4-150, 4-151, 4-152, 4-154, 4-155, 4-157, 4-158, 4-223, 5-10

Explosive Removals, 4-58, 4-63, 4-67, 4-114, 4-146, 4-147, 4-159, 4-161

- Fish Resources, xi, xiii, 2-7, 2-9, 4-150, 4-151, 4-152, 4-153, 4-154, 4-156, 4-157, 4-158, 4-165, 4-166, 4-223, 4-228, 4-229
- Fisheries, xiv, 1-11, 2-8, 4-5, 4-75, 4-80, 4-86, 4-103, 4-116, 4-124, 4-133, 4-140, 4-142, 4-149, 4-156, 4-158, 4-160, 4-161, 4-162, 4-163, 4-164, 4-165, 4-168, 4-169, 4-170, 4-207, 4-208, 4-210, 5-3, 5-6, 5-7, 5-10
- Flaring, 1-11, 4-12, 4-13, 4-14
- Flower Garden Banks, 2-6, 2-10, 4-67, 4-68, 4-153, 4-154
- Gulf Sturgeon, xi, xiii, 2-7, 2-8, 4-145, 4-146, 4-147, 4-148, 4-149, 4-223
- Human Resources, 2-7, 2-9, 4-187, 4-223

- Hurricanes, x, xi, 3-29, 3-32, 3-38, 3-39, 3-40, 3-42, 4-13, 4-14, 4-15, 4-18, 4-19, 4-20, 4-21, 4-25, 4-26, 4-27, 4-33, 4-34, 4-35, 4-36, 4-39, 4-40, 4-41, 4-42, 4-45, 4-46, 4-47, 4-48, 4-52, 4-53, 4-54, 4-56, 4-59, 4-62, 4-65, 4-68, 4-71, 4-73, 4-74, 4-76, 4-94, 4-95, 4-99, 4-106, 4-117, 4-125, 4-128, 4-129, 4-130, 4-131, 4-134, 4-141, 4-142, 4-143, 4-145, 4-152, 4-163, 4-165, 4-167, 4-168, 4-173, 4-176, 4-178, 4-179, 4-181, 4-183, 4-184, 4-185, 4-202, 4-204, 4-208, 4-215, 4-216, 4-221
- Income, xv, 4-173, 4-200, 4-201, 4-202, 4-204, 4-206, 4-207, 4-208, 4-209, 4-210, 4-211, 4-212, 4-213, 4-214, 4-215, 4-216, 4-218, 4-219
- Infrastructure, vii, xi, xii, xiv, xv, 1-9, 2-7, 3-3, 3-4, 3-9, 3-10, 3-14, 3-25, 3-26, 3-28, 3-29, 3-30, 3-35, 3-40, 3-42, 4-15, 4-30, 4-31, 4-32, 4-33, 4-34, 4-39, 4-40, 4-45, 4-49, 4-50, 4-54, 4-63, 4-85, 4-90, 4-123, 4-133, 4-136, 4-143, 4-146, 4-152, 4-159, 4-161, 4-166, 4-167, 4-171, 4-172, 4-175, 4-177, 4-178, 4-184, 4-187, 4-188, 4-189, 4-190, 4-191, 4-194, 4-195, 4-196, 4-197, 4-198, 4-199, 4-204, 4-206, 4-208, 4-209, 4-213, 4-214, 4-215, 4-216, 4-218, 4-219, 4-220, 4-225, 4-227, 4-230
- Land Use, x, xv, 2-7, 2-9, 3-14, 3-35, 4-8, 4-124, 4-147, 4-148, 4-171, 4-187, 4-188, 4-189, 4-190, 4-191, 4-192, 4-193, 4-194, 4-196, 4-197, 4-198, 4-204, 4-209, 4-213, 4-223
- Live Bottoms, x, xii, 2-5, 2-7, 2-9, 2-10, 3-10, 4-54, 4-55, 4-56, 4-57, 4-58, 4-59, 4-60, 4-61, 4-62, 4-83, 4-84, 4-111, 4-112, 4-150, 4-151, 4-152, 4-154, 4-155, 4-156, 4-222, 4-223, 5-4
- Loss of Well Control, viii, 3-24, 3-25, 4-17, 4-24, 4-155, 4-162
- Louisiana Highway 1, 4-191, 4-209
- Low Relief, xii, 2-7, 2-9, 3-10, 4-54, 4-55, 4-56, 4-59, 4-151, 4-152, 4-154, 4-223
- *Macondo*, 3-12, 4-7, 4-21, 4-28, 4-52, 4-60, 4-61, 4-67, 4-69, 4-70, 4-80, 4-82, 4-86, 4-88, 4-94, 4-97, 4-98, 4-157, 4-163, 4-211, 4-218, 4-221
- Marine Mammals, x, xii, 1-5, 1-11, 2-6, 2-7, 2-9, 4-4, 4-6, 4-100, 4-101, 4-102, 4-103, 4-104, 4-105, 4-106, 4-107, 4-108, 4-109, 4-114, 4-116, 4-117, 4-120, 4-223, 4-227, 5-6, 5-8, 5-9
- Mercury, 4-153, 4-159, 4-161, 4-165
- Meteorological Conditions, 1-7, 3-22, 4-10, 4-19, 4-20, 4-25, 4-27, 4-112
- Mitigating Measures, vii, ix, x, xi, xiii, 1-8, 1-10, 1-11, 2-3, 2-5, 2-6, 2-9, 4-5, 4-6, 4-8, 4-57, 4-65, 4-76, 4-115, 4-135, 4-209, 4-223, 4-230, 5-4, 5-10, 5-11
- NEPA, vii, viii, ix, 1-3, 1-4, 1-5, 1-7, 1-8, 1-9, 1-10, 1-11, 2-3, 2-4, 2-5, 2-7, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-14, 4-22, 4-29, 4-53, 4-62, 4-97, 4-108, 4-109, 4-121, 4-124, 4-125, 4-130, 4-144, 4-145, 4-157, 4-170, 4-180, 4-185, 4-193, 4-194, 4-197, 4-201, 4-206, 4-207, 4-208, 4-219, 4-221, 5-3, 5-4, 5-5, 5-10
- Noise, xiv, 3-6, 3-12, 4-100, 4-101, 4-102, 4-104, 4-105, 4-108, 4-110, 4-111, 4-113, 4-114, 4-120, 4-131, 4-132, 4-133, 4-135, 4-139, 4-144, 4-158, 4-160, 4-165, 4-167, 4-171, 4-172, 4-173, 4-194, 4-213, 4-220, 4-221, 4-227
- Nonchemosynthetic Deepwater Benthic Communities, xii, 2-9, 4-83, 4-84, 4-88, 4-150, 4-152, 4-154, 4-155, 4-223
- Offshore Spills, xiv, 3-12, 3-18, 3-19, 3-20, 3-23, 4-31, 4-33, 4-40, 4-48, 4-49, 4-50, 4-51, 4-138, 4-147, 4-149, 4-154, 4-160, 4-162
- Oil Spills, viii, x, xi, xii, xiii, xiv, 1-6, 1-11, 2-8, 2-9, 3-12, 3-15, 3-16, 3-17, 3-18, 3-19, 3-20, 3-21, 3-22, 3-23, 3-24, 3-25, 3-41, 3-42, 4-3, 4-4, 4-5, 4-6, 4-7, 4-9, 4-13, 4-14, 4-15, 4-16, 4-17, 4-19, 4-20, 4-21, 4-22, 4-27, 4-28, 4-29, 4-30, 4-31, 4-32, 4-33, 4-34, 4-37, 4-38, 4-39, 4-40, 4-41, 4-43, 4-44, 4-46, 4-47, 4-48, 4-49, 4-50, 4-51, 4-52, 4-53, 4-55, 4-56, 4-57, 4-58, 4-59, 4-60, 4-61, 4-62, 4-64, 4-65, 4-66, 4-67, 4-68, 4-69, 4-70, 4-71, 4-74, 4-77, 4-79, 4-80, 4-81, 4-82, 4-84, 4-86, 4-87, 4-88, 4-89, 4-91, 4-92, 4-93, 4-94, 4-95, 4-96, 4-97, 4-99, 4-100, 4-101, 4-103, 4-104, 4-106, 4-107, 4-108, 4-109, 4-110, 4-112, 4-119, 4-120, 4-121, 4-122, 4-123, 4-124, 4-125, 4-126, 4-127, 4-128, 4-129, 4-130, 4-131, 4-132, 4-134, 4-135, 4-138, 4-143, 4-144, 4-145, 4-147, 4-148, 4-149, 4-151, 4-154, 4-155, 4-157, 4-158, 4-159, 4-160, 4-162, 4-163, 4-164, 4-166, 4-167, 4-168, 4-170, 4-171, 4-172, 4-174, 4-175, 4-176, 4-178, 4-179, 4-181, 4-182, 4-184, 4-185, 4-186, 4-187, 4-188, 4-189, 4-192, 4-192, 4-196,

4-197, 4-200, 4-202, 4-203, 4-204, 4-206, 4-207, 4-208, 4-210, 4-211, 4-212, 4-217, 4-218, 4-219, 4-220, 4-221, 4-222, 4-223, 4-226, 4-227, 4-228, 4-229, 4-230, 5-4, 5-9, 5-10

OSRA, ix, 3-17, 3-18, 3-20, 4-138

- Physical Oceanography, 3-42, 4-180, 4-186
- Pinnacle Trend, x, xii, 2-5, 2-7, 2-9, 2-10, 4-54, 4-55, 4-56, 4-57, 4-58, 4-59, 4-61, 4-62, 4-151, 4-152, 4-154, 4-223
- Pipelines, x, xi, xiii, 2-6, 2-11, 3-9, 3-10, 3-11, 3-12, 3-13, 3-14, 3-16, 3-18, 3-19, 3-21, 3-25, 3-26, 3-28, 3-29, 3-32, 3-38, 4-14, 4-15, 4-17, 4-23, 4-31, 4-33, 4-34, 4-38, 4-39, 4-40, 4-41, 4-42, 4-43, 4-45, 4-48, 4-49, 4-50, 4-54, 4-63, 4-85, 4-90, 4-111, 4-123, 4-126, 4-136, 4-146, 4-150, 4-152, 4-166, 4-177, 4-178, 4-181, 4-183, 4-184, 4-188, 4-189, 4-190, 4-220, 4-228

Port Fourchon, xv, 3-23, 4-172, 4-190, 4-191, 4-197, 4-198, 4-209

Produced Waters, 3-10, 4-43, 4-55, 4-62, 4-71, 4-73, 4-77, 4-80, 4-84, 4-90, 4-92, 4-93, 4-99, 4-103, 4-131, 4-134, 4-150, 4-154, 4-161, 4-165, 4-167, 4-227

Public Services, x

Recreational Fishing, xi, xiv, 2-7, 2-9, 4-8, 4-44, 4-58, 4-65, 4-95, 4-105, 4-116, 4-152, 4-160, 4-165, 4-166, 4-167, 4-168, 4-169, 4-170, 4-172, 4-173, 4-223, 4-228, 4-230

Recreational Resources, xi, xiv, 2-7, 2-9, 4-8, 4-170, 4-171, 4-172, 4-173, 4-174, 4-175, 4-223

Resource Estimates, 3-3, 3-4

- Sargassum, x, xii, 2-7, 2-9, 4-71, 4-72, 4-73, 4-74, 4-75, 4-76, 4-111, 4-112, 4-150, 4-152, 4-155, 4-223, 4-227
- Sea Turtles, x, xiii, 1-11, 2-6, 2-7, 2-9, 4-6, 4-74, 4-75, 4-102, 4-109, 4-110, 4-111, 4-112, 4-113, 4-114, 4-115, 4-116, 4-117, 4-118, 4-119, 4-120, 4-121, 4-220, 4-223
- Seagrass Communities, x, xii, 2-7, 2-9, 4-39, 4-48, 4-49, 4-50, 4-52, 4-53, 4-111, 4-150, 4-152, 4-155, 4-223
- Service Base, 3-14, 4-48, 4-123, 4-153, 4-189, 4-190, 4-191, 4-198

Site Clearance, xiv, 1-11, 2-6, 4-180

Soft Bottoms, x, xii, 2-7, 2-9, 3-32, 4-6, 4-78, 4-81, 4-86, 4-89, 4-90, 4-91, 4-92, 4-93, 4-94, 4-95, 4-96, 4-97, 4-98, 4-99, 4-150, 4-152, 4-154, 4-155, 4-223

Spill Response, 3-20, 3-23

Spills, viii, xii, xiii, xiv, xv, 1-7, 1-11, 2-13, 3-12, 3-13, 3-15, 3-16, 3-17, 3-18, 3-19, 3-20, 3-22, 3-24, 3-25, 3-26, 3-42, 4-4, 4-7, 4-13, 4-14, 4-15, 4-17, 4-19, 4-23, 4-24, 4-25, 4-28, 4-31, 4-33, 4-34, 4-35, 4-37, 4-38, 4-39, 4-40, 4-41, 4-43, 4-44, 4-47, 4-48, 4-49, 4-50, 4-51, 4-53, 4-55, 4-57, 4-62, 4-64, 4-66, 4-71, 4-72, 4-74, 4-75, 4-77, 4-78, 4-80, 4-84, 4-87, 4-88, 4-99, 4-101, 4-104, 4-106, 4-109, 4-110, 4-111, 4-112, 4-119, 4-121, 4-122, 4-123, 4-124, 4-125, 4-126, 4-127, 4-128, 4-131, 4-132, 4-133, 4-134, 4-138, 4-139, 4-145, 4-147, 4-148, 4-151, 4-153, 4-154, 4-155, 4-160, 4-162, 4-165, 4-166, 4-167, 4-168, 4-170, 4-171, 4-172, 4-176, 4-178, 4-182, 4-184, 4-186, 4-188, 4-189, 4-192, 4-129, 4-200, 4-202, 4-203, 4-206, 4-207, 4-208, 4-210, 4-212, 4-217, 4-218, 4-221, 4-223, 4-224, 4-227, 4-228

Submerged Vegetation, 4-49, 4-50, 4-51, 4-52, 4-53

Synthetic-Based Drilling Fluids, 3-26

Topographic Features, ix, x, xii, 2-4, 2-5, 2-6, 2-7, 2-9, 2-10, 2-12, 3-10, 4-6, 4-60, 4-63, 4-64, 4-65, 4-66, 4-67, 4-68, 4-69, 4-70, 4-71, 4-96, 4-150, 4-151, 4-152, 4-153, 4-154, 4-155, 4-156, 4-222, 4-223, 4-224

- Tourism, x, 4-32, 4-36, 4-45, 4-48, 4-125, 4-168, 4-170, 4-171, 4-172, 4-173, 4-174, 4-204, 4-213, 4-214, 4-228, 4-230, 5-6
- Trash, x, xiii, 3-15, 4-15, 4-104, 4-106, 4-108, 4-111, 4-120, 4-122, 4-123, 4-126, 4-127, 4-128, 4-131, 4-132, 4-133, 4-137, 4-139, 4-142, 4-171, 4-174, 4-210, 4-220, 4-227

Waste Disposal, 3-14, 4-40, 4-43, 4-139, 4-188, 4-189, 4-191, 4-197, 4-198, 4-210

- Wastes, xi, 2-7, 3-10, 3-11, 3-15, 3-29, 4-18, 4-23, 4-24, 4-25, 4-30, 4-39, 4-80, 4-116, 4-153, 4-159, 4-197
- Water Quality, x, xi, xii, 2-7, 2-8, 4-6, 4-17, 4-18, 4-19, 4-20, 4-21, 4-22, 4-23, 4-24, 4-25, 4-26, 4-27, 4-29, 4-30, 4-59, 4-67, 4-68, 4-73, 4-76, 4-100, 4-110, 4-111, 4-114, 4-132, 4-133, 4-134, 4-139, 4-146, 4-147, 4-148, 4-150, 4-152, 4-153, 4-154, 4-155, 4-156, 4-161, 4-173, 4-223, 4-227, 4-231, 5-5
- Wetlands, x, xi, 1-6, 2-6, 2-7, 2-8, 2-9, 3-36, 3-37, 3-38, 3-40, 4-5, 4-6, 4-32, 4-34, 4-36, 4-38, 4-39, 4-40, 4-42, 4-43, 4-44, 4-45, 4-46, 4-47, 4-48, 4-52, 4-123, 4-124, 4-125, 4-135, 4-136, 4-138, 4-139, 4-140, 4-142, 4-143, 4-150, 4-152, 4-155, 4-162, 4-163, 4-170, 4-172, 4-190, 4-191, 4-194, 4-195, 4-196, 4-198, 4-207, 4-211, 4-213, 4-215, 4-216, 4-220, 4-223, 4-226, 4-228, 4-231

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island communities.

The Bureau of Ocean Energy Management Mission

The Bureau of Ocean Energy Management (BOEM) promotes energy independence, environmental protection, and economic development through responsible, science-based management of offshore conventional and renewable energy.