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1. Introduction
1.1 Background

Offshore oil and gas in southern Californiecessitata significantquantityof petroleum

production Oil spills and the resulting effects on human and marine environe@mtisue to be

a major environmental concern with offshore oil and gas activitieslargpest oil spill in the

Pacific OuterContinental Shelf (OCSkgion occurred in 1968ff the coast of Santa Barbara
when a loss of well control occurred on Platform A, wtephiled an estimated 80,000 barrels
(bbls) into the Channel. Treecondargest oil spill in the Pacific OCS was thé4lbbl Platform
Irene pipeline spilin September 1997. With the development of oil andrgssurcs, oil spill

risk analysigss essentialor oil spill planning. The BOEM Pacifi©CSRegion currently uses

two oil spill models to conduct oil spill risk atysisoversouthern California: the BOEM Oil

Spill RiskAnalysis (OSRA) and the General National Oceanic and Atmospheric Administration
(NOAA) OperationaModeling Environment (GNOME)The hindcastnput to the modaelneeds

to be updated and expanded toydde more accurateformation to conduct offshore oil and gas
risk analyses over a wider geographic afdee Integrated Ocean Observing Systél9©OS),

along theWest Coasbf the U.S, maintain reatime observational data of wind, waves, and
currentsoffshore coastal CalifornidReanalysi®r hindcast of these observational data enables
analysts and decision makerauttderstand the seasonal and annual variatioviraf, waves,

and currents. Broadening theographic range of available data and aaggiicompiling, and
converting reatime datathrough numerical modelinigto a formato run oil spill models will
improveBOEM PacificOCSRegi ondés abil ity to conduct oil
California.

The extended Southern California BigBSCB) is influenced by the largealeCalifornia
Currentoffshore tropical remote forcing through the coastal wave guide alongshore, and local
atmospheric forcing. The region is characterized by local complexity in the topography and
coastline. All thee factorengendewariability in the circulation on interannual, seasoaal
intraseasonal time scaleAt the sea surfacthe broadandslow equatorward California Current
carries freslandcold northern Pacific water toward the Southern CaliforngghB(SCB),

turning eastward into the Bight near its southern end. The California Current is accompanied by
a poleward Southern California Countercurrent (SCC) near the coast with warmer and saltier
water advected from the tropiidickey et al.,1979. Beneath the surface (at depths of 1800

m), the coastal flow is dominated by a poleward California Undercurrent{iét al., 1998.

Each of the above three components exhitstewnseasonaly. In the SCC, poleward flow is
found along the coast dng all seasons except spring, when the wind near the coast increases
and the winedriven surface current flows equatorward. Both observation 8atab(and James,
2000 and model resultd)i Lorenzo, 2003; Marchesiello et al., 2003; Daial.,2009

hereafter D09 confirm this phenomenon.

D09 published a 1998003 highresolution oceanic current hindcast product covering the whole
SCB, in which sea surface wind variation was glssentedLater the product was further
extended to 200Totaling12 yeas of highresolution hindcast product. The decédaleg product



is generated using the Regional Ocean Madebystem (ROMS) with a km horizontal
resolution and 40 vertical levels.

The modelwvas forced by MM5Pennsylvania State University/National Cerite Atmospheric
ResearcfiNCAR] 5" Generation Mesoscale Mogl@heteorological fluxes at the sea surface and
Simple Oceanic Data Assimilation (SODA) fle@ong the open lateral boundaries. The model
product has been intensively validated against atbhical observation datacluding surface
drifter data,acoustic Doppler current profileADCP) velocity vertical profiles, buoy datthe
California Cooperative Oceanic Fisheries Investigat{@asCOHR) ship dataHigh-frequency

(HF) radar surface crents, and satellite remote sensing da¢a surface heig6SH and sea
surface temperature (S§TPonget al.,2009; Ohlmann and Mitarai, 2010; Doapal.,2017).

The validdion is conducted at differetitne scales: interannual, seasoraldintraseasonal

scales. The MM5 wind product was also validated ag&nstk Scatterometer (QuikSCAT)
wind, nearshore weather statiopgnd buoy winds. The product has been extensively applied to
studies such as coastal upwelling, oceanic mesoscale and sutatesdst dynamics, larval
dispersion, drifter Lagrangian trajectory variation

The purpose of this study is to extend and update the modeling effort in the SCB to a wider
geographic region with inclusion of the model developments and modern obsendsdiandlhe
modelis further extended to north of Point Conception including Morro Bay. As noted above,
the existing higkresolution product was generated for the period of 18967 bythe Principal
Investigator PI) and his colleagues at University of Gathia, Los AngelesThe groupwith
whichthe Pl is working keeps improving the accuracy and efficiency of the numerical models.
The meteorological model MMBsedhas been upgraded to the Weather Research and
Forecasting (WRFNnodelsince 2000More obserational data hasecome available since then.
Therefore, with the advance in numerical technology and more observational data, more accurate
numericalhindcastproducts from the existing produznbe generated, which will improve the
BOEM PacificOCSRegon's ability to conduct oil spill risk analysis in southern California.

1.2 Study objectives

The overall objective of this study is to imprabe understanding of multisca{enterannual,
seasonaland intraseasonal scalgsariations of physical process (wind, current, and wave) in
an extendedouthern California coast

Specificobjectivesare as follows

(1) Extend the existing X%ear (19962007) hindcast product in tIf®CBto a broader
geographic region including Morro Baydnorth of Point Conceptin, and tomodern10
years (20072013).

(2) Include new developments in numerical mod&iRF, ROMS, andSimulating WAves
NearshordSWAN).

(3) Delivera10-year highresolution hindcast product for OSRA a@8OME to conduct oil
spill analysisincludinghourly se surface wind ansea surface currents.



(4) Deliver a 10year highresolution hindcast product for 3D partittansport model to conduct
other relevant BOEM supported projects.

(5) Deliver a 10year product to BOEM as archives.

(6) Publish the results of the studg a BOEM OCS Study Report and in pesiiewed
scientific journals.

1.3 Overview of study

Chapter dntroduces the three new hindcast8VRF, ROMS, and SWAN

Chapter 3ummarizes the data management.

Chapter 4oresentghe validation of th&/RF simulatedsurface winds and precipitation against
observations.

Chapter Sshows the validation of tHROMS simulatedtides,SSH water temperature, salinjty
andcurrentsagainsiobservations.

Chapter @yivesthe validation of th&WAN simulatedwave data againsbservations.

Chapter7 providesa summary of the study.



2. Model Hindcasts
2.1 The WRF hindcast

The WRF Model is a nexgeneration mesoscale numerical weather prediction system designed
for both atmospheric research and operational forecasting nefe@ggutes two dynamical cores,

a data assimilation system, and a software architecture facilitating parallel computation and
system extensibility. The model serves a wide range of meteorological applications across scales
from tens of meters to thousandskometers. The effort to develop WRF begartate 1990s

and was a collaborative partnership principally among NOWRAA (represented by the

National Centers for Environmental Predicti?dCEH and the (then) Forecast Systems
Laboratory[FSL]), theU.S. Air Force Weather Agency (AFWA), the Naval Research

Laboratory, the University of Oklahoma, and the Federal Aviation Administration (FAA).

WRF can generate atmospheric simulations using real data (observations, aoalgssdized
conditions WRF iscurrently in operational use at NCEP, AFWA, and other ceniées WRF

system contains two dynamical solvers, referred to as the ARW (Advanced Research WRF) core
and the NMM (Nonhydrostatic Mesoscale Model) core.

Figurel shows the flowchart for the WRF Modeling System VersioAs3shown in the diagram,
the WRF Modeling System consistsfolir major programsthe WRF Preprocessing System
(WPS) WRFDA, ARW solver andpostprocessingnd vsualization tools

The WPS program is used primarily for reddta simulations. Its functions include 1) defining
simulation domains; 2) interpolating terrestrial data (such as terrainysen@nd sotlypes) to

the simulation domain; and 3) degribbing and interpolating mategical daterom another

model tothe simulation domainThe WRFDA program is optional, but can be used to ingest
observations into the interpolated analyses created by WPS. It can also be used to update WRF
model's initial conditions when the WRF modetun in cycling modeThe ARW solveris the

key component of the modeling system, which is composed of several initialization programs for
idealized, and realata simulations, and the numerical integration program.
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Figure 1. A flowchart describing the different components of the WRF Modeling System Version 3.

The WRF modelversion3.5 (Skamaroclet al, 200§ is implemented in a configuration with
two nested grids. The largest domain is the North American West Coast witla@ntedr
resolution of 18 km; the inner domain covers the U.S. West Coast area with a horizontal
resolution of 6 kmKigure2). The coarser grid reproduces the lasgale synoptic features that
force the local dymaics in the second grid. The coarser grid simulation was first run
independently. It was initialized with tli&limate Forecast System Reanaly§i&$R reanalysis
for 30 December 1994 and integrated for 20 years with-tiependent boundary conditions
interpolated from the samel®urly reanalysis40 vertical levels are usg@®.0016 0.0044
0.0065 0.0085 0.0109 0.0142 0.0183 0.0224 0.0265 0.0306 0.0347 0.0389 0.0431 0.0473
0.0527 0.0595 0.0663 0.074(0 0.0852 0.1010 0.1234 0.1511 0.1948 0.2508 0.3052 0.363Q
0.42440.4898 0.5601,0.6361 0.7191 0.8101 0.9110 1.0244 1.1548 1.3117 1.4905 1.6888
1.9238 units:10* m). SST forcing is derived from th@perational Sea Surface Temperature and
Sea Ice AnalysiSGSTIA) 1-Day product Donlon et al.2009. The nested domain was
initialized from the CFSR reanalysis on 30 December 1994 and integratedwagmesting
mode for 20 years.

A full set of parameterization schemes is included in WRF. The model configuration is setup
with thefollowing parameterizations that have proved in previous experiments to be the most
accurate for U.S. WeSloast: the WRF Singi®oment 6class schemmicrophysicfHongand

Lim, 20@); the KainFritch cumulusparameterizatiofKain and Fritsch1990); therapid

radiative transfer model (RRTM) for longwave radiation, based on the wdvkawer et al.

(1997); the Dudhischem&Dudhia, 1989) for shortwave radiation; the Noah land surface model



(Skamaroclet al, 2008); and the planetary boundary layer (PBtheme used is tiMellor-
YamadaNakanishiNiino version 2.5MYNN2.5) (Nakanishi and Niino, 2@). An atmospheric
surface layer parameterization, adapted from theaedCommon Ocean Reference
Experiment CORE bulk formulation (Large, 2006has beeimmplemented byur WRFteamto
predict airsea fluxes over water.

Latitude

162, : :D -#:E%
144°wy 126°W

Longitude

Figure 2. WRF model domain.

The black and red boxes represent the 18 km and 6 km resolution domains, respectively.



2.2 The ROMS hindcast

2.2.1 ROMS

The oceait simulationsareperformed with th&ROMS (Shchepetkin and McWilliams, 2005).
TheROMSversion used in this study is ROMS_AGRROMS-Adaptive Grid Refinement In
Fortran) which is maintained binstitut de Recherche pour le Dé&eloppemeRD; Research
Institute for Developmenand Institut Nationatle Recherche en informatique et en Automatique
(INRIA; French National Institute for Computer Science and Applied MathemaREEVIS is a
new generation ocean circulation model that has been specially deBgaecurate simulations
of regional oceanic systems. The model solves the primitive equations in aitcé&#dred

rotating environment, based on the Boussinesq approximation and hydrostatic vertical
momentum balance. It is discretized in coastlar&terrainfollowing curvilinear coordinates
using highorder numerical methods. ROMS is a sphplicit, freesurface oceanic model, in
which short time steps are used to advance the surface elevation and barotropic momentum
eqguations, with a larger timéep used for temperature, salinity, and baroclinic momentum. A
third-order, upstrearbiased advection operator allows the generation of steep gradients in the
solution, enhancing the effective resolution of the solution for a given grid size when tlog expli
viscosity is small.

In this study, th(ROMS modelhas twodomans ( ! [ A ). The outer domain
(domainl)e xt ends from 142.1A W to 114.4A W and frc
resolution of 4 k mTlemderdormandomh@n2)cavershecentrdlantl e v el s
southern part of Californid={gure with a horizontal spatial resolution ofkim. The modehas

42 vertical levels. The vertical®ordinate parameter settinge

6, = 6,8, = 0.5,and h, = 250 m. These valuegive a higher resolution in the upper layer of

the ocea. Vertical mixing is parameterized using teProfile ParameterizatiorKPP)

boundary layer formulatio(Large et al. 1994 andthe dominant lateral mixing is due to the
upstrearrbiasedadvection operator.
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Figure 3. Two nested ROMS model grids.

The blue and red boxes represent the 4 km and 1 km resolution domains, respectively . An

enlarged inner model domain with 1 km  horizontal grid resolution can be seen in

Figure .
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Figure 4. ROMS model domain and bathymetry.

The color shadings show the bathymetry (units: m). Pink lines are the CalCOFI cruise lines  with
dots showing stations and line numbers marked on the western ends.  White squares denote the
National Buo y Data Center (NDBC) buoy stations. Red squares represent six tidal gauges,
including the station ID

2.2.2 Surface boundary conditions

This model configuration was faed by 10 years (2002013)of WRF products with 6 km
horizontal resolution. WRF prades ROMS with the following atmospheric fields everyolith

2 m air temperature, specific humidity, surface wind vector, net shortwave and downwelling
longwave fluxes, and precipitatipdepictedn Figure A bulk Formulation (CORELarge et al.,

2006 has been implemented and is used to compute the turbulent heat and momentum fluxes.

2.2.3 Lateral boundary conditions

Mixed boundary conditions are used along the open boundaries. The Orlanski radiation condition
(Orlanski, 1976) is applied in the tangential direction, ahe tlather conditio(Flather,1976

with adaptiverestoration of material properties is imposed under inflow conditions. The

restoring dataf domain 1for the lateral opeiboundary conditions arfrom the daily HYCOM

(HYbrid Coordinate Ocean Model) global oceanic reanalysis product with a horizontal resolution
of 1/12 degrees and 40 vertical levels. It includes temperature, salinity, currer§§tdriche

solid boundary arountheislands and th mainland has Anormal and neslip conditions

implemented through a landmask algoritirhe lateral boundary conditions of domain 2 (this



study) lateral arsupplies from domain 1.

Table 1. Comparison between D09 and this study

Type

D09

This study

Version

ROMS_AGRIF

ROMS_AGRIF v3.1.1

Surface boundary
conditions

MM5

WRF

Lateral boundary
conditions

Nested grids:

Domainl: SODA

Domain2: one-way nested with
Domainl

Domain3: one-way nested with
Domain2

Nested grids:
Domainl: HYCOM
Domain2: one-way nested with

Domainl

Vertical Mixing
parameterization

KPP scheme

KPP scheme

Grid Settings

Nested grids:

Domainl: 20 km
Domain2: 6.7 km
Domain3: 1.0 km

Nested grids:
Domainl: 4 km
Domain2: 1 km

Vertical s-coordinate

8, =5.0.8, = O by, = 10 m

8, =6.0,8, = 0.5,h, =250 m

parameters

Bathymetry ETOPO2 ETOPO1
Data assimilation - EnOl
Tidal model - TPXO07
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2.3 The SWAN hindcast

The SWAN model is a thiregeneration wave model based on the action density balance equation.
The SWAN model solves the evolution of the action density equation

Koy Bion)+ Eon)+ L gn)+ Egn = 129000 )
Vs MX 24 MS Mg S
where C, and C, are xandy components of the group velocity corrected for propagation on a

current witha givenvelocityand S(s,g; X, y,t) is thesourceterm which representdfects of
generation, dissipatig@and nonrlinear wavéwave interactions. It is usually given by

S(5,9) = Sp(5,9) + Syp(S,9) + S14(5,9) + S, (5 ,9)

2
+5,(5.0)+ S0(5.9) @
These terms denote, respectively, deepwatersource terms for generation due to wind input,
dissipations de to whitecapping, nelinear quadruplet wave/ave interactions, and the shallow
water source terms for dissipations due to dapdiacedwave breaking, bottom friction, and
triad wavewave interactions. Details of these processes can be found in the B\aUNl

This studyuses SWAN version 41.01 with the recommended default setting: for whitecapping
the expression byanssen et al. (1989991) isapplied Quadruplet interactions are used. The
Joint North Sea Wave Projedd@NSWARB bottom friction formuétion is used wittCson= 0.038
m?s3according to Zijlema et al. (2012). Degtimited wavebreakingis modelled according to

the boremodel of Battjes and Janssen (1978hgsilfa = 1 and gamma = 0.73.

The spatial resolution for the wave model is 0.(230) for the computational gridor both

longitude and latitude. The wave spectrum is discretized in 24 directions with a constant spacing
of 15°and 24 geometrically spaced frequency bands over the frequency intervaliQLG44.8

The simulation domaifor the computational gricg bounded byongitude 118i 126°W and

latitude 287 38°N with a fine grid resolution of 0.02°for bothdirections Detailsabout

geographical limits and parameters of the grid settings can be foliale®. Figureshows the

model domairand the buoy stations
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Figure 5. SWAN model domain and bathymetry (units: m).
Red dots represent 14 buoy stations .

Table 2. Grid settings of SWAN model

Parameter Computational grid
Latitudes 38°1 48N
Longitudes 115°1 126W
Spatial resolution 0.02%0.02°
Number of points in X-direction 550
Number of points in Y-direction 500
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The bathymetry datasedin wind-wave modeling were obtained from the ETOPO1 dataset of

the National Geophysical Data Center by NOAA. ETOPOL isua-ininute global relief model

of Earthoés surface that integrates | and topog
numerous global ahregional datsets. The spatial resolution of the bathymetry data is

0.0167%0.0167°

As illustrated inFigure the wind fields generated blye WRF model are used for calculating

wave fieldin the SWANmModel Asthe SCB belongs to open sea, the European Centre for
Medium-Range Weather Foreca$lSCMWF) datais used as the wave boundary condition. The
ECMWE data is a comprehensive numerical modeling system with the data assimilation of
observational data. It proved a variety of productsicluding the ERAInterim datasets, which

are used ithe SWANmodel. It is produced with different versions of the Integrated Forecasting
System (IFS)including atmospheric model and data assimilation system developi by
ECMWEF (Aarnes et al., 2095The ERAInterim is based on a 2006 release of the IFS (Cy31r2).
The detailed description of IFS can be found in the homepate BEMWEF.

The SWAN model was applied in natationary modéecauséhe area of interest is too larte

allow stationary computatiorasthe time scale of wave propagation through the area of interest
is larger than the time scale of changes in wind forcing. We have applied the SWAN model with
a time step of 5 minutes adAdterations per time step wefeund to be sufficient.

2.4 Data assimilation

A stateof-the-art data assimilatiors applied to assimilate the observational data into the oceanic
current product by the ROMS. The ROMS has developed several data assimilation methods,
such as 3Bvar, 4D-Var, Ensemble Kalman Filter (EnRFEnsemble Optimum Interpolation
(EnOl),andNudging.Since heprojectaims toproduce 16year highresolution hindcast prodyct
both computation efficiency for the simulation and product accuracy need to be congtdered.
this purposethe EnOlis chosen for this proje€Figure). The analysis step of EnOl is similar to
that of a traditional EnKF but much less expens@@kg et al, 2005, CounillorandBerting,

2009. It has been wlely used in the Australian Bluelink syste@ke et al2010 and also in
engineering projects by the.P has beempprovedasan efficient and reliable data assimilation
approach. The observational data assimilated into the ROMS include satellite semsing

data ESH andSST) andin situdata (CalCOFI shiporre datg (Table3). Model Validation and
Analysis Model resultébuoy,sea surface salinitysGg, tidal gauges, HF radagtc) havebeen
assessed anst theobservational datdD09 has conducted an extensive evaluation and analysis
of the 19962007 SCB product as noted above based on multiple scales of the variation.
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Table 3. Datasets for assimilation

Type Variables Description Source Time Location
SSH Sea level TOPEX/Poseidon, | 15| NasA | 200412013 | SCB
anomaly Jason -1/2
SST Seasurface | )\ pp NOAA 20041 2013 | SCB
Temperature
Cruise Temperature | Cruise CalCOFI 200412013 | SCB
and salinity observations
Large domain
WRF
| . Beundar boundary |
Initial conditio Initial condition
10constituents Forcing Forcing
M2,22,N2,K2,K1,
O1,P1,Q1,Mf,Mm Wind, heat flux air Wind
temperature precipitaion
Large domain boundary boundary boundary boundary - \Wavewatch
eV lleite ROMS mhipechieSEN e SVVAN bl N
'lg SSH#&STand insitu data
4

Figure 6. Schematic diagram of the model configurations.
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3. Data Management

Data management involves two types of data:

(1) Observational data

The project colledtall the observational dataithin the model domairincluding NDBC buoy
datg tidal gauge data, sateliremote sensing data (SST, $8khd, etc), CalCOFI cruisalata
The collectedbbservational dataavebeensaved in standard MATLABformat and saved at the

Department of Atmospheric and Ocea8iiencesUCLA.

(2) Numericaloutput
The numerical output from WRF, ROM&d SWANhasbeensavedn a standardNetwork

Common Data FormNetCDF format at the Department of Atmospheric and Oceanic Sciences,

UCLA. Numerical outpusunmarized inTable4 has beermopied to individual disks and
delivered to agencieBlo sensitive or personal informatigkept in the project data files.

Table 4. List of model output variables

Model Variables Time span Dimension el Horlzoptal Veirtdeel
frequency resolution levels
WRF Hpnzontal . 200412013 x,y) hourly 6 km Sea surface
wind velocity
Horizontal
current 200412013 X, Y, 2) hourly 1km 42
velocity
Vertical
current 200412013 X, Y, 2) hourly 1km 42
velocity
temperature 20047 2013 x,v, 2) hourly 1km 42
salinity 20047 2013 x,v, 2) hourly 1km 42
ROMS
ﬁe.a surface 200412013 x,y) hourly 1 km Sea surface
eight
V_ert|ce_1I 200412013 X, Y, 2) hourly 1km 42
VISCOSIty
Vertical Vertical-
averaged 20041 2013 X, y) hourly 1km
averaged
currents
Surface
mixed layer 2004¢2013 x,y) hourly 1 km Sea surface
thickness
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Model

Variables

Time span

Dimension

Temporal
frequency

Horizontal
resolution

Vertical
levels

SWAN

Significant
wave height,
Swell wave
height, Mean
wave
direction,
Peak wave
direction,
Direction of
energy
transport,
Peak period,
Average
absolute
wave period,
Mean
absolute
wave period,
Mean
absolute
zero-crossing
period, Wind
velocity

200412013

*,y)

hourly

1km

Sea surface
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4. Validation of the WRF Simulation
4.1 Observational data

The hourly wind data from thedDBC and the Cros€alibrated MultiPlatform (CCMP Atlas et

al. 1996 10-m windsover the California shefbr the period of 20042013 are used to validate
theU.S. West Coaswind from the WRF simulation. The buoys used in this study are
summarized ifmable5. Note that the anemometer height correction has not been applied on the
data used.

Table 5. Buoy stations for WRF model output validation

No. Latitude (° N) Longitude (° W)
46011 34.96 121.01
46012 37.36 122.88
46013 38.24 123.30
46014 39.23 123.97
46022 40.74 124.57
46026 37.75 122.84
46027 41.85 124.38
46028 35.71 121.86

The CCMP gridded surfaaeector windsare produced using satellite, moored buoy, and model
wind data, and as such, are ddesed to be a Leve3 ocean vector wind analysis product. A
new version of CCMP vector wind analy§ieds, Version2 (V2.0) CCMP L3is now available
from Remote Sensing Systei®&SS)as dailyNetCDF4files containingsix-hourly wind field
maps. The VZCMP processing combines Versi@rRSS radiometer wind speeds, QuikSCAT
andAdvanced ScatterometéhSCAT) wind vectors, moored buoy wind data, and ER#erim
model wind fields using a Variational Analysis Method (VAM) to produce four rdajbg of

0.25% 0.25°gridded vector winds.

This study also uses the pentad Global Precipitation Climatology Project (GPCP) precipitation
data(Adler et al., 200Bon a 2.5%.5°grid from 1979 to 2010 to obtain the observed
climatological mean precipitation.
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4.2. Validation of 10-m winds

4.2.1 Comparison between the CCMP observations and WRF simulation

Figuredisplaysthe seasonal mean CCMP winds averaged from 2004 to 36a8ordefinition
throughoutthe document is: winteDecember, Januargnd February spring March, April,
and May, summer June, Julyand Augusk, andfall (September, Octobeaind Novembgr In
winter (Figurea), strong southwesterlies occur in the northerngfdtte region, and
northwesterliegappear along the .8. soutlwestcoast In the subtropical region, easterly wind
prevails. In springKigureb), westerlies are located in the northern region with smaller
magnituek compared tavinter. Meanwhile, northwesterlies off the California coast intensify
significantly. In summerHKigurec), northerlies dominate along theS. West Coastith the
maximum off the California coast. Wingdattern infall (Figured) resembles thatf winter season
but with smaller wind speed.

Figure 7. Seasonal mean CCMP 10-m winds (vectors; units: m s-1) and wind speed (color
shadings; units: m s-1) in (a) winter, (b) spring, (c) summer, and (d) fall.
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