Technical Report Number 20

Beaufort Sea
Petroleum Development Scenarios
Transportation Impacts

The United States Depart nent of the Interi or was desi gnated by the Outer Continental Shel f (OCS) Lands Act of 1953 to carry out the maj ority of the Act's provi si ons for admini stering the mineral leasing and devel opnent of off-shore areas of the United States under federal jurisdiction. W^{W} thin the Departnent, the Bureau of Land Managenent (BLM) has the responsibility to neet requi rements of the National Envi ronnental Policy Act of 1969 (NEPA) as well as ot her legislation and regul ations deal ing with the effects of off-shore devel opment. In Al aska, uni que cultural differences and climatic conditions create a need for devel oping additional soci oeconomic and envi ronmental infornation to improve OCS deci si on making at all governmental levels. In fulfillment of its federal responsibilities and with an avareness of these additional inf or mati on needs, the BLM has initiated several investigative prograns, one of which is the Al aska OCS Soci oeconomic Studi es Program

The Al aska OCS Soci oeconomic Studi es Programis a multi-year research effort which attempts to predict and eval uate the effects of \mathbf{A} aska OCS Petrol eum Devel opment upon the physi cal, soci al, and economic envi ronnents within the state. The anal ysis addresses the differing effects anong various geographic units: the State of A aska as a whol e, the several regi ons within which oil and gas devel opment is likely to take place, and within these regi ons, the various commities.

The overal l research method is multidisciplinary in nature and is based on the preparation of three research components. In the first research component, the internal nature, structure, and essential processes of these various geographic units and interactions anong them are documented. In the second research component, alter native sets of assumptions regarding the I ocation, nat ure, and timing of future OCS pet rol eum devel opment events and rel ated activities are prepared. In the third research com ponent, future oil and gas devel opment events are transl ated into quantities and forces acting on the various geographic units. The predicted consequences of these events are eval uated in rel ation to present goal s, val ues, and expectations.

In general, program products are sequentially arranged in accordance with BLM's proposed OCS Iease sale schedule, so that infornation is timely to deci si on making. In addition to naking reports available through the National Techni cal Inf ormation Service, the BLMis providing an information service through the Al aska OCS Office. Inquiries for infornation should be di rected to: Program Coordi nat or (COAR), Socioeconomic Studi es Program Al aska OCS Office, P. O. Box 1159, Anchorage, A aska 99510.

ALASKA OCS SOCI OECONOM C STUDI ES PROGRAM BEAUFORT SEA PETROLEUM DEVELOPMENT SCENAR OS: TRANSPORTATI ON I MPACTS

FI NAL REPORT

Prepared for
 BUREAU OF LAND MANAGEMENT
 ALASKA OUTER CONTI NENTAL SHELF OFFI CE

Prepared by DENN S DOOLEY AND ASSOCI ATES

for
PEAT, MARWCK, M TCFELL, AND COMPANY

August 1978

NOTI CE

Thi s docunent is di ssemi nated under the sponsorship of the U. S. Department of the Interior, Bureau of Land Managenent, in the interest of information exchange. The U. S.
Governnent assumes no liability for its content or use ther eof.

ALASKA OCS SOCI OECONOM C C STUDI ES PROGRAM Proj ected I mpacts of Beaufort Sea OCS Devel opnent Assessment of Statewide and Regional Transportation Systens Final Report

Prepared by
DENN S DOOLEY AND ASSOC ATES for PEAT, MARWCK, M TCFELL \& CO.

REPORT DOCUMENTATI ONPAGE

16. Abstract

The report anal yzes the statewide, regi onal and local transportation impacts of Beauf ort Sea petrol eum expl oration, devel opment, and production. Alternative routings for goods and passengers to the area are devel oped for each mode. Next, facilities on 'these routes and carriers using them are descri bed for current conditions. Next, an estimate is made of impacts rel ated to non-OCS (Outer Continent al Shelf) devel opnent up to the year 2000. Fi nally, i mpacts are indi vidually assessed for the petrol eum devel opment scenari os--Camden-Canning, Prudhoe Bay-Snall, Cape Halkett, and Prudhoe Bay-Large.

All personnel novenents are assuned to use the air node. Road traffic from Anchoraqe and Fai rbanks will provi de camp consumbles and a snall percentage of industrial goods excent for the Cape Halkett scenario, whose di stance from Prudhoe Bay makes road devel opnent too costly. Truck traffic is expected to be limited during spring freeze/thaw conditions, and during this period air freight will be used more extensivel y. Mbre than $\mathbf{9 0 \%}$ of freight is expected to reach the Beauf ort Sea directly by the marine mode despite the short shipping season. The princi pal route will be via the Bering Straits, which is used by ocean- going tuqs and barges; but river traffic on the Mackenzie ' Ri ver is expected to carry sone freight, al so.

Sufficient capacity is expected to exi st on the Trans Al aska Pipeline (TAPS) at the time of expected peak production. It is assumed that oil and gas will use pipeline systens for del ivery to ice-free ports or directly to markets. However, the high tariff on TAPS and interest by Canadi an oil operators in devel oping a year-round all-nater del i very system concei vabl y could lead to the use of an icebreaking tanker fleet.
7. Originator's Key Words

Beauf ort Sea, Outer Continental Shelf Petrol eum Devel opnent, Arctic Transportation
18. Availability Statement

National Techni cal Infornation Service (NTIS)
5285 Port Royal Road
Springfiel d, Virginia 22161

9. U. S. Securify Clasgif. Of the Report Inclassified

${ }^{*} 1$

TABLE OF CONIENTS

Page
LST CF FIGRES IX
LIST OF TABLES X
I. INTROUCTION AND NETHOOOOOT. 1
Purpose 1
Introducti on. 2
Nethodol ogy 5
Capacity 9
Transportation Demand 10
Transportation Systens. 12
I nventory and Capacity Anal ysi s 13
Non-0CS Anal ysi s 15
Scenarios 15
Modal Split and Trip Assi gnment 16
Discussi on of Impacts. 16
Preliminaly Screeni ng 16
Results of Pre" iminary Screeni ng. 27
II . DESCRI PTI ON OF EXI STI NG SYSTEMS 30
H ghuay Mde 30
Routes 30
Term nal s 42
Carriers 42
Rai I Mbde 45
Yukon and White Pass Railroad 45
A aska Rail road 46
Whterborne Mbde 48
Southeast 50
Cook Inlet and Prince Villiam Sound. 54
Al- Whter Route to Prudhoe Bay Via Bering Straits 59
Mackenzie River Corri dor 60
Air Node 63
Routes 63
Facili ties 64
Carriers 66
Aircraft 68
North Slope Local Transportation Systens 69

Page

III. TRANSPORTATI ON I MPACT ASSESSMENT FOR NON-OCS SCENARI O 71
I ntroduction 71
Highway Mbde 72
Rail Mode 76
Vaterborne Mode 76
Air Mbde 80
Non-OCS Summary 83
IV. BEAUFORT SEA OCS TRANSPORTATI ON I MPACTS 85
Introducti on 85
Prudhoe Bay/Alyeska Pi pel ine Experi ences 85
Final Screening 89
Di scussi on of I mpacts 96
Transportation Requi rements for OCS Devel opment Scenari os 103
I ntroducti on 105
Canden- Canni ng 105
Prudhoe-Small 126
Cape Hal kett 137
Prudhoe Large 146
I ssues Anal ysi s 157

LIST OF FI GRES

-)
Fi gure 1
Highway Division and Mai ntenance Stations 3
Fi gure 2
Shi pping Routes Northern Canada 6
Fi gure 3
Fl ow Chart for Beaufort Sea Transportation Impact Anal ysis 7
Fi gure 4
Alternative Transportation Routes from U. S. Cities to Prudhoe Bay/Beaufort Sea 14
Fi gure 5
I nteri or Highway Divi si on - Federal Aid Highway System 1976 32
Fi gure 6
A aska Rail Iroad Routes 47
Fi gure 7
Al aska Railroad Qperating Data 1973-1977 49
Figure 8
Equi val ent Wheel Loads at State Operated Scalehouses 74
Fi gure 9
Di agram for Fi nal Screeni ng of Transportation Routes 90
Fi gure 10
Mbdal Split Order of Magnitude and Seasonal Variations 93

LIST OF TABLES

-

Table 1
Des cription of Road Li nks Studied. 33
Table 2
1976 Traffic Inf ornation for Locations of Permanent Counters 37
Tabl e 3
A aska Transportation Commission Motor Carrier Operating Zones 43
Table 4
Comparison of Al askan Port Areas 51
Table 5
Road MI eage to Prudhoe Bay Via North S" ope Haul Road from Maj or Al askan Ports 52
Table 6
Non- OCS Empl oynent For ecasts 72
Table 7
Al yeska Shi pnents from Seattle by ode 87
Table 8
Anchorage Empl oynent Forecasts by Scenario 99
Table 9
Fai rbanks Enpl oyment Forecasts by Scenario 100
Table 10
North Sl ope I nduced Empl oynent Forecasts by Scenario 101
Tabl e 11
Canden- Canni ng Scenari o 106
Table 12
Canden- Canni ng Air Passenger Seat Requi rements 111
Table 13
Canden- Canning Peak Air Requi renents for Camp Consumables 113
Tabl e 14
Canden- Canni ng Consunable Industrial Commodity Requi rements by Mode 114
Table 15
Canden- Canni ng Peak Air Flights Per Week (Goods Transport) 115
Tabl e 16
Canden- Canning Truck Requi renents for Camp Consumables 117
Table 17
Canden-Canni ng Truck Servi ce Requir renents 118
Table 18
Canden-Canning Summary of Goods Shi pnents 122
Table 19
Prudhoe-Small Maj or Industrial Requi rements 127
Table 20
Prudhoe-Small Air Passenger Seat Requi renents 130
Table 21
Prudhoe-Small Peak Air Requi renents for Camp Consumables 131
Table 22
Prudhoe-Sma 1 Industrial Comodities 132
Table 23
Prudhoe-Sma 1 Peak Air Flights per Week (Good Transport) 133
Table 24
Prudhoe-Sma 1 Truck Requi renents for Camp Consumables 134
Table 25
Prudhoe-Small Truck Service Requi rements 135
Table 26
Prudhoe-Small Summary of Goods Shi pnents 136
Table 27
Cape Hal kett Maj or Industrial Requi renents 139
Table 28
Cape Halkett Air Passenger Seat Requi renents 141
Table 29
Cape Halkett Peak Air Requi renents for Camp Consumables 142
Table 30
Cape Hal kett Industrial Comodities 143
Table 31
Cape Hal kett Peak Air Flights per Week 144
Table 32
Cape Halkett Summary of Goods Shi pments 145
Table 33
Prudhoe Bay-Large Maj or Industrial Requi renents 149
Table 34
Prudhoe Bay-Large Air Passenger Seat Requi rements 150
Table 35Prudhoe Bay-Large Peak Air Requi renents for Camp Consumables151
Table 36
Prudhoe Bay- Large Consumable Industrial Commodity Requi rements by Mode 152
Table 37
Prudhoe Bay-Large Peak Air Flights per Veek (Goods Transport) 153
Table 38Prudhoe Bay-Large Truck Requi renents for Camp Consumables154
Table 39Prudhoe Bay-Large Truck Servi ce Requi renents155
Table 40
Prudhoe Bay-Large Summary of Goods Shi pnents 156

I. I NTRODUCTI ON AND METHODOLOGY

Purpose

Abstract

The assessment of impacts from expl oration, devel opnent, and production of offshore oil reserves in the Beauf ort Sea is a multi-staged and multi-di sciplinary undertaking. The first stage is to devel op a set of petrol eum devel opnent scenarios that are both techni cally and economically feasible and produce a sufficient range of impacts. The next stage is to devel op data that can be used as primary input for socioeconomi c st udi es, whi ch represent the next stage. Such data incl udes nanpower, naterial requi renents, and the scheduling of devel opment activities.

The purpose of this report, which is one el enent of the soci oeconomic studies, is to assess for indi vidual scenari os the impacts on the local, region, and state-wide transportation systens, using data devel oped in the previ ous stage and, as appropriate, infornation devel oped by other nembers of the multidisciplinary effort. Particularly important in the I atter category have been annual employnent and popul ation forecasts by regi on and for the state as a whol e. Coordi nation with those anal yzing commity and cultural impacts has al so been necessary so that impacts can at a later date be successfully integrated.

The report contains three naj or sections, in addition to an introductory chapter. First, a present-day baseline (Chapter II) is estab-
lished by examining for each mode exi sting routes, carriers, and terminals which could realistically serve freight and passenger traffic generated di rectly or indirectly by Beaufort Sea OCS activites. Second, impacts for the non-OCS scenario (Chapter III) are devel oped. Thi rd, additional demands resulting from OCS activities are generated (Chapter IV) and the resulting impacts on the transportation systens assessed. Information contai ned in the report will be usef ul in setting priorities for lease/sales and for generating stipulations for the leases.

Introduction

Al aska's basic transportation systens have evol ved principally from construction undertaken during the Second Wbrld Whr. Subsequent maj or projects that have increased the capacity and flexibility of intrastate novenent of goods and people incl ude port improvenents, particularly for Anchorage and Valdez, the Parks Highway which provi des a di rect connection bet neen Fai rbanks and Anchorage, statewi de ai rport improvenents, the state-operated marine hi ghway system in southeastern and southcentral Alaska, paving of and bringing up to desi gn standards the primary and secondary road systens, and the North Sl ope Haul Road. The only maj or non- urban facilities under or near construction at the present time are the Skagway-Carcross Road in Southeastern Al aska, and the Copper Ri ver Highway. Fi gure 1 depicts the intercity road network which is currently open to the public and, thus, maintai ned by the state. Note that the TransAlaska Pi peline

SOURCE: ALASKA DEPARTMENT OF HIGHWAYS, 1977

Haul Road is not shown since it is not schedul ed to be turned over to the State by Alyeska Pi peline Company, until October, 1978.

The primary emphasis of proposed transportation expenditures for the State of Al aska in the coming years is to neet the transportation requi rements for the fast growing urban centers, particularly Anchorage and Fai rbanks, as well as reconstructing and upgrading the exi sting systens. Several proposed corridors such as the Vestern Access Road, whi ch would connect None by road to the Haul Road, and a road bet ween J uneau and Haines are on the Feder al Aid System which nakes them eligible for funding preliminary engineering studies by the Federal Highway Administration, but their eventual construction is hi ghly probl enatic.

A study of any transportation requi renents for Northeastern Al aska during the next 20 years should consi der the feasibility of using available routings through Canada. The Mackenzie River has been an established north-south transportation corridor for many years. The Canadian philosophy for transportation devel opnent in the Yukon and Northwest Territory differs sonewhat from that of the State of Alaska. Although the present populations in the two territories are small, even in compari son to Al aska, the Canadi an Government has expended si gnificant funding to improve Iand access for renote areas. One purpose has been to pronote resource devel opnent activities (Roads for Resources progran), which is economic in nature, while the other purpose has been to link the area's population centers with
exi sting surface transportation systens, which is nore social and political in nature. Figure 2 shows the available transportation routes to and from Northwest Canada that existed in 1973. Si nce then, the Dempster Highway, which will extend from Dawson to Inuyik is nearing compl etion, and the Mackenzie Highway now goes to Fort Si mpson and pl ans call for an extension as far as Wigley.

Met hodol ogy

I mpacts rel ated to trnasportation can be expected to commence at the time of the lease sale in 1979. The pl anning horizon of the impact assessment is the year 2000. Depending upon the anount of devel opment that actually occurs, impacts could continue beyond this date. The timing and the magnitude of transportation impacts must be assessed on the basis of material requi renents and empl oynent for each of the four OCS devel opment scenarios.

Fi gure 3 indi cates the process by which transportation inpacts will be assessed.

Two types of impacts rel ating to increased denands on transportation systens will primarily be considered: (1) accel erated deterioration of facilities, and (2) capacity restraint, or a decline in the availability or quality of service. Also, a brief comparison of the ability to increase capacities during periods of boom cycles and steady grouth will be presented.

The importance of accel erated deterioration or capacity restraint depends princi pally upon the node of travel and the design of the system that del ivers the service. For intercity hi ghways in Al aska, deterioration consi derations usually out wei gh those for capacity, particularly for rural sections, while for terminal s, the reverse is true. Al though accel erated deterioration is self-explanatory, capacity anal ysis oftentines is not because of the different contexts that may be used. A di stinction is made between service capacities and ulimate capacities. Service capacity is the allowable vol une for a given facility and set of operating conditions. For this vol une to be exceeded, new operating conditions must be established, and a new service capacity will then exist. New operating conditions that impose time or cost penal ties will be less conduci ve to attracting additional traffic and, thus, introduce a capacity restraint to the system Utimate capacity ignores time and cost considerations, and depends only on the facility itself. It represents anstable flow condition which cannot be nai ned for a I ong period of time and, in fact, can only be reached on rare occasions, if ever. Improvenents to facilities can improve either ultimate or service capacities or on occasi on both.

The importance of capacity considerations depends upon whether one is di scussing routes, terminals, or carriers. For terminal s and highay routes, the primary concern is the ultimate capacity of existing facilities. The rel ationship bet ween existing traffic and ultinate capacity can be rel ativel y low and still justify the construction of fixed facilities. On the other hand, the carriers must operate equi pnent at
rel atively high load factors to make operation efficient and, consequently, profitable. Thus, their ability to handle additional traffic using exi sting equipnent is nore difficult than for terminals. However, the key question is the ability of carriers to expand their capacity when increased demands occur. The ability to increase capacity usually is easier for carriers than for facilities. In many cases, equi pment can be readily leased from ot her companies or individuals or shifted from other areas of a company's operations. In cases where equi pnent is specialized or very expensive, a carrier might not be able to neet in timely fashi on the change in demand. An uneconomic shift to other modes will then occur until the carrier can acquire additional equi pment.

CAPACI TY

Vol une is generally measured by contents or vehicles per unit time in transportation planning.

- Contents per unit of time. In freight movenents, contents can be neasured by wei ght or cubic neasures. Because space required per unit wei ght can vary consi derably between commodities, wei ght measures cannot be used as a consi stent neasure of capacity; but neverthel ess are nore widel y used. For passenger novenents, the probl em bet ween wei ght and vol une neasures does not exist. The number of passengers has a constant rel ationship to capacity since the number of seats usually does not change. Load factors, defined as the ratio of vol une to capacity, can be established for indi vi dual
shi pnents and for various time periods.
- Vehicles per unit of time. This measure depends on a facility's perfornance characterist' Cs. Careful attention should be gi ven to the use of units of time. For roads and ai rports, respective capacities for vehicles and plane novenents (takeoffs and landings) are based usually on an hour. The rel ationshi p bet ween peakhour and I onger periods is established through the use of peakhour factors.

The liniting physical characteristics of a system describe an important capacity consideration. Weight restrictions exist for numerous ol der bridges on the Al aska Rail road, particularly bet ween Anchorage and Fai rbanks, and for the state's hi ghway system particularly during spring freeze/thaw conditions. Aircraft are certified fo specified gross takeoff weights. Clearances of bridges and tunnel simit the si ze of goods that ordinarily could be carried over certa' n rail and hi ghway I engt hs.

Each step in Figure 3 is briefly described bel ow

TRANSPORTATI ON DEMAND

The anal ysis of transportation requi renents and their consequent impacts wil take place for four distinct categories of novenents, as follows:
(1) novenent of equi pnent, material s, and supplies; (2) movenent of on-
site (North Sl ope) empl oyees; (3) novenent of induced statew de transportation of goods and persons, and (4) transportation of crude oil to markets. For each category, impacts on appropriate routes, terminals, and carriers are consi dered.

- Transportation of Equi pment, Materials, and Supplies to Beauf ort Sea.

Al equi pnent, naterials, and supplies which are needed on the North Sl ope to expl ore for, devel op, and produce oil fall under this category. In addition to goods produced outside of \mathbf{A} aska, transportation of local materials, supplies, e.g. gravel and water, al so are incl uded. For each scenario, the peak denand will be determined by commodity and by year. Comodities will incl ude bulk shi pments, such as fuel, drilling mud, and cenent; oversi zed machi nery and equi pnent; housing nodul es; pi pe; construction materials, and miscel I aneous.

- Transportation of Beaufort Sea Personnel.

This category rel ates to the novenent of employees to and from job sites on the North Sl ope. In cases where ice air fields are constructed, flights di rectly to \mathbf{j} ob sites are possible. Otherwise, personne1 must recei ve local transportation from pri mary ai rports. I ncl uded are trips to and from I eave stations based on the schedule for crew rotation. For example, drillers work two weeks on followed by one week off.

Because of time considerations, anal ysis of transportation novenents in this category will be limited to the air node.
e Induced Statewi de Transportation of Goods and Services.
Thi s category incl udes intercity transportation requirenents of the statew de popul ation increase that can be attributed to Beauf ort Sea OCS devel opment and in addition the transportation of goods to supply that popul ation. The impacts are based on increased staffing requirenents in the petrol eum sector of the statewide economy as well as multiplier effects in other sectors of the econony.

0 Transportation of Crude $\mathbf{O l}$ to Markets.
In this category, two options exist, use of the existing TAPS pi pel ine and an l-nater del i very system Anal ysis of the TAPS option will focus on shipping activities in the port of Valdez. An al l-nater del i very system will not be examined in detail because of anal yses that indicate adequate pipeline capacity will exist for all scenarios.

TRANSPORTATI ON SYSTEMS

- Routes.

In this study, a route is defined as a link or set of links bet ween terminal s. Thus, a route comprises only one node. It is di stingui shed from a trip, which is the route or routes
bet ween an origin and a destination. For example, goods traveling from Seattle by barge to Whittier, then carried to Fai rbanks by rail, and finally shi pped by truck to Prudue Bay would invol ve one trip, three routes, and four links as shown on Figure 4. This distinction is necessary so that nodal split will not be conf used with trip assi gnment. Each trip to the final destination at Beauf ort Sea will generally involve two or three separate nodal split decision points.

- Terminal s.

Terminals are trans-shi pment points where goods and travel ers change from one node to another.

Carriers

For each node, the ability of common carriers to respond to i ncreasing denands needs to be examined. Data requi red i ncl udes the number of carriers provi di ng appropriate services, extent of their service area, and regulatory and policy constraints under whi ch they operate.

I MENTORY AND CAPACI TY ANALYSIS

The capacities of the ports, terminals, and carriers are determined concurrently with the devel opnent of inventory data. The use of observed peak flows will complenent the use of theoretical anal yses. For this study, such figures are particularly usef ul, because nassi ve

ALTERNATIVE TRANSPORTATION ROUTES FROM U.S. CITIES TO PRUDHOE BAY / BEAUFORT SEA

ai r and water operations to the North Sl ope occurred bef ore construction of the Haul Road.

NON-OCS ANALYSIS

Each agency responsible for funding capital improvenent projects for transportation makes forecasts of its future needs on a continuing basis. For example, the Mnicipality of Anchorage has a tuenty-year transportation pl an, from which it derives annually a six-year implenentation pl an for each mode: The \mathbf{A} aska Departnent of Transportation and Public Facilities likewise produces a six-year plan that includes roads, ai rports, and ferries. The Federal Avi ation Administration devel ops an annual ten-year program The non-OCS scenario assumes that incremental improvenents will occur for all modes to meet normal traffic grouth requi rements. The non-OCS anal ysis addresses nodes separatel y and does not consider nodal competition, unl ess it is explicitly considered in the forecast for indi vidual facilities and services. The anal ysis is basi cally qualitative in nature because of the lack of data.

SCENARI OS

Fi ve scenari os have been sel ected for anal ysi s: Canden- Canning, SmithDease, Prudhoe-Sma11, Prudhoe-Large, and Cape Halkett. The scenari os encompass four separate lease sal es. Prudhoe-Small and Prudhoe-Large represent different levels of devel opment for the sane lease sale. The four categories of transportation demands will be anal yzed for each scenari 0.

MDDAL SPLIT AND TRIP ASSI GNMENT

Mbdal choi ce deci si ons are made at terminal locations where change of node can take place. Trip assi gnnents are the result of successive nodal choi ces made between origin and destination. Specific nodal splits will not be forecast for all categories of goods and persons. Instead, a tuo-step process will be employed. First, all goods which have size or time constraints will be assigned to the node and route which al nost certainly will be utilized. For example, Iarge housing nodul es certainly will be shipped by all-vater route, and employees will use jets to go to and from Fai rbanks and the North Sl ope. Second, ranges will be established for remaining goods based on nodal capacities, source of goods, cost and reliability of transportation services, and institutional constraints.

DI SCUSSI ON OF I MPACTS

The impact anal ysis \mathbf{w} consider the implications of the nodal split and trip assi gnment task. As indi cated earlier, the di scussi on will center on facility deterioration and capacity restraint.

PRELI M NARY SCREEN NG OF TRANSPORTATI ON SYSTEMG

Two screeni ngs of transportation routes and services occur bef ore the final estimation of impacts. A preliminary screening will eliminate from further consi deration routes, terminal s, and carriers shown on

Fi gure 4 that have little or no influence on transportation patterns for the devel opmental activities being studi ed. Services and facilities that pass this screening will be given a further screening prior to anal ysi s of the four OCS scenarios.

The preliminary screening was based on a review of the following factors: location of routes in rel ationship to the Beaufort Sea, oil delivery scenarios, seasonal factors, appropriate Federal and State policies, probability of route improvenents or new construction up to the year 2000, comparison with logistics requi renents for construction of the TransAlaska Pipeline System the nature of the oil expl oration and devel opnent industry, and concurrent denands on Al askan and northern Canadi an transportation facilities and services.

- Location of Routes in Rel ation to Beauf ort Sea Lease Sal e. The area of the proposed lease sale extends from Point Barrow on the west to Canden Bay on the east. A revi ew of Figures 1 and 2 shows that from strictly a geographical vieupoint, no one surface route has a decided advantage for the entire lease area. The Haul Road is an establishedland route from the south that intersects the eastern section of the lease sale, while water routes are available from the west and east, via the Bering Straits and the Mackenzie River, respectivel y. The links that provide conveni ent access to and al ong the three nai n corri dors nenti oned above have been consi dered.

Both the denand for transportation serv ces rel ated to Arctic oil expl oration and devel opment and the availability of transportation servi ces show seasonal fluctuitions in Al aska. Mater travel to and from the Beaufort Sea depends upon the exi stence of open water, unl ess the added expense of ice breaki ng support equi pnent is incurred. For hi ghways, wi nter travel is possible, but bad weather conditions cause del ays and increase operating costs. Shi ppers will seek to overcone the seasonal constraints existing for the various transportation routes to the Beauf ort Sea depending upon their denand for services at the time the constraints exist. Available and energing technol ogies will enable both offshore expl oration and production to occur either during the sumer or winter or during both seasons. Si nce experience with nany of the options is limited or nonexistent, the actual mix of operating strategi es cannot be accuratel y forecast at this time. Whatever the actual mix, logistics requirements will showless of a seasonal variation than for onshore expl oration activities. The reason for this is that onshore expl oration in Arctic regi ons nornally can take place only during the winter nonths when the tundra is frozen. Seasonal flexibility for the offshore expl oration phase will tend to smooth out transportation denand over the years, particularly for the novenent of Iand and air cargo novements. Whter transportation, however, will continue to have Iarge seasonal fluctuations
because of ice restrictions.

- Qil Del i very Scenari os

Anal ysis indicates that additional pipelines will not be requi red, which makes the Beauf ort Sea area the final destination for all construction and operational materials. Additional pipelines to augnent the capacity of the TransAlaska Pipeline System should they be required, would significantly increase logi stics requi renents for Beauf ort Sea oil and gas devel opnent. Queuing of oil tankers at the Valdez terminal needs to be exam ned to determine if it might be the critical constraint on the pipeline del ivery system The use of icebreaking oil tankers remains a possibility; in fact, one study has estinated a per barrel delivery cost of $\$ 5.43$ by water as compared to requested tariffs for the TransAl aska Pi peline System of over \$6. 00 (Dames and Mbore, 1978). The commitment to provide capabilities for all year shipping to and from the Beauf ort Sea nould accrue advantages for logistics support for the shore bases and platforns during the production phase of the fields. The normal sumer shipping schedule could be extended, with a consequent shift from nore expensive land and air travel.

Canada's I argest producer of natural gas, Done Petrol eum Ltd., has nade a maj or commitnent to devel op oil and gas reserves in the Canadi an Beaufort Sea. Without a pipeline to deliver its
products to market, it has realized the necessity for eventually devel oping a year-round, all-nater delivery system Depending on the location of markets, it might maintain traffic lanes west through the Bering Straits or east through the Northwest Passage. As part of its commitnent Done Petroleum is undertaking construction of a $\mathbf{\$ 1 2 5} \mathbf{~ m i l i o n , ~ c l a s s ~} 10$ -i cebreaker, which when built, will be the largest in the norld (Busi ness Week, 1978).

Anal ysis has concentrated on the impacts of goods and passenger novements to the Beauf ort Sea. An anal ysi s of the del ivery of oil will be done separately and will focus on the tanker handling capacity of the Port of Valdez.

- Federal and State Policies.

Longterm di sposition of the Haul Road has not yet been deci ded upon by the State. Governor Jay Hammond has indi cated a desire to have industrial users of the road pay for nai ntenance costs. The establishnent of a toll road north of the Yukon Ri ver, noul d requi re pay-back of Feder al expenses incurred, possi bly even the cost of the Yukon River Bridge. The I evel of maintenance, particularly during the winter, will affect the anount of seasonal traffic. The level of tolls is expected to have a lesser impact on traffic levels. The U.S. Departnent of Transportation has determined that the Federal Governnent does not bear any responsibility for danage to the road
system produced by truck traffic which was the result of TAPS construction activities (Federal Highway Ad., 1976). This concl usi on forces the State to pay nore attention to its desi gn philosophy and to enforcenent of wei ght restrictions.

-
 Comparison with Transportation Impacts of Prudhoe Bay

Expl oration and TAPS Expl oration and Construction
For early Prudhoe Bay exploration, air service played a key role in neeting logistics requi renents. An estinated 340, 200 metric tons (375,000 tons) were shipped by air to support North SI ope Oil activities between 1968 and October, 1974 when the Haul Road was finally compl eted (Parker, 1975). For the Beauf ort Sea activities, naj or nodal shifts for frei ght novements will occur from air to both road and barge traffic as compared to novenents for Prudhoe Bay. The cause for the shift centers around the exi stence of the Haul Road and the widespread destinations al ong approximately 1, 125 km (700 mi.$)$ of coastline in the Beauf ort Sea. Al so, a nodal shift from land to water traffic can be expected because of the absence of internedi ate destinations in the case of Beaufort Sea leases. Construction of TAPS produced significant anount of I ogi stics requi rements for Iocations between Prudhoe Bay and Valdez. In addition to internedi ate traffic originating outside of Al aska, the novenent of gravel from local pits to construction was a significant contributor to impacts and was difficult to nonitor by the State (Eakland, 1978d). Finally,
the seasonal maj or transportation demand for Beauf ort Sea activities, as previ ously noted, nost likely will differ from those for Prudhoe Bay and TAPS.

- Concurrent Denands on Al askan and Canadi an Transportation Systems.

Construction of the Alcan Gas Line is schedul ed to occur bet ween 1979 and 1983. Peak frei ght novenents if this schedule is kept will occur in 1981. During these years, early expl oration of the Beauf ort Sea Leases is expected. The travel denand during this period will be less than for future years. Gas line construction activity may cause a slight shift from I and to other nodes for goods destined to the Beauf ort Sea. It is not expected to cause del ays in the delivery of naterials because of adequate alternative routings available and excess capacity.

Oil expl oration devel opnent is expected to continue in the Canadi an portion of the Beauf ort Sea, al though at a I ower Ievel than if the Arctic Gas Proposal had been approved. Arctic Gas had. proposed to build a gas line east from Prudhoe Bay to the Mackenzie River, and then south al ong that corridor. Canadi an and U.S. activities forecast for the Beaufort Sea are expected to produce increased utilization of water travel via the Mackenzie River and the Bering Straits. On the other hand, similarity of operations will ease logistics difficulties by
creating the opportunity for \mathbf{j} oint use of drilling and supply equi prent and by providing an economy ' of scale that will tend to increase competition anong shi ppers.

- Transportation construction activities likely to occur before 2000.

Except for the Dempster Highway and the Skagway-Carcross Road no new land transportation facilities have been considered. Numerous proposal s currently exist for new projects. However, feasibility has not been firmy established as yet for any of them Even if a deci si on were made to construct any of the projects during the next few years, their magnitude would precl ude their completion in time to signicantly impact establ ished routings of goods movenents to the Beauf ort Sea. Proposed improvenents to terminals will be treated in the Iater di scussion of capacity for exi sting systens.

The nost conspi cuous proposal s are di scussed bel ow
-- Copper Ri ver Highvay. The Al aska Department of Transportation and Public Facilities is scheduled to finish by October, 1978 a multi-nodal transportation study of Prince Wiliam Sound. Until its completion, the State has been unable to improve sections of the Copper River Highway beyond MIe Post 52.

Energency repl acement funds can be used for reconstruction up to this point; but beyond, regular apportionnents of Federal Air Highway Funds must be used. If further construction does occur, the nost likely project is a new al ignnent beyond MIe 80 to connect with the Richardson Highuay at Tonsi na. The costs of the entire project were estinated in the 1974 Alaska Departnent of Highways FiveYear Pl an to be $\$ 37,000,000$. The current costs nould be consi derably hi gher. Even if a road link is eventually established bet ween Cordova and the Richardson Highway, the additional I and mileage and the superiority of terminal facilities at Valdez will limit the anount of traffic dest' ned for the interior of \mathbf{A} aska which would shift from Valdez to Cordova.

Railroad Link Between Canada and Alaska. The possibility of constructing a rail link between Canada and \mathbf{A} aska has been di scussed for several decades, and the proponents have in recent years strengt hened thei r arguments. The British Col unbia Governnent has extended its rail system as far as Dease Lake, and known mineral deposits exist in the Yukon which could be comercially attractive if near by rail transportation were available. The Alaska Legi slature in 1976 appropriated $\$ 50,000$ to study the feasibility of the project and a year later appropriated $\$ 850,000$ to perform a local survey. The State is seeking
additional funds frominterested agencies in Canada and the U.S. to performa detailed cost-benefit study. For the project to go ahead, fundi ng commitnents would have to be secured fromthe Canadi an and U.S. Governments. In the absence of such comitnents and detailed studies, prospects for implenentation cannot be considered imment at this time.

-- Additional North SI ope Transportation Projects. At the

 present, no Federal-Aid routes exist in the vicinity of the Beaufort Sea Lease with the exception of the Haul Road. The North Sl ope Borough has officially supported the philosophy of the State emphasizing improvenents to roads within existing cities and villages before spending large suns of noney on new intervillage roads. The North Slope Borough's efforts in intervillage travel will focus on the air node. Efforts are al ready underway to enable it t_{1} di rectly recei ve FAA funding for ai port planning and construction.- Nature of the $\mathbf{~ O}$ I I ndustry.

Qi expl oration and devel opnent are highly capital insensitive activities. Large investments in drill rigs and platforns require that they be in use as mach as possible. The oil compani es strive to nove oil to narkets as soon as possible so that they can begin recovering the large suns investedin
expl oration and production facilities unl ess narket prices are depressed. Should capacity restraints exist on preferred routings, oil companies nould be willing to shift to secondary routes, even if costs for these routes were hi gher. The additional transportation costs generally are consi derably less than losses that would result from having equi prent idle.

Technol ogy.
The anal ysis of transportation impacts on Beaufort Sea oil expl oration devel opment assunes that no maj or technol ogi cal breakthroughs in the area of transportation will exist that will make one node dominant. Although several concepts exi st on drawing boards that would substantially increase the utilization of water travel, these concepts must wait until they have been proven through extensi ve research and devel opnent. The Berger Inqui ry into soci oeconomic and envi ronmental i mpacts for the Mackenzie Valley pi peline recognized the inability to predict various kinds of impacts because of the I ack of adequate research rel ated to Arctic activities. It is proposed that such research be conducted as soon as possible through a joint effort of nations engaged in devel opnent of Arctic Resources. "Canada should propose that research be undertaken \mathbf{j} ointly by the circumpolar powers into the risks and consequences of oil. and gas expl oration, devel opment and transportation activities around the Arctic Ocean (Berger, 1977)."

RESULTS OF PRELI M NARY SCREEN NG

The results of the preliminary screening are shown in Fi gure 4. The following is a listing of links and terminals remaining after the preliminary screening

Whter Li nks

W1 - U. S. ports to Prudhoe Bay/ Beauf ortSea (T13).
Usi ng ocean- going tugs and barges.
W2 - U. S. ports to Honer (T4).
W3 - U. S. ports to Seward (T5).
W4 - U. S. ports and Prince Rupert to Vkittier (T6). By ships/barges carrying rail cars.
W5 - U. S. ports to Anchorage (TIO).
W6 - U. S. ports to Valdez (T7).
W7 - U. S. ports to Haines (T2).
W8 - U. S. ports to Skagnay (T3).
W9 - From headuaters of Mackenzie River, specifically Hay River (T9) on Great Sl ave Lake, to Mackenzie Del ta.
W10 - Mackenzie Delta to local destinations.

Air Links
A - U. S. cities to Anchorage.
A2 - Anchorage to Fai rbanks.
A3 - Fai rbanks to Prudhoe Bay, which incl udes ai rports at Barrow, Deadhorse, Nuiqsut, and Kaktovik.

R1 - Canadi an National Rai I road to Pri nce Rupert.
R2 - Nbrthern Al berta and Great Sl ave Rai Iroads to Hay Ri ver (T9).
R3 - Yukon and White Pass Rai I road (nar row gauge) from Skagway to Whitehead (T8).

R4 - Al aska Rai Iroad from Seward (T5) to Anchorage (TIO).
R5 - Al aska Rail road from Wittier (T6) to Anchorage (TIO).

Highway Li nks

H1 - U. S. cities to Whitehorse via Al aska Highay.
HR - Haines cut-of from Haines (T2) to Haines Junction.
HB - Road from Skagway (T3) to Whitehorse (T8).
H4 - Sterling Highway from Honer (T4) to Seward Highway.
НБ - Seward Highway from Seward to Anchorage.
Ho - Ri chardson Highway from Val dez (T7) to Del ta Junction.
H7 - Al aska Highay from Whitehorse to Haines Junction.
HB - A aska Highway from Hai nes Junction to Del ta Junction.
H - Ri chardson Highay from Delta Junction to Fai rbanks (Tll).
H10 - Parks Higway from Anchorage to Fai rbanks (T11).
H11-Klondike Highway from Witehorse to Dawson.
H12 - Dempster Highway from Dawson to N W Territories.
H13 - Prudhoe Bay Highway from Fai rbanks to Prudhoe Bay.

Terminal s

T1 - Prince Rupert. Intermodal terminal shiping rail cars by barge.
T2 - Haines. Port handling narine hi ghway system traffic and bulk
cargo.
T3 - Skagway. Port handling marine highway system traffic and goods to be shi pped on railroad.

T4 - Homer. Port handling general cargo.
T5 - Seward. Port handling bulk cargo.
T6 - Whittier. Port handling transfer of rainl cars fromsea to land and vi ce versa.

T7 - Valdez. Ports handling oil tanker traffic and general cargo.
T8 - Whi tehorse. Rail terminal.
T9 - Hay River. Terminal noving rail and highway traffic to inland water barge.

TIO-Anchorage. Anchorage International Airport and the Port of Anchorage, which has a PQL facility as well as terminals for the handling of contai ners and roll-on/roll-of trailers.

T11- Fairbanks. Fai rbanks International Airport and rail yards.
T12 - Arctic Red River. Included are nearby N W Territory villages of Fort MtPherson and Inuvik.

T13- Prudhoe Bay/Beaufort Sea. Airports at Prudhoe Bay and causemays for tie-up of barges.

Tl4- $\mathbf{C l}$ il atforns and supply camps (T14). Gravel or ice strips for airplanes. Docks for of fshore platforns and artificial islands. No facilities required for lightening.

II. DESCRI PTI ON OF EXI STI NG SYSTEM

Introduction

Eval uation of impacts upon the existing infrastructure during the period 1977-2000 in the absence of Beaufort OCS activity is necessary to determine if additional improvenents will be necessary to accomodate additional trafic. Current comitnents for oil and gas and mineral devel opnents are part of the scenario, incl udi ng Prudhoe Bay and near by fields, upper Cook Inlet, northern Gulf of Al aska OCS, and I ower Cook Inl et OCS. The status of exi sting systens is described in this chapter, and the information will be the baseline for study of the non-OCS and OCS scenarios.

The Alcan Gas Pipeline is the one maj or construction project to be incl uded in the non-OCS scenario The schedul ed project duration for this project is 1979 to 1983. The ability of each statew de node to handle forecast activities dur ng the period 1977-2000 will be studied separately. Statew de routes and terminals to be studi ed are those that evol ved out of the preliminary screening. For each node, general infornation is provided about routes, terminals, and carriers.

Exi sting Transportation Systens

H GMAY MDDE

Routes
A total of 13 intercity road links are being studi ed. Six are excl usi vel y
in Al aska, four excl usi vel y in Canada, and the remaining three are in both Canada and Alaska. Table 1 provi des general information about the links. Fi gure 5 shows the location of the Prudhoe Bay Highway, of whi ch the North SI ope Haul Road is a segnent.

Route Capacity. Route capacities are best described by service vol unes, whi ch represent the naxi mum number of vehi cl es that can pass a road section in a specified period of time under operating conditions nai ntai ned gi ven level of service (Highway Research Board, 1965). Emperical studi es have been used to establish criteria for level s of service A through F, which indi cate the stability level of the traffic flow Level of service Ais uninterrupted free flow B and C stable flow D and E unstable flow, and F forced flow Decreasing stability is accompani ed by lower average operating speeds. The ultimate capacity in both directions of a rural, two-lane hi ghway under ideal physical and traffic conditions is 2,000 passenger cars per hour (Highway Research Board, 1965). This situation hould occur at level of service E and an approxi nate operating speed of 48 km per hour (30 mi . per hour). Higher level s of service and less than ideal operating conditions make the servi ce vol une consi derably less than 2,000 vehi $\mathbf{c l}$ es per hour. For level of service C, which is the usual design standard, the service vol une is 47% of capacity, or 940 passenger cars per hour in both di rections.

The service vol une of a given section of a tuo-lane, rural highay can be computed by using factors that consider the following physical and

SOURCE : ALASKA DEPARTMENT OF HIGHWAYS, 1976

TABLE 1
DESCRI PTI ON OF ROAD LI NKS STUDIED

Road Li nks	Feder al - Ai d System (System Desi gnation)	Common Nane	Termi ni		Surface Type	Length
H1	Yukon Territory H ghway 1	Al aska Hyy.	--	Whitehorse	Gravel	.-
H2	Yukon Territory Highway 4/ B. C./ Pri mary (FAP-95)	Hai nes Hky.	Hai nes	Hai nes Junction	Canadi an: Gravel (to be paved) A askan: Paved	$\begin{aligned} & \frac{\text { Canadi an: }}{185 \mathrm{~km}(115 \mathrm{mi})} \\ & \left.\frac{\text { A askan: }}{\mathbf{7 1 ~ k m ~ (~}} \mathbf{4 4} \mathrm{mi}\right) \end{aligned}$
HB	Pri mary (FAP-97)	SkagwayCarcross Rd. (to be completed 1978)	Skagway	Whitehorse	Gravel	Canadi an: 136 km (84 mi) A askan: $\frac{24 \mathrm{~km}}{24}(15 \mathrm{mi})$
H4	Pri mary (FAP-21)	Sterling Highway	Homer	Jet. with Seward Highway	Paved	224 km(139 mi)
Н	Pri mary (FAP-31) Urban (FAU-545)	Seward Hyy. 5th-6th Aves.	Seward	Anchorage	Paved	Pri mary: 195 km (121 mi) Urban: 11 km (7 mi)
H6	Primary (FAP-71)	Ri chardson Highway	Valdez	، Del ta Junction	Paved	436 km(271 mi)
H7	Yukon Territory Highuay 1	Al aska Hwy.	Whitehorse	Hai nes Junction	Gravel	$158 \mathrm{~km}(98 \mathrm{mi}$)

TABLE 1 - CONTI NUED
DESCRI PTI ON OF ROAD LI NKS STUDI ED

| Road
 Li nks | Federal - Aid
 system (system
 Desi gnati on) | Conmon Nane |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Source: Al aska Department of Transportation and Public Facilities. 1977. 1976 annual traffic vol une report, and The Mlepost. 1978. Al aska Northwest Publishing Co.

TABLE 2
1976 Traffic Information for Locations of Pernanent Counters

figure with forecast traffic grouth will provide an adequate assessment of which links will be nost likely to experience capacity problens during the study period. It takes into account the fact that the state's Capital Improvenent Program will emphasize improvenents to the exi sting primary road system incl uding those itens that will increase capacity, such as wideni ng I anes, paving shoul ders, and improving al ignments. Capacities obvi ously will vary according to maj or indi vidual road sections, daily and seasonal variations, the source of congestion, and the area congested.

Table 2 contains traffic data from representative fixed traffic reporters of Iinks bei ng st udi ed (Alaska Departnent of Highays, 1976). Data from stations cl ose to popul ation centers have not been included. The ratios of nonthly average daily trafic to annual average daily traffic indicate the significant seasonal variations that occur on \mathbf{A} aska's intercity road system Traffic during winter nonths at nost locations is only one-hal f of the annual average. During the summer nonths, recreational travel increases for both Alaskan and out-of-state visitors, causing monthly traffic figures to increase to as much as double the average val ue. The rel ativel y high percentage for trucks and buses was a result of final stages of pipeline construction but will be representative of the Alcan construction period. A high percentagei of camper vehicles, which in sone locations even exceeds the percentage of trucks and buses, has a negative impact on capacity because of the vehicles' size and inability to ascend grades as well as passenger vehicles. The Highay

Capacity Manual (1965) at present does not consi der the impact of these vehi cles on capacity.

Clearance Restrictions. For travel on public roadvays, over-size permits must be obtai ned if the width of a vehicle or its cargo is greater than 2.4 meters (eight feet) or the hei ght from the ground is greater than 4.1 meters ($13^{\prime \prime} \mathbf{6 \prime \prime}^{\prime \prime}$). For Ioads wider than 3.1 meters (10 feet), pilot cars must be used. Several through-truss bridges exist on primary state routes and have clearances as low as 4.4 meters ($14{ }^{\prime} \mathbf{6 " \prime}^{\prime \prime}$). They are bei ng-repl aced as part of reconstruction projects. The arched ceiling of the Keystone Tunnel has vertical clearances ranging from 5.1 neters ($\mathbf{1 6}^{\prime} \mathbf{7 \prime \prime}$) in the center to 3.4 meters ($111^{\prime \prime}$ ") at the outer edge of the road surface, but a project initiated in 1978 will provide for a tunnel bypass route. C earance restrictions are assumed not to be a problemin future goods novements.

Accel erated Deterioration. The condition of \mathbf{A} aska's hi ghways deteriorated si gnificantly during the construction of the TransAlaska Pipeline. Structual failures resulted froma conbi nation of two factors: (1) I oading during periods of nornal subsurface conditions, and (2) I oadi ngs during freeze-thaw conditions when the Ioading capacity of the road is substantially diminished. Adequate attention to the type and number of trucks in pavenent design will address the first factor. Design can assist in addressing the second factor, but nore important is an effective nonitoring of road conditions and enforcenent of load

Iimits during spring breakup.

The state of Alaska in 1976 requested the federal governnent to provide a total of $\$ 300 \mathrm{milli}$ on of pipeline impact funds so that the state road system could be reconstructed. Of this anount, $\$ 70 \mathrm{mili}$ ion was requested for imedi ate use. In addition to resurfacing, the state desi red to i mprove cross sections and alignnents on roads that had been inherited fromthe Bureau of Public Roads at the time of statehood in 1959. The princi pal argunent advanced by the state was that the construction of the pipeline served a national interest; and, consequently, the federal governnent should bear responsi bility for damages incurred. Congress did not appropriate any of the additional construction funds requested but did agree to study the question of state versus federal liability. The resulting "Al aska Roads Study," whi ch was prepared by the Federal Highway Admini stration (1976), determined that danage, indeed, had occurred to the \mathbf{A} aska road system as a result of pipeline construction, but that the federal governnent was not liable for any of the danage. The increnental danage estimated to be caused by pi peline traffic was $\$ 49$ miliion. The study cited three reasons why the state must bear sole responsi bility for repai ring danaged roads.

- State of Alaska Comments on Pipeline ElS. The Department of Highays stated that long-range revenues uould far outweigh short-term expenses of mai ntenance and reconstruction due to pi peline activities.
- Pipeline Legislation. The intent of Congress in the TransAl aska Pipeline Act, 1973 was that the federal government should not be hel diable for danages rel ated to pipeline construction, although roads are not specifically mentioned.
- State Stevardship of Highuays. The state, in accepting federal hi ghway funds, agrees to act as the steward of the funds and of the facilities that are built. The state has the responsibility to plan for, design, and construct roads and to devel op regul ations for their use.

For future devel opment activities, the first two reasons will have little or no bearing. The state will be wary of making statenents that imply assumption of negative impacts, and federal legi slation for specific projects will probably be unnecessary. Now aware of the federal outlook on impacts of energy-rel ated devel opnent activities, the state must nove decisively to fulfill its stewardship responsibilities in design and enforcenent.

During the past year in the state of Alaska, procedures have been devel oped for rational design of flexible pavenent surfaces. Equi val ent axle loads are compiled fromscalehouse data, and a traffic index has been computed which provi des for specific pavenent thi ckness. Contrary to past practices, when standard thi cknesses of 3.8 to $5.1 \mathrm{~cm}(1-1 / 2$ to 2 in.) were specified for all projects, traffic loading characteristics are now being directly utilized in design. For Tudor Road, a heavily
travel ed arterial road in Anchorage, pavenent depth was increased from the original design depth of $3.8 \mathrm{~cm}(1-1 / 2 \mathrm{in}$) to $11.4 \mathrm{~cm}(4-1 / 2 \mathrm{in}$) after use of rational design techni ques. The new desi gn procedures have not as yet been implenented for all projects because of the Iarge addi tional costs that will eventually be required.

Terminal s

Terminal s will be nentioned in the di scussi on for" other nodes. Local not or frei ght terminal s, which are now used for change- of-node operations, are primarily privately-owned warehouse facilities that are used for Iocal distribution. Such fac lities are not of prinary interest in this study.

Carriers

Common notor carriers engaged in the busi ness of transporting goods for compensation over public streets, roads, and highways in the state of Alaska must have permits issued by the Alaska Transportation Conmission (ATC). Each pernit issued contains a scope of operating authority rel ated to both comodities authorized to be transported and points which, or areas within which, services are authorized. Five operating zones, which are defined in regul ations promil gated by the ATC (see A aska Admini strative Code, 3AAC 64.530), serve as the principal guidel ines for defining areas of operating authority. Table 3 rel ates the principal Alaskan cities to these operating zones.

TABLE 3

Operating Zone	Title	Representative Cities/Areas
1	Sout heastern Al aska	Hai nes, Skagvay, J uneau, Ketchikan
2 A	Nort hwestern Alaska	Western North SI ope, Barrow None, Kotzebue
2B	Sout hwestern Alaska	Bethel, Dillingham
3	Kenai Peni nsul a	Seward, Whittier, Honer
4	North Central Al aska	Fai rbanks, Barrow North Slope
5	South Central Al aska	
5A	Valdez Subzone	Valdez, Cordova
5B	Anchorage Subzone	Anchorage
8	Kodi ak- Af ognak	Kodi ak

Source: A aska Transportation Commi ssi on. 1978. Scopebook di rectory, Mbtor Carrier Operating Authority. Anchorage.

Cities have been underlined which provide terminals on hignay links being studi ed or which are in the North SI ope regi on. ATC regul ations for notor carriers, incl uding the zonal structure, have several inplications for Iand novenent of goods to the Beaufort Sea for OCS activities.

- All zones to varying degrees except 2B and 8 will potentially carry traffic destined for the Beauf ort Sea.
- Fai rbanks, the North Sl ope haul road, and the entire Beauf ort Sea coastline are all within operating zone 4. The western border of zone 4 is Barrow, which specifically is included as
part of both zones 2A and 4. The boundary creates two operat-ing-zones for the North SI ope borough. This situation does not create any problens currently because of the lack of intervillage routes and is not expected to change dur ng the study peri od.
- The ATC' S responsibilities vis-à-vis the haul road wi 1 not change once it is officially turned over to the state. The ATC requires an operating authority if any portion of a freight hauling trip is over a public highway. Thus, all carriers currently using the haul road have been subject to ATC regul ations since public roads are used to reach it.
Carriers utilizing the narine hi ghway system are subject to ATC regul ations as if a publicland h ghway was being traveled.

Revi ew of active comon notor carrier certificales shows that adequate competition exists for all types of commodities and for all trip end pairs (Alaska Transportation Commission, 1978). If anything, there is perhaps too much competition at the present time. The certificates do not place any restrictions on the quantity of service that can be offered. Compani es' service capacity is limited only in their ability to finance the purchase of new equi pnent or to acqui re new equi pnent through lease arrangenents, usually from owner-oper at ors. Operating philosophies of the maj or freight hauling companies differ narkedly. Seal and prefers leasing, while Weaver Brothers is going excl usi vely to company- owned equi pnent (Todd, 1978).

A down-turn in notor freight demand occurred after oil pipeline construction and may last several years until construction of the gas line comences. Despite several bankruptcies which have occurred recently, the number of operating authorities will renai n constant, and the industry appears to possess the resources to expand as denand requi res.

RA L MDDE

Two railroads operate in the state of A aska, namel y the Yukon and White Pass Rai I way and the Al aska Rai I road. Nei ther are connected to other lines. Both rely on water shipnents from west coast ports to provide frei ght for trans-shipment tointerior destinations. The railroads will be di scussed separately, si nce their operations are unrel ated and serve different markets.

Yukon and White Pass Railroad

Built in the 1890's during the Klondike gold rush, the Yukon and Wite Pass Railroad is a privately-owned, narrow gauge operation connecting the cities of Skaguay, Alaska and Whitehorse in the Yukon Territory, whi ch are approxi mately 161 km (100 mi .) apart. Its principal source of revenue is hauling ore concentrate that originates at the Cyprus/ Anvil Mine in Fare. Trucks carry the ore to Whitehorse, and the railroad then delivers it to port facilities in Skagway. Traffic in the opposite di rection incl udes a substantial percentage of bul k commodities required by Whitehorse. Being an integrated transportation company, the railroad operates a contai ner ship from Vancouver to Skagway.

The railroad has been little used for shipments destined for Al aska. Its short length offers no compensating advantage for the additional change of node that must occur. Shi ppers instead have either chosen to drive the entire di stance of the $\mathbf{A l}$ aska H ghway or take a water route as far as Haines and then use the road system

Al aska Rai I road

Routes. The Al aska Railroad is operated by the Federal Railroad Administration. It has a mandate to generate internally its operating expenses, but has in recent years recei ved federal assi stance for capital improvenents. The 756 km (470-mi.) system has three single main line lengths. Two connect the ports of Whittier and Seward to Anchorage, and the third links Anchorage with Fairbanks (See Figure 6). From the point of view of Beauf ort Sea OCS activities, the system can be vi ewed as providing Fai rbanks with access to three ports- Anchorage, Whittier, and Seward. The differences in mileage from Fairbanks to each of the three ports is insufficient to make the intra-Alaska travel times and tariffs a dominant factor in choosing a port of entry. The choice depends upon whether goods are to be shi pped by rail car, contai ner or break- bul k. Whittier, where the railroad operates a roll-on/roll-off rail car facility, has a decided advantage in handling bulk freight but is Iimited to rail cars. Anchorage, on the other hand, is well equipped to handle contai ners. Seward offers the advantage of large staging areas if they are needed and adequate transfer facilities for break-bulk cargo.

Figure 6

Sea-Land and Totem ocean ? from Seattle and Tacoma to Anchorage for COFC/ TOFC movement to points on A aska Railroad Truck Connections via Sterling Highway to points on Kenai Peninsula.

Canadian National Railways
accepts freight from any
U S, rail road at interchange U. S. rail road at interchange
points for Pri nce Rupert, B. C and thence by ORR (Car' Barge Service) for novenent to The Alaska Railroad at Whittier, Alaska, for final del i very to points on The Al aska Rail road. prince rupert DELTA ALASKA TERM NAL, B. C. Al aska Hydro.Train accepts frei ght from any u.s. rail road for novenent to The Alaska Railroad via Delta Terminal, B.C. or Seattle, WA for final delivery to points on The A aska Rai Iroad.

PACIFIC ALASKA LINES, INC. ACCEPTS SH PMENTS AT PORTLAND
FOR MOVENENT TO TIE ALASKA RA LROAD AT SEMARD FOR FI NLL DELI VERY TO PO NTS IN alaska
ON TIE ALASKA RA LROAD.

Source: Al aska Rai I road, 1978,

Capacity. During 1976, which was the railroad's peak year of activity, it handl ed approxi nately 50, 000 car loads of freight (Eakland, 1978e). The railroad estimates that it could confortably handle as many as 75,000 I ong haul car loads, which would be an increase of $\mathbf{5 0 \%}$ over the 1976 figure, without acquiring additional equi pnent (Eakland, 1978e).

Capacity constraints exist on the water link of freight novenents, particularly for rain car shi pnents to Whittier. Del ays rarely occur once frei ght has arrived in Alaska. Unlike the Yukon and White Pass Railroad, the railroad does not have the advantage of operating its own shi ps. During the TAPS project limitations were imposed upon the narine leg for rail cars. This was primarily due to the fact that Crowley Maritine Corp. diverted a few of its barges from handing rail cars to support the Arctic Sea-Lift operation to Prudhoe Bay.

Presently, new traffic, such as gravel and forest products, produces shorter haul sthan trafic which is being lost. Figure 7 portrays the impact of this trend on revenue tons and revenue ton miles.

MATERBORNE MDDE

The di sparate types of waterborne transportation services that can nove goods di rectly or indi rectly to $\mathbf{A l}$ askan destinations requi re separate di scussions. A di vision into four general route structures, as follows, has been established: (1) Southeast Al aska; (2) Cook Inl et and Prince William Sound; (3) all-water services to the North Slope via the Bering Straits, and (4) the Mackenzie Ri ver corridor. Table 4 contains a

FIGRE : REVENUE TONS CARRI ED

FI GURE : REVENE TON M LES

Source: Al aska Rai I road, 1978.
summary of characteristics for applicable Alaskan ports. Table 5 provi des infornation about road mileages fromthese ports to Prudhoe Bay.

The rel ationship bet ween routes, terminals, and carriers for water transportation deserves a brief di scussion, because it rel ates to transportation impacts. Unlike I and transportation, where routes beget terminals, in water transportation the converse is true. And unlike I and transportation, whose carriers for the nost part use similar equi pment, water carriers gain competitive advantages by enploying specialized equi pment designed to maximize the efficiency of handling certain types of goods and/ or overcoming given operating conditions. Carriers must be sure that their specialized equipnent natches up with port facilities at both origin and destination. Therefore, in the di scussi ons that follow terminals and carriers will be di scussed together because of their interrel ationshi p.

Sout heast (Haines and Skaguay)
Carriers and Terminal s. The novenent of freight in sout heast Al aska consi sts of two basic systens-a state-operated narine hi ghway system and private barge operators. Foss A aska is the principal barge operator and maintains its northern base of operations in Juneau, where a contai ner handing facility has been installed. Cargo destined for Haines or Skagway is renoved from Foss Al aska barges in Juneau, placed on a wheel ed carriage, and then loaded on the nari ne hi ghway ferry for transit of the remaining di stance. Sufficient demand does not currently

	PRI MARY	PORTS	,	SECONDARY PORTS			
	Anchorage	Valdez	Whittier	Sevard		Haines	Skagwa
Deep water harbor	Yes	Yes	Yes	Yes		Yes	Yes
lce-free year-round	Partly'	${ }^{\prime}$ Yes	Yes	Yes		Yes	Yes
Capable of handling:							
U. S. origin traffic	Yes	Yes	Yes	Yes	"	Yes	Limited
Break-bul k cargo	Yes	Yes	Yes	Yes		Yes	Yes
Contai neri zed cargo	Yes	N2)	No ${ }^{21}$	No^{21}		No^{2}	Yes
Roll - on/roll-off	No	Yes	Yes.	No		No	No
Overland routing options:							
Highway	Yes	Yes	No	Yes		Yes	No
Rail	Yes ${ }^{31}$	No	Yes ${ }^{31}$	Yes ${ }^{31}$		No	Yes ${ }^{41}$
Miles from							
Giennallen	189	119	2515,	314		665	714^{61}
Delta Junction	341	271	\#35)	466		634	68361
Fai rbanks	359	367	$4215)$	484		730	779 6)

1) For Sea-Land containerships, not for standard ships or barges.
2) /Vat efficiently in volume; in moderate amounts only.
3) To Fairbanks.
4) To Whitehorse.
5) Rail to Anchorage, then highway mileage.
6) Rail to Whitehorse, then highwa y mileage.

NOTE: Lift capacities are not included in the comparison because of difficulties of comparability and relative ease of obtaining additional capacity if required.

[^0]TABLE 5
ROAD M LEAGES TO PRUDHOE BAY

V A NORTH SLOPE HAUL ROAD FROM MA OR ALASKAN PORTS

Origin	Road M I eage	Addi ti onal Road MIeage	Road Surface By Percentage
Anchorage	1,393 km (865 mi)	-	44\% paved/ 56\% gravel
Valdez	1, 404 km (872 mi)	11 km(7mi)	44\% paved/ 56\% gravel
Seward	1, 598 km (993 mi)	205 km (128 mi)	51\% paved/ 49\% gravel
Honer	1,761 km ($1,094 \mathrm{mi}$)	368 km (229 mi)	56\% paved/ 44\% gravel
Hai nes	1,877 km ($1,166 \mathrm{mi}$)	$484 \mathrm{~km}(301 \mathrm{mi})$	31\% paved/ 69\% gravel
Skagway	2, $070 \mathrm{~km}(1,286 \mathrm{mi})$	678 km (421 mi)	28\% paved/ 72\% gravel

(1) The gravel road surface consists of 516 km (321 mi .). I ocated in Canada. The Skagway Highway Improvenent Project, which is a joint effort of the U. S. and Canadi an governnents, will provi de for paving of this entire mileage over the next ten years.
(2) M leage between Skagway and Carcross under construction. Estimated compl etion date, 1979.

[^1]exi st to justify dedicated barge service to Hai nes or Skagway, and only Skagway can handle contai ners at the present time (Eakl and, 1978c). The first phase of improved barge service nould be to unl oad the trailers on the beach at Hai nes and Skagway. At a later date, contai ner handling facilities on the docks nould be added. At present, all Foss trailers going to Skagnay or Hai nes have cargo that is consumed locally in the two commities. Virtually all through trips are limited to household goods. Southeast ports offer the advantage of using a semi-protected water way, the so-called Inl and Passage. Being able to bypass the nore adverse weather conditions in the Gulf of \mathbf{A} aska has importance for certain shi ppers, even though the land mileage to Fairbanks is greater than for northern ports. A significant number of nobile hones were shi pped to Fai rbanks during the pipeline period, and this shi pping practice has been conti nued.

Capacity. The through-put capacity of the present freight system in Southeast at present is constrained by the vehicle capacity of the marine hi ghuay system ferries. The system does not provide preferential treatnent to commercial users, and Foss must make its reservations for space several nonths in advance, especially for summer travel, using the sane procedures as private users. Generally, Foss averages 17 trailer shi pments north bound in the sumer, or approxi natel y five per ferry sailing.

The existing capacity restraint should be sol ved whout difficulty as soon as additional traffic devel ops. Dock facilities at Skagway and

Haines have Iarge potential capacities.

Cook Inlet and Prince William Sound
Four maj or ports exist in the Cook Inlet and Prince William Sound areas-- Anchor age, Seward, Whittier, Valdez.

Port of Anchorage.

Description

The Port of Anchorage, which is municipally-ouned and operated, serves three primary shi pping groups year-round, which are able to operate in ice during the winter. They are users of the petrol eum oil, and I ubricant (POL) facilities, Sea-Land contai ner ships, and TOTE (Totem Ocean Trailer Express, Inc.) trailer ships. TOTE's shi ps, 240 meters (786 feet) I ong, are the I argest bei ng handled by the port. After current port improvenents have been completed, TOTE's ships will be able to unl oad at Terminal 3 where they will not interfere with the docking of other ships. Terminal 2 will continue to be used by Sea-Land, and Terminal 1 will be available for unschedul ed carriers and general cargo. The PQL facility is used by oil companies owning tanks at the port, except that Tesoro ships oil to its tanks through a pipeline fromits Nikiski refinery on the Kenai Peni nsula.

The port lacks adequate long-term hol ding or staging areas, and geographi cal constraints prevent maj or site expansion. The additional6. 9 hectares (17 acres) which is available will require expensive site i mprovenents because of drai nage probl ens. The Corp of Engi neers
provi des dredging up to the dock face at the present time. Thi s assi stance from the federal government enables the port to pay its operating costs and debt charges on capital improvenent bonds.

Capacity

The port di rector has estimated that present traffic could be increased fourfold before capacity constraints hould arise (Eakland, 1978f). Severe cost penalties that now exi st for work between midnight and 7 a.m (tripletine) will have to be nodified when traffic approaches these levels. A conbi nation of eficient ship and dock facilities and high labor productivity create high capacity estinates for the port, al though it only has three cargo terminal s.

If a capacity constraint does occur in the study period, it will be first in the level of service being offered by carriers serving the port. TOTE' s bol d entry into the Seattle/ Anchorage narket in 1975 and the introduction of a second ship in 1977 has proved that additional service was warranted. Both TOTE and Sea-Land, because of thei r competition and slightly depressed markets after pipeline construction, now have excess capacities within their existing fleets. Should denands warrant, both shi ppers can be expected to acquire additional ships.

The Port of Anchorage is content at the monent to pronote the use of specialized services best suited to its circunstances and to let the ports of Seward and Whittier exert their advantages as nat ural deepwater, ice-free ports.

Whittier.
The Al aska Railroad owns and operates a roll-on/roll-off, rail car facility at Wittier, which is a snall, land-locked commity in Prince WIliam Sound. The port was constructed during Wbrld Whr II as an al ternative to Seward, which was then the maj or port for Al aska but was felt to be vul nerable to submarine attacks. The $17.7 \mathrm{~km}(11 \mathrm{mi}$) link which connects Whittier to mainline track at Portage passes through two unl ined tunnel s. Horizontal clearances do not permit wide nobile hones to pass through the port.

Two carriers operate through Whittier, Canadi an National (CN) from Prince Rupert and Crowley Maritine from Seattle. CN makes one shi pnent a week of approxi mately twenty cars. Crowley, the primary shipper into Whittier, operates hydro-train rail barges and al so owns a train ship, which can provide encl osed shi pment of rail cars. Barges used by Crowley are consi derably larger than those used by $\mathbf{C N}$ and can hol d 50 cars. Trips are made at least weekly and consist of a tug puling tno barges in tandem Although providing a hi gher level of service, the train ship also requi res higher manning levels (33 persons compared to 5 for tugs) and recently has been renoved fromservice by Crowley for economic reasons. The ease with which interline rail shi pments can be handled both at origin and destination makes the hydro-train service popul ar for shi ppers of bul \mathbf{k} comodities to interior points.

Frei ght passing through the port of Whittier in 1976 accounted for 18\% of the railroad systemis total tonnage. Proponents of Wittier are
hopef ul that it will soneday handle nore tonnage than the Port of Anchorage. Al though a natural deepwater port, Wittier lacks road access, is limited by inadequate staging areas, and has heavy snoufalls during the winter.

Capaci ty

Whittier's capacity is limited not by terminal facilities but by the capacity of equi pnent dedi cated to hydro-train service. Alyeska's coments about logistics for pipeline construction indicate that additional capacity would have been utilized had it been available (Larsen, 1976). Rationing of capacity was used to minize interference with normal shipping patterns to Al aska. Crowley currently has equi pnent in reserve; but in periods of large, peak demands its ultinate capacity is reached before that of carriers to other northern ports.

Valdez.

Description

The importance of Val dez as a port predated pipeline activity. The town's old facilities were destroyed by a tidal wave caused by the 1964 earthquake, and new facilities have been located at the new town site. Val dez now has two maj or port areas--Alyeska's four tanker berths and the facilities that make up the Port of Valdez. The latter includes a 183-neter (600 foot) long dock and crane service, a 91.5 meter (300 foot) wharf for berthing of barges and del ivery of petrol eum products, the marine hi ghuay ferry terminal, a 61 neter (Zoofoot) fuel pier, rail-barge dock, and a snall boat harbor.

During peline construction, all materials for the southern portion of the pipe ine were shi pped to Valdez for trans-shipment by truck to work sites. he railyard was little used by the Alyeska project except for the novenent of pipe from Valdez to Fai rbanks via Whittier; however, I ocal consumption of lunber, brick, liquid gas, and heavy equi pnent was handl ed intermittently by this service. Although offering ice-free waters year-round, heavy snowfall complicates frei ght handling during the winter. Without a through-rail connection, the port has limitations, but road mileage from Valdez to Fairbanks is approximately the same as that from Anchorage to Fai rbanks and handling of roll-on/roll-of f trailers might becone feasibeif demand were increased. At present, many Valdez comodities originally enter Al aska through Anchorage.

The City of Va dez has initiated studi es to study the technical and narket feasibi ities of expanding existing dock facilities.

Capacity

The problem at the Port of Valdez does not rel ate to capacity considerations at the noment but in generating sufficient demand to attract major shi ppers who nould prov de schedul ed service. The city has denonstrated the wilingness and boncing strength to upgrade dock facilities should such projects appear feasible.

When the pi peline reaches full capacity in the late 1980's, a fifth tanker berth probably will have to be constructed.

Al-Vater Route to Prudhoe Bay via Bering Straits

Ol compani es have provided maj or sea lifts to the North Sl ope every year si nce 1970 whi ch was the year after the state lease sal es. The shi pping season is limited to the tine that open waters exist in the summer, which is usually two nonths but can be consi derably shorter as was the case in 1975.

The only port structures that exist on the North SI ope are tno 463 neter (1,520 foot) causeways that were built in 1975 to enable off-loading of iced-in barges to take place (CCC/HOK, 1978). Both causeways are owned by ARCO, whi ch operates one of the two base camps at Prudhoe Bay. A conbi nation of shal low Arctic Ocean waters near shore and the use of ocean- going tugs and barges makes lightening a necessity for getting commodities to land. The ARCO causeways are the only exception to this procedure. Li ghtening significantly increases the cost of sea lift activities as does their seasonal nature. The once-a-year novenent of goods imposes inventory penal ties at destinations and requires larger fleets than would be necessary if nore frequent shi pnents were possi ble.

Capacity

The 1970 sea lift carried nore than 169,645 metric tons (187,000 tons) to Prudhoe Bay (CCC/HOK, 1978). The short shi pping season creates a severe peaking situation for the use of barges and tugs. Even if equi pnent can be obtained, shortages are likely to occur in levels of service to other shipping routes to Al aska. I mpacts on other servi ces could be minimed if the shipping season could be extended, possibly to
even becone year-round.

Crowley has available an ice-breaking barge; otherwise no private icebreaking equi pnent is availabe to maintain open waters in the Arctic regi on. The United States Coast Guard has four ocean- going ice breakers in service at the present time. Tho additional inland water ice breakers are stationed permanently in the Great Lakes. The tuo newest ice breakers form the "Pol ar Class" that is theoretically able to break 1.8 neters (six feet) of ice continuously at the speed of $5.6 \mathrm{~km} / \mathrm{kr}$ (three knots). At I east two ice breakers, incl uding one in the "Pol ar Class," are assigned to the Arctic during the summer, but their missions are limited to installing navigational aids (RACONS), scientific research, and energency search and rescue. Except in the Great Lakes, the Coast Guard does not utilize its ice breakers to pronote shiping, since such activities constitute a subsidy of private enterprise (Eakland, 1978e). It al so might detract the agency from carrying out its regular missions. In 1975, the Coast Guard did assi st the bel eaguered sea lift operation but only when President Ford declared such an action to be in the national interest.

The capacity of ocean- going barges ranges from 1,800 to $\mathbf{1 0 , 9 0 0}$ netric tons (2,000 to $\mathbf{1 2 , 0 0 0}$ tons). An average Ioad of 4,535 netric tons (5,000 tons) has been assumed for this study.

Mackenzie River
Description. The Mackenzie Ri ver extends 1, 724 km (1, 071 mi.$)$
northwest fromits origin at Great Slave Lake to the Beauf ort Sea. Its navi gability, length, and north-south orientation have made it an important comercial waterway since fur trapping becane established in the early 1800's. Al aska lacks a comparable inl and waterway to be used to nove cargo to the North Sl ope. The east-mest Brooks Range narks the southern limit for rivers emptying into the Arctic Ocean.

The water route north begi ns at the Great Sl ave Lake whose south shore is reached by both road and railroad. From Edmonton, Northern Al berta Rai I ways go northwest to Peace River, and from there the Great SI ave Lake Rail way was built to Hay River. Northern Transportation Company Limited (NTCL), which is a Crown Corporation, provides virtually all tug and barge transportation on the MEKenzie and operates out of extensi ve terminal facilities in Hay River (Eakland, 1978b). A small barge company out of Fort Si mpson handles traffic that can be transported by truck. Principal terminal facilities for the Mackenzie Delta are at Inuvik, which is the regi on's administrative center.

Traffic can begin its northward journey in the middle of June when navi gation is first possible in Great Slave Lake. It must end by midOct ober when the lake generally freezes over. At the river's mouth, navi gable conditions exist from July to late Septenber.

Tugs and barges operating on the Mackenzie Ri ver have been especially desi gned for this purpose. Equi pnent specifications are internediate bet ween those required for ocean travel that reach the North SI ope via
the Bering Straits and those requi red for lightening. Barge drafts when loaded are 1-1/2 to 2 neters (5 to 6 feet) and sone have naxi mum river l oads as high as 1,215 metric tons (1, 340 tons). Tugs have comparable drafts, and have sufficient power--up to 4,300 horse power--to nove I oads at speeds of 18 to $22 \mathrm{~km} / \mathrm{hr}$. (10 to 12 knots). For certain offshore activities, the barges will be able to take materials directly to their destinations without the need for lightening.

When compl et in 1978, the Dempster Highay will extend from Dawson in the Yukon to the commities of Fort MtPherson, Arctic Red River, and Inuvik in the Northwest Territories. The gravel road could over tine becone an important supply route for the Mackenzie Del ta and, using barges, for Beauf ort Sea destinations. The road di stance from Skagway to Inuvik is $1,432 \mathrm{~km}$ (890 mi) , which is only 40 km (25 mi .) further than the mileage from Anchorage to Prudhoe Bay. Also, the di stance is 444 km (276 mi.$)$ shorter than the mileage from Haines to Prudhoe Bay.

Capacity. Mackenzie Ri ver trave peaked in 1972 at 426, 375 metric tons (470, 000 tons) (Berger, 1977)." he annual average si nce then has been 362,870 metric tons (400,000 tons), al though the Iong-term annual grouth rate is 9\% North bount traffic includes construction materials, heavy equi pnent, and fuels. Ore concentrates from mes near Great Bear Lake and oil from Norman Wells are the predominate commodities that are carried southbound. To accomodate the logistics for the proposed Arctic gas pipeline, the number of tugs and barges operating on the Mackenzi e nould have had to be doubl ed (Berger, 1977). Tot al ri ver
travel for the project would have been 1.5 milli on tons for three years. Arctic Gas proposed to provide its own tug and barge fleet so as not to compete for space with existing local denands. To accomodate comparable traffic denands, increased expenses for dredging and navi gational aids will be necessary.

A R MDDE

The air node has proven to be the nost flexible and reliable for travel within the state of $\mathbf{A l}$ aska, but unfortunatel y , also the nost expensive. For resource devel opment, air activities tend to be statew de for personnel but regi onal for freight. The val ue of time requi res that entire trips for personnel be made by air, but for commodities the final air link is kept as short as possible.

Routes

Passenger routes impacted nould primarily be from Anchorage to Fai rbanks and from Fai rbanks to Prudhoe Bay and Barrow, si nce the maj ority of norkers are assuned to live in Anchorage. Impact of freight routes will princi pally be those from Fai rbanks to points north. The $740 \mathrm{~km}(460$ mi.) air di stance from Fai rbanks to the North Sl ope produced an effective compromise between travel costs and time savi ngs before the Haul Road was compl eted. Greater time savi ngs were not worth additional costs, and lesser tine savi ngs were insufficient to justify the use of aircraft. The existence of the Haul Road now changes the parameters, and a greater reliance can be placed on shorter flights distributing frei ght from Prudhoe Bay. Neverthel ess, the Iack of North Sl ope staging areas and
the snaller ton-mile cost for shi pping frei ght from Fai rbanks suggests that a low to noderate number of flights will occur directly from Fai rbanks to base camps and, during the winter, directly to drill sites on the ice.

Facilities

Four maj or ai rports were studi ed for impacts, incl udi ng Anchorage International Airport, Fairbanks International Airport, Wiley Post/ Will Rogers Menorial Airport (Barrou), and Deadhorse, as well as the secondary airports in the $\begin{aligned} & \text { North } \mathrm{Sl} \text { ope Borough communities of Nuiqsutand }\end{aligned}$ Kaktovik.

Anchorage International Airport. Anchorage International Airport, which is owned and operated by the state, has three asphal t runways. Their headi ngs and di mensi ons are as follows: 6L-24R, 3, 230 meters I ong by 61 neters wide (10,600 feet long by 200 feet wide); 13-31, 1, 445 neters long by 46 neters wide (4,742 feet long by 150 feet wide), 6R-24L (10, 897 feet long by 150 wide) (FAA, 1977).

Qperations (take- offs and landings) at the Anchorage International Airport totaled 236, 000 in 1976, which is 77% of the facility's capacity as estimated in the 1971 Master PI an (Quinton-Budlong, 1971).

Vi sual operations take place $\mathbf{9 3 \%}$ of the tine (Quinton-Budlong, 1971). Strong cross winds create operational difficulties and are the primary reason for the proposed North-South runway.

Fai rbanks International Airport. The ai rport is owned and operated by the state of \mathbf{A} aska. Its tuo parallel asphal t runways having the following desi gnations and di mensi ons: IL-19R, 3, 139 meters long by 46 neters wide (10,300 feet I ong by 150 wide), 1R-19L, 975 neters I ong by 18 neters wide (3,200 feet long by 60 wide). The 1972 Master PI an estimates the current capacity of the airport to be 265,000 annual operations (R. D. Speas, 1972). Total 1976 operations were 191, 000 or 72% of capacity. Commercial operations represent 29% of the total figure, general avi ation 26% and touch-and-gos 25% The higher percentage for training operations in Fai rbanks compared to Anchorage reflects the existence in the latter city of a wel-devel oped training air field. However, a private air field does exist in the Fairbanks area and is used excl usi vel y by general avi ation, and the ai rport at Wainwright Army Base is a reserve capacity that was used by Alyeska to support pipeline activities.

Visual operations at the Fairbanks International Airport are possible 93. 3% of the time. Cross winds are not seen as a significant problem (R. D. Speas, 1972).

Deadhorse. Deadhorse which serves the Prudhoe Bay industrial commity, has a sirigle gravel runway (4-22) which measures 1,981 neters by 46 meters (6,500 feet by 150 feet). Operations total ed 15,000 in 1976, and a 33\% increase is expected by FAA over the next ten years.

The oil companies operate a separate private air fieldin the Prudhoe

Bay area that can accommodate Hercules ai rcraft and which provides reserve capacity.

Barrow (Wley Post/ Will Rogers Menorial). The Barrow airport, which is state operated, had 8, 000 operations in 1976. A si ngle asphal t runway (6-24) neasures 1,981 neters long by 46 neters wide (6,500 feet long by 150 feet wide). No capacity problens exist. Heavy fog limits operations at certain times of the year.

Kaktovik and Nuiqsut. Kaktovik is served by a single gravel runuay, which is al so used by the Barter Island DEWStation for logistics support.

Nuiqsut, a snall commity located in the Colville River Delta, has a gravel airstrip that is 762 neters long by 15 meters wide (2,500 feet I ong by 50 feet wide).

Carriers

The Alaska Transportation Commission (ATC) regul ates al common air carriers operating within the state. It cooperates with the Civil Aeronautics Board (CAB) in regulating carriers that operate interstate. ATC issues permits in three categories-- air taxi operators, schedul ed carriers, and contract carriers. Different operating rights oftentines are established for fixed wing and rotary wing (helicopters) and for certified gross takeof f weights above and bel ow 5, 670 kg. (12, 500 pounds). The largest aircraft wei ghing less than $5,670 \mathrm{~kg}$ (12,500
pounds) are the Twin Oter and Lear Jet, which have typical seating capacities of 15 persons.

Air taxi carriers are issued operating authorities that specify bases of operation. Operators must provide "safe, adequate, efficient, and continuous service from and maintain bases of operation at listed Iocations" (Al aska Transportation Comission, 1978). The I atest ATC di rectory, issued in February, 1978, lists 10 air taxi carriers having bases on the North SI ope. All may operate fixed-wing aircraft, and three may operate rotary-wing aircraft. Only two may have certified gross takeoff wei ghts above $5,670 \mathrm{~kg}$. (12,500 pounds) using fixed-wing aircraft, only one using rotary-wing aircraft. Three have their North Sl ope operations based at Barrow four at Deadhorse, and one each at Kaktovi k, Colville River, and Bettles Fi el d.

Scheduled carriers are issued authorities based on specific routes and stops. Implicit in their authority is the right to engage in contract operations where the origin is on a schedul ed route. For example, even though Alaska Airlines does not have authority as a contract carrier, it is able to provide contract services direct to North Slope locations from Anchorage or Fai rbanks.

The primary schedul ed airlines from Fairbanks to the North Sl ope is Wien which offers twice daily jet (737) service to Barrow and Deadhorse. Carriers using small equi pment are Frontier Flying Service, Inc. which soon will operate from Fai rbanks to Barrow via Anaktuvuk Pass. Sea

Airmotive operates a coastal schedule on the North Sl ope which currently incl udes destinations at Barrow, Deadhorse, and Nuiqsut. Both carriers al so have air taxi authority.

Contract carriers generally are not restricted by location in their operating authorities. Principal contract carriers for the state i ncl ude Cocal Avi ation, Inc., Northern Air Cargo, Inc., Munz Northern Airlines, Inc., and Al aska International Air, Inc.

Unlike the situation for notor carriers, the number and extent of operating authorities for air carriers in interior Al aska appears to be in line with normal demand requirenents. One reason is that permits for air taxi and schedul ed carriers are nore finely tuned by site and area than for notor carriers. Another has been the unwillingness of the ATC to approve permanent authorities for what are obviously short-term peak periods of activity. Temporary permits were issued for the 1969 air Iift to the North Sl ope which saw take- offs and Iandings average 1,000 per day. They were revoked the following year when traffic denand ret urned to nore nornal level s (Eakl and, 1978g).

Aircraft

The Hercul es C-130 is the primary aircraft ustdin Al aska for large cargo shi pments. It has a maximum payl oad of $21,130 \mathrm{~kg}$. (46,583 pounds) and a range in excess of $3,220 \mathrm{~km}(2,000 \mathrm{mi}$.)(Taylor, 1977). Its rear ramp enables it to carry vehicles and other bul ky cargo.

The Boeing 737, whi ch has been called the world's largest bush plane, serves a dual passenger-cargo carrying role in interior Alaska. The planes, operated by Wen Consolidated Air, have a sideloading freight door through which contai ners can be loaded. Operating in all-passenger configuration, 115 passengers can be accommodated. M xed passengercargo configurations are possibe which carry 26, 56 or 74 passengers behi nd a cargo compartment. Maxi mum payl oad for the 737-200 is 15, 875 kg. ($\mathbf{3 5}, 000$ pounds). Aircraft carrying this load have a range of 3, 815 km (2, 370 mi.) (Taylor, 1977).

The Dełłavilland Twi n Oter (DHC-6), whi ch has 20 passenger seats, serves several markets in Al aska that do not have sufficient demand to justify I arge capacity jets. The pl ane has a maxi mum payl oad of $1,941 \mathbf{k g}$. (4, 280 pounds) and a range of 1,450 to 1770 km (900 to $1,100 \mathrm{mi}$) (Tayl or, 1977).

NORTH SLOPE LOCAL TRANSPORTATI ON SYSTEM

The absence of an inl and surf ace transportation network, ei ther water or I and, means that transportation denands for villages and devel opnents adj acent to the proposed state/federal Beaufort Sea leasing areas are primarily met on an indi vi dual basis and not through a North SI ope di stribution system Devel opers derive no benefits from using exi sting commity infrastructures and instead create encl aves such as Prudhoe Bay. Negative social impacts of devel opnents in the region are minized, but on the other hand so are positive economic impacts, such as reducing transportation costs to existing commities. From a transportation
vi ewpoint, a better bal ance between decentralization and centralization for surface logistics would produce better efficiency.
III. TRANSPORTATI ON I MPACT ASSESSMENT FOR NON-OCS SCENARI O

Introduction

I mpacts on local, regi onal, and state-wide transportation systens resulting fromthe non-OCS scenario have tuo princi pal components -(1) normal incremental grouth acti vi ties, and (2) maj or devel opnent activities, principally construction of the Alcan gas pi peline and possibly construction of a new State capital city near Willow

The non-0CS assessment parallels the anal ysis of existing facilities in the previ ous chapter. Figure 4 in that chapter shows the potential transportation routes.

Table 6 shous the changes in empl oynent that have been forecast by the Uni versity of Al aska's Institute of Social and Economic Research for the cities of Fairbanks and Anchorage and for the entire state. Year-byyear forecasts for the Anchorage, Fai rbanks, and North Sl ope areas are shown in Tables 8, 9 and 10, respectively in Chapter IV on page 99-101. I mpacts of the Alcan gas line construction and operation were taken into account in devel oping these forecasts. As opposed to the large increases in popul ation and empl oyment that occurred in $\mathbf{A l}$ aska during the mid1970's -- the popul ation increase from 1974 to 1975 al one was 15.2%-- a small but steady grouth is forecast for the state from 1977 to 2000. As shown in Table 6, the grouth rate for Anchorage is approxi nately 50\% greater than that for the state as a whol e. Fai rbanks, on the ot her
hand, is forecast to have a lower than average grouth rate during the study period.

TABLE 6. NON OCS EMPLOYMENT FORECASTS

Location	Ti me Period	Compounded Annual Grouth Rate
Statewi de	1977-1987	2. 27%
	1987-2000	2. 59\%
	1977-2000	1. 89\%
Anchorage	1977-1987	3. 03\%
	1987-2000	3. 22\%
	1977-2000	3. 13%
Fai r banks	1977-1987	-0.39\%
	1987-2000	0. 94\%
	1977-2000	0. 36%

Source: Denni s Dooley and Associ ates, 1978.

Di scussi on of Non-0CS I mpacts

H GHMAY MDDE

Capaci ty

Table 2 in Chapter II lists exi sting traffic vol une conditions at thi rteen permanent counter locations on routes that will be potentially impacted by Beauf ort Sea OCS activities. In recent years, traffic grouth has exceeded that of the popul ation, particularly in urban areas. For intercity travel, a comp sunded annual grouth rate of 4% is assumed for the non-OCS case, which is nore than double the state-wide figure but only less than a percentage point above that for Anchorage. Results are shown in the last col um of Table 2 in Chapter ll on page 37.

Four of the thi rteen traffic stations are forecast to have design hourly
vol unes exceedi ing the average capacity of 667 vehicles per hour derived in Chapter II. Three of the locations are on the Kenai Peninsula on the route between Anchorage and Honer. The Kenai Peni nsula is a favorite recreational area for Anchorage residents and tourists. Traffic congestion is expected to be limited to summer weekends. Improvenents in roadway alignment and width for this route will be accomplished during the study period once road sections danaged during pipeline construction have been improved. The fourth location is $113 \mathrm{~km}(7 \mathrm{mi}$.$) north of$ Fai rbanks. It was chosen because no permanent counter exists that is further north al ong the Prudhoe Bay Highay. The proximity of the location to Fairbanks suggests that any congestion will be due primarily to local rather than intercity traffic. The low grouth rate forecast for Fai rbanks suggests that the assumed 4\% compounded annual grouth rate might be high in this case. of these four locations, only the latter is expected to receive any significant traffic related to gas pipeline construction.

Afifth location located 126 km (78 mi .) north of Anchorage has a forecast desi gn hourly vol une approaching 667 vehicles per hour, but the high nonthly average daily traffic in July indicates that traffic congestion, should it occur, would be rel ated to recreational traffic ori ginating in Anchorage.

Whthout a doubt, the gas pipeline will place a heavy burden on the state's highway system Figure 8 dranatically shows the increase in truck traffic that occurred for 1975 over 1970 and 1973 at vei gh scal e

stations near Tok, Valdez, Anchorage, and Fai rbanks (Federal Highway Admini stration, 1977). Mst of the increase, except perhaps for Anchorage, can be attributed to pipeline construction. The negative i mpact should be less in some respects than for the oil pipeline, because the state's reconstruction program will have enabled the roads to better handle the traffic. Al so lessons were learned during TAPS construction, and better monitoring of traffic can be expected. On the ot her hand, the longer length of the Iine neans that impacts will be felt to a greater extent in Skagway and Haines. Competition for available transportation services between Beauf ort Sea OCS I easehol ders and Al can should not pose any problens. Capacity of roads recei ving the heavi est usage during construction have been shown to be adequate, and carriers will be able to respond to virtually any denand that exists. One possible exception is the haul road, which may be used extensively by both developments. Alcan has indicated that it intends to use $\mathbf{t} \mathbf{h} \mathbf{e}$ road as a nork pad. It is expected that routine provisions for minizing di sruption of through trafic will be implenented.

Carriers

Based on pipeline experiences, the trucking industry will be able to respond to any demands that might exist in the non-OCS scenario. As previously noted, excess capacity in the industry exists at present; and in collective bargaining, unions are focusing more on job protection than on wage increases.

The Yukon and White Pass Rail road can be expected to carry si gni ficant shi pments of construction materials rel ated to construction of the gas pi peline. The cl osing in June, 1978 of the Cassiar Asbestos Corporation's operation at Cl inton Creek has casta shadow over the future financial prospects for the railroad, and subsidies may be required until substitute revenues can be generated. Conceivably, by the year 2000, traffic on the railroad could diminish to such an extent that the SkagwayCarcross road could suppl ant it for noving goods inl and to Whitehorse from the coast of Southeast Al aska.

The Alaska Railroad will be able to satisfy all foreseeable traffic denands during the study period. Expected peaking of denand for the Alcan project is offset by the loss of petroleum products that in the past have been shi pped from Anchorage to Fai rbanks. The new North Pol e refinery in Fai rbanks has el iminated the need for such shi pments. Thus, from a capacity vi expoint, the A aska Rail road will be better able to handle the gas project than the oil pipeline, although it had few problens with the latter. The prospects are for ton-miles to decrease faster than tons carried in the near future.

WATERBORNE MDDE

Sout heast

The Alcan project will certain y generate additional traffic to Hai nes and Skagway. Carriers must be able to offer through barge service to these cities to be able to capture that traffic, which means that
existing operations 'will not suffice. Additional tonnage requirenents can be net by maj or shi ppers utilizing contract carriage to neet their uni que requi rements. Improvements to dock facilities at Haines and Skagway are a likely result of the Alcan project, whether they are done by public agenci es or shi pping compani es. However, normal growth in southeast Alaska by itself will not lead to any maj or changes in service levels. The regional annual growth rate is forecast to be approximately only 1-1/2 percent for the next twenty years.

Cook Inlet and Prince William Sound

Anchorage

Both Sea-Land and TOTE will gain significant shares in the novenent of naterials and supplies for the Alcan pipeline. These shares will cone principally at the expense of shi pments that would have previ ously gone over the Al aska hi ghway. TOTE's transit tine of 2-1/2 days between Tacona and Anchorage enables it to compete effectively with any over-the-road travel through Canada. The steady grouth of the Anchorage popul ation and economy during the study period suggests the primary shippers will event ually increase their capacities. Because of the times requi red to obtain specialized ships needed by the shippers, it is possible that demand during the pipeline period will exceed capacity and sone frei ght may have to use alternate routings through Sevard.

No major improvements will be needed for the foreseeable future, although several are in the tal king stages, such as a fourth cargo terminal and a joint project between the Port of Anchorage and the Alaska Railroad for

Abstract

roll-on-roll-off, rail car facilities. The Port currently generates sufficient revenues to pay of f its bonded indebtedness on schedule as well as operating expenses. A study will soon be undertaken to perform a long-range study of port operations.

Seward

The railroad is pronoting the use of Sevard port facilities forOCSrelated activities in the northern Gulf of Alaska. The advantages are attractive. An area of 30 acres nould be made available for staging as well as a dock for servicing supply shi ps. Seward will al so be attractive to the Alcan group because the dock will have few competing users with the possible exception of OCS devel opers. Both the State of Al aska and the railroad have programed funds for use at Seward dock facilities but they wil be used for repairs rather than expanding facilities.

Whittier

Whittier will continue to be a maj or port for frei ght entering Al aska. The inability of Crowley to expand its barge service sufficiently during peak periods will lead to capacity pressures when Iarge devel opment activities occur. Devel opers will be forced to ship excess denand on contract barges to other ports, particularly Seward. As in Sevard, except on a larger scale, the Alaska Railroad is repai ring and renovating existing facilities.

Valdez

The Port of Valdez will be an important port for the Alcan project but
less so than for the TAPS pipeline because of the long hauls that will be required fromthe city to work sites. Projects of a nore Iong-term nature, such as refinery proposal s and exporting of fish and meral resources, offer nore promise to the growth prospects of the port.As facilities improve and population of the area continues to grow, Valdez should devel op into a strong regi onal distribution center for the eastern Prince William Sound area and small commities al ong the southern portion of the Richardson Highwa.

Al-Whter Route via Bering Straits

Traffic for the non-OCS case will consist of four categories, as follows: (1) cargo for NPR-A expl oration activities; (2) cargo for North SI ope Borough Commities, particularly fuel and building materials; (3) support materials for oil company activities at Prudhoe Bay, and (4) logistics support for oil and gas exploration in the Canadian Arctic. Total traffic for these activities will be considerably less than that experienced during the hei ght of expl oration and devel opnent activities at Prudhoe Bay during the early 1970's. A rough estimate would be 8-15 barges. No new port facilities are planned.

Support of NPR-A expl oration is expected to requi re annual shi pnents of 18, 145 metric tons (20, 000 tons) to Barrow until the year 1982 (CCC/HOK, 1977). Much of the cargo will be fuel, which can be del i vered consi derabl y cheaper by water than by air. For areas that cannot be served by Prudhoe Bay and, thus, by Iand transportation via the Haul Road, water travel will continue to be an important life-line despite its seasonality

Empl oynent forecasts by the Uni versity of Al aska's Institute of Social and Economic Research predi ct a steady state economy for Fai rbanks during the non-OCS Scenario, except for a pronounced peak during construction of the gas pipeline. Neverthel ess, the ai rport should show a small but steady increase because of resource expl oration and devel opment activities on the North Sl ope and in the interior and al socause of continued grouth in tourism Capacity problens will probably occur sonewhat Iater than forecast, probably in the late 1980's or early 1990's. A new naster plan, which is bei ng prepared, will examine how the additional traffic can be accommodated.

North Slope Avi ation Facilities. Capacity problens are not foreseeable at Deadhorse. In 1979, which was the peak period for ai r I ogistics to the North Slope, take- offs and Iandings averaged 1,000 per day. The exi stence of the Haul Road precl udes such intense activity in the future. From a revenue standpoint, the Alaska Department of Transportation Public Facilities encourages additional traffic at this ai r port.

Air taxi and schedul ed carriers with operations within the North Sl ope Borough should show steady grouth because of exploration in NPR-A, which will be admini stered from Barrow, and construction of the Alcan gas pi peline. Contract and schedul ed services from Barrow will be able to expand to neet peak seasonal and annual demands during study period. Increased acti vity could lead to several new permits for air taxi and schedul ed operators.

Improvenents will occur to air facilities at Kaktovik and Nuiqsut which will improve safety and operations, but they will not induce a noticeably hi gher level of service for the communities.

Non-OCS Summary

Of the four nodes anal yzed, two of them - rail and waterborne -- are not expected to experience any problens al ong routes that potentially would carry goods and passengers to and from oil and gas activities in the Beauf ort Sea. For the air node, capacity problens will be experienced at the international airports in Anchorage and Fai rbanks due to the steady grouth of the Al askan economy, the continued reliance of Al askans on air travel for intercity trips, and the increase in international travel. Traffic congestion will appear on several hi ghway routes close to urban centers or which are heavily used by weekend recreational travel ers. I ncrenent al i mprovenents, such as resurfacing, wideni ng of the road surface, and improving vertical and horizontal curves will provide for a snall increase in capacity and greater safety. For the nost part, trafic will be able travel at a level of service C, which is a free-flow condition, at all tines. Impacts due to heavy loads will result from construction of the Alcan gas pipeline, but an extensi ve reconstruction program accomplished during recent years will enable the road system to withstand heavy loads to a greater degree than occurred during TransAlaska Pi peline construction. Gas pi peline construction will cause sone competition for existing transportation services with the State's normal frei ght and passenger requi renents, particularly for
rail car barges to Whittier and shi pnents to southeastern ports of Skagway and Haines, but the availability of alternative routings will enable both types of traffic to be accomodated without substantial del ays or cost penalties.

Iv. BEAUFORT SEA OCS TRANSPORTATI ON I MPACTS

I ntroducti on

Thi s chapter di scusses the transportation impacts of the four OCS Scenarios. The anal ysis is based on an examination of annual transportation denands for each scenario. As a preliminary topic, a description of logi stics experiences encountered in the exploration and devel opnent of Prudhoe Bay and the construction of the oil pipeline is presented. Second, a final screening of transportation routes and services is made. The criteria for sel ection are similar to those used in the preliminary screening, but additional infornation provided in Chapter 2 is utilized. Finally, impact assessments are made for each of the four different types of transportation denands for each scenario.

PRUDHOE BAY/ALYESKA PI PELI NE EXPERI ENCES

Logistics patterns that evol ved to supply materials for Prudhoe Bay oil expl oration, devel opment, and production as well as construction of the TransAl aska Pi peline provide val uable lessons for the planning of any future devel opnent activities in Al aska's interior. The two activities, however, must be anal yzed separatel y, for each offers different lessons. G ven the Beauf ort Sea OCS scenari os, the Prudhoe Bay case has greater similarities regarding types of shipments and their origins and destinations. TAPS construction for its part offers a situation where available routes nore cl osel y resenble those that will be available for the Beauf ort Sea scenari os.

In the early days of Prudhoe Bay, transportation choi ces were limited to either cheaper, seasonal water transportation or nore expensive, but all year-round air transportation. These limitations produced peaks for both loads following the 1969 lease sales, first for air in the winter of 1969 and then for water the following sumer (CCC/ HOC, 1978).

Traffic patterns supporting Alyeska and Prudhoe Bay activities changed from year ta year, according to the anounts and imedi acy of transport requi rements, institutional and weather constraints, and availability of new routes and services. The last itemis particularly interesting to trace; the year 1975 represents a watershed for sever al reasons. The haul road was completed, incl udi ng the Yukon River Bridge. Al so, construction that year of a causeway extensi on at Prudhoe Bay eliminated the need for lightening. And finally, TOTE instituted its service for express del ivery to Anchorage of roll-on, roll-off trailers.

For the Alyeska revi ew operations out of Seattle and north of the Yukon Ri ver will be exam ned separately for they represent the two key points at whi ch nodal cho ce deci si ons were made.

SEATTLE

Listed bel ow is information concerning shi pments and costs for modes of travel to reach \mathbf{A} aska from \mathbf{A} yeska's Seattle support facility (Alyeska Pi peline Service Co., 1978).

Mbde	Shi prents (Short Tons)	Percent	Cost/Short Ton
Charter Barge	241, 177	65\%	\$134. 59
Rail Barge	60, 088	16\%	88. 62
Truck	37, 121	10\%	253.24
Cont ai ner Ship	27,993	7\%	164. 59
Commerci al Barge	5, 819	2\%	240.05
Air	1, 051		651.42
Source: $\begin{array}{ll}\text { Al } \\ & \text { to } \\ & \text { fa }\end{array}$	a Pipeline Brodie, Hist ty, 1976.	Co. ne Summar	dum H Larsen tle support

The data lacks consi stency since internedi ate destinations and, thus, mileage differs for each node; but the figures, neverthel ess, are representative and valid for general discussion purposes. It should be noted that the figures cover a three-year span, 1974-1976.

I nexact correspondence bet ween the cost of shi pping by mode and the act ual anounts shi pped suggests that factors other than cost entered into deci si on- making. One nould have expected consi derably more tonnage to have travel ed by rail and less by truck. Hydro-train capacity was Iimited, and Alyeska recei ved a rationing of approxi matel y one-third of the rail car space. Similarly, Sea-Land contai ner ships to Anchorage had Iimited available space until TOTE started services in late 1975. Thus, tonnage transported by truck is nore than the high cost nould suggest because of the node's flexibility and pressing tine denands by Al yeska for certain goods. Ti ne savings, however, never becane such an important factor that air freight was a serious contender for frei ght
traffic originating from Northwest states. Although costs for trucks nere almost twice as expensi ve as those for charter barges, they nere onl y 40\% of air freight costs. Truck tonnage was 15\% of the total 1974 tonnage shi pped from Seattle. The percentage declined when TOTE instituted its service from Seattle to Anchorage the following year. Its 2-1/2 day travel tine for ships enables TOTE to compete effectively with over-the-road travel to interior Al aska.

From Seattle, water traffic went to a variety of Alaskan ports. Al rail traffic was unl oaded at Whittier, which has the only roll-on, rolloff facilities in Al aska for through traffic. Otherwise, Alyeska favored Seward, which has modern freight-handling facilities for break-bulk cargo, a rail connection, and adequate staging areas. Anchorage was used primarily for contai ner shipings. Pipeline location required the port of Val dez to be used extensi vel y, but goods were shi pped to ot her ports whenever possible to minime congestion al ong the construction corri dor.

Goods that arrived in Seward or Anchorage for the nost part were switched to rail for transport to Fai rbanks. In 1975, approxi nately only 1, 500 truck loads ori gi nated from both Seward and Anchorage conpared to over 32, 000 from Fai rbanks.

NORTH OF FAl RBANKS

Goods sh prents north of Fai rbanks for pipeline construction had two distinct phases--bef ore and after construction of the haul road. Until
the Yukon Ri ver Bridge was compled in October, 1975, the river was crossed with the use of an ice bridge in winter and an aircushion transporter in the summer. Before the haul road existed, cargo and fuel requi renents for the northern portion of the pipeline were net by air and water carriers. The C- $\mathbf{1 3 0}$ Hercul es was the work horse during this period for the air node. Tonnage transported in 1974 by air anounted to 79, 689 metric tons (87,843 tons) when truck loads traveling north bound across the Yukon numbered less than 1, 000 (Alyeska Pi pel ine Service Co., 1975). During this year, barges sent di rectly to Prudhoe Bay accounted for an additional 19, 958 metric tons (22, 000 tons). A year later in 1975, a slight dipin air traffic resultedin metric tonnage of 76, 532 (84,363 tons), but truck traffic dramatically rose to $\mathbf{3 0 , 0 0 0} \mathbf{I}$ oads as the haul road becane operational. During the following year, travel on the haul road becane the dom nant node, and Hercules flights were used only during spring break- up when weight restrictions were in effect on the hi ghways (Alyeska, 1977).

FI NLL SCREEN NG
An inventory and caracity anal ysis of transportation facilities that are potentially impacted by Beaufort Sea OCS activities has been perforned by node. The final screening, drawing heavily on this infornation, incl udes backward-seeking routes from both Prudhoe Bay/Beaufort Sea and Fairbanks as shown in Figure 9. The general routings that will be examined include four that converge on Prudhoe Bay/Beaufort Sea and three on Fai rbanks. They are as follous:

DIAGRAM FOR FINAL SCREENING OF TRANSPORTATION ROUTES

FIGURE 9.
SOURCE: DENNIS DOOLEY AND ASSOCIATES, 1978

PBT. Al-nater route via the Bering Straits
PB2. Ai r node from Fai rbanks
PB3. Prudhoe Bay Highnay (Haul Road)
PB4. Mackenzie River

Routes to Fairbanks
F1. Anchorage/Kenai Peni nsul a/ Whittier
F2. Val dez
F3. Sout heast/ Al askan Highay

PB. 1 ALL- WATER ROUTE V A THE BERI NG STRA TS

This tug and barge route has been used each summer si nce the mid-1960's to support expl oration and devel opnent activities on the North SI ope and will definitely play a continuing role in transporting over-sized equi pnent and bul k comodities that origi nate outside of Al aska. The coastal and off-shore destinations in the Beaufort Sea OCS Scenarios favor this route, as do operating improvenents that have occurred and will continue to occur such as the causeway extensi ons constructed by ARCO.

PB. 2 Al R MDDE

Air travel from Fai rbanks will never regain the extrene level s that were reached before construction of the Haul Road but, neverthel ess, will remai n an important node for the novenent of passengers and certain goods to the North Sl ope. For personnel movenents, it is assumed to be
the sole carrier. For frei ght novenents, no large shi pnents will ori gi nate south of Fai rbanks. Four types of air freight service com plenent that available from other nodes. First, the air node provi des a basic level of service to base camps and Prudhoe Bay for time-sensitive and high val ue, low wei ght commodities. Second, it increases its level of service to these destinations during spring break-up when Haul Road traffic is limited. Thirdis a one-tine-only role of short duration; the node will supply base camps until a connecting haul road is constructed. Air strips, it is estimated, can be constructed in 1-1/2 months, while a road may take more than a year to build (Danes \& More, 1978). Thi s role applies specifically to Canden- Canning, which will require road links of 103 and 24 km (64 and 15 mi .). Fourth, air travel can be used to transport supplies directly to off-shore facilities when the ice is of sufficient thickness. This time period comences in January and lasts approxi matel y two nonths.

PB . 3 PRUDHOE BAY H GHMY (HAL ROAD)

The Haul Road, except when weight limits are imposed on traffic leaving Fai rbanks during spring break-up, is a year-round facility that offers reliability and flexibility to shi ppers at a noderate price. It will continue in importance as a carrier of a wide variety of comodities, ir respective of the utilization schene that is finally decided upon by the state administration. Currently all alternatives addressed by the state assume that the road will be open to industrial traffic, although some involve the imposition of tolls. During pipeline and field construction, an average of 2,722 metric tons (3,000 tons) per nonth was

MODAL SPLIT ORDER OF MAGNITUDES AND SEASONAL VARIATIONS

1
2 OCEAN WATER ROUTE (BERING STRAITS)
INLAND WATER ROUTE (MACKENZIE RIVER)
NORTH SLOPE HAUL ROAD

AIR FRAIGHT FROM FAIRBANKS

FIGURE 10.
SOURCE : DENNIS DOOLEY AND ASSOC IATES , 1978
transported over the Haul Road (Dames and More, 1978).

PB. 4 MACKENZI E RI VER

The Mackenzie Ri ver provi des an inl and waterway shi pping route that for the nost part can provide the sane services as the ocean route. It has advantages for freight originating in the eastern and mid-uestern states that can be shi pped by rail, such as steel products; and available shal ow draft equi prent of tentimes can del i ver goods to the final dest nation whout the need for lighteni ng. Use of the Dempster Highnay to provide a connection to the Mackenzie River is assuned to be insignificant. The Jones Act requires that each tug and barge nake only one stop once they have entered U. S. waters.

Beauf ort Sea Mbdal Split Order of Magnitude. Fi gure 10 shows probable order of magnitude rel ationships bet ween the four final links to the Beauf ort Sea for goods shi pnents. The figure should not be construed as a working di agram but only as a means of portraying general shi pping patterns. The figure shows that water shi pping by both routes has a short duration; but considerable tonnage is carried, neverthel ess. The Mackenzie route is expected to carry less tonnage than the Bering Straits route, principally because of the larger barges available for the latter. The air and Iand nodes are nore constant in their shipping patterns. Haul Road traffic will be nore significant in the summer and fall months but will fall off during the winter, when planes can land on off-shore ice and during the spring break-up. The downturn in truck shi prents during break-up is a result of the $\mathbf{5 0 \%}$ and $\mathbf{7 5 \%}$ load limits
i mposed by the state. The number of trucks on the road during this period nost likely will not significantly decrease.

F. 1 ANCHORAGE/ KENAI PEN NSULA WH TTI ER

All personnel are assuned to travel to Fai rbanks by air, and all frei ght by surface nodes, either railroad or truck. Honer was eliminated as a potential port because of its lack of adequate dock facilities and long road mileage. Whittier will be the preferred port of entry for bulk commodities, and Anchorage for other comodities, particularly perishables and dry stores. Seward will serve as an important secondary port recei $\mathbf{v i} \mathrm{ng}$ frei ght that is not shipped in special-handling equi pnent, such as trailers, containers, or rail cars. Rail, whether from Anchorage, Whitier, or Seward, will be the dominant node for noving comodities to Fai rbanks. Despite the favorable rates for rail shi pments, notor carriers will carry a certain anount of freight directly from Anchorage to the North Slope.

F. 2 VALDEZ

This port will be of minor significance for Beauf ort Sea OCS operations because it does not handle on a regular basis specialized equi pnent as do Anchorage and Whittier and lacks a through rail connection. The approxi natel y equal dri ving di stance to Fai rbanks from Anchorage and Valdez neans that sone truck traffic will originate here, but less than from Anchorage. Anchorage-based carriers have the advantage of atie-in with TOTE.

F. 3 SOUTHEAST/ ALASKA H GHAY

The entry of TOTE into the Al askan shi pping narket reduced the need for frei ght novenents through Canada. Certain types of freight destined for the interior, wh ch are prone to danage on the open seas, such as nobile hones, will cont nue to be shi pped via the Inl and Passage; but Beauf ort Sea housi ng modu' es wil al nost certainly be shi pped by water routes. No si gnificant activity in Southeast is expected for Beaufort Sea OCS logi stics.

Fair banks Modal Split Order of Magnitude. Goods reaching Fairbanks for the nost part will enter the ports of Whittier, Anchorage, and Seward. Mbst tonnage will then travel by rail to Fairbanks, al though some Anchorage to Fai rbanks traffic will al so occur.

Discussi on of I mpacts

Four separate types of transportation denands will be anal yzed to determine the impacts of each OCS scenario. These denands are as follows: (1) goods, naterials, and supplies to Beauf ort Sea; (2) transportation of Beauf ort Sea personnel; (3) induced statewide transportation of persons and goods, and (4) transportation of oil to markets. Each is di scussed bel ow

GOODS, MATERI ALS, AND SUPPLIES TO BEAUFORT SEA

The scenarios provide data that can be translated into approxi nate tonnage val ues by year. Esti mates of the tonnage to be carried by air, trucks, ocean barges, and river barges will be made based on costs,
availability of services, and the type and origin of cargo. The impact assessment will be based princi pally on the additional transportation denands resulting fromeach of the OCS scenarios. Although traffic forecasts were possible for some transportation facilities in the anal ysis of the non-OCS scenario, for the nost part only a qualitative assessnent was possi ble, which precl uded the devel opnent of base figures to whi ch those for the OCS scenario could be added.

TRANSPORTATI ON OF BEAUFORT SEA PERSONEL

Empl oyee figures are incl uded as part of the scenario devel opnents and permit a quantitative assessment of impacts similar to that for the previ ous category. These figures, in conj unction with assumptions about manni ng philosophi es, were used to forecast air travel denands.

I NDUCED STATE-WDE TRANSPORTATI ON OF PERSONS AND GOODS

I nduced transportation requi rements depend on the location of permanent residences of empl oyees hired di rectly or indirectly as a result of OCS devel opnent. The Nbrth Slope work camps are assumed to house onl y transi ents.

I nduced transportation denand has two components, as follous:
(1) frei ght needed to supply the induced househol ds, incl udi ng anong ot her itens building materials, household goods, and food, and (2) passenger transportation for recreational and busi ness purposes. The Iatter category for Anchorage and Fai rbanks will incl ude frequent trips by autonobile of short duration to nearby destinations and for all
regions will incl ude long, but infrequent trips by airplane.

Data does not exist to assess induced transportation demand di rectly; therefore, it is assessed qualitativel y using as an indicator enployment figures for the Anchorage, Fai rbanks, and Nbrth Sl ope regi ons. Empl oynent was chosen because data exi sts for both the non-OCS and OCS scenari os and because it rel ates closel y to househol ds, which is a basic tripgenerating unit. Empl oyment figures devel oped by ISER have been used for the anal ysis (Institute of Social and Economic Research, 1978a-d). For Anchorage and Fai rbanks, the forecast empl oynent increases for each scenario have been used di rectly. For the North SI ope region, OCS onsite empl oynent has been subtracted from that regi on's empl oynent increases to eliminate the double-counting that occurs in regi onal total s. Tables 8-10 contain empl oyment information for each of the regi ons.

TRANSPORTATI ON OF OL TO MARKETS

It may be reasonably expected that substantial increases in vol une throughput above 1.2 milli on barrels per day at the Alyeska terminal in Port Valdez will necessitate additional storage and berth capacity to be constructed. This concl usion is premised upon the notion that for a gi ven fixed number of berths there exists a finite linit to the anount of tine the berth can be occupi ed without suffering adverse economic i mpacts upon marine shi pping due to del ays incurred in arriving, loading and departing the Port of Valdez as a consequence of congestion. When a vessel arrives at Port Valdez, it nay not be able to proceed directly to

Column (1) lists the tota employment in thousands for the non-OCS
the figure in parenthesis represents the change in thousands from then the g year.
(scenario previou
Note:

Columns (2) through (5) contain the employment n thousands for each scenario above the non-0CS
case and, in parenthesis, the annua changes.
Source: Institute of Social and Economic Research, University of Alaska, 1978 .
Columns (2) through (5) contain the employment n thousands for each scenario above the non-0CS
case and, in parenthesis, the annua changes.
Source: Institute of Social and Economic Research, University of Alaska, 1978 .
Columns (2) through (5) contain the employment n thousands for each scenario above the non-0CS
case and, in parenthesis, the annua changes.
Source: Institute of Social and Economic Research, University of Alaska, 1978 .
Columns (2) through (5) contain the employment n thousands for each scenario above the non-0CS
case and, in parenthesis, the annua changes.
Source: Institute of Social and Economic Research, University of Alaska, 1978 .
Columns (2) through (5) contain the employment n thousands for each scenario above the non-0CS
case and, in parenthesis, the annua changes.
Source: Institute of Social and Economic Research, University of Alaska, 1978 .

 0.0 $00\left(0.0^{\circ}\right.$

 Note:

a berth and imedi atel y begin cargo operations. This del ay may be due to port congestion, lack of sufficient berths to handle forecast throughput, delays resulting from inclement weather, or a number of other factors.

Robert J. Nathan Associ ates, Inc., devel oped design criteria for the U. S. Army Corps of Engi neers to be applied to crude oil terminals, which can handle large vessels. These criteria are as follous:

Number of Berths	Berth Occupancy Factor (\%)
1	27
2	51
3	62
4	70
5	74
6 and over	75

Further anal ysis suggests that the current facilities of the Alyeska terminal (four berths) would provide sufficient berths to accomodate 680 vessel callings per year assuming a 1.5 day service tine per vessel. If it is assuned that the average size vessel calling at Port Valdez is 108, 862 DVFT (120,000 DWT), daily throughput is estimated to be approxinately 1,600,000 barrels. The first year that flow fromthe TransAlaska Pi peline has been projected to exceed this figure is 1981 (Danes and Mbore, 1978).

An expansi on of the crude oil facility of Port Valdez by one additional berth would allow the facility to serve approximately 900 vessel callings per year. This uould increase the potential daily throughput to greater
than 2,000, 000 barrel s per day.

TRANSPORTATI ON I MPACTS

Transportation impacts can be of three types. First, there are impacts on the level of service when a capacity restraint situation exists. The di scussi on of the non-OCS scenari o concl uded that except for local road trafic and airports in the maj or urban cities of Fairbanks and Anchorage no significant level of service impacts would occur. The reasons center on the exi stence of excess capacity, the ability of shi ppers to use al ternative nodes or ports of entry without incurring significant penalties, and the rel ative ease of carriers to increase capacities. A second type is accel erated danage to facilities, which was found to be Iimited to roadways, especi ally during break-up. The thi rd type, which has not been previ ously di scussed is the rollercoaster effect of large fluctuating demands. Given the large, short-termimpacts of gas line construction, this type of impact deserves consideration. To the extent that transportation demands rel ated to Beaufort Sea OCS tend to counter a rollercoaster effect or enforce a steady increase, transportation groups will be willing to respond in advance to forecasted increases in denand. Conversel y, to the extent that OCS demahds create or accent uate a rollercoaster effect, they may not be willing to do so.

Transportation Requi rements for OCS Devel opnent Scenarios

I NTRODUCTI ON

The types of transportation impacts as well as the considerations that go into determining the node and location of impacts have been described
in the previous section. This section concentrates on devel oping the extent of transportation denands for passenger and freight novements. The resulting data then " cads to specifics about nodal split and impacts by taking into account. the previ ous di scussi ons.

For passenger novenents to and from Beaufort Sea activities, a si mple one-step process is invol ved, since such novenents will all be carried by the air node and passengers will use Fai rbanks as an internediate or final destination except for those workers resi ding pernanently on the North Sl ope. For freight, the process is nore complex, si nce three nodes are invo ved and a total of four links ending at the Beauf ort Sea are invol ved, as shown in Figure 9. Once tot al tonnages have been established, seasonal consi derations and the breakdown of freight categories are used to establish peak and annual tonnage figures by year for each mode. For the air and road modes, onl y one link exi sts to the North Sl ope, so that a further breakdown is unnecessary. For the waterborne node, however, a further split is estimated for the two available routings -- via the Bering Straits and via the Mackenzie River.

Previ ous chapters have confirned that adequate capacity exists for al 1 transportation facilities studied, with the exception of airports at Anchorage and Fai rbanks and severs' road sections that experience heavy recreational traffic in the summer, The low nodal split for air and hi ghway modes that is projected neans that the contribution of OCS activities to congestion of these facilities will be marginal. For example, no scenario is expected to produce nore than four daily emplanings
(two round-tri ps per day).

A detailed discussion of assumptions and nethodology is presented for the Canden-Canning scenario. Briefer di scussions appear for the other scenari os, since the sane basic assumptions and nethodol ogy appl y.

CAMDEN CANN NG SCENARI O

The Canden-Canning Scenario assumes that 18 exploratory wells will be drilled between 1980 and 1987, with no nore than three wells to be drilled in any one year. An additional 520 devel opment and production wells are slated with a naxi mum of 64 in any one year (Danes and More, 1978). It is further assuned that drilling operations will require a maxi mum of 10 drilling rigs. Table 11 shows the year-by-year scheduling of the 538 wells.

Pi pel ine requi renents were devel oped assuming that pipe for under water devel opment purposes arrives coated and will have the following quantities and weights: $148 \mathrm{~km}(92 \mathrm{mi}$.$) of 30.5 \mathrm{~cm}$ (12 in) connecting pi pes at 144 netric tons (159 short tons) per mile, and 19 km (12 mi.) of 61 cm (24 in .) underwater trunk lines at 491 netric tons (541 short tons) per mile. It was further assumed that the 86 cm (34 in .) onshore trunk line tonnage requi renent hould be 429 netric tons (473 tons) per mile. The total weight to be transported is equal to 65,502 netric tons (72,204 tons) to be del ivered in three annual shi pnents averaging 21, 825 netric tons (24,068 tons) each commencing in 1988. Insul ation requirements for the above-ground portion of the pipe and for road and/ or work

CAMDEN CANN NG SCENARI O

Year	Well s	Rigs	Tonnage Short Tons	Fuel Tonnage Short Tons	Goods Tonnage Short Tons	Pi pe Tonnage Short Tons	Total Tonnage Short Tons
1980	1	(1)	1,840	1,380	1, 665		4, 885
1981	2	(1)	1, 840	2, 760	3, 330		7,930
1982		(1)	1,840	4, 140	4, 995		10,975
1983	3			4, 140	4,995		9, 135
1984	3			4, 140	4,995		9, 135
1985	19			26, 220	31, 635		57, 855
1986	34	(1)	1,840	46, 920	56, 610	24, 068	129, 438
1987	49	(2)	3, 680	67, 620	81, 585	24, 068	176, 953
1988	64	(4)	7, 360	88, 320	106, 560	24, 068	226, 308
1989	64			88, 320	106, 560		194, 880
1990	64			88, 320	106, 560		194, 880
1991	64			88, 320	106, 560		194, 880
1992	48			66, 240	80, 240		146, 160
1993	32			44, 160	53, 280		97, 440
1994	32			44, 160	53, 280		97, 440
1995	24			33, 240	39,960		73, 200
1996	16			22, 080	26, 960		49, 040
1997	8			11, 040	13, 320		24, 360
1998	8			11, 040	13, 320		24, 360
$\begin{aligned} & 1999 \\ & 2000 \end{aligned}$							

Note: Short ton figures are readily converted to metric tons using the conversi on factor 0.907

Source: Denni s Dooley and Associ ates, 1978.
pad requirements were assumed to be transported in loads whi ch needed to be cubed out.

For purposes of arriving at rel ative orders of magnitude for the shi pping requi rements, Table 11 illustrates the industrial tonnage requirenents associated with the scenario devel opment plan. Note that tonnage requirenents associated with road, pipeline, and camp construction are not incl uded. Standards associ ated with various design paraneters as they affect construction practices and attendant requi renents for equi pnent and life support systens (sewage, fuel, nai ntenance, etc.) vary so widely as to be of little utility in this di scussion. It should be remenbered that these support requi renents, al though important, are of little rel ative significance when compared to the naj or requi renents associ ated with field devel opment.

The following assumptions were used to devel op comparative val ues for shi pping requi renents during the devel opnent of each scenario: al 1 wells (exploratory and production) hould require 272 netric tons (300 tons) of casing, 1, 225 metric tons (1350 tons) of dry bul k (barite, cement, bentonite), 1, 089 netric tons (1200 tons) of fuel and approximately $\mathbf{1 4}$ netric tons ($\mathbf{3 0}$ tons) of miscellaneous consumable goods of which approxi mately $\mathbf{1 5}$ tons would arrive periodically throughout a well's drilling program an additional fuel allowance of $\mathbf{1 5 \%}$ was incl uded to represent requi rements for ancillary support (hel icopter, camp fuel, etc.); drilling rigs were assumed to weigh approxi mately 1,669 metric tons (1840 tons) each (no di stinction was made between an expl oratory drilling rig and a production drilling rig).

Mbdal split requirenents for delivery of the maj or industrial goods to the field are primar ly predi cated upon the following assumptions:

- Fuel distr bution requi renents to service the various expl oration and devel opment platforns and staging areas are not expected to be dependent upon tanker, truck or plane del ivery systens as the onshore drilling technol ogy does today.

Limited durations of sufficient sea-ice strength to accomodate truck Ioads and/or aircraft landings in close proximity to the drill rigs suggest that annual fuel stores be provided during the summer nonths. Such a system nay be reasonably provi ded by del ivery of fuel by tanker(s) and/ or barge(s) during an annual sea-lift which would then lighter to shallow draft barges that are dedi cated to a platforms annual storage requi rements. Such a strategy, however, nay be limited due to insufficient tonnage of such vessel s available in the certificated Jones Act tank vessel fleet. In that event, it is possible that fuel could be transported from Hay River in foreign vessels under a year-round charter which could relieve some requi rements for U. S. barge capacity. A fuel storage fleet nould, during the heavi est requi renents (1987-1994), nould require at least 15 fuel vessel s (13 pl atform and 2 staging areas) with an average capacity of 4, 872 DNW (5, 370 DWT) per pl atformstorage and 5,443 DWN (6,000 DWT) for each staging area for support requ renents (di esel, avi ation gas, jet fuel, etc.).

- Industrial goods tonnage are al so expected to be shi pped princi pally by the marine sea-lift. Of the assumed 1,510 metric tons (1,665 tons) of goods requi red for devel opnent of each well, it is expected that only approximately 14 netric tons (15 tons) are composed of mi scellaneous consumption goods (parts stores, etc.) that would requi re frequency of del ivery to be greater than once per year. These del iveries would be accomplished chi efly by truck except during the annual breakup period when support by air service from Fai rbanks is expected.
- The remai ning transportation services are expected to be perforned by the trucking and air nodes. The princi pal requi renents are assuned to be functions of man- power level s; namel y, consumble camp stocks and transportation for I abor force fromoil field camps to principle places of residence. Consumable camp stocks are estimated to be approxi mately 190 kg. (420 lbs.) per man- month, whi ch is based on 6.4 kg . (14 lbs.) per man- day, with peak requi renents estimated to be 1.5 times the aver age nan- month requi rements (Danes \& More, 1978).

Air Transportation

Table 12 illustrates the passenger requi rements associated with air transportation. The air di stribution of men and goods between nork camps (stagi ng areas) and work sites (rigs) is splely an oil field
transportation support service. Variations in alforms design, living quarters, stage of devel opnent, season, etc., limit seriously any general assumptions to be nade regarding service requirements by hel icopters or light planes. In any event such usage would be entirely within the oil field of operations and nould not impose limitations upon the existing transportation inf rastructure.

Di rect transportat on requirements to the work force bet ween primary areas of residence and the Arctic are expected to occur entirely by air. The figures in Table 12 are devel oped by utilizing industry labor practices man- month requi rements devel oped for the various scenarios (Danes and Moore, 1978). The number of requi red round trips to serve the I abor force in each year were approxi mated by di viding a typical crew nenber's work cycle into the number of nan- nonths projected for a particular activity. An example is that construction empl oynent is assumed to be ni ne weeks work with one week off, for a total of 10 weeks or 2-1/2 man- nont hs. Thus, 2.5 di vided into an estimate of 25 mannonths for a construction activity uould yield a demand for approximately 10 round trips. The seating required to serve these round trips was further expanded by 100% to reflect three separate factors as follows: (1) man- nonth figures used for petrol eum and construction incl ude support staff that have snaller work cycles (generally one- week on, one- week off) than those di scussed above; (2) a certain anount of excess seats must be provided so that all passengers can be accomodated, even when slight inbal ances in denand exist, and (3) the large number of short-term travel ers to work sites, e.g. inspectors, repai rnen, design

TABLE 12
CAMDEN CANN NG
A r PASSENGER SEAT REQU REMENTS

Source: Denni s Dooley and Associ ates, 1978.
engineers, etc. who are unaccounted for in manpower charts. Peak activities were devel oped by assuming that peak activity nould be approxi matel y 1-1/2 times the average nonthly man-nonths (12-1/2\% of the annual man-months)(Dames and Moore, 1978).

In addition, the assumption is made that demand is constant during the nonth and therefore the resulting number of passenger seats were di vided by 30 to arrive at an average seat demand to transport workers during the peak nonths of oil field activity. Flights per neek assumes use of a Boeing 737 in an all-passenger configuration (115 seats).

Peak air requi rements for consumale comodities were devel oped by assuming that the naj or denand upon the ai r system nould be imposed during the annual spring break- up period (duration of approximately six weeks). In addition, it was further assumed that consumption of industrial comodities and camp consumables is in direct proportion to manpower schedul es. Peak periods for man- power availability occur in the fall and winter nonths necessitating that an assumption be made of the rel ative proportion of man- power being utilized during the spring. The ai r demands for spring break- up were devel oped with the assumption that average man- nonth utilization during this period was appropriate.

Tables 13 and Table 14 illustrate the proportionate flight denands, assuming a $20,865 \mathrm{~kg}$. ($46,000 \mathrm{lb}$.) net wei ght al lowance per plane I oad, generated by consumption of canp consumables and industrial consunables. The two separate demands (industrial and camp) are combined in Table 15 to illustrate the total air freight requirements which would take place

TABLE 13
CAMDEN CANN NG
PEAK A R REQU REMENTS FOR CAMP CONSUMABLES

Year	Mbnthly Average Empl oynent (Man- Months)	Average Monthly Consumption (Pounds)	Spring Breakup 6- weeks (Pounds)	Spring Breakup F1 ights	Spring Breakup Flights Per Week (1)
1980		35, 700	53, 550	1. 16	. 2
1981	1:	60, 480	90, 720	1. 97	. 3
1982	138	57,960	86, 940	1.89	. 3
1983	110	46, 200	69, 300	1. 51	. 3
1984	273	114, 660	171, 990	3. 74	. 6
1985	698	293, 160	439, 740	9. 56	1.6
1986	1, 365	573, 300	859, 950	18. 56	3.1
1987	1, 034	434, 280	651, 420	14. 16	2.4
1988	1, 271	533, 400	800, 100	17. 39	2.9
1989	1, 125	472, 500	708, 750	15. 41	2.6
1990	1,087	456, 540	684, 810	14. 89	2. 5
1991	1, 010	424, 200	636, 300	13. 83	2. 3
1992	1,093	459, 060	688. 590	14.97	2.5
1993	1,089	457,383	686,070	4.91	2.5
1994	868	364, 560	546, 840	1. 89	2.0
1995	951	399, 420	599, 130	3.02	2.2
1996	819	343, 980	515, 970	1. 22	1. 9
1997	759	318, 780	478, 170	0.40	T*7
1998	699	293, 580	440, 370	9. 57	1.6
1999	699	293, 580	440, 370	9. 57	1.6
2000	639	268, 380	402, 570	8. 75	1.5

Notes: (1) Spring breakup flights/ week $=\left(\right.$ nonthly avg. empl.) $\times \frac{(420 \mathrm{lbs} . / \text { nan- month })}{(46,0001 \mathrm{bs} / \mathrm{aircraft})} \times \frac{(11.5 \text { months } / / \mathrm{peak})}{(6 \text { weeks } / \mathrm{peak})}$
Source: Denni s Dooley and Associ ates, 1978.

CAMDEN CANN NG
CONSUMABLE I NDUSTRI AL COMMDDI TY REQU REMENTS BY MDDE

Year	Vell s	Annual Consumable Commodities 015 Short Tons/ Wel I	Average Monthly Consumable (Short Tons)	Peak Flights per Week (1)	Peak Truck Loads per Month(2)
1980	1	15	1. 25	neg.	. 1
1981	2	30	2. 5	nea.	. 1
1982	3	45	3. 75	neq.	. 2
1983	3	45	3. 75	nea.	. 2
1984	3	45	3. 75	neg.	. 2
1985	19	285	23. 75	. 3	1.3
1986	34	510	42. 50	. 5	2.3
1987	49	735	61. 25	. 7	3. 3
1988	64	960	80.00	. 9	4. 3
1989	64	960	80.00	. 9	4.3
1990	64	960	80, 00	. 9	4.3
1991	64	960	80, 00	. 9	4. 3
1992	48	720	60.00	. 7	3. 2
1993	32	480	40. 00	. 4	2.1
1994	32	480	40. 00	. 4	2.1
1995	24	360	30. 00	. 3	1. 6
1996	16	240	20.00	. 2	1. 1
1997	8	120	10. 00	. 1	. 5
1998					
$\begin{aligned} & 1999 \\ & 2000 \end{aligned}$					

Notes: (1) Peak flights per week $=\frac{(\text { Avg. Monthly Consumables) }}{(23 \text { short tons/aircraft) }} \mathbf{x} \frac{1}{(4 \text { weeks } / \text { month })}$
(2) Peak truck 1 oads per nonth $=(\underline{\text { (Avg. Monthly Consunables) }} \times(1.5$ Avg. nonths/ peaknonth) (28 short tons/semi -truck)

Source: Denni s Dooley and Associates, 1978.

TABLE 15
CAMDEN CANN NG SCENARI 0 PEAK Al R FLI GTIS PER WEEK
(Goods Transport)

Year			
I ndustri al	Camp	Total	
1980	neg.	.2	.2
1981	neg.	.3	.3
1982	neg.	.3	.3
1983	neg.	.3	.3
1984	neg.	.6	.6
1985	.3	1.6	1.9
1986	.5	3.1	3.6
1987	.7	2.4	3.1
1988	.9	2.9	3.8
1989	.9	2.6	3.5
1990	.9	2.5	3.4
1991	.9	2.3	3.2
1992	.7	2.5	3.2
1993	.4	2.5	2.9
1994	.4	2.0	2.4
1995	.3	2.2	2.5
1996	.2	1.9	2.1
1997	.1	1.7	1.8
1998	.1	1.6	1.7
1999		1.6	1.6
2000		1.5	1.5

Note: Peak for air flights is expected to occur during spring breakup, a period of six weeks.

Source: Denni s Dooley and Associ ates, 1978.
during spring break-up peak demand periods.

Truck Transportation

Peak truck requi renents for consumable comodities were devel oped by assuming that naj or denands upon the road system nould be of a yearround nature with the exception of six weeks during the spring break- up peri od.

Total tonnage requi renents for camp consumbles were devel oped as a function of average man- nonth for the scenario, mins the tonnage del i vered by air. This gross annual truck tonnage was further adj usted by a factor of .143 (for $10-1 / 2$ months, 0.095 , multipled by 1.5) to devel op estimates of monthly peak trucking denands neasured in terns of fully utilized semi-truck loads $25,400 \mathrm{~kg}$ ($56,000 \mathrm{lbs}$). Results are shown in Table 16.

I ndustri al comodity trucking requi renents were devel oped assuming' that 13. 6 metric tons (15 tons) per well represented industrial consumption requi renents. Average nonthly requi renents were multiplied by 1.5 to reflect seasonal peak usage during the fall and winter nonths and adjusted to reneasured in terns of fully utilized semi-truck loads, $\mathbf{2 5 , 4 0 0} \mathbf{~ k g .}$ (56, 000 lbs.). Results are shown in Table 14. Total truck requirenents for industrial and camp supplies are shown in Table 17.

Yarine Transportation

Previ ous di scussi ons have established the dominance that the mari ne node is expected to have in the movement of industrial goods to the Beaufort

TABLE 16
CAMDEN CANN NG
TRUCK REQU REMENTS FOR CAMP CONSUMABLES

Year	Annual Monthly Average Empl oynent (Man- Months)	Annual Consumption (Pounds)	Truck Requi renents (minus Herc. Supplies) (Pounds)	Annual Number of Truck Loads	Peak Truck Loads Per Month
1980		428, 400	374, 850	6.7	1.0
1981	1: :	725, 760	635, 040	11.3	1.6
1982	138	695, 520	608, 580	10. 9	1.6
1983	110	554, 400	467, 460	8, 3	1,2
1984	273	1, 375, 920	1, 203, 930	21.5	3. 1
1985	698	3, 517, 920	3, 078, 180	55.0	7.9
1986	1, 365	6, 879, 600	6, 019, 650	107.0	15. 3
1987	1, 034	5, 211, 360	4, 559, 940	81.4	11. 6
1988	1, 271	6, 405, 840	5, 605, 740	100. 1	14.3
1989	1, 125	5, 670, 000	4, 961, 250	88.6	12.7
1990	1, 087	5, 478, 480	4, 793, 670	85.6	12.2
1991	1,010	5, 090, 400	4, 454, 100	79.5	11.4
1992	1,093	5, 508, 720	4, 820, 130	86.1	12. 3
1993	1,089	5, 488, 560	4, 802, 490	85.8	12. 3
1994	868	4, 374, 720	3, 827, 880	68.4	9.8
1995	951	4, 793, 040	4, 193, 910	74.9	10.7
1996	819	4, 127, 760	3, 611, 790	64.5	9. 2
1997	759	3, 825, 360	3, 309, 390	59. 1	8.5
1998	699	3, 522, 960	3, 044, 790	54.4	7.8
1999	699	3,522, 960	3, 044, 790	54.4	7.8
2000	639	3, 220, 560	2, 780, 190	49.6	7.1

Notes: (1) Peak truck I oads per nonth $=$ (annual truck loads) $\times(1.5$ nonths/ peak nonth) (10. 5 nonths truck traffic)

Source: Denni s Dooley and Associ ates, 1978.

CAMDEN CANN NG
PEAK TRUCK SERM CE REQU REMENTS PER MDNTH

Year	Industrial	Camp	Total
1980			
1981	.1	1.0	1.1
1982	.1	1.6	1.7
1983	.2	1.6	1.8
1984	.2	1.2	1.4
1985	1.3	3.1	.3
1986	2.3	7.9	9.2
1987	3.3	15.3	17.6
1988	4.3	11.6	14.9
1989	4.3	12.7	18.6
1990	4.3	12.2	17.0
1991	4.3	11.4	16.5
1992	3.2	12.3	15.5
1993	2.1	12.3	14.4
1994	2.1	9.8	11.9
1995	1.6	10.7	12.3
1996	1.1	9.2	9.3
1997	0.5	8.5	9.3
1998	0.5	7.8	8.3
1999		7.8	7.8
2000		7.1	7.1

Note: Peak truck denand is expected to occur in the fall and wi nter months, coi nci ding with peak empl oynent.

Source: Denni s Dooley and Associ ates, 1978.

Sea. The cost per ton of charter barges, as shown in Table 7, is al nost one-hal f that of the trucking node and one-fifth that of the air mode. Table 18 shous that the marine node, on a tonnage basis, will likely account for $\mathbf{9 2 - 9 8 \%}$ of naterial novenents for the Canden-Canning Scenario.

Tho marine routes will be utilized. Ocean- going tugs and barges will reach the Beauf ort Sea via the Bering Straits, and inland water tugs and barges will use the Mackenzie Ri ver. The exact breakdown of traffic bet ween these routes depends upon several factors which can only be estimated at this time. They include the source of goods and naterial s, the availability of barges, and the extent of other resource devel opment activities in the Canadi an and Alaskan Arctic regions.

Fuel, which represents approxi mately 45\% of the total tonnage (see Table 11), will nost likely cone from western ports on ocean barges. Large structures for use at drilling sites and for onshore support facilities that can be prefabricated will be constructed on the west coast where practicable and shi pped via ocean barges. Materials that are Iikely to be purchased in the Mdwest, such as steel pipe and cement, will make up nost of the Mackenzie Ri ver traffic.

Overall, $\mathbf{8 0 \%}$ of the tonnage is assumed to go on ocean barges, and the remaining $\mathbf{2 0 \%}$ by river barges. Average barge sizes of 907 netric tons ' (1,000 tons) and 4,536 metric tons (5,000 tons) have been assumed, respectivel y, for the river and ocean barges. The significantly smaller capacities of river barges result in alarger number of river than ocean
barges, despite four times as much tonnage for the latter. The 1978 sea-lift to Prudhoe Bay from Puget Sound consisted of 10 barges carrying 34, 473 metric tons (38,000 tons), or approximately 3, 629 netric tons (4,000 tons) per barge (Associ ated Press, 1978). The cargo was princi pal ly pre-fabricated modul es as opposed to bul \mathbf{k} goods.

The total marine tonnage estimated for the Canden- Canning Scenario exceeds in four years (1988-1991) the tonnage carried on the 1970 Prudhoe Bay sea-lift, which was the largest novenent of marine cargo si nce Wbrld Whr II and amounted to 169, 645 netric tons (187, 000 tons) (CCC/HOK, 1978). The I argest annual tonnage (1988) is approxi natel y $\mathbf{2 0 \%}$ greater than the 1970 figure. Tug and barge companies have a decade to build the necessary equi pnent to handle the traffic. This lead time, conbi ned with the incremental nat ure of the increase above the peak flow to date, indicates that the industry should be able to adequately respond to transportation demands for this scenario.

The excess capacity that will be available in the air and truck nodes and their proven ability to respond to sudden shifts in denand will insure that materials will reach their destination in a timely manner even if Arctic Ocean ice condions severely limit tug and barge traffic. Tine del ays are costly to capital intensive activities, such as oil and gas expl oration and devel opment. Compani es will make extensi ve use of trucks from Anchorage and Fai rbanks to keep work on schedule if the denand for the narine can not be satisfied for one reason or another.

Conbi ned peak usage denands by year are shown in Table 18.

I nduced Statewi de Transportation Demand

I nduced transportation impacts will be examined separately for the Anchorage, Fai rbanks, and North Sl ope Borough regi ons. The i mpact of i nduced denand depends upon the indi vidual annual demand indicators, the sequence of annual changes, and the percentage change conpared to the non-OCS scenario. These figures can be found on Tables 8-10.

For the non-0CS case in Anchorage, a steady increase in empl oyment occurs except for two anonalies rel ated to construction of the gas line, a sharp increase of $\mathbf{7 , 5 0 0}$ from 1979 to 1980 and a decrease of 1,100 from 1981 to 1982. That annual decrease is the only one forecast for Anchorage during the 1977-2000 study period.

The Canden- Canning Scenario shows a steadily increasing induced employnent beginning at approxi mately 100 in 1981 and reaching 8, 800 in 2000. Until 1987, its impact on the annual grouth in Anchorage is insignificant, but thereafter the effect is to double the increase in denand that nould ot herwise have occurred. In other uords, the induced empl oynent for this later period is forecasted to be greater than the non-OCS annual change. Because of the induced denand, the road systens will be less able to accomodate traffic; but the impact on intercity, routes, termina"ls, and carriers will be nore limited. Induced

TABLE 18
CAMDEN CANN NG
SUMMARY OF GOODS SH PMENTS

	Year	Annual Truck and Air Tonnage (3)				Annual Mari ne Tonnage (3)			
			I ndustrial Consunabl es	camp Consumabl es	Moda 1 Split	I ndustri al	Mbdal Split	Ocean Barges(1)	Ri ver Barges(2)
	1980		15	214	4\%	4.870	96\%	1	1
	1981		30	363	5\%	7,900	95\%	1	2
	1982		45	348	3\%	10,930	97\%	2	2
	1983		45	277	3\%	9, 090	97\%		2
	1984		45	688	7\%	9, 090	93\%	2	2
	1985		285	1, 759	3\%	57, 570	97\%	9	12
	1986		510	3,440	3\%	128, 928	97\%	21	26
	1987		735	2,606	2\%	176, 218	98\%	28	35
$\stackrel{1}{\sim}$	1988		960	3, 203	2\%	225, 348	98\%	36	45
N	1989		960	2, 835	2\%	193, 920	98\%	31	. 39
	1990		960	2, 739	2\%	193, 920	98\%	31	39
	1991		960	2, 545	2\%	193, 920	98\%	31	39
	1997		720	2, 755	2\%	145, 440	98\%	23	29
	1993		480	2,745	3\%	96, 960	97\%	16	19
	. 1994		480	2,188	3\%	96, 960	97\%	16	19
	1995		360	2, 397	4\%	72, 840	96\%	12	15
	1996		240	2, 064	5\%	48, 800	95\%	8	10
	1997		120	1,912	8\%	24, 240	92\%	4	5
	1998		120	1, 761	7\%	24, 240	93\%	4	5
	1999		0	1, 761	100\%	0	0\%	0	0
	2000		0	1, 610	100\%	0	0\%	0	0
	Notes:	(1) Ocean barges $=($ annual marine tonnage) $\times 0.80 / 5,000$ tons/barge. (2) Ri ver barges $=$ (annual mari ne tonnage) $x 0.20 / 1,000$ tons/barge. (3) Tonnage figures gi ven in short tons, which are converted to netric tons using the conversi on figure 0.907 .							

intercity travel will be a smaller percentage of total trafic because of the large amount of visitors or in-transit passengers that pass through Anchorage. A similar argument can be advanced for induced freight demand. The induced denand during the study period rei nforces the need for additional transportation facilities.

In Fai rbanks, numerous inflection points occur in the non- OCS scenario bet ween 1978 and 1983; but, thereafter, annual employment increases between 200 and 600 persons are the norm Enpl oynent induced by CandenCanning does not begin early enough to snooth out the erratic changes. Si milar to Anchorage, scenario empl oynent steadily increases and exceeds the non-OCS annual change beginning in 1988, but it never exceeds 1,000 empl oyees during the study period. Induced empl oynent throughout is roughly 15-20\% of that for Anchorage. The build-up in transportation facilities that will occur for the gas line construction, even if inadequate, will be sufficient to accomodate subsequent increases, incl uding that for the Canden- Canning Scenario.

The anal ysis of induced transportation denand in the North Sl ope Borough must consi der that nost norkers will have permanent residences outside of the regi on. To esti mate induced empl oyment, act ual on-site empl oyment for the Canden- Canning Scenario was subtracted from the regional total s. The resulting numbers (Table 10) will slightly underestimate demand, si nce local residents certainly will perform sone of the on-site tasks. Thi s subtraction was not performed for the non-OCS control numbers because the appropriate figures were unavailable. For the North SI ope

Bor ough, induced transportation denands, gi ven the use of induced empl oynent as an indicator, follows a different pattern than that for the major urban regi ons. Induced empl oynent figures are lower than for the other regi ons whi ch should nake them easier to accomodate, but as a percentage of total non- OCS enpl oynent they are hi gher. Al so, whereas induced denand increases throughout the study periodin other regions, in the North Sl ope it nore cl osel y foll ows on- si te empl oyment level s, reaching a peak in the late 1980's and then declining. The timing of the peak for this scenario, however, has the effect of reducing empl oynent losses that would otherwise occur, except for those occurring in the early 1980's. The impact of induced empl oyment in the transportation sector principally will be to increase the denand for air passenger servi ce between Barrow and Fai rbanks and to a lesser extent points further south. In conj unction with the demand for Beauf ort OCS on- site employees, an additional schedul ed flight per day might be warranted. A I arger base of denand might reduce the need for oil companies to engage in charter operations.

Summary

The Canden- Canning scenario, having the Iargest number of total wells (538) and the 1 argest number per year (64), produces the Iargest impacts due to freight transportation. It is the only scenario to have projected annual tonnage greater than that for the 1970 sea-lift. During the years of largest tonnage, the nodal split for waterborne comerce is expected to be 98\% Competition with existing demands for waterborne
transportation should be minimal. Northern Transportation Co. Ltd. can be expected to expand as necessary its fleet of tugs and barges to accommodate increased development activities in the Northest Territories and the Beaufort Sea. Oil companies wil obtainthe services of oceangoi ng tugs and barges on a charter basi s and, thus, will mi ni mize competition with exi sting schedul ed servi ces. Depl oynent of ocean-goi ng equi pnent by I arge shi pping compani es, such as Crowley Maritine, occurs on a world-wi de rather than a state-wi de basi s. Equi pnent used in the Mddle East for part of a year could be used for A aska trade the rest of the year. Exceptions are equi prent designed especially for Arctic condi ti ons.

The snall anount of tonnage that will be transshi pped through maj or Alaskan ports indi cates that only slight competition wilexist for such services as rail barges between Seattle and Whittier. The I argest estimated tonnage in one year which will enter by water and then eventually travel by air or road from Fairbanks to the Beauf ort Sea is expected to be less than 3,500 tons, or 3% of the total tonnage in that year (see Table 18).

Peak truck loads are expected when nanpower is greatest in late fall and to reach a naxi mum of 19 per nonth in 1988. C- 130 flights, which will occur during the spring breakup, peak at approxinately four flights per week in the sane year. Passenger flights will peak at approxi nately ei ght per week (1.2 per day) in 1990. Peak freight and passenger flight figures are not additive, si nce the peak denands occur at different
times of the year, freight in the spring and passengers in the late fal 1.

PRUDHOE- SMALL SCENARI O

The Prudhoe-Small Scenario slates 12 expl oration wells to be drilled between 1981 and 1987, with three wells the first year, two wells in each of the following three years, and one well during each of the next three years. In addition, 328 devel opnent and production wells are slated for field devel opnent with a maxi mum of 32 in any one year (Danes and More, 1978). It is further assumed that drilling will require five drilling rigs. Table 19 shows the year-by-year scheduling of the $\mathbf{3 4 0}$ wells.

Pipeline requi rements were devel oped assuming that pipe for under nater devel opment purposes arri ved cocited for di splacement at the following rates: 113 km (70 mi .) of 30.5 cm (12 in) connecting pipe at 144 netric tons (159 tons) per mile; 13 km (8 mi .) of $4.6 \mathrm{~cm}(18 \mathrm{in}$. underwater trunk line at 279 netric tons (' 308 tons) per mile. It was further assured that the 46 cm (18 in.) onshore trunk line tonnage requirenent was 225 metric tons (248 tons) per mile. The total weight Of pipe to be transported is equal to $\mathbf{1 6 , 6 1 4}$ metric tons (18,314 tons) to be delivered in three annual shipments averaging 5,538 metric tons (6,105 tons) each, commencing in 1986. Insulation requirements for the above-ground portions of the pi pe and for road and/ or work pad requirements were assumed to be transported in loads which needed to be cubed Out

TABLE 19
PRUDHOE- SMALL
MA OR I NDUSTRI AL REQU REMENTS

Year	Vell s	Rigs	Tonnage (Short Tons)	Fuel Tonnage (Short Tons)	Goods Tonnage (Short Tons)		Total Tonnage (Short Tons)
1980							
1981	3	(3)	1,840	4, 140	4,995		10,975
1982	2			2, 760	3, 330		6, 060
1983	2			2, 760	3, 330		6, 090
1984	2			2, 760	3, 330		6, 090
1985	1			1, 380	1, 665		3, 055
1986	1			1,380	1, 665	6, 105	9, 150
1987	17	(1)	1, 840	23, 460	28, 305	6, 105	59, 710
1988	32	(1)	1,840	44, 160	53, 280	6, 105	105, 385
1989	32			44, 160	53, 280		97, 440
1990	32			44, 160	53, 280		97, 440
1991	32			44,160	53, 280		97, 440
1992	32			44, 160	53, 280		97, 440
1993	32			44, 160	53, 280		97, 440
1994	32			44, 160	53, 280		97, 440
1995	24			33, 120	39,960		73, 080
1996	16			22, 080	26, 640		48, 720
1997	16			22, 080	26, 640		48. 720
1998							
1999							
2000							
Note:	Short ton figures are readily converted to metric tons using the conversion factor 0.907.						
Source	enni s D	and	soci ates, 197				

For the purposes of arriving at rel ative orders of magnitude for shi pping requi rements, Table 19 illustrates the industrial tonnage requi rements associ ated with the scenario devel opnent plan. It is noted that tonnage requi renents associ ated with road and pipeline construction are not stated. Standards associ ated with various design paraneters as they affect const ruction requi rements vary so widely as to be of little utility in this di scussion. It should be remenbered that these support requi renents, although important, are of little relative significance when compared to naj or requi renents associated with field devel opnent.

Modal-split assumptions are fully describedin previous Canden- Canning Scenari 0.

Air Transportation

Air frei ght requi renents for the Prudhoe-Small Scenario are nost noticeable during the period 1987-1994 when work activity and nan- power numbers are the hi ghest. Passenger requi renents peak in 1994-1995 with peak Ioad equi val ent to $\mathbf{8 0 \%}$ of the carrying capacity of a $\mathbf{7 3 7} \mathbf{j}$ et. Air support for industrial goods from Fai rbanks appears to peak in the spring breakup periods 1988-90 with denands equival ent to approximately five Hercules cargo trips per month.

Truck Transportation
The truck transportation requi rements to support the Prudhoe-Small
Scenario peak during the years 1988-91 and approach approximately 10-14 truck loads per month during the fall and winter months.

Marine Transportation
Marine transportation requirements for the Prudhoe-Small Scenario requires a maximm sea-lift of approximately 95, 254 metric tons (105, 000 short tons) of which approxi matel y 40, 061 netric tons (44, 160 tons) are fuel requi rements. The number of ocean barges for this denand is expected to be approxi mately 16 . Total marine shipping capacity nould requi re approxi matel y 36,423 DNW (40,150 DVT) for fuel transport and approxi nately 50, 167 DNM (55,300 DVT) for goods transport.

I nduced Statewi de Transportation of Goods and Passengers

Induced transportation demand for this scenario in Anchorage and Fai rbanks,

```
given the use of employment aS a primary indicator, will closely resemble
the Camden-Canning Scenario until 1987 and after that its impacts will
be approximately 30% less.
```

In the North Sl ope regi on, peak empl oynent and subsequent decreases occur at the same tine as for Prudhoe-Large; but peak enploynent is consi derably less- - 2, 700 compared to 1,400--and the decrease is spread out over a longer period of time.

Summary

Peak frei ght tonnage is approxi nately $\mathbf{6 0 \%}$ of the figure reached by the 1970 sea-lift. Peak truck loads are approxi nately 14 per nonth, and peak air frei ght flights less than three per week. Peak passenger flights are approxi matel y one per day. Al denands, being less than

TABLE 20
PRUDHOE- SMALL
A R PASSENGR SEAT REQU REMENTS

Year		Annual Round Tri ps	Peak Monthly Seat Denand (1)	Passenger Seat Denand Per Day	737 Flights (2)
1980					
1981		1, 909	239	8	0.1
1982		4, 193	524	17	0.2
1983		1,957	245	8	0.1
1984		1,957	245	8	0.1
1985		1, 208	151	5	0.0
1986		2, 936	367	12	0.1
1987		12, 992	1, 624	54	0.5
1988		14, 130	1, 766	59	0.5
1989		20, 390	2, 549	85	0.7
1990		18, 648	2, 331	78	0.7
1991		18, 840	2, 355	79	0.7
1992		18, 333	2, 292	76	0.7
1993		19, 224	2, 403	80	0.7
1994		21, 232	2, 654	88	0.8
1995		21, 232	2, 654	88	0.8
1996		19,312	2, 414	80	0.7
1997		17, 392	2, 174	72	0.6
1998		17,392	2, 174	72	0.6
1999		13, 552	1, 694	56	0.5
2000		13, 552	1, 694	56	0.5
Notes:	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \end{aligned}$	Peak nonthly de 737 flights bas	qual s 1.5 times seating capacit	age nonthly $115 .$	

Source: Denni s Dooley and Associ at es, 1978.

TABLE 21
PRUDHOE- SMALL
PEAK AI R REQU REMENTS FOR CAMP CONSUMABLES

Year	Monthly Average Empl oynent (Man-Months)	Average Monthly Consumpti on (Pounds)	Spring Breakup 6 weeks (Pounds)	Total Spring Breakup Flights	Spring Breakup Flights Per Veek(1)
1980					
1981		25, 200	37, 800	. 82	. 14
1982	1!:	72, 660	108, 990	2. 37	. 39
1983	113	47, 460	71, 190	1. 55	. 26
1984	121	50, 820	76, 230	1.66	. 28
1985	121	50, 820	76, 230	1. 66	. 28
1986	85	35, 700	53, 550	1. 16	. 19
1987	265	111, 300	166, 950	3. 63	. 60
1988	1,005	422, 100	633, 150	13.76	2. 29
1989	1,856	359, 520	539, 280	11. 72	1. 95
1990	822	345, 240	517, 860	11. 26	1. 88
1991	641	269, 220	403, 830	8. 78	1. 46
1992	647	271, 740	407, 610	8.86	1. 48
1993	600	252, 000	378, 000	8.22	1. 37
1994	659	276, 780	415, 170	9. 03	1. 50
1995	667	280, 140	420, 210	9. 14	1. 52
1996	667	280, 140	420, 210	9. 14	1. 52
1997	607	254, 940	382, 410	8. 31	1. 39
1998	547	229, 740	344, 610	7.49	1. 25
1999	547	229, 740	344, 610	7.49	1. 25
2000	427	179, 340	269, 010	5. 85	. 97

Notes: (1) Spring Breakup F1 ights/week $=\left(\right.$ nonthly avg. empl.) $\times \frac{(420 \mathrm{lbs} . / \text { nan- nonth })}{(46,0001 \mathrm{bs} . \text { ai rcraft })} \times \frac{(1.5 \text { months } / / \text { peakk })}{(6 \text { weeks } / \text { peak })}$
Source: Dennis Dooley and Associ ates, 1978.

TABLE 22
PRUDHOE- SMALL
I NDUSTRI AL COMMDD TI ES

1980					
1981	3	45	3.75	neg.	.2
1982	2	30	2.5	neg.	.1
1983	2	30	2.5	neg.	.1
1984	2	30	2.5	neg.	.1
1985	1	15	1.25	neg.	.1
1986	1	15	1.25	neg.	.1
1987	17	255	21.25	.2	1.1
1988	32	480	40.00	.4	2.1
1989	32	480	40.00	.4	2.1
1990	32	480	40.00	.4	2.1
1991	32	480	40.00	.4	2.1
1992	32	480	40.00	.4	2.1
1993	32	480	40.00	.4	2.1
1994	32	480	40.00	.4	2.1
1995	24	360	30.00	.2	1.6
1996	16	240	20.00	.2	1.1
1997	16	240	20.00	.2	1.1
1998					
1999					

(2) Peak truckl oads per week $=($ Avg. Monthly Consumables) $\times(1.5$ Avg. months/ peak month) (28 Short tons/semi-truck)

Source: Denni s Dooley and Associ ates, 1978.

TABLE 23
PRUDHOE-SMALL
PEAK A R FLI GTIS PER WEEK
(Goods Transport)

Year	Inductria.	Camn	Tota?
1980			
1981	neg.	.14	.14
1982	neg.	.39	.39
1983	neg.	.26	.26
1984	neg.	.28	.28
1985	neg.	.28	.28
1986	.2	.19	.21
1987	.4	.60	1.00
1988	.4	2.29	2.69
1989	.4	1.95	2.35
1990	.4	1.88	2.28
1991	.4	1.46	1.86
1992	.4	1.48	1.86
1993	.4	1.37	1.77
1994	.4	1.50	1.90
1995	.3	1.52	1.82
1996	.2	1.52	1.72
1997	.2	1.39	1.59
1998		1.25	1.25
1999		1.25	1.25
2000		.97	.97

Note: Peak for air flights is expected to occur during spring breakup, a period of six weeks.
Source: Denni s Dooley and Associ ates, 1978.

TABLE 24
PRUDHOE- SMALL
TRUCK REQU REMENTS FOR CAMP CONSUMABLES

Year	Annual Monthly Aver age Empl oynent (Man- Mbnt hs)	Annual Consumption (Pounds)	Truck Requi renents (minus Here. supplies) (Pounds)	Annual Number of Truck Loads	Peak Truck Loads Per Month (1)
1980					
1981	60	302, 400	264, 600	4.7	. 7
1982	173	871, 920	762,930	13.6	1.9
1983	113	569, 520	498, 330	8. 9	1. 3
1984	121	609, 840	533, 610	9.5	1.4
1985	121	609, 840	533, 610	9.5	1. 4
1986	85	428, 400	374, 850	6.7	1. 0
1987	265	1, 335, 600	1,168, 650	20.9	3.0
1988	1, 005	5, 065, 200	4, 432, 050	79.1	11.3
1989	856	4, 314, 240	3, 774, 960	67.4	9.6
1990	822	4, 142, 880	3, 625, 020	64.7	9. 3
1991	641	3, 230, 640	2, 826, 810	50.5	7.2
1992	647	3, 260, 880	2, 853, 270	51.0	7.3
1993	600	3, 024, 000	2, 646, 000	47.2	6.8
1994	659	3, 321, 360	2,906, 190	51*9	7.4
1995	667	3, 361, 680	2, 941, 470	52.5	7.5
1996	667	3, 361, 680	2, 941, 470	52.5	7.5
1997	607	3, 059, 280	2, 676, 870	47.8	6.8
1998	547	2, 756, 880	2, 412, 270	43.1	6.2
1999	547	2, 756, 880	2, 412, 270	43.1	6.2
2000	427	2, 152, 080	1, 883, 070	33.6	4.8
Notes: (1) Peak truck loads/ nonth = (annual truck loads) x (1.5 nonths/ peak nonth)					

Source: Denni s Dooley and Associ ates, 1978.

TABLE 25
PRUDHOE- SMALL
TRUCK SERM CE REQU REMENTS

Year			
	I ndustrial	Camp	Total
1980			
1981	.2	.7	.9
1982	.1	1.9	2.0
1983	.1	1.3	1.4
1984	.1	1.4	1.5
1985	.1	1.4	1.5
1986	.1	1.0	1.1
1987	1.1	3.0	4.1
1988	2.1	11.3	13.4
1989	2.1	9.6	11.7
1990	2.1	9.3	11.4
1991	2.1	7.2	9.3
1992	2.1	7.3	9.4
1993	2.1	6.8	8.9
1994	2.1	7.4	9.5
1995	1.6	7.5	9.1
1996	1.1	7.5	8.6
1997	1.1	6.8	7.9
1998		6.2	6.2
1999		6.2	6.2
2000		4.8	4.8

Note: Peak truck denand is expected to occur in the fall and winter nonths, coi nci di ng with peak empl oynent.

Source: Denni s Dooley and Associ ates, 1978.

TABLE 26
PRUDHOE- SMALL
SUMMARY OF GOODS SH PMENTS

Year		Annual Truck and Air Tonnage (3)			Annual Mari ne Tonnage (3)			
		I ndustrial Consumables	$\begin{gathered} \text { Canp } \\ \text { Consunabl es } \end{gathered}$	Modal Split	I ndustrial	Modal Split	$\begin{aligned} & \text { Ocean } \\ & \text { Barges(1) } \end{aligned}$	$\begin{aligned} & \hline \text { Ri ver } \\ & \text { Barges(2) } \end{aligned}$
	1980	0	0	0\%	0	0\%	0	0
	1981	45	151	1\%	14,479	99\%	3	3
	1982	30	436	8\%	5, 594	92\%	1	1
	1983	30	228	4\%	5, 832	96\%	1	1
	1984	30	305	6\%	5, 755	94\%	1	1
	1985	15	305	10\%	2, 735	90\%	1	0
	1986	15	214	3\%	8,921	97\%	1	2
\|	1987	255	668	2\%	58, 787	98\%	9	12
	2988	480	2, 533	3\%	102, 372	97\%	16	20
$\stackrel{\sim}{\sim}$	1989	480	2, 157	3\%	94, 803	97\%	15	19
	1990	480	2, 071	3\%	94, 889	97\%	15	19
	1991	480	1, 615	2\%	95, 345	98\%	15	19
	1992	480	1, 630	2\%	95, 330	98\%	15	19
	1993	480	1, 512	2\%	95, 448	98\%	15	19
	1994	480	1, 667	2\%	95, 293	98\%	15	19
	1995	360	1, 681	3\%	71, 039	97\%	11	14
	1996	240	1, 681	4\%	46, 799	96\%	7	9
	1997	240	1, 530	4\%	46,950	96\%	8	9
	1998	0	1, 378	100\%	0	0\%	0	0
	1999	0	1,378	100\%	0	0\%	0	0
	2000	0	1, 076	100\%	0	0\%	0	0

Notes: (1) Ocean barges $=$ (annual marine tonnage) $\times 0.80 /(5,000$ tons/barge).
(2) Ri ver barges $=($ annual mari ne tonnage) x 0. 20/(1,000 tons/barge).
(3) Tonnage figures gi ven in short tons, which are converted to metric tons using the conversi on factor 0.907.

Source: Denni s Dooley and Associ ates, 1978.
what has been accompl ished during recent years, should be net with little difficulty by shi ppers.

CAPE HALKETT SCENARI 0

The Cape Hal kett Scenario has ei ght exploration wells which will be drilled between 1985 and 1989 and 160 additional wells associ ated with field devel opnent (Danes and More, 1978). Two expl oratory wells are to be drilled in 1985 with three wells the following year and one well each year for the subsequent three years. Production drilling commences in 1990 and proceeds to 1998 with a total of 160 wells drilled for field devel opnent. It is expected that the naxi mum number of wells drilled will not exceed 24 in any one year.

Pi peline tonnage requirenents were developed assuming that pipe for underwater devel opnent purposes arrived sufficiently coated to neutralize the pi pe's buoyancy. Tonnages were devel oped with the following assumptions: 6.8 km (42. mi.) of 30.5 cm (12 in .) connecting pipe at 144 netric tons (159 short tons) per mile; 66 km (41 mi) of underwater trunk line at 429 metric tons (473 short tons) per mile. It was further assuned that the onshore trunk line tonnage requir renent was 144 netric tons (159 short tons) per mile. The total wei ght of pipe to be transported is equal to 29,025 netric tons (31,995 short tons) to be delivered in three annual shipnents averaging' 9, 675 metric tons ($\mathbf{1 0 , 6 6 5}$ tons) each, comencing in 1989. Insul ation requi renents for the above- ground portions of the pipe and for road and/ or work pad requi renents were assumed to be transported in loads whi ch need to be cubed out.

Table 27 illustrates the industrial tonnage requi rements associated with the scenario devel opment plan. Assumptions for passenger air service are descri bed in Canden- Canning Scenario.

Air Transportation

Air transportation requi renents are nost noticeable during the 1993-99 time period. Passenger seat requirements peak with a demand of approximately 67 seats per day. This demand is expected to recur during peak peri ods of empl oynent

Air support for indus:rial and camp goods routed through Fai rbanks are expected to peak during the period of hi gh empl oyment and construction activity in the Iate fall and early winter nonths. Cape Halkett's maj or camp location renoved from an over-land road coupl ed with di stance of approxi natel y 150 km (93 mi) fromPrudhoe Bay suggests that air support will be the naj or node by which consumable industrial and camp goods will be transported. It is expected that during the peak period of 1991 a servi ce level equi val ent to three-four Hercules flights per week will be adequate to service the denand generated in this scenario.

Truck Transportation

The truck transportation requi renents to support the Cape Halkett Scenario appear to be negligible. The di stance fromthe Prudhoe complex, lack of an over-land road system low tonnage requi rements-all conbi ne to encourage an operator to utilize air service rather than attempt to maintain an over-ice route for three-four nonths per year.

TABLE 27
CAPE HALKETT
MAJ OR INDUSTRI AL REQU REMENTS

Year	Wells	Rigs	Tonnage (Short Tons)	Fuel Tonnage (Short Tons)	Goods Tonnage (Short Tons)		$\begin{gathered} \text { Total } \\ \text { Tonnage } \\ \text { (Short Tons) } \end{gathered}$
1980							
1981							
1982							
1983							
1984							
1985	2	(2)	3,680	2,760	3, 330		9,770
1986	3	(1)	1,840	4, 140	4,995		10, 975
1987	1			1, 380	1, 665		3, 045
1988	1			1, 380	1. 665		3, 045
1989	1			7, 380	1, 665	10, 665	13, 710
1990	8			11, 040	13, 320	10, 665	35, 025
1991	16			22, 080	26, 640	10,665	59, 385
1992	24			33, 120	39, 960		73, 080
1993	24			33, 120	39,960		73, 080
1994	24			33, 120	39, 960		73, 080
1995	24			33, 120	39, 960		73, 080
1996	24			33, 120	39, 960		73, 080
1997	8			11, 040	13, 320		24, 360
1998	8			11, 040	13, 320		24, 360
1999							
2000							

Note: Short ton figures are readily converted to metric tons using the conversi on factor 0.907.
Source: Denni s Dooley and Associ ates, 1978.

Marine Transportation

Marine transportation requi renents for the Cape Halt Scenario require sea-lift operations which would peak during the period 1992-96 in the order of 66, 210 metric tons ($\mathbf{7 3}, 00$ tons) of which approxi mately $\mathbf{3 0}, 040$ metric tons (33,120 tons) are fuel requi rements. During this period, twel ve ocean barges have been forecast and 14 river barges. Tot al narine shi pping capacity at peak nould requi re approxi mately $\mathbf{2 7}$, 215 DWM (30,000 DWT) for fuel transport and approxi natel y 32, 658 DWN (36,000 DVT) for goods transport.

Induced Statewi de Transportation of Goods and Passengers

This scenario in Fairbanks and Anchorage for any given year will have less of an impact frominduced transportation denands than for any of the other three scenarios (see Tables 8-10).

In the North Sl ope regi on, peak induced empl oyment is forecast to be 1,500, or slightly nore than that for Prudhoe-Small. However, this peak occurs in 1990, three years Iater than that for Prudhoe-Small, with the result that Cape Hal kett trends tend to cancel out fluctuations appearing in the non-OCS scenario at that time.

Summary
The Cape Hal kett scenario has the lowest number of total wells (340) and wells in any one year (24) and, consequently, its impacts areless than those of the other scenarios. Total freight tonnage does not exceed 66, 224 netric tons (73,380 tons) in any one year. Peak air freight slights do not exceed four per week, despite the fact that road travel

TABLE 28
CAPE HALKETT
Al R PASSENGER SEAT REQU REMENTS

Year		Annual Round Tri ps	Peak Monthly Seat Denand (1)	Passenger Seat Denand Per Day	737 Fli ${ }^{2}$ ghts (2)
1980					
1981					
1982					
1983					
1984					
1985		955	119	4	0.0
1986		2, 199	275	9	0.1
1987		2, 839	355	12	0.1
1988		640	80	3	0.0
1989		1, 654	207	7	0.1
1990		4, 511	564	19	0.2
1991		9,963	1, 245	42	0.4
1992		8, 774	1,097	37	0.3
1993	-	16, 077	2, 010	67	0.6
1994		15, 792	1,974	66	0.6
1995		15, 984	1,998	67	0.6
1996		15, 984	1,998	67	0.6
1997		15,984	1,998	67	0.6
1998		14, 704	1,838	61	0.5
1999		14, 704	1,838	61	0.5
2000		12, 784	1, 598	53	0.5
Notes:	$\begin{aligned} & (1) \\ & (2) \end{aligned}$	Peak nonthly 737 flights	ual s 1.5 ti mes eating capacit	$\begin{aligned} & \text { age nonthly } \\ & \text { 115. } \end{aligned}$	

TABLE 29
CAPE HALKETT
PEAK AI R REQU REMENTS FOR CAMP CONSUMABLES

Year	Mont hly Aver age Empl oyment Man- Mont hs	Average Monthly Consumption (Pounds)	Peak Monthly Consumption (Pounds)	Peak Flights Per Month	Peak Per	Flights Week
1980						
1981						
1982						
1983						
1984						
1985	30	12, 600	18,900	. 41		. 10
1986	83	34, 860	52,290	1.14		. 29
1987	113	47, 460	71, 190	1. 55		. 39
1988	29	12, 180	18, 270	. 40		. 10
1989	135	56, 700	85, 050	1. 85		. 46
1990	432	181, 446	272, 160	5. 92		1. 48
1991	884	371, 280	556, 920	12. 11		3. 03
1992	606	254, 520	381, 780	8. 30		2. 08
1993	527	221, 340	332, 010	7. 22		1. 81
1994	497	208, 740	313, 110	6. 81		1. 70
1995	503	211, 260	316, 890	6. 89		1. 72
1996	503	211, 260	316, 890	6. 89		1. 72
1997	503	211, 260	316, 890	6. 89		1. 72
1998	463	194, 460	291, 690	6. 34		1.59
1999	. 463	194, 460	291, 690	6. 34		1. 59
2000	403	169, 260	253, 890	5. 52		1. 38

Nbtes: (1) Spring breakup flights/ week $=\left(\right.$ Monthly Avg. Empl.) $\times \frac{(420 \mathrm{lbs} . / \text { man- month })}{(46,000 \mathrm{lbs} / \text { aircraft })} \times \frac{(1.5 \text { nonths } / \text { peak nonth })}{(4 \text { neeks } / \text { month })}$ Source: Denni s Dooley and Associ ates, 1978.

TABLE 30
CAPE HALKETT
I NDUSTRI AL COMMDD TIES

Year	Vell s	Annual Consunable Commoditi es 015 Short Tons/ Vell I	Average Monthly Consumption (Short Tons)	Peak Flights Per Veek (1)
1980				
1981				
1982				
1983				
1984				
1985	2	30	2. 50	. 03
1986	3	45	3. 75	. 04
1987	1	15	1. 25	. 01
1988	1		1. 25	. 01
1989	8	1; ;	10. 00	. 11
1990	16	240	20. 00	. 22
1991	24	360	30.00	. 33
1992	24	360	30.00	. 33
1993	24	360	30.00	. 33
1994	24	360	30. 00	. 33
1995	24	360	30.00	. 33
1996	24	360	30.00	. 33
1997	8	120	10.00	. 11
1998	8	120	10. 00	. 11
1999				
2000				
Not es:	(1) Peak Flights per		= (Avg. Mb	y Consum
			(23 Short Tons/ai rcraft)	

Source: Denni s Dooley and Associ ates, 1978.

TABLE 31
CAPE HALKETT
peak al r fligits per veek (Goods Transport)

Year	I ndustri al	Camp	Tot al

1980			
1981			
1982			
1983			
1984			
1985	. 03	. 10	. 13
1986	. 04	. 29	. 33
1987	. 01	. 39	. 40
1988	. 01	. 10	. 11
1989	. 11	. 46	. 57
1990	. 22	1.48	1.70
1991	. 33	3.03	3.36
1992	. 33	2.08	2.41
1993	. 33	1.81	2.14
1994	. 33	1.70	2.03
1995	. 33	1.72	2.05
1996	. 33	1.72	2.05
1997	. 11	1.72	1.83
1998	. 11	1.59	1.70
1999 -		1.59	1.59
2000		1. 38	1. 38

Note: Peak for air flights is expected to occur during spring breakup, a period of six weeks.

Source: Dennis Dooley and Associ ates, 1978.

TABLE 32
CAPE HALKETT
SUMMARY OF GOODS SH PMENTS

		Annual Truck	Air Tonnag			Marine	ge (3)	
	Year	Industrial Consumables	Camp Consumables	Modal Split	I ndustrial	Mdal Split	Ocean Barges(1)	Ri ver Barges(2)
	1980							
	1981							
	1982							
	1983							
	1984							
	1985	30	76	1\%	9, 664	99\%		2
	1986	45	209	2\%	10, 721	98\%	2	2
品	1987	15	285	10\%	2,745	90\%	1	1
ज	1988	15	73	3\%	2,957	97\%	1	1
	1989	120	340	3\%	13, 250	97\%	2	3
	1990	240	1,089	4%	33, 696	96\%	5	7
	1991	360	2,228	4\%	56, 797	96\%	9	12
	1992	360	1,527	3\%	71, 193	97\%	12	14
	1993	360	1,328	2%	71, 392	98\%	12	14
	1994	360	1,252	2\%	71, 468	98\%	12	14
	1995	360	1,268	2\%	71, 452	98\%	12	14
	1996	360	1,268	2\%	71, 452	98\%	12	14
	1997	120	1,268	6\%	22, 852	94\%		5
	1998	120	1,167	100\%	0	0\%	8	0
	1999	0	1,167	100\%	0	0\%	8	0
	2000	0	1,016	100\%	0	0\%	0	0

Notes: (1) Ocean barges $=$ (annual marine tonnage) $\times \mathbf{0 . 8 0 / (5 , 0 0 0}$ tons/ barge).
(2) Ri ver barges $=($ annual narine tonnage) $x 0.20 /(1,000$ tons/barge).
(3) Tonnage figures gi ven in short tons, which are converted to metric tons using the conversion factor 0.907 .

Source: Dennis Dooley and Associ ates, 1978.
is considered negligible due to the expense that nould be requi red to construct and nai ntain a road to the nearest shoreline.

PRUDHOE- LARGE SCENARI O

The Prudhoe- Large Scenario has 14 expl oration wells to be drilled bet ween 1981 and 1987 and an additional 290 devel opnent wel Is during he peri od 1986-1995. It is expected that the naxi mum number of wells dr. 11ed will not exceed 48 in any one year.

Pi peline tonnage requi renents were devel oped assuming that pipe for underwater devel opnent purposes arrived sufficiently coated to neutralize the pi pe's buoyancy during construction. Tonnages were devel oped with the following assumptions: 116 km (72 mi .) of 30.5 cm (12 in) connecting pipe at 144 metric tons (159 short tons) per mile; 13 km (8 mi) of underwater trunk line at 862 metric tons (950 short tons) per mile. It was further assuned that the onshore trunk line tonnage requi renent was 406 metric tons (447 short tons) per mile. The total weight of pipe to be transported in equal to 24,215 metric tons (26,700 tons) to be del ivered in three annual shi pnents averaging 8,072 netric tons (8,900 tons) each com nencing in 1989. Insul ation requi renents for the above-ground portions of the pipe and for road and/ or work pad requi rements were assumed to be transported in loads which need to be cubed out.

Table 33 illustrates the industrial tonnage requirenents associated with the scenario devel opment plan. Assumptions for nodal split and air
passenger servi ce are described in Camden-Canning Scenario.

Mari ne Transportation

Marine transportation requi rements for the Prudhoe-Large Scenario require maxi mum sea-lift operations which would peak during the period 1988-1991 in the order of 134, 260 netric tons (148, 000 tons) of which approxi matel y 59, 875 metric tons (66,000 tons) are fuel requi renents. Total marine shipping capacity at peak denand nould require approximately 54, 431 DWMT (60, 000 DWT) for fuel transport and approximately 65,317 DWM (72, 000 DWT) for goods transport.

Air Transportation

Air transportation requi renents are nost noticeable during the 1989-92 tine period. Passenger seat requi renents peak with a denand of approximatel y 146 seats per day.

Air support for industrial and camp goods routed through Fai rbanks are expected to peak during periods of spring break-up in the years 1987 and 1988 with denands equi val ent to approximately ni ne Hercul es cargo trips per month.

Truck Transportation
Truck transportation requi rements to support the Prudhoe-Large scenario peak during the years 1988-89 approaching approxi nately 24 truck loads per month during the fall and winter nonths.

I nduced Statewi de Transportation of Goods and Passengers

The trends for induced transportation denands that were observed for Canden- Canning Iargely hol d true in the Prudhoe-Large Scenario. The principal difference bet ween the impacts is that the hi gher employment figures for this scenario accent uate the trends.

For the Anchorage regi on, induced empl oynent steadily increases. After 1985, it not only exceeds the non- $0 C S$ annual change but in many cases is approxi natel y twi ce the change. In 2000, the induced enpl oynent represents an 8.4% increase over the base figure for that year.

The situation in Fai rbanks similarly resenbles that for the CandenCanning Scenario. A slightly hi gher, steady increase occurs which should be easily accommodated.

In the North Sl ope region, this scenario accentuates an existing rollercoaster pattern that Canden- Canning hel ped reduce. The reason is that peak empl oynent for this scenario occurs two years before that for Canden- Canni ng. From 1987 to 1988, induced enpl oynent drops from 2, 400 to 400 at the same tine that empl oyment for the non-OCS scenario is al so decreasi ng. Peak induced empl oynent is expected to occur in 1986 and be 2, 700 persons, which is 50% of the total non-OCS empl oynent. Freight requi rements $\mathbf{W} 11$ be increased substantially since mach of the induced empl oynent wil' be used for local public works projects. Regi onal carriers will be able to absorb this demand on top of requirenents for Beauf ort Sea activities. Local carriers wi be able to get increased

TABLE 33
PRUDHOE BAY- LARGE
MA OR I NDUSTRI AL REQU REMENTS

Year	Well s	Ri gs	Tonnage (Short Tons)	Fuel Tonnage (Short Tons)	Goods Tonnage (Short Tons)	Pi pe Tonnage (Short Tons)	Tot al Tonnage (Short Tons)
1980							
1981	3	(3)	4,520	4, 140	4,995		13, 655
1982	2			2, 760	3, 330		6, 060
1983	2			2, 760	3, 330		6, 060
1984	2			2, 760	3, 330		6, 060
1985	2			2, 760	3, 330	8,900	6, 060
1986	17	(1)	1,840	23, 460	28, 305	8,900	62, 505
1987	34	(2)	3, 680	46, 920	56, 610	8,900	116, 110
1988	48	(1)	1,840	66, 240	79, 920		147, 990
1989	48			66, 240	79, 920		146, 150
1990	48			66, 240	79, 920		146, 150
1991	48			66, 240	79, 920		146, 150
1992	48			66, 240	79, 920		146, 150
1993	32			44, 160	53, 280		97, 440
1994	16			22, 080	26, 640		48, 720
1995	2			2, 760	3, 330		6, 060
1996 (
1997							
1998							
1999							
2000							
Note:	Short ton figures are readily converted to metric tons using the conversion factor						
Sour	enni s	and	soci ates, 1978				

TABLE 34
PRUDHOE BAY-LARGE
A R PASSENGER SEAT REQU REMENTS

Year	Annual Round Tri ps	Peak Monthly Seat Denand (1)	Passenger Seat Denand Per Day	737 Fl ights (2)
1980	91	11	0	0.0
1981	4, 049	506	17	
1982	3, 119	390	13	
1983	1,861	233	8	
1984	1,861	233	8	
1985	1,954	244	8	
1986	2, 824	353	12	0.1
1987	21, 278	2, 660	89	0.8
1988	22, 103	2, 763	92	0.8
1989	35, 120	4, 390	146	1.3
1990	35, 120	4,390	146	1. 3
1991	35, 120	4,390	146	1. 3
1992	35, 120	4, 390	146	1. 3
1993	31, 280	3,910	130	1.7
1994	30, 000	3, 750	125	-
1995	26, 640	3, 330	111	1.8
1996	26, 640	3,330	111	8
1997	26, 640	3,330	111	8
1998	26, 640	3, 330		8
1999	26, 640	3, 330		
2000	26, 640	3,330	111	1.0
Notes:	Peak nonthly 737 flights	equal s 1.5 tin seating capac	age nonthly d $15 .$	

Source: Dennis Dooley and Associ ates, 1978.

TABLE 35
PRUDHOE BAY- LARGE
PEAK AI R REQU REMENTS FOR CAMP CONSUMABLES

Year	Monthly Aver age Enpl oyment (Man- Mont hs)	Average Monthly Consumption (Pounds)	Spring Breakup 6 - weeks (Pounds)	Spring Breakup Flights	Spring Breakup Flights Per Keek
1980	60	25, 200	37, 800	. 82	. 14
1981	168	70, 560	105, 840	2. 3	. 38
1982	110	46, 200	69, 300	1. 51	. 25
1983	119	49,980	74, 970	1. 63	. 27
1984	119	49,980	74, 970	1. 63	. 27
1985	132	55,440	83, 160	1.81	. 30
1986	256	107, 520	161, 280	3.51	. 58
1987	1,833	769, 860	1, 154, 790	25. 10	4. 18
1988	1, 686	708, 120	1, 062, 180	23. 09	3.85
1989	1, 101	462, 420	1693, 630	15. 08	2. 51
1990	1,101	462, 420	693, 630	15. 08	2.51
1991	1,101	462, 420	693, 630	15. 08	2.51
1992	1,101	462, 420	693, 630	15. 08	2. 51
1993	981	412, 020	618, 030	13. 44	2. 24
1994	941	395, 220	592, 830	12. 89	2.15
1995	836	351, 120	526, 680	11.45	1.91
1996	821	344, 820	517, 230	11. 24	1.87
1997	821	344, 820	517, 230	11. 24	1. 87
1998	821	344, 820	517, 230	11. 24	1. 87
1999	821	344, 820	517, 230	11.24	1. 87
2000	821	344, 820	517, 230	11. 24	1.87
Notes:	Pounds' are converted into netric tons using the conversion factor 0.000456.				
Source	Denni s Doole	d Associ ates			

TABLE 36
PRUDHOE BAY-LARGE
CONSUMABLE I NDUSTRI AL COMMDD TY REQU REMENTS BY MDDE

TABLE 37
PRUDHOE BAY-LARGE
PEAK Al r flights per veek
(Goods Transport)

Year	I ndustri al	Canp	Tot al
1980	neg.	.14	.14
1981	neg.	.38	.38
1982	neg.	.25	.25
1983	neg.	.27	.27
1984	neg.	.27	.27
1985	neg.	.30	.30
1986	.2	.58	.78
1987	.4	4.18	4.58
1988	.7	3.85	4.55
1989	.7	2.51	3.21
1990	.7	2.51	3.21
1991	.7	2.51	3.21
1992	.4	2.51	2.91
1993	.3	2.24	2.54
1994	neg.	2.15	2.15
1995		1.91	1.91
1996		1.87	1.87
1997		1.87	1.87
1998		1.87	1.87
1999		1.87	1.87
2000		1.87	1.87

Note: Peak for air flights is expected to occur during spring breakup, a period of six weeks.

Source: Denni s Dooley and Associ ates, 1978.

TABLE 38
PRUDHOE BAY- LARGE
TRUCK REQU REMENTS FOR CAMP CONSUMABLES

Year	Annual Monthly Aver age Empl oynent (Man- Months)	Annual Consumption (Pounds)	Truck Requi renents (M nus Here. Supplies) (Pounds)	Annual Number of Truck Loads	Peak Truck Loads Per Month (1)
1980	60	302, 400	37, 800	4.7	. 7
1981	168	846, 720	105, 840	13.2	1.9
1982	110	554, 400	69, 300	8.7	1.2
1983	119	599, 760	74,970	9. 4	1.3
1,984	119	599, 760	74,970	9.4	1. 3
1985	132	665, 280	83, 160	10.4	1. 5
1986	256	1, 290, 240	161, 280	20.2	2.9
1987	1, 833	9, 238, 320	1, 154, 790	144. 3	20.6
1988	1,686	8, 497, 440	1, 062, 180	132.8	19. 0
1989	1,101	5, 549, 040	693, 630	86.7	12.4
1990	1,101	5, 549, 040	693, 630	86.7	12.4
1991	1, 101	5, 549, 040	693, 630	86.7	12.4
1992	1, 101	5, 549, 040	693, 630	86.7	12.4
1993	981	4, 944, 240	618, 030	77.3	11.0
1994	941	4, 742, 640	592, 830	74.1	10. 6
1995	836	4, 213, 440	526, 680	65.8	9*4
1996	821	4, 137, 840	517, 230	64.7	9. 2
1997	821	4, 137, 840	517, 230	64.7	9. 2
1998	821	4, 137, 840	517, 230	64.7	9. 2
1999	821	4, 137, 840	517, 230	64.7	9. 2
2000	821	4, 137, 840	517, 230	64.7	9.2

Notes: (1) Peak truck 1 oads/nonth = (annual truck loads) $\times(1.5$ nonths/ peak month) (10. 5 nonths truck traffic)

Source: Denni s Dooley and Associ ates, 1978.

TABLE 39
PRUDHOE BAY-LARGE
TRUCK SERM CE REQU REMENTS

Year	I ndustri al	Canp	Total
1980			
1981	. 2	. 7	. 9
1982	. 1	1.9	2.0
1983	. 1	1.2	1.3
1984	. 1	1.3	1.4
1985	. 1	1.3	1.4
1986	1.1	1. 5	2.6
1987	2. 2	2.9	5. 1
1988	3. 2	20.6	23.8
1989	3. 2	19.0	22.2
1990	3. 2	12. 4	15.6
1991	3. 2	12.4	15. 6
1992	2. 1	12.4	14.5
1993	1. 6	12.4	14.0
1994	. 1	11.0	11.1
1995		10.6	10.6
1996		9.4	1.4
1997		9.2	9.2
1998		9.2	9.2
1999		9.2	9.2
2000		9.2	9.2
Note:	Peak truck demand is expected to occur in the fall and wi nter nonths, coi nci di ng with peak enpl oynent.		
Source	Dennis Dool	Asso	s, 1978

TABLE 40
pkiuuliue bay- LaRGe
SUMMARY OF GOODS SH PMENTS

	Year	Annual Truck and Air Tonnage (3)			Annual Mari ne Tonnage (3)			
		I ndustri al Consumabl es	Camp Consumabl es	Mbdal split	I ndustri al	Mbdal Spl it	$\begin{aligned} & \text { Ocean } \\ & \text { Barges(1) } \end{aligned}$	Ri ver Barges(2)
	1980	0	151	100\%	0	0\%	0	0
	1981	45	423	3\%	13, 187	97\%	2	3
	1982	30	277	5\%	5, 753	95\%	1	1
	1983	30	300	5\%	5,730	95\%	1	1
	1984	30	300	5\%	5, 730	95\%	1	1
	1985	30	333	6\%	5,697	94\%	1	1
	1986	255	645	1\%	61, 605	99\%	10	12
	1987	510	4,619	4\%	110. 981	96\%	18	22
	1988	720	4,249	3\%	143; 021	97\%	23	29
O	1989	720	2,775	. 2%	142, 655	98\%	23	29
	1990	720	2,775	2\%	142, 655	98\%	23	29
	1991	720	2,775	2\%	142, 655	98\%	23	29
	1992	480	2,775	3\%	94, 185	97\%	15	19
	1993	240	2,472	6\%	46, 008	94\%	8	9
	1994	30	2,371	40\%	3, 659	60\%	1	1
	1995	0	2, 107	100\%	3, 0	0\%	0	0
	1996	0	2, 069	100\%	0	0\%	0	0
	1997	0	2, 069	100\%	0	0\%	0	0
	1998	0	2, 069	100\%	0	0\%	0	0
	1999	0	2, 069	100\%	0	0\%	0	0
	2000	0	2, 069	100\%	0	0\%	0	0
	1996	0	2, 069	100\%	0	0\%	0	0

Notes: (1) Ocean barges $=$ (annual marine tonnage) $\times 0.80 /(5,000$ tons/barge).
(2) Ri ver barges $=($ annual marine tonnage) x. 20/(1,000 tons/barge).
(3) Tonnage figures gi ven in short tons, which are converted to metric tons using the conversi on factor 0.907.

Source: Denni s Dooley and Associates, 1978.
utilization of existing aircraft but may be unwilling to acquire new equi prent to meet forecast peak passenger and frei ght flows because of the lean times that will soon follow

Summary

The total freight requirements for the devel opment of the field are less than for Prudhoe-Small but the nore intense devel opnent produces greater peak annual denands. The naxi mum number of wells to be drilled in any one year is 48, greater than all scenari os except Canden- Canning. The largest annual freight requirements approach 80% of the figure achieved during the 1970 sea-lift. Passenger flights per day are the greatest for any scenario, 1.3 which is slightly higher than the figure for Canden- Canni ng. Peak period truck loads are approxi matel y 24 per month, and peak air freight flights approxi nately five per week.

I SSUES ANALYSIS

Transportation impacts forecast for the Beauf ort Sea OCS scenarios, can be handled by the State's transportation facilities and services given assumptions of the anal ysi s. During the course of the anal ysis, two issues energed which could significantly affect the nat ure and extent of transportation impacts, nanel y the timing of other resource devel opnent activities and the use of ice-breaking vessel s, incl uding tankers.

Should the Alcan gas Iine be constructed as schedul ed, the peak uses of transportation systens for its construction and for Beaufort Sea OCS activities will not overlap. But shouldit slip several years and

Beaufort Sea remain on schedule, conflicts could arise. The potential for other maj or construction projects to produce overlaps, particularly the building of a new capital city in Willow could al so produce problens that cannot be assessed at the present tine.

The forthcoming results of oil and gas expl oration in the Canadian Beauf ort Sea nay influence the oil compani es' outlook towards all-nater transportation of oil. Done Petroleum Co. of Canada has taken prelim inary steps towards constructing a large icebreaker ($\mathbf{C l}$ ass 10) that within a decade might assist LNG and oil tankers in reaching the east coast by an Arctic water route. Cape Hal kett in particular may be made nore economically attractive with the possibility of transporting its resources by tanker rather than rel ying upon the existing pipeline system

REFERENCES

A aska Depart ment of Envi ronment al Conservation. 1977. Tank vessel s and marine terminal facilities for oil and liquified natural gas: a sel ected bi bl i ography. Juneau, Al aska. 270 pp.

Al aska Department of Highways, Transportation Pl anni ng Di vi si on. 1976. Transportation impacts of outer continental shelf oil and gas devel opnent in Northern Gulf of Alaska and Western Gulf (Kodi ak) areas. Unpubl ished. Prepared for Al aska Departnent of Commity and Regi onal Affairs. Juneau. $\mathbf{1 3 0} \mathbf{p p}$. approx.

Al aska Departnent of Transportation and Public Facilities, Transportation Pl anni ng Di vi si on. 1977. Al aska Highways annual traffic vol une report, 1976. J uneau. 336 pp.

Alaska Department of Transportation and Public Facilities. Transportation Pl anni ng Di vision. 1978. Community Profile, Valdez. Unpublished. Profiles al so available for Seward, Cordova, and Wittier. Prepared in conj unction with Prince William Sound Transportation Study.

Al aska Northwest Publ ishi ng Company. 1978. The MIepost. Anchorage. 498 pp.

Al aska Transportation Comission. 1978. Mbtor carrier operating authority, common carriers. Anchorage, Alaska.

Alyeska Pi peline Service Company. 1974. Survey of Al askan ports and hi ghways. Internal summary report prepared by Bechtel Incorp. Anchorage, Al aska. 21 pp. text, 53 pp. exhi bits.

- 1975 Transportation Report--1974. Internal summary report prepared by Bechtel Incorp. , Anchorage, Al aska. 22 pp.
\qquad . 1976. Transportation Report--1975. Internal summary report. Anchorage, Al aska. 22 pp. . 1977. Transportation Report--1976. Internal summary report. Anchorage, Al aska. 17 pp.

Arctic Institute of North Anerica. 1973. Arctic Marine Conmerce Study. Fi nal Report. Three vols. Prepared for Maritine Administration, U. S. Department of Commerce. Whshi ngton, D. C. Vol. 1: report, 220 pp. Vol. II: Appendi x, 289 pp. Vol. III: Executive Summary, 37 pp.

Berger, Justice T. R. 1977. Northern frontier, northern homel and. J anes Lorimer \& Co., Toronto, Ontario. Vol. 1: The report of the MacKenzie Val ley pi pel i ne i nqui ry. 209 pp. Vol. II: Terns and conditions. 268 pp.

Bruun, P., ed. 1971. Proceedi ngs (of) the first international conference on port and ocean engi neering under arctic conditions, Trøndheim, Norway. The Techni cal Uni versity of Nor way. 1457 pp. Two vols.

Busi ness Week. 1978. Done Petroleum an arctic venture that may rival the Mideast. No. 2529: 106-7.

CCC/HOK. 1977a. Basel ine studies: the Beauf ort Sea region interim report. Prepared for Socio-Economic Studi es Program Al aska Outer Continent al Shel f Office, Bureau of Land Menagenent. Anchorage. Techni cal Report No. 5. 184 pp.
\qquad . 1977b. Basel ine studi es: Gulf of Al aska. Unpublished working paper. Prepared for Socio-Economic Studi es Program Al aska Outer Continental Shelf Office, Bureau of Land Managenent. Anchorage.
\qquad . 1978. Prudhoe Bay Case Study. Prepared for Socio-Economic Studies Program Al aska Outer Continental Shelf Office, Bureau of Land Managenent. Anchorage. Techni cal Report No.4.98 pp.

Canada Department of Public Works and U. S. Departnent of Transportation, FHWA. 1977. Envi ronnental I mpact Statement, Shakwak Highway I mprovenent.

Canada. I ndi an and Northern Affairs. 1973. Shi pping routes, northern Canada as of April 1, 1969 (summer navi gation onl y). Chart No. 24 in North of 60 - charts, information, and activity. Ontario.

Coghill, W F. 1978. Rai I road adj usts to the post-pi pel ine era. A aska Construction and $\mathrm{O}_{\mathrm{I} .}$ 19(1): 42, 46.

Danes and Mbore. 1977-78. Geotechnical and envi ronment al eval uation, port expansi on study, City of Valdez. Anchorage, Al aska. phase I 13 pp. and appendices, Phase II 46 pp. . .1978. Beauf ort Sea pet rol eum devel opment scenari os for the state-federal and federal Outer Continental Shelf. Draft report. Tho vols. prepared for Socio-Economic Studi es Program Al aska Outer Continental Shel f Office, Bureau of Land Managenent, Anchorage, A aska. 371 pp. and appendi ces.

Done Petrol eum Li mited. 1978. Marine delivery systens for \mathbf{A} askan of fshore oil and gas. Inf ornal report. Cal gary, Alberta. 45 pp.

Davi d M Dornbusch and Co., Inc. 1976. Managenent of OCS-related i ndustrial devel opnent, a guide for Alaskan coastal commities. Prepared for Di vi si on of Commity Pl anni ng, Al aska Department of Commity and Regi onal Affairs. Juneau, Al aska. 143pp.

Eakland, P. 1978a. Role of U. S. Coast Guard in Arctic Comerce. Personal commini cation. Personal intervi ew with Cmdr. A Soltys, Pl anni ng Officer, Sevent eenth Coast Guard Di strict. February, 1978.

1978b. Background inf ornation on Mackenzie River barge traffic. Personal commication. Tel ephone conversation with K. M Hatiuk, Asst. Traffic Manager, Northern Transportation Co. Ltd., Edmont on, Al berta. February 17, 1978.

1978c. Foss Al aska operations in Sout heast Al aska. Personal commication. Personal interview with Ral ph Hunt, J uneau Manager, Foss Al aska Tug and Barge. February, 1978.

1978d. Danage to Al aska hi ghways due to pi peline construction." Personal commini cation. Personal intervi ew with J. Henry, asphalt engi neer, Al aska Dept. of Transportation and Public Facilities.
. 1978e. Revi ew of Al aska Rai I road operati ons. Personal commini cation. Personal intervi ew with W Coghill, Pl anni ng Officer, Al aska Rai I road. March, 1978.
. 1978f. Revi ew of Port of Anchorage operations. Personal commini cation. Personal intervi ew with W McKinney, Di rector, Port of Anchorage. March, 1978.
. 1978g. Revi ew of regul ations for our operators. Personal commini cation. Personal interview with D. Searcy, Tariff Specialist, Al aska Transportation Comi ssi on. Anchorage.

Engelman, P. B. Tuck, J. D. Kreitner, and D. M Dooley. 1978. Transportation and devel opment of A aska nat ural resources. Federal - State Land Use Pl anni ng Commissi on for Al aska. Anchorage. Study 32. 83 pp.

Engi neering Computer Optecnomics, Inc. 1976. A real-time si mul ation anal ysis of a 165, 000 dut. tanker operating through Valdez Narrous. Prepared for the State of Al aska, Office of the Pi peline Coordinator. Anchorage, Al aska. 32 pp. and appendi ces.

Federal Avi ation Admini stration, Al aska Region. 1977. Al aska regi on tenyear pl an, FY 1979-1988. Chapter 2, 158 pp.

Federal Highway Administration, U. S. Department of Transportation. 1976. Al aska roads study, initial report. Whshi ngton, D. C. 75 pp. and appendi ces.

Hanna, G A 1976. Al aska roads study-overl oad permit infornation, pavenent mai ntenance costs. Federal Highway Admini stration meno from Al aska Di vi si on to L. E. Lybecker, Regi on X Admini strator. Dated J une 28, 1976.

Henderson, G. R. and D. M Dooley. 1974. Maritine problens in the movement of Alaskan north sl ope oil from Valdez to West Coast markets. Unpublished thesis. Evanston, IIII nois. 125 pp.

Highnay Research Board. 1965. Highnay capacity manual. Speci al report 87. Nati onal Acadeny of Sci ences, Uthshi ngton, D. C. 397 pp.

Institute of Social and Economic Research, Uni versity of Al aska. 1978a. Mbdel out put: non-0CS scenario. Wbrking paper No. 4. Prepared for Socio-Economic Studi es Program Al aska Outer Continental Shel f Office, Bureau of Land Menagenent. Anchorage. Unnumber ed. . 1978b. The non-OCS base case: the grouth of regi onal economies. Wbrking paper No. 6. Prepared for Socio-Economic Studi es Program Al aska Outer Continental Shel f Office, Bureau of Land Managenent. Anchorage. 24 pp.
. 1978c. Mbdel output: OCS scenario. Wbrking paper No. 7. Prepared for Socio-Economic Studi es Program Al aska Outer Continent al Shel f Office, Bureau of Land Management. Anchorage. Unnumbered.
\qquad - 1978d. The regi onal i mpacts of Beaufort Sea OCS devel opment. Wbrking Paper No. 9. Prepared for Socio-Economic St udi es Program Alaska Outer Continental Shelf Office, Bureau of Land Management. 19 pp.

Larsen, H O 1976. Historical summary/Seattle support facility. Internal Alyeska Pi peline Service Company menorandum to W A. Brodie dated Septenber 29, 1976.

Mathenatical Sci ences Northwest, Inc. 1975. An economic and soci al i mpact study of oil-rel ated activities in the Gulf of \mathbf{A} aska. Prepared for Gulf of Al aska Operators Comittee. 295 pp.

More, T. F. 1978. Air carrier traffic forecast, Anchorage International Ai rport. Transportation Pl anning Divisi on, Al aska Dept. of Transportation and Public Facilities. Anchorage, Al aska. 59 pp.

Muggeridge, D. B. ed. 1978. Proceedings of the fourth international conference on port and ocean engi neering under arctic conditions, Menori al Uni versi ty of Neuf oundl and. St. J ohn's, Newf oundl and, Canada. Two vols. 1157 pp.

Newport Neus Shi pbuilding, Westi nghouse El ectric Corporation (Oceanic Di vision), Bechtel Incorporated, and Mbbil Shi pping and Transportation Company. 1975. Maritine subnarine transportation system conceptual design study. 7 vols. Prepared for Office of Commercial Devel opnent, U. S. Mariti ne Admini stration.

Parker, W P. 1975. Present Marine transportation options of Northern A aska. Pages 645-651 of Proceedings of the Thi rd International Conference on Port and Ocean Engi neering under Arctic Conditions, Fai rbanks, Al aska.

Parker, W, D. Suanson, V. Fi scher, and J. Chri sti an. 1972. Northwest Al aska economic and transportation prospects. Survey report. Institute of Social, Economic, and Government Research, Uni versity of Al aska, Fai rbanks. Prepared for U. S. Army Corps of Engi neers, Al aska District. $\quad 186$ pp.

Paymans, P. J. and K. Meurs. 1977. Tanker through Valdez Narrous. Fi nal report of a real-time si mul ation study. Prepared by the Netherlands Ship Mdel Basin for State of \mathbf{A} aska Office of the Pi peline Coordi nator, U. S. Coast Guard, and Standard Oil Co. of Ohi 0 .

Pernela, L. M and staff. 1976. Census of Al aska Transportation. Prepared for U. S. Department of Transportation. Uni versity of Al aska, Institute of Soci al and Economic Research. Fai rbanks, A aska. 276 pp. and appendi ces.

Qui nt on- Budl ong. 1971. Anchorage inter national ai rport master plan. Prepared for Di vi si on of "Axiation, Al aska Dept. of Public Wbrks. 169 pp.

Sne11, R and Rezek, J. 1976. Summary report--a comparative anal ysis of El Paso and Northwest gas pi peline proposal s to characterize the im pacts on the A aska State H ghway system Unpubl ished report for the Transportation Pl anni ng Di vi si on, Alaska Dept. of \mathbf{H} ghways.

Speas R. Di xon, Associ ates. 1972. Master pl an study for Fai rbanks International Airport. Prepared for Di vision of Avi ation, Al aska Department of Public Wbrks. 216 pp.

Tayl or, J. W R. 1977. Jane's all the Wbrld's Ai rcraft, 1977-78. J ane' s Year books. London, Engl and. 903 pp.

Todd, F. J anuary, 1978. Trucking firns waiting for next pipeline. Al aska Industry. X(I): 31-33, 60.

Uni versity of Al aska. Arctic Envi ronmental Inventory and Data Center. 1975. A aska regi onal profiles: Vol. 11, arctic region. Sponsored by the State of Al aska, Office of the Governor in cooperation with The Joint Federal-State Land Use Pl anning Comission for Al aska. Anchor age, Al aska. 218 pp.

[^0]: Source: Survey of Al askan Ports and Highways, by Bechtel for Alyeska Pipel ine Service Co. , Jul y/ August 1974.

[^1]: Sources: Alaska Highways 1976 Annual Traffic Vol une Report by Al aska Departnent of Transportation and Public Facilities and Shakwak Highway Improvement Envi ronnent al Impact Statenent, by Department of Public Wbrks, Canada and U. S. Department of Publ ic Wbrks, Federal Highway Administration 1977.

