Technical Report

Number 30

Appendixes A,B, \& C

Northern and Western Gulf of Alaska
Petroleum Development Scenarios
Commercial Fishing Industry Analysis

The United States Department of the Interior was designated by the Outer Continental Shelf (OCS) Lands Act of 1953 to carry out the majority of the Act's provisions for administering the mineral leasing and development of offshore areas of the United States under federal jurisdiction. Within the Department, the Bureau of Land Management (BLM) has the responsibility to meet requirements of the National Environmental Policy Act of 1969 (NEPA) as well as other legislation and regulations dealing with the effects of offshore development. In Alaska, unique cultural differences and climatic conditions create a need for developing additional socioeconomic and environmental information to improve OCS decision making at all governmental levels. In fulfillment of its federal responsibilities and with an awareness of these additional information needs, the BLM has initiated several investigative programs, one of which is the Alaska OCS Socioeconomic Studies Program (SESP).

The Alaska OCS Socioeconomic Studies Program is a multi-year research effort which attempts to predict and evaluate the-effects of Alaska OCS Petroleum Development upon the physical, social, and economic environments within the state. The overall methodology is divided into three broad research components. The first component identifies an alternative set of assumptions regarding the location, the nature, and the timing of future petroleum events and related activities. In this component, the program takes into account the particular needs of the petroleum industry and projects the human, technological, economic, and environmental offshore and onshore development requirements of the regional petroleum industry.

The second component focuses on data gathering that identifies those" quantifiable and qualifiable facts by which OCS-induced changes can be assessed. The critical community and regional components are identified and evaluated. Current endogenous and exogenous sources of change and functional organization among different sectors of community and regional life are analyzed. Susceptible community relationships, values, activities, and processes also are included.

The third research component focuses on an evaluation of the changes that could occur due to the potential oil and gas development. Impact evaluation concentrates on an analysis of the impacts at the statewide, regional, and local level.

In general, program products are sequentially arranged in accordance with BLM's proposed OCS lease sale schedule, so that information is timely to decisionmaking. Reports are available through the National Technical Information Service, and the BLM has a limited number of copies available through the Alaska OCS Office. Inquiries for information should be directed to: Program Coordinator (COAR), Socioeconomic Studies Program, Alaska OCS Office, P. O. Box 1159, Anchorage, Alaska 99510.

ALASKA OCS SOD OECONOM C STUDI ES PROGRAM NORTHERN AND VESTERN GLF OF ALASKA PETROLEUM DEVELOPMENT SCENARI OS: COMMERCI AL FI SH NG I NDUSTRY ANALYSI S APPENDI XES A, B, AND C.

DOCUMENT IS AVA LABLE TO THE PUBLI C THROUGH THE

 NATI ONAL TECHN CAL I NFORMATI ON SERM CE 5285 PORT ROYAL ROADSPRI NGFI ELD, V RG N A 22161

Thi s document is di ssemi nat ed under the sponsorship of the U. S. Depart nent of the Interi or, Bureau of Land Managenent, Al aska Outer Continental Shelf Office, in the. interest of information exchange. The United States Government assumes no liability for its content or use thereof.

ALASKA OCS SOCI OECONOM C STUDI ES PROGRAM
NORTHERN AND WESTERN GULF OF ALASKA PETROLEUM
DEVELOPMENT SCENARI OS: COMMERCI AL FI SH NG
I NDUSTRY ANALYSI S

Prepared by:
J. M Terry, A H Gorham D. M Larson, B. C. Paust, and R G Stoles Al aska Sea Grant Program Uni versity of A aska
R. S. Johnston and F. J. Smith

Department of Agricultural and Resource Economics, Oregon State Uni versity
F. L. Orth and P. W Rogers

Frank Orth and Associ ates

February 1980

APPENDI X A
FI SFERY BI OLOGY

APPENDI X A

TABLE OF CONTENTS

> PAGE \#
Fi shery Bi ol ogy A. 2
Causes of Fluctuation in Resource Abundance A. 3
Fl uct uations in World Fi sheries: An Introduction A. 3
Fluctuations in Marine Resources: The North Pacific
in Perspective A 7
The Influence of Physi cal Factors in the Envi ronment on the Abundance and Availability of Mature Marine Organi sns A. 10
The I mpact of Commercial Fi sheries on Fluctuations in the Abundance of Marine Resources A. 17
Sel ected References: The Bi ol ogi cal Basis of Nat ural Fl uct uations A. 23
Bi ol ogi cal Characteristics by Species A. 27
Sal non A. 27
Life History, King Sal non A. 27
Taxonony A. 27
Di stri buti on A. 27
Physi cal Description A. 27
Life History A. 28
Life History, Sockeye Sal mon A. 31
Taxonony A. 31
Distribution A. 31
Description A. 32
Life History A. 32
Life History, Coho Salmon A. 36
Taxonomy A. 36
Distri buti on A. 36
Physi cal Description A. 36
Life History A. 37
PAGE \#
Life History, Pi nk Sal mon ‘ A 39
Taxonomy A 39
Di stri buti on A. 39
Physi cal Description A. 39
Life History A. 40
Life History, Chum Sal non A 44
Taxonomy A. 44
Di stributi on A. 44
Physi cal Description A 44
Life History A. 45
Harvesting Season A. 47
Causes of Fluctuation in Resource Abundance, Pacific Sal non A. 50
Al aska Aqui culture Projects: An Overvi ew A 53a
Summary of Sal non Harvest Statistics A. 53c
Hal i but
Life History A 54
Taxonony A 54
Physi cal Description A. 54Distributi onA 55
Spawni ng A. 55
Harvesting Season A 57
Causes of Fluctuation in Resource Abundance, Pacific Halibut A 57
Summary A 60
Pacific Herring A. 61
Life History A 61
Taxonony A. 61
Physi cal Description A. 61
Distribution A. 61
Life History A. 62
Harvesting Season A. 65
Causes of Fluctuation in Resource Abundance A. 65
Summa ry A. 73
Groundfish A. 74
Life History, Pollock. A. 74
Taxonomy A. 74
Physi cal Description A. 74
Distribution A. 75
Life History A. 75
Harvesting Season, Will eye Pollock A. 79
Causes of Fl uctuations in Resource Abundance, Walleye Pollock A. 79
Summary A. 82
Life History, Pacific Cod A 83
Taxonony , 4.83
Physi cal Description A 83
Distri bution A. 83
Life History A. 84
Harvesting Season, Pacific Cod A 85
Causes of Fluctuation in Resource Abundance, Pacific Cod A. 85
Life History, Sablefish /4.87
Taxonony A. 87
Physi cal Description A 87
Distribution A. 87
Life History A. 88
Life History, Pacific Ocean Perch A 89
Taxonomy and Physi cal Description A. 89
Distributi on A. 89
Life History A. 90
Harvesting Season, Pacific Ocean Perch A. 96
Causes of Fl uctuation in Resource Abundance, Pacific Ocean Perch A. 96
Summary A. 99
PAGE
King Crab A. 100
Life History A. 100
Taxonomy A 100
Distribution A 100
MaturityA 101
Mating A 102
Fecundi ty A. 102
Eggs and Larvae A 103
J uveni I es A 103
Grouth 14. 104
Food Habits A 104
Di seases A. 105
Harvesting Season A. 107
Causes of Fl uctuations in Resource Abundance A. 108
Summa ry A 108
Tanner CrabLife HistoryA 109
Taxonony A 109
Distributi on A 109
Sexuality A. 111
Maturity A. 112
MatingA. 112
Fecundity A. 113
Eggs and Larvae A. 113
Juveni I e A. 174
Adults A. 114
Grouth A. 115
Di seases A. 115
Mgration and Local Mbvenent A. 116
Harvesting Season A. 119
Causes of Fluctuation in Resource Abundance A. 119
Summary A. 119
Devel opment and Market Structure A. 119
Dungeness Crab A. 120
Life History A. 120
Taxonony A. 120
Di stri buti on A. 120

APPENDIX A

LIST OF TABLES

TABLE \#

PAGE \#

A. 1 Spawning Timing by Region

A 90

LIST OF FIGRES

FI GURE $\frac{\mu}{n}$

A. 1 First Trophic Level, Phytoplankton Production A. 5

A 2 Second Trophic Level, Zooplankton Production A. 5
A. 3 Trophic Level s Above Zoopl ankton: World Fish Catches
A. 4 Distribution of World Crustacean Catches
A. 5 Subarctic Pacific Regi on
A. 6
A. 7
A. 6 The Triangle of Fish Mgration
A. 9

A 7 OptimmWater Temperat ure Spectra of Important Fi shes in Japan

A I
A. 8 The Surface Mater Currents in the North Pacific Ocean

A 13
$\begin{array}{ll}\text { A } 9 & \begin{array}{l}\text { Seasonal Pattern of Energy Storage in Components } \\ \text { of a Mat ure 35-cm Fenal e Aneri can Plaice fromst. } \\ \text { Margaret's Bay, N.S. }\end{array}\end{array}$
A. $10 \begin{aligned} & \text { Regul at ory Areas 2, 3, and } 1 \text { and Regi onal Divisions A. } 58 \\ & \text { of the Coast. }\end{aligned}$

FI SFERY BI OLOGY

This appendi x is an introduction to the biogy of the commercial ' fisheries of the Gulf of Al aska, and as such it provides infornation that is usef ul both in projecting the devel opnent of these commercial fisheries and in appreciating the great uncertainty that is associated with any such projections. The topics addressed include causes of fluctuation in resource abundance and biol ogical characteristics of each species. The latter include life histories, species specific causes of fluctuations in resource abundance, and factors affecting the harvesting season.

Causes of Fluctuation in Resource Abundance

The objective of this section is to describe the naj or causes of fluctuation* in the abundance of a resource that are common to nany fisheries. The causes of fluctuation that are of particular importance in each fishery are discussed in a latter section which describes fishery biol ogy by species. A glossary of bi ol ogi cal terns is incl uded at the end of this chapter.

FLUCTUATI ONS IN WORLD FI SHERI ES: AN I NTRODUCTI ON
At present, the world catch of marine fisheries resources anounts to sone 70 miliion netric tons (NT). The najority of this catch is comprised of herring-like and cod-like fishes (Cushing, 1975). The trend of world fisheries, despi te recurrent fluctuations, is toward gradual expansion in terns of both harvesting effort and the devel opnent of new nethods for the utilization of an ever-decreasing list of underutilized marine species. Gulland (1970) has pubIished a conservative estimate of the world potential catch of fish and shellfish at the level of 120 to $\mathbf{1 4 0} \mathbf{~ M , ~ a l t h o u g h ~ t h i s ~ y i e l ~ m i g h t ~ b e ~ l e s s ~ d u e ~ t o ~}$ intervening economic factors.

Apart from the problens associ ated with the maxi mal harvest of available resources, the morld fisheries are beset by periodic fluctuations in the catch of conventional species. The history of nost fisheries indicates that oscillations in catch are the result of any of a number of nat ural andificial causes, a nunber of which will be discussed in the course of this section. The princi pal el enents invol ved in the determination of catch include: the abundance of the organism the 'availability of the organisns, and the anount of harvesting effort (Sette, 1961). While harvesting effort is large' y the product of economic conditions, the abundance and availability of mar ne resources is largely the product of envi ronmental factors with stress associated with commercial expl oitation acting nost often in a secondary capacity. Many
fisheries failures are not the result of declines in absol ute abundance but rather represent changes in geographic distributions. The ultinate cause of fisheries fluctuations in terns of abundance invol ves changes in reproductive potential, I arval and adult survival, and recruitnent (Uda, 1960). The rel ation of trends in fishing success to envi ronmental factors in the water masses and to overlying climatic factors has been suggested and may berticularly applicable to the fisheries of the North Pacific Ocean (Ketchen, 1956). Ayushin (1965) states that many of this planet's processes exhibit a periodic nature, the length of each cycle being about 85 years, and that fluctuations in the abundance of various marine resources might be linked with changing physical envi ronnent factors. As a consequence, fluctuations in some pel agic fisheries, herring and sal non being notable, seem al so to occur on a norld-wide scale and may correspond to these sane geophysi cal events (Uda, 1961).

First trophic Ievel: Phytoplankton production

FIGRE A. る
Second trophic level: Zooplankton production

Scurce: Gulland, 1971

FI GURE
Trophic levels above zooplankton: World fish catches

Source: Gul I and, 1971

FIGRE A. 4

Distribution of world crustacean catches

FLUCTUATI ONS IN MARI NE RESORCES: THE NORTH PACI FIC IN PERSPECTIVE
Long-term and short-term natural fluctuations both in total species bi omass and in the availability of different species are normal phenomena on the fishing grounds of the Gulf of Al aska and the North Pacific in general. Under compl ex nat ural envi ronmental conditions as well as artifici al conditions including overfishing and habitat degradation via the addition of pollutants of human origin, fish populations undergo periodic oscillations in abundance accompani ed by changes in distribution. The annual harvest of each species proceeds in parallel, noderately buffered fluctuations, fories of ten being depensatory in character, with intervals between maj or trends of slightly less than a century, or 20 to $\mathbf{3 0}$ years, or 50 to 60 years (Auyshin, 1965; Uda, 1961).

FIGRE A. 5

Source: Favorite, et al., 1976
The extended history of natural fluctuations in the Pacific can be seen in the hi storic abundance of the northern anchovy, Engraulis_mordax, and the Pacific hake, Merluccius productus, as deduced fromscale remants
in bottom sedi ment strata. According to Rounsefell (1975) the anchovy was nost abundant 1,500 years ago with a progressi ve decline over the ensuing 1, 200 years. The hake denonstrated wide fluctuations with periods of abundance every 300 to 350 years. Nagasaki (1973) has classified fluctuations in abundance as long, internedi ate, and short term Long term changes are caused by maj or envi ronnental change as seen in the abandonnent of traditional spawning grounds as in the case of the Hokkaido herring. Internedi ate-term fluctuations in abundance are caused by events, environmental or otherwise, which lead to variations in the survival of larval organisns. Short-term fluctuations are apparent"y randomin their occurrence and, agai n, largel y influence the survival of the organismin question during sone particularly vul nerable period of its life history.

The abundance of coastal pel agi c resources has been subject to rapid fluctuations which have largely frustrated resource nanagers in terns of finding stabilizing sol utions. The list of maj or dislocations in the North' Pacific during the past hal f-century include the collapse of the sardine, Sardinops mel anasticta, in Japan and Korea (1930s and 1940s); the decline of the Cal ifornia sardine, Sardinops caerulea (1930s); the collapse of the Hokkaido herring previ ousl y nentioned; and the recent sudden decline of the British Col umbi a herring (Kasahara, 1973).

A description of regional fluctuations, of which this is a brief revi ew must include mention of stabilizing el ements in the life history of the various species. Current fisheries theory separates narine organisns in discrete or sem-discrete stocks, each of which is usually fixed within a gi ven current system (Cushing, 1973), The stability of the stock is nai ntai ned by the adherence of the nenbers of the stock to rel ativel y fixed migratory pathways, the nost critical segnent of which is terned the Iarval drift and invol ves, basically, the novenent of devel oping larvae from the
spawning grounds to a rel ativel y fed nursery area (Cushing, 1975).

The triangle of fish migration; maturing fish move againsta current, contranatantly, to the spawning ground. Spent fish drift, denatantly, from spawning ground to feeding ground; larvae drift denatantly to the nursery ground in the same current. Recruits migrate from the nursery ground to join the adultstock on the feeding ground. The terms contranatant and denasamt describe the nature of migration and carry no connotation of orientation.

FIGURE A. 6
Source: Cushing, 1973; J ones, 1968

Each migratory circuit is considered to be characteristic of a particular stock and, with alimited degree of novement in accordance with slight . envi ronmental change, is geographically fixed to a particular section of the ocean for nost species. The timing of the circuit is generally synchronized with the production cycle of the regi on through which the Iarval drift occurs. Because of the seasonal or di scontinuous nature of the production cycle in temperate and subarctic waters, spawning must occur during a limited season in order that the specialized food needs of larvae can be satisfied. The stability of a particular stock is nost significantly dependent upon the natching of I arvae with appropriate food particles. As a consequence, the spawning of nost northern fish occurs on rel ativel y restricted grounds, while others, including sal non, spawn on genetically fixed grounds (Cushing, 1975),

As a consequence of the above events, a stock of fish in temperate waters will be found in generally the sane area from year to year. In
order to mai ntain a rel ativel \mathbf{y} fixed areal di stribution, at sone pointin the annual cycle of nost fish, active conpensatory migations by gravid adults must be undertaken in order that larval drift can occur in a particular current system (Skud, 1977), Anong the various Pacific species which undertake extensive compensatory migrations are: Pacific sal non, Oncorhynchus spp.; al bacore, Thunnus alalunga; sablefish, Anoplopoma fibria; and nunerous species of marine mammals (Royce, et al., 1968). Stability is preserved through the annual flow of organisns through a fixed migratory circuit operating in rel ativel y unnodified biotic and abiotic envi ronnents. Perturbations di rectly invol ving the stock organisns during sone part of the circuit or invol ving the supporting envi ronnent will result in the natural fluctuations which are the subject of this paper.

THE I NFLUENCE OF PHYSI CAL FACTORS I N THE EMM RONMENT ON THE ABUNOANCE AND AVA LABI LITY OF MATURE MARI NE ORGAN SME

The biol ogical processes operating within the physiol ogical makeup of narine ani nals require a particular range of physical envi ronnent val ues for their continuance and proper functioning. This limited range of adaptability insures the presence of marine organisns in geographic areas where physical conditions, as well as biological conditions, are supportive with general novenent toward optimal conditions. Thus, changes in the marine envi ronnent may cause alterations in the primary productivity of a localized area or Iarger regi on, the magni tude of areal change dependent upon the nat ure of the perturbation, alterations in the food chain at higher trophic I evel s , and the eventual di splacenent or concentration of various marine speci es (Parsons, et al., 1972). N kol sky (1963) expanded on this list by stating that changes in the narine envi ronment are nost commonly of a local, non-periodic nature and influence the stability of stocks by altering spawni ng or overwintering conditions, among others.

Of the several physical parameters to the marine envi ronnent, possibly the nost significant and the best known is that of temperature. Physiological processes operate optimally only within narrow temperature ranges, al though some exceptions are known (Rounsefe11, 1975). The opti mum temperat ures (dark areas) are indi cated on the following figure for a number of North Pacific species:

Fi gure $\mathrm{A}_{\mathrm{F}} \mathrm{F}$

Optimum walep temperature spectra of important fishesin Japan (Ude 1957).

Source: Uda, 1961

What is notable about this di stribution is that the temperature range in white indicates the water temperature of regi ons in which 98 percent of the total catch for each species was harvested (Rounsefell, 1975). Poikilotherms generally remain in their optimal temperature range, seasonal cooling or warming of water masses being accomodated by shifts in geographic or bathynetric position. Several important benthic species of the Gulf of

Al aska denonstrate novenents onto the shelf during spring and summer with shifts to the deeper waters of the continental shelf during periods of seasonal cooling. Numerous pel agic species nake similar physiol ogical accomodations by making long seasonal migrations, nost commonly in a southward di rection. The sablefish serves as an example of a representative exanple of the benthic group and the al bacore tuna of the pel agic group.

Grouth and I ongevity are al so influenced by temperature. Fi sh of nore southern waters tend to grow faster, nature earlier, and die younger than fish in northern waters which, as a consequence of greater longevity, tend to reach larger sizes than similar southern species. An example of differential grouth following latitudinal gradients is given by the Pacific razor $\mathbf{c l}$ am Siliqua patula. At the southern extrene of the razor clans range, I ongevity extends to approxi matel y 4.4 years whereas 19 years is the known I ongevity of sone clans in the northern range of this species (Rounsefell, ' 1975). In this case, temperature has al so caused the razor clam to reach a consi derably larger size than those to the south.

Although it is generally agreed that temperature changes can nodify the distribution of marine speci es, sone contention renains concerning the i mpact of temperat ure anomalies on abundance. Fi sheries data is often found to be inadequate in determing whether a speci es has undergone a change in abundance as a result of temperature changes or if the species changed its vertical or horizontal distribution and noved beyond the range of comercial fleets without any changes in abundance. Large fluctuations in the Ianding of squid and other speci es are experi enced in Japanese waters due to hydrographic changes, nost notably temperature changes brought about by the novenent and position of the Kurashio current (Nagasaki,
1973). The existence of ot her maj or current systens n the subarctic regi on of the northeastern Pac fic and Gulf of \mathbf{A} aska would seem to suggest that similar fluctuations could be expected e sewhere in this ocean basin. The quantitative impact of temperature anomal es will be dealt with in a I ater portion of this paper (See Herring).

The surface water currents in the NorthPacific Ocean after Dciont (1961) and Nave (1964). Cuthe based on Admiralty Chart.)

Source: J ones, 1968

Changes in the inflow of current systens, whether regi onal or local, will lead to changes in the temperature regine of associated water masses,
this last alteration affecting the distribution of adult fish (Nikolsky, 1963). Al though changes in the di stribution and abundance of Pacific hal ibut, Hippoglossus stenol epis, due to warning trends is contested (Ketchen, 1956; Bell and Pruter, 1958), the novenent of Atlantic cod, Gadus morhua, into far northern waters of the Atlantic Ocean is thought to be the result of warming trends (Rounsefel], 1975). The warming of the North Pacific appears to be responsible for the low abundance of the Pacific herring south of the Iatitude of Cape Flattery, Wishi ngton (Rounsefell, 1975), while this same warming trend in Arctic and sub-arctic regi ons may have had a causal rel ationship with the decline of Asiatic and Alaskan sal non (Uda, 1961).

A number of other parameters to the physi cal envi ronment occupi ed by marine species are known to have significant impact on the distribution and abundance of these same species. Anong these additional factors are the overblooming of planktonic organi sns leading to mass vertebrate and in- " vertebrate mortalities due to the ingestion of toxic materials and salinity changes which are significant in the seasonal novenents of many organi sns. Uater strata with considerable salinity gradients nay serve as partial barriers to migrations. Such haloclines thus may alter the abundance of various organi sns and may cause local fluctuations in the rel ative abundance of comercially important organisns (Aron, 1960). Salinity changes are al so important to the di stribution, abundance, and survi val of estuarine and Iittoral organisns, notably oysters and clans, both of which have specific and varying salinity needs depending on life history stage (Rounsefell, 1975).

As a summary to this section dealing with the influence of physical factors on fluctuations in the distribution and abundance of nari ne species,
reference will be made to Uda's (1961) "principles of distribution." A partial listing of these principles will be included because of their practical nature and their importance in predicting the location of fish concentrations and their use as partial explanations of natural fluctuations in abundance and availability.
(A) Marine organisns are di stributed in associ ation with water nasses to which they are physi ol ogi cally adapted.

Rounsefell (1975) reports that one possible outcone to a northward extension of i sotherns would be the northward expansi on of both the northern and southern range limits, with no gain in area.
(B) The concentration of fish is determined by the narrowness of water zone with optimal qualities, such as temperature and salinity. Oceanic fronts or boundaries between different water masses are particularly favorable fishing locations.

The waters of the northwestern Pacific and the Bering Sea are the locations of one of the world's most intensive fisheries. As compared to the surface waters of the northeastern Pacific, the Asi atic waters are characterized by much greater seasonal temperat ure changes, leading to the formation of sharp temperature gradients or boundaries resulting in marked seasonal novenents and concentration of pel agic species (Kasahara, 1973). Si milar gradients do not occur in the northeastern Pacific.
(C) The intrusi on of warm and col d water into popul ated water masses bring about the concentration of fish and produce good fishing areas.
(D) The fertilization of water zones by natural or artificial neans brings about increased production and nay becone potential areas for fishing (al so known as Brandt's Theory).
(E) School ing of fishes responds to a number of conditions incl udi ng temperature. Stable conditions over protracted periods is an indication of poor fishing potential while narked spatial gradients invol ving any of a number of conditions may lead to concentrated schooling and the production of good fishing areas.
(F) Schools of fish during feeding migrations generally seek out areas where appropriate food particles (organisns) are abundant and can be expected to arrive when food is abundant.
(G) Spanning migrations tend to followinstinctively determinedroutes following appropriate envi ronmental patterns.
(H) Each fish species denonstrates uni que phototactic behavi or and respond to specific Iuminosity ranges when fish lamps are empl oyed to attract fish concentrations. Bright noonlight tends to disperse fish, fish lams being less effective at these times.
(I) Spawning migrations are marked by the concentration of fish in ' favorable water nasses. Such fish becone nore concentrated as they approach the spawning grounds. Del ay duri ng ni grations generally result in decreased reproductive potential and nay result in fluctuations in future catch.
(J) Bottom characteristics may affect the migrations of fish.
(K) Fish which migrate in mid-water layers tend to be concentrated both vertically and horizontally by unfavorable water strata.
(L) Fi sh tend to nake upward migrations when they are acti vel y feedi ng. For nany fish, the period of nost active feeding extends from sunset to sunrise. The turn of the tide is another indication of good fishing.
(M The approach of at nospheric di sturbances leads to the concentration of fish in coastal surface layers. Similar disturbances over oceanic waters tends to di sperse fish and decrease catches.
(N) The productiveness of a particular fishing area will vary for each species present, with each species reacting in a uni que manner to the set of influences.
(0) Long-termfluctuations in commercial fisheries are the result of cyclic envi ronnental changes. The magnitude of the fluctuation is dependent upon the degree of departure of conditions from the optimum conditions for each species.

THE I MPACT OF COMMERCI AL FI SFERI ES ON FLUCTUATI ONS IN THE ABUNDANCE OF MAR NE RESORCES

Traditionally, fisheries biol ogists have tended to underestinate the influence of fishing and overestimate the influence of natural environmental change on the stocks of marine organisns. This situation has Iargel y been caused by the supposed insignificance of a given fisheries operation in the face of large natural fluctuations. For example, sone narine stocks have been known to di sappear completely onl y to reappear after an interval of years, all events seemingly independent of fishing effort. What is known is that various stocks of fish, particularly pel agic stocks, do undergo long-term fluctuations in abundance and that profound changes in an ecosystemincl uding many speci es must be the anticipated outcone (Cushing, 1975). The natter can be summarized in the following quotation (Bell, et al., 1958): "The rel ative effects of fishing and nat ural factors on the abundance of mari ne speci es. . and upon yi el ds ther ef rom have been the object of a great anount of study throughout the world. There is agreenent that man's impact upon the stocks has introduced an additional el enent into
the al ready complex and fluctuating conditions under which a species may exist. But differences of opinion as to. . the effects of the renovals by man as opposed to changes. ..brought about by envi ronnental factors appear to arise from the incompl eteness of our know edge. .."

The recent history of world fisheries shows the extinction of several I arge industries exploiting once abundant pel agic and demersal narine st ocks incl uding the Japanese sardine, the Cal ifornia sardine, the Hokkaido herring, all previ ous ly mentioned, and the Nbrwegi an herring (Cushing, 1975), not to mention the potential demise of important stocks in the northeastern Pacific including the Pacific Ocean perch, Sebastes alutus, and the weathervane scallop, Partinapecten cauvius. While Nagasaki (1973) contends that the impact of fishing on many stocks is small or even insi gnificant, Kasahara (1973) concedes that while the initial sharp decline in abundance might result from natural envi ronnental causes, continued fishing pressure would prevent the stocks from recovering. Cushing (1973) apparently agrees with this latter process in stating that several great pel agic fisheries have di sappeared following protracted periods of chronic recruitnent failure. Continued expl oitation in the form of "recruitnent overfishing" caused the final decline of these stocks. In the cases of commercial species exploited al ong the fringes of their nat ural range, hi ghly variable recruitnent tends to be the role due to environnental constraints or abundance. Several species fromthe Gulf of Al aska are in this category of organi sns subject to wide fluctuations in recruitment, the need for hi ghly organi zed managenent bei ng the obvi ous implication.

The population dynamics of marine species present an array of problens. What is generally hel d, however, is that when the growth rate of a stock is high, reproductive naturity will set in early through a feedback prornce
causing reproductive potential to renain in a position to compensate for total natural and fishing nortality, and, assuming food resources renain stable, the catch per unit effort and total catch will remain at a relat vely constant level over a number of seasons. However, when natural or artificial conditions intervene such that the reproductive potential of the stock falls bel ow the level of total nortality, then the fishery will decline and managenent efforts must be directed to the improving of reproductive capacity (Nikolsky, 1963). It has been denonstrated experimentally that total nortality above the naxi mumlevel for whi ch the speci es can compensate, the nat ural envi ronnent remaining unperturbed, will lead to instability and wide fluctuations in abundance. It is suspected that in the case of the Peruvian anchovy the conbi nation of fishery nortality and nat ural nortality exceeded this compensation level or naxi mum sustai nable yi el d (including yield to marine predators) and resulted in the inevitable outcone of the collapse of the fishery (Mrphy, 1977).

Apart from popul ation dynamics, the evolut on of a comercial fishery presents unique problens for the manager. Most historic fisheries have devel oped around a single speci es which tended to have a predominant val ue and provi ded the necessary incentive for devel opment. Such a fishery nould tend to becone successi onal in character since, when the original species has been fished down and depleted, the industry would then nove on to an unexpl oited resource. The problem with such a fishery is that it is largely density-independent in its influence on a stock: that is, it attempts to take a rel ativel y constant number of organi sns regardless of the actual abundance of the stock. Managers are often politically obliged to naintain a minimal harvest even when a stock is depl eted. The danger exi sts that, in the course of the continuing natural fluctuation of the stock, fishing
might exert a far greater nortality than anticipated leading to the reduction of reproductive capacity far bel ow levels from which rapid recovery can be anticipated. Single resource-based fisheries tend to be unstable because of this problem Both the fishery and the resource base are vul nerable to the effects of excessive fishing (Garrod, 1973).

Fl uctuation in the yield of coastal pel agic fish stocks and other resources is a direct cause of instability in the corresponding fisheries. Because of changing bi otic and abiotic factors in the environnent, it is often impossibe to predict the catch of an important species, leaving the local industry unprepared for a number of possi ble outcones (Nagasaki, 1973). The actual causes of rapid fluctuations of nost speci es renain I argel y unknown. It has been noted, however, that the conbi ned catches of a number of species in Japanese coastal waters have remai ned approxi nately constant for a protracted period. Diversity provides an el enent of stability. Thus, according to Kasahara (1973), a practical way of managing a' fishery is to allow for sufficient versatility such that the industry can take advantage of the nost abundant of a number of species. The risk of danage to a particular resource which nay be at low level of abundance is less likely when the fishery is integrated over a number of resources. Diversification enables the load of expl oitation to be spread over a number of species, reproduction potentials of each remaining at highlevel s (Garrod, 1973).

The foregone concl usi on devel oped to this point is that fishing nortality coupled with envi ronmental nortality and stress can and will act to suppress the abundance of a species to extrenel y lowlevels. A consi derable hi story of such events has occurred in several maj or world
fisheries particularly when heavy exploitation was brought to bear against species noted for considerable natural fluctuations. Diversification of fishing effort in the northeastern Pacific and associated waters, particularly the Gulf of \mathbf{A} aska, might take several forns. One neans of diversification would be to seek out underexpl oited traditional species and the other would involve the exploitation of non-traditional species which hitherto have recei ved very little attention.

In the Gulf of A aska and Bering Sea nost stocks of commercially i mportant demersal and pel agi c species, including sal non, hal ibut, king crab, Pacific Ocean perch, and sablefish, are either at or above the level of naxi mum sustai nable yi eld. The catches of these species could not be expected to increase substantially as fishing is further intensified (Kasahara, 1973). On the other hand there still exist stocks of trad tional species in the North Pacific which are either little exploited or entirely unexpl oited, nost of which are found in the eastern hal f of he " region. A partial listing of these species incl ude the anchovy (Engraulis. nordax), herring in sone areas, squids, capelin_(Mallotus_villosus), saury (Cololabis saiva), sandeels (Ammodytes_spp.), the ponfret (Brama vai i), sea urchins, and sone pandalid shrimps. Substantial increases in the harvest of pollock (Theragra_chalcogramma)_in the Gulf of Al aska can al so be anticipated. The increase in total yield brought about by fisheries invol ving the above species has been estimated to be several million netric tons per year (Kasahara, 1973).

As the demand for fishery products increases in uorld markets, it is to be expected that all traditional species mighteventually be fully utilized. A further potential line of devel opnent might be the use of deep-vater
D. Natural fluctuations in terns of changes in fecundity (general).

Cushing, 1973
Cushing and Harris, 1973
Ni kol sky, 1963
E. Natural fluctuations in terns of changes in fecundity (with particular attention to predator and environnental influences).

Bagenal, 1966
Crai g, 1977
Healey, 1975
Hunter, 1975
Lawler, 1965
Nikolsky, 1963
N kol sky, et al., 1973
Shulman, 1972
F. Natural fluctuations in terns of the oceanic production cycle (general).

Aron, 1962
Cushing, 1973
Cushing, 1975
Favorite, 1976
Parsons, et al., 1972
Ryther, 1969
G. Natural fluctuations in terns of hatching success (with particular attention to envi ronmental influences).

Lawler, 1965
Nikolsky, 1963
Ponomarenko, 1973
Rounsefell, 1975
Schopka and Hempel, 1973

H Natural fluctuations in terns of hatching success (with particular attention to the influences of predators).

Nikolsky, 1963
I. Natural fluctuations in terns of larval mortality (general).

Bagenal, 1973
Cushing, 1973
Cushing, 1975
Hunter, 1975
May, 1974
Nikolsky, 1963
Rounsefell, 1975
Sette, 1961
J. Natural fluctuations in terns of Iarval nortality (with particular attention to the influences of predators).

Cushing, 1973
Cushing and Harris, 1973
Hunter, 1975
Nikolsky, 1963
Northcote, 1966
Rounsefel1, 1975
K. Natural fluctuations in terns of recruitment processes (general).

Cushing, 1973
Cushing, 1975
Hunter, 1975
J ohnson, 1972
J ohnson, 1976
Nikolsky, 1963
Sette, 1961
Uda, 1961
L. Natural fluctuations in terns of recruitment processes (with particular attention to envi ronnental influences).

Cushing, 1973
Healey, 1975
J ohnson, 1976
Peterman, 1977
Sette, 1961

Bi ol ogical Characteristics by Species

SALMON

Life History, King Sal non

Taxonomy
King sal non (Oncorhynchus tshawytscha) are nembers of the family Salmonidae and are the Iargest of the five Pacific sal non. Local names vary by location. In Whshi ngton and Oregon, king sal non are called "chi nook", while in British Col umbi a they are surnamed "spring sal non". Other local names are "quinnat", "tyee", "tule", and "blackmouth".

Distribution

King sal non range in western North Anerica from Vent ura River in southern California to Point Hope, Al aska, adjacent to the Chukchi Sea. In Asia they range from Hokkaido, J apan, north to the Anadyr River in Si beria.

Physi cal Description

A mature king sal non averages $102 \mathbf{c m}(40$ inches) in length and $18 \mathbf{k g}$ (40 pounds) in wei ght; however, a 57.2 kg (126 pounds) sal mon was taken near Petersburg, Al aska, in 1949.

Adult king sal non are di stingui shed by the black, irregular spotting on the back, dorsal fins and on both sides of the caudal fin. 'They are al so character zed by a black pigent al ong the gumline. In the ocean the king sal mon is a robust, deep-bodied fish. It has a be-green col oration on its back, fail ng to a silvery col or on the sides with white on the belly.

Depending upon location and degree of naturation, spawning col ors vary from red to copper to al nost black. Males are nore deeply col ored than fenal es. Males are al so di stingui shed by thei r "ridgeback" condition and their hooked upper jaw

In fresh water, juvenile king sal non are recognized by well-devel oped parr marks which are bi sected by the Iateral line.

Life History

Like al l species of Pacific sal non, king sal mon are anadromous. They hatch in fresh water, spend part of their lifein the ocean, then return to fresh water to spawn.

King sal non may becone sexually mature between thei \mathbf{r} second and seventh years. As a result, fish in any spawning run may vary greatly in size. For example, a mat ure three- year-old generally wei ghs less than $23 \mathbf{k g}$ (50 pounds), while a nat ure seven-year-old may exceed 23 kg (50 pounds). Fenal es are usually ol der than nal es at maturity. With the exception of six and seven- year age groups, nale spawners generally out number fenale spawners. Snall king sal non that mature after spending only one winter in the ocean are commonly referred to as "jacks". These are usually mal es.

In Alaska, mature king sal non start to ascend larger rivers from May through July and often nake lengthy fresh- water migrations to reach their home streans. Spawners destined for the Yukon River headwaiters in Canada are known to travel nore than $3220 \mathrm{~km}(\mathbf{2 , 0 0 0} \mathbf{~ m i l e s)}$ in a 60-day period.

King sal non do not feed during the freshwater migration, causing their physical condition to gradually deteriorate. During this period they utilize stored body material for energy and for the devel opment of reproductive products .

King sal non may spawn imedi atel y above the tidal limit, but nost travel upstream Spauning generally occurs in the main channel sof larger streans. Optimm substrate composition is 55 to 95 percent medi um and fine gravel (no nore than 15 cmin diameter) with less than eight percent silt and sand. Optimmstream di scharge is 14.2 to 56.6 liters/see (0.5 to $2.0 \mathbf{f t}^{3} /$ see).

The spawning act is essentially the sane for all five species of Pacific sal non. The female sel ects a spawning site, usually a riffle area, and digs the nest or redd by turning on her side and beating with her tail. Redd size varies from 1.2 to 9 neters in di aneter. Usually a dominant and several accessory mal es are in attendance. When the redd is completed and the female is ready to spawn, she swi ns across the redd and lowers her anal fin intoit. The domi nant male cones al ongsi de the female and qui vers. The eggs from the fenale and sperm(nilt) fromthe male are rel eased simltaneously. After egg deposition, the female digs upstream from the redd and covers the eggs with grave" . A female nay dig several redds and spawn with nore than one male.' Males may a' so spawn with several femal es. Fenal es may contain from 3,000 to 14, 000 eggs. The eggs are comparatively large (six to seven min dianeter) and are orang sh-red in col or. Shortly after spawning activity ceases, the adult king sal non die.

Dependent upon water temperatures, the eggs hatch in about seven to ni ne weeks. The new y-hat ched fish, called al evins, renain in the gravel for two to three weeks while they gradually absorb the food in the attached yol kac. Fry energe from the gravel by early spring. Following energence they school, but soon becone territorial. Juvenile king sal mon predominately migrate to the ocean after hatching, but may reman n in freshuater one or two years before migrating.

During the freshwater stage they eed largel y on plankton, aquacic insect I arvae and terrestrial organisns. In the ocean king sal mon consume a wide
variety of organi sns, including: herring, pilchard, sandlance, rockfish, eulachon, amphipods, copepods, euphausiids, and I arvae of crabs and barnacles. King sal non grow rapidly in the ocean, often doubling their body wei ght during a summer season. King sal non feed in narine waters for a period of one to six years bef ore returning to spawn in freshwater.

The preceding ascription of the life history of king sal mon was provided by: McClean, R. F. et al, 1977.

Clemens, W A and G V. Wilby. 1961. Fi shes of the Pacific coast of Canada.
2nd ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p.
Hart, J. L. 1973. Pacific fishes of Canada. Fi sh. Res. Bd. Canada.
Bull. 180. 740 p.
McPhail, J. O. and C. C. Li ndsey. 1970. Freshwater fishes on north western
Canada and Al aska. Bull. 173. Fi sh. Res. Bd., Canada. 1970. 381 p.

Sockeye salmon remain in ocean feeding areas from one to four years. With the onset of sexual maturity, they begin migrating back to coastal waters and finally their native streans.

The preceding description of the life history of sockeye sal non was provided provi ded by: McClean, R. F. et al, 1977.

Clemens, W A and G. V. Wilby. 1961. Fi shes of the pacific coast of Canada. 2nd ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p.

Davi dson, F. A and S. J. Hutchinson. 1938. The geographical di stri bution and envi ronmental limitations of the Pacific sal non. (genus Oncorhynchu). Bull. Bur. Fi sh., 48:667-692. (Bull.No. 26)
Fleming, R. H 1955. Revi ew of the oceanography of the North Pacific Intern. North Pacific Fish. Comm., Bull. No. 2. 43 p.

Forester, R. E. 1968. The sockeye sal non. Bul I. 162, Fi sh. Res. Ed. Canada. 422 p.

Hart, J. L. 1973. Pacific fishes of Canada. Fi sh. Res. Bd. Canada Bull. 180. 740P.

Hartman, Wilbur L. 1971. Al aska's fishery resource - the sockeye sal non. U. S. Dept. of Commerce, Nat. Oceanic and At nospheric Admin., NMFS leaflet 636.

McPhai1, J. D. and C. C. Li ndsey. 1970. Freshwater fishes of northmestern Canada and Al aska. Bul I. 173. Fi sh. Res. Bd., Canada. 1381 p.

Life History, Coho Sal non

In common usage, coho sal non are generally referred to as "silver sal non".

Di stributi on

Coho sal non are di stributed in western North Anerica from Monterey Bay, California, north to Point Hope, Alaska. In northeastern Asia they range from Hokkaido, Japan, north to the Anadyr River in Si beria. In Alaska cohos are abundant from the Di xon Entrance (Southeastern Al aska) north to the Yukon River. Evi dence suggests cohos are rare north of Norton Sound.

Physi cal Description

The average wei ght of a mature coho sal non is from 2.7 to $5.4 \mathbf{k g}$ (six to 12 pounds). The average length at maturity is 74 cm (29 inches). During 'ocean residency, adults are metallic blue on the dorsal surface, silvery on the sides and ventral surface and cuadal peduncle. Irregular black spots are present on the back and usually on the upper lobe of the tail. Spots and guns are not as darkly pignented as in king sal mon. The caudal peduncle is unusually broad, and a silvery plate is evident on the tail. During the spawning phase, both sexes turn dark, with a maroon-reddi sh col oration on the sides. The male devel ops an extrenely hooked snout and its teeth becone enl arged. The nale al so devel ops a "humped" back, but it is not as extrene as those found in spawning sockeye or pink sal mon males. Occasi onally, mal es return to spann after only three to six months at sea. These small "jacks" resenble adults, but possess nore rounded tail lobes.

Juvenile coho have parr narks evenly di stributed above and bel ow the lateral line. The parr narks are narrower in width than the interspaces, No black spots , ハッ
are visible on the dorsal fin. The anal fin has a long, leading edge usually tipped with white. All other fins are frequently tinged with orange.

Life History

In Al aska coho sal non enter spawning systens from August through Novenber, usually during periods of peak high water. Actual spanning occurs between Septenber and January. Al though spawning may occur in main channel s of large rivers, locations at the head of riffles in shallow tributaries or narrow side channels are preferred. Optimum substrate composition is snall-nedi um gravel. However, coho sal non are extrenel y adapt able and will tol erate up to ten percent mad. Optimm stream di scharge is 96.3 liters/see. ($3.4 \mathrm{ft} .^{3} / \mathrm{see}$). The nest, or redd, site is generally larger than that for sockeye sal non and averages 2.8 min the Col unbia River basin.

Fecundity ranges from 2, 400 eggs to 5, 000 eggs in larger fenal es. Eggs are orangish-red in col or and smaller than nost other sal non eggs, ranging' from four to six millineters in di aneter.

Eggs in the gravel devel op slow during the cold winter nonths, hatching in about six to eight weeks. This interval is highly variable due to the influence of envi ronmental factors. The sac-fry remain in the gravel and utilize the yolk material until energing two to three weeks later. Upon energence, the fry school in shal low areas al ong the shores of the stream These school s break up rather quickly as fry establish territories. The fry defend these "territories from other \mathbf{j} uvenile coho with aggressi ve di splays. This territory is usually al ong the shoreline or behind a log or boulder. From such a location the young fish do not have to fight the current and can dart out to feed on surface insects or drifting insect Iarvae.

Juvenile coho grow rapidly during the early summer nonths and spend the winter in deeper pool areas of spring-fed side ponds. Coho salmon al so rear in
ponds or lakes, where they feed al ong shoreline areas. Rearing al so occurs in bracki sh, I agoon areas.

In the spring of their second, third, or fourth year, coho smel ts mate to the sea. They remain inshore and near the surface during the first few nonths, feeding on herring larvae, sandlance, kelp, greenling, rockfish, eulachon, insects, and vari ous crustaceans such as copepods, amphi pods, and barnacl es. They al so feed on crab larvae and euphausiids. After several nonths inshore, they nove out into the open ocean where their principal foods are squid, euphausiids, and various species of snall fish. .

Inf ormation concerning the coho's ocean resi dency is scant. However, tagging in the Gulf of $\mathbf{A l}$ aska has indicated that alarge number of southeast \mathbf{A} aska coho nove north al ong the coastline until reaching the Kodiak Island vicinity. Thi s novenent corresponds with the \mathbf{A} askan Gyre, which is a counterclockwise pattern of ocean currents noving across the North Pacific to the coast of British Col unbi a, northwest al ong the coast to the Gulfof Al aska and then southnest tovard the Al aska Peninsula. Other species of Pacific sal non are thought to follow this countercl ockwi se pattern during ocean residency. Coho sal mon spend from one to three years in marine waters before returning to spawn in their native streans.

The preceding description of the life history of coho salnon was provided by: McClean, R. F. et al, 1977,

Clemens, W A and G V. Wilby. 1961, Fi shes of the Pacific coast of Canada. 2nd ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p.

Hart, J. L. 1973. Pacific fi shes of Canada. Fi sh. Res. Bd. Canada Bull. 180. 740 p.

McPhail, J. D. and C. C. Li ndsey. 1970. Freshwater fishes of northwestern Canada and Al aska. Bull. 173. Fi sh. Res. Bd., Canada. 1970. 381 p.

Life History, Pi nk Sal mon

Taxonomy

Pi nk sal mon (Oncorhynchus gorbuscha) are menbers of the family Salmonidae. Pi nk sal non have al so been called "bumpy" or "humpback" sal non because of the enl arged hump that devel ops on the back of the spawning male.

Distribution

Pi nk sal non occur in streans from northern Cal ifornia to the Arctic Ocean in North Anerica, and fromthe Arctic Ocean south to Hokkaido Isl and of northern Japan in Asi a. Their oceanic distribution extends from North Anerica to Asia north of the 40th parallel through the Bering Strait into the Arctic Ocean. Although several attempts have been made to transplant pink sal non to waters outsi de their natural range, no new fishery has been established to date.

Physi cal Description

The average length of a mature pink sal non is from 41 to $56 \mathbf{c m}(16$ to 22 inches), with an average wei ght of 1.8 kg (four pounds). Adults have I arge black spots on the back, adi pose and both lobes of the caudal fin. The spots on the caudal fin are oval. The largest of these spots are at least as large as the eye di aneter.

Fry have a general silvery appearance and their backs are often deep bl ue to green. Alack of parr narks easily distinquishes them from other sal non fry. During the first three nonths after the fry's entry into the ocean, they have a silvery col or comon to all sal non. Pi nk sal non fry can al so be readily distinquished by snall and numerous scales, with subtle differences in scale shape, col or, and internal structure.

Spawning adul \mathbf{t} nal es devel op an el ongated and hooked snout, enl arged teeth and pronounced hump behind the back. The back and sides of the fish becone tark,
with green- brown bl ot ches on the si des. Spawn ng females do not devel op these characteristics as distinctly.

Life History

In Al aska mature pink sal non begin migration to spawning streans from midJune to late September, usually ascending streans only short di stances. In Bristish Col unbia and California sone pink sal non have been known to migrate nore than $322 \mathrm{~km}(200 \mathrm{miles})$, and in Asia migrations have been reported up to 644 km (400 miles) from the sea.

In Alaska pink sal non spawn in the lower reaches of short, coastal streans. Sone prefer intertidal areas of these streans, where eggs are alternatel y bathed by fresh and brackish waters. Spauning areas with medi umsize gravel are preferred. Optimumstream flow is $0.03 \mathrm{~m} / \mathrm{sec}$. ($0.10 \mathrm{ft} / \mathrm{see}$) or greater.

Spawning generally begins in August or Septenber when stream temperatures are approxi nately 10 degrees \mathbf{C} (50 degrees F). Pink sal non tend to spawn earlier in col der streans and later in warner ones. Because pinks are snaller than the ot her sal non, the nests, or redds, dug by the female are not as Iarge. In Southeast Al aska, redd size averages $1.1 \mathrm{~min} d i a n e t e r$ and 9.3 cm deep. The egg deposition and fertilization process is similar to the other species of Pacific sal non. The nature female usually carries between 1,500 and 2,000 eggs, which are orangish-red in col or and roughly six mmindiameter. From the time of spawning to the fry s energence from the gravel, less than 25 percent of the deposited eggs surv ve. This heavy nortality is caused by digging in the redds by other fenales, poor oxygen supply to the eggs, poor water circulation in the streambed, di sl odgenent of eggs by flooding and scouring, freezing of eggs during severe and prol onged col d, and predation by other fish.

The devel opnental period of the egg is critically affected by water temperature. Hatching nornally occurs from Decenber through February. alevins
remain in the grave? for several weeks and energe in April or May. The fry \mathbf{m} grate downstreamto est uaries imedi atel \mathbf{y} after hatching, migrating at night and hiding in the gravel by day. Mgrating fry generally do not feed, but if the di stance is great, they may consume larval insects.

Fry formlarge schools in estruarine areas, remaining inshore throughout their first summer. In Septenber they nove into deeper water. In April and June their principal food consists of copepods. By July increased growth enables them to supplenent their diet with larger organi sns such as insects and snall fishes. In the estuaries of southeastern Alaska, fry may reach $\mathbf{1 5}$ to 23 cm (six to ni ne inches) before migrating into the open ocean.

Mat uring pink sal non renai n in ocean feeding grounds until the following summer. Grouth is rapid during the last spring and summer in the sea and throughout nost of the spawning migration through coastal waters.

Pink sal non reach sexual maturity when they are 14 to 16 months old and average 41 to $56 \mathrm{~cm}(16$ to 22 inches) in length. Little data concerning es'tuarial and ocean survival is available. Evi dence suggests that roughly threefourths of the fry entering the estuary waters die before reaching the ocean. Of those entering the ocean, approxi nately three fourths die before reaching sexual maturity. Predation is believed to be the principal cuase of these mortalities.

Pink sal non have the shortest and simplest life hi story of any Pacific sal non. With a tuo- year cycle, they have tuo genetically di stinct stocks. These stocks are called "odd" or "even" year, and are based upon the year adults spawn. Differences in the number and size of fish in the tuo stocks have been the subject of speculation for many years. In sone areas of $\mathbf{A l}$ aska, onl \mathbf{y} oddyear runs predominate in the Frase River and in southern British Col unbia. Even- year runs predominate in northern British Col unbia and the Queen Charlotte Islands. Swi tches from odd- year to even-year dominance have been recorded in

Asi an streans to a si gni ficant extent. In Puget Sound and Southeastern Alaska the odd- year runs domi nate, while in Kodi ak, Cook Inl et and Bristol Bay, evenyear runs are in the naj ority. Long-term averages in Prince Wiliam Sound i ndi cate a hi gher abundance of even-year stocks; however, odd-year stocks have peri odi cally sustai ned several years of hi gh abundance.

The preceding description of the life history of pink sal non was provi ded by: McClean, R. F. et al, 1977.

Baily, Jack E. 1969. Al aska's fishery resource - the pi nk sal non.
U.S. Dept. of Int., Fi sh and Wildife Service, Bureau of Comm.

Fi sheri es. Leaflet 619.
C enens, W A and G V. Wilby. 1961. Fi shes of the Pacific coast of Canada. 2nd ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p.

Hart, J. L. 1973. Pacific fishes of Canada. Fi sh. Res. Bd. Canada. Bull. 180. 740 p.

Hells, J. H 1962-63. Bi ol ogi cal characteristics of intertidal and freshwater spawning pi nk salmon at \mathbf{O} sen Creek, Prince Villiam Sound, Al aska. Speci al sci entific report no. 602. U.S. Dept. Fi sh and Wildiffe Serv. 1970.

Helle, J. A, Ri chard S. V'Ilianson, and Jack E. Bailey, 1964. Intertidal ecol ogy and Iife hi story of pi nk sal mon at $\mathbf{C l}$ sen Creek, Prince W:Iliam Sound, Alaska. Speci al sci entific report no. 483. U.S. Dept of Interior, Fi sh and Wildiife Serv. 1964.

MENei I, N. J. 1969. Survival of pi nk and chum sal mon eggs and alevins, page 101-117. D. W Chapman and T. C. Bjornn, di stribution of salmonoids in streans, with specific reference to food and feeding, page 153-176, in symposi um on sal mon and trout in streans, U. of British Col unbia. H R. MacMillan lectures in fisheries, 1969.

McPhai1, J. D. and C. C. Li ndsey. 1970. Freshwater fi shes of northwestern Canada and Al aska, Bul I. 173. Fish. Res. Bd., Canada. 1970. 381 p.

Prince \mathbf{W} Illiam Sound Aqui culture Corp., 1975. Sal non culture program (unpubl i shed).

Life History, Chum Sal non

Taxonony
Chum sal non (Oncorhynchus keta) are nenbers of the family Salmonidae and sub- order Salmonidea. Chum sal non are commonly referred to as "dogs" or "dog sal non", This name can be attributed to the hooked snout and protuding teeth of spawning nal es.

Distribution

Chuns are the nost widely di stributed of the five Pacific sal non and second to the pink sal non in abundance. In western North Anerica they range from California north to the Bering Strait and east to the MacKenzie River. In northeast Asia they run from near Pusan, Korea, north al ong the Asi an coast to the Arctic Ocean. They al so range west al ong the Arctic coast to the Lena River of Siberia. Prinarily, distribution is above latitide $46^{\circ} \mathbf{N}$ in the colder waters of the subarctic regi on.

Physi cal Description

Adult churn sal non have been recorded as large as $102 \mathbf{c m}$ (40 inches) in length and wei ghi ng as mach as 15 kg (33 pounds). The average is 76 cm (30 inches) I ong and 3.6 kg (eight pot rids) in weight. In marine waters they are metallic blue on dorsal surfaces w th occasi onal black speckling. The pectoral, anal, and caudal fins have dark tips. In fresh water, nat uring chuns show reddish or dark streaks (or bars) and large blotches, with white tips on the pel vic and anal fins. The spawning male devel ops an el ongated, hooked snout, and its teeth becone enl arged.

Chumsa mon fry have six to 14 short parr marks that rarely extend below the Iateral inc. The back is nottled green, while the sides and belly are silvery with a pale green iridescence.

Life History

From July through Septenber, sexually nature chum sal non leave ocean feeding grounds and migrate to freshuater spawning habitat. These habitats may range fromtidal flats of short, coastal streans to springs in the headwaters of large river systens. The I ongest known spawning migration occurs in the Yukon Ri ver, where chumsal non swim nore than $2,410 \mathrm{~km}(1,500 \mathrm{miles})$ upstream from the Bering Sea.

Spawning usually occurs in riffle areas, with gravel size comparable to that used by pi nk sal non. Spawning al so occurs in coarser gravel and even in bedrock areas atop loose rubble. Chum sal non generally avoid areas where there is poor circulation of water through the streanbed. Optimmstreamflow is $0.1-1.0 \mathrm{~m} / \mathrm{sec}(0.3-3.3 \mathrm{ft} / \mathrm{see})$. The nest, or redd, size is considerably larger than that for pink sal non and averages 2.25 min dianeter in the Col unbia River Basin. Optimal size is considered to be $\mathbf{3} \mathbf{m i n}$ dianeter.

Fenal es produce an average of 3,000 orangish-red eggs approxi matel y six to seven mmin di aneter. Hatching occurs from Decenber through March. Experiments have reveal ed that at a constant temperature of $10^{\circ} \mathrm{C}(50$ ' F), eggs hatch in about 50 days. Alevins energe fromthe gravel from April through May to begi \mathbf{n} thei r seavard migration.

When fry reach the estuary, they are usually about $3.8 \mathrm{~cm}(1.5$ inches) long. They feed near shore for several nonths and migrate to open sea in Septenber. Grouth during the first months of marine residence is rapid, with juveniles reaching lengths of 15 to $29 \mathbf{c m}(s i x$ to ni ne inches) in their first year. The diet of maturing chumsal non is similar to that of other Pacific sal mon,

Chum sal mon ret urn to spawn after spending two to four years at sea. Counting freshwater grouth, they are between three and five years old when they Teave the ocean.

The preceding description of the life history of chum sal non was provi ded by: MtClean, R. F. et al, 1977. Cenens, W A and G V. Wilby. 1961. Fishes of the Pacific coast of Canada. 2nd ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p. Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Ed. Canada. Bulf. 180. 740 p. MENei I, W. J. 1969. Survi val of pink and chum sal non eggs and alevins, page 101-117. D. W. Chapman and T. C. Bj ornn, Distribution of salmonoids in streans, with specific reference to food and feeding, page 153-176, in symposi um on sal non and trout in streans, U. of British Col unbia. H R. MacMIIan lectures in fisheries. 1969. McPhai1, J. D. and C. C. Li ndsey. 1970. Freshwater fishes of northwestern Canada and Al aska. Bull. 173. Fi sh. Res. Bd., Canada. 1970. 381 p. Mere11, Theodore, R. Jr. 1970. Al aska's fishery resource - the chum sal mon. U.S. Dept. of Int., Fi sh and Villdife Service, Bureau of " Comm. Fi sheries. Leaflet 632.

Prince William Sound Aqui culture Corp., 1975. Sal non culture program (unpubl i shed).

The theoretical duration of aggressi ve comercial sal non fishery is twel ve nonths per year, ignoring management, climatic and technol ogical constraints. Such a fishery would operate in at least three phases: oceani c, estuarine, and freshwater, with the latter bei ng terminated upon the advanced physi ol ogi cal depl etion of the sal non. Maxi mum product. quality would be realized in the oceanic and estuarine phases of the theoretical fishery. Managenent control of the resource nould be naximized in a fishery limited to the estuarine (near-shore) and freshwater phases. In actuality, the donestic sal non fishery is limited to two phases of operation: estuarine and near-shore for nost comercial efforts and freshuater for subsistence fishing. This limits the commercial harvest of sal non to no nore than four nonths, typically mid- May through midSept enber.

The tine interval of May through Septenber al so approxi nately coincides with that of an "optinal" sal non fishery. An optina? fishery will be considered for all the species being considered in this project, in addition to sal non. Such a fishery will operate sonewhat out of the real m of current fisheries regulations and would incl ude the following as guiding principal s:

0 Harvesting fish, whenever possible, during periods of peak somatic or body condition. The determination of the timing for harvest of "prime" fish would be accomplished through the seasonal ploting of energy content. The example gi ven is of the Aneri can plaice, Hippogl ossoides platessoides (see Figure A.9).

Fig. A. 9 Sensonal pattern of energy storags in components of a mature 35 -cm fomale American plaice from se. Margare's Bay, N.S.

0 Harvesting on a naxi mum sustai nable yi eld basis, but with the' conti nuation of the current trend of nodifying yield I evel s based on sampling of life stages and constraining envi ronmental factors, incl udi ng ecosystem I evel interactions.
$0 \quad$ Timing of harvest with market conditions.
0 Use of harvesting methods considered to be nost efficient providing that biotic and abiotic degradation is not a possible outcone. In sone cases, this hould have the effect of increasing the sca e of operations in several fisheries, nost notably the coupling of optinal harvesting equi pnent to vessel s of such a length and horsepower in order that fishing could be efficiently pursued. the use of processing shi ps on the high seas.

The optimal sal mon fishery nould occur during periods of maximm fish concentration. Al though some stocks will be sonewhat renoved from the level of peak sonatic devel opnent, the concentration of runs in waters close to the coast nore than compensates for the di spersed distribution of stocks in off-shore waters during earlier per ods in the sal non life cycles.

In spite of managenent efforts, the Gulf of \mathbf{A} aska salmon $\mathbf{f i}$ shery has been chronically depressed for the past several decades. Causes of decline in natural runs are several and incl ude the deterioration and el mination of spawning habitat, overfishing, and the possibility of alterations in the nari ne envi ronnent. Current managenent trends incl ude schedul ed cl osures and energency cl osures during the fishing season in order that escapenent goal s can be reached, the opening of new spawning habitat, the revitalization of deteriorated spawning habitat, construction of artificial spawning channel s, and public and private hatchery operations. To further accelerate the recovery of sal non stocks in certain situations, for example, in the case of chinook sal non east of the I ongitude of Cape Suckling, managenent practices will becone increasingly stringent. In the case of chi nook sal non, a proposal has been forwarded for the limitation of the traditional in-shore and off-shore troll fishery.

Causes of Fl uctuation in Resource Abundance, Pacific Sal mon

An examination of natural fluctuations in the abundance and availability of the five species of Pacific sal mon spawning in North Anerican drai nages will uncover a variety of proposed causes and sol utions. Nat ural fluctuations, occasi onally of trenendous magnitude (Ricker, 1950), have been observed and neasured si nce the inception of the sal non fishery in Al askan and Canadi an waters. In terns of managenent, the sal non and its fluctuations have presented special problens too nunerous to be adequately deal \mathbf{t} wh here. A partial listing of maj or concerns nould incl ude: the allocation of catches in high seas fisheries, the determination of the origin of sal non in high seas and coastal fisheries, protection of freshwater habitat, securing opti mum numbers of spawners, forecasting, enhancenent operations and others. The managenent system has under gone consi derable refinement since the early days, having evol ved from simplequota systens to sophi sticated systens used in the harvesting of multiple stocks.

At one tine it was generally believed that if nore sal non were allowed to escape to a particular spawning ground, increased future production would be the result. Evi dence now exi sts that spawning in excess of the carrying capacity of the drai nage will not increase subsequent yield, but may reduce it (Van Hyning, 1973). The management theory in general use at present states that for many maj or stocks of sal non, recruitment or the return of future spawners is maxi mum at sone internedi ate stock size, and that the maxi mum sustai ned commercial harvest or maxi mum sustai ned yi eld can be realized when the optimumescapenent is hel dithin the range of one-third to one-hal f of the unfished population equilibrium The commercial harvest or maxi mum sustai ned yi el d represents the surpl us of spawners above the
opti mum escapenent. According to this theory, failure to renove this surpl us will result in a' decline of subsequent runs (Larkin, 1977). In the specific example of Col umbia River chi nook sal non, spawning beyond optimum escapenent levels leads to a variety of difficulties including interference in spawning due to aggressi ve displays, the superimposition of eggs from multiple spawnings, spawning in marginal areas due to cronding, and others. The out cone is a lowering of reproductive potential bel ow level s which could be realized with more noderate spawning and the subsequent decline of the run (Van Hyning, 1973). As a consequence, a fluctuation has been induced whi ch nay be repeated through a number of cycles, or over a number of years bef ore the run is again stabilized at optinal level s. The economic impact of periodic oscillations can take on considerable proportions, on one occasi on providing the processing industry with too few fish and, on the ot her, provi di ng a surpl us for whi ch the industry does not have the capacity or was in some ot her way unprepared.

The theory presented states that a rel ationship exi sts between the optimm number of spawners and the number of recruits which will be harvested in the future. Other researchers would contend that such a rel ationship nould be fortuitous, that the rel ationship is mainly that of random unrel ated events (Thompson, 1962). According to this position the spawner/ recruit rel ationship has a number of naj or intervening steps representing envi ronnental constraining factors, incl udi ng naj or paraneters such as freshnater temperature, predator density, the marine production cycle, and ot hers, all of which can be highly variable. For example, studi es correl ating the success of fry energence in pink sal non to future adult yi el d have been frustrated by highly variable constraining factors operating in the marine envi ronment. A nore productive study invol ving Fraser Ri ver
pi nk sal non i nvol ved rel ationshi ps of various freshuater and estuarine envi ronmental factors, with a close correl ation existing between sea surface temperatures during a specific season and the abundance of adult sal mon the following year (Royal, et al., 1961), It is a foregone concl usi on that a multitude of factors are invol ved in the survival rates of a given sal mon stock. In spite of such objections, the optimm escapenent hypothesis remains a dominant managenent tool and provides an approximation of the rel ationship bet ween spawners and resulting recruits.

A more graphic way of presenting the nature of fluctuations in sal non abundance is to compute the outcone of the reproductive process. Given the average fecundity of each sal non species, al ong with the sex ratio, average freshwater survi val rates, and the average number of spawners invol ved during various years, it is possibe to estimate the number of fry entering marine waters. Using this system over $230 \times 10^{6} \mathrm{j}$ uvenile sal mon could be expected to enter estuaries of the Gulf of \mathbf{A} aska and Bering Sea in an ' average year and nearly $600 \times 10^{6} \mathrm{in}$ a peak year (Stern, et al., 1976). The disparity between a low year and peak year could be even greater.

Si nce the 1930s, Asi an and Al askan sal non stocks have gone through a period of progressive decline. The. cause of the decline in catches may be traced to a number of factors, sone of which were previ ously nentioned, and incl udi ng, among others, harvesting at level swich could not be compensated for by the reproductive potential of the stocks (Larkin, 1977). In addition to lower average catches, strong periodic variations of two years in pink sal non and four to five yearsin sockeye sal non have further increased year to year variability. In comparison, the Atlantic sal non, Salmo salar shows a periodicity of ten to el even years between peak and low runs (Nkiolsky, 1963). In a summary of suspected causes, Ricker (1962) incl uded predation in
freshuater and marine water, canni balism fouling of spawning grounds, commercial and subsi stence fishing practices, and food competition as factors acting either al one or in various conbi nations which might be responsibe for the observed oscillations in abundance and availability.

Summary
Trend: Continued depressed catches for nost species in many areas.
Causes: Degradation of freshwater habitat; historic exploitation beyond the reproductive capacity of the stocks; and possibility of longterm changes in the mari ne envi ronnent.

A aska Aqui culture Projects: An Overvi ew

The fishery resource enhancenent and rehabilitation projects that are and will be conducted by both public and private entities will tend to increase resource abundance. This section contains a brief di scussion of such projects and their potential impact on salmon harvests.

The devel opnent of sal non enhancenent projects in the State of Alaska, as well as in the other Pacific states, is distinguished by a rather dubi ous hi story. Many early efforts, particularly in terns of hatcheries, were frustrated by recurrent technol ogi cal and bi ol ogi cal complications, the general result being operation that were not cost effective. However, a number of political, economic, and biological changes with respect to hat cheries have led to a resurgence in the view that artificial enhancenent projects of several types, under adequate managenent sensitive to ecological factors, can initiate the accel erated production of a number of species, the Pacific sal non being nost notable.

The current wave of hatchery devel opment projects, to name only one of several types of enhancenent nethods, is in response to a number of factors i ncl udi ng:
past and continued degradation of freshyater spawning and rearing habitat (this has been less of a probelm in $\mathbf{A l}$ aska than el sewhere in the \mathbf{U}. S.)
the possi bility of marine trophic level interactions I eading to decreased return of natural runs recurrent overharvesting of sone sal non resources I eading to a long-term reduction in reproductive potential
the use of artificially propagated runs as means of effectivel y managing short-term oscillations in production the possibility that heal thy natural runs can be enhanced through the introduction of hatchery fish and ot her methods incl udi ng spawning channel s and the use of fish passes enabling previously inaccessible drai nages to becone comercially productive.

The sel ection of coastal sites for nost enhancement projects is a , product of geography and, more significantly, the target species. Although all sal non speci es are schedul ed or are currently being reared in various projects, the dominant target speci es are pink and chum sal non. A number of bi ol ogi cal considerations underlie the focused enhancenent efforts on these two speci es. Anong these are:
the short generation time of both species pi nk sal non two years chum sal non three to five years accel erated snel ting in both species resulting in greatly reduced rearing tine (nonths compared to the several years requi red for other sal non species) increased efficiency of the facility as a producer of fry due to decreased \mathbf{j} uvenile mortality rates while the fish are heldin the facility because of the reduced rearing time.

Athough it is expected that furture efforts will be primarily concentrated on these two species, hatchery devel opnental projects for other species of sal non, incl uding the hybridization of various sal non speci es for improved
grouth and survi val characteristics, and for non-sal mon species such as shrimp nay al so occur.

Summary of Sal mon Harvest Statistics
Harvest obj ectives for $\mathbf{A l}$ aska sal non (all speci es):

Objecti ve	$\underline{\text { Term }}$	Harvest
Short-term	1986	49. 25×10^{6} fish
Long-term	1996	70. $10 \times 10^{6} \mathrm{fi}$ sh

Current Al aska sal non harvest statistics:

- . Average harvest for years 1961-1977 (al I species)

$$
\begin{aligned}
& =43.74 \times 10^{6} \text { fish } \\
& =108.48 \times 10^{3} \mathbf{~ M}
\end{aligned}
$$

Present harvest as percentage of short-term objective = 89.6\% Present harvest as percentage of long-term objective =63.0\% Present harvest tabulated by species (in terns of average state harvest for years 1961-1977)

Species
Pi nk
Chum
Coho
Sockeye
Chi nook

Fi sh
24. 87×10^{6}
5. 03×10^{6}

1. 83×10^{6}
2. 96×10^{6}
0.45×10^{6}
3. $14 \times 10^{6} \mathrm{fi}$ sh

The short- and long-term sal non harvest objectives include harvest from a variety of enhancenent projects, either in operation, under construction, or proposed. Projected sal non harvest generated from enhancenent projects is as follows:

Species	Total harvest from (projected)	Total harvest from projects (projected)	Total harvest all, enhancenent prograns (proje
Pi nk	2. $50 \times 10^{6} \mathrm{fi} \mathbf{s h}$	11. $28 \times 10^{6} \mathrm{fi}$ sh	13.78 $\times 10^{6}$ fist
Chum	13.00×10^{6}	1. 09×10^{6}	14. 10×10^{6}
Coho	1. 20×10^{6}	0. 44×10^{6}	1.64. $\mathrm{X} \mathrm{O}{ }^{6}$
Sockeye	0. 76×10^{6}	0. 19×10^{6}	0. 95×10^{6}
Chi nook	0. 32×10^{6}	$0^{*} 02 \times 10^{6}$	0. 34×10^{6}
	17.80 $\times 10^{6} \mathrm{fi}$ sh	13.02 $\times 10^{6} \mathrm{fi}$ sh	30.81 $\times 10^{6}$ fish

The projected harvest from enhancement project production exceeds 40 percent of the total long-term sal mon harvest objective of 70.1 milion fish.

HALI BUT

Life History

Taxonomy.
The Pacific halibut, Hippoglossus_stenolepis_(Schmidt), is a nenber of the order Pleuronectiformes, which incl udes such species as flounders, sole and brill. Until 1904 hal ibut were regarded as a circumpolar species common to the Atlantic and Pacific Oceans. The Atlantic formis now recogni zed as \mathbf{H} ppoglossus hippoglossus (Linneaus).

Physi cal Description.
The order Pleuronectiformes is characterized by a greatly compressed body which is sonewhat rounded on the eyed side and flat on the blind side.

In young flatfish the body is upright and symetrical with an eye on each si de of the head. Very soon a netanorphosis occurs and one eye migrates to the opposite side of the head. Eventually, both eyes are on' the upper or darker side. The fish then settle to the bottom and swim horizontal ly.

In the Pleuronectidae or flounder family, to which the hal but bel ongs, the eyes and col ored surface are typically on the right side of the fish (dextral). The halibut mouth is large and symetrical, with the maxillary extending to or behi nd the pupil of the eye. The teeth are devel oped on both sides of the \mathbf{j} avs.

Hal ibut are the largest of all flatfishes and one of the larger fishes in the world. The adult nale hal ibut nay reach 140 cm (4 feet 7 inches) in length and attain an average wei ght of 18.1 kg (40 pounds). An adult female may grow to $267 \mathrm{~cm}(8$ feet 9 inches). Fenal es have been recorded wei ghi ng 213 kg (470 pounds) at an age of 35 years or more. The Iargest Pacific halibut on record was caught near Petersburg, Al aska. and
wei ghed 225 kg (495 pounds).
Halibut are dark brown and irregularly bl ot ched with lighter shades on the eyed side and white on the blind side. By controlling the contraction and expansion of chromatophores of various col ors, hal ibut and other flatfishes have the ability to change their external shades and color patterns to blend in with the immedi ate surroundi ngs. These changes are activated by visual stimulat

Di stribution.

The species range from Santa Rose Island off Santa Barbara in southern California to the Bering Sea, as far north as southern Chukchi Sea. They are al so di stributed about hal f way between St. Matthew and St. Lawrence Islands. On the Asiatic coast, they range fromthe Gulf of Anadyr in the north and as far south as Hokkaido, Japan. Hal ibut are found in very shallow waters and to depths of $1,100 \mathrm{~m}(600 \mathrm{f}$ athons). They generally range between 55 to 412 m (30 to 225 fathons).

Spawni ng.

Spanni ng takes place from Novenber to Janaury al ong the slopes of the continental shelf in depths from 220 to $457 \mathrm{~m}(125$ to 250 fathons).

Fecundity in females is proport onate to the size of the fish. A large fenale of 63.5 kg (140 pounds) may have as many as 2.7 mili ion eggs. The eggs, or ova, are about $0.318 \mathrm{~cm}(1 / 8 \mathrm{inch}) \mathrm{in}$ diameter and bathypelagic, 1 being laid and fertilized in proximity to the bottom but subsequently drifting in the middle to upper nater levels. The eggs and larvae drift passi vel y with the ocean currents at depths down to $686 \mathrm{~m}(375$ fathons). As devel opnent proceeds, they gradually rise toward the surface and drift into shallow water with the inshore surface currents.

The germinal disc of the egg goes through the normal processes of cell di visi on to form the enbryo that lives of f the yol k. The yol k com prises the main mass of the egg. Eggs hatch after about 15 days, with the Iarvae living off nourishment fromthe yolk sac. After absorption of the yol k, post-larvae must depend upon the external envi ronnent for their food. As with the eggs, the I arvae and post-I arvae continue to be free floating. They are transported many hundreds, if not thousands, of miles by the westward noving ocean currents.

The free floating stage lasts about si x nonths. After rising to the surface water layers, they tend to be propelled by the prevailing winds toward the shal lower sections of the continental shelf. The I arvae undergo netanorphosis and begin their bottom existence as $\mathbf{j u v e n i l e}$ hal but far from the spawning grounds. Thus, the floating eggs, devel oping I arvae and the post-larvae are di spersed far westuard from the points where they were produced.

With advancing size and age, the young hal ibut nove into deeper water. Fena es grow faster than males. The age of sexual naturity in fenales is from 8 to 16 years, averaging about 12 years.

Tagging operations have shown that immare hal ibut nove within very restricted areas, whereas nature fish may migrate extensi vel y to and from the spawning grounds. Hal ibut have been known to migrate as far as $\mathbf{3 , 2 2 0} \mathbf{~ k m}$ (2,000 miles).

Halibut prey on a variety of anime and their diet changes with age, season and area. Juveniles feed consi derably on small crustaceans and shrimp. Older fish shift nore to a fish diet, particularly of flounders (Novikov, ?964). Anong flounders, yelloufin sole (Limanda aspera) is the halibut's principal prey in the southeastern Bering Sea.

Harvesting Season

The northeast Pacific hal ibut fishery is theoretically capable of supporting a year-around fishery. However, managenent and clinatic constraint has restricted the fishery to a regulated season extending generally from May through Septenber. Saf eguarding spawning concentrations has been a factor in the seasonal closure of the fishery. Although the halibut is a highly fecund fish, little attention has been made in the literature to the flesh quality of gravid and spent fish. This factor apparently is not significant interns of the annual cl osure of the fishery.

The optimal fishery for hal ibut nould occur during the late spring and early to mid-summer seasons. This period coincides with both the time of maxi mum concentration in terns of depth of distribution as well as the time of prine sonatic condition.

Causes of Fluctuation in Resource Abundance, Pacific Hal ibut

Annual catch and catch per unit effort patterns of the Pacific hal ibut indicate periodic oscillations since shortly after the turn of the century. Whether these flactuations are reflective of changes in the absol ute abundance or in the availability of the species due either to changes in distribution or the efficiency of fishing gear is largely a matter for conjecture. It is apparently the contention of the International Pacific Hal i but Commissi on that the indicated fluctuations are primarily the result of fishing pressure and that alterations in the bi otic and abiotic environments have been secondary factors chiefly applicable to short term changes in the stocks (Bell, et al., 1958).

FIGURE A. 10 Source: Skud, 1977

The briefest review of hal ibut catches nouldindicate a period of rapid decline from 1915 to the early 1920s, a period of increase from 1926 to 1936, rapid increase from 1936 to 1944, followed by a period of discontinuous decline to present. The Pacific halibut stocks in IPHC statistical areas 2 and 3 are currently at low levels of absol ute abundance. Early researchers of hal ibut fluctuations concl uded that the abundance patterns followed periodicenvi ronnental events, possi bly invol ving overwintering conditions. These studi es forwarded the hypothesis that catches reflected the prevailing winter water temperatures 10 to 15 years prior to the actual catch. Higher winter water temperat ures, following this vein, were favorable to larval devel opnent during the tine of drift, increasing
juvenile survi val and ultimately increasing recruitnent (Ketchen, 1956). Correl ation between temperature anonalies and strong year-classes was the tentative concl usion of later researchers with for areas 2 and 3, respectivel y (Bell, et al., 1956). Mich of this evidence has been contested by Bell due to the Iack of strong statistical proof.

A characteristic of Pacific halibut in the Gulfof $\mathbf{A l}$ aska has been the appearance of year-classes of various strength whi ch have exerted short termeffects on yield. The irregular appearance of unusually strong yearclasses as well as other variations in year-class strength have generally been attributed to factors other than fishing (Bell, et al., 1958). The excl usi veness of this hypothesis has been challenged in recent years (Skud, 1977).

A revi ew of the life history of this species indicates that a migatory circuit is invol ved and incl udes specific spawning grounds, a period of larval drift, nursery grounds, regul ar feeding grounds, and active " contranatant novenent to compensate for the initial drift. The possibility exists, then, that a variety of envi ronnental events are capable of perturbing this series of life history events through long or short term envi ronnental changes. Current systens are subject to change and might result in the unf avorable di stribution of eggs and larvae into deep offshore waters incl uding the Alaska Gyre. Year-class variations nould be the outcone of variations in distribution, the nost favorable distribution being the placenent of large numbers of larvae on the continental shel f following met anor phosi s (Skud, 1977). I ncreased wi nter temperat ures noul d accel erate devel opment of I arvae and, as a consequence, decrease the period of larval drift and decrease the effects of grazing by pel agic predators.

The migratory patterns of taged $\mathrm{j} u v e n i l e$ hal i but indicate extensi ve compensatory movenents in terns of the initial larval drift. Significant numbers of tagged fish rel eased in statistical area 3, the western Gulf of A aska, have been recovered to the southeast in area 2. Si milar novenents from statistical area 4, the Bering Sea, to area 3 have al so been reported, indicating qu te possibly a strong trend in the migratory circuit of this species that sagradual return to original spawning locations or some approxi nation thereof. The obvi ous inference is that the incidental catch of \mathbf{j} uvenile hal i but will ultimatel y influence the traditional fishery of adult hal i but to the south. The heavy concentration of foreign traw effort in IPHC statistical areas 4 and 3 with the resulting incidental harvest of \mathbf{j} uveniles less than 65 cm in length, for which the traw s have been shown to be sel ective, have ultimately influenced yiel ds in areas 3 and 2. This series of events, coupl ed with fluctuating biotic and abiotic envi ronmental factors serve as a partial explanation to the very low levels of abundance currently experienced in statistical area 2. The effects of fishing in one area cannot be considered to be independent of future events in another area (Skud, 1977).

Summary
Trend: Chronic decline to current low level s of abundance.
Cause: Primary cause of decline is the incidental capture of \mathbf{j} uvenile hal ibut by year-around traw fisheries. Previ ous to the period of intensive traw fisheries, the apparent primary factor determining abundance was. envi ronmental in nature. Prognosis for future is for stabilization and increase in abundance through protection of $\mathbf{j u v e n i l e ~ s t o c k s . ~}$

Life History

Taxonomy.
The Pacific herring is a nenber of the order Clupeiformes. Its family, Clupidae, is characterized by an el ongated, compressed body. In general, all Pacific herring have similar characteristics, but minor differences nay exi st between the herring in Al aska and those in other areas.

Physi cal Description.

The species can grow to lengths of $330 \mathbf{m m}$ (13 inches), but an average I arge speci nen is 230 to 250 mm (ni ne to ten inches) long and wei ghts about 0.15 kg ($1 / 3$ pound). They are bl uish-green dorsally and silvery on the ventral side, having rel ati vely large scal es. Herring are fast swi mers and occur in schools of up to one milion or more fish. They feed principally on planktonic crustaceans and store Iarge quantities of oil in their bodies. The common maximulife is about ni ne years, although some fish may live nore than 15 years. They attain sexual naturity in their third or fourth year of life and spawn each year thereafter.

Di stribution.

Pacific herring occur all around the North Pacific rim in the Bering Sea and along the shores of the Arctic Ocean. In Alaska the Iargest com nercial quantities occur around Kodiak Island, Prince William Sound, and in much of southeastern Al aska. Recent devel opnents in fishing techniques and gear have resulted in the di scovery of additional concentrations of Pacific herring in the Bering Sea, where thousands of tons are now taken annually by Sovi et and Japanese traw ers.

Life History.

The life history of Pacific herring from the tine adults spann until the devel oping \mathbf{j} uveniles nove frominshore waters is well docunented, but little is known about what occurs in the two and one-half years while herring are maturing.

Adult Pacific herring usually nature at about age three or four years in $\mathbf{A l}$ aska at a size of about 150 to $\mathbf{2 0 0} \mathbf{~ m m}$ However, this may vary sonewhat between areas. Spawning occurs throughout the spring nonths, late April through mid-June, and slightly earlier in more southern areas. Whter temperatures appear to be one of the nai \boldsymbol{n} factors that influence spawning timing, and spawning usually begi ns when water temperat ures reach approximately 4.17° to $4.44^{\circ} \mathrm{C}\left(39.5^{\circ}\right.$ to $\left.40.0^{\circ} \mathrm{F}\right)$.

A female can produce about 10,000 eggs when she is three years old, and as many as 59, 000 when she is eight. The ol der and larger fenal es produce more eggs than the younger ones, but approxi nately $\mathbf{2 0 , 0 0 0}$ eggs per spawning is average. The eggs are adhesive, and the fenale deposits them on sol id surfaces rather than broadcasting them loosel y in the water. The generally preferred surface for spawning is living plants. Those plants nost often used are eel grass (Zostera), rockweed (Fucus). and girdle (Laminaria).

A spawning female makes physical contact with the substrate and deposits her eggs in narrow bands upon it. The male herring does not pair of f with any particular nate, but wanders anong the spawning fenal es, extruding milt (sperm) at random The thousands, or perhaps millions, of fish spawning on a beach usually product so mach milt that the water becones di scol ored.

A heavy spanning does not al ways result in more adult herring. In sone cases, nortality caused by crouding of the eggs nay actually produce
fewer young herring than nore noderate spawning. Mbreover, if many of the eggs of a heavy spawning hatch successfully, high nortality may result as the millions of larvae compete for alimited food supply.

The eggs of the Pacific herring are snall (1.0 to 1.5 mm in dianeter). They are spherical, slightly heavi er than seawater, and adhesi ve. The incubation time is governed by the temperat ure of the water, and ranges bet ween 12 and 20 days. Higher temperat ures accel er ate devel opnent. Even under ideal conditions, milions of eggs fail to hatch and mortalities in the egg stage can range from 50 percent to as high as 99 percent. During the incubation period, eggs laid with in the intertidal area are alternately exposed and covered by tides. In warmweather, great numbers of eggs may dehydrate and die when exposed by lowtides. Severe nortality may al so result from coastal storns if the egg-covered ell grass or kelp is torn from the bottom and cast up on the beach. The alternating exposure and covering of the eggs by the tide nakes them available to both aquatic and terrestrial predators.

Upon hat ching, a larva recei ves nourishment from a small quantity of yolk that remains in the egg. When the yol k has been utilized the larva begins to feed. The herring larva is al nost transparent and about six mm ($1 / 4 \mathbf{i n c h}$) long. The transition from yolk subsi stence to acti ve feeding is perhaps one of the nost critical periods in the herring's life. If water currents are unfavorable, thousands of larvae may be swept out to sea or to areas without proper food. The Iarvae are constantly exposed to predation by marine ani nals such as arrow worns, conb jellies and other fish.

The change fromalarva to a scal ed uvenile takes place from six to ei ght weeks after the egg is hatched. At this stage the herring is
approximate 65 mm (2 $\mathbf{1 / 2}$ inches) long. The young collect in small school s and gradually nove seaward toward the nouths of bays and inlets in which they were hatched. By early fall they are about 100 mm (4inches) long and consolidate intolarge schools of perhaps one million fish or nore. Mst of the schools nove into deep or of fshore water by late fall. They return two and one-hal f years later as mature adul ts ready to spam for the first ti ne.

The preceding description of the life history of Pacific herring was provi ded by: McClean, R.F., et al., 1977. denens, W A, and G V. Wilby. 1961. Fi shes of the Pacific coast of Canada. 2nd ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p. Hart, J. L. 1973. Pacific Fi shes of Canada. Fi sh. Res. Bd, Canada. Bull. 180. 740 p.

McPhai1, J. D. and C. C. Li ndsey. 1970. Fresh water fishes of northwestern Canada and Al aska. Bul I. Fi sh. Res. Bd. Canada 1973. 381 p.

Rei d, Geral d M 1972. Fi shery facts - 2, Al aska's fishery resources the pacific herring. U.S. Dept. Comm., NMFS, U.S. Governnent printing office, Whshi ngton, D. C. 20 p.

Harvesting Season

The fishery for herring is largel y restricted to those times and places where the fish have becone concentrated into spawning aggregations. Alhough some successful winter fisheries have exi sted due to the presence of concent rations, feeding or otherwise, the Alaskan fishery is Iargely restricted to the late-April through mid-June period because of economic rather than nanagenent constraints. A further factor complicating the timing of the current fishery is the need to harvest the fish at the proper degree of ripeness for the sac roe narket. Product quality is acceptable only in a rel atively limited time span.

Due to the apparent diffused di stribution of adult stocks in neritic and oceanic waters, the timing of the optinal fishery for herring nould coincide with that of the traditional commercial fishery. The somatic condition of the fish is not prime at this time; however, this is of little concern because of the concentrations found at the termination of spawning migrations and because of the val ue of genital products which are either approaching or at prine condition during all but the end of this period.

Causes of Fluctuation in Resource Abundance

The clupeoid fishes, of which the Pacific herring is a nenber, are a dominant commercial species in uorld fisheries due to their extrene abundance. The dynamics of abundance are Iargel y determined by trophic rel ationships, the closer the feeding pattern to the sources of primary production, the greater the inclination towards abundance. The clupeoids are generally filter feeding and particulate feeding plankton consuners, the herbi vores of the sea, and are positioned approxi natel y 1 to 2 trophic I evel saway
from the primary producing phytoplankton (Mrphy, 1977). The only exception to this feeding behavior are northern herrings which will accept larger particles when such food is in abundance. It has been reported that adult Pacific herring will consune pink sal mon fry (Githausen, 1962)., The herring is a maj or forage fish representing a key link in the marine food chai n and, as such, experiences high nortality rates particularly during pre-adult stages (Murphy, 1977).

The norld herring fishery is notable for great fluctuations in catch which in turn are reflections of abundance and availability. These fluctuations have been classified as short and long-term representing tine intervals of $\mathbf{3}$ to 7 and approxi nately 85 years, respectivel (Ayushin, 1965). Fl uctuations in herring stocks are the results of a number of factors incl uding the magnitude of envi ronnental change, the range in age at recruitnent, the frequency of strong year-classes, the nunber of expl oited age-groups in the adult population, shifts in the area of recruitment, and reduced recruitment caused by fisheries on imature herring (Ziglstra, 1963). Fromthis, it can be deduced that the abundance of a herring stock is dependent on the frequent appearance of strong year-classes and availability is largely the result of the recruitnent of strong year-classes into the stock being expl oited rather than another nore renote stock. The abundance of a herring stock has been found nost constant in those cases where a particular stock is composed of a number of semi-isol ated spanning units with differences in timing and location, the outcone being a buffering of short term fluctuations in recruitment and, ultimately, in abundance (Hempel, 1963).

In terns of the population dynamics of this species, the paraneters of abundance are fecundity (reflective of grouth), I ongevity (reflective of
the number of potential spawning), and the age at naturity (Murphy, 1977). The stability of a stock is dependent upon the bal ancing of conbi ned nortality factors, including envi ronmental, predator and fishing effects, with the reproductive potential of the fish. Exceeding this reproductive potential. woul d seemingly suggest the collapse of a fishery, however, due to a suspected feedback loop in the reproductive physiol ogy of the species, stress nay lead to a number of effects including accel erated grouth, earlier . mat uration, and increased fecundity. The overall effect would be the rapid stabilization of stock abundance assuming that envi ronmental factors remain favorable and intense expl oitation has been suspended.

The abundance and availability of herring are prinarily the result of constraining biotic and abiotic environnental factors. It is a perverse characteristic of clupeoids in general to have very wide variations in recruitment, the size of year-classes being for all practical purposes independent of a wide range of spawning stock sizes (Murphy, 1977). Thi s characteristic is largely the product of envi ronmental factors which, anong other thi ngs, determine the survi val of the adhesi ve egg masses and the I arvae, the size and age of recruits, migratory patterns, and the segregation of recruitment anong various semi-isol ated stocks, with the overall, effect of envi ronnental constraints being the establishnent of short and I ong-term fluct uations (Hempel, 1963). Herring stocks inhabiting waters near the extrenes of their nornal di stribution are particularly sensitive to fluctuations in climate, sone Alaskan stocks being included in this category. However, in nost cases, the collapse of the stock has been observed when the population was al so heavily fished (Mrphy, 1977).

The bi ol ogi cal reasons for the appearance of strong year-classes is Iargely a natter for conjecture since the correlation of infinite
variety of hydrographic and biotic conditions in the water masses with survi val data is a difficult statistical process (Murphy, 1977; Hempel, 1963). In the northwest Pacific, short and Iong-term fluctuations are bel ieved to stem from changes in the maj or current systens, particularly the Karoshio current. Increased year-class abundance tends to coi ncide with the weakeni ng of this system (Ayushin, 1965). The influence of the climate in the Gulf of Alaskall be included in a part of this section.

In addition to influencing the abundance of herring stocks, hydroI ogical conditions al so influence the di stribution of stocks both horizontally and vertically within their natural range of distribution and effects the availability of the stock to the comercial fishery. Herring tend to keep to waters which cl osel y approxi mate optimm conditions, particul arly in regard to temperature (Nikolsky, 1963; Shulman, 1962). The conditions of the water masses tend either to concentrate the herring popul ation into di screte schools or to di sperse themin more diffuse ' aggregations. The occurrence of optimum physical conditions in deeper I ayers during spawning migrations particularly in coastal waters mighthave the effect of placing the herring popul ation beyond the vertical range of harvesting methods. Mreover, because Pacific herring stocks do not necessarily spawn at fixed locations, envi ronnental change can alter migratory circuits with a corresponding alteration in spawning locations, a potential complication in a comercial fishery (Uda, 1961),

A primary determiner of future abundance of herring is hatching success and Iarval survi val, events under the control of an array of environnental factors. The Pacific herring spawns in intertidal to slightly subtidal locations at sel ected spawning locations, the overal liming
following a latitudinal cline extending from December in California waters (San Diego) to June (St. Mchael, Alaska) and beyond in Al askan waters (Rounsefel 1, 1975). Spawning occurs within a certain range of water temperatures, and because of the progressive seasonal warming of waters into the optimal range, it i's possible to follow the spawning of individual herring stocks as one noves fromsouth to north. The advantages of intertidal spawning of Pacific herring over the deeper, benthic spawning of Atlantic herring are not clearly understood al though sonewhat reduced predation on egasses is suspected to be a factor (Murphy, 1977). Other determiners of spawning success irregardless of location incl ude the conditions of spawning and devel opnent, and the quantity and quality of spawn.
 result of the age composition of the stock, ol der fish generally being nore fecund and Iaying eggs of higher quality, and the feed $n g$ conditions faced by the parent stock in the preceding season (Nikolsky, 1963).

The influence of water temperature on the hatching success, I arval survival and the future abundance of adult herring. has several effects. Studi es of herring from Prince William Sound indicate hi gher survi val when March to June water temperatures were warner than usual. Warner temperatures have the effect of accel erating enbryonic devel opment and shortening hat ching time, thus increasing survi val by decreasing the exposure tine to intense terrestrial (bear and waterfow, particularly bl ack brant) and narine predation. Increased temperatures nay al so have the secondary effect of enhancing primary production in nursery areas and al leviating the stress associ ated with the transition of larvae to active, particul ate feeding (Rounsefel1, 1975). I mproved feeding conditions, in
turn，would lead to rapid grouth and the rapid passage of the \mathbf{j} uvenile herring through the specific feeding ranges of numerous predators（Cushing， 1973）．One possible negative aspect of hei ghtened temperatures is that at the tine of particularly copious spawning，when numerous layers of eggs are present on the available substrate，increased respi ratory need is．．suspected to lead to the suffocation and subsequent decomposition of the innernost 1 ayers．This mould cause the still viable egg nass to break free and pass into a current system and to an unknown fate．

The period of larval drift and the devel opnent of herring stocks tend to coincide with the timing of the production cycle，an event which itself is the product of light，nutrient and temperature regi nes．The coi nci dence of the transition to active feeding with the presence of appropriate food particles has the overall effect of enhancing survival and increasing the probability of a largerthen nornal brood stock（Cushing，1973）．The actual quantification of changes in the matching of $\mathbf{j u v e n i l e ~ h e r r i n g ~ t o ~ t h e ~}$ food supply is difficult，particularly as it applies to underlying regi mes． However，Laevastu（1978），via computer nodeling has estimated that in the eastern Bering Sea a winter temperature anomal y of $0.8^{\circ} \mathrm{C}$ ．has the effect of $\mathbf{1 0 , 3 0 0} \mathbf{M r}(11,300$ tons）of annual herring catch increase or decrease depending on whether increased or decreased temperatures are invol ved． It was al so estimated that a change in catch of $10,300 \mathrm{MT}$（ $\mathbf{1 1}, \mathbf{3 0 0}$ tons） was equi val ent to $90,700 \mathrm{Mr}(100,000$ tons）annual bi onass change．

Herring stocks al so denonstrate fluctuations in terns of the presence or absence of competitors for food resources（Mrphy，1977），as well as the rel ative abundance of predators．Reduction of competitors and predators might well lead to the increased abundance of herring stocks．As previ ously mentioned，the clupeoids represent a naj or，if not dominant，forage species．

As a consequence, natural nortality nay be extremely high and approach the naxi mum compensatory powers of the species reproductive potential. The gamit of predat ors nouldincl ude whale stocks and ot her marine nammal s, sea birds and carni vorous fish. It has been theorized that natural predators in stable ecosystens, like their human counterparts, tend to maximize the yield from their prey popul ations (Slobodkin, 1962). This nould suggest that sone stocks, such as the Peruvi an anchovy, were yi el di ng near the naxi mum bef ore the inception of fishing (Mrphy, 1977). It would al so suggest that the harvesting of competitors and predators, many of which are traditional fisheries species, would decrease herring nortality, particularly of \mathbf{j} uveniles (Hempe1, 1963).

In terns of the harvest of \mathbf{j} uvenile and adult herring, apart from envi ronnental considerations, the annual consumption of herring by marine nammal s, incl uding toothed whal es and pi nnipeds, is estimated to be 10 times the annual catch (Laevastu, 1978). The annual consumption by carni vorous fishes is apparently even larger, with an inverse relationship between pollock and herring bi onass in the eastern Bering Sea being suggested by Laevastu. Therefore, taking predation into account, it has been suggested that long and short-term changes in the abundance of pollock, narine nammals, and other predat ors would induce reverse fluctuations in the herring stocks invol ved. In the nanagenent of herring stocks, including the computation of naxi mum yi elds, the state of predator stocks needs to be considered and the need for a unified managenent body is inferred.

The commercial fishery for herring in the Gulf of Alaska and British Col unbi a waters has shown considerable variations in annual catch patterns; al though whether these variations are due to changes in abundance or
availability is not clear. Heavy natural nortality is a factor, particularly with regard to the operation of ofshore current systens produced by northeasterly winds. The effect of such currents would be to di splace I arvae to inhospitable oceanic regi ons, an effect not limited to herring al one (Uda, 1961). It has been concl uded that the commercial fishery in this regi on has a considerable influence on the age structure of the stocks which, in turn, influences the dynamics of the species during periods of envi ronmental fluctuation. Commercial harvesting has maximmimpact on stocks when heavy fishing pressure is placed on stocks al ready depressed due to adverse envi ronmental factors (Ayushin, 1965). Apparently, the rapid recovery of British Col unbia stocks s the product of stable envi ronmental factors, drastically reduced fishing, and the absence of ecol ogically similar competitors (Mrphy, 1977).

The concl usi on reached here is that a comercial fishery has the effect of renoving old, nature fish from the stock. The less intensi ve' met hods of fishing previ ous to current nethods probably were not capable of overfishing stocks inhabiting hospitable water nasses. More advanced methods incl uding offshore trawing have reduced the margin of error to the point where it is possibe to overfish healthy herring stocks (Ayushin, 1965). Changes which si gnal the impending decline of a stock incl ude: the restriction of spawning time and location, increased grouth rates, and accel erated maturity (Mrphy, 1977). The characteristic shrinking of range with declines in abundance of a herring stock has the potentially di sastrous i mplication, in the absence of effective nanagenent, that the fishing fleet can be expected to concentrate on the remanant concentrations, inflicting even hi gher than usual nortality (Mrphy, 1977). Herring
fluctuations are, consequent $l y$, the product of a complex array of biotic, abiotic, and artificial factors.

Summary
Trend: British Col unbia -- recovery. Northern Gulf of Alaska noderate level s of abundance. Eastern Bering Sea - abundant. Northern Bering Sea -- decline.

Cause: Compl ex array of physical factors and predators working at each life stage. Fishing pressure implicated in the decline of several stocks previ ously weakened by adverse envi ronmental factors.

The groundfish fishery in the Gulf of Alaska has been al nost entirely a foreign fishery. The foreign fleets are self-contai ned units and have had no direct impact on Al askan commities. Interest is growing in the devel opment of a donestic groundfish industry and under the provisions of the Fi sheries Conservation and Managenent Act of 1976, the donestic industry has been gi ven the right to di splace the foreign industry as rapidly as it can. The groundfish resources that will becone available to the donestic industry as it devel ops will incl ude Pacific pollock, Pacific cod, sablefish, Pacific Ocean perch, various species of flounder and other species. The first four species are either the dominant species or are representative of the dom nant groups of groundfish in the Gulf of Al aska. Life histories are only provi ded for these four dominant and/ or representative species. •

Life History, Pollock

Taxonomy.
The walleye or Pacific pollock, Theragra chalcogramma (Pallas), is a nenber of the family Gadi dae. In common usage, it is al so often called the "whiting" or "bigeye" pollock.

Physi cal Description.

The adult pollock is recogni zed by (1) three nell-separated dorsal fins, (2) anus bel ow the space between the first and second dorsal fins, (3) a minute or no barbel on the lower jaw and (4) a slightly projecting lower jaw

Scal es are snall and cycl oid, with the Iateral line canal arching hi gh anteriorly then sloping down to mid-body bel ow the middle of the second dorsal fin. Adults are olive green to brown on the dorsal surface, silvery on the sides, and dusky to black on the fins. In juveniles, tho. (occasi onally three) narrow, 1 ight yel low bands are present al ong the sides.

Length may reach (three feet) 91 cm

Distribution. ‘

Several popul ations of Theragra_ have been recogni zed as species or subspecies around the North Pacific Basin. Anal ysis led to the concl usi on. that such di stinctions are not $\mathbf{j u s t i f i e d . ~ I n ~ t h i s ~ a c c o u n t , ~ o n l y ~ o n e ~ s p e c i e s ~}$ is recognized. Accordingly, the range is from Carmel, California, through the Bering Sea to St. Lawrence Island and on the Asi an coast to Kanchat ka, , Okhotsk Sea and southern Sea of Japan. Centers of abundance lie off Japan, Korea, the Kamchatka Peni nsul a, the eastern Bering Sea and in the western Gulfor \mathbf{A} aska.

Pollock inhabit the waters of the continental shelf and upper slope fromthe surface to depths of $366 \mathrm{~m}(200$ fathons). At $366 \mathrm{~m}(200 \mathrm{f}$ athons), it is suspected to be bathypelagic.

Life History

There is no apparent sexual di norphismin pollock. Chang (1974) stated that size and age of naturation of pollock is closel \mathbf{y} rel ated to the rate of grouth and envi ronnental factors.' Krivobak and Tarkovskaya (1964) reported that fenale pollock fromthe southeastern Bering Sea attai ned sexual maturity at 40 cm and nal es at 32 cm Serobaba (1971) reported that pollock from the sane area reached naturity at lengths of 31 to $32 \mathrm{~cm}(t h r e e ~ t o$ four years of age), but that mature indi vidual s were encountered at lenaths of 24 cm

Spawning is protracted, occurring between March and mid-July, peaking in May for Bering Sea stocks. Fertilization is external. The fertilized egg is planktonic and occurs at depths of $\mathbf{1 3}$ to $\mathbf{3 0 0} \mathrm{m}$ but rarely at greater depths. Eggs and larvae inhabit near-surface waters, but juveniles exhibit a di stinct vertical novenent, rising to the surface at ni ght to feed and descending to mid or bottom depths during the day (Kobayashi, 1963).

Yusa (1954) and Gorbunova (1954) described and illustrated the devel opment of eggs and Iarvae of pollock. Yusa's work indicated that I arvae hat ched in 12 days at incubation temperatures of 6° to 70 C . Gorbunova reared pollock eggs at average temperatures of $3.4^{\circ} \mathrm{C}$ (range 0° to $11.5^{\circ} \mathrm{C}$), and $8.2^{\circ} \mathrm{C}$ (range 2.0° to $12.2^{\circ} \mathrm{C}$). The devel opnent took 20.5 days at the I ower nean temperature and 10 days at the hi gher temperature.

Hami, et al., (1971) studi ed the effect of temperature on the grouth and nortality of early stages of po lock. These norkers obtai ned the foll owing rel ationshi p bet ween deve opnent and temperatures:
$\log \mathbf{I} / \mathbf{t}=\frac{\mathbf{m}}{2} \frac{1}{T}+\mathbf{C}$, where
t = tine in days required for the eggs to reach a certain stage
$T=$ the average absol ute temperature
$\mathbf{m}=$ Arrhenius temperat ure characteristic ("Absol ute)
c $=$ constant
The incubation tine from fertilization to 50 percent hatching was 10 days at $10^{\circ} \mathrm{C}, 13.8$ to 14.4 days at $6^{\circ} \mathrm{C}$ and 24.5 to 27.4 days at $2^{\circ} \mathrm{C}$.

According to Gorbunova (1954), new y hat ched Iarvae (eggs incubated at $8.2^{\circ} \mathrm{C}$) were 3.5 to 4.4 mm in length and apparently float upside down at the surface of the water due to the buoyancy of their Iarge yol \mathbf{k} sac (Yusa, 1954). The yol k sac is absorbed at about 7.0 to 7.5 mm The actual tine from hatching to transformation to the juvenile phase is not known, but
according to Gorbunova (1954), pollock becone demersal at Iengths of $\mathbf{3 5}$ to 50 mm and reach 90 to 110 mm in the first year of life.

In the eastern Bering Sea, the grouth of pollock is rel atively rapid during the first four years of life. By age one pollock are about $\mathbf{1 7 0} \mathbf{~ m m}$ long. From age one to four they nay grow an average of 80 mm per year. Beyond age four, the grouth rate is much reduced.

After yol k sac absorption, Iarval pollock of seven to ten min length feed on di atons, copepod eggs and nauplii. As the Iarvae grow, they feed prinarily on zooplankton, and by $\mathbf{2 0}$ to $\mathbf{3 5} \mathbf{~ m m f e e d ~ n a i n l y ~ o n ~ c o p e p o d s . ~ A t ~}$ 35 to 50 mm pollock feed on pel agic copepods and euphausiids. Such organi sns dom nate stomach contents at least until pollock reach $\mathbf{1 1 7} \mathbf{~ m m i n}$ I ength (Gorbunova, 1954). Adult pollock feed on a variety of organi sns, but predominant food itens include pel agic or semi-pel agic crustaceans, particularly euphausids, copepods and amphi pods. Takashashi and Yamaguchi (1972) observed that young pollock (zero to one year ol d) may constitute over 50 percent of the stomach content of pollock over 50 cmin length.

The preceding description of the life history of Pacific pollock was provi ded by: McClean, R. F., et al., 1977.

Change, S. 1974. An eval uation of eastern Bering Sea Fi sheries for Alaska pollock (Theragra_chalcograma, Pallas): popul ation dynamics.

Uni v. Whshi ngton, Ctr. for Quant, Se., NORFI SH Rep. NLII, 313 p. Gorbunova, N. N. 1954. The reproduction and devel opnent of wal leye pollock (Theragra_chalcogramma, Pallas). Adak. Naul SSSR, Tr. Inst. Okeano 1. 17:132-195. (Trans1., Northwest Fishi. Center, Seattle, Wishi ngt on).

Hanai, I., K. Kyuski n and T. Kinoshita. 1971. Effect of temperature on the body form and nortality in the devel opmental and early Iarval stages of the Alaska pollock (Theragra chalcogramma. Pallas). Hokkaido

Uni v., Fat. Fi sh. Bull. 22(1):11-29.

Kobayaska, K. 1963. Larvae and young of the whiting (Theragra chal cogramma, Pallas) fromthe North Pacific. Hokkaido Univ. , Fat. Fish. Bull. 14(2):55-63.

Kri vobok, M N and O. I. Taskovskaya. 1964. Chemical characteristics of yelloufin sole, cod and Al aska pollock of the southeastern part of the Bering Sea. Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 49(Izv. Ti khookean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 51):257-271. (Trans1. in Sovi et Fisheries Investigations in the Northeast Pacific, Part II, p. 271-286, by Isreal Program Sci. Trans1., 1968, avail. Nat1. Tech. Inf. Serv., Springfield, VA, as TT67-51204).

Serobaba, I. 1. 1971. About reproduction of walleye pollock (Theragra chalcogramma, Pallas) in the eastern part of the Bering Sea. Izv. Tikhookean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 75:47-55.

Takashaski, Y. and H Yamaguchi. 1972. Stock of the Alaskan pollock in the eastern Bering Sea. Bull, Jap. Sot. Sci. Fi sh 38(4):418-419. Yusa., T. 1954. On the normal devel opnent of the fish (Theragra chaicogramma, Pallas) Alaska Pollock, Bull. Hokkaido Reg. Fi sh. Res. Lab. 10, 15 p.

Harvesting Season, Wall eye Pollock

The walleye pollock is theoretically and currently a twel ve nonth fishery. This fishery invol ves both mid-uater and bottomtraws and is regulated by the North Pacific Fishery Managenent Council. Maj or constraints on bot tomtrawing, depending on depth of operation, incl ude low al lowable inci dental catches of hal ibut anong other considerations. The cl osure of this fishery due to the incidence of hal ibut beyond established levels is consi stent with that experienced by other bottomtrawing fisheries and is under the regulation of the above-nentioned council. The quality of pollock has been consi dered to be sonewhat lower than that of the Pacific ocean perch, thus the concentrated fishing on and depletion of this latter species. The decline of the perch and the apparent increased abundance of the pollock will undoubtedly lead to increased harvest pressure on the pollock, the fishery operating on a twel ve nonth basis.

An optimal fishery for this species would occur fromlate summer through the fall months. This period coi ncides with the commencenent of rapid sonatic buildup following spawning, al though actual depletion of sonatic reserves migh be minor during gametogenesis. The bathymetric di stribution of the species is rel ativel y restricted at this tine.

Causes of Fluctuation in Resource Abundance, Wall eye Pollock

The evol ution of the demersal fishery in the Bering Sea and the Gulf of Al aska has denonstrated a continuous advance through a number of species incl uding cod, hal ibut, yellowfin sole, Pacific ocean perch and, currently, the pollock. As of 1973, the conbi ned catch of pollock accounted for $\mathbf{3 0}$ percent of the tota? catch of a marine species in the Bering Sea and the
northeastern Pacific (Kasahara, 1973). While the eastern Bering Sea remains the principlefishing area, substantial quantities are also present in the Gulf of Alaska. Although reliable initial abundance information is not available for these regions, it is believed that this species is on the ascendance.

The rise of the pollock in the northeastern Pacific cones at a time when other heavily expl oited species, particularly the Pacific ocean perch, are being fished down to low level s of abundance. The fish species invol ved are zoopl ankton feeders for at least a portion of their life histories, the inference being that pollock is acting as a repl acenent speci es (Kasahara, 1973). The devel oping course of events is perhaps reminiscent of repl acement of the California sardine by the anchovy (Cushing, 1975). The phenonenon of speci es repl acenent incl udes the placenent of some original species in the position of being subjected to heavy comercial exploitation and, si multaneously, with envi ronmental change which results in chronic yearclass failure. Another species, previously in a suppressed state, but with a nore rapid recycling time and positioned at essentially the same trophic I evel then can increase exponentially until the carrying capacity of the envi ronment is reached. Repl acenent of one species, the Pacific ocean perch, by another, the pollock, is a possi ble outcone. A possi ble substantiation to this possibility lies in the fact that at least three strong year-cl asses have occurred in the Gulfof Alaska during the past decade, one of which, 1970, was exceptionally strong.

Fl uct uations in pollock abundance are largel y dependent on the number of $\mathrm{j} u$ uneniles recruited into the older age groups while changes in the availability of pollock Iargely invol ve the di spersal of \mathbf{j} uveniles and
complex hydrol ogi cal factors. The size of the $\mathbf{j u v e n i l e ~ p o p u l a t i o n ~ i s , ~ i n ~}$ turn, dependent upon many of the same paraneters as seen in other speci es incl uding age at maturity, fecundity, quality of spawn, larval drift, and rel ated mortality factors. One of the maj or factors suppressing the juvenile year-cl asses is grazing by predators, including sablefish, and canni balismby adult pollock. It is estimated that the adult population gains 50 percent of its food requi renents by this pathway (Laevastu, et al., 1976). The intensity of canni balism however, is dependent upon the size of the adult population, being most intense when the aduit population is large. The resulting cycles of intense canni bal ismand low recruitment of \mathbf{j} uveniles during peak adult bi onass noving to rapid $\mathbf{j u v e n i l e}$ growth and recruitment during periods of low adult bi onass gives rise to periodic fluctuations in adult abundance with peaks occurring approxi nately at intervals of 12 years.

The tendency for wide fluctuations in abundance is reduced by several factors when the population is exposed to heavy comercial exploitation. The present fishery, by cropping the ol der age-groups, decreases j uvenile nortality via canni balism and al decreases grazing nortality by the adults of other species taken incidentally. Decreased nortality in this scenario gives rise to increased recruitnent and the eventual return of the adult bi onass to preharvest levels. Another stabilizing factor is that for at east part of the year the j uveniles are di stributed in areas containing $1 \mathrm{O}_{\mathrm{w}}$ adult concentrations, resulting in decreased canni balism (Laevastu, et al . 1976). A third stabilizing factor tending to keep pollock abundance within a restricted range deals with the pattern of depth distribution of the $\mathrm{j} u$ uveniles, a pattern which limits the accessibility of the j uveniles to traws (Alton, et al., 1976).
Summary
Trend: I ncrease in abundance.
Cause: Repl acenent of less dom nant speci es which have been driven to low levels of abundance by overfishing. Availability may be expanded by di spersal of \mathbf{j} uvenile pollock to areas of Iow abundance.

Life History, Pacific Cod

Taxonony.
The Pacific cod (Gadus macrocephalus) is a nenber of the family Gadidae and the order Anacanthini. The sci entific name Gadus macrocephalus is derived fromthe Latin gadus (codfish) and the Greek macros (large) and cephalos (head). Common usage may continue to refer to thi s speci es as "plain" cod, "gray" cod, or "true" cod to di sti ngui sh it from the other species currently referred to as varieties of cod. Other nenbers of the family Gadidae are: the' whiting (Theragra chalcogrammus), pacific tomcod (Microgadus proximus), and longfin cod (Antimora rostrata).

Physi cal Description.

The Pacific cod has a brown to gray col oration on the dorsal surface, shadi ng into lighter hues on the ventral surface. Brown spots are numerous on the back and sides, and are nore or less dusky on the fins. The outer nargin of all unpai red fins is white, and the white becones wider on the anal and caudal fins. The Pacific cod is noted for three separate dorsal fins, with the anus bel ow the second dorsal fin. The barbel bel ow the Iower jaw is as long or longer than the eye. This species may attain lengths up to 99 cm (three feet three inches),

Distribution.

Pacific cod are nostly benthic, but are occasi onally taken in quite shal low water. They have been caught at depths up to (300 fathons) 550 neters. The species ranges from Santa Mbnica in southern California through Al aska and the Bering Sea to the Chukchi Sea. On the Asian side,
they are distributed past the Kuril Islands to Kanchatka, Okhotsk Sea, Sea of Japan, of f Honshu, Korea and in the Yellow Sea to Port Arthur. Toward the southern part of its center of abundance, cod occur in temperat ures throughout the year bet ween 6° and $9^{\circ} \mathrm{C}$.

Life History

Spawning takes place in the winter. The eggs are slightly nore than 1 mmin dianeter and show no oil globule. The eggs are pel agic and slightly adhesi ve. They hatch in ei ght or ni ne days at $11^{\circ} \mathrm{C}$ and in $\mathbf{1 7}$ days at $5^{\circ} \mathrm{C}$, but will take about four weeks at $2^{\circ} \mathrm{C}$ in northern waters. The hatching period for a batch of eggs lasts over several days. Egg survi val is hi gh at $5^{\circ} \mathrm{C}$. Newly hatched Iarvae are approximately 4.5 mm in length. At $5^{\circ} \mathrm{C}$, the yolk sac is absorbed in about 10 days. Young about 20 mmin length have been found to eat copepods.

The female cod is sexually nature at approxi mately 40 cm of body. length and two to three years of age. The length at which 50 percent of the femal es are sexually mature is 55 centimeters (Foerster, 1964). Hal f the males are nature at two years of age. At 60 cm a fenale nay produce 1. 2 million eggs. At 78 cm she may produce 3.3 million .

Cod generally nove into deep water in the autum and return to shallow water in the spring. Feeding incl udes a wide variety of invertebrates and fishes incl udi ng: uorns, crabs, molluscs and shrimps, herring, sand I ance, walleye pollock and flatfishes.

The preceding description of the life history of Pacific cod was provided by: McClean, R. F., et al., 1977. Clemens, W A. and G. V. Wilby, 1961. Fi shes of the Pacific coast of Canada. 2nd ed. Bull. Fi sh. Res. Bd. Canada 68.443 p. Hart, J. L. 1973. Pacific fishes of Canada. Fi sh. Res. Bd. Canada. Bul I. 180. $\quad 740$ p.

Harvesting Season, Pacific Cod

The current Pacific cod harvest renains at leve s far bel ow the MSY for this species. A consi derable part of this catch is taken incidentally in the harvest of other species. Recent declines in the Atlantic cod harvest coupl ed with increased denand for fish blocks suggests that Iarger harvests should be anticipated. Due to seasonal bathymetric novenents, with Pacific cod found in rel atively shallow easily fished water during the summer and dispersion of the cod into deeper waters during the nore inclenent winter nonths, it can be anticipated that the cod fishery uould occur during the Iate-spring to early fall months. The optimal fishery for this speci es would occur through the spring and summer nonths. Availability and neat condition would be naxi nal during this period.

Causes of Fluctuation in Resource Abundance, Pacific Cod

The history of the cod fishery in the Bering Sea and the Gulf of Al aska predates that of any other maj or Anerican fishery in the region. During this early tine, the Pacific cod was plentiful throughout its range. However, by the year 1948, the cod had becone rel atively scarce in its northern range (Ketchen, 1956). The demise of the cod fishery, for the nost part, predates this decline. Ketchen (1956) states that the past fishery for the species probably was not responsible for this decline, rather the cause was quite possibly the result of along-termalteration in the physical envi ronnent. Following this period, the Pacific cod becane particularity plentiful in its southern range off British Col unbia and Whshi ngt on.

It is suspected that the cod is invol ved in an ecosystem complex denonstrating alternate dominance with the walleye pollock now in ascendance in the Gulf of \mathbf{A} aska. The complex invol ves both the sablefish and the cod with the bi onass of the pollock (Laevastu, 1978). The principle cause of decline invol ves the rapid expansi on of pollock stocks possibly facilitated by the sudden reduction of Pacific ocean perch stocks by overfishing and recent recruitnent failures. Juvenile pollock and cod occupy similar trophic levels and have similar feeding specificities, with the. pollock being the successful competitor, The actual mechani cs of com petition are not clearly known. A possible consequence of competition in such cases might be the reduction in the grouth of $j u v e n i l e$ cod with the cod staying within the prey-size range of its predators for longer than nornal periods of time. The operation of this competition mechani sm would be further complicated by alterations in the physical environment as reported by Ketchen.

Summary
Trend: Decline in the Gulf of \mathbf{A} aska. Distribution of abundance centered of f British Col unbia and Whshi ngton.

Cause: Envi ronnental change in northern range which is of negative survi val val ue. Strong possibility of alternate dom nance with the walleye pollock.

Life History, Sablefish

Taxonony.
The sablefish (Anoplopoma_fimbria) is a nenber of the order Scorpaeniformes, which was origi nally established to incl ude those fishes having a perch-like formof body. The order now includes nany groups that are quite varied from the basic percoid character. One of these is the suborder Scorpoenoidea, to which the sablefish bel ongs. VIthin its family Anopl oponatidae or the skilfishes, sablefish are known to various names such as "skil," "coalfish" and "black cod." However, the latter termis inappropriate since the fish is not a cod.

Physi cal Description.

The body of the sablefish is long and slightly compressed, tapering into along, slender, caudal peduncle. It is usually slate black or greeni sh-gray on its dorsal surface and lighter on the ventral side. Males do not grow as large as fenales, and they reach naturity at an earlier age. Fenal es may attain lengths of one mor greater. It is 'estimated that a $\mathbf{1 , 0 2} \mathbf{m}(40$ - $\mathbf{~ n c h})$ sablefish is about 20 years old. Large indi vidual s 0.9 m (three feet) in length and 18.1 kg (40 pounds) in wei ght have been capt ured on the hal i but banks at depths down to $311 \mathrm{~m}(170$ fathons). Their food consists of crustaceans, worns and snall fishes. In captivity sablefish are indi scriminate feeders. They have been observed activel \mathbf{y} feeding on saury and blue lanternfish.

Di stribution.

The species ranges from Cedros Islands in southern California to the Bering Sea and is quite abundant in \mathbf{A} askan and Canadi an waters. On
the Asi an si de of the North Pacific, they range from Hokkaido, Japan, north to the Kamchatka Peni nsula off Si beria. Comercial quantities of adults are nost abundant in water deeper than $366 \mathrm{~m}(200$ fathons) and down to 915 m (500 fathons). Al though tagging studi es have shown certain indi vidual sto travel more than $1,930 \mathrm{~km}(1,200 \mathrm{miles})$, sablefish tend to be localized in nost cases.

Life History.

Sablefish spawn in the early spring with rising water temperatures and their eggs are pel agic, drifting with the current after fertilization. In I ate May post-larval indi vidual s have been found on the ocean surface at di stances from 161 to $298 \mathrm{~km}(100$ to 185 miles$)$ off the coast of Oregon. In the post-larval phase, sabl efish are subject to heavy predation by larger or gani sns.

The preceding description of the life history of sablefish was ' provi ded by: McClean, R. F., et al., 1977.

Clenens, W. A, and G. V. Wilby. 1961. Fi shes of the Pacific Coast of
Canada. 2nd. ed. Bull. Fi sh. Res. Bd. Canada 68. 443 p.
Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Bd. Canada. Bull.
180. $\quad 740$ p.
Mc.Phail, J. D. and C. C. Li ndsey. 1970. Fresh water fishes of northwestern Canada and Al aska. Bul I. Fi sh. Res. Bd. Canada 1973. 381 p.

Life History, Pacific Ocean Perch

Taxonomy and Physi cal Description.
Pacific Ocean perch, Sebastes alutus (Gilbert), are one of some 54 or more speci es in the genus Sebastes (previously placed in Sebastodes) occurring in the north Pacific Ccean (Major and Shippen, 1970; Amer. Fish. Soc., 1970). Sebastes alutus can be differentiated from closel y rel ated species by (a) a promi nent forward-di rected symphyseal knob and (b) a nouth col or which is red. Phillips (1957), Barsukov (1964) and Hitz ("1965) published keys to the identification of rockfish in the genus Sebastes.

Barsukov (1964) proposed that Sebastes alutus be di vided into tno subspecies: (1) \underline{S}. alutus alutus, di stributed from Cal ifornia to the Gulf of Al aska and al ong the Komandorskiy-Aleutian Arc; and (2) S. alutus paucispinosus, extending from the Pacific coast of Honshu Island into the Bering Sea. The subspecies were found to overlap in the regi on of the Aleutian and Komandorskiy Islands; therefore, Barsukov recognized the need for further study because this was a provisi onal di vision. Other workers (Hart, 1973; Quast and Hall, 1972; Chikuni, 1975) do not recogni ze subspecific differentiation.

Di stribution.

Pacific Ocean perch live al ong the eastern and northern rimof the Pacific Ocean from La Jolla, California, to Kanchatka and in the Bering Sea. According to Alverson, et al., (1964), no fish of the genus Sebastes appear to have penetrated the Bering Strait.

Pacific Ocean perch are commonly found al ong the outer continent al shelf and on the upper continental slope. Commercial quantities generally
occur at depths between 100 and 500 m (Quast, 1972). This species is common in and al ong gullies, canyons and subnarine depressions of the upper continental slope. Adults occur in abundance over a variety of substrates, 'i ncl uding cl ay and jagged rock, but thei \mathbf{r} occurrence may be determined nore by food and hydrographic factors than substrates (Quast, 1972).

Life History.

Pacific Ocean perch are an ovi parous species; eggs are fertilized internally and retained in the ovary during incubation. At present, controversy exists as to when actual fertilization of eggs occurs (see Lyubimova, 1963 and 1965; Snytko, 1971b; Pautov, 1972; and Gunderson, 1971).

Pacific Ocean perch spann once a year, with actual nating tine varyi ng anong regi ons. Chi kuni (1975) suggested that copul ation takes' place during October to February, with spawning occurring in March to June. Moiseev and Paraketsov (1961) reported that spawning of ocean perch in the Bering Sea occurred at depths of about 360 to 370 m Spawning timing (from Major and Shippen, 1970) by region is shown in Table A. . .

TABLE A.

Spawning	Water
Season	Temperat ure \quad Ref erence

Bering Sea (south and southeast of the Pribilof Islands) March-Flay

Gulf of Alaska (north March- April
Coastal waters of f southwest Vancouver I sl and, B. C. March

Gulf of Al aska (south)
Coastal naters off Whshi ngton- Oregon

J anuary- March
3. 8-4.2 Paraketsov (1963)
-- Lyubimova \{1963)
Westrheim, Harl ing and Davenport (1968)

Lyubimova (1963)
Snytko (1968).

During the first year after birth, ocean perch are planktonic and their di stribution is deternined by the novement of the water into which they were born. Paraketsov (1963) reported that larvae are spawned in the Pribilof Islands area in spring and swept by currents toward the shores of the Aleutian Islands and the \mathbf{A} aska nai nl and. The age at which ocean perch becone demersal is not known. Paraketsov (1963) stated that during their second year juvenile \underline{S}. alutus resune life near the ocean bot tom Snytko (1971) bel ieved that youlajutus. of the Vancouver-Oregon regi on lead a pel agic life for the first two to three years and then switch to a benthopelagic life. Carison and Haight (1976) suggested, however, that \mathbf{j} uvenile Pacific Ocean perch becone demersal during their first year of life.

Fol lowing their change to a demersal exi stence, young ocean perch remain in waters from 125 to 150 m deep until they reach the age of sexual maturity, according to Mbiseev and Paraketsov (1961) and Paraketsov. (?963). Young perch (under 36 cm) in the Vancouver-Oregon regi on were found at depths of 120 to 210 m and nat ure speci mens (over $36 \mathbf{c m}$) at depths of 170 to $\mathbf{3 0 0 m}$ (Snyt ko, 1971b).

Pacific Ocean perch are slow growing and have a long life span. Alverson and Westrheim (1961) reported that Pacific Ocean perch may live to age 30. Paraketsov (1963) reported that fenales fromthe Bering Sea matured at six to seven years of age at lengths of 22 to $\mathbf{2 5} \mathbf{~ c m ~ P a u t o v ~}$ (1972) reported that Bering Sea ocean perch reach sexual maturity at lengt hs of 26 to 31 cm and at ages of six to ni ne years. He indicated that nales matured earlier than fenales, the former maturing at six to seven years and the Iatter at ei ght to ni ne years. Chikuni (1975) indicated that "fish in every stock" begin to nature at age five and allindi vidual s
finish their sexual maturation by ni ne. He indicated that 50 percent of the stock natures at age seven.

Thompson (1915) reported \underline{S}. al utus as one of the important constituents in the di et of hal ibut,_Hippoglossus_hippoglossus_stenolepis. Tomilin (1957) observed Sebastes spp. in the stomachs of sperm whal es.

The intensity of feeding by Pacific Ocean perch is apparently not the same throughout the year. Feeding intensity is apparently rel ated to availability of food, temperature conditions and the physiol ogi cal status of the perch (spawning\}. Lyubimova (1963) noted that the Gulf of Al aska popul ation foraged near Unimak Isl and in May to Septenber. She al so contended that during the rest of the year the adult perch al nost wholly abstain from feeding but that imature fish feed year-round. Perch capt ured during the winter were leaner than those taken during the foraging period, and their quality as food was inferior (Lyubimova, 1965). Pautov (1972) reported that the Bering Sea perch fed nost intensi vely during the spring-summer period (April to Septenber) and during the renai nder of the year their food intake decreased. Syntko (1971a) consi dered spring, sumer, and fall as the prime feeding times for perch in the Vancouver-Oregon region. During nating (Septenber to October), sexually mature mal es feed very 1 ightly. The same behavi or has been observed in females during spawning of larvae (February to March). Pautov (1972) reported that perch fed voraciously in norning and evening hours and that the frequency of feeding decreased at ni ght.

The preceding description of the life history of Pacific Ocean perch was provided by: McClean, F?. F., et al., 1977.

Alverson, D. L., A T. Pruter and L. L. Ronholt. 1964. A study of demersal fishes and fisheries of the northeastern Pacific Ocean. H R. MacMllan Lect. Fi sh., Inst. Fi sh., Uni v. B. C., 190 p.

Alverson, D. L. and S. J. Westrheim. 1961. A revi ew of the taxonomy and bi ol ogy of the Pacific Ocean perch and its fishery. Cons. Perm Int. Explor. Mer., Rapp. Proc. -Verb. 150:12-27.

Anerican Fisheries Soci ety. 1970. Alist of common and scientific names of fishes fromthe United States and Canada (3rd cd.). Aner. Fish. Sot., Spec. Publ. 6, 150 p.

Barsukov, V. V. 1964. Interspecies variability of the Pacific Ocean perch, (Sebastodes al utus Gi 1 bert). Tr. Vses, Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 49 (Izv. Tikhookean. Nauchno-issled, Inst. Morsk. Rybn. Khoz. Okeanogr. 50):231-252. (Trans1. in Soviet Fisheries Investigations in the Northeast Pacific, Part 11, p. 241-267, by Israel Program Sci. Trans l., 1968, avai I. Natl. Tech. Inf. Serv., Springfiel d, VA, as TT67-51204.)

Carlson, H R. and R. E. Hai ght. 1976. Juvenile life of Pacific Ocean perch, Sebastes alutus, in coastal fiords of southeast Alaska: their envi ronment, grouth, food habits and school ing behavi or. Trans. Am Fi sh. Sot. 105:191-201.

Chikuni, S. 1975. Bi ol ogi cal study on the popul ation of the Pacific Ocean perch in the North Pacific. Far Seas Fish. Res. Lab. Bull., 12:1-119. Gunderson, D. R. 1971. Reproduction patterns of Pacific Ocean perch (Sebastodes alutus) of f Wtshington and British Col unbia and their rel ation to bathymetric di stribution and seasonal abundance. J. Fi sh. Res. Ed. Canada. 28:417-425.

Hart, J. L. 1973. Pacific fi shes of Canada. Fi sh. Res. Bd. Canada, Bull. 180, 740 p.

Hitz, C. R. 1965. Field identification of the northeastern Pacific rockfish (Sebastodes). U. S. Fi sh. Wild. Serv., Circ. 203, 58 p.

Lyubi nova, T. G 1963. Sone essential feat ures of the biol ogy and distribution of Pacific Ocean perch (Sebastodes alutus GIbert) in the Gulf of Al aska. Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr, 48 (Izv. Tikhookean. Naychno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 50) 293-303 (Trans 1. in Sovi et Fi sheries Investigations in the Northeast Pacific, Part I, p. 308-318, by Israel Program Sci. Transl., 1968, avail. Natl. Tech. Inf. Serv., Springfield, VA, as TT67-51203.) 1965. The nain stages of the life cycle of Pacific Ocean perch (Sebastodes alutus Gilbert) in the Gulf of Alaska. Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 50 (Izv. Tikhookean. Nauchno-issled. Inst. Mbrsk. Rybn. Khoz. Okeanogr. 53): 95-120. (Transl. in Sovi et Fi sheri es Investigations in the Northeast Pacific, Part IV., p. 85-111, by Israel Program Sci. Trans1., 1968, avail. Natl. Tech. Inf. Serv., Springfield, VA, as TT67-51206.) Maj or, R. L. and H H. Shippen. 1970. Synopsis of biol ogical data on Pacific Ocean perch (Sebastodes alutus). U. S. Fi sh. Wildi. Serv. Circ. 347 (fAO Fi sheries Synopsis No. 79):38 p.

Paraketsov, 1. , 4. 1963. On the bi ol ogy of (Sebastodes alutus) in the Bering Sea. Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 48(Izv. Tikhookean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 50):305-312. (Trans1. in Sovi et Fi sheries Investigations in the Northeastern Pacific, Part I, p. 319-327, by Israel Program Sci. Transl., 1968, avail. Natl. Tech. Inf. Serv., Springfiel d, VA, as TT67-51203.)

Pautov, G. B. 1972. Sone characteristic features of the biol ogy of the Pacific Ocean perch (Sebastodes alutus GIbert) in the Eering Sea. Izv. Tikhookean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 81: 91-117. (Trans1. Bur., Dep. Sec. State, Canada, Trans1. Ser. 2823.)

Phillips, J. B. 1957. A revi ew of the rockfishes of California (Fanily Scorpaenidae). Calif. Fi sh and Gane Fish. Bull. 104, 158 p.

Moiseev, P. A. and I. A Paraketsov. 1961. Information of the ecology of rockfishes (Family Scorpaenidae) of the northern part of the Pacific Ocean. Vop. Ikhtiol. 1(1[18]):39-45. (Preliminary trans1. Fish. Res. Bd. Canada, Biol. Sta., Nanaimo, B. C. Fish. Res. Bd. Canada Trans 1. Ser. 358.)

Quast, J. C. 1972. Reduction in stocks of Pacific Ocean perch, an important demersal fish off \mathbf{A} aska. Trans. Am Fish. Sot. 101:64-74. Quast, J. C. and E. L. Hall. 1972. Li st of fishes of Alaska and adj acent waters with a guide to sone of their literature. U.S. Dep. Coner., NOAA Tech. Rep. NMFS SSRF-658, 48 p.

Snytko, V.A 1971b. Pacific Ocean perch (Sebastodes alutus Gibert) of the Vancouver-Oregon region (commercial-biological characteristics). Izv. Tikhookean. Nauchno-issled. Inst. Rybn. Khoz. Okeanogr. 75:56-65. (Trans1. Fish. Res. Bd. Canada Trans1. Der. 2431.)

Thompson, W F. 1915. A new fish of the genus (Sebastodes) from British Col unbia with notes on others. Rep. Comm. Fish. British Col unbia 1914:120-122.

Pacific ocean perch are currently subject to a year-around fishery which is under the regulations of the Gulf of Alaska Fishery Managenent Plan. This fishery was deplet by foreign pulse fishing at annual level s consi stently above the MSY for the species. It is al so possible that physi cal envi ronnent factors have intervened to depress recruitnent. A further complication in the nanagenent of this species has been the rapid increase in abundance of the walleye pollock, a speci es which originally predominated in the Bering Sea. The recovery of Pacific ocean perch to vi $\mathbf{r g i} \mathbf{n}$ bi onass evels will be slowed by this repl acenent species. The nanaged harvest of this resource will be at very low level sin comparison to harvests during the inception of this fishery. In spite of apparent differences in the quality of the flesh of this species before, during and after the reproductive period, Pacific ocean perch is harvested through the year.

The timing of the optimal fishery for this species, were it at higher level s of abundance, would occur in the approxi mate tine period of Oct ober through February. This would correspond to the time when adult sex ratios would approxi mate 1:1 and when somatic condition would be approaching prime condition. Very consi derable concentrations of fish occur at this time.

Causes of Fluctuation in Resource Abundance, Pacific Ocean Perch

The Pacific ocean perch is one of the nore obliquitous species found in the Gulf of Al aska, having a natural range extending from Southern California to the Bering Sea and the waters of Honshu Island (Carlson, et al., 1976).

As a nember of the family scorpaenidae, the perch has a uni que reproductive adaptation in that fecundity has been reduced in favor of ovoviviparous reproduction or the spawning of I arvae as opposed to eggs (Gunderson, 1971). The migratory circuit for the species corresponds, with slight nodifications, to the three-part circuit proposed by Jones (1968). An important feat ure of the life hi story of this species is the segregation of \mathbf{j} uveniles, once net anorphosis has been reached, fromadult perch as well as fromthe adults of other species. Upon recruit nent the \mathbf{j} uveniles nove into deeper waters of the continental shel f and slope and take up the adult migratory circuit. The segregation of $\mathbf{j u v e n i l e ~ p e r c h ~ t o ~ s h a l l o w i n s h o r e ~ w a t e r s ~ a n d ~ b a y s ~ n a y ~ b e ~}$ an adaptation for survival in that the opportunity for canni balismis reduced.

Due to extensive migrations by adults, larval drift, and rel ated novenents, this species is faced with many of the sane nortality factors experienced by other species. In the unexpl oited state up to the 1950s,' the Pacific ocean perch was probably at the level of naximum abundance and distribution in the Gulfof Alaska. At this point the population was cl ose to or at the carrying capacity of the envi ronnent and was stable in terns of its ability to compensate for cyclical fluctuations in nortality factors. Fl uct uations experienced to this time were envi ronnentally induced (Quast, 1972). At this tine the total bionass of Pacific ocean perch in North Anerican waters was in the range of $1,250 \times 10^{3} \mathrm{Mr}$ to $1,590 \times 10^{3} \mathrm{M}$, a high fraction of which was present in the Gulf of A aska. This species was probably the dom nant demersal speci es in the regi on.

An important characteristic from the standpoint of the population dynamics of the species is that it is slow growing, has consi derable

I ongevity (30 years), and matures sl owly. A characteristic of commercial significance is that adult perch form dense schools which rise up of the bottom and are easily accessible to trawls (Quast, 1972). Another characteristic of the species is the peroidic appearance of extreme variations in year-class strength, including the failure of individual year-classes (Carlson, et al., 1976), In short, despite the initial abundance of this species, a combi nation of envi ronnental , vertical di stribution, and popuI ation dynamics factors had the conbi ned effect of making the perch particul arly vul nerable to unregul ated fishing.

According to the reasoni ng of Alverson and Pereyra (1969), a popuIation such as the Pacific ocean perch is at the level of maximus sustai nable yield when the annual commercial harvest is approxi nately one-half of natural nortality in the unexpl oited 'state. The computed naxi mum sustainable commercial yie \mathbf{d} for the regi on of f western North Anerica including the Gulf of \mathbf{A} aska s in the range of $\mathbf{1 2 5 , 0 0 0}$ to $\mathbf{2 5 0}, 000 \mathrm{MT}\left(138 \mathrm{x}^{\prime} 10^{\mathbf{3}}\right.$ to 276×10^{3} tons) per year. Comparison with actual catch statistics indicate that the reproductive potential of the species was exceeded by substantial margins and that the current low level s of abundance are due, in part, to the stress of overfishing. A number of factors have contributed to the decline of the species until now it is present at levels of abundance which are snall fractions of the species' original abundance in the Gulf of A aska and other regi ons (Quast, 1972).

A complicating factor in the future recovery of perch stocks is the advent of the pollock in the Gulf of $\mathbf{A l a s k a}$. Another is that recovery will be slowed or halted by the incidental catch of $\mathbf{j u v e n i l e}$ and adult perch in other fisheries, thus suggesting that natality may lag progressi vel y
further behi nd nortality as the popul ation ages. The ecosystem present in the Gulf of Al aska nay be one in which another example of alternating dominance is in operation. The juveniles of pollock and perch are in approximately the same trophic position but with the pollock maturing at an earlier age and probably out-competing the perch for food resources in the northern part of the speci es' range. Quast (1972) makes the prediction that decades nay be requi red for even noderate recovery.

Summary
Trend: Decl ine
Cause: Overfishing by foreign fleets coupl ed with changes in the biotic and abiotic envi ronments.

K NG CRAB

Life History
Taxonomy.
King crabs are anomuran crabs of the superfamily Pagur dea found throughout the circum-arctic regi on of North Anerica. Eldr dge (1972) has descri bed their taxonony as follous:

Order:	Decapoda
Section:	Anomura
Superfamily;	Paguridea
Fanily:	Lithodi dae
Sub-family:	Lithodi nae
Genus:	Paralithodes

Of the three speci es found in \mathbf{A} askan waters, "red" ki ng crab (Paralithodes camtschatica) are the nost abundant and commercially val uable. Al though" $\mathbf{b l}$ ue" king crab (Paralithodes platypus) are not as abundant, they are norphol ogically similar to Paralithodes camtschatica. The Japanese have devel oped a nodest fishery for this species in the Pribilof Island region of the Bering Sea. "Brown" or "gol den" king crab (Lithodes aequispina) are found in the deeper waters 183 to $366 \mathrm{~m}(100$ to 200 fathons) of Southeastern Al aska. The Japanese refer to the king crab as "tarabagani" whereas the Russians label is "Kamchatka" crab. Aneri cans usually reserve the nane "king crab" for Paralithodes cantschatica. The term"king crab" will refer to Paralithodes camtschatica for the remai nder of this section.

Di stribution.

King crab are abundant on both sides of the North Pacific Ocean. In Asi an waters, they are found from the Sea of Japan northward into the Sea of Okhotsk and al ong the shores of the Kamchatka Peni nsul a; the northern
limit on the Asiatic coast and have been reported at Cape 01yutorskiy ($60^{\circ} \mathrm{N}$ Iatitude). The species occurs throughout the Aleutian Islands and the southeastern Bering Sea where large fisheries exist. On the western coast of North Anerica, the northern limit for king crab appears to be Norton Sound ($65^{\circ} \mathrm{N}$ Iatitude) in the northeastern Bering Sea. King crab are al so abundant in the Gulf of Al aska where maj or fisheries for them exist in Cook Inlet, Kodi ak Isl and and the south Alaska Peni nsula. Moderate numbers of king crab are found in Prince Wlliam Sound and Southeastern Al aska. The southern limit of this species in the northeastern Pacific appears to be Vancouver Island, British Col umbia (Butler and Hart, 1962).

During various life stages, king crab segregate from one another. In particular, nal es are separate from femal es except during the mating season and, in general, adults appear to inhabit different areas from those frequented by juveniles. Male king crab al so nay school by size.

King crab are di stributed to depths of $370 \mathrm{~m}(1,200$ feet), al though' the comercial fishery is generally confined to depths less than $180 \mathrm{~m}(600$ feet). Fenales and snaller nales appear to be nost abundant in internedi ate depths. Juveniles are nost abundant in inshore waters and in rel ativel shal low waters, al though they have been found to depths of $106 \mathrm{~m}(58 \mathrm{fathons})$ (Powel I and Reynol ds, 1965).

The favorite bottom habitat of king crab appears to be mud or sand. King crab are stenohaline and adapted to cold waters.

Maturity.
King crab of both sexes reach sexual mat urity when their carapace (back) I ength is approxi matel y $100 \mathrm{~mm}(3.9$ inches), or at an age of about five years. Al females participate in breeding shortly after attaining sexual maturity. However, it appears that few mal es less than 120 mm in carapace length nate, possibly due to competition fromlarger males.

Mating.

King crab follow di stinct annual migation patterns associated with their mating season. During winter nonths they migrate to water depths of Iess than $91 \mathrm{~m}(50 \mathrm{f}$ athons) al ong the shoreline and onto the offshore ocean banks. Young adults precede old adults; mal es precede fenal es (Powell and Nickerson, 1965). Femal es nolt and mate from February through May. Fenal es normally, but not necessarily, nolt while being grasped by the nale. The precopulatory enbrace (grasping) is an intrinsic behavior of adult king crab which serves to keep breeding adults toget her until subsequent nating has occurred. It additionally affords a protective nate to the fenale bef ore and during the nolt, and aides the female in nolting.

I medi ately after the female nolts, the attendant nale deposits spermatophore naterial around the fenale's gonopores and rel eases her. The female then ovul ates into her abdominal pouch where eggs mix with the sperm mass and are fertilized. Fertile eggs are carried by the fenale for 11 to 12 nonths, hat ching prior to the fenale's next annual nolt. Fenale king crab not nating after nolting will not extrude eggs.

Fenale king crab mate with only one male annually. Male king crab are pol yganous.

Fecundity.

The number of eggs each femal e carries varies with her size. Fenale king crab in Asi atic waters apparently carry less eggs than their counterparts in the northeastern Pacific. In this regard, Nakazawa (1912) reported that fenales in Japanese waters could carry as many as 345, 000 eggs, while the average fenal e carried approxi nately $\mathbf{2 2 0}, 000$ eggs. A later study (Sate, 1958) found that the number of eggs carried by fenal es in Japanese waters varied between 15, 000 and 204, 000, with a nean of 102,000 eggs,

At Kodi ak, snall femal es have been reported to carry bet ween 50, 000 and $\mathbf{1 0 0}, 000$ eggs, with I arge fenal es carrying as many as 400,000 eggs.

Eggs and Larvae.

The enbryos devel op into pre-zoea after about five nonths' grouth and remain in this state while they are carried by the female. During this period, the enbryos within the eggs becone well devel oped and are easily visible During hatching, which occurs between March and June, all of the eggs carried by an individual will hatch in about a five-day period. After hatching, the pre-zoea larva nolts and assunes the first zoeal stage. During the pel agic phase, the Iarvae are active swimers and feed primarily on diatons. After the fifth molt, the larvae assume a benthic, or bottom existence as glaucothoe Iarvae. In the next nol t, whi ch occurs during the first summer of life, they assume the first adult form

Juveniles.
During their first year of life, the j uveniles assume a solitary, benthic exi stence. Larvae are quite abundant in waters cl ose to shore in the Gulf of Al aska. In the Bering Sea Iarge concentrations of juveniles have been found in depths of 53 m (29 fathons).

Two- year-old king crab are known to aggregate in large groups, commonly piling upon one another and noving as a conglonerate. The practice is known as "poddi ng" and is a social behavi or which affords the crab protection from predators. Aggregates, al though constantly changing, are maintai ned by both sexes until they attain sexual maturity. At that point, the crab segregate by sex and size.

Sculpins, cod, and halibut have been reported to prey on juvenile king crab. In addition, Gray (1964a) has reported that hal ibut prey on king crab when they are in the soft-shell condition. Evidence suggests that once king crab attain sexual naturity, they are rel atively imme to predation, except during the nolting phase.

Grouth.

During each of the first several years of the king crab's life, grouth is rapid, and it molts or sheds the hard outer. shell several times in order to accomodate the increased body size. At the time of nol ting, the crab sheds the carapace, eyes, antennae, nouth, esophagus, stonach, calcerous teeth, gills, and tendons. In other words, the entire outer body covering is nolted. Juvenile male and fenale crab steadily increase in carapace length at a rate of 24 and 23 percent per nolt, respectivel y, (Powell, 1967) until reaching sexual maturity.

After reaching sexual maturity, grouth rates and nolt frequency for nale and fenale crab differentiate. Adult fenales nolt annually and average four mmper nolt. Adult males molt annually through the eighth year and average 20 mm per nolt. After ei ght years, an increasing proportion nolt biennially. A few nale crab nolt less frequently than biennially. Maximusize is reached at an average of 14 years of age. Grouth rate for nales decreases slightly following the ei ghth year.

Food Habits.

King crab are omi vorous during both the juvenile and adult stages of life. In a study of food itens found in the stonachs of king crabin the Bering Sea, the following occurred (in descending order of frequency):

Mollusca (clans, etc.), Polychaeta (marine worns), al gae (marine plants), ot her crustacea, and Coel enterates (jellyfish). Other food organisns found less frequently were foramifinans, nematode worns, tunicates, echiuroids, and fish (MELaughlin and Hebard, 1959).

Dis seases.

Sindermann (1970) has reported that P.camtschatica and P. platypus from the eastern north Pacific are occasi onally affected by "rust di sease", whi ch seens to result fromthe action of chitin-destroying bacteria of the exoskel eton. However, this di sease appears to be rel atively rare. Sinderman
 i nvaded by rhizcephalans.

The preceding description of the life history of king crab was provided by: McClean, R. F., et al., 1977.

Butler, T. H and J. F. L. Hart. 1962. The occurrence of the ki ng crab, Paralithodes camtschatica (Tilesius), and of Lithodes aequispina
(Benedict) in British Col umbia. J. Fi sh. Res. Bd. Canada 19(3):401-408. Gray, G W, Jr. 1964. Hal ibut preying on Iarge crustacea. Copeia 1964(3):590.

MtLaughlin, P. A and J. F. Hebard. 1959. Stonach contents of the Bering Sea king crab. U. S. Fi sh and Wildl. Serv. Spec. Sci. Rept.-Fish. p. 291.

Mbore, J. P. and M C. Meyer. 1951. Leeches (Hirudinae) from Al askan and adj acent waters. Wasmann J. Biol, 9:11-17.

Nakazawa, K. 1912. Report on king crab, Paralithodes camtschatica.
in experiment report of fisheries training school $8(6): 21$. TransI ation file, U.S. Dept of Comerce, Nat. Mar. Fi sh. Serv. Bi ol ogi cal Laboratory, Auke Bay, Al aska.

Powel I, G. C. 1967. Grouth of King Crabs in the vicinity of Kodi ak Island, Al aska. Al aska Dept. of Fi sh and Gane Info. I eaflet no. 92.

Powel I, G. C. and R. B. Nickerson. 1965. Reproduction of King Crabs, Paralithodes cantschatica (Tilesius).J. Fi sh. Res. Bd. Canada. 22(1): 101-111.

Powel I, G C. and R. E. Reynol ds. 1965. Movements of tagged king crabs. Paralithodes camtschatica (iilesius), in the Kodiak Island-Lower Cook Inl et regi on of Al aska. 1954-1963. Al aska Dept. of Fi sh and Gane. Info. leaflet no. 55.

Sate, S. 1958. Studi es of I arval devel opnent and fishery biol ogy of king crab, Paralithodes camtschatica (Tilesius). Bull. Hakkaiso Reg. Fish. Res. Lab. 17. 102 p.

Sindermann, C. J. 1970. Principal di seases of marine fish and shellfish. Acad. Press, New York. 369 p.

Harvesting Season

The king crab harvest following a period of extensi ve harvests suffered a number of reversal sin the period 1966-71. Refinement of management techni ques has facilitated a slow recovery beginning in 1972. Current managenent is ai med at expanding the age structure available for harvest rather than a harvest limited to recruit crabs only. The commercial season for this species faces a number of restraints, sone climatic, but nost not eworthy, detailed regi onal managenent plans regul ating the harvest al ong a number of paraneters. This regul ation, indicated on the following nap, incl udes openi ng dates, speci es quotas, mal es only, minimurapace size, anong other considerations. The fishery for this species is a part-year operation only, with crevs and vessel s noving to other crabbing grounds under the control of strict regulations, or noving to entirely different species. Product quality is not a maj or restraining factor throughout nost of the legal season provided that vessels are provi ded with adequate live tanks. Product quality would, however, be a constraint if it were not for managenent regul ations which prohibit fishing during the mating season. Despite the fact that the quality of the neat is not affected, soft shelled crabs are generally not narketable.

The so-called optimal fishery for this spec es would occur after the completion of spawning migrations and the annual nolt. Concentrations of adults nould be of considerable density at this time and nould occur at rel ati vel y shal low depths. Incl enent weather would be a serious constraining factor during this time.

Causes of Fl uctuations in Resource Abundance

Summary
Trend: Stabilization by nanagenent practices in nost areas following period of preci pitous decline.

Cause: Decline a result of recruitnent overfishing; stabilization due to establishment of multiple year-classes in adult population.

TANNER CRAB

Life History

Taxonony．

Tanner crab are nembers of the brachyuran crab of the superfamily Oxyrhycha found throughout the circum－arctic regi on of North Anerica． Garth（1958）has described thei r taxonony as follows：

Order：	Decapoda
Section：	Brachyura
Superfam 7y：	Oxyrhyncha
Fani 1y：	Majidae
Sub－fami y：	Oregoniinae
Genus：	Chionoecetes

The genus of Chionoecetes may actually consist of two polytypic species， C．opilio and C．angulatus．C．opilio may have given rise to C．opilio elongatus and \underline{C} ．bairdi，while \underline{C} ．angulatus may have given rise to \underline{C} ． tanneri and \underline{C} ．$\underline{\text { japonicus（ } G a r t h, ~ 1958) . ~ A l l ~ o f ~ t h e s e ~ s p e c i ~ e s ~ a r e ~ p r e s e n t ~}$ in the North Pacific．

Crabs of the genus Chionoecetes have been referred to as＂spi der＂，＂Tannee and＂snow crab＂in English literature．In Japanese literature，this genus is referred to as zuwai crabs．In an attempt to capitalize on the excellent reputation of the king crab，Anerican processors initially attempted to sell Tanner crab under the trade name＂Queen Crab．＂However，the U．S．Food and Drug Administration has since ruled that＂Snow Crab＂will be the official trade name for the Tanner crab．In common usage，Tanner crab has becone the accepted name for the genus．

Distribution．

Tanner crab bel ong to the sub－family Oregoniinae，which has a circum－ arctic di stribution extending into the temperate waters on the east and

Maturity.

Due to the difficulty of aging crustaceans, the age at which Tanner crab reach sexual maturity is not known with certainty, al though the size at naturity is known for nost species. Al aska Department of Fish and Gane Tanner crab research has determined that the average male $\underline{\mathcal{C}}$. bai rdi reaches naturity at 110 mm carapace width. The same research puts the size of $\mathbf{5 0}$ percent maturity for fenale \underline{C}. bairdi at 83 mm (Donal dson, 1975). Studi es conducted in the Sea of Japan indicate that ㄷ. opilio reach sexual maturity after about the tenth nolt, or six to eight years after hatching. Male and female ́. opilio in Japanese waters reach sexual naturity at a size of approxi nately 50 to 65 mm in carapace width (lto, 1970). Fenal e C. tanneri off the Oregon coast reach sexual maturity at 75 to 126 mm in carapace width, while nale \underline{C}. tanneri mat ure at 103 to 181 mm in carapace width (Per eya, 1966).

Mating.
As a genus, Tanner crab appear to be pol yganous. Initial nating is believed to take pl ace in the spring or early summer shortly after the fenale has nolted and grown to maturity. Sone evi dence is available which suggests that, unlike king crab femal es, Tanner crab fenal es are capable of breeding while hard-shelled. Hartnoll (1969) contends that only hard-shelled male Tanner crab are successful at nating. Fenale Tanner crab are apparently capable of producing nore than one hatch of fertile eggs from one nating (Matson, 1970; Bright, 1967).

Fecundi ty.

The number of eggs produced by fenale Tanner crab is extrenel y varied. The range of 24,000 to 318,000 eggs Per female C.bairdi (Hilsinger, 1975) compares with $\mathbf{2 0 , 0 0 0}$ to 140,000 and 6,000 to 130,000 eggs per fenale \underline{C}. opilio in Canada (Vatson, 1969) and Japan (Ito, 1963), respectivel y. The large egg number variation exi sts between fenal es of both varying and similar sizes. Sone of this variation can be accounted for by decrease in clutch size in very old ani mals.

Eggs and Larvae.

After nating, the female lays a cl utch of bright orange eggs. The eggs are attached to pleopods under the fenal e's abdonen and are carried for approxi mately thel ve nonths bef ore hatching. A steady loss of eggs following fertilization has been docunented for \underline{C}. bai rdi (Hilsinger, 1975) and \underline{C}. opilio_(Ken, 1974) ${ }_{0}$ The total loss nay anount to as mach as 45 percent. The decrease in egg number is attributed to death and disintegration of abnornal enbryos and predation. Hatching of the eggs (larval rel ease) appears to coincide with the pl ankt on bl oons. The free-swinging larvae nolt and grow through several distinct stages before setting to the bottom as juveniles where they cover thensel ves with debris and begin feeding on detritus. The grouth rate from I arval to \mathbf{j} uvenile stage is dependent upon water temperature, with warner temperat ures producing faster grouth. At water temperatures of 11° to $13^{\circ} \mathrm{C}$, the free-swiming devel opment al period bet ween the Iarval and..juvenile stages may last approxi matel y 63 to 66 days (Ken, 1970).

Pl ankton studi es in the Sea of Japan indicate that free-swining Iarvae of Tanner crab underto di urnal vertical migrations. This migration is a feedi ng response to the di urnal novenents of plankton bloons.

Juvenil es.
There is very little published naterial concerning the habitat and distribution of juvenile Tanner crab. Expl oratory work in the Japan Sea in-
 298 and $349 \mathrm{~m}(163$ and 191 fathons) (Ito, 1968). Al aska Department of Fi sh and Gane bi ol ogists in Kodi ak have collected juvenile \underline{C}. bairdi as small as 6. 5mmin 78.3 m (10 fathons). The National Marine Fisheries Service has records of j uvenile Tanner crab as snall as 12 mm caught in shrimp traw s off Kodi ak in 55 to 146 m (30 to 80 fathons). This information suggests that distribution of $\mathbf{j u v e n i l e ~ T a n n e r ~ c r a b ~ i s ~ w i d e s p r e a d ~ a n d ~ n o t ~ d e p t h ~ d e p e n d e n t . ~ T h e ~}$ actual diet of the $\mathbf{j u v e n i l e s ~ i s ~ u n c e r t a i n , ~ b u t ~ t h e y ~ a r e ~ b e l i e v e d ~ t o ~ f e e d ~}$ pri narily on dead and decaying molluscs and crustaceans which accumal ate in the detritus al ong the sea floor. Fi sh remains and snall planktonic organi sns are also ingested to a limited degree.

Adults .

Adult Tanner crab are into' erant and restricted in their di stribution by low salinities and high temperatures. Laboratory experinents in Canada have denonstrated that \underline{C}. opilio will die within $\mathbf{2 4}$ hours if kept in salinities less than $22.5^{\circ} / 00$ (anonynous, 1971). At a salinity of approximately $31^{\circ} / 00$ to $32^{\circ} / 00$, McLeese (1968) determined that ㄷ. Opilio reached the $\mathbf{5 0} / \mathbf{0 0}$ nortality point after 18.8 days when hel at $16^{\circ} \mathrm{C}$. Thus, it is reasonable to expect that the southern range of Tanner crab distribution may be limited if water temperatures exceed $16^{\circ} \mathrm{C}$.

Adult Tanner crab appear to have few predators, although it is likely that during nolting they may be vul nerable to large fish and perhaps other

Iarge crustaceans such as the king crab. In addition to predation, it is specul ated that king and Tanner crab nay compete for food and space. The concept of competition between the king and Tanner crab is interesting in that it poses the question of whether the popul ations of Tanner crab are affected by the abundance of king crab. In this regard, the depletion of the larger male king crab by the present intensive fishery mighthave a favorable effect on the abundance of Tanner crab.

Growth.
Di nensi onal grouth occurs in Tanner crab when the hard exoskel et on is periodically cast off or nol ted. The ani mal is then able to take water into its tissues and increase in size before the rehardening occurs. Male and female crab display similar grouth rates and molt frequently prior to reaching sexual maturity. Males continue to nolt after beconing sexually nat ure, but the interval set ween molts increase with age. Fenal e crab. nornally do not nolt after reaching sexual maturity. In females, the nolt to maturity is considered the terminal nolt. Grouth nay vary from one geographic location to another. The naxi mum age of Tanner crab is probably 8 to 12 years, although this is not known with certainty.

Di seases.

Brown (1971) reported a black encrustment on the carapace whi ch has been label ed "shell syndrone." The neat of the crab is not affected by the "syndrone," but it may cause nortality in indi vidual s which have undergone their terminal nol t due to di sabl ement of the nouth parts and eyes. There is sone evidence that the indi scriminate dumping of wastes from crab processing pl ants may be a factor contributing to the spread of the di sease.

Gordon (1966) reported that sone polyclad Turbellaria are ectoparasitic on crab. Specifically, Coleophora chionoecetes has been found on the eggs of Tanner crab.

Oka (1927) reported that the leech, Carcinobdella kanibir, is occasi onally found on C. opilio_in Asiatic waters.

Mgration and Local Mbvenent.

Little is known concerning the migrations and local novements of Tanner crab. However, tagging studi es conducted by Canadi an sci enti sts (Wat son, 1970) indicated that tagged nale crab travel rel atively 1 ittle, with 85 percent of the returns recaptured within $16 \mathbf{k m}(10 \mathrm{miles})$ of the rel ease point. The farthest recapture in the study was a male that travel ed 45 km (28 miles). A limited taging experiment in Auke Bay, A"faska, concl uded that Tanner crab nay return to a "hone" area to mate and nolt each year (anonynous, 1971).

Numerous trawl surveys conducted in the Gulf of $\mathbf{A l}$ aska and the Bering Sea indi cate that Tanner crab are nore concentrated in sone areas than others. These data indicate that Tanner crab may school, but further work is needed for clarification.

The preceding description of the life history of Tanner crab was provi ded by: McClean, R. F., et al., 1977.

Anonynous. 1971a. Revi ew 1969-1970. The Fi sheries Research Board,
Ottava, Canada.
Anonymous. 1971b. Intern. N Pacific Fi sh. Comm. Proc. of the Seventeenth
Annual Meeting, 1970. Report of the Subcomittee on King Crab and
Tanner Crab. Appendi x 5 (Dec. 1341). 247-257 p.
Bright, D. B. 1967. Life histories of the king crab and the "tanner" crab in Cook In"]et, Al aska. Ph. D. thesis. U. So. California 265 p.

Brown, R. B. 1971. The devel opment of the Al askan fishery for tanner crab, Chionoecetes species, with particul ar 'reference to Kodiak area, 1967-1970. Alaska Dept. of Fi sh and Gane Info. I eaflet 153. 26 p.

Donal dson, W E. 1975. Kodi ak Tanner Crab Research, Tech. Rep. Nat1. Oceani c and Atmosph. Adm, NMFS, Whshi ngt on, D. C. 41 p.

Garth, J. S. 1958. Brachyura of the Pacific coast of Anerica. Oxyrhyncha. A I an Hancock Pacific Expedition 21:854. .

Gordon, I. 1966. Parasites and di seases of Crustacea. Mere. Inst. Fondam. Afrique Nbi re No. 77. 27-86 p.

Hartnoll, R. G 1969. Mating in the Brachyura. Crustacean 16:161-181. Haynes, E. and C. Lehman. 1969. M nutes of the second \mathbf{A} askan shel Ifish conference. Al aska Dept. Fi sh and Game Info. I eaflet 135. 102 p. Hilsinger, J. R 1975. Aspects of the reproductive biology of fenale snow crabs, Chionoecetes bairdi Rathbun, from Pri nce Villiam Sound, Al aska. M.S. thesi s, Uni v. of Al aska. 88 p.

Ito, K 1970. Ecol ogical studies on the edi blecrab, Chionoecetes opilio (0. fabricius) in the Japan Sea. 111. Age and grouth as estimated on the basis of the seasonal changes in the carapace width frequencies and the carapace hardness. Bull. Jap. Sea Reg. Fi sh. Res. Lab. 22:81-116.

Ken, T. 1970. Fi sheries bi ol ogy of the tanner crab. IV. The duration of planktonic stages. 1967. Fi sheries of the United States. 1967. U.S. Fish and Wildife Service, Bur. of Comm, Fish. C.F.S. No. 4700. Revi ew (Crabs, king). xvi i p.

Oka, A 1927. Sur la morphol ogic esterne de Carcinobdella kanibir. Proc. Imp. Aca. (Tokyo\} 3:171-174.

Pereya, W. T. 1966. The bathynetric and seasonal di stribution of adult tanner crabs, Chionoecetes tanneri, Rathbun (Brachyura: Majidae) of the northern Oregon coast. Deep-Sea Res. 13(5):1185-1205.

Whitson, J. 1970a. Tag recaptures and novenents of adult male snow crabs, Chionoecetes opilio, (\mathbf{Q} fabricius)_in the Gaspe regi on of the Gulf of St. Lawrence. Fi sh. Res. Bd. Canada Tech. Rept. No, 204. 16 p.

Harvesting Season

The current Tanner crab catch, particularly at Kodi ak, exceeds that of the king crab. Earlier processing difficulties invol ving the renoval of neat fromthe carapace of the tanner crab.has been sol ved and product qual ity and acceptance, though sonewhat bel ow that of king crab, remains adequate throughout the legal season. The fishery for the Tanner crab is a mal es only operation similar in nost regards to that of the king crab but is not as stringently regul ated. The temporary decline of the king crab harvest has prompted the increased pressure on this species andis probably responsibe for the initiation of the Tanner crab industry. The nature of the Tanner crab fishery will undoubtedly renain closel y coupl ed to that of the king crab. Current catch level s of the Tanner crab renain well bel ow the MSY's for this species in nost areas. The optimal fishery for Tanner crab would be similar to that described for the king crab.

Causes of Fluctuation in Resource Abundance

Summary
Trend: Conti nued increase in commerci al harvest.
Cause: Expansi on of industry into previ ously unfished waters; infornation on popul ation dynamics of species largely absent.

Devel opment and Market Structure

The devel opnent and market structure of the Alaskan Tanner crab fishery is similar to that of the king crab; for that reason, they are presented toget her in the king crab sub- chapter.

DUNGENESS CRAB

Life History

Taxonony.
Dungeness crab, Cancer magister, are nenbers of the brachyuran crabs of the family Cancridae. Mayer (1972) described their taxonony as follows:

Phyl urn:	Arthropoda
Q ass:	Crustacea
Superorder:	Eucarida
Order:	Decapoda
Suborder:	Brachyura
Family:	Cancridae
Genus:	Cancer
Genotype:	$\frac{\text { Cancer }}{\text { (Dana, }}$magister

Crab of the species Cancer magister have been referred to as "narket crab", "common edi ble crab", "Pacific edible crab", "commercial crab", "Dungeness crab", and "Dungeoness crab". At present, "Dungeness crab" is the accepted common nane.

Di stri bution.

Dungeness crab are found in the shallow nearshore waters of the North Pacific al ong the western North Anerican coast. They range froma northern Iimit of Unalaska to a southern linit in Mbnterey Bay, California (MtKay, 1943), Crab inhabit bays, estuaries and open ocean near the coast from the intertidal zone to depths of approxi nately $90 \mathbf{m}$ (50 fathons). Favored substrate is a sand or sand- mad bottom al though Dungeness crab may be found on al nost any bottom substrate. Unlike king and Tanner crab, Dungeness crab inhabit shal low water nost of the year. Juveniles are commonly associ ated with stands of eel grass or, in the absence of eel grass, with masses of detached al gae, which are believed to afford them protection (But' er, 1956).

Whter temperatures and salinity appear to be contro ling factors in the seasonal di stribution of Dungeness crab. Studi es by Cl eaver (1949)
indicate that crab abundance, as estimated from catch per unit effort data, increases with rising spring water temperatures and decreases with dropping fall temperatures. Changes in winter catch appear to be in response to fluctuating low salinities. MtKay (1942) determined that adult Dungeness crab migrate of fshore during the winter and return to the nearshore in the early spring and summer.

Sexuality.

Dungeness crab are heterosexual and sexually di norphic. There is consi derable variation in norphol ogy bet ween nale and female crab, with nal es being significantly larger than fenales. Adult manes have an acute and narrow abdonen, while adult fenales have a round and broad abdonen.

Maturity.

According to Butler (1960), nale Dungeness crab from the Queen Charlotte Islands, British Col unbi a, reach sexual maturity at a carapace width of 110 mm or at about three years of age. He found, however, that sexual activity was not appreciable until the crab obtai ned a carapace width of 140 $\mathbf{m m}$ MEKay (1942) found by exam nation of gonads that male crab natured at a carapace width of about 137 mm

Butler (1960) found nature female Dungeness crab with a carapace width of $100 \mathbf{m m}$ which were approxi matel y two years ol d. Weymouth and MEKay (1936) al so determined that female crab reach sexual naturity at about $100 \mathbf{~ m m}$ carapace width.

Mating.

The nating of Dungeness crab, as observed in aquaria, has been reported by Cleaver (1949), Butler (1960) and Snow and \mathbf{N} el sen (1966). Nb
observations nade under natural conditions have been reported. Crab copulate onl y after the female has recently nol ted. Snow and \mathbf{N} el sen (1966) found that within one hour and 32 minutes after the fenale has nolted, copul ation took pl ace.

Fecundi ty.
MKay (1942) found that a si ngle egg mass contai ned, 1,500,000 eggs and specul ated that a single fenale Dungeness crab nay spawn three to five willion eggs during a lifetime.

Eggs and Larvae.

After nating, the fenale's ovi duct is closed by a secretion which hardens in contact with sea water. The spernatozoa are seal in the ovi duct where they renai n viable for several nonths. Upon extrusion, the eggs are fertilized (MEKay, 1942). Egg-bearing occurs during October to June in, British Col umbia. Larvae energe from the egg nasses between Decenber and April in Oregon waters (Reed, 1969). Egg-and Iarvae devel opment is dependent upon water temperature, with warner temperat ures producing faster grouth. In Cal iforni a waters, Poole (1966) deternined that the devel opmental period bet ween egg and juvenile nay last 128 to 158 days.

Predation and canni balismare naj or causes of mortality anong larval Oungeness crab. Heg and Van Hyning (1951) found the Iarvae of C. magister as prey itens in stonachs of chi nook and silver sal non taken al ong the Oregon coast. MEKay (1942) cites observations of ́. magister Iarvae commonly found in the stomachs of salmon, herring and pilchard.

Reed (1969) investigated the effects of temperature and salinity on the growth of I aboratory-reared \mathbb{C}. nagister I arvae. He found that optimum
ranges of temperature and salinity for ㄷ. magister larvae are 10.0" to $13.9^{\circ} \mathrm{C}$ and $25^{\circ} / 00$ to $35^{\circ} / 00$, respectivel y.

Juveniles.
Juvenile Dungeness crab are comonly associated with stands of eelgrass or, in the absence of eelgrass, with masses of detached al gae, which are believed to afford them protection from predation (Butler, 1956). Butler (1954) reports the common occurrence of $\mathrm{juvenilecrab} ,\mathrm{about} \mathrm{three-}$ ei ght hs of an inch, in the stomachs of adult crab.

The di et of $\mathbf{j} u v e n i l e s i s$ assuned to be similar to that of adults, with crustaceans and molluscs accounting for the principal food itens.

Growth during the juvenile stage is fairly rapid, with crab reaching their el eventh or twelfth nolt by age two.

Adu? ts.
After reaching sexual maturity at two to three years of age, Dungeness crab continue to grow with males obtaining their maxi mum size at age five. Fenale grouth is similar to that of the nale Dungeness crab during the first tno years of life, but decreases afterward (Butler, 1961). Butler (1960) concl uded that the naxi mum age for \underline{C}. magister is ei ght years. MEKay and Weymouth (?935) felt that the naxi mum age was not nore than ten years, with the average life expectancy being eight years.

The diet of adult Dungeness crabis varied, consisting primarily of other crustaceans, molluscs, uorns and occasi onally seaweed (MtKay, 1942). The canni balism of j uvenile and Iarval crab by adults is reported by Butler (1954).

Temperature tol erance for adult \underline{C}. magister in Puget Sound, Whshington, has been reported by Stober, Mayer and Sal o (1971). In general, no mortality was observed at temperatures bel ow $24^{\circ} \mathrm{C}$

Adult Dungeness crab are subjected to heavy predation, particularly while in the soft-shelled condition fol owing a nolt. Waldron (1958) found ling cod, the great marbeled sculpin, uolf-eel s, halibut, octopus and some rockfish to be voracious predators upon adult $\underline{\text { C. magister. }}$. Predation is particularly heavy on small, imature crab, but is not excl usi ve of adults, MEMynn (1951) observed two C. magister, which were 114 mm wide, and four snaller crab in the stomach of one rockfish.

Di seases.

A "bl ack spot" or "rust spot" is occasi onally found on the legs of Dungeness crab. Although no di scussion of this di sease was found in the literature, it nay be similar to the chitininvrous bacteria-caused di sease described for the European Dungeness crab, ©. pagurus (Sinderman, 1970).

The occurrence of a species of worm adhering to the carapace and anong the egg masses was reported by MEKay (1942). Si nder nan bel ieves the worns to have been a marine leech.

Mgration and Local Mbement.

Little is known concerning the migrations and local novenents of Dungeness crab. However, Cl eaver (1949) has di vi ded the migration of \underline{C}. magister nto two types: (1) the onshore- offshore novenents, and (2) coastwise Cleaver concl uded that adult crab migrate offshore during the winter nonths and return to the nearshore in the early spring and summer. This seasonal migration is apparently in response to seasona
changes in water temperat ures. Further nore, $C l$ eaver observed that crab whi ch were tagged in early wi nter noved northward with the approach of summer. Al though he had no evi dence of a return migration, he bel ieved that one might exist in the deeper waters. Presumably, these migrations may al so be in response to seasonal changes in water temperature.

The preceding description of the life history of Dungeness crab was provi ded by: McClean, R. F., et al., 1977.

Butler, T. H. 1956. The di stribution and abundance of early post-larval Stages of the British Col unbia comercial crab. Fish. Res. 'ol d. Canada, Pac. Prog. Rept. 107:22-23.

Butler, T. H 1960. Maturity and breeding of the Pacific edible crab, Cancer magister. Dana. J. Fi sh. Res. 'ol d. Canada 17(5):641-646.

Butler, T. H 1961. Grouth and age determination of the Pacific edible crab, Cancer magister. Dana. J. Fi sh. Res. Bd. Canada 18(5):873-891.

Cleaver, F. C. 1949. Preliminary results of the coastal crab (Cancer Maqister) investigation. Wash. State Dept. of Fish., Biol. Rept. 49A:47-82.

Heg, R. and J. Van Hyning. 1951. Food of the chi nook and silver sal non taken off the Oregon Coast. Fish. Comm. Oregon Res. Bried 3(2):32-40. MtKay, D. C. G. 1942. The Pacific edi ble crab, Cancer magister. Bull. Fi sh. Res. Bd. Canada 62:32.

MEKay, D. C. G 1943a. The behavi or of the Pacific edible crab, Cancer magister. Dana. J. Comp. Psych. 36(3):255-268.

MEKay, D. C. G 1943b. Temperature and the world di stribution of crabs of the genus Cancer, Ecol ogy 24(1):113-115. McMynn, R. G 1951. The crab fishery of f Graham Island, British Col unbia to 1948. Bull. Fi sh. Res. Bd. Canada 91:]-21.

Pool e, R. L. 1966. A description of I aboratory-reared zoeae of Cancer magister Dana, and megalopae taken under nat ural conditions (Decapoda Brachyura). Crustacean 11(1):83-97.

Reed, P. H 1969. Culture nethods and effects of temperature and salinity on survi val and grouth of Dungeness crab (Cancer magister) Iarvae in the I aboratory. J. Fi bs. Res. Bd. Canada 26(2):389-397.

Sinderman, C. J. 1970. princi pal di seases of marine fish and shel Ifish. Academi c Press: New York and London.

Snow, C. D. and J. R. Ni el sen. 1966. Prenating and mating behavi or of The Dungeness crab (Cancer magister Dana). J. Fi sh. Res. Bd. Canada 23(9):1319-1323.

Stober, G. J., D. L. Mayer and E. Q Sal e. 1971. Thernal effects on survi val and predation for sone Puget Sound fishes. Proceedings of Thi rd National Symposi um on Radioecology, May 10-12, 1971 (in press). Waidron, K. D. 1958. The fishery and biol ogy of the Dungeness crab (Cancer magister Dana) in Oregon waters. Fish. Comm. Oregon Contr. 24:1-43.

Weymouth, F. W. and C. G. XcKay. 1936. Aria' ysis of the relat ve grouth of Pacific edibe crab, Cancer magister Proc. Zool. Soc Part 1 (1936).

The Dungeness crab goes through seasonal novenents opposite those of the king crab. Whrming water temperat ures cause the Dungeness crab to nove into shallower waters of inshore areas, particularly into water nasses with temperatures within the optinal range of 10 to $14^{\circ} \mathrm{C}$ and with a bottom of firmsand or mixed-sand. The fishery for the Dungeness crab as employed in Al aska occurs in water depths of 9 to $37 \mathrm{~m}(5$ to 20 fathons) and is timed to coincide with seasonal inshore novements. Cooling surface temperatures initiate the offshore novenent of this crab to deeper waters. This event marks the cessation of nost commercial operations with the effective (legal) season in Kodi ak waters north of the Iatitude of Boot Bay extending from May 1 through Decenber 31. Early June through mid-Septenber generally marks the nost active portion of the legal season. This Iatter time period al so coi nci des with that of the optimal fishery for this species.

The quality of Dungeness crab neat generally renains high throughout the regul ated season. For nost areas the annual nolt occurs during the late-sumer to winter period and the resulting "soft-shell" crab are not narketable. In nore southern fisheries the appearance of crab with soft shells usually mark a temporary end to the season. The current Gulf of Al aska Dungeness crab fishery is exploiting primarily a single age-class, making the fishery subject to fluctuations of consi derable amplitude due to recruitnent alterations. The decline of Oregon and Whshington Dungeness crab populations might be expected to put further strain on the Gulf of Al aska crab by increasi ng demand.

Causes of Fl uctuations in Resource Abundance

Summary
Trend: Decline in nost areas.
Causes: Reduction in average size of adults from several areas suggestive of recruitnent overfishing; possibility exists that envi ronnental change has resulted in weak year-classes; population dynamics information largel y absent.

Life History

Comercial catches of shrimp in the north Pacific Ocean are made up of three families: Crangonidae, Hippolytidae and Pandalidae. The first species expl oited by the west coast shrimp fisheries were nembers of the family Crangonidae in intertidal areas. Now however, nenbers of the Crangonidae and Hippolytidae are considered of little comercial val ue and are only taken incidentally in catches of Pandal idae. Consequently, this life history report will consider only the pandalid shrimps.

Taxonomy.
Fox (1972) defines the suprafamilial taxonomic relationships of the family Pandalidae as follows:

Phyl um	Arthropoda
Class:	Crustacea
Subcl ass:	Malacostraca
Order:	Decapoda
Suborder:	Natantia
Section:	Caridea
Fanily:	Pandalidae

Rathbun (1904) lists $\mathbf{1 4}$ species of pandalid shrimps found of f the northwestern coast of North Anerica which are di vided bet ween the two genera Pandal us and Pandalopsis. They are as follows:

$\frac{\text { Pandalus }}{\text { Pandalus }} \frac{\text { borealis* }}{\text { danae }}$	Kroyer
Pandalus	Stimpson
$\frac{\text { Pandalus }}{\text { gruneyi }}$	Stimpson
$\frac{\text { Pandalus }}{\text { Papsinotus* }}$	Stimpson
Pandalus	Brandt
Pandalus $\frac{\text { Pandalus }}{\text { Peptocerus }}$	Rathbun
Pandalus	Smith
Pandalus	Rathbun

Pandalopsis aleutica	Rathbun Bate
Pandalopsis ampla	Rathbun
Pandalopsis dispar*	Rathbun

Only five, identified by asterisk above, of the 14 species are caught by commercial fisheries in significant quantities in \mathbf{A} askan waters. The remai nder of this life history report will be devoted entirely to these fi ve speci es.

Distribution.

Shrims of the family Pandalidae are found throughout the hi gher temperate and boreal latitudes of the world, with centers of concentration varying with the species. In the northeastern Pacific, shrimpare distributed in bays and on offshore banks. Thei r range extends from the Bering Sea to southern California with commercial fisheries occuring off every Pacific state. Specific distribution data for the five najor shrimp species found in Al askan waters is given as follows:

The northern pink shrimp, Pandalus borealis, has been found from the Bering Sea southward to the Col umbia River in depths of 18 to $\mathbf{6 4 0} \mathbf{m} \mathbf{(1 0}$ to 350 fathons). It is the nost abundant shrimp in the north Pacific Ocean and Bering Sea. The greatest concentrations occur from the southeastern tip of the Kenai Peni nsula, Kodi ak and Shumagin Island groups and al ong the south si de of the \mathbf{A} aska Peni nsula west to Unalaska Island. Snall concentrations al so occur al ong the eastern Kenai Peni nsula, portions of Prince Villiam Sound, Yakutat Bay and throughout southeastern Al aska. Optimum depth where the greatest comercial catches may be taken varies sonewhat by area but is generally between 55 and $180 \mathrm{~m}(30$ and 100 fathons) (Rathjen and Yesaki, 1966) .

The "bumpy" shrimp, Pandalus goniurus, has been caught fromthe Arctic coast of Al aska southward to Puget Sound, Whishi ngton, in depths of 5.5 to $180 \mathrm{~m}(3$ to 100 f athons) (Rathjen and Yesaki, 1966). The greatest concentrations are off southeastern Kodi ak Island and in the Shumagin Islands. Although overlapping in distribution, the "bumpy" shrimp is not as abundant as the northern pi nk shrimp.

The coonstripe shrimp, Pandalus hypsinotus, has been found fromthe Bering Sea to the Strait of Juan de Fuca in depths of 5.5 to 180 m ($\mathbf{3}$ to 100 fathons), very similar in range to that of the "bumpy" shrimp (Fox, 1972). High concentrations occur of f Kodiak Island and in the Shumagin Islands. Coonstripe shrimp comprise a rel atively snall portion of the commercial catch, largel y s nce they inhabit depths and bottom types that are sel dom trawled. A snall d rected fishery for this species occurs in Kachenak Bay on the Kenai Peni nsula Coonstripe are often taken incidentally to pot fisheries for spot shrimp. The Iargest prawn size individuals are commonly retained and sold.

The spot shrimp, Pandalus platyceros, has been reported fromUnalaska Island to San Diego, California, in depths of 3.7 to $487 \mathrm{~m}(2$ to 266 fathons) (Fox, 1972), Vhile the other pandalid shrimps are generally found in areas suitable for trawing, ㄹ. playtceros is found in rocky areas unsuitable for traw ing. Consequently, areas of maj or concentration are not well known. Ronholt (1963) reported snall quantities taken of f Lapush, Whshington, and in southeastern Alaska. In addition, pot fisheries are located in the Puget Sound-Vancouver Isl and area (Butler, 1964) and in scattered areas off central A aska, princi pally Kachemak Bay (Barr, 1970a). There are indications from snal I commercial vent ures that Kodiak Island and Alaska Peni nsula waters nay contain stocks as large or Iarger than those in other Alaskan waters (MtCrary, 1977, personal communi cations).

The sidestripe shrimp，Pandalopsis dispar，is distributed fromthe Bering Sea，west of the Pribilof Islands，southward to Manhattan Beach，Oregon， in depths ranging from 37 to $642 \mathbf{m (2 0}$ to 351 fathons）（Fox，1972）．Next to the northern pink shrimp，it is the nost abundant shrimptaken comercially in the north Pacific Ocean．The greatest concentrations occur off Kodiak Island and in the Shumagin Islands．The greatest concentrations of sidestripe shrimp are found sonewhat deeper than northern pink shrimp，generally from 110 to 219 m （ 60 to 120 fathons）（Ronholt，1963）．

Most pandalid shrimps are found on mad or sand and mud－mixed bottons． However，they are not found in all areas where these types of bottons occur．References to green mad bottons in rel ation to large concentrations of the northern pink shrimp，P_{-}．boreal is，and the ocean pink shrimp，$\underline{P}^{\underline{P}}$ ． jordani，have been made by many authors who infer that the organic content of the bottomis more important in determining distribution than bottom con－ sistency．It should be noted，however，that nost sampling has been conducted with traws which work well only on the type of bottom described above．It is，therefore，inconcl usi ve whether or not nany pandalid shrimp concentrate on harder or rockier bottons．P．platyceros and，to a lesser extent，\underline{P} ． hypsinotus are known to．perfer coarse，rocky and coral－covered bottons （Fox，1972）．

Sexuality．

The reproductivelife history of pandalid shrims is rather uni que anong shellfish．Although reproduction is bisexual，pandalid shrimps exhi bit protandric hermaphroditism．

Pandalid shrimps，to a large extent，nature first as males and then later in the life cycle transforminto functional fenal es．The nor－ phol ogi cal changes that accompany sex change usually occur within six to
ei ght nonths. Indi viduals who the previ ous year spawned as a nale will spawn the current year as a fenale. Once an indi vidual has becone a fenale, it remains so throughout the rest of its life.

The literature contains reports on a phenonenon called "primary" fenal es. Primary femal es nay be defined as those indi vidual s who never function as nal es or, nore strictly, as those individual sho nature di rectly as fenal es, never being her naphrodites. Dahlstrom (1970) reported primary females in \underline{P}. jordani off northern California, a few were found by Tegelberg and Smith (1957) off Whshington and 47 of a sample by Butler (1964) of f British Col unbia were primary femal es. The production of early maturing (or primary) fenal es nay be envi ronnentaly rel ated or nay be a density dependent phenomenon. At any rate, the early maturation of fenal es is a survival adaptation beneficial to the population. Primary fenal es have al so been noted in P_{-}. borealis and $\underline{P}_{\text {. hypsinotus in British }}$ Col unbia (Butler, 1964). Primary fenal es have not been positively, documented in $\mathbf{A l}$ askan pandalid shrimp popul ations, and it is strongly indi cated that their occurrence is rare.

A far more important sexual variation is that known as secondary fenale devel opnent. In this instance, nale characteristics devel op but are repressed before naturity. Sexual maturity and functioning for the renai nder of life is as a fenale. Secondary fenal es are common in southeastern Al aska popul ations of \underline{P}. borealis, goniurus and hypsinotus but have not positively been shown to occur in other Alaskan areas. MtCrary (1977, personal commication) found sone populations of fenal es, especially \underline{P}. borealis and goniurus, to be comprised of over half secondary femal es. Numerous authors have reported similar findings for \underline{P}. jordani of f the I ower west coast states and British Col unbia.

Maturity.
The age at sexual maturity varies with the species and by geographical location within a species. The normal situation for pandalid shrimpsis that they are protandric hermaphrodites, maturing first as males and then later transforming into functional females. - . danae and P. goniurus apparently mature as males during their first autum and function again as males at 1 1/2 years in British Col unbia (Butler, 1964). The age at first maturity as nales is 1 1/2 years for \underline{P}. borealis, P. hypsinotus, \underline{P}. jordani, P. platyceros and Pandalopsis dispar (Butler, 1964; and Dahlstrom, 1970). Ivanov (1964a) estimates that \underline{P}. boraelis in the Pribilof Islands area of the Bering Sea do not mature as mal es until $21 / 2$ years. MtCrary (1971, personal comminication) found the same to be true for \underline{P}. borealis, Pandalopsis dispar and, to a lesser extent, \underline{P}. goniurus and \underline{P}. hypsinotus in Kodiak and Shumagin Island waters. The same author al so found these pandalids and P. platyceros to mature at $1 \mathbf{1 / 2}$ years in certain southeastern Al aska populations.

The age at transition to functional fenale al so varies with the species and by geographical location within the species. By and large, nost shrimp function tho years as a nale before transforming to a femal e.

W "

During summer and early fall eggs ripen in the ovaries of the females and the forming eggs may be seen as a greeni sh, blueish or yellowish-brown mass, dependi ng on speci es, lying dorso-laterally under the carapace.

Breeding and egg deposition occur from Iate Septenber through mid- Novenber. The male attaches a spermmass to the undersi de of a female between the I ast two pairs of pereiopods (val king legs). This usually occurs within 36 hours after the female nol ts into breedi ng dress (Needler, 1931). Fertilization and ovi position occur as the eggs stream from the ovi ducts
over the spermmasses and becone attached to the forward four pai rs of pl eopods (abdomi nal appendages) and abdoni nal segnents.

Fecundi ty.

Pandalid shrimps have a high fecundity. The number of eggs per clutch ranges from 500 to 2,500 for \underline{P}. jordani and \underline{P}. borealis (Dah1strom, 1970). McCrary (personal communi cation or unpubl ished ADF\&G data) found 626 specinens of \underline{P} borealis to carry egg cl utches ranging from 478 to 2117. In southeastern Al aska, the same author found full clutch sizes of \underline{P}. borealis to range from 809-1642 ($N=21$); \underline{P}. dispar 674-1454 ($N=21$); \underline{P}. goniurus 97?-3383 ($N=11$); P. hypsinotus 1083-4528 ($N=25$); and P. platyceros 4044-4528 ($N=2$). The number of eggs extruded is positively correl ated with the size of the shri mp.

Eggs arid Larvae.

Fenal es carry their eggs externally for about five to six months until
 P. dispar, however, often have ovigerous periods which overlap in the JuneJuly period, meaning that the latest hatchers are present at the sane tine as the earliest egg layers (McCrary, 1977, personal commication). The I engths of spawning, carrying, and hatching periods vary inversel y with the water temperature, at least for \underline{P}. borealis (Haynes and Wigley, 1969). In I aboratory studies, Berkel ey (1930) found that nost I arvae hatch at ni ght during periods of vigorous pleopod movenent by the fenale. Hatching an entire cl utch of eggs may take as long as two days. The Iarvae renain planktonic for about two to three nonths, passing through six stages to becone \mathbf{j} uveniles, and then settle, taking up a benthonic exi stence like the adul ts (Berkel ey, 1930).

Little infornation is available on $\mathbf{j u v e n i l e ~ s h r i m p ~ p r i o r ~ t o ~ t h e i r ~}$ naturation as adult male shrimp. Differential rearing areas and migration patterns appear to exi st between $\mathbf{j u v e n i l e}$ and adult shrimp. Mbre specific infornation on this is available in the Mgration and Local Movenent section of this life history report.

Adul ts

Mbrtality rates are high for adult pandalid shrimps. \underline{P}. borealis survive a naxi mum of four to seven years of the Pacific coast with growth decreasing and age increasing as one proceeds north and west. This is true for other pandalid speci es studi ed by ADF\&G (McCrary, 1977, personal commication). Estimates of annual survival rates for \underline{P}. ordani off California range from 30 to 52 percent for the years 1960 to ?966 (Dahlstrom, 1970), These estimates were made in the presence- of a fishery, so they represent both natural and fishing nortality.

The growth of pandalid shrimps nay be generalized as follows: (1) the animal molts, ridding itself of a rigid exoskel eton; (2) water is absorbed, increasing the size of the ani nal ; (3) a new exoskel eton is forned; and (4) the water is gradually replaced by new tissue. Growth in size, theref ore,
 constant between nolting periods.

The nost comprehensive study of the growth of Pacific pandalid shrims is that of Butler (1964). He found that based on ulimate size. platyceros becones the Iargest, followed by Pandalopsis dispar and P. hypsinotus. However, until about two years of age, \underline{P}. hypsinotus is
 and \underline{P}. jordani both reach about the same size. Dahlstrom (1970) reports a
sonewhat faster grouth rate for ㄹ. jordani_ of forthern California and Oregon, but a slower grouth rate off Whshi ngton. Studi es by Ivanov (1969) indicate that the grouth rate for \underline{p}. borealis in the Bering Sea is slower than those of the western Gulf of Alaska or of British Col unbia. ADF\&G studi es (unpubl ished, McCrary, 1969) show that the. growth of ㅇ. borealis, \underline{P}. dispar_ and \underline{P}. goniurus around Kodi ak Island and Shumagin Islands is sl ower than for these species in southeastern Alaska. Hence, it appears that the grouth rate of \underline{P}. borealis is dependent upon latitude and, consequently, upon water temperature. It is assumed that the other pandalid species exhibit similar grouth characteristics.

Pandalid shrims are carni vorous bottom feeders and feed both by scavenging dead ani mal material and by preying on living organi sns such as amphipods, euphausiids, limpets, annelids and other shrimps.

Pandalid shrimps are subject to a high level of predation, both as planktonic larvae and as benthonic adults. Virtually any large fish in, their vicinity is a potential predator. Those noted as feeding on shrimp incl ude the Pacific hake, Pacific cod, sablefish, lingcod, sole, various rockfish, spiny dogfish, skates and rays, Pacific halibut, sal mon and even harbor seal s (Skalin, 1963; Barr, 1970a; Butler, 1970; and Dahlstrom, 1970).

Pandalid shrimp di stribution and range is dictated, to alarge degree, by temperature and salinity tolerances. On the basis of water temperature,
 being concentrated in col der water (Fox, 1972). The other pandalid speci es are not so easily del ineated. \underline{P}. goniurus, however, is not found in appreciable quantities off British Col unbia or southward, yet it reaches its greatest abundance in the western Gulf of A aska and Gulf of Anadyr on the Asi an coast. \underline{P}. goniurus is apparently sel ective toward col der waters.

Butler (1964) reported finding al I speci es but \underline{P}. goniurus_in temperatures of 7 to $11^{\circ} \mathrm{C}$ off British Col unbia. Butler's data does not represent minima and maxima si nce Dahlstrom (1970) reports \underline{P}. jordanífrom 5.6 to $11.5^{\circ} \mathrm{C}$ of f northern California. IVanov (1964b) found fishable concentrations of \underline{P}. borealis down to $0.5^{\circ} \mathrm{C}$ in the Bering Sea and Alen (1959) reported speci nens of \underline{P}. boreal is taken from water $1.68^{\circ} \mathrm{C}$ of f Europe.

Salinity tol erances are more difficult to find in the literature, with P. jordani havi ng the hi ghest range, 28.7 to $34.6^{\circ} / 00$ (Dahlstrom, 1970), and P. borealis the lonest, 23.4 to $30.8^{\circ} / 00$ (Butler, 1964). Ivanov (1963), however, found \underline{P}. borealis at $32.34^{\circ} / 00$ of f the Shumagins. The renaining ranges reported by Butler (1964) are \underline{P}.hypsinotus, 25.9 to 30.6%, $\mathbf{P}_{\text {. }}$ platyceros, 26.4 to 30.8%, and Pandalopsis dispar, 26.7 to 30.8%. McCrary (1977, personal communication) found ranges to be similar to Butler's for southeast Alaska stocks, incl uding $\underset{\text { P goniurus. }}{\text { g }}$

Di seases.

Little is known about the di seases and parasites of pandalid shrimps. Yevich and Rinaldo (1971) reported a condition in $\underline{\text { P. boreal is off Mai ne }}$ terned the black spot gill di sease. This di sease results in the destruction of gill lamellae and in the formation of chitinous grouth over the danaged area producing a black spot. A similar condition was observed by Fox (1972) and $A D F \&$ staff in a few speci nens of P. borealis caught off Kodi ak I sl and.

Butler (1970) reported the infestation of a nale P. platyceros by a rhyocephalan, Sylon sp., in British Col unbia waters. He stated that there are no records of isopod parasites on P. platyceros. However, Fox (1972)
reports that nost species of pandalid shrimss are parasitized to some degree by bopyroid i sopods_(Bopyrus sp.). Mtarary, (1977, personal communication) has observed \underline{P}. boreal is and \underline{P}. goniurus to be commonly infested by a rhyocephaion in southeast \mathbf{A} aska and bapyrid isopods to be common on \underline{P}. di spar throughout the Gulf of Alaska. The isopods, a large fenale and the snaller male together, attach in the gill area. The shrimp's carapace then forns around them after nolting and produces the characteristic "bubble".

Mgration and Local Mbement.

Pandalid shrimps are known to undergo migrations onshore- of fshore, coastwise, and vertically in the water col um. Extensive migrations in European waters are well docunented (Mistakidis, 1957), but less so in the northeastern Pacific Ocean.

Mgration associated with age has been docunented by Berkel ey (1930) for P. borealis, P. hypsinotus, P. platyceros and Pandalopsis dispar. Freshly hat ched I arvae were found around or near the vicinity of the spanned adults. At about the third stage of devel opnent, the larvae were found segregated in shal lower water 9 to $64 \mathbf{m}$ (5 to 35 fathons) deep where they spent their first summer. Later, during their first winter, the \mathbf{j} uveniles j_{i} oined the adult popul ation in deeper waters. Dahlstrom (1970), however, states that $\mathbf{j u v e n i l e}$. jordani are found anong the adults throughout their life cycle. McCrary (1976, unpubl ished report) reported that P. boreal is generally exhi bits an inshore to of fshore di stribution by se, al though adults and juveniles inhabit a wide range of depths, especially from late spring through early fall. McCrary further reported that adults of all ages are occasionally found in commercial quantities in the 27 to $46 \mathrm{~m}(15-25$ fathom) range,
al though it is generally smaller males (1+ and 2+ age groups) that frequent these rel atively shallow waters. ADF\&G sampling with try nets over a broad depth zone by season has indi cated that during the first year of life, P. borealis is primarily found at depths ranging from about $64 \mathbf{m}(35$ fathons) to over 220 m (120 fathons). First year shrimp are nost abundant at depths and in the areas where adults are found. Thus, it uould appear that the Iarval stages are complet and post-larval shrimp aggregate in areas near the points of Iarval rel ease by adults. From one to two years of age, juveniles begin utilizing bottom habitats of 37 to $73 \mathbf{m}$ (20 to 40 fathons) -with increasing frequency, although dense aggregations are still found at depths of 91 to $130 \mathrm{~m}(50$ to 70 fathons). Utilization of shallower bottom habitats occurs primarily fromspring through fall. During the winter, $P_{\text {_ }}$ borealis is generally absent frominner bay waters of less than $\mathbf{3 0}$ fathons when bottom temperatures may be less than $2^{\circ} \mathrm{C}$ and i ce cover nay be present. At the same time, in middle and outer bays and gullies where northern shrimp are nost concentrated, temperatures nay range from 1 to $2^{\circ} \mathrm{C}$ warner than innernost bays of comparable depth.

A genera? tendency that seens to hold for all pandalid shrimp encountered during $A D F G$ studies is that pandalids are distributed in one of tho ways: (1) younger age groups shal lower, ol der age groups deeper; and (2) ol der age groups of fshore, younger age groups inshore. Reasons for this are suggested by the evidence with regard to salinity and temperature. Oder, sexually mature shrimp, especially ovigerous fenal es, prefer deeper depth zones where these tuo paraneters are nore stable and less variable. Conversel y, the younger indi vi dual s, particularly those prior to first sexual maturity, are tolerant of a broader range of salinities and tem peratures and are often abundant in the shallower depth zones where these two paraneters are generally nore variable (McCrary, 1976, unpublished report).

Area migrations of the adult popul ations are less well docunented. P. jordani off Californi a are known to exhi bit short spawning migrations during the winter into deeper water and short summer migrations, ostensibly in search of food (Dah1strom, 1970). .

Diel vertical migrations are common anong some pandalids. Many \underline{P}. borealis leave the bot tom during I ate afternoon or evening and return to near, or on, the bottom about dawn in Kachenak Bay (Barr, 1970b). The period of tine that the shrimp renai ned away from the vicinity of the bot om varied-di rectly with the season's number of hours of darkness. Pearcy (1970) reported the sane phenonenon for \underline{P}. ordani of f the coast of Oregon. He suggested that diel migrations are rel ated to feeding behavi or si nce the shrimp fed nai nly on euphausiids and copepods which al so nake diel migrations. Pearcy al so suggested that these novenents nay be evol utionary protection and di spersal nechani sns. Chew, et al., (1971) stated that P. platyceros exhi bited a diel bathymetric distribution after finding high catches in' shal I ow water at ni ght in Dabob Bay, Whshi ngton, but in deeper wat er duri ng the day.

The preceding description of the life history of shrimp was provided by: McClean, R. F., et al., 1977.

Alen, J. A 1959. On the bi ol ogy of Pandalus borealis Kroyer, with reference to a population of the Northurnberland Coast. J. Mar. Biol. Ass. 38 189-220.

Barr, L. 1970a. A' aska Fi shery resources-the shrimps. U. S. Fi sh. Wildl.
Serv., Fi sh. I eaflet 63?. I op. ‘
Berkel ey, A. A 1929. A study of the shrimps of British Col unbi a. Biol
Bd. Canada, Prog. Rept. (Pacific)4:9-10.
Berkel ey, A.A 1930. The post-enbryoni c devel opnent of the common pandalids of British Col unbi a. Contrib. Canada, Biol. 10(6):79-163.

Butler, T. H 1964. Grouth, reproduction, and di stribution of pandalid shrimps in British Col unbia. J. Fish. Res. Bd. Canada 21(6) : 14031452.

Butler, T. H 1968. The shrimp fishery of British Col umbia, FAO Fi sh. Rept. 57(2):521-526.

Butler, T. H 1970. Synopsis of bi ol ogi cal data on the prawn Pandalus platyceros Brandt, 1951. FAO Fi sh. Rept. $57(4): 1289-1315$.

Chew K. K., J. W Wells, D. Hol I and, D. H. McKenzie and C. K. Harris. 1971. January size frequency di stribution of_Pandalopsis dispar and Pandalus_ platyceros traw ed in Dabob Bay, Hood Canal, Whshi ngton from 1966 to 1971. (Abstract) Nat. Shel Ifish Assn., 63rd Ann. Conv. (Unpubl i shed.) Dahlstorm, W. A 1970. Synopsis of bi ol ogi cal data on the ocean shrimp. Pandalus jordani Rathbun, 1902. FAO Fi sh. Rept. 57(4):1377-1466.

Fox, WilliamW. 1972. Shrimp resources of the northeastern Pacific Ocean. Pages 313-337 in Donal d H Rosenberg, 1972. A revi ew of The oceanography and renewable resources of the northern Gulf of \mathbf{A} aska. Uni versity of Al aska, Institute of Marine Sci ence.

Haynes, E. B. and R. L. Wigly. 1969. Bi ol ogy of the Northern Shrimp, Pandalus borealis, in the Gulf of Maine. Trans. Aner. Fish. Sot, 98(1):60-76.

Hynes, F, W. 1929. Shrimp fishery of southeast Al aska. U. S. Rept. Comm. Fi sh. 1929. 1-18 р.

Ivanov, B. G. 1964. Results in the study of the biol ogy and di stribution of shrimps in the Pribilof area of the Bering Sea. Trudy VNIRO, Vol. 49 (Soviet Fi sheries Investigations in the Northeast Pacific U.S. Dept. Int. Trans., 1968. 115-125 p.)

I vanov, B. G 1964b. Biol ogy and di stribution of shrimp during winter in the Gulf of Alaska and the Bering Sea. Trudy VNIRO, Vol. 53 (Sovi et Fi sheries Investigations in the Northeast Pacific, U.S. Dept. Int. Trans., 1968, 176-190 p.)

Ivanov, B. G 1969. The bi ol ogy and di stribution of the northern shrimp (Pandalus borealis Kr.) in the Bering Sea and the Gulf of Al aska. FAO Fi sh. Rept. 57(3):800-810.

McCrary, J. A 1971. Pandal id shrimp studies project. Ann. Tech. Rept. Comm. Fi sh. Res. Devel. Act. (Unpubl i shed ins.)

Mistakidis. 1957. The bi ol ogy of Pandalus montaqui Leach. Fi shery I nvest. (Gr. Britai n), Ser. 2, $31(4): 52$.

Needl er, A. B. 1931. Mating and ovi position in Pandalus danae. Canada Fi el d Nat. $45(5): 107-8$.

Pearcy, W. G. 1970. Vertical migration of the ocean shrimp, Pandalus jordani: a feedi ng and di spersal nechanism Calif. Fi sh and Gane, 56(4):125-129.

Rathbun, M.J. 1904. Decapod crustaceans of the Northwest Coast of Anerica. Harri nan Al aska Seri es 10:1-210.

Rathjen, W F. and M Yesaki. 1966. A aska shrimp expl orations, 1962-64. Comm. Fi sh. Rev. 28(4):1-14.

Ronholt, L. L. 1963. Distribution and rel ative abundance of commercially i mportant pandal id shrimps in the Northeastern Pacific Ocean. U.S. Fi sh. and Wildl. Serv., Spec. Sci. Rept.-Fish. No. 449. 28 p.

Skalin, Y. A 1963. Diet of flatfishes in the southeastern Bering Sea, Izvestiya TINRO, Vol. 51 (Sovi et Fisheries Investigations in the Northeast Pacific. U. S. Dept. Int. Trans., 1968, P. 235-250).

Tegeiberg, H. C. and J. M. Snith. 1957. Observations on the di stribution and biol ogy of the pink shrimp (Pandalus jordani) of f the Whshi ngton coast. Whsh. Dept. Fi sh. Res. Pap. 2(1):25-34.

Yevich, P. and R. G. Rinaldo. 1971. Black spot gill di sease of Pandalus boreal is (Abstract) Nat. Shellfish Assn., 63rd Ann. Conv. (Unpubl ished.)

Harvesting Season

The \mathbf{A} aska shrimp fishery operates on a year-around basis subject to . local closures when total catch has reached predetermined levels. Other seasonal restrictions include clinatic restraints, processing plant capacities, and biol ogi cal factors incl udi ng the rel ativel y di spersed distribution of the stocks at certain times." Product quality remains acceptable throughout the year and the potential for increased harvests in terns of the MSY's of the various species remains high. The optinal fishery for the various shrimp species uould occur during the spawning/breeding season when concentrations tend to be at maxi mum densities.

Causes of Fl uctuations in Resource Abundance

Summary
Trend: Stable to increased catches in nost areas.
Cause: Presence of heal thy popul ation in inshore waters; potential for harvest of under expl oited stocks with the refinenent-of methods.
A. A :

Taxonomy.
The weathervane sea scallop, Patinopecten caurinus, is a nenber of the Lamellibranchia clans of the family Pectinidae. Keen (1963) described i ts taxonomy as follows:
C ass:
Subcl ass:
Order:
Superf ani I y:
Famil y:
Genus:

Pelecypoda
Pteriomorphia
Pteroconchida
Pectinacea
Pectinidae
Patinopecten
(formerlly known as Pecten [Goul d])
Distribution.
Although sma 1 numbers of weathervane sea scallops have been taken incidental to ot her fisheries from California to Al aska, the naj or commercial concentrations of this species are centered in the Kodiak Island and the Cape Fa rweather to Cape Sain Elias area (Yakutat regi on) of the Gulf of Al aska Hennick, 1970a). Trace anounts of scal lops have al so been dredged off the Iower Kenai Peni nsula, Shelikof Strait, and of f Montague Island. Expl oratory surveys in the Bering Sea and Alaska Peninsula area have reveal ed no extensi ve beds of scallops (Hennick, 1970b). Ronholt and Hitz (1968) reported that commercial quantities of weathervane sea scallops did not appear to be present in waters off Oregon. Thus, it appears that the Kodi ak Isl and and Yakutat areas are the only regi ons that can support com nercial expl oitation of scallops in the Gulf of \mathbf{A} aska.

Expl oratory surveys, I argely conducted by the National Marine Fishery Service, have indi cated that weathervane sea scallops are nost abundant in dept hs of between 55 and 128 m (30 and 70 fathons) (Alverson, 1968). Gravel and sand, with sone mid, is typi cal of Al aska scallop beds (Hennick, 1973).

The three naj or commercial scallop beds in Alaska nay be descri bed as follows (Hennick, 1973):

AREA 1	Yakutat, bet ween Cape Sai nt Elias and Cape Spencer. Primarily mud-sand-clay or silt overburden. Productive areas between 30 and 60 fathons in depth, 20 to 40 miles offshore.
AREA 11	Westside Kodi ak Isl and, between Cape Skolik to Afognak Isl and incl udi ng that area of the Al aska Peni nsula bordering Shelikof Strait adj acent to Kodiak Island proper. Primarily gravel-sand-mad or silt bottom Productive areas 30 to 70 fathons winthree miles of shore.
AREA 111	Al batross, Marnot, Portlock Banks. Primarily rock, gravel, and sand bottons. Productive areas between 25 to 75 fathons, extendi ng i nshore and out to 50 miles or nore offshore.

Sexual ity.

The weathervane sea scallop is heterosexual and sexually dimorphic.
The sex of mature adult scallops can be distingui shed by the characteristic white col oration of the testes and the bright orange of the ovaries (Hennick, 1970a). There are no superficial characteristics that indicate the sex.

Maturity.
Scallops are aged by counting the grouth rings, or annuli, on the shell. Although this method may not al ways provide the correct age, especially with older scallops, it gives a good estimate of age for younger scallops. Studies conducted in the Yakutat and Kodiak areas indicate that nost weathervane sea scallops attain sexual maturity at age three and that all scallops at age four are mat ure (Hennick, 1970a). In addition, Hennick found that nost scallops which exceed 100 mm in shel l hei ght are sexually mature.

Mating.
St udi es conducted by Hennick (1970a) indi cate that weat her vane sea scallops spawn only once annually. The spawning period normally occurs during June and ear" $\mathrm{y} \mathbf{J}$ uly and is apparently triggered by rising water temperatures. The sexes are separate and fertilization occurs externally. As the eggs and spernatozoa ripen, they are re1 eased through the kidney and are expelled into the water where fertilization is a random occurrence.

Fecundi ty.

No infornation is available in the literature describing the fecundity of weat hervane sea scallops.

Eggs and Larvae.

After fertilization occurs in the open water, the eggs settle to the bottom and becone attached to objects in the substrate. Hatching occurs within two to three days time (Hennick, 1973). Devel opnent is dependent upon water temperature, with hi gher temper at ures producing faster grouth. The Iarvae at this stage are capable of swiming and becone planktonic, drifting with the tides and currents. During this planktonic stage, metanorphol ogi cal changes take place and within two and one-hal fothree weeks the Iarvae settle to the bottom substrate and assume an adult form (Hennick, 1973) .

Mortality is hi gh during the Iarval stage, both from envi ronmental factors and predation. Planktonic feeders, both fish and shellfish, incl uding adult scallops, feed upon the drifting planktonic scallop Iarvae.

Juveni les.

Compl ete basic studies on the Iife hi story cycle of weathervane sea scallops have not been conducted, especially in the juvenile stage. Hence, little inf ornation is available for this life stage. Based on studies of sea scallops el sewhere, however, the following observations can be made. After the I arva settles to the bottom the \mathbf{j} uvenile scallop nay attach itself to the bottom nove around through the use of the foot appendage which I ater becones residual, or swi m The $\boldsymbol{j} u v e n i l e$ at this stage is leptocephalus or transparent. V'Ithin a few nonths, pi gnentation of the shell takes 'place and the ani nal appears identical to the adult form

Adul ts.
After reaching sexual naturity at about three to four years of-age, neathervane sea scallops continue to grow Studies conducted by Hennick (1973) i ndi cate that grouth is more rapid during the first 10 to 11 years, then tends to sl ow as age advances. The meats of old, aged scallops actual ly tend to decrease in wei ght (Hennick, 1973). In Iight of thi s grouth phenomena, weathervane sea scallops should ideally be harvested bet ween seven and el even years of age, both from a bi ol ogi cal and economic vi ewpoi nt.

There is little documented infornation on the Iongevity of weathervane sea scallops. Expl or at ory surveys and commerci al catch data i ndi cate a scarcity of scallops over 15 years of age. However, Hennick (1973) reported scallops recovered with as many as 28 annual rings.

The grouth rate of weathervane sea scallops is subject to regi onal differences. Based on Hennick's (1973) studi es, the neat of scallops from the Yakutat area at a given age are much snaller than that from
either of the Kodi ak Isl and areas. Additionally, scallops from the Marnot, A batross, and Portlock areas of Kodi ak Isl and are the I argest at any given age of all scallops in the Gulf of $\mathbf{A l a s k a}$. This phenonena is of great importance to the commercial fishernen as scallops from the Kodiak area have average meat wei ghts nearly twice as large as those from the Yakutat area, meaning onl \mathbf{y} hal f as many need be handled in order to obtain the sane vol ume of sal able product.

Weathervane sea scallops are planktonic filter feeders, consuming bottom detritus and drifting plankton. The opening and closing of the val ves draws water into the mantle cavity. The circulation of water within the mantle cavity and gill areas provides a food source and enables respiratory functions to occur.

It is interesting to note that scallops are the onl y bi val ve molluscs capable of swiming (Hennick, 1973). This is accomplished through rel axation of the adductor muscle, causing the val ves to part and draw water into the mantle cavity. The scallop then rapidly contracts the large adductor muscle forcing water out. Rapid repetition of this function enables the scallop to rise off the bottom and essentially swim

Predation is often high on weathervane sea scallops, with the naj or predat ors incl udi ng cod, plaice, wolffish, and starfish.

Di sease.

Hennick (1973) reported the presence of marine boring worns on the shells of weathervane sea scallops fromthe Yakutat region. Nearly all of the scallops were heavily infected. However, infestation by marine boring worns in the Kodiak regi on is rare.
igration and Local Movement.
Little information is available concerning the migrations and local novenents of weathervane sea scallops. Adult scallops are capable of independent novenent, but the extent or direction of any novenent is not known.

The preceding description of the life history of the weathervane sea scallop was provi ded by: McClean, R. F., et al., 1977.

Alverson, D. L. 1968. Fi shery resources in the northeastern Pacific
Ocean. In the Future of the fishing industry of the United States.
Univ. of Whshington publications in fisheries- New Series. 4:96-97.
Hennick, D. P. 1970a. Reproductive cycle, size at maturity, and sexual
composition of comercially harvested weathervane scallops,
Patinopecten caurinus in Al aska. J. Fish. Res. Bd. Canada 27:2112-2119.
Hennick, D. 1973. Sea Scallop, Patinopecten caurinus, investigations in
Al aska. Compl etion report Commercial Fisheries Research and
Devel opnent Act, Project No. 5-23-R.
Keen, M A 1963. Marine molluscan genera of western North Anerica. Stanford
Uni v. Press. 126 p.
Ronholt, L. L. and C. R. Hitz. 1968. Scallop explorations off Oregon. Comm.
Fish. Rev. 30(7):42-49.

Harvesting Season

The scallop fishery in the eastern regi on of the Gulf of Al aska is princi pally managed on a year-around. open season basis with a minumize required for retention. The western region is marked with similar size restrictions and with seasonal and area closures to protect val uable crab resources fromincidental danage.

It would be difficult to fix an optinal season for this species because of chronic recruitnent failures and the complication of incidental danage to other resources through the use of scallop dredges. However, because the adductor muscles renain at nearly constant weight and quality through the year, it would seemthat the timing of the season would nost likely occur during Iulls in other fisheries and when appropriate weather conditions were present.

Causes of Fluctuation in Resource Abundance

Summary
Trend: Continued Iow level of production.
Cause: Recruitnent overfishing and depletion of fishing grounds; chronic poor recruitment considered a general problem closure on sone grounds to protect vul nerable crustacean resources; failure to locate new fishing grounds.

RAZOR CLAM

Life History

Taxonomy.
The razor clam Siliqua patula, is a member of the Lamellibranchia clans of the family Solenidae. Nosho (1972) described its taxonomy as follows:

Phylum	Mollusca
Cass:	Lamellibranchia
Family:	Solenidae
Genus:	Siliqua
Speci es:	S. patula

Di stribution.

The razor clamis found fromPismo Beach, California, to the Bering Sea (Anos, 1966). It occurs in comercial quantities from Tillamook Head, Oregon, to the western end of the Alaska Peni nsula. In Alaska, comercial stocks are found on the shores of Cook Inlet, Orcas Inlet, the Copper Ri ver delta near Cordova, and the mainl and side of Shelikof Strait.

Razor clans are found intertidally to several fathons in depth on the sandy ocean beaches of the open coast. Fi ne sand with some glacial silt, as found at Karls Bar located at Orcas Inlet near Cordova, is typical of Al aska cl am produci ng areas (Weymouth and McMillan, 1931). Near Kodiak, the Iarge beds at Swickshak and Hallo Bay consist of fine sand, vol canic ash and some glacial mid. In Cook Inlet, razor clans are found in substrata varying from al nost entirely coarse white sand (Deep Creek area) to a fine sand-clay-gravel mixture at Clam Gulch (MtMilen, 1967).

Razor clans may be found in the nouths of coastal harbors, but growth is usually inferior in these locations. They are not found in encl osed bodi es of water,

Sexuality.

The razor clamis heterosexual and sexually di norphic. However, only through examination of the gonads is it possible toll the sex of the clam There are no superficial characteristics that indicate the sex. Exam nation of the contents of the gonads reveal s a marked difference between sexes. The fenale ova have a granul ar appearance, in contrast to the uscous honogeneous mass in which the spermis found.

Maturity.

Razor clans are aged from grouth rings on the shell. Al though the method may not always provide the correct age, especially with older clams, it gives a good estimate of age for younger clans. In addition, accurate aging is hi ndered by the presence of sumer grouth checks (faise annuli) on the shel I which, it is believed, are caused by di sturbed grouth through tidal action.

Razor clans in the northwest Pacific reach sexual naturity after two or nore years, or a shell length of approxi natel y $100 \mathbf{~ m m}$ (Nosho, 1972). Razor clans of the northern beds do not reach sexual maturity until mach Iater. Clans of the Swikshak and Cordova beaches do not nature until their fifth and sixth years, respectively (Weymouth and McMillan, 1925). However, Cook Inlet clans appear to grow mach faster, reaching maturity in their third year (McMullen, 1967).

Mating.

Spawning occurs in the spring or summer when rising water temperat ures reach $13^{\circ} \mathrm{C}$ (Mosho, 1972). In Al aska, this usually occurs in July. Studies conducted in Prince William Sound indicate that spawning timing can be computed by monitoring the cumul ative maxi mum daily water temperature
(personal communi cation with Ri chard Nickerson, ADF\&G, Cordova, 1975). Razor cl ans spawning occurs when the cuml ative naxi mum daily water tem perature reaches 1,350 temperature units; with the cumilative total com put ed by summing the daily naxi mum degree units above or bel ow $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ from J anuary 1 on. The 50 percent spawning level is generally reached when the cuml ati ve total reaches 1,500 temper at ure units.

Spawning occurs for several weeks as eggs and sperm ripen and are di scharged through the excurrent si phon. Fertilization occurs in the open water with surf action mixing the eggs and sperm

Fecundi ty.

The number of eggs carried by the fenale razor clam ranges bet ueen six to ten million eggs annually (McMullen, 1967).

Eggs and Larvae.

After fertilization occurs in the open water, the eggs hatch into I arvae within a few hours to a few days. Devel opnent is dependent upon water temperatures, with hi gher temperatures producing faster grouth rates. The I arvae exi sts as free swiming veligers (ciliated larvae) for five to si xteen weeks (Oregon Fi sh Commission, 1963). After the veliger stage, the young clans devel op a shell and settle to the bottom where they "set" into the top I ayer of sand upon reaching an average shel I I ength of 13 mm (Tegel berg, 1964). In years of heavy setting, as many as 1,000 to 1,500 young cl ans per 929 square cm (square foot) of beach nay be found.

Mortality is extrenel y high during the larval stage. The pel agic I arvae are subjected to a hi gh level of predation by planktonic feeders. Unf avorable currents nay al so carry the larvae away from desi rable habitats.

Juveni I es.

After settling to the bottom juvenile grouth is slow throughout the fall and wi nter. Grouth accel erates during the spring and summer with warmer waters and increased food supply. After the first wi nter, young clans reach a length of about four-fifths of an inch in the Cordova di strict. An average length of 2 cm (f our and one-hal f inches) is attai ned in three and one-hal f years inthe southern beds as compared to six and onehal f years in the Cordova regi on (Anos, 1966).

The grouth rate varies with locality. In \mathbf{N} aska, initial grouth rate' is slower than in the northwest states; however, after several years, the rel ative grouth rate is hi gher (Weymouth and McMillan, 1931). Generally, razor clims have a larger final size and grow ol der inthe northern beds than \mathbf{n} the southern beds.

Adul ts,

The naxi mum age for razor clans is highly variable with clans of the northern beds Ii vi ng I onger than those of the southern beds. Cl ans collected at Pismo Beach, Californi a, do not exceed five years in age, while Washi ngt on cl ans grow up to ni ne years. In Alaska, ages up to 19 years have been recorded (Weymouth and McMillan, 1931).

Adult razor clans live in the intertidal zone where they lie buried in the sand with thei r necks, or si phons, protruding above the surface. During the I ow water stages, when the clans are exposed, their si phons are covered with a thi \mathbf{n} layer of sand which makes detection of the clans difficult. The clans can nove through the sand very rapidly, averaging several feet per minute. Thei r unusual ability to nove so fast is due to their foot, which is an effective burrowing organ. In digging, the foot of the clamis projected hal f the length of the shell and pushed
into the sand. Bel ow the surface the tip of the foot expands forming a strong anchor. Then the foot muscles contract pulling the clam downward. The clam can repeat this novenent in rapid succession. It has been observed that cl ans I aid on the top of the sand have buri ed thensel ves completely in less than seven seconds (Loosanoff, 1947).

Razor clans are filter feeders, consuming bottom detritus and drifting plankton. Food particles are brought in al ong with water through the incurrent tube. Snall hairlike structures (cilia) on the gills filter the food particles out. The food particles are then passed to the sensitive palps near the nouth for sorting, and are then ingested.

Predation is often high on razor clans, with the maj or predators i ncl udi ng starfish, crabs, rays, octopus, and starry flounders.

Di sease.

As with all animals, razor clans are subject to di sease. Marine. bacteria and fungi are often injurious to clam larvae. In addition, razor clans are al so subject to the problem of paralytic shellfish poi soning (PSP), as are all bi val ve molluscs. PSP is associated with plankton blons and is properly called Gonyaulax poi soning (Hayes, 1967). The causative organi sns are believed to be the di noflagel lates_Gonyaulaxcatenella and G. acatenella. The toxin is accumul ated as a direct result of feeding on these organi sns. PSP is extremel y toxic and is one of the nost potent naterials known to man. The poison is a metabolic product of the dinoflagellate. It is believed that PSP di rectly affects the nerve and muscle nenbrane, blocking the passage of nervous impulses, and eventually resulting in paral ysis of the di aphragm and death by suffocation if enough toxin is ingested.

$$
A E O
$$

Razor clans, unlike other molluscs, do not retain the toxin over a Iong period of time. The toxin is rapidly eliminated from the tissue by nornal metabolic activity. In addition, the toxin does not build up to high level s in the tissue, but is concentrated in the digestive tract. Thorough cleaning and renoval of the digestive tract will renove nost, if not all, of the toxin.

Mgration and Local Mbvenent.

Little is known concerning the migrations and local novenents of razor clans. At the present, there is little evidence that razor clans move horizontally or migrate between areas. However, heavy surf action al ong exposed beaches is often responsible for the novenent of razor clans Iaterally al ong the beach as well as onshore- offshore novenents.

The preceding description of the life history of razor clans was provi ded by: McClean, R. F., et al., 1977.

Anos, M H 1966. Comercial clans of the North Anerican Pacific coast.
U. S. Fi sh and Wildl. Serv. Circ. 237. 18 p.

Baxter, R. 1965. The clam resource of Alaska. Pages 3-4in W A Felsing, Jr. 1965. Proceedi ngs of j oint sanitation sem nar on North Pacific Cl ans, Sept. 24-25, 1965. U. S. Public Health Service and Al aska Dept. of Health and Welfare.

Baxter, Rae E. 1971. Earthquake effects on clans of Prince William Sound.
Pages 238-245 in The Great Al aska Earthquake of 1964, Bi ol ogy vol une.
Publ i shed 1971 by the National Acadeny of Sci ences.
Hayes, M 1967. Revi ew of the shel Ifish toxicity problemin Al aska waters. Page 2 in E. Haynes and J. McCray. Mnutes of the first Alaskan shellfish conf erence, May 23-26, 1967. Al aska Dept. Fi sh and Gane, I nf o. leaflet No. ?06.

Loosanoff, U. L. 1947. Commercial clans of the Pacific coast of the United States. V. L. Bur. Fi sh and Wildl. Fish leaflet No. 223. McMullen, J. C. 1967. Sone aspects of the life history of razor clans Siliqua patula (Di xon) in Cook Inlet, Alaska. Al aska Dept. Fi sh and Gane, I nfo. I eaflet No. 110. 18 p.

Nosho, Terry Y. 1972. The clamfishery of the Gulfor Alaska. Pages 351-360 in Donal d H. Rosenberg. 1972. A revi ew of the oceanography and renewable resources of the northern Gulf of Al aska. Uni versity of Al aska, Institute of Marine Science.

Oregon Fi sh Comi ssi on. 1963. Razor clans. Educ. Bull. 4, Portland, Oregon. 13 p.

Quale, D. B. 1970. Intertidal bi val ves of British Col unbia, British Col unbi a Prov. Mis. Dept. Educ., Hand. No. 17.

Tegelberg, H D. 1964. Grouth and ring fornation of Whshington razor clans. Wash. Dept. Fish., Fi sh Res. Papers 2(3):69-103. Weymouth, F. W. and H. C. McMillan. 1931, Rel ative grouth and nortality of the Pacific razor clamSiliqua patula (Di x (Con) and their bearing on the commerci al fishery. U.S. Eur. Fish., Bull. No. 46. 543-567 p. Weymouth, F. W., H C. McMillan and H B. Hol nes. 1925. Grouth and age at maturity of the Pacific clam _Siliqua_patula (Dixon) U.S. Sur. Fi sh., Bul I. No. 41. 201-236 p.,

The present razor clamfishery is managed without seasonal or area closures in certified areas. Certified beaches are three in number and incl ude Pony Creek (Cook Inlet), Copper River Flats (Prince Wiliam Sound), and Simkshall (South Peni nsula), and it is onl y fromthese that clans can be harvested for human consumption. Al other beaches are suspected of paral ytic shelfish poisoning and only can be used for bait purposes such as in the Dungeness crab fishery after being dyed with vital stains.

In addition to the constraints pl aced on the clamindustry by the PSP regul ations, other chronic problens incl ude the lack of skilled di ggers, aggressi ve eastern clam competition, slow devel opnent of mechanical diging devices, and the effects of the 1964 earthquake, particularly in Prince William Sound. The industry has al so been plagued by local overharvesting I eadi ng to depl etion and is now confronted with recreational harvesters whose demands approach the MSY's of some areas. The ultimate sol ution of PSP and mechani cal harvester problens coupl ed with the continued decline of Washington ciams may do much to revi ve this industry.

The timing of the optinal season for razor clans would occur sone tine following the begi nning of the primary production cycle. Meat quality is significantly improved during these times. Production would be facilitated through the use of nobile nechanical devi ces or dredges which could operate somewhat independently of tides.

Causes of Fluctuation in Resource Abundance

Summary
Trend: I ndustry being re-established, present trend uncertain.
Cause: Fi shery pl agued by economic problens rather than probl ens of abundance; three $\mathbf{A l}$ askan beaches certified safe for commercial harvest, yet market difficulties, problens with the devel opment of . nechani cal harvesters, and seasonal I abor shortages have depressed devel opnent; in early years of industry, depletion of maj or am beds occurred because of poor distribution of harvest and recruitment failures.

G ossary of Bi ol ogi cal Terns

Accl i nati zation	Adj ust ment of an organi sm to a new or strange envi ronment.
Amphipod	Bel ongi ng to large order of Crustacea; nost speci es marine, burrowing or novi ng about on bottom or in bottom debris.
Anadr onous	Speci es spawning in fresh water that make sone or nost of their grouth during a vist or visits to the sea.
Anomuran	Pertai ning to one of three suborders in the crustacean section Reptantia; incl udes hermit crabs, sand crabs, and rel ated forns.
Autochthonous	Organi sns or naterials arising in the same envi ronment.
Autotroph	Pl ants and other organi sns capable of converting inorganic matter into organic forns via photosynthesis.
Barbel	Fl eshy projection found bel ow the I ower jaw, under the snout, and around the nouth of certain ani nals particularly fish.
Bat hymetric	Pertaining to the depth of a body of water.
Bathypelagic	Speci es living in the water col umm bet ween approxi natel y 1000 and 4000 m or at the $4^{\circ} \mathrm{C}$ i sotherm
Benthic	Pertaining to the benthos, or to the bottomin a pel agi c area.
Benthopelagic	Speci es varying thei r habitat seasonally bet ween the bottom and the near-bottomportion of the water col um.
Benthos	Bot tom duel ling (benthic) organi sns.
Bi omass	The total wet wei ght of all living organisns or of a particular organi sm beneath a unit surface area of water or in a specified vol une of water.
Bopyroid	Pertaining to a genus of Isopods; parasitic on mari ne crabs.
Car apace	Exoskeleton pl ate covering the head and thorax.
Carrying Capacity	Maxi mum quantity of fish or other organi sns that a particular habitat can support for an extended period of time.

Continental Rise	Gradual ly sl oping bottom bet ween the steep continental slope and the abyssal plain.
Conti nental Sl ope	Steep sl ope seaward of the edge of the conti nental shel f .
Contranatant	Mbving agai nst prevailing current; applied to return migration of adult fish to upcurrent spawning locations.
Copepod	Bel onging to the crustacean subcl ass Copepoda; important component of zooplankton.
Demersal	Benthic; duelling on or close to the bottom
Denatant	Pertaining to novenent with prevailing currents.
Densi ty-dependent	As applied to life histories, nortality factors of the envi ronnent whose severity is dependent upon the density of the popul ation.
Densi ty-i ndependent	As applied to life histories, refers to nortality factors of the envi ronnent whose severity is not dependent upon the density of the population.
Detritus	Finely di vi ded organic natter from ani mal and pl ant remai ns.
Di atom	Unicellular plant which is a principle component of the pl ankton.
Diel	Referring to the twenty-four hour day as opposed to the hours of sunl i ght.
Di morphi sm	Marked difference between the sexes of an organism
Enhancenent	Referring to projects that attempt to increase the , size of fish populations.
Epilimnion	Portion of the water col umn lying above the thermocline.
Estuarine	Pertaining to a protected body of water in which the salinity departs significantly from the adj acent sea or ocean.
Fecund	Referring to the fecundity of an organism reproductive potential as indicated by the number of nature ova present in the mature organi sm
Gravi d	Possessing mature gonads.
Homoiotherm	Ani mal having a rel atively constant body temperature regardl ess of the temperature of its envi ronnent
Hypolimnion	Portion of water col umm lying bel ow the thermoct ine

Isopleth	Contours that delimit the val ues of a dependent variable plotted agai nst two other variables.
Isopod	Bel onging to a maj or crustacean order; nost commonly found in bottom debris; sone parasitic representatives.
I sot herm	Contour of equal temperature.
Krill	Common name for euphausiids.
Lamella	Any thin, platelike structure.
Littoral	In the sea, the shallow portion of the bottom extending from the shorel ine to a depth of 200 m
Neritic	Al waters over the continent al shelf,
Parr	Young sal non or trout in fresh water bef ore reaching the migratory or smel t stage.
Pel agi c	Of or pertai ning to the open waters of the sea, particularly where the water is nore than $\mathbf{2 0} \mathbf{m}$ deep.
Percoid	Pertaining to a very large sub- order of bony fishes; worl dwi de in di stri bution; nany Al askan speci es incl uded.
Phototaxis	Behavi oral novenent response of an ani nal to light; positi ve phototaxis refers to novenent towards light.
Phytoplankton	Menbers of the plankton community capable of photosynthesis.
Planktonic	Pertai ni ng to the plankton; pl ankton are organi sns generally incapable of noving against prevailing water currents.
Poikilotherm	Col d-bl ooded vertebrate in which body temperature fluctuates widel y in harnony with external temperature.
Polyclad	Bel ongi ng to a cl ass of marine Turbellaria.
Productivity	Yield of organisms in a particular body of water.
Protandric	Referring to organisms capable of changing sex during a particular devel opmental stage as a normal life process.
Recrui t nent	The advancenent of a juvenile organism to sexual naturity or the devel opment of an organi sm to the point where it becones available to commercial exploitation.
Redd	Nest dug in gravel bottomby a salmonid fish.
Riffle	Pertai ning to the stream section referred to as the rapids.
Sno 1 t	Juvenile salmonid capable of novenent to and exi stence in estuarine and mari ne envi ronments.

Spent	Pertains to fish which have recently spawned and whi ch, as a consequence, are either temporarily or permanently physi ol ogi cally depleted.
Stenohaline	Lacking in ability to withstand wide changes in salinity.
Thermocline	Portion of water col um in which rapid change in. temperature with increasing depth encountered; bet ween hypolimnion (bel ow) and epilimnion (above) 1 ayers.
Trophic	Energy level s; refers to organization of organi sns to di screte level s based on food or energy production speci alizations.
Year-cl ass	Al the progeny of the reproduction from any particular year class.
Zoea	Larval stage in sone crustaceans.
Zoopl ankt on	Ani nal components of the plankton primarily dependent upon phytopl ankt on for food.

APPENDI X B
AN OVERM EWOF THE ALASKA COMMERCI AL FI SH NG I NDUSTRY

APPENDIX B

TABLE OF CONTENTS
PAGE \#
An Overvi ew of the \mathbf{A} aska Comerci al Fi shi ng Industry B. 1
Al askan Fi sheries in Perspective B. 2
An Overvi ew of Devel opment by Fi shery 8.9
Sal non B. 9
Devel opment and Market Struct ure B. 9
Statistics B. 19
. Catch and Prices, Al I Sal non B. 19
Catch and Prices, Ki ng Sal mon B. 19
Catch and Prices, Red Sal mon 3. 22
Catch and Prices, Coho Salmon B. 22
Catch and Prices, Pi nk Sal mon B. 25
Catch and Prices, Chum Sal non B. 25
Production B. 28
Factors of Change B. 30
Harvesting Technol ogy B. 30
Production Technol ogy B. 32
Regul ati on B. 34
Other Gover nnental Policy B. 35
Conflicts Vith Oiher Fisheries and Other Comercial Vessel s B. 37
Hal ibut 8.39
Devel opment and Market Structure B. 39
Statistics B. 51
Catch and Prices B. 51
Production B. 51
Factors of Change B. 54
Harvesting Technol ogy B. 54
Production Technol ogy B. 55
Regul ation B. 55
Conflicts With Other Fisheries and Other Comercial Vessel s B. 56
Herring B. 57
Devel opnent and Market Structure 8. 57
Statistics B*68
Catch and Prices B. 68
Production B. 68
Factors of Change B. 71
Harvesting Technol ogy B. 71
Production Technol ogy B. 71Regul ationB. 72
Conflicts With Other Fisheries and Comercial Vessel s B. 73
Groundfish B. 74
Devel opnent and Market Structure B. 74
Statistics B. 78
Catch and Prices 8. 78
Production B. 78
Factors of Change B. 81
Harvesting Technol ogy 6.81
Production Technol ogy B. 82
Regul ation B. 83
Other Governnental Policy B. 83
Conflicts With Other Fi sheries and Other Commercial Vessel s B. 84
King Crab B. 85
Devel opnent and Market Structure B. 85
Statistics B. 98
Catch and Prices B. 98
Production B. 98
Factors of Change 6. 103
Harvesting Technol ogy B. 103
$\begin{array}{ll}\text { Production Technol ogy } & \text { B. } 104 \\ \text { Regul ation } & \text { 8. } 105 \\ \text { Other Governnental Pol icy } & \text { B. } 106\end{array}$
Conflicts With Other Fisheries and Other Commercial Vessel s B. 106
Tanner Crab B. 108
Devel opment and Market Structure B. 108
Statistics B. 108
Catch and Prices B. 108
Production B, 108
Factors of Change B. 110
Conflicts With Other Fisheries and Other Comercial Vessel s B. 110
Dungeness Crab B. 113
Devel opment and Market Structure B. 113
Factors of Change B. 115
Conflicts With Other Fisheries and Other Commercial Vessel s B. 116 "
Statistics 8.117
Catch and Prices: 8. 117
Production B. 117
Shri mp B. 121
Devel opment and Market Structure 8.121
Statistics B. 121
Catch and Prices 8.131
Production B. 131
Factors of Change B. 136
Harvesting Technol ogy 6. 136
Production Technol ogy B. 137
Regul ation B. 138
Other Governnental Policy B. 138
Conflicts With Other Fi sheries and Other Commercial Vessel s B. 138
Scal I ops B. 139
Devel opnent and Market Structure B. 139
Statistics B. 142
Catch and Prices B. 142
Production B. 142
Factors of Change B. 145
Harvesting Technol ogy B. 145
Production Technol ogy B. 145
Regul ation B. 146
Conflicts With Other Fi sheries and Other Commercial Vessel s B. 146
Razor Cl ans B. 147
Devel opnent and Market Structure B. 147
Factors of Change B. 149
Harvesting Technol ogy B. 149
Production Technol ogy 8.151
Regul ation B. 152
Oher Governnental Policies
Oher Governnental Policies B. 152 B. 152
Conflicts With Other Fi sheries B. 153
Statistics B. 154
Catch and Prices 8.154
Production B. 154
Conflicts Anong Commercial Fi sheries, Recreational Fi sheries and Non- Fi shing Marine Traffic 8. 157
Competition for Snall Boat Harbors B. 157
Competition for Fi shery Resources B. 157
Competition for Ocean Space B. 158
Fi shi ng Vessel Acci dents B. 163
Alaska Marine Oil Spills B. 178 ,
Processing Plant Siting Requirenents B. 189
Gover nnental Envi ronnent B. 191
Federal Policy B. 192
NOAA Aqui cul ture Pl an B. 200
Envi ronmental Protection Agency B. 201
References for Federal Policy B. 203
State Fisheries Policy B. 204
The Al aska Renewable Resources Corporation B. 205
The Commercial Fisheries and Agriculture Bank B. 206
Board of Fi sheri es B. 211
References for State Policy B. 232
Commercial Fi sheri es Entry Commission B. 233
Regi onal Fi sheri es Agenci es B. 244
Activities Directly Supportive of Goals Shared with the Regional Fi shery Management Councils B. 246
Activities in Support of Objectives Distinct from Those of the Regi onal Councils B. 257
International Pacific Halibut Commssion B. 256
Market Envi ronnent B. 258
Fi nancing Prograns Available to Commerc al Fishing Vent ures B. 259
New Boats B. 263
Processing Equi pment B. 266
Labor B. 267
Technol ogy B. 269
Transportation B. 271
Market Arrangements B. 274
I mpl ications of Market Concentration 8. 275
J apanese Invest ment in Al aska Seafood Processing 8. 278

APPENDIX B

LIST OF TABLES

TABLE \#

\qquad
PAGE $\stackrel{4}{4}$
B. $1 \quad$ Comparative Catch Statistics 1961-1977
B. 2 The Al askan Finfish and Shel Ifish Fisheri es
B. 4
B. 3 The Al askan Finfish Fi shery in Perspective
B. 5
B. $4 \quad$ The Al askan Shellfish Fishery in Perspective
B. 6
B. 5
B. 6 United States Sal mon Imports and Exports 1960-1977
B. 18
B. $7 \quad$ The \boldsymbol{A} askan Sal non Fi shery in Perspective B. 20
B. 8 The Alaskan King Sal non Fi shery in Perspective B. 21
B. 9 The Al askan Red Sal non Fi shery in Perspective B. 23
B. 10 The \mathbf{A} askan Coho Sal non Fi shery in Perspective B. 24
B. 11 The Al askan Pink Sal non Fi shery in Perspective B. 26
B. 12 The Al askan Chum Sal non Fi shery in Perspective
B. 13 Sal non Production in Al aska by Type of Processing and in Perspective B. 27
B. 29
B. 14 Compari son of Al aska's Rel ative Importance with the Rest of the World in the Catch of Hal i but I ncl udi ng J apanese and Russi an Catch in 1976
B. 40
B. 15 U. S. I mports of Fresh Chilled or Frozen Hal ibut Not Scal ed: Whole or Beheaded
B. 42
B. 16 Halibut Fillets and Other Processed Forns, Fresh Chilled and Frozen, Imported for U.S. Consumption
B. 43 -
B. 17 U.S. Consumption of Hal i but 1960-1976 B. 44
B. 18 New York Whol esal e Price per pound of Dressed Frozen Pacific Hal ibut by Month and Year with Corresponding Real Prices for the Yearly Average Price
B. 45
B. 19

The Al askan Hal i but Fi shery in Perspective
B. 52
B. $20 \quad$ Halibut Production in Al aska by Type of Processing and in Perspective
B. 53
B. 21 A aska Herring Production, 1960-1976 B.59
B. 22 Yearly Crab Catch and Bait Production 1960-1976 8.67
B. 23 The Al askan Herring Fi shery in Perspective B. 69
B. $24 \quad \begin{aligned} & \text { Herring Production in Al aska by Type of Processing } \\ & \text { and in Perspective }\end{aligned}$ B. 70
$\begin{array}{lll}\text { B. } 25 \quad \begin{array}{ll}\text { Groundf i sh Cat ches } \\ \text { Al aska, } & \text { 1967-1975 }\end{array} \text { Approxi nate) From the Gul f of } & \text { B. } 76\end{array}$
B. 26 Annual Al aska Bottonfish Catch in Perspective B. 79
B. 27 Bottomfish Production in Al aska by Type of Processing and in Perspective B. 80
$\begin{array}{ll}\text { B. } 28 & \begin{array}{l}\text { Donestic Catch of } \\ \text { 1941-1977 }\end{array} \\ \mathbf{A l} \text { aska King Crab by Region }\end{array}$
B. 29 Catch of Tanner Crab by Area B. 91
B. 30 United States Exports of Prepared or Preserved and Frozen Ki ng Crab, 1968-1977
8.94

Page 茾
B. 31 United States Exports of Frozen Tanner Crab to J apan, 1970-1976
B. 94
B. 32

The Al askan King Crab Fi shery in Perspective
B. 99
B. 33

King Crab Production in Al aska by Type of Processing and in Perspective
B. 101
B. 34
B. 35
B. 36

Fresh and Frozen King Crab Production in Al aska by Product Type 1966-1975
B. 102

The Al askan Tanner Crab Fi shery in Perspective
B. 109

Tanner Crab Production in Al aska by Type and in Perspective B. 111
B. 37
B. 38

Fresh and Frozen Tanner Crab Production in Al aska by Product Type 1966-1975
B. 112
B. 39
U. S. and Al aska Dungeness Orab Landi ngs, 1961-1975
B. 114
B. 40
B. 42
B. 43
B. 44
8. 45
\% 46
B. 47
B. 48
B. 49
B. 50
B. 51
B. 52
B. 53
B. 54
B. 55
B. 56
B. 5
B. 58
B. 59
B. 60 Primary Causes \& Contributing Factors B.174
B. 61 Trend Chart by Year, Operational Collisions -
B. 62The Al askan Dungeness Crab Fi shery in PerspectiveB. 118Dungeness Crab Production in Al aska by Type ofProcessing and in PerspectiveB. 119

B. 41 A aska by Product Type 1966-1975 8. 120B. 42
Annual Pandalid Shri mil Landi ngs, 1965-1977, byRegion
B. 124

Kodiak Ex-vessel Prices for Shrimp, ?960-1978
B. 125

Per Capita Consumption of Shrimp, 1950-1977
B. 129

The Al askan Shrimp Fi shery in Perspective " B. 132

Shrimp Production in Al aska by Type of Processing and in Perspective
B. 134

Fresh and Frozen Shrimp Production in Al aska by Product Type 1966-1975
B. 135

Al askan Scal Iop Catch, 1967-1975
B. 142

50
The Al askan Scallop Fi shery in Perspective
B. 144

51
Scal lops Production in Al aska by Type of Processing and in Perspective
B. 145
B. 5

Razor Clans Production in Alaska by Type of Processing 8.155 and in Perspective
U. S. Fi shing Vessel Fl eet Geographic Groupi ngs Sel ected Areas
Specific Location Comparison
Casual ty Type and Seriousness of Consequences, Fishing Vessel Casualties FY 72-77
Primary Causes
B. 170

Primary Causes \& Contributing Factors B. 171
Primary Causes \& Contributing Factors
B. 172 I nci dents \& Vessel I nvol venent
B. 176
8. 177

e \#		Page \#
B. 63	1973 Al aska Marine 0il Spills \geq I, 000 Gall ons	B. 179
B. 64	1974 Al aska Mrine Oil Spills ${ }^{\text {a }}$ (1,000 Gallons	B. 180
B. 65		B. 181
B. 66	1976 Alaska Marine Oil Spills	B. 182
B. 67	1977 Al aska Mrine Oil Spills ${ }^{\text {a }}$ 1,000 Gallons	B. 183
B. 68	Number of A^{\prime} laska Marine O_{I} Spil $1 \mathrm{~s} \geq 1,000$ Gallons, By Material Spilled 1973-1977	B. 184
B. 69	Number of A"laska Marine Oil Spills $\geq 1,000$ Gallons, by Cause 1973-1977	B. 185
B. 70	Number of Al aska Marine Cil Spills $\geq 1,000 \mathrm{Gal}$ lons, By Source of Spill 1973-1977	8.186
B. 71	Level and Trends in Market Concentration, Summary	B. 276
8.72	Reported J apanese I nvest nent in Al aska, November, 1977	B. 282
8.73	Maj or Owners of the Leading J apanese Fi shi ng and Tradi ng Compani es (Novenber 1977)	B. 287

APPENDI X B

LI ST OF FI GRES
FI GRE \# PAGE \#
B. 1 Total Pack of Canned Sal non in Al aska, 1878-1959 8. 13
B. 2 Processing Steps for Canned Sal mon B. 16
B. 3 The Market Channel s for Halibut Landed at Al askan Ports B. 48
B. 4 The Processing and Distribution of Hal ibut B. 49B. 5 A Map of Al aska, Showing the Maj or Processing Areasfor Herring, and the Rel ati ve I mportance of EachArea Based on 1976 Processors ReportsB. 62
B. 6 Processing Channel s Spring Herring Roe Fi shery B. 64
B. 7 Processing Channels Fall and Mnter Bait Herring Fi shery B. 66
B. 8 King Crab Catch by Foreign and Donestic Fleets 1953-1977 B. 87
B. 9 Tanner Crab Catch by Foreign and Donestic Fleets1965-19778.90
B. 10 Market Channel s - Frozen King and Tanner Crab Products 8.95
B. 11 Market Channel s - Canned Al askan Shellfish Products B. 96
B. 12 Di stribution of Al askan Shellfish Products by Maj orCenters of DistributionB. 97
B. 13 Fl ow Chart for Shrimp Processing B. 127 ,
B. 14 Grouth of the Documented Fi shing Fl eet \& Grouth of Fishing Vessel s Reporting Casual ties B. 164B. "15 Fi shi ng Vessel Casual ties Nb. of Vessel s I nvol vedin Specific Type Casualties by Fiscal YearB. 165
B. 16 Distribution of Fishing Effort in 1975 by theJ apanese Gillnet Fi shery (INPFC Dec. 1889)B. 231

Thi s appendi \mathbf{x} is an overvi ew of the \mathbf{A} aska commercial fishing industry. It serves as a reference to the devel opnent, narket characteristics, and statistics of the industry and the governnental envi ronnent in which the industry operates, and it serves as a basis for determining the market and governnental envi ronments that are expected to exi st during the forecast peri od of 1980 through 2000.

The sections include a brief di scussion of the rel ative importance of indi vi dual fisheries, an overview of fishery devel opnent by species, and a di scussion of the market and governmental envi ronnents shared by many Al aska fisheries.

A askan Fisheries in Perspective

Al aska has a number of important comercial fisheries; incl uded among these are sal mon, halibut, herring, groundfish, king crab, Tanner crab, and Dungeness crab, shrimp, clam and scallop fisheries. These fisheries . provi de empl oyment in Alaska as well as in other areas of the U.S. and abroad. Due to the lack of adequate narkets in Al aska, a very snall proportion of the output of the Al aska Seaf ood industry is consumed in the state and much of that which is, is at least partially processed el sewhere.

Si nce the I ate 1800s, sal non has been the domi nant Alaska fishery, however, bet ween 1961 and 1974, the absol ute and rel ative importance of the shel Ifish fishery, in particular shrimp, king crab, and Tanner crab increased dramatically

The Al aska groundfish fishery which is just beginning to devel op, has the potential of becoming a dom nant $\mathbf{A l}$ aska fishery. To date, however, the
groundfish resources of f the coasts of \mathbf{A} aska have been al nost excl usi vel y harvested by foreign fishing vessel s. For this reason, groundfish are excl uded from the following tables which summarize the rel ative importance of various fisheries.

TABLE $f=1$
COMPARATI VE CATCH STATI STI CS 1961-1977

	Average Catch (in 000 's)		Range of Catch (in 000's)		
	POUNDS	VALUE	POUNDS	VAL	
King Sal mon	10, 075	\$4, 116	6,942-12,042	\$2, 243- \$	7,880
Red Sal mon	71, 216	18,112	32, 246 - 150, 812	7, 644 -	37, 249
Coho Sal mon	13,719	4, 204	7,128-20,968	1, 997 -	8, 678
Pi nk Sal mon	98, 691	14, 188	28, 822 - 162, 866	3, 241 -	22, 093
Chum Sal non	45, 465	7, 055	22,668-64,823	2, 377 -	17,716
All Sal mon	239, 161	47, 675	131, 603 - 346, 465	24, 631 -	67,975
Hal ibut	38, 180	15, 878	16,490-57,218	10, 382 -	21, 020
Herring ${ }^{2}$	25, 400	853	7,418-49,465	81 -	4, 130
All Finfish ${ }^{3}$	299, 752	64, 407	186, 955 - 404, 708	36, 300 -	85, 552
King Crab	87,765	18,714	43, 412 - 159, 202	3, 914 -	44, 702
Dungeness Orab	7, 256	1, 454	1,177-13,242	442 -	3.427
Tanner Crab	24, 919	2, 588	0-98, 329	0	13, 052
Shri mp	62, 296	3, 330	7,727 - 128,975	309 "	11, 091
Razor Cl ans	214	50	$32-926$	8 -	120
Scall ops ${ }^{\text {k }}$	559	640	$0-1,888$	0	1, 606
Al Shellfish ${ }^{5}$	183>010	26, 777	64,918 - 317,315	5, 116 -	69, 646
Al Fish ${ }^{6}$	482, 762	91, 184	376, 303 - 595, 869	53, 800 -	153, 038
${ }^{1}$ Value data are for 1961-1975 onl y.					
' Al the herring data is for 1961-1975 onl y .					
${ }^{3}$ For the purposes of this table, finfish include salmon, hal ibut, and herring.					
${ }^{4}$ The averages have not been adj usted to reflect the fact that this fishery did not exist prior to 1967.					
${ }^{5}$ For the purposes of this table, shellfish incl ude king, dungeness, and tanner crab; shrimp, scallopsand razor clans.					
${ }^{6}$ All fish include finfish and shellfish as defined above.					

Source: ADF\&G Statistical Leaflets for various years.
the alaskan fineish and shelelfish fi sherles

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in } 000^{\prime} \mathrm{s} \text {) } \\ \hline \end{gathered}$		$\begin{gathered} \text { PRI CE } \\ \text { (\$'s per } \\ \text { pound) } \end{gathered}$
	POUNS	VALUE	
1961	430,479	\$54, 595	\$0. 13
1962	448, 355	68, 355	0.15
1963	413, 236	53,800	0.13
1964	511, 979	64, 121	0.13
1965	508,945	80,989	0.16
1966	595, 869	90, 146	0.15
1967	376, 303	54, 521	0.14
1968	473, 940	87, 756	0.19
1969	407, 571	83, 190	0.20
1970	550, 389	106, 077	0.19
1971	481, 708	91, 133	0.19
1972	431,796	98,912	0.23
1973	462, 420	153, 038	0.33
1974	459, 366	148, 680	0.32
1975	440, 490	132, 434	0.30
1976	581, 458		
1977	632, 646		
1978			
Aver age	482, 762	91, 184	
Source:	istical	or various	

TABLE B. 3
THE ALASKAN FI NFISH FI SHERY IN PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \left(\text { in } 000^{\prime} \mathrm{s}\right) \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SHELLFI SH AND FI NFISH CATCH	
	POUNDS	VALUE		VALUE	POUNDS
1961	365, 561	\$49, 479	\$0.14	90.6	84.9
1962	368, 942	61, 265	0.17	89.6	82.3
1963	306, 876	44, 178	0. 14	82.1	74.3
1964	404, 708	54, 141	0.13	84.4	79.0
1965	351, 473	66, 481	0.19	82.1	69.1
1966	403, 377	72, 574	0.18	80.5	67.7
1967	194, 926	36, 300	0.19	66.6	51.8
1968	331, 709	59,918	0. 18	68.3	70.0
1969	277, 505	61,317	0.22	73.7	68.1
1970	398, 303	85, 551	0.21	80.7	72.4
1971	298, 311	65, 108	0.22	71.4	61.9
1972	236, 575	66, 732	0.28	67.5	54.8
1973	196, 150	83, 392	0.43	54.5	42.4
1974	186, 955	82, 653	0.44	55.6	40.7
1975	193, 518	77, 003	0.40	58.1	43. 9
1976	264, 143				45. 4
1977	316, 754				50.1
1978 30.1					
Average	299, 752	64,407			
Source:	Statis	eaflets f	various ye		

TABLE E. 4
THE ALASKAN SHELLFISH FISERY IN PERSPECTI VE

	YEAR	(i)	$\left.0^{\prime} \mathrm{s}\right)$	$\begin{aligned} & \text { PRI CE } \\ & \text { (\$'s per } \\ & \text { pound) } \end{aligned}$	PERCENTAGE OF TOTAL SHELLFISH AND FI NFISH CATCH	
		POUND	VALUE		VALUE	POUNDS
	1961	64, 918	\$5, 116	\$0. 08	9.4	15.1
	1962	79,413	7, 090	0.09	10.4	17.7
	1963	106, 360	9, 622	0.09	17.9	25.7
	1964	107, 271	9,980	0.09	15.6	21.0
	1965	157, 472	14,508	0.09	17.9	30.9
	1966	192, 492	17,572	0.09	19.5	32.3
	1967	181, 377	18,221	0.10	33.4	48.2
	1968	142, 231	27, 838	0. 20	31.7	30.0
	1969	130, 066	21,873	0.17	26. 3	31.9
	1970	152, 086	20, 525	0.13	19.3	27.6
	1971	183, 397	26, 025	0.14	28.6	38.1
	1972	195, 221	32, 180	0.16	32.5	45.2
	1973	266, 270	69, 646	0.26	45.5	57.6
c	1974	272, 411	66, 026	0.24	44.4	59.3
${ }^{+1}$	1975	246, 972	55, 430	0.22	41. 9^{\prime}	56.1
	1976	317, 315				54.6
	1977	315, 892				49.9
	1978					
	Average	183, 010	26, 777			
	Source:	G Statist	aflets f	ous year		

An Overvi ew of Devel opnent by Fi shery

SALMDN

Devel opment and Market Structure
No other fishery can rival the importance of sal non in the devel opment of Al aska. Mich of \mathbf{A} aska's col orful past has depended heavily upon boom or bust vent ures, and the sal non fishery, in a broad sense, has fulfilled this pattern. Though a viable comercial enterprise for over 100 years, it remai ns to be seen if sal non will ever again be present in Alaskan waters in the magnitude of the late 1800 s and the first $\mathbf{3 0}$ - $\mathbf{P l}$ us years of the ?900s. As happens with many natural resources, the Al askan sal non stocks were severel y over-expl oited for a number of years before effective steps were taken to protect them Though many recognized that the fishery was not well managed, various political and other influential concerns prevailed, and overfishing resulted until well after the demise of the fishery was evident. Not until the State of \mathbf{A} aska assuned managenent of the sal non shortly after statehood were conscientious attempts nade to assure the nai ntenance of a stable yield, and hopef ully, a resurgence of stocks.

Sal non are known to have provi ded sustenance to various groups of Al aska Natives for hundreds of years. It has been estimated that, at one tine, over 75, 000 Nati ves resided within the sal non area of \mathbf{A} aska. However, as various non- Native groups becane interested in Alaska for its weal th of resources, the Natives' lifestyles were altered and the main importance of sal non shifted to the raw resource for a growing industry.

The ol dest sal non cannery' in Al aska is located at Klawak, on the western si de of Prince of KAl es Island, between Wrangell and Howkan. A saltery had been located at Klawak until 1878, when it was purchased by the North Pacific Trading and Packing Company, and a cannery was constructed
the sane year. The origi nal cannery remains operable to this day. By the end of 1878, one other cannery had been built in Al aska.

As the sal non stocks were found to range from Southeast \mathbf{A} aska to the Chukchi Sea, the sal non fishery devel oped in a very dispersed manner. Onboard refrigeration was in its infancy, therefore, the di stance fishermen and tenders could range froma processing pl ant and still deliver a quality product was limited. This situation required that the processors locate within reasonable proximity of the catch areas and led to a rapidincrease in the number of canneries.

Thi s uni que need for so many canneries drew invest ment capital from many sources, and resulted in di verse and often absentee ownershi p. However, in 1893 a group known as the Al aska Packers Associ ation was formed. The resultant amal ganation put approxi nately 90 percent of the canneries and 72 percent of the total A aska sal non output under the control or ownership of one firm and left a fluctuating number of other less powerful and financially secure canneries to process the renai nder of the pack. Through the years Alaska Packers Association's total dominance was broken as ot her firns grew and consolidated. However, the industry is still characterized by a few dom nant firns controling a large portion of the production and many smaller operators regularly enter and leave the industry. By 1959 six firns owned 50 percent of Al aska's salmon canneries and produced 53 percent of the total output. In 1978 the basic structure of the sal mon processing industry remai ns unchanged.

The naj or change that has occurred during the life of the fishery is that processors have exerci sed increasingly less control over the sal non resource. Al aska's di stance and renoteness from maj or popul ation centers
and markets could be turned to the advantage of financially powerful canneries. Al aska was too far away for nost west coast fisher men or processing laborers to undertake the journey on a yearly basis to a fishery lasting only a few months. There was usually no other nork available in the area after the fishery closed, preventing these people from remaining in Alaska year around. To remedy this problem canneries recruited fishermen and cannery workers fromalong the west coast and provided transportat on to the fishing areas. The canneries furni shed the fishing vessel s and gear and provided living accommodations for everyone. The capital necessary for operations of this type was imense. Firns large enough to undertake such a vent ure gai ned di rect control over mach of their raw resource, greatly enhancing their position when bargaining with independent fishernen or competing with other processors. Until the 1930 s for nost of Al aska, and until 1951 for Bristol 8ay, fishing vessel s owned by indi vidual s, whether A aska residents or not, were the exception.

One of Alaska's first legislative actions upon becoming a state in 1959 was banning the use of fish traps by canneries and commercial fishermen. Though the banning was clained to be prinarily a resource conservation nove, the economic ramifications were probably equally as significant. The traps' efficiency far surpassed that of any other gear ever devi sed, and toget her with company-owned fishing fleets provided the canneri es al nost excl usi ve control of the resource. Nearly 90 percent of the traps were controlled by canneries, accounting for over 40 percent of the total sal non catch, and al nost 25 percent of the catch during their last year of use. Abol i shnent of the fish traps imedi atel y dimined the bargaining power of firns which formerly naintai ned nearly total control of
thei r resource procurenent. The canneries' Ioss of control of the sal mon resource, due to loss of the fish traps and the passing of company-owned fishing fleets, placed new emphasis on the importance of independent fishernen. The trend toward less control of the resource by conpani es was reinforced when sal non became a limited entry fishery in 1975. Limited entry regul ations specify that permits can only be hel d by individual s. The fishing privilege must be utilized by the owner of the permit, and canneries and other compani es cannot be issued or purchase a pernit.

During the early years of the A aska sal mon fishery, production grew steadily (Figure B.1). New sal mon areas were fished, nore fishermen and gear entered the fishery and more efficient gear was devel oped. The abundance of sal mon and good fishing areas were so great that increased production was assured simply by expending a little nore effort.

However, the steadily increasing production tended to over-shadow several other important devel opnents. With the exception of brief deviations, the number of sal non fishernen increased from the birth of the fishery until the 1970s. The original abundance of salmon produced ever-increasing yi el ds as new areas and stocks of sal non were fished. But as. early as 1910, the average catch per fishernan began to decrease. The increasing effort managed to offset the decreasing catch per effort until after the peak production of 1936. After this peak, not even increased fishing effort could bol ster production to former peak levels. The sal non stocks had been depleted too severel y to maintain high production at any level of effort. Just as the sal mon industry had rapidly and steadily "booned" into a giant anong west coast fisheries, it experienced a "bust" starting after 1936, which extended through the 1950s, and from which the industry has never fully recovered.

FIGURE Z. 1

Total pacx of Canned Salmon in Alajka, $1 \mathrm{~S} 7 \mathrm{~S}-1959^{\text {s }}$
(k millions of cases)

\therefore Figures represent full cases of 43 pounds net.

Source: R.A. Cooley, 1963. Politics and Conservation, The Decline of the Al aska Sal non.

Due largely to the lack of regul ation of the sal non fishery, another phenonenon occurred that compounded the resource abundance probl em of the declining fishery. A steady denand for sal non nai ntai ned lucrative prices whi ch enticed nore fishernen into the fishery. Though average catch per fishernan continued downward, the increasing val ue per unit of catch kept the fishery profitable. Therefore, as the number of sal non decreased, economic reward caused fishing effort to increase, further depressing the stocks.

The Al aska sal non fishery entered a new era when Alaska becane a state and obtai ned control of its fisheries from the federal government. The state established closel y-controlled fishing seasons, gear regul ations, and quotas. But having recei ved control of its fisheries in 1960, the year after the snallest sal non pack since 1900, state regul atory agencies faced an uphill battle in their attempts to rejunate the annilated fishery.

The exi stence of a strong denand for sal non, which eventually hel ped lead to over-expl oitation of the fishery as explained previousl y, was not entirely a natural happening. In the very early 1900s, the sal non industry undertook a uorldwide advertising campaign with the aid of the federal governnent. The results were very favorable: marketing conditions im proved greatly and the industry entered a period of dynamic grouth. At about the same time the "I ron Chi nk," a machine which beheaded, gutted, and cleaned the sal non, was introduced, narking a great advance in the speed of processing. The nachine initially di splaced so nany oriental cannery laborers that it becane known as the "Iron Chi nk," a nane that is still comonly used in the industry today. The Iron Chink renoved a bottleneck from the sal non cannery processing line and led to further grouth of the industry, which ultinately resultedin many nore workers being hired
than were di splaced by the machine. I ncreased processing efficiency and improved processing techniques which improved the quality and marketability of sal non contributed to the devel opnent of a narket which has al ways renai ned heal thy.

Canned sal non is the nost commonly produced form of processed sal non (Figure $\begin{aligned} & \text { _ a }\end{aligned}$); and sal non has been processed this way nore than any other com nercial fish species in Alaska. However, as with shellfish and other finfish, freezing is becoming increasingly nore comon. Untilaround 1970, freezing constituted a minor portion of the total sal non pack. During the early 1970s, freezing qui ckly increased in popularity, and has been accounting for a growing portion of the total pack. Data sources revealing sal non product form are often contradictory concerning the anount of sal non frozen, but it is now commonplace for many processors to freeze up to 100 percent of their pack. Production figures for the industry indicate that frozen production is rel atively more stable than canning. Canning capacity is more versatile than freezing, and tends to comprise a larger portion of the total pack in years of high sal non catch when processing capacity must increase.

Fi ve species of sal non are harvested in Al aska: reds (sockeye), which are the second- nost abundant and usually the nost val uable; kings (chinook), which are the Iargest species; silvers (cono), whi ch have Iighter flesh than the reds or kings; pinks (humpback), the smallest and nost abundant of all five species; and the chuns (dog), which are the least val uable. All five species are canned, with the pinks, reds, and chuns predominating. Reds and pinks take turns at being the largest portion according to cycle years. It is not uncomon for a consi derably smaller run of reds to be of nore val ue than a larger pack of pinks. Silvers and the large ki ngs are often frozen or undergo a curing process, or fill the demand for fresh sal mon. Pi nks are occasi onally used for this purpose a" so.
Figure $2 . \bar{u} \quad$ Processing Steps for Canned Sal non

Larger vessel s serve as tenders to purchase sal non and transport them to cannery (some tenders have refrigeration facilities for the fish).

Separated by species and quality
Preparation for Iron Chi $n \mathbb{k}$, placed on belt to I ron Chi mk

I ron Chi mk (performs heading, fining, splitting, gutting, cl eani ing, cleansed with water spray)

Washed and Inspected

Cut into can-size pi aces by gang ki es, normally onepound tall or half-pound flat
\downarrow
Filling mach ne fills cans with sal non, another machine, adds correct amount of sal t

Cans are wei ghee, topped off manually if under wei ht

Usually receive initial cooling by water bath if adequate water supply

Transported in "bright stack" (without label s) to lower states for labeling and further di stribution

As with other Alaskan'fish products, most sal non is shi pped to the lower states, predominately the Seattle area, for reprocessing and/ or further di stribution. The frozen sal non arrives in a whole frozen form and nay undergo steaking or filleting, or be di stributed whole. The canned sal non merel y requi res that the proper label be applied and the cans be packed suitably for distribution. Retail grocery stores remain a naj or donestic outlet for canned sal non, but industry sources indicate that sal es of fresh and frozen product is decreasing in these stores. Increasing institutional and restaurant denand is compensating for this decrease, as frozen products are becoming nore preval ent from the processors.

The United States imports and exports sizable quantities of both canned and fresh or frozen sal non (Table $\mathrm{B} . \dot{\mathrm{b}}$). Exports to various buyers uorl dwi de, with France and Japan presently being the naj or buyers, usually nore than offset imports. Japan has only recently becone a maj or sal non importer, due to restrictions on its fishing fleets arising from many countries extending their fishing zones. Data sources for specific sal non products being imported or exported are rarely in agreement and usually conbi ne the entire west coast, but generally indicate that a large portion of the frozen sal non from A aska nay be exported, al ong with a si gnificant but snaller portion of the canned pack.

A lucrative export market to Japan has devel oped for sal non roe. Under the di rection of Japanese technic ans, the roe is stripped, treated in brine and packed in wooden contai ners for transport, being reprocessed abroad for final consumption. This market is growing, as nearly 2,720 M (six mil lion pounds) of roe were produced in 1976, compared toless than 113 M (250,000 pounds) in 1956. Growing interest in this market can al so be seen as a result of restrictions the Japanese are facing on nost

UN TED STATES SALMDN I MPORTS AND EXPORTS 1960-1977
(in thousands of pounds)

YEAR	FRESH FROZEN		CANED	
	1 mports	Exports	1 mports	Exports
960	13,472	NA	19,113	NA
961	12,309	NA	7, 167	7, 275
962	9, 735	NA	6, 843	9, 038
963	8, 898	4,888	1,250	10, 141
964	8,818	22,560	236	20,944
965	7,861	10, 559	101	24,912
966	8, 296	19,845	589	20, 503
967	8, 815	18 , 911	121	20,503
'368	9, 811	16, 234	4,955	5, 732
969	8, 425	30, 553	2, 217	15, 432
970	7,448	28, 201	2, 441	16, 755
971	7, 684	32, 891	1, 551	18, 298
972	18,696	34, 685	11, 647	21, 385
973	18, 237	55, 696	7, 859	16, 976
974	12,483	26, 109	8, 553	8, 377
975	9, 250	45, 696	3, 265	22, 487
976	7,742	38, 418	2, 521	19, 621
977	5,708	65, 559	586	NA

Source: U. S. Departnent of Comerce, N.M.F.S. , Fisheries of the United States,
forei gn fishing grounds. Iron cally, sal non roe was discarded with the viscera and other wastes for years until the initial roe pack in the mid1950s. Even now many plants do not utilize the roe, indicating a potential for future expansion of the narket.

Statistics

Catch and Prices, All Sal mon,

The sal non fishery is the dominant commercial fishery in Al aska. Bet ween 1961 and 1977 the annual salmon catch accounted for between 29.5 percent to 62. 9 percent of the total comercial catch in Alaska and from 1961 to 1975 sal mon accounted for 39.2 percent to 65.5 percent of its val ue (Table 3.7). During this 17-year period the annual sal non catch has ranged from 59, 700 MT (131. 6 million pounds) in 1974 to 157,000 M (346. 5 million pounds) in 1970, While during the first 15 years of $\mathbf{t h i}$ s period the val ue of the annual catch ranged from \$24. 6 million in 1967 to \$68.0 milion in 1970.

There is no well defined trend in the annual fluctuation of catch, but due to increases in the ex-vessel price of sal non, the val ue of catch has tended to increase over time. The dom nance of the sal non fishery, particularly in terns of catch, has tended to decrease due to increases in the shellfish catch.

Catch and Prices, Ki ng Sal mon

The king sal non catch is a rel ativel \mathbf{y} minor part of the tot al sal non catch neasured either in wei ght or val ue. Bet ween 1961 and 1977 the annual king sal non catch ranged from 3, 130 M (6.9 milli on pounds) in 1975 to 5, 440 M (12.0 mili on pounds) in 1977 and accounted for between 2.8 percent and 7 percent of the total sal non catch (Table $\mathrm{E} . ?$). The annual catch has

TABLE R.
THE ALASKAN SALMDN FI SHERY IN PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in 000's) } \\ \hline \end{gathered}$		PRI CE (\$'s per pound)
	POUNDS	VALUE	
1961	264, 814	\$35, 741	\$0. 13
1962	277, 848	42, 119	0.15
1963	223, 063	31, 298	0.14
1964	311, 623	41, 359	0.13
1965	274, 844	48, 274	0.18
1966	333, 325	54, 202	0.16
1967	138, 517	24, 631	0.18
1968	285, 272	49,455	0.17
1969	219, 150	42,428	0.19
1970	346, 465.	67, 975	0. 20
1971	251, 705	51, 411	0. 20
1972	189, 784	45, 295	0.24
1973	136, 493	60, 059	0.44
1974	131>603	65, 579	0.50
1975	137, 607	55, 302	0. 40
1976	243, 975		
1977	299, 647		
1978			
Average	236, 161	47, 675	

PERCENTAGE FI NFI SH	TOTAL TCH
VALUE	POUNDS
72.2	72.4
68.7	75. 3
70.8	72.7
76.4	77.0
72.6	78.2
74.7	82.6
67.9	71.1
82.5	86.0
69. 2	79.0
79.5	87.0
79.0	84.4
67.9	80.2
72.0	69.6
79.3	70.4
71.8	71.1
	92.4
	94.6

PERCENTAGE OF ' TOTAL SIIELLLFISH
AND FI NFI SH CATCH
VALUE

TABLE P.
THE ALASKAN KI NG SALMON FI SHERY IN PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \left(\text { in } 000^{\prime} \mathrm{s}\right) \end{gathered}$		PRI CE (\$'s per pound)
	POUNDS	VALUE	
1961	8, 541	\$2, 243	\$0. 26
1962	8, 739	2>699	0.31
1963	9, 161	3, 127	0.34
1964	11,567	3, 662	0.32
1965	11, 009	3, 049	0.28
1966	9, 351	2,949	0.32
1967	11,632	3,100	0.27
1968	11, 246	3, 865	0.34
1969	10,746	3,506	0.33
1970	11, 546	5, 035	0.44
1971	11, 972	4, 688	0.39
1972	9,973	3,732	0.37
1973	8,917	7,880	0.88
1974	9, 290	6,945	0.75
(1975	6,942	5, 258	0.76
Q) 1976	8,601		
1977	12, 042		
1978			
Average	10,075	4,116	

$\begin{gathered} \text { PRI CE } \\ \text { (\$'s per } \end{gathered}$	PERCENTAGE OF TOTAL SALMON CATCH	
pound)	VALUE	POUND
\$0. 26	6. 3	3.2
0.31	6.4	3.1
0.34	10.0	4.1
0.32	8.9	3.7
0.28	6. 3	4.0
0.32	5.4	2. 8
0.27	12.6	8.4
0.34	7.8	3. 9
0.33	8. 3	4.9
0.44	7.4	3.3
0.39	9.1	4.8
0.37	8.2	5. 3
0.88	13.1	6.5
0.75	10.6	7.1
0.76	9.5	5.0
		3.5
		4.0

PERCENTAGE OF TOTAL SFELLFISH

4.1	2.0
3.9	1.9
5.8	2.2
5.7	2.3
3.8	2.2
3.3	1.6
5.7	3.1
4.4	2.4
4.2	2.6
4.7	2.1
5.1	2.5
3.8	2.3
5.1	1.9
4.7	2.0
4.0	1.6
	1.5
	1.9

AND FI NFISH CATCH
VALUE \quad POUNDS
2.0

9
2. 2
2. 3
2.2
3. 1
3.3
4.8
5.3
6.5
6.1
5.0
3.5
4. 0
been rel ati vel y stable with no well defined trends. Due, however, to increases in ex-vessel prices, the value of king sal non catch has tended to increase. The val ue of the annual catch ranged from $\mathbf{\$ 2 . 2} \mathbf{~ m i l l i o n ~ i n ~}$ 1961 to $\$ 7.9$ million in 1973 and accounted for between 5.4 percent and 13. 1 percent of the val ue of the tota? sal mon catch. The di sproportionatel y hi gh val ue results fromex-vessel price of king sal non being hi gher than those of ot her types of sal mon.

Catch and Prices, Red Sal non

Red sal non are a maj or resource of the Al askan sal mon fishery. Bet ween 1961 and 1971 the annual red salmon catch accounted for from 17.1 percent to 51. 7 percent of the total sal non catch and from 24.4 percent to 63.8 percent of its val ue (Table B.9). During this period the red sal non catch ranged between 14, 600 M (32.2 milli on pounds) in 1974 and 68, $400 \mathrm{MT}(150.8 \mathrm{million}$ pounds) in 1970. The annual catch exhi bits Iarge fluctuations, periods of recovery lasting generally tho years, periods of contraction lasting three to five years, but no strong tendency to increase or decrease for the period as a whole. Increases in the ex-vessel price of red sal non have created an upward trend in the val ue of catches.

Catch and Prices, Coho Sal mon

Coho sal non have not generally been a naj or component of the sal non catch in terns of wei ght or val ue. From 1961 through 1977 the annual coho sal non catch anounted to between 3.4 percent and 9.7 percent of the total sal non catch and from 1961 through 1975 it accounted for between 5.2 percent and 13.6 percent of the val ue of the total Alaskan salmon catch (Table 2, 10). The annual coho sal non catch has been less vol atile than that of red or pink sal non,

TABLE ?
THE ALASKAN RED SALMON FI SHERY I N PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \left(\text { in } 000^{\prime} \mathrm{s}\right) \end{gathered}$		PRICE (\$'s per pound)	PERCENTAGE OF TOTAL SALNION CATCH		PERCENTAGE OF TOTAL SHELLFISH AND FINFISH CATCH	
	POUNDS	VALUE		VALUE	POUNDS	VALUE	POUND
1961	95, 230	\$17, 539	0.18	49. 1	36.0	32.1	22.1
1962	52, 946	11, 130	0.21	26.4	19.1	16. 3	11.8
1963	35, 456	7, 644	0.22	24.4	15.9	14.2	8.0
1964	54,132	12, 247	0.23	29. 6	17.4	19.1	10.6
1965	142, 034	30, 802	0.22	63.8	51.7	38.0	27.9
1966	92, 767	19, 737	0.21	36.4	27.8	21.9	15.6
1967	53, 522	11, 865	0.22	48.2	38.6	21.8	14.2
1968	48, 696	12, 723	0.26	25.7	17.1	14.5	10.3
1969	71, 735	18, 046	0.25	42.5	32.7	21.7	17.6
1970	150, 812	37, 249	0.25	54.8	43.5	35.1	27.4
1971	87>288	22,849	0.26	44.4	34.7	25. 1	18.1
1972	41,984	13, 180	0.31	29.1	22.1	13.3	9.7
1973	35, 248	15, 327	0.43	25.5	25.8	10.0	7.6
(i) 1974	32, 246	22, 119	0.69	33.7	24.5	14.9	7.0
(i) 1975	42, 762	19,230	0.45	34.8	31.1	14.5	9.7
(1) 1976	82, 685				33.9		14.2
1977	91,124				30.4		14.4
1978							
Average	71, 216	18, 112					
Source:	G Statis	Leaflets	ous years				

table A. 10
THE ALASKAN COHO SALMON FI SHERY IN PERSPECTI VE

	$\begin{gathered} \text { CATCH } \\ \text { (in } 000^{\prime} \text { s) } \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SALMON CATCH		PERCENTAGE OF TOTAL SHELLFISH AND FINFISH CATCH	
YEAR	POUNDS	VALUE		VALUE	POUNDS	VALUE	POUNDS
1961	11, 386	\$1,997	\$0. 18	5.6	4. 3	3.7	2. 6
1962	15,321	3, 162	0.21	7.5	5. 5	4.6	3.4
1963	17, 581	3, 008	0.17	9.6	7.9	5. 6	4. 3
1964	20,953	3, 582	0.17	8.7	6.7	5.6	4. 1
1965	17,666	4, 362	0.25	9.0	6.4	5.4	3.5
1966	16, 113	3, 705	0.23	6. 8	4.8	4.1	2. 7
1967	13, 022	3, 343	0.26	13.6	9. 4	6.1	3.5
1968	20, 968	5, 362	0.26	10.8	7.4	6.1	4.4
1969	8, 034	2, 229	0.28	5.3	3.7	2.7	2.0
1970	11, 898	3, 512	0.30	5.2	3. 4	3.3	2.2
1971	11, 459	2, 820	0.25	5. 5	4.6	3.1	2. 4
1972	13, 035	5, 583	0.43	12. 3	6.9	5. 6	3. 0
1973	9, 837	7,470	0.76	12.4	7.2	4. 9	2.1
(i) 1974	12, 820	8,678	0.68	13.2	9. 7	5. 8	2.8
\%) 1975	7,128	4,246	0. 60	7.7	5. 8	3.2	1.6
$\cdots 1976$	10, 644				4. 4		1. 8
1977	15, 363				5. 1		2. 4
1978							
Average	13, 719	4,204					

Source: ADF\&G Statistical Leaflets for various years.
ranging between 3, 220 MT (7.1 milli on pounds) in 1975 and 9, 530 MT (21.0 million pounds) in 1968 during the 17 -year period.

The annual catch exhi bits various patterns of fluctuation conbined with a downward trend. The val ue of the annual catch al so exhi bits various patterns of fluctuation, but due to an upward trend in the ex-vessel price of coho sal non, the val ue of the catch has tended to increase.

Catch and Prices, Pi nk Sal non

During the past 17 years, pink salmon have been the Iargest component by wei ght of the total \mathbf{A} askan sal non catch in al ll four years. Red sal mon were the Iargest component in those years. Due, however, to the lower ex-vessel price for pinks, the val ue of the pink sal non catch exceeded that of red sal non in onl y fi ve years between 1961 and 1975. From 1961 through 1977 bet ween 20.8 percent and 56.1 percent of the total sal non catch was comprised of pinks, and from ? 961 through 1975 between $\mathbf{1 5 . 9}$ percent and $\mathbf{4 8} \mathbf{2} 2$ percent' of its value was attributable to pinks (Table B.if).

The annual pink salmon catch has been very notable during the past 17 years,
 pounds) in 1966 but without a trend toward increasing or decreasi ng. The value of the annual catch has ranged from $\$ 3.2 \mathrm{milli}$ on to $\$ 22.1 \mathrm{million}$; the years of mini mum and maxi mum value coi nci ded with those for catch.

Catch and Prices, Chum Sal non

The annual catch of chum sal non has been rel atively stable in the last 17 years, ranging from 10, $300 \mathrm{MT}(22.7 \mathrm{milli}$ on pounds) in 1969 to 29, 400 Mr (64.8 milion pounds) in 1972 (Table $\mathfrak{Z}, \mathfrak{\alpha}$). Due to increases in the ex-vessel price of chum sal non the val ue of the catch has been less stable, ranging from $\mathbf{\$ 2 . 4}$

THE ALASKAN PI NK SALMON FI SHERY IN PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in } 000^{\prime} \text { s) } \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SALMON CATCH		PERCENTAGE OF TOTAL SFELLFI SH AND FI NFISH CATCH	
	POUNDS	VALUE		VALUE	POUND	VALUE	POUNDS
1961	103, 538	\$10, 115	\$0.10	28. 3	39.1	18.5	24.1
1962	143, 279	20, 296	0.14	48.2	51.6	29.7	32. 0
1963	125, 117	14,472	0.12'	46. 2	56.1	26.9	30.3
1964	162, 281	17, 174	0.11	41.5	52.1	26.8	31.7
1965	74, 873	7>684	0.10	15.9	27.2	9. 5	14.7
1966	162,866	22,093	0.14	40.8	48.9	24.5	27.3
1967	28, 822	3, 241	0.11	13.2	20.8	5. 9	7.7
1968	148, 446	20,490	0.14	41.4	52.0	23.3	31.3
1969	105, 967	15, 712	0.15	37.0	48.4	18.9	26.0
1970	117, 718	15, 563	0.13	22.9	34.0	14.7	21.4
1971	86, 260	13, 518	0.16	26.3	34.3	14.8	17.9
1972	59, 969	10, 882	0.18	24.0	31.6	11.0	13.9
1973	36>610	11, 666	0.32	19.4	26.8	7.6	7.9
\% 1974	40, 072	13, 861	0.35	21. 1	30.4	9.3	8.7
¢ 1975	49,969	16, 053	0.32	29.0	36.3	12.1	11.3
? 1976	102, 401				42.0		17.6
1977	129,550				43.2		20.5
1978							
Average	98, 691	14, 188					
Source:	\&G Stati	Leafl ets	ous year				

TABLE B. 12
THE ALASKAN CHUM SALMDN FI SHERY IN PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in } 000^{\prime} \text { s) } \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SALMDN CATCH		PERCENTAGE OF TOTAL SFELLFISH AND FI NFISH CATCH	
	POUNDS	VALUE		VALUE	POUNDS	VALUE	POUNDS
1961	46, 121	\$3>846	\$0. 08	10.8	17.4	7.0	10.7
1962	57, 653	4,832	0.08	11.5	20.7	7.1	12.9
1963	35, 748	3, 047	0.09	9.7	16. 0	5. 7	8.7
1964	62, 690	4, 695	0.07	11.4	20.1	7. 3	12.2
1965	29, 263	2, 377	0.08	4. 9	10.6	2. 9	5. 7
1966	52, 229	5, 718	0.11	10.5	15.7	6. 3	8.8
1967	31, 518	3>083	0. 10	12.5	22.8	5. 7	8.4
1968	55, 916	7,015	0. 13	14.2	19.6	8. 0	11.8
1969	22, 668	2,934	0. 13	6.9	10.3	3. 5	5. 6
1970	54, 491	6, 616	0.12	9.7	15.7	6. 2	9.9
1971	54, 726	7,536	0.14	14.7	21.7	8.3	11.4
1972	64, 823	11, 919	0.18	26. 3	34.2	12.1	15. 1
1973	45, 881	17, 716	0. 39	29.5	33.6	11.6	9.9
1974	37, 174	13, 975	0.38	21.3	28.2	9. 4	8.1
1975	30, 805	10, 514	0. 34	19.0	22.4	7.9	7.0
1976	39,643				16.2		6.8
1977	51, 569				17.2		8.2
1978							
Average	45,465	7, 055					
Source:	G Stati	Leaflets	i ous year				

milion in 1965 to $\$ 17.7$ milion in 1973. The price increases have also tended to increase the val ue of catch overtine despite the lack of adi scernible trend in catch. Chum sal non have been a noderatel y important component of the sal mon fishery, accounting for between 10.3 percent and 34.2 percent of the total sal mon catch by wei ght and between 4.9 percent and 29.5 percent of the total sal non catch by val ue.

Production
Sal mon products conti nue to dominate \mathbf{A} askan process $n g$ despite decreases in salmon production and increases in the production of other fish. Between 1966 and 1975 sal non production accounted for from 39.1 percent to 80.0 percent
 sal mon production averaged 66, 200 Mr (146.0 mili ion pounds) and ranged from 44, 000 MT (97.0 million pounds) in 1974 to $102,000 \mathrm{Mr}(224,2 \mathrm{milli}$ on pounds) in 1966. The average annual production for the first five years is greater than that for the period as a whole indicating that sal non production has tended to decrease.

At the same time that total sal non production has tended to decrease, the change in the product $\mathbf{m i x}$ between fresh/frozen products and canned and other products has resulted in an increase in fresh/frozen production. The fresh/ frozen share of total production increased from 12.4 percent in 1966 to 32.9 percent in 1975. The increase in the rel ative importance of fresh/frozen products means that the production of canned and other products decreased nore rapi dly than did total sal mon production.

Sal non Production in Al aska
By Type of Processing and in Perspective

Source: Al aska Department of Fi sh and Game, Catch and Production Report Leaflets, 1966-1975.

Harvesting Technol ogy
A aska's sal non fishery has undergone only minimal change interns of harvesting technol ogy during the past two decades, and other than restrictions placed on gear, little has changed since the industry's infancy in the 1800s. Today's primary nethods of commercial sal non catching are troling, gillnetting, and purse seining, with a very few fish wheels in operation at specifically allowed sites.

When the State of Alaska formally assumed managenent responsibility for its fisheries in 1960, a fourth maj or fishing method, the fish trap, was al nost imedi atel y banned. This device, usually constructed and operated only by canneries due to high costs, was perhaps the nost efficient fish harvesting method ever devi sed by men. Fi sh traps had the potential to catch up to 100 percent of the sal non passing through an area, depending on the portion of thei \mathbf{r} migratory route blocked by the trap, creating a situation where improper use of fish traps could anni hilate entire sal non runs.

The naj or changes that have affected sal non fishing are labor saving devices. Fi shernen who troll for sal mon and other fish species have been usi ng a "gurdy" si nce the I ate 1940s. The gurdy reel sin the indi vidual troling lines and is usually hydraulically powered, although electric notors and power take-offs have been important steps al ong the way. Sone trollers using snaller, lighter gear use hand powered gurdies.

Gillnetting accounts for a maj or portion of $\mathbf{A l}$ aska's sal non catch, with the use of set nets or drift nets. Whether the gear is stationary or drifting, sal mon are caught the sane way: the migrating sal non attempt to swimthrough the net placed in their pathway and becone entangled when their gill area snags. Other than the utilization of nore nodern materials,
the fishing procedure for gillnetting is essentially unchanged since first used to fish al ong the Pacific coast. The Iabor requi rement for drift gillnetting, however, has been reduced sonewhat by adoption of the gillnet power reel. The reel is most often hydraulically driven, and the speed of the reel can be controlled by the person picking the fish fromthe net as it is wound onto the power reel. Where pulling the net aboard was once a difficult task for two nen, nost drift gillnetters are now able to performall the tasks necessary for successful fishing without assi stance.

Purse seining was the nethod of sal non fishing nost influenced by I abor-saving inventions. Power druns were first used around 1952 to assist with hauling the heavy, pursed sei nes. However, the equi pnent was qui ckly regul ated out of use in Alaska, supposedly because of its great efficiency at catching sal non. In 1955 the Puretic Power Block was introduced to purse sei ners, and it qui ckly affected sei ning worl dwi de. The • Power Block is extended above the fishing vessel's uorking area on a boom and is powered hydraulically. A non-skid rubber V-shaped roller turns under hydraulic power and feeds the purse sei ne through, hauling the catch out of the water and onto the fishing vessel's work area. The Power Block is rel atively simple and inexpensi ve compared to some of today's exotic equi pnent, and has reduced the crew size necessary on a sal mon seiner from around ten persons to five or six. The extraordinary impact of the Power Block is well emphasized by the U'n ted Nations Food and Agricultural Organization's estimate that over 40 percent of all the commercialy caught fish in the world are taken by the Puretic Power Block.

The fishing vessel sused for sal non fishing cover a wide spectrum of sizes and amen ties. Generally, gillnet fishernen are using slightly larger
vessel sthan in the past, commonly being around $9 \mathbf{m}(30$ feet) in length and havi ng nore power $u l$ engi nes. Bowpi ckers, those with the power reel nounted in a work. area at the front of the boat, have becone increasingly popular anong gil netters si nce around 1970. These provide only minimal protection from the elenents, but are extrenely adept at naneuvering in the area fished and are usually fast enough to change fishing areas qui ckl \mathbf{y}.

Mach gilinetting is still performed from vessel s which appear nore similar to a sport fisherman's rouboat than nould be expected of a com nercial fishing vessel. At the other end of the range are the Iarger purse seiners that may have a full compliment of the latest el ectronic navi gational gear, with capabilities of entering other fisheries and traveling out of the protected waters usually fished by gillnetters. Purse seiners are confronted with a $17.7 \mathrm{~m}(58$. feet) limit on the overall length of purse seine vessels, known as the "Alaska limit". This limit was established in the 1920s, as a neans of limiting the catching capability of indi vidual vessels. Though of questionable nerit today, the linit will probably remain due to the large invest ment in vessel s which conform to the limit.

Production Technol ogy

Sal mon processing in today's canneries is much the sane as it was fifty years ago and before. Grouth of the sal non industry, which peaked in 1936, was brought about due to adequate canning techni ques having al ready been devel oped at the time. Though improvenents have taken place in canni ng nethods and machi nes are improved, no advancenents within the recent past stand out as especially significant. Sone of the older canneries in Al aska that have been closed for many years still contain
canning lines that are utilized for nai ntenance parts in some of the operating canneries, or may have entire lines refurbi shed and noved into other plants for use.

The Iron Chink is the one outstanding devel opnent that greatly influenced the sal mon industry. Wher eas nany facets of the food preservation industry benefited from canning improvenents, the Iron Chink's usef ul ness was val uable only to sal non processors. The first I ron Chinks appeared in 1904, deriving the name from the vast number of Chinese I aborers di splaced by its appearance. The 1904 versi on was very crude compared to its nodern-day counterpart. In brief, the machi ne perforns the following to each sal non: beheadi ng, renoving the fins, opening the belly and renovi ng the viscera, and cl eani ng the body cavity. Though the I ron Chink initially replaced nany laborers, it eliminated a bottleneck in the canning process that ultinately al lowed the sal non industry to grow to a size requiring nore workers than were utilized bef ore the machi ne appeared.

During the Iate 1960s and the 1970s the sal non industry has shown a narked tendency toward freezing a greater portion of the pack and canning less. This action appears rel ated to increasing canning costs and favorable market response to the frozen product, anong ot her influencing factors.

Sal non roe, formerly a waste product from sal non processing, is now a val uable conmodity for export to Japan. Prior to 1965 nost sal non eggs were di scarded or used as bait. By 1968 al nost al lof Al aska' s sal non roe was saved for the new y di scovered Japanese narket. Roe processing in the Al askan plants is usually under the supervision of Japanese technicians, whose compani es oversee the marketing of the roe once it leaves the United States.

Regul ation

The Al askan sal non fishery has evol ved from a condition of nearly no regul ation to extrenel y strict regul ation. Until 1959 when Al aska becane a state and was granted the power to regul ate its fisheries, the federal government exercised regul atory control over the territory's resources. This peri od covered the Iate 1800s through 1959. Though many concerned indi vidual s during this tine realized that the sal non fishery was being over-utilized and voi ced their warnings, no real policy was devel oped to conserve or rehabilitate the remai nder of the stocks.

Upon recei ving managenent control of its fisheries, the State of Al aska set about establishing a long termpolicy ai ned at restoring the Al aska sal non fishery. The state's new Departnent of Fi sh and Game had very little historical data, scientific or biol ogical infornation, or expertise on which to base their planning. Therefore, encouraging results were slow in coming and proper nanagenent practices are still being devel oped, but recent increased sal non catches and other bi ol ogi cal factors being monitored indi cate that progress is being made toward rebuilding an depl eted fishery.

The Al aska Department of Fi sh and Gane has utilized regulation of fishing gear and fishing seasons as its maj or managenent tools. Gear regulations state the exact size of legal gear, how it can be used, and when and where fishing is allowed. Many of the gear restrictions, such as banning of fish traps and specifying where gillnets can be set, are actually desi gned to decrease the ef $f i$ ciency of $f i$ shi ng effort. I mpl enentation of cl osed fishing periods in specific areas offsets the high efficiency of the fishernen, allowing 100 percent escapenent during those periods.

Even with the multitude of regul ations governing sal non fishing throughout the 1960s and early 1970s，participation in the fishery remai ned extrenel y high．In 1974 the sal non fishery was placed under a limited entry permit system designed to accomplish four maj or goal s： 1）prevent additional gear from entering an overcrouded fishery；2） encourage use of under－devel oped fisheries；3）stabilize the anount of gear in each fishery at levels that will allow fair dollar returns， effective fisheries managenent，and upgrading of vessels and gear；and 4）pronote professional and diversified commercial fisheries．

The limited entry program though not without its negative effects．， has great；u i mproved the financial condition of those renaining in the sal non fishery．The greater financial returns，al ong with growing and nore regul ar stocks of returning sal non，have hel ped make strict regu－ lation of the fishery nore pal at able．

Other Governmental Policy

The State of \mathbf{A} aska has undertaken an extensi ve program ai ned at rehabilitating Al aska＇s sal non stocks．As a general guideline，effort is being directed at increasing the presently depressed stocks to level s existing around the 1930 s when sal non were most abundant．As an initial step in this di rection，the 1971 State Legislature created the Di vision ＇of Fi sheries，Rehabilitation，Enhancenent，and Devel opment（F．R．E．D．）， as part of the Alaska Department of Fi sh and Game．

The F．R．E．D．Di visi on has invested consi derable resources in creat－ ing an aqui culture program The di visi on had ten sal non hatcheri es operating in 1976，with several nore planned．As a means of encouraging private participation in the rehabilitation and enhancenent of sal non
stocks, provision was made in the legislation for nonprofit private hatcheries, with loans available from the state to assist with initial construction and operating costs.

The hatcheries are assigned specific streans or areas in which to rel ease their artificially-hatched fry. The fry recei ve fin notches or coded wires to identify them when they return several years later to their specific area of rel ease to spann. A hatchery's success is determined by the portion of rel eased fry that return as adults to the same area to spawn or are caught by fishernen. Returns are usually considered good at 1 to 2 percent, with 5 to 6 percent being extrenely successful.

The nonprofit private hatcheries depend upon a certain portion of the return to eventual ηy cover operating costs and repay loans from the state. A smaller portion is necessary for obtaining milt and roe for raising nore fry for rel ease. The bulk of each return is desi gnated for harvest by fishernen, who are to be the primary benef actors of the program

The aqui culture program has shown considerable.potential thus far, as hatcheries are generally achieving adequately high returns to merit continuation. Mbst hatcheries that have been underway for several years have only recei ved one or two years of returns to eval uate so far, therefore it will be sometime bef ore the cumulative effects of the program can be accuratel y exam ned. Managenent personnel at one of the first private hat cheries have indicated that they hope to have returns great enough to neet the organi zation's financial obligations by about their sixth year of operation.

The federal governnent expressed increased concern for the United States' fisheries resources when the fisheries conservation zone was extended to $200 \mathrm{miles}(322 \mathrm{~km})$ off our coasts, However, this extensi on
has not completely protected sal non from uncontrolled foreign fishing efforts, as it is becoming known that A askan-spawned sal non migrate over vast areas outside the $200 \mathrm{mile}(322 \mathrm{~km})$ zone. The migration range of Al aska's sal non was grossly underestimated even withinthe present decade. Japan in particul ar has harvested millions of imature Alaska-spawned sal non, while adhering to agreements with the United States concerning salmon fishing areas. In an attempt to rectify this situation, appropriate U.S. government agencies have recently persuaded Japan to cooperate with U.S. nanagenent attempts throughout the entire migratory path of Al askan sal non. Fi sheries experts are finding that sal non migrating fromsources al ong the Gulf of Alaska are not as commonly found in the Japanese high seas fishing areas as those from Bristol Bay and other western Al aska areas. Therefore, curtailment of the Japanese salmon harvest shoul \mathbf{d} not greatly influence Gulfor Al aska sal non runs.

CONFLI CTS WITH OTHER FI SHERI ES AND OTHER COMMERG AL VESSELS

The principle conflicts between the sal non fishery and other com nercial fisheries result from competition for space in snall boat harbors, overcrouding being the nornal condition in nost Alaskan smal. boat harbors. There are conflicts between the various commercial sal non fisheries (e.g., purse seine, drift gillnet, etc.) in that they are competing for the same Iimited resource, though generally at different times during the season and or indifferent areas.

The conflicts bet ween the commercial and sport sal non fisheries exist primarily because both are competing for the same resource. The magnitude of conflict tends to increase as the size of the sport fishery increases. This is nost likely to occur where there is easy access for sport fishernen from

- more heavily popul ated areas. A conflict between these fisheries will al so exist if they compete for space in small boat harbors.

There are also conflicts bet ween commercial and subsi stence fisheries due to their competition for the same fishery resources. The conflict between the comercial sal non fisheries and comercial vessel traffic is minimized due to the nature of gear and the location of the fishery activity.

HALI BUT

Devel opnent and Market Structure

The rapid devel opment of the Al askan hal ibut industry which began in the late 1800s was primarily due to tuo factors: the Atlantic halibut fishery was deter orating after years of heavy Anerican and European fishing, and refr gerated railroad transportation bet ween the Pacific Northwest and the East Coast was improving. The forner created a market opportunity for a new source of halibut, and the latter allowed the Al askan and Pacific Northwest halibut industries to take advantage of the market opportunity.

The first Pacific Northwest cold storage pl ant was built in Whshi ngton in 1892, and four more were operating by 1903. As the fishermen ventured further north, cold storage plants were established at Ketchi kan and Sitka, Al aska, in 1909 and 1913, respecti vel y. In 1913 when a col d storage facility was built and railroad access was completed to Prince Rupert, Canada, Al aska's importance to the hal ibut fishery was firmy established.

In the late 1800s and early 1900s, Seattle was the naj or hal ibut buying center in the United States. As the fishery expanded north to . Canada and Alaska and as processing plants were established in these areas, Seattle assuned less importance and the fishery decentralized. Due to fuel costs and perishability of the product, fishermen started selling directly to the nore local buyers. Al aska's catch of halibut, al though decreasing as in nost other areas, has attai ned increasing importance; it accounted for 47.9 percent of the world catch in 1976 (Table Z .4), and 97 percent of the total U.S. catch in that year (Orth, et al., 1978, Preliminary Draft).

Comparison of Alaska's RelativeImportance with the Rest or the Worid in the Catch of Halibut (Hippo glosscs sp.) Including Japanese and Russian Catch-in-1976
 In Metric Tons Live Weight ${ }^{\text { }}$

	Alaska	Other North Pacifi (Includes Japan, Russia and others)	North Atlantic	Total	Alaska Percent
$1932{ }^{3}$	22, 363, 136	16, 511, 884	17,907	56,782,020	39.8
1976	15, 594, ? 89	9, 974, 934 ${ }^{2}$. 6, 947 ${ }^{2}$	32, 542, 934	47.92
1 Alaska and North Atlantic figures for 1932, as veil as components of catch under other North Pacific, were taken from various IPEC statistical reports.					
${ }_{11} 12$	Components of this total were taken from the 1976 FAO Yearbook of Fisheries Statistics.				
	1932 was one year after one of the lowest catches in history for u. .S. and Canada.				

Source: Orth et al., 1978. (Preliminary Draft)

As the norld's largest consuner of hal ibut, the United States consumes the bulk of its donestic catch and imports large quantities of hal ibut (Tables $£ .5$ and 2.1%). Total consumption of halibut in the United States, however, has decreased drastically; Anericans consuned over three times more hal ibut in 1960 than in 1976 (Table ${ }^{2}$,). This is evidently a result of decreased supplies, as the exi stence of a strong denand is substantiated by the consistent price increases over the same period (Table 2.8). In an attempt to halt and reverse the trend of decreasing halibut stocks, the International Pacific Halibut Commission (IPHC) has imposed strict catch quotas, thereby establishing the maxi mum quantity of halibut that will be supplied during any period.

The decreasing supply and increasing val ue of hal \mathbf{i} but have increased the bargai ning power of the fishermen vis-a-vie the processors. Processors now vie for the fishernen's catch in an attenpt to have guaranteed sources of hal ibut. This situation has hel ped assure fisher- " nen of competitive prices for their catch, and has resulted in processors resorting to nonprice forns of competition such as free or reduced prices for ice and bait, in-port services to fishernen including parts suppl y, hotel reservations, use of autonobiles, and laundry service, and assisting fishermen in obtainingloans, less expensive fuel or fishing gear. Although put in a competitive position to obtain the required raw resource, processors do have the benefit of knowing beforehand the quantity of halibut that will be harvested if quotas are net.

The price fishernen receive for their catch may depend upon the grade it falls within. The nedi umgrade hal ibut, 4.5 to $27 \mathbf{k g}$ (10 to 59 pounds) incl usi ve, are nost sought by processors. The whale grade 27 kg (60 pounds) and over, were formerly less desi rable but are now in denand
table B.E
U. S. Imports of Fresh Chilled or Frozen Halibut Not Scaled: Whole or Beheaded
(In Thousands of Pounds and Dollars),

	CANADA		JAPAN		NORWAY		OTHER		TOTAL	
Year	Quantity	Value								
1977	5,369	7,989	48	59			491	212	5,908	8,260
1976	5,421	7,462	1,764	2,334			215	145	7,400	9,941
1975	6,948	7,307	827	689			181	33	7,956	8,029
1974	4,416	4,469	826	667			115	58	5,357	5,194
1973	16,472	8,544	2,052	1,519			95	55	12,619	10,118
1972	12,736	8,521	3,888	2,233			106	38	16,730	10,792
1971	19,746	8,118	67	33	63	39	96	38	19,972	8,228
1970	18,131	8,086	55	27			27	10	18,213	8,123
1969	19,934	8,489	103	50	13	7	44	17	20,094	8,563
1968	17,836	$5>553$	180	40	51	28	15	5	18,082	5,626
1967	15,430	4,781	68	22	27	15	42	19	15,567	$4>837$
1966	19,421	7,497	19	8	22	13	34	13	19,496	$7>531$
1965	21,451	7,406	28	8	134	54	40	47	21,653	7,515
1964	22,303	6,126	138	36	114	46	4	1	22,559	6,209
1963	3,923	1,157	15	3	155	64	22	6	4,115	1,230
1962	23,548	7,791	394	107	808	296	27	7	24,776	8,201

SOURCE: U. S. Department of Census, Imports for Consumption by Year.

TABLE R. 16

Halibut Fillets and Other Processed Forms, Fresh Chilled and Frozen,
Imported for U. S. Consumption
(In Thousands of Pounds and Dollars)

Year		CANADA		JAPAN		ICELAND		OTHER		TOTAL	
		Quantity	Value								
	1977	206	395	1,094	1,982	288	473	12	8	1,600	2,858
	1976	225	364	2,442	3,907	330	381	47	64	3,044	4,716
	1975	102	180	4,230	5,508	142	157	91	31	4,565	5,876
	1974	240	268	3,178	2,899	201	146	16	13	$3>635$	3,326
	1973	362	520	8,011	7,326	251	167	174	117	8,798	8,130
	1972	564	657	11,657	7,259	302	205	227	91	12,750	8,212
0	1971	1,738	1,468	3,694	1,874	183	127	134	52	5,749	3,521
\because	1970	1,719	1,473	4,517	2,325	252	177	13	6	6,501	3,981
	1969	2,871	2,163	4,238	2,078	175	101	73	39	7,357	4,380
	1968	6,574	2,872	3,822	1,313	211	129	103	31	10,710	4,345
	1967	6,242	2,457	$1>949$	819	115	77	70	25	8,376	3,378
	1966	3,316	1,904	2,051	1,055	135	67	197	53	5,699	3,079
	1965	3,448	2,455	2,232	1,085	131	60	31	8	5,842	3,608
	1964	3,075	1,745	2,224	776	121	55	118	30	5,842	3,608
	1963	976	568	849	285	28	13	56	13	1,909	879
	1962	2,406	1,550	4,335	1,723	282	120	108	37	7,131	3,430

[^0]$$
\text { Table B. } 17
$$
U. S. CONSUMPTI ON OF HALI BUT 1960-1976 (pounds in 000's)

Tot al Consumption	Total Resi dent Popul ation	Per Capita Consumption
75,349	179, 979, 000	. 4187
70, 052	182, 992, 000	. 3828
73, 100	185, 771, 000	. 3935
48, 503	188, 483, 000	. 2573
71, 105	191, 141, 000	. 3720
63, 069	193, 526, 000	, 3259
59, 103	195, 576, 000	. 3022
62. 025	197, 457, 000	. 3141
60,657	199, 399, 000	. 3042
58, 486	201, 385,000	. 2904
56, . 092	203, 810, 000	. 2752
60,211	206, 219, 000	. 2920
49, 456	208, 234, 000	. 2375
44, 799	209, 859, 000	. 2135
31,477	211, 389, 000	. 1489
32, 533	213, 032, 000	. 1527
24,448	2. 4, 649, 000	. 1139

Total Resi dent
Popul ati on
179, 979, 000
182, 992, 000
. 3828
185, 771, 000 . 3935
188, 483, 000
191, 141, 000
. 3720
193, 526, 000
, 3259
195, 576, 000
. 3141
199, 399, 000 . 3042
201, 385, 000 . 2904
203, 810, 000 . 2752
206, 219, 000
. 2920
208, 234, 000 . 2375
209, 859, 000 . 2135
211, 389, 000 . 1489
2. 4, 649, 000 . 1139

- Source: Orth et al., 1978 Preliminary Draft

TABLE B.1\%

1
New York Wholesale Price Per Pound
(Cents/Lb.) of Dressed Frozen Pacific Hallbut by Month and"Year
with Corresponding Real Prices for the Yearly Average Price

Year	Jan	Feb	Mar	Apr	May	June	July	Au g	Sept	Oc t	Nov	Dec	Year Average	Halibut Index	WPI A $\dot{M P} \& F$	$\frac{\text { Aug. Price }}{\text { WPTMPF }}$
1958	31.2	31.5	32.0	33.8	34.5	40.0	40. 0	37.0	36.6	34.3	34.0	33.7	34.9	84.3	102.8	34.0
1959	33.5	33.2	33.3	33.0	34,6	34.0	33.5	34.8	32.7	31.8	31..0	31.2	33.1	80.0	94.5	35.0
1960	30.3	29.2	29.2	30.0	30.2	33.5	34.3	35.5	30.8	30.5	29.8	30.0	31.1	75.1	93.1	33.4
1961.	30.0	32.0	32.7	33.3	34.8	37.0	35.0	38.0	39.0	34.7	35.0	35.5	34,8	84.1	90.9	38.3
1962	37.3	39.7	39.5	45.0	41.3	44.0	45.0	47.0	42.8	43.8	43.8	43.0	42.7	103.1	94.4	45.2
1963	43.3	42.5	41.3	40.0	35.8	36.0	36.0	38.5	43.5	43.9	32.8	32.5	38.8	93.7	88.9	43.6
1964	32.5	30.5	30.228	8.0	34, 3	36.2	40.0	41.5	55.0	55.5	38.0	40.0	38.5	93.0	86.5	44.5
1965	40.0	39.7	39.7	40.5	540.5	43.8	50.0	50.5	51.0	48.0	47.5	47.7	44.9	108.5	96.2	46.7
1966	47.7	47.0	- 47,5	47.5	547.5	47.3	48.8	48.0	48.0	47.0	48.0	. 48.0	47.8	115.5	105.0	45.5
1967	48.0	47.0	44.0	41.0	37.5	37.5	36.0	42.0	44.5	40.8	39.0	39.0	41.4	10(I . 0	100.0	41.4
1968	39.0	34.5	34.5	34.5	34.3	37.2	39.4	41.6	40.6	45.2	38.5	39.0	38.2	92.3	103.1	37.0
1969	41.3	41.3	43.0	47.0	47.0	58.0	62,0	62.0	66.0	60.0	63.0	58.0	54.1	130.7	113.8	47.5
1970	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.0	57.3	56.7	55.3	54.9	56.9	137.4	115.8	49.1
1971	54.2	54.2	255.0	053.0	O 53.0	53.0	53.1	53.1	53.1	53.5	55.0	58.5	54.1	130.7	11.6 .0	46.6
1972	$62 .()$) 62.1	167.6	672.0	076.8	77.0	85.0	90.1	92,2	95.0	95.0	95.0	80.8	195.2	130.0	62.2
1973	91.8	91.7	90.4	88.0	97.1	99.6	99.6	105.0	105.0	105.0	102.5	102.5	98.0	236.7	167.5	58.5
1974	102.51	102.51	103.(.)	105.0	099.8	95.8	98.3	98.3	105.0	105.0	105.0	105.0	102.1	246.6	163.5	62.5
1975	105.71	107.11	108.311	1.5 .0	115.0	120.0	120.0	127.0	145.5	149.0	150.0	150.0	126.0	304.4	191.0	66.0
1976	150.01	150.01	150.01	150.01	1,50.0	165.0	165.0	170.0	173.0	173.0	170.0	170.0	161.4	389.9	181.6	688.9
1977	170.01	1.70 .0	0 170.0	170.0	170.6	172.9	173.5	175.0	175.0	180.0	180.0	180.0	173.9	420.1	182.0	- 95.6
1978	180.01	180.018	182.0	186.0									182.0	439.6	193.6	-94.0

[^1]Orth et al., 1978, Preliminary Draft
due to the increasing popularity of large fillets called fletches. Chi cken hal ibut less than 4.5 kg (10 pounds) have been illegal to catch si nce 1973 under IPHC regul ations. Within each grade the fish are di vided into \#'s and \#2's. The \#'s are of the better quality, while \#2's have less desirable carcasses due to bruises, wounds, mishandling, etc. The general trend has been emphasis on quality of fish. Although processors, facing a seller's narket, usually are lenient on grading of fish to insure that fishernen will continue doing busi ness with them

Due to the high operating costs in Alaska, notably labor and transportation, nost hal i but recei ves only preliminary processing before being transported south. The fish have usually been drawn (gilled and gutted) at sea by the fishermen, and the whole, headed fish is frozen and glazed at the processing plant. Mbst Al askan hal ibut is then shi pped to the lower states, usually Seattle, to undergo further processing. Although no longer the buying center for hal ibut, Seattle is the center for reprocessing. Halibut is purchased by processors who perform the preliminary processing in Alaska is then shipped to the Seattle area for further processing. The same company many own both plants or the secondary processing may be done by a custom packer. A custom packer is a processor that processes fish for another processor, Transportation is usually by freighter or barge, with the fish packed in refrigerated contai ner vans or in boxes wei ghing 320 or 816 kg (750 or 1,800 pounds), called totes. With proper freezing, hal ibut nay be kept in good condition for at least a year; this permits a more stable release of product onto the market and allows sellers to utilize market ng techniques not possible with quickly perishable itens. -

The whole halibut is usually steaked or filleted intolarge portions. Steaks are placed into shipping boxes of $2.3,4.5$ or $6.8 \mathbf{k g}$ (five, ten, or fifteen pounds) for further distribution; fillets are larger and sold for further portioning. The final portioning is done as close to the final consumer as possible to help maintain the superior shelf life of the final product. Larger portions have less surface area per vol une exposed for degradation or danage. Al so, persons invol ved in the Al aska hal ibut industry have indicated that transportation costs are less for large portions than for the nore processed smaller portions. The narket channel s, processing, and di stribution of \mathbf{A} aska hal ibut are summarized in Figures 8.3 and 3,4 . Halibut, as with many seafoods, has its largest final consumer narket in the restaurant and other institutions sector. Halibut industry sources cl ai m a marked reduction in sales of their product to retail grocery outlets over the past several years, with restaurants and other institutions accounting for a growing share of the market.

The Anerican hal ibut industry, even with the consi stent denand for its product, has sonetines felt it necessary to undertake serious lobbying and advertising campaigns. As early as 1928, halibut fishermen and processors expressed concern with the presence of Greenl and "hal ibut" on the Anerican market. The Greenl and product was nore abundant than the traditional hal ibut and sold for lower prices. In 1960 the Halibut Associ ation of North Anerica started an advertising campaign to inform the public that the products were actually different species of fish, and emphasized the nore desi rable nutritional characteristics of real hal ibut. In 1967 the Food \& Drug Administration (FDA) decl ared Greenl and "hal ibut" would thereafter be marketed in the United States under the nane "turbot". This success in achieving product differentiation may be

THE PROCESSING AND DISTRIBUTION OF HALIBUT

Source: Orth et al., 1978, Preliminary Draft.
partially responsibe for the present healthy halibut narket, characterized by increasing hal ibut prices despite increased imports of Greenl and turbot.

Statistics

Catch and Prices.
The annual catch of hal ibut in Al askan waters has decreased dranatically in the past 17 years (Tab"e e Between 1961 and 1977 the annual catch decreased in all but four years ranging from 25, 900 Mc (57.2 milli on pounds) in 1962 to $7,480 \mathrm{Mr}$ (16.5 million pounds) in 1974. Due to increasing ex-vessel prices, the val ue of the annual catch has been nore stable, ranging from \$10.4 milion in 1968 to $\$ 21.0 \mathrm{milion}$ in 1972, and has not tended to decrease.

The importance of the hal ibut rel ative to al \mathbf{A} askan fisheries has tended to decrease whether the importance is neasured by the weight or value of the catch. Si nce 1961 the hal i but catch has accounted for between 2.7 percent and 12.8 percent of the total Al askan catch by wei ght and from 1961 through 1975 it accounted for between 8.7 percent and 27.5 percent of the val ue of the total Alaskan catch.

Production.

The production of halibut products has been relatively stable in the last $\mathbf{1 0}$ years in both absol ute and rel ative terns. Neither the average annual halibut production nor the average percentage of total Alaskan processing attributable to hal i but production is mach different for the five years and the period as a whole, (Table

Between 1966 and 1975 annual hal ibut production averaged 8, 710 M (19.2 million pounds) and ranged from 4, 490 M (9.9 milion pounds) in 1968 to 13, 100M (28.8 million pounds) in 1966. The proportion of total Alaskan processing attributable to halibut production averaged 8.4 percent and ranged from 4. 1 percent in 1968 to 13.5 percent in 1967. There has been no change in product mix; halibut production consists al nost entirely of fresh/frozen products.

TABLE '1?. 1^{\prime} /
THE ALASKAN HALI BUT FI SHERY IN PERSPECTI VE ،

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in 000's) } \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL FI NFISH CATCH		PERCENTAGE OF TOTAL SHELLFISH AND FINFISH CATCH	
	POUNDS	VALUE		VALUE	POUNDS	VALUE	¢ POUNDS
1961	51, 282	\$13, 179	\$0. 26	26.6	14.0	24.1	11.9
1962	57, 218	18, 767	0.33	30.6	15.5	27.5	12.8
1963	52, 597	12, 412	0.24	28.1	17.1	23.1	12.7
1964	45, 181	12, 063	0.27	22.3	11.2	18.8	8.8
1965	50, 993	17, 847	0.35	26.8	14.5	22.0	10.0
1966	50, 796	18>083	0.36	24.9	12.6	20.1	8.5
1967	44, 912	11, 497	0.26	31.7	23.0	21.1	11.9
1968	38, 311	10, 382	0.27	17.3	11. 5	11.8	8.1
1969	45, 224	18, 632	0.41	30.4	16.3	22.4	11.1
1970	44, 420	17, 412	0.39	20.4	11.2	16.4	8.1
1971	36, 489	13, 428	0.37	20.6	12.2	14.7	7.6
1972	32, 741	21, 019	0.64	31.5	13.8	21.3	7.6
(.) 1973	24, 787	20,672	0.83	24.8	12. 6	13.5	5.4
(i) 1974	16, 490	12,944	0.78	15.7	8.8	8.7	3. 6
(i) 1975	20, 336	19, 827	0.98	25.7	10.5	15.0	4.6
1976	20, 168				7.6		3.5
1977	17, 107				5.4		2.7
1978							
Average	38, 180	15,878					
Source:	Statisti	aflets f	ous years.				

Hal ibut Production in Al aska
By Type of Processing and in Perspective

Y EAR	$\begin{aligned} & \quad \text { Nunt } \\ & \hline \text { CANED } \\ & \text { PRODUCTS } \\ & \hline \end{aligned}$	ber of Plants FRESH \& FROZEN PRODUCTS	TOTAL $\begin{array}{r}\text { PRODUCTI ON } \\ (000 \text { s lbs.) } \\ \hline\end{array}$	FRESH \& FRGZEN PRODUCTI ON $(000$ s 1 bs.$)$	CANED \& OTHER . PRODUCTI ON (000's lbs.)	PERCENTAGE FRESH \& FROZEN	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { CANED } \\ & \text { \& OTHER } \\ & \hline \end{aligned}$	PERCENTAGE OF ALASKAN PRODUCTI ON OF ALL FISH
1966		19	28, 070	27, 838	232	99.2	0.8	8 . 9
1967		21	23, 936	23,927	9	100.0	0.0	13.5
1968		24	9,939	9>939	0	100.0	0.0	4.1
1969		26	16,696	16,696	0	100.0	0.0	8.8
1970		28	22, 757	22, 758	0	100.0	0.0	8. 0
1971		28	20,938	20,939	0	100.0	0.0	8.8
1972		33	22, 119	22, 118	1	100.0	0.0	11.0
1973		41	18, 890	" 18,879	11	99.9	0.1	8.3
1974		42	12, 607	12, 606	1	100.0	0.0	5. 1
1975		40	16, 017	16, 017	0	100.0	0.0	7.4
$\begin{array}{ll} \text { is } & 1976 \\ \text { in } & 1977 \end{array}$								
Avera (1966	$-1970)$		20,280	20, 232	48	99.8	0.2	8.6
Aver (1966	-1975)		19,197	19, 172	25	99.9	0.1	8. 4

Source: Al aska Department of Fish and Gane, Catch and Production Report Leaflets, 1966-1975.

Factors of Change

Harvesting Technol ogy
The Al askan halibut fishery remains sonewhat different than nost other Al askan fisheries, as entry is not limited and excessively expensive gear is not necessary. For this reason, vessel s designed for sal non gillnetting and seining and those from the herring fishery have entered the hal ibut fishery, al ong with a variety of other vessels that neet the denands of the fishery. As a result, halibut vessels are no longer characterized by the typical hal ibut schooner of past years.

Fi shing gear for halibut is the longline, which has remained essentially unchanged si nce the Pacific hal ibut fishery's beginning, other than to adopt the use of nore nodern materials. The work invol ved with retrieving a setline has been lessened due to the power gurdy which pulls the line aboard the fishing vessel, and the aut onatic toiler which coils the line in a manner which readies it for the next set.

The snaller fishing vessels are able to participate in the hal but fi shery largel y due to the use of snap- on gear. Thi s nodification to the long-line appeared about 20 years ago, but has becone popular only within the past several years. The snap- on equi pnent allows a power drum such as that common on sal non gillnet boats, to reel in the longline, and the hooks and accompanying paraphernalia are unsnapped and hung on racks to avoid tangling. If the snap- on gear was not available, a larger working area yould be necessary for orderly coiling of the line, and the power druns utilized for gillnetting would no longer be suitable for coiling longlines without creating nassi ve ent angl enents.

Halibut are usually iced on board as a neans of preservation. If perforned conscentiously, this nethod results in high quality product
being del ivered to processing plants. At one time it appeared that onboard freezing might becone popul ar. However, the short fishing seasons in recent years have nade such expensi ve conversi ons unneeded.

Production Technol ogy

Hal ibut is nost commonly marketed fresh or frozen, in whole, steaked, or filleted form Attempts have been made at canning, snoking, and other nethods of preserving halibut, but with little success. Si nce freezing is becoming a nore popul ar neans of preserving al nost all seaf ood, it is unlikely that hal ibut processing will pursue nethods other than freezing within the near future.

The industry is presently searching for improved methods of packaging halibut portions that will preserve quality and improve presentability to consumers. Oftentimes, fish products are incorrectly displayed in retail grocery stores, resulting in dripping, unappeal ing packages. Vacuum, packaging in clear plastic filmis being considered as a means of presenting a nore attractive product to consumers, as it would eliminate the need to glaze the fish to prevent freezer burn and drying, and assure a nore consi stent product.

Regul ation

The Al askan hal ibut fishery is unique in that the Al aska Department of Fish and Gane does not exercise regul atory control of the fishery. Rather, the Inter national Pacific Halibut Commission (IPHC), consisting of Canadian and Anerican representation, oversees the halibut fishery al ong the Pacific Coast of North Anerica. The Comission was formally organized in 1923, when a great deal of new gear was entering the fishery, but the catch per unit
effort was decreasing. The purpose of the organization was to conduct research into the state of the fishery. Based on the results of its research, the Commission was granted increasingly more regul atory authority over the years, eventually being able to strictly regulate open fishing seasons, type of allowable gear, and catch quotas.

In 1931 the Pacific halibut catch reached its all-time low Prior to this tine the IPHC had been fulfilling its research role, with managenent of the fishery barely begun. However, IPHC nanagenent practices soon began showing di vidends, as the fishery recovered, and in 1962 catch was al nost double that of 1931.

Foreign trawl fleets entered the hal ibut grounds prior to 1962, ignoring the managenent procedures that had rebuilt the stocks. The results of foreign fishing efforts becane evident after 1962, as Anerican and Canadian halibut catches began a steady decline.

The nost recent attempt by the IPHC to better nanage hal ibut stocks, has been the split season, a series of openi ngs and closings with each usually lasting around two weeks, occurring until catch quotas are harvested or the season ending deadline arrives. However, sone authorities familiar with the situation feel that the North Pacific halibut fishery will not recover again until foreign trawing is brought under strict control.

Conflicts With Other Fisheries and Other Comercial Vessel s

One of the maj or sources of conflict is competition for limited space in small boat harbors. An additional conflict is the incidental catch of i mature hal ibut by other fisheries.

Conflicts al so occur between halibut fishernen and comercial vessel s over gear losses. The Coast Guard is attempting to minize this problem by keeping commercial traffic in well defined shipinglanes,

Devel opnent and Market Structure

The devel opnent of the Alaska herring fishery was.historially based on the denand for herring as an industrial fish, not as a food fish. Al aska herring have been used in the production of oil, fertilizer, feed additives, paint, soap, and other industrial products. The first herring reduction pl ant in \mathbf{A} aska was built in Southeast \mathbf{A} aska on the Upper Chatham Strait in 1882. This was the sole Alaskan plant of this sort until 1919; but by 1920, there were seven reduction plants in the Chatham Strait area and two in Prince William Sound. The output of the Alaska herring reduction industry peaked at $68,000 \mathrm{MT}(150 \mathrm{mili}$ on pounds) in 1926.

Typi cally, each reduction plant processed only herring and was dependent on herring caught in the local area. The dependence on local stocks was a result of harvesting capacity in excess of processing capacity and the poor keepi ng characteristics of herring which could not be overcone with the Iimited onboard refrigeration technol ogy which then exi sted.

During the early 1900s, Al askan processors attempted to capture a portion of the donestic narket for pickled and dry salted herring, but with little success. The narket gains which resulted from new packing nethods and Wbrld Whr I were offset by a bad pack in 1918, and the narket dom nance by the New Engl and, Norwegi an, and British herring industries was not affected.

VIth few exceptions, herring remained an industrial fish in the United States until the 1960s. This led to a decline in the Alaska herring fishery which accel erated during the 1950s due to the di scovery of substitutes for herring in several industrial users. Detergents came into use, thereby decreasing the denand for herring in the production of soap; the Atlantic and Gulf Coast menhaden fisheries and then the Peruvian anchovy
fishery expanded greatly and provided huge quantities of herring=like fish for industrial users; and soybeans began repl acing fishmeal as a feed addi $t i$ ve.

Due to the large decreases in the uorld demand for herring, as well as decreases in the \mathbf{A} askan herring stocks, the \mathbf{A} askan herring fishery becane basically a bait fish industry with only one reduction plant renaining in the mid-1960s.

In 1963 while exploring potential Al askan salmon roe resources, the Japanese di scovered Al aska's potential for herring products, especially roe and roe on ke pavalable in the spring. This new narket for herring products soon grew into an industry surpassing the bait herring fishery (Table Z.21). In 1964, $\mathbf{1 0 . 4} \mathbf{M}(23,000$ pounds) of roe were exported to Japan by a Kodi ak Island producer, and by 1971 there were ten processors handling herring products. The areas of maj or processing importance are Southeast Al aska, the Kenai Peni nsula, and Cordova (Figure Z.5). Sone buyer ships and nobile freezer ships operate in the areas of Kodiak, Cook Inlet, Prince William Sound, and points of Southeast, but they are a minor portion of the total state output.

Herring roe is the nost important of all herring products. Alaska Department of Fish and Gane Preliminary Estimates for 1976 attribute the following percentages of the herring industry, at the producer I evel, to: roe and roe on kel $p, 71$ percent; bait herring, 6.7 percent; whole herring (incl udes frozen roe herring for export to Japan), 20.5 percent; and meal, 1. 8 percent. The present emphasis is being placed on freezing whole round roe herring for export to Japan, or with increasing incidence to Korea, to utilize cheaper labor in completing the processing.

	PEBAL	EINS	Eบำ	FUND77 E	EXBITEL	E99L	2991	SIMP
1977	2.4	35.343	679.6	671.369	0.131	531.912	557.16	-937.452
1978	49.975	46.954	666.134	602.483	. 0.134	568.508	595.271	-4.416
1979	153.275	46.378	963.937	834.862	0.131	622.528	650.395	301.353
1930	275.	69.529	1329. 22	1090.28	0.133	718.529	748.6	360.987
1291	411.475	04.407	1912.5.3	1485.75	0.125	026.194	838.069	533.505
9922	56.3 .425	935.434	2619.32	1915.61	0.115	913.253	947.046	705.793
1983	731.6 .99	186. 1	3357.59	235.3 .46	1). 12.1	1044.37	1080.69	739.275
1934	040.649	238.69	4499.3	3055.09	0. 136	1127.36	1165.92	1141.71
1935	1197.55	319.694	5024.33	3964.14	0.133	1170.41	1210.65	1425.0 .3
1986	1437.35	42.641	7294.33	4515.66	0.128	1251.35	1294.01	1370.51
138?	1604.2.	517.625	9659.96	5142.83	0. 126	1364.55	1409.77	1356.04
1988	19.35 .8	613.981	7961.52	5645.79	0.123	1498.44	1546.37	1310.66
1989	219.3 .07	706.785	11216.7	6061.66	0.122	1647.41	1693.22	1255.19
1970	2444.52	706.134	122.54.6	6.330 .14	0.122	1311.72	1865.57	1041.86
1991	2698.87	870.322	13168.2	6594.09	0.121	1971.74	2028.83	969.632
1992	2936.75	935.216	14005.7	6613.5	0.12	2138.53	2199.04	837.469
1093	3198.27	995.08	14763.3	6959.93	0.118	2321.21	2385.35	758.145
1994	3437.02	1149.11	15361.9	8629.39	0.117	2531.73	2599.72	598.117
1795	3600.52	1092.52	15775.9	6491.89	0. 116	2756.67	2624.74	413.906
1496	3923.72	1122.71	16038.	6298.77	0.114	3012.38	3088.77	262. 215
1997	4163.14	1142.28	16120.3	6047.45	0.113	3294.49	3375.47	88.266
1098	4413.22	1149.68	16014.6	5734.77	0.112	3597.97	3683.8	-111.66
1999	4659.57	1143.09	15702.6	5363.66	3.11	3926.33	4017.82	-312.094
2030	4927.07	1122.48	15153.5	49.37 .91	0.109	4310.29	4406.73	-549.035

EXBITES
VIABL2 RENSRAT

1077	0.229	0.604	0.068
1978	0.25	0.506	0.057
1079	0.24	0.468	0.047
1301	0.234	0.443	2.043
1931	?.219	C. 438	9.241
1942	0.204	0.44 .3	0.043
1993	0.222	0.431	0.049
1984	\%. 251	0.415	9. 954
1985	0.25	9.403	0.051
1986	0.25	0.393	0.051
1997	0.249	0.392	0.253
1929	0.247	0.392	0.054
1989	?. 246	0.394	0.256
1990	0.247	0.397	0.059
1991	0.245	0.404	0.06
1992	C. 241	0.417	9. 962
109?	0.237	+.0.410	0.053
1934	0.233	0.429	0.265
1995	0.229	0.14	0.067
1996	0.223	0.45 .3	0. 3 6 ${ }^{\text {a }}$
1997	ก.22	n. 466	?. 971
$199 ?$	0.216	0.478	0.073
1997	0.212	0.493	0.075
290:	0.208	0.508	0.078

Table R.2l
ALASKA HERRI NG PRODUCTI ON, 1960-1976
(Conti nued)

Year	Product Form	Pounds	Value	Year	Product Form	Pounds	Value
1974				1976			
	Fresh whole	1, 645, 092	135,957		Bait	3, 734, 279	400, 644
	Fresh bait	83, 500	8, 375		Roe	2, 656, 210	3, 642, 457
	Frozen whole	7, 377, 197	1, 139, 464		Herring	4, 617, 828	1, 339, 776
	Frozen bait	50, 452, 725	5, 032, 913.		Roe on kel p	339, 866	618, 651
	Cured herring	24, 554	24, 554		Meal	638, 600	110,478
	Cured herring roe	4, 477, 120	2, 738, 810				
	Cured roe on kelp	1, 099, 182	440, 251				
	Meal	141,400	2, 348				
(1) 1975							
6^{\prime}							
	Fresh/ frozen whol e/ dressed	13, 009, 024	1, 714, 216				
	Fresh/frozen bait	1, 444, 723	$\text { 184, } 636$				
	Fresh/frozen roe	28,664	72, 000				
	Fresh/frozen roe dressed	142, 227	193, 480				
	Cured whol e/ dressed	$10,320$	$\begin{array}{r} \text { 19, } 917 \\ \hline \end{array}$				
	Cured roe	1, 577, 107	$3,747,743$				
	Cured roe on kel p	1, 761, 833	1, 077,761				
	Meal	--.	1,				

Source: Orth, et al., 1978, Preliminary Draft.

Figure k.SA Map of Alaska, Showing the Major Processing Areas For Herring, and the Relative Importance of Each Area Based on 1976 Processors Foorts.
SOURCE : Orth et al., 1978, Preliminary Draft.

The processing of roe is a strictly controlled procedure. Harvesting at the proper time is the initial step in producing a good product. After delivery to the processors, technicians supplied by the foreign buyers usually supervise the entire roe processing operation. The roe and types and quantities of ingredients that are of ten secrets of the technicians, are usually packed infive gallon (19-1 ter) or fifty-pound ($23 \mathbf{k g}$) containers. The price of the final product is often partially dependent upon who supervised the processing. Msst roe and roe on ke pis exported to the Hokkaido wholesale narket in northern Japan, where it is bid upon by snaller Japanese processors who further process the product into final consuner portions. The processing channel sfor \mathbf{A} askan roe herring are summarizedin Figure .

For biol ogi cal as well as market reasons, the A askan herring roe fisheries have been boom or bust fisheries. The biol ogical problem is that . the period in which herring must be harvested to obtain roe of good quality is so short that fishermen sonetines miss all or part of the season. The narketing probl ens are that the Japanese narket for roe is not well understood and the Japanese narket for herring roe imports is dom nated by Canada. It is predicted by Japanese industry sources that in 1978 Canada will furnish approxi matel y 85 percent of Japan's herring roe imports, while Alaska will provide only about five percent.

Due to the rel ative size of the Canadian exports and the fact that the Al askan season is after the Canadian season, the denand or Alaskan roe is heavily dependent on the Canadi an supply of roe and a re atively snall change in the Canadian supply can result in a tremendous change in the denand for Al askan roe. Using the 1978 figures, a 170 percent increase in the Al askan supply of roe uould be necessary to offset a 10 percent decrease in the Canadi an suppl y.

FIGURE こ. =
PROCESS ING CHANNELS SPRING HERRING ROE FISHERY

Source : Orth et al. , 1978, Preliminary Draft

For sone time, the primary donestic use of $\mathbf{A l}$ askan herring has been as bait. Adequate stocks are available, and minimal handling technique is requi red; the onl y requi renent being harvesting at the correct tine. The bait fishery is generally a winter endeavor, with regulations for seasons and areas being minimal compared to the sac roe season. The returns are very stable and predictable when compared with those of the roe fishery. In the past bait herring was either kept alivein ponds or frozen. Frozen bait storage has becone predominant, and nost herring for this purpose is boxed and frozen (Figure $\mathrm{z}, 7$).

The bait herring is usually used by halibut, sal non and crab fishernen; the factors that affect the demand for bait herring, theref ore, incl ude: 1) the level of activity in the crab, hal ibut, and sal non fisheries, 2) efficiency in the use of bait in these fisheries, and 3) the availability of and preference for other bait such as bottomfish or octopus. These factors have tended to offset each other thus allowing only temporary

PROCESSING CHANNELS
FALL AND WINTER BAIT HERRING FISHERY

```
i Source: Orth et al.., .1.978, Preliminary Draft
```


[^2]*Preliminary

Statistics

Catch and Prices

The annual Al askan herring catch has been subject to large fluctuations in both wei ght and val ue. Between 1961 and 1975, the annual catch ranged from 3,360 MT (7.4 mili ion pounds) in 1970 to $22,500 \mathrm{Mr}(49.5 \mathrm{milli}$ on pounds) in 1961 while the value of the catch ranged from \$81, 000 in 1968 to \$4, 130, 000 in 1974 (Table 3.23). During the first 10 years of this period, catch tended to decrease but during the last five years it has tended to increase. The val ue of catch has followed a similar pattern. The importance of the herring catch re" ative to the total commercial catch in Alaska has followed the same pattern. During this 15 year period, the annual herring catch accounted for between 1.3 percent and 11.5 percent of the wei ght of the total annual Alaskan catch and between 0.01 percent and 2.8 percent of its value.

Production

Herring production became increasi ngly i mportant bet ween 1966 and 1975. The average annual production of herring is significantly higher for the period as a whole than it is for the first five years and the average percentage of total Al askan processing accounted for by herring production is al so much hi gher for the period as a whole than for the first five years (Table $\overline{\mathrm{E}}, \mathrm{\Sigma}^{\circ}$). Between 1966 and 1975 annual production averaged 29, 700 M (15.6 milion pounds) and ranged from $2,270 \mathrm{MT}$ (5.0 million pounds) in 1968 to 29, 700 M (65.4 milion pounds) in " 974 . As with nost other fisheries, the product mix has changed with fresh/frozen products increasing their share of the total herring production

TABLE B. α
THE ALASKAN HERRING FI SHERY I N PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in 000' s) } \\ \hline \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL FI NFISH CATCH	
	POUNDS	VALUE		VALUE	POUNDS
1961	49, 465	\$ 559	\$0. 01	1.1	13.5
1962	33, \%6	379	0.01	0.6	9.2
1963	31, 216	468	0.01	1.1	10.2
1964	47, 904	719	0.02	1. 3	11.8
1965	25, 636	360	0.01	0.5	7.3
1966	19, 256	289	0.02	0.4	4.8
1967	11,497	172	0.01	0.5	5. 9
1968	8, 126	81	0.01	0.1	2.4
1969	13, 131	257	0.02	0.4	4.7
1970	7,418	164	0.02	0.2	1.9
1971	10,117	269	0.03	0.4	3.4
1972	14,050	418	0.03	0.6	5.9
1973	34, 870	2, 661	0.08	3.2	17.8
1974	38, 862	4,130	0.11	5.0	20.8
1975	35, 575	1,874	0.05	2.4	18.4
1976					
1977					
1978					
Average	25,400	853			
Source:	ADF\&G Statistical Leaflets for various years.				

PERCENTAGE OF TOTAL SHELLLFISH
AND FI NFISH CATCH
$\frac{\overline{\text { VALUE }}}{1.0} \quad \frac{\text { POUND }}{11.5}$

1.0	11.5
0.6	7.6
0.9	7.6
1.1	9.4
0.4	5.0
0.3	3.2
0.3	3.1
0.1	1.7
0.3	3.2
0.2	1.3
0.3	2.1
0.4	3.3
1.7	7.5
2.8	8.5
1.4	8.1

Source: Al aska Departnent of Fi sh and Gane, Catch and Production Report Leaflets, 1966-1975.

Factors of Change
Harvesting Technol ogy
There have been no si gnificant changes in the methods used for catching herring since the inception of the A askan herring fishery. Purse seiners have al nays accounted for a large portion of the total catch, with set and drift gillnets growing in popularity.

Purse sei ni ng offers the opportunity to harvest large vol unes of fish when selectivity for size is not especially important, such as in the bait fishery. Purse seining underwent its nost important change in 1954, when the Puretic Power Bl ock reached the narket and quickly found its way on board nost seining vessel s. The power block assi sted in hoi sting the pursed, and hopef ully full, sei ne aboard. (The device is covered in nore detail in the sal non harvesting technol ogy section.)

There are more gillnets in the herring fishery si nce herring roe has becone a Iucrative export to Japan. As compared to sei nes, gillnets catch the herring at a slower rate, allowing a nore consi stent flow of rawfish to the processors and therefore resulting in a hi gher quality product. Gillnets also tend to be sel ective in catching nore femal es (containing the val uable roe) of desired naturity, which is idea" for the roe herring fishery.

Production Technol ogy
Huge vol unes of herring were once caught off Al aska's coast and used primarily to supply the needs of reduction pl ants. This fishery al I but di sappeared years ago, I eaving little narket for herring. Use
as bait by other fisheries, particularly halibut and crab, was the main narket for herring after the demise of the reduction industry. Bait herring has been kept in ponds in the past, but nost bait herring is now frozen in boxes and di stributed to fishernen in frozen form

During the early 1960s, the Japanese di scovered Al aska's potential for herring products, especially roe. United States processors were inexperienced at suppl ying such itens for the Japanese narket, so Japanese i mporters furni shed their own technicians to the Anerican processors to supervise the handling of the roe. Even so, after exporting herring roe to Japan for around 15 years, Japanese technicians still oversee the roe processing in Anerican plants.

Renoving herring roe is a labor intensive operation. However, a rel atively new machi ne, referred to as a herring sexer is gaining acceptance. By examining each herring carcass with light, the machine qui ckly detects fenal es and speeds the stripping process. Many processors are still not using the machine, preferring to wait until it is nore. thoroughly refined.

Regul ation

The Al askan herring fishery, like sal non, becane a limited entry fishery in 1974, because it too faces a situation of excessi ve participation. (Greater detail of limited entry policy is included in the sal non regul ation section.)

The herring fishery was primarily for bait until the Japanese demand for roe instilled new vi gor into the industry. As the new interest for roe herring grew, new regul ations were implenented. Previ ous to the roe fishery, many herring fishery regulations were intended as a means of preventing
incidental sal non catches. Usually, the cl osure of certain areas to herring fishing during sal non runs was the extent of regulation.

Herring seasons and legal fishing areas are still sonewhat dependent upon sal mon management goal s. Due to use of similar gear, incidental sal non catches by herring fishernen could be significant if unregul ated. However, effort directed at herring managenent has becone great enough that regul ar seasons are now enforced in some areas, al ong with catch quotas. Herring seasons are often opened and closed by energency orders, announced by the Alaska Department of Fish and Gane. These orders are based on imediate catch and stock infornation, and may sometimes occur with very little advance notice.

Conflicts With Other Fisheries and Other Comercial Vessels
Competition for space in snall boat harbors creates conflicts between the herring fishery and other comercial fisheries. These conflicts are' reduced to the extent that the herring fishery fleet is comprised of boats that al so partici pate in the sal non fisheries which typically occur after the spring herring season.

The conflict between herring sei ners and comercial vessel traffic is increased due to the limited period in which roe herring are of the desired quality and in high concentrations.

GROUNDFI SH

 established a setline fishery for cod. Prior to this period, Native subsi stence fishermen had I ong been taking catches of Pacific halibut, cod, herring and other speci es and had of ten traded them with the Russi ans and, I ater, the Aneri cans.The first foreign expl oitation began with Canada's interest in cod and hal ibut in the early 1900s, but not until 1962, with the appearance of a Sovi et fishing fleet of 70 traw ers, did nodern, I arge-scale commercial fishing of groundfish begin in the Gulf.

The naj or species of groundfish which inhabit the Gulfof \mathbf{A} aska are , Al aska pollock, Pacific cod, sablefish, Pacific ocean perch, halibut, turbot, flathead sole, rock sole, and Atka macherel. The Russi ans initially targeted on Pacific ocean perch. The following year, 1963, a snaller fleet of Japanese vessel sished the Gulf of \mathbf{A} aska targeting on Pacific ocean perch and sablefish. It was noted in the Fi shery Managenent Pl an for the Gulf of Al aska groundfish fishery during 1978 that the Japanese, until 1963, had denonstrated a rel uctance to establish a fishery in the Gulf because of its potential impact on hal ibut stocks. Discussions anong the governments of Japan, Canada, and the U.S. were occurring on this topi c at the time. When the Soviet fleet started fishing in the Gulf in 1962, Japan changed her conservative outlook and began fishing operations a year I ater. Unlike the Sovi et Uni on, whose operations are sol el y trawing, the Japanese al so used gillnets (1963 onl y), longlines and pot gear.

Catches of Pacific ocean perch peaked in 1965 at 380， 000 M，and subsequently declined to about 48， 000 M in 1974．As declines accel erated， target species expanded to include Iarger catches of pollock，sablefish， flounders and Atka nackerel：In fact，large pollock stocks now present in the Gulf are specifically attributed to declines in the stocks of Pacific ocean perch and sablefish．

Other foreign countries with fishing interests in the Gulfor aska are Korea，Pol and and Tai wan．Poland began fishing for sablefish in 1972 using setline gear，and in 1976 a snall trawing operation took place． Pol and had snall reported catches of pollock，Atka nackerel and rockfish in 1974 and 1975 （100M in 1974 and 2， 000 M in 1975）using factory stern traw ers similar to those used by the Soviet Uni on．Three Tai wanese long－ Iiners and one factory stern traw er were observed fishing in the Gulf in 1976.

Donestic catches of groundfish do not natch the scale of foreign exploitation，as can be seen in Table 2,25 ．The United States has traditional been invol ved in fishing for halibut，sablefish（using setline and trap）， a bait fishery and several other sme＂ler fisheries for pollock，flounders， and rockfish．The history of domest c halibut exploitation will be treated in a separate section．

Ninety percent of the donestic setline fishery catch of sablefish cones from narine insi de waters of Southeast Al aska．Mbst of the catch （ 80 percent）is taken using longline gear，but recently traps have been utilized by sone vessels．The fishery began in Southeast Al aska about 1906. The catch peaked in 1946 at about 2， 800 M．Current annual catches are in the vicinity of $1,100 \mathrm{M}$ ．It is mainly an off－season fishery pursued by hal i but，crab，and sal non fishernen．
grodndetsa CAtCHES (Approximate)
FROM TEE GULF OF ALASRA, 1967-75
In 1,000 Metric Tons

SPECIES	COUNTRY	1967	?,968	1969	1970	1971	1972	1973	1974	$\mathbf{1 g}_{9}+$
Rockfishes	U. S.	tr	tr	$t 5$	$t 5$	tr	${ }^{t} r$	$t r$	$t 5$	5
(primarily	USSR	66	45	19	2/	30	24	4	17	10
Pacific	Japan	54	56	55	45	49	53	54	41	34
ocean perch)	R.O.K.	0	0	0	0	0	0	$2 /$	$\frac{21}{21}$	2/
	Poland	0	0	\bigcirc	0	\bigcirc	0	$\frac{21}{58}$	$\frac{21}{58}$	21
	TOTAL	120	101	74	45	79	77	58	58	44
Pollock	u. s.	0	0	0	0	0	0	0	$t r$	$t r$
	USSR	$2 /$	$2 /$	21	2/	tr	20	30	31	38
	Japan	6	6	18	9	9	14	7	30	10
	R.O.K.	0	0	tr	0	0	1	1	$\frac{21}{21}$	$\underline{21}$
	Poland	0	0	0	\bigcirc	0	0	21	$\underline{21}$	$\frac{21}{21}$
	total	6.	6	18	9	9	35	38	61	48
Atka	u. S.	0	0	0	0	0	21	0		0
mackerel	USSR	21	21	21	$2 /$	$2 /$	$2 /$	9	18	20
	Japan	0	0	0	0	0	0	0	0	0
	R.0.R.	0	0	0	0	0	0	0	0	0
	Poland	\bigcirc	0	\bigcirc	0	0	0	21	tr	1
	TOTAL	0	0	0	0	0	0	9	18	21
Sablefish	u. s.	\pm	tr	tr	Er	Er	1		1	1
	USSR	$2 /$	21	21	$2 /$	$t 5$	1	17	$t r$	ET
	Japan	5	15	19	24	25	36	27	24	18
	R.O.K.	0	0	0	0	0	0	1	3	2.
	Poland	0	0	0	0	0	0	21	21	21
	TOTAL	5	15	19	24	25	38	30	28	21
Flounder	U. S.	0	tr	$\stackrel{15}{1 / 2}$	${ }^{\text {tr }}$	57	cr	5		tr
		${ }_{5}$	${ }_{3}$	3	4	2	8	19	7	2
	8.0.8.	0	0	0	0	0	0	0	21	21
	Poland	0	0	$\underline{0}$	0	0	0	21	$\frac{21}{21}$	$\underline{5}$
	TOTAL	5	3	3	4	2	10	20	9	4
Eallb ut	U. s. ${ }^{\text {/ }}$	19	17	20	20	16	14	11	7	9
	USSR	$\underline{2 /}$	$\underline{21}$	$2 /$	21	$2 /$	tr	tr	55	cr
	Japan	0	0	0	0	0	0	0	0	0
	R.O.K.	0	0	0	0	0	0	0	0	0
	Poland	- 0	\bigcirc	$\underline{0}$	\bigcirc	0	0	21	21	EI
	TOTAL	19	17	20	20	16	14	-ii	7	9
Others	J. s.	Er	tT	t	tr	tr	tr		t	
(cod and	USSR	11	14	$\frac{1}{2}$	9	1	22	8	10	9
umidencisied	Japan	4	4	2	3	3	2	7	10	9
fish)	R.O.K.	0	0	0	0	0	0	tr	cr	t
	Poland	- 15	- 18	0	0	\bigcirc	0	¢5	tr	1
	TOTAL	15	18	3	12	4	24	15	20	19
totas	U. s. ${ }^{\text {/ }}$	19	17	20	20	16	15	12	8	10
	USSR	77	59	20	9	31	69	53	78	79
	Japan	74	84	97	85	88	113	114	112	73
	R.O. K.	0	0	0	0	0		2	3	2
	Poland		$\frac{0}{160}$			$\frac{0}{135}$	$\frac{0}{198}$	$\frac{\text { tr }}{181}$	$\frac{5 T}{201}$	$\frac{2}{166}$
```1/ Japan's catch is for the months of January to October, }1975 2/ Catch, if any, included under 'other." 3/ Includes Canadian catch of halibut. 4/ Excluding discarded incidental catch.```										

SOURCE : Fishery Management Plan for the Gulf of Alaska Groundfishery during 1978, North Pacific Fishery Management Council,

Peak catches of sablefish in the 1940s coincided with large increases in the demand for vitamins found in liver. Denand and catch per unit effort. subsequently declined after this period, and poor prices and poor stock I evel s produced Iow landi ngs and effort in the late 1960s and early 1970s. In 1972 rising prices rej uvenated effort somenhat. A quota of 454 Mr was instituted in northern districts of Southeast Alaska in 1973 to stop serious stock declines. Effort mas down again in 1974 due to rising costs, poor stock conditions and Iow prices.

The bait fishery arose from a need for bait in the crab and hal ibut fisheries. Groundfish bait is usually taken incidentally in the shrimp fishery al though there have been recent trends to target on bait if the price is high. Fishing for bait is done from Prince $\mathrm{W}^{\prime} \mathrm{Illiam}_{\text {Sound to the }}$ Aleutians with tho-thirds of the catch Ianded in Kodiak. Recorded catch of bait in 1976 was 303 M ; however, catch which goes unrecorded nay equal or exceed that anount.

Other, snaller donestic groundfisheries incl ude a pollock and flounder fishery in Petersburg begun in 1976. Three traw ers landed 120 Mr of flounders and 60 Mr of pollock. An additional 126 MT of pollock was Ianded by sal mon seiners. Halibut and sablefish fishermen caught $\mathbf{1 2 8} \mathbf{M}$ of rockfish incidentally in 1976 in Southeast, and $\mathbf{2 , 7 0 0} \mathbf{~ M r}$ of capelin and juvenile pollos. cl assified as "waste fish" were caught incidentally in the Alaska shrimp fi shery.

To a large extent, donestic groundfishing efforts have been overshadowed in recent times by the large foreign effort. It is expected that control of foreign fishing under the Fishery Conservation and Managenent Act of 1976 will play a large role in stimating expansion of donestic fisheries for groundfish.

## Statistics

Catch and Prices.
The groundfish catch has been increasing but still remains rel atively insi gnificant. Bet ween 1966 and 1975 the annual donestic catch ranged from 136 MT ( 0.3 milli on pounds) in 1968 to $\mathbf{1 , 5 4 0} \mathbf{~ M ~ ( 3 . 4 ~ m i l i o n ~ p o u n d s ) ~ i n ~ 1 9 7 3 , ~}$ averaged 771 MT ( $\mathbf{1 . 7} \mathbf{~ m i l l i o n ~ p o u n d s ) , ~ a n d ~ d i d ~ n o t ~ a n o u n t ~ t o ~ n o r e ~ t h a n ~} 0.5$ percent of the catch of all Alaskan fisheries (Table Z.no).

## Production

Despite substantial increases in the production of groundfish products in Al aska bet ween 1966 and 1975, these products renai ned rel ati vel y unim-. portant. The annual production averaged less than 680 MT ( $\mathbf{1 . 5} \mathbf{~ m i l i o n ~ p o u n d s ) ~}$ and accounted for at nost 1.1 percent of total Al askan processing output (Table $\mathrm{Z}_{2}: 5$ ). There has been no change in product mix ; the production consists al nost entirely of fresh/frozen products.

ANUAL ALASKA BOTTOMFISH*CATCH IN PERSPECTI VE

YEAR (	CATCH		PRI CE   (\$'s per pound)	PERCENTAGE OF ALASKAN CATCH FOR ALL FISFERIES		
			$\begin{gathered} \text { Per centage of } \\ \text { wei ght } \end{gathered}$	Percentage of val ue		
1966	1,662	278		0. 17	0.3	0.3
1967	1,711	220	$0 \times 13$	0.5	0.5	
1968	284	35	0.12	0.1	0.4	
1969	527	71	0*13	0.1	$0 \times 1$	
1970	895	156	0.17	0.2	0.2	
1971	878	137	0.16	0.2	0.2	
1972	1,830	475	0.26	0.4	0.5	
1973	3, 377	651	0. 19	0.7	0.4	
1974	3,134	822	0.26	0.7	0.6	
1975	3,061	864	0. 28	0.7	0.7	
1976						
1977						
$\therefore$ Aver age: 1966-1970	1,016	152	0.15	0.2	0.2	
Average: 1966-1975	1,736	371	0.19	0.4	0.3	

*Bottomfish incl ude: sablefish, rock fish, and other fish referred to as bottomfish by ADF\&G.
Source: ADF\&G, Catch and Production Reports, 1966-1975.

Number of Plants			Bottomfish Production in Al aska   By Type of Processing and in Perspective				PERCENTAGE   CANED   \& OTHER	PERCENTAGE OF ALASKAN PRODUCTI ON OF ALL FISH
			$\begin{gathered} \text { TOUAL } \\ \text { PRODUCTI ON } \\ \text { (000's lbs. }) \\ \hline \end{gathered}$	C A N N E   FRESH \& FROZEN \& OTER    PRODUCTI ON PRODUCTI ON   $\left(000^{\prime} \mathrm{s}\right.$ lbs. $)$ $\left(000^{\prime} \mathrm{s}\right.$ lbs.)		PERCENTAGE FRESH \& FROZEN		
YEAR	CANED PRODUCTS	$\begin{aligned} & \text { FRESH \& FROZEN } \\ & \text { PRODUCTS } \end{aligned}$						
1966		11	1,537	1,536	1	99.9	0.1	0.5
1967		11	1,671	1,671	0	100.0	0.0	0. 9
1968		8	200	199	1	99.5	0.5	0.1
1969		4	239	237	2	99.2	0.8	0.1
1970		7	1, 100	1,099	1	99.9	0.1	0.4
1971		10	658	658	0	100.0	0.0	0. 3
1972		14	1,915	1,913	2	99. 9	0.1	0.9
1973		17	2, 434	2, 434	0	100.0	0.0	1.1
1974		20	2, 499	2, 469	30	98.8	1. 2	1. 0
1975		9	2>283	2, 283	0	100.0	0.0	1. 1
1976								
1977								
Averag (1966	1970)		949	948	1	99.7	0.3	0.4
Averag (1966-	1975)		1,454	1,450	4	99.7	0.3	0.6

Source: Al aska Departnent of Fi sh and Gane, Catch and Production Report Leaflets, 1966-1975.

Factors of Change
At the present tine, no donestic groundfish fishery exists in Alaska or its bordering waters which is of comercial significance. Historically, nearly all groundfish harvested off $\mathbf{A l}$ aska have been caught by foreign fleets. However, considerable domestic interest in groundfish has arisen. recently, due largely to governmental actions and policies that have made harvesting of our underutilized species appear nore attractive. Therefore, a summary of the present situation, though not necessarily a factor of change in all instances, is presented. ,

## Harvesting Technol ogy.

Al askan fishernen do not possess extensi ve experience with the gear used to catch groundfish, nor do nost vessel s even have the capability of using groundfish traw gear without sone nodification. The Al askan shrimp fishery nost nearly parallels groundfish catching, as traw gear is used in both instances. Therefore, a snall segnent of the total Alaskan fishing fleet could probably adapt to groundfish harvesting very quickly.

For the past several years, the owners of the newer king crab vessel s have kept an eye to the future, usually designing their craft for inexpensi ve conversi on to groundfish catching. The harvesting capability of the king crab fleet has_ becone so great that season openi ngs may last only a few weeks before quotas are net. The present king crab fleet is one of the world's nost nodern and capable. These vessel s represent a great potential for groundfish harvesting if economic returns attract their effort.

Foreign traw fleets possess the nost experience and know edge concerning groundfish catching. The Russian and Japanese fleets in particular
have experimented with numerous combinations of fleet sizes, vessel sizes, and processing arrangenents. These two countries, and many others, have accumulated a weal th of infornation that could speed the growth of Al aska's groundfish industry by years. As grouth of Anerica's groundfish fishery may displace foreign fleets and reduce U.S. imports of their catches, forei gn know edge and technol ogy nay not be as openly shared as Aneri cans youl d desi re.

## Production Technol ogy

Groundfish production technol ogy is another aspect of the fishery's devel opment that may be dependent upon foreign assi stance. Besi des the presen economic situation within the fishery which has not attracted very many f. shermen or processors, producing a quality product is of major contern. Groundfish reportedly suffer quality loss within a few hours after 1 anded if not properly preserved. Little infornation exists concerning whether Anerican fishing vessel s can properly preserve groundfish until delivered to a processor, or if they can carry large enough quantities to afford the frequent trips to processing plants, barring the use of tenders or floating processors.

The fish processing lines in the processing plants nay be the best prepared for event ual grouth of the fishery. European countries have shown great interest in supplying the necessary equi pnent for high volume processing of groundfish. Though very few plants are actually equi pped for groundfish processing, a potential exists for quickly gearing up and utilizing proven expertise.

As groundfish are usually caught and processed in great vol une, machi nes have been devel oped to assist in triming off waste parts of the
carcass and renoving the viscera. The success of these machines is often dependent upon having fish of very consistent size. Perfection of this type of machine is desired by al nost every finfish processing industry, with probably the nost successful to date being the I ron Chi nk of the sal non processing industry.

Regul ation.
For 211 practical purposes, the $\mathbf{A}$ askan groundfish fishery has been nearly unregul ated, from a donestic point of view Al nost all areas are open to fishing year-round, with the gear to be used left to the fishernen's di scretion. Lack of regulation by State of $\mathbf{A}$ aska authorities has been due to al nost negligible participation in the fishery by Alaskan fishermen.

With the growing interest in $\mathbf{A}$ aska groundfish, the Department of Fish and Gane has decl ared that some areas are closed to groundfish harvesting with certain gear, during specified periods. This serves nore to protect other fisheries at selected times than to manage groundfish stocks.

## Other Governmental Policy.

Enact ment of the Fi sheries Conservation and Managenent Act of 1976 (FCMA) was the prime instigator of the surging interest in Alaska's groundfish. The FCMA extended United States managenent of comercial fish species to 200 miles ( 322 km ) from the coastline. The expectation of many donestic fishernen was that foreign fleets fishing within the extended zone nould be forced to . leave imedi ately. To many people's surprise this did not occur. Rather, the act provided for donestic fishernen to be given preferential treat ment in quota allotments when they possess the capability of harvesting such an allotnent and intend to do so. The FCMA allows foreign participation when-
ever donestic catch effort is not sufficient within any fishery to utilize that which is available for harvest as determined by U.S. regul atory agencies. Ei ght regi onal councils were created to carry out objecti ves of the fishery managenent program Al aska is included in the $\mathbf{j}$ urisdiction of the North Pacific Fisheries Managenent Council. Many problens have been encountered concerning the 200-mile limit and fisheries managenent since 1976. There are clains that the councils do not provide preferential treatment to donestic fishermen when demand for certain fish exceeds quotas, and that the quotas are often based on insufficient information. Policy deci sions having international impact have sonetines becone very complex, as the U.S. Department of Comerce maintains ultimate authority over the regi onal councils. Presently, maj or attention concerning Al askan fisheries is focused on whether forei gn processor shi ps should be licensed to purchase Anerican caught groundfish and how this should be applied to quotas. A definite long-termpolicy on this natter has yet to be devel oped, as the final pol icy decision and subsequent regul ations could have naj or influence on devel opnent of the groundfish industry for years to cone.

## Conflicts With Oiher Fisheries and Other Comercial Vessel s.

The principle conflict with other comercial fisheries, other than that caused by competition for limited space in small boat harbors, is with the hal ibut fishery. Incidental catch of immature halibut is the source of the conflict. The problem can be, and to some extent has been, reduced by avoi ding areas of high concentrations of $\mathbf{j u v e n i l e ~ h a l ~ i b u t . ~}$

Devel opment and Market Structure
Although they are different species of crab, the Anerican king crab and Tanner crab (often called snow crab) fisheries have devel oped in much the same nanner. Both species al so undergo similar processing and follow almost identical marketing channels, although the final products are not necessarily interchangeable in filling specific denands of consuners. Therefore, emphasis placed on any activity necessary to nove the crab fromits natural habitat to the final consumer nay rely on many variables, such as rel ative abundance of the two species, and consumer preference for a particular product form or species.

The Japanese pi oneered both the king and Tanner crab fisheries in the seas boundi ng Al aska. J apan started taking king crab in 1930, with an initial catch of 450 Mr (one million pounds), using one mothership operation. The fishery quickly peaked in 1933, with over 9, $000 \mathrm{Mr}(20 \mathrm{million}$ pounds) of crab bei ng caught by the Japanese. The catch decreased steadily through 1939, with World War II impending. The fishery was maintained at minal level s throughout the war. From 1947 through 1954, U.S. traw ers harvested no nore than $\mathbf{2 5 0 , 0 0 0} \mathbf{k i n g}$ crab annually. The Japanese returned to the Eastern Bering Sea king crab fishery in 1953; and Anerican effort and catch level ed of $f$ and then decreased, remaining at a negligibe level from 1957 until the early 1960s, when U.S. fishernen returned north of Unimak Island in the pot fi shery.

In 1959, after intermittent past invol venent, Russia recentered the king crab fishery in the sane areas as the Japanese fished. The two countries competed fiercely until their Iandings peaked in 1964. In 1965 and 1966 J apan noved to other areas because of gear loss and conflicts with the Sovi ets.

The United States entered into bilateral agreenents with both Japan and Russia, setting king crab quotas for 1965 and 1966. Thei $r$ quotas were adj usted downward every two years to allow the U.S. king crab fishery to expand. Figure 3.\& graphically illustrates the effect on the U.S. fishery of the quotas for Japanese and Russian catch.

The U.S. traw fishery in the Eastern Bering Sea had contributed most of the total Anerican king crab catch until 1953. However, the fishery around Kodi ak had been growing and becane the maj or king crab area after 1954. The regi onal catch statistics tend to indicate Kodiak's rise to prominence was earlier; however, other areas such as Cook Inlet were contributing heavily prior to 1954. The vessel sinvol ved in crabbing were growing both in numbers and size, and often had circulating sea water tanks which greatly increased the di stances they could venture. The catching capability of the fleet qui ckly outgrew the capacity of the Kodiak processors.

In March of 1964, a tidal wave following an earthquake destroyed three of the four canneries that processed crab, and many of the crab boats. But, by April, 1965, four new canneries with larger capacities were operating, and many new repl acenent vessel s were arriving. The years 1965, 1966, and 1967, were the nost productive ever for the king crab fishery, for Kodi ak and the entire state of $\mathbf{A}$ aska (Table 3.2 Z ).

As with king crab, the Japanese were first to harvest tanner crab in the Eastern Bering Sea. They experi nented with tanner crab from 1953 to 1964, and started increasing their efforts imediatel $y$ when the United States implement quot as decreasing the king crab harvest. J apan caught 1. 03 mili on tanner crab in 1965, and increased this to $\mathbf{1 8 . 2} \mathbf{~ m i l i o n i n}$ 1970. The U. S. incl uded tanner crab quot as in the bilateral agreements with Japan and the U.S.S.R. starting in 1971. The Russi ans had al so

## 

king canb catch by foreign \& domestic fleets


SOURCE: Orth et al., 1978, Preliminary Draft


YEAR	$\begin{gathered} \text { S.E: } \\ \text { ALASKA } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CENTRAI } \\ & \text { AIASKA } \end{aligned}$	WESTERN   AIASKA	TOTAL
1941	17,472	32, 760	--	50, 232
1942	4,912	70, 352	--	75,264
1943	13,468	31.228	--	44, 696
1944	13,648	1,560	--	15,208
1945				
1946	13, 400	9, 200	--	22,600
1947	17, 550	521	734, 597	752, 568
1948			2,133,354	2, 133, 354
1949	-		1, 206, 945	1, 206, 945
1950		64, 882	1, 454, 367	1, 519, 249
1951		202, 281	1, 791, 631	1,993,912
1952		779, 611	1, 993, 222	2, 772, 833
3.953		2, 614, 277	1, 998, 932	4, 613, 209
1954	- -	6, 356, 827	2, 514, 243	8, 871, 070
, -1955		5, 951, 120	2,211,300	8, 162, 920
1956		6, 899, 795	1, 896, 227	8, 796, 022
1957		12, 488, 131	1, 588, 434	13, 076, 565
1958		11,211,554		11, 211, 554
1959		18, 839, 470		18, 833, 47 S
1960	3, 424	27, 878, 630	687, 962	28, 570, 016
1961	429, 600	38, 854, 800	4, 127, 200	43, 411, 600
1962	1, 289, 550	44,652,990	6, 839, 580	52, 782, 120
1963	1,112,200	50, 786, 570	26, 841, 470	78, 740, 240
1964	820, 530	51, 638, 590	34,261,550	86, 720, 670
1965	579, 300	94, 505, 762	36, 585, 630	131, 670, 712
1966	105, 899	117, 305, 088	41,790,708	159, 201, 595
1967	599, 078	83, 010, 695	44,106,117	1. 27, 715, 390
1968	2, 199, 772	37, 559, 518	42, 278, 206	82,037,436
1969	1,395,168	20, 274, 859	35, 539, 781	57, 729, 803
1970	577, 802	19, 587, 102	31, 896, 126	52, 061, 030
1971	571, 062	20, 220, 631	49, 911, 412	70, 703, 105
1972	952, 602	24,722,072	48, 751, 982	74,426,656
1973	874,180	23, 610, 989	52, 338, 934	76, 824, 103
1974	583, 294	32, 121, 859	62, 508, 643	95, 213, 796
1975	436, 478	29, 667, 311	67, 525, 144	97, 628, 933
1976	398, 463	23, 318, 393	82,108,140	105, 824, 995
1977	312, 355	16, 084, 094	83, 032, 208	- 29, 448, 657

Source: U. S. Department of the Interior, Fish and Wildife Service, Fishery StatisticsoEtheu.s.,Statistical Digest No's. 1-51, (1941-1959) ; and, ADF\&G Commercial
Fi sheri es Catch and Production Statistics 1960-75, ADF\&G Shelliist Catch Report (preliminary data) 1976-77.
shifted nore emphasis to Tanner crab as the king crab quot as decreased, but left the Tanner crab fishery entirely after ?971.

The first si gnificant Tanner crab catch by the U.S. was in 1968. The fishery becane attractive as king crab catches declined, and gai ned further importance as a source of supplemental income when king crab seasons were cl osed. Aneri can Tanner crab catch increased through 1977, except for the strike year of 1975, and in 1977 Tanner crab nearly equal ed king crab in wei ght caught. In 1975 many fishernen opted to refrain fromfishing until they had complet negotiations with processors to establish minimprices. As with king crab, the Anerican catch increased with the implenentation of quotas for Japan and Russia (Figure $\mathrm{Q}^{2}$ ). Tanner crab will surpass king crab in wei ght caught for al? of Alaska in 1978, if the expected increase in Bering Sea Tanner crab landings is realized.

The Al aska crab fisheries have gradually been shifting uestward for . some time, which can be observed in catch Table $\begin{array}{ll} \\ \approx\end{array}$ Table 2. 28 for ki ng crab. This trend may indicate serious economic impact on Kodiak as nore facilities are becoming available west of Kodiak to accomnodate the Bering Sea harvest. In 1967 the Kodiak area produced 93.8 percent of the total Al aska Tanner crab, while in 1977 it produced only 21.1 percent of the state total, The trend has been similar for king crab.

Though king crab and Tanner crab have generally energed as differentiated products with certain denands for each, the processing and marketing channel s of both are al nost identical. Alaska king crabis the nost widely recogni zed of the three $A \operatorname{ll}$ askan crab species comercial'ly harvested, and brings the highest price. An attempt was made at one tine to market Tanner crab under the name "queen" crab, but an FDA ruling was issued prohi biting the implied similarity to king crab. Thereafter, Tanner crab has commonly been marketed as snow crab.

$$
2.4
$$

FIGRE Ti, 9
taner craí catch by foreign \& damestic fleets 11965-1977)


YEAR	$\begin{gathered} \text { SOUTH- } \\ \text { EAST } \end{gathered}$	$\begin{gathered} \text { P.W. } \\ \text { SOUND } \end{gathered}$	COOK   INLET	KODIAK	CHIGNIK	$s$. PENINSULA	EAST   ALEUTI	WEST ANS (Adak)	$\begin{gathered} \text { BERING } \\ \text { SEA } \end{gathered}$	$\begin{gathered} \text { ALL } \\ \text { ALASKA } \end{gathered}$
1977	3,373.4	2,894.8	5,655.4	20,720.1	5,616.4	6,891.0	1,301.7		'51,876.2	98,329.0
1976	3,885.5	6,000.4	6,031.5	23,446.2	11,169.6	7,240.9	534.3	62.2	22,341.5	80,712.1
1975	3, 032.2	5, 016.7	4, 952.4	17, 506. 3	3, 756. 6	5, 483, 9	77. 2	3. 3	7, 028.4	46, 857. 0
1. 974	3, 087.5	9, 597.8	7,660. 9	25, 474. 5	4, 087.6	8, 384. 2	498.8	70. 5	5, 044. 2	63, 906. 0
1973	1, 893. 0	12, 296.8	8, 509. 1	31, 519. 9	918. 1	5, 652. 8	59.0	168. 5	301. 8	61, 319.0
197.2	790.1	8, 550. 7	4, 807.8	11, 906.6	26.5	3, 938. 1	3. 9		111.7	30, 135. 4
1971	251. 1	642.3	2, 116. 8	7,410.8	152. 3	2, 140. 8			166. 0	12, 880. 1
1970	583.2	1, 292.4	1, 328. 7	7, 708. 1	2. 8	2, 093.6			1, 464.4	14, 473. 2
1969	267.4	936.5	1, 479. 7	6, 822. 7	38. 1	606.3	21. 0	2. 2	1,033. 2	11, 207. 1
1968	109. 3	245. 2	165. 1	2, 561. 0	21. 5	110. 6	12. 8	1	18. 1	3, 243. 6
1967	2.7			111.1	1.6	3.0				118.4

\$OURCE : ADF\&G STATISTICAL LEAFLETS 1960-1975; 1976-3.977 PRELIMINARY DATA

Whole crabs are rarely marketed except through small local markets within Al aska. Whole crabs are toolarge and bul ky to shipeconomically. Sections, consisting of the natural ratio of four legs and one claw are the nost common product of initial processing at Alaska plants, as they are less labor intensi ve than other product forns. This expedites transport out of oftentines overcrouded Al aska cold storage facilities, and hel ps lessen the need for expensive, and sonetimes unavailable, Al askan labor. The sections leave the plants in brine frozen bulk packages, usually wei ghing 34 to 68 kg ( 75 to 150 pounds).

Frozen neat is the second nost common crab product from Al aska processing plants. The extracted neats are frozen into blocks often wei ghi ng around 6.8 kg ( 15 pounds), and shi pped to the lower states.

Al askan crab for donestic use is usually shipped to Seattle or other nearby cities for reprocessing and further di stribution. Firns may own plants in both Al aska and the Seattle area, or have the reprocessing perforned on a custom basis. Reprocessing usually consi sts ' of extracting neat from the sections for freezing or less often for canning, or of portioning the bulk frozen blocks into $2.3 \mathbf{k g}$ (five-pound) bl ocks which are then packaged six to a contai ner. Canning, whether perforned in Al aska or another location, is becoming less popular. The expenses associated with canning coupl ed to the increasing price of raw, crab are resulting $n$ a final product of such high price that it neets consumer resistance Packages of crab claws only are marketed too, but as with whole crab, they are considered a specialty item and are a snall sector of the entire crab products narket. There has been a nove away from whole crab and extracted neats, and an increasing tendency to produce crab sections in Al askan processing plants. It must be stressed that much of the Alaskan product undergoes reprocessing, and Alaska out put is
not necessarily representative of the product mix that reaches the final consumer.

Seattle serves as a trans-shi pment point for nost Al askan crab that is exported, with the remai nder being exported di rectly from Al aska. Crab that is exported usually remains in bulk portions for reprocessing . after arriving at the foreign destination. As Japan's fishing fleets have cone under increasing regul ation and its catch quotas have been I owered, its imports of crab from Al aska have increased si gnificantly. J apan's imports of Al askan crab have risen from al nost negligibelevel s in the late 1960s, to vol unes making Japan the Iargest buyer through the mid and I ate 1970s (Tables and $\mathrm{S}, \mathrm{Z}$ ).

King crab and Tanner crab usually follow the same narketing channel s (Figures Seattle area. This location serves as the direct distribution point for . the northwestern United States. Product destined for other areas is shi pped to the maj or di stribution centers for storage in facilities
 the anounts of various products passing through these centers are not readily available. However, in 1965, over half of the Al aska king crab marketed in the U.S. was sold on the east coast (Youde \& Wix, 1967). Local whol esal ers are the pri nary buyers from the di stribution centers, with brokers serving as the internediaries. The naj or buyers from whol esal ers are institutional markets, including restaurants, and retail food stores, with institutional buyers dominating the market.

```
 TABLE こ.こ 心
 UNITED STATES EXPORTS OF PREPARED OR PRESERVED
 AND FROZEN KING CRAB, 1968 - }197
```

Year
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977

Prepared or Preserved ${ }^{\text {² }}$ $\qquad$	$\begin{aligned} & \text { Frozen } \\ & \mathbf{( 0 0 0 ' s )} \\ & \hline \end{aligned}$
171.8	847.3
50.8	496． 2
199． 7	479.6
40.5	522.8
20.6	1，326． 9
1，524． 2	4，729． 9
706． 9	2，532． 4
446． 0	2， 712.0
370． 1	4， 398.5
268． 0	10，182． 3

SOURCE ：United States Bureau of Census FT 410 Schedule B． Commodity by Country， 1968 － 1977.
－I Includes canned king crab．

TABLE E． B
UNITED STATES EXPORTS OF FROZEN TANNER CRAB TO JAPAN， 1970 － 1976

Year
1970
1971
1972
1973
1974
1975
1976

Thousands of Pounds
63． 3
68.9
51.0

11，835． 3
，7，353． 7
3， 421.9
8，183． 8

SOURCE ：Orth，et al．，1978，Preliminary Draft．


1

SOURCE : Orth et al., 1978, Preliminary Draft
Figure 2.15
-


```
`- SOURCE : Orth et al., 1978, Preliminary Draft
```

> Figure "こ.

1
Major Centers of Distribution: Los Ans
Denver, Minneapolis , Chicago, Philadent
New York, Boston.

SOURCE : Orth et al., 1978, Preliminary Draft

Figure

Catch and Prices
The king crab fishery is anong the nost important commercial fisheries in Alaska in terns of both wei ght and value of catch. Between 1961 and 1977, the annual catch ranged from $19,700 \mathrm{Mr}$ to $72,200 \mathrm{Mr}(43.4 \mathrm{mili}$ on pounds to 159. 2 milion pounds), and accounted for between 31 percent and 84 percent of the $\mathbf{A}$ askan shelfish catch and between 9 percent and 34 percent of the Al aska catch of both finfish and shelfish (Table $\Sigma_{i}$ ). The val ue of the annual catch for 1961 through 1975 ranged from $\$ 3.9 \mathrm{milli}$ on to $\$ 44.7 \mathrm{milli}$ on and accounted for bet ween 59 percent and 89 percent of the val ue of all Al askan shel Ifish and between 7 percent and 29 percent of val ue of the total Al askan catch.

After rapid increases bet ween 1961 and 1966, and then decreases from 1967 through 1970, the annual king crab catch in Al aska began to increase agai $n$, but by 1977 the catch was still only 62 percent of the record catch of 1966. Due to increases $n$ the ex-vessel price of $\mathbf{k i n g} \mathbf{c r a b}$, the val ue of the catch has tended to ncrease. Bet ween 1967 and 1975, there were six years in which the val ue of catch exceeded that of 1966. Despite both the increases in the price of king crab and the recent increases in catch, the dominance of $\mathbf{k i n g}$ crab in the $\mathbf{A l}$ askan shellfish fisheries is decreasing in terns of catch and val ue of. catch.

## Production

King crab products have been the largest single component of shellfish processing in Al aska. From 1966 through 1975, annual king crab production

TABLE K. Su
THE ALASKAN KI NG CRAB FI SFERY IN PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \left(\text { in } 000^{\prime} \mathrm{s}\right) \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SHELLFISH CATCH		PERCENTAGE OF TOTAL SHELLFISH AND FINFISH CATCH	
	POUND	VALUE		VALUE	POUNDS	VALUE	POUND
1961	43,412	\$3, 914	\$0. 09	76. 5	66.8	7.2	10.1
1962	52, 782	5, 278	0.10	74.4	66.4	7.7	11.8
1963	78, 740	7, 607	0. 10	79.1	74.0	14.1	19.1
1964	86, 721	8, 186	0.09	82.0	80.8	12.8	16. 9
1965	131, 671	12, 729	0.10	87.7	83.6	15.7	25.9
1966	159, 202	15, 670	0.10	89.2	82.7	17.4	26.7
1967	127, 723	14, 970	0.12	82.2	70.4	27.5	33.9
1968	81, 905	21, 816	0.27	78.4	57.6	24.9	17.3
1969	57, 730	15, 644	0.27	71.5	44.4'	18.8	14.2
1970	52, 061	13,190	0.25	64.3	34.2	12.4	9. 5
1971	70, 703	19, 077	0.27	73.3	38.5	20.9	14.7
1972	74, 427	20, 519	0.28	63. 8	38.1	20. 7	17.2
1973	76, 824	44, 702	0.58	64.2	28.8	29. 2	16.6
1974	95, 214	39, 154	0.41	59.3	34, 9	26. 3	20.7
1975	97, 629	38, 251	0. 39	69.0	39.5	28.9	22.2
1976	105, 825				33.3		18.2
1977	99,449				31.5		15.7
1978							
Average:	87, 765	18, 714					
Source:	ADF\&G Statistical Leaflets for various years,						

averaged 11, 500 MT ( 25.4 milli on pounds), ranged between 5, 810 MT ( 12.8 miliion pounds) in 1959 and 20, 900 Mr (46. 1 milion pounds) in 1966, and on the average accounted for 11.0 percent of the total Al askan processing
 decrease, there has been a substantial decrease in the production of other than fresh or frozen products. The product mix of fresh or frozen products is summarized in Table.

TABLE R.:
King Crab Production in Al aska
By Type of Processing and in Perspective

YEAR	$\begin{array}{r} \quad \text { Nunt } \\ \hline \text { CANED } \\ \text { PRODUCTS } \end{array}$	or of Pl ants FRESH \& FROZEN PRODUCTS	TOTAL $\begin{aligned} & \text { PRODUCTI ON } \\ & (000 \text { s } 1 \mathrm{bs} .) \\ & \hline \end{aligned}$	FRESH \& FROZEN   PRODUCT ON   $(000$ s lbs.)	CANED N \& OTHER PRODUCTI ON (000's lbs.)	PERCENTAGE FRESH \& FROZEN	$\begin{gathered} \text { PERCENTAGE } \\ \text { CANNED } \\ \text { \& (ITHER } \\ \hline \end{gathered}$	PERCENTAGE OF ALASKAN PRODUCTI ON OF ALL FISH
1966	10	35	46, 068	37, 372	8,696	81.1	18.9	14.6
1967	14	38	29,888	22, 088	7,800	73.9	26.1	16.9
1968	12	43	19,344	17,507	1,837	90.5	9.5	8.0
1969	13	40	12, 823	11, 468	1, 355	89.4	10.6	6.8
1970	13	30	14,842	13, 753	1,089	92.7	7.3	5.2
1971	5	35	17, 146	16, 173	973	94.3	5.7	7.2
1972	5	43	19, 794	18, 768	1, 026	94.8	5. 2	9.8
1973	4	61	28, 588	27, 642	946	96.7	3. 3	12.8
1974	4	47	25,508	24, 697	811	96.8	3.2	10.3
1975	3	49	40, 350	39, 276	1,074	97.3	2.7	18.6
? $197 f j$								
i : 1977								
$\begin{aligned} & \text { Avera } \\ & \text { ( } 1966 \end{aligned}$	$\begin{aligned} & \text { ane } \\ & 6-1970) \end{aligned}$		24,593	20,438	4, 155	85.5	14.5	10. 3
Avera ( 1966	age 6-1975)		25,435	22, 874	2,561	90.8	9.2	11. 0

Source: Al aska Department of Fi sh and Game, Catch and Production Report Leaflets, 1966-1975.

TABLE R
Fresh and Frozen King Crab Production In Al aska by Product Type 1966-1975

YEAR	$\begin{gathered} \text { TOTAL } \\ \text { PRODUCTI ON } \\ (000 \text { s lbs . ) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WHOLE } \\ (000 \text { s lbs. ) } \\ \hline \end{gathered}$	$\begin{gathered} \text { SECTI ONS } \\ \left(000^{\prime} \text { s lbs. }\right) \end{gathered}$	MEAT $\left(000^{\prime} \mathrm{s} \text { lbs. }\right)$	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { WHOLE } \end{aligned}$	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { SECTI ONS } \end{aligned}$	$\begin{gathered} \text { PERCENTAGE } \\ \text { MEAT } \\ \hline \end{gathered}$
1966	37, 341	6, 534	5,593	25, 214	17.5	15. 0	67.5
1967	22, 087	2, 710	2, 439	16, 938	12. 3	11. 0	76. 7
1968	17, 506	5, 879	3, 644	7,983	33.6	20.8	45. 6
1969	11, 467	1, 102	1, 094	9, 271	9.6	9. 5	80. 8
1970	13, 753	1, 651	5, 061	7, 041	12. 0	36. 8	51.2
1971	16, 174	24	6, 266	9, 884	0.1	38. 7	61. 1
1972	18, 768	766	8199	9, 803	4. 1	43. 7	52. 2
1973	27, 635	576	18, 782	8, 277	2. 1	68. 0	30.0
1974 "	2' 43697	4, 035	10, 438	10, 224	16. 3	42.3	41.4
1975	39, 276	30, 488	4, 201	4, 587	77.6	10. 7	11. 7
1976							
Aver age( 1966-	-1970)						
	20,431	3,575	3,566	13, 289	17.0	18. 6	64.4
Aver age ( 1966-	-1975)						
	22,870	5,376	6,572	10,922	18. 5	29.7	51. 8

Source: Al aska Departnent of Fish and Gane, Catch and Production Statistical Leaflets, 1966-1975.

## Factor of Change

Harvesting Technol ogy
The primary harvesting methods of Al aska's three commercial crab species, king, Tanner, and Dungeness, have not changed greatly si nce the $\mathbf{A}$ askan crab fisheries began growing noticeably after World War ll. Pots are used almost. excl usi vel $y$ for the catching of all three species, al though ring nets and di ving gear are legal. Prior to 1954, traw gear, used nostly in the Bering Sea, accounted for a small but si gnificant portion of Alaska's king crab cat ch. Si nce that tine, trawing for crab has been abolished for donestic fishernen. In 1964 the same ban was implemented for foreign fleets who were issued quotas for the anount of crab they could catch within Anerican regulated areas.

The pots used by the three crab fisheries are quite similar in construction, with nodifications appropriate to the target specie. King crab . pots are normally the largest, about $2.1 \mathrm{mby} 2.1 \mathrm{mby} 76 \mathrm{~m}(7 \mathrm{feet}$ by 7 feet by 2 1/2 feet), with Tanner crab pots being scal ed down replicas or pyramidal in shape. Dungeness pots are the smallest, and usually round rather than square. The basic design of pots has changed little. However, it is not uncomon for indi vidual fishernen to experinent with nodifications to the openi ngs, and use "odd-shaped" pots.

The hydraulic pot hauler has nade crabbing safer, as well as easing the manual work load. This device is capable of adj usting for changing stress on the pot line, decreasing the chance of snapping the line and losing the pot. The pot hauler has been inval uable in the fisheries for Tanner and king crab, which brave possibly the norld's nost adverse fishing conditions during winter in the Bering Sea.

The crab vessel s thensel ves have undergone the nost drastic changes within the fisheries. King and Tanner crab are harvested primarily during
wi nter months, when seas are roughest and icing conditions are common. As these fisheries expanded into the Bering Sea, even nore severe weather was to be dealt with. The original crabbing vessel s were converted seiners, hal $\mathbf{i}$ but schooners, and al nost any other type of yessel inagi nable. Good prices for king crab soon encouraged the construction of a nodern fleet of $27 \mathrm{~m}(90$ foot) and larger vessel s, designed for great stability and hauling capacity. The fleet grew swiftly during the late 1960s, with new vessel s still arriving on a steady basis.

Besi des the adequate size of new vessel s, they are equi pped with sophi sticated navi gational gear and refrigeration systens. Loran A and C are navi gational systens based on determining one's position at sea by the use of transmissions from specific points. Crab vessel operators claim accuracy to within $91.4 \mathrm{~m}(100$ yards) of their desired destination point, making the once tedi ous task of locating crab pot buoys less time consuming. The large vessel s al so have fish hol ds with refrigerated sea water circul ation systens for hol ding the crab alive. Many fishing grounds would be inaccessible due to travel time if the circulating systens were not utilized, as dead crab cannot be accepted by processors, and the crab will perish if their water is not changed about every twenty minutes.

Most of the newer crab vessel s have been desi gned for rapid conversion to other fisheries and gear, the nost common being trawing gear for groundfishing. Due to the huge catching capacity of the crab fleet, it is becoming imperative that such large vessels be versatile enough to enter other fisheries.

## Production Technol ogy

Present crab processing is very similar to that of twenty years ago.
The Japanese had devel oped consi derable expertise at crab preservation prior
to World Var II, but were not generous in sharing their know edge as the Anerican crab fisheries devel oped following the war. However, by 1955, Aneri can methods had advanced rapidly and U.S. packs of crab, both frozen and canned, were supposedly superior in quality of Japan's. Anericans froze the maj ority of the catch during the first years of the fisheries, because it was the only nethod capable of providing quick enough processing to avoid loss of quality. Canning methods were improved and became nore preval ent during the 1960s. Canning declined significantly during the past ten years or so as freezing becane nore common in the preservation of al nost all fish species.

## Regul ation

Al aska's crab fisheries, though decades old by 1960, were never subjected to massi ve overfishing before the State of $\mathbf{A}$ aska assumed regul atory control of the fisheries. Thus, the opportunity to proceed cautiously with their devel opnent was utilized, resulting in king and Tanner crab fisheries that have avoi ded the "boom or bust" situation characterizing many fisheries. Due to Dungeness crab competition fromsouthern Pacific states, Alaska's Dungeness fishery has been less steady, attracting effort as prices rose or as a secondary fishery for vessel s temporarily out of work. However, minimal regul ation of the Dungeness fishery has been necessary due to the rel ative lack of interest.

Crab, as with shrimp, have proven a difficult species to properly nanage. The population often increases or decreases for yet unknown reasons in unfished areas as well as in fishing grounds. This occurrence has been sonewhat responsible for decreased catches in areas that have recei ved adequate fishing constraint.

Crab fishing regul ations specify type of gear, anount of gear, open seasons, anti sex and size of legal crabs. Only nale crabs can be harvested, with min mumses specified for each spec es during certain tines of the year. Until 1971 the Tanner and king crab fisheries were nearly unregulated. In 1971 for the first time, specific seasons and quotas were established. Catch data reveal ed that a significant decrease of king crab in the Kodiak area was occurring at the tine. The naj or effects of lower king crab catches and stricter regulation in the Kodiak area was expansion of the fishery westward and di versification into Tanner crab.

As effort increased in the Tanner and king crab fisheries and new crab areas were devel oped, the Depart nent of Fi sh and Gane implenent ed appropriate seasons and quotas to mai ntain adequate stocks. In recent years, the Bering Sea and western Aleutian area have becone the nost important crabbing area in A aska, and even these renote areas are subject to catch quotas and season cl osures.

Oher Governnental Policy.
Until the early 1970s, the Russi an and Japanese fishing fleets harvested significant anounts of $k i n g$ and Tanner crab from $A$ askan waters. As the Anerican crab fisheries rapidly devel oped the capacity to harvest available stocks, the federal governnent negot ated agreenents with Japan and Russia, establishing quotas for each country that would decrease annually. (This situation is covered in nore detail $n$ the narket structure section for Tanner and king crab.)

Conflicts WIth Other Fisheries and Other Comercial Vessel s.
In addition to the conflict caused by competition for space in crouded small boat harbors, conflicts arise with other fisheries and, in
particular, non-fishing commercial vessel s due to the nature of crab fishery gear. Pots are lowered to the ocean floor and then left, their location being narked by a float. If the float is torn loose fromthe pot by the gear or hull of other ships the pot cannot be recovered. The Coast Guard has tried to reduce such losses due to non-fishing commercial vessels by establ ishing well def ined shi pping I anes.

A conflict exists between the halibut and king crab fishery due to occasional incidental catch of imature halibut in crab pots.

## TANNER CRAB

## Devel opment and Market Structure

The devel opnent of the Tanner crab fishery is di scussed in the king crab sub-chapter. .

## Statistics

Catch and Prices.
The Tanner (snow) crab fishery has grown from an incidental catch fishery in 1961 to a dominant shellfish fishery, with an annual catch approaching that of king crab in 1977 and expected to surpass it in 1978 (Table 25 ). Between 1961 and 1977, the annual catch ranged fromzero in 1963 and 1965 to 44, 600 MP ( 98.3 mili on pounds) in 1977, and accounted for between none and 31 percent of the total shelfish catch. The catch and its importance in the total shelfish fishery increased annually in all but two years between 1966 and 1977 Generally stable or increasing prices resulted in a silarly steady ncrease in the val ue of catch. Between 1961 and 1975, the value of the annual Tanner crab catch ranged from $\$ 0$ in the years for which no landings were recorded to \$?3.1 milion in " 974 and accounted for up to 19.8 percent of the val ue of the total shellf' sh catch.

Production.
Tanner crab production has becone increasingly important and nay soon ri val king crab as the leadi ng shel lfish product, Bet ween 1966 and 1975 annual Tanner crab production averaged $3,490 \mathrm{MT}$ ( 7.7 million pounds) which is nore than six times the average for 1966-1970, ranged from less than 45.4 MT ( 0.1 mili on pounds) in 1968 to $10,600 \mathrm{Mr}(23.3 \mathrm{milion}$ pounds) in 1973, and

TABLE R. 3 C
THE ALASKAN TANER (SNOW CRAB FI SHERY IN PERSPECTI VE

	YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in } \mathbf{0 0 0} \text { s) } \end{gathered}$			PRI CE (\$'s per pound)		PERCENTAGE OF TOTAL SFELLFISH CATCH		PERCENTAGE OF TOTAL SHELLFISH AND FI NFISH CATCH	
		POUNDS	VALUE				VALUE	POUNDS	VALUE	POUNS
	1961	7	\$	0.7	\$	0. 10	0.01	0.01		
	1962	11		1.1		0. 10	0.02	0.01		
	1963									
	1964	13		1. 39		0. 10	0.01	0.01		
	1965									
	1966	0.2		0.01		0.05				
	1967	118		11.8		0.10	0.06	0.06	0.02	0.03
	1968	3,248		323. 6		0.10	1.2	2. 3	0.4	0.68
	1969	11,207		1,133		0. 10	5. 2	8. 6	1. 4	2.7
	1970	14, 473		1,417		0.10	6. 9	9.5	1. 3	2.6
$w$	1971	12, 880		1, 369		0.11	5. 3	7.0	1. 5	2.7
$\cdots$	1972	30, 135		3, 731		0. 12	11.6	15.4	3.8	7.0
9	1973	61, 719		10,756		0.17	15.4	23. 2	7.0	13.3
	1974	63, 906		13,052		0. 20	19.8	23.5	8.8	13. 9
	1975	46,857		7,019		0.15	12.7	19. 0	5. 3	10.6
	1976	80, 712						25.4		13.9
	1977	98, 329						31. 1		15. 5
	1978									
	Average	24,919	2, 588							
	Source:	ADF\&G Statistical Leaflets for various years.								

accounted for up to 10.2 percent of the total Al askan processing output (Table $\mathrm{Z} \cdots \mathrm{i}$ ). As with other fish, the percentage of total production consisting of fresh/frozen products has increased.

In addition to the change in product mix between fresh/frozen and other products, there has been a change in the product mix of fresh/frozen products: the production whole crab and sections has increased and that of neat has decreased, see Table ?..?-.

Factors of Change
Due to the similarit es between the factors of change for the Tanner crab and king crab fisher es, they are presented together in the king crab sub-chapter.

Conflicts with Other Fisheries and Other Comercial Vessel s
See the appropriate section in the king crab sub-chapter.

Tanner Crab Production in Al aska
By Type of Processing and in Perspective

YEAR	$\begin{aligned} & \text { Numb } \\ & \hline \text { CANNED } \\ & \text { PRODUCTS } \end{aligned}$	er of Plants FRESH \& FROZEN PRODUCTS	TOTAL PRODUCTI ON (000's lbs.)	FRESH \& FROZEN PRODUCTI ON (000's lbs.)	$\begin{gathered} \text { CANED } \\ \text { \& OIER } \\ \text { PROUCTI ON } \\ \left(000^{\prime} \text { ' } 1 \mathrm{bs} .\right) \end{gathered}$	PERCENTAGE FRESH \& FROZEN	PERCENTAGE   CANNED   \& OTHER	PERCENTAGE OF ALASKAN PRODUCTI ON OF ALL FISH
1966	--	--						
1967	--	--	43	38	5	88.4	11.6	0.0
1968	2	22	816	783	33	96.0	4.0	0.3
1969	10	20	2, 116	1,550	566	73.3	26.7	1. 1
1970	10	20	3,115	2, 286	829	73.4	26.6	1.1
1971	4	16	2, 324	15795	529	77.2	22.8	1. 0
1972	6	35	7,503	6, 808	695	90.7	9.3	3.7
1973	7	49	23, 301	22, 203	1, 098	95.3	4.7	10.2
1974	7	44	18,303	17, 255	1, 048	94.3	5.7	7.4
1975	6	33	19, 095	18, 390	705	96.3	3.7	8.8
1976 1977								
Avera (1966	$\begin{aligned} & \text { ge } \\ & -1970) \end{aligned}$		1,218	931	287	76.4	23.6	0.5
Avera ( 1966	$\begin{aligned} & \text { ge } \\ & -1975) \end{aligned}$		7, 662	7,111	551	92.8	7.2	3.4

Source: Alaska Department of Fish and Gane, Catch and Production Report Leaflets, 1966-1975.

TABLE R.E゚|

## Fresh and Frozen Tanner Crab Production In Al aska by Product Type 1966-1975

YEAR	$\begin{gathered} \text { TOTAL } \\ \text { PRODUCTI ON } \\ (000 \text { s lbs.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WHOLE } \\ (000 \text { s lbs. }) \\ \hline \end{gathered}$		$\begin{gathered} \text { SECTI ONS } \\ \left(000^{\prime} \text { s } 1 \mathrm{bs} .\right) \end{gathered}$	$\begin{gathered} \text { MEAT } \\ \left(000^{\text {'s }} \mathrm{lbs} .\right) \\ \hline \end{gathered}$	$\begin{array}{c}\text { PERCENTAGE } \\ \text { WHOLE }\end{array}$	PERCENTAGE   SECTI ONS	PERCENTACE MEAT
1966							-	
1967	38	'10		'27	1	26. 3	71.1	2.6
1968	783	269		377	137	34.4	48.1	17.5
1969	1, 550	988		38	524	63.7	2.5	33.8
1970	2, 286	2	1	1,099	1,166	0.9	48.1	51.0
1971	1, 794			691	1,092	0.6	38.5	60.9
1972	6, 808	1, 01		2, 831	2, 974	14.7	41.6	43.7
1973	22, 203	782		14,937	6, 484	3.5	67.3	29.2
1974	17, 255	1, 323		14, 025	1,907	7. 7	81.3	11.1
1975	18, 389	17, 100		1, 047	242	93.0	5.7	1. 3
1976								
Average (1966-1970)								
	931	258		308	366	27.6	33.1	39. 3
Average (1966-1975)								
	7, 111	2, 151		3,507	1,453	30.2	49. 3	20. 4

Source: Al aska Departnent of Fi sh and Gane, Catch and Production Statistical Leaflets, 1966-1975.

Dungeness crab plays a very min role in the Alaska crab fishery in comparison to Tanner or king crab, al though the fishery, concerning donestic harvesting, predates the other two. The Al aska Dungeness fishery was just reaching substantial size after Wbrld Whr II when the king crab fishery began trenendous grouth. Only 227 Mr (500, 000 pounds) of Dungeness crab was harvested in $\mathbf{A}$ aska in 1954, a considerable drop fromprevious years. Alaskd Dungeness catch data prior to 1954 was not available for comparison, but 227 M (500, 000 pounds) constituted only 1.8 percent of the tots" Anerican catch in 1954. This is mach lower than in any of the years for which com plete data were available, ranging from 8.8 percent to 552 percent (Table 2. 38).

Referring to Table $\mathbb{C}, 己$, it is easily seen that the Dungeness crab fishery comonly fluctuates. Catch levels do not dip as low as the 1954 harvest, but have recently been around only 1,360 M (three million pounds) per year after remaining nearly 4, 540 MT ( 10 milli on pounds) or nore per year during the late 1960s.

The effort di rected toward Dungeness crab varies greatly because of the Al aska fishery's dependence upon the well-being of the Dungeness fisheries of the I ower Pacific stales. Oregon, Whshington, and California al l harvest significant vol unes of Dungeness crab. Due to lower processing costs and an obvi ous locat onal advantage that reduces transportation expenses, processors can afford to pay nore for crab landed at processing plants located in the lower states than at Alaskan plants. The Oregon, Whshington, and California crab fishernen usually supply nearly all the Dungeness crab that processors care to purchase. However,

	U.S. AND ALASKA		DUNGENESS CRAB LANDINGS, 1961 - 1975.			
Year	```Total U.S. Catch (000)```	Alaska   Catch $(000)$	```Portion of Total Caught in Alaskal (%)```	\$ Value of Alaska Catch (000)	Price per of Alaska ( $غ$	Pound Catch ${ }^{1}$
1961	32,699	4,592	14.0	442	9.6	
1962	23,364	8,990	38.5	1,001	11.1	
1963	24,863	12,084	48.6	1,358	11.2	
1964	23,043	12,709	55.2	1,465	11.5	
1965	28,913	8,895	30.1	1,000	11.2	
1966	39,718	5,053	12.7	606	12.0	
1967	42,437	11,598	27.3	1,508	13.0	
1968	49,970	13,242	26.5	1,774	13.4	
1969	48,055	11,304	23.5	1,620	14.3	
1970	58,509	9,696	16.6	1,414	14.6	
1971	42,679	3,749	8.8	610	16.3	
1972		5,448		1,968	36.1	
1973		6,423		3,427	53.3	
1974		3,818		1,973	51.6	
1975		3,034		1,649	54.3	
SOURCE	Alaska Department of Fish and Game, Statistical Leaflet No. 28 NMFS,					

when the lower states' harvest falls short of neeting denand, processors start bidding the price up in order to obtain sufficient supplies. This in turn increases the prices offered in $\mathbf{A}$ aska and attracts fishermen into the fishery. The price offered in Alaska will still be lower, reflecting the transportation costs associated with noving the crab to the narket, usually Seattle.

Grouth of the king crab fishery had a doubly detrimental effect on the Al askan Dungeness crab fishery. Besides attracting a considerable anount of effort away from Dungeness crab fishing, king crab captured a significant portion of the narket that Dungeness crab had historically supplied, while expanding into new markets. This left the lower Dungeness crab fisheries to supply a dwindling denand.

The snaller Dungeness crab are commonly frozen and shipped whole from Al aska. This product formis impractical for the larger Tanner and king crab. Dungeness crab are al so portioned and frozen, or utilized for canni ng.

Dungeness crabis generally marketed through the same channel sas Tanner and king crab, and the narket structure section for those crab can be referred to for greater detail on the matter. Dungeness crab is normally not marketed as widel $\mathbf{y}$ as Tanner and ki ng crab , as the western United States accounts for the majority of sales. Also, due to being available whol e, Dungeness crab is sometimes able to supply a specialty narket not open to the I arger speci es of crab.

## Factors of Change.

The factors of change for all the crab fisheries are presented in the king crab sub-chapter,

## Conflicts With Other Fisheries and Other Comercial Vessels,

The conflicts of the Dungeness crab fishery and others are sonewhat similar to those of the other crab fisheries. Differences can arise, however, si nce the Dungeness crab fishery tends to operate cl oser to shore than do the other fisheries.

## Catch and Prices.

Unlike the king crab fishery, the dungeness crab fishery has not dominated the A askan shel Ifish fisheries. Bet ween 1961 and 1977, annual catch ranged from 544 MT ( 1.2 milli on pounds) in 1977 to 5, $990 \mathrm{MT}(13.2$ milion pounds) in 1968 and accounted for between 0.4 percent and 12 percent of the state's shelfish catch (Table 2al). From 1961 through 1975, the annual val ue of the Dungeness crab catch ranged from $\mathbf{\$ 0 . 4} \mathbf{~ m i l l i o n ~ i n ~}$ 1961 to $\$ 3.4$ milion in 1973 and accounted for between 2.3 percent and 14. 7 percent of the val ue of the $\mathbf{A}$ askan shel Ifish catch. Si nce 1968 the catch has tended to decrease, but due to al nost annual increases in the exvessel price of Dungeness crab, the value of the catch has fluctuated, but with no tendency to increase or decrease. The importance of the Dungeness crab rel ative to the tota? shellfish fishery has tended to decrease in, terns of catch and val ue of catch.

## Production.

Dungeness crab have becone less important in Alaskan processing in the past 10 years. Both the average annual production of Dungeness crab and the average percentage of $\mathbf{A l}$ askan production attributable to Dungeness crab production were higher for 1966-1970 than for 1966-1975, (Table. Bet ween 1966 and 1975 annual production averaged 1, 950 MT ( 4.3 mili on pounds), ranged froma low of 1, 090 MT ( 2.4 mili ion pounds) in 1971 to a high of $2,950 \mathrm{MT}(6.5 \mathrm{milli}$ on pounds) in 1967 and accounted for no nore than 3. 6 percent of total Al askan production of all fish. As with other fish, fresh/frozen products have increased their share of total production. The change in the product mix of fresh/frozen products is summarized in Table $\begin{gathered}\text {..... }\end{gathered}$


Source: ADF\&G Statistical Leaflets for various years.

## Dungeness Crab Production in Al aska

By Type of Processing and in Perspective

YEAR	$\begin{aligned} & \text { Numb } \\ & \text { ، CANNED } \\ & \text { PRODUCTS } \end{aligned}$	ber of PI ants   FRESH \& FROZEN PRODUCTS	$\begin{gathered} \text { TOTAL } \\ \text { PRODUCTI } \\ \left(0000^{\prime} \mathrm{s} \text { Ibs. }\right) \\ \hline \end{gathered}$	FRESH \& FROZEN PRODUCTI ON (000's 1bs.)	$\begin{gathered} \text { CANED } \\ \text { \& OTHER } \\ \text { PRODUCTI ON } \\ \left(000^{\prime} \mathrm{s} \text { lbs. }\right) \end{gathered}$	PERCENTAGE   FRESH \& FROZEN	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { CANED } \\ & \text { \& OTHER } \\ & \hline \end{aligned}$	Percentage OF ALASKAN PRODUCTI ON OF ALL FISH
1966	7	13	2, 614	2, 506	108	95.9	4.1	0.8
1967	6	17	6, 459	6, 216	243	96.2	3.8	3.6
1968	5	21	5,770	5, 267	503	91.3	8.7	2.4
1969	6	22	5, 215	5, 027	188	96.4	3.6	2. 8
1970	6	20	5, 252	5, 147	105	99.0	2.0	1.8
1971	6	25	2, 392	2, 346	46	98.1	1. 9	1.0
1972	2	27	3,719	3, 626	93	97.5	2.5	1.8
1973	3	34	$4{ }^{4} 487$	4, 468	19	99.6	0.4	2.0
1971	1	40	4, 257	4, 247	10	99.8	0.2	1.7
1975	0	27	2, 438	2, 438	0	100.0	0.0	1. 1
$\begin{array}{r} 1976 \\ 197 \end{array}$								
Aver   ( 196	age 6-1970)		5, 062	4,833	229	95.6	4.4	2. 3
Aver (196	$\begin{aligned} & \text { age } \\ & 6 \text {-1975) } \end{aligned}$		4,260	4,129	131	97.3	2.7	1. 9

Source: A aska Department of Fi sh and Gane, Catch and Production Report Leaflets, 1966-1975.

TABLE K. U
Fresh and Frozen Dungeness Crab Production
In Al aska by Product Type
1966-1975

YEAR	$\begin{gathered} \text { TOTAL } \\ \text { PRODUCTI ON } \\ \text { (000's lbs.) } \end{gathered}$	$\begin{gathered} \text { WHOLE } \\ (000 \text { s lbs. }) \end{gathered}$	$\begin{gathered} \text { SECTI ONS } \\ (000 \text { s lbs.) } \end{gathered}$	$\begin{gathered} \text { MEAT "، } \\ (000 \text { 's lbs. }) \\ \hline \end{gathered}$	PERCENTAGE WHOLE	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { SECTI ONS } \\ & \hline \end{aligned}$	$\begin{gathered} \text { PERCENTAGE } \\ \text { MEAT } \\ \hline \end{gathered}$
1966	2, 505	135	$1>443$	927	5. 4	57.6	37.0
1967	6, 216	2, 073	3>777	366	33.3	60.8	5. 9
1968	5, 268	807	2,998	1,463	15. 3	56.9	27.8
1969	5, 027	2, 705	2, 243	1, 79	53.8	44.6	1. 6
1970	5, 147	2, 584	2, 406	157	50.2	46.7	3. 1
1971	2, 345	1, 281	948	116	54.6	40.4	4. 9
1972	3, 625	2, 619	958	48	72.2	26.4	1. 3
1973	4,468	2, 653	1,334	481	59.4	29.9	10.8
1974	4, 246	2,081	1,458	707	49.0	34.3	16.7
1975	4,876	2, 190	248	2,438	44.9	5.1	50.0
1976							
1977							

Average
(1966-1970)

4,832	1,661	2573	598	31.6	53.3	15.1

Average
(1966 - 1975)
4372
1,913
1, 781
678
43. 8
40.3
15.9

Source: Alaska Departnent of Fish and Gane, Catch and Production Statistical Leaflets, 1966-1975.

A aska's first shrimp processing plant was located on Thomas Bay, north of Petersburg. It became operational in 1915, and was joined by three additional plants in southeast Al aska by 1921. Al askan shrimp were taken al nost excl usi vel $y$ by beam traw at the time, with 74.4 M (164, 000 pounds) being caught in 1916. The southeast $A$ aska catch increased to 998 MT ( 2.2 milion pounds) in 1921, and fluctuated between 771 and 2, 490 M (1.7 and 5.5 mil 1 ion pounds) through 1956. Southeast Al aska's shrimp
 less than 454 M (one million pounds) per year since 1970.

Shrimp processing had al ways been very labor intensi ve due to hand picking (renoving the shrimp from their shells), and until 1957 a shortage of hand I aborers had sl owed grouth of the fishery. In 1957, a nechani cal peel er was used in Wrangell, and by 1958 several peel ers were operating in Kodiak. The advent of the nechani cal peel er greatly increased shrimp. processing capacity by renoving the constraints created by labor force size. As a result of the increased processing capability, rich shrimp grounds around Kodi ak were the subject of increased fishing effort, and after 1958 the Kodiak area devel oped into Al aska's maj or shrimp producer. Kodiak's shrimp catch peaked at 37, 300 M ( 82.2 million pounds) in 1971, and accounted for over 80 percent of the total Al askan catch from 1965 to 1972. After 1971 shrimp catch quot as were inplenented wh ch slowed the grouth of Kodi ak catches. Regul ations in the Kodiak area, a ong with a growing narket for the shrimp, prompted increased fishing activity al ong the southern Alaska Peninsula, especially the Chignik area. In recent years effort in this expanding westward area has resulted in catches of over double that of the Kodiak area. The processing capacity in the newer fishing areas has grown to accommodate the large harvests.

Japan and Russia have participated in the $\mathbf{A}$ askan shrimp fishery, but did not hel $\mathbf{p}$ pi oneer the fishery as they did with such speci es as Tanner and king crab. The Japanese first fished for shrimpof $\mathbf{f}$ aska in 1961, in the Bering Sea north of the Pribilof Islands. One factory ship and $\mathbf{1 6}$ traw ers were used during the first year, and over $14,100 \mathrm{MT}\left(31 \mathrm{milli} \mathrm{m}^{2}\right.$ pounds) of shrimp were caught. Japan's catch from the eastern Bering Sea peaked in 1963, at over 27, 700 M ( 61 milli on pounds), then decreased through 1968 to less than 454 M (one milition pounds) per year. This drastically depressed catch is believed by sone to have been a result of overfishing the area. Japan al so fished the Gulf of Al aska for shrimp from 1963 through 1968, with a factory ship operation. The yearly Japanese catch for the area fluctuated, with a low of 83.9 ( 185,000 pounds), and a high of 2,360 MT ( 5.2 mili ion pounds). After 1968 Japan abandoned shrimp fishing off Alaska, taking only incidental catches. Commencing with the 1977-78 fishing season, even incidental catches were returned to the sea. In 1979 the North Pacific Fi sheries Managenent Council will issue decisions on whether foreign fishing fleets will be " gi ven any shrimp harvesting quotas off Al aska.

The Soviet Uni on entered the $A$ aska shrimp fishery in 1963, fishing in the Bering Sea north of the Pribilof Islands with six Iarge freezer/traw er vessel s. In 1964 their effort was di rected of $f$ the southeast coast of Kodiak Island. After 1964 the entire Russian effort was shifted to the Gulf of Alaska, peaking in 1966, with 18 freezer/traw ers and one cannery/factory ship. The Soviet catch of shrimp from the Gulf of Al aska grew to over 11, $\mathbf{3 0 0}$ MT(25 million pounds) in 1967, then rapidly declined as the United States becane nore emphatic about enforcing the new $y$ enacted (October, 1966) 12 mile ( 19 km ) contiguous fisheries zone. In 1974 several substantial fines were I evied on Soviet fishing vessel $s$ for encroachnent of the fisheries zone, and they have not fished of $f$ Al aska for shrimp since.

Fi ve species of shrimp are harvested in comercial quantities off Al aska. They are pi nks (Pandalus boreal us), humpies (P. goniunus), si destri pes (P. dispar), coonstripes (P. hypsinotus), and spots ( $\mathbf{P}$ platyceros). The pi nks comprise around 85 to 98 percent of the total shrimp catch in all areas of Al aska. Humpies are the second nost abundantly. caught, with the renai ning three species being of consi derably less comercial importance. Al aska's contribution to the world's Pandalid shrimp supply is quite significant, in nost years accounting for over 50 percent of that Ianded on the west coast of North Anerica (Table 2.4\%), and between 25 percent and 50 percent of the world catch. Even with recent Iarge grouth in the California and Oregon shrimp fisheries, Al aska will probably nai ntain its dominance throughout the foreseeable future.

The $\mathbf{A}$ askan pinks and humpies, as well as the ot her larger $\mathbf{A}$ askan shrimp, are usually considered as adistinctly different product than the Iarge prawns and shrimps fromthe Gulf of Mexico or imported shrimp. The snaller Al askan shrimp have al ways returned a rather lowincone per unit of catch, necessitating Iarge catches to remain profitable. Exvessel prices for nost $A$ askan shrimp were around four cents per pound throughout the 1960s, then steadily increased during the 1970s, to the present high of around 16 cents per pound (Table こ. 2 ). This represents approximately a 300 percent increase in ex-vessel price si nce 1971.

The Iarger Al askan species are caught in lower vol unes, but command much hi gher prices. The larget species of $\mathbf{A}$ askan shrimp, coonstripes and si destri pes, are processed al nost excl usi vel $y$ for export to Japan, and presently have an ex-vessel price in excess of 40 cents per pound. However,

TABLE B.4:<br>ANNUAL PANDALID SHRIMP LANDINGS, 1965-1977, BY REGION ${ }^{1}$

YEAR	ALASKA	BRITISH COLUMBIA	WASHINGTON	OREGON	CALIFORNIA	TOTAL
1961	15, 980, 550	1,206,000	1, 436, 599	1, 455, 900	2, 006, 274	22, 085, 323
1962	16, 943, 120	1,663,000	1,367,441	2, 750, 400	1, 786, 289	24, 510, 250
1963	15, 126, 950	1,788,000	956, 105	3, 114, 700	2, 095, 278	23, 081, 033
1964	7, 726, 750	1,052,000	314, 130	5, 477, 400	980, 608	15, 550, 888
1965	16, 818, 941	1,755,000	23, 468	1, 748, 000	1,425,875	21, 7' 71, 284
1966	28,192,621	1,682,000	282, 947	4, 751. , 300	1, 213, 959	36, 122, 827
1967	41,812,552	1,696,000	1, 028, 744	10, 373, 956	1, 404, 821	$56,316,073$
1968	42, 023, 084	1,568,000	1, 163, 864	10, 976, 258	2, 223, 205	57, 954, 411
1969	47, 850, 560	2,118,700	1, 425, 286	10, 477, 945	2, 951, 800	64,824,291
1970	74, 256, 326	1,537,6"00	925, 000	13, 735, 000	4, 044, 640	94, 498, 766
1971	94, 891. , 304	735,000	678, 000	9, 291, 000	3, 074, 000	108, 669, 304
1972	83, 830, 064	794,000	1, 562, 000	20, 900, 000	2, 5( 30, 000	109, 606, 064
1973	119, 963, 729	1,729,000	5, 271, 000	24, 500, 000	1, 239, 000	152,702,729
1974	108, 741, 434	2,644,000	9, 300, 000	19, 968, 000	2, 360, 000	143,013,454
19?5	98, 535, 031	1,729,000	10, 200, 000	23, 700, 000	4, 997, 000	139, 161, 031
1976	129, 011, 047	8,470,000	9, 224, 098	25, 300, 000	3, 470, 000	175, 475, 945
19'77'	116,871,605	6,200,000	11, 400, 000	48, 580, 022	15, 663, 451	198, 7. 15, 078

[^3]TABLE E.4

these $\mathbf{A}$ askan shrimp have not been able to compete with the Gulf of Mexi co product in terns of price or consumer acceptance. The Alaskan species apparently have a uni que flavor that consumers do not find as sati sf act ory.

Though mechani cal shrimp peel ers greatly increased the capacity of Alaskan processors, a product quality problem was created. The hand picking of shrimphad resulted in an exceptionally high quality product that consumers learned to expect. But the original peel ers required "conditioning" of the shrimp bef ore renoving the shells. In essence, conditioning consisted of allowing the raw shrimp to rot for a couple of days so the shell could be nore easily renoved. The resultant product was no longer as fresh as consumers desired, and an undesi rable change of col or al so took place during the conditioning. Due to continual refinement, since their introduction, shrimp peel ers no longer require that shrimp be partially decomposed to work effectivel $y$, and nodel sare available to peel either raw or cooked shrimp.

Shrimp is either canned, or frozen raw or cooked (Figure 3.13). When frozen raw, it is either in the whole formor peel ed. Frozen raw whole, is usually for the larger of the Pandalus species, such as sidestripe. The whole frozen product is formed into blocks or low count per pound packages. Shrimp that are peel ed and frozen raw are forned into blocks, then frozen and glazed. Sone shrimpis cooked bef ore freezing. The cooking may take place before or after peeling, and the shrimp is hand packed into blocks or five-pound ( 2.3 kg ) cans and frozen (and glazed, if blocks). The third form of frozen shrimpis indi vidually quick frozen. The process is similar to other freezing except the shrimp are frozen

i ndi vi dual ly, glazed and packed. Regardless of the method of processing, recovery rate for shrimp averages around 16 to 18 percent, though skill and conscientiousness of the processing laborers can result in rates consi derably bel ow or above the norm

The marketing and distribution system of Al askan shrimp is mach the same as for crab, with nost of it being reprocessed after reaching the l ower states. Company sal es personnel are responsible for di sposal of some of the product, and brokers throughout the U.S. expedite sal es of the renai ni ng suppl $y$. The 15 pound blocks that leave Alaska are reduced to five pound blocks and packed six per carton. The bulk indi vidually quick frozen shrimp are al so repacked into suitable portions for further distribution. Canned shrimpis usually not label ed in Alaska in order that the desired label of any particular buyer can be applied, or the processing firm may market the product under its own brand name.

Mst Al askan shrimp of the snaller varieties is marketed for donestic use as either cocktail or sal ad shrimp. Although comprehensi ve data concerning di stribution are not available, informal estimates by industry personnel indi cate the west coast, midwest, and northeast United States each consume about 30 percent of the suppl $y$. The trend of increasing consumption of shrimp per capita by Anericans indicates a heal thy market exists and can be expected to expand (Table ₹. -4 ) In 1950 the average Aneri can consumed 0.34 kg (. 75 pounds) of shrimp, and in 1977, this anount had grown to 0.72 kg ( 1.59 pounds) per person, wh le the U.S. population had increased by over million people.

Due to the absence of a donestic market for the larger Al askan shrimp, they are prepared primarily for export to Japan. Accurate


ミロミ：ッ：＝＝preliminary：

ESOUrce：NMFS，Fisheries of the Unite ${ }_{\text {d }}$ States， 1977.

export data are not available. Pi nks and humpies face a sporadic export market, mai nly to Scandi navi an countries and Engl and and Canada. The Scandi navi ans in particular consider the Al askan shrimp as inferior to their donestic packs, and these countries tend to import only as necessary to supplenent their donestic supplies in years of poor catch.

## Statistics

## Catch and Prices.

In terns of wei ght I anded, the shrimp fishery is anong the doni nant commercial fisheries in Alaska with annual catch exceeding that of the king crab fishery si nce 1970. Between 1961 and 1977, the annual catch ranged from 3, 490 M ( 7.7 milition pounds) in 1964 to 58, 500 MT ( 129.0 miliion pounds) in 1976 and accounted for between 7.2 percent and 51.7 per- . cent of the total Al askan shellfish catch (Table $3.4 \Sigma$ ). The annual catch was very stable from 1961 through 1965, with the exception of the record Iow catch of 1964, fluctuating between 6, 850 and $7,670 \mathrm{Mr}(15.1$ and 16.9 million $*$ pounds). The fishery then began to grow rapidly and continuously through 1971. Si nce then, catch has fluct uated between 38, 000 and 58, 500 MT ( 83.8 and $\mathbf{1 2 9 . 0} \mathbf{~ m i l l i o n ~ p o u n d s ) ~ w h i l e ~ t e n d i n g ~ t o ~ i n c r e a s e . ~}$

Due to the rel atively low ex-vessel price of shrimp (fromfour cents to 10 cents per pound), the shrimp fishery is much less important in terns of the val ue of catch. Between 1961 and 1975 the annual val ue of shrimp I andi ngs ranged from \$309, 000 in " 964 to $\$ \mathbf{~} \mathbf{1 . 1} \mathrm{million}$ in 1974 and accounted for, at nost, 16.8 percent of the val ue of $\mathbf{A}$ askan shel Ifish I andi ngs. Due to the stability of ex-vessel prices until 1972, the patterns of fluctuation. of catch and value of catch were similar. Large increases in the price of shrimpin 1972 through 1974 and a decrease in the price in 1975, have resulted in a di vergence in thei recent fluctuations.

Production.
Shrimp processing has becone increasingly important. Both the average . annual production and the average percentage of total processing output


こn•๕ ヨ7日甘1
consi sting of shrimp products are significantly higher for 1966-1975 than they are for 1966-1970 (Table E.4o). From 1966 through 1975, annual shrimp processing out put averaged $5,810 \mathrm{Mr}$ ( 12.8 mili on pounds), ranged bet neen 1,540 MT (3.4 miliion pounds) in 1966 and 11,000 MT ( $\mathbf{2 4 . 2} \mathbf{~ m i l i o n ~ p o u n d s ) ~}$ in 1973, and accounted for up to $\mathbf{1 0 . 6}$ percent of the total annual Alaskan processing output. As with other fish, fresh/frozen products have won a Iarger share of total production. The changes in the product mix anong fresh/frozen products is summarized in Table ©, 4~.

Shrimp Production in Alaska
By Type of Processing and in Perspective

YEAR	Number of Plants		$\begin{gathered} \text { TOTAL } \\ \text { PRODUCTION } \\ \text { (000's } 1 \mathrm{bs.} .) \\ \hline \end{gathered}$	$\begin{aligned} & \text { FRESH \& FROZEN } \\ & \text { PRODUCTION } \\ & \text { (000's 1bs.) } \end{aligned}$	CANNED \& OTHER PRODUCTION (000's lbs.)	PERCENTAGE FRESH \& FROZEN	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { CANNED } \\ & \& ~ O T H E R \\ & \hline \end{aligned}$	PERCENTAGE OF ALASKAN PRODUCTION OF ALL FISH
	CANNED	FRESH \& FROZEN						
	PRODUCTS	PRODUCTS						
1966	4	12	3,354	2,073	1,281	61.8	38.2	
1967	4	13	8,816	6,300	2,516	61.8 71.5	28.5	5.0
1968	5	14	5,677	1,901	3,776	33.5	28.5 66.5	2.0
1969	6	20	8,028	2,077	5,951	25.9	74.1	4.4
1970	5	16	11,444	4,003	7,441	35.0	65.0	4.0
1971	5	20	14,822	7,328	7,494	49.4	50.6	6.2
1972	5	26	15,598	7,919	7,679	50.8	49.2	7.7
1973	6	25	24,160	14,344	9,816	59.4	40.6	10.6
1974	5	26	19,984	12,994	6,990	65.0	35.0	10.6 8.1
1975	2	24	16,484	12,831	3,653	77.8	22.2	7.6
1976		.						7.6
1977								
Average								
(1966-1970)			7,864	3,271	4,193	45.5	54.5	3.3
Average(1966-1975)								
			12,837	7,177	5,650	53.0	47.0	5.5

Source: Alaska Department of Fish and Game, Catch and Production Report Leaflets, 1966-1975.
table 13.4\%
Fresh and Frozen Shrimp Production In Al aska by Product Type 1966-1975

## 0 4 4

YEAR	$\begin{gathered} \text { TOTAL } \\ \text { PRODUCTI ON } \\ \left(000^{\prime} \mathrm{s}\right. \text { Ibs.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WHOLE } \\ \left(000^{\prime} \mathrm{s} 1 \mathrm{bs} .\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { SECTI ONS } \\ \left(000^{\prime} \mathrm{s} \text { 1bs. }\right) \end{gathered}$	$\begin{gathered} \text { MEAT } \\ (000 \text { s lbs. }) \\ \hline \end{gathered}$	PERCENTAGE WHOLE	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { SECTI ONS } \\ & \hline \end{aligned}$	PERCENTAGE MEAT
1966	2, 073	1, 688	59	326	81.4	2. 8	15. 7
1967	6, 300	5,982	11	307	95. 0	0.2	4. 9
1968	$1>901$	1,401	7	493	73. 7	0.4	25. 9
1969	2, 077	129	18	1,930	6. 2	0.9	92. 9
1970	4, 002	1, 055	23	2,924	26. 4	0.6	73.1
1971	7, 327	2, 249	1,310	3, 768	30. 7	17.9	51.4
1972	7,921	2, 804	2, 629	2, 488	35. 4	33. 2	31.4
1973	14, 348	5, 205	3,902	5, 241	36. 3	27. 2	36. 5
1974	12, 994	11, 304	1, 583	107	87. 0	12. 2	0.8
1975	12, 831	11, 709	1,612	510	91.3	4.8	4.0
1976							
1977							
Average ( 1966	1970)						
	3,271	2, 051	24	1,196	56. 5	1. 0	42. 5
$\begin{aligned} & \text { Average } \\ & \quad(1966-1975) \end{aligned}$							
	7,177	4,353	7.015	1,809	56. 3	10. 0	33. 7

[^4]
## Factors of Change

Harvesting Technol ogy.
As in nost Alaskan fisheries, shrimpharvesting is accomplished primarily with gear that was in use long before shrimp were of commercial importance in Al aska. Two types of gear are utilized for shrimp fishing: pots and traws. Pots account for less than one percent of the total A askan catch, but are usually di rected toward catching the larger spots and coonstripes. The pots are nore suited to fishing exceptionally rough bottons, where traws are less adept.

Most shrimp are harvested by trawls, with double otter traws com prising over half the shrimp gear licensed for the Kodiak area, which licenses more shrimp vessel sthan any other area. The double otter traws evol ved from similar gear used to fish shrimpinthe Gulf of Mexico. The primary advantage of using snaller double traws rather than a larger single traw is that a wider area is passed over by the dual gear without increasing the resi stance of the traw gear. The actual traw gear is of rather typical design, but consi derable effort has been expended to devel op a sel ective trawl that will eliminate the catch of scrap fish. This endeavor has been partially successful.

The Alaskan shrimp fleet has gradually been nodernized, starting like nany new fisheries with a congloneration of vessel soriginaly desi gned for other target species. The newer vessel susually have a stern ramp for hauling the traw gear, with a hydraulically-powered drum to wind the net in. Electronic navi gational gear is common, with sonar and depth recorders, allowing the vessel s to traw areas that were previously too irregular for proper maneuvering of the traws. Net recorders are coming into use al so, riding on the traw's headrope, with the ability to take
soundi ngs up, down, and forward. The net recorder is presently thought most suitable for groundfishing, but has an obvious application for shrimp trawling as well.

Vessel s constructed primarily for shrimp fishing are usually within the 18 m to $27 \mathrm{~m}(60$ foot to 90 foot) length class. This size has proved satisfactory for traveling to sometines di stant fishing areas, while providing acceptable maneuverability. The newer vessels with the stern haul ramp and the cabin far forward al so provide a less obstructed working area for the crew

On-board handling usually consists of icing the catch in bins in the hol d. Sone vessel s are beginning to use refrigerated brine in which to preserve the shrimp, but wide acceptance of this system may take a number of years due to the. high cost of installing such a system.

## Production Technol ogy.

Shrimp processing has experienced only one maj or change that has had a narked effect on the $A$ askan fishery. Shrimp processing had al nays required Iarge anounts of manual labor to renove the neats fromthe shells. In 1957 the first mechani cal shrimp peeler was brought to Al aska and operated in the Southeast area. In 1958 the peel er was introduced to Kodi ak, establishing a new fishery that was to eventually dominate Alaskan shrimp production. Until the nechanical peel er was introduced, Al aska's vast shrimp resources were largely untapped. Hand processing had produced an extrenely high quality product, but the large labor requirenent linited further grouth of the fishery.

Less shrimp is being canned now than in the past, with freezing becoming much nore common. The institutional markets, which are consuming
a greater portion of $\mathbf{A l}$ aska's fish products than ever bef ore, are devel oping a preference for the frozen product. Al so, canning expenses are rising, and canned seafood products in general are losing popularity anong retail grocery store customers.

## Regulation.

Regul ation of the shrimpishery devel oped mach as it did in the crab fisheries. As recently as 1970, the Al aska Department of Fish and Gane's commercial fishing regulations specified a year-round open season for shrimp and no quotas. In 1971 quot as were implemented, and season closures are now I argel y dependent upon harvest success.

Gear restrictions are di rected primarily at excluding traw ers from certain areas. Pots are often allowed in areas that are off limits to traw s, as pots do not have the capability of catching nearly all of the shrimp within its working area as do traws.

## Other Governmental Policy.

Russia and Japan both harvested significant quantities of shrimpin Al askan waters, particularly close to Kodiak Island, even after Anerican effort in the-fishery had becone quite substantial. (Mbre specific information about the situation is included in the market section for shrimp.)

## Conflicts With Oher Fisheries and Other Commercial Vessel s.

In addition to the often mentioned conflict due to competition for ocean space, there are conflicts arising with others due to the nature of the gear used in the shrimp fishery. In nost areas the predominant gear is a traw, either an otter or a beamtraw. The problens associ ated with this gear are the incidental catch of $j u v e n i l e$ hal $i$ but and the renoval of pot floats.

## SCALLOPS

## Devel opment and Market Structure

The Alaska scallop fishery is very young when compared to nost of Al aska's other fisheries. Only since 1967 has enough effort been directed at the catching of scallops to record commercial landi ngs. Unlike the naj or A askan shel Ifish fisheries, donestic effort in the scallop fishery was not preceeded by foreign fishing. The scallop fishery evol ved sol ely because of sone under utilized king crab vessel s attempting to devel op an alternative fishery in 1967.

Due to the noderate success of the king crab vessel sin 1967, the Al aska Department of Fish and Gane and the United States Bureau of Commercial Fi sheries $\mathbf{j}$ ointly sponsored a survey of the state's scallop potential in 1968. The $\mathbf{j}$ oint venture enlisted the" assi stance of an experienced scallop fishing crew from New Bedford, Massachusetts, complete with their 27' m(90 foot) vessel and fishing gear, as Al askans generally lacked proper gear and the New Englanders' experience of generations of scallop fishing.

The vessel chartered for the experimental fishing fulfilled its comitnents in late June 1968, having confirmed substantial stocks of scallops along the entire coast of the Gulfor $\mathbf{A}$ aska from Cape Spencer, which lies al nost directly west of Juneau, north and west all the way to Kodi ak I sI and.

The origi nal charter vessel, and three other New Bedford vessel s which had started for Al aska before the end of the expl oratory charter, i medi ately started harvesting the newly exposed resource. Ei ght nore scallop vessel s made the trip from New Bedford by the end of 1968, but by then the original four New Bedford boats and three or four Al askan vessel s, crewed by New Bedford fishernen, had harvested the prime beds.

Over 771 MT ( $1,7 \mathrm{milli}$ on pounds) of neat were recovered during 1968, which accounted for nearly 10 percent of the United States total cher (Table

Year	TABLE $\mathrm{F}, \mathrm{Y}^{\text {a }}$	
	ALASKAN SCALLOP CATCH,	1967-1975
		Shucked wei ght (pounds)
1967		7,788
1968		1, 734, 402
1969		1, 888, 287
1970		1, 444, 338
1971		931, 151
1972		1, 167, 034
1973		1, ?09, 405
1974		504, 438
1975		435, 672

SORCE: Al aska Departnent of Fi sh and Gane, Statistical Leaflet No. 28

An even Iarger vol une was harvested in 1969. Thereafter, the entire scallop i ndustry stagnated, and the Al aska fishery began to decline. Recent . harvesting of scallops has been of little significance, although several processors have indicated an interest in establishing a small, but sustained fi shery.

After bringing the catch on board, scallops are usually shucked and the meats pl aced in bags for icing until delivered to a processor. Early Al askan scallop fishernen did not al ways adhere to the on-board shucking practice. The processors clean the neats, and then box them for freezi ng.

Scallop marketing is similar to that of other frozen seafoods from Al aska. The boxed, frozen scallops are generally transported to the Seattle area, where they may undergo repackaging into containers appropriate for the various markets, and then di stributed through marketing channel s common to nost Al askan seaf ood products.

The narketing of al nost all frozen $\mathbf{A}$ askan fish products is quite similar and is describedingreater detailinthe king and Tanner crab narket structure section.

## Statistics

## Catch and Prices.

The scallop fishery in Alaskas expl osi ve, but shortlived. After what was principally an exploratory catch of 3.54 M (7, 800 pounds) in 1967, the catch increased by a factor of nore than 200 with the arrival of a scallop fleet in 1968 and then peaked at 860 M (1.9 million pounds) in 1969 (Table d. 4 ). The annual scallop catch has decreased in all but one of the past ei ght years, resulting in a catch for 1977 of only 9.98 M ( 22,000 pounds). During the few years in which this was a booning fishery, the scallop catch never accounted for as much as one percent of the total shellfish catch or eight percent of its value. The val ue of the scallop catch is high, rel ative to its wei ght because scallops are shucked onboard.

Production.
Between 1968, when scal lop production began, and 1975, the annual production of scallops ranged from $181 \mathrm{Mr}(0.5 \mathrm{milli}$ on pounds) in 1975 to $1,040 \mathrm{M}$ (2.3 million pounds) in 1972 and accounted for from $\mathbf{0 . 2} 2$ percent of all Al askan production (Table E .5 O ). Scallop production consists entirely of fresh/frozen products.

THE ALASKAN SCALLOP FISHERY I N PERSPECTI VE

	YEAR	$\begin{gathered} \text { CATCH } \\ \left(\text { in } 000^{\prime} \mathrm{s}\right) \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SFELLFISH CATCH		PERCENTAGE OF TOTAL SHELLFISH AND FI NFISH CATCH	
		POUNDS	VALUE		VALUE	POUNDS	VALUE	POUNDS
	1961							
	1962							
	1963							
	1964							
	1965							
	1966							
	1967	7.8	\$ . 545	\$0. 07				
	1968	1,734	1,606	0.93	5.8	1. 2	1. 8	0.4
	1969	1,888	1,542	0.82	7.0	1. 5	1.9	0.5
	1970	1,440	1,484	1.03	7.2	0. 9	1. 4	0.3
	1971	931	990	1.06	3.8	0.5	1.1	0.2
	1972	1, 167	1,400	1. 20	4. 4	0.6	1. 4	0.3
	1973	1, 109	1, 331	1. 20	1. 9	0.4	0.9	0.2
()	1974	504	656	1. 30	1.0	0.2	0.4	0.1
	1975	436	593	1. 36	1. 1	0. 2	0.4	0.1
i	1976	265				0.1		
	1977	22						
	1978							
	Average	559	640					
	Source:	Statistic	eaflets for	ous years				



Source: Al aska Department of Fish and Game, Catch and Production Report Leaflets, 1966-1975.

## Factors of Change

Harvesting Technol ogy
Only two types of gear are legal for harvesting scallops in Al askan regul ated waters: the scallop dredge and the traw. The scallop dredge is constructed specifically for scallop fishing, whereas trawls can be directed at a wide variety of target species with appropriate nodification and adequate skill of the operator. The dredge basi cally consists of a chai n link flexible basket attached to a rigid rectangular opening at the front. As the gear is pulled al ong the bottom scallops are di splaced from thei $r$ resting pl ace and caught in the metal basket.

No significant changes have occurred in harvesting techniques during the short life of the $\mathbf{A}$ aska scallop fishery. The scallop dredge, often accompani ed by"New Engl and fishernen to direct its proper use and provide years of experience, was borrowed di rectly fromthe New Engl and scallop fishery. This effective harvesting apparatus was al ready available when Al askans deci ded to harvest scallops, avoi ding time-consuming gear devel opnent which nost often is a trial and error process.

## Production Technol ogy

Freezing is the normal nethod of preserving scallops. Due to the rather small quantities of scallops processed in Alaska, there has been little incentive for innovation in scallop preservation. Al askan fishermen have adopted the East Coast practice of "shucking" the neats from the shells while on board the fishing vessels, resulting in a cleaner product that is better preserved when del ivered to processors. The neats are bagged and i ced for on-board storage.

Regul ation.
As a means of maintaining adequate management control over a fishery, regul ations pertaining to the target species increase in number and becone nore specific as the fishery grows. Prior to 1967, there was no indication that Alaskan fishernen were truly interestedin establishing scallops as a regular commercial fishery, therefore, the scallop fishery faced nearly any controls of any type. Regul atory authorities were so unconcerned-with scallops that the fishermen who harvested them during 1968, the first boom year in the fishery, were not even required to purchase licenses from the state, a natter quickly changed by the Al aska Legi slature.

A lack of scallops in extrenely large quantities has tended to suppress fishing effort directed at them therefore, the need for strict quotas and seasons is absent. Authorities have learned that scallop dredging can be detrimental to king crab stocks and other important bottom dwellers within the area, and mainly for this reason have declared certain areas cl osed to scallop dredging at specified times of the year.

## Conflicts With Oher Fisheries and Oher Comercial Vessel s.

The principle conflict between the scallop fishery and other fisheries is due to the nature of the scallop gear. A scallop dredge can potentially change the habitat of the area fished in a way that is detrimental to ot her shel Ifish.

## RAZOR CLAMS

## Devel opment and Market Structure

The razor clam fishery is one of the ol dest commercial shellfish fisheries in Alaska, but due to both the decline in this fishery and the rapid expansi on of the other shellfish fisheries since late mid1950s it has becone insignificant. The Cordova earthquake in 1964 was the primary cause of the nore recent decline in clam production. Oher factors contributed to the decreasing use of clans for human consumption. These incl uded the withdraval of Al aska from the National Shel Ifish Sanitation Program (NSSP) from 1955 to 1975 and increasing competition from East Coast surf cl ans which becane nore profitable to harvest due to new advances in mechani cal dredging and processing. A variety of other factors are cited to expl ai $\mathbf{n}$ the recent decreases in harvesting. Activity decreased in part as a result of rel ativel y low Dungeness crab harvest starting in 1975. Razor clans are the preferred bait for Dungeness crab. Anot her factor whi ch probably contributed to the decline was the al ready high and increasing labor costs associ ated with the razor clans, nost of which are dug by hand with shovel s.

At present there are only three razor clam areas in Alaska certified under the National Shellfish Sanitation Program(NSSP) for human consumption. These are the Swikshak area across Shelikof Strait from Kodiak Island, the Pony Creek area across Cook Inlet from Anchorage, and the Copper Bering Rivers and Prince Wiliiam Sound area near Cordova. Clans nay al so be harvested from other areas which are uncertified, but these can not be sold for human consumption. Unshucked clans not certified for human consumption must be dyed with $\bar{\pi} 5$ yellowin order to so signify. These cl ans are used for Dungeness crab bait.

During 1978 only tuo processors in Al aska have filed Intent to Sel I statenents for razor clans with $A D F \& G$. One is in Anchorage and has been selling snall anounts of frozen clans for human consumption to Japan and to local Anchorage markets. The other processor is in Cordova and has been selling small anounts of $\mathbf{c l}$ ans for Dungeness crab bait. A snall anount of clans are al so utilized in the Cordova area by restaurants for human consumption. There is no interstate sale of razor clans originating from Kodiak or Cordova. During 1977, only one processor in Kenai and one in Cordova dealt with clans. These were all utilized for crab bait. These companies are primarily invol ved in processing crab and other shelfish products. The razor clam activity is so small as to make no appreciable difference to the firns' operating costs, incone and empl oynent.

Mst of the razor clans landed are sold di rectly to crab fishernen or I anded by the crabbers thensel ves. This situation will probably continue gi ven the current level of the Dungeness crab harvest, the poor marketing situation for $\mathbf{c l}$ ans for human consumption, and the highex-vessel price for clans that processors would have to pay.

Razor clans are the preferred bait for Dungeness crab. Orab fishernen are currently paying $\$ 1.00$ per pound for razor $\mathbf{c l}$ ans. $G$ ven the present supply and price for razor clans, clans processed for hunan consumption in the Kodiak and Cordova area would not be competitive with other clam products fromthe East Coast and the Iower 48 Pacific Coastal states. A price of $\$ 1.00$ per pound shell weight translates into a neat weight cost of $\$ 2.85$ per pound, assuming a 35 percent recovery rate. The retail price for the processed clam meat uould then be well over $\$ 5.00$ per pound. An increased supply of clans from nechani zed harvesting and nore certified areas uould be necessary to bring down the cost to processors for unshucked clams.

A study of the Alaska clamindustry (Orth, et al., 1975) concl uded that the best potential market form for razor clans for human consumption yould be a frozen pack. Frozen razor clans could serve the Pacific coastal states which al ready have sone familiarity with the product. Canned clans, on the ot her hand, would have to compete, probably unsuccessfully, with canned clans from the East Coast. However, unl ess the exvessel price of unshucked clans falls considerably from $\$ 1.00$ per pound to about half that price, markets will continue to be limited to quality restaurants and specialty retailers. This is the status of current narkets for Whshington and Oregon razor clans which are retailing at about $\mathbf{\$ 5 . 0 0}$ per pound.

In 1977, out of 121 shovel permits issued, 67 were to Cordova residents and 7 to Kodi ak residents. In addition to 37 pernits to other $\mathbf{A}$ aska residents, 70 out-of-state residents recei ved permits. Five dredgers, three in Cordova, one in Kodiak and one in Kenai, al so recei ved permits and one experinental dredge in Cordova recei ved a pernit. Thus, nost fishing effort can be said to be "local." To render a non-local effort economically viable, it nould seem that an operation of significant duration nould be a prerequi site. Si nce there have been few Iandingsin recent years, the probability of a non-local effort is reduced. All of the diggers are independent and not empl oyed by the processors that purchase their clans, al though often crab fishernen will dig their own clans for use as bait, and they are incl uded in the commercial clam work force.

## Factors of Change

Harvesting Technol ogy.
The principle harvesting nethod consi sts of indi vidual clam digers arned with cl am shovel s. An experi enced di gger can dig 90-180 $\mathbf{k g}$ (200-400 pounds) of
razor clans during the four hour period in which the tide is out (Orth, et al., 1975). The alternative method is to use a hydraulic dredge.

The technol ogy of hydraulic dredges has apparently advanced in recent years. Yet the dredge remains essentially an unknown quantity. Some feel that the dredge is efficient and actually enhances the razor clamenvironnent. Others doubt its efficiency and maintain that it has a negative effect upon the continued viability of cl ans and other resources. Until these differences of opi ni on are put to rest, either by empi rical research or trial and error, the differences are likely to remain. At present, the dredge is regulated in a conservative nanner. Nbt knowing the probable impacts of dredge operation, regulating authorities have opted for a restrictive "trial and error" approach. Sone dredges are currently permitted to operate on some portions of certified sites. As the nature of dredge impacts becones known, it appears as though the regulating authorities will act based on this new know edge. This method of regul ation is perhaps least costly from an administrative standpoint, but it does not forcefully pronote the advancenent of technol ogy.

The wide use of dredge technol ogy under the present system al so depends upon the number of beaches certified for human consumption. At present there are only tuo areas certified near Cordova and Kodiak; to add another would take at the very minimm one year and nore likel y two or three. The state currently lacks the resources to sample new sites and to anal yze the samples from the sites. State labs now have their "hands full" with hi - neekly sampl es fromthe exi sting certified beaches. Compounding the problemis that the federal and state agencies invol ved with the razor clam resource cannot agree on the form of a cost-reducing sampling method/ program $G$ ven these constraints, it is unlikely that a new site will be certified in the near future.

Without expansi on in the number or size of certified sites, the dredge technol ogy nay devel op and/or cone into usage quite slowly. Only an al teration of the current regul ations would hasten the technol ogi cal devel opnent and application.

It appears as though a change in the system nay be in the offing. Recently, an industry-government survey of the surf clam resource north of the Alaska Peninsula, utilizing a hydraulic dredge, has "di scovered" a large stock of surf clans. Plans are under nay to create a "subsampling" system which uould in effect eliminate many of the costs associ ated with surveys, sampling, and anal ysis. Essentially, the catch froma gi ven "lot" would be sampled and sent to a lab for anal ysis. A negative anal ysis (within PSP standards, toxin level s, etc.) wouldindi cate that the catch could be sold for human consumption; a positive anal ysis the opposite. While anal ysis is conducted, the catch nould be kept alive in tanks or frozen; it is anticipated that analysis tine nould be cut from three to four weeks to as little as one day.

The merits and implications of the above are quite obvi ous. Sampling is done by fishernen in "lots" where they are pernitted to fish. Sampling cost is all but eliminated and lab facilities less burdened. Fishernen have nore Iatitude in time, space and gear. A similar programis being prepared for Prince Wiliam Sound for all clans, incl uding the razor clans,

Production Technol ogy.
Due in part to the al nost incidental processing of razor clam products for human consumption, there have not been major changes in processing nethods in Al aska.

TABLE ${ }^{1} \mathrm{~B} .51$
THE ALASKAN RAZOR CLAM FI SHERY I N PERSPECTI VE

YEAR	$\begin{gathered} \text { CATCH } \\ \text { (in } 000^{\prime} \text { s) } \end{gathered}$		PRI CE (\$'s per pound)	PERCENTAGE OF TOTAL SHELLFISH CATCH	
	POUND	VALUE		VALUE	POUNDS
1961	926	\$120	\$0. 13	2.3	1. 4
1962	687	79	0.11	1. 1	0.9
1963	410	52	0. 13	0.5	0.4
1964	100	19	0.19	0.2	0.1
1965	87	22	0.25	0.2	0.1
1966	44	8	0.18		
1967	117	30	0.26	0.2	0.1
1968	79	19	0.24	0.1	0.1
1969		25	0.29	0.1	0.1
1970	1 \%	40	0.25	0.2	0.1
1971	243	70	0.29	0.3	0.1
1972	214	69	0.32	0. 2	0.1
(i) 1973	231	89	0.39	0.1	0.1
1974	228	100	0.44	0.2	0.1
ir 1975	32	14	0.44		
of 1976					
1977					
1978					
Average	214	50.4			
Source:	Statis	flets	ous years		

PERCENTAGE OF TOTAL SHELLFISH AND FI NFI SH CATCH VALUE POUNDS
0.2
0.1
0.2
0.1
0.1. 2
0. 25
0.18
0.24
0.29
0.25
0.32
0.39
0.44
0.4
years.

TABLE 13.52


Source: Al aska Departnent of Fish and Gane, Catch and Production Report Leaflets, 1966-1975.

## Conflicts Anong Comercial Fi sheries,

Recreational Fi sheries and Non- Fi shing Marine Traffic

The conflicts anong commercial fisheries, recreational fisheries, and nonfishing narine trafic have, except in a few notable instances, been rel atively minor and have theref ore not tended to constrain the devel opnent of the commercial fishing industry in Al aska. The following sections provide an overvi ew of the nature of these conflicts.

## COMPETI TI ON FOR SMALL BOAT HARBORS

The demand for snall boat harbors in Alaska has increased nore rapidly than the suppl $y$; this combined with a rel uctance to use the price nechani sm to allocate the scarce harbor space has resulted in a shortage of harbor space in many coastal commities. The commercial fisheries compete with each other and with other small boat harbor users (primarily recreational boaters) for the linited harbor space that is available. The term "snall boat harbor" is perhaps a bit misleading; in A aska the harbor facilities designed principally for fishing and recreational boats are referred to as snall boat harbors al though they nay serve vessel sover 40 neters ( 131 feet) in length. Harbor nasters have denonstrated a great deal of inagi nation and dexterity in their handling of the overcrouding problem and it would appear that the competition for harbor space has typically not hi ndered the devel opment of a commercial fishery, There are, of course, linits on what can be done with a given harbor facility; this in part explains the harbor im provenent plans undervay in many commities.

## - COMPETI TI ON FOR FI SHERY RESOURCES

In Al aska the principal competition for fishery resources occurs in the sal mon fisheries where commerical fishernen using various gear types compete
with each other and with recreational and subsistence fishernen for the Iinited anounts of harvestable sal non. The competition and the resulting conflicts between gear types (e.g., purse seine, drift gill net, set gill net, beach seine, and troll) are in many cases limited by allocating different areas and/ or periods to different gear types. The competition between comercial and recreational fishermen and the resulting conflicts are greatest in the areas which are nost accessible to the one large netropolitan area of the state, Anchorage. In nost other areas, recreational fishing is insignificant com pared to commercial fishing and/ or targets on species that are of less importance to commercial fisheries, therefore, the competition and the conflicts have been minimal. As the popul ation of Alaska and/ or regi ons of $\mathbf{A l}$ aska increaser and as recreational fishing increases in terns of the size of catch and the areas fished, the conficts between comercial and recreational fishing will increase. In the fisheries other than sal non, there is generally little com petition anong commercial fishermen using different types of gear.

When the conflicts anong comercial fishernen and/or recreational fishernen have arisen, the $\mathbf{A}$ aska Board of Fi sheries has often set policies to assign, the resource to one user group. Such policies limit the physical if not the political conflicts between user groups. An example of such a policy is Policy $477-27-\mathrm{FB}$; see Exhibit 3.1 .

## COMPETI TI ON FOR OCEAN SPACE

A third source of conflict for commerical fisheries is the competition for ocean space in which to devel op and/ or harvest fishery resources. When two or nore fisheries compete for the sane ocean space, gear conflicts can cause gear losses and/ or affect the abundance of other fishery resources. Gear , I oss conflicts are nost likely to occur when fixed gear (e.g., crab or shrimp pots, and hal ibut long line gear) and nonfixed gear (e.g., traw or dredge) are

## Exhibit R. 1

Policy \#77-27-FB

## COMPREHENSI DE MANAGEMENT POLL MY FOR THE UPPER COOK I NET

The dramatically increasing population of the Cook Inlet area has resulted in increasing competition bet ween recreational and commercial fishermen for the Cook Ind et sal non stocks. Concurrently, urbanization and associated road construction has increased recreational angler effort and nay adversely affect fisheries habitat. As a result the Board of Fisheries has determined that a policy must now be determined for the I ong-term managenent of the Cook Inlet ". salmon stocks. This policy should rest upon the following considerations:

1. The ultimate management goal for the Cook Inlet stocks must be their protection and, where feasible, rehabilitation and enhancement. To ache eve this biol ogical goal, priorities must be set among beneficial uses of the resource.
2. The commercial fishing industry in Cook Inlet is a val unable longterm asset of this state and must be protected, while recogni zing the I legitimate claims of the non-comerci al user.
,3. Of the sal mon stocks in Cook Inlet, the $k i n g$ and silver salmon are the target specie es for recreational anglers while the chum pink, and red sal non are the predominant commercial, fishery.
3. User groups should know what the management pl an for salmon stocks will be in order that they can pl an their use consistent with that " plan. Thus, commercial fishermen must know if they are harvesting stocks which in the long-termwill be managed primarily for recreational consumption so that they may plan appropriately $y$. Conversely $y$, as recreational demands increase the recreational user must be aware of what stocks will be managed primarily for commercial harvest in order that he not become overly dependent on these fish for recreational purposes.
4. Various agencies should be aware of the long-term management plan so that sal non management needs will be consi der ed when raki ing deci si ins in areas such as land use planning and hi ghway construction.
5. It is imperative that the Department of Fish and Game receive longrange di rection in managenent of these stocks rather than being cal led upon to respond to annually changing Board di rectives. Within the Department, di vi si ins such as F.R.E.D., must receive such longterm di rection.

Therefore, the Board establishes priorities on the following Cook Inlet stocks north of Anchor Point. In so doing it is not the Board's intent to establish excl usi va uses of salmon stocks; rather its purpose is to define the primary beneficial use of the stock while permitting secondary uses of the stock to the extent it is consistent with the requirements " of the primary user group.

1. Stocks whit ch normally move in Cook Inlet to spawning areas mri or to June 30 , shall be managed primarily as a non-commercial resource.
2. Stocks which normally move in Cook Inletafiter June 30, shall be managed primarily as a non-recreational resource until August 15; however existing recreational target fish shall only be harvested incidental to the non-recreational use; thereafter stocks moving to spawning areas on the Kenai Peninsula shall be managed primarily as a non-commercial resource. Other stocks shall continue to be managed primarily as a non-recreational resource.
3. The Susitna coho, the Kenai king, and the Kenai coho runs cannot be separated from ot her stocks whit ch are being managed primarily as non-recreational resources; however, efforts shall be made, cons stent with the primary management goal, to minimize the non-recreational catch of these stocks.


ADOPTED: December 13, 1977
VOTED:

used in the same area at the sane tine. The timing and location of fisheries has tended to limit this type of conflict; but as the groundfish fishery, which will be primarily a traw fishery, devel ops in the areas of ocean space used by the traditional fisheries, the potential for gear loss conflicts will increase.

Examples of gear conflicts which affect stock abundance in other fisheries i ncl ude the fol lowing:

1) destruction of juvenile king crab by scallop dredge
2) incidental catch of a species that is the target species of another fishery (e.g., hal ibut and perch)
3) destruction of $\mathbf{j u v e n i l e s ~ b y ~ t r a w l s ~}$

An additional source of conflict of ocean space use is that the species targeted on by some fisheries are food for other species, for example, the harvest of sal non, a predator of herring will depend to sone degree on the harvest of herring. All el se being equal, there will tend to be an inverse rel ationship bet ween the sal non and herring harvest. The gear conflicts other than gear losses will al so tend to increase as the groundfish fishery devel ops. The maj or conflict being the inci dental catch of hal ibut in groundfish traw gear.

In addition to the competition for ocean space anong commercial fisheries, there is al so competition between comercial fisheries and other users of ocean space (e.g., vessels engaged in marine comerce). The potential impacts on comercial fisheries of this competition are the costs associated with collisions and gear losses. These costs include the costs of actual losses as well as the costs incurred in attempting to reduce actual losses. Due to the rel atively small anount of non-fishery marine traffic in most areas of the . . Gulf of Alaska, the costs associated with this type of conflict have not been significant. An exception to this would be in Cook Intet, where freighter and tanker traffic has been sifficiently heavy that attempts have been made to restrict such mari ne traff c to des gnated areas or Ianes. The
establishment of sea lanes through fishing grounds has, however, proved to be a difficult task. The fishermen favor a single narrow lane for other users so a small amount of fishing area is lost, while the marine transport users favor more and broader lanes to reduce the probability of congestion and/ or collisions. The potential for conflict will increase in Alaska its marine transportation system grows and as more distant fisheries (e.g., groundfish) devil op. The extent to which the conflict will remain concentrated in Cook Inlet will depend on the rates of growth of the various regions of $\mathbf{A}$ ask and the ability of the ports of Seward, Whittier, or Valdez to compete with the Port of Anchorage for marine commerce.

Approxi nately $\mathbf{2 5 , 0 0 0} \mathbf{f i}$ shing vessel s of five net tons or larger are currently documented with the U.S. Coast Guard (USCG). It is estimated that nearly four times that number of fishing vessel s are less than five net tons and regi stered by indi vidual states. These snaller boats accounted for only fi ve percent of the casual ty inci dents recorded by the U.S.C.G. during the 1972-1977 fiscal year period and, therefore, comprose a minor portion of the data utilized for anal ysis of fishing vessel casualties.

There has been a 51 percent increase in the number of Anerican fishing vessel s over the past 12 years. Along with this grouth of the fishing fleet has been a 53 percent increase in the number of fishing vessel casualties ( Figure B. 14 ), The U.S. Coast Guard separates vessel casualties into five categories: operational collisions; grounding; explosion/fire; flooding/ foundering/ capsizing; and material failure.. No particular type of casualty clearly predominated throughout the 1972-1977 period, but groundi ng and flooding/foundering/capsizing were the nost preval ent casualties during the Iatter years of the period (Figure $\overline{3} \cdot(5)$. Each of the five categories experienced at least sone net grouth from 1972 to 1977, with large annual fluxuations in the occurrence of any particular type of casualty being quite common.

Nearly 13 percent of the United States' documented fishing vessel s are located in Alaska (Table $B, 53$ ). Additionally, many vessel s migrate to Alaska

[^5]

Figure B. 14 : Growth of the Documented Fishing Fleet \& Grouth of Fishing Vessels Reporting Casual ties Source: Ecker, Commander WilliamJ., Safety Anal ysis of Fishing Vessel Casualties, U.S. Coast Guard. 1978.


Figure B .15 : Fi shi ng Vessel Casual ties
No. of vessel $s$ invol ved in specific type casualties by fiscal year,

Source: Ecker, Commander William J., A Safety Anal ysi s of Fishina Vessel Casual ties, U.S. Coast Guard. 1979.

$$
9.165
$$

table B. 5 S
U. S. FI SH NG VESSEL FLEET GEOGAPH C GROUPI NGS - SELECTED AREAS

Area	Num Vess.	Percent of Fl eet
New Engl and Mai ne, Mass., R.I., Corm	1,723	$6.8 \%$
Mddle Atlantic - North NY, NJ, Penn., Del.	828	3. 3\% $\begin{aligned} & \text { 32. } 1 \% \\ & \text { At anti c }\end{aligned}$
Mddle Atlantic - South MD, VA, Whsh DC, NC, SC	3,729	14.7\% Coast
Southern Atlantic   Gee., Fla., Virg. Is., Puerto Rico	1,856	7. 3\%
Gulf   Fla., Ala., Mss., LA, Texas	6, 065	$\begin{array}{ll} 24.0 \% & \text { 24. 0\% } \\ \text { Gulf Coast } \end{array}$
Southern Cal ifornia San Di ego, Los Angel es	1, 075	4. $3 \%$
Northern Cal iforni a SF, Eureka	1,881	7.4\% $41.7 \%$
Pacific Northwest Oregon, Vithh.	4,410	17.4\% $\quad \begin{aligned} & \text { Pacific } \\ & \text { Coast }\end{aligned}$
Al aska	3,196	12.6\%

Source: Ecker, Commander Villiam J., A Safety Anal ysis of Fi shing Vessel Casual ties, U.S. Coast Guard, 1978. USCG Docunentation Records (vessel s of 5 net tons or nore).
from other states, particularly Whshington, to participate in various fisheries throughout the year, and effectivel $y$ increase the percentage of fishing vessel s that actually operate in Al askan waters. Though only $\mathbf{1 3}$ percent of Anerica's fishing vessel sweregistered in Al aska, 24 percent of the fishing vesselrel ated deaths and $\mathbf{2 0}$ percent of fishing vessel losses occurred in Al aska (TableB.54), attesting to the harsh conditions that vessel s are subjected to and the danger faced by anyone who experiences energency survival in Alask col d waters.

Fl oodi ng/ Founderi ng/ Capsi zi ng (F/F/C) and grounding rated first and second respectively as causes of fishing vessel casualties in Alaska, interns of number of deaths as nell as number of vessel $s$ lost (Table $\bar{B}, 54$ ). This com pares very cl osel $y$ with the ranking of casualty causes for the entire United States (Table 2. 殀. The specific causes of $F / F / C$ and grounding are presented in Tables 8.56 and 6.57 . However, the inf ornation in Tables 8.56 and 8.57 , is comprised of incidents from all portions of the United States, and it is very likel y that adverse weather conditions were invol ved in a higher proportion of. Al askan casualties than in other parts of the country. Personnel fault was nost commonly naned as the cause of $F / F / C$ and grounding, with inattention and navi gational problens being nost preval ent. Explosion/fire, naterial failure, and operational collisions are the renaining categories of fishing vessel casualties in Alaska, in order of frequency, with specific causes Iisted in Tables $3.58, B .54$, and 8.60 . Operational collisions are attributed to personnel fault nearly half of the time, while explosion/fire and material failure are nore comonly the result of equi pment failure.
table B. 54
SPECI FIC LOCATI ON* COMPARI SON

		Operati Collis		Ground	di ng	Expl 0s Fire	i on/		und/Ca		ial ilure	Tota	
			Vess.		Vess.		Vess.			ss.	Ves		Vess.
	Location	Deaths	Lost	Deaths	Lost	Deaths	Lost	Deaths	Lost	Deaths	Lost"	Deat hs	Lost
	Mai ne		1		3		2	16	6	1		17	12
	Massachusetts	4	3		5	1	7	11	21		8	16	44
	Rhode Isl and				2		1	6	8		4	6	15
	Corm, NY, N	1	1		3		4	10	12		10	11	30
I	Del. Bay		1		1			1	3			1	5
-	Del , MD, VA coast						1	1	2			1	3
3	Chesapeake Bay	4	6		3	3		17	12	6	5	30	26
	North Carol ina			4	3	3	8	4	7		2	11	20
	South Carol i na		1		9		2	1	5		5	1	22
	Georgi a		2		6		13	1	6	2	1	3	28
	Fl ori da East		4	1	8	3	9	4	15	5	5	13	41
	Fl ori da West	2	5		11		10	5	11	5	7	12	44
	Al abana		2		4	3	9	1	4		1	4	20
	M ssi ssi ppi		2		1			4	2		2	4	9
	Loui si ana	1	9		5		10	1	8	6	2	8	34
	Texas		25	1	32		16	11	16	1	19	13	108
	Sout hern Calif.		4		26		14	10	27		10	10	81
	Northern Calif.	4	10	1	10	2	8	8	22	8	10	23	60
	Pacific Northwest	3	7	3	15	4	28	11	34	7	14	28	98
	A aska	5	8	13	45	4	38	36	59	8	21	66	171
	TOTAL	24	91	23	192	23	180	159	280	49	128	278	871
	A aska, \% of total	20. 8	8. 8	56.5	23.4	17.4	21.1	22. 6	21. 1	16. 3	16.4	23. 7	19. 6

*A I I ocations not incl uded.
Source: Ecker, Commander WilliamJ., A Safety Anal ysis of Fi shing Vessel Casual ties, U.S. Coast Guard, 1978.
table B. 55
CASUALTY TYPE AND SERI OUSNESS OF CONSEQUENCES, FI SH NG VESSEL CASUALTI ES FY 72-77

Casual ty Freq.		Casualty Deaths		Vessel s Lost	
$\begin{gathered} \text { Num } \\ \text { Vessel s } \\ \hline \end{gathered}$	Ranking	Num Vessel s/ Num Deaths	Ranki ng	$\begin{gathered} \hline \text { Num } \\ \text { Vessel } \mathrm{s} \end{gathered}$	Ranki ng
1,221	1	19/29	3	218	2
980	2	36/63	2	158	4
880	3	14/24	4	114	5
819	4	121/238	1	397	1
412	5	16/20	5	215	3
542		23/40		72	

[^6]TABLE B. 56
PRI MARY CAUSES

## Casual ty type: Fl ooding/foundering/ capsizing Casualty period: FY 72 thru 77

PRI MARY CAUSES PERCENT

1. Personnel Fault ..... 17.6
a. carel essness/i nattention (18.8\%/)
b. improper securing of vessel (13.9\%)
c. poor seananshi $\mathbf{p}$ ( $9: 0 \%$ )
d. misj udge effects of current, wind, etc. (6.3\%)
2. Storns., Heavy Weather ..... 15.3
a. large swell across bar ( $37.6 \%$ )
b. structural failure (11. $\mathbf{2 月}^{\circ}$ )
c. gal e force winds ( $8.8 \%$ )
d. hurri cane wi nds (4.8\%)
e. cargo shift (3.2\%)
f. ice (2.4\%)
$\begin{array}{ll}\text { 3. Equi prent Fai lure } & 14.9\end{array}$
a. drai nage system ( $27.0 \%$
b. el ectrical ( $8.2 \%$
c. ot her ( $48.4 \%$ )
$\begin{array}{ll}\text { 4. Structural Failure } & 10.7\end{array}$
a. wasted plates \& internals (53.4\%)
3. Striki ng Subnerged Obj ect $\quad 7.0$
$\begin{array}{ll}\text { 6. Unseavorthy } & 5.1\end{array}$
a. failure of nood hull. ( $54.8^{\circ} \mathrm{f}$ )
b. failure of steel hull (14.3\%)
c. unsuitable for route ( $16.7 \%$ )
4. I mproper Mai nt. - Fail ure of Wod Hull 2.9
5. Exact Cause Unknown
6. 5
a. progressi ve flooding (28.40\%)
b. questionable stability (10.4\% ${ }^{\circ}$ )
c. vandal i sm ( $8.0 \%$
d. i mproper nooring (7.0\%)

Source: Ecker, Commander William J., A Safety Anal ysis of Fishina Vessel Casualties, U.S. Coast Guard. 1978.
tABLE $B \cdot 5_{7}$
PRI MARY CAUSES \& CONIRI BUTI NG FACTORS
Casual ty type: Groundi ng
Casual ty period: FY 72 thru 77
PRI MARY CAUSES PERCENT

1. Personnel Faul t ..... 62.3a. navi gation - failed to ascertain position (43.6\%)b. carel essness/i nattention (11.3\%)c. misjudge wis/ current (11.1\%)d. poor seananshi p (4.3\%)e. lack of Local Know edge (4.3\%)
f. failed to determine hei ght of tide (2.0\%)
2. Equi pnent Fai I ure ..... 11.9
3. Heavy Weather, Storns, Currents ..... 10
4. Depth Less Than Charted ..... 9.4
5. Other Causes ..... 6.4
CONTRI BUTI NG FACTORS FREQUENTLY MENTI ONED
6. Restricted Maneuvering in Channel
7. Heavy Weather
8. Unusual Currents
9. Equi pnent Fai I ure - Mai n Propul si on, Steerina Gear, Rudder,Propeller Loss
10. Congested Area
11. Lack of Proper Lookout
Source: Ecker, Commander WilliamJ., A Safety Anal ysis of Fishina VesselCasual ties, U.S. Coast Guard. 1978.
table B. 5
FRI MARY CAUSES \& CONTR BUTT MG FACTORS
Casual ty Type: Expl osi on/ Fir re Casualty Period: FY 72 thru 76
PRIMARY CAUSES ..... PERCENT
12. Equip pent Fail I re ..... 38.6
a. el ectri cal ( $38.4 \%$
b. fuel oil system (14.5\%
c. ventilation (5.0\%
13. Engin ne Room Fir res ..... 20.6
14. Fire From Undetermi ned Sources ..... 14.8
15. Personnel Fault ..... 11.2
a. improper safety precautions (54. 3\%b. care essness ( $30.4 \%$
16. Unknown ..... 6.7
CONTR BUTI MG FACTORS FREQUENTLY MENTI OED
17. Di ese and Gasoline Engin mes
18. Electrical - Wiring
19. Gas/ Oil Heaters
20. Galley Equip pent - Ovens \& Ranges
21. Ventilation Systens
22. Yard Repair rs
Source: Esker, Commander William J., A Safety Anal isis of Fishing VesselCasualties, U.S. Coast Guard. 1978.

## table B. 59

PR MARY CAUSES

## Casual ty type: Material Fail I mure Casual ty period: FY 72 thru 77

## RI MARY CAUSE

PERCENT

1. Fail $I$ ore of $\mathbf{O n}$-Board Equip pent
74.8
a. el ectrical (9.3\%)
b. fuel oil system (6.1\%)
c. I ubs oil system $\{5.7 \%$
d. salt water system ( $3.8 \%$ )
e. fresh water system ( $3.5 \%$ )
f. hydraulic ( $3.0 \%$
g. hull I drat mage (1.5\%)
$\begin{array}{lll}\text { 2. } & \begin{array}{l}\text { Structural } \\ \text { a. Fail cure }- \text { No Personnel Fault }\end{array} & \mathbf{8 . 9}\end{array}$
2. Unseaworthy mod pl anking (819 4.3 ،
a. fail ire of mood planking (81\%)
3. Sterns, Heavy Weather 2.9
4. Personnel Fault $\mathbf{2 . 4}$
5. Unknown 4.5

Source: Esker, Commander William J., A Safety Anal isis of Fishing Vessel Casual ties, U.S. Coast Guard. 1978 .

# TABLE B. 60 <br> PRI MARY CAUSES \& CONTRI BUTI NG FACTORS 

Casual ty type: Operational Collisions Casualty period: FY 72 thru 77
PRI MARY CAUSES
PERCENT

1. Personnel Faul t47.7
a. rules of road (44. $8 \%$b. i mproper lookout ( $22.6 \%$
c. carel essness/i nattention (6.2\%)
d. misjudge wi nd/current (4.8\%)
e. poor seamanship (2.1\%)
2. Presence of a Subnerged Obj ect ..... 9.8
3. Equi pnent Fai I ure ..... 3.6
4. Fault Other Vessel ..... 28. 4
5. Other Causes ..... 10. 5'
CONTRI BUTI NG FACTORS FREQUENTLY MENTI ONED
6. Restricted Maneuvering in Channel
7. Congested Area
8. Lookout not Al ert
9. Poor Visibility
10. Currents \& Ti des
11. Weather, Gener ally
Source: Ecker, Commander William J., A Safety Anal ysis of Fishina Vessel Casualties, U.S. Coast Guard. 1978.

Though operational collisions are not the nost preval ent vessel casualty in Alaska, this type of incident is of special interest in respect to increased marine traffic which may occur due to petrol eum devel opment in an area. Collisions in which vessels are neeting involve the nost fishing vessels, . followed by collisions with subnerged objects (Table $\bar{B} \cdot 6 \mid$ ). The frequency of vessel meeting collisions invol ving fishing vessel sincreased steadily throughout the study period of 1972-1977, while the frequency of other types of collisions showed little gain or sizable decreases.
3.62

Table $A$ reports the frequency of fishing vessel casual ties according to the fishing activity at the time of the incident. U.S. Coast Guard documentation records indi cate that approxi mately one-third of Anercian fishing vessel s participated in the shrimp fishery during the study period, and a similar number fished for sal non. An additional five percent were invol ved in the crab fisheries and the renai nder of the Anerican fishing fleet pursued other species of fish. However, it must be remenbered that nany vessel s partici pated in nore than one fishery. Forty-nine percent of the vessel s lost and 34 percent of the fishernen killed were involved with shriming, while only ei ght percent of the vessel s lost and 11 percent of the fishernen killed were fishing for sal non. Si $\mathbf{x}$ percent of the vessel $s$ lost and ni ne percent of the deaths were rel ated to crabbing. Specific data were not available to indicate the proportion of accidents which were attributable to A aska, nor the proportion of boats in each fishery. However, since Alaska is the top producer of crab and sal non, and has a very substantial shrimp fishery, it can be assumed that data concerning Al aska wouldindicate that crabbing and shriming are rel ativel $y$ hazardous, and that sal non fi shernen face less danger,

$$
F .175
$$

```
tABLE B. 61
Trend Chart by Year OPERATI ONAL COLLISIONS - I NCI DENTS \& VESSEL I MNOLVEMENT
```



[^7] 1978.

TABLE B.62

## SPEC Fl Fl SH MG ACTIVITY ${ }^{1}$



[^8]
## Alaska Marine $\mathbf{O l}^{\boldsymbol{I}}$ Spills

Information concerning Alaska marine oil spills from 1973 through 1977 was obtai ned from data contai ned in the Pol I ution Incident Reporting System (PIRS), a system nai nt ai ned at U.S. Coast Guard Headquarters in Whshington, D. C. Al Al aska narine-rel at ed oil spills recorded by the PIRS were examined in an attempt to expose any trends or occurrences whi ch may be rel ated to Alãska's increasing vol une of marine traffic, and to its growing petrol eum industry. With the exception of nore spills being reported in recent years, which was fully expected based upon increasing marine activity, it appears that there was no substantial change in the types of spills occurring through- out the data period.

Inspection of Tables 8.63 through $B .70$ quickly verifies that oil spills are extrenel y di versified in quantity, source, cause, and even naterial spilled. Spills of $\mathbf{1 , 0 0 0}$ gallons. or greater are presented indididually in Tables 8. 63 through B. 67, but many more spills of onl y one to five gallons were recorded* by the Coast Guard, and the remai nder lie between these extrenes. of particular interest may be the fact that in 1975, 1976 and 1977, the occurrence of spills in excess of $\mathbf{1 , 0 0 0}$ gal lons actually declined by over onethi rd rel ative to 1973 and 1974 level s. Also, it is notable that in nost years, a single spill has accounted for around three-fourths of the total recorded petrol eum pollution in Al aska waters.

Li ght diesel fuel is the nost common pollant invol ving Iarge spills ( Tab" 1 e B.68). Li ght diesel is used extensi vely in Al aska, providing power

$$
\text { E. } 178
$$

tABLE B. 63
1973 ALASKA MARI NE OL SPI LLS $\geq$ 1, 000 GALLONS


Source: United States Coast Guard Pol Iution Incident Reporting System data.

1974 ALASKA MARINE $\mathbf{O L}$ LPILLS $\geq 1,000$ GALLONS

1975 ALASKA MARI NE OL SPILLS $\geq 1,000$ GALLONS

Materi al	Quantity	Source	Cause
Li ght di esel	1, 100	Highway vehicle liquid bul $k$	Nat ural or chronic phenomenon
Heavy di esel	5,000	Fi shing vessel	Hull rupture or leak
Li ght di esel	1,000	M scel I aneous	Unknown causes
Jet fuel	1,500	Onshore bulk storage facility	Equi pnent fail ure
Li ght di esel	2,000	Highway vehi cle liquid bul $k$	Personnel error
Li ght di esel	65, 000	Onshore pipeline	Pi peline rupture or l eak
Gasol ine	300,000	Onshore fueling	Tank rupture or leak
Total	375, 600 gal I ons		

Largest single oil spill: 300, 000 gallons
Average quantity spilled: 53,657 gallons
Average quantity spilled excl uding largest spill: 12, 600 gal ons

- All 1975 Al aska Marine $\mathbf{O l}$ I Spills (all quantities):

Number: 136
Total quantity: 380, 275 gals.
Average quantity per spill: 2, 796 gal s .
Number of fishing vessel oil spills: 30
Average quantity per fishing vessel oil spill: 201 gal s.

Source: United States Coast Guard Pol I ution Incident Reporting System data.
table B. 66
1976 ALASKA MARINE $\mathbf{a L}$ SPILLS $\geq 1,000$ GALLONS

	Material	Quantity	Source	Cause
	Heavy di esel	40, 000	Onshore bulk storage facility	Transportation pipeline rupture or leak
	Jet fuel	9, 000	Rail vehicle liquid bulk	Rail road acci dent
	Light crude oil	2,000	Onshore oil or gas production facility	Hose rupture or leak
	Gasol i ne	1, 500	Aircraft	Aircraft acci dent
	Mxture of tuo or nore petrol eum products	2,000	Offshore production facility	Equi prent failure
	Li ght di esel	2,000	Onshore bulk storage facility	Tank rupture or leak
	Light diesel	1,000	Fi shi ng vessel	Tank rupture or leak
$y^{\prime}$	Li ght diesel	1,000	Rail way fueling facility	I mproper equi pnent handling or operation
0	Jet fuel	395, 670	Tankshi p 10,000-19, 999 gross tons	Hull rupture or leak
	Li ght diesel	4,000	Highway vehicle liquid bulk	Highuay acci dent
	Light diesel ${ }^{\text {Total }}$	$\begin{array}{r}9,000 \\ \hline 467,170\end{array}$	Onshore non-transportationrel ated facility	I mproper equi pnent handling or operation

Largest single oil spill: 395, $\mathbf{6 7 0}$ gal s. Average quantity spilled: 42, $\mathbf{4 7 0}$ gal $\mathbf{s}$. Average quantity spilled excl uding largest spill: 7, 150 gal s.

All 1976 Alaska Marine Ol $^{\prime}$ Spills (all quantities):
Number: 234 Total Quantity: 475, 820 gals. Average Quantity per Spill: 2,033 gal s.
Number of fishing vessel oil spills: 48
Average quantity per fishing vessel oil spill: 75 gals.
Source: United States Coast Guard Pol Iution Incident Reporting System data.

## table B. 67

1977 ALASKA MARI NE OL SPILL $\geq 1,000$ GALLONS

Material	Quantity	Source	Cause
Jet fuel	? 0,192	Onshore bulk storage facility	Pi pe rupture or l eak
Li ght di esel	72, 280	Fi shing vessel	Hull rupture or leak
Li ght di esel	1,000	Fi shing vessel	Hull rupture or Ieak
Heavy di esel	8,000	Fi shi ng vessel	Hull rupture or leak
Li ght di esel	1,000	Onshore bulk cargo , transfer	Personnel error
Li ght diesel	10,000	Onshore industrial plant or processing facility	Highway acci dent
Li ght di esel	8,000	Fi shing vessel	Hul I rupture or leak
Li ght di esel	2, 600	Onshore non-trans-portation-rel ated facility	Tank overflow
Uni dentified light oil	1,600	Onshore fulk storage facility	Pi pe rupture or leak
Total	114, 672		

Largest si ngle oil spill: 72, 280 gal s.
Average quantity spilled: 12,741 qals.
Average quantity spilled excl udi ng-I argest spill: 5, 299 gal s.
All 1977 Al aska Marine Oil Spills (all quantities):
Number 229
Total quantity: 123, 633 gal s.
Average quantity per spill: 540 gal s.
Number of fishing vessel oil spills: 56
Average quantity per fishing vessel spill: 1, 600 gal s.

Source: United States Coast Guard Pol Iution Inci dent Reporting System data,

$$
8.83
$$

# number of alaska mari ne al SPILLS $\geq 1,000$ gallons, BY MATERI AL SPI LLED 1973-1977 

Number of I nci dents
1973197419751977

## Material Spilled

Light Crude $\mathrm{O}^{\text {I }}$		1		1	
Gasol i ne		1	1	1	
Jet Fuel		1	1	2	1
Li ght Di esel Fuel	10	12	4	5	6
Heavy Diesel Fuel	1		1	1	1
Mxture of Tno or Mbre Petrol eum Products				1	
Uni dentified Light $\mathbf{O l}$					1
Uni dentified Heavy 017	1				
Other Oil	1				
Nat ural Occurrence	1				
Total	14	15	7	11	9

Source: United States Coast Guard Pol Iution Incident Reporting System data.

# TABLE E. 69 <br> NUMBER OF ALASKA MARI NE OIL SRI ILS $\geq 1,000$ GALLONS, BY CAUSE 1973-1977 

$\begin{array}{lllll}1973 & 1974 & 1975 & 1976 & 1977\end{array}$
Cause of ${ }^{\text {OI Spill }}$
Structural Failure or Loss

Hull Rupture or Leak	1	1	1	1	4
Tank Rupture or Leak	4	2	1	2	

Transportation Pipeline
Rupture or Leak
Other Structural Failu re

Equip pent Fail I cure

Pi pe Rupture or Leak	$\mathbf{2}$	$\mathbf{3}$	1	
Hose Rupture or Leak   Val ve Fail $I$ are	1	1		1
Other Equip pent Fail $\operatorname{lure}$	1	1	1	1

Personnel Error (Uni intentional Di charge)

Tank Overflow 1
I proper Equip pent Handle ing
or Operation 1
Other Personnel Error
Intentional Di charge 2

Other Transportati on Casual ty				
Rail I road Asci dent				
H ghway Asci dent				
Ai craft Asci dent				1
Natural or Chronic Phenomenon	1			1
Unknown Causes		1	1	
Total	14	15	1	

Source: United States Coast Guard Pollution Incident Reporting System data.

TABLE
3.70

NUMBER OF ALASKA MARI Ne OL SPI LLS $\geq 1,000$ GALLONS, BY SORRCE OF SPI LL 1973-1977

1973	1974	1975	1976	1977

Source of Oil Spill

Oher Vessel	2	1			
Tankship 10,000-19,999 gross tons	1				
Tank Barge 1,000-9,999 gross tons	1				
Tugboat or Towboat	1	1			
Fi shing Vessel	1		1	1	4
Onshore Bulk Cargo Transfer		1			1
Onshore Fueling	1	1	1		
Offshore Bulk Cargo Transfer		1			
Rail Vehicle Liquid Bulk				1	
Highway Vehicle Liquid Bulk		1	2	1	
Ai rcraft				1	
Other Land Transportation Facility		2			
Railmay Fueling Facility				1	
Onshore Pipeline			1		
Other Onshore Non-Trans-portation-Related Facility	1	3		1	1
Onshore Bulk Storage Facility				2	2
Onshore Industrial Plant or Processing Facility	2				1
Onshore $0 i 1$ or Gas Production Facility				1	
Offshore Production Facility				1	
M scel laneous - or Natural Source	4	3	1		
Unknown Type of Source		1			
To ta 1	14	15	7	11	9

Source: United States Coast Guard Pollution Inci dent Reporting System data.
in a large portion of the boats and to produce el ectricity in nost com munities outside the Anchorage-Cook Inlet area. Theref ore, many opportunities exist for diesel spills when large quantities are being loaded ont 0 or unl oaded from bulk supply vessel $s$, and whenever a di esel-powered boat experiences problens which allow fuel to escape. Di scarded waste oils and Iubricating oils account for a sizable portion of snall spills of several gallons or less. These incidents often occur within or near small boat harbors, and are often associated with the performance of minor boat mai ntenance. However, harbormasters have reported that the occurrence of such spills is decreasing due to stricter prevention neasures and better cooperation by boat operators who are becaming increasingly aware of envi ronnental concerns.

The causes of oil spills and the sources of the polutants cover a wide range (Tables B. $\boldsymbol{\&} \boldsymbol{9}$ and 8.70). In many cases, rather large quantities of ail, were lost in shore-based operations such as refueling and fuel tank overflow. Large shore-based spills far out numbered large nonshore-based spills whi ch were of ten attributable to hull rupture or leak or tank rupt ure or leak. Smaller oil spills often invol ve the intentional discharge of waste oils, or losses in which rather noderate maounts of lubricating oils, hydrolic $f l u i d s$, or engine fuel s escape unintentionally, Frequently personnel error or equi pnent malfunction is the primary cause of small spills.

The number of fishing vessel $\mathbf{s}$ invol ved with oil spills increased bet ween 1973 and 1977. The proportion of total spills attributable to fishing vessel s fluctuated from approxi nately 15 percent to 24 percent of all spills, but it did not exhi bit a secul ar trend. Most fishing vessel incidents
invol ved diesel fuel, lubricating oils or hydrolic oils, or waste oil, and only rarely were spills larger than a few hundred gallons.

Very little information was avalable concerning the affect the oil spills had upon the envi ronnent. Begi nning with 1977 data, sone oil spills were recorded with an assessment of their envi ronnental impact. Prior to 1977, a damage assessnent was not incl uded. Many 1977 spills did not incl ude assessments, however, and none of the spi 1s of 1,000 gallons or nore were assessed, All spills of which the degree of impact was eval uated received a rating of "potential" or "negligible", xcept for one spill rated "slight". Depending upon the location of the spill, the resources nost likely to be affected by the spills were boats and fish.

## Processing Pl ant Siting Requirements

Fish processors have a number of criteria that must be net when choosing a site for a land-based plant. Oftentimes sites are chosen in cl ose prox mity to population centers so as to utilize al ready existing anenities. Other tines, plants are located in quite renote areas to maintain coseness to the fishing grounds, and must be complet y selfsufficient. However, the particular needs are net, al nost all plants, processing nearly any species of fish, have similar basic needs

Adequate and suitable land must be available in a desirable location. Vari ous processors have indi cated that around 0.8 hectares (two acres) of Iand is adequate for a fairly large plant, but an additional 1.2 or $\mathbf{1 . 6}$ hectares (three or four acres) of open storage area nould be very desi rable. Additional space would allow storage of contai ner vans away from the plant, greatly reducing congestion. Al so, many fishernen do not have adequate storage facilities for their gear, especially the large crab pots, and safe storage of their gear is a service which many plants try to extend to regular customers when space all ous.

A plant must have a means of obtaining the raw fish for processing. This normally necessitates the locations of the plant where facilities can be constructed for offloading of fishing vessel s. Fi shing boats often have a draft of around $2.4 \mathrm{~m}(8 \mathrm{feet})$, but drafts in excess of $3.7 \mathrm{~m}(12$ feet) when loaded are no longer rare. Also, the current trend toward larger, multi-purpose vessel must be considered to insure usef ul ness of the facilities well into the future. Some plants presently receive considerable portions of their fish by air freight or truck, This suggests that with ingenuity, sites that at first appear inappropriate for fish processing facilities and are located away from the shore may actually prove adequate and nore readily available.

Electricity and fresh water are indi spensable for the operation of fish processing plant. Both must be readily available to supply the plant at peak usage levels. Fish processing is usually seasonal, and a plant's entire pack for the year nay be produced in a few short weeks during which the Iines run nearly full time. Vast amounts.of nater are needed at various points al ong the processing lines, with cleaning accounting for the I argest consumption. Electricity powers nost of the machi nery along the processing lines and must be provided by a reliable source, as any del ays in processing fish can result in considerablequality loss. Sone plants opt to generate their own electricity, often due to having no other source available. The use of electricity has grown nore critical to the fish processing industry with the growing preval ence of freezing, as freezing consunes mach nore el ectricity than the canning process it is repl aci ng,

Due to increasi ngly stri ngent envi ronment al protection regul ations, plants must provide adequate means of industrial waste disposal. Mre I eni ency is exerci sed in renote areas where several plants are not grouped together. Particular EPA waste di sposal requi renents for any potential plant site could noti ceably alter construction and operating costs.

Mbdes of transportation available for servicing the plant site are a critical consideration. Mbst $\mathbf{A l}$ askan fisheries products are eventually transported to the Seattle area by frei ghter or barge in container vans for further processing and di stribution. Plants must be serviced regularly and with such frequency to assure a supply of vans for loading so freezing and warehousing facilities do not becone overburdened, thus resulting in a production bottleneck.

Many other factors, such as availability of labor and certain economic factors, enter into the choice of a fish processing plant site. However,
unl ess essential physical criteria are first net by a site, further investigation is unnecessary.

## GOVERNENTAL EM RONMENT

The Commerci al fishing industry is regul ated, pronoted, hi ndered, and in other ways influenced by governnental entities. This section provides a brief summary of the objectives of sone of the nore influential governmental entities in an attempt to describe the governmental envi ronnent in which the comercial fishing industry is expected to operate during the forecast period of 1980 through 2000.

Feder al Policy

Legal sanction for a broadened nore comprehensi ve national policy for marine fisheries was provided by the passage of the Fi sheries Conservation and Managenent Act of 1976 (FCMA). Much of the policy enbodi ed in the FCMA parallel sthat devel oped in the National Pl an for Marine Fi sheries submitted to the Secretary of Commerce on Decenber 1975 by the Director of the National Marine Fi sheries Service in cooperation with the Department of State. Im pl enentation of these goal sis borne by the Department of Comerce (and its sub-agency the National Marine Fi sheries Service) in cooperation with the Departnent of State and the ei ght Regi onal Councils created by the FCMA.

The Policy goal s devel oped in the National PI an and the FCMA as well as. a di scussi on of the NOAA Aqui culture Pl an prepared by the National Marine Fi sheries Service and the Office of Sea Grant will be the topic of thi section. The goal s of the National Pl an are:
. To restore, maintain, enhance, and utilize in a rational nanner fisheries resources of importance to the United States; To improve the contribution of narine resources to recreation and other social benefits; To devel op and maintai $n$ heal thy commercial and recreational fisheries industri es; and To increase the supply of whol esone, economically priced seafood products to the consuner.

These goal s are regarded as fixed and constant points of reference for future deci si ons in the real $m$ of national policy and priority. (National Plan for Marine Fisheries p. ii).

To achi eve these national goals the plan outlines five maj or recommendations, they are as follows:

1) Establish policies, plans, and institutional managenent arrangements to restore, maintain, and enhance fish stocks within U.S. jurisdiction, to insure the equitable allocation of these stocks, and to assist in the conservation of stocks of importance to the United States outside U.S. waters.
. Nanage fish stocks for optimum utilization.
. Establish state and federal institutional arrangenents for nanagenent of donestic fisheries resources. Insure that interested parties have opportunity to advi se on the needs for fisheries managenent plans and the contents of them
. Devel op a sound statistical and scientific data base for the fisheries resources to be managed.

- Improve and expand federal and state surveillance and enf orcenent capabilities as needed.
- Establish a nechani sm which would permit limiting entry into fisheries where bi ol ogical, economic and social evi dence shows such action to be appropriate.
. Devel op a funding system to pay managenent costs.
- Provide continued opportunity for U.S. fishermen to participate in fisheries for highly migratory species wherever they are found, to have access to areas of hi storical U.S. fishing that nay be within the jurisdiction of other nations, and to partici pate where appropriate in fishing for under utilized species within ot her nations' jurisdi ctions, and not subject historically to U. S. fishing.
- Strengt hen i nternational arrangenents with respect ' to salmonid stocks of U.S. origin and other fish stocks shared with adjacent nations.

2) Reverse the downward trends in quantity and quality of fish habitats by minizing further losses and degradation of these habitats, restoring and enhancing them where possi ble, and establishing sanct uaries where necessary, while recognizing ot her compatible essential uses of fish habitat areas.

I mprove the consi deration given to fish habitats in deci si on naking processes.
Mtigate losses of habitat where possible, restore habitats lost or degraded, and devel op economically feasi ble enhancenent opport unities.
Establish sanctuaries, reserves, or other systens where necessary to protect critical fish habitats, fish production, and associ ated recreational and esthetic values. I mprove the qual ity, and increase the di ssemi nation of inf or nation requi red for fish habitat conservation activities.
3) Strengthen the U.S. commercial industry to enable it to provi de i ncreased supplies at competitive prices.

> Establish an effective fisheries deve opnent program to enable the U.S. comercial fishing industry to enl arge its share of narkets through ncreased productivity, I ower costs, and increased acceptability of fishery products to the consumer. Desian fi sheries nanagenent plans and revise unnecessarily restricti ve regul ati ons to permit increased industry efficiency and lower production costs.
4) I mprove opportunities for participation in narine recreational fi shi ng.

- Expand and accel erate research needed for the im provenent managenent and use of recreational fisheries, and improve the di stribution of information thus obtai ned. Increase the anounts and kinds of fisheries resources available for recreational use.
Increase access for anglers and recreationists to shorelines, waters, and fish. Determine the needs of comercial enterprises for assi stance in devel oping access, facilities, and servi ces upon which nari ne recreational fishernen depend.

5) Ensure the availability to the U.S. consumer of supplies of whol esone fishery products from U. S. sources sufficient to provide for projected increases in consumption.

Increase U.S. I andi ngs by 1.04 milli on Mr (2.3 billion pounds) by 1985 to provide for the projected increases in U.S. consumption.
Encourage the devel opment of public" and private aquaculture for sel ected species of fish and shellfish. Assure the whol esoneness and identity of fishery products to U.S. consumers through a comprehensi ve program of inspection of U.S. and foreign production facilities and supplies.

As stated previ ousl $y$, the legislative impetus for implenentation of these goal s was the FCMA. The following sections of Public Law 94-265, express the policy goal s of the FCMA.

SEC. 2. FI NDI NGS, PURPOSES AND POLI CY
(a) FI NDI NGS. -- The Congress fi inds and decl ares the following:
(1) The fish off the coasts of the United States, the highly nigratory speci es of the high seas, the speci es which dwell on or in the Continental Shel f appertaining to the the United States, and the anadromous speci es whi ch spawn
in United States rivers or estuaries, constitute val uable and renewable natural resources.

These fishery resources contri bute to the food suppl y, econony, and health of the Nation and provi de recreational opportunities.
(2) As a consequence of increased fishing pressure and because of the inadequacy of fishery conservation and managenent practices and controls (A) certain stocks of such fish have been overfished to the point where their survi val is threatened, and (B) other such stocks have been so substantially reduced in number that they could becone simiarly threatened.
(3) Commercial and recreational fishing constitutes a maj or source of empl oynent and contributes significantly to the economy of the nation. Many coastal areas are dependent upon fishing and rel ated activities, and their economi cs have been badly danaged by the overfishing of fishery resources at an ever-increasing rate over the past decade. The activities of massive foreign fishing fleets in waters adjacent to such coastal areas have contributed to such danage, interfered with donestic fishing efforts, and caused destruction of the fishing gear of United States fi shermen.
(4) International fishery agreenents have not been effective in preventing or terminating the overfishing of these, val uable fishery resources. There is danger that irreversible effects from overfishing will take place before an effective international agreement on fishery managenent jurisdiction can be negotiated, si gned, ratified, and i mpl enented.
(5) Fi shery resources are finite but renewable. If placed under sound managenent bef ore overfishing has caused irreversible effects, the fisheries can be conserved and nai ntai ned so as to provide optimm yi eld on a continui ng basis.
(6) A national programfor the conservation and managenent of the fishery resources of the United States is necessary to prevent overfishing, to rebuild overfished stocks, to insure conservation, and to realize the full potential of the nation's fishery resources.
(7) A national program for the devel opnent of fisheries which are underutilized or not utilized by the United States fi shing industry, incl udi ng groundfish of f Alaska, is necessary to assure that our citizens benefit from the empl oynent, food supply, and revenue whi ch could be generated thereby.

$$
E: 5
$$

(b) PURPOSES -- It is therefore decl ared to be the purposes of the Congress in this Act--
(1) to take imedi ate action to conserve and manage the fishery resources found off the coasts of the United States, and the anadromous species and Continental Shelf fishery resources of the United States, by establishing (A) a fishery conservation zone within which the United States will assume excl usi ve fishery managenent authority over all fish, except highly migratory speci es, and (B) excl usi ve fishery managenent authority beyond such zone over such anadromous species and Continental Shel f fishery resources;
(2) to support and encourage the i mpl enentation and enf orcement of international fishery agreenents for the conservation and managenent of hi ghl y migratory speci es, and to encourage the negotiation and implenentation additional such agreenents as necessary;
(3) to pronote donestic commercial and recreational fishing under sound conservation and managenent princi ples;
(4) to provide for the preparation and implementation, in accordance with national standards, of fishery managenent plans which will achi eve and nai ntai $n$, on a continui ng basi $s$, the opti mum yi eld from each fi shery;
(5) to establish Regi onal Fi shery Managenent Councils to prepare, monitor, and revise such plans under circunstances>(A) which will enable the states, the fishing industry, consumer and envi ronnental organizations, and other interested persons to partici pate in, and advi se on, the establishment and admi ni stration of such plans, and (B) whi ch take into account the social and economic needs of the states; and
(6) to encourage the devel opnent by the U. S. fi shi ng industry of fisheries which are currently underuti'lized or not utilized by United States fishermen, including groundfish of $f$ A aska.
(c) POLICY -- It is further declared to be the policy of the Congress in this Act--
(1) to mai ntain without change the existing territorial or other ocean jurisdiction of the United States for al I purposes ot her than the conservation and managenent of fishery resources, as provided for in this Act;
(2) to authorize no impedi nent to, or interference with, recognized legitimate uses of the high seas, except as necessary for the conservation and managenent of fishery resources, as provi ded for in this Act;

$$
15.196
$$

(3) to assure that the national fishery conservation and nanagement program utilizes, and is based upon, the best sci entific infornation available; involves, and is responsi ve to the needs of, interested and affected states and citizens; pronotes efficiency; draws upon federal, state, and academic capabilities in carrying out research, admi ni stration, management, and enforcenent; and is working and effective;
(4) to permit foreign fishing consi stent with the provi si ons of thi s Act; and
(5) to support and encourage conti nued active United States efforts to obtain an internationally acceptable treaty, at the Thi rd United Nations Conference on the Law of the Sea, which provi des for effective conservation and nanagenent of fishery resources.

16 USC 1802

## SEC 3. DEFI N TI ONS

(17) The term "nati onal standards" means the national standards for fishery conservation and management set forth in section 301.
(18) The term "optimum", with respect to the yi eld from a fishery, neans the amount of fish- -
(A) which will provide the greatest overall benefit to the nation, with particul ar reference to food production and recreational opportunities; and
(B) which is prescribed as such on the basi s of the naximum sust ai nable yi el d from such fishery, as nodified by any rel evant economic, social, or ecol ogi cal factor.

90 STAT. 335
TI TLE III--NATI ONAL FI SHERY MANAGEMENT PROGRAM
USC 1851.
SEC. 301. NATI ONAL STANDARDS FOR FI SHERY CONSERVATI ON ANO MANAGEMENT.
(a) IN GENERAL--Any fishery management plan prepared, and any regul ation promal gated to implenent any such plan, pursuant to this title shal be consi stent with the following national st andards for fishery conservation and management:
(1) Conservation and nanagement measures shal I prevent overfishing while achi eving, on a continuing basis, the opti mum yi el d from each fi shery.
(2) Conservation and managenent neasures shal 1 be based upon the best scientific infornation available.
(3) To the extent practicable, an individual stock of fish shall be managed as a unit throughout its range, and interrel ated stocks of fish shall be nanaged as a unit or in close coordi nation.
(4) Conservation and managenent measures shall not di scriminate between resi dents of different states. If it becones necessary to allocate or assign fishing privileges anong various United States fishernen, such allocation shall be (A) fair and equitable to all such fishermen; (B) reasonably cal cul ated to pronote conservation; and (C) carried out in such manner that no particul ar indi vidual, corporation, or other entity acquires an excessive share of such privileges.
(5) Conservation and managenent measures shal 1, where practicable, pronote efficiency in the utilization of fishery resources; except that no such measure shal l have economic allocation as its sole purpose.

90 STAT. 345
To capsulize somewhat, the goals nost far reaching in their effect on comercial fishing are those pertaining to the restoration, nai ntenance and enhancement of fish stocks within U. S . urisdiction. To accomplish this a concept defined as optimumield will be utilized and, if necessary, a system of limiting entry will be instituted if ". ..biological, economic and soci al evidence shows such action to be appropriate." Further, direct encouragenent will be given in the devel opment of the $\mathbf{U} . \mathbf{S}$. commercial fishing industry.

In Al aska one visible evi dence of this encouragenent is manifested in the Al aska Fi sheries Devel opnent Corporation's application for Sa tonstahlKennedy funds admini stered by the Departnent of Commerce. If granted, the funds will be used in a variety of projects to encourage deve opnent of the groundfish industry in waters off $\mathbf{A}$ aska.

The need for the funds and expected results are identified in their proposal and repeated here:

## DEVELOPMENT PROPOSAL FOR BOTTOMFISH OFF ALASKA

8. Urgency of Need for Project:

The U.S. fishing fleet must show its willingness and capability to compete with and displace the foreign fishing effort if it is to naintain and increase the TAC for U.S. fisher men.

The U.S. fisherman can contribute favorably to the U.S. bal ance of paynents if he takes advantage of the vast resource now available to himin the U.S. 200 mile zone.

- Many fishernen need to see lucrative working denonstrations of groundfishing before they will invest large suns of noney and time into personal efforts.

The Alaska econony can be stabilized and devel oped by providing empl oynent and invest nent opportunities in fish catching, processi ng, and allied industries,

There is need to enhance economic viability of the Pribilof I sl and commiti es.
11. Description of Expected Results (To incl ude Cost Benefit Esti mates) for Each Fiscal Year:

FY ' 78	$F Y^{\prime} 79$	$F Y^{\prime} 80$	$F Y^{\prime} 85$

Landi ngs in pounds round wei ght

35, 000, 000
200, 000, 00
600, 000, 000
2,000,000, 000
Val ue of end products
as they leave primary
processors. Thi s
will be benefit to
U. S. bal ance of trade 14, 700, $000 \quad 96,700,000 \quad 290,000,000 \quad 1,000,000,000$

Employment:
employed full tine)

On vessel s	60	170	500	1,670
In plants	200	800	2, 400	8, 000
I ndi rect	120	1, 120	4, 800	16, 000
Total empl oynent	380	2, 090	7; 700	25,670
Total personal incone	8,800,000	45, 200, 000	164, 000, 000	549, 000, 000

Note: The groundfísh program of the $A F D C$ is the catal yst, applied in 1978 and 1979, with sone followthrough in 1980, which will be instrumental
in creating a large new industry in Al aska. This newindustry will stimI ate supporting activity in Whshington, Oregon, and other states which ei ther build boats for Al aska, supply the seafood industry or process primary seafood products origi nating in the Northwest. The nain benefit will be realized in about 1985 when the new industry will have grown to a substantial percentage of its potential. By 1990 it will be even larger but consi dering the year 1985 as an example, we expect the following from the new Al askan groundfish industry:

1) An annual improvenent in the U. S. bal ance of trade of $\$ 1,000,000,000$.
2) Total new empl oyment in the U.S. of 25,670 people full tine. (Of this at least 18,000 will be in Al aska).
3) A total of new annual personal income of \$549,000,000.

Aqainst the above benefits we have total out of pocket costs in 1978-80 by governnent and industry (excl uding capi tal expendi tures) of about $\$ 7,200,000$.

By 1985 private industry invest nent in vessels and plants will have reached $\$ 600,000,000$.

Wei ght should be gi ven to the fact that with good fishery managenent under the 200 - mile zone law these economic benefits in the form of improved foreign exchange bal ance, empl oynent, and personal incones will be perpetual. We are building upon a renewable resource.

NOAA Aqui cul ture Pl an

The goal s of aquiculture devel opnent and likely target species are outlined in the NOAA Aqui culture Pl an issued in May of 1977.

## GOALS AND OBj ECTI VES

- The primary NOAA goal for fisheries is to nai ntain or increase the national availability of a broad spectrum of aquatic resources and products for the U.S. consumer. As rel ated to aquaculture, the goal is to have public hatcheries or private husbandry increase production of sel ected speci es that are in short supply.
- The objectives of NOAA prograns are to provide the scientific, technical, legal, and institutional base needed for the developnent of aqui culture in cooperation with other agenci es and groups, and to facilitate early application of research results by information di ssem nation and extension activities.

Speci es target ed for devel opnent fundi ng are ranked hi gh, nedi um or low priority and are listed here.

## High Priority

Species:
hat chery, pen reared and ocean ranching of sal mon (incl udes Atlantic and Pacific sal non)

Medi um Pri ority
Speci es:

> butter cl am geoduck surf cl am nani I a cl am bay scal I op spot prawn

Low Priority
Speci es:

```
sablefish
Dungeness crab
```

Envi ronnental Protection Agency.

EPA has yet to promilgate final seafood processing effluent regulations for Al aska. Preliminary regul ations are expected to be sonewhat nodified. How ever, new regul ations are not expected until an existing industry law suit agai nst EPA is settled.

According to Jim Bray, an Economist with the Marine Advisory Program at the Uni versity of Wishington, the maj or impact of the regulations will be to eliminate the small "nom and pop" type processing plants. Most Iarger plants al ready have the technol ogy to comply with EPA regul ations or are pumping effluent to deep water.

The naj or i mpact of EPA regul ations will be an accel eration of concentration of facilities and ownership in seafood processing. EPA regul ations nay al so accel erate the nove to offshore processing where the regul ations are not applicable.

Public Law 94-265 94th Congress, H.R. 200 April 13, 1976.
NOAA Aqui culture Plan, prepared by National Oceanic and At nospheric Admini strate on, Nati onal Mari ne Fi sheri es Service and Office of Sea Grant. John B. Gude, ed. Aqui culture Program Coordi nator May 1977.

A Marine Fisheri, s Program for the Nation. U.S. Departnent of Comerce, Whshi ngton, D.C. July 1976.

Devel opnent Proposal for Bottomfish of f Al aska. Al aska Fi sheri es Devel opnent Corporation. February 1978.

Economic Anal ysi s of I nterim Find Effluent Guidelines, Seaf ood Processing I ndustry. U.S.E.P.E. , EPA 230/1-74-047, February 1975, Whshi ngt on, D.C.

Revi ew of Economic Anal ysis of Effluent Gui delines, Seafood Processing Industry. J anes W. Bray. Uni versity of Wishi ngton, Seattle, Whshi ngt on, August 5, 1976.

```
Ba
```


## State Fisheries Policy

Fi sheries policy in the State of Al aska has historically been one which
 resource use. One nethod of accomplishing this goal has been to support neasures whi ch assure and/ or encourage onshore processing. The raw fish tax differential for product processed at sea is a good example of this policy.

With the advent of federal $200-\mathbf{m l e}(322 \mathrm{~km})$ limit legislation, prospects for deve oping fisheries off $\mathbf{A}$ aska, particularly groundfish, improved substantial $y$. With forei gn fishing now under strict managenent controls by the North Pacific Fi shery Managenent Council and the Department of Commerce, the devel opnent of a donestic groundfish industry seens both attractive and likely.

In response to the growth potential, the Hamond admini stration created a position for a coordi nator for groundfish devel opment within the office of the governor. Staff services and program devel opment coordi nation are provi ded by the Departnent of Comerce and Economic Devel opnent.

Under this devel opnent program broad concepts of state fishery policy are energing. Ret ai ning the goal of Alaska's fisheries for Alaskan's, the state seeks to expand its role in fisheries devel opment in the following ways:

1. To expand know edge of fishery techni que by gear denonstration projects.
2. Encouragenent of comminity-based production.
3. Adoption of policies and prograns designed to increase fishing effort by Al aska fishernen with particular enphasis on devel opnent of non- seasonal effort.
4. Managenent of fisheries on antimumsustained yid basis.
5. Provisi on of commity devel opment support to handle effects of increased fishing effort:
a. port facility devel opment
b. transportation
c. commini cation
d. utilities
e. state and local governnent land policies
f. housing, heal th care, water supply, waste di sposal, recreational facilities.
6. Emphasis in all policies and prograns placed on $\mathbf{n}$ building a I ong-term fishi ng i ndustry. (Speech by Jim Edenso, Coordi nat or for Bottomfish Devel opnent, del ivered at the 29th Al aska Sci ence Conf erence, August 78, Fai rbanks, Al aska. )

Prograns now in effect which support these goal s are:

The Alaska Renevable Resources Corporation. Legislation to create the Al aska Renewable Resources Corporation was introduced this year by the House Speci al Committee on the Al aska Permanent Fund and supported by Governor Jay Hammond. The corporation is designed to:

1. Assi st in the rehabilitation, enhancenent, and devel opnent of the state's renewable resources;
2. Sponsor research and devel opnent of technol ogi es and i nnovations whi ch are appropriate to the use of these resources; and
3. Identify new products and narkets for renewable resource industries in the state, assist in the demonstration of their technical and economic feasibility, and help to introduce new y proven products and technol ogi es into commercial narkets.

$$
3,205
$$

It is a public corporation within the Department of Revenue but legally autononous from the state. It will be governed by a three-nenber board of trustees appointed by the governor and confirned by the legislature. The corporation will evaluate proposed projects and provide technical assi stance and financial aid to qualified applicants in the form of loans, grants, or equity participation. The corporation will be funded with five percent of state mineral revenues fromleases, bonuses, and royalty paynents that will be di vi ded between a trust fund and a devel opment fund (Alaska Public Forum).

The Commercial Fi sheries and Agriculture Bank. The 1978 A" aska I egi sl at ure created the Fisheries and Agriculture Bank to:

1. Provi de sources of credit for Alaska agriculture and fishing busi nesses;
2. Encourage harvesting of of fshore fisheries that have been ' under utilized by Alaskans in the past;
3. Encourage processing and narketing of underutilized fish species;
4. Encourage technol ogical devel opnent of underutilized fish species; and
5. Pronote the nore rapid devel opnent of agriculture.

The bank will provide credit and technical assi stance to sharehol der farmers and fishernen. The board of directors is not yet appointed and articles of incorporation must be drawn to create the formal structure of the bank and procedures for beconing a stockhol der.

In addition, the comercial fishing loan fund has been expanded to provide i ncreased anounts of noney per loan for vessel purchase and gear and
and equi pment acquisition. The loan fund is administered by the Departnent of Comerce and Economic Devel opnent (Alaska Public For um).

One of the inherent problens of forecasting Alaska's fishery policy over the long-termis the turnover in state administrations and the resultant effects changes in political climate have on policy goals. It can, however, be said with reasonable certainty that any admistration, if it is to be elected, will support and reflect the prevailing policy view of the legislature and, further, it will defend state interests at the expense of out-of-state and foreign interests. How a particular administration vieus the particular trade- offs invol ved in this process is impossibe to predict. The concept of renewable resource devel opnent in Alaska to provide Iong-run economic stability is, however, a sound one and will doubtless be around for awhile. The extent to which the state in the long-run will nurture this policy will ultimately depend on the degree of support it recei ves by each succeeding admini stration. The degree of support will, in turn, be a function of the success of past prograns which were designed to enhance the policy. This nay sound suspiciously like circuitous reasoning but policy sur ival is often highly dependent on the success or non-success of its imp ementation prograns.

The state agency nost responsible for carrying out state fishery goal s in the resource management area is the Alaska Departnent of Fish and Gane (ADF\&G). The goal of managenent of fisheries on an optimm sustai ned yield basis (item \#4 previous) is carried out directly by this agency. Four key uords implicit in the function of $A D F \& G$ are protection, management, conservation, and restoration of the fish and game resources of the
state (A.S. Sec. 16.05.010). One of the functions of the commissi oner of fish and gane is to "manage, protect, nai ntain, improve, and extend the fish, game, and aquatic plant resources of the state in the interest of the economy and general well-being of the state" (A.S. Sec. 16.05.020). The goal s of restoration and improvenent of fish stocks largel $y$ fall to the di vision of fisheries rehabilitation, enhancenent and devel opnent (FRED). The duties of this di vision as outlined in A.S. Sec. 16. 05.092 are to:

1. devel op and conti nually maintain a comprehensi ve, coordi nated state plan for the orderly present and longrange rehabilitation, enhancenent and devel opnent of all aspects of the state's fisheries for the perpetual use, benefit and enj oynent of all citizens and revise and update this plan annually;
2. encourage the investment by private enterprise in the technol ogi cal devel opnent and economic utilization of the fisheries resources;
3. through rehabilitation, enhancement, and devel opment prograns do all things necessary to insure perpetual and increasing production and use of the food resources ، of Alaska waters and continent al shelf areas;
4. make a comprehensi ve annual report to the legi slature, containing detailed infornation regarding its accompl i shnents under this section and proposal s of pl ans and activities for the next fiscal year, not I ater than 20 days after the convening of each regul ar sessi on. (Sec. 2 ch 113 SLA 1971).

The spec fic goals with regard to sal non are to:

1. Achi eve optimum sustai nable yi eld to the commercial fisheries from naturally and supplenentally produced Al askan sal non stocks.
2. Moderate the I ow cyclical harvest fluctuations in the comercial fisheries (Al aska Sal non Fi sheries Plan).

To carry out these goals, the FRED di vi si on's activities are primarily di rected toward establishnent of state operated sal non hatcheries, of whi ch there are presently 12 in operation, and the administration of the private-nonprofit sal non aqui culture program In areas where reg ona associ ations and local private nonprofit corporations exist it is the FRED di vision's goal "to cooperate fully and actively support (their) efforts to build and manage their own sal non hatchery facilities" (Alaska's Private Nonprofit Hatchery Progran). There are presently four regi onal associations in exi stence: Northern Southeast Regi onal Aqui culture Associ ation, Inc., Sitka, Al aska; Southern Southeast Regi onal Aqui culture Association, Inc., Ketchikan, Alaska; Prince William Sount Regional Aquaculture Associ ation; Cordova, Al aska; Cook Inl et Reg onal Aqui culture Associ ation, Inc., Soldotna, Al aska.

The Prince William Sound Aquiculture Corporation has identified its, Iong-range goals in a publication entitled Sal mon Culture Program Similar docunents from other associations will undoubtedly be forthcoming in the future. The following statements taken from the Sal mon Culture Program outline the plans of the association.

LONG RANGE PLAN OF THE CORPORATI ON

At the outset of del iberations of the board of directors of this corporation, the long-range goals were tentatively defined as follows:

1. Activities will be primarily confined within the boundaries of the state Area E, the Prince William Sound area, which incl udes the Prince William Sound, Copper River and Bering

Ri ver di stricts; state Iaw confines to this area the fishermen upon whom the local fisheries econony is based.
2. Pink and chumsal non rehabilitation in the Sound will comprise the first phase of activities since specific technol ogy enabling rapid increase in these runs is available at a favorable cost-benefit ratio, and of the various local sal non fisheries, the pink sal non runs of the Sound are in the nost depressed condition.
3. A target level of hatchery capacity of $\mathbf{3 0 0} \mathbf{~ m i l l i}$ on sal non eggs was set, based on forecasts frompil ot prograns whi ch show this level will provide an additional five million adult sal mon return annually, independent of the average four million return fromthe wild sal non stocks. The conbi ned ni ne million return hould reinstate the 1925-1945 peak sal non popul ation level s, thus be in conformity with known envi ronnental capacity of the Sound.
4. The role of this corporation is to provide about tuo-thirds or 200-milion egg capacity of this hatchery system The state and other private corporations are expected to provi de the remai ning requi renents.
5. The I arge sum of noney requi red to desi gn, construct and operate the corporation system will cone from a wide variety of sources. Sel f assessnent of area-wide catches of indi vidual fishernen, grants fromfish processors, proceeds of surpl us fish sal es, grants fromthe State Renewabl e Resource Fund and natching grants from the Economic Devel opnent Admini stration are the principal fund sources. Remai ni ng funds are antici pated via loans' from the state Fi shernen's Revol vi ng Loan Fund, regul ar banking institutions and the regi onal Native corporation, Chugach Natives, Inc.
6. The Prince William Sound hatchery programis to be devel oped over a 10-year period.
7. Prograns rel ated to enhancenent of other sal non speci es in the Sound are to be incorporated gradually; red sal non incubation will avait only the sol ution to a current IHN virus problem in wild broodstocks; some emphasis is to be placed on a desi rable sport species, coho and king, in specific areas of growing sport fisheries, thereby avoi di ng user-group conflicts which have detracted from rehabilitation prograns in many ot her areas of North Anerica.
8. Prograns related to the Copper River and Bering Ri ver sal non runs will comence after initial phases of the Sound prograns are completed. Ajoint state-corporation research facility for red and coho sal non at Eyak Lake is planned as the first devel opment. Sol ving of i noculation procedures on the broodstock presently infected with IHN virus must precede this project. Del ta stocks of red and coho adversel y affected by earthquake

Iand uplift will recei ve top priority. All returns from the Eyak and other delta projects will bel ong to the common property fishery.
9. A portion of surpl us funds generated by corporation activities will be utilized for earmarked grants to the state or research institutions to encourage prograns desi gned to cause rehabitation of the wild stocks of sal non of the area.
10. The corporation staff will take a leading role in devel opnent of a masterplan for fisheries rehabilitation with state, public and private hatchery corporation invol venent.

The above primary goals, if achi eved, nould make Prince William Sound the first maj or sal non area of North Anerica to be stablized at a rel atively consistent annual level of peak production. Variations of success and failures in the wild runs will still occur, but... total run size will be in a much nore acceptable range, e.g., 6-14 million fish versus $\mathbf{1 - 9}$ million in present runs."

It should be noted that the State Renewable Resource Fund referenced in item 5 does not exist.

Board of Fi sheries.

An integral part of the managenent deci sion- naking process in Al aska's commercial fisheries is the Board of Fi sheries. Al aska Stat utes pertaining to its purpose, regul ations and its rel ationship to ADF\&G and the Commissi oner are as follows:

Sec. 16.05. 221. Boards of Fi sheri es and Gane.
(a) For purposes of the conservation and devel opnent of the fishery resources of the state, there is created the Board of Fi sheri es composed of seven nenbers appointed by the governor, subject to confirnation by a maj ority of the nembers of the legislature in j oint sessi on. The appointed nembers shall be resi dents of the state and shall be appoi nted without regard to political affiliation or geographical location of residence. The commissi oner is not a nenber of the Board of Fi sheries, but shall be ex-officio secretary.

Sec. 16.05. 251. Regulations of the Board of Fi sheries.
The Board of Fi sheri es may make regul ations it consi ders advi sable in accordance with the Admini strative Procedure Act (A.S. 44. 62) for
(1) setting apart fish reserve areas, refuges and sanctuari es in the waters of the state over which it has $j$ urisdiction, subj ect to the approval of the legislature;
(2) establ ishment of open and cl osed seasons and areas for the taking of fish;
(3) setting quotas and bag limits on the taking of fish;
(4) establishment of the means and nethods empl eyed $n$ the pursuit, capt ure and transport of fish;
(5) establishnent of marking and identification requ renen ts for means used in pursuit, capture and transport of fish;
(6) cl assifying fish as comercial fish, sport fish or predators or other categories essential for regul atory purposes;
(7) engagi ng in bi ol ogi cal research, watershed and habi tat improvement, fish management, protection, propagation and st ocki ng;
(8) investigating and determining the extent and effect of . predation and competition among fish in the state, exerci sing control measures consi dered necessary to the resources of the state;
(9) entering into cooperative agreenents with educational institutions and state, federal, or other agencies to pronote fish research, nanagenent, education and information and to train men for fish managenent;
(10) prohi biting the live capture, possessi on, transport, or rel ease of native or exotic fish or their eggs;
(11) establ ishing seasons, areas, quot as and nethods of harvest for aquatic plants;
(12) establishnent of the times and dates during which the issuance of fishing licenses, permits and regi strations and the transfer of permits and registrations between registration areas is alloned; however, this paragraph does not apply to permits issued or transferred under ch. 43 of this title. (Sec. 3 ch 206 SLA 1975; am Sec. 2 ch 218 SLA 1976).

Sec. 16. 05. 270. Del egation of Authority to Comm scsi oner.
For the purpose of administering Sections 251 and 255 of this chapter each board may del egate authority to the commissi oner to act in its behalf. If there is a conflict between the board and the commissioner on proposed regulations, public hearings shall be hel d concerning the issues in question. If, after the public hearings, the board and the commissioner continue to di sagree, the issue shall be certified in writing by the board and the commissioner and sent to the governor who shall I make a decision. The decision of the govern nor is final. (Sec. 6 art I ch 94 SLA 1959; am Sec. 5 ch 206 SLA 1975).

NOTE: Section 255 refers to the Board of Game regulations.

The policy of the Board of Fisheries on specific issues is often expressed in resolution or policy statement form Sone recent examples of this are incl uded here.

## ÁLASKA BOARD OF FI SHERI ES

Resol ution \#77-29-FB
' RELATI NG TO THE I NCLUSI ON OF THE CONTI GUOUS MARI NE AND COASTAL MATERS OF THE STATE OF ALASKA INTO THE DEFI N TI ON OF ANADROMOUS STREAMS AND WATERS

WEREAS, the marine and anadromous fish resources of Al aska's coastal zone and marine waters are critical to the economic, cultural, and soci al well-being of the citizens of Al aska; and

WFEREAS, these resources constitute a maj or food source not onl y for other nations of the norld, but also for other forms of marine and terrestrial life; and

WFEREAS, the contiguous marine and coastal waters of the State of Al aska are critical to the spawning and early life hi story of most of Al aska's conmerci al fi sheri es resources incl udi ng crab, shri mp, herring, smelt, sal non, halibut, and many other pelagic and demersal speci es of comerci al and ecol ogi cal importance; and

VEREAS, these fisheries resources are particularly vul nerable to danage or destruction during thei $r$ spawning and early life stages; and

WHEREAS, the nearshore narine and coastal envi ronnent itself is particularly susceptible to danage from man's activities in the coastal zone;

BE IT THEREFORE RESOLVED, that Al aska's contiguous marine and coastal waters, out to three nautical miles, should be declared a fisheries conservation zone and that the provisions of Al aska Statute 16.05.870 pertai ning to the protection of waters important to the production of anadromous fish be extended to incl ude this area; and

BE IT FURTHER RESOLVED, that a copy of this resol ution be sent to the Al aska Coastal Policy Council with a recomendation that it be incorporated into the Guidelines and Standards of the Alaska Coastal Managenent Pl an and incl uded when the plan is sent to the Legi slature for approval; and that a copy of this resol ution be sent to the Al aska I egi slat ure with the recommendation that Alaska Stat ute 16.05. 870 be anended in an appropriate manner during the 1978 Legislative Sessi on.


ADOPTED: Decenber 18, 1977 Anchorage, Al aska

The dramatically increasing popul ation of the Cook Inlet area has resulted in increasing competition bet ween recreational and commercial fishernen for the Cook Inlet sal non stocks. Concurrently, urbanization and associ ated road construction has increased recreational angl er effort and nay adversel y affect fisheries habitat. As a result the Board of Fisheries has determined that a policy must now be determined for the long-term managenent of the Cook Inlet sal non stocks. This policy should rest upon the following consi derations:

1. The ultinate nanagenent goal for the Cook Inlet stocks must be their protection and, where feasible, rehabilitation and enhancement. To achi eve this bi ol ogical goal, priorities must be set among beneficial uses of the resource.
2. The comercial fishing industry in Cook Inlet is a val uable longtermasset of this state and mist be protected, while recognizing the I egitimate clains of the non-commercial user.
3. (If the sal mon stocks in Cook Inlet, the king and silver sal mon are the target species for recreational anglers while the chum pink, and red sal non are the predom nant comercial fishery.
4. User groups should know what the managenent plan for sal mon stocks will be in order that they can plan thei $r$ use consi stent with that plan. Thus, commercial fi shernen must know if they are harvesting stocks which in the long-termwill be nanaged primarily for recreational consumption so that they may plan appropriately. conversel y, as recreational denands increase the recreational user must be aware of what stocks will be nanaged primarily for commercial harvest in order that he not becone overly dependent on these fish for recreational purposes.
5. Various agencies should be avare of the long-term managenent plan so that sal non managenent needs will be consi dered when maki ng deci si ons in areas such as land use planning and hi ghway construction.
6. It is imperative that the Department of Fi sh and Gane recei ve longrange di rection in managenent of these stocks rather than being called upon to respond to annually changing Board directives. Wthin the Department, di vi si ons such as F.R.E.D., must recei ve such longterm di rection.

$$
5.215
$$

TABLE C. 20 KODIAK
OTHER TRAWL BOTTOMFISH EISEERY


These statistics do not include the activities of the following boats that participated in this fishery: 1975 , two doub trawlers

It has been estimated that the average crew size in this fishery is 3.
mandated under PMFC's Goal and Objectives. Accordingly PMFC proposed that NMFS/ NOAA provi de contract support at a level which nould permit hiring of an Assistant to the Executive Director, NMFS/NOAA approved that request and provi ded contract funds of $\$ 5,000$ for the quarter July-Septenber 1977, and \$20,000 for the fiscal year October 1977 through Septenber 1978.

## b. Special projects supportive of Council needs and programs:

Four PMFC special projects have.generated cooperative research and nanagenent activities pursuant to PMFC's Objective II, and concurrently have provi ded di rect assi stance to Regi onal Fishery Managenent Council prograns.

Sal non managenent pl an devel opment: In antici pation of needs of the Pacific Fi shery Managenent Council, a project begun in $1976(\$ 73,000)$ devel oped background for an ocean sal non managenent pl an for chi nook and coho sal mon of $f$ Whshington, Oregon, and Cal ifornia, and began upgradi ng of the States' sal non data managenent capabilities toward a goal of quickresponse data collection and anal ys. This early planning provided the foundation for the Pacific Council's 1977 ocean sal non managenent pl an. In 1977, a second- phase study $(\$ 128,000)$ began devel opnent of background infornation on inland aspects of sal non nanagenent as a contribution to the Pacific Council's comprehensi ve sal non managenent plan.

Regi onal Mark Processing Center coordination and operation becane PMFC responsibilities in 1977. Under a $\$ \mathbf{2 5}, \mathbf{0 0 0}$ contract fromthe Pacific Northwest Regi onal Comission, PMFC empl oyed mathenatician- programer Grahame King as Regi onal Mark Processing Center Coordi nator. In accordance with gui del i nes devel oped by PMFC's Sal non-St eel head Committee, Ki ng was assi gned to upgrade collection, processing, and publication of anadromous fish marking and tagging experinents and recapture information on timel y basis, and to expand the data base to incl ude all infornation from marking experi ments rel evant to anadromous fisheries managenent.

In recognition of the importance of these data nanagenent needs coast-wide, incl udi ng those of the Councils, NMFS provi ded contract assi stance of, \$42, 000 for operation of the Regi onal Mark Processing Center for Septenber 1977 through August 1978.

[^9]Preparation of Coastwide Data Files was begun in 1977 to conbi ne into coastwide files relevant fisherman, vessel, and I andi ngs data from Al aska, Cal ifornia, Oregon, and Whshington for the three base years of 1974, 1975, and 1976. NMFS contract funds for $\$ \mathbf{1 0}, 000$ were provi ded to support computer programing and processing for consol idation of the States' data files.

## c. <br> International Groundfish Committee:

PMFC's Executi ve Di rector continues to serve as U.S. nenber of the International Groundfish Committee and thereby to encourage and support the activities of its Technical Subcomittee. The Technical Subcommittee is comprised of leading groundfish scientists and managers of the Pacific States, NMFS, and the Canadian Fi sheries Service. U.S. nembers comprise the U.S. Section of that Subcomittee, which Section in 1976 superseded PMFC's I ong- established Groundfish Comittee.

The International Groundfish Comittee and its Techni cal Subcomittee were established nearly two decades ago by the Second Conference on Coordination of Fi sheri es Regul ations bet neen Canada and the United States. Terns of ref erence incl ude:

1) to review proposed changes in groundfish regul ations affecting fisheries of common interest before they are i mpl enented;

2）to revi ew the effectiveness of exi sting regulations；

3）to exchange infornation on the status of groundfish stocks of mutual concern，and to coordi nate，where possi ble，prograns of research；

4）to recomend the conti nuance and further devel opnent of research prograns in order to provide a basis for future managenent of the groundfish fishery．

In recognition of the accel erating need for effective U．S．－Canada inter－ actions at technical and scientificlevels，the Pacific Fishery Manage－ nent Council in 1977 desi gnated the Techni cal Subcomittee as its instru－ ment for maintaining these U．S．－Canada cooperative interactions．Annual neetings of the International Groundfish Comittee are hel din conjunction with PMFC＇s Annual Meeting．
d．PMFC advocacy of Council needs at Federal I evel s：

In three naj or areas，PMFC successfully advocated naj or changes in Federal positions with respect to financial support for and operation of the Regi onal Fi shery Managenent Councils．

In conj unction with the Atlantic and the Gulf States Marine Fisheries Commissi ons，PMFC campai gned strongly for augnented Federal funding for the Regi onal Councils and al so for support of the State Fisheries Directors＇
participation in Council affairs. Strong Council, State and constituency support hel ped bring about a reprograming of $\$ 3.75 \mathrm{milli}$ on for those purposes in FY 1977 and FY 1978. These funds incl uded $\$ 25,000$ per year sustaining funding for participation in Council affairs by each State's Fisheries Di rector.

Concerning interpretations of the Fishery Conservation and Managenent Act of 1976, PMFC supported Congressional action to shorten the time-frame for processing foreign fishing permit applications in 1977. PMFC al so successfuly advocated modification of NOAA's interim regulations to restore initiatives for managing transboundary stocks to the Regi onal Fi shery Managenent Councils.

PMFC vi gorously advocated restoration of Federal funding for operation of the NOAA research vessel OREGON, which had been ordered decomissi oned as obsol ete. Congress concurred; restored the funds, and di rected that the OREGON remain in service until a replacenent vessel was brought on line.

## ACTI V TI ES IN SUPPORT OF OBj ECTI VES DI STI NCT FROM THOSE OF THE REG ONLL CONNCI LS

a. Consultant to DOAA's Mamine Fisheries Advisory Committee (MAFAC);

By special action of the NOAA Admini strator, the executive di rectors of the three interstate mar ne fisheries comissions have been desi gnated
consultants to NOAA's Marine Fi sheries Advi sory Committee (MAFAC), and as such are full participants in MAFAC reviews and discussions of fisheries issues. 1977 meetings took place in February, May, and October in Whshi ngton, D.C

Pri nci pal ssues addressed by MAFAC in $\mathbf{1 9 7 . 7} \mathbf{7}$ ncl uded:

- revi eus of Eastland Fi sheries Survey recomendations and correl ation with the National Pl an for Marine Fisheries and its implementation docunent: A Marine Fisheries Program for the Mation (cf. b. following; al so revi ew of actions on PMFC Resol ution 1, p. 16 of this Annual Report);
conti nued nonitoring of NMFS operations under extended juri sdi ction;
overview of Regi onal Fi shery Managenent Council operations as reflected in reports provi ded by each Council;
- tuna- porpoise and other mari ne nammal problens (cf. al so revi ew of actions on PMFC Resol utions 9 and 10, р. 21);
"j oint ventures" for foreign processing of fish harvested by U.S. fishermen in the Fishery Conservation Zone (revi ewed by a special MAFAC subcomi ttee) ;
> recreational marine fisheries problens (subcomittee revi ew and recomendations);
> consumer affai rs (subcommittee review and recomendations).

West Coast nembers of MAFAC during 1977 were:

Dr. Donald E. Bevan, Seattle, Whshi ngton
E. Charles Fullerton, Sacramento, California

Dennis A Grotting, Eureka, California
Edward G Huffschmidt, Lake Oswego, Oregon
Ronal d J. Jensen, Mbnroe, Whshi ngton
Edvard P. Manary, Olympia, Whshi ngton
Or. Stephen B. Matheus, Seattle, Whshi ngton
Guy R. McMinds, Taholah, Washi ngton
Mary Depoe Norris, Seattle, Whshi ngton
Kathryn E. Pol and, J uneau, Al aska
Dr. Haakon Ragde, Seattle, Whshi ngton
El ner E. Rasmuson, Anchorage, Al aska
Oiver A Schulz, San Franci sco, California
Clement Tillion, Juneau, Al aska

$$
\text { 5. } 253
$$

Dr. Robert B. Weeden, Fai rbanks, Al aska Melvin H. W'lson, Los Angel es, California

Charl es C. Yananot o, Honol ul u, Hawai i
b. Federal fun-ding for fisheries research and managenent:

PMFC aggressi vel y supported augnented funding for Federal grants-in-aid to the States under the Commercial Fi sheri es Research and Devel opnent Act of 1964 (P.L. 88-309) through two campai gns in 1977-78.

1) Support for Congressi onal extension of the Comercial Fi sheries Research and Devel opnent Act (P.L. 88-309) and for doubling of authorized funding levels to:
\$10 million for Section 4a (general)
\$4 million for Section $4 b$ (di saster relief)
\$0.5 million for Section 4c (new fisheries)
Congress approved this measure (H.R. 6206) in early
1977, and the President signed it intolaw (P.L. 95-53).
2) PMFC campai gned throughout 1977-78 for increased fundi ng under this new authorization beyond the level-funding whi ch has prevailed si nce 1970.
c. Completion of the Eastlond Fisheries Survey:

Two docunents published in 1977 summarized nearly two years of work on the Eastland Fi sheries Survey. PMFC's area of responsi bility was Western United States (incl uding Havai i and the Pacific Island Territories). The Gulf States Marine Fi sheries Commi ssi on surveyed States bordering the Gulf of Mexi co; the Atlantic States Marine Fi sheries Comission was responsi ble for the Atlantic States and for general supervision of the Great Lakes sur vey.

The Eastland Fi sheries Survey was comissi oned by the United States Congress and funded by a speci al Congressi onal appropr ation of $\mathbf{\$ 5 0 0}, 000$, PMFC's share of that $f$ undi $n g$ was $\$ 125,000$. 1977 i mp' ementing actions are revi ened in the summary on actions supporting PMFC Resol ution 1 whi ch al so lists the two publications describing the Survey in detail (p. 17 of this report). A tabular review of Pacific coast priorities for action i s provi ded in Appendix 3.
d. Internal interactions of PMFC on fisheries issues of importance:

PMFC's secretariat continued to place high priority on effective com muni cations and interactions anong all components of PMFC structure -agency Directors and Commissioners, scientific and managenent staff, and constituent Advi sors -- concerning issues and problens of regi onal concern. This priority reflects solid commitment to PMFC Objective 1, to provi de energetic leadership in recognizing and resol ving fishery problens.

$$
3255
$$

The International Fisheries Commission, I ter to be renamed the International Hal but Commission (IPHC) was established in 1923 by a Convention bet ween Canada and the United States for the preservation of the hal but (EippogZossus stenolepis) fishery of the North Pacific Ocean and the Bering Sea. The Convention was the first international agreement providing for joint management of a marine resource. The Conventions of 1930 and 1937 extended the Commission's authority and the 1953 Treaty specified that the halibut stocks be devel oped and mai nt ai ned at levels that permit the maxi mum sustain ned yid el d.

Three Comm scsi oners are appointed by the Governor General of Canada and three by the President of the United States. The Commissioners appoint the Director who supervises the scientific and administrative, staff. The scientific staff collects and anal yes statistical and bi of gi cal data needed to manage the hal but fishery. The headquarters and laboratory are located on the campus of the Uni versify of Washington in Seattle, Washington. Each country provides one-half of the Com nisi on's annual appropriation.

The comissi oners meet annually to review the regul at pry proposal s made by the scientific staff and the Conference Board which represents vessel owners and fishermen. The regulatory alternatives are discussed with the Advisory Group composed of fishermen, vessel owners, and processors. The regul at or measures are submitted to the two governments for approval. Citizens of each nation are required to observe

$$
5 \cdot 256
$$

the regul ations that are adopted. The preceding description of the IPHC was taken fromthe IPHC Annual Report, 1977, 1977).

Bernard Skud, Di rector of the Comissi on from971 to August 1978, expressed his feelings on the future of the ha ibut fishery in the Director's Report found in the 1977 Annual Report for the IPHC.

The North Aneri can longline fleet cannot expect to attain the former peak production of 70 milli on pounds because of presentday losses to traw and pot fisheries. However, in the future years, an annual sustai ned yield of 40 milli on pounds is probable, providing restraint is exercised and catch quotas are not rai sed too soon.

Since the Comissi on is presently desi gnated as the lead agency in the devel opment of the Halibut Managenent Plan by the North Pacific Fishery Management Council and si nce IPHC nanagenent di rectives for hal but are strictly b ological in focus, a target harvest of $\mathbf{1 8}$, 100 M ( $\mathbf{4 0} \mathbf{~ m i l l i o n ~}$ pounds) ". in future years" can be taken as a maj or policy goa of the Commissi one

The Fi sheries Conservation and Managenent act of 1976 required that the Secretary of State renegotiate any treaty pertaining to fishing within the U.S. 200 mile fishery conservation zone. The negotiations between the U.S. and Canada with respect to the IPHC have recently resulted in a tentat ve agreenent. With respect to the hal ibut fish ing in the Gulf of A aska the rel evant aspects of the proposed treaty are that:

1. The IPHC will remain in existence until at least April 1981.

$$
y=57
$$

2. Canadi an catch in Alaskan waters will be limited to 2 million pounds and then 1 milli on pounds during the 1979 and 1980 hal i but seasons respectivel y .
3. Canadi ans will be excl uded from U.S. fi shing grounds begi nni ng with the 1981 season.

The Iimitations on Canadi an catch in the Gulf of $A$ aska (incl uding Southeast A aska) will not, however, tend to have a maj or effect on landi ngs in Western or Northern Gulf parts since historically there has not been a si gnificant difference between the proportions of U.S. catch and total catch in Area 3 I anded $n$ these parts.

Ei ther country can term nate the IPHC with two years notice, theref ore the future of the IPHC beyond 1981 is not known; but it is believed that the forces that resulted in its survival in the past set of negotiations wil prevail in the future. These forces incl ude the mutual benefit of international managenent of anternational fishery resource.

## MARKET EM RONMENT

Thi s section contains description of the narket envi ronnent in which the comercial fishing industry is expected to operate during the remainder of this century. It incl udes assumptions concerning the structure of the fishery industry, the availability of inputs and the rate of technical progress.

$$
=30
$$

FI NANCI NG PROGRAMS AVA LABLE TO COMMERC AL FI SH NG VENTURES

Besi des commercial bank financing, there are ei ght other prograns available for financing fishing operations as well as a capital construction fund program available through the National Marine Fisheries Service (NMFS). In addition, Al aska Fi sheries Devel opnent Corporation has been granted a block of SK funds through NMFS to hel p mitigate risk in the devel opnent of the bottomfishery in the waters of $\mathbf{f}$ Alaska. A brief description of each of these prograns will now be given.

The Federal Farm Credit System offers Iending prograns to fishermen through the Bank for Cooperatives and Production Credit Associations.

Bank for Cooperatives $(B C)$, as its name implies, requi res bona fide corporative organizations to qualify for loans. $B C$ provides a full range of credit services requiring 40 percent equity at noney market rates with a margin of . 5 to 1.0 percent.

The Production Credit Associa: ion (PCA) extends short and internediate credit services to indi vidual borrowers. Maxi mum termis seven years with a three-year extensi on possib lity. PCA requires a 50 percent equity on loans for used vessel s.

The Al aska Comerci al Fi shi ng Loan Act (A.S. 16. 10. 300 - A.S. 16. 10. 370) . provides for loan funds available to indi vi dual fishernen through the Al aska Department of Comerce and Economic Devel opment. Loans are available up to $\$ 150,000$ at an interest rate not to exceed seven percent for a term of up to 15 years.

The Al aska Small Busi ness Loan Program extends credit to resi dent indi vi dual s (one year) or corporations (head- quartered in Al aska) engaging in small busi ness operations. The Ioan ceiling is $\$ \mathbf{3 0 0}, \mathbf{0 0 0}$, with $\mathbf{2 5}$ percent equity at 8.0 percent interest for up to 15 years.

The Fi shing Vessel Obligation Guarantee programis administered by the National Marine Fisheries Service and provides loans for construction,
reconstruction or overhaul of vessel sover 4.5 MT (five net tons) in weight. Gear integrally a part of an operating vessel, is included. The loan will cover up to 75 percent of cost and fishermen pay a . 75 percent charge on the outstanding bal ance. Conditional fisheries in Alaska (sal non and crab) are not eligible. The Farm Credit System and NMFS have reached an agreenent whereby the vessel I oan guarantee could be used with PCA loans.

Under norat ori um since 1973 is another NMFS I oan program the Fi sheri es Loan Fund. Author zed by the Fish and Vildife Act of 1956 as anended, the Fund made secured oans up to $\$ 40,000$ at eight percent interest for a maxi mumterm of 14 years if the applicant had no other source of fundi ng. Alaska fishermen sill had \$91, 000 in loans outstanding as of October 1977. Draft legislation was under devel opnent as of the same date to revi ve the Loan Fund as a nore comprehensive fisheries devel opnent financing program

NMFS al so admini sters a Fi shing Vessel Capital Construction Fund (CCF). The CCF allows fishermen to save taxable incone for construction, reconstruction or (under limited circunstances) acquisition of fishing vessel sodefring federal tax payments on program accounts. This, in effect, constitutes an interest-free loan from the governnent.

The Commity Economic Devel opnent Corporation (nonprofit) extends credit at low interest rates to rural Native fisheries devel opment busi nesses who are otherwise not considered creditworthy by other institutions. The Corporation is funded by a grant from the Office of Economic Devel opnent, Comminity Service Administration.

Comercial banking institutions al so provide vessel financing for up to 75 percent of construction costs or 60 percent on used vessel acquisition. Fi nancing duration is seven to ten years at a current interest rate of between 11.0 and 11.5 percent.

Al aska Fi sheri es Devel opnent Corporation has been chosen to recei ve federal SK funds administered through the National Marine F sheries Service for Techni cal Assi stance, denonstration projects and scient fic stock assessment work on groundfish in Al aska waters.

Representatives of the Federal Internedi ate Credit Bank and the NMFS Fi nancial Assi stance Division indicate that capital is currently seeking investnent opportunities in the Alaskan and Pacific Northwest fishing industry. Much of the current boat construction is being financed by surpl us cash flow from within the industry. The Capital Construction Fund is a common vehicle for accomplishing this internal financing.

The current capital market situation is in marked contrast to the situation of ten years ago when the internal return on investment and surpl us cash flow was somewhat bel ow that of agri culture. and other nat ural resource based industries ${ }^{12}$. It might be assuned that capital will be available to neet grouth needs of the industry for loans of 15 years or less at the prevailing interest rates. Several financial experts concur in this assumption.

[^10]A probable explanation of the increased availability of financing for fishing vessels is the change in property rights to fishery resources that has occurred in the past few years. Both the Fisheries Conservation and Managenent Act and the implementation of the limited entry- prograns in $\mathbf{A l}$ aska have done mach to increase fishernen's rights to particular resources and thus to increase their ability to borrowinvest nent funds. The forner gi ves donestic fishernen the excl usive right to resources within the $\mathbf{2 0 0} \mathbf{m i l e}$ zone as soon as they are prepared to harvest them and the latter gives those who receive the limited number of gear permits the exclus ve right to comercially harvest Alaska sal non and/or herring.

## New Boats

The naj or capital good required for the grouth of the Gulf of Al aska fishing industry will be boats capable of harvesting groundfish and pelagic species. The ability of donestic boat yards to neet the annual demand for new boats to be used in the traditional Al aska fisheries has been well established; and since the demand for such boats is not expected to exceed that of the past few years it is believed that the grouth of the traditional fisheries will not be constrai ned by boat yard capacity.

However, the ability of the U.S. boatbuilding industry to produce traw ers in excess of $\mathbf{2 7 . 4}$ neters ( $\mathbf{9 0}$ feet) LOA in adequate numbers is uncertain. Fi ve naj or boat builders--Marco, Seattle, Vishi ngton; Martinac, Tacona, Khshi ngton; Bender, Mbile, Alabama; and Desco and St. Augustine Traw ers-were questioned regarding their capacity and plans for capacity expansion,

Four of the five were optimstic that they could neet the increasing need. One (Martinac) was constricted on space and expansi on of capacity noul d be a maj or undertaking.

The conbi ned current capacity of these five yards is in excess of 30 boats over 27.4 neters ( 90 feet) in length, per year and Martinac estimates the industry could build 150 new boats per year in the 27+4-36. 6 meter ( 90 - $\mathbf{1 2 0}$ foot) class with present facilities. Although the Al aska will net be the only source of demand for new vessel $s$ it is expected to be the maj or source since for the remai nder of the $\mathbf{U}$. S. the existing fleets are capable of harvesting the entire allowable catch inside the 200 mile zone including current foreign allocations (Keen, 1978).

If the present facilities prove inadequate there are three potential sources of additional boat building capacity. The yards that have traditiona' ly built fishing boats could expand their capacity; the ability of these yards to expand capacity is denonstrated by the over 300 percent increase in capacity of the Hillstrom Shi pbuilding Company in Coos Bay, Oregon during the past year and the expansi on of the Patti Boatbuilding Industries boat yard in Pensacol a, Florida to allow the construction of steel fishing vessels. Both yards are currently building vessels of 26 to 42 neters ( $85-135$ feet) for Al aska fisheries, (Fi shing News International, Apri1 1979). Foreign vessel sand foreign shipbuilding capacity could be made available to U.S. fisheries through a change in the Jones 'Act; such a change might becone politically feasible if the U. S. yards could not meet the denand for new vessel s. And finally, boat
yards that have not built fishing boats could begin to do so. Exampl es of such boat yards would include those that are currently building boats under Navy contracts and those currently building of fshore oil supply boats. The ability of the latter to build fishing boats is demonstrated both by a supply boat yard, which recently constructed a nodified revision of its standard supply boat to be used as a catcher/processor in the Al aska crab fisheries and by the conversion of a supply boat for the use in the same fisheries (National Fi shernan, March, 1979). The ability of non-fishing boat yards to serve the fishing industry is further evi denced by the Foss Shi pyard in Seattle which until last year concentrated on the nai ntenance of the Foss tug boat fleet. The Foss yard does not now build fishing boats but it converts boats into fishing boats ( Nati onal Fi shernan, July 1978).

To determine whether boat yard capacity will tend to constrain the development of the $A$ aska groundfish fishery it is necessary to specul ate about • the probable rate of grouth of the fishery as well as about boat yard capacity. The Alaska groundfish fleet is expected to consist of over 400 vessel s by 2000 but the grouth of the fleet is not expected to exceed 25 boats per year until the mid-l990s. The largest addition to the fleet is expected to be over 100 boats and is projected to occur in 1999. It is bel ieved that the ability of boat yards to increase the supply of new vessel s and the nature of the projected grouth of the $\mathbf{A}$ aska groundfish fleet will prevent boat yard capacity from constraining the projected longterm devel opment of the groundfish fishery and/or the projected longterm grouth of the traditional fisheries. This does not nean that a prospective boat owner will be able to walk into any boat yard and expect

$$
=-3
$$

to have work on the boat begun imedi atel $\mathbf{y}$, rather it means that the prospective boat owner can find a boat yard that can build the desired boat within one to two years.

## Processing Equi pnent

A large proportion of donestically used seafood processing equi pnent is purchased from foreign nanufacturers. These manufacturers have denonstrated considerable resilience and flexibility in the past. Although forei gn manuf acturers of processing equi pnent were not intervi ewed di rectly, there are indications that their ability to nanufacture and supply processing equi pnent will match the industry's needs for the next 20 years.

Perhaps a nore si gnificant factor is the exi stence of a large agricultural food processing equi pment manufacturing capability in the U.S. Several of these U.S. firns have experi nented with the production of seaf ood processing equi pnent but have been unable to compete with the foreign manuf acturers-- not because of lack of capacity, but because of lack of experience with the product.

One expert felt that the naj or bottleneck in seafood processing noul d be the ability of the donestic manufacturing industry to understand the difference between "peeling potatoes" and "skinning a pollock." ${ }^{13}$
${ }^{13}$ Personal comminication with John Peters, Food Techno ogist, Uni versity of Uhshi ngton.

In the absence of mergers or $\mathbf{j}$ oi nt vent ures, any equi pnent nanuf act ured donestically will have to go through a devel opnent period al ready conplet by forei gn manuf actured equi pnent.

Another problemwll be the inclination (or lack thereof) of processors to employ a technical expert in their plants. The present approach is to get by with a "shade tree" nechanic who barely keeps the equi pnent operating. Performance of processing equipnent will suffer until this approach is changed. ${ }^{14}$ In general, it does not appear that capital goods manufacturing capacity will be a significant deterrent to fishery devel opnent in Al aska.

## Labor

With respect to the supply of labor, the comercial fishing industry is in a rel atively favorable position because its current labor requi renents are primarily for seasonal and unskilled labor. Due to both the rel atively high wages unskilled workers currently receive in the comercial fishing industry and the high unempl oynent rate for seasonal and unskilled labor in the U.S., there is, for all practical purposes, an unlimited supply of unskilled labor during the summer nonths. The industry wage is expected to renai $\mathbf{n}$ above the minm wage and high rate of unempl oynent for unskilled labor in the U.S. is expected to continue, therefore it is assuned that sufficient labor will be available during the summer nonths to neet the requirenents for unskilled abor both on fishing vessel sand
${ }^{14}$ Personal commini cation with Bob Pr ce, Food Technol ogi st, Uni versity of California at Davis.
in fish processing plants. The availability of unskilled labor for fishing boats is further denonstrated by boat owners' reports of recei ving several letters a week fromindi vidual s seeking empl oynent on a fishing boat.

However, the supplies of skilled ski ppers and year round labor are limited. The spotty record of success of donestic ski ppers entering new fisheries (e.g. hake and pollock in the Pacific Northwest) suggests that upon entering a new fishery, it takes time for a skipper to learn how to use gear, find fish, and generally becone proficient. But once a new fishery begi ns to devel op, the crens of the boats in the devel oping fishery provide a potential souce of new skippers. For example, if out of a crew of five, incl udi ng the $s k$ pper one crew nenber is capable of becoming ski pper the following year the number of ski ppers can increase . by 100 percent a year-. The rate of devel opnent projected for the groundfish fleet would require this to happen in about one out of every four creus.

The availability of adequate year round labor is dependent to a significant degree on the availability of Iowincone housing. Typically there is insufficient lowincone housing in the $\mathbf{A}$ aska fishing commities of the Gulf of A aska to neet the current demand and unl ess substantial increases in housing occur the devel opnent of a year round fishery with onshore processing dependent on a permanent labor force will be limited. The devel opnent of a year round groundfish fishery nay, however, be possiblein the absence of housing adequate for a pernanent uork force. The problem of an inadequate local Iabor force due to the absence of adequate housing can be

$$
5.268
$$

reduced by increasing the anount of processing which occurs aboard fishing boats and by using self contai ned floating processors to reduce the local labor requi renent, and/ or by rotating a work force in and out of an area to reduce the housing requi renents. The State of Al aska is also aware of the housing problemand is at least considering possibe renedi es.


#### Abstract

Whether or not the availability of ski ppers and/or the size of the pernanent " ocal force hi nder the devel opnent of the commercial fishing industry $w 11$ depend on both the rate at which the industry and its I abor requi rements expand and the extent to which the expansion can be planned for. This is, of course, true for the other inputs.. If the devel opnent is steady and thus the input requirenents becone predictable, the increases in requi renents can effectivel be planned for and fewer bottlenecks will occur, The devel opnent of the groundfish industry is expected to be gradual enough that it can be well planned.


## Technol ogy

Predicting technol ogical breakt hroughs in the fishing industry is risky at best. Attempting such a prediction for 20 years into the future is a blind plunge into uncertainty.

After consulting with ni ne technol ogy experts, a rather clear historical pattern energes. The donestic industry has usually taken up

$$
3.26
$$

to 20 years to adopt available technol ogy. For example, mid-water traw ing techni ques have been well devel oped for $\mathbf{2 0}$ years, yet donestic fishernen are only now begi nning to adopt this techni que. Net transducers have been available for 20 years, but not generally used by donestic fishernen until very recently. Exceptions are notable because they are so rare (i.e., the mach publicized power block).

There are, however, factors at work that nay tend to change the role the U.S. fisheries have had as followers and slow adopters of harvesting and processing technol ogy. The increased property rights of donestic fishernen to U.S. fishery resources and the opportunities for nore assured sources of fish for processors due to the FCMA and the Al aska limited entry and resource enhancenent prograns have decreased the uncertainty historically associ ated with the comercial fishing industry and thus have increased the incentive for innovation and/ or , nore rapid adoption of available technol ogy. Al though maj or changes in harvesting and processing methods will perhaps be nore possiblein the future than they were in the past, it is not possible to predict what the timing and/ or nature of such changes will be; it is, therefore, assumed that due to techni cal progress, the gradual repl acenent of I abor with capital and economes of scale and regularity of operations, output per unit of labor will increase by two percent a year and that no technoI ogi cal breakt hroughs that nould radically transf orm har vesting or processing nethods will occur.

## Transportation

As the Al aska commercial fishing industry has grown and expanded into new fisheries and as the industry's demand for transportation has increased, it has becone increasingly apparent that adequate transportation to obtain needed supplies and to nove processed fish products to markets is critical to the devel opnent of the industry. This section briefly di scusses the dominant characteristics of the transportation system used by the commercial fishing industry and consi ders the transportation systems potential for providing the increased services that nould be required by the expansi on of traditional fisheries and the devel opnent of an Al aska groundfish industry,

Generally, Al aska fish processing plants do not have Iarge storage capacity, therefore transportation services for processed products are requi red at frequent intervals. Most Alaska seafood products are shi pped in refrigerated truck-trailer vans that are loaded aboard seagoing frei ghters for reprocessing in the Seattle area or Japan. The di rect contai neri zed shi pments to Japan began in the Spring of 1979 and are expected to become increasingly important. The vessel serving Alaska from the Seattle area are typically capable of carrying 6, 208 netric tons ( 13.7 million pounds) of processed fish. This capacity figure is based on a frei ghter carrying 365 vans from 35 to 40 feet in length and hol ding 35,000 to 40,000 pounds of processed fish and is typical of the Seal and frei ghters servi ng Al aska from Seattle. The di rect contai neri zed shi pnents to Japan were initiated by Seal and and Anerican President

Lines (APL). Kodiak and Unalaska/Dutch Harbor will be the initial ports of call and will be servi ced by each company approxi nately once every three weeks. The three week schedule can be provided by one vessel al lowing for del ays due to mai ntenance, bad weather, and other ci rcum stances that might prevent one vessel fromproviding nore frequent service. The Seal and frei ghter serving the di rect Al aska-J apan route is snaller than those that typically service Al aska from Seattle; it has a capacity of approxi mately 2720 netric tons ( 6 milion pounds), (i.e., 172 vans of 35 feet in length); however by mid 1979 Seal and expects to repl ace this frei ghter with one capable of transporting 4, 445 netric tons ( 9.8 milli on pounds), (i.e., 280 35-foot vans). APL has indicated that it will use a snaller frei ghter capable of carrying 60 vans to service its Al aska-Japan route.

APL's plans to provide di rect service from Kodi ak to Japan have temporarily been complicated by Sea\}and's long termcontract for preferential use of the contai nerized cargo pier and equi pment in the port of Kodi ak.

The ability of the transportation systemto respond to grouth in the comercial fishing industry is denonstrated by the interest several fre ght compani es have shown in providing service to Kodiak and comments by ; Sealand representative indicating that the service to any port can rapi dly be increased by contracting the services of available freight vessel s . Ti ne need for increased cargo handl i ng equi prent and docking facilities is minimed by the use of onboard cranes.

The industry's denand for transportation services will continue to increase due to enhancement and/ or managenent prograns for the traditional fisheries and the expansi on of the industry into new fisheries. However, as the following nodel indicates even a facility capable of loading or unl oading only one vessel at a time has a very large freight handling capacity. Industry sources indicate that a vessel can be unl oaded and/ or loaded in one day; therefore assuming freighters with a capacity of 6, $\mathbf{2 0 0}$ metric tons ( 13.7 milli on pounds), 2, 253,000 metric tons (5 billion pounds) of freight could annually go through a port facility capable of handling one vessel at a time. Allowing for days lost due to bad weather, breakdowns, and days in which the port facility is occupied by vessel s that are not servicing the comercial fishing industry, perhaps 200 days per year would be available to the industry; in that case, 1, 240,000 metric tons ( 2.7 billion pounds) of processed fish products could be handled a year. This capacity is in excess of the processed fish products that are expected to be shi pped out of $\mathbf{A}$ aska in any one year before the end of this century; the foregoing anal ysis theref ore suggests that the transportation system can rapily respond to the increases in fish processing that are expected to occur by the year 2000.

For the Alaska commerical fishing industry, air freightis the only viable transport alternative. However, due to both the cost advantages of shi pping by sea and the good storage characteristics of frozen fish products, air transportation is used al nost excl usi vel $y$ to serve the narkets for fresh fish products. At the present time fresh fish products account for a rel atively small part of Alaska seafood production. The
availability of airports capable of handling jet transports, the current underutilization of these airports, and the excess capacity in the air transport industry should allow a rapid response to increases in the demand for air transportation services.

Many factors will determine whether the transportation systens will be adequate for the expected growth in the commerc al fishing industry. The grouth of both the comercial fishing ndustry and other industries such as agriculture and mineral extraction and the resulting grouth in the rest of the econony will generate increased economic activity that may compete for the available transportation services and/ or provide the i mpet us for i mproved transportation servi ces for all users. Si nce economes of scale exist in transportation, the latter effect will tend to dominate in the long run, and the short run transportation bottlenecks . that occur will not tend to limit the long run devel opment of the industry.

## Market Arrangenents

Research at Oregon State Uni versity indi cates that traditional market arrangenents and the resulting di stribution of risk between the harvester and processor nay be a maj or deterrent to fishery grouth in Alaska. ${ }^{15}$

In invest" ng in the expl oitation of a new fishery the boat ouner retains a high degree of flexibility He can switch fromfishery to

[^11]
fishery in Al aska depending upon rel ative profitability. He can al so fish in other geographic locations and deliver wherever he wants.

The processor, however, must make an invest nent in inflexible and fixed-in-pl ace processing capability and in narket devel opnent. The narket devel opnent investment may be as risky as the capital facilities, If the narket devel opnent effort succeeds, the initial investor must compete successfully with other entrants to reap the benefits of that initial investment. If the effort fails, the initial investor is the sole bearer of the total devel opnent cost.

Fi shery devel opnent in Al aska may, ther of ore, be constrai ned until market arrangenents between harvester and processor are modified to nore equally distribute the risks and benefits of investing in a new fishery. De" ivery contracts between harvesters and processors provi de one way of do ng this.

## I mplications of Market Concentration

Al aska Sea Grant Report 78-10, "Market Structure of the Al aska Seaf ood Processing Industry by F. L. Orth, et al., provides a summary table of the level and trends in market concentration by geographic
 work, a prodi gi ous task in itself, but there are sone general implications deri ved for Al aska as a whol e.

$$
3.275
$$

TABLE R. II
LEVEL AND TRENDS IN MARKET CONCENTRATION, SUMMARY ${ }^{1}$


IAs neasured by the following ranges of the four-firm concentration ratio: <. $30=$ Low (L); . 30-. $50=$ Mbderate (M) . 50-, $75=$ High ( $H$ ) ; .75-1. $00=$ Very $\mathbf{H i g h}$ (VH); in.c. = No Change; h.a. = Not Applicable.
${ }^{2}$ Current refers to Period 2 (1973-1975).
${ }^{3}$ Change is from Peri od 1 (1956-1958) to Period 2 (1973-1975).

Basi c industry conditions -- especially bi ol ogical and regulatory -- appear to be the primary sources of concentration in the Al aska seaf ood processing industries. With the exception of significant barriers to entry caused by over-expl oited stocks and consequent overcapitalization of harvesting and processing (in sal non and halibut), barriers to entry and exit appear to be low One would expect, therefore, that concentrations of production uould tend to be unstable in expanding fisheries. This, in fact, has been the pattern in Alaska's grouth industries. On the other hand, local buyer concentration will undoubtedly remain high as it is a function of economes of scale, the geographic di stribution of fish stocks and the vast coastal distances. Changes in harvesting and/ or tendering technol ogy are the onl $y$ apparent sources of future instability in local buyer concentration. Improved preservation nethods on-board vessel s (e.g., heading and gutting/ freezing or freezing in the round) would increase the range of options of I andi ng ports, causing the rel evant geographic narket to expand and buyer concentration to decline. The successful expansion of harvesters into processing via cooperati ves uould change the ownership and earning patterns of processing facilities. This mould have little actual impact upon local concentration level s, however, unless the underl ying biol ogi cal and marketing forces were expansi onary. The nain effect of a harvesterowned processing cooperative, if successful, would be to mitigate the tendency of high buyer concentration to depress ex-vessel prices. (Orth, et al., 1978)

Comminity specific implications of market concentration and its future effects, if any, on anount and type of seafood product output in


#### Abstract

those communities would be difficult to derive without extensive additional research. The remarks for the state as a whole can, however, be applied in general terns to each of the commities under examination in this report.


The following section deals with Japanese ounership in Al aska Seafood Processing. It appeared in Al aska Sea Grant Report \#78-12, "United States Market Demand and Japanese Marketing Channel s for Tanner Crab" by A. H. Gorham and F. L. Orth.

## Japanese I nvest ment in Al aska Seafood Processing

One of the prerequisites to economic devel opnent s nobility of capital; the fishing industry is no exception. $V$ eved from this perspective, Japanese investment in Al aska fisheries has been a heal thy, , if not essential, ingredient. However, there are narket power implications associ ated with foreign ownerships that have probably made it the nost controversial area of donestic fisheries policy toward foreign countries.

The potential for enhanced narket power fromforeign invest ment deri ves from three situations:

1. Explicit concentration in the donestic seafood processing industry is al ready high in some areas of the state. Ownership interties anong donestic firns increases actual concentration to mach higer level s. Add investnents by a large Japanese fishing or trading company in several
2. Accompanying investnent in Al askan compani es has been the opening of new narkets. Thus it could be argued, for example, that al though the narket power of Japanese compani es kept Tanner crab prices lower than Al aska fishernen percei ved to be equitable (in view of prices to Japanese fishermen, retail market prices in Japan, etc.) such investnent at least created opportunities to fish at a profit where none existed before. It was, of course, this differential in raw product prices that created the incentive to invest in the first place.

There is no "right" side to the above arguments. Which set of forces have been the nost pervasive has differed by fishery, location, and tine.

The following table shows Japanese i nvest nent as of Novenber 1977, Tho sources of irritation that have faced users of such information in the past have been that it renai ns current for only a very short period of tine and it is al nays possible to find another set of figures that are different. The figures shown in Table $\hat{i}$. they do not totally solve these problens. They were obtai ned directly from $J$ apanese companies and are onl $y$ as representative of the actual investnent situation as the process of collection allowed. However, the timing of the survey coincided with the Council's deliberations on foreign allocations of Tanner crab, and the compani es appeared to be going out of their way to be cooperative. In several cases where a Japanese company could not be intervi ewed, inf or nation was incl uded from ot her sources which are noted.

In addition to the question of ownership interties between Japanese and Al askan companies, there remains the question of interties anong

Japanese compani es thensel ves. To gain insightinto this area, Cinton At ki nson was requested to review pertinent government statistics and the annual reports of maj or Japanese companies. Table $\sum .72$ shows the resultant inf ornation. The overriding impression from these statistics is that ownership interties do exist but they appear to represent financial rather than primary or controling type invest nents. The implication is that managenent participation at the level of detail necessary to overtly or tacitly collude nould be nonexistent or miniml.

TABIE 民.ひ
REPORTED JAPANESE INVESTMENT IN ALASKA, NOVEMBER, 1977

${ }^{1}$ Engaged in import-export of fishery products.
${ }^{2}$ Engaged in import and export of fishery products.
3plants located in Seattle (H. Q.), Anacortes, Anchorage , (X)ordova, Kodiak, Dutch Harbor, Il $\mathrm{mer}, \mathrm{Ketchikan}, \mathrm{Naknek}, \mathrm{Petersburg} ,\mathrm{Port} \mathrm{Graham}, \mathrm{Unalaska} ,\mathrm{Uyak} \mathrm{Bay} ,\mathrm{and} \mathrm{Whittier}$.
${ }^{4}$ Bait salmon egg production - eggs supplied by Whitney-Fidalgo.

## TABLE R.12 Continued

INVESTMENT L	LOCATION
Emerald Fisheries, Inc.	
Whitney International	
Orca Pacific Packing co.	Cordova
$\underset{\text { Sand }}{\operatorname{San}}{ }_{6} \text { Point Packing }$	M/V Smokwa
Hilton Seafoods Co.	
Adak Aleutian Processors	Adak
Nichiro Pacific, Ltd. ${ }^{8}$ Seattle	
Universal Seafoods, Ltd.	M/V Unisea   (Dutch Harbor)

\%
50

$30^{5}$
Mitsubishi
NEFCO
20
50
$\begin{array}{ll}\text { Mitsubishi } & \mathbf{2 0} \\ \text { NEFCO } & \mathbf{5 0}\end{array}$
Mitsubishi 10
NEFCO
Hawaiian Fish Co. 20
Individual
Alaska Food of Tokyo
OTHER INVESTORS

Two individuals $s^{9,10,12}$
Individual 10,12

[^12]| COMPANY | INVESTMENT | LOCATION | 을 | OTHER INVESTORS | 운 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dutch Harbor Seafoods, Ltd. | M/V Galaxy (Dutch Harbor) | 25 | ```Two individuals,, 10,11 Two individuals}10,1 and one individuall2 Investing group``` | 20 <br> 30 (ten <br> each) <br> 25 |
|  | Intersea Fisheries, Ltd. | New York | 30 | Individual 11,12 <br> Two individuals ${ }^{9}$,11,12 <br> Individual 11,12 | $\begin{gathered} 21.67 \\ 44 \\ 5 \end{gathered}$ |
|  | Morpac, Inc. | Cordova | 46 | Mitsui <br> Individual | $\begin{array}{r} 46 \\ 8 \end{array}$ |
|  | Nippon Suisan, U.S.A. | Seattle | 100 |  |  |
| Marubeni K.K. (Trading Co.) | Marubeni Alaska Seafoods, Inc. | Juneau | 100 | Subsidiary for NEFCO J/V Egegik |  |
|  | North Pacifict processors | Seattle ${ }^{15}$ | 50 | Individual | 50 |
|  | Kodiak King Crab ${ }^{14}$ | Kodiak | 49.9 | Wash. Fish \& Oyster | $50.1^{16}$ |

$11_{\text {Associated }}$ with Universal Seafoods
$12_{\text {Associated }}$ with Dutch Harbor Seafoods
13 Engaged in import-export
$14_{\text {About }} 1 / 3$ of Marubeni Tanner crab supplied through these sources.
15plants in Kodiak, Cordova, and Seattle.
$16_{\text {As }}$ reported in other sources, 8.4 percent of this fiqure is owned by Ocean Beauty Seafoods, Inc., a company wholly owned by American interests.

TABLE L. 19 Conti nued


[^13]
## TABLE E. 1 F Continued



SOURCE: Interviews with Japanese companies, or as noted.

TABLE B.I
MAJOR OWNERS OF the LEADING JAP AneSe FISHING AND TRADING Companies (november 1977 )

	Name of Shareholder	Type of Company	Fishing Companies Percent Share					s Owned $\quad$ Trading Companies				
			Taiyo Gyogyo	Nippon Suisan	Nichiro Gyogyo	$\begin{gathered} \text { Kyoku- } \\ \text { yo } \end{gathered}$	Hokoku Suisan	Marubeni	Mitsui	Mitsubishi	$\begin{gathered} \mathrm{C} \\ \text { Itoh } \end{gathered}$	$\begin{aligned} & \text { I toh- } \\ & \text { man } \end{aligned}$
	Asahi Kasai Kogyo KK	Chemicals										2.29
	Asahi Seimei Hoken Sogo Kaisha	Life   Insurance	2.33								3.71	
	Dai-ichi Kangyo Ginko	Bank		3.22						2.45	8.68	2.50
	Dai-ichi Seimei Hoken Sogo Kaisha	Life Insurance	.	2.80				3.00				
	Daitatsu Kogyo KK	Manufacturing					0.50					
(J)	Daito Tsusho KK	Trading	8.84									
$\bigcirc$	Daiwa Ginko	Bank				7.54						
	Daiwa Shoken KK	Securities		2.96								
	Fuji Ginko	Bank		2.22				7.26	4.96		3.25	
	Hayakane Sangyo KK	Industrial	4.84									
	Hayakane Zosen	Shipyard	3.40									
	Hikasekune Ichiro	Individual					0.40					
	Hitachi Zosen	Shipyard				3.37						
	Hokkaido Takushoku	Bank			3.77							
	Itoh IIroshi	Individual										


					Perce	nt Shares Owne				
			Fish	ing Comp	anies		Trading	Compa	nies	
Name of	Type of	Taiyo	Nippon	Nichiro	Kyoku-	Hokoku Maru-	Mitsui	Mitsu	C.	I toh-
Shareholder	Company	Gyogyo	Suisan	Gyogyo	yo	Suisan beni		bishi	Itoh	man
Iwatani ${ }^{\text {Kaqaku }}$	Chemicals									
Kogyo KK						1.75				
Iwatani Naoji	Individual					2.50				
Marubeni	Trading				5.27					
Meiji Seimei Hoken	Life									
Sogo Kaisha	Insurance			3.37				4.49		
Mitsubishi Denki	Electric Industry							1.96		
Mitsubishi Ginko	Bank							7.61		
Mitsubishi Jukogyo	Heavy Indus Industry							5.20		
Mitsubishi Shintaku Ginko	Bank	2.00	2.00	2.74				3.78		
Mitsubishi Shoji KK	Trading		2.53							
Mitsui Bussan Jugyoin Shintaku	Employee's Mutual						1.78			
Mitsui Ginko	Bank						6.29			
Mitsui Seimei Hoken	Li fe									
Sogo Kaisha	Insurance						3.30			
$\underset{\substack{\text { Mitsuinko } \\ \text { Ginko }}}{\text { Shintoku }}$	Bank		1.89							
Nakabe Kenkichi	Individual	3.46								
dakabe	Individual	2.40								


table Bils Conti nued

Name of Shareholder	Type of Company				,						
		Taiyo   Gyogyo	Nippon Suisan	Nichiro Gyogyo	$\begin{gathered} \text { Kyoku- } \\ \text { yo } \\ \hline \end{gathered}$	Hokoku Suisan	Marubeni	Mitsui	Mitsu-   bishi	C. Itoh	$\begin{gathered} \text { Itoh- } \\ \text { nan } \end{gathered}$
Sanko Kisen KK	$\begin{aligned} & \text { Steamship } \\ & \text { Company } \end{aligned}$									2.54	
Sanwa Ginko	Bank		2.22						1.46		
Shin Nippon Seitetsu KK	Iron	1.60									
Sumitomo Ginko	Bank						3.19	1.18		8.68	6.37
Sumitomo Kaijo Kasai Hoken кк	Marine/Fire Insurance				2.83					2.97	
Sumitomo seimei Hoken Sogo KK	Life. Insurance					0.30					4.54
Taisho Kaijo Kasai Hoken KK	Marine/Fire Insurance				2.83			3.42			8.96
Taiyo Kobe Ginko	Bank						4.44				1.75
Teikoku Sangyo KK	Industrial					1.00					
Teinin (?) KK											3.54
Tokyo Ginko	Bank							3.72	2.69	4.64	
Tokyo Kaijo Kasai Hokken kk			2.54	5.64			3.58		7.06	3.49	
Tonen "Tanka" Kk	Tanker Company					0.75					
Toshoku kk	Trading Company				2.74						

TABLE ${ }^{6} \%$ \% Continued


## APPENDI X C

DOCUMENTATI ON OF THE DEVELOPMENT OF THE COMMERCI AL FISHING I NDUSTRI ES OF KODI AK, SEMARD, CORDONA, AND YAKUTAT

## APPENDI X C

## TABLE OF CONTENTS

Documentation of the Devel opnent of the Commercial Fi shi ng I ndustries of Kodi ak, Sevard, Cordova, and Yakut at
Kodi ak
C. 2
Harvesting C.2
Processing
C. 62
Public Service C. 74
Seward
C. 85
Harvesting C. 85
Processing C. 136
Public Services C. 148
Cordova C. 155
Harvesting C. 155
Processing C. 211
Public Servi ces C. 223
Yakutat C.225,
Harvesting C. 225
Processing C. 245
Public Service

## APPENDI X C

## LIST OF TABLES

PAGE \#
C. 3
C. 2 Kodi ak Area Sal non Catch 1934-1976
C. 4
C. 3 Kodi ak Purse Sei ne Sal non Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 5
C. 4 Kodi ak Purse Sei ne Salmon Fi shery, Number of Boats by Length
C. 6
C. 5 Kodi ak Beach Sei ne Sal non Fi shery, Catch and Empl oynent
C. 7
C. $6 \quad$ Kodi ak Beach Sei ne Salmon Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 8
C. $7 \quad$ Kodi ak Beach Sei ne Sal non Fi shery, Number of Boats by Length
C. 9
C. 8 Kodi ak Set Gill Net Sal non Fi shery, Catch and Empl oyment Data
C. 10
C. $9 \quad$ Kodiak Set Gill Net Sal non Fishery Number of Boats and Landi ngs in the Fi shery by Mbnth
C. 11
C. 10 Kodi ak Set Gill Net Sal non Fi shery, Number of Boats by Length
C. 12
C. 11

Kodi ak Sal non Fi shery al I Gear Types C. 13
C. 12 Kodi ak Hal ibut Landi ngs 1969-1977 C. 14
C. 13 Kodi ak Snall Boat Long Line Halibut Fi shery, Catch and Empl oyment Dat a C. 15
C. 14
C. 15
C. 16
C. 17
C. 18

C. 20
C. 21 Kodiak Oter Trawl Bottomfish Fi shery, Number of Boats and Landi ngs in the Fi shery by Month C. 23
C. 22
C. 23
C. 24 Kodi ak Small Boat Long Li ne Bottomfish Fi shery, Number of Boats and Landi ngs in the Fishery by Month C. 26
C. 25 Kodi ak Snall Boat Long Li ne Bottomfish Fi shery, Number of Boats by Length
C. 27

LIST OF TABLES, Conti nued

PAGE
C. 54 Annual Kodi ak Razor Cl am Catch, 1960-1977 C. 56
C. 55 Kodi ak Razor Clam Catch by Month, 1967-1977 C. 56
C. 56 Kodiak Razor Clam Fi shery, Catch and Empl oynent Data
C. 57
C. 57 Kodi ak Razor Clam Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 58
C. 58 Kodi ak Razor Clam Fi shery, Number of Boats by Length
C. 59
C. 59 A Measure of Double Counting in the Kodi ak Shellfish and Sal non Fi sheri es, 1975-1977
C. 60
C. 60 Number of Kodi ak and Statewi de Gear Permits Issued to Resi dents of Kodi ak 1974-1978
C. 61
C. 61 Number of Kodi ak Processing Plants by Product 1962-1972
C. 63
C. 62 Kodi ak Sal non Processing by Product, 1956-1958 and 1973-1976
C. 64
C. 63 Kodi ak Hal ibut Processing by Product, 1956-1958 and 1973-1976
C. 65
C. 64 Kodi ak Herring Processing by Product, 1956-1958 and 1973-1976
C. 66
C. $65 \quad$ Kodi ak King Crab Processing by Product, 1956-1958 and 1973-1976
C. 67
C. 66 Kodi ak Tanner Crab Processing by Product, 1956-1958 and 1973-1976
C. 68
C. 67 Kodi ak Dungeness Crab Processing by Product, 19561958 and 1973-1976
C. 69 -
C. 68 Kodiak Shrimp Processing by Product, 1956-1958 and 1973-1976
C. 70
C. 69 Kodi ak Fi sh Processing, Quarterly Wage and Empl oynent
C. 70 Kodi ak Fish Processing, Empl oyment by Month
C. 71
C. 72
C. 73
C. 73a
C. 74
$\begin{array}{ll}\text { C. } 75 & \text { Cook Inlet Total Sal non Catch by Speci es, } 1954-1977 \\ \text { C. } 76 & \text { Lower Cook Inl et Purse Sei ne Sal non Fi shery, Catch }\end{array}$ and Empl oyment Oat a
C. 71 1970-1977
C. 72
C. 1970-1977
El ectricity Use, by User Groups, Kodi ak, Al aska 1965-1977
C. 73
C. 75

1963-1978 C. 81
c. 76

Lower Cook Inlet Purse Sei ne Sal non Fi shery, Number of Boats and Landi ngs in the Fishery by Month
C. 88
C. 78 Lower Cook Inl et Purse Sei ne Sal non Fi shery, Number of Boats by Length
C. 89

LIST OF TABLES, Continued

C. 96 Lower Cook Inl et Sei ne Herring Fi shery, Number of
C. 97 Lower Cook Inl et Purse Sei ne Herring Fi shery,
C. $98 \quad$ Snall Boat Long Li ne Bottomfish Fi shery, Catch and
C. 99 Cook Inl et Snall Boat Long Line Bottomfish Fi shery,
C. 100 Lower Cook Inl et Smal I Boat Long Li ne Bottomfish
C. 101 Cook Inlet Otter Traw Bottomfish Fishery, Nunber
C. 102 Lower Cook Inlet Oter Traw Bottomfish Fi shery,

TABLE \#
C. 79
C. 80
C. 81
C. 82
C. 83
C. 84
C. 85
C. 86
C. 87
C. 88
C. 89
C. 90
C. 91
C. 92
C.92a
C. 93
C. 94
C. 95

Cook Inlet Drift Gill Net Sal non Fi shery, Catch and Empl oyment Dat a

PAGE \#

Cook Inlet Drift Gill Net Salmon Fishery, Number of Boats and Landi ngs in the Fi shery by Month Cook Inlet, Drift Gill Net Sal mon Fi shery, Number of Boats by Length C. 92 Cook Inl et Set Gill Net Sal non Fi shery, Catch and Empl oynent Data
C. 93

Cook Inlet Set Gill Net Salmon Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 94

Cook Inl et Set Gill Net Sal mon Fi shery, Number of Boats by Length
C. 95

Cook Inl et Hand Troll Sal non Fi shery, Catch and Empl oynent Data C. 96 Cook Inl et Hand Troll Sal non Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 97

Boats and Landings in the fishery by Nonth
Cook Inl et Hand Troll Sal non Fi shery, Number of Boats by Length
C. 98

Cook Inl et Sal mon Fi shery All Gear Types C. 99

Sevard Hal i but Landi ngs 1969-1976
C. 100

Cook Inl et Small Boat Long Li ne Hal ibut Fi shery, Catch and. Empl oynent Data
C. 101

Cook Inl et Small Boat Halibut Fi shery, Number of Boats and Landi ngs in the Fishery by Month
C. 102

Cook Inlet Snall Boat Hal ibut Fi shery, . Number of Boats by Length
C. 103

Sevard Hal i but Landi ngs 1969-1977
C. 103
$\mathrm{C}_{0} 104$
C. 105
C. 106 Boats and Landi ngs in the Fi shery by Month
C. 107 Number of Boats by Length
C. 108 Empl oynent Data
C. 109 Number of Boats and Landi ngs in the Fishery by Month Fi shery, Number of Boats by Length of Boats and Landi ngs in the Fishery by Month C. 112 Number of Boats by Length

C, 103 Cook Inlet King Crab Catch in Pounds by Cal endar Year 1951-1971 and by Fi shi ng Year 1960-1961 and 1977-1978
C. 104 Lower Cook Inlet King Crab Fi shery, Catch and Empl oynent Dat a
C. 105 Lower Cook Inlet King Crab Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 116
C. 106 Lower Cook Inl et King Crab Fi shery, Number of Boats by Length C. 117
C. 107 Cook Inl et Tanner Crab Catch by District 19681969 to 1977-1978
C. 118
C. 108 Lower Cook Inlet Tanner Crab Fi shery, Catch and Empl oyment Dat a
C. 119
C. 109 Lower Cook Inl et Tanner Crab Fi shery, Number of Boats and Landings in the Fishery by Month
C. 120
C. 110 Lower Cook Inl et Tanner Crab Fishery, Number of Boats by Length
C. 121
C. 111 Cook Inl et Dungeness Crab Catch, 1961-1977 C. 122
C. 112 Lower Cook Inl et Dungeness Crab Fi shery, Catch and Empl oyment Oat a
C. 123
C. 113 Lower Cook Inlet Dungeness Crab Fi shery, Number of Boats and Landings in the Fi shery by Month
C. 114 Lower Cook Inl et Dungeness Crab Fi shery, Number of Boats by Lenqth
C. 125 .
C. 115 Cook Inlet Otter Traw Shrimp Fi shery, Catch and Effort 1962-1976
C. 126
C. 116 Cook Inl et Shrimp Fishery Catch by Gear Type 1969-1970 through 1977-1978
C. 117 Lower Cook Inlet Pot Shrimp Fi shery, Catch and Empl oynent Oat a
C. 128
C. 118 Lower Cook Inl et Pot Shrimp Fi shery, Number of Boats and Landi ngs in the Fi shery by Month C. 129
C. 119 Lower Cook Inlet Pot Shrimp Fi shery, Number of Boats by Length
C. 130
C. 120 Cook Inlet Oter Traw Shrimp Fishery, Catch and Employment Data
C. 121 Cook Inlet Otter Traw Shrimp Fishery, Number of Boats
in Fi shery by Month
C. 122 Lower Cook Inl et Otter Traw Shrimp Fishery, Number
C. 122 Lower Cook Inlet O
of Boats by Length
C. 132
C. 123 Cook Inlet Shrimp Fi shery Al Gear Types: Catch, Gross Earni ngs, and Number of Boats, 1969-1976
C. 134
C. 124 Number of Cook Inl et Area and Statewide Gear Permits Issued to Resi dents of Seward
C. 135

TABLE \#
C. 125 Number of Seward Processing Plants by Product 1962-1972
C. 137
C. 126 Seward Salmon Processing by Product, 1956-1958 and 1973-?976
C. 138
C. 127 Seward Hal ibut Processing by Product, 1956-1958 and 1973-1976
C. 139
C. 128 Seward Herring Processing by Product, 1956-1958-and 1973-1976
C. 140
C. 129 Seward King Crab Processing by Product, 1956-1958 and 1973-1976
C. 141
C. 130 Seward Tanner Crab Processing by Product, 1956-1958 and 1973-1976
C. 142
C. 131 Seward Dungeness Crab Processing by Product, 1956-1958 and 1973-1976
C. 143
C. 132 Seward Shrimp Processing by Product, 1956-1958 and 1973-1976
C. 144
C. 133 Seward Fish Processing, Quarterly Wige and Empl oynent Data 1970-1977
C. 145
C. 134 Seward Fi sh Processi ng, Enpl oyment by Mbnth 1970-1977 C. 146
C. 135 Seward Fish Processing, Estimated Mbnthly Whas 1970-1977
C. 147
C. 136 Total Community Electricity Consumption, and Consumption for Fi sh Processing, Seward, Al aska, 1975-1978
C. 149 .
C. 137 Total Commity Water Consumption, and Consumption for Fi sh Processing, Seward, Al aska, 1976-1978
C. 152
C. 138 Seward Snall Boat Harbor Boat Register, August 8, 1977
C. 153 .
C. 139 Port Usage, Sevard, Al aska, 1960-1976
C. 154
C. 140 Prince William Sound Annual Sal non Catch by Species 1950-1977
C. 156
C. 141 Prince Villiam Sound Purse Seine Sal mon Fi shery, Catch and Empl oynent Data
C. 157
C. 142 Prince William Sound Purse Sei ne Sal mon Fi shery, $\begin{array}{ll}\text { C. } 143 & \begin{array}{l}\text { Number of Boats and Landi ngs in the Fi shery by } \\ \text { Prince William Sound Purse Sei ne Sal non Fi shery, }\end{array}\end{array}$ Number of Boats by Length
C. $144 \quad$ Prince William Sound Drift Gill Net Sal mon Fi shery, C. 160
C. 145 Prince William Sound Drift Gll Net Sal non Fishery, Number of Boats and Landings in the Fi shery by Month C. 161
C. 146 Prince Villiam Sound Drift Gill Net Sal mon Fishery, Number of Boats by Length
C. 162
C. 147 Prince Villiam Sound Set Gill Net Sal non Fishery, Catch and Empl oyment Data
C. 163
C. 148 Prince William Sound Set Gill Net Sal mon Fi shery,

Number of Boats and Landi ngs in the Fishery by Month
C. 164
C. 149 Prince William Sound Set Gill Net Sal mon Fi shery, Number of Boats by Length
C. 165
C. 150 Prince William Sound Hand Troll Sal mon Fi shery Catch and Empl oynent Dat a
C. 166
C. 151 Prince William Sound Troll Sal non Fishery, Number of Boats and Landings in the Fishery by Month
C. 167
C. 152 Prince William Sound Hand Troll Salmon Fi shery Number of Boats by Length
C. 168
C. 153

Prince William Sound Sal non Fi shery All Gear Types
C. 169
C. 154

Prince William Sound Halibut Landi ngs
C. 170
C. 155 Prince Villiam Sound Snall Boat Long Line Halibut Fi shery, Catch and Empl oynent Data
C. 171
C. 156
C. 157
C. 158

Prince William Sound Small Boat Halibut Fishery, Number of Boats and Landi ngs in the Fi shery by Month
C. 172

Prince William Sound Small Boat Hal ibut Fi shery, Number of Boats by Length
C. 173
C. 159
C. 160
C. 161 Prince William Sound Sei ne Herring Fishery, Number
C. 162
C. 163

Herring Catch and Production from Prince William Sound from I nception of the Fi shery 1914-1971
C. 174

Herring and Herring Roe on Kelp in Tons from Prince William Sound 1966-1977
C. 176

Prince William Sound Purse Sei ne Herring Fi shery, Catch and Enpl oynent Data
C. 177 • of Boats and Landings in the Fi shery by Month
C. 178

Prince William Sound Purse Sei ne Herring Fishery, Nunber of Boats by Length
C. 179

Prince William Sound Herring Roe on Kel p Fishery, Catch and Empl oynent Data C. 180
C. 164
C. 165
C. 166

$$
\text { C. } 167
$$

C. 167 Prince William Sound Snall Boat Long Line Bottomfish
C. 168
C. 169 Prince William Sound Otter Traw Bottomfish Fishery
C. 170

Prince William Sound Herring Roe on Kelp Fi shery, Number of Boats and Landi ngs in the Fi shery by Month C. 181 Prince William Sound Herring Roe on Kelp Fi shery, Number of Boats by Length
Prince William Sound Small Boat Long Line Bottomfish Fi shery, Catch and Empl oyment Dat a Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 184

Prince William Sound Snall Boat Long Li ne Bottomfish Fi shery, Number of Boats by Length
C. 185 Catch and Empl oyment Data
C. 186

Prince William Sound Otter Traw Bottonfish Fishery Number of Boats and Landi ngs in the Fishery by Month

## LIST OF TABLES, Continued

PAGE \#
C. 171 Prince William Sound Otter Traw Bottomfish Fishery, Nunber of Boats by Length
C. 188
C. 172 Prince Villiam Sound 8ottomfish Fishery All Gear Types
C. 189
C. 173 King Crab Catch in Pounds, Prince Villiam Sound Area, 1960-1977-1978 Season
C. 190
C. 174 Prince William Sound King Crab Fishery, Catch and Empl oynent Oat a
C. 191
C. 175 Prince William Sound King Crab Fi shery, Number of Boats and Landi ngs in the Fi shery by Month
C. 192
C. 176 Prince William Sound King Crab Fi shery, Number of Boats by Length
C. 193
C. 177 Prince William Sound Area Historical Tanner Crab Catch in Pounds by Season
C. 194
C. 178 Prince William Sound Tanner Crab Fi shery, Catch and Empl oyment Dat a
C. 195
C. 179 Prince Villiam Sound Tanner Crab Fishery, Number of Boats and Landi ngs in the Fi shery by Month C. 196
C. 180 Prince Villiam Sound Tanner Crab Fishery, Number of Boats by Length
C. 197
C. 181
C. 182
C. 183
C. 184
C. 185

Prince Wlliam Sound Area Dungeness Orab Catch, ?960-1977
C. 198

Prince William Sound Dungeness Orab Fishery, Catch and Empl oynent Dat a C. 199

Prince Villiam Sound Dungeness Crab Fi shery, Number of Boats and Landings in the Fi shery by Month C. 200 Pri nce William Sound Dungeness Crab Fi shery, Number of Boats by Length
C. 186
C. 187
C. 188
C. 189
C. 190
C. 191
C. 192
C. 193 1960-1977
C. 202

Prince William Sound Shrimp Fi shery, Al Gear Types: Catch, Gross Earni ngs, and Number of Boats, 1969-1976 C. 203
Prince William Sound Pot Shrimp Fishery, Catch and Empl oyment Data C. 204

Prince William Sound Pot Shrimp Fishery, Number of C. 205 Boats and Landi ngs in the Fi shery by Mbnth
Prince William Sound Pot Shrimp Fishery, Number of Boats by Length C. 206 Annual Prince William Sound Razor Clam Catch, 19601977 C. 207

Prince William Sound Razor Clam Catch by Month 1967-1977
C. 207

Prince William Sound Razor Clam Fi shery, Catch and Empl oyment Dat a
C. 208

Prince Villiam Sound Razor Clam Fi shery, Number of Boats and Landi ngs in the Fi shery by Month

LIST OF TABLES, Continued

PAGE \#
C. 194 The Number of Prince W'Iliam Sound and Statewide Gear Permits Issued to Resi dents of Cordova 1974-1977
C. 195
C. 196
C. 197
C. 198
C. 199
C. 200
C. 201
C. 202
C. 203
C. 204
C. 205
C. 206
C. 207
C. 208
C. 209
C. 210
C. 211
C. 212
C. 213
C. 214
C. 215
C. 216

Number of Cordova Processing Pl ants by Product 1962-1972
C. 210

Cordova Sal non Processing by Product, 1956-1958 and 1973-1976
C. 212

Cordova Hal i but Processi ng by Product, 1956-1958 and 1973-1976
C. 213
C. 214

Cordova Herring Processi ng by Product., 1956-1958 and 1973-1976
C. 215

Cordova Ki ng Crab Processi ng by Product, 1956-1958 and 1973-1976
C. 216

Cordova Tanner Crab Processing by Product, 1956-1958 and 1973-1976
C. 217

Cordova Dungeness Crab Processing by Product, 19561958 and 1973-1976
C. 218

Cordova Shri mp Processing by Product, 1956-1958 and 1973-1976
Cordova Fi sh Processi ng, Quarterly Whge and
Empl oyment Dat a 1970-1977
C. 219
C. 220

1970-1977 1970-1977
C. 221

Cordova Fi sh Processi ng, Empl oynent By Month 1970-1977
Port Usage, Cordova, Al aska, 1960-1976
C. 222

Yakut at Sal non Cat ches, Number of Fi sh by Speci es, C. 224 1902-1977
C. 226

Yakutat Sal non Fi sheries, Catch by Speci es in Pounds 1966-1977
Yakutat Set Gill Net Sal non Fi shery, Catch and Empl oyment Data
C. 228

Yakut at Set Gill Net Sal non Fi shery, Number of Boats and Landings in the Fi shery by Month
Yakutat Set Gill Net Sal non Fi shery, Number of Boats by Length
C. 229

Yakutat Hand Troll Sal non Fishery, Catch and
Empl oynent Oat a
C. 230

Yakut at Hand Trol I Sal non Fi shery, Number of Boats and Landings in the Fi shery by Mbnth
C. 232
C. 233

Yakutat Hand Troll Sal non Fi shery, Nunber of Boats By Length C. 234

Yakut at Power Troll Sal non Fi shery, Catch and Employ. ment Dat a
Yakut at Power Troll Sal non Fi shery, Number of Boats
C. 235 and Landi ngs in the Fi shery by Month
C. 236

LIST OF TABLES, Continued
TABLE \# PAGE \#
C. 217 Yakutat Power Troll Sal non Fishery, Number of Boats by Length ..... C. 237
C. 218 Yakutat Sal mon Fi shery Al1 Gear Types ..... C. 238
C. 219 Yakutat Hal i but Landi ngs 1969-1976 ..... C. 239
C. 220 Yakutat ShelIfish Catch, 1960-1976 ..... C. 240
C. 221 Yakutat Scallop Dredge Fi shery, Catch and Empl oymentDat aC. 241
C. 222 Yakutat Scallop Dredge Fi shery, Number of Boats and Landi ngs in the Fi shery by Month ..... c. 242
C. 223 Yakutat Scal Iop Dredge Fi shery, Number of Boats by Length ..... C. 243
C. 224 Number of Yakutat, Southeastern, and Statewi deGear Permits Issued to Resi dents of Yakutat 1974-1978C. 244
C. 225 Number of Yakutat Processing Pl ants by Product1962-1972C. 246
C. 226 Yakutat Sal non Processing by Product, 1956-1958and 1973-1976C. 247C. 227 Yakutat Halibut Processing by Product, 1956-1958and 1973-1976C. 248
C. 228 Yakutat Tanner Crab Processi ng by Product, 1956-1958and 1973-1976C. 249
C. 229 Yakutat Dungeness Crab Processing by Product,1956-1958 and 19731976C. 250

## APPENDI X C

## LIST OF FI GRES

FI GURE \# ..... PAGE \#
C. 1 Annual El ectricity Consumption, Kodi ak, Al aska,1966-1977C. 78C. 2 Mbnthly El ectricity Consumption, Kodiak, Al aska,J une, 1975 to Decenber, 1977C. 79
C. 3 Annual Water Consumpti on, Kodi ak, Al aska, 1964-1977 ..... C. 80
C. 4 Monthly Whter Consumption, Kodi ak, A aska, January,1976, to June, 1978C. 83C. 5 Mbnthly El ectricity Consumption, Seward, Al aska,J anuary, 1977, to May, 1978C. 150
C. 6 Monthly Whter Consumption, Seward, Al aska, June, 1976, to June, 1978 ..... C. 151

Thi $s$ appendi $x$ consi sts of tables whi ch docunent the devel opment of the commercial fishing industries of Kodiak, Seward, Cordova, and Yakutat. This data, much of which is referred to in Chapter III, is presented by comminity.

Kodi ak

HARVESTI NG

TABLE C. 1
KODI AK AREA SALNON CATCH 1934-1976
(in 000 's fish)
0

YEAR	KINGS	REDS	COHOS	PINKS	CHMM	TOTAL
1934	3	1,829	86	7,642	662	10, 222
1935	2	1, 614	63	10,781	382	12, 842
1936	5	2, 658	163	5, 648	329	8, 803
1937	2	1, 882	134	16, 788	346	19, 152
? 938	3	1,966	133	8, 398	640	11,140
1939	4	1,786	64	11, 741	641	14, 236
1940	3	1, 318	163	9,997	674	12, 155
1941	5	1,730	208	7,601	445	9,989
1942	3	1,281	106	6, 093	565	8, 048
1943	2	1,991	61	12, 480	454	14, 988
1944	2	1,818	45	4,956	507	7, 328
1945	4	2,041	79	9, 045	559	11, 728
1946	1	839	71	9, 546	298	10, 754
1947	1	994	72	8, 857	295	10,119
1948	1	1, 260	32	5,958	331	7, 582
1949	1	892	54	4,928	700	6,575
1950	2	921	41	5, 305	685	6,954
1951	2	470	48	2, 006	422	2,948
1952	1	631	36	4, 554	984	6, 206
1953	3	392	39	4,948	490	5, 872
1954	1	329	56	8, 325	1, 140	9, 851
1955	2	164	35	10,794	480	11, 477
1956	1	306	54	3, 349	660	4, 370
1957	1	234	35	4, 691	1,152	6,113
1958	2	288	21	4, 039	931	5, 281
1959	2	330	15	1,800	734	2, 881
1960	2	362	54	6, 685	1,133	8, 236
1961	1	408	29	3, 926	519	4, 883
1962	1	785	54	14, 189	795	15, 824
1963	-	407	57	5, 480	305	6,249
1964	1	478	36	11, 862	932	13,309
1965	1	346	27	2, 887	431	3, 692
1966	1	632	68	10,756	763	12, 220
1967	1	284	10	, 188	221	12, 704
1968	2	760	56	8, 761	750	10, 329
1969	2	604	35	12,493	537	13, 671
1970	1	917	66	12, 045	919	13, $94 \times 2$
1971	1	478	23	4, 333	1, 541	¢,376
1972	1	222	14	2, 486	1, 165	3,890
1973	1	167	4	512	318	1,002
1974	1	409	14	2, 635	248	3,307
1975	-	137	25	2, 945	85	3, 191
1976	1	641	24	11, 078	740	12, 484
Average	2	883	58	7, 058	625	8,626

Source: ADF\&G Annual Managenent Report, Kodi ak, 1976.

TABLE C. 2
KODIAK
PURSE SEINE SALMON FISHERY


Sources: The catch statistics were derived using data provided from the cata files of the State of Alaska Commercial Entry Commission. The estimate of the average crew size in this fishery was made by George N. Rogers in, $A$ the Socio-EconomicImpact of Changes in the Harvesting Labor Force in the Alaska Samon Fishery, and in ongo research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Soat weeks equals the number of weeks each boat Landed fish. Sumed over all boats...
3. Man weeks equals boat weeks times an estimate of the average crensize in thisfisinery; it is this a: of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by Commission.

It hae been estimated that the average crew size in this fishery is $S$.

- January

$$
\begin{array}{ll}
B^{1} \\
I^{2} & I
\end{array}
$$

February
B

- March

B
L
April

$$
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~L}
\end{aligned}
$$

- May


October

> B

L

- November

B
L
December
B

Source: Commercial Fisheries Entry Commission

[^14]

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files
C. 6

TABLE C. 6
Kodiak
Beach Seine Salmon Fishery
Number of Boats and Landings in the Fishery by Month
$1969 \quad 1970 \quad \underline{1971} \underline{1972} \underline{1974} \underline{1975} \underline{1976}$
January
$B^{1}$
$L^{2}$
February
B
L
March
B
L
April
B
L
May

	B		
June	L		
	B	2	3

July

B	8	8	8	22	15	12	3	17
L	29	71	21	86	36	32		129
August 1129								
B	4	10	14	14		11	11	15
L	7	49	60	33		35	45	99
September								
B	2	2	2	2			1	4
L								8

October
B
L
November
B
December
B
L

Source: Commercial Fisheries Entry Commission Data Files
${ }^{1} \mathrm{~B}=$ Number of Boats
$2_{\mathrm{L}}=$ Number of Landings



Al boats of unspecified length are incl uded in this catagory

Source: Comercial Fi sheries Entry Comissi on Data Files

# TABLE C. 8 

## коdiak

SEt GIIL WET SALNON FISHERY

	catce AND EMPLomment data															
		1969		1970		1971		1972		1973		1974		1975 "		
?ounds Landed $\text { (in } 000 \text { ' } \mathrm{s} \text { ) }$		*3.099		4,015		2,129		1,508		576		1,499		1,468		
Value of Landings	\$	480,000	\$	57s,000	\$	391,000	\$	293,000	\$	187,000	\$	537,000	\$	543,000		33
Wumer of Boats		140		134		132		118		120		111		117		
Number of Landings ${ }^{1}$		2,747		2,667		1,229		1,320		5391		765		854		
3oat Weeks ${ }^{2}$		039		865		628		418		29S		433		482		
Man Weeks ${ }^{3}$		1,678		1,730		1,2S6		836		590		866		964		$\cdots$
Number of Landings per Boat		19.6		19.9		9.3		11.2		4.5		6.9		7.3		
Weeksper Boat		5.99		6.45		4.75		3.54		2.46		3.90		4.12		
Pounds per Landing		1,130		I.,510		1,730		1,140		1.070		1,960		1,720		
Value of Catch per Landing	\$	1.70	\$	220	\$	320	\$	220	\$	350	\$	700	\$	640	\$	\%
Value of Catch per Boat	\$	3,430	\$	4,290	\$	2,960	\$	2,480	\$	1,560	\$	4,840	\$	4,640	\$	
Value of Catch per Boat Week	\$	570	\$	660	\$	620	\$	700	\$	630	\$	1,240	\$	1,130	\$	
$\begin{aligned} & \text { Price } \\ & \text { (i.e. value of eatch per lbs.) } \end{aligned}$	\$	0.15	\$	0.14	\$	0.18	\$	0.19	\$	0.32	\$	0.36	\$	, 0.37	S	
Index $\mathbf{1}^{\mathbf{4}}$		0.34		0.30		0.27		0.29		0.28		0.29		0.30		
Inclex $2^{\text {S }}$		3.27		3.0 s		1.96		3.16		1.83		1.77		1.77		

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial $\boldsymbol{i}$ Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, A : the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongos research.

1. Number Of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all 'coats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus at of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by Commission.

It has been estimated that the average crew size in this fishery is 2 .


TABLE C. 10
KODI AK

## SET GILL NET SALMON FISHERY

NUMBER OF BOATS BY LENGTH

FEET	1969	1970	1971	1.972	1973	1974	1975	1976
$0^{1}$	42	41	33	18	5	2	4	8
1-25	94	93	94	99	107	106	113	140
26-35	3		3	1	6	1		4
36-45			2		2	2		
46-55	-							1
56-65	1							
66-75								
76-85								
86-95								
96-105								

106-115
116-125
125-

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

	1969	1970	1971	1972	1973	1974	1975	1976	1977
Puunds Landed (in 000 's)	58,832	56,269	31, 231	19,620	5,905	16,107	14,145	55,270	


Val ue of Landi ngs	7, 854,000	7, 737,000	5, 100, 000	3, 861, 000	2, 093, 000	6, 413, 000	4,917,000	19, 130, 000
iuniber of Boats	449	506	565	534	443	389	417	535
Number of Landings ${ }^{1}$	9,911	10, 080	6,899	7, 192	2, 732	3,772	3,547	9,457
Boat Meeks ${ }^{\text {2 }}$	3,201	3,398	2, 765	2,437	1,348	2, 008	1,926	3, 056
Man Weeks ${ }^{3}$	13,401	14,239	11, 803	10, 754	5,783	8, 627	8,079	12, 056

Source: The catch statistics were derived using data provided fromthe data files of the State of Alaska Commercial Fi sheries Entry Comission. The estinate of the average crew size in this fishery was nade by George $\mathbf{W}$ Rogers in, A Study of the Socio Economic Impact of Changes in the Harvesting Labor Force in the $\mathbf{A}$ aska Sal mon Fi shery, and in ongoing research.
$\boldsymbol{l}_{\text {Nunber of }}$ Landi ngs equals the number of days each boat landed fish. Summed overall boats.
${ }^{2}$ Boat Weeks equal s the number of weeks each boat Ianded fish. Summed over all boats.
${ }^{3}$ Man Weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estifiate of the average number of fishernen empl oyed a week times the number of weeks fished.
These statistics do not include the activities of the following boats that participated in this fishery:
1970 one drift gill net boat
1974 one purse sei ner

## TABLE C. 12

KODI AK HALI BUT LANDI NGS 1969-1977
(1000 pounds)

1969	$\mathbf{6 , 3 3 8}$	1974	$\mathbf{3 , 7 4 2}$
1970	$\mathbf{8 , 6 9 7}$	$197!5$	$\mathbf{4 , 2 0 9}$
1971	$\mathbf{9 , 2 1 7}$	1976	4,414
1972	8,640	1977	$\mathbf{4 , 6 6 5}$
1973	6,591		
Source: $\quad$ I PHC Annual Report.			

CATCH AND EMPLOYMENT DATA

| 1969 | 1970 | 1971 | 1972 | 1973 | 3.974 | 1975 | 1976 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Landed

of Landings
of Boats
of Landings ${ }^{1}$
seks ${ }^{2}$
sks ${ }^{3}$
of Landings
26
per Boat
per Lending
of Catch ting
st Catch at
of Catch
st Week
$\$$
1970
1971 - 1972
1973
3.974

1975
1976
電


es: Tine catch statistics were derived using data provided from the date files of the state of Alaska Commercial Fisk.cries, Entry Comission. The estimate of the average crew size in this fishery was made by George '.4. Rogers in, astucy of the Socio-Economic Impact of Changes in the Garvesting Labor Force in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an estimat of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Lended
5. Index 2 equals the average number of Landings per week.
6. A " (" indicates that the statistic is not available due to confidentiality requirements maintained by the Ents: Commission.
statistics do not include the activities of the following beets that participated in the Kodiak hallbut fishery: 1974, one :roller, 1975, one hand troller and one boat with unspecified gear.

3 been estimated that the average crew size in this fishery is 1.



1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files -

TABLE C. 16
KOD AK AREA HERR NG HARVEST
1912-1976

YEAR	TONS HARVESTED	YEAR	TONS   HARVESTED
1912	20.0	1942	16,791.0
191.3	no harvest	1943	35. 352.0
1914	"	1944	26, 835.0
1915	" "	1945	$31,114.0$
1916	70.0	1946	47, 505.9
1917	137.9	1947	50, 743. 0
1918	118.4	1948	46, 428.0
1919	259.7	1949	no harvest
1920	45.9	1950	44, 132. 5
1921	944. 9	1951	4, 299.0
1922	1, 482.6	1952	1,389. 0
1923	321.5	1953	725.0
1924	4,823. 0	1954	no harvest
1925	9,997. 0	955	
1926	2, 680.9	956	13, 524.0
1927	2, 592.9	957	21,818.5
1928	625. 0	958	1,711.0
1929	no data	959	3, 831.0
1930	622.0	960	no harvest
1931	1, 000.0	961	" "
1932	3,594. 0	1962	no harvest
1933	2, 312.5	1963	
1934	120, 797.0	1964	567.8
1935	no data	1965	657.2
1936	24, 748.0	1966	2, 769. 3
1937	27, 659. 3	1967	1, 662.4
1938	24, 522.0	1968	2, 000.6
1939	38, 600. 5	1969	1, 130. 0
1940	22, 677. 0	1970	341.6
1941	40, 083. 5	1971	284.3
		1972	215.0
		1973	831.0
		1974	868.0
		1975	8. 0
		1976	4.6

Source: Al aska Department of Fi sh and Gane, Annual Managenent Report, Kodi ak, 1976.


工us: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisheries Entry Commission. Theestimate of the average crew size in this fishery was made by George $\forall$. Rogers in, Astueyoi the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Summed overall boats.
2. Boat weeks equalsthe number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an estinat of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. $A$ " (" indicates that the statistic is not available due to confidentiality requirements maintained by the Ents Commission.
: statistics do not include the activities of the following boats that participated in the Kodiak Herring Fishery: 1969, otter trawler, 1974, one pot gear boat under 50 feet.
as been estimated that the average crew size inthis fishery is 5.
C. 19


Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} B=\text { Number of Boats } \\
& { }^{2} L=\text { Number of Landings }
\end{aligned}
$$

## TABLE C. 19

Kodiak
Purse Seine Herring Fi shery
Number of Boats by Length


rces: The catch statistics were derived usirqdata provided from the data files of the State of Alaska commercias Entry Commission. The estimate of the average crew size in this fishery was made by George i?. Rogers in, a the Socio-Economic Impact of Ghanges in the Harvesting Labor Force in the Alaska Salmon Fishery, ara in orge research.

1. Number of Landings equals the number of days each boat landed fish. Sumandoverall boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus a of the average number of fishermen employed a week times the number of weeks fished.
4. Index Iequals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by Commission.
ze statistics do not include the activities of the following boats that participated in this fishery: 1975, two dou viers
zas been estimated that the average crew size in this fishery is 3


$$
\begin{aligned}
& \text { Source : } \begin{aligned}
& \begin{array}{l}
\text { Commercial Fisheries Entry Commission } \\
\\
\text { Data Files }
\end{array} \\
{ }^{1} \mathrm{~B}= & \text { Number of Boats } \\
{ }^{\mathrm{L}}= & \text { Number of Landings }
\end{aligned}
\end{aligned}
$$

TABLE C. 22
KODIAK OTTER TRAWL
BOTTOMFISH FISHERY
NUMBER OF BOATS BY LENGTH

FEET	1969	1970	1971	1972	1973	1974	1975	1976
$0^{1}$		1	2		1			
$1-25$					1			
$26-35$			1		4	1		1
$36-45$	1	1	3		1	5		
$46-55$		3	2		1	3	2	3
$56-65$		3	5	1	2	3		
$66-75$		3	2	2	3	4	3	14
$76-85$	1	1	2	2	2	1	9	
$86-95$	1		1	-	1		2	
$96-105$						1		

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

TA\$~SC. 23
WALL SOAT LONG LINE BOTTOMFISA FISHERY

				TC	AND	OY	I OAT								
\%	1969		1970		1971		1972		1973		1974		1975		1976
$\begin{aligned} & \text { s Landed } \\ & 00 \text { ' } \mathbf{s}) \end{aligned}$							-		17		35		' 91		126
: of Landings \$	\$	\$		\$		\$	-	\$	3,000	\$	7,000	\$	17,000	s	28,000
r of Boats							-		12		15		12		21
: 5 of Landings ${ }^{\text {L }}$							-		17		17		24		44
Weeks ${ }^{2}$							-		17		17		24		44
leeks ${ }^{3}$							-		17		17		24		44
:r of Landings 30.es			--				-		1.42		1.13		2.00		2.10
; per 3oat							-		1.42		1.13		2.90		2.10
isper Landing							-		1,000		2,060		3,790		2,860
$\begin{aligned} & \text { :of Catch } \\ & \text { a-ting } \end{aligned}$	s	\$		$s$	.	s	-	\$	176	S	412	\$	708	\$	636
```Jof Catch``` ioat	s	s		\$		s	-	\$	250	\$	467	\$	1,420	\$	1,330
$\begin{aligned} & : \text { of Catch } \\ & \text { :oat Week } \end{aligned}$	S	s		s		s	-	\$	176	\$	412	S	708	\$	636
value of catch per lbs. ${ }^{\text {d }}$ S		s	-	s		s	-	\$	0.18	\$	0.20	s	0.19	s	0.22
cl ${ }^{4}$			-				--		1.00		1.00		0.96		0.98
6 2^{5}			-				-		1.00		1.00		1.00		1.00

rees: The catch statistics werederived using data provided from the data files of the State of Alaska Commercial Eisheries Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, a study cf the Socio-Economic Impact_of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Sumed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats. -
3. Man weeks equals boat weeks times an estimate of the averacecrew size inthis fishery: it is thus an estinat of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by the EntrCommission.
uas been estimated that the average erew size in this fishery is 1.
C. 25
;

TABLE C. 24

Kodiak Small Boat
Long Line Bottomfish Fishery
Number of Boats and Landings in the Fishery by Month
1969 1970. 1971. 1972 . 1973 1974 $\underline{1975} \underline{1976}$

Source: $\begin{gathered}\text { Commercial } \\ \text {-Data Files }\end{gathered}$ Fisheries Entry Commission
${ }^{1} B=$ Number of Boats
'L = Number of Landings

1.

All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 26
KODIAK BOTTOMFISH FISHERY ALL GEAR TYPES

	1969	1970	1971	1972	1973	1974	1975	1976	1577
Pounds Landed (in 000 s)	c^{4}	72	49	50	170	700	113	384	
Val ue of Landi ngs	c	\$3, 000	\$6,000	\$4, 000	\$18, 000	140, 000	21, 000	81, 000	
Number of Boats	1	13	16	6	27	35	16	33	
Number of Landings ${ }^{1}$	c	44	26	7	40	69	31	75	
Boat Weeks ${ }^{2}$	c	38	25	7	37	67	31	74	
Man Weeks ${ }^{3}$	c	114	75	21	77	167	45	134	

Source: The catch statistics were derived using data provided fromthe data files of the State of Al aska Comercial Fisheries Entry Comission. The estimate of the average crew size in this fishery was made by George W Rogers in, A Study of the Socio Economic Impact of Changes in the Harvesting Labor Force in the Al aska Salmon Fishery, and in ongoing research.
"Nuntber of Landi ngs equal s the number of days each boat Ianded fish. Summed over all boats.
${ }^{2}$ Eoat Weeks equals the number of weeks each boat landed fish, Sumed over all boats.
$3_{\text {Man Weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an }}$ estimate of the average number of fishernen empl oyed a week times the number of weeks fished.
${ }^{4} \mathrm{~A}$ "c" ${ }^{\text {indicates that the statistic is not available due to confidentiality requirenents nai ntai ned by the }}$ Entry Commissi on.

These statistics do not incl ude the activities of the following boats that participated in this fishery:
1970 one hand troller and one long liner under 26 feet
1973 one purse seiner and two beam traw ers
1974 one pot gear boat under 50 feet and tuo. beam trawlers
1975 one pot gear boat under 50 feet, one beam traw er, and two double otter traw ers

```
TABLE C. 27 Kodi ak King Crab Fi shery Catch and Effort
1970-78
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \begin{array}{l}
\text { Fishing } \\
\text { Year }
\end{array} \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { No. }{ }^{4} \\
\text { Vessels } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{Commercial Catch} & \multirow[t]{2}{*}{\begin{tabular}{l}
No. \\
Ldgs.
\end{tabular}} & \multicolumn{2}{|l|}{Avg. Catch per Landing} \\
\hline & & Pounds & Metric Tons & & Pounds & Metric Tons \\
\hline 1960-61 & 143 & 21,064,871 & 9,554.96 & & & \\
\hline 1961-62 & 148 & 28,962,900 & 13,137.48 & & & \\
\hline 1962-63 & 195 & 37,626.703 & 17,067.36 & & & \\
\hline 1963-64 & 181 & 37,716,223 & 17,107.97 & & & \\
\hline 1964-65 & 189 & 41,596,518 & 18,868.06 & & & \\
\hline 1965-66 & 175 & 94,431,026 & 42.833 .63 & & & \\
\hline 1966-67 & 213 & 73,812,779 & 33,483.52 & & & \\
\hline 1967-68 & 227 & 43,448,492 & 19,708.11 & 3,847 & 11,294 & 5.12 \\
\hline 1968-69 & 178 & 18,241,485 & 8,260.68 & 1,839 & 9,902 & 4.49 \\
\hline 1969-70 & 136 & 12,200,571 & 5,534.14 & 978 & 12,475 & 5.66 \\
\hline 1970-71 & 100 & 11,719,970 & 5,316.14 & 830 & 14,120 & 6.40 \\
\hline 1971-72 & 89 & 10,884,152 & 4,937.02 & 507 & 21,467 & 9.74 \\
\hline 1972-73 & 88 & 15,479,916 & 7,021.64 & 683 & 22,664 & 10.28 \\
\hline 1973-74 & 129 & 14,397,287 \({ }^{\prime \prime}\) & 6,530.57 & 837 & 17,201 & 7.80 \\
\hline 1974-75 & 158 & 23,582,820 \({ }^{5}\) & 10,697.05 & 1,195 & 19,734 & 8.95 \\
\hline 1975-76 & 169 & 24,061,651 & 10,914.29 & 1,569 & 19,478 & 8.84 \\
\hline 1976-77 & 195 & 17,966,846 & 8,149.71 & 1,165 & \(15>422\) & 7.00 \\
\hline 1977-78 & 179 & 13,503,666 & 6,125.22 & 1,186 & 11,386 & 5.16 \\
\hline TOTAL & 1107 & 540,672,776 & 245,247.56 & 14,636 & & \\
\hline
\end{tabular}
\begin{tabular}{llllllll} 
average & 139 & \(30,037,376\) & \(13,624.86\) & 1,331 & 14,037 & 6.37
\end{tabular}
```

[^15]

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial \mathbf{F} Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, a s the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in oncoi research.

1. Number of Landings equals the number of days each boat landed fish. Sumed eve. $\%$ all boats.
2. Seat weeks equals the number of weeks each boat landed fish. Summed over all boats. -
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of tandings per week.
6. A "(" indicates that the statistic is not available due to coniidentiality requirements maintained sy Commission.

It haa been estimated that the average crew size in this fishery is 3.

KING CRAB FISHERY

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

Kodi ak Tanner Crab Fi shery
Catch and Effort
1967-1977 1

Calendar Year	Fishing Year	No. Vessels	Commercial Harvest		No. Landings	Unweighed mean Catch/Landings		No. Pot Ave. No. n Lifts Crab/Pot	
			Pounds	Metric Ton		Pounds	Metric		
1967			110,961	50.33	83	1,337	.61		
1968			2,560,687	1,161.51	817	3,134	1.42		
1969		85	6,827,312	3,096.82	955	7,149	3.24	72,748	43
	$1969-70^{2}$	67	8,416>782	$3>817.79$	833	10,104	4.58	78,266	42
	1970-71	82	6,744,163	3,059.10	453	14,888	6.75	60,967	44
	1971-72	46	9,475,902	4,298.20	505	18,764	8.51	65,907	59
	1972-73	105	30,699,777	13,925.20	1,466	20,941	9.50	188,158	67
	1973-74 ${ }^{3}$	123	29,820,899	13,526.55	1,741	17,129	7.77	217,523	59
	1974-75 ${ }^{3}$	74	13,649,969	6,191.53	471	28,981	13.15	73,826	85
	1975-76 ${ }^{4}$	104	27,336>911	12,399.83	1,168	23,405	10.67	199,304	64
	1976-77 ${ }^{\text {b }}$	1C2	20.720 .079	9.398 .57	998	20,762	9.41	164.213	48
TOTAL (FIS	G YEARS)		146,864,482	66,617.29	7,635			$1.048,164$	4

| AVERAGE (FISHING YEARS) 88 | $18,358,060$ | $8,327.16$ | 954 | 19,243 | 8.73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^16]
TABLE C. 32

KODIAX
TANNER(SNOW) CRAB FISHERY

	CATCA AND EMPLOYMENT DATA															
	1969		1970		1971		1972		1973		1974		1975			15
?ounds Landed (in 000's)		6,862		7,710		7,411		11 \# 907		31,844		26,494		18,197		2.
value of Landings	\$	686,000	\$	771,000	\$	815,000	\$	1,429,000	\$	5,732,000	\$	5,S64,000	\$	3,094,000	\$	5,01
Number of Boats		116		81		54		64		126		12s		106		
Yumber of Landings ${ }^{1}$		942		6s6		432		643		1,518		1,371		751		
3oet Weeks*		829		577		380		568		1,203"		1,033		582		
Uan Weeks ${ }^{3}$		2,487		1,731		1,140		1,704		3,609		3,099		1,746		
Number of Landings per 3oat		8.12		8.10		8.00		10.05		12.05		10.97		7.08		9
Weeks per Boat		7.15		7.12		7.04		8.88		9.55		8.26		5.49		
Pounds per Landing		7,300		11,800		17,200		18,500		21,000		19,300		24,200		21
Value of Catch ?̣モ Landing	\$	730	\$	1,180	\$	1,890	\$	2,220	\$	3,780	\$	4,060	S	4,120	\$	
Value of Catch ?er Boat	\$	5,900	\$	9,s00	\$	15,100	S	22,300	\$	45,.500	\$	44,.500	\$	29,200	\$	4
Value of Catch ofr Bcat Week	\$	830	\$	1,340	\$	2,140	\$	2,520	\$	4,760	\$	5,390	\$	5,320	\$	
erice (i.e. value of catch per lbs.)	\$	0.09	\$	0.10	\$	0.11	\$	0.12	\$	0.18	\$	0.21	\$	0.17	\$	
Index 1^{4}		0.97		0.98		0.99		0.90		0.95		0.95		0.90		
Index 2^{5}		1.14		1.14		1.14		1.13		1.26		1.33		1.29		

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial fi Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, \dot{f} st the Socio-Economic Impact of Changes in the Harvesting Lacor Force in the Alaska Salmon Fishery, and in ongoir research.

1. Number of Landings equals the number of days each teat landed fish. Summed over all boats.
2. 8oat weeks equals the number of weeks each boat landed fish. Summed over all boats. .
3. Man weeks equais boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by : Commission.

These statistics do not include the activities of the following boats that participated in this fishery: 1970 , one herri seiner.

It has been estimated that the average crew size in this fishery is 3.
C. 34

Source: Commercial Fisheries Entry Commission
Data Files

```
\({ }^{1} B=\) Number of Boats
\({ }^{2}\) L \(=\) Number of Landings
```


TABLE C. 34
 KODI AK

TANNER SNOW CRAB FISHERY

NUMBER OF BOATS BY LENGTH								
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	27	16	2	2	2	2	1	2
1- 25	4	1				1	1	
26-35	13	7	6	11	19	19	14	16
36-45	10	8	7	9	19	18	10	14
46-55	18	16	15	16	21	22	18	20
56-65	9	7	4	5	10	9	11	12
66-75	9	5	4	9	17	16	18	14
76-85	17	16	14	11	25	22	16	10
86-95	3	1	1		7	8	12	11
96-105	3	2			2	2	3	1
106-115	2	1		1	2	4	2	5
116-125								
125 -	1	1	1		2	2		2

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 35
KODIAK DUNGENESS CRAB FI SFERY, CATCH AND EFFORT, 1962-1977

Source: Al aska Departnent of Fish and Gane Vestward Regi onal Annual Reports, 1978

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fi Entry Comission. The estimate of the average crew size in this fishery was made by George w, Rogers in, A st the Socio-Economic Impact of Changes in the Harvesting Labor Force inthe Alaska Salmon Eishery, ard in orgoir research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Soatweeksequals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
G. A " (" indicates chat the statistic is not available due to confidentiality requirements maintained by t' Commission.

These statistics do not include the activities of the following boats that participated in this fishery: 1973, one boat w. unspecified gear.

It has been estimated that the average crew size in this fishery is 2.S.

$$
\begin{aligned}
\text { Source: } & \begin{array}{l}
\text { Commercial Fisheries Entry Commission } \\
\\
\text { Data Files }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Boats } \\
& \mathrm{`} \mathrm{~L}=\text { Number of Landings }
\end{aligned}
$$

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 39
Kodi ak Shrimp Fishery
Catch and Effort
1960-1978

$\begin{aligned} & \text { CALENDAR } \\ & \text { YEAR } \\ & \hline \end{aligned}$	$\begin{gathered} \text { FISHING } \\ \text { YEAR } \end{gathered}$	$\begin{gathered} \text { NO. } \\ \text { VESSELS } \end{gathered}$	NO. LANDINGS	COMMERCIAL HARVEST	
				POUNDS	METRIC TONS
1960		11	94	3,197,985	1,450.6
1961		12	203	11,083,500	5,027.4
1962		11	204	12,654, 027	S, 739.8
1963		--	---	10,118, 472	4,589.7
1964		6	---	4,339,114	1,968.2
1965		11	320	13,823,061	6,270.1
1966		17	5 s 1	24,097,141	10,930.4
- 1967		23	--	38,267,856	17,358.2
1968		16	--	34,468,713	$15>634.9$
1969		26	935	41,353,461	18,757.8
1970		18	1,024	62,181,204	28,205.2
1971 ${ }^{1}$		49	1,746	82,153,724	37,264.7
$1972{ }^{2}$		63	1,398	58,352,319	26,468.4
1973		50	1,283	70,511,477	31,983.8
	1973-743	63	1,029	56,203,992	2S, 494.0
	1974-7s	7 s	1,100	58,235,982	26,418.2
	197S-76	58	844	49,086,591	22,265.5
	1976-77	62	762	46,712,083	21,188.S
	1977-78	58	653	26,409,366	11,979.2
TOTAL				703,250,068	318,992.1
AVERAGE	(fishing year)	63	878	47,529,603	21,468.6

${ }^{1}$ First egg hatch closures announced for a portion of the Kodiak district shrimp fishery during March and April, 1971.
${ }^{2}$ First vear quotas established.
${ }^{3}$ Beginning in the 1973-74 fishing season, a complete egg hatch closure for the entire fishing district was in effect during March and April. Fishing year beaan Mayl, and continued through February 28.
${ }^{4}$ Represents beam trawl and single and double otter trawl.
Source: ADF\&G, Westward Region Shellfish Report, 1978

TABLE C. 40
KOOIAK OTTER TRAWL SHRIMP FISEERY

Sources: The catch statistics were derived using data provided from the date files of the State of Alaska Commercial F: Entry Commission. The estimate of the average crew size in this fishery was made by George w. Rogers in, $\boldsymbol{\lambda}$ st the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in oncoir research.

1. Number of Landings equals the number of days each boat landed fish. Sumed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: 'it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equais the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained o^{\prime} = Commission.

It has been estimated that the average crew size in this fishery is 3.

Kodiak Otter Trawl She Shrimp Fishery									
Number of Boats and Landings in the Fishery by Month									
		1969	1970	$\underline{1971}$	1972	$\underline{1973}$	$\underline{1974}$	1975	$\underline{1976}$
January									
	B^{1}	16	17	24	39	33	22	38	32
	L^{2}	57	71	91	149	138	36	94	101
February									
	B	16	18	25	15	34	7	45	31
	L	57	66	97	88	126	12	116	109
Marc h 116									
	B	17	18	32	18	--	4	7	--
April 0 - 11									
	B	17	19	17	4	--	1	--	--
	L	65	85	50	9	--	-	--	--
May 50									
	B	15	19	32	5	5	8	1	4
	L	58	57	171	7	14	19	- -	- -
June 16									
	B	16	19	34	31	14	8	11	1
	L	65	93	181	128	31	17	17	. -
July ${ }^{\text {J }}$									
	B	14	19	34	34	8	5	17	5
	L	70	115	197	188	21	10	34	--
August 18									
	B	14	18	29	33	29	32	39	3
$\begin{array}{lllllllll} \\ \text { September } & 75 & 103 & 190 & 118 & 130 & 128 & 134\end{array}$									
	B	14	18	31	16	34	31	30	45
	L	72	93	190	32	168	98	102	176
October									
	B	14	18	29	31	32	45	28	52
	L	52	78	161	149	117	183	87	182
November 182									
	B	15	21	35	30	31	49	31	44
	L	62	72	174	116	121	191	78	123
December									
	B L	16	22 76	36 132	30 73	34 108	44 107	29 74	14

	TABLE C. 42 KOD AK OT"IER TRAWL							
	SHRIMP FISHERY							
	NUMBER OF BOATS BY LENGTH							
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	4	2	3	1				1
1-25		1		1	2			-
26-35		1	3	3	5			
36-45	2	4	,4	5	4	3	2	
46-55	4	5	9	11	6	7	7	5
56-65	7	6	10	10	8	6	7	4
66-75	5	7^{-}	10	12	17	20	24	31
76-85	1	2	7	9	13	21	20	22
86-95	1	1	2	2	3	5	5	3
96-105						1	1	1
106-115						1	1	-

116-125
125-

1. All boats unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

I. $\mathbf{I}:$: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisheries Entry Commission. The estimate of the average crew size in this fishery was made by George k. Rogers in, A stuciy of the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fisherv, and in ongoing research.
2. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
3. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
4. Nan weeks equals boat weeks times an estmate of the average crew size in this fishery: it is thus an estimat of the average number of fishermen employed a week times the number of weeks fished.
5. Index 1 equals the number of Landings divided by the number of species Landed
6. Index 2 equals the average number of Landings per week.
7. A "(" indicates that the statistic is rot available due to confidentiality requirements maintained by the Ents Commission.
has been estimated that the average crew size in this fishey is 2.

	Number of Boa	Beam s an	TABLE Kodia awl Shr Landin	44 Fish in			nth	
	$\underline{1969}$	1970	$\underline{1971}$	1972	1973	1974	1975	1976
January								
	B^{1}				14	5	8	5
	I^{2}				42	10	13	13
February								
	B			2	13	6	10	7
	I				51	13	19	18
March								
	B			4		3		3
	L			21				
April								
	B			5				
	L			10				
May								
	B			5	2	2	1	
	L			9				
June								
	B		1	1	3	6		2
	L					16		
July								
	B		1	1		5	2	4
	L					11		13
August								
	B			1	9	4	2.	2
	L				24	16		
September								
	B				15	5	4	3
	L				46	18	18	
October								
	B			4	19	10	3	5
	L			18	51	26		19
November								
	B		1	9	17	11	9	2
	L			19	47	26	25	
December								
	B		1	7	17	10	8	
	L			15	42	18	14	

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files -

	CATCH AND EMPLOYMENT DATA														
	1969		1970			1971	1972,		1973		1974		1975		
?ounds Landed (in 000'3)		$($		12				($($		7		13	
falue of Landings	\$	1	\$	5,000	\$		\$	$($	\$	$($	\$	3,000	s	29,000	\$
Number of soats				5					1		2	8		7	
Jumber of Landings ${ }^{1}$		f		20				1		1		65		66	
Joat Weeks ${ }^{2}$		1		20				(1		4a		45	
1an Weeks'		1		40				$($		1		96	-	90	
Number of Landings per Boat		$($		4.00					-	$($		8.13		9.43	
Weeke per soat		\pm		4.00								6.00		6.43	
Pounds par Landing		1		600				$($		$($		110		200	
value of Catch ?er Landing	S	1	\$	250	\$		\$	1	\$	1	\$	50	s	440	S
Value of Catch ser Boat	S	1	\$	1,000	\$	-	S	(\$	1	\$	3\$0	S	4,140	S
Value of Catch ser Seat Week	5	1	\$	250	\$		\$	1	\$	$($,\$	60	S	640	\$
?r ice (i.e. value of catch per Ibs.)	S	1	S	0.42	S	-	\$	1	S	(\$	0.43	S	2.23	\$
Index 1^{4}		1		1. 00				1		1		0.64		0.85	
Index $\mathbf{2}^{\mathbf{5}}$		1		1.00				1		$($		1.35		1.47	

[^17]It bee been estimated that the average crew sise inthis fishery is 2.

1. All boats of unspecified length are included in this catagory Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 49
KODI AK SHR MP FI SHERY ALL GEAR TYPES:
CATCH GROSS EARN NGS, AND NUMBER OF BOATS, 1969-1976

YEAR	CATCH	GROSS EARN NGS	NUMBER OF	BOATS
	pounds)			
1969	41, 353, 461	\$1, 656, 086	25	
1970	62, 181, 204	2, 491, 677	34	
1971	82, 153, 724	3, 286, 149	48	
1972	58, 645, 349	3, 057, 925	71	
1973	74, 484, 291	5, 958, 822	92	
1974	49, 862, 278	4, 988, 360	91	
1975	48, 962, 019	3, 944, 698	88	
1976	51, 850, 508	5, 168, 171	72	
1977				

Source: Al aska Commercial Fi sheries Entry Commission, Alaska Shel Ifish Bio-Economic Data Base, 1978

KODI AK SCALLOP FI SFERY, CATCH AND EFFORT, 1967 = 1976

YEAR	$\begin{gathered} \text { NO. } \\ \text { VESSELS } \\ \hline \end{gathered}$	POUNDS	METRI C TONS	NO. LANDI NGS	POUNDS	METRIC TONS
1967	2	7,7881	3.53	6^{1}	1,298	. 59
1968	8	872, 803 ${ }^{2}$	395. 89	89^{3}	8, $983{ }^{3}$	4. $07^{\text {3 }}$
1969	11	1, 012, 860	459.43	86	11, 777	5. 34
1970	7	1, 417, 612	643.02	102	13, 898	6. 30
$? 971$	5	841, 211	381. 75	48	17,525	7.95
1972	5	1, 038, 793	471. 19	68	15, 276	6. 93
1973	4	935, 705	67.11	42	22, 279	10.11
1974	3	147,945	133. 42	14	10, 568	4. 79
1975	3	294, 142	42. 92	29	10, 143	4.60
1976	1	75, 245	34. 13	6	12,541	5. 69
TOTAL ${ }^{4}$	46	6, 482, 184	2, 940. 30	4755		
AVERAGE4	4	720, 243	326. 70	52	13, 647	6. 19^{\prime}

TUnshucked scal lops onl y.
${ }^{2} 718,671$ pounds scal lops shucked; 154, 132 pounds unshucked.
${ }^{3} 80$ I andi ngs of shucked scal Iops; 9 I andi ngs unshucked. Average pounds/I andi ng based on shucked wei ght and I andi ngs.
${ }^{4}$ 1968-1976 total and average, shucked scallop wei ght only.
${ }^{5}$ Shucked scal I op I andi ngs.

Source: ADF\&G, Westuard Regi on Shellfish Report, April, 1978.

C． 53

TABLE C. 52
KODIAK SCALLOP DREDGE FISHERY
Number of Boats and Landings in the Fishery by Month

Source: Commercial Fisheries Entry Comission Data Files

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Boats } \\
& { }^{*} \mathrm{~L}=\text { Number of Landings }
\end{aligned}
$$

TABLE C. 53
KODIAK SCALLOP DREDGE FISHERY Number of Boats by Length

1969	1970	1971	1972	1973	1974	1975	1976

$26 \quad 0^{1}$

26-35 feet
66-75 feet 76-85 feet 86-95 feet
`All boats of unspecified length are included in this category
Source: Commercial Fisheries Entry Commission, Data Files.

TABLE C. 54
ANNULL KODI AK RAZOR CLAM CATCH, 1960-1977
(in thousands of pounds, shell weight)

YEAR	CATCH	YEAR	CATCH	Y	E	ACATCR
1960	420.6	1966	14.8	1972		152.1
1961	382.0	1967	2.2	1973		165. 3
1962	297.5	1968	6.4	1974		198.4
1963	323.8	1969	12.0	1975		6.2
1964	0	1970	132. 3	1976		0
1965	20.0	1971	190.4	1977		0.4

Source: ADF\&G, Westward Regi on, Shellfish Report, April, 1978.

TABLE C. 55
KOOIAK RAZOR CLAM CATCH BY MDNTH 1967-1977
(in thousands of pounds, shell wei ght)
YEAR. JAN FEB MAR APR MAY JUN JULY AUG SEPT.OCT NOV DEC TOTAL

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
\qquad
2. 2
6.4
$5.5 \quad 3.6 \quad 3.0$
1.7 49. 9
$65.7 \quad 15.0$
4.5
14.8
83.8
50.636 .8
23. 9
$1.4 \quad 2.4$
152.1
$\begin{array}{llllll}2.4 & 12.8 & 46.3 & 44.9 & 58.4 & 0.5\end{array}$

1. 4 40. $0 \quad 59.4 \quad 44.952 .7$
1.9
2. 0
0.2
3. 2

Source: Alaska Department of Fi sh and Gane, Statistical Leaflets, various years.

ces: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisheres Entry Commission. The estimate of the average crew size in this fishery was made by George W.Rogers in, A study of the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Sumed over allboats.
2. Seat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estimat of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Lancincs per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by the zntz Commission.

[^18] ecified gear.
C. 57

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 59

A MEASURE OF DOUBLE COUNTI NG I N THE KODI AK SHELLFI SH AND SALMON FI SFERI ES, 1975-1977

	1975	1970	1977
Sum of boats in the indi vidual shel Ifish fisheries	409	387	370
Total boats in the shellfish fishery as a whole	240	268	261
Ratio	1.704	1.444	1.418
Sum of boats in the indi vidual salmon fisheries	416	502	512
Total boats in the salmon fishery as a whole	401	494	507
Ratio	1. 037	1.076	1.070
Source: ADF\&G data files, 1975-1977.			

TABLE C. 60

- NUMBER OF KODI AK AND STATEWDE GEAR PERMTS ISSUED TO RESI DENTS OF KODI AK* 19「4"- 1978

"SPECI ES AND GEAR KODIAK	1974	1975	1976	1977	1978
Herring, Purse Sei ne				29	
Herring, Set Gill Net				1	
King Crab, Snal I Boat Pots ${ }^{1}$	90	78	108	163	90
King Crab, Large Boat Pots	100	99	101	130	
Sal mon, Purse Sei ne	164	192	194	195	1: ?
- Salmon, Beach Sei ne		12	11	23	16
Sal mon, Set Gll Net	1:	110	116	107	92
STATEW DE					
Hal i but, Hand Troll		2		1	
. "Hal i but, Snall Boat Long Li ${ }^{\text {ne }}$	137	53	103	123	121
Hal ibut, Large Boat Long Li ne	4	41	43	86	51
Sablefish, Large Boat Long Line				1	
Dungeness Crab, Snall Boat Pots	64	11	7	12	10
Dungeness Crab Large Boat Pots		15	13	9	4
Herring, Pound ${ }^{3}$,
- Herring, Purse Sei ne	66	25	27		
Herring, Beach Sei ne					
Herring, Drift Gill Net			1		
Herring, Set Gill Net	2	1	3		
Herring, Pound	2				
Herring Roe on Kel p	2	19	9	9	3
- Bottonfish, I-1and Troll		1			
Bottomfish, Snall Boat Long Line	1	4	2	6	6
Bottomfish, Otter Traw		9	16	21	18
Bottomfish, Small Boat Pots	4				
Bottonfi sh, Beam Trawl					4
Bottomfish, Large Boat Longline		1	3	4	5
- Bottonfish, Other		1	1	1	2
Shrimp, Otter Traw	108	83	86	97	53
Shrimp, Snall Boat Pots	32	15	7	27	10
Shri mp, Beam Traw	62	31	23	24	9
Shrimp, Large Boat Pots		4	8	7	2
Razor Clans, Shovel		12	8	7	
- Razor Clans, Dredge				1	
Razor Clans, Other					1
Sal mon, Hand Troll	1		2	1	1
Sal mon, Power Troll	1	1	2	1	2
Tanner Crab, Snall Boat Pots	87	57	62	85	94
Tanner Crab, Large Boat Pots	105	91	92	111	138
- Scal lops, Dredge	2				

[^19]Source: Commercial Fi sheries Entry Comission, Permit Files.

TANNER DUNGENESS

YEAR	SALMDN	HALI BUT	HERRI NG	K NG CRAB	TANNER CRAB	DUNGENESS CRAB	SHRI MP	SCALLOPS	BAZOR CLAME	TOTAL ${ }^{2}$
1962	1	1	0	7	0	3	1	0	1	9
1963	3	2	0	6	0	2	3	0	1	9
1964	2	1	1	8	0	1	1	0	0	10
1965	5	1	2	9	0	5	3	0	1	14
1966	9	1	3	13	0	3	3	0	1	20
1967	5	2	3	17	4	8	5	3	1	19
1968	5	2	4	17	10	9	6	4	1	21
1969	8	1	3	14	9	8	6	2	1	17
1970	6	3	1	8	7	7	6	5	2	11
1971	7	1	4	11	7	8	5	2	2	13
1972	6	2	3	9	8	9	6	1	2	15

$\mathrm{I}_{\text {floating processor plants are incl uded. }}$
${ }^{2}$ The total is not the sum of the col ums si nce most plants produce nore than one product.
Source: ADF\&G Commerci al Oper ator Reports 1962-1972.

TABLE C. 62
KODIAK SALMON
PROCESSI NG BY PRODUCT, 1956 - 58 AND 1973-76

PRODUCT	1956	1957	1958	1973	1974	$\underline{1975}$	1976
Fresh (000's lbs) Pl ants					$\begin{array}{r} 1,278 \\ 2 \end{array}$		
Frozen (000's lbs)	$\begin{array}{r} 87 \\ 3 \end{array}$	$\begin{array}{r} 183 \\ 2 \end{array}$		344 3	98 3	697 3	357 2
Canned (000's 1bs) Plants	$\begin{gathered} 1,692 \\ 3 \end{gathered}$	$\begin{array}{r} 1,207 \\ 2 \end{array}$		$\begin{array}{r} 1,897 \\ 4 \end{array}$	$\begin{array}{r} 4,991 \\ 3 \end{array}$	$\begin{array}{r} 5,315 \\ 3 \end{array}$	$\begin{array}{r} 9,94.4 \\ 3 \end{array}$
Roe (000's lbs) Plants				$\begin{array}{r} 159 \\ 4 \end{array}$	345 4	270 3	418 4
Bait (000 's lbs) P1 ants							
Other (000 s lbs) Pl ants				1			1
Total (000's 1bs) ${ }_{\text {Plants }}$	1,779	$\begin{array}{r} 1,390 \\ 4 \end{array}$		2, 400	$\begin{array}{r} 6,712 \\ 7 \end{array}$	$\begin{array}{r} 6,282 \\ 5 \end{array}$	$\begin{array}{r} 1,769 \\ 6 \end{array}$

The wei ghts are meat equi val ent wei ghts. If there are fewer than t wo processors, the data is not available due to confidentiality requirenents and the total weigrit will not incl ude the confidentiality data.

Source: Alaska Departnent of Fish and Game, Precessor Reports with 1978 revisions.

TABLE C.63
PROCESSI NG BY PRODUCT, 1956-58 ANO 1973-76

| P RODUCT | $1956 \quad 1957$ | $1958 \quad \underline{1973} \quad \underline{1974} \quad \underline{1975}$ | $\underline{1976}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fresh (000's lbs)
Pl ants
Frozen (000's lbs)
Pl ants

$$
\begin{array}{rrrr}
2,368 & 3,7(J 6 & 4,140 & 4,132 \\
5 & 4 & 4 & 2
\end{array}
$$

Canned ($\mathbf{0 0 0}$'s lbs)

P1 ants
Roe (000's lbs)
Pl ants
Bait (000's 1bs) Plants

Reduction (000's lbs) Plants

Other (000's lbs) Pl ants

Total (000 's lbs)
Plants

$$
\begin{array}{rrrr}
2,368 & 3,706 & 4,140 & 4,132 \\
5 & 4 & 4 & 2
\end{array}
$$

The wei ghts are neat equi val ent wei ghts. If there are fewer than t no processors, the data is not available due to confidentiality requirenents and the total weight will not incl ude the confidentiality data.

Source: Al aska Departnent of Fi sh and Gane, Processor Reports with 1978 revi si ons.

$$
\text { TABLE C. } 64
$$

KODIAK HERRI NG
PROCESSI NG BY' PRODUCT, 1956-58 AND 1973-76

PRODUCT	1956	1957	1958	1973	1974	1975	1976
$\begin{array}{r} \text { Fresh (000's 1bs) } \\ \text { Pl ants } \end{array}$							
Frczen (000's los) P1 ants							
$\text { Canned (000's los } \begin{gathered} \text { Pl ants } \end{gathered}$							
Roe (000's 1bs) Plants				32	27	$\begin{array}{r} 265 \\ 3 \end{array}$	1
Bait (000's lbs) Plants				1	9		
Reduction (000's libs)	1						
Other (000 's 1bs) Pl ants							
Total (000's 1 bs) Plants	1			32	27	265 3	1

The weights are meat equivalent weights. If there are fewer than two processors, the data is not availacie due to confidentiality requi renents and the total weignt will not incl ude the confidentiality data.

Source: Al aska Department of Fish and Gane, Processor Reports with 1978 revisi ons.

TABLE C. 65
KODI AK KI NG CRAB

PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76

PRODUCT	1956	1957 _	1958	1973	1974	1975	1976
Fresh (000's lbs) Pl ants		.		1			
Frozen (000's lbs) Pl ants	$\begin{array}{r} 158 \\ 2 \end{array}$	1		$\begin{array}{r} 3,697 \\ 18 \end{array}$	$\begin{array}{r} 4,053 \\ 16 \end{array}$	$\begin{array}{r} 4,920 \\ 13 \end{array}$	$\begin{array}{r} 4,556 \\ 13 \end{array}$
- Canned (000's lbs)	$\begin{array}{r} 334 \\ 2 \end{array}$	$\begin{array}{r} 445 \\ 2 \end{array}$		297 3	$\begin{array}{r} 354 \\ 3 \end{array}$	446 3	527 4
Roe (000's lbs)							
Eait. (000's Ibs) Pi ants							
Reduction (000's lbs) Pl ants	,						
Other (000's lbs) Pl ants							
Total (000's los) ${ }_{\text {Pl }}$	592 3	$\begin{array}{r} 445 \\ 2 \end{array}$		3,994 18	$\begin{array}{r} 4,407 \\ 16 \end{array}$	$\begin{array}{r} 5,366 \\ 13 \end{array}$	$\begin{array}{r} 5,083 \\ 13 \end{array}$

The weights are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirements and the total weight will not include the confidentiality data.

Source: Alaska Departnent of Fish and Gane, Processor Reports with 1978 revi si ons.
Fresh (000 's 1bs)
Pl ants

Frozen (000's lbs)	2,961	2,110	$\mathbf{2 , 1 6 5}$	$\mathbf{3 , 2 4 8}$
Pl ants	$\mathbf{1 4}$	14	13	11
Canned (000's 1bs)	680	736	549	993
Plants	4	4	4	5

Roe (000's lbs) Pl ants

Bait (000's lbs)
Pl ants
Reduction (000's ibs)
Pl ants
Other (000's Ibs)
Plants
Total (000's Tbs)

3,641	2,846	2,714	4,241
14	14	13	11

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirements and the total weicht will not incl ude the confidentiality data.

Source: A aska Departnent. of Fi sh and Gane, Processor Reports with 1978 revi si ons.

TABLE C. 67KODI AK DUNGENESS CRABPROCESSI NG BY PRODUCT, $1956-58$ AND 1973-76							
PRODUCT	1956	1957	1958	1973	1974	_ 1975	1976
Fresh (000's lbs) Pl ants							
Frozen (000's lbs) Pl ants				372 8	171 8	109 5	17 3
$\underbrace{\text { Canned (000's } 1 \mathrm{bs})} \underset{\text { Pl ants }}{ }$							
Roe (000 's lbs) Pl ants							
Bait (000's lbs) Pl ants							
Reduction (000's lbs) Plants							
Other (000's lbs) Pl ants							
Total (000's lbs) Plants				372 8	171 8	109 5	17

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirenents and the total weight will not incl ude the conf identiality data.
source: Al aska Department of Fish and Gane, Processcr Reports with 1978 revi si ons.

TABLE C. 68
KOD AK SHRIMP
PROCESSI NG BY PRODUCT, 1956 - 58 AND 1973-76
$\underline{\text { PRODUCT }} \underline{1956} \quad 1957 \quad 1958 \quad \underline{1973} \quad \underline{1974} \quad \underline{1975} \quad \underline{1976}$
Fresh (000 's lbs)
Pl ants

Frozen (000's 1bs) Plants	$\begin{array}{r} 3,345 \\ 5 \end{array}$	$\begin{gathered} 3,942 \\ 6 \end{gathered}$	$\begin{array}{r} 4,449 \\ 7 \end{array}$	$\begin{array}{r} 5,209 \\ 5 \end{array}$
Canned ($\mathbf{0 0 0}$ s s lbs) Pl ants	579 4	$\begin{array}{r} 1,820 \\ 5 \end{array}$	$\begin{array}{r} 3,786 \\ 3 \end{array}$	$\begin{array}{r} 3,700 \\ 4 \end{array}$
Roe (000's 1bs) Pl ants				
Bait (000 's 1bs) Plants				
Reduction (000's lbs) plants				
$\text { Other (000's } 1 \mathrm{bs} \text {) }$				
Total (000's Ibs) Plants	$\begin{array}{r} 3,942 \\ 6 \end{array}$	$\begin{array}{r} 5,762 \\ 8 \end{array}$	$\begin{array}{r} 8,235 \\ 7 \end{array}$	$\begin{array}{r} 8,909 \\ 6 \end{array}$

The wei ghts are neat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirenents and the total wei ght will not incl ude the confidentiality data.

Source: A aska Departnent of Fish and Gane, Processor Reports with 1978 revi si ons.

A "I" indicates that the data is not available due to confidentiality requi renents
Source: Al aska Departnent of Labor Data Files

TABLE C. 70
KODIAK FI SH PROCESSI NG, EMPLOYMENT BY MONTH 1970-1977

		1970	1971	1972	1973	1974			1975	1976	1977
	J anuary	1	473	1	1, 187	8	9	0	607	872	1,201
	February	1	452	1	1,033	875			805	1, 048	1,397
	Hala rc	1	488	1	973	1, 021			504	1,033	1,209
	April	1	188	1	966	910			755	1	1,014
	May	1	393	1	1,058	813			1,055	1	904
	J une	1	533	1	1,358	907			871	1	1,591
	July	582	578	1	1,236	1,230			1,255	1,468	1,688
	August	558	582	1	1,287	1,137			1,478	1,749	1,701
N	Sept enber	462	600	1	1,212	1,073			1,487	1,802	1,703
	October	1	617	1	1,110	1,162			1,343	1,760	
	November	1	432	1	1,268	1,091			1,199	1,402	
	Decenber	1	421	1	1,065	904			881	1,249	
	Total Man Months	1	5,757	1	13,753	12,013			12,240	1	

A " 1 " indicates that the data is not available due to confidentiality requirenents
Source: Alaska Department of Labor Data Files

TABLE C. 71 KODI AK FISH PROCESSI NG, ESTI MATED MDNTHLY WAGES 1970-1977

		1970	1971	1972	1973	1974	1975	1976	1977
	J anuary	1	295, 152	1	631, 484	590, 070	697,443	835, 376	1, 113, 330
	February	1	282, 048	1	549, 556	580,125	924, 9451	003, 980	1, 295, 020
	Hala rc	1	304, 512	1	517, 636	676,923	579, 096	589, 614	1, 120, 740
	April	1	129,908	1	666, 540	728,910	599, 470	1	1, 043, 410
	May	1	271, 563	1	730, 020	651,213	837, 670	1	930, 216
	J une	1	368, 303	1	937, 020	726,507	691, 574	1	1, 637, 140
	July	378,882	448, 528	1	981, 384	1,062,720	1, 218, 610	161,186	1, 888, 870
	August	363, 258	451, 632	1	1, 021, 880	982,368	1, 435, 140	192, 040	1, 903, 420
à	Sept enber	300, 762	465, 600	1	962, 328	927,072	1, 443, 880	197, 860	1, 905, 660
	Oct ober	1	392, 412	1	840, 270	1,085,310	1, 250, 330	171,424	
	November	1	274, 752	1	959, 876	1>018,990	1, 116, 270	136, 555	
	December	1	267, 756	1	806, 205	844,336	820, 211	121, 653	
	Total Man Months	1	3, 953, 045	1	9, 605, 970	9,874,496	11, 614, 726	1	1

[^20]
PUBLIC SERVICES

- | Electricity USB'LE GY Giser Groups |
| :---: |
| Kodiak, Alaska $1965-1977$ |

$$
\text { (} 000 \text { 's of } \mathrm{KWH} \text {) }
$$

\bigcirc	Residential \& Small Commercial	Large Commercial	Total ${ }^{1}$	Residential \& Small Commercial	Large Commercial	Total 1
		1965			1966	
Jan.	735	316	1065	904	600	1521
Feb.	698	328	1040	797	610	1425
Var.	730	352	1098	927	557	1507
Apr.	670	360	1047	853	503	1377
May	940	317	1001	797	478	1298
June	676	344	1037	822	502	1348
July	685	316	1017	698	634	1355
Aug.	708	457	1181	842	694	1557
Sept.	747	436	1198	860	553	1436
Oct.	811	435	1262	992	564	1509
Nov.	926	484	1425	1043	635	1701
Dec.	NA	NA	NA	1136	733	1891
Total	--		--	10601	7063	17925
-		1967			968	
Jan.	1106	718	1846	1310	770	2108
Feb.	953	628	1603	1195	744	1968
Mar.	972	703	1697	1095	677	1804
Apr.	863	628	1514	1162	645	1843
Oy	879	652	1552	1030	669	1735
June	856	664	1521	886	746	1670
July	827	780	1629	976	919	1931
Aug.	932	790	1744	991	979	2007
sept.	985	777	1783	1064	941	2043
Jct.	1009	759	1790	1234	974	2247
Ov.	1169	771	1965	1194	646	1880
Jec.	1237	708	1972	1386	832	2260
Iotal	11788	8558	20616	13523	9542	23496
		1969			970	
inn.	1307	708	2059	1134	748	2126
?eb.	1173	636	1856	1172	720	1948
yar.	1165	702	1913	1312	884	2252
4 pr	1201	772	2024	1152	908	2114
viay	1056	827	1933	1046	988	2090
Tune	1030	810	1890	1075	1083	2214
6ly	995	1091	2136	1097	1324	2478
fug.	945	1085	2090	1101	1313	2470
sept	1191	1218	2459	1219	1329	2608
jet.	1211	979	2234	1268	1101	2430
Nov	1206	874	2136	1266	962	2309
Jec.	1414	763	2235	1466	982	2510
Dotal	13894	10465	24966	14498	12342	27549

l "Total" includes use of electricity for streetlights, power plant, and othe items not included within categories listed.

TABLE C. 72
(Continued)
($\mathbf{0 0 0} \mathbf{s}$ of KWH)

Resicential	Larse	motal ${ }^{1}$	Residential	Large
¢ Smail	Commercial		\& Smali	C ommercial
Commercial			Commercial	

	2973			1972		
Jan.	1310	951	2323	1429	1142	263
Feb.	1242	1063	2365	1355	855	227
Mar.	1318	1150	2528	1409	960	245
Apr.	1139	835	2033	1134	874	206
May	1080	1123	2262	1352	1311	272
June	1187	1314	2500	1155	1192	20
July	1020	1409	2488.	1087	1655	280
Aug.	1142	1577	2799	1233	1598	289
Sept.	1171	1596	2828	1211	1361	263
Oct.	1184	1310	2556	1368	1424	285
Nov.	1419	1313	2795	1431	1289	278
Dec.	1425	1106	2595	1482	1128	267
Total	14637	14747	30052	15646	14789	3119

1973

Jan.	$\mathbf{1 6 2 2}$	1314	2989
Feb.	$\mathbf{1 3 9 2}$	1287	2741
Mar.	$\mathbf{1 4 1 3}$	1199	2674
Apr.	$\mathbf{1 4 1 8}$	1584	3013
May	$\mathbf{1 4 2 0}$	1350	2830
June	$\mathbf{1 2 1 4}$	1517	2791
July	$\mathbf{1 2 9 5}$	1759	3114
Aug.	$\mathbf{1 3 7 4}$	1868	3302
Sept.	$\mathbf{1 3 4 7}$	1841	3148
Ot.	$\mathbf{1 6 9 4}$	1756	3513
Nov.	$\mathbf{1 6 0 3}$	1514	3178
Dec.	$\mathbf{1 5 0 7}$	1568	3111
Total	$\mathbf{1 6 9 9 9}$	18557	36404

1975

1403	3136
1432	2950
1227	2749
1595	3275
1767	3290
1527	2929
1960	3409
2097	3478
2433	4055
2132	3790
1843	3692
1841	3920
21256	40573

1974

1630	1416	310
1512	1366	293
1497	1359	290
1479	1766	338
1388	1168	260
1185	1108	274
1256	1297	260
1298	1932	328
1331	2023	341,
1549	1865	346
1410	1624	30
1722	1601 -*	3.7
17257	18525	3652

1976

1801	2171	$\mathbf{4 0 2}$
1635	1986	$3 \cup 7$
1931	2245	$\mathbf{4 2 3}$
1701	2051	$\mathbf{3 8 0}$
1466	1832	$\mathbf{3 3 5}$
1611	2245	$\mathbf{3 9 1}$
1490	2357	$\mathbf{3 9 0}$
1652	2219	3,2
1793	2583	$\mathbf{4 4 3}$
1855	2531	$\mathbf{4 4 4 ^ { \prime }}$
2061	1950	$\mathbf{4 0 6}$
1981	1802	$\mathbf{3 8 4}$
20977	25972	$\mathbf{4 7 6 3}$

C. 76

TABLE C. 72
(Continued)
(000's of KWH)

-	Residential \& Small Commercial	Large Commercial	Total ${ }^{1}$	$\begin{aligned} & \text { Residential } \\ & \& \text { Small } \\ & \text { Commercial } \end{aligned}$	Large Commercial	Total 1
		1977				
3 Sn.	2111	2559	4534	2331	2132	4540
Feb.	1816	1947	3827	2184	2255	4506
Mar.	1914	2083	4061	2125	2209	4399
Apr.	1806	1747	3570	2182	2017	4264
May	1676	2091	3864			
June	1713	2539	4337			
GIV	1569	2632	4266			
Aug.	1888	2421	4372			
Sept.	1791	2714	4569			
Oct.	1898	2127	4089			
Nov.	2240	2132	4438			
Dec.	2263	2003	4331			
Potal	22685	26995	50258			

Source: Kodiak utilities records
-
1 "Total" includes use of electricity for streetlights, power plant, and other items not included within-categories listed.

Figure Cl, Annual Electricity Consumption, Kodiak, Alaska 1966 - 1977

TABLE c. 73
Industrial and Domestic Water Use Kodiak, Alaska 1963-1978
(Millions of Gallons)

Industrial Domestic Industrial Domestic Industrial Domestic

1963
$\begin{array}{ll}-\infty & -- \\ -- & -- \\ -- & --\end{array}$
12.3
12.6
15.7
21.1
15.9
13.1
11.3
12.3
5.9
-

1964

13.5	19.7
15.4	25.4
13.9	46.6
6.2	24.9
8.2	26.8
8.9	41.0
10.8	39.4
8.8	37.1
12.2	33.8
$13 * 9$	32.1
14.1	32.5
18.4	56.2
144.3	425.5

1965

11.9	28.0
22.9	48.0
16.9	61.4
11.4	51.0
6.7	42.6
15.5	33.8
21.8	42.1
29.6	35.9
36.7	30.1
36.0	37.3
46.7	44.9
48.0	46.4
304.1	501.5

1968

41. 5
42. 8
43. 3
44. 0
45. 5
46. 3
47. 7
48. 1
49. 2
50. 3
51. 8
52. 9
53. 4
54. 5
55. 3
56. 3
57. 2
58. 1
59. 8
60. 5
61. 0
62. 0

34*9
26. 2
40. 1
528. 9

1971
66. 9
77. 0
77. 3
9. 4
67.4
79. 8
100. 4
117. 2
118. 9
99. 7
84. 7
72.8
971.5
50. 6
46. 0
51. 3
54. 3
47. 0
39. 4
45. 0
35. 8
35. 3
40. 9
37.6
53. 2
536. 4

ABLE C. 73
(Continued)
(Millions of Gallons)
Industrial Domestic Industrial Domestic Industrial Domesti
i 972
56. 3
3. 1
2. 4

1. 2
2. 0
3. 4
4. 8
5. 3
6. 3
7. 3
63.7
8. 2
9. 0
10. 1
11. 7
12. 6
13. 7
14. 3
15. 4
16. 8
17. 5
18. 3
19. 9
20. 8
21. 5
527.6

1973
81. 5
68. 1
40. 0
61. 1
46.4
61.6
77.4
135. 7
129. 8

1. 00.6
2. 3
92.7
3. 2

1975
46. 8
84. 0
19. 4
54.0
62.1
57.4
117.9
150. 7
150. 1
107.5
87.3
73. 8
1016. 0

Jan.	$\mathbf{4 6 . 8}$
Feb.	$\mathbf{8 4 . 0}$
Mar.	$\mathbf{1 9 . 4}$
Apr.	$\mathbf{5 4 . 0}$
May	$\mathbf{6 2 . 1}$
June	$\mathbf{5 7 . 4}$
July	117.9.
Aug.	$\mathbf{1 5 0 . 7}$
Sept.	$\mathbf{1 5 0 . 1}$
Ot.	$\mathbf{1 0 7 . 5}$
Nov.	$\mathbf{8 7 . 3}$
Dec.	$\mathbf{7 3 . 8}$
Total	$\mathbf{1 0 1 6 . 0}$

72.4
44. 3
48. 9
59. 0
56. 7
46. 8
48. 2
46. 1
56. 4
58. 3
54.1
56.8
648. 0

1978

Jan.
Feb.
Mar .
Apr. May June
124. 5
94. 7
118. 2
70.4
38. 7
97.2
51. 2
57.2
47.6
52.7
49. 7
50.4

1976

1974
55. 8
39. 9
47.6
51. 4
47.8
40. 9
43. 5
42. 3
43. 4
42.3
52. 9
51. 2
559. 0
62. 1
55.7
37.9
42.1
52. 3
68. 8
20. 6
15. 3
24. 4
140. 5
139. 9
127.5
100. 6
76. 5
866.4

613
60.9
42.7
40.9
45.8
42.8
61.4
49.3
51.4
52.7
607.0

1977

144.8	$52 . \mathbf{7}^{\prime \prime}$
103.5	44.0
71.9	77.5
62.7	44.0
70.0	49.9
132.2	69.6
148.2	66.2
147.0	63.0
180.5	$\mathbf{5 2 . 0 .}$
104.2	$\mathbf{5 . 2 . 5}$
98.3	64.8
52.4	51.0
1315.7	$\mathbf{6 7 6 . 1}$

63.1
62. 0
57.7
55. 0
61.6
48. 6
50. 4
46. 1
44. 6
46. 2
71. 8
63. 1
670. 2
52.7
$44.0^{\prime \prime}$
77.5
44.0
49.9
69.6
66.2
63.0
52. 0.

52 . 5
64.9
51.0
676. 1


```
                            mable C.Isa
DOCKAGES AT PIERS 1, 2, AND 3. PORT OF KODIAK, ALASKA
                OCTOBER, 1974 - JULY, 1978
```

	Pier 1		$\begin{gathered} \text { Pier } 2 \\ \text { (City Dock) } \\ \hline \end{gathered}$	Pier 3		
			(Contain			
	(Ferry	and Oil Dock)		Sea-Land		
Date	Ferry	Others		Service Co.	Other	
10/1/74-9/30/75	NA	NA		NA	85	NA
10/1/75-9/30/76	101	1	64	92	5	
10/1/76-9/30/77	92	1	44	121	5	
10/1/77-7/107/78	71	1	23	99	0	

SOURCE: Kodiak Port Operations records

1. No record available of number of tankers delivering petroleum products

TABLE C. 74
PORT USAGE
KODIAK, ALASKA, 1960 - 19761

$\underline{\text { Year }}$	Total Cargo ${ }^{2}$ Short Tons	$\underline{\text { Short AND }}$	$\begin{aligned} & \text { FISH PRODUCTS } \\ & \hline \text { o of Total Cargo } \\ & \hline \end{aligned}$	No. of Vessels Using Port ${ }^{3}$
1960	38,289	9,807	25. 6	826
1961	39, 623	14,830	37.4	1, 709
1962	80, 267	16,817	21.0	936
1963	73, 775	20,861	28.3	1, 652
1964	62, 285	15,455	24. 8	1, 461
1965	127, 584	23,552	18.5	NA
1966	212, 675	58,041	27. 3	NA
1967	133, 247	36,647	27.5	NA
1968	109, 645	24,316	22.2	NA
1969	115, 863	20,453	17.7	1,914
1970	124, 479	42,128	33.8	3,994
1971	148, 444	49,833	33. 6	2,699
1972	192, 963	48,433	25. 1	1,606
1973	236, 612	99,952	42. 2	8,317
1974	217, 024	86,960	40.1	4,379
1975	329, 639	104,433	31. 7	1,885
1976	388, 125	178,122	45.9	1,321
Source: Department of the Army Corps of Engineers, Waterborne Commerce of the United States, Annual issues, 1960-1976.				
Includes all waterborne cargo entering and leaving the port. Includes raw fish and any other fish product form entering and leaving the port. Includes commercial fishing vessels, except 1976.				

Seward

HARVESTI NG

TABLE C. 75

TABLE C. 76
Lower Cook Inlet
Purse Seine Salmon Fishery
CATCH AND EMPLOXMENT DATA

		1969	3.970	1971	1972	1973	1974	1975	1
Pouncis Landed (in 000's)		1,260	3,560	2,402	831	2,059	321	3,885	1,
value of Landings		154,000	508,000	427,000	202,000	752,000	167,000	1,419,000	526,
Number of Boats		47	73	" 43	47	49	49	63	
Number of Landings ${ }^{\text {L }}$.		484	870	329	245	450	129	632	
Boat Weeks ${ }^{2}$		216	336	1.35	1.20	185	88	233	
Man Wenks ${ }^{3}$		864	1,344	540	480	740	352	932	
Number of Landings per Boat		10.3	11.9	7.7	5.2	9.2	2.6	10.0	0
Weeks per Boat		4.60	4.60	3.14	2.55	3.78	1.80	3.70	2
Paunds per Landing		2,600	4,090	7,300	3,390	4,580	2,490	6,150	3 ,
Talue of Catch per Landing	\$	320	580	1,300	820	1,670	1,290	2,250	1.
value ef Catch per Boat	\$	3,280	6,960	9,930	4,300	15,350	3,410	22,520	7,
Value of Catch per Beat Week	\$	710	1,510	3,160	1,680	4,060	1,900	6,090	2,
grice (i.e. velue of catch per lis.)	\$	0.12	0.14	0.13	0.24	0.37	0.52	0.37	0
Index 1^{4}		0.43	0.42	0.40	0.48	0.43	0.48	0.49	0
Index $\mathbf{2}^{5}$		2.24	2.59	2.44	2.04	2.43	1.47	2.71	1.

sources : The catch statisties were derived using data provided from the data files of the State of Alaska Commercial fis Entry Comission. The estimate of the-average crew size in this fishery was made by George W.Rogersin, Ast: the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fisinery, and in ongoin research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. soat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this Eishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equal.s the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "c" indicates that the statistic is not available due to confidentiality requirements maintained by t. Commission.
7. It has been estimated that the average crew size in this fishery is four.

- January

February
B

- March
B
L

April
B

- May

	B
June	

June

- July

B

B	16

$\begin{array}{lll}16 & 26 & 7\end{array}$
$\begin{array}{lr}\text { B } & 42 \\ \text { L } & 224\end{array}$

60	$\mathbf{4 2}$	$\mathbf{3 9}$	$\mathbf{4 3}$	$\mathbf{2 0}$	$\mathbf{5 6}$	53
$\mathbf{5 0 8}$	$\mathbf{2 7 9}$	$\mathbf{1 2 8}$	$\mathbf{2 8 5}$	$\mathbf{3 3}$	$\mathbf{4 1 6}$	199
$\mathbf{6 3}$	$\mathbf{3}$	$\mathbf{3 5}$	$\mathbf{3 8}$	42	52	$\mathbf{4 5}$
$\mathbf{3 3 2}$		$\mathbf{1 1 4}$	$\mathbf{1 6 5}$	96	210	$\mathbf{1 5 7}$

- September
$\begin{array}{ll}\mathrm{B} & 34 \\ \mathrm{I} & 63\end{array}$
August
L
215
332
$\begin{array}{lll}B & 3 & 1\end{array}$
October
3
4

B
L

- November

B
L
December
B
L
-

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} B=\text { Number of Boats } \\
& { }^{2} I=\text { Number of Landings }
\end{aligned}
$$

TABLE C. 78
LOWER COOK INLET

FEET	PURSE SEINE SALMON FISHERY NUMBER OF BOATS BY LENGTH							
	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	12	14	4	1	2	1	3	20
1- 25	5	11	7	8	6	5	7	8
26-35	28	40	28	36	36	39	43	35
36-45	1	7	3	1	4	4	9	8
46-55	1	1	1	1	1			-
56-65		-						
66-75							1	

1. AIl boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

CATCH AWD Employment OATA

		1969	1970	1971	1972	1973	1974	197s	1976
$\begin{aligned} & \text { ds Landed } \\ & , ~(000 \text { 's) } \end{aligned}$		5,169	9,827	4,686	7,639	8,057	5,440	9,599.	3.3,611
e of Landings		44,000	1,836,000	1,224,000	1,996,000	4,023,000	3,636,000	4,501,000	8,654,000
er of Boats		508	55 s	, 432	401	462	550	541	577
c of Landings ${ }^{1}$		4,417	5,424	1,914	3,330	4,527	3,959	'4,533	5,350
Weeks ${ }^{2}$		2,233	2;,622	1,612	1,720	2,151	2,254	2,395	2,769
Weeks ${ }^{3}$		4,466	5,244	3,224	3,440	4,302	4,508"	- 5,790	5,538
er of Landings Boat		8.69	9.77	4.43	8.30	9.80	7.20	8.38	9.27
.s per boat		4.40	4.72	3.73	4.29	4.66	4.10	4.43	4.80
ds par Landing		1,170	1,810	2,450	2,290	1,780	1,370	2,120	2,540
e of Catch Landing	\$	260	340	580	600	890	920	990	1,620
.e of Catch Boat	\$	2,250	3,310	2,580	4,980	8,710	6,610	8,320	15,000
e of Catch Boat Weak	\$	510	700	690	1,160	1,870	1,610	1,880	3,130
ε value of catch peribs.)		0.22	0.19	0.24	0.26	0.50	0.67	0.47	0.64
$\times 1^{4}$		0.34	0.28	0.33	0.28	0.29	0.29	0.28	0.26
: 2^{5}		1.98	2.07	1.19	1.94	2.10	1.76	1:89	1.93

c : The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisheries Entry Comission. The estimate of the average craw size in this fishery was made by George W. Rogers in, A study. of the Socio-Economiclmpact of Changes in the Harvesting Eabor Forec in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Seat weeks equals the number of weeks each boat landed Eish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of tha average crew size in this fishery? it is thus an estimate! of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by the Entry Commission.
7. It has been estimated that the average crew size in this fishery is two.

TABLE C. 81
Cook Inl et
Drift Gill Net Sal non Fi shery
Number of Boats by Length

1 Al boats of unspecified length are included in this category

Source: Comercial Fi sheries Entry Commission Data Files

	TABLE C. 82 Cook Inlet Set Gill Net Salmon Fishery CATC: AND EMPLOYMENT DATA								
		1969	1970	1971	1972	1973	1974	1975	
Pounds Landed (in 000'*)		3,260	5,520	2,767	5,755	4,300	4,577	4,561	8
Value of Landings		835,000	1,184,000	756,000	1,616,000	2,282,000	3,132,000	2,395,000	5,203
Number of Boats		394	457	- 398	454	488	558	567	
Number of Landings ${ }^{1}$		4,617	6,652	3,640	5, X24	4,568	5,009	4,856	5
Boat Weeks ${ }^{2}$		2,223	2,890	2,469	2,668	2,364	2,861	2,815	3
Man Weeks ${ }^{3}$		2,223	2,890	2,469	2,668	2,364	2,861	* 2,815	3
Number of Landings per Boat		11.7	14.6	9.1	11.3	9.4	9.0	8.6	8
Weeks per Boat		5.64	6.33	6.20	5.87	4.84	5.13	4.96	
Pounds per Landing		710	830	760	1,120	940	910	940	1
Value of Catch per Landing.	\$	180	180	210	320	500	630	490	
Value of Catch per Boat	\$	2,120	2,590	1,900	3,560	4,680	5,610	4,220	8
Value of Catch per goat Heek	\$	380	' 410	310	610	970	1,090	850	1.
$\begin{aligned} & \text { Price } \\ & \text { (i.e. value of catch per lbs.) } \end{aligned}$	\$	0.26	0.21	0.27	0.28	0.53	0.68	0.53	6
Index 1^{4}		0.36	0.33	0.37	0.29	0.30	0.32	0.33	6
Incex 25		2.08	2.30	1.47	1.92	$1 . .93$	1.75	1.73	2

Sources: The catch statistics were derived using data provided from thedata files of the State of Alaska Commercial
Entry Commission. The estimate of the average crew size in this fishery was made by George N. Rogersin, A st:
the sociomeonomic_Impact of_Changesinthe Harvesting_Labor_ Force_in_the Alaska_Salmon_Eishery, and in ongoin research.

1. Number of Landings equals the number of days each boat landed fish. Sunmed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an \& of the average number of fishermen employed a week times the number of weeka fished.
4. Index I equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "c" indicates that the statistic is not available due to confidentiality requirements maintained by s! Comission.
7. It has been estimated that the average crew size in this fishery is one.

Set Gill Net Salmon Fishery
Number of Boats and Landings in the Fishery by Month
$1969 \quad \underline{1970} \quad \underline{1971} \quad \underline{1972} \quad 1973 \quad 1974 \quad 1975 \quad 1976$

- January $\begin{aligned} \mathrm{B}^{\mathbf{1}} \\ \mathrm{L}^{2}\end{aligned}$

February
B
L

- March

		B
Apri 1	L	
		B
May	L	
		B
	L	1

June

July	B	271	279	280	307	184	169	209	236
	L	1,206	1,097	1,021	989	506	415	469	509
	B	304	401	344	396	439	508	502	548
August	L	2,350	3,354	1,472	2,661	2,735	2,716	2,583	3,490
	B	268	355	282	295	324	410		
September	L	1,052	1,878	946	1,327	1,122	1,565	388 1,427	$\mathbf{4 2 2}$ 1,570
	B	6	76	47	55	64	84	91	73
October	L	9	317	200	146	204	313	361	204
	B		3	1					7
	L							16	11

- $\begin{aligned} & \mathrm{B} \\ & \mathrm{L}\end{aligned}$

December
B
L

Source: Commercial Fisheries Entry Commission
${ }^{1} B=$ Number of Boats
${ }^{2} \mathrm{~L}=$ Number of Landings

TABLE C. 84

COOK INLET

			GIL	T SAI	N FIS			
			MBER	BOATS	LENG			
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	390	453	396	453	487	558	567	599
1-25	2	4	2		1		-	1
26-35	2			1			-	1

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 85 COOX INLET HAND TROLL SALMON FISHERY CATCH AND EMPDOMENT OATA									
	2969	1970	1971	1972	1973		. 1974	197s	1376
$\begin{aligned} & \text { Is Landed } \\ & \left.300^{\prime} \mathrm{s}\right) . \end{aligned}$	0	6	12	c	6		C	C	C
- of' Landings	0	\$3,000	\$s, 000	C	\$1, 000		C	6	C
12 of Boats	0	6	4	3	S		. 1	1	2
4 of Landings ${ }^{1}$		8	6	c	8		C	c	C
weed		7	5	c	8		C	c	C
Neeks ${ }^{3}$		7	5	C	8		C	c	C
ex of tandings $3 \cdot \mathrm{E}$		1,33	1, $\mathbf{s 0}^{\prime}$	C	1,60		C	C	C
- per soat		1.17	1.2 s	C	1.60		C	c	C
ts per Landing		7 s 0	2,000	C	7 s 0		c	C	C
e of Cateh Canding		\$ 380	\$ 830	C	\$ 880		C	C	C
```- of Catch goat```		\$ 500	\$1,250	$c$	\$1,400		C	C	C
sof Catch Boat Week		\$ 430	\$1,000	C	\$ 880	$\backslash$	c	C	c
-   . 'alua of catch per lbs.l		\$0.50	\$ 0.42	c	\$1.17		C	C	C.
c $1^{4}$		0.47	0.62	C	0.50		C	C	C
$\times 2^{5}$		1.14	1.20	c	1.00		C	C	C.

:ces: The cateh statiseles were derived using data provided from the data files of the State of Alaska Comercial Fisheries Entry Commission. The estimate of the average cres size in. this fishery was made lay George $W$. Rogers in, $A$ study of the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats+,
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estimat of the average number of fishermen employed a week times the number of weeks $\mathbf{f} \mathbf{i}$ shad.
4. Index 1 equals the number of Landings divided by the number of species Landed
s. Index 2 equals the average number of Landings per week.

A "~ indicates that the statistic $I s$ not available due to conf identiality requirements maintained by the Ent: Comaission.

TABLE C. 86
COOK INLET HAND TROLL SALMON FISHERY
Number of Boats and Landings in the Fishery by konth
$19691970 \quad 1971$ 1973 19741975 1976
January

$\begin{aligned} & B^{1} \\ & L^{2} \end{aligned}$							
February							
	B						
L							
March							
	B						
L							
4pril							
	B						
	I						
May							
	B						
L							
June							
	B						
L							
July							
B	3	2	2	2			1
	L						
August							
B	3	3	1	3	1	1	1
September ${ }^{\text {L }}$							
B I							
L							

October
B
November
B
L
December
B
L

Source: Commercial Fisheries Entry Commission Data Files
${ }^{1} B=$ Number of Boats
${ }^{2} L=$ Number of Landings


1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files ©

TABLE C. 88
COOK INLET SALMDN FISHERY ALL GEAR TYPES

	1969	1970	1971	1972	1973	1974	1975	1976	1977
Pounds Landed (in $000^{\circ} \mathrm{s}$ )	9, 869	18,913	9,867	14, 225	14,422	10,338	18, 045	23, 297	
Value of Landi ngs	2, 133, 000	3,531>000	2, 302, 000	3, 814, 000	7,064,0006,	935, 000	8, 315, 000	14, 138, 000	
Number of Boats	949	1,091	877	905	1, 004	1,158	1,172	1,256	
Number of Landi ings ${ }^{1}$	9, 518	12,954	5,889	8,699	9, 553	9,097	10, 021	11,505	
Boat Weeks ${ }^{2}$	4, 672	5,855	4,221	4,508	4, 708	5,203	5,443	6, 139	
Man Weeks ${ }^{3}$	7,553	9,485	6,238	6,588	7,414	7,721	8,537	9,471	

Source: The catch statistics were derived using data provi ded from the data files of the State of Alaska Compiercial Fisheri es Entry Comission The estimate of the average crew size in this fishery was made by George W. Rogers in, A Study of the Socio Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongolng research.
${ }^{1}$ Number of Landings equals the number of days each boat landed fish. Summed over all boats.
${ }^{2}$ Boat Weeks equals the number of weeks each boat landed fish. Summed over all boats.
${ }^{3}$ Man Weeks equals boat neeks times an estimate of the average crew size in this fishery; it is thus an esti nate of the average number of fishermen employed a week times the number of weeks fished.

> a

1969	$\mathbf{2 9 4}$	$\mathbf{1 9 7 3}$	$\mathbf{3 , 9 7 2}$
1970	$\mathbf{4 , 0 4 6}$	$\mathbf{1 9 7 4}$	1,930
1971	$\mathbf{3 , 6 1 1}$	$\mathbf{1 9 7 5}$	3,936
1972	$\mathbf{5 , 0 5 6}$	1976	3,418

Source: I PHC, Annual Reports 1969-1976.
e

Cook Inlet
Small Boat Long Line Halibut Fishery

	1969	1970	1971	1972	1973	1974	197 s	
Pounds Landed $\text { (in } 000 \text { 's) }$	0	C	0	4,806	4,596	3,328	3, s. 37	3.
Value of Landings	0	C	0	\$ 2,895	3,251	2,289	3,145	4.
Number of Boats	0	1	0	313	364	296	210	
Number of Landings ${ }^{1}$	0	C	0	1,159	1,3s5	951	792	4
Boat Weeks ${ }^{2}$	0	C	0	964	1,179	819	676	
Man Weeks ${ }^{3}$	0	C	0	964	1,179	$819^{\prime}$	676	
Number of Landings per Boat	0	C	0	3.70	3.80	3.21	3.77	3
Weeks per 3oat	0	C	0	3.08	3.24	2.77	3.22	2
Pounds per Landing	0	C	0	4,150	3,320	3,500	4,470	3,
Value of Catch per Landing	0	C	0	\$2,500	2,350	2,41.0	3,970	4,
Value of Catch par Boat	0	C	0	\$ 9,250	8,930	7,730	14,980	16,
Value of Catch per Boat Week	0	C	0	\$ 3,000	2,760	2,790	4,650	5,
Prica   (i.e. value of catch per Lbs.)	0	C	0	\$ 0.60	0.71	0.69	0.89	1
Index $1^{4}$	0	C	0	0.44	0.56	0.58	0.51	0
Index $2^{5}$	0	C	0	1.20	1.17	1.16	1.17	1

 Entry Comission. The estimate of the average crew size in this fishery was made by George W. Rogers in, A sti the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in oncoiat research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats. .
3. Man weeks equals boat weeks tines an estimate of tín average crew size in this fishery: it is thus an i of the average number of fishermen employed aweek times the number of weeks fished.
4. Index 1 equals the number, of Landings divided by the aumber of species Janaed
5. Index 2 equais the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by ti Comuission.
7. It has been estimated that the average crew size in this fishery is one.
8. These statistics do not include the activities of the following boats that participated in the cook Inle halibut fishery:

1972-76, one hand troller.


TABLE C. 92
COOK INLET

$\mathbf{1}_{\text {All }}$ Boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE E6.An
SEWARD $\begin{gathered}\text { HALIBUT LANDINGS } \\ \text { (000 pounds) }\end{gathered} \quad 1969-1977$

YEAR	LAND ING	YEAR	LAND ING
1969	294	1974	1,930
1970	4,046	1975	3,936
1971	3,611	1976	3,418
1972	5,056	1977	3,249
1973	3,972		

Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 93
COOK I NLET H STORI CAL HERRI NG CATCH

Kachenak Bay		
Year	Mllions of Pounds	Tons
1914	0.3	150
1915	0.03	15
1916	0.1	50
1917	1.9	950
1918	4.0	2, 000
1919	5. 3	2, 650
1920	1.9	950
1921	5.2	2, 600
1922	1. 0	500
1923	7.6	3, 800
1924	14.1	7, 050
1925	19.2	9, 600
1926	14.3	7,150
1927	7.2	3, 600
1928	4. 3	2, 150
	Day Harbor - Resurrection Bay	
1939	0.2	100
1940	---	
1941	3.2	1,600
1942	0.4	200
1943	5. 2	2, 600
? 944	31.9	15, 450
1945	29.2	14, 600
? 946	37.5	18,750
1947	1.2	600
1948	12.2	6, 100
1949	---	
1950	7. 7	3,850
1951	4.3	2, 150
1952	0.8	400
1953	0.3	150
1954	0.4	200
1955	14.9	7,450
1956	3.3	1,650
1957	4.5	2,250
1958	---	
1959	0.1	50

Source: Al aska Departnent of Fi sh and Gane, Cook Inl et Herring Report, Decenber, 1974.

TABLE C. 94
LOVER COOK I NET HERRI NG CATCHES 1969-1976.

		Tons	Landi ngs	Vessel s
1969	Southern	551.5	41	5
	Outer	38. 0	1	1
	Eastern	757*9	32	7
	Total	1,347*	74	11
1970	Sout hern	2, 708.7	104	11
	Eastern	2, 100. 2	81	11
	Total	4,808. 9	185	18
1971	Southern	12.5	4	3
	Eastern	974.0	129	20
	Total	986.5	133	23
1972	Southern	1.0	$1$	1
	Eastern	$95.0$	$14$	5
	Total	96. 0	15	6
1973	Sout hern	203.8	20	12
	Outer	300.5	19	7
	Eastern	830.8	53	22
	Kamishak	243.1	33	9
	Total	1, 578.2	125	30
1974	Sout hern	110.2	20	7
	Outer	39001	91	22
	Eastern	47.4	18	10
	Kami shak	2,108. 0	127	26
	Total	2, 655. 7	256	42
1975	Sout hern	24.0	9	5
	Kamishak	4, 119.0	294	39
	Total	4, 143.0	304	44
1976	Kamishak	4, 836.6	422	
	Kamishak	6.1	1	1 (set net)
	Total	4, 842.7	427	72
1977	Kamishak	2,881. 0	337	53 '́purse sei ne
	Southern	276.0	21	16 purse sei ne.
	Total	3,157. 0	547	

Source: ADF\&G Annual Managenent Report 1977, Upper Cook Inlet Area, May, 1978

0	BLE							
	TABLE C. 95							
	Cook Inlet							
	Purse Seine Herring Fishery							
Catch and employment data								
	1969	1970	1971	1972	1973	1974	1975	1976
$\begin{aligned} & \text { is Landed } \\ & 900 ' \mathbf{s}) \end{aligned}$	2,693	9,618	1,678	c	3,111	5,309	8,286	9,671
e of Landings	\$54,000	S192,000	\$268,000	c	\$249,000	\$478,000	\$331,000	\$948, 000
ei of Boats	11	23	20	2	31	4 s	41	66
er of Landings ${ }^{1}$	64	145	73	c	91 *	178	170	239
Weeks ${ }^{2}$	29	59	40	c	59	98	77	129
Weeks ${ }^{3}$	116	236	160	c	236 "	392	308	516
e. of Landings Boat	5.82	6.30	3 O	c	2.94	3.96	4.15	3.62
s per boat	2.64	2.56	62.00	c	1.90	2.18	1.88	1.95
ds per Landing	.42,100	66,300	23,000	c	34,200	29,800	4a, 700	40,500
e $\boldsymbol{\imath f}$ Catch Landing	840	1,320	3,670	c	2,740	2,690	1,950	3,970
$\begin{aligned} & \text { e of Catch } \\ & \text { goat } \end{aligned}$	4,910	8,350	13,400	C	8,030	10,620	8,070	14,360
e of Catch Boat Week	1,860	3,250	6,700	c	4,220 '	4,880	4,300	7,350
i. value of catch Fer 1bs.)	\$0.02	\$0.02	2 .\$0.16	C	\$0.08	so. 09	\$0.04	\$0. 10
:x $1^{4}$	0.85	0.74	40.63	C	0.74	0.70	- 0.56	0.57
$\pm \times 25$	2.21	2.46	$6 \quad 1.83$	c	$3 . .54$	1.82	2.21	1.85

:ces: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisheries Entry Commission. The estimate of the average crew size in this fishery was made by George w. Rogers in, A study of the Socio-Economic Impact of Changes in the Harvesting Labor Fores in the Alaska Salmon Fishery, and in ongoing research

1. Number of Landings equals the number of days each boat landed fish. Sunmed over all boats:
2. Seat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew siza in this fishery: it is thus an esthete of the average number of fishermen employed $a$ week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of specias Landed
5. Index 2 equals the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by the Entr: Commission.
7. It has been estimated that the average crew size in this fishery is four.
8. These statistics do not include the activities of the following boats that participated in this fishery: 1971 one herring seiner; 1973 two boats with unspecified gear; 1974 one pot 9ear boat.

```TABLE C. }9 Lower Cook Inlet Seine Herring Fishery Number of Boats and Landings in the Fishery by Month```									
		1969	1970	1971	1972	1973	$\underline{1974}$	1975	1976
January ${ }^{1}$									
	B^{1}								
	L^{2}								
February									
	B								
	L								
March									
	B								
	L								
April									
	B	1	6				7		
	L		17				8		
May									
	B	11	22	21		18	44	40	62
	L	62	127	71		28	147	129	203
June 28 129									
	B	1	1	4	1	22	10	12	36
	L				1				
August									
	B								
	L								
September									
	B								
	L								
October									
	B								
	L								
November									
	B								
	L								
December									
	B								
	L								

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Boats } \\
& { }^{2} \mathrm{I}=\text { Number of Landings }
\end{aligned}
$$

TABLE C. 97
Lower Cook Inlet Purse Sei ne Herring Fi shery Number of Boats by Length

	1969	1970	1971	1972	1973	1974	1975	1976
01 ft .		4	1		5	4	1	--
1-25 ft.	1	2	3		2	2	1	1
26-35 ft.	5	12	11	1	12	19	16	23
36-45 ft.	3	3	5	1	10	17	22	35
46-55 ft.	2	1	1		1	2	1	7
56-65 ft.		1			--	--		
66-75 ft.					1	1		

76-85 ft.
86-95 ft.
96-105 ft.
106-115 ft.
116-125 ft.
over 125 ft.

Al boats of unspecified length are incl uded in this category

Source: Comercial Fi sheries Entry Comission Data Files

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fi Entry Commission. The estimate of the average crew size in this fishery was made byGeorge wogers in, A st the Socio-Economic Impact of changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoin research.

1. Number of Landings equals the number of days each boat landed fish. Summed over ail boats.
2. Seat weeks equals the number of weeks each boat landed fish. Summed over allboats.-
3. Man weeks equals boat weeks times anestimate of the average crew size in this fishery; it is thes an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by t Commission.
7. It hae been estimated that the average crew size in this fishery is one.
8. These statistics do not include the activities of the following boats that participated in the Cook inle bottomfish fishery:

1969 - one beam trawler
1969-1974 - one to three otter trawlers
1973-1974 - one to two pot boats
1971 - one purse siener and six hand trollers
1974 - 14 boats with unspecified gear, 36 set gill net boats
1975 - one hand troller
C. 109

TABLE C. 100
LOWER COOK INLET SMALI BOAT LONG LINE
BOTTOMFISH FISHERY

NUMBER OF BOATS BY LENGTH								
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}		7	6	1	2	1	1	
1-25			5	2	4	5		1
26-35		10	21	2	30	24	5	1
36-45		1	7		6	9		2
46-55					2	4	1	
56-65		1			1	3	1	1
66-75						1		
76-85			1		1			

86- 95
96-105
106-115
116-125
125-

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files
```
                    TABLE C. }10
            NumbCOOK INLET OTTER TRAWL BOTTQMFISH FISHERY
                Number of Boats and Landings in the Fishery by Month
                    1969 1970 1971 1972 1973 1974 1975 1976
    January
            B1
        February
            B
            L
March
- B
April
            B I
May
- B
June
            B 1
July
- }\begin{array}{l}{\textrm{B}}\\{\textrm{L}}
Augu S t
            B 1
            L
September
                            B
October
                            B
                            L
November
- B
```


o
Scurce: Commercial Fisheries Entry Commission Data Files
${ }^{1} B=$ Number of Boats
${ }^{2} \mathrm{~L}=$ Number of Landings

TABLE C. 102
LOWER COOK INLET OTTER TRAWL BOTTOMFISH FISHERY

NUMBER OF BOATS BY LENGTH

FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}						-		
1-25						-		
26-35						-		
36-45	1		2	2		1		
46-55						\cdots	1	
56-65								
66-75					1	1		
76-85					-	1		

1. All boats of unspecified length are included in this category Source : Commercial Fisheries Entry Commission Data Files
C. 113

TABLE C. 103
COKK INLET KI NG CRAB CATCH IN POUNDS BY CALENDAR YEAR 1951 - 1971

-	YEAR	CATCH	YEAR	CATCH
	1951	6, 619	1962	6, 851, 621
	1952	2,900	1963	8, 381, 163
	1953	1, 359, 854	1964	6, 772, 392
	1954	1, 275, 852	1965	2, 776, 547
\bigcirc	1955	1, 915, 821	1966	3, 900, 163
	1956	2, 129, 035	1967	3, 124, 509
	1957	620, 858	1968	4, 009, 453
	1958	752, 990	1969	2,852,507
	1959	2, 191, 437	1970	3, 882, 802
	1960	4, 287, 432	1971	4, 157, 639
\bigcirc	1961	4, 256, 396		

COOK I NLET K NG CRAB CATCH IN POUNDS BY FISH NG YEAR, 1960-61-1977-78

YEAR	CATCH	YEAR	CATCH
$1960-61$	$3,804,000$	$1969-70$	$3,228,000$
$1961-62$	$5,631,000$	$1970-71$	$3,665,000$
$1962-63$	$8,617,000$	$1971-72$	$4,873,000$
$1963-64$	$6,935,000$	$1972-73$	$4,149,000$
$1964-65$	$3,744,000$	$2973-74$	$4,203,000$
$1965-66$	$3,646,000$	$1974-75$	$4,778,000$
$1966-67$	$2,873,000$	$1975-76$	$3,559,000$
$1967-68$	$3,246,000$	197677^{*}	$4,156,000$
$1968-69$	$2,550,000$	$1977-78^{*}$	$1,672,000$

[^21]| | TABLE C. 104 Lower Cook Inlet King Crab Fishery | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | CATCs AND EMPLOYMENT DATA | | | | | | | |
| | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | |
| $\begin{aligned} & \text { Pounds Landed } \\ & \binom{\text { i }}{000 ' \mathbf{s}} \end{aligned}$ | 2,855 | 3,888 | 4,258 | 4,572 | 4,349 | 4,602 | 2,886 | 4 |
| Value of Landings | \$ 731 | 1,089 | 1,247 | 1,509 | 2,870 | 2,163 | 1,183 | 2 |
| Number of 3oats | 46 | 53 | 54 | 51 | 66 | 81 | 67 | |
| Number of Landings ${ }^{\text { }}$ | 729 | 795 | 955 | 1,056 | 1,207 | 1,340 | 642 | \% |
| Boat Weeks ${ }^{2}$ | 336 | 402 | 521 | 591 | 665 | 785 | 461 | |
| Man Weeks ${ }^{3}$ | 1,176 | 1,407 | 1,824 | 2,069 | 2,328 | 2,748 | 1,614 | 4 |
| Number of Landings per Boat | 25.8 | 15.0 | 17.7 | 20.7 | 18.3 | 16.5 | 9.6 | |
| Weeks ger Boat | 7.30 | 7. ${ }^{\text {\$ }}$ 9 | 9.65 | 11.6 | 10.1 | 9.69 | 6.88 | |
| Pounds per Landing | 3,920 | 4,890 | 4,350 | 4,330 | 3,600 | 3,430 | 4,500 | 4 |
| Value of Catch per Landing | \$1,000 | 1,370 | 1,310 | 1,420 | 2,380 | 1,610 | 1,840 | 1 |
| Value of Catch per Boat | \$15,900 | 20,500 | 23,100 | 29,600 | 43,500 | 26,700 | 17,700 | 14 |
| Value of Catch per 30at Week | \$ 2,180 | 2,710 | 2,390 | 2,550 | 4,320 | 2,760 | 2,570 | 5 |
| Price
 (i.e. value of catch per lbs.) | \$ 0.26 | 0.28 | 0.30 | 0.33 | 0.66 | 0.47 | 0.41 | |
| Index $\mathbf{1}^{\mathbf{4}}$ | 0.98 | 0.96 | 0.98 | 0.97 | 0.97 | 0.99 | 0.95 | |
| Index 2^{5} | 2.17 | 1.98 | 1.83 | 1.79 | 1.82 | 1.71 | 1.39 | |

Sources: The catch statistics were derived usirq data_ provided from the data files of the State of Alaska Comercial : Entry Commission. The estimate of the average craw size in this fishery was made by George W. Rogersin, A st the Socio-Economic Impact of Changes in the Harvesting Labor Foree in the Alaska Salmon Fishery, and in ongoin researeh.

1. Number of Landings equals the number of days each boat landed fish. summed over all boats.
2. 8oat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times' an estimate of the average crew size in this fishery; it is thus an of the average number of fisherman employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by Commission.
7. It is estimated that the average crew size in this fishery is 3.5 .
8. These statistics do not include the activities of the following boats that participated in this fishery: 1972 - two boats of unspecified gear.
C. 115
[^22]
TABLE C. 106

LOWER COOK INLET

KING CRAB FISHERY

NUMBER OF BOATS BY LENGTH								
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	10	9	9	4	6	4	3	7
1-25	1	1	1	2	3		4	3
26-35	11	15	13	13	24	26	18	17
36-45	11	17	17	17	19	24	18	23
46-55	1	1	2	2	2	7	5	5
56-65	-	2	4	4	4	6	7	8
66-75	2	3	3	4	4	6	6	8
76-85	4	5	4	4	3	6	6	5
86-95	-		-	-	-	1		3
96-105	-		-	-	-	1		
106-115	-							
116-125	-							
125-	-		1	1	1	-		

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 107
Cook Inlet Tanner Crab Catch
by District
1968-1969 to 1977-1978

YEAR	SOUTHERN DISTRICT	KAMISHAK/BARREN IS.	OUTER/EASTERN DIS. TOTAL	
$\mathbf{1 9 6 8 - 6 9}$	$1,388,282$	12,398	$\mathbf{8 1 6}$	$1,401,496$
$1969-70$	$1,147,154$	71,196	104,191	$1,322,541$
$1970-71$	$1,046,803$	541,212	3,000	$1,591,015$
$1971-72$	$2,462,956$	974,962	804,765	$4,242,683$
$\mathbf{1 9 7 2 - 7 3}$	$\mathbf{2 , 9 3 5 , 6 6 2}$	$\mathbf{3 , 3 6 1 , 0 2 3}$	$\mathbf{1 , 2 6 6 , 9 3 7}$	$\mathbf{7 , 5 6 3 , 6 2 2}$
$1973-74$	$1,387,535$	$4,689,251$	$1,891,021$	$\mathbf{7 , 9 6 7 , 8 0 7}$
$1974-7 s$	967,762	$3,150,462$	656,660	$4,774,884$
$\mathbf{1 9 7 5 - 7 6}$	$\mathbf{1 , 3 3 9 , 2 4 5}$	$\mathbf{3 , 2 8 1 , 0 8 4}$	$\mathbf{8 5 0 , 9 6 4}$	$\mathbf{5 , 4 7 1 , \mathbf { 2 9 3 }}$
$1976-77$	$2,016,501^{1}$	$1,805,918^{1}$	$823,851^{1}$	$4,646,270$
$1977-78$	$\mathbf{2 , 7 0 0 , 0 0 0}$	$\mathbf{2 2 0 , 0 0 0 1}$	$\mathbf{1 2 0 , 0 0 0}$	$\mathbf{3 , 0 4 0 , 0 0 0}$
AVERAGE	$1,739,190$	$1,810,715$		

1/Preliminary Data

- Source: Alaska Department of Fish and Game, Shellfish Report, Lower Cook Inlet, 1978

TABLE C. 108

	TABLE C. 108 Löwer Cook Inlet									
	Tanner (Snow) Crab Fishery									
	CATCH AND EMPLOMENT DATA									
		1969	1970		1971	1972	1973	1974	197s	
Pounds Landed $\text { (in } \left.000^{\prime} s\right)$		1,433	1,329		2,117	4,779	8,509	7,661	4,952	!
Value of Landings		158,000	133,000		, 000	717,000	1,447,000	1,532,000	693,000	1,246
Number of Boats "		29	27		44	54	108	90	51	
Number of Landings ${ }^{1}$		520	313		603	1,080	1,S26	1,139	508	¢
Boat Weeks*		238	207		33 s	554	766	666	350	-
Man Weeks ${ }^{3}$		833	725		1,172	1,939	2,681	2,331.	1,225	1
Number of Landings per Boat		17.9	11.6		13.7	20.0	14.1	12.7	10.0	\%
Weeks per Boat		8.2	7.67		7.61	10.3	7.09	7.4	6.86	
Pounds per Landing		2,760	4,250		3,510	4,430	5,580	6,730	9,750	ℓ
Value of Catch per Landing	\$	300	420		350	660	950	1,350	1,360	
Value of catch per Boat	\$	5,450	4,930		4,820	13,280	13,400	17,020	13,590	1%
Value of Catch per Seat Week	\$	660	640		. $\quad . \quad$.	1,290	1,890	2,300	1,980	4
grice (i.e. value of catch ger lbs.)	\$	0.11	0.10		0.10	0.15	0.17	0.20	0.14	\because
Index 1^{4}		0.98	0.98		0.98	0.99	0.98	0.97	0.98	
Index 25		2.18	1.51		1.80	1.95	1.99	1.71	1.45	

Sources: The cateis statistics were derived using data provided from the data files of the State of Alaska Comercial i Entry Commission. The estimate of the average crew size in this Eishery was made by George W. Rogers is, A st the Socio-Economic Impact of Changes in the Harvesting Eabor Force in the Alaska Salmon Fishery, and in ongoin research.

1. Numer of Landings equals the number of days each boat landed fish. Sunmed over all beats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats. . .
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by ti Commission.
7. It has been estimated that the average crew size inthis fishery is 3.5 .
8. These statistics do not include the activities of the following boats that participated in this fishery: 1969 and 1972 - two boats with unspecified gear.

$$
\begin{aligned}
\text { Source: } \begin{array}{l}
\text { Commercial Fisheries Entry Commission } \\
\\
\text { Data Files }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Boats } \\
& 2_{\mathrm{t}}=\text { Number of Landings }
\end{aligned}
$$

TABLE C. I 10
LOWER COOK INLET

1.

All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 111
COOK I NLET DUNGENESS CRAB CATCH 1961-1977

	YEAR	CATCH
	1961	193, 683
\bigcirc	1962	530, 770
	1963	1, 677, 204
	1964	423, 041
-	1965	74, 211
	1966	129, 560
	1967	7, 168
\bigcirc	1968	487, 859
	1969	49,894
	1970	209, 819
	1971	97,161
	1972	38,930
	1973	310, 048
\bigcirc	1974	721, 243
	1975	358, 256
	1976	119, 000
-	1977-78	74,300

Source: McClean, et al, 1977, ADF\&G Cook Inlet Shellfish Reports, 1976 - 1978.

TABLE C. 112
Lower Cook lnlet
Dungeness Crab Fishery
CATCH AND EMPLOYMENT DATA

	1969	1970	1971	1972	1973	1974	1975	m
pounds Landed (in 000 's)	50	210	97	39	330	721	363	
Value of Landings	\$7,000	27,000	24,000	15,000	198,000	397,000	171,000	63 ,
Number of Seats	9	10	- 22	24	55	37	34	
Number of Landings ${ }^{\text {L }}$.	40	48	1.35	228	612	610	387	
Boat Weeks ${ }^{2}$	33	41	8 S	152	352	360	276	
Man Weeks ${ }^{3}$	66	82	170	304	704	720.	552	
Number of Landings per Boat	4.44	4.30	6.14	9.50	11.12	16.49	11.38	
Weeks per Boat	3.67	4.10	3.86	6.33	6.40	9.73	8.11	
Pounds per Landing	1,250	4,380	720	170	540	1,180	940	1
Value of Catch per Landing	\$ 180	560	180	70	320	650	440	
Value of Catch per Boat	\$ 780	2,700	1,090	630	3,600	10,730	5,030	3
value of Catch per Soat Week	\$ 210	660	280	100	560	1,100	620	
Price (i.e. value of catch per lbs.)	\$ 0.14	0.13	0.25	0.38	0.60	0.55	0.47	
Index 1^{4}	1.00	0.96	0.99	Loo	0.98	0.99	0.96	
Index 2^{5}	1.21	1.17	1.59	1.50	1.74	1.69	i. 40	

Sources: The catch statistics wer derived using data provided from the data files of the State of Alaska Commercial \boldsymbol{E} in Entry Commission. The estimate of the average crew size in this fishery was mada by George W. Rogers in, A st the Sociomenomic_Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoin research.

1. Number of Landings equals the number of days each boat landed fish. Sunaued over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Sumed over all boatsn
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equaris the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A " c " indicates that the statistic is not available due to confidentiality requirements maintained by : commission.
7. It is estimated that the average crew size in this fishery is two.
8. These statistics do not include the activities of the following boats that participated in this fishery

1969 - one boat with unspecified gear.
1973 - two boats with unspecified gear.

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} B=\text { Number of Boats } \\
& 2_{\mathrm{L}}=\text { Number of Landings }
\end{aligned}
$$

1. all boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files
C. 125

TABLE C. 115
Cook Inlet
Otter Trawl Shrimp Fishery
Catch and Effort
1962-1976
-

Thou. Ibs.
Deliveries

Year	Boats	Deliveries
1962	2	39
1963	7	169
1964	5	48
1965	2	38
1966	2	54
1967	3	70
1968	1	20
1969	5	2s2
1970	3	537
1971	7	559
1972	7	428
1973	13	324
1974	9	354
1975	4	421
1976	4	473

Catch

403
1,898
600
61
286
733
25
1,8.50
5,808
5,395
5,377
4, s50
5,063
4,526
5,769
10.8

Thou. Ibs. Catch/Delivery
10.3
11.2
12.5
1.6
5.3
10.5
1.2
7.3
9.7
12.6,
14.0
14.3
8.7
12.2

Source: ABF\&G, Cook Inl et Shellfish Report.

TABLE C. 116
Cook inlet
Shrimp Fishery Catch
by Gear Type
1969-70 through 1977-78

Trawl Shrimp Catches
Pot Shrimp Catches

Year	Trawl Shrimp Catches		Pot Shrimp Catches	
	June 1-0ct. 31	Nov. 1-Mar. 31	$\begin{aligned} & \text { June I-Sept. } 30 \\ & \text { (100,000 1bs.) } \end{aligned}$	$\begin{aligned} & \text { Oct. l-May } 31 \\ & \mathbf{(5 0 0 , 0 0 0 ~ l b s .)} \end{aligned}$
$69-70^{1}$	1,292,651	1, 692, 854		
70-71 ${ }^{1}$	3,211,924	2,076,228	3,606	7,602
$71-72^{1}$	2,618,630	1,761,569	8,836	70,601
$72-73^{1}$	2,722,422	2,109,660	75, 247	184, 230
73-74	2,502,154	2,323,780	63,181	738,165
74-75	2,S12,764	2,S19,148	43,650	126,472
75-76	1,997,563	2, 421, 456	100, 765	273, 758
76-77	2,545,885	2, 453, 101^{2}	52,115	199, $929{ }^{2}$
77-78	2, 490, $96{ }^{2}$	2, 537, 259, ${ }^{2}$	89,986 ${ }^{2}$	506,124, ${ }^{2}$

${ }^{1}$ Catches do not include April and May landings
${ }^{2}$ Preliminary data
Source: ADF\&G, Lower Cook Inlet Shellfish Report, 1978.

TABLE C. 117
Lower Cook Inlet Pot Shrimp Fishery

CATCH AND EMPLOMMENT DATA

	1969	1970	1971	1972	1973	1974	1975	1976
$\begin{aligned} & \text { s Landed } \\ & \left.0 \mathbf{o}^{\prime} \mathrm{s}\right) \end{aligned}$	30	9	56	171	347	685	226	438
of Landings	\$13,000	4,000	20,000	103,000	111,000	1,542,000	679,000	189,000
rof Seats	4	8	- 13	23	51	44	27	34
r of Landings ${ }^{1}$	8	39	171	352	740	1,139	495	877
Weeks ${ }^{2}$	7	33	74	3.36	296	365	203	308
leeks ${ }^{3}$	14	66	148	272	592	730	406	63.6
ir of Landings $30 t$	2.0	4.9	13.2	15.3	14.5	25.9	13.3	25.8
; per Boat	10.9	0	19*4	17.3	8.75	12.2	27.S	15.6
is par Landing	3,750	230	330	490	470	600	460	500
2 of Cateh janding	\$ 1,630	100	120	290	150	1,350	1,370	220
$\begin{aligned} & 3 \text { of Catch } \\ & \text { 3oat } \end{aligned}$	\$ 3,250	500	1,540	4,480	2,180	35,050	25,150	5,560
3 of Catch 3oat Week	\$ 1,860	120	270	760	380	4,220	3,340	610
3. Walue of catch per 1bs.)	\$ 0.43	0.44	0.36	0.60	0.32	2.25	3.00	0.43
$\leqslant 1^{4}$	1.00	0.98	0.91	0.98	0.97	0.91	0.97	0.97
x 25	1.14	1.18	2.31	2.59	2.50	3.12	2.44	2.85

3es:
The catch statistics were derived using data provided Erom the data files of the State of Alaska Commercial Fisherif Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, A study oi the Socio-Economic mpact of Changes in the tarvesting Labor Force in the Alaska Salmon Fishery, and in ongoing research

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals beat weeks times an estimate of the average crew size in this fishery: it is thus an estim of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals tile aumber of Landings divided by the number of species Landed
5. Index 2 equals tile average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by the zn Commission.
7. It has been estimated that the eaverage crew size in this fismery is two.

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Boats } \\
& { }^{2} \mathrm{~L}=\text { Number of Landings }
\end{aligned}
$$

[^23]
sources : The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fi. Entry Commission. The estimate of the average crew size in this !ishery was mada bv George N . Rogers in, \mathbf{A} st: the Socio-EconomicImpact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoinc research.

1. Number of Landings equals the number of daye each beat landed fish. Summed over all boats.
2. Seat weeks equals the number of weeks each boat landed fish. Summed over all boats:
3. Man weeks equals boatweeks timesanestimate of the average crew siza in this fishery: it is thus an , of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "C" indicates that the statistic is not available due to confidentiality requirements maintained by ti Commission.
7. It has been estimated that the average crew size in this fishery is three.

TABLE C. 121
COOK I NLET OTTER TRAVL SHR MP FI SHERY, NUMBER OF BOATS IN FISFERY BY MDNTH

1969			1970	1971	1972	1973	1974	1975	1976
J AN	B	1	2	3	3	5	6	4	3
	L					44	39	48	
FEB	B	1	2	4	4	6	3	4	4
	L			44	42	33		50	50
MAR	B	1	2	4	3	1	4	4	4
	L			67			16	44	13
APR	B	1	2	4	3	2			
	L			48					
MAY	B	1	3	3	5				
					12				
J UNE	B	2	3	4	4	4	3	3	3
	L			66	45	43			
J ULY	B	3	3	4	4	6	3	2	3
	L			64	57	79			
AUG		4	3	4	2	4	3	3	5
	L			54		46			74
SEPT	B	4	3	5	2	2	4	3	3
	L			57			55		
OCT	B	3	3	3	3		3	3	"5
	L								41
NOV	B	2	3	3	3	3	4	3	4
	L						41		58
DEC	B	2	3	4	3	3	4	4	4
	L			24			35	40	60

Source: Commercial Fi sheries Entry Commission Data Files

B = Number of Boats
L = Number of Landi ngs

	TABLE C. 122 LOWER COOK INLET OTTER TRAWL							
	SHRIMP FISHERY							
	NUMBER OF BOATS BY LENGTH							
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	2		2		1			-
1- 25	2							1
26-35	1				1	1		1
36-45	2	2	3	3	3	2	2	2
46-55			1	1	2	1		1
56-65				1	1			
66-75		1	2	1	4	2	1	2
76-85				1		2	1	1
86-95				-		1		

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 123
COOK I NLET SHR MP FI SHERY ALL GEAR TYPES:
CATCH, GROSS EARN NGS, AND NUMBEROF BOATS, 1969-1976
-

YEAR	CATCH	GROSS EARN NGS	NMBER OF BOATS
1969	1, 849, 710	\$ 67,678	16
1970	5, 817, 633	236, 589	11
1971	5, 451, 340	289, 334	19
1972	5, 548, 567	425, 462	33
1973	4, 897, 054	383, 970	68
1974	5, 748, 874	2, 807, 539	53
1975	4, 752, 139	1, 085, 876	31
1976	6, 207, 672	852, 002	42
1977			

Source: Al aska Comerci al Fi sheries Entry Comission, Alaska Shellfish Bio-Economic Data Base, 1978
C. 134

TABLE C. 125
NUMBER OF SEMARD
PROCESSI NG PLANTS BY PRODUCT 1962-1972

YEAR	SALMDN	HALIBUT	HERRI NG	K NG	$\begin{array}{r} \text { TA } \\ \text { CRAB } \end{array}$	ANER CRAB	$\begin{aligned} & \text { DUN } \\ & \text { CRAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SS : } \\ & \text { SHRI MP } \end{aligned}$	SCALLOPS	RAZOR CLAMS	TOTAL ${ }^{2}$
1962	1	0	0	1		0	0	2	0	0	3
1963	2	0	0	1		0	0	1	0	0	3
1964	1	1	0	0		0	0	0	0	0	1
1965	2	2	0	0		0	0	0	0	0	2
1966	2	2	0	0		0	0	0	0	0	2
1967	2	1	0	0		0	0	0	0	0	2
1968	3,	3	0	0		0	0	0	1	0	3
1969	2	1	0	0		0	0	0	2	0	3
1970	1	0	2	1		1	0	0	2	1	3
1971	0	0	1	0		0	0	0	1	0	3
1972	2	1	2	1		0	0	o"	1	0	5

${ }^{1}$ Floating processor plants are incl uded.
${ }^{2}$ The total is not the sum of the col ums since nost plants produce more than one product.
Source: ADF\&G Comercial Operator Reports 1962-1972.

0
\bullet
\bullet
 $\stackrel{n}{\sum}$

SCALLOPS
$00000000 \sim+$ 를
 TANNER
CRAB $\begin{gathered}\text { DUNGEMESS } \\ \text { CRAB }\end{gathered}$
KING CRAB
$-\quad 000000000$
TABLE C. 125
HALIBUT HERRING

2 he total is not the sum of the columns s ne most plants produce more than one product.
Source: ADF\&G Commercial Operator Reports 962-1972.

TABLE C. 126
SENARD SALMDN

PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76

PRODUCT	1956	1957	1958	1973	1974	1975	1976
Fresh (000's lbs) Plants							
Frozen (000's 1bs) Plants				$\begin{array}{r} 638 \\ 2 \end{array}$	1	1	1
Canned (000's 1bs) Pl ants				1	1	1	1
Roe (000 's lbs) P1 ants				1	1	1	1
Bait (000's lbs) Pl ants					1		
Reduction (0001s lbs) Pl ants							1
Other (000's lbs) Pl ants							
Total (000's lbs) Plants				$\begin{array}{r} 638 \\ 2 \end{array}$	1	1	1

PRODUCT	19561957	19581973	1974	$\underline{1975}$	976
Fresh (000 's 1bs) Pl ants		$\begin{array}{r} 3,910 \\ 2 \end{array}$	$\begin{array}{r} 1,755 \\ 2 \end{array}$	1	1
Frozen (000's lbs) Pl ants					
Canned. (000 's lbs) Pl ants					
Roe (000 's lbs) Plants					
Bait (000's lbs) Pl ants					
Reduction (000's lbs) Pl ants					
Other (000's 1bs) Pl ants					
Total (000's lbs) Plants		3,910 2	1,755 2		1

The wei ghts are neat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirenents and the total wei ght will not incl ude the confidentiality data.

Source: Al aska Departnent of Fish and Gane, Processor Reports with 1978 revisi ons.

TABLE C. 128
SEWARD HEWNG
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76
$\begin{array}{llllllllll}\text { PPOODUCT } & 1956 & -1957 & 1 & 9 & 51973 & 1974 & & 1975 & 1976\end{array}$
Fresin (000's lbs

- Plants

Frozen (000's lbs) Plants	1	1	1	1
Canned (000's lbs)				
Pl ants				
Roe ($000{ }^{\prime} \mathrm{s}$ lbs)	391	290	548	
Pl ants	2	2	2	1
Bait (000's lbs)				
- P1 ants				
Reduction (000's lbs)				
Other (0001 s I ds)				
Pl ants				
Total (000's ibs)	391	290	548	
?1 ants	2	2	2	2

The weights are meatequivalent :reights. If there are fewer than tuo processors, the data is not available due to confidentiality requi rements and the total wei ght will not incl ude the confidentiality data.

Source: Alaska Department of Fish and Game, Processor Reports with 1978 revisions.

TABLE C. 129
SEWARD K NG CRAB
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76

PRODUCT	1956	1957	1958	1973	19?4	1975	1976
Fresh (000's lbs) Pl ants							
$\text { Frazen (000's } \underset{\text { Pl ants }}{ }$				1	1	1	312 2
$\begin{array}{r} \text { Canned (000's lbs) } \\ \text { Pl ants } \end{array}$							
Roe (000's 1bs) Plants							
Bait (000's 1bs) Plants							
Reduction (000 's 1bs) Plants							
Other (000's lbs) Pl ants							
Total (000 's lbs) Plants				1	1	1	312 2

The wei ghts are neat equi val ent weights. If there are fewer than tro processors, the data is not available due to confidentiality requi renents and the total weight will not incl ude the confidentiality data.

Source: Al aska Department of Fish and Geme, Processor Reports with 1978 revi si ons.

TABLE C. 130
SEWARD TANER CRAB
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76
PRCDUCT $\quad \underline{1956} \underline{1957} \underline{1958} \underline{1973} 1974 \quad 1975 \quad 1976$
Fresh (000's 10S)
Pl ants

| | | | | |
| ---: | :--- | ---: | ---: | ---: | ---: |
| Frozen (000's libs) | | | | |
| Pl ants | 1 | 1 | 1 | 249 |

Canned (000 s lbs)
Plants
Roe (000's lbs)
Pl ants
Bait (000's lbs)
Pl ants
Reduction (000's Ibs)
Pl ants
Cther (000's lbs)
Pl ants
Total (000's 1bs)
549
Pl ants
$\begin{array}{llll}1 & 1 & 1 & 2\end{array}$

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirements and the total weight will not include the confidentiality data.

Source: Alaska Department of Fish and Gane, Processor Reports with 1978 revi si ons.

TABLE C. 131
SEWARD DUNGENESS CRAB
PROCESSI NG BY PRODUCT, 1956-58 AND 1'373-76
$\underline{\text { PRODUCT }} 2956 \quad 1957 \quad \underline{1958} \quad \underline{1973} \quad \underline{? 974} \quad \underline{1975}$

```
Fresh (000's lbs)
    P] ants
Frozen (000's 1bs) % ants 
Canned (000's lbs)
                            plants
Roe (000's lbs)
    Plants
Bait (000's lbs)
    Plants
Reducti on (000's lbs)
        Pl ants
Other (000's lts)
    Pl ants
Total (000's 7bs) M ants 
```

The weights are meat equi val ent weionts. If there are fewer than two processors, the data is not available due to confidentiality requirenents and the total weight will not incl ude the confidentiality data.

Source: Alaska Departnent of Fish and Gane, Processor Reports with 1978 revisicris.

```
                                    TABLE C. }13
SEWARD SHRIMP
PROCESSI NG BY PPGCDUCT, 1955-58 AND 1973-76
PRODUCT \(1956 \quad 1957 \quad \underline{1958} \underline{1973} \underline{1974} \underline{1975}\)
fresh (000's lbs)
Plants 1
\(\begin{array}{llrlr}\text { Frcien (000's bs) } & 37 & & 34 \\ & \text { Pl ants } & 2 & 1 & 3\end{array}\)
\#anneal ( 000 's bs )
Pl ants
Roe (000's lbs)
Pl ants
Dait (0CO's 1bs)
Pl ants
Reduction (000's Its)
Plants
O Oher ( 000 's lbs)
Pl ants
Total (000's lbs)
Plants
\(37 \quad 40\)
34
2 3
```

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requi renents and the total weigit wili not incl ude the confidentiality data.

Source: Alaska Department cf Fish and Game, Processor Reports with 1978 revisions.

TABLE C. 133
SEMARD FISH PROCESSI NG, QUARTERLY WAGE AND EMPLOYMENT DATA 1970-1977

YEAR	QUARTER	NUMBER OF FIRNS
1970	1	2
	2	2
	3	2
	4	2
1971	1	2
	2	2
	3	2
	4	2
1972	1	2
	2	2
	3	2
	4	
1973	1	1
	2	3
	3	3
	4	3
1974	1	2
	2	2
	3	2
	4	2
1975	1	2
	2	2
	3	2
	4	3
1976	1	3
	2	2
	3	3
	4	3
1977	1	3
	2	4
	3	4

AVERAGE MONTHLY EMPLOYMENT	AVERAGE PAY	TOTAL QUARTERLY MAGES
1	1	1
1	1	1
1	,	1
1	1	1
1	1	1
1	1	1
1		1
1	1	1
1	1	1
1	1	1
1		1
1	1	1
1	1	
297	522	464, 59:
1'90	776	442, 852
161	663	319, 706
1	1	1
1	,	1
1	1	1
1	1	1
1	1	1
1	1	1
1	1	
97	600	174, 56:
111	678	226, 527
1	1	1
368	896	989, 746
111	632	210, 351
88	876	230, 458
561	518	872, 311
499	899	1, 344, 480

A"I" indicates that the data is not available due to confidentiality requirenents
_ource: Ala,ka Departme..t of Labor vata Files

	$\underline{1970}$	$\underline{1971}$	$\underline{1972}$	$\underline{1973}$	$\underline{1974}$	$\underline{1975}$	$\underline{1976}$	$\underline{1977}$
J anuary	1	1	1	1	1	1	75	59
February	1	1	1	1	1	1	77	81
Marc h	1	1	1	1	1	1	182	123
Apri 1	1	1	1	336	1	1	1	467
May	1	1	1	313	1	1	1	602
June	1	1	1	239	1	1	1	614
July	1	1	1	186	1	1	491	299

[^24]

-1977
1975
1
1
1
1
1
1
1
1
1
1
91,800
39,600
43,200
TABLE C. 135
SEWARD FISt PROCESSING, ESTIMATED MONT

$\stackrel{\pi}{9}$
$-\infty--\quad-\quad-\quad$
胃 - - - - - - - - - - - -

\[

$$
\begin{aligned}
& \text { 잉 }-\sim-\sim-\sim- \\
& \begin{array}{l}
\text { January } \\
\text { February } \\
\text { March } \\
\text { April } \\
\text { May } \\
\text { June } \\
\text { au y } \\
\text { August } \\
\text { September } \\
\text { October } \\
\text { November } \\
\text { December } \\
\text { Total Man } \\
\text { Months }
\end{array}
\end{aligned}
$$
\]

A "1" indicates that the data s not available due to confidentiality requirements
Source: Alaska Department of Labor Data Files

PUBLI C SERM CES
\bullet
$-$
\bigcirc

Date	Total Consumption for Community $(\mathbf{0 0 0} \mathbf{s})$	Consumption for Fish Processing (000's)	\% of Total Consumption by Fish Processing
$6 / 75$	1,677		
7/75	1, 457		
8, / 75	1, 473		
9/75	1, 403		
10/75	1,315		
11/75	1, 558		
12/75	1,433		
1/76	1, 538		
2/76	1, 443		
3/76	1,501		
4/76	1,534		
$5 / 76$	1, 499		
6/76	1, 498		
7/76	1, 617		
8/76	1,652		
9/76	1,656		
10/76	1,478		
11/76	1,312		
12/76	1,254		
1/77	1,366	68	4.9
2/77	1, 242	73	5.9
3/77	1, 215	70	5.8
4/77	1, 466	175	11.9
5/77	1, 357	128	9.4
6/ 77	1,552	276	17.8
7177	1,665	322	19.4
8/77	1,705	293	17.2
9/77	1,476	58	3.9
10/77	1, 405	16	1.1
11/77	1,405	64	4.5
12/77	1, 422	73	5.1
1/78	1, 522	61	4.0
2/' 78	1, 528	64	4.2
3/78	1, 321	77	5.9
4/78	1,375	76	5.5
5/78	1, 699	145	8.5
6/78	1,490		
7/78	1,621		

[^25][^26]

Date Pumped	\# of Days Pumped	Total Gallons Pumped (000)	Average Gallons Pumped per Day (000)	WATER CONSUMPTION FOR FISH PROCESSING		
				$\begin{aligned} & \text { Gallons } \\ & (000) \\ & \hline \end{aligned}$	Average Gallons per Day for Month	웅 of Total Gallons Pumped Utilized for Fish Processing
1/76				2,063		
2/76				4,648		
3/76				9,704		
4/76				19,441		
5/76				29,927		
6/'76	26	31,551	1,213	20,892	696,400	66.2
7/76	21	32,160	1,531	14,074	454,000	43.8
8/ 76	21	42,605	2,029	32,092	1,035,226	75.3
9/76	22	24,626	1,119	19,157	638,567	77.8
10/76	26	33,843	1,302	8,771	282,935	25.9
11/76	24	28,402	1,183	1,772	59,067	6.2
12/76	27	29,207	1,082	2,766	89,226	9.5
1/77	28	20,144	719	1,284	41,419	6.4
2/77	20	12,281	614	1,530	54,643	12.5
3/77	20	17,794	890	1,663	53,645	9.3
$4 / 77$	25	27,696	1,108	4,385	146,167	15.9
5/77	29	34,361	1,185	3,232	104,258	9.4
6/77	25	21,154	846	10,887	362,900	51.5
$7 / 77$	21	38,642	1,840	27,799	896,742	71.9
8/77	28	42,557	1,520	25,362	818,129	59.6
9/77	20	20,486	1,024	11,849	394,967	57.8
10/77	28	28,946	1,034	3,749	120,935	13.0
11/77	19	20,303	1,069	1,657	55,233	8.2
12/77	28	35,335	1,262	2,447	78,935	6.9
1/78	27	33,781	1,251	1,291	41,645	3.8
2/78	19	20,503	1,079	1,000	35,714	4.9
3/78	27	28,169	1,043	1,194	38,516	4.2
4/78	21	27,039	1,288	2,614	87.133	9.7
5/78	29	29,045	1,002	4,740	152,903	16.3
6/78	24	37,485	1,562	7,154	238,467	19.1
7/78	28	53,062	1,895	27,942	901,355	52.7

[^27]SEWARD SMALL BOAT HARBOR
BOAT REGISTER
AUGUST 8, 1977

Slip Length	Number of Slips Filled	$\begin{gathered} \text { Commercial } \\ \text { Boats in } \\ \text { Slips } \end{gathered}$	Pleasure Boats Waiting List	commercial Vessels on Waiting List	Number of Transient pleasure Boats Using Harbor	Number of Commercial Transient Boats Using Harbor (Could be in Seward Permanently)
171	148	2	27	0	169	0
231	106*	12	91	1	178	5
321	162	26	128	11	68	81
40^{\prime}	62	10	20	5	14	21
42 ,	58	17	10	6	9	15
50 e	46	8^{\prime}	12	3	6	25
75^{\prime}	16	9	2	1	0	117
Totals	598	86	290	27	444	264
317 Total Boats on Waiting List 708 Total Transient Boats 350 Total Commercial Vessels						

TABLE C. 139
PORT USAGE
SEWARD, ALASKA, 1960 - 1976^{1}

Year

Total Cargo ${ }^{2}$ Short Tons

FISH AND FISH PRODUCTS Short Tons $\%$ of Total Cargo

No. of Vessels Usina Port3

1960
628, 422
1961
1962
1963

1964

1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

631, 209
670, 037
622, 017
185, 730
37, 462
49, 326
90, 857
117, 329
60, 084
29, 309
126, 664
61, 726
51, 913
71, 844
NA
236,722

2,916
4,819
13,999
9,322
54
0
4,340
3,337
7,103
1,318
643
44,821
11,777
9,691
1,279
NA
12,188
0.46
0.76
2.09
1.50
0.03
0.00
8.80
3.67
6.05
2.19
2.19

35*39
19.08 1.233
$18.67 \quad 1,233$
$\begin{array}{rr}18.78 & 152\end{array}$
,
5.15

611
1, 504
761
1, 226
135
NA
NA
NA
NA
274

$$
160
$$

715
743
NA
213

Source: Department of the Army Corps of Enaineers, Waterborne Commerce of the United States, Annual issues, 1960-1976.
${ }_{2}^{1}$ Includes all waterborne cargo entering and leaving the port.
${ }^{2}$ Includes raw fish and any other fish product form entering and leaving the port.
${ }^{3}$ Includes commercial fishing vessels, except 1976.

HARVESTI NG

TABLE C. 140
PRI NCE WLLI AM SOND ANNULL SALNON CATCH BY SPECI ES, 1950 - 1977^{1}
(Number of Fi sh)

YEAR	KINGS	REDS	PINKS	CHUMS	COHOS	TOTAL
1950	558	74, 585	1, 850, 731	455, 900	74, 445	2, 456, 219
$951{ }^{2}$	4,407	119, 976	1, 051, 798	467, 007	37, 065	1, 680, 253
952		80, 467	2, 339, 500	458, 880	41, 356	2, 920, 203
953	126	54,712	2, 016, 894	314, 423	28,595	2, 414, 750
9543		6, 213	12, 309	6, 047	543	25, 112
9553		12, 921	26,925	4, 785	592	45, 223
956 ${ }^{2}$	111	172,950	4, 827, 264	497, 474	27,498	5, 525, 297
957	599	61, 966	616, 499	524, 841	19,761	1, 223, 656
958	54	13, 821	6, 289, 435	687, 263	8, 196	6, 998, 769
959			CLOSED			
1960	1,580	35, 176	1, 841, 899	381, 858	30,722	2, 291, 235
1961	406	55, 551	2, 287, 766	221, 951	3, 335	2, 569, 009
1962	1, 834	44, 679	6, 543, 081	871, 858	17, 888	7, 479, 340
1963	449	39, 746	5, 248, 773	933, 133	30,998	6, 253, 099
1964	65	37, 517	4, 189, 505	521, 711	30, 914	4, 779, 712
1965	1,095	118, 563	2, 387, 131	198, 824	13, 863	2, 719, 476
1966	174	100, 752	2, 719, 236	429, 653	17, 218	3, 267, 033
1967	411	21, 118	2,606. 315	262. 385	14, 634	2, 904, 863
1968	1.523	121, 804	2,452,168	342; 939	11, 693	2, 930,3127
1969	3; 340	285, 584	4, 828, 579	320, 977	12, 866	5, 451, 346
1970	1, 031	104, 169	2, 809, 996	230661	11, 485	3, 157, 342
1971	3, 551	88, 368	7, 310, 964	574, 265	30,551	8, 007, 699
19724	547	197, 526	54, 783	45, 370	1,634	299, 860
1973	2, 405	124, 802	2, 056, 878	729, 839	1, 399	2, 915, 323
19744	1,590	129, 366	448, 773	88, 544	801	669, 074
1975	2,519	189, 613	4, 452, 805	100, 479	6, 142	4, 751, 558
1976	1,044	112, 809	3, 018, 991	370, 478	6, 171	3, 509, 493
1977	632	310, 147	4, 528, 675	571, 397	804	5, 411, 655

${ }^{7}$ Catch by all gear fromall di stricts of Prince Wiliam Sound.
'Estimated catch using conversion of case pack.
${ }^{3}$ Eshany di strict catch only. General season closed.
${ }^{4}$ General purse sei ne season cl osed.

Sources: Al aska Departnent of Fi sh and Gane, Area Managenent Reports, Prince William Sound, 1972 and 1977.

TABLE C. 141
Prince William Sound
Purse Seine Salmon Fishery

sources : The catch statistics were derived using data provided from the data files of the State of Alaska Commercial fi Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogersin, Ast. the Socio-ËconomicImact of Charges in the HerVesting Labor Force in the Alaska Salmon Fishery, and in ongoir zesearch.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A " (" indicates that the statistic is not available due to confidentiality requirements maintained by t Commission.

It has been estimated that the average crew size in this fishery is 4.

Source: Commercial Fisheries Entry Commission
${ }^{1} B=$ Number of Boats
${ }^{2} \mathrm{~L}=$ Number of Landings

TABLE C. 143

PRINCE WILLIAM SOUND

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

Ees: The catch statistics were derived using data provided from the data filesof the State of Alaska Commercial Fisherie Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, \boldsymbol{A} study of the Socio-Economic Impact of changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in oncoing research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Seat weeks equals the number of weeks each boat landed Eish. Summed over all beats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estima of the average number of fishemen employed a week times the number of weeka fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintainea by the Ent Commission.
as been estimated that the average crew size in Éhisfishery is 1.

Number of Boats and Landings in the Fishery by Month
1,969
1970
1971
1972
1973
$1974 \quad 1975$
1976

January | |
| :---: |
| |
| |
| L^{2} |

February

B	1	6
L		7

1
March
B $\quad 1$
L
April

B	$\mathbf{1}$
L	

May								
	378	438	63	389	417	430	363	438
L	1,880	2,895	64	832	912	2,221	1,498	2,520
B	435	508	521	493	511	474	418	481
July 4, 4,883 4,786 4,747 4,823 3,782 4,792								
B	291	322	340	412	434	442	368	390
August 1,260 1,394 1,623 3,234 3,038 4,626 2,427 3,038								
B	159	366	237	331	317	65	209	298
L	479	2,031	1,213	1,637	2,119	106	658	1,268
September 10 1,119								
B	238	348	254	261	267	149	173	274
L	792	2,287	2,047	970	1,417	662	544	978

October
B
L
November
B
L
December
B
L

Source: Commercial Fisheries Entry Commission
Data Files
${ }^{1} B=$ Number of Boats
$2_{\mathrm{L}}=$ Number of Landings

TABLE C. 1.46
Prince William Sound
Drift GII Net Sal mon Fishery
Number of Boats by Length

	1969	1970	1971	1972	1973	1974	1975	1976
$0^{1} \mathrm{ft}$.	118	173	90	40	16	25	14	30
1-25 ft.	273	326	315	317	343	279	226	262
26-35 ft.	92	114	122	151	161	168	117	225
36-45 ft.	20	19	22	19	27	28	25	26
46-55 ft.		2	0		1	1	1	5
56-65 ft.		1	1					--
66-75 ft.		--	1					1
76-85 ft.		--						--
86-95 ft.		-*						1

96-105 ft. 2
106-115 ft.
116-125 ft.
over 125 ft .

Al boats of unspecified length are included in this category

Source: Comercial Fi sheries Entry Commission Data Files

TABLE C. 147

Sources: The catch statistics were derived using date provided from the data files of the State of Alaska Commercial F Entry Commission. The estimate of the average crew size in \#is fishery was madeby George W. Rogers in, As the Socio-Economic Impact of Changes in the Harvesting Labor Foree in the Alaska Salmon Fisherp, and in ongoi research.

1. Number of Landings equals the number of daye each boat landed fish. Summed over all beats.

2. Men weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
3. Index 1 equals the number of Landings divided by the number of species Landed
4. Index 2 equals the average number of Landings par week.
5. A "(" indieates that the statistic is not available due to confidentiality requirements maintained by commission.

It has been estimated that the average crew size in this fishery is 1.

TABLE C. 148
Prince William Sound
Set Gill Net Salmon Fishery
Number of Boats and Landings in the Fishery by Month

$1969 \quad 1970 \quad 1971 \quad \underline{1972} \quad 1973 \quad 1974 \quad 1975 \quad 1976$

- January

$$
\begin{aligned}
& B^{1} \\
& I^{2}
\end{aligned}
$$

February
B
L

- March

$$
\begin{aligned}
& \mathrm{B} \\
& \mathrm{I}
\end{aligned}
$$

April
B

- May

	B	1
June	L	

B	1

- July

	B	25	33	$\mathbf{1 8}$	$\mathbf{1 9}$	15
August	L	270	$\mathbf{1 8 1}$	$\mathbf{2 5 0}$	$\mathbf{2 4 0}$	251
	B	26	24	21	12	
	L	263	$\mathbf{1 0 9}$	223	33	

- September

B
October
B
L

- November

B
L
December
B
L

Source: $\begin{aligned} & \text { Commercial Fisheries Entry Commission } \\ & \text { Data Files }\end{aligned}$
${ }^{1} B=$ Number of Boats
${ }^{2}$ L = Number of Landings

	TABLE C. 149 PRINCE WILIIAM SOUND						1975	1976
	SET GILL NET SALMON FISHERY							
	NUMBER OF BOATS BY LENGTH							
FEET	1969	1970	1971	1972	1973	1974		
0^{1}	13	20	-	1	2	1		
1- 25	15	17		19	17	11		
26-35	1	4		1		3		2
36-45	1							

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

	TABLE C. 150 Prince William Sound Eland Troll Salmon Fishery catca And employment data							
	1969	1970	1971	1972.	1973	1974	1975	1976
$\begin{aligned} & \text { s Landed } \\ & \left.00^{\prime} 3\right) \end{aligned}$	43	19	32	11	24	1	0	0
of Landings	\$20,000	13,000	18,000	9,000	28,000	(0	0
r of Boats "	12	10	7	7	a	1	0	0
r of Landings ${ }^{1}$	28	12	24	23	18	1	0	0
Weeks ${ }^{2}$	27	11	16	21	17	1	0	0
eeks ${ }^{3}$	27	11	16	21	17	(0	0
r of Landings	2.33	1.20	3.43	3.29	2.25	1	0	0
i per Boat	2.25	1.10	2.29	3.00	2.13	0	0	0
is per Landing	1,540	1,580	1,330	480	1,330	1	0	0
of Catch anding	\$ 710	1,080	750	390	1,560	1	0	0
: of Catch oat	\$ 1,670	1,300	2,570	1,290	3,500	1	0	0
: of catch oat Week	\$ 740	1,180	1,130	430	1,650	1	0	-"
Slue of catch per lbs.)	\$ 0.47	0.68	0.56	0.82	1.17	1	0	0
$: 1^{4}$	0.55	0.40	0.57	0.82	0.86	1	10	0
; *5	1.04	1.09	1.50	1.10	1.06	1	0	0

6: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisherie Entry Commission. The estimate of the average crew size in this Eishery was made by George w. Rogers in, A study of the Socio-Economic Impact of Changes in the Harvesting Labor Fores in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat landed fish. Summed over all boats.
2. Seat weeks equals the number of weeks each beat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estima of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by the Ent Commission.
as been estimated that the average crew size in this fishery is 1 .

Source: Commercial Fisheries Entry Commission Data Files

```
\({ }^{1} B=\) Number of Boats
    \({ }^{2}\) I \(=\) Number of Landings
```


TABLE C. 152

PRINCE WILLIAM SOUND

NUMBER OF BOATS BY LENGTH								
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	4	3	3	1				
1-25	2		1	2	4			
26-35	3		1	1	2			
* 36-45	3	6	2	3	1	1		
46- 55	-	1			1			

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files -

[^28]Table C. 154
Prince William Sound Halibut Landi ngs 1969-1976

1969	13,497	1973	236,546
1970	15,596	1974	87,651
1971	24,269	1975	$? 48,176$
1972	165,949	1976	204,051

CATCH AND EMPLOYMENT DATA

sources: The catch statistics were derived using date provided from the data files of the State of Alaska Commercial $\overline{\mathrm{F}} \mathrm{f}$ Entry Commission. The estimate of the-average crew size in this fishery was made by George W. Rogers in, A st the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoir research.

1. Number of Landings equals the number of days each boat landed fish. Sunmed over all boats.
2. Boat weeks equals the number of weeks eachboat landed fish. Summed over all boats.
3. Men weeks equals beat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by " commission.

These statistics do not include the activities of the following boats that participated in the prince William Halibut Fi 1972, three hand trollers, 1973, one hand troller.

It has been estimated that the average crew size in this fishery is 1.

January
B^{1}
$\mathrm{~L}^{2}$
February
B
March

- March $\begin{array}{rr}\text { B } \\ & \end{array}$

April
B
L

B	16	37	7	14	25
L	16	51.	10	16	27
B	37	84	35	34	59
L	55	175	55	42	91
July					
B	58	65	30	39	49
L	132	136	50	59	74
August ${ }^{\text {a }}$					
B	56	35	15	31	22
September ${ }^{\text {L }}$	93	57	23	43	26
B	22	8	2	13	
L	29	12		13	

October
B
L

- November

B
December
B
L

Source: Commercial Fisheries Entry Commission Data Files

```
'B = Number of Boats
    `L = Number of Landings
```

TABLE C. 157
PRINCE WILLIAM SOUND

1. All boats unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

Year	Barre 1s Cured	$\begin{gathered} \text { Gallons } \\ 0 i 1 \\ \hline \end{gathered}$	Tons Mea 1	```Pounds of Herring For Roe```	Pounds Kippered,	etc.	Pounds Bait	$\begin{aligned} & \text { Spawn } \\ & \text { on } \\ & \text { Kelp } \\ & \hline \end{aligned}$	Total catch in Barre 1s
1914	214								
1918	22,263								
1919	18,075								
1920	15,275								
1921	37,353								
1922	72,608								
1923	37,966								
1924	18,989								
1925	9,689								
1926	4,643								
1927	12,707								
1928	8,513								
1929	477								
1930	4,006								
1931	6,498	226,153	773						
1932	6,753	363,058	1,256		410				
1933	9,973	468,528	1,720						
1934	8,073	811,033	2,564						
1935	20,982	1,283,225	5,087						
1936		1,426,323	5,546						
1937	2,366	2,164,207	6,998						384,000
1938	2,415	2,386,822	8,860						
1939	4,205	2,227,343	7,864		190,445				422,179
1940	3,323	1,262,207	432		16,750				255,723
1941	1,062	1,166,459	503						272,377
1942		60,000	26						13,893
1943	REPORTS	MPLETE							8,008
1944									83,965
1945	697	395,015	1,487						79,952
1946	203	453,700	2,100						103,469
1947									NONE
1948		907,166	2,862				300,000		163,278

TABLE C.158, Conti nued

TABLE C. 159
Herring and Herring Roe on kelp in Tons from Prince William sound, 1966-1977

1/ Number of herring fishing boats making actual deliveries.
2/ Three drift gill net boats also fished.

- 3/ One drift gill net boat fished.
*

Prelimary.
source: Alaska Department of Fish and Game, Annual Management Report, Prince William Sound, May 8, 1978.
C. 176

TABLE C. 160

[^29]TABLE C. 161
Prince William Sound
Seine Herring Fishery
Number of Boats and Landings in the Fishery by Month
$1969 \quad 1970 \quad \underline{1971} \quad \underline{1972} \quad \underline{1973} 1974 \quad \underline{1975} \quad \underline{1976}$

- January
B^{1}
L^{2}
February
B
L
- March

	B		1				
April							
	B	4	10	14	27	72	73
	L	19	39	66	103	181	131
May							
	B	2	6	16	24	2	63
	L		10	49	70		63

June
B
L

4	9
14	9

- July

B
August

B
L

- September

B
L
October

- November $\begin{array}{ll}B & 1 \\ I \\ i & \\ D & 2\end{array}$

December
B
L

Source: Commercial Fisheries Entry Commission Data Files
${ }^{1} B=$ Number of Boats
${ }^{2} L=$ Number of Landings

TABLE C. 162
Prince William Sound
Purse Sei ne Herring Fi shery
Number of Boats by Length

	1969	1970	1971	1972	1973	1974	?975	1976
01 ft .			--	1	0	1	--	5
1-25 ft.			'-	0	2	1	1	-
26-35 ft.	3	1	7	11	14	35	33	33
36-45 ft.	2		5	6	13	30	38	27
46-' 55 ft .	1		1		-'	3	2	' 2
56-65 ft.			1		-	-	-	
66-75 ft.					1	2	1	
76-85 ft.					''		1	
86-95 ft.					-			
96-105 ft.					--			
106-115 ft.					--			
116-125 ft.					7			
over 125 ft .								

1 All boats of unspecified length are included in this category.

Source: comercial Fi sheries Entry Commission Data Files

TABLE C. 163
Prince willian Soung Herring Roe on Kelp Fishery

			H AND Emp	ENT DATA				
	1969	1970	1971	1972	1973	1974	1975	1976
$\begin{aligned} & \text { 1s Landed } \\ & \text { foo's) } \end{aligned}$	1	190	773	600	306	581	909	485
: of Landings	1	\$95,000	386,000	300,000	153,000	395,000	600,000	320,000
ar of Boats	3	34	159	397	176	143	333	279
\% of Landings ${ }^{1}$	1	103	73 a	1,291	330	623	1,799	881
Weeks ${ }^{2}$	$($	54	319	565	192	225	734	440
Teeks '8								
ur of Landings 30at	1	3.03	4.64	3.25	1.88	4.36	5.40	3.16
; per Boat	1	1.59	2.01	1.42	1.09	1.57	2.20	1.58
is per Landing	1	1,840	1,050	460	930	930	510	550
OS Catch Landing	(\$ 920	520	230	460	630	330	360
$\begin{aligned} & \text { ? of Catch } \\ & \text { 3oat } \end{aligned}$	1	\$ 2,790	$2>430$	760	870	2,760	1,800	1,150
? of Catch 30 Week	"(\$ 1,760	1,210	530	800	1,760	820	730
value of catch per lbs.)	1	\$ 0.50	0.50	0.50	0.50	0.68	0.66	0.66
52^{4}	1	0.86	0.80	0.80	0.80	0.66	0.71	0.67
: 2^{5}	1	1.91	2.31	2.28	1.72	2.77	2.45	2.00

:es: 'N-e catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fisherie Entry Commission. The estimate of the average crew size in this fishery was made by George H . Rogers in, A study of the Socio-Economic Impact of Changes in the farvesting LaborForceinthealaska Salmon Fishery, and in oneoing research.
2. Number of Landings equals the number of days each boat landed fish. Sumed over ail boats.
2. Boat weeks equals the number of weeks each boat landed fish. Sumed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estama of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A '*(" indicates that the statistic is not available due to confidentiality requirements maintained by the Ent Commission.

TABLE C. 164

Prince William Sound
Herring Roe on Kelp Fishery
Number of Boats and Landings in the Fishery by Month 1969. 1970 . 1971 1972. 1973.197419751976

January
B^{1}
$\mathrm{~L}^{2}$
February
B
March
B
L
April

	B	22	135	397	163	137	320	266
May	L	50	498	1,291	309 ،	557	1,416	769
	B	23	104		21 '	58	$\frac{175}{383}$	9

June

B	5
L	5

July

August
L
5

1
B
L

September
B
October
B

November
B
L
December
B
L

Source: Commercial Fisheries Entry Commission
${ }^{1} B=$ Number of Boats
${ }^{2} L=$ Number of Landings

TABLE C. 165
PRINCE WILLIAM SOUND HERRING ROE ON KELP FISHERY Number of Boats by Length

1969	1970	1971	1972	1973	1974	1975	1976

- 01	1	8	30	104	7	6	19	23
1-25 feet	1	8	45	144	95	74	164	136
26-35 feet	1	14	53	102	58	52	109	92
36-45 feet		3	21	35	12	9	32	21
46-55 feet		1	5	5	4		6	6
56-65 feet			4	6		1	1	1
66-75 feet			1		1	1	1	
76-85 feet								
86-95 feet								
96-105 feet				1				
106-115 feet								
116-125 feet								
over 125 feet							1	

$l_{\text {All boats }}$ of unspecified length are included in this category Source: Commercial Fisheries Entry Commission, Data Files.

CATCH AND EMPLOYMENT DATA

Sources : The catch statistics werederived using data provided from the data files of the State of Alaska Commerciali Entry Commission. The estimate of the average crew size in this fishery was made by George ${ }^{\prime}$. Rogers in, A st the Socio-Economic_Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoin research.

1. Number of Landings equals the number of days each boat landed fish. Sumed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Sumed over all boats. -
3. Nan weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A " (" indicates that the statistic is not available due to confidentiality requirements maintained $\mathrm{b}_{\boldsymbol{a}}$ i Commission.

It has been estimated that the average crew size in this fishery is 1.

$$
\begin{aligned}
& \text { TABLE C. } 167 \\
& \text { Prince Williamen Sound Small Boat } \\
& \text { Long Line Bottomfish Fishery } \\
& \text { Number of Boats and Landings in the Fishery by Month } \\
& 1969 \quad 1970 \quad \underline{1971} \quad \underline{1972} \quad 1973 \quad \underline{1974} \quad \underline{1975} \quad \underline{1976}
\end{aligned}
$$

January
B^{1}
$\mathrm{~L}^{2}$
February
B 1
March
$\begin{array}{ll}\mathrm{B} \\ \mathrm{L} & 1\end{array}$
April
B
L

October
B
L

- November

B
L
December
B
L

Source: Commercial Fisheries Entry Commission Data Files

- ${ }^{1} \mathrm{~B}=$ Number of Boats
$' \mathrm{~L}=$ Number of Landings

TABLE C. 168
PRINCE WILLIAM SOUND SMALL BOAT LONG LINE

1. All boats of unspecified length are included in this categcry. Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 170
PRINCE WILLIAM SOUND OTTER TRAWL BOTTOMFISH FISHERY Number of Boats and Landings in the EisherybyMonth

	1969	$\underline{1970}$	1971	1972	1973	$\underline{\underline{1974}}$	1975	1976
January								
	B^{1}				1	2		2
	I^{2}					2		2
February								
	B				1	2		2
	L							
March								
	B				1	3	1	2
	L							
Aprip								
	B				2	2	2	2
	L							
May								
	B						1	1
	L							

June
B
1

July
B
I

August

September | B |
| ---: |
| B |
| L |

October
B 1
November
B
L
December
B
L
1
1

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Eoats } \\
& { }^{2} \mathrm{~L}=\text { Number of Iandings }
\end{aligned}
$$

TABLE C. 171
PRINCE WILLIAM SOUND OTTER TRAWL
BOTTOMFISH FISHERY
NUMBER OF BOATS BY LENGTH

FEET	1969	1970	1971	1972	1973	1974	1975	1976
-. 1	-							1
1-25	-				1			
26-35	-				1	2	2	2
36-45	-			1	1	1		

46-55
56-65
66-75 -
1
(3 .

1. All boats of unspecified length are included in this category.

Source : Commercial Fisheries Entry Commission Data Files

TABLE C. 172
prince WILLIAM SOUND BOTTOHFISH FISHERY AIL GEAR TYPES

	1969	1970	1971	1972	1973	1974	1975	1976	1977
Pounds Landed (il 000's)	c^{4}	51	9	11	101	43	19	26	
Vâlue of Landi ngs	C	8, 000	1,000	2,000	17,000	20, 000	3,000	8, 000	
Nunber of Boats	1	23	12	30	56	30	17	23	
Mumber of Landi ngs ${ }^{1}$	c	58	17	66	126	72	46	55	
Boat Meeks ${ }^{2}$	c	48	17	62	116	66	43	52	
Man Weeks ${ }^{3}$	c "	48	17	62	134	66	43	52	

Source: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial Fi sheri es Entry Commission. The estimate of the average crew size in this fishery was nade by George W. Rogers in, A Study of the Socio Economic Impact of Changes in the Harvesting Labor Force in the Alaska Sal mon Fi shery ${ }_{5}$ and in ongoing research.
${ }^{1}$ Number of Landi ngs equals the number of days each boat I anded fish. Summed over all boats.
${ }^{2}$ Boat Weeks equal s the number of weeks each boat landed fish, Sumed over all boats.
${ }^{3}$ Man Heeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estimat.? of the average number of fishernen employed a week times the number of weeks fished.
${ }^{4} \mathrm{~A}$ " C " indicates that the statistic is not available due to confidentiality requirenents maintai ned by the Entry Comis ssi on.

These statistics do not include the activities of the following boats that participated in this fishery:
1971 one hand troller
1972 one otter traw er
1973 one drift gill net boat and one hand troller
1974 three otter traw ers
1975 tho otter traw ers
1976 three otter traw ers

TABLE C. 173
King Crab Catch In Pounds, Prince William Sound Area. 1960-1977-78 Season

$\frac{\text { Year }}{1960}$	$\frac{\text { Pounds }}{246,965}$	$\frac{\text { Year }}{1969}$	Pounds
1960	246,100		
1961	236,081	1970	94,300
1962	31,478	1971	144,200
1963	43,569	1972	296,200
1964	14,028	1973	207,916
1965	5,500	1974	85,379
1966	11,000	1975	53,423
1967	41,800	$1976-77^{1 /}$	17,087
1968	200,000	$1977-78^{1 /}$	86,595

1/ Season.
Source: Alaska Department. of Fish and Game, Annual Management Report Prince William Sound May, 1978.

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercial.! \boldsymbol{F} : Entry Commission. The estimate of the average craw size in this fisherv was made by Georqe w, Roqers in, A s: the Sociomeconomic impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in onçoid research.

1. Number offandings equals the number of days each boat Landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over a!l boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Ladings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A"("indicates that the statistic is not available due to confidentiality requirements maintained \boldsymbol{E}, 1 Commission.

It has been estimated that the average crew size in this fishery is 4.

Number of Boats and Landings in the Fishery by Month

$$
\begin{array}{llllllll}
\underline{19} 69 & 1970 & \underline{1971} & \underline{1972} & \underline{1973} & 1974 & \underline{1975} & \underline{1976}
\end{array}
$$

- January

February	B^{1}							2	1252
	B^{2}	15	5	2	6	13	4		
		35	20		17	51	6		
March	B	13	5	2	8	8		3	923
	L	24	12		21	24	18		
	B	9				2		1	3
April	L	16			6		6		
					6		9		
	B								
	L								

- May
B
L

June

$$
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~L}
\end{aligned}
$$

- July
B
L

August

	L		1	4 10	4	1	1
September							
		1	4	5	7	5	1
October	L		10	11	12	8	
	1	5	3	6	6	7	
		11		10	9	15	
November	1	3	11	16	6	4	8
December			21	56	12	5	29
	1	2	11	16	3		
			22	61			37

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of Boats } \\
& { }^{2} \mathrm{~L}=\text { Number of Landings }
\end{aligned}
$$

TABLE C. 176

1. All boats of unspecified length are included in this category. Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 177
Prince William Sound Area Historical Tanner Crab Catch in Pounds by Season.

CATCH AND EMPLOYMENT DATA

It has been estimated that the average crew size in this fishery is 4.

	B ${ }^{1}$	14	8	1	11	33	10	2	28
	L^{2}	63	60		62	143	13		130
February ${ }^{\text {a }}$									
	B	16	8		13	39	31	14	29
	L	48	59		75	235	67	36	118
		15	12		16	44	50	17	27
$\begin{array}{lllllllll}\text { April } & \mathrm{L} & \mathbf{6 6} & 88 & 72 & \mathbf{2 4 3} & 243 & 95 & \mathbf{1 0 1}\end{array}$									
	B	9	10		18	44	50	18	23
	L	51	56		6.5	220	166	68	75
May ${ }^{\text {a }}$									
	B	5			20	37	39	9	19
	L	16			129	114	139	34	58
June 10 - 10									
	B				17	20		1	
$\begin{array}{lll}\text { July } & \end{array}$									
	B				11				
	L				30				
August									
	B				1				
	L								
September									
	B				2			1	
October									
	B		2	4	5				
	L			26	8				
November									
	B		1	18	26	1		15	
	L			59.	134			51	
December 5									
	B			12	36	2		23	
	L			43	163			96	

Source: Commercial Fisheries Entry Commission Data Files
${ }^{1} \mathbf{B}=$ Number of Boats
${ }^{2} L=$ Number of Landings

TABLE C. 180
PRINCE WILLIAM SOUND
TANNER (SNOW) CRAB FISHERY
NUMBER OF BOATS BY LENGTH

FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	3	1	3	5	2	1	1	2
1- 25	1	2	1	2	2	1	1	1
26-35	9	7	?	9	9	6	2	3
36-45	4	2	3	12	14	18	12	12
46-55	1	1	4	6	9	11	8	9
56-65	-		2	4	5	5	5	6
66-75	-			2	3	4	1	2
76-85	1			7	7	3	1	2
86-95	-					4	2	1
96-105	-					-		-
106-115	$=$					-		\cdots
116-125						1		

1. All boats of unspecified length are included in this category. Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 181

Prince William Sound Area Dungeness Crab Catch, 1960-1977

Year	Copper River Pounds	Vessels	Orca Inlet Pounds	Vessels	Total Catch Pounds
1960			1,524,326		
1961			990,242		
1962			1,353,190		
1963	$\stackrel{ \pm}{\square}$		1,216,846		\%
1964	$\begin{aligned} & \text { ت} \\ & \underset{\pi}{\pi} \end{aligned}$		1,290,929		$\xrightarrow[\pm]{ \pm}$
1965	J		1,240,372		容
1966			999,341		m
1967			No data ava	lable	
1968			579,279		
1969	336,696		541,822		878,696
1970	78,223		660,411		738,634
1971	78,848		430,976		509,824
1972	437,865		286,808		724,673
1973	458,613		$347>764$		806,377
1974	290,149		269,015		559,164
1975	654,410		163,631		818,041
1976	\%54,933	4	35,399	3	290,332
1977	506,751	4	228,8S8	23	735,609

Source: Alaska Department of Fish and Game, Annual Management Report,
Prince William Sound, May 8, 1978
C. 198

CATC: AND EMPLOYMENT DATA

	1969	1970	1971		1972		1973		1974		197 s		cos
$\begin{aligned} & \text { Pounds Landed } \\ & \text { (in } 000^{\prime} \text { 's) } \end{aligned}$	879	739	510		725		806		559		818		
Value of Landings \$	123,000 \$	103,000 \$	87,000	s	268,000	\$	421,000	\$	268,000	\$	466,000	S	
Number of Boats	41	38	26		47		45		50		37		
Number of Landings ${ }^{1}$	589	389	438		510		634		459		331		
goat Weeks ${ }^{2}$	234	145	164		233		3s9		219		204		
Man Weeks ${ }^{3}$	468	290	328		466		718		438	-	408		
Number of Landings Boat	14.4	10.2	16.8		10.9		14.1		- 9.2		8.9		*
Weeks per Boat	5.71	3.82	6.31		4.96		7.4 a		"4.38		$5 . \mathrm{s} 1$		
Pounds per Landing	1,490	1,900	1,160		1,420		1,270		1,220		2.470		
Value of Catch per Landing	22.0 \$	265 \$	200	\$	525	S	6S0	\$	585	\$	1,410		s
Value of Catch per Boat	3,000 \$	2,700-\$	3,300	\$	5,700	\$	9,100	S	5,400	S	12,600	S	
Value of Catch per Scat Week	S30 \$	710 s	'330	\$	1,150	\$	'1,140	\$	1,220	\$	2,280	S	
Price (i.e. value of cateh per .lbs.) \$	0.14 s	0.14 S	0.17	S	0.37	\$	0.51	S	0.48	\$	0.57	S	
Index 1^{4}	0.83	0.87	0.98		0.99		1.00		0.98		, 0.95		
Index 25	2.52	2.6 a	2.67		2.19		1.77		2.10		1.62		

Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Corsereiai : Entry Comission. The estimate of the average crew size in this fishery was made by George w. Rogers in, A, the Socio-Economic Impact of Changes in the EarVesting Labor Force in the Alaska Salmon Fishery, and in orgo: research.

1. Number of Landings equals the number of days each boat landed fish. Sumed over all boats.
2. Soat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals heat weeks times an estimate of the average crew size in this fishery: it is thus at of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of handings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained zy Commission.

It has been estimated that the average crew size in this fishery is 2.

TABLE C. 183
Prince William Sound Dungeness Crab
Fishery
Number of Boats and Landings in the Fishery by Month $1969 \quad 1970 \quad 1971 \quad 1972 \quad 1973 \quad \underline{1974} \quad \underline{1975} \quad 1976$

- January
$\begin{array}{lr}\mathrm{B}^{1} & 7 \\ \mathrm{~L}^{2} & 26\end{array}$
February

B	11
L	30

- March

April
$\begin{array}{lr}\text { B } & 5 \\ \text { L } & 27\end{array}$
2

14	1		1
47			
10	1	1	1
42			
6	3		1
30			

- May

| | ${ }^{\text {B }}$ |
| :--- | :--- | :--- |
| L | |

June

- July $\begin{array}{llr}\text { B } & 4 \\ & \text { L } & 31\end{array}$

August

- September

L $\quad \begin{array}{r}6 \\ \hline\end{array}$

B	28
L	337

TABLE C. 184

PRINCE WILLIAM SOUND

DUNGENESS CRAB FISHERY								
			NUMBER	BOATS	Y LENG			
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	16	13	5	2	2			-
1-25	6	5	3	8	7	3	6	1
26-35	12	12	12	24	20	27	18	2
36-45	6	8	4	9	9	12	6	1
46-55	1		2	4	4	6	4	1
56-65					1	2	2	2
66-75					1			
76-85					1		-	
86-95							1	1

1. All boats of unspecified length are included in this category. Source : Commercial Fisheries Entry Commission Data Files

TABLE C. 185
Shrimp Harvest in Pounds, Prince William Sound Area, 1960-1977

Year	Pots	Year	Pots	Trawl	Total
1960	2,494	1969	2,573		
1961		1970	9,888		
1962	1,788	1971	6,537		
1963	.ss0	1972	3,474	5,153	8,627
1964	2,124	1973	3,185	4,243	7,428
196.5	2,178	1974	12,489	1,345	13,854
1966		1975	2,07S	26,961	29,036
1967	374	1976	1,20s	134,115	135,320
1968	3,433	1977	3, 7S8	170,7s7	174,515

Source: Alaska Department of Fish and Game, Annual Management Report, Prince William Sound, May 8, 1978.

TABLE C. 186
PRI NCE WLLI AM SOUND SHR MP FI SHERY ALL GEAR TYPES: CATCH, GROSS EARN NGS, AND NUMBER OF BOATS, 1969 - 1976

CATCH
MEAR
1969
1970
1971
1972
1973
1974
1975
1976
1977
(POUNDS)
2, 573
9, 888
6, 537
8, 627
7, 428
13, 834
29, 036
C

NUMBER OF BOATS
3
7
7
6
2, 394
2, 548
36, 372
35, 882
C

A "C" indicates that the statistic is not available due to confidentiality requi renents.

Source: Al aska Comercial Fi sheries Entry Comission, Al aska Shellfish Bio-Economic Data Base, 1978

9: The catch statistics were derived using data provided from the data files \boldsymbol{f} the State of Alaska Commercial Fisherie Entry Commission. The estimate of the average crew size in this fishery was made by George w. Rogers in, A study of the Socio-Economic Impact of Changeg in the Harvesting Labor Force in tile Alaska Salmon Fishery, and in ongoing. research.
I. Number of Landings equals the number of days each teat landed fish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an estima of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number or species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by the Ent Commission.

TABLE C. 188
Prince William Sound
Pot Shrimp Fishery
Number of Boats and Landings in the Fishery by Month
1969 1970 $1971 \quad 1972$ _ $1973 \quad 1974 \quad 1975 \quad 1976$

January							
	B^{1}	1	1	1	1	2	1

$\begin{array}{cc} & \text { TABLE C. } 189 \\ \text { PRINCE } \\ \text { WILLIAM SOUND }\end{array}$								
POT SHRIMP FISHERY								
NUMBER OF BOATS BY LENGTH								
FEET	1969	1970	1971	1972	1973	1974	1975	1976
- 0^{1}	-	2						
1- 25	-							
26-35	1	1		1	2	2	1	
0^{36-45}	2	3	5	2		2	1	1
46-55			2					
56-65		1						

1. All boats of unspecified length are included in this category. Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 190
ANUAL PRINC[WLLI AM SOUD RAZOR CLAM CATCH, 1960-1977
(in thousands of pounds, shel 1 weight)

YEAR	CATCH	'f EAR	CATCH	YEAR	CATCH
1960	433.9	1966	27.1	1972	30. 3
1961	261. 6	1967	114.9	1973	31.5
1962	208.7	1968	72.9	1974	29.7
1963	86.3	1969	26.8	1975	15.4
1964	39. 3	1970	27.9	1976	1.5
1965	86.5	1971	38.0	1977	2.2

Source: ADF\&G, Status of Prince William Sound Shellfish, 1976.

TABLE C. 191
PRI NCE WILI AM SOUND RAZOR CLAM CATCH BY MONTH 1967-1977 (in thousands of pounds, shel 1 weight)

YEAR JAN FEB MAR APR MAY_JUNE IULY AUG SEPT OCT_ Nov DEC TOTAL

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
14.2
47. 724.4
12. 0
12. 3
3.8
0. 30.2
114.9
4. $1 \quad 16.6$
$\begin{array}{lll}18.6 & 17.6 & 10.0\end{array}$
6. 0 72.9
0.22 .8
$2.2 \quad 15.0$
5. $0 \quad 1.3$
0. 3
26. 8
$\begin{array}{llllll}2.3 & 2.1 & 6.6 & 8.8 & 7.0 & 1.9\end{array}$
0.2
27.9
0. 6
2. 3
3. 0
3. 6
8. 9
$7.4 \quad 1.8$
0. 2
38.9
0. 2
0. 1
0.3
$3.0 \quad 7.9 \quad 2.1$
8. $2 \quad 7.3 \quad 1.4$
30.3
0.4
0. 1
2. $1 \quad 7.9 \quad 10.1$
8. $3 \quad 2.2$
0. 20.2
$.1 \quad 31.5$
0.1
2. 2 8. 110.8
$6.7 \quad 1.8$
0.51 .9
4. $1 \quad 7.0 \quad 1.9$
0. 3
0. 9
0.20 .1
0. $5 \quad 1.0$
0.5
0. 2
0.3

Source: Alaska Department of $\mathbf{F i}$ sh and Gane, Statistical Leaflets, various jears.

TABLE C. 192
PRINCE WILLIAM SOUND
RAZOR CLAM FISHERY

	CATCE AND EMPLOYMENT DATA													
	1969	1970		1971		1972		1973		1974		1975		1976
; Landed														
20's3	27	28		38		30		31		30		15		2
of Landings \$	7,000 \$	7,000	\$	9,000	\$	12,000	\$	15,000	\$	19,000	S	8,000	S	1.000
- - Boats	33	15		39		54		48		37		22		9
r of Landings ${ }^{\text {c }}$ "	144	133		186		191		240		174		164		22
Neeks ${ }^{2}$	87	59		103		123		1.59		113		70		16
eeks ${ }^{3}$														
me Landings														
oat	4.36	"-a. 89		4.77		3.54		5.00		4.70		7.45		2.44
per Boat	2.64	3.93		2.64		2.24		3.31		3.05		3.19		1.78
:s per Landing	190	210		200		160		130		170		90		90
Pf Catch anding	49 \$	53	\$	48	\$	63	\$	63	\$	110	S	49	S	45
: of Catch soat	210 \$	470	\$	230	\$	220	\$	310	\$	510	S	360	\$	110
$\begin{aligned} & \text { lof Catch } \\ & \text { loat Week } \end{aligned}$	80 \$	118	\$	87	\$	99	\$	94	\$	168	\$	114	\$	63
value of catch per lbs.) \$	0.26 \$	0.25	\$	0.24	\$	0.40	\$	0.48	S	0.63	S	0.53	\$	0.50
$\leqslant 1^{4}$	0.96	0.87		0.91		0.93		0.98		0.99		, 0.72		0.88
$\leqslant 25$	1.66	2.25		1.81		1.58		1. 51		1.54		2.34		1. 38

ses: The catch "statistics were derived using data provided from the data files of the State of Alaska Comercial Fisherin Entry Commission. The estimate of the average $\boldsymbol{\sigma r}$ ew size in 'his fishery was made by George W. Rogers in, A study o. the Socio-2cor.omit Impact of Chan es in the Harvestin Labor Foree in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each boat lanced fish. Summed over all boats.
2. Seat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it ia thus an estin of the average number of fishermen employed a week times the number of weeks fished.
4. Index I equals the number of Landings divided by the number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to conicientiality requirements maintained by the En Commission.
maseen estimated that the average crew size in this fishery is

TABLE C. 193
Prince William Sound Razor Clam Fishery
Number of Boats and Landings in the Fishery by Month $19691970 \quad 1971 \quad 1972 \quad 1973 \quad 1974 \quad 1975 \quad 1976$

Source: Commercial Fisheries Entry Commission Data Files

$$
\begin{aligned}
& { }^{1} B=\text { Number of Boats } \\
& { }^{2} L=\text { Number of Landings }
\end{aligned}
$$

TABLE C. 194
THE NUMBER OF PRI NCE WLLI AM SOUND AND STATEWDE GEAR PERUITS
I SSUED TO RESI DENTS OF CORDOVA 1974-1977*

SPECI ES AND GEAR

- PRI NCE WILI AM SOUN

Herring, Purse Seine ${ }^{1}$
Herring, Drift Gill Net ${ }^{7}$
King Crab, Snall Boat Pots ${ }^{2}$
King Crab, Large Boat Pots

- Sal non, Purse Sei ne

Sal mon, Drift Gill Net
Sal non, Set Gill Net
STATEW DE
. Halibut, Small Boat Long Line ${ }^{3}$
Hal i but, Hand Troll
Halibut, Large Boat Long Li ne
Sablefish, Snall Boat Long Line
Sablefish, Large Boat Long Line
Dungeness Crab, Snall Boat Pots

- Dungeness Crab, Large Boat Pots

Herring, Purse Sei ne
Herring, Set GII Net
Herring, Pound
Thrring Roun on
239
Bottomfish, Small Boat Long Li ne
Bottomfish, Otter Traw
Bottomfish, Snall Boat Pots
Bottomfish, Beam Traw
Bottomfish, Large Boat Long Li ne
Shrimp, Otter Trawl
Shrimp, Snall Boat Pots
Shri mp, Beam Traw
Shrimp, Large Boat Pots
Razor Clans, Shovel
Razor Clans, Dredge
Razor Clams, Other
Sal non, Hand Troll
Sal non, Power Troll
Tanner Crab, Small Boat Pots
Tanner Crab, Large Boat Pots
Oher, Oher

1974
1975
1976

			31	29
44	16	16	27	52
6	5	4		12
202	181	192	$17 ;$	$14:$
370	348	378	374	341
32	18	17	19	11

17
374
19

1978
1977

47	19	31	51	23
	8	1	1	
	2	16	25	26
	2	1	1	1
105	45	34	46	38
	8	8	2	1

508	523	220	106
3	5	3	6
5	4	2	2

64 65'

- I Indi cates a linited entry herring fishery,
${ }^{2}$ A snall pot boat has a keel length of not nore than 50 feet.
3A snall long line boat has a keel length of not nore than $\mathbf{2 6}$ feet.
* *A resident of Cordova is anyone using a Cordova address when appl ying for a gear permit.

Source: Comerci al Fi sheries Entry Commission, Permit Files.

YEAR	SALMDN	HALI BUT	FERRI NG	Kl NG CRAB	TANNER CRAB	DUNGENESS CRAB	SHRIMP	SCALLOPS RAZOR	R CLAMS	$\underline{\text { TOTAL }}{ }^{2}$
1962	4	0	0	1	0	2	0	0	2	5
1963	8	0	0	1	1	2	0	0	2	9
1964	8	3	0	0	0	0	0	0	3	9
1965	7	0	0	0	0	1	0	0	2	7
1966	4	0	0	1	0	1	0	0	2	6
1967	11	0	0	3	0	3	0	0	2	13
1968	8	1	0	2	2	2	0	0	2	10
1969	8	0	0	2	1	3	0	0	1	8
1970	4	1	0	1	0	2	0	0	1	4
19?1	5	1	1	2	1	4	0	0	2	5
1972	5	1	1	2	3	2	0	0	2	8

${ }^{1}$ Floating processor plants are incl uded. .
'The total is not the sum of the col ums since nost plants produce nore than one product.
Source: ADF\&G Comercial Operator Reports 1962-1972.

PROCESSI NG BY PRODUCT, 1956-58 AHD 1973-76

PROCUCT	1956	1957	1958	1973	1974	1975	1976
$\begin{aligned} & \text { Fresh (000's 1bs) } \\ & \text { Plants } \end{aligned}$							1
Frozen (000's lbs)				1,999 5	493 6	$\begin{array}{r} 1,346 \\ 4 \end{array}$	$\begin{array}{r} 1,229 \\ 4 \end{array}$
Canned (000's lbs) Plants	$\begin{array}{r} 9,864 \\ 3 \end{array}$	$\begin{array}{r} 6,333 \\ 4 \end{array}$	1	$\begin{array}{r} 9,005 \\ 6 \end{array}$	$\begin{array}{r} 6,178 \\ 7 \end{array}$	$8,111_{5}$	$\begin{array}{r} 10,050 \\ 6 \end{array}$
Roe (000's lbs) Pl ants				606 4	$\begin{array}{r} 273 \\ 4 \end{array}$	1	467 5
Bait (000's lbs)							
$\begin{array}{r} \text { Reduction (} 0 C 0 ' s 1 b s \text {) } \\ \text { P1 ants } \end{array}$					1		
Other (000's 1bs)							
Total (000's 1bs) Pl ants	9,864 3	$\begin{array}{r} 6,333 \\ 4 \end{array}$	1	$\begin{array}{r} 11,610 \\ 7 \end{array}$	$\begin{array}{r} 6,944 \\ 8 \end{array}$	$\begin{array}{r} 9,457 \\ 6 \end{array}$	$\begin{array}{r} 11,746 \\ 7 \end{array}$

The wei ghts are neat equi val ent weights. If there are fewer than two processors, the data is not available due to confidentiality requirenents and the total weight will not incl ude the confidentiality data.

Source: Alaskâ Departnent of Fish and Gane, Processor Reports with 1978 revisions.

TABLE C. 197
CORDOVA HALI BUT
Processing BY PRODUCT, 1956-58 AND 1973-70
PRODUCT $\underline{1956} 1957 \quad 1958 \quad 1973 \quad 1974 \quad \underline{1975} \quad \underline{1976}$

- Fresh (000's Ibs) Pl ants 1

Frozen (000's lbs)
$\begin{array}{llllll}\text { Pl ants } & 1 & 3 & 2 & 3 & 1\end{array}$

- Canned (000's lbs)

Plants
Roe (000's lbs)
Plants

- Bait (000's lbs) Pl ants

Reduction (000's lbs)
Pl ants

- Other (000's lbs) Pl ants

Total (000's lbs) 74 Pl ants $3-3$ 2

The wei ghts are neat equi val ent weights. If there are fever than two processors, the data is not available due to confidentiality requirements and the total weight will not include the confidentiality data.

Source: Al aska Departnent of Fish and Gane, Processor Reports with 1978 revisions.

TABLE C. 198
CORDOVA HERRI NG
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76
PRODUCT 1956 . 1957 1958 $1973 \quad \underline{1974} \quad \underline{1975} 1976$

Fresh (000's lbs) Plants		1		1
	1	670 3	1	
Canned (000 s lbs) Pl ants				
Roe (000's 7bs) Plants	1		1	126 3
Bait (000's lbs) Plants	68 3	29 2	1	
Reduction (000's lbs) Pl ants				
Other (000's 1bs) Plants				1
Total (000's Tbs) Plants	68 4	699 3	3	4

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirements and the total weight will not incl ude the confidentiality data.

Source: Al aska Department of Fi sh and Gane, Processor Reports with 1978 revi si ons.

TAELE C. 199
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-. 76
$\begin{array}{llllllll}\text { PRODUCT } & \underline{1955} \quad 19.57 & 1958 & \underline{1973} & \underline{1975} & \underline{1976}\end{array}$
Fresh (000's lbs)
Plants 1
Frozen ($\mathbf{0 0 0}^{\prime} \mathbf{s}$ bs)
Plants
$46 \quad 10$
8
8
ans
32
2
Canned ($\mathbf{0 0 0}$ s bs)
Pl ants
Roe (000's lbs)
Pl ants
Bait ($\mathbf{0 0 0}$ s lbs)
Pl ants
Reduction (000 's lbs) Plants

Other (000's lbs) Plants

Total (000 's its)
Pl ants

46	10	8	8
3	3	2	2

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requi renents and the total weight will not incl ude the confidentiality data.

Source: Alaska Department of Fish and Game, Processor Reports with 1978 revisions,

TABLE C. 200
CORDOVA TANNER CRAB
PROCESSI NG BY PRODUCT, 1956 - 58 AND 1973-76
$\begin{array}{lllllllll}\text { PRODUCT } & 1956 \quad 1957 & \underline{1958} \quad 1973 & 1974 & \underline{1975} & \underline{1976}\end{array}$
Fresh (000's lbs)

Frozen (000 's lbs)	1,516	896	575	815
Plants	3	4	3	3
Canned (000 's lbs)			330	215
Plants		1	2	2

Roe (000's lbs) PI ants Bait (000's 1bs) PI ants

Reduction (000's 1bs) Pl ants

Other (000's lbs)
plants
Total (000's lbs)
Pl ants

1,516	896	905	1,030
3	4	3	3

The wei ghts are meat equi val ent wei ghts. If there are fewer than tuo processors, the data is not availabe due to confidentiality requirements and the total weight will not include the confidentiality data.

Source: Al aska Department of Fi sh and Game, Processor Reports with 1978 revi si ons.

TABLE C. 201
CORDOVA DUNGENESS CRAB
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76
$\begin{array}{llllllll}\text { PRODUCT } & \underline{1956} & \underline{1957} & \underline{1958} & 1973 & \underline{1974} & \underline{1975}\end{array}$
Fresh (000's 1bs)
Plants 1
$\begin{array}{llllll}\text { Fr'zen (000's lbs) } & 314 & 178 & 190 & 24\end{array}$
$\begin{array}{lllllll}\text { Pl ants } & 1 & 3 & 3 & 3 & 2\end{array}$
Canned (000 's lbs)
Pl ants
Roe (000's lbs) Plants

Bait (000 's 7 bs)
Pl ants
Reduction (000's lbs) Plants

Other (000's lbs)
Pl ants
$\begin{array}{rrrrrr}\text { Total (000's 7bs) } & 314 & 178 & 190 & 24 \\ \text { Plants } & 2 & 3 & 3 & 3 & 2\end{array}$

The wei ghts are neat equi val ent wei ghts. If there are fewer than two processors, the data is net available due to confidentiality requirements and the total weight will not incl ude the confidentiality data.
-
Source: Alaska Department of Fi sh and Gane, Processor Reports with 1978 revi si ons.
-

```
                                    TABLE C. 202
                            CORDOVA SHRIMP
PROCESSI NG BY PRODUCT, 1'356-58 AND 1973 - 76
PPOOUCT 1956 _ \(1957 \quad 1958 \quad \underline{1973} \underline{1974} \underline{1975} \underline{1976}\)
```

1.5
$2-1-0.5$

```
Fresh (000's liss)
```

Fresh (000's liss)
Frozen (000's 1bs)
Frozen (000's 1bs)
Plants 1
Plants 1
Ganned (000's lbs)
Ganned (000's lbs)
Plants
Plants
Roe (000's lbs)
Roe (000's lbs)
Plants
Plants
Sait (000's lbs)
Sait (000's lbs)
Plants
Plants
Reduction (000's los)
Reduction (000's los)
pi ants
pi ants
Other (000's lbs)
Other (000's lbs)
Pl ants
Pl ants
Total (000's lbs)
Total (000's lbs)
Plants
Plants
1

```
1
```

1

The wei ghts are meat equi val ent wei ghts. If there are fewer than two processors, the data is not available due to confidentiality requirements and the total weignt will not incl ude the confidentiality data.
source: Alaska Department of Fish and Gane, Processor Reports with 1978 revisions.

TABLE C. 203
CORDOVA FISH PROCESSING, QUARTERLY WAGE AND EMPLOYMENT DATA 1970. 1977

YEAR	QUARTER
1970	1
	2
	3
	4
1971	1
	2
	3
	4
1972	1
	2
	3
	4
1973	1
	2
	3
	4
1974	1
	2
	3
	4
1975	1
	2
	3
	4
1976	1
	2
	3
	4
1977	1
	2
	3
	4

NMBER
OF FIR:US
2
2
9
2
9
8
9
8
2
2
2
2
7
7
7
6
6
6
6
7
7
8
8
10
9
2
10
10
9
12
12

$\begin{gathered} \text { AVERAGE } \\ \text { MDNTHLY } \\ \text { EMPLOYMENL } \end{gathered}$	AVERAGE PAY
1	1
1	1
380	648
1	1
	606
1; !	654
282	709
62	503
1	1
1	1
1	1
1	1
217	512
366	557
351	705
74	651
143	667
313	715
274	664
44	872
143	586
254	685
326	959
130	689
277	552
1	1
420	1,058
66	1,392
157	692
335	962
467	1,486

TOTAL
QUARTERLY WAGES
1
1
738,252
1
36,380
246,029
598,698
93,547
1
1
1
1
333,566
612,444
742,767
143,788
285,504
670,916
545,859
116,013
251,184
521,208
937,703
269,284
458,987
1

A " $\jmath^{\prime \prime}$ i ndi cates that the data is not available due to confidentiality requirenents
Source: Al aska Department of Labor Data File

TABLE C. 204
CORDOVA FI SH PROCESSI NG, ESTIMATED MONTHLY WAGES 1970-1977

		1970	1971	1972	1973	1974	1975	1976	$\underline{1977}$
	J anuary	1	11, 514	1	73,216	47,357	16,994	151, 248	113,488
	February	1	10, 302	1	109, 568	83, 375	84, 384	145, 176	98,956
	Hala rc	1	14,544	1	150, 528	154, 744	150, 016	162, 288	112, 796
	April	1	26,160	1	175, 455	255, 255	137, 685	1	212, 602
	May	1	56, 244	1	221, 686	211, 940	206, 185	1	305,916
	June	1	163, 500	1	215, 002	204, 490	177, 415	1	448,292
	July	346,032	246, 023	1	327, 825	247, 672	362, 502	516, 304	937,666
	August	250,128	219, 790	1	279, 885	142, 096	403, 739	522, 652	778, 66
$\underset{\sim}{N}$	September	141,912	133, 292	1	135, 360	156, 040	171,661	293, 066	365, 556
	Octoder	1	32,695	1	62,496	62, 784	47, 541	96, 048	
	November	1	31,186	1	46, 872	29,648	88,192	91, 872	
	Deceniver	1	29,677	1	34, 503	23, 544	133,666	86, 304	
	Total Man Months	1	974, 654	1	1, 832, 565	1, 618, 292	1, 979, 379	1	

A"l" indicates that the data is not available due to confidentiality requirements
Source: Alaska Departnent of Labor Data files

[^30]
PUBLI C SERM CES

TABLE C. 206
PORT USAGE CORDOVA, ALASKA, 1960 - 1976^{1}

Year -

1960
1961
1962
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

، Total Cargo ${ }^{2}$ Short Tons

FISH AND FISH PRODUCT Short Tons of Total Cargo

No. of Vessels Using Port ${ }^{3}$
34,885
35,945
43,459
46,298
38,673
43,169
56,830
51,114
43,666
46,405
34,455
68,553
42,114
46,750
35,218
43,132
65,969

9, 024
25. 9

1,299
13, 271
16, 228
20, 270
11,855
36. 9
37. 3
43. 8

1, 794

11, 681
14,413
8, 974
10, 786
13, 422
4, 659
10, 309
4, 842
16, 157
10, 879
11, 070
16, 850
30.7
27.1
25.4
17. 6
24. 7
28. 9
13.5
15. 0
11.5
34. 6
30.9
25. 7
25.5

3, 031
5, 999
2,361
NA
NA
NA
NA
2, 113
1, 461
1, 156
4, 538
7, 186
3, 779
2, 241
176

Source: Department of the Army Corps of Engineers, Waterborne Commerce of the United States, Annual issues, 1960-1976

I Includes all waterborne cargo entering and leaving the port.
2. Includes raw fish and any other fish product form entering and leaving the port.
3 Includes commercial fishing vessels, except 1976.

Yakutat

HARVESTING

TABLE C. 207
YAKUT CATCFES, NUMBER OF FI SH BY SPECI ES, 1902 - 1977

YEAR	K NG	RED	COHO	PINK	CHUM	TOTAL	REMARKS
1902	150	52,900	12, 300	35,000		100, 350	
1903							No Reported Catch
1904		141, 653	96, 540	111, 100		349, 293	
1905		266, 664	49, 889	45, 229		361, 782	
1906		296, 897	80, 786	63, 249		440, 932	
1907		331, 396	100, 890	53, 862		486, 148	
1908	6, 890	430, 850	46, 324	54, 073		538, 137	
1909		483, 095	67, 725	18, 461		569, 281	
1910	2, 340	464, 963	164, 292	41, 823	2,111	675, 529	
1911	328	508, 329	158, 049	180, 749	3,679	861, 134	
1912	4, 733	637, 519	127, 283	31, 515	6,418	807, 468	
1913	4, 066	562, 211	112, 210	45, 437		723, 924	
1914	11, 500	543, 927	116, 294	5, 620		677, 341	
1915	9, 176	433, 086	156,967	157, 367		756, 596	
1916	1,317	435, 062	126, 826	41, 434		604, 639	
1917	16, 871	493, 348	188, 651	92, 757		791, 627	
1918	12, 821	453, 722	224,885	115, 931		807, 359	
1919	13, 363	493, 758	244,218	24, 123		775, 462	
1920	24, 299	485, 827	211,153	44, 431		765, 710	
1921	12, 720	512, 614	197, 748	34,967		758, 049	
1922	9, 457	376, 998	179, 518	72,562		638, 535	
1923	16, 093	359, 792	190, 319	294, 425	6, 263	866, 892	
1924	20, 495	395, 082	155, 278	311, 047		881, 902	
1925	20, 443	200, 601	147, 685	103, 842	2, 224	474, 795	
1926	18, 992	207, 396	143, 538	245, 891	4, 156	619, 973	
1927	9,974	241, 675	292,328	100, 262	1,079	645, 318	
1928							
1929	83, 044	313, 277	83, 988	72, 365		552, 674	
1931		279, 623				279, 623	Italio, Situk, Ahrnklin
1933	12, 760	156,964	132, 873	118, 366	2, 878	423, 841	S.E. catches
1934	17,791	355, 344	237, 694	107, 791	3, 415	722, 035	
1935	7,985	406, 648	145, 695	87, 558	1,574	649, 460	
1936	4, 408	248, 446	206, 920	168, 954	1,026	629, 754	Esti mated from case pack
1937	7, 164	227,574	177, 578	127, 292	4, 224	543, 832	" " " 11
1938	7, 347	374, 800	200, 966	128, 681	1,326	713, 120	
1939	6,934	325,571	84, 318	41, 024	1, 228	458, 075	
1940	1,992	171,278	230, 008	107, 550	1,291	512, 119	
1941	4, 658	242,631	340, 624	66, 958	5, 033	659, 904	
1942	499	157,933	185, 340	58, 125	257	402, 154	
1943	1,095	137,558	107, 231	28, 585	116	274, 585	
1944	3, 152	183, 246	91, 251	63, 732	137	341, 518	
1945	11, 491	233,474	173, 225	15, 182	4, 399	437, 771	
1946	9, 189	115, 979	123, 437	62, 334	1,047	311, 986	
1947	7, 576	129, 044	75, 011	24, 721	3, 190	239, 542	
1948	9, 255	81, 836	105, 646	99, 734	6, 629	303, 100	
1949	612	77,833	44, 633	17, 583	385	141, 046	
1950							Included in S.E: catch

Table , continued on foll owi ng page.....
. . . TABLE C. 207, conti nued. . .

YEAR	K NG	RED	COHO	PI NK	CHUM	TOTAL	REMARKS
1951	1,260	148, 295	127, 701	35, 222	5, 328	317, 806	
1952	2, 414	110, 358	187,990	37, 067	12, 599	350, 428	
1953	1,914	111, 733	150, 512	8, 801	15, 605	288, 565	
1954	2, 246	127, 095	267, 181	40, 043	16, 094	452, 659	
1955	3,808	111, 250	201, 842	25,686	23, 568	366, 154	
1956	6,341	108, 303	130, 445	17,201	23, 533	285, 823	
1957	3,680	110, 504	63, 009	16, 475	31, 996	225, 664	
1958	1,093	42, 090	98, 772	61, 785	17, 764	221, 509	
1959	1,412	76, 790	138, 989	12, 505	36, 694	266, 390	
1960	916	48, 321	121, 320	13,966	12,491	197, 014	
1961	2,534	82,929	130, 314	65, 063	11, 520	292, 360	
1962	2, 748	80, 668	189, 511	27, 692	17, 914	318, 533	
1963	942	52, 711	145, 863	79, 180	10, 679	289, 375	
1964	2, 005	92, 235	169, 806	40, 392	5. 669	310, 107	
1965	1, 468	122, 735	125, 421	4.425	4,258	258. 307	
1966	2, 152	185, 361	67, 414	1,395	3, 395	259,717	
1967	2, 190	88, 431	120, 286	32,532	4, 47?	247, 910	
1968	656	80, 780	122, 497	2, 317	13,896	220, 146	
1969	1,863	117, 797	59, 623	64, 094	14,935	258, 012	
1970	1, 864	112, 169	38, 529	3, 764	7,110	163, 436	Yakataga Cl osed
1971	1,821	129, 212	40, 504	80, 317	5, 019	256, 873	
1972	2, 243	132, 000	43. 161	2, 783	8. 000	188, 197	
1973	2, 344	131, 343	41,504	15, 556	8,916	199,663	Limited Fishery
1974	2, 257	82, 820	77,069	4, 254	4, 227	170, 627	
1975	2,211	73, 677	37,423	78,496	3, 725	195, 532	Closed
1976	1, 780	129, 377	50, 416	28, 269	7,748	217, 590	Limited Fi shery
1977	2, 424	186, 235	90, 989	74,632	8,471	362, 751	

Source: ADF\&G, Yakutat District Report, 1977.

TABLE C. 208
Yakutat Salmon Fisheries Catch by Species in Pounds 1966-1977

Year	Troll King	Setnet King	Red	Coho						Pink	Chum	Total
1966	3,091	26,500	$1,280,174$	660,249	4,760	31,250	$2,003,013$					
1967	12,000	12,540	600,766	970,856	110,050	44,300	$1,738,512$					
1968	34,580	13,120	551,303	967,480	7,164	130,528	$1,669,595$					
1969	27,660	37,260	727,110	311,109	224,448	153,190	$1,453,837$					
1970	35,460	36,420	754,466	293,398	11,109	70,033	$1,165,426 * *$					
1971	51,756	40,820	849,816	377,340	280,672	63,670	$1,664,074$					
1972	24,960	47,520	851,500	450,704	10,160	82,900	$1,467,744$					
1973	19,992	44,880	853,799	410,504	54,446	89,160	$1,472,711$					
1974	24,948	45,140	583,330	770,069	14,889	42,200	$1,480,575$					
$197 s$	33,012	44,220	493,635	370,423	274,738	37,250	$1>253,266$					
1976	20,388	35,600	840,825	504,160	98,941	77,480	$1,577,394$					
1977	15,444	50,904	$1,303,64 S$	992,956	298,520	84,740	$2,740,209$					

** Yakutat area closed.
Source: Alaska Department of Fish and Game Memorandum

CATCH AND EMPLOYMENT DATA

Sources: The catch statistics were derived using data provided from the data Eiles of the State of Alaska Commercial i Entry Commission. The estimate of the average crew size in this fishery was made by George W. Rogers in, A a the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon ?ishery, and in ongoir research.

1. Number of Landings equals the number of days each boat landed iish. Summed over all boats.
2. Boat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a weektimes the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landsd
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by t Commission.

It has been estimated that the average crewsize in this fishery is 1.

	TABLE C. 211 YAKUTAT							
	SET GILL NET SALMON FISHERY							
	NUMBER OF BOATS BY LENGTH							
FEET	1969	1970	1971	1972	1973	1974	1975	1976
0^{1}	151	141	130	140	199	200	158	150
1-25		1			1			11
26-35				1	-			2
36-45								-
46-55								
56-65								
66-75								
76-85								
86-95								
96-105								-
106-115								1

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files

TABLE C. 212

YAKUTAT
HAND TROLL SAIMON FISHERY

uces: The catch statistics were derived using data providedfrom the data files of the State of Alaska Commercial Fisheries Entry Commission. The estimate of the-average crew sizein this fishery was made by George W. Rogers in, A study of the Sccio-Economiclmpact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoing research.

1. Number of Landings equals the number of days each beat landed fish. Surmed over all boats.
2. 8oat weeks equals the number of weeks each boat landed fish. Summed over all boats.
3. Man weeks equals boat weeks times an estimata of the average crew size in this fishery: it iathus an estinat of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Lancings divided by tite number of species Landed
5. Index 2 equals the average number of Landings per week.
6. A "(" indicates that the statistic is not available due to confidentiality requirements maintained by the ε nt: Commission.
has been estimated that the average crew size in this fishery is 1.

TABLE C. 213
Yakutat
Hand Troll Salmon Fishery
Number of Boats and Landings in the Fishery by Month
19691970 . 1971 1972_1973 1974 1975 $\underline{1976}$

January	$\begin{aligned} & \mathrm{B}^{1} \\ & \mathrm{~L}^{2} \end{aligned}$							1	1
February									
	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~L} \end{aligned}$								
March									
	B	1							
	L								
April									
	B	7	8	1					
	L	10	24						
May									
	B	15	9	6	2	4	7	4	
	L	28	20	10		5	10	8	
June									
	B	17	20	26	5	6	11	2	2
	L	36	44	50	5	13	24		
July									
	B	31	38	21	23	8	14	3	2
	L	138	1.06	50	71	16	29		
August 50 (${ }^{\text {a }}$									
	B	50	54	31	31	11	9		2
	L	399	297	97	104	36	13		
September									
	B	21	22	10	5	4	2	1	3
	L	48	61	27	8	8			
October									
	B					1	1	1	
	L								
November									
	B				1				
	L								
December									
	B								
	L								

Source: Commercial Fisheries Entry Commission Data Files
${ }^{1} \mathrm{~B}=$ Number of Boats
${ }^{2} I=$ Number of Landings

TABLE C. 214 YAKUTAT								
-	HAND TROLL SALMON FISHERY							
	NUMBER OF BOATS BY LENGTH							
FEET	1969	1970	1971	1972	1973	1974	1975	1976
- 0^{1}	30	28	21	5		2		
1- 25	17	19	11	19	3	4	2	2
26-35	7	12	8	5	6	7	3	2
0^{36-45}	7	11	9	8	7	10		
46-55	1	2	2	1	1	4		
56- 65	-		1	1		$\dot{-}$		
-66-75							1	

1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files D

YAKUTAT POVER TROLL SALMON FI SHERY
 CATCS AND EMPLOMENT DATA

| 1969 " 1970. | 1971 | 1972 | 1973 | 1974 | 1975 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

pounds Landed
$(1+2$($\operatorname{sn} 000^{\prime}$)
Value of Landings

alue of Landings$\$ 29,000$
Number of Mats 17

umber of Mats
Number of Landinged SO
suet Weeks ${ }^{2}$ 46
Man Weeks ${ }^{3}$ 69
Number of Landinga 294 4
per Boat
Weeks per Boat
Founds per Landing
Value of Catch $\$ 580$
per Landing
Value of Catch $\$ 1.710$
per Boat
value of Catch $\$ 630$
per Seat Weak
Price 0.85
(i.e. value of catch per ibs.)
(i.e. value of catch per ibs.) 0.60
Index 1^{4}1.09I ndex $\mathbf{2}^{5}$
($\ln 000^{\prime} 3$)9 71
1970. 1971 1972 1973 1974 1975
\square

.

Sources: The catchstatisties were derived using data provided from the data files of the state of Alaska Commercial fi Entry Commission. The estimate of the average crew size in this fishery waa made by George W. Rogers in, A the Socio-Economic Impact of Changes in the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoir research.

1. Number of Landings equals the number of days each boat landed fish. Sumad over all boats.
2. Boat weeks equals the number of weeks each boat leaded fish. summed over all boats.
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus : of the average number of Iishermen employed a week times thenumer of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
s. Index 2 equals the average number of Landings per week.
5. A " (" indicates that the statistic is not available due to confidentiality requirements maintained by t Commission.

	YAKUTAT SALMON FISHERY ALL GEAR TYPES								1977
	1969	1970	1971	1972	1973	1974	1975	1976	
Pounds Landed （in 0co＇s）	1，642	1，235	1，661	1， 493	1，495	1，473	1，237	1，673	
Value of Landi ngs	360， 000	351， 000	404， 000	476， 000	984， 000	877，000	651＞000	1，362， 000	
Number of Boats	213	214	182	180	217	227	181	184	
Number of Landings ${ }^{1}$	3，421	3， 002	2＞912	2，540	3，645	3，109	2，553	2，958	
Boat Weeks？	1，489	1，408	1，320	1， 188	1，642	1，641	1，266	1，404	
Man Weeks ${ }^{3}$	1，489	1，408	1，320	1，188	1， 642	1，641	1，289	1，426	

Source：The catch statistics were derived using data provided fromthe data files of the State of Al aska Comercial Fisheries Entry Comission．The esti nate of the average crew size in this fishery was made by George W．Rogers in，A Study of the Socio Economic Impact of dhanges in the Harvesting Labor Force in the A aska Sal non Fishery，and in ongoing research．
${ }^{\prime}$ Nunter of Landi ngs equal s the number of days each boat landed fish．Summed over all boats．
$Z^{\text {Boat }}$ Neeks equals the number of weeks each boat．I anded fish．Sumed over all boats．
$3_{\text {ilin }}$ Weeks equals boat weeks timies an estimate of the average crew size in this fishery；it is thus an estimate of $\mathbf{t h e}$ average number of $\mathbf{f i}$ shermen employed a week times the number of weeks fished．

TABLE C. 279
YAKUTAT HALI BUT LANDI NGS 1969-1976 (in pounds)

1969	11,845	1973	228,129
1970	18.265	1974	154,881
1971	$302 ; 283$	1975	127,805
1972	347,351	1976	221,026

Source: IPHC data files

Sources: ADF\&G Catch and Production Leaflet, 1975
ADF\&G Annual Management Report, Yakutat, 1973
ADF\&G A Havens

TABLE C. 221

Yakutat Scallop Dredge Fishery

 CATCH AND EMPLOYMENT DATA| | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 197s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pounds Landed $\text { (in } 000 \text { '~) }$ | 837 | c | c | 128 | 174 | c | 109 |
| Val ue of Landi ngs | \$703,000 | c | c | \$150,000 | \$208,000 | c | \$149,000 |
| Number of Boats | 14 | 2 | 3 | 4 | 4 | 2 | 4 |
| Number of Landi ${ }^{\text {ngs }}{ }^{\text {² }}$ | 59 | c | c | 6 | 4 | c | 10 |
| Boat Weeks ${ }^{2}$ | 58 | c | c | 6 | 4 | c | 10 |
| Man Weeks' | 530 | c | c | 60 | 40 | c | 100 |
| Number of Landings per 3oat | 4.2X | c | c | 1.50 | 1.00 | c | 2.50 |
| Weeks per soat | 4.14 | c | c | 1.50 | 1.00 | c | 2.50 |
| Pounds per Landing | 14,200 | c | c | 21,300 | 43,500 | c | 10,900 |
| Value of catch per Landing | \$11,900 | c | c | \$25,000 | \$52,000 | c | \$14,900 |
| Value of Catch per Seat | \$50,200 | c | c | \$37, 500 | \$52,000 | c | \$37,300 |
| Value of Catch ger Boat Week | \$12,100 | c | c | \$25,000 | $\$ s 2,000$ | c | \$14,800 |
| price
 (i.e. value of cateh per 1bs.) | \$0.84 | c | c | \$1.17 | \$1.20 | c | 51.37 |
| Index 1^{4} | 0.65 | c | c | 0.60 | 0.57 | c | 1.00 |
| Index $2^{\text {s }}$ | 1.02 | C | C | 1.00 | 1.00 | c | 1.00 |

Sources: The catch statistics were derived using data provided from the data files of the State of alaska commercial Fi Entry Commission. The estimate of the average crew size in this sisnery was made by George w. Rogers in, A st the Socio-Economic Impact of Changes in the farvesting Labor Force in the Alaska Salmon Fishery, and in ongoin research.

1. Number of Landings equals thenumber of days each boat landed insh. Surmed over all beats.
2. Boat weeks equals the number of weaks each boat landed fish. Sassed over all boats. .
3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
4. Index 1 equals the number of Landings divided by the number of species Landed
S. Index 2 equals the average number of Landinga per week.
5. A" C^{M} indicates that the statistic is not available due to confidentiality requirements maintained by t Comission.
6. It hae been estimated that the average crew size in this fishery is ten.

TABLE C. 222

- Number of Boats and Landings in the Fishery by Month

$$
\underline{1969} . \underline{1970}, \underline{1971} \underline{1972} \underline{1973} \underline{1974} \underline{1975} \underline{1976}
$$

January
B^{1}
$\mathrm{~L}^{2}$
February

B	1	
L		1

March

- $\begin{array}{lll}\mathrm{B} & 3 \\ \mathrm{~L} & 1\end{array}$

Apris
May
B $\quad 1$

May

-
Source: Commercial Fisheries En try Commission Data Files

$$
\begin{aligned}
& { }^{1} \mathrm{~B}=\text { Number of } 30 a t s \\
& { }^{2} \mathrm{~L}=\text { Number of Landings }
\end{aligned}
$$

TABLE C. 223
YAKUTAT SCALLOP DREDGE FISHERY
Number of Boats by Length
$\begin{array}{llllllll}1969 & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976\end{array}$

76	-85	feet	4	2	2	$\mathbf{3}$	$\mathbf{3}$	2	3
86	-95	feet			1	$\mathbf{1}$			1

Source: commercial Fisheries Ent ry Commission, Data Files.

NUMBEROF YAKUTAT, SOUTHEASTERN, AND STATEWDE GEAR PERM TS ISSUED TO RESI DENTS OF YARUTiAT* 1974-1978

- YPECIES

Sal non, Set GII Net
183
139
131
1977
1978

SOUTHEASTERN

- King Crab, Snall Boat Pots ${ }^{1}$
$5 \quad 1$
1
.3
King Crab, Large Boat Pots
STATEW DE
Hal ibut, Hand Troll
$\begin{array}{lllllll}\text { - Hal i but, Small Boat Long Li ne } & 24 & 4 & 15 & 24 & 23\end{array}$
Halibut, Large Boat Long Li ne
$\begin{array}{lll}1 & 5 & 9\end{array}$
Dungeness Crab, Small Boat Pots
7
32
Dungeness Crab, Large Boat Pots
11
Herring, Purse Sei ne
1
Herring Roe on Kel p
$\begin{array}{lll}2 & 4 & 2\end{array}$
- Bottomfish Small Boat Long Line

Shri mp, Small Boat Pots
1
Shri mp, Beam Traw
Shrimp, Large Boat Pots
1
Sal mon, Hand Troll
$28 \quad 9 \quad 19 \quad 44$
Sal non, Power Trol I 9

- Tanner Crab, Small Boat Pots

Tanner Crab, Large Boat Pots
$13 \quad 9 \quad 10$
6
${ }^{1}$ A snall pot boat has a keel length of not over 50 feet.

- $\mathbf{2}_{\mathrm{A}}$ small I ong line boat has a keel length of not over $\mathbf{2 6}$ feet.
*A resident of Yakutat is anyone using a Yakutat address in applying for a gear permit.
- Source: Commercial Fi sheries Entry Commission, Permit Files.

TABLE C. 225 NUMBEROF YAKUTAT
PROCESSI NG PLANTS ${ }^{\prime}$ BY PRODUCT 1962-19' 72

	YEAR	SALMON	HALI BUT	HERRING	KLNG	CRAB	TANER CPAD	$\begin{aligned} & \text { DUNGENESS } \\ & \text { CBAB } \end{aligned}$	SHRI MP	SCALLOPS	RAZOR	CLAMS	TOTAL ${ }^{2}$
	1962	0	0	0		0	0	1	0	0	0		1
	1963	2	0	0		1	0	1	0	0	0		2
	1964	3	1	0		1	0	1	0	0	0		3
	1965	1	0	0		0	0	1	0	0	0		3
	1966	2	0	0		0	0	1	0	0	0		2
	1967	1	1	0		0	0	1	0	0	0		1
ρ	1968	3	1	0		0	0	1	0	1	0		3
$\stackrel{\text { ® }}{\text { or }}$	1969	2	1	0		0	0	1	0	0	0		2
	1970	0	0	1		0^{\prime}	0	1	0	0	0		1
	1971	1	0	0		0	0	1	0	0	0		1
	1972	1	1	0		1	1	1	0	0	0		1

${ }^{2}$ The total is not the sum of the col ums si nce nost plants produce nore than one product.
Source: ADF\&G Commerci al Operator Reports 1962-1972.

PROCESSI NG BY PRODUCT, 1556-58 AND 1973-76

PRODUCT	1956	1957	$\underline{1958} 1973$	1974	1975	1376
Fresh (000's lbs) Plants					$\begin{array}{r} 1,471 \\ 2 \end{array}$	
$\text { Fr-zen (000's } \begin{gathered} 1 \text { bs }) \\ ? 1 \text { ants } \end{gathered}$	1		$\begin{array}{r} 1,209 \\ 4 \end{array}$	$\begin{array}{r} 898 \\ 2 \end{array}$	1	$\begin{array}{r} 1,936 \\ 3 \end{array}$
Canned (000's lbs) Pl ants						
Roe (000's lbs) Plants			39 2	1		
8ait (000's los) P1 ants						
Other (000]s lbs) Plants						
Total (000's 1bs) ${ }_{\text {Pl ants }}$	1		1,248 4	898	1,471 3	$\begin{array}{r} 1,936 \\ 3 \end{array}$

The wei ghts are meat erfivalent wei ghts. If there are fewer than tuo processors, the data is not available due to confidentiality requirenents and the total weignt will not include the confidentiality data.

Source: A aska Departnent of Fish arid Gane, Processor Reports with 1978 revisions.

TAELE C. 227
YAKUTAT HALIBUT
PROCESSING BY PRODUCT, 1956-58 ANL 1973-76

PRODUCT	1956	1957	1958	1973	1974	1975	1975
Fresh (000's ibs) Plants						$\begin{array}{r} 131 \\ { }_{2} \end{array}$	
$\begin{aligned} \text { Frozen (000's } & \text { bs) } \\ & \text { Pl ants } \end{aligned}$				$\begin{array}{r} 265 \\ 2 \end{array}$	1		
$\begin{aligned} \text { Canned (000's bs) } \\ \text { Plants } \end{aligned}$							
Roe (000's I bs) Plants							
$e^{\text {Bait (000's los })}$							
Reduction (000's lbs) Pl ants							
Other (000's ibs) Pl ants							
Total (000:s 1bs)				265	1	131	

The wei ghts are meat equivalent weights. If there are fewer than tuo processors, the data is not available due to confidentiality requirements and the total weight will not incl ude the confidentiality data.

Source: Al aska Department of Fish and Game, Processor Reports with 1978 revi si ons,

TABLE C. 228
YAKUTAT TANNER CRAB
PROCESSI NG BY PRODUCT, 1956-58 AND 1973-76
PRODUCT $1956 \quad 1957 \quad \underline{1958} \underline{\underline{2} 973} \underline{1974} \underline{1975}$
Fresh (000 's lbs)
Pl ants
Frozen (000's lbs)
Pl ants
$1 \quad 209$

Canned ($\mathbf{0 0 0}$'s lbs)
Pl ants
Roe (000's lbs)
Plants
Bait (000's lbs)
Plants
Reduction (000's 1bs)
Plants
Other (000's 1bs)
Pl ants
Total (000 's lbs)
PI ants
209
12

The wei ghts are neat equi val ent wei ghts. If there are fewer than tuo processors, the data is not available due to confidentiality requirements and the total weight will not incl ude the confidentiality data.

Source: Alaska Department of Fish and Game, Processor Reports with 1978 ravisions.

TABLE C. 229
YAKUTAT DUNGENESS CPAB
PROCESSI NG BY PRODUCT, 1956 - 58 ARD 1973-76
$\begin{array}{llllllll}\text { PRODUCT } & 1356 & \underline{1957} & \underline{1958} & \underline{1973} & \underline{1974} & 1975 & \underline{1976}\end{array}$
Fresh (000's lbs)
Plants
$\begin{array}{llrrr}\text { Fr'zen }\left(000^{\prime}: ~ 5 s\right) & 276 & 107 & 55 \\ & \text { Pl ants } & 2 & 2 & 2\end{array}$
Canned (000's bs) Pl ants

Roe (000 's lbs) plants

```
gait (0,0's lus)
    Plants
```

Reduction (000's $16 s$) Pl ants

Other (000's 16s) plants

Total (000's lbs)
Plants
276
10755
2
2
2

The weights are meat equivalent weights. If thero are fower than two procossors, the data is not available due to confidentiality requirements and the tetal waight will not include the confidentiality data.

Source: Alaska Department of Fish and Gane, Processor Feports with 1978 revisions.

[^0]: SOURCE: U.S. Department of Census, Imports for Consumption by Year.

[^1]: Source: Fishery Market News Report, National Marine Fisheries Service, New York Marker Statistics, as reßorted in Food Fish Marker Heview and Outlook Decenber 1977. Wholesale price Indices obtained through Burcau of labor Statistlcs Handbouk of Labor Statistics, 1971 and 1976 , and monthly updates for 1977 and 1975.

[^2]: Source: Alaska Department of Fish and Game Catch and Production Statistics; International Halibut Commission

[^3]: ${ }^{1}$ Preliminary
 Source: Pacific Marine Fisheries Commission: Annual Report', 1976
 Orth et al., 1978, Preliminary Draft

[^4]: Source: Al aska Department of Fi sh and Gane, Catch and Production Statistical Leaflets, 1966 - 1975.

[^5]: * Data used in this section referes to fiscal year 1972-1977 period, and incl udes U.S. Coast Guard documented fishing-vessel s which are five net tons or Iarger.

[^6]: Source: Ecker, Commander WilliamJ., Safety Anal ysis of Fi shing Vessel Casualties, U.S. Coast Guard, 1978.

[^7]: Source: Ecker, Commander WiliamJ., A Safety Anal ysis of Fishing Vessel Casualties, U.S. Coast Guard.

[^8]: ${ }^{1}$ Where specifically noted on casual ty report.
 ' Fisheries of substantial importance in Al asa.
 Source: Esker, Commander William J., Safety Anal isis of Fishing Vessel Casual ties, U. S. Coast Guard. 1978.

[^9]: Chi nook and coho sal non sampling prograns were expanded of f the coasts of Northern California and Oregon in 1977
 to recover coded-wire tags in the ocean fishery and otherwi se nonitor and eval uate the ocean harvest. PMFC coordi nated this effort under a $\$ 14,000$ Federal grant-in-aid project (P.L. 89-304, the Anadromous Fi sh Conservati on Act of 1965).

[^10]: ${ }^{12}$ Smith, Fredrick J., Septenber, 1971. "Econonic Condition of Sel ected Pacific Northwest Seafood Firns," Experi ment Station Bulletin Special Report No. 27, Oregon State Uni versity.

[^11]: ${ }^{15}$ Martin, J ohn B. 1978. "An Eva' uation of the Economic Feasi bility of Pollock Processing in Southeast Al aska." ME Thesi s, Oregon State Uni versity.

[^12]: ${ }^{5} 22 \%$ Nichiro, 8% Nichiro Pacific.
 ${ }^{6}$ Merged into Orca Pacific Packing Co; first moved floater from Sand Point to Cordova, then sold, 1975.
 'Sold to Whitney-Fidalgo in September, 1977, crab production only; did not retain identity.
 8_{a} wholly owned subsidiary engaged in import-export of fishery products.
 ${ }^{9}$ Associated with Vita Seafoods.
 $\mathbf{1 0}_{\text {Associated }}$ with Intersea Fisheries, Ltd. , New York. .

[^13]: 17 Main purpose of investment is to secure salmon roe production.
 18 Fishing and tender boat operation.
 19 In Southeast Alaska, near Hidelberg, Alaska.
 20 Merged into Orca Pacific Packing co.
 21 reported ir other sou ces that lurubeni pe centage ownership is 89.6 percent.

[^14]: ${ }^{1} B=$ Number of Boats
 ${ }^{2} \mathrm{~L}=$ Number of Landings

[^15]: ${ }_{2} \mathbf{1}_{\text {Fishing year defined as May } 1-A p r i l} 30$.
 ${ }_{7}^{2}$ July 1 - April 30 season established.
 ${ }^{3}$ August 15 - January 15 established.
 ${ }^{4}$ Number of vessels shown are those actually registered through 1969-70 season. Number of vessels fishing is shown from 1970-71 season.

 Source: ADF\&G Westward Region Shellfish Report, 1978.

[^16]: Data Source: Alaska Dept. of Fish and Game Annual Board of Fish and Game Reports and Annual Kodiak Area Mgmt. Report. ${ }_{3}$ Fishing year July 1 - June 30 .
 ${ }^{3}$ Legal season November 1 - June. 30. Season terminated May 15 due to onset of mating period.
 ${ }_{5}^{4}$ Legal season November 1 - April 30.
 ${ }^{5}$ Legall season January 1 - April 30, 1977.
 Source: ADF\&G, Westward Region Shellfish Report, 1978.

[^17]: Sources: The catch statistics were derived using data provided from the data files of the State of Alaska Commercia: \boldsymbol{F} Entry Commission. The estimate of the average crew size in this fishery was made by George w. Rogers in, A s the Socio-Economic Impact of Changes in the tarvesting Labor Force in the Alaska Salmon Fishery, and in ongoi research.

 1. Number of Landings equals the number of days each boat landed fish. Summed over all boats..
 2. Seat weeks equals the number of weeks each boat landed fish. Summed over all boats. .
 3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery: it is thus an of the average number of fishermen employed a week times the number of weeks fished.
 4. Index 1 equals the number of Landings divided by the number of species Landed
 5. index 2 equals the average number of Landings per week.
 6. A " (" indicates that. the statistic is not available due to confidentiality requirements maintained by. Commission.
[^18]: e statistics do not include the activities of the following boats that participated in this fishery: 1974 , one boat with

[^19]: ${ }^{1}$ A small pot boat has a keel length of not nore than 50 feet.
 $\mathbf{2}_{\text {A }}$ small long line boat has a keel length of not more than $\mathbf{2 6}$ feet.
 ${ }^{3}$ Indicates a limited entry herring fishery.
 *A resi dent of Kodi ak is anyone who used a Kodi ak, Al aska address when appl ying for a gear permit.

[^20]: A "I" indicates that the data is not available due to confidentiality requirenents
 Source: Al aska Departnent of Labor Data Files

[^21]: *preliminary data
 Sources: Al aska Departnent of Fish and Gane, Shellfish Report Lower Cook Inlet, 1978; Al aska Departnent of Fi sh and Gane, Cook Inl et Managenent Area Shellfish Report, 1972.

[^22]: Source: Commercial Fisheries Entry Commission Data Files

 $$
 \begin{aligned}
 & { }^{1} \mathrm{~B}=\text { Number of Boats } \\
 & { }^{\mathrm{L}}=\text { Number of Landings }
 \end{aligned}
 $$

[^23]: 1. All boats of unspecified length are included in this category Source: Commercial Fisheries Entry Commission Data Files \circ
[^24]: A "I" indi cates that the data is not available due to confidentiality requi rements
 Source: Al aska Departnent of Labor Data Files

[^25]: ${ }^{\text {IData }}$ does not include two minor processors located in Seward

[^26]: Source: City of Seward electricity records

[^27]: $l_{\text {Data }}$ does not include two minor seafood processors located in Seward.
 Source: Schaefermeyer, 1978 , and City of Seward utilities records

[^28]: Source: The catch statistics were derived using data provided from the data files of the State of Alaska
 $3_{\text {Man }}$ Weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an
 estimate of the average number of fishermen employed a week times the number of weeks foed.
 These statistics do not include the activit es of the following boats that participated in this in shery: 1974 one hand troller

 1975 one boat with unspecified gear
 1976 two set gill net boats, one power troller, and two boats with unspec fed gear

[^29]: Sources: The catch statistics were derived using data provided from the data fles of the State of Alaska Commercial Fi Entry Commission. The estimate of the average crew size in this•ishery was made by Gecrge W.Rogers in, A st the Socio-Economic ImpactofChangesin the Harvesting Labor Force in the Alaska Salmon Fishery, and in ongoi: research.

 1. Number of Landings equals the number of days each boat landed fish. Sumaed over all boats.
 2. Boat weeks equals the number of weeks each boat landed fish. Summed over all beats. -
 3. Man weeks equals boat weeks times an estimate of the average crew size in this fishery; it is thus an of the average number of fishermen employed a week times the number of weeks fished.
 4. Index 1 equals the number of Landings divided by the number of species Landed
 5. Index 2 equals the average number of Landings per week.
 6. A "c" indicates that the statistic is not available due to confidentiality requirements maintained by t Commission.
 7. It has been estimated that the average crew size in this fishery is four.
 8. These statistics do not include the activities of the following boats that participated in the Prince William Sound herring fishery:

 1971 - two herring seiners.
 1974 - three drift gill netters.
 1975 - eleven boats with unspecified gear (landed 7,000 pounds).
 1976 - one drist gill netter.

[^30]: A " 1 " indi cates that the data is not available due to confidentiality requi renents
 Source: Al aska Departnent of Labor Data Files

