Techni cal Report
 Report Number 51

ct \# 29002

Vestern Al aska and Beri ng-Norton Petrol eum Devel opnent Scenari os
 Comercial Fishing Industry Anal ysis

The United States Department of the Interior was designated by the Outer Continental Shelf (OCS) Lands Act of 1953 to carry out the majority of the Act's provisions for administering the mineral leasing and development of offshore areas of the United States under federal jurisdiction. Within the Department, the Bureau of Land Management (BLM) has the responsibility to meet requirements of the National Environmental Policy Act of 1969. (NEPA) as well as other legislation and regulations dealing with the effects of offshore development. In Alaska, unique cultural differences and climatic conditions create a need for developing additional. socioeconomic and environmental information to improve OCS decision making at all governmental levels. In fulfillment of its federal responsibilities and with an awareness of these additional information needs, the BLM has initiated several investigative programs, one of which is the Alaska OCS Socioeconomic Studies Program (SESP).

The Alaska OCS Socioeconomic Studies Program is a multi-year research effort which attempts to predict and evaluate the effects of Alaska OCS Petroleum Development upon the physical, social, and economic environments within the state. The overall methodology is divided into three broad research components. The first component identifies an alternative set of assumptions regarding the location, the nature, and the timing of future petroleum events and related activities. In this component, the program takes into account the particular needs of the petroleum industry and projects the human, technological, economic, and environmental offshore and onshore development requirements of the regional petroleum industry.

The second component focuses on data gathering that identifies those quantifiable and qualifiable facts by which OCS-induced changes can be assessed. The critical community and regional components are identified and evaluated. Current endogenous and exogenous sources of change and functional organization among different sectors of community and regional life are analyzed. Susceptible community relationships, values, activities, and processes also are included.

The third research component focuses on an evaluation of the changes that could occur due to the potential oil and gas development. Impact evaluation concentrates on an analysis of the impacts at the statewide, regional, and local level.

In general, program products are sequentially arranged in accordance with BLM's proposed OCS lease sale schedule, so that information is timely to decisionmaking. Reports are available through the National Technical Information Service, and the BLM has a limited number of copies available through the Alaska OCS Office. Inquiries for information should be directed to: Program Coordinator (COAR), Socioeconomic Studies Program, Alaska OCS Office, P. O. Box 1159, Anchorage, Alaska 99510.

WESTERN ALASKA AND BERI NG NORTON PETROLEUM DEVELOPMENT SCENARI OS: COMMERCI AL FISH NG I NDUSTRY ANLLYSI S

PREPARED FOR
BUREAU OF LAND MANAGEMENT ALASKA OUTER CONTI NENTAL SHELF OFFI CE ALASKA OCS SOCI OECONOMC STUDI ES PROGRAM

NOTI CE

Thi s document is di ssem nat ed under the sponsorship of the U.S. Department of the Interior, Bureau of Land Managenent, Al aska Outer Continental Shelf Office, in the interest of inf ornation exchange. The United States Government assumes no liability for its content or use thereof.

VESTERN ALASKA AND BERI NG NORTON PETROLEUM DEVELOPMENT SCENARI OS: COMMERCI AL FI SH NG I NDUSTRY ANALYSI S

Perpared by:
Joseph M Terry, Roger G Stoles, and Dougl as M Larson Al aska Sea Grant Program Uni versity of Al aska

W'th typing and clerical assi stance by:
Carol S. Brown
Mchelle Krog

August, 1980
PAGE \#
TABLE OF CONTENTS v
LIST OF TABLES xi
LIST OF FIGRES xxxiii
I. I NTRODUCTI ON 1
General Objective and Met hodol ogy 1 4
Scope
Scope
The' Nat ure of Non- OCS Proj ections 12
The Nature of the Impact Anal ysis 13 13
Study Outline 15 15
II. MEASURI NG AND FORECASTI NG COMMERCI AL FI SH NG I NDUSTRY ACTI V TY 17
Measures of the Activity of a Comercial Fishing Industry 17
Harvesting 17 17
Catch 18
Number of Boat Months 19
Empl oynent 19
I ncome 20
Frequency and Seasonality of Ocean Space and Harbor Use 22
Local Fi shing Activity 22
Processing 23
Number of Pl ants 23
Enpl oynent 24
I ncone 24
Exi sting Capacity 24
Real Versus Nomi nal Dollars 25
Forecasting Traditional Commercial Fi shing Industry Activity in the Absence of the OCS Devel opment Associ ated with Lease Sal e Number 57 26
Harvesting 28
Catch by Wei ght 29
Catch by Val ue, I ncome 30
Number of Boat Months 33
Number of Fi sherman Months 36
Processing 36
Input Requi rements 37
I ncome 42

TABLE OF CONTENTS (conti nued)

PAGE \#

The Nature of the Forecasts 42
Methods Used to Project Harvesting and Processing Activity for the Donestic Groundfish Industry 45
III. AN OVERM EW OF THE VESTERN ALASKA COMMERCI AL FI SH NG I NDUSTRY 52
Harvesting 52
Sal non 52
Chi gni k 55
Peni nsul a 59
Bristol Bay 68
Kuskokwi m 84
Lower Yukon 94
Upper Yukon 100
Norton Sound 115 115
Kotzebue Sound 122
Hal i but 128
Peni nsul a Hal i but Fi shery 131
Eastern Aleutians Halibut Fishery 136
Western Al eutians Halibut Fi shery 146
Bering Sea Hal i but Fi shery 152
Herring 152
Bristol Bay 166
Kuskokwi ma Yukon 175
Norton Sound 175
King Crab 178
Peni nsul a 178
Eastern Al eutians 187
Western Al eutians 194
Bering Sea 200
Norton Sound King Crab Fi sheries 206
Tanner Crab 212
Peni nsul a 217
Eastern Al eutians 217
Western Al eutians 223
Bering Sea 229
Shri mp 235
Peni nsul a 241
Eastern Al eutians 246

TABLE OF CONTENTS (conti nued)
PAGE
Donestic Groundfish 258
Local Harvesting Effort 258
Forei gn Tanner Crab 260
Forei gn Groundfish Fi shery 260
Processing 287
Aleutian Islands Census Di vision 287
Processing Activities 296
Communi ty Inf rastruct ure 303
El ectricity 303
Vhter 304
Port Facilities 304
Snall Boat Harbor 305
Bristol Bay - Bristol Bay Borough Census Di vi si ons 306
Processing Activity 306
Commini ty I nf rastruct ure 315
El ectricity 316
Water 317
Port 318
Snall Boat Harbor 320
Bet hel, Whde Hanpt on, and Kuskokwi m Census Di vi si ons 321
Processing Activity 321
Commini ty Inf rastructure 332
El ectricity 333
Whter 333
Port 334
Snal I Boat Harbor 336
Yukon - Kovukuk Census Di vi si on 337
Processing Activity 337
Community Infrastructure 342
El ectricity 342
Water 343
Snal I Boat Harbors 343
Ports 343
Nome Census Di vi si on 344
Processing Activity 344
Communi ty Inf rastructure 349
El ectricity 349
Whter 350
Port Facilities 351
Snall Boat Harbor 353

TABLE OF CONIENTS (conti nued)

PAGE \#
Kobuk Census Di vi si on 354
Processing Activity 354
Commity Infrastructure 355
El ectricity 355
Uhter 359
Port Facilities 360
Snall Boat Harbor 360
Markets and the Organization of the Industry 361
Iv. PRO ECTI ONS OF THE VESTERN ALASKA COMMERCI AL FI SH NG I NDUSTRY IN THE ABSENCE OF OCS ACTI VTY PURSUANT TO LEASE SALE NMBER 57 365
Harvesting 365
Sal non 366
Chi gni k 376
Peni nsul a 376
Bristol Bay 384
Kuskokwi m 399
Yukon 399
Norton Sound 414
Kotzebue Sound 414
Hal i but 429
Peni nsul a 434
Eastern Aleutians 438
Western Al eutians 438
Bering Sea 445
Herri ng 445
King Crab 455
Peni nsul a 460
Eastern Al eutians 460
Vestern Al eutians 467
Bering Sea 467
Tanner Crab 473
Peni nsul a 479
Eastern Al eutians 479
Wéstern Al eutians 486
Bering Sea 486

TABLE OF CONIENTS (conti nued)
PAGE
Shri mp 494
Peni nsul a 494
Eastern Aleutians 497
Groundfish 504
Chirikof/Shumagi n 509
Bering Sea 509
Forei gn Tanner Crab 513
Foreign Groundfish 513
Processi ng 517
Aleutian Islands Census Divi si on 518
Bristol Bay Census Divisi ons 524
Bethel Census Di vi si on 530
Wade Hampton Census Division 530
None Census Di vi si on 534
Kobuk Census Di vi si on 539
The Feasibility of the Non-OCS Projections 539
Factors of Change 546
Envi ronnent al Factors 546
Market Factors 548
Governnental Factors 551
v. POTENTI AL IMPACTS OF ALTERNATI VE LEVELS OF OCS DEVELOPMENT 553
The Hypothesi zed Characteristics of OCS Devel opnent 555
Expl oration Only Case 558
Low Find Case, 95 Percent Probability Resource Scenario 561
Mean Find Case, Mean Probability Resource Scenario 561
High Find Case, 5 Percent Probability Resource Scenario 566
Using Past Interactions Between the Offshore Petrol eum and Commerci al Fi shing Industries and Economic Anal yses to Identify Potential Impacts 572
Competition for Labor 572
Skill Requi rements 576
Whge Differentials 577
Hiring Practices 578
Source of Labor 579
Effects of OCS Activity on the Supply of Labor 581
Cook Inlet 1961-1968 582
The North Sl ope 586
North Sea 588

TABLE OF CONTENTS (continued)

PAGE \#
Commercial Fi shing Industry Activities Potentialy Affected by Competition for Labor 591
Competition for Ocean Space 594
Competition for the Services of the Infrastructure 603
Potential Impacts 607
Competition for Labor 608
Competition for Ocean Space Use 609
Competition for Services of the Infrastructure 622
Concl usi ons 625
APPENDI X A 631
APPEND X B 667
REFERENCES TO WRI TTEN MATER AL, 723
PERSONAL REFERENCES 733

TABLE \#

3.1.1 Western Al aska Salmon Harvest 53
3.1.2 Managenent Area Harvest as a Percentage of the Vestern Al aska Sal non Harvest 54
3. 1.3 Managenent Area Harvest as a Percentage of the Alaska Sal non Harvest 56
3. 1.4 Harvesting Acti vity, Chignik Purse Sei ne Sal non Fi shery 57
3. 1. 5 Chignik Purse Sei ne Salmon Fi shery Number of Boats and Catch by Mbnth 603. 1.6
3. 1.7
Chignik Purse Sei ne Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 61
Chignik Purse Sei ne Sal non Fi shery; Number of Fi sh- ernen by Month 62
3. 1.8 Chignik Purse Sei ne Salmon Fi shery, Percentage of Fi shernan Man Months by Month " 63
3. 1. 9 Peni nsula Sal non Harvest 64
3.1.10 Harvesting Activity Peni nsula-Aleutians Purse Sei ne Salmon Fi shery 65
3. 1. 11 Harvesting Activity Peni nsula-Aleutians Drift Gill Net Sal mon Fi shery 66
3. 1. 12 Harvesting Activity Peni nsula- Al eutians Set Gill Net Sal mon Fi shery 673.1. 13
3. 1. 15 Peni nsul a Purse Sei ne Sal non Fi shery, Number of Fi shernen by Month 713. 1. 16
Peni nsul a Purse Sei ne Sal non Fi shery, Number of Boats and Catch by Month 69
3.1.14 Peni nsula Purse Sei ne Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 70
Peni nsul a Purse Sei ne Salmon Fi shery, Percentage of Fi sher man Man Months by Month. 72

LIST OF TABLES (conti nued)

3.1.17	Peninsula Drift Gill Net SaImon Fishery, Number of Boats and Catch by Month	73

3.1 .18
3. 1. 19
3. 1. 20
3. 1.21
3. 1. 22
3.1. 23
3. 1. 24
3. 1.25
3. 1. 26
3. 1. 27
3. 1. 28
3. 1. 29
3.1 .30
3.1 .31
3. 1. 32

Peni nsula Drift Gill Net SaImon Fi shery, Number of Boats and Catch by Month73
Peni nsula Drift Gill Net Sal non Fi shery, The Number of Boats and Catch by Mbnth as a Percentage of Annual Activity 74
Peni nsula Drift Gil Net Salmon Fi shery, Number of Fishernen by Month 75
Peni nsula Drift Gill Net Sal mon Fi shery, Percentage of Fi sherman Man Months by Month 76
Peni nsul a Set Gill Net Sal non Fi shery, Number of Boats and Catch by Month 77
Peni nsul a Set Gill Net Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 78
Peni nsula Set Gill Net Salmon Fishery, Number of Fi shernen by Month 79
Peni nsul a Set GII Net Sal non Fi shery, Per cent- age of Fi sherman Man Months by Month 80
Bristol Bay Sal non Harvest81
Harvesting Activity, Bristol Bay Drift Gll Net Salmon Fi shery 82
Harvesting Activity, Bristol Bay Set GII Net Salmon Fi shery 83
Bristol Bay Drift Gill Net Sal non Fishery, Number of Boats and Catch by Month 85
Bristol Bay Drift Gil Net Sal mon Fishery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 86
Bristol Bay Drift GII Net Sal mon Fishery, Number, of Fi shernen by Month 87
Bristol Bay Drift Gill Net Sal non Fishery, Percent- age of Fisherman Man Months by Month 88
Bristol Bay Set Gil Net Salmon Fishery, Number of Boats and Catch by Month 89

LIST OF TABLES (conti nued)

TABLE \# PAGE \#
3. 1. 33 Bristol Bay Set Gill Net Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Acti vity 903. 1. 343. 1. 353. 1. 363. 1. 373. 1. 383. 1. 393. 1. 403. 1. 41
3. 1. 423. 1. 433. 1. 44
3. 1. 45
3.1. 46 Upper Yukon Sal non Harvest 105
Bristol Bay Set Gill Net Sal non Fi shery, Number of Fi shermen by Month 91
Bristol Bay Set Gill Net Sal mon Fi shery, Percentage of Fisherman Man Months by Month 92
Harvesting Activity, Kuskokwim Set Gill Net Salmon Fi shery 93
Kuskokwi m Set Gill Net Sal non Fi shery, Nunber of Boats and Catch by Month 95
Kuskokwi m Set GII Net Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 96
Kuskokwi m Set Gill Net Sal non Fi shery, Nunber of Fi shernen by Month 97
Kuskokwim Set Gill Net Salmon Fi shery, Percentage of Fi sherman Man Months by Month 98
Harvesting Activity, Lower Yukon Set Gill Net Sal non Fi shery 99
Lower Yukon Set Gill Net Sal non Fi shery, Number of Boats and Catch by Month 101
Lower Yukon Set Gill Net Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Acti vity 102
Lower Yukon Set Gill Net Sal non Fi shery, Number of Fi shernen by Month 103
Lower Yukon Set Gill Net Sal non Fi shery, Percentage of Fi sher man Man Months by Month 104
3. 1.47 Harvesting Activity, Upper Yukon Set Gill Net Sal non Fi shery 106
3.1 .48 Harvesting Activity, Upper Yukon Fi sh wheel Salmon Fi shery 107
3. 1.49 Upper Yukon Set Gill Net Sal non Fi shery, Number of Boats and Catch by Month 108
3. 1. 50 Upper Yukon Set Gill Net Sal mon Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 1093.1 .51
Upper Yukon Set Gill Net Salmon Fi shery, Number of Fi shernen by Mnth 110
3.1 .52 Upper Yukon Set Gill Net Sal non Fi shery, Percentage of Fi sherman Man Months by Month 111
3. 1.53 Upper Yukon Fi sh wheel Saimon Fi shery, Number of Boats and Catch by Month 112
3. 1. 54 Upper Yukon Fi sh wheel Sal non Fi shery, The Number of Boats and Catch by Month as a Percentage of Annual Activity 113
3.1 .55
Upper Yukon Fi sh wheel Sal non Fi shery, Number of Fi sher- nen by Mbnth 114
3. 1. 56 Upper Yukon Fi shwheel Sal non Fi shery, Percentage of Fi sher nan Man Months by Month 116
3. 1. 57 Harvesting Activity, Norton Sound Set GII Net Sal non Fi shery 117
3.1 .583. 1. 593.1.60 Norton Sound Set Gill Net Salmon Fi shery, Number ofFi shernen by Month120
3. 1. 61 Norton Sound Set Gill Net Sal non Fi shery, Percentage of Fi sher nan Man Months by Mbnth 121

LIST OF TABLES (continued)

TABLE \#

3. 4. 62
1. 2. 63
1. 2. 64
1. 2. 65
1. 1.66
3.1 .67
2. 3. 68
1. 1.69
2. 3. 70
1. 1.71
2. 3. 72
1. 2. 73
3.1 .74
3.1 .75
1. 2. 76
1. 2. 77
Harvesting Activity, Kotzebue Set Gill Net Salmon Fi shery 123
Kotzebue Set G II Net Sal non Fi shery, Nunber of Boats and Catch by Month 124
Kotzebue Set Gill Net Sal mon Fi shery, The Number of Boats and Catch by Mbnth as a Percentage of Annual Activity 125
Kotzebue Set Gill Net Sal non Fi shery, Number of Fi shermen by Month 126
Kotzebue Set GII Net Sal non Fi shery, Percentage of Fi sherman Man Months by Month 127
Mestern Alaska Halibut Harvest 132
ADF\&G Managenent Area Harvest as a Percentage of the Western Al aska Harvest 133
ADF\&G Managenent Area Harvest as a Percentage of the Al aska Harvest 134
Harvesting Activity, Peninsula Hal ibut Fi shery ? 35
Peni nsula Halibut Fi shery, Number of Boats and Catch by Month 137
Peni nsula Halibut Fi shery, Percentage of Boats and Catch by Mbnth 138
Peni nsul a Hal i but Fi shery, Number of Fishernen by Mbnth 139
Peni nsula Halibut Fishery, Percentage Of Fisheman Man Months by Month 140
Harvesting Activity, Eastern Aleutians Hal ibut Fi shery 141
Eastern Al eutians Hal i but Fi shery, Number of Boats . and Catch by Mbnth 142
Eastern Aleutians Halibut Fi shery, Percentage of Boats and Catch by Mbnth 143
TABLE \# PAGE \#
1. 2. 78 Eastern Al eutians Hal i but Fi shery, Number of Fi sher nen by Month 144
3.1 .79 Eastern Al eutians Hal ibut Fi shery, Percentage of Fi shernan Man Months by Month 145
1. 1.80 Harvesting Activity, Western Aleutians Halibut Fi shery 147
2. 3. 81 Western Aleutians Hal ibut Fi shery, Number of Boats and Catch by Month 148
1. 2. 82 Western Aleutians Hal ibut Fi shery, Percentage of Boats and Catch by Month 149
1. ?. 83 Western Al euti ans Hal ibut Fi shery, Nunber of Fi shernen by Month 150
2. 3. 84 Western Al eutians Hal i but Fi shery, Percentage of Fi sher man Man Months by Month 151
1. 2. 85 Harvesting Acti vity, Bering Sea Halibut Fi shery 153
1. 2. 86 Bering Sea Hal i but Fi shery, Number of Boats and Catch by Month 154
1. 1.87 Bering Sea Hal ibut Fi shery, Percentage of Boats and Catch by Month 155
2. 3. 88 Bering Sea Hal i but Fi shery, Number of Fi shernen by 156
1. 1.89 Bering Sea Hal i but Fi shery, Percentage of Fi sher man Man Months by Month 157
2. 3. 90 Western Al aska Donestic Herring and Herring on Kel p Harvest 160
3.1 .91 Western Al aska Herring Harvest 162
1. 2. 92 Herring Managenent Area Harvest as a Percentage of the Vestern Al aska Harvest 163
1. 2. 93 Herring Managenent Area Harvest as a Percentage of the A aska Harvest 164

LIST OF TABLES (continued)
TABLE \# PAGE \#
3. 1. 94 ' derring Fl eet by Gear Type and Area 165
3. 1.95 Bristol Bay Herring Harvest 167
3. 1.96 Harvesting Activity, Bristol Bay Beach Seine
Herring Fi shery 168
3. 1.97 Harvesting Activity, Bristol Bay Drift Gll Net Herring Fi shery 169
3.1 .98 Harvesting Activity, Bristol Bay Herring Spawn on Kel p Fi shery 170
3. 1.99 Bristol Bay Herring Fi shery, Number of Boats and Catch by Month 171
3. 1. 100 Bristol Bay Herring Fishery, Percentage of Boats and Catch by Month 172
3. 1. 101 Bristol Bay Herring Fi shery, Number of Fi shermen
by Month 1733. 1. 1023. 1. 1033. 1. 1043. 1. 105
3. 1. 1063. 1. 108
3. 1. 109
3. 1. 110 King Crab Managenent Area Harvest as a Percentage of the Western Al aska Harvest 184
Bristol Bay Herring Fishery, Percentage of Fi sherman Man Months by Month 174
Harvesting Activity, Norton Sound Set GII Net Herring Fi shery 176
Western Al aska Herring Resource Expl oration 177
Norton Sound Herring Fi shery, Number of Boats and Catch by Month 179
Norton Sound Herring Fi shery, Percentage of Boats and Catch by Month 180
3. 1. 107 Norton Sound Herring Fi shery, Number of Fi shernen by Month 181
Norton Sound Herring Fi shery, Percentage of Fi sherman :Han Months by Month 182
Western Al aska Ki ng Crab Harvest 183

LIST OF TABLES (conti nued)
TABLE \# PAGE
3. 1. 111 King Crab Managenent Area Harvest as a Percentage of the Al aska Harvest 1853. 1. 1123. 1. 1133. 1. 1143. 1. 1153. 1. 1163.1 .1173. 1. 1193. 1. 1203. 1. 121
3. 1. 122 Harvesting Activity, Wéstern Al eutians King Crab Fish- ery 1993. 1. 1233. 1. 124
3. 1. 127 3. 1. 127
Harvesting Activity, Peni nsula King Crab Fi shery 188
Peni nsula King Crab Fi shery, Nunber of Boats and Catch by Month 189
Peni nsula King Crab Fishery, Number of Boats and Catch by Month as a Percentage of Annual Activity 190
Peni nsula King Crab Fi shery, Number of Fi shernen by Month 191
Peni nsul a King Crab Fi shery, Percent of Fi shernan Man Months by Month 192
Harvesting Activity, Eastern Aleutians King Crab Fi shery 193
3. 1. 118 Eastern Al eutians Ki ng Crab Fi shery, Number of Boats and Catch by Mbnth 195
Eastern Al eutians Ki ng Crab Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 196
Eastern Aleutians King Crab Fi shery, Number of Fi shernen by Month 197
Eastern Al eutians King Crab Fi shery, Percent of Fi sher man Man Months by Month 198
Western Al eutians Ki ng Crab Fi shery, Number of Boats and Catch by Month 201
Western Al eutians King Crab Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 202
3. 1. 125 Western Aleutians King Crab Fi shery, Number of Fish: ermen by Mbnth 203
3. 1. 126
3. 1. 126 Western Al eutians Ki ng Crab Fi shery, Percent of Fi shernan Man Months by Month 204
Harvesting Activity, Bering Sea Ki ng Crab Fi shery 205

LIST OF TABLES (conti nued)

TABLE \#
3. 1. 128
3. 1. 1293. 1. 130
3. 1. 1313. 1. 132
3.1. 133 Tanner Crab Managenent Area Harvest as a Percentage of the Western Al aska Harvest 214
3. 1. 1343. 1. 135
3. 1. 136
3. 1. 1373. 1. 1383. 1. 1393. 1. 1403. 1. 1413. 1. 1423. 1. 143
3. 1. 144
Bering Sea King Crab Fi shery, Number of Boats and Catch by Month 207
Bering Sea King Crab Fi shery, Nunber of Boats and Catch-by Mnth-as a Percentage of Annual Activity 208
Bering Sea King Crab Fi shery, Number of Fi sher nen by Month 209
Bering Sea King Crab Fi shery, Percent of Fi sherman Man Months by Month 210
Western Al aska Tanner Crab Harvest 213
Tanner Crab Managenent Area Harvest as a Percentage of the Al aska Harvest 215
Harvesting Activity, Peninsula Tanner Crab Fi shery 218
Peni nsul a Tanner Crab Fi shery, Number of Boats and Catch by Month 219
Peni nsul a Tanner Crab Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 220
Peni nsul a Tanner Crab Fi shery, Number of Fi shernen by Month 221
Peni nsul a Tanner Crab Fi shery, Percent of Fi shernan Man Mbnths by Month 222
Harvesting Activity, Eastern Aleutians Tanner Crab Fi shery 224
Eastern Al eutians Tanner Crab Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 225
Eastern Al eutians Tanner Crab Fi shery, Number of Boats and Catch by Month 226
Eastern Al eutians Tanner Crab Fi shery, Number of Fi sher nen by Month 227
Eastern Al eutians Tanner Crab Fi shery, Percent of Fi sher man Man Months by Month 228
TABLE \# PAGE \#
3. 1. 145 Harvesting Activity, Western Aleutians Tanner Crab Fi shery 2303. 1. 1463. 1. 147
3. 1. 1483. 1. 149
3. 1. 150
3. 1. 1513. 1. 1523. 1. 1533. 1. 1543. 1. 1553.1 .156
3. 1. 157 Shrimp Managenent Area Harvest as a Percentage of the Al aska Harvest 2443. 1. 1583. 1. 159
3. 1. 1603. 1. 161
Western Aleutians Tanner Crab Fi shery, Number of Boats and Catch by Mbnth 231
Western Al eutians Tanner Crab Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 232
Western Aleutians Tanner Crab Fi shery, Number of Fisher- men by Month 233
Western Al eutians Tanner Crab Fi shery, Percent of Fi sherman Man Months by Month 234
Harvesting Activity, Bering Sea Tanner Crab Fi shery 236
Bering Sea Tanner Orab Fi shery, Number of Boats and Catch by Month 237
Bering Sea Tanner Crab Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 238
Bering Sea Tanner Crab Fi shery, Number of Fi shernen by Month 239
Berinq Sea Tanner Crab Fi shery, Percent of Fi sherman Man Months by Month 240
Western Al aska Shrimp Harvest 242
Shrimp Managenent Area Harvest as a Percentage of the Vestern Al aska Harvest. 243
Harvesting Activity, Peni nsula Traw Shrimp Fi shery 247
Peni nsul a Shrimp Fi shery, Number of Boats and Catch by Month 248
Peni nsul a Shrimp Fi shery, Number of Boats and Catch by Month as a Percentage of Annual Activity 249
Peni nsul a Shrimpishery, Number of Fi shernen by Month 250

LIST OF TABLES (conti nued)
TABLE \#
PAGE \#
3. 1. 162 Peni nsul a Shrimp Fi shery, Percent of Fi shernan Man Months by Month 2513. 1. 1633. 1. 164
3. 1. 1653. 1. 1663. 1. 1673. 1. 1683. 1. 1693. 1. 1703. 1. 1713. 1. 1723. 1. 173
3. 1. 1743. 1. 175
3. 1. 1763. 1. 1773. 1. 1783. 1. 179
3. 1. 180
Harvesting Activity, Eastern Aleutians Trawl Shrimp Fi shery 253
Eastern Al euti ans Shri mp Fi shery, Number of Boats and Catch by Month 254
Eastern Al eutians Shrimp Fishery, Number of Boats and Catch by Month as a Percentage of Annual Activity 255
Eastern Al eutians Shrimp Fi shery, Number of Fi shernen by Month 256
Eastern Aleutians Shrimp Fishery, Percent of Fi sherman Man Months by Month 257
Wéstern Alaska Groundfish, Donestic Catch and Resource Abundance 259
Number of Commercial Fi shernen, Alaska Peni nsula Area 261
Number of Commercial Fi shi ng Permits, Al aska Peni n - sula Area 262
Number of Commercial Fi shernen, Al eutian Islands Area 264
Number of Commercial Fi shing Pernits, Al eutian Islands Area 265
Number of Commerci al Fi shernen, Bristol Bay Area 267
Number of Comercial Fishing Permits, Bristol Bay Area 268
Number of Commerci al Fi sher men, Kuskokwim Area 269
Number of Commercial Fi shi ng Permits, Kuskokwim Area 270
Number of Commerci al Fi shernen, Lower Yukon Area 272
Number of Commercial Fishing Permits, Lower Yukon Area 273
Number of Comerci al Fi shernen, Norton Sound Area 274
Number of Conmercial Fi shing Permits, Norton Sound Area 275
Number of Commercial Fi shermen, Kotzebue Area 276
3.1. 182 Number of Comercial Fi shing Pernits, Kotzebue Area 277
3. 1. 183 Fi shernen's Gross Earni ngs by Census Di vision 278
3. 1. $184 \quad$ Forei gn Tanner Crab Harvest in Wéstern Al aska 279
3. 1. $185 \quad$ Number of Japanese Tanner Crab Fi shing Vessel s 279
3.1.186 Al I-Nation Catches in the Bering Sea/ Al eutian Region, by Maj or Speci es Groups, for the Last 10 Years of Record

Number of Fleets in the Japanese Mothership Fi shery and Number of Vessel s in the J apanese North Pacific Traw and Longline-Gillnet Fisheries and Landbased Traw Fi shery282

Monthly Range in Nunber of USSR Vessel s Operating in the Eastern Bering Sea and Al eutian Islands in ? 966-77283
Number of Vessel s Operating in the Korean Groundfish Fi shery in the Eastern Bering Sea, Al eutian Islands, and Gulf of Al aska 284
Summary of the Estimated Hal ibut Catch by Foreign Traw - ers in the Bering Sea and the Northeast Pacific 286
3. 1. 191 Comparison of Catch Quotas and Reported Catches in Metric tons by Cal endar Year for Foreign Fisheries in the Eastern Bering Sea 2883. 1. 192
3. 1. 193
3. 1. 194
3. 2.1
3. 2.2
Total Catch, Di rected Catch, Incidental Catch and Percentage of Incidental Catch of Herring in the J apanese Trawl Fi shery 289
Number of Vessel s in the Sovi et and Japanese Eastern Bering Sea Herring Fl eet by Mbnth 290
Esti nated Inci dental King and Tanner Crab Catch by the Foreign Trawl Fleet in the Bering Sea 291
Al eutian Isl and Di visi on, Quarterly Manuf acturing Enpl oynent and Wages 299
Al eutian Island Division, Monthly Manuf act uring Employ- nent 300
TABLE \# PAGE \#
3. 2.3 Al eutian Islands Census Division, Number of Report- 301 ing Units in Manufacturing by Quarter
3. 2.4 Bristol Bay Division, Quarterly Manufacturing Employ- nent and Vinges 309
3. 2.5 Bristol Bay Di vi si on, Monthly Manuf acturi ng Empl oynent 310
3. 2.6 Bristol Bay Census Division, Number of Reporting Units in Manufacturing by Quarter 311
3. 2.7 Bristol Bay Borough Division, Quarterly Manuf acturing Empl oynent and Viges 312
3. 2.8 Bristol Bay Borough Division, Monthly Manufacturing Empl oynent 313
3. 2.9 Bristol Bay Borough Census Divi si on, Number of Report- ing Units in Manufacturing by Quarter 314
3. 2. 10 Bethel Divi si on, Quarterly Manuf acturing Empl oyment and Wages 323
3. 2.11 Bet hel Di vi si on, Monthly Manuf act uri ng Empl oynent 324
3. 2.12 Bethel Census Divisi on, Number of Reporting Units in Manufacturing by Quarter 325
3. 2.13 Whde Hampton Di visi on, Quarterly Manuf acturing Empl oy- ment and Wages 326
3. 2. 14 Whde Hampton Di vi si on, Monthly Manuf act uring Empl oy- nent 327
3. 2.15 Whde Hampton Census Divisi on, Number of Reporting Units in Manufacturing by Quarter 328
3. 2.16 Kuskokwim Di vision, Quarterly Manuf acturing Employ- ment and Viges 329
3. 2.17 Kuskokwim Di vi si on, Monthly Manuf acturi ng Empl oynent 330
3. 2.18 Kuskokwim Census Di vision, Number of Reporting Units in Manufacturing by Quarter 331
3. 2.19 Yukon-Koyukuk Di vi si on, Quarterly Manufacturing Employ- ment and Wiges 339

LIST OF TABLES (conti nued)
3. 2.20 Yukon- Koyukuk Di vi si on, Monthly Manuf acturi ng Empl oynent 342
3. 2.21 Yukon-Koyukuk Census Di visi on, Number of Reporting Units in Manufacturing by Quarter 343
3. 2.22 None Di vi si on, Quarterly Manuf act uri ng Empl oyment and Wages 348
3. 2.23 Nome Di vi si on, Monthly Manuf acturing Empl oyment 349
3. 2.24 None Census Divi si on, Number of Reporting Units in Manuf acturing by Quarter 350
3. 2.25 Kobuk Di vi si on, Quarterly Manuf act uring Empl oynent and Wages 358
3. 2.26 Kobuk Di vi si on, Monthly Manuf acturing Enpl oynent 359
3. 2.27 Kobuk Census Di visi on, Number of Reporting Units in Manufacturing by Quarter 360
4.1 Projected Western Al aska Harvest. 369
4.2 Projected Vestern Alaska Salmon Harvest 374
4. 3 Chignik Sal non Fi shery, Projected Harvesting Activity 379
4.4 Chignik Sal non Fi shery, Harvesting Activity Projected Percentage Change from 1980 380
4.5 Chignik Salmon Fi shery, Harvesting Activity Projected Annual Rate of Change 381
4. 6 Chignik Sal mon Fi shery, Projected Harvest by Speci es 382
4.7 Chignik Salmon Fi shery, Projected Harvest Weight by Speci es 383
4. 8 Chignik Sal mon Fi shery, Projected Harvest Val ue by Speci es 384
4.9 Chignik Sal non Fi shery, Projected Exvessel Prices by 385 Speci es4. ? 0
Peni nsula Salmon Fi shery, Projected Harvesting Activity 387

LI ST OF TABLES (conti nued)

TABLE \#

PAGE \#
4. 11
4. 12
4. 13
4. 14
4. 16
4. 17
4. 18
4. 19
4. 20
4. 21
4. 22
4. 23
4. 24
4. 25
4. 26
Peni nsul a Sal non Fi shery, Harvesting Activity Projected Percentage Change from 1980 388
Peni nsul a Sal non Fi shery, Harvesting Activity Projected Annual Rate of Change 389
Peni nsul a Salmon Fi shery, Projected Harvest by Speci es 390
Peni nsul a Sal non Fi shery, Projected Harvest Weig ght by Speci es 391

4. 15
5. 15 Peni nsul a Sal mon F shery, Projected Harvest Val ue by Speci es 392
Peni nsul a Sal mon F. shery, Projected Exvessel Prices by Speci es 393
Bristol Bay Sal mon Fi shery, Projected Harvesting Activity 394
Bristol Bay Sal non Fishery, Harvesting Activity Pro- jetted Percentage Change from 1980 395-
Bristol Bay Sal non Fi shery, Harvesting Activity Projected Annual Rate of Change 394
Bristol Bay Salmon Fi shery, Projected Harvest by Speci es 395
Bristol Bay Sal non Fi shery, Projected Harvest Weight by Speci es 396
Bristol Bay Sal non Fi shery, Projected Harvest Val ue by Speci es 397
Bristol Bay Sal mon Fishery, Projected Exvessel Prices by Species 398
Kuskokwi m Salmon Fi shery, Projected Harvesting Activity 400
Kuskokwi m Sal mon Fi shery, Harvesting Activity , Projected Percentage Change from 1980 401
Kuskokwi m Sal mon Fi shery, Harvesting Activity Projected Annual Rate of Change 402

LIST OF TABLES (conti nued)

4. 27 | Kuskokwim Sal non Fi shery, Projected Harvest by |
| :--- |
| Speci es |
5. 28 Kuskokwim Sal non Fi shery, Projected Harvest Wei ght | by Speci es |
| :--- |
6. 29 Kuskokwi m Salnon Fi shery, Projected Harvest Val ue by Species405
7. 30

Kuskokwim Sa"lnon Fi shery, Projected Exvessel Prices
by Speci es 406
4.31

Yukon Sal non Fi shery, Projected Harvesting Activity 407
4. 32
4. 33
4. 34
4. 35
4. 36
4. 37
4. 38
4. 39
4. 40
4.41
4. 42
4. 43
Yukon Sal non Fi shery, Harvesting Activity Projected Percentage Change from 1980 408
Yukon Sal non Fi shery, Harvesting Activity Projected Annual Rate of Change 409
Yukon Salmon Fi shery, Projected Harvest by Speci es 410
Yukon Sal non Fi shery, Projected Harvest Weight by Speci es 411
Yukon Sal non Fi shery, Proj ected Harvest Val ue by Speci es 412
Yukon Sal non Fi shery, Projected Exvessel Prices by Speci es 413
Norton Sound Sal mon Fi shery, Projected Harvesting Activity 415
Norton Sound Sal mon Fi shery, Harvesting Acti vity Projected Percentage Change from 1980 416
Norton Sound Sal non Fi shery, Harvesting Activity Proj ected Annual Rate of Change 417
Norton Sound Sal non Fi shery, Projected Harvest by Speci es 418
Norton Sound Sal non Fi shery, Projected Harvest Weight by Speci es 419
Norton Sound Sal non Fi shery, Projected Harvest Vaiue by Speci es 420

LIST OF TABLES (conti nued)

4. 44	Nbrton Sound Sal non Fi shery, Projected Exvessel Prices by Speci es	421

4. $45 \begin{array}{lll} & \text { Kotzebue } \\ \text { Activity }\end{array}$ Sound Sal non Fishery, Projected Harvesting
5. 46

Kotzebue Sound Salmon Fi shery, Harvesting Activity Projected Percentage Change from 1980423
4. 47 Kotzebue Sound Sal non Fi shery, Harvesting Activity Proj ected Annual Rate of Change 424
4. 48Kotzebue Sound Sal non Fi shery, Projected Harvest bySpeci es425
4. 49 Kotzebue Sound Salmon Fi shery, Proj ected Harvest Weight by Speci es 426
4. 50Kotzebue Sound Sal mon Fi shery, Projected Harvest Val ueby Speci es427
4.51Kotzebue Sound Salmon Fi shery, Projected Exvessel
Prices by Speci es428
4. 52 Projected Mestern Al aska Halibut Harvest 4304. 53
Peninsula Halibut Fi shery, Projected Harvesting Activity 435
4. 54 Peni nsula Hal ibut Fi shery Harvesting Activity, Projected Percentage Change from 1980 436
4. 55 Peni nsula Hal i but Fi shery Harvesting Activity, Projected Annual Rate of Change 437
4. 56 Eastern Aleutians Halibut Fi shery, Projected Harvest- ing Activity 4394. 57
Eastern Aleutians Hal ibut Fi shery Harvesting Activity Projected Percentage Change from 1980 440
4. 58 Eastern Aleutians Halibut Fishery Harvesting Activity Projected Annual Rate of Change 441
4. 59 Bering Sea Halibut Fishery, Projected Harvesting Activity 442

LIST OF TABLES (conti nued)

4. 60	Bering Sea Hal i but Fi shery Harvesting Activity, Proj ected Percentage Change from 1980	443
4. 61	Bering Sea Hal ibut Fi shery Harvesting Activity, Projected Annual Rate of Change	444
4. 62	Western Aleutians Hal ibut Fi shery, Projected Harvesting Activity	446
4. 63	Western Aleutians Halibut Fi shery Harvesting Activity Projected Percentage Change from 1980	447
4. 64	Western Al eutians Hal i but Fi shery Harvesting Activity, Projected Annual Rate of Change	448
4. 65	Western Al aska Roe Herring Fi sheri es Projected Typi cal Annual Harvesting Activity	454
4. 66	Proj ected Vestern Al aska Ki ng Crab Harvest	456
4. 67	Peni nsula Ki ng Crab Fi shery, Projected Harvesting Acti vity	461
4.68	Peni nsula King Crab Fi shery Harvesting Activity, Proj ected Percentage Change from 1980	462
4. 69	Peni nsul a King Crab Fi shery Harvesting Activity Projected Annual Rate of Change	463
4. 70	Eastern Aleutians King Crab Fi shery, Projected Harvesting Activity	464
4. 71	Eastern Aleutians King Crab Fi shery Harvesting Activity, Projected Percentage Change from 1980	465
4. 72	Eastern"Al eutians King Crab Fi shery Harvesting Activity, Projected Annual Rate of Change	466
4. 73	Western Al eutians King Crab Fi shery, Projected Harvesting Activity	468
4. 74	Western Aleutians King Crab Fi shery Harvesting Activity Projected Percentage Change from 1980	469
4. 75	Western Al eutians King Crab Fi shery Harvesting Activity Projected Annual Rate-of Change	470

LIST OF TABLES (conti nued)

TABLE \#
4. 76
4. 77
4. 78
4. 79
4. 80
4.81
4. 82
4. 83
4. 84
4. 85
4. 86
4. 88
4. 92

$$
\begin{aligned}
& \text { Bering Sea King Crab Fi shery, Projected Harvesting } \\
& \text { Activity }
\end{aligned}
$$

Bering Sea King Crab Fi shery Harvesting Activity, Projected Percentage Change from 1980 472
Bering Sea King Crab Fishery Harvesting Activity, Projected Annual Rate of Change 474
Projected Véstern Al aska Tanner Crab Harvest 475
Peni nsul a Tanner Crab Fi shery, Projected Harvesting Activity 480
Peni nsula Tanner Crab Fi shery Harvesting Activity, Projected Percentage Change from 1980 481
Peni nsula Tanner Crab Fi shery Harvesting Activity, Projected Annual Rate of Change 482
Eastern Al eutians Tanner Crab Fi shery, Projected Harvesting Activity 483
Eastern Al eutians Tanner Crab Fishery Harvesting Activity, Projected Percentage Change from 1980 484
Eastern Aleutians Tanner Crab Fi shery Harvesting Activity, Projected Annual Rate of Change 485
Western Al eutians Tanner Crab Fi shery, Projected Harvesting Activity 487

4. 87
5. 87 Western A" eutians Tanner Crab Fishery Harvesting Activity, Projected Percentage Change from 1980 488
Western A" eutians Tanner Crab Fi shery Harvesting Activity, Projected Annual Rate of Change 489
6. 89
7. 89 Bering Sea Tanner Crab Fi shery, Projected Harvesting Activity 490

4.9
90 Bering Sea Tanner Crab Fi shery Harvesting Activity, Projected Percentage Change from 1980 491

4. 9
4.91 Bering Sea Tanner Crab F shery Harvesting Activity, Projected Annual Rate of Change 492
Projected Vestern Al aska Shrimp Harvest 495

LIST OF TABLES (conti nued)
4. $93 \quad$ Peni nsula Shrimp Fi shery, Projected Harvesting Activity 498
4. 94

Peni nsula Shrimp Fi shery Harvesting Activity, Projected Percentage Change from 1980
4. 95
4. 96
4. 97
4. 98
4. 100
4.10
4. 102
4. 103
4. 104
4. 105
4. 106
4. 107
4. 108
4. 109
Peni nsula Shrimp Fi shery Harvesting Activity, Proj ected Annual Rate of Change 500
Eastern Al eutians Shrimp Fi shery, Projected Harvest- ing Activity 501
Eastern Aleutians Shrimp Fi shery Harvesting Activity, Projected Percentage Change from 1980 502
Eastern Al eutians Shrimp Fi shery Harvesting Activity, Projected Annual Rate of Change 503

4. 99
5. 99 Projected Western Al aska Groundfish Harvest 505
Projected Nominal Exvessel Groundfish Prices 508
Projected Chirikof/Shumagin Groundfish Harvesting Activity 510
Projected Chirikof/Shumagin Groundfish Harvest Weight by Speci es 511
Projected Chirikof/Shumagin Groundfish Harvest Value by Speci es 512
Projected Bering Sea Groundfish Harvesting Activity 514
Projected Bering Sea Groundfish Harvest Weig ght by Speci es 515
Projected Bering Sea Groundfish Val ue by Species 516
Aleutian Islands Census Division, "Projected Processing Pl ant Empl oynent and Wages 521
Al eutian Islands Census Di vision, Processing Pl ant Empl oynent and Whiges, Proj ected Cuml ati ve Percentage Change from 1978 Levels 522
Al eutian Islands Census Divisi on, Processing Pl ant Enpl oynent and Wages, Proj ected Annual Percentage Change 523

LIST OF TABLES (conti nued)

TABLE \#		PAGE \#
4. 110	Projected Bering Sea Groundfish Processing Activity, I nputs and Harvesting Empl oyment	525
4. 111	Proj ected Chirikof/Shumagin Groundfish Processing Activity, Inputs and Harvesting Empl oyment	526
4.112	Bristol Bay Census Division, Projected Processing Plant Empl oynent and Whges	527
4. 113	Bristol Bay Census Di vi si on, Processing Pl ant Enpl oyment and Vages, Projected Cuml ative Percentage Change from 1978 Levels	528
4. 114	Bristol Bay Census Division, Processing Pl ant Employment and Vitges, Projected Annual Percentage Change	529
4. 115	Bethel Census Di vi si on, Proj ected Processing Pl ant Empl oyment and Vages	531
4.116	Bethel Census Di vi si on, Processi ng Pl ant Empl oynent and Whges, Projected Cumul ative Percentage Change from 1978 Levels	532
4. 717	Bethel Census Di vision, Processing Pl ant Empl oyment and Viges, Proj ected Annual Percentage Change	533
4.118	Whde Hampton Census Di visi on, Projected Processing Pl ant Empl oynent and Vages	535
4. 119	Whde Hampton Census Di vi si on, Processi ng PI ant Empl oyment and Wiges, Projected Cumul ative Percentage Change from 1978 Levels	536
4. 120	Wíde Hampton Census Di visi on, Processing Pl ant Enpl oynent and Wiges, Projected Annual Percentage Change	537
4. 121	None Census Di vi si on, Projected Processing Plant Enpl oynent and Wages	538
4. 122	None Census Di vi si on, Processing Pl ant Empl oynent and Wages, Projected Cumulative Percentage Change from 1978 Level s	540
4.123	None Census Di vision, Processing Pl ant Empl oyment and Vages, Projected Annual Percentage Change	541
4.124	Kobuk Census Di visi on, Projected Processing Plant Enpl oynent and Viges	542

4.125	Kobuk Census Di vi si on, Processi ng Pl ant Empl oyment and Wages, Proj ected Cumul ative Percentage Change from 1978 Level s

4. 126	Kobuk Census Di vi si on, Processing Plant Empl oynent and Wiges, Proj ected Annual Percentage Change	544

5. 1	Expl oration Only Case, Marine Traffic Generated by OCS Activity

5.2	Nome/Wade Hampton Census Di vi si on, Expl oration Onl y Case, Project OCS Popul ation and Empl oynent I mpacts	560

5. 3 Low Find Case, Marine Traffic Generated by OCS Activity 563
5.4 Nome/Wade Hampton Census Di vi si on, Low Fi nd Case, Proj ected OCS Popul ation and Empl oynent I mpacts 564
5.5 None Area Census Di vi si on, Low Find Case, Projected OCS Popul ation and Empl oyment I mpacts 565
5.6 Mean Find Case, Marine Traffic Generated by OCS Activity 568
6. 7 Nome/Wade Hampt on Census Di vi si on, Mean Fi nd Case, Proj ected OCS Popul ation and Enpl oynent I mpacts 569
7. 8 None Area Census Di visi on, Mean Fi nd Case, Projected OCS Popul ation and Empl oynent I mpacts 570
8. 95. 105. 115. 12Upper Cook Inl et Commercial Fi shing and Petrol eumIndustry Statistics584
1. 13 A aska Empl oyment and Wbrk Force Statistics ‘ 587

LIST OF FIGRES

FI GURES PAGE

1. 1 Western Al aska Study Area 5
2. 2 ADF\&G Méstern Al aska Sal non and Herring Managenent Areas 9
3. 3 ADF\&G Western Al aska Shel Ifish and Hal ibut Managenent Areas 10
4. 4 Western Alaska Census Di vi si ons 11
3.1 Maj or Sal non Fi shing Areas, Vestern Al aska 58
3.2 Maj or Hal ibut Fi shing Areas and IPHC Managenent Regi ons 129
3.3 Maj or Hal i but Fi shing Areas and ADF\&G Managenent Regi ons 130
5. 4 Maj or Herring Fi shing Areas, Western Al aska 159
3.5
Maj or King Crab Fi shing Areas, Western Al aska 186
3.6 Maj or Tanner Crab Fi shi ng Areas, . Vesstern Alaska 216
3.7 Maj or Shrimp Fi shing Areas, Western Al aska 245
3.8 Foreign Groundfish Fi shi ng Areas in the Bering Sea/ Aleutian Islands Area 285
3.9 Al aska Census Divi si ons 292
6. 10 Onshore Centers of Comercial Fi shing Industry Activity in Vestern Alaska 293
4.1 Al aska Census Di vi si ons 519
5.1 Low Fi nd Case, Offshore OCS Structures and Fi shing Grounds 562
7. 2 Mean Find Case, Offshore OCS Structures and Fi shing Grounds 567
8. 3 High Find Case, Offshore OCS Structures and Fi shing Grounds 5715.4
Maj or Sal non Fi shing Areas, Western Al aska 610

LI ST OF FI GRES (cont i nued)

FI GURES PAGE
5. 5 Maj or Herring Fi shing Areas, Mestern Al aska 611
5.6 Maj or Hal i but Fi shing Areas 614
5. 7 Maj or King Crab Fi shing Areas, Mestern Al aska 615
5. 8 Maj or Tanner Crab Fi shi ng Areas, Western Al aska 616
5. 9 Maj or Shrimp Fi shi ng Areas, Vestern Alaska 617

I. I NTRODUCTI ON

This report is a product of the \mathbf{A} aska Outer Continental Shel f Socioeconomic Studi es Program The Al aska Outer Continental Shelf Office of the Bureau of Land Managenent has sponsored the Soci oeconomic Studi es Program(SESP) in an attempt to forecast and anal yze potential impacts and changes likely to occur at the state, regi onal, and community levels as a result of proposed Outer Continental Shelf(OCS)I ease sal es in OCS areas adj acent to Al aska. The SESP has complet studi es for the Beauf ort Sea, the Northern and Western Gulf of Al aska, and Lower Cook Inl et; and it is conducting studies for Western Al aska. The subjects of this report are (1) the commercial fishing industry of Western Al aska and (2) the potential interactions that are likely to occur between this industry and the OCS oil and gas industry as a result of the proposed Norton Basin Lease Sale Number 57. The lease sale is currently schedul ed for Novenber 1982.

General Objective and Methodol ogy

The objectives of this study are to docunent the devel opnent of the com nercial fishing industry of Uestern Al aska, to project its devel opment in the absence of lease sal es in Western Al aska, to increase our understanding of the potential interactions of the comercial fishing and oil and gas industries, and to project the potential impacts on the tom mercial fishing industry that may occur as a result of the proposed OCS lease sale. The potential impacts on the commercial fishing industry are of particular importance in anal yzing the regi onal economic grouth
i mpacts of OCS oil and gas devel opment because the commercial fishing industry has been, and is expected to continue to be, an important source of empl oynent and incone in the coastal commities of Vestern Al aska. The factors that are expected to stimulat the grouth of the industry incl ude: (1) the Fi sheri es Conservation and Managenent Act of 1976 in which the United States clai ned the right to fishery resources within $\mathbf{2 0 0} \mathbf{m i l e s}$ of its coastline, (2) improving fishery resource managenent, rehabilitation, and enhancenent prograns, and (3) generally favorable long-run narket conditions.

The nethodol ogy used to neet these objectives is as follous:

- The hi story and current trends of the Vestern Al aska commercial fishing industry were documented and examined to devel op a basis for projecting fishery devel opnent and potential interaction with the oil and gas industry.
- Methods were devel oped and used to forecast the level of commercial fishing industry activity in the absence of oil and gas industry activities pursuant to the proposed I ease sale.
- The nature and magnitude of projected activities of the commercial fishing and oil and gas industries were anal yzed to determine the potential impacts of the proposed lease sal e.

The projections of commercial fishing industry activity in the absence of OCS activity, that is, the non-OCS case projections, serve two purposes. They provide a neasure of the importance of the commercial fishing industry which may be jeopardized by OCS activities, and they provide a devel opment scenario of the comercial fishing industry that, toget her with the OCS petrol eum devel opnent scenarios, can be used to anal yze the potential impacts of the Lease Sale Number 57 and other proposed lease sal es in Vestern \mathbf{A} aska. The term "OCS activity" as used in this paragraph and throughout this report refers to activities of the oil and gas industries rel ated to OCS operations.

The SESP inpact eval uation process is di vided into three parts: preparation of petrol eum devel opment scenarios, anal ysis of statewide and regi onal impacts, and anal ysis of commity impacts. The scenari os presented in Techni cal Report Number 49, Bering-Norton Petrol eum Devel opnent Scenarios, are the oil and gas devel opment hypotheses dri ving the i mpact anal ysis. Four scenarios were prepared for the proposed lease sale. One scenario was constructed for each of three U.S. Geol ogi cal Survey (USGS) resource estimates and the fourth was constructed assuming that exploration occurs but that comercial quantities of gas and/or oil are not found. The petrol eum devel opnent scenarios provide a range of potential direct enpl oynent and equi pnent characteristics together with the hypothesized timing and location of both in a region. The Iatter two parts of the eval uation process are dependent on the petrol eum devel opment scenarios and are thensel ves interdependent.

The studies that are summarized in the following reports and in Technical Report Number 49 were used in anal yzing potential interactions between the commercial fishing industry and the OCS industry:

- Techni cal Report Number 50

Bering - Norton
Pet rol eum Devel opnent Scenari os
Economic and Denographic Anal ysi s

- Techni cal Report Number 52

Bering - Norton
Petrol eum Devel opment Scenari os Transportation Systens Anal ysis

- Techni cal Report Number 53

Bering - Norton
Pet rol eum Devel opment Scenari os Local Soci oeconomic Systens Anal ysi s

These studi es hypothesize: (1) the OCS petrol eum activity that may occur, (2) economic and denographic condit ens, (3) the nature of the transportation system that will serve and . nteract with the comercial fishing industry, and (4) the availability of the infrastructure upon whi ch the industry is dependent. In short, these studi es project many of the characteristics of the envi ronnent in which the comercial fishing industry will operate and which affects the devel opment of the fisheries.

Scope

For the purposes of this study Vestern Al aska is defined to consi st of the regi ons of Alaska that are nest of the Kodi ak Managenent Area, and south of Point Hope (see Fi gure 1.1). This area encompasses sone of the nost productive finfish and shellfish fisheries in Alaska. The com

Fi gure 1. 1: Western Al aska Study Area
mercial fisheries of Vestern Al aska consideredin this study are as foll owe

- Donestic -sal non
- Donestic Herring
- Donestic Halibut
- Donestic Groundfish
- Donestic King Crab
- Donestic Tanner Crab
- Donestic Shrimp
- Foreign and Donestic Incidental Catch to Groundfish
- Forei gn Groundfish
o Forei gn Tanner Crab

These are the principal commercial fisheries of Vestern Al aska. The level of aggregation varies anong fisheries. The anal ysis of each foreign fishery is at the study area level. With the exception of the donestic groundfish fishery, in which the \mathbf{A} eutian Islands are used to di vide the study area into two fisheries, the anal ysis of the donestic fisheries is at the management area level. The sal mon and herring management areas consi dered are:

- Chignik
- Peni nsul a
- Bristol Bay
- Kuskokwim
- Yukon
- Norton Sound
- Kotzebue Sound.

The shellfish and halibut managenent areas are:

- Peni nsul a
- Eastern Al eutians
- Mestern Al eutians
- Bering Sea

The Bering Sea King Crab Managenent Area is di saggregated to provide infornation on the king crab fisheries of Norton Sound.

The processing sector of the Uestern Al aska commercial fishing industry is anal yzed by the following census di vi si ons:
o Al eutian Isl ands
o Bristol Bay Borough/ Bristol Bay

- Bet hel
- Wide Hampton
- Kuskokwim
- Yukon - Koyukuk
- Nome
o Kobuk

Fi gures 1.2 through 1.4 depict the managenent areas and census di vi si on of Kestern Alaska.

The measures of harvesting and processing activity used to document the recent devel opnent of the commercial fishing industry, to describe its projected devel opment through 2000 in the absence of OCS petrol eum activity pursuant to the proposed lease sâle, and to describe potential i mpacts associ ated with each OCS petrol eum devel opnent scenario are as foll owe

- wei ght and val ue of harvest by species and/ or speci es groups,
- number of boats,
a harvesting empl oynent and incone,
o frequency and seasonality of ocean and harbor space use,
o number of processing plants,
- processing empl oyment and incone,
- processing capacity,

The itens that are di scussed in the devel opment and assessment of the forecasts of these indexes of commercial fishing industry activity i ncl ude:

- availability of and requi renents for el ectric power and water,
- local participation in harvesting and processing activities,
- market channel s and arrangenents,

Fi gure 1. 2: ADF\&G Western Al aska Sal non and Herring Managenent Areas

Fi gure 1.3: ADF\&G Western Al aska Shellfish and Halibut Managenent Areas

Census Di vi si on Boundaries

I Kobuk	IV Kuskokwim	VII Bristol Bay
II	Nome	V Made Hampton
III Yukon-Koyukuk	V Bethel	VII Bristol Bay Borough
	IX Al eutian Islands	

Fi gure 1.4: Western Alaska Census Di vi si ons

- factors of change,
- ocean space use conflicts,
- conflicts bet neen recreational and commercial fisheries,

0 the organi zation of the commercial fishing industry and potential critical economic and political trends.

The Nat ure of the Non-OCS Projections

There are two reasons one cannot predict with comple certai nty the Ievel of activity of a commercial fishing industry: (1) the level of activity is determined by complex and generally poorly understood reIationships anong the level of activity and the elenents of the bioIogical, physical, governnental, and market envi ronments a fishery inhabits and (2) the future characteristics of these environnents are not known with certainty. However, based both on the past rel ationshi ps bet ween industry activity and a snall number of el ements of these environments and on the expected characteristics of these el enents, one can determine how the level of activity is expected to change. The projections presented in this study, therefore, indi cate how a commercial fishing industry is expected to change and not necessarily howit wil, in fact, change. For example, if the probability of an industry expanding is $\mathbf{9 0}$ percent and the probability that it will decline is 10 percent, we would expect the industry to expand although it may, in fact, decl ine. The projections, ther ef ore, indicate where an industry appears to be headed. The models on which the projections are based and the projections thensel ves are presented and discussed in later chapters.

The Nat ure of the I mpact Anal ysi s

This study considers three potential sources of OCS impacts on the comercial fishing industry of Vestern Al aska. They are the competition for (1) I abor, (2) components of a commity's infrastructure, and (3) ocean space. The competition can potentially have beneficial and/or adverse impacts on a comercial fishing industry. It is generally not possible to quantify the potential impacts and thus cal culate the level of fishing industry activity in the presence of OCS activity. The reasons for this are as follow

- The nature of the fisheries, OCS activity, and other economic activities are sufficiently different in the current study area that experi ences el sewhere may not indi cate the type or nagnitude of potential impacts associ ated with Lease Sale Number 57.

0 The impacts that occur will be determined by the degree of compatibility which exists between the
activities of these indusir es and efforts that are taken to reduce the adverse effects and increase the beneficial effects; however since the SESP is not planning study seeking alternative or mitigating solutions and is not intended to make recomendations for actions, it is inappropriate to make impact projections on the basis of assumptions as to what mitigating actions will be taken.

- Although the fisheries will potentially be impacted by the changes in the biol ogi cal envi ronnent that will result from OCS activities, the potential biol ogical effects are so varied and at this time so poorly understood that there is not sufficient infornation to generate sci entifically defendable projections of either the biol ogi cal changes that will occur or the resulting impacts on comercial fishing industry activity.

Thi s does not, however, mean that no meani ngf ul i mpact anal ysi is possible, but it does nean that neither an empirically nor a theoretically sound basis exist's which can, for example, be used to forecast a 15 percent reduction in catch in 1995 due to the OCS activity associ ated with the high-find case. The characteristics of the activities of these industries and, in some instances, the data of past experiences can be used to anal yze the nat ure of the interactions that are expected to occur and to determine which aspects of commercial fishing activity may potentially be affected.

It should be renenbered that projected impacts are based on hypothetical level s, timings, and Iocations of OCS activity interacting with hypothetical levels of fishing activity and, therefore, indicate what may happen if the commercial fishing and OCS petroleumindustries attempt particular activities at a particular time and place; the projected impacts, therefore, indicate what can happen and not what will necessarily happen.

Study Outline

The remai nder of this chapter consists of a brief outline of the subjects addressed in subsequent chapters and appendi xes.

- Chapter II incl udes a di scussi on of the specific methods and assumptions, (i.e., the nodel s) used to forecast the Ievel s of activity of the Western Al aska comercial fishing industry in the absence of OCS activity associ ated with the proposed Bering - Norton Lease Sale Number 57.
- Chapter III, is di vided into two sections. The first, which consists of the documentation and anal sof baseline harvesting activity, is presented by species by area. The second section includes the docunentation and anal of processing activity and commity infrastructure by census di vision.
- Chapter IV presents the non-OCS case commercial fishing i ndustry devel opnent scenari os for Kestern Al aska. The structure of this chapter is similar to that of Chapter III.
- Chapter V consi sts of: (1) a summary presentation of both the OCS petrol eum scenarios and the associ ated pertinent projections of economic conditions, physical systens, and transportation systens presented in other SESP reports, (2) an anal ysi s of the potential impacts on the commercial fishing industries of projected OCS activity, and (3) a summary of potential impacts.
- Appendi x A contains the specifications of the forecast nodel s.
- Appendi x B incl udes a di scussion of aspects of the Al aska comercial fishing industry which are not area specific but whi ch are usef ul in understandi ng the Western Al aska com nercial fishing industry and the nature of potential impacts. The topics di scussed incl ude conf licts anong commercial fisheries, recreational fisheries, and non-fishing marine traffic; fishing vessel accidents; Al aska marine oil spills; and the narket envi ronnent of the commercial fishing industry.
- Appendi xes A and B of Northern and Vestern Gulf of Al aska Pet rol eum Devel opment Scenari os: Comerci al Fi shi ng I ndustry Anal ysi s contain infornation which is usefulin understanding the commercial fisheries of Uestern Al aska. They incl ude a di scussi on of fishery biol ogy and anervi ew of the devel opnent of the Alaska commercial fishing industry.

I I. MEASURI NG AND FORECASTI NG COMMERCI AL FI SH NG I NDUSTRY ACTI V TY

Tho of the principal objectives of this study are to document the past level s of activity of the comercial fishing industry of Western Alaska and to devel op forecast models of fishery activity. The indexes of industry activity used in this documentation and the nodel sused to project the val ue of these indexes are the subject of this chapter.

Measures of the Activity of a Comercial Fishing Industry

A commercial fishing industry consists of arvesting sector and a processing sector. There are al so industries or sectors of industries that are di rectly and perhaps wholly dependent on one or both sectors of the fishing industry but are not strictly part of the fishing industry. Examples of this incl ude firns which sell fuel, repair services, and nechanical or el ectronic gear to fishing boats and firns that provide transportation, construction, and/ or nai ntenance services for fish processing plants. Although the level s of activities of these industries are interdependent, the focus of this study is on the comercial fishing industry, and theref ore the neasures or indexes of activity di scussed in the following two sections are those for the harvesting and processing sectors of the commercial fishing industry and not those for peripheral i ndustries.

HARVESTI NG

Several of the neasures of harvesting activity addressed in this study
are quite strai ghtforward and require little explanation; others due to their less frequent usage and/ or nore ambi guous neani ngs requi re a nore compl ete expl anation. Both types of neasures are defined and di scussed in this section.

Catch

Catch refers to the weight and/or val ue of a harvest during a specific period of time. Typically the weight is stated in pounds and the val ue is in dollars, however, for herring and groundfish the weightis often stated in tons. When catch is measured in terns of dollars, it is typitally the val ue of the harvest to the fishernen that is being neasured. This will, of course, equal the product of the average exvessel price of the fish harvested and pounds harvested, where the exvessel price is the price, in dollars per pound, paid by whoever buys the fish froma fi sherman.

It should be noted that there are two sources of bi as in the harvest val ue and exvessel price data that are available: (1) accurate records of the exvessel price of each sale have not been kept by the Alaska Department of Fi sh and Game ($A D F \& G$) or the other governnental agencies (e. g., Comercial Fi sheries Entry Commission (CFEC)) which publish average exvessel price and/ or harvest val ue data; therefore, these data are estimates and at times rather rough estimates of prices and val ues, and (2) in addition to the di rect paynents per pound of fish, processors nay on occasi on al so pay bonuses to fishermen or provide non- monetary

Abstract

rewards such as storage space or assi stance in obtaining credit. These nonetary and non- nonetary payments that are not made per pound of fish sol d are indeed part of the val ue of the catch to fishernen but they are not incl uded in ADF\&G or CFEC estimates of either val ues or average exvessel price.

Number of Boat Months

The number of boats that participate in a fishery is a limited neasure of fishery activity since the degree of participation measured in terns of the number of landings, days fished, or catch varies greatly anong boats. A nore comprehensi ve neasure of participation is the number of boat nonths (i.e., the number of boats in a fishery by nonth summed over all months). Data on the number of boats by nonth are available from the ADF\&G and CFEC and, as will be seen, they serve as a basis for estimating empl oynent.

Empl oynent

Empl oynent statistics for the harvesting sector of comercial fishing i ndustry are not availabe fromthe Alaska Departnent of Labor because fi sher men, incl udi ng crew nembers, are typi cally consi dered to be selfempl oyed and, theref ore, are excl uded from the Departnent of Labor's chi ef source of empl oynent statistics, the quarterly reports of empl oyers. In the absence of hi storical enpl oynent data, empl oynent is defined as participation in a fishery, and the historical and projected time series
dat a of enpl oyment by fishery are cal cul ated based on estimates of the number of boats and the average crew size by fishery; that is, empl oynent is defined as the product of the tuo. Both monthly and annual data are avai I abl e.

I ncone

There are numerous ways to define incone in the harvesting sector, but the data that are available di ctate which definition is used in this study. Alternative measures of incone and a di scussion of the measure used are presented bel ow

Gross income, net income, and fi shernen's income are three al ter native measures of incone. Gross income equal sthe incone di rectly generated by harvesting activities and as such would include all paynents both nonetary and non- monetary made in exchange for the harvesting activity of vessel s. Net incone equal s gross incone mins non-labor costs, and fisher men's incone equal s the pre-tax nonet ary and non- nonet ary incone recei ved by the crews incl udi ng ski ppers in exchange for the labor servi ces they provide.

The neasure of incone that is used in this study, harvest val ue, is an approxi mation of gross incone which in turn is the basis of the other neasures of incone. As was nentioned in a previ ous section, the harvest val ue data that are available excl ude bonuses and non- nonetary paynents that are made in exchange for harvesting activities and, therefore, understate gross incone. But the val ues of the excl uded paynents are
not available, therefore, the harvest value data as reported by the $A D F \& G$ and CFEC are used to approxi nate gross incone. Ti me series data on net incone and fishernen's incone are not available nor are the data necessary to accurately estimate them It is, therefore, not possible to estimate net or fishernen's income on the basis of estimates of gross incone. Changes in gross incone, however, accurately reflect changes in the other tuo measures of incone if the three measures of incone change proportionatel y. If the cost of fuel and other non-labor costs increase nore rapidly than gross incone, the rate of grouth of gross incone will exceed that of net income; however, in the past large increases in exvessel prices have tended to prevent this from happening and expected increases in exvessel prices may do the same in the future. Differences in the rates of grouth of gross and net incone and/ or changes in crew share agreements can cause a di vergence between the rates of grouth of gross incone and fishernen's incone. Due to the complexity and variety of crew share agreenents within a fishery and anong fisheries, it is not possible to determine if the average crew share is becoming alarger or snaller fraction of gross or net incone; it is, therefore, not known whi ch will tend to grow nore rapidly, gross incone or fishernen's i ncone. I ndustry sources have indicated, however, that the ratio of fishermen's income to gross incone may be decreasing. If this assessnent is and continues to be correct, the forecasted rates of increase in gross incone will tend to overstate the rates of increase in fishermen's i ncome.

In add tion to being the nost readily available neasure of incone, gross i ncone nay al so be the nost usef ul concept in terns of commity inpact
anal ysis. Sone of the expenses that are subtracted fromgross incone in cal cul ating net incone are for goods and services purchased locally; and the boat's or owner's share that is not incl uded in fishernen's i ncone nay be incone to a local resi dent and, theref ore, part of the economic base, as is local fishernen's incone.

Frequency and Seasonality of Ocean Space and Harbor Use

The frequency and seasonality of ocean space and harbor use is the final index of harvesting activity considered. There is very little historical data concerning the novenents of $f i$ shi $n g$ vessel s. Thei r use of ocean and harbor space has not been as well monitored and reported as that of larger vessel s. ADF\&G and CFEC data on the number of boats by fishery, by month, however, provide measures of the frequency and seasonality of ocean space and harbor use.

Local Fi shing Acti vity

Due to the nobility of fishernen and boats anong geographically dispersed fisheries, it is difficult to define local fishing effort in a meaningul way; and, due to the lack of data concerning the expenditure and work patterns of fishernen, it is difficult to neasure local effort once a definition is selected. The difficulties of defining and neasuring local effort in a way that is useful for local economic base anal ysis is denonstrated by the following example. Consi der two fishernen (1) a fishernan from Cordova who fishes for sal non in Prince Villiam Sound and
in Oregon and Whshi ngton and who resi des in Havai i during the winter, and (2) a shrimp fisherman from Whshington who resi des in Kodi ak with his family during the shrimp season. The proportions of the Cordova fishernan's Prince William Sound fishing incone that is spent in Cordova nay not be greater than the proportion of the Whshi ngton fisherman's Kodi ak fishing incone that is spent in Kodiak.

Although precise definitions and neasures of local fishing effort are nei ther neani ngf ul nor feasible, rough measures of local participation are available. They incl ude the numbers of gear permit hol ders and com nercial fishernen in a commity. Such data are presented by commity and by area as quantitative neasures of local participation.

PROCESSI NG

The indexes of processing activity to be addressed in this study require onl y bri ef explanations.

Number of Pl ants

A fish processing plant is defined as a semi-autononous fish processing facility, therefore, a single firm may have more than one plant in a commity or in a managenent area. Two factors which make it difficult to determine the number of processing plants should be noted: (1) due in part to the extensive use of floating processors in Western Alaska the number of processing plants in a particular region can change dranatically from season to season, and (2) $A D F \& G$ records do not al nays make a dis-
tinction between buyi ng stations and processing plants. Fi sh are purchased at buying stations and are prepared for shi pment to processing plants. Fi sh processing does not occur at buying stations, theref ore incl udi ng buying stations as processing plants would greatly inflate the number of plants in area.

Empl oynent

Average monthly and/ or average annual empl oynent statistics are used.

I ncone

Annual incone data are used. For the regi ons of the study area, nore i ncone and empl oynent data are available for manufacturing than for food processing or fish processing al one due to either confidentiality requirenents or reporting procedures. Manuf acturing, however, is dominated by fish processing in the study area; theref ore, nanuf act uring empl oynent statistics provide acceptable approxi nations of processing empl oynent arid income. The less extensi ve data that are available for fish processing, storage, and whol esaling are used to indi cate the degree to which manufacturing in each region is dominated by the commercial fi shi ng i ndustry.

Existing Capacity

There are tuo cl osel y rel ated problens associ ated with the concept of processing plant capacity; the concept is anbi guous and capacity can
change rapidly in response to changing narket conditions. There are two sources of ambi guity. Typically there are a number of constraints of varying strengt hs and durations which can increase or decrease over tine; and the quantity of fish which can be processed is in part determined by the degree of processing which occurs. An example of the first source is as follows: a canning operation in a plant with unused floor space nay be able to process 50 netric tons (110,000 pounds) of fish per day using two ten-hour shifts, but if the machi nery cannot be operated at this rate for long before it wears out, the long-termand short-term capacities differ. The long-term capacity is, however, not necessarily I ess than the short-term capacity since, given time, equi pment can be repl aced and/ or additional equi pnent can be installed. An example of the second source of anbiguity is that a plant's capacity will be quite different if it only guts and ices fish in preparation of shi pnent for further processing el sewhere rather than cans fish. The second problem the potential rapid changes n capacity, is particularly acute in Western Al aska due to the importance of floating processors in this area. The estimates of processing capaıity presented in this report reflect historical levels of processing and are not considered to be constraints on processing activity.

REAL VERSUS NOM NAL DOLLARS

Values and prices can be stated in real (i.e., constant) dollars or in nominal (i.e., current) dollars, the difference being that a nominal measure is the number of dollars whereas a real neasure is the number of dollars adj usted for changes in the value of a dollar since a base
period. For example, the nomi nal value of the Al aska red sal non harvest increased from \$17.5 milion in 1961 to $\$ 19.2 \mathrm{mili}$ in in 1975, but since the U.S. Consumer Price Index (CPI) for all goods increased by 80 percent during this period, the real val ue of the 1975 harvest in terns of 1961 dollars was $\$ 10.6 \mathrm{milli}$. In this example, the number of dolars recei ved from the harvest (i.e., the nominal val ue) increased by 9.7 percent while the anount of goods and services that could be purchased with the dollars recei ved for the harvest (the real val ue) decreased by 39. 4 percent. Si nce intertemporal compari sons of nominal dol ar neasures are rel ati vel y neani ngless during periods of inflation (i.e., during periods in which the CPI is increasing and, therefore, the val ue or purchasing power of the dollar is decreasing) and since the forecast period of 1980 through 2000 is expected to be characterized by inflation, projections of val ues and prices are presented in real dollars. But si nce many people are accustoned to thinking in terms of current or nominal dol lars, the projections are al so presented in nominal dol ars and the real dollar projections use 1980 as the base year. In terns of 1967 dol Iars, the 1980 U.S. CPI for all goods and services is expected to be 240; therefore, real prices and values with 1980 as the base year can be converted into real prices and val ues with 1967 as the base year by di vi di ng by 2. 4.

Forecasting Traditional Commercial Fishing Industry Activity in the Absence of the OCS Devel opment Associ at ed with Lease Sal e Number 57

The nodel s used to forecast the devel opnent of the traditional commercial fishing industries of Western $\mathbf{A l}$ aska in the absence of OCS activity
pursuant to the proposed lease sale are the topic of the renai nder of this chapter.

The fishery devel opnent forecasts or scenarios that are constructed are similar to the OCS petrol eum devel opnent scenarios in 'chat they are based upon estimated or hypothesized levels of resource abundance. A brief outline of the forecast nethodol ogy used precedes a detailed di scussi on of how the resource abundance hypotheses are used to forecast harvesting and processing activity. The nethodol ogy is as follows:

- Forecasts of resource abundance provi ded by the Alaska Department of Fish and Gane (ADF\&G) or the North Pacific Fi sheries Managenent Council (NPFMC) or based on hi storical catch data are used to forecast catch.
- The catch forecasts serve as bases for projecting the other indexes of harvesting and processing activity.
e The feasibility of the projections is eval uated in terns of the economic and denographic conditions, transportation systens, and local infrastructure hypothesized in associ ated SESP reports or el sewhere in this report.

Resource abundance is the principal determinant of harvesting and subsequent processing activity in all but a few of the traditional fisheries of \mathbf{A} aska. In a maj ority of these fisheries, quotas set by the Al aska Departnent of Fi sh and Gane (ADF\&G) or the North Pacific Fisheries Managenent Council (NPFMC) on the basis of its assessments of resource abundance are binding constraints, that is, in any one year and fishery the catch would be larger if it were not for the quotas. The sal non, hal ibut, king crab, Tanner crab, and shrimp fisheries of Western Alaska are typically in this group of fisheries. For a snall number of devel oping fisheries, such as the donestic herring and groundfish fisheries, resource abundance is a maj or, but perhaps not the principal, determinant of fishery activity. In these fisheries, the economic conditions are such that it is not profitable for fishernen to harvest the maximun anount the ADF\&G or the NPFMC thinks is acceptable; and therefore, market constraints are bindi ng, not the quotas based on resource abundance. Market constraints are, however, in part determined by resource abundance. Catch per unit effort and thus costs per unit harvested are rel ated to resource abundance, and the exvessel price is directly rel ated to the quality of the fish which, in turn, is rel ated to stock abundance. The quality of the catch is influenced by resource abundance because changes in abundance are often accompani ed by changes in age and size structure of the stock.

The dependence of comercial fishing activity on resource abundance creates forecasting problens because the prediction of resource abundance, within reasonable confidence linits, presupposes detailed knowledge of a number of physical and biol ogical processes operating in the marine envi ronnent. The need for detailed infornation can be seen in the prediction that a $0.8^{\circ} \mathrm{C}$ temperature anomaly in the southern Bering Sea can result in a 11,300 metric ton (24.9 milli on pound) change in the bioI ogi cal production of herring (Laevastu, 1978). Pi oneering efforts in the short-term assessment of fisheries production are now taking place in the form of compl ex computer si mul ation nodel s. Si nce the extension of these pioneering efforts to the fisheries of Western Alaska is beyond the scope of this study, such nodel s have not been used to forecast resource abundance. The forecasts of stock abundance that are used are provi ded by the ADF\&G and the NPFMC or are based on hi stori cal catch. It should be noted that, with the exception of the ADF\&G sal non projections which take into account potential enhancement and rehabilitation prograns, the projections are based on estimates of current stock abundance and short-term trends. The use of these forecasts of stock abundance as a basis for projecting the indexes of harvesting activity is di scussed in the following sections.

Catch by Weight

Similar types of resource abundance forecasts are not available from the

ADF\&G and/ or NPFMC for all the comercial fisheries in the study area, therefore, it is not appropriate to apply the same net hod of forecasting catch to all the fisheries. The nature of the resource abundance forecasts and the ways they are used to project catch are di scussed by speci es in Chapter IV.

Catch by Value, I ncone

The measure of the val ue of catch or harvesting incone bei ng used in this report is the product of the catch by wei ght and the exvessel price; therefore, projections of catch by val ue requi re forecasts of both the catch by wei ght and the exvessel price. The nethods used to forecast the former are di scussed in Chapter IV; the nethods used to forecast exvessel prices are the subject of this section.

Exvessel sal non prices are estimated by managenent area fishery using a two-stage process:

- Each statewi de exvessel price is forcasted usi ng an empirically-determined rel ationship bet neen exvessel prices and the determinants of exvessel prices.
- Each managenent area exvessel price is projected using the nanagenent area real price for 1979 and the projected increases in the appropriate statew de price.

With the exception of the Bering Sea Tanner crab fishery, estimates of statewi de shellfish and halibut prices are used di rectly as estimates of regional prices. This is done because regional prices are closely approxi nated by statewide prices for these fisheries but not for the sal non fisheries. The Bering Sea Tanner crab prices are adjusted downward to reflect the dominance of a lower val ued species in the Bering Sea. The specifications of the statew de exvessel price nodel s and the past and expected val ues of the determinants of exyessel prices are presented in Appendix A.

An example of how a forecast of a statewide sal non price is used to forecast a managenent area price is as follous: if the statewide model for $\mathbf{k i}$ ng sal mon forecasts exvessel prices of $\$ 1.00$ and $\$ 1.50$, respectivel \mathbf{y}, for 1980 and 1986 and if the 1979 exvessel price of $\mathbf{k i n g}$ salmon is . $\$ 0.90$ in managenent area A the 1986 exvessel price forecast for area A king sal non is $\$ 1.35$ (\$0.90X $\$ 1.50 / \$ 1.00$). This nethod of forecasting management area prices based on forecasts of statewide prices is valid if statew de prices and management area prices change proportionately. Each managenent area price was regressed on a constant and the corresponding statewide price to deternine if prices change proportionately, Typically, the estimated coefficient on the constant term was insignificant. This indicates that prices tend to change proportionately.

There were two reasons for using statew de exvessel price nodel s to forecast managenent area prices rather than directly forecasting area prices: (1) greater precision is usually achieved in forecasting with a

I onger tine series, and longer time series are typically availablaf or statew de prices than for managenent area prices and (2) the number of exvessel price nodel s requi red was greatly reduced.

The sal non exvessel price forecast net hodol ogy outlined above results in each 1980 nanagement area nominal and real price being set equal to the real price for 1979, and it results in each nominal price increasing from 1980 through 2000 at the rate projected for the corresponding statewide price. A brief justification for the 1980 price forecast is as follows. The 1980 prices are set equal to the 1979 prices rather than extrapol ating a 1980 price fromthe 1979 price and the statewide novers because a number of market conditions includinglarge col d storage inventories and record sal non runs in 1980 have resulted in what appear to be atypically low exvessel sal non prices. The use of 1979 prices as the 1980 bases partially allows for the narket conditions of 1980 but nore importantly it provides a price basis that reflect longrun market conditions. Such bases are appropriate for the I ong-range projections presented in this report.

The nominal and real prices forecasts are the same for 1980 because 1980 is used as the base year in determing real prices, that is, the real prices are in terns of 1980 dollars.

Structural changes and the lack of adequate time series data precl uded the use of regression anal ysis to forecast exvessel prices for the herring and groundfish fisheries. The statewide price of herring is
difficult to project using hi storical data because there are di stinct markets and prices for herring products such as roe herring, roe on kel p, and bait; because the rel ative importance of these products has dranatically changed in the last ten years as a narket for Alaska roe products has been established and expanded; and because the roe price has fluctuated dranatically in recent years. In 1961 the statewide exvessel price for herring was $\$ 0.01$ per pound, in 1979 the exvessel price for roe herring, which now dom nates the herring fisheries, approached $\$ 1.00$ per pound, and in 1980 the price is expected to be approxi mately $\mathbf{\$ 0 . 2 0}$ per pound. This phenonenal increase in the price of herring during the past 18 years was due to a change in product mix and inprovenents in narketing opportunities that are not expected to occur agai n . The I arge price i ncreases have resulted in a significant increase in fishery activity which is expected to noderate future price increases. The exceptionally high price in 1979 resulted from a set of narket conditions that are not expected to occur again in the immediate future. The donestic groundfish fishery has just begun to devel op and there is not adequate time series data to esti nate exvessel price nodel s. In the absence of model s or data that suggest otherwise it is assuned that real exvessel herring and groundfish prices will remain constant.

Number of Boat Months

In projecting the number of boat nonths, where boat nonths equal the product of the number of boats that participate in a fishery and the average number of nonths per year boats participate in a fishery, it is
usef ul to di sti ngui sh between the fisheries in which entry is restricted by the Commercial Fi sheries Entry Commission (CFEC) and those in which entry is not limited. The CFEC Iimits the number of boats that can operate in any one Western \mathbf{A} aska sal non fishery at any one time by 'requiring that a gear permit hol der be on each boat and by limiting the number of permits issued for each fishery; and in practice, the number of boats participating in each fishery is ther of ore constrained. If the policies of the CFEC impose a binding constraint on the number of gear permit hol ders and boats that participate in a fishery, the CFEC's policies al one determine the number of boats. The gear permits are transferable, and the hi gh market val ues of permits indicate that the constraints are in fact binding. Therefore, to successfuly forecast the number of boats in a fishery, one must know what the CFEC will do. Unf or t unatel \mathbf{y}, no one, incl uding the CFEC, knows when, or if, or to what extent, it will increase the number of pernits by issuing nore permits or decrease the number of permits by initiating a buy-back programfor a particular fishery. Due to the technical and political problens associated with changing the number of permits, the CFEC is not expected to radically change the number of gear permits. Another reason for expecting the number of permits to be held rel atively constant is that a principal objective of the CFEC is to assure that the fisheries are economically viable; that is, that they provide a fair return to participants in the fishery. But once entry is limited and as long as the market val ue of permits is greater than zero, the narket mechanismtends to assure fair rates of return. If the rate of return is exceptionally high in one fishery, the price of a permit in that fishery will increase, the cost
of participating in that fishery will increase, and the rate of return will decrease until it equals the expected rate of return in other fisheries. Similarly, if the rate of return is exceptionally low in one fishery, the price of a pernit will decrease, the cost of participation will decrease, and the rate of return will increase until it equal sthe expected rate of return in other fisheries. Due to this autonatic adj ust nent nechani sm it is not necessary for the CFEC to adj ust the number of gear permits to maintain fair rates of return.

The expectation that the CFEC will not dramatically change the number of permits is al so reflected in the high narket val ues of permits; if it were generally bel \boldsymbol{i} eved within the industry that additional permits yould soon be readily available, the permits would not be selling for tens of thousands of dollars. It should also be noted that the harvesting capacity of the existing number of boats in each fishery exceeds the projected catch for the forecast period, so it will not be necessary to increase the number of permits to allow full utilization of the fishery resources. Theref ore, the number of boats in each sal non fishery is hel d constant for 1980 through 2000, and the number of boat months is set equal to the product of the number of boats and the hi storically determined number of months per year that the average boat participates in a fishery.

For the fisheries in which entry is not limited by the CFEC, the numbers of boats and boat months are projected based on the hi storical rel ationshi p bet ween catch, the number of boats, and the number of boat nonths.

The specifications of these rel ationships for each fishery are summarized in Appendi x A.

Number of Fi shernan Months

The number of fisher man nonths is used as the neasure of harvesting empl oyment. For each fishery, the empl oynent forecast is the product of the projected number of boat months and the average crew size. The Iatter is hel d constant for the forecast period since crew sizes are expected to remain rel atively constant. l-t should be noted that since a si ngle boat or fishernan may participate in nore than one fishery during a nonth, the sum of boat nonths or fisher man months across fisheries defined by area, gear type, and speci es can resultindouble counting. This problemis not however as great as it nould be if the number of fishermen or boats is summed because the mobility anong fisheries is substantially greater in a year than in a month.

PROCESSI NG

Processing plant activity is neasured in terns of the quantity of inputs used and in terns of the income of processing plant employees. The methods used to project these neasures of activity are di scussed in the following sections.

The requi rement for a particular input such as labor, el ectric power, or water can change due to a change in any or all of the following:

- the quantity of fish processed,
- the product mix,
- the technol ogy,
- the price of one input rel ative to the prices of other inputs.

The potential effect on input requi rements of each type of change and a net hod of deal ing with the uncertainty they present for input requirenents are presented in this section.

For a particular area, the quantity of fish processed equals the quantity of fish landed if fish in the round are neither imported nor exported. Unf ort unatel \boldsymbol{y} this condition is not met in any of the managenent areas being studied, and the data required to determine the rel ationshi p between catch and processing within each area are not available. If however, the rel ationship between catch and processing is rel atively stable, the quantities harvested and processed increase at the sane rate. Due to the lack of tine series data on interregional novenents of fish in the round and due to the rapid changes that are possible in such novenents, there is substantial uncertainty concerning how the rel ationship bet ween the quantities harvested and processed will change, An additional source of uncertainty as to the quantity of fish that will be
processed is the donestic groundfish industry. This industry has not devel oped sufficiently to determine the quantity of groundfish that will be processed in each area.

Another source of uncertainty is the rel ationship bet ween the quantity of fish processed and the per-unit of product requirenent for a particular input. If there are economes of scale, the per-unit input requi rement decreases as out put increases, and therefore input requi renents increase less rapidly than output. Conversely, if the production process is characterized by diseconomies of scale, input requi rements increase nore rapidly than output. The level of output can al so affect the per-unit input requi renent of a particular input if the desirable input mix changes with output. For example, a rel atively capitalintensi ve net hod of production may onl y be feasi ble at high level sof output. If the increase in the optimal capital to labor ratio associated with the increase in out put results in average total cost decreasing, this is an example of economes of size. The difference between economies of scale and of size are that economes of scale are said to occur if when all inputs are increased proportionately output increases more than proportionately; economies of size are said to occur if increases in output are accompani ed by decreases in average total cost. The exi stence of economies of scale will assure economies of size; however, the converse is not true. For a nore complete treatnent of the issues of economes of scale and of size refer to Mller, Intermediate Microeconomics; Hirshberfer, Price Theory and Applications; or Leflwich, The Price System and Resource Allocation, The nature of the production
function for fish processing is not sufficiently well understood to determine how the per-unit requi rement for each input is rel ated to out put.

The product mix, that is the species that are processed and the product forms of each speci es that are produced, affects the input requi renents. For example, rel atively nore labor and el ectric power are requi red to produce frozen sal non than to produce canned sal non, and rel ativel y nore water is required to process shrimp than to process crab. The data requi red to account for the changes in input requi renents that will result from changes in product mix in terns of species processed are not available; however, there are discernable impacts due to changes in product mix with respect to product form Frozen products have steadily increased in importance rel ative to canned products. This is true for most finfish and shellfish species. This change is expected to continue; therefore, everything el se being constant, the requi rements for I abor and el ectric power are expected to increase nore rapidly than the quantity processed.

The effect of technical progress on the requi rement of a particular input is anbi guous. If technical progress is characterized by proportional increases in the productivity of allinputs, the input requi rements per unit of output will be reduced for all inputs. However, if it is characterized by a nore rapid increase in the productivity of one input, the requi renent for that input nay increase as it is substituted for what have becone rel atively less productive inputs. The effect on
i nput requi renents theref ore depends on both the rate and type of techni cal progress that will occur, and neither can be forecasted with mach certainty.

Changes in rel ative input prices tend to change the input mix that processing plants use. For example, fthe price of labor increases rel ative to the price of physical cap tal, processors will tend to substitute capital for labor; and everything el se being constant, the I abor requ renent will decrease and the requi renents for nore automated processing equi pnent and el ectric power will increase. The change in input requi renents that will occur due to changes in rel ative input prices will depend on both the extent to which rel ative prices change and the responsi veness of processors to such changes. Although few definitive statements can be made about either, it appears that the relative price of electric power will continue to increase and that the increase will be substantial enough that processors will tend to substitute other inputs for el ectric power. Fe-r example, nore expensi ve but nore efficient freezer units will be used, The af orenentioned microeconomics texts can be referred to for a nore compl ete understanding of the determinants of input mixes.

The preceding di scussi on of the factors that will determine input requi renents indicates that there are a variety of reasons that input requi rements cannot be forecasted with a hi gh degree of certainty. To account for the uncertainty associ ated with both the rate of devel opnent: of the donestic groundfish industry and the factors that determine processing input requirements per unit of harvest, three sets of input
requirement forecasts are presented. A set of forecasts is presented for the traditional fisheries with and without a 2 percent annual decrease in per-unit input requi renents, and a set of forecasts is presented for the groundfish industry. The forecasts for the traditional fisheries are based on the projected changes in managenent area catch for the traditional fisheries. For example, if the total traditional catch is projected to increase by 50 percent between 1980 and 1991, i nput requi rements are projected to increase by 50 percent assuming per-unit requirenents do not change, or by 20 percent assuming a 2 percent annual decrease in per-unit requi rements. The 1991 input requi renents would be 120 percent of the 1980 requi rements in the latter case, since 0.98^{11} equals $\mathbf{0 . 8 0}$, and the product of $\mathbf{0 . 8 0}$ and $\mathbf{1 5 0}$ percent is $\mathbf{1 2 0}$ percent.

The sets of forecasts that do not allow for decreases in per-unit input requi rements tend to set an upper bound on input requi rements since the requi renents are not expected to increase as rapidly as catch. Technical progress, economes of size resulting from larger harvests and nore uni form rates of production, increasing input prices, and the gradual substitution of capital for labor will tend to reduce processing Iabor, el ectric power, and water input requirements per unit of catch. Ther ef ore, the sets of forecasts that allow for decreasing per-unit requi rement are perhaps nore realistic. A 2 percent rate of decrease in per-unit requi rements is consistent with the 2.2 percent rate of increase in real income per capita used by the SESP and the Iong-term historical rate of increase in efficiency for the U.S.

The incone of processing plants, defined to equal their payrolls, is the product of empl oyment neasured in units of labor services and the average wage rate. Therefore, to forecast incone, it is necessary to project the average wage rate and empl oynent. The nethod used to project the Iatter was di scussed in the previ ous section. The method used to project the wage rate is based on the historical rel ationship bet ween the rates of increase in the CPI and the average hourly food processing wage in Al aska, for July and August. Bet ween 1961 and 1979, the average hourly wage tended to increase $\mathbf{1 . 0 7 3}$ times faster than the C?I. Based on the assumption that this rel ationship will continue during the forecast period and based on the Studies Programs optinistic assumption that the CPI will increase at an annual rate of $\mathbf{7 . 5 6}$ percent, the average nomi nal wage rate will increase by approxi mately 8.1 percent a year.

The Nat ure of the Forecasts

The forecasting met hodol ogy described in this chapter and in Chapter IV does not generate projections of harvesting and/ or processing activity which exhi bit the cyclical fluctuations which have hi storically been characteristic of the commercial fisheries. In this section, the reasons for not attenpting to project cycles and the nature of the forecasts are clarified.

There are four reasons cycles are not forecasted; they are as follow

- For many species, the length and amplitude of the cycles are not constant over time, and the determinants of cycles are not sufficiently well understood and/or predictable to allow one to successfully project cycles.
- A maj or objective of the $A D F A G$, with respect to sal non, is to reduce the cyclical fluctuation in the comercial fisheries.
- The accuracy of the forecasts is not sufficient that forecasts of cyclica deviations nould be neani ngful.
- The compar son of cyclical fishing industry with hypot hesized tim ngs of OCS activity is of little val ue if the hypothesized Cyc ical activity of either industry is of f schedule.

The accuracy problemin fishery forecasting is one that deserves additional attention. One example of the potential magnitude of the forecasting error is provided by the comparison of the $A D F G 1978$ preseason estimate of the Bristol Bay pink saimon return of $\mathbf{3 . 2} \mathbf{2}$ million fish and the actual return of 13.3 million. The preseason forecasts are typically more successful than this one was, and perhaps a better measure of the magnitude of error that can nornally be expected is provi ded by "The Preliminary Forecasts and Projections for 1979 Sal mon Fi sheries. "In this publication, the point estimate of the statew de sal mon harvest is
$\mathbf{7 2} \mathbf{~ m i l i o n ~ f i s h ~ a n d ~ t h e ~ r a n g e ~ a b o u t ~ t h i s ~ e s t i m a t e ~ i s ~} \mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m i l i o n ~}$ fish; that is, there is approxi mately a $\mathbf{4 0}$ percent range about the point estimate within which the actual harvest can fall without surprising anyone. Another example of the potential error associated with fishery forecasts is provi ded by the experience of the Kodiak shrimp fishery. Bet ween 1969 and 1977, the shrimp catch ranged from 14,200 netric tons (31.5 mili on pounds) to $\mathbf{3 7} \mathbf{3 0 0}$ metric tons (92.2 million pounds) and averaged 24,900 metric tons (54.9 million pounds); in 1978 it fell to 10, 300 metric tons (22.8 mi II on pounds), in 1979 it fell to 6, 600 metric tons (14.5 mili on pounds), and is now expected to decline even further. Had long-range catch forecasts been made in the mid-1970s, they nould have tended to overstate the catch in the late 1970s and early 1980s by a factor of three or 'our. This experience and others provi de suffici ent proof that unf oreseen changes in the physical, bi ol ogical, market, and/ or governmental envi ronments of the fisheries can cause a rapid decline in a booming fishery; and they can just as readily create new fisheries or turn narginal fisheries into very producti ve ones.

The inability to forecast cyclical changes in activity can be minimized by thinking in terms of expected or probabilistic levels of fishery activity; for example, if the 1985 sal mon catch forecast for a management area is 20,000 metric tons, the implication is that in the mid-1980s, the catch will on average be $\mathbf{2 0 , 0 0 0}$ metric tons. The inability to identify secul ar trends that are or will be devel oping is a more fundamental probl em for which there is no simple sol ution. Dranatic fluctua-
tions are expected, they are however typically not predictable. As a result of this problem the forecasts presented in the following chapter indicate the level s of comercial fishing industry activity that are expected gi ven the past and present performance of the industry.

Methods Used to Project Haryesting and Processing
Activity for the Donestic Ground-Fish Industry

At this early stage in the devel opment of the donestic Alaska groundfish industry, it is not known now or at what rate the industry will devel op. Questions as to the size and type of vessel sthat will dominate the i ndustry, the importance of onboard versus onshore processing, the number of processing lines per fish processing plant, the average productivity per vessel, and the processing labor requi renents have yet to be answered. In the absence of such information, the forecasts of the devel opnent of this fishery are by necessity based on a set of assumptions. These assumptions are as follow

- The naxi mum sustai nable yield (MSY) for the various ground $\begin{aligned} & \text { ish }\end{aligned}$ species in the Bering Sea and the Gulf of Al aska will remain at the Ievel s presented in the North Pacific Fisheries Managenent Council's managenent plans for the Bering Sea (1979) and the Gulf of $\mathbf{A l}$ aska (1978).
- The domestic fisheries will have completely replaced foreign fisheries by the year 2000.
- Donestic catch by species or species group will exhibit constant annual rates of grouth fromthe actual catch in 1978 to the MSY in 2000.

Half of the harvest will be taken by catcher/processors and processed offshore, and half will be taken by trawers and deI i vered to onshore processing pl ants.

2 Average annual catch per trawer will equal 2,700 metric tons (6 million pounds).

- Average annual catch per catcher/processor will equal 10, 000 metric tons ($\mathbf{2 2} \mathbf{~ m i l i o n ~ p o u n d s) ~ o f ~ p o l l o c k ~ o r ~} \mathbf{5 , 9 0 0}$ metric tons (13 milli (pounds) of cod and other groundfish speci es.

2. Traw ers will typically be $\mathbf{3 7 . 5}$ meters ($\mathbf{1 2 3}$ feet) in length and have a crew of six incl udi ng the ski pper.

- Cat cher/processors will typically be 67 meters (200 feet in length and have a crew of 28 or 24 when targeting on po' lock or other species, respectively. All but five of the crew will operate the onboard processing equi pnent.
- The annual nomi nal wage per nan for those who operate the onboard processing equi pment will increase at an annual rate of 3.1
percent from S20, 000 in 1979, and the annual wage per man for the rest of a catcher/processor's crew and a traw er's crew will increase at the sane rate from S30, 000 in 1979.
- An onshore plant with 12 fillet lines and accompanying equipnent will process 54,000 metric tons (119 million pounds) of fish in the round.
- Such a plant will employ $\mathbf{4 0 3}$ people, pay nominal wages that will increase $a t$ an annual rate of 8.1 percent from $\$ 3.9$ million in 1979, and operate two shifts per day.

The basis of each assumption is as follows, The data required to forecast the MSY for each speci es are not available. Some data suggest that the MSY for pollockmaytend toincrease and that the MSyfor other species may al so tend to change, but the magnitude of the change or, in sone cases, the di rection of cnange is not known ; the current MSY's thus provide the best available forecasts. If an estimate of allowable bi ol ogi cal catch ($A B C$) but not $M S Y$ is available, the former is used as an estimate of MS\%.

The domestic groundfish fishery hasbeguntodevelopbutitistooearly to know with a hi gh degree of certainty how rapidly the donestic fisnery will develop. There are, however, several reasons for bel ieving that the donestic , aroundfish fishery will replace the foreign fishery in the next 20 to 25 years; they are as follow a goal of the Alaska Bottomfish Cevelopment Programis, "-" develcp within a period of approximately 20
years the donestic utilization of Alaska bottomfish resources to the fullest optimumiel d." (PDBI, 1979, p. 4); the Arthur D. Little report to the Office of the Governor states that, "Full devel opment of Al aska's bottomf' sh industry will require 15 to 20 years" (Little, 1978, p. 39); and many of the vessels that have been built for the Alaska shellfish fleets in the past few years have been desi gned to allow them to enter the groundfishifisheryasitbecomesmore profitable and as the shellfish seasons become shorter. It should be noted that there is no concensus within the industry a s to whether this goal is feasi ble; it has been suggested that rapid devel opnent nay riot de possible without substantial increases in real exvessel prices (Stokes, 1979).

The hi story of the devel opnent of other fisheries and the current i mpedi ments to the devel opnent of the Alaska groundfish industry suggest that the annual increases in catch will at first be rather small but will become continuously larger as the initial inpedi nents are renoved. A grouth path resulting froma constant annual rate of growth exhibits these characteristics. The current impedi ments to devel opment which must be renoved for the Alaska groundfish industry to develoo and wich will be renoved as it devel ops include: the absence of both marketing arrangenents between harvesters and processors and well established marketing channel s, inadequate harvesting and processing know edge, the high profitability of alternative traditional fisheries, and the uncertainty of the rel ative profitability of alternative methods of harvesting and processi ng.

In the absence of a well-devel oped trend toward either onboard or onshore processing, it is assumed that half the processing will occur onshore in A aska and that half will occur on the fishing grounds. Processing pollock onshore has proved to be economically feasibe in the case of Icicle Seafoods (Martin, 1978); however, Jaeger (1977) indicates that an onshore processor would have to offer a 75 percent price premium to compete with offshore processors due to the additional costs associated with delivering fisin to an onshore processor as opposed to a processor located on the fishing grounds. It is not clear whet her onshore processing is cost effective if such a premiumis paid. The devel opment plans of a number of onshore processors suggest, however, that they think it will be. 3ut it is not known whether the industry will be dominated by the existing processors or by new entrants to fish processing with different perspectives as to the rel ative profitability of various methods of processing. The levels of harvesting and processing activity associated with either onshore or offshore processing are presented in such a manner that the implications of various mixes of onshore and offshore processing can readily be determined.

Theassumption concerni ng the input requi renents in terms of the numbers of trawlers, catcher/processors, fishernen, and processing plants, and the corresponding wages are based on information provi ded by Robert Stokes, The, rate of increase in annual nominal wages is based on a previ ously mentioned rel ationship between the annual rates of increase in the CPI and nomi nal wage rates.

It should be noted that the forecast of the number of boats is in fact a forecast of full-tine equi val ent boats since the assumed levels of catch per boat are those that may be expected for a boat that participates inthe groundfish fishery twelve months per year. Particularly in the early stages of the devel opment of the fishery, many boats will participate in the fishery on a part-time basis; therefore, the number of boats in the fishery will tend to exceed the forecast of full-time equi val ents. The same is true for the forecast of fishermen; the forecast is of fishernen years and will therefore understate the number of fishernen who participate in the fishery during any one year.

The forecast of the number of fish processing plants is based on the forecasted catch arid an assuned level of output per plant; the characteristics of the plant on which the estimate of plant productivity is based are described above. If the characteristics of plants difier from those of the plant on which the estimate of productivity is eased, the forecast of the nunber of plants will not be correct. For example, if the processing sactor is characterized by alarge number of plants with tw $\mathbf{0}$ to four groundfishlines, the forecasts will understate the number of processing plants by a factor of three to six. A plant with 12 lines is thought to be the optimal size with respect to economes of size. Many plants however are expected to be smaller than this, particularly during the next few years, because the initial onshore processing lines will probably be added a few at a time to existing processing facilities and because the risk associated with a new $\mathbf{1 2}$ line plant will be very high until the devel opment of thefisherycanbe $\mathbf{p l}$ anned with greater certaing.

Forecasts of the number of plants based on ot her assumptions concerning plant size can readily be made by dividing the forecast of the total number of lines by alternative plant sizes. The forecast of the number of plants is al so based on the assumption that there are tno shifts per day throughout the year. If there are fewer shifts, the forecast will tend to understate the actual number of plants. The forecasts of processing plant labor requi rements are based on estimates of the input requirenents per unit of whole fish, and are therefore sonewhat independent of plant size because the overhead empl oynent costs per line that are reduced with a large plant are al so reduced when groundfish lines are added to existing facilities.
111. AN OVERM EW OF THE VESTERN ALASKA COMMERCI AL FI SH NG I NDUSTRY

The commercial fisheries of Western \mathbf{A} aska are anong the nost productive fisheries in Al aska. This chapter presents an overvi ew of the harvesting and processing activities of these fisheries.

Harvesting

The commercial fisheries of Western \mathbf{A} aska are nanaged by species or speci es group and by area. The overvi ew of the harvesting activity contai ned in this section is theref ore presented by species or species group and by area.

SALMDN

The sa non fisheries of Uestern Alaska are extrenely productive; between 1969 and 1979 the wei ght and value of the annual harvest have ranged from 19, 600 metric tons (43.2 million pounds) to 94,440 metric tons
 tively (see Table 3.".1). Although Bristol Bay has dominated the fishery, there are other very productive areas including Chignik and the Peninsula (see Table 3.1.2). The fisheries in other areas of Western Alaskare less productive but are not necessarily of less importance to the local econom es of their respective areas.

Table 3. 1. 1
Méstern Al aska Sal non Harvest
1969-1979
Pounds
$(1,000)$

Year	Chignik	$\begin{aligned} & \text { Penin- } \\ & \text { sula } \end{aligned}$	Bristol Bay	Kuskokwim	Lower Yukon	Upper Yukon	Norton Sound	Kotzebue	Western Al aska	Alaska
1969	10559	17110	46035	2924	3507	20	932	442	81529	219150
1970	17(-)97	29972	115834	2274	4177	28	934	1296	171612	346465
1971	12369	21016	66660	1913	4430	36	938	1265	10EI627	251705
1972	3897	10570	20838	2159	4461	28	$9(-) 4$	1543	44400	189784
1973	7385	7350	14493	3560	5807	123	1161	3326	43205	136493
1974	5400	4277	16007	3673	7438	745	1661	5349	44550	131603
1975	3692	4034	29714	2980	6311	1664	1533	4881	54809	139790
1976	11316	20892	48554	3545	5451	1672	1027	1416	93873	245858
1977	20789	143(-)4	47792	5713	6544	1682	1721	1847	100392	307000
1978	17067	36296	83363	4184	4448	890	2451	1077	149775	408000
1979	16858	47779	130058	5061	4395	079	1917	1257	208204	459000

Val ue

1969	1607	2285	10607	391	517	4	94	66	15571	42428
1970	2882	4776	26967	362	603	5	91	194	35880	67975
1971	2770	3117	16608	262	767	7	152	202	23885	51411
1972	993	1997	5231	345	780	6	102	262	9724	459296
1973	3065	1926	4.232	839	1196	23	434	931	12646	60059
1974	4869	1890	6641	1057	1880	402	420	1819	18978	65579
1975	1780	1658	11675	779	1557	308	359	1367	19483	55927
1976	5486	6417	$23 ? 59$	1547	2306	507	337	397	40256	117957
1977	15908	5954	28478	4012	3646	488	547	1072	60105	$1710(-) 0$
1978	16543	17126	57938	2550	2563	513	743	735	97811	238000
1979	15183	32288	139547	2998	2987	597	728	1064	195392	317000

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.

Tabl e 3. 1. 2
Managenent Area Harvest as a Percentage of the Western Al aska Sal non Harvest 1969-1979

Percentage by Neight

Year	Chignik	Peni nsula	Bristol Bay	Kuskokwim	Lower Yukon	Upper Yukon	Nort on Sound	Kotzebue	Western Al aska
1969	13.0	21.0	$56 * 5$	3.6	4.3	0.0	1.1	O*5	100*0
1970	10.0	17*5	67.5	1.3	2.4	O*O	0.5	0.8	100.0
1971	11.4	19.3	61.4	1.8	4.1	0.0	O*9	1.2	100.0
1972	8.8	23.8	$46 * 9$	4.9	10.0	$0 * 1$	$2 * 0$	3.5	100.0
1973	$17 * 1$	17.0	33.5	8.2	13.4	0.3	2.7	7 * 7	100.0
1974	$12 * 1$	9.6	35.9	8.2	16.7	1.7	3.7	12*0	100.0
1975	6.7	7.4	54.2	$5 * 4$	11.5	3.0	2.8	8.9	100.0
1976	12.1	22.3	51.7	3.8	5.8	1.8	1*1	1.5	100.0
1977	20.7	14.2	47.6	5.7	6.5	1.7	1*7	1.8	100.0
1978	11.4	24.2	55.7	2.8	3.0	0.6	1.6	O*7	100.0
1979	8.1	22.9	62.5	2.4	2.1	0.4	O*9	0.6	100.0

Percentage by Val ue

1969	10.3	$14^{*} 7$	68.1	2. 5	3.-3	0.0	0.6	0.4	100.0
197(-)	8.0	13, -'3	75.2	1*O	$1 * 7$	0.0	0.3	0.5	100.0
1971	11.6	13.1	69.5	1.1	3.2	0.0	0.6	0.8	100.0
1972	10.2	20.5	53.8	'3.5	8.1	$0 * 1$	1.0	2.7	100 *
1973	24.2	15.2	33.5	6.6	9.5	$0 * 2$	3.4	7.4	100.0
1974	25.7	10*O	35.0	5.6	9.9	$2 * 1$	2. 2	9.6	100.0
1975	9 * 1	8.5	59.9	4.0	8.0	1.6	1.8	7.0	100.0
1976	13.6	15.9	57.8	3.8	5.7	1.3	0.8	1*0	100.0
1977	26.5	9.9	47.4	6.7	6.1	O. ${ }^{\text {B }}$	0.9	1.8	100.0
1978	16.0	17.5	58.3	2.6	2.6	0.5	0.8	0.8	100.0
1979	7.8	16.5	71.4	1.5	1.5	0.3	0.4	0.5	100.0

sources: CFEC Gross Earnings Files and ADF\&G Catch Reports.

The salmon fisheries of Western Al aska are productive in relat ve term as well as in absol ute terns. Between 1969 and 1979 the annua Vestern Al aska harvest ranged from 23.4 percent to 49.5 percent of the total annual Al askan sal non harvest weight and from 21.1 percent to 61.6 percent of the total annual \mathbf{A} askan harvest val ue (see Table 3.1.3). The locations of the regi onal salmon fisheries are depicted in Figure 3. 1.

Chignik

The annual harvest wei ght of the Chignik sal mon fishery ranged from 1,675 netric tons ($\mathbf{3 . 7} \mathbf{~ m i l i}$ on pounds) to 9,430 metric tons (20.8 milion pounds) and averaged 5,216 metric tons (11.5 million pounds) bet ween 1969 and 1979. The annual real harvest val ue ranged from S1. 9 mili on to S21. 0 mili on and averaged $\$ 9.0 \mathrm{mili}$ on (see Table 3.1.4). Annual harvest weight has not exhibited a secular trend for the period as a whol e; the real harvest val ue has, however, tended to increase due to increasing real exvessel prices. The numbers of boat and fisherman nont hs have remai ned rel ativel y stable.

The Chignik fleet consists of purse seiners which are typically bet ween 9 to 13 meters ($\mathbf{3 0}$ to 42 feet) in length have acrew of five including the ski pper, and on average participate in the fishery 3 months per year, The boats are predominatel y operated out of local commities and crewed by local residents. Thei \mathbf{r} catch is landed for processing in the local area or tendered to other areas such as Kodiak. The season extends from

Table 31.3
Managemen= Area Harvest as a Percentage of the Alaska Salmon Harvest 1969-1979

Percentage by Weight

Year	Chignik	Peninsula	Bristol Bay	Kuskokwim	Lower Yukon	Upper Yukon	Norton Sound	Kotzebue	Western Alaska	Alaska
1969	4.8	7.8	21.0	1.3	1.6	0.0	0.4	0.2	37.2	100:0
1970	4.9	8.7	33.4	0.7	1.2	0.0	0.3	0.4	49.5	100.0
1971	4.9	8.3	26.5	0.8	1.8	0.0	0.4	0.5	43.2	10\%0
1972	2.1	5.6	11.0	1.1	2.4	0.0	0.5	0.8	23.4	$10^{\circ} \cdot 0$
1973	5.4	5.4	10.6	2.6	4.3	0.1	0.9	2.4	31.7	$10^{*} 0$
1974	4.1	3.2	12.2	2.8	5.7	0.6	1.3	4.1	33.9	$10^{\circ}=0$
1975	2.6	2.9	21.3	2.1	4.5	1.2	1.1	3.5	39.2	10\% 0
1976	4.6	8.5	19.7	1.4	2.2	0.7	0.4	0.6	38.2	100.0
1977	6.8	4.7	15.6	1.9	2.1	0.5	0.6	0.6	32.7	$10 \sim 0$
1978	4.2	8.9	20.4	1.0	1.1	0.2	0.6	0.3	36.7	100.0
1979	3.7	10.4	28.3	1.1	1.0	0.2	0.4	0.3	45.4	100.0

g

1969	3.8	5.4	25.0	0.9	1.2	0.0	0.2	0.2	36.7	100.0
1970	4.2	7.0	39.7	0.5	0.9	0.0	0.1	0.3	52.8	100.0
1971	5.4	6.1	32.3	0.5	1.5	0.0	0.3	0.4	46.5	100.0
1972	2.2	4.4	11.5	0.8	1.7	0.0	0.2	0.6	21.5	100.0
1973	5.1	3.2	7.0	1.4	2.0	0.0	0.7	1.6	21.1	100.0
1974	7.4	2.9	10.1	1.6	2.9	0.6	0.6	2.8	28.9	100.0
1975	3.2	3.0	20.9	1.4	2.8	0.6	0.6	2.4	34.8	100.0
1976	4.7	5.4	19.7	1.3	2.0	0.4	0.3	0.3	34.1	100.0
1977	9.3	3.5	16.7	2.3	2.1	0.3	0.3	0.6	35.1	100.0
1978	7.0	7.2	24.0	1.1	1.1	0.2	0.3	0.3	41.1	100.0
1979	4.8	10.2	44.0	0.9	0.9	0.2	0.2	0.3	61.6	100.0

Sources: CFEC Gross Earnings files and ADF\&G Catch Reports.

Table 3. 1. 4
Harvesting Activity

Chignik Purse Seine Salmon Fi shery
1969-197, 9
\qquad
Pounds Metric \quad (millions)
Exvessel Price
(\$/ Pound)
Nominal Real Year (millions) Inns Nomiana

1969	10.6	4790	1.6	3.5	0.15	0.33	222	1110	47.6	7.2	15.8
1970	17.1	7755	2.9	5.9	0.17	0.35	207	1035	82.6	13.9	28.7
1971	12.4	5611	2.8	5.5	0.22	$0 * 44$	239	1195	51.8	11.6	22.9
1972	3.9	1768	1.0	1.9	0.25	0.49	153	765	25.5	6.5	12.4
1973	7.4	3350	3.1	5.5	0.42	0.75	217	1085	34.0	14.1	25.5
1974	5.4	2449	4.9	7.9	0.90	1.47	271	1355	19.9	18.0	29.2
1975	3.7	1675	1.8	$2 * 7$	0.48	0.72	205	1025	18.0	8.7	12.9
1976	$11 * 3$	5139	5.5	-9.7	0.48	0.68	255	1275	$44 * 4$	21.5	30.3
1977	20.8	9430	15.9	21.0	$(-) .77$	1.01	277	1385	75.1	57.4	75.9

$\begin{array}{lllllll}19-r & 17.1 & 7741 & 16.5 & 20.3 & 0.97 & 1.19\end{array}$

1979	16.9	7647	15.2	16.8	0.90	1.00

Catch per Boat Month Weight Val ue Pounds $(\$ 1,000)$ $\therefore(1,000)$ Nomi nal Real
\qquad Boat Fisherman Data not avai lable

Sources: Thi s table was generated from data contai ned in (1)' Conmerci al Fi sheri es Entry Comissi on Gross Earntngs Files, and (2) Al aska Department of Fish and Gane Reports.

The real val ues and prices were cal cul ated usinn the U.S. C, PI; 1980 is the base period.
NOTE: 1978 and 1979 data are preliminary.

Gear Types and Major Fishing Areas:

$$
\begin{aligned}
& \rightarrow ? \text { Drift Gill Net } \rightarrow \ldots, \ldots \text { ? } \rightarrow \text { Urse Seine } \\
& \text { - . - ADF\&G Management Area Boundaries }
\end{aligned}
$$

Figure 3.1: Major Saimon Fi shing Areas, Nestern Alaska
Source: Alaska Department of Fish and Game, Alaska's Fisheries Atias, 1973.

June through Septenber. The seasonality of the fishery is summar zed in Tables 3.1.5 through 3.1.8.

Peni nsul a

There are purse seine, drift gill net, and set gill net sal non fisheries in the Alaska Peni nsula Management Area. The total annual harvest weight of the three fisheries ranged from $\mathbf{1 , 8 3 0}$ netric tons ($\mathbf{4 . 0} \mathbf{~ m i l i o n ~}$ pounds) to 21,672 metric tons (47.8 mili on pounds) between 1969 and 1979 and averaged 8,812 metric tons (19.4 milion pounds). The total annual real harvest val ue ranged from $\mathbf{\$ 2 . 5} \mathbf{~ m i l i o n ~ t o ~} \$ 35.7 \mathrm{mili}$ on and averaged $\$ 9.7 \mathrm{mili}$ on (see Table 3, 1.9). As Tables 3.1. 10 through 3. 1.12 indicate, the purse seine fishery is the nost productive of the three, the drift gill net fishery is second, and the set net fishery is a di stant third. For the period as a whole, neither annual harvest wei ght nor real value exhi bits a secul ar trend for any of the fisheries.

The boats in the purse sei ne fleet are up to 17.7 meters (58 feet) in length but are typically $\mathbf{1 0 . 7}$ neters ($\mathbf{3 5}$ feet) in length. The average crew size is five, including the skipper. The drift gill netters and set gill netters are typically 9.1 meters ($\mathbf{3 0}$ feet) and 7.6 meters (25 feet) in length, respectively. The average crew size is 1.5 for both gill net fisheries. The boats are predominately operated from local communities, such as, Sand Point, King Cove, Fal se Pass, Nel son Lagoon, and Belkofski and they have local crews. Their catch is landed and processed in local commities or tendered to other managenent areas.

Table 3. 1.5
Chignik Purse Sei ne Sal non Fi shery Number of Boats and Catch by Month 1969-1977

Number of Boats

Year	Lan.	Feb.	March	April	May	J une	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
1969	0	0	0	0	0	66	68	67	21	0	n	0	68
1970	0	0	0	0	0	69	70	68	0	0	0	0	72
1971	0	0	0	0	0	76.	77	77	9	0	0	0	77
1972	"	0	n	0	0	0	79	74	o	0	0	0	79
1973	()	0	0	0	n	76	77	58	6	0	0	0	79
1674	(1)	0	0	0	0	94	94	78	5	0	0	0	94
1.975	1)	$1)$	0	0	0	3	86	76	40	0	0	0	86
1476	$1)$	0	0	0	0	75	77	77	26	0	0	0	78
1977	0	0	0	0	()	87	93	86	11	0	0	0	88

Catch (1,000 pounds)

196	11	(1)	n	0	0	677	1984	7814	83	0	0	o 10559
1970	0	0	0	0)	7810	6374	2912	0	0	0	O 17097
1911	0	1	11	0	0	1375	6204	4744	46	0	0	0, 12369
1012	11	1	0	0	0	\bigcirc	2929	968	0	0	0	O 3897
1013	11	(0	0	0	3427	2516	1033	9	0	0	07385
1414	11	11	0	0	0	1329	3310	733	28	0	0	$0 \quad 5400$
1076	11	0	$1)$	0	0	-0	1267	2059	353	0	0	0369 ?
1076	11	(1)	0	0	0	7384	368?	3901	259	0	0	011316
1917	0	0	0	0	0	3793	11909	5548	5^{9}	0	0	0,20789

Source: CFEC Gross Earnings Files.
Note: A minus sign indicates nonths in which the catch is confidential because fewer than four boats partici pated in the fishery.

Table 3. 1. 6
Chignik Purse Sei ne Sal non Fi shery
The Number of Boats and Catch by Month as a Percentage of Annual Activity 1969-1977

Percentage of Boats

Year	Lan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
1960	"	0	0	()	0	97.1	100.0	98.5	30.9	0	0	0	100. 0
1910	11	0)	0	0	95.8	97.2	94.4	0	o	0	0	100.0
1ッフ1	19	0	0	0	0	98.7	100.0	100.0	11.?	0	0	0	100.0
1012	0	11	1	0	()	0	100.0	93.7		r.)	0	0	100.0
1913	11	1	0	1	0	96.2	97.5	73.4	7.6	0	0	0	100.0
1974	$1)$	n	0	0	0	100.0	100.0	83.0	5.3	o	0	0	100.0
1975	11	11	0	0	0	3.5	100.0"	88.4	46.5	0	0	0	100.0
1976	0	1	0	a	0	96.2	98.7	98.7	33.3	0	,		10(-).0
1977	i	11	$1)$)	0	98.9	105.7	97.7	12.5	0			100.0

Percentage of Catch

1960)	11	11	0	11	0	t. 4	18.8	74.()	0.8	O	0	0	100.0
1910	11	11	(1)	()	0	45.7	37.3	17.0	O	0	o	0	100.0
1971	1	11	0	$1)$	()	11.1	50.2	38.4	$0 \cdot 4$	()	0	0	100
1918	[)	11	11	0	11	(1	75.?	24.8	0	0	0	\bigcirc	100.0
1913	11	11	(1)	0	0	51.8	34.1	14.0	0.1	0	0	0	100.0
1974	1	11	0	1)	0	24.6	6.]. 3	13.6	0.5	0	0	0	100.0
1910	1)	1	1	11	0	-0.0)	34.3	$55^{\text {¢ }}$ •1i	9.6	0	0	0	100.0
19%	11	11	11	11	0	29.9	3?.5	35.3	2.3	0	0	0	100.0
19%	11	11	11	(1)	11	16.3	5 ¢. 8	26. 7	(1). 3	0	cl	0	100.0

Source: CFEC Gross Earni ngs Files.
Note: A minus sign indicates months in which the catch is confidential because fewer than four boats partici pated in the fishery.

Table 3. 1. 7
Chignik Purse Sei ne Sal mon Fi shery Number of Fi shernen by Month

1969-1977

	Year	Jan.	Feb.	March	April	May	J une	July	Aug.	Sept.	$\underline{0} \mathrm{t}$.	Nov.	Dec.	Total	
	1969	o	0	0	o	0	330	340	335	105	0	0	0	1110	
	1970	0	0	0	0	0	345	350	340	0	0	0	0	1035	
	1971	o	0	0	0	0	380	385	385	45	0	0	0	1195	
$\stackrel{\sim}{N}$	1972	0	0	0	0	0	0	395	370	0	0	0	0	765	
	1973	0	0	0	0	0	380	385	290	30	0	0	0	1085	
	1974	0	0	0	0	0	470	470	390	25	0	0	0	1355	
	19-? 5	0	0	0	0	0	15	430	380	200	0	0	0	1025	
	1976	0	0	0	0	0	375	305	385	130	0	0	0	12	$7 \quad 5$
	1977	0	0	0	0	0	435	465	430	55	0	0	0	1385	

Source: CFEC Gross Earnings Files.

Table 3- 8
Chignik Purse Seine Salmon Fishery Percentage of Fisherman Man Months by Month 1969-1977

Year	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1989	1	11	$1)$	11	0	29.7	30.6	30.2	0.5	0	0	0	100.0
1×10	1	$1)$	1	0	11	33.3	33.11	3?.9	0	0	0	0	100.0
1911	$1)$	0	0	0	n	31.8	32.2	32.7	3.8	0	0	0	100.0
101\%	11	1	0	0	0	0	51.6	48.4	0	0	0	0	100.0
1973	1	11	11	11	©	35.0	35.5	26.7	2.8	0	0	0	100.0
1914	1	11	0	11	0	34.7	34.7	28.8	1.8	0	0	$1)$	100.0
119\%	11	11	11	0	0	1.5	42.0	37.1	19.5	$1)$	0	0	100.0
1016	11	1	1	n	0	29.4	31.2	30.2	10.2	0	0	0	100.0
1017	11	(1)	11	11	n	31.4	33.6	31.0	4.0	0	n	0	100.0

Source: CFEC Gross Earnings Fi es.

Table 3.1.9
Peni nsul a Sal non Harvest 1969-1979

		Catch				Exvessel Price	
		Wei ght		Val ue			
	Year	$\begin{aligned} & \text { 'Pounds } \\ & (1,000) \end{aligned}$	Metric Tons	Nominal	Real ${ }^{1}$	Nominal	Rea 1
	1969	17110	7761	2285	4995	0.13	0.29
	1970	29972	13595	4776	9856	0.16	0.33
	1971	21016	9533	3117	6167	0.15	0.29
	1972	10570	4795	1997	3825	0.19	0.36
\&	1973	7350	3334	1926	3473	0.26	O*47
	1974	4277	1940	1890	3071	0.44	0.72
	1975	4034	1830	1658	2468	0.41	0.61
	1976	20892	94-77	641 " 7	9033	0.31	0.43
	1977	$143(-) 4$	6488	5954	7B73	0.42	0.55
	1978	36,296	16464	17126	? 1035	O*47	0.58
	1979	477"79	21672	32288	35710	0.68	0.75

Sources: This table was generated from data contained in (1) Commercial fisheries Entry Comission Gross Earni ngs Files, and (2) Alaska [department of Fish and Game Reports.
${ }^{1}$ The real values and prices were cal culated usi ng the U.S. CPI; 1980 is the base period. NOTE: 1973 and 1979 data are preliminary.
abe 3．． 10
Harvestina Activity
Peninsu a－Meutians Purse Seine Salmon Fishery
1969－1977

8

9809	9.	4.14	1.9	2.2	0.11	0.24	84	920	49.3	5.4	11.7
70	19.5	9月5：9	2.8	5.9	0.4	0.30	263	134，5	72.6	10.5	21.7
r	12.7	976	． 7	3.3	0.13	0.26	26.1	1305	48.7	6.4	17．6
バン	3.4	${ }^{4} 5$	0.1	－	0.9	0.37	$15 ?$	760	22.5	4.3	8.3
973	2.3	rob	0.5	0.9	0. ？	0.39	97	485	24.1	5.2	9.3
104	1.4	045	0.5	0.9	0.39	0.6 .3	6.9	345	20.6	8.0	12.9
1	4.	6.4	0.5	0.1	0.35	0.53	87	410	6.5	${ }_{5} \cdot 8$	8.7
1916	13.1	1，95 ${ }^{\text {a }}$	3.7	5.3	0.28	－40	202	010	65.0	8.5	2t．
1111	\cdots	17\％	$? \cdot$	3.3	（1．3）	0． 39	114	471	47.8	4.3	19.9

Sources This table was nenerated from data contained in（1）Commercial F sheries Entry Commission Gross Earn nas Files，and（2）Alaska Department of Fish and Game Catch Reports．

The rea va ues and prices were calc．${ }^{\text {ated }}$ us no the U．S．CPI； 980 is the base period．

Table 3.1.11
llarvestino Activity
Peninsu a-Aleutians Drift dill Het Sa mon F shery
1969-1977

960	1	3234	1.1	2.5	0.16	0.35	255	$3 P^{2} 3$	28.0	4.5	9.8
)	0.0	406	1.7	3.4	0.9	0. 38	319	477	$28 . ?$	5.2	0.8
1911	7.4	3362	1.3	2.5	0. 7	0.34	300	450	24.6	4.3	8.4
97)	to.t	31	7	2.4	0. 9	0.36	303	455	21.9	4.	7.8
1013	4.	1870	1.7	2.	0.28	0.50	336	504	12.3	3.4	6.2
1014,	?.0	HAM	0.7	1.5	0.47	0.76	223	335	H.8	4.	8.7
4	2.3	4	-	.5	0.44,	0.65	224	342	10.2	4.5	$6 . t$
1010	t. 6	2984	2.3	3.?	0. 34	$0.4+8$	250	394	25.7	R. A	12.4
	48	\therefore Sto	?.4	3.7	0.58	0.77	313	470	15.3	A. ${ }^{\text {a }}$	11.9

Sources: This table was generated from data contained in (1) Commerc al Fisheries Entry Comm ss on Coss Earnings Files, and (2) Alaska Department of Fish and Game Catch Reports

The -ea va ues and pr ces were ca culated us na the $S C P ; 1980$ is the base period.

Table 3. 1. 12 llarvestina Activity
Peninsula-Aleutians Set Gill Net Sa mon Fi shery
1969-1977

	Catch			Exyessel Price		Catch per Boat Month			
				..Number ${ }^{\text {a }}$ o-f	Weirint	Val	Talue		
	Pounds	Metric	(inil Tions)		($1 /$ Polij).-	Boats li sherman	Pounds		1,000)
edr	(millions)	Tons	Hominal Rea!'	Nominal Real	Months Hou, ths	$(1,000)$	momina.].. -Rea ?	

196.4	0.9	413	0.7	0.3	0.17	0.37	144	216	6.3	1.1
1070	1.9	614	0.3	n.t	0.19	0.30	130	105	11.4	2.2
1911	11.9	4.20	0.7	0.4	0.19	0. 38	116	114	8.0	1.5
1912	0.9	234	11.1	0.2	().?()	0.39	99	149	5.2	1.1
1973	の."	403	0.3	0.5	0.31	0.55	125	198	7.1	2.2
1014	0.9	408	0.4	0.7	0.4 " 7	0.77	150	275	t.oo	2.8
1076	11.4	16.2	0.7	$0 . ?$	0.45	0.67	98	144	3 .-r	1.7
16\%	1.8	い3)	0.4	O.t	0.35	O. 50	139	209	8.4	3.0
1911	1.?	¢50	0.7	0.9	0.9.7	0.75	155	723	7. 8	$4_{4}{ }_{4}$

Sources: This table was generated from data contai ned in (1) Commercial Fi sheries Entry Commi si son Ciross Earnings Files, and (2) Al aska Department of Fish and Gane Reports.
IThe real values and prices were cal cul ated usino the U.S. CPI; 1080 is the base period.

The season lasts fromJune into Septenber for all three fisheries; typically however, the purse sei ne fishery is rel ativel y inactive in Septenber. The seasonality of the Peninsula sal non fisheries is sum narized in Tables 3.1. 13 through 3.1.24. On average, each boat in the purse sei ne, drift gill net, and set gill net fisheries are active during 1.7, 1.9 , and 2.0 cal endar nonths per year respectivel y.

Bristol Bay

As was indicated earlier, the Bristol Bay salmon fishery is a dom nant fishery both for Western Alaska and Alaska as a whole (refer back to Tables 3.1.1 through 3.1.3). The annual harvest weightof the total Bristol Bay sal non fishery ranged from 6,574 metric tons (14.5 milli on pounds) to 58,994 netric tons (130.1 mili ion pounds) bet ween 1969 and 1979 and averaged 25,540 metric tons (56.3 mili on pounds). The real value of the annual harvest ranged from $\$ 7.6 \mathrm{milli}$ on to $\$ 154.3 \mathrm{milli}$ on and averaged $\$ 41.1 \mathrm{million}($ see Table 3.1.25).

Two gear types are used in the Bristol Bay salmon fishery, drift gill nets and set gill nets. As is indicated by Tables 3.1.26 and 3.1.27, the drift gill net fishery is the dominant of the two. The boats in each fleet range in length from under 6.1 meters ($\mathbf{2 0}$ feet) to $\mathbf{9 . 8} \mathbf{8}$ meters (32 feet) in length; the drift netters are typically closer to the upper range and the set netters are typically closer to the lower range. The average $c r \equiv w$ sizes are three and $t n o$, respectivel y, for the $d r i f t$ and set gill net fleets. Both fleets operate out of local commities

Table 3．1． 13
Peninsu a Purse Seine Salmon Fishery Number of Boats and Catch by Month 1969－1977

Number of Boats

Year	Jan．	Feb．	March	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
19.9	11	（i）	\bigcirc	1	（）	37	88	57	$?$	0	0	0	97
1：7i，	，	11	（）	11	0	37	111	120	1	0	0	0	131
1.71	11	$1 i$	（1）	$1)$	0	36	115	$1 \cap 8$	$?$	0	0	0	118
1.7	1	11	（）	0	O	24	86	37	0	0	0	0	89
$1: 73$	11	$(1$	(1)	r）	0	16	6,7	12	2	0	0	0	70
1行	\cdots	1	（）	1）	0	9	5	$!$	ก	0	0	0	55
リリ゙	1	1	$1)$	1	$1)$	23	15	44	0	0	0	0	6,2
1911，	11	11	11	（）	？	$3!$	80	45	0	0	0	0	109
｜$\because 1 /$	11	i）	1	1）	H	76	76	6	0	0	0	0	88

8

Catch 1，000 pounds）													
110，	${ }^{\prime}$	1	11	11	11	2304	1413	5240	－0	0	0	0	9070
1：11	11	＂	11	0	＂	\％16．9	6.767	$5 ち 79$	－0	0	\bigcirc		19531
1：1］	$1 \cdot$	\because	11	0	n	2103	5605	4987	－0	0	n）		12700
1：18	1	0	0	0	11	1782	1375	263	0	0	0	0	3419
1017	－1	11	i	0	n	595	1274	430	－0	0	0	0	2340
16i4，	$1 /$	11	（1）	0	0	6,1	330	31	0	0	0	0	1421
1リ7	9	11	$(1$	0	0	885	41	419	0	0	0	0	1354
19？6	． 1	0	11	0	-0	16，3］	38370	76.72	0	0	0		13133
1111	1	1	i，	n	197	214？	$404 ?$	42	0	0	0	0	\＆ 316

Source：CFEC Gross Earnings Fi es．
Note：A minus sign indicates months in whel the catch is confident al because fewer than four boats participated in the fishery．

Table 3．1．14
Peni nsul a Purse Sei ne Salmon Fi shery
The Number of Boats and Catch by Month as a Percentage of Arnual Activity 1969－1977

Percentage of Boats

Year	Jan．	Feb．	March	April	May	June	J ul y	Aug．	Sept．	Ot．	Nov．	Dec．	Annual
1919	\cdots	11	11	n	n	30.1	90.7	58.8	2.1	0	0	0	100.0
1いつい	1	1	＂	0	0	28.2	84.7	91.6	n． 8	0	（）	0	100.0
1911	$1!$	11	11	（）	$1)$	30.5	97.5	91.5	1.7	0	0	（）	100．I－I
1912	（1）	${ }^{1}$	1	0	9	32.6	96.6	41.6	\bigcirc	（）	0	0	100．0
1973	（1）	0	n	$1)$	1	22.9	25.7	17.1	2.9	0	0	0	100.0
1914	$1)$	1	1	11	0	18.04	100．0	9.1	0	0	0	0	100.0
1976	（1）	$1{ }^{1}$	11	11	0	37.1	24．？	71.0	0	（）	0	0	100＊O
1916	11	i	11	（！	1.4	32.1	73.4	78.0	0	－	0	0	100.0
1917	1.	11	0	11	18.2	86.4	86.4	6.9	0	n	0	0	100.0

Percentage of Catch

1919	1	$1)$	$1)$	1）	11	26．4	15．6	57.8	-0.0	0	0	0	100.0
1910	1.	${ }^{1}$	1	11	11	36．7	34.0	23．\％	-0.0	（）	0	0	100.0
1911	1.	1	$1)$	1	（1）	16．6	44.1	39.3	－0．0）	（ ）	0	0	100.0
191\％	11	！	11	$1)$	11	$5 ? .1$	4 （1．2．	7.7	（）	（）	0	0	100.0
1173	1.	1	11	i）	1	$2^{5} \cdot 4$	55.3	18.4	-0.0	（1）	0	0	$100 * \mathrm{O}$
1919	11	11	$1:$	$1)$	（）	$t .3$	93.6	？$?$	$1)$	$1)$	0	n	100.0
1＇！＇，	1.	1	$1)$	$1)$	）	（，f．， 1	3.1	30.5	（）	C	0	（）	100．0
1\％11	11	11	11	11	－11．11	1\％．4	29．1	5月．4	（1）	［）	$f-r$	O	100.0
1×17	1.	！ 1	$1!$	1）	9.1	？ 6.2	59.4	O． 5	11	n	n	n	100.0

Source：CFEC Gross Earni ngs Files．

Note：A minus sign indicates nonths in which the catch is confidential because fewer than four boats participated in the fishery．

Table 3.1. 15
Peni nsul a Purse Sei ne Salmon Fi shery Number of Fi sher nen by Month

1969-1977

Year	Jan.	Eeb	March	April	May	dune	July	Aug.	Sept.	Oct.	Nov.	Dec.	Iotal
1969	0	0	0	0	0	185	440	285	10	0	0	0	920
1970	()	0	0	0	0	185	555	600	5	0	0	0	1345
1971	0	0	0	0	0	180	575	540	10	0	0	0	1305
1972	0	0	0	0	0	145	430	185	0	0	0	0	760
1973	0	0	0	0	0	80	335	bo	10	0	0	0	485
1974	0	0	0	0	0	45	275	25	0	0	0	0	345
1975	0	0	0	0	0	115	75	2'? 0	0	0	0	0	410
1976	0	0	0	0	10	175	400	425	0	0	0	0	1010
1977	0	0	0	0	no	380	380	30	0	0	0	0	870

Source: CFEC Gross Earni ngs Files.

Table 3.1.16
Peninsula Purse Seine Salmon Fishery Percentage of Fisherman Man Mon hs by Month 1969-977

N	Year	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	1.4t,	1	1	1	19	${ }^{\prime}$	20.1	47.8	31.0	1.1	0	0	0	100.0
	1910.	${ }^{\prime}$	(1	1	0	13.8	41.3	44.6	0.4	0	0	0	100.0
	1611	4	1	11	"	0	13.8	4.4	4.4	1. $\%$	0	0	$1)$	100.0
	$1+19$	1	11	1	1	0	19.1	56.6	24.3	1	0	0	0	100.0
	1915	,	1	${ }^{1}$	"	1	16.5	69.1	12.4	2.1	(0	0	00.0
	1リ14	11	11	1.	11	1	13.0	70.7	7.2	n	0	0	0	00.0
	1.15	,	11	"	9	1	24.0	18.3	52.7	0	0	0	0	100.0
	$\cdots 110$	1	\because	"	11	1.0	$1 \% .3$	39.6	42.1	0	0	0	0	100.0
	1617	1	${ }^{\prime}$	"	11	0.2	43.1	43.7	マ. 4	1	0	0	0	100.0

Source CFEC Gross Earnings Files.

Table 3.1.17
Peninsula Drift Gill Net Salmon Fishery Number of Boats and Catch by Month 1969-1977

Number of Boats

Year	Jan.	Feb.	March	Apri]	May	June	July	Aug.	Sep		Nov.	Dec.	Annual
19, ${ }^{1}$		1	0	11	$?$	25	76	35	17	0	0	0	135
1":い	11	''	1	(1)	1	16:7	95	51	4	0	0	0	176
14:1	1	' 1	11	0	0	133	125	34	8	0	0	0	136
1\%:	1	11	11	11	0] 4,3	109	77	4	0	0	()	160
14:3	11	$1{ }^{\prime}$	11	0	?	14.4	126	1, 3	11	0	ก	0	15 r
1 1) 4	${ }^{\prime}$	f	1	0	1	${ }_{5} 6$	106	$F, 0$	11	0	0	0	131
1'!	11	$1{ }^{1}$	1	()	0	10e	55	57	15	0	0	0	131
19!	(1)	11	()	11	0	124	73	52	7	0	0	0	135
19:7	11	1	11	$1)$	0	127	40)	$\cdots 0$	11	0	0	0	146

జ્
Catch (1,000 pounds)

$1-1$	1	(1)	(1)	0	-0)	4,334	1341	391	67	0	0	0	7129
1-R'n	11	1	$(1$	11	-11	708.1.	1438	447	6	()	0	0	8953
1-1.1	$1)$	11	$1)$	()	${ }^{1}$	4049	7677	656	12	0	0	0	7389
$1{ }^{-1}$	11	11	()	()	${ }^{1}$	504!	1221	3681	2	()	0	0	6636
	\cdots	1	$1)$	1)	-i	29697	1052	175	7	()	0	0	4122
1-1-1	11	1	11	1)	0	$38 ;$	1350	26,9	49	0	1	0	1957
1.11	1	$1!$	11	(1)	0	1175	5 8 Q	409	59	0	0	0	2322
$1 \cdot 1 / 8$	i	11	11	11	0	35110	25,40	540	7	0	0	()	6587
1911	1)	$1)$	11	(1)	$(1$	2291	2184	6.55	37	0	n	0	4776

Source: CFEC Gross Earn ngs Files.
Note: A minus sign indicates months in wh ch the catch is confident a because fewer than four boats p rtic pated in the fishery.

Table 3．1． 18
Peni nsula Drift GII Net Sal non Fi shery
The Number of Boats and Catch by Month as a Percentage of Annual Activity 1969－1977

Percentage of Boats

Year	Jan．	Feb．	March	April	May	June	Juiy	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
1．76，	1	1	1	0	1.5	92.6	56.3	25.9	12．\％	0	0	0	100.0
1970	1.	1	11	11	ni．t	94.9	54.0	29.0	2.3	0	0	0	100.0
1071	0	11	1）	0	6	97.8	91.9	25.0	5.9	0	0	0	100．0
19\％	11	1.	11	0	n	9ヶ．6	68.1	23.1	2.5	0	0	0	100.0
1973	11	1	${ }^{11}$	0	1.3	4.1	79.7	33.5	7.0	0	0	H	100.0
19\％4	11	1	0	11	1	42.7	80.9	39.7	8.4	0	0	0	100.0
1リ15	11	11	11	11	0	80.9	42.1	30.7	11.5	0	0	0	100.0
1076	11	11	$1)$	11	0	91.9	54.1	38.5	$5_{5} .2$	0	0	0	100.0
1：17	1.	＂	1	n）	1	8.7 .0	61.0	54.8	11.6	0	0	0	100.0

Percentage of Catch

1ねが品	11	1	11	0	－0．01	74.9	18.8	5.3	0.9	0	n	0	10（－）． 0
1610	11	1	i	，	－0．0）	78.9	16.1	5.0	0.1	0	0	（）	100.0
1711	${ }^{\prime}$	1	1	1	n	54.8	36.2	8.9	0.2	0	0	0	100.0
157	11	（＇	1	11	0	76.0	18.4	5.5	0.0	0	0	0	100.0
141：	1	11	（＇	11	－0．01	70.0	25.5	4.2	0.2	0	0	0	100．0
11.14	1	11	11	11	0	14．4	69.3	13.7	3.5	0	n	（）	100.0
18\％	1	＂	1.	1）	0	50.6	25.3	71.5	2.5	0	10	0	100.0
$\left.1^{\prime}\right) 1 /$	11	（＇	1	，	1	53.1	38．6	$8 . ?$	0.1	$1)$	0	0	100.0
1111	11	1.	（1	1	1	4 4.0	4.4 .7	13.7	0.18	0	0	0	100.0

Source：CFEC Gross Earnings Files．
Note：A minus sign indicates nonths in which the catch is confidential because fewer than four boats participated in the fishery．

Tab e 3. 19
Peninsula Drift Gill Net Salmon Fishery
Number of Fishermen by Month
1969-1977

Source: CFEC Gross Earnings Files.

Tab e 3． 2°
Peninsula Dr•ft Gill Net Salmon F shery Percentage of Fisherman Man Months by Month 1969－1977

む̀

Year	Jan．		March	April	May	June	July	Aug．			Nov．		Total
1\％＂	1	${ }^{\prime}$	11	（	＂． 1	49.0	20.8	13.7	6.7	0	0	0	00.0
1911	1	$1:$	1	1	1.3	52.5	29.9	16．0	1.7	0	0	0	00.0
1い1	1	11	＂	11	0	44.1	41.1	11.3	2.7	0	0	0	00.0
$\because 17$	（1）	i	11	1	0	50.5	36.0	17.2	1.3	0	0	0	100.0
				F	$1{ }^{\text {\％}}$	4.9	37.5		3.3	0	0	0	$00 \times$ ）
	11	11	1	1）	${ }^{1}$	\therefore ？ 01	47.5	22．4	4.9	（）	0	0	100.0
：	．				＂	Gti．s 5	$24_{4} 1$	22.4	t．et	0	0	n	100.0
11．11	1	11	1	11	1	$4 \times .4$	2月．5	20.3	2.7	0	0	0	100.0
$i:$		1		：	a	4.0	29．4	25.6	5.4	1	0	0	00.0

Source：CFEC Gross Earnings Files．

Table 3．1．21
Pen nsu a Set Gill Net Salmon Fishery Number of Boats and Catch by Month 1969－1977

Number of Boats

Year	Jan．	Feb．	March	April	May	dune	July	Aug．	Sep		Nov．	Dec．－	Annual
13.6		11	1）	$1)$	1）	Pil	$4{ }^{\prime}$	$? 4$	15	0	0	0	72
1911	3	1	1.	1	$1)$	41	41	29	17	（）	\bigcirc	0	60
1リ11	1	11	$1)$	$1)$	，	34	44_{4}	$? 0$	19	0	0	0	51
1り1：	11	． 1	11	11	$1)$	30	419	26	3	0	0	0	50
1911	4	$1)$	，	（）	$?$	36	48	79	10	0	0	0	67
11114	11	11	＇1	（1）	$?$	5,0	71	17	10	\bigcirc	0	0	86
111	11	1）	＇）	（）	$1)$	33	33	16	14	0	0	0	49
11.			1		1	40	43	34	11	0	0	0	67
				1	1）	43	$5 ?$	46	15	0	0	O	68

Catcl（1，000 pounds）													
11110		$1:$	1	1）	$1)$	342	40,6	111	4.1	0	0	0	911
1リ11	11	－ 11	1）	－ 11	1	6.44	55.3	20.7	32	（）	0	0	1488
$1)^{\prime} 1$	11	11	$1)$	$1)$	i）	36,1	c， 41	6.5	17	0	0	0	927
107，	\because	$1)$	11	$1)$	1	103	246	74	-0	0	0	0	515
1893	\cdots	11	1	11	－＇${ }^{\prime}$	344	3116	16.3	5	\bigcirc	0	0	893
11.16	＇，	$(1$	1）	(1)	－1	323	0.17	73	76	0	0	0	899
$1 \because \%$	11	（）	1）	11	1	［7	174	47	${ }_{5} 1$	0	0	0	358
1：$:$	11	11	0	$1)$	\cdots	615	3：3	］ $8: 8$	15	0	0	0	1172
$1: 1$	11	11	11	(1)	1	32\％	6.6 .4	7．6	34	0	0	0	1212

Source：CFEC Gross Earnings Fi es
Note：A minus sign indicates months in which the cat＜h is conf dentia because fewer than four boats partic pated in the fishery．

Tab e 3. 22
Peninsula Set Gill Net Salmon Fishery
The Number of Boats and Catch by Month as a Percentage of Annua Activity 1-69-977

Percentage of Boats

Year	Jan.	Feb.	March	April	May	June	Juty	Aug.	Sept.	Oct.	Nov.	Dec.	Annua]
1:19	($1)$	1	()	$1)$	13.3	62.5	33.3	20.8	ก	0	0	100.0
1,17	11	1.1	(1)	1.7	1)	6.8. 3	68.3	49.3	28.3	0	n	0	100.0
1) 1	11	1	1 '	$1)$	(1)	66.7	H6. 3	39.7	$35_{2} .3$	0	0	0	100.0
1,13		11	$1)$	(1)	$1)$	60.0	80.0)	52.0	$t .0$	0	0	0	100.0
1173	1	11	11	1	3.11	53.7	71.6	43.3	14.9	0	0	0	100.0
$1_{11}^{11} 1$	[1	11	${ }^{1}$	0	2.3	54.1	82.6	19.0	11.0.	0	\bigcirc	0	100.0
1:15	1	11	0	ก	0	6.7 .3	67.3	32.7	20.0	0	0	0	100.0
1, 16.	1,	1.	()	11	1.5	74.0	6.4 .2	50.7	16.4	()	0	0	100.0
11.77	i	n	0	1)	$1)$	61.8	76.5	$0,7.6$	22.1	1)	0	0	100.0

Source: CFEC Gross Earnings files.
No e: A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery.

Table 3. 1.23
Peni nsula Set Gill Net Sal mon Fi shery
Number of F lis hermenby Mórith 1969-1977

	Year	Jan.	Feb,	March	Apri]	May	J une	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	1969	0	0	0	o	0	90	68	36	23	0	0	0	216
	1970	0	2	0	2	0	62	62	44	26	0	0	0	195
	1971	0	0	0	0	0	51	66	30	27	o	0	0	174
ω	1972	0	0	0	0	0	45	60	39	5	0	0	0	149
	1973	0	0	0	0	3	54	72	44	15	0	0	0	188
	1974	0	0	0	0	3	75	107	26	15	0	0	0	225
	1975	0	0	0	0	0	50	50	24	21	0	0	0	144
	1976	0	0	0	0	2	75	65	51	17	0	0	0	209
	1977	0	0	0	0	o	63	78	69	23	0	0	0	233

Source: CFEC Gross Earni ngs Files.

Table 3.1.24
Peninsula Set Gill Net Salmon Fishery Percentage of Fisherman Man Months by Month 1969-1977

Year	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1 "		1	0	1		4.1 .7	31.3	16.97	$\bigcirc 4$	0	0	0	100.0
1"0	i	11.		r."	n	31.5	31.5	22.3	13.1	n	0	0	100.0)
1 :			:	"		21.3	37.9	17.7	15.5	0	0	0	100.0
1 :		1	!		n	30.3	40.4	26.3	3.0	0	0	0	100.0
1 ,			r	r.	1 .t.	? 9.6	3R.4	23.7	R.0	0	0	0	100.0
1/1/					1.3	33.3	47.3	11.3	6.7	n	n	0	100.0
${ }^{1}$:			6		34.4	34.4	16.7	14.6	0)	n	100.0
1				0	. 7	36.0	30.9	24.5	7.9	0	0	0	100.0
				1		77.1	33.5	29.7	9.7	0	0	0	100.0

Source: CFEC Gross Earnings Fi ㅇ.

Table 3.1 .25
Bristol Bay Salmon Harvest
1969-1979

Sources: This table was generated from data contained in (1) Commercial Fisheries Entry Commission Gross Earnings Files, and (2) Alaska Department of Fish and Game Reports.
The real values and prices were calculated using the U.S. CPI; 1980 is the base period.
NOTE: 1978 and 1979 data are preliminary.

Table 3.1 .26
Harvesting Activity
Bristol Bay Drift Gill Net Salmon Fishery
1969-1977

Weiont Catch Value		Exvessel Pri=e	Huriber of		Catch per Boat Month			
		Weight						
Pounds Metric	millions		(\$/Pound)	Boat.	Fisherman	Pounds		000)
Year (millions) Tons	Nomina! Real	Nominal Real	Months	Months	, 000	Nominal	Rea	

19+3	41.4	$184 ら 3$	9.4	20. 5	0.23	0. 50	2R11	8433	14.6	3.3	7.3
1070	108.0	49000	$25 . ?$	51.9	1). 23	0.48	3433	10290	31.5	7.3	15.1
1911	0.1 - 0	27227	14.9	79.5	0.25	0.49	300	900	200.1	49.8	08.5
$191 ?$	$1 \cdot$	4830	4.7	${ }^{9} .4$	0.25	0.49	3110	9357	$t .2$	1.6	3.0
1413	1 .	6.207	4.0	7.2	0.79	0.52	336	1008	40.7	11.9	21.4
140	1.1	6.215	5.6	9.7	0.41	0.6 .7	1929	3987	10.3	4.2	6.9
1915	$\therefore 1+1$	12910	10.6	15.4	0.34	0.58	1942	4926	13.9	5.5	8.1
1916	$44_{4} \cdot 1$	20111	21.3	20.9	0.483	0.68	3008	9024	14.7	7.1	10.0
11^{17}	4. ${ }^{\text {a }} 4$	101:1	? ${ }^{\text {21 }}$	34.2	0.60	1). 70	1499	4407	20.0	17.3	22.9

Sources: this table was generated from data contained in (1) Commercial fisheries Entry Commission Fross Earnings Files, and (2) Alaska Department of Fish and Game Reports
The real values and prices were calculated using the U.S. CP ; 1980 is the base period.

Table 3.1 .27
Harvesting Activity
lirist；Bay Set Gill Net Salmon Fis rery
1969－1971

	Catch				Exvessel Price （\＄／Pound） Nominal Real		Number of		Catch per Boat Month		
	Weight		Value				Weight Value Pounds $(\$ 1,000)$				
	Pounds	Metric			Boat Tishermar Months Fonths						
	millions）	lons	Nomind	Real			（1，000）	1 l	d		
1，6．9	い． 1	8394	1.2	2.0	0.23	（1．51	438	1876	5.5	1.3	$? .9$
1910	l． 1	1547	1.9	3.1	0.23	0.48	1184	2368	6.6	1.5	3.1
1011	f．to	3010	1.7	3.3	0.25	0.50	1017	2034	6． 5	1.6	3.3
リリ゙号	1.4	6,17	11.3	11.6	11.24	0.46	977	1964	1.4	11.3	0.6
1913	11.8	361	0.2	0.4	0.31	0.50	（，9） $5^{\text {c }}$	1300	1.2	0.4	$1) .6$
1114	2.3	1046	1.11	1．t．	1.64	0.71	443	ค．8b	5.2	2.3	3.7
リリい	C． 1	1208	1.1	1.0	0.40	0.59	6.49	1208	4.1	1.6	2.4
$1 \cdot 76$	4.2	1407	2.11	？ 3	0.47	0．ast	95？	1904	4.4	2.1	2.9
｜＇i｜	4.4	197！		3.4	0.50	1）． iH^{H}	428	84	10．？	6.0	8.0

Somrces：This table was gencrated from data contained in（1）Commercial Fisheries Entry Comission Gross Larn nos Files，and（2）Alaska Department of ish and Game Reports．
The real values and pr ces were ca cuated using the $U S$ ；PI； 1980 is the base period．
during the salmon season; the commities incl ude Dillingham, Naknek, and Togiak. Approxi mately $\mathbf{6 0}$ percent of the boats and crews are from the Bristol Bay area, the remai nder are from el sewhere inAlaskaor from other states.

Although the Bristol Bay sal mon season Iasts from June into Septenber, it is heavily concentrated during brief periods in June and July (see Tables 3.1 .28 through 3.1.35), The average number of cal endar months of participation per year is 1.4 for a drift gili net boat or 1.5 for a set gill net boat.

Kuskokwim

The Kuskokwim salmon fishery is not as productive as that of Bristol Bay, but it is an important source of incone and empl oynent to residents of the Bethel Census Divison. The annual harvest 'uei ght ranged from $\mathbf{8 6 8}$ metric tons ($\mathbf{1}, \mathbf{9} \mathbf{~ m i l i c}$ on pounds) to 2,591 metric tons ($\mathbf{5 . 7} \mathbf{7}$ milition pounds) and averaged 1,565 metric tons (3.4 mili on pounds) between 1969 and 1979. The annual real harvest val ue ranged from S0. 5 million to $\$ 5.3 \mathbf{m i l i}$ on and averaged $\$ 7.9 \mathbf{m i l l i o n}$ (see Table 3.1.36). Harvest weight has tended to increase noderately during this period and real haryest value has increased dramatically.

Although the set gill net boatsused in this fishery range in length from 4.9 to $\mathbf{1 0 .} \mathbf{7}$ meters ($\mathbf{1 6}$ to 35 feet), the typical boat is 7.3 meters (24 feet) in length and has a crew of one, the skipper. The boats

Table 3．1．28
Bristol Bay Drift Gill Net Salmon Fishery Number of Boats and Catch by Month

1969－1977

Number of Boats

Year	dan．	Feb．	March	Apr 1	May	June	July	Au9．	Sep	Oct．	Nov．	Dec．	Annual
，${ }^{\text {\％}}$				$1)$	$3 A_{1}$	41.1	\cdots ？	$? 313$	66	$?$	O）	0	1674
1911	i	1	11	1	$? 4$	16：11	16．191）	114	3	0	0	0	1723
1＊＇1	Q	11	11	11	i）	133	125	34	9	0	0	0	1718
$1 \because \therefore$	11	1	I	1	$1)$	1346	1479	210	14	1	r）	0）	1544
$!$					$?$	144	17t	4.3	11	（）	0	0	1291
1 I！	1	1	11	（）	14	334	707	245	27	0	0	（）	788
1110	$1:$	1 ＇	：1	（1）	$1)$	$3(9)$	1342	197	39	（）	0	（）	1376
1910	，	\therefore	1	3	1	11%	1470	315	38	$?$	0	0	1522
$1 \cdot 11$	． 1	1	$1)$	（）	3	9 ma	$49 ?$	24	7	0	（）	0	1557

$\stackrel{\infty}{\infty}$

Catch（ 1,00 （ 6 pounds）

11%	1	1	11	$1)$	＋	フフィя	32111	303	79	－ 0	0	0.40901
1い！	11	11	ii	－1）	n	3414	72609	15，5	$-1)$	0	0	
1，il	＇ 1	\％	（）	（1）	0	4,940	？t，	6， 5,6	12	0	（）	0.60025
1．11．	11	1.	－11	1）	1）	6.233	1：8199	4.27	13	－0	0	0.19496
1，1／3	11	11	11	$1)$	－1）	23127	$10 ¢ ?$	175	7	1）	（）	0.13685
	1.	1	$1:$	）	9	11） 18.	$11 / 01$	10ts	40	0	0	0.13702
1.11	！	1	11	$1)$	9	$35:$	26.135	4511	105	（）	0	0.27051
1．111	；	－： 1	－11	－1）	－i）	6，462	3686．？	96， 7	$4+9$	－ 0	\bigcirc	0． 44349
1•11	＇${ }^{\prime}$	11	$\cdot 1$	$1)$	3	1，34，	？917	49	5	（）	（）	0.43433

Source：CFEC Gross Earn ngs Files．
No e：A minus sign indicates months in wh ch the catch s confidential because fewer than four boats participated in the fishery．

Tabe 329
Bristol Bay Drift Gill Net Salmon Fishery
Tie Number of Boats and Catch by Month as a Percentage of Annual Act vity 1969－1977

Percentage of Boats

Year	Jan．	Feb．	March	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
1ut．	1	11	$1)$	$1)$	2.7	519．4	9月。6	12.1	3.9	0.1	0	0	100．0
19り1	1 ．	11	$!$	1.1	1.4	93.5	97.5	6.6	0.2	0	0	0	100．0
1 1.11	$1)$	1	1	0	1	1.7	7.3	？．0	0.5	0	0	0	100.0
1.12	\cdots	1	1.1	0	11	41．2	95.8	17.5	1.2	0.1	0	0	100.0
	11	11	11	$1)$	1.2	11．？	9.4	4.1	0.0	0	0	0	100.0
10	${ }^{11}$	11	$1)$	＂	？．11	42.4	89.7	31.1	3.4	）	0	0	100.0
	11	1	1	0	0	21．68	97.5	14.0	2．8	1）	0	0	100.0
1 l	11	＇	11.1	$11 . ?$	0.1	77.3	96．6	20.7	2.5	0.1	0	0	100.0
19\％	${ }^{1}$	1	11	$1)$	0.10	62.2	31.0	1.8	0.4	0	0	0	100.0

Percentage of Catch

1 ＂	t	1	1	i	0.1	19．0）	79.7	1.0	0.2	-0.0	0	0	100.0
1，111	1	$1)$	1	－17．1）	1）． 0	32.5	67.3	0.1	－0．0	0	0	0	100.0
11.11	1	${ }^{\prime}$	1	11	11	6.7	4.5	1.1	0.0	0	0	0	100.0
1．1．	1	－ 11 ＊	－1．1）	11	11	32.0	6．）．${ }^{\text {b }}$	？．2	0.1	－0．0	0	0	100.0
1911	$1:$	＂	1	1	-10.11	31.1	7.7	1.3	n．1	0	0	0	100．0
1．17：	${ }^{\prime}$	（；	！	1	11.1	7.18	86． 1	5.3	0.3	0	0	0	100.0
1×7	i	＝	＂	1	（1）	1.3	36.6	1.7	0.4	ก	0	0	100.0
$1: 16$	1	－\quad.	－1．a	-11.0	－0．01	14．6	83.1	7.2	0.1	-0.0	0	0	100.0
1＇1／	$1 \cdot$		11	0	11.0	12.3	6.9	0.1	O．0	0	0	0	100．0

Source：CFEC Gross Earnings Files．
Note：A minus sign indicates months in wh ch the catch is confidentia because fewer than four boats partic pated in the fishery．

Table 31.30
Br-s $\cap 1$ Bay Dr ft Gill Net Salmon Fistery Number of Fishermen by Month

1969-1977

	Year	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	1-9	,	!	1)	$1)$	$3!8$? 99	495	60	1988	6	0	0	8433
						$1 ?$	$48: 3$; 40	34.7	9	0	0	0.1	の299
	$1{ }^{1}$:	11	11	11	i)	394	375	$\ln 2$	24	0	0	0	900
$\stackrel{0}{-1}$	$1:$					$1)$	419	4437	\because	5.7	3	0		9357
	11.13	i)	1	1	11	6	4×2	178	159	73	0	0	0	108
	1\%14	${ }^{1}$	$1)$	$1)$	11	49	1002	$21 ?$	735	13		n	n	3987
	1				0			- 26	5,7\%	11	1	()	1	5826
	1.16	11	i,	3	1	3	35.28	4/111)	1945	114	6	0	0	9024
	$\because: 1$	11	11	,	1)	31	$? 17$	44%	$!1_{4}$; 1	$0)$	0	()	$44_{4} 97$

Source: CFEC Gross Earn ngs Fi es.

Table 3. 3
Bristol Bay Drift G 1 Net Salmon Fishery
Percentage of Fisherman Man Months by Month 1969-1977

Year	Jan.	Fel.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1! ${ }^{\text {a }}$	1	1	"	'1	1.6	30.0	93.7	$7 . ?$	2.3	0.1	0	0	100.0
$1: 17$	1.	11	11	1:0.	0.7	46.4	48.7	3.3	0.1	0	0	0	00.0
1:						4 4:	! .	- 3	2.7		\bigcirc	0	0) 0
		1	'		i	43.	47.	8.7	$0 \cdot 6$	For 0	0	0	00.0
1.1.	!	1	${ }^{1}$,	11.6	42.9	37.5	15.88	3.3	0	0	0	100.0
11: ${ }^{\text {a }}$	${ }^{\prime \prime}$:	11	4	1.7	$?^{\text {¢ }} \cdot 1$	53.2	10.4	?.11	()	0	0	00.0
$10 \cdot$	"	"	'	'	${ }^{\prime}$	\%。0	60.1	9.4	2.11	0	0	0	00.0
,			\because		-	-	$48 \therefore$	- 5	. 3	0.1	$1)$	0	00.0
$10 \% 1$	${ }^{\prime \prime}$	"	1	"	11.4	64.6	$3 ? 2$	1.0	0.'	0	0	0	00.0

Source: CFEC Gross Earnings F les.

Table 3．1． $\mathbf{3 . 2}$
Bristol Bay Set Gillivet Sal mon Fi shery Number of Boats and Catch by Month 1969－1977
in umber of Boats

Yedr	1 an.	Feb．	March	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annua
1＇，${ }^{\text {a }}$ ；	． 1	11	11	$(1$	1	24.7	405	50	1）	（）	（）	0	6．2．4
1911	：	1	1	（）	1	$44^{4} 7$	604	fit	3	1	0	0	657
10.11	11	11	1）	1	n	$4 \therefore 2$,	$)_{1} 4_{4}$	45	$?$	0	0	0	564.
1＂1．＇	1	1	11	$1)$	i	3\％	¢01	93	2	$1)$	P1	0	539
$1 \cdot 111$	11	$1:$	11	（1）	0	298	354	77	6	n	0	1）	406
1114	；	11	11	1	（）	i_{1},	？ 19	$\cdots{ }_{4}$	5	$1)$	0	0	312
リリア！	11	11	11	$1)$	0）	i， 81	$419 \cap$	97	9	11	n	0	498
191し	i）	$1{ }^{1}$	11	（）	1	314	517	104	1 t	（）	r－1	（）	543
$1 \% 1 \%$	1	11	$1)$	11	1	218 8	16,8	1	0	（）	0	0	541

Catch（1，000 pounds）

110．1	＇1	11	11	11	－ 11	の4．	4310	119	11	（）	n	0	5134
1い1！	，	．．（	． 11	（）	－11	14， 6,8	6127	112	－（）	－0	0	0	7809
1い！		11	11	11	$1)$	635	5047	5	－ 0	（）	0	0	6635
111	－．1	－－11	11	11	11	243	$10.15{ }^{1}$	$1 \cdot 6$	－（）	）	0	0	1357
1913	$1 /$	11	（1）	11	11	$\because 48$	476	¢1	$?$	0	（）	0	808
1！！	11	1	$1)$	11	11	1.3	20）？	$\because 20$	4	（）	0	0	2305
リリ．	1.	1	1	1	9	4	？ 918	4） 8	11	0	0	0	2663
1：71	，	1	1	$1!$	－11	$? 1!$	3690	24， 6	1（）	（）	0	）	4205
11！ 1	－11	1.	1	11	（1）	¢ 91	＇， $4_{6} 0$	－0	f）	0	（	0	4350

Source：CFEC Gross Earnings Files．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery．

Tabe 3133
Bristol Bay Set Gill Net Sa mon Fishery
The Number of Boats and Catch by Month as a Percentage of Anmua Activ ty 1969－1977

Percentage of Boats

Year	Jan．	Feb．	March	April	May	June	July	Aug．	Sept．	Oct．	M10v．	Dec．	Annual
1い1	1	1	1	，	$0 . ?$	38．8	95.4	14.4	1.6	0	1）	0	100.0
10）い	$!$	$1 .$.	11．？	＇	11.2	74．1	91.9	13.1	0.5	0.2	0	0	100.0
1311	${ }^{\prime}$	1	11	0	i）	74.5	96．5	8.0	0.4	0	0	0	100．0
197%	＂．	11.2	11	0	）	70.3	92.9	11.3	0.4	0	0	0	100.0
1913	＊	\cdots	11	\cdots	）	6．3．5	87．？	19.11	1.5	0	0	0	100.0
1%	1	＇｜	0	1）	（）	17.4	97.3	30.1	1.6	0	（）	0	100.0
1915	1	1	i）	＂	1）	13.7	96.4	18.5	1.9	0	0	0	100.0
1818	，	1	${ }^{\prime}$	．	11．？	57.9	95.2	$19 . ?$	2.9	0	1）	0	100.0
1711		，	1.	＇	11	47.7	31．1	n．？	$1)$	0	0	0	100.0

Percentage of Catch

1）			11	1	-11.11	13．5	84．1）	2.3	1． 2	0	0	（）	100.0
191	$1 \cdot$	$-11+1$	11.	1.	－ 11.0	71．1	73．5	1.4	－0．0）	－0．	\bigcirc	0	100.0
1411	${ }^{\prime}$	$1)$	1	1	$1)$	9.6	89.6	1） 5	-0.0	(1)	0	0	100.0
1＇1，	－${ }^{1}$	－1．${ }^{1}$	11	）	11	14．0）	78．0）	4.11	－ 0.1	（）	0	0	100.0
1،13	＇，	：1	1 ！	11	${ }^{1}$	31．7	918．9	110．1）	11.2	0	（）	0	100.0
\％10	＇	${ }^{11}$	11	！	r	$\therefore 3$	87.7	9． 18	1）．？	（	（）	0	100.0
	1.	11	（）	！	1	$1 \cdot 3$	194.6	3.7	1．4	$1)$	$1)$	0	100.0
$1{ }^{1} 1$	1	＇ 1	1）	＇	－11．0	（1．．${ }^{1}$ ，	A 7 ．${ }^{5}$	； 7	0．？	1）	0	\bigcirc	100．0）
（＇）＇	${ }^{1} \cdot$	1	1,	－	11	1＇．r	1\％。4	－9．0	1	()	（）	（）	100.0

Source：CFtC Gross Eamings fi es

No e：Amimus sign indicates months in which the catch is conf dertial because fewer than four boats participated in the fishery．

	Table 3.1.34 Bristol Bay Set Gill Net SalmonFishery Number of Fishermen by Month 1969-1977													
	Year	Jan.	Fob	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1\%.9	$1)$	11	11	(1)	,	48.4	1190	180	? 0	11	0	0	1876
	1111	11	"		11	<	174	12081	17	t)	$1)$	0	2368
	197	.	"	11	11	a)	185%	1088	90)	4	1	$1)$	$1)$	2034
9\%	1"1.	-	,	,	$1)$	$1)$	129	1017	1 He	4	0	0	n	1254
	111:	1	"	${ }^{1}$	$1)$	1	い1\%	709	14,4,	12	0	n	0	1390
	1"!	"	11	1	11	1	112	Wre	198	10	$1)$	${ }^{1}$	0	886
	1. $!$,	"	"	1	1)	11	136	96010	1184	113	11	1)	0	1298
	1.1.	1	"	1	11	?	6.24	1134	2018	32	n	0	0	1904
	1.1;	\therefore	${ }^{1}$,	${ }^{1}$	\checkmark	, 1\%	336	?	$1)$	0	0	0	856

Source: CFEC Gross Earnings Files.

Table 3.1 .35
Bristol Bay Set Gill Net Salmon Fishery Percentage of Fisherman Man Months by Month

1969-1977

Source: CFEC Gross Earnings Files.
able $3 \quad 36$
Harvesting Activity
Kuskokw ill Set Cibll Net Salmor Fishery
1960－1977

Yed	Catch				Exvessel Price （\＄／Pound）		Number of		Catch Per Boat Monti			
	Weight		$\begin{aligned} & \text { Value } \\ & \text { (inilions) } \end{aligned}$				HetghtPounds$(1,000)$	$\begin{aligned} & \text { Value } \\ & (\$ 1,000) \end{aligned}$				
	Pounds	Metric			Boal Fisherma Sonth；Months							
	（millions）	toms	Nomitua！	Real			Nominal	Rea	Nomina！	Real		
180．4	$\because \cdot$	1320	11.4	0.9	0.13	1.0		1909	3\％	3.3	11.4	1.6
110	$\therefore 3$	103	0.4	10.7	1．16	0.33	926	9゙お	2.5	0.4	0.8	
97	1.4	86	1 。	（）．${ }^{1}$	． 14	0.27	12.1	8%	2.3	0.3	0.6	
い！	$\because 2$	9\％ッ	10.3	0.7	d	． 3	917	971	2.2	0.4	0.7	
\because	－ 6	63	－ 4	－	． 24	0.42	390	301	76	0.6		
114	1．1	1060	1.	1.1	11.20	． 47	2027	3027	． 8	0.5	10.8	
1	－	\cdots	17.3	1.2	－ 20	． 30	1848	848	． 6	0.4	0.6	
6	\therefore	6，\％	1．5	\therefore ？	－4，4	－ 6	021	92	． 8	0.9	1.1	
7	$\cdots .1$	\therefore a，	＇．0＇	1．3	0.70	． 91	2093	2053	2.8	2.	2.6	
＂${ }^{4}$	－：	曲曲	$? \cdot$	3.	1．6	－${ }^{14}$			mot			
，	＇．	$\therefore \cdots$	3.1	－	．${ }^{\prime}$	．．t．t．			ta not	aval－ite		

Sources：Ihis table was generated from data contained in（1）Commercial fisheries Cntry Comission Gross Earnings files，and（2）Alaska Department of Vish and Cime Reports．

The red values and prices were calculated using the U．S．CPI； 1980 is the base period．
No E： 1978 and 979 data are preliminary．
predom natel \mathbf{y} operate out of Bethel and the ski ppers are typically local residents. Bethel is the principal point of landing for salmon harvested in the Kuskokwim Management Area.

Theseason begi ns in June and ends in Septenber, a month in which rel atively little harvesting activity occurs. The seasonality of this fishery is summarized in Tables 3, 1, $\mathbf{3 7} \mathbf{t h r o u g h ~ 3 . 1 . 4 0 . ~ T h e ~ a v e r a g e ~}$ length of participation by each boat is 2.2 months per year.

Lower Yukon

The annual harvest weight of the Lower Yukon Salmon fishery ranged from 1,591 metric tons ($\mathbf{3 . 5} \mathbf{5} \mathbf{m i l l i}$ on pounds) to $3,374 \mathrm{metric}$ tons (7.4 million pounds) and averaged 2, 350 metric tons (5.2 milli on pounds) tetyeen 1969 and 1979. The annual real harvest value ranged from 31.1 milition to $\$ 4.8 \mathrm{milli}$ on (see Table 3.1.41). The harvest weight has tended to increase at a moderate rate while the real harvest walue has increased rapidly.

```
The boats in this set gill net fishery are typically 5.5 to 5.1 meters
(13 to 20 feet) in length and have a crew of one, the skipoer. The
skippers and boats are predominately from the local area. The boats
operate out of and land fish in local communities. The lower vakon
salmon har%est is processed on iloating processors or shipped elsewhere
for processing.
```

able 3． 37
Kuskokw in Sec G Net Salmon rishery
Number of Boats and Catch by Month
$969-1977$

Number of Boats

Year	Jan．	Feb．	March	Apr 7	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
1\％「	11	$1:$	i）	＇	1	40.14	172	310	12	\bigcirc	－	\bigcirc	451
10111	11	！	1）	＇	1）	417	120	337	52	$1)$	0	0	457
1111	1	11	11	$1{ }^{\prime}$	（）	414	341	127	14	0	0	0	484
リ1\％	1	1	11	$1)$	1	4，13	26．1	259	8	0	0	\bigcirc	490
$11: 1$	11	1	11	11	0	$53 ?$	374	460	24	0	0	0	600
1 1．4	11	13	0	0	）	720	588	（1）5	6， 4	$1)$	0	0	830
1：．	11	11	11	n	1	4%	6.67	G，ofe	0	0	0	n	853
1．tic						nc	6	6，1？	18	\bigcirc	0	0	73%
				11		17	630	116	n		$1)$		810

Calch（1，000 pounds													
111	4	1	：	$1)$	－ 11	$116 . \%$	3， 13	903	11	0	ก	0	2924
1リハ	1.	11	11	1）	$1)$	41%	16.3	69	－0	0	0	0	650
リい1	1.	1	1	$1)$	0	1117	？\％	f．？	n	0	0	0	1913
1\％	1.	1	11	11	$1)$	132	74.3	100	1	$1)$	0	0	2159
$1 \cdot 1$	1	11	4	$1)$	11	168：8．	96，0）	（9）${ }^{\text {a }}$	3	（）	0	0	3560
1．19，	，＇	1	11	11	$1)$	1.17	1437	1375	23	0	0	0	3673
19\％	\because	$1:$	0	\cdots	－ 1	＋i．1	1309	940	$1)$	1）	0	0	2980
1：11．	11	$1)$	（1）	1	（＇	118．9	1907	3＇6	$1{ }^{4}$	0	（）	0	3545
$1)^{\prime \prime}$	11	1 ！	1	0	0	$311 ?$	14418	20800	0	（）	）	）	5713

Source：CFEC Gross Earnings F les

Note：A minus sign indicates months in wh ch the catch is confident al because fewer than four boats participated in the fishery．
able 3．． 38
Kuskokwin Set Gill Net Salmon Fishery
The Number of Boats and Ca ch by Month as a Percentage of Annua Activ ty 1969－9：7

Percentage of Boats

Year	Jan．	Feb．	March	April	May	June	July	AHg．	Sept．	Oct．	Nov．	Dec．	Annual
19			1		11.7	MU。6	36．1	$6,8.7$	2.7	$(1$	0	0	100.0
1；16．	1	11	11	1）	（）	リ1．？	26.3	73.7	1.4	n	0	）	100.0
$\int_{1}^{1} \cdot 1$	1	11	1）	(1)	0	91． 7	49.8	25.2	？．9	（）	0	）	100.0
11．7	11	$1+$	(1)	1）	0	96.3	93.8	47.2	1．t	0	0	（）	100.0
11.3	$!$	(1)	1	$1)$	（）	149．7	62.3	70.7	4.0	0	0	0	100.0
1 1 1	11	11	11	（）	0	81．07	7108	78.9	7.7	0	\bigcirc	0	100.0
10	（ 1	1	（i）	（）	（1．1	6.7 .1	7月．？	71．3	（1）	0	0	0	100.0
1110	11	$1)$	1	11	n	87.7	17.6	76.5	2.3	0	0	0	100.0
1 $1 . \stackrel{\circ}{\text { ¢ }} 1$	11	11	11	＇1	11	97.3	7\％．8	314.4	O	0	0	0	100.0

Percentage of Catch

＇${ }^{\prime}$	1	1	11	11	-11.0	39.7	29.0	30.9	0） 4	0	0	0	100．0
：．？	1	1.	$(1$	\cdots	11	64_{1} ？	25.1	11.6	－0．0．1	（）	0	0	100．0
\because	11	い	＇1	1）	11	58.4	38.0	3．7	O．t	\bigcirc	0	（）	100．0
1：	11	1）	1	11	11	56.7	34.4	9.3	O． 0	（）	0	（）	100．0
14．	1	（＇	1,	（i）	1		27.0	$2^{5} \cdot 4$	0．？	0	（）	0	100．0
113	13	1	11	（1）	11	70．1	41.8	37.4	（1．0	（	0	0	100.0
	1.	$\mathfrak{\prime}$	$1:$	＋1	－1．0）	21.5	46.9	31.5	）	（）	0	0	100．0
$1^{\prime \prime}$	11	1.	1）	11	11	3.10	4.7 \％	24．1	0.4	（）	0	0	100．0
！：	1.	11	i）	11	11	35．？	2！．3	36.4	1	$(1$	（）	（）	100．0）

Source：CFEC Gross Larm ngs F les．
Note：A minus sign indicates months in which the catch is conf dential because fewer than four boats participated in the fishery．

Table 3 3 39
Kuskokwill Set Gi
Het Sa mon F shery Number of Fishermen by Month 1969-1977

\because	Year	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Tota
	1969	0	0	0	0	1	404	172	310	12	0	0	0	899
	1970	0	0	0	0	0	417	120	337	52	0	0	0	926
	1971	0	0	0	0	0	444	24.1	122	14	0	0	0	821
	1972	0	0	0	0	0	443	267	259	8	0	0	0	977
	1973	0	0	0	0	0	532	374	460	24	0	0	0	1390
	1974	0	0	0	0	0	720	588	655	64	0	0	0	2027
	1975	0	0	0	0	1	572	667	608	0	0	0	0	1848
	1976	0	0	0	0	\bigcirc	690	611	602	8	0	0	0	1921
	1977	0	0	0	13	\bigcirc	707	630	716	0	0	0	0	2053

Source: CFEC Gross Earnings Files.

Table 3 1.
Kuskokwin Set Gill Net Salmon Fishery Percentage of F sherman Man Months by Month 1969-1977

∞	Year	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	14.0.4	1	11	1	11	0.1	4.4 .9	19.1	34.5	1.3	${ }^{1}$	0	0	100.0
	1110	1	i)	1	1	(1)	4..0	13.0	36.4	5.6	0	0	0	100.0
	1011	':	11	1,	b	1	54.1	29.4	14.9	1.7	${ }^{\prime}$	0	0	100.0
	19!	11	11	1	"	0	45.3	27.3	26.5	1.02	0	0	0	100.0
	1011	"	!	1	"	1)	34.3	20.9	33.1	1.7	0	0	$1)$	100.0
		,	11	,	0	11	3!.5	20.0	32.3	3.2	11	0	0	100.0
	1..小	"	11	'	1	1.1	31.0	36.1	32.4	0	0	0	0	100.0
	1.1.1	"	1	''	,	0	35.9	31.13	31.3	0.1	19	0	0	100.0
	1い!	'	:	$1 \cdot$	0	"	34.4	30.7	34.09	0	0	n	0	100.0

Source: CFLC Gross Eamings Files.
labe 3．1 41
larvesting Activity
ower Yukon Set dill Het Salmon F shery
1969－1977

111．9	3．	＇，	11＇	1.	－＇，	1－2	12？	12？	4.3	0.6	1．
141	4.7	（1）	0.6	1.3	0．14	0.30	のちt	10： 0	4.0	0.6	1.2
	4，${ }^{\prime}$	$\because 110$	0.4	1.5	（1）．11	0． 34	3	1	3.4	0.6	1．？
＇	4.	$\therefore 2$	$\cdots 4$	－＇	． 18	0.34	438	14，38	3.1	0．${ }^{0}$	1.0
1111	4．${ }^{1}$	3634	1．	$\therefore \cdot 2$	．？ 1	0．37	から	16ら5	3.5	0.7	1.3
4	1	4	－${ }^{4}$	＊	6．24	11，4，	4， 21	1＇，＇	4.9	1.7	\therefore＇
1：10	1． 1	2303	－t	$2 \cdot 3$	0.25	13.37	6， 4.4	6， 14	2． 13	0.9	1．4
191t，	＇，＇＇	$\therefore 473$	\therefore 。	3．${ }^{\text {a }}$	$1) .42$	1．． 0	180？	H02	3.0	1.3	1． 4
1リ17	仿）	$\therefore 10.9$	3.6	4.3	1）－¢	． 14	078	6 TA	3.3	？？	\therefore＇s
1910	${ }^{4} \cdot{ }^{\prime}$	S0 11	？$\%$	3.1	11． 58	.1					
1，＇	$\cdots{ }^{\prime}$	$1 \cdot 4$	$\sim^{\prime \prime}$	＊${ }^{*}$	－6：			Mata not availab a			

Sources：Ihis able was gemerated rom data contained in（1）Commercial fisheries fintry Commiss on Gross Larn mus Files，and（2）Nlaska Department of Fish and Game Reports．

The real va ues and pr ces were calculatec us ny the U．S．（．PI；980 is the base period．
No $1: \quad 9 / 8$ and $9 / 9$ data are prelim nary．

The season begins in June and ends in August or September;however, the activity is heavily concentrated in June and July. The seasonaity of thefishery is depicted in 'Tables 3, 1. 42 through 3.1.45. The average length of participation of a boat in this fishery is 2.3calendarmonths per year.

Upeer Yukon

3oth set gill nets and fish wheels are used in the Upper Yukon salmon fishery. The annual haryest weight ranged from 9 metric tons (20,000 pounds) to 753 metric tons (1.7 million pounds) and averaged 320 metric tons (705,000 pounds) between 1969 and 1979. The annual real haryest vaiue ranged from 38,700 to $\$ 714,000$ and averaged 5350,000 (see Table 3.1.45). Both naryest weight and real value have tended to increase rapidly during this period. As is indicated by Tables 3.1.47 and 3.1.48 the fish wheel fishery has become the dominant fishery in recent years.

The boats in the set net fishery are typically 5.5 to 6.1 meters (18 to 20 ieet) in length and have a crew of one, the skipoer. Fish whee? gear is also manned by one individual. Both fisherias are almost axclusively locai with fishing activity occurring adjacent to meny communities along the interior rivers.

The salmon season begins in june or july and ends in September: the haryesting activity is, however, heavily concentrated in july and dugust. The seasonality of haryesting activity is summarized in Tables 3.1 .49

Tab＇e 3．1．42
ower Yukon Set Gil，Net Salmon Fishery
Number of Boals and Catel by Month
1969－1977
Number of Boats

Yedr	dan．	1e1）	Mar Ch	npril	May	Junie	July	Auc	Sep		Nov：	Dec：	Anriual
＇1＇	1 ＇	11	＂	（1）	0	488	4	44	3	1）	（）	0	490
Y！ 1	11	11	11	11	a	4，1，	3，＇j	236	0	0	0	0）	496
1111				1）	n	1：1	485	2117	18	0	0	0	567
111！	1	1	，	1）	11	$1 i$		3117	13	0	（）	0	637
1．1）	1		i	1	1	$1 s^{\prime}$	＇，1，	441	28	（）	0	0	710
1 i ；	11	1	1.	1	0	i，i i_{4}	439	$3 ? 7$	1	（）	0	（）	かり9
$14:$	11	1	11	11	$1)$	9119	644 4	411	（）	（）	0	（）	699
！！${ }^{\text {！}}$	13	1	1）	$1)$	3	（i，${ }^{\prime}$	6190	$4_{1}^{4} 4$	，	（）	0	0	74.3
－＇；．	11	1	1）	(1)	n）	1，\％4，	1390）	$50 ?$	1	$1)$	0	0	64.9

\vec{O}
Catch（1，000 pounds）

1				i）	2314	${ }^{1} 1{ }^{1}$	505	－1）	n	0	0	3507
1 ：				1）	208．4	11月，	4013	（）	1）	（）	O）	4177
11			1		？194	125：	け7ら	10	（）	0	0	4430
1 ；					2900	1010＇	311 ？	10	0	\bigcirc	0	44061
1111	11	1	11	-11	$\because 319$	3300	1）${ }^{5}$	4	（）	（）	（）	5807
1：it	11	11	－-1	11	41.412	$\because 310$	1，97	－0	（）	（）	0	7439
14／＂	1	11	11	1	1162	6り30，	165	0	（）	0	（）	6311
1 －	I			-1	$\cdots{ }^{1}+$	？ 0^{3}		-1	0	0	（）	5， 451
1		$\cdot 1$	1	（；	$\therefore(0)$	$\therefore 2\left({ }^{+}\right)$	50	-1	0	（）	0）	6544

Source：CFLC Gross Earn ngs F es．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats parlicipated in the fishery．

Table 3 ） 43
Lower Yukun Set Gill Net Salmon Fishery
The Number of Boats and Catch by Month as a Percentage of Amual Act vity 969－1977

Percentage of Boats

Year	Jan．	Feh．	March	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
$1 \cdots$			1	＂		918．4	30.4	20．4	6.6	n	$1)$	0	100.0
10	f	1	11	，	11	9！．6	\％ 5.1	49.6	0	0	0	0	100.0
1011	，	1	1	1	n	91.9	85．5	50.6	3.2	0	0	0	100.0
$1 い ?$	！	1	1	0	1.	9306	19.7	$48 . ?$	5.2	0	0	0	100.0
1.9			，		0.1	8%	77．6	6．？．1	4.4	0	$1)$	0	100.0
114				－	＂	91．6	17.1	46．08	0.1	0	0	0	100.0
1.1	＂	1	＂	0	11	84.8	92.1	588.8	0	0	0	0	100.0
1） 1	．		1	${ }^{\prime}$	0.4	以＂吅	92.7	50.9	0.1	0	0	0	100.0
1：11	，	\cdots	1	，	1	91．3	80.6	77．0	0.7	0	0	0	100.0

룰

Percentage of Catch

$1: 1$	1	1	11	＊	1	1，11．3	14.6	17.1	－ 0.0	（）	（）	0	100.0
$1 \cdot 110$	1	1	11	0	1,	？（1．0）	28.3	$\cdots 1 . t$	1	（）	0	（）	100.0
1：71	1	1	11	8	1	$44^{1} .5$	24．7	？ 3.11	0.2	（）	0	0	100．0
$\cdots \cdots$	1	1	11	0 ＊	${ }^{1}$	ヶf．0	$? 400$	198！	0.2	（1）	0）	0	100.0
1：11	，	1	i	θ_{0}	－ 0.1	4.1	41.3	1105	0.3	（	0	0	$100=0$
1．H_{1}	，	1	1	＊－	1	1，1．1	31.0	7.9	－0．0．	（）	（）	0	100－0
1，＂	，	，	$:^{\prime}$	8 \％	$1)$	27.9		15.3	ก	（）	0	（1）	100.1
1：\quad＇	1	1	11	1）	-1.11	$4 \cdot 3$	$4{ }_{4} 0_{0} \mathrm{t}$	4． 1	-11.0	0	（）	（）	100.0
1．＇$/$	＇	－ 1 －1	（1）	11	（）	$i . .1$	1，4．t，	$2 \cdot 31$	－6．0）	11	（1）	（	100．0

Sonce：CFLC Gross Eamings Fi es

lote：A minus sign indicates months in wh ch the catch s confident al because fewer than four boats participated in the fishery．

Table 31.44
Lower Yukon Set Gill Net Salmon Fishery Number of Fishernen by Month

1969-1977

	Year	Jan.	feb.	March	Agril	May	June	July	Alay:	Sept.	Oct.	Nov.	Dec.	Tota
	1969	0	0	0	0	0	482	193	14.4	3	0	0	0	822
	1970	0	0	0	0	0	455	365	236	0	0	0	0	1056
$\overrightarrow{0}$	1971	0	0	0	0	0	52.1	485	287	8	0	\bigcirc	0	1311
	1972	0	0	0	0	0	500	508	307	33	0	0	0	1438
	1973	0	0	0	0	1	6.24	551	44.1	38	0	0	0	1655
	1974	0	0	0	1	0	(6) 4	538	327	1	0	0	0	1521
	1975	0	0	0	$1)$	0	589	64.4	411	0	0	0	0	1644
	1976	0	0	0	0	3	665	689	4.44	1	0	0	0	1802
	1977)	1	0	0	0	594	5880	502	1	0	0	0	1678

Source: Clec Gross Eamings files.

Table 3.145
Lower Yukon Set Gill Net Salmon Fishery Percentage of Fisherman Man Months by Month 1969－1977

	Year．	Jan．	Feb．	March	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Total
	1．1．．	1	1	1	9	\cdots	4it．ti	23.5	1\％	11.4	0	＂	0	100.0
	1\％in	－	4	；	1	1	43.1	34．t．	27.3	0	9	n	0	100.0
	1．1：	＂	！	＂	1，	＂	36.7	$3 \% .0$	7.9	1.4	\because	0	0	100.0
$\stackrel{\square}{8}$	19！	＂	11	1	11	1	4 －	5.3	2.3	2.3	0	n	0	100.0
	$1: 4$		：		：	。	37.7	33.3	20.6	2.3	11	0	0	00.0
	1：i4	．	1	1.	1.1	1	$43.1)$	36.4	2.5	0.1	${ }^{1}$	0	0	00.0
	1：！	＂	！	＂	：	11	36.9	31．2	25.1	0	0	（）	（）	00.0
	101．	．	，	，	＂	11.	2t．＂	34.07	34．0	1）	0	0	0	100.0
	！：！！	1	1.1	${ }^{\prime}$	1	1	34.4	34.6	らい。の	1.	n	0	${ }^{\prime}$	100.11

Source：CFEC Gross Earnings Files．

Table 3196
Upper Yukon Salmon Harvest. 1969-1979

						Exve	
	Year	Pounds $(1,000)$	Metric Tons	Nominal	Real	Nominal	Real
	1969	20	9	4	9	0.20	0.44
	1970	28	13	5	10	0.18	0.37
	1971	36	16	7	14	0.19	0.38
	1972	28	13	6	11	0.21	0.41
	1973	123	56	23	41	0.19	0.34
	1974	745	338	402	653	0.54	$\bigcirc 88$
	1975	1664	755	308	459	0.19	0.28
	1976	16,72	759	507	714	0.30	743
	1977	16832	763	488	645	0.29	0.38
	1978	890	404	513	630	0.58	0.71
	1979	879	399	59%	661	0.68	0.75

Sources: This table was generated from data contained in (1) Comnercial Fisheries Entry Commission Gross Earnings files, and (2) Alaska Department of Fish and Game Reports.

The real values and prices were calculated using the U.S. CPI; 1980 is the base period.
NOTE: 1978 and 1979 data are preliminary.
4) le 347

Harvesting Activity
Upper Yukon Set Gill Net Sahnon Iishery
1969. 971

$C \pm t \mathrm{ch}$				Catch per Boat Month
We ighe	Value	Exvessel Price	Number of	Weiaht Value
ounds Moe ric	(millions)	(\$/Pound)	Boat Fisherman	Pounds (\$1,000)
Lioms) lons	Nomital Real	Nominal Real	Months Months	(1,000) Nominal Rea

106

[^0]1

[^1]> Table 3.i. 48
> Harvestinc Activity
> Ipper Vukon Iish i.heol Salmon ishery
> 1909 97

	1109	(1) 11	',	11.0	0.17	1. 1 $\%$	0.40	12	12	0.9	0.2	(1)4t
	$11 / 1$	11.1	A	0.11	0.0	1.15	$0.3 ?$	10	10	1.3	0.2	$1^{\prime} \cdot 4$
\because	1971	(1) 0	1	0.11	1.0	0.19	0.37	1%	18	0.9	0.2	C'3
	$111:$	11.1	c	0.')	13.0	1).15	11.29	$1 ?$	12	1.1	0.2	0.3
	1413	$1!1$	\%	0.01	0.0	0.14	(1).3)	48	4 H	10^{\prime}	0.3	0.5,
	1914	1.1	$\therefore 9$	11.4	(1).6	0.588	11.94	16.4	104	4.0	2.3	3.7
	リリ14	- '	$*^{\prime}{ }_{1}$	0. ${ }^{1}$	11.4	(1.1)	0. ${ }^{3} 6$	240	'40	6.2	1.1	1.6
	1916	1. ${ }^{\text {- }}$	$\therefore \therefore$	().'	11.0	11.29	0.4. 1	341	241	6.1	1.8	$? 5$
	1111	. . 4	1.14	11.4	1)."	11. ${ }^{\text {b }}$	0.3 .3	$\therefore 4$	$\therefore ،^{\prime}$	6.6	1.6	\therefore

 ro: 1 dan mis liles, and (2) Naska Department of ish ard fame Reporls

1e real values and pri is were at ulated usine the U.S. CPl; 1980 is the base period.

Table 3.1.49
pper Yukon Set Gill Net Salmon Fishery
Number of Boats and Catch by Month
1969-1977
Number of Boats

Year	Janl.	$F \in$.	March	April	May	June	July.	Aug.	Sept	Oct.	Nov.	Dec.	Annual
1			"	"			8	0	0	${ }^{1}$	0	0	fi
1	1			11			12	$?$	1	11	0	0	13
14, 1	1.	1	1	1	1	1	17	2	1	1	0	0	14
161\%	"	,	i	$1)$,	2	17	$1)$	(0	0	$1)$	13
リい	i'	1	4	11	0	3	17	1	0	0	0	0	23
1 ! ${ }^{1}$	11	1	13	11	11	14	29	16	$\%$	()	0	0	37
1.11	"	1	1	1	11	1	87	30	5	0	0	0	6, 6
11%	1	"	1	11	11	1	70	26	7	0	0	0	76
14:1	1	1	11	0	0	1	r, 6	18	5	0	0	0	60

Catcl (1,000 pounds)

		11	i	11	1	-11	r	(1)	0	()	$1)$	()	9
1,11	1	(1)	1	i	i	()	13	-0	- 0	()	0	()	15
1111	,	i)	1	(1)	\cdots	(1)	13	- 0	-1	- 1	()	0	20
1",	1	1	$!$	11	11	-1:	15	0	()	()	0	0	15
1**	1	1	1	$(1$	1)	-1,	22	27	()	1	()	$1)$	49
1414	1	11	1	11	':	10	44	19	7)	0	\bigcirc	O	94
1111	${ }^{\prime}$	1	1	${ }^{1}$,	$(1$	119,	6.6	ℓ	0)	()	187
$11 / 1 /$	1 :	\%	1	1	1	-6	1311	1 r	5	1	\bigcirc	0	164
1:1!	' ${ }^{\prime}$	1	1	11	1.	-1)	187	$\because \%$	141	$(1$	()	()	264

Source: CFE Gross Earn ngs fi es
Note: Aminus s gr ind cates months n wh ch the catch s conf dential because fewer than four boats participated in the fishery.

Table 3150
Upper Yakon Set Gill Wet Salmon Fishery
The Number of Boats and Catch by Month as a Percentage of Anmal Activity 1969． 1977

Percentage of boats

Percentage of Cateh

$1 \cdot 1$	1		1	，	11	-1.1	10010	11	（3）	（）	（）	0	100.0
1：！ 1	1		1	0	1）	$(1$	136．07	-11.7	-11.1	11	（）	（）	100.0
11.11	1	$=$	${ }^{\prime}$	！	11	1	06．0）	-1.6	-1105	－（1） 0^{5}	1）	0	100．0
1．；＇，	＇	1	1	$1)$	11	-1.01	100．01	$1)$	1.	（1）	0	1	100．0
1.1%	1	$1 \cdot$	！，	$1 '$	11	－11．${ }^{\prime}$	$44 * 9$	りか。1	．	$(1$	（）	0	100．0
1．1 1_{1}	1	，	11	（1）	4	10．0）	$4 \dot{6} \cdot 11$	？ $11 . ?$	2．${ }^{\prime}$	1	（）	0	100．0
$1{ }^{\circ} \quad 1$	＇	1	！ 1	4	11	（）	（i）．＇s	3） 3	.2	9	\bigcirc	0	100.0
i 1	＇	．	11	$1)$	9	-11.1	19．3	9.1	$\therefore 1$	（）	0	（）	100．0）
$1 \cdot 1 /$	，	．	，${ }^{\prime}$	＇	i	－11．11	10．19	！－ 3	$\cdots .7$	11	（）	（）	10000

Source：CllC Gross Earnings Files．
Hote：A mimus sion indicates months in which the catch is confidertial because fewer than four boals participated in the fishery．

Table 3 si
Upper Yukon Set Gill Net Satmon Fishery Number of Fishermen by Month

1969-1977

Year	Jan.	Fel).	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1969	0	0	0	0	0	1	8	0	0	0	0	0	9
1970	1)	0	0	0	0	0	2	2	-	\bigcirc	\bigcirc	\bigcirc	15
1971	0	0	0	0	0	0	12	2	1	1	0	0	16
1972	0	0	0	0	0	2	12	0	0	0	0	0	14
1973	0	0	0	0	0	3	17	8	0	0	0	0	28
1974	0	0)	0	0	14	27	16	8	0	0	0	67
1975	0		0	0	0	0	57	30	5	0	0	0	92
1976	0	0	0	0	0	1	70	26	7	0	0	0	104
1977	0	0	0	0	0	1	56	18	15	0	0	0	90

Source: CFEC Gross Earnings Files

Table 3.1 .62
Upper Yukon Set Gill Net Salmon Fishery Percentage of Fisherman Man Months by Mor th 1969-1977

	Year	Jath.	Fob	March	April	May	dunce	duly	Aug.	Sept.	Oct.	Nov.	Des.	Total
	1\%.	'	1	:	,	11	11.	吅。"	${ }^{1}$	11	1	0	0	100.11
	.							8	.	1.7		,	0	100.0
	$1 \% 1$:	11	11	'	"	11	1'.0	1.3	1.3	6.3	1	$1)$	1.0
$\ddot{\square}$	$11 /{ }^{\prime}$	1	1.	11	11	"	14.3	85. $\%$	11	${ }^{1}$	11	1	0	100.0
	14						11.7	t, 1). 7	$\therefore 8 . t$	${ }^{1}$	n	0	0	100.0
	1						.	$4 \cdot 3$	23.4	11.9	0	11	0	100.0
	1			1			:	$n_{1}=$	\cdots	04)	(1)	$1)$	100.01
	$1 \therefore$					'	1.1	$010:$		\% *	1		0	100.01
	1	1				;	.1	6.7	2110	16.7	1	11)	100.0

Source: CFLC Gross Larnings files.

Table 3. . 53
Upper Yukon Fish Wheel Sulnon Fishery
Number of Boats and Catch by Month
1969-1977
Number of Boats

Year	Jan.	Feb.	March	Anr 1	May	Junte	July	Alys.	Sept.	Oct.	Nov.	DeC.	Anmual
	'	1	\%	11	"	1	'	3	1	1	0	0	7
1911	1	1	${ }^{\prime}$	11	"	11	14	\%	1	0	0	0	8
$1 \cdot 11$,	1	${ }^{1}$	1	1)	()	14	3	1	1	0	$1)$	15
1:1\%	1	1	11	1	"	1	1	3	$;$	0)	0	8
$1: 4$				1	!		23	\cdots	1		0	0	38
1"	i				!	،	5is	f	36	()	n	n	82
1'1!	11	11	11	11	11	1	' 1	91	412	$1)$	0	0	134
1"!	\cdots	11	(1)	1	11	',	1?4	77	40	0	0	0	162
191!	11	11	i)	$1)$	0	3	104	49	6.7	0	0	0	140

112

$$
\text { Catch }, 000 \text { pounds }
$$

1 1 1	"	\therefore	1	i)	4	1	4	-0	- 11	-0	0	0	11
$19!$	11	!	1	! 1	11	11	11	-0)	n	0	$1)$	0	13
! '1	\%	$!$	1	$1)$	$1!$	()	13	-1	- 1	0	0	0	16
1', ',	!	[,	!	1)	11	4,	-01	-1)	0	0	0	17
\cdots,	$1:$	$1 \cdot$	1	',	9	0	1%	59	11	0	0	0	74
1" ${ }^{\prime \prime}$,	${ }^{1}$	$1!$	1	(1)	\cdots	13	187	?33	214)	0	0	651
! $\cdot 1$	1.	1 '	'	i)	11	$1!$	400	304	193	0	0	1	1477
1' ! ',	:	1.	,	11	"	14	1361	6.3	114	0	0	0	1508
1 ${ }^{\text {! }}$.	+	1.	1	'	a	- 1 ,	950	1%	?	0	0	$1)$	1418

Source: CFEC Gross Larnings F es.
Note: A minus sign indicates months in which the catch is conf dential because fewer than four boats partic pated in the fishery.

Table 3.54

Upper Yukon Fish Wheel Salmon Fishery he Numer of Bodes and Catch sy Mont'. as a Percentage of Amual Act vity 1969-. 977

Percentage of Boats

Percentage of Catch

1 ,	1		$1 /$	(1)	11	11	$7 ?, 7$	-11.9	-11. ${ }^{\circ}$	-1.9	()	0	100.0
1-1	1	1	(1)	$1)$	$1!$	11	34.6	-118	1	(1)	0)	0	1000
1 1.il	1	1	11	$\cdot 1$	い	$1)$	31.3	-0.6		1	0	0	100.0
191\%	1	4	1	$1!$	11	11	113.9	-11.9	- 0101	0	0)	0	100.0
1-i	-	11	1	${ }^{\prime} \cdot$	11	11	21.6	13.4	1	${ }^{1}$	0	0	100.0
	1	11	11	11	11	$\therefore 11$? 4.1	36. 3	33.6	1)	()	1	100.0
1*	1	1.	11	1	11	11	6, 18.1	? 0.1	1\% 4	1	0	0	100.0
1:11	,	11	11	${ }^{\prime}$	11	11.1	116.1	$4 . t$	$7 \cdot 8$	1)	0	0	100.0
1.! 1	1	1.	1.	$1!$		-1.1	6, 10	1?.1	1;*	0	()	0	100.0

Source CflC Gross Iari ms Fi es

Hote: A minus sign indicates months in wh ch the catch is confidentia because fewer than four bodls partic prated in the fishery.

Table 3155
Upper Yukon fish whee］Sahwon fishery Number of Fishermen by Month

1969－977

	Year	Jan．	Feb．	March	April	Nay	June	July	Aug．	Sept．	Oct．	Hov．	Dec．	Total
	1 ．		1						3	1	1	0	0	12
	1．1．1	！	，	＂	11	0	1	3	？	11	0	0	0	10
	1．．1	＂	1	＂	＂	${ }^{1}$	＂	14	3	1	0	0	0	18
了	い口	＂	＂	．	＂	？	＂	7	3	2	0	0	10	12
	1．．：	＂	＂	＂	11	＇）	＂	27	36.	11	13	3	0	48
	1 ：	，					¢	？$?$	， 1	36	11	0	\bigcirc	16.4
	1．．．＇	1	＂	＂	${ }^{\prime}$	（1）	＂	3^{\prime}	17	4 4，	0	n	0	24.0
	1						4	18	17	40	1	0	0	247
	1 ！	；					；	10	（1）	6，7	11	n	11	224

Source：CIEC Gross Earninys Files．

```
througn 3.1.50. The average lengths of particioation per year are
1.3 and 1.5 calendar months for the gil! net and fish mheel fisheries
respec*ively.
```

Yorton Sound

The annual heryest weight of the Norton Sourd saimon fishery has ranged
 million pounds) and averaged 625 retric tons (1.4 militon pounds: betreen 1069 and 1979. The annual reai herlest value rarced from 3780,000 to 5913,000 and averaged 3520,000 (sea "ajle 3.1.57). 30ch naryest veight and real value have tended to increase during this period.

The boats in this set gill net fishery are typically less than 7.3 meters (24 feet) in iang th and naye a craw of one, tra skiocer. it is principally a local fishery, and the fishermen and boats are iron Horton Sound communtios such as 引itm, Goiomin, doses Point, Nome, St. Michael and Unalakieet. The harısting açivizy is based in these comuntites, and the haryes is ianced in fhese ocmmuizies. Athougn lome is the pooulation center of the area, ti is noz the certer of heriesting or orocessing activity.

The samon season zegins in June and encs in tugus: or september. July is zopicaily the most oroductive month and in Eectember there is reiatively

Table 3156
Upper Yukon Fish Wheel Salmon I ishery
Percentage of Fisherman Man Months by Month
1969-1977

	Year	Jan.	Feb.	March	April	May	June	Ju	A					
		!	(1)	\cdots		11	$!$	$9 \text { Pat }$		r_{0}	4.3	1	()	100.0
	1.11	"	"	"	$1 \cdot$	a	"	80.0	20.0	0	0	0	r	100.0
$\ddot{\square}$, i	:		1			11	17.83	16.7	¢. .1	1	0	0	100.0
or	$1 \cdots$,	1	11	1.	,	${ }^{\prime}$	9,4.3	25.0	$1 \% .1$	(i)	11	0	100.0
	$1: 1$.		"	11	11	$1)$	11	45, 0		0	11	0	0	10000
	1り:"	,	"	${ }^{\prime}$	"	${ }^{\prime}$	9.1	31.1	31.2	23.1	0	0	0	100.0
	1 •							4×1.4	4.4	90\%	,	n	0	100.0
	1..1		:	$1 \cdot$!	"	$\because b$	40.0	31.2	16.2	i	1	0	100.0
	1.11)	.	*	"	,	1	1.3	46. ${ }^{\text {c }}$	21.9	29.0	11	$1)$	0	100.0

Source: CFEC Gross tumings Files.
able $31.5 /$
llarvesting Activity Horton Sound Set Gill Het Sahmon Fishery

1969－1977

！；	\because	4	－	9．${ }^{\prime}$	1.10	$11.3 ?$	291	291	3.2	0.3	0.7
11719	11.4	$4{ }_{6}{ }^{\text {a }}$	17.1	11．？	0.10	11．20）	こけ〉	247	3.6	0.4	1.7
1011	11．${ }^{1}$	$i_{1}:{ }^{\text {d }}$	9．？	1）． 7	0． 16	0．3．？	j206	2180	3.3	（1．${ }^{\text {1 }}$	1.
1910	110	411	0.1	0.2	0.1	？－？	30？	$30 ?$	3.0	1）． 3	11． 6
1913	1．	$\because 31$	1）． 4	0.13	0.31	0.6 .9	0.17	47%	2.4	9.9	1.6
4	1.	${ }^{4}$	－ 4	.1	2＇	－ 4	いこ＇	いっ1	3．${ }^{\prime}$	0.18	1.3
141！	1．＇	いいい	1）．${ }^{\text {d }}$	0.5	11． 23	0．35	36	326	1.1	－ 1	1.6
1：11	－ 0	$\therefore 1.6$	0．？	U．	10．33	11．4．	4，34	44_{4}	2.4	17.8	1.
1 ：	1．	：	：	＊	－	－4＇		ma	4,4	＊${ }^{\text {r }}$	＊
1	－${ }^{\text {a }}$	1.	11.	11.9	4． 11	（1．） 3		Wata not avallable			
，	－＇	$13 \cdots$	11.1	11.11	11． 19	11．4					

sources：Ihis Lable was generated from data contained in（1）Commere al fories Ent y Commiss on Coross larmings files，and（？）Alaska Department of fish and Game Reports．

The rea values and or ces were ca ca a ed ws the the 5 ．CPI； 980 s the dase meriod．
nolf： 1978 dace 1979 data are prelim nary．

Table 3.1 .58
Norton Sound Set Gill Net Salmon Fishery Number of Boats and Catch by Month

1969-1977
Number of boats

Year	\therefore An.	(ed)	March	fiur i",	May	June	July	Suy.	Sept	Oct.	Hov.	Dec.	Anmua
! ${ }^{\text {c, }}$	"	,	${ }^{\prime}$	(1)	1	111\%	130	4,7	0	$1)$	0	0	1/5 5
$1 \cdots 1$!	1	11	"	$1)$	a	110	14	8	0	0	0	111
$1 \cdots 1$	[)	11	11	0	0	71	14.2	63	10	()	0	(.)	144
141:	"	11	"	0	0	1%	145	30	1	1)	0	0	1593
1118	:	11	11	0	0	19	278	110	0	0	0	0	307
1.14	"	,	"	(1)	0	? 10	27	36	1	$1)$	0	0	316
1914	11	11	0	11	?	10	270	48	0)	0	0	229
111	11	"	11	1	()	145	213	1	0	()	0	0	218
1017	11	11	11	1	11	113	201	1, 1	24	0	0	11	198

a

$$
\text { Catch }(1,000 \text { pounds })
$$

111,	11	(1)	1)	$1)$	11	1"!,	6,64	12	()	\bigcirc	0	()	937	
1911	1:	11	11	11	(1)	168	71',	40	1	0	(0	934	
1111	11	11	$1)$	11	\cdots	51.	7001	97	2	0	0	0	9 ± 18	
$111:$	1	$1:$	(1)	11	i	$\therefore 15$	608	1%	- -	0	0	()	904	
111:	11	1	i	$1)$	1)	$\therefore 8$	1!1)?	101	()	()	0	0	1161	
1', ',	I	11	11	11	(1)	-, 76	1016	2%	()	()	0	(1)	1661	
1"!	\|		6	11	11	-1)	1	14, 14	17 O	1	O	0	0	1533
1 ! !	11	$1{ }^{1}$	i)	- $\cdot 1$	\because	13'	$\cdots{ }^{1} / 1$	180	0	()	()	()	1027	
1'i'	11	11	1	1	$1)$	14.4	14, 4	18	13	()	0	(1721	

Source dre gross tamings-i les.

Hote: A minus sign indicates months in which the catch is confidential because fewer than four boals participated in the fishery.

＇al e $3 \quad 53$
Norton Sound Set Gill Net Sa mon Fishery
he Nomber of Boats and Catel hy Month as a Percentage of Amma Activ ty 1969－1977

Percentage of Boats

Yedr	San.	$1+0$	March	April	May	Jinne	July	Aud．	Selst.	Oct.	Nov.	IMC.	Amual
1．1＇1				\bigcirc				33^{3}					100.0
$1 \cdot 1$		＇	1	1）		16． $\mathrm{c}_{\text {c }}$	（1）．1	4il．${ }^{\text {a }}$	$76 ?$	0	0	0	10000
1．．＇ 1		$!$	1	！ 1	，	41．${ }^{1}$	48.6	4 3． 3	0.09	（1）	(1)	0	10000
1＇1．＇	1	$1!$	11	i	1.	㤩，	9）． 11	1）．0）	fet：	（）	0	（）	100．0
$7{ }^{\prime \prime}$						$\cdots, 01$	リU． 6	3 $\times 18$	11	(1)	（）	（）	100.0
						i）	以い。1	11.4	$1)$	11	（）	0	100.0
リリ1。	＇ 1	il	11	11	11．9	$i_{i}=i_{4}$	40．1	3is． 6	11	11	0	0	100.0
1911	6	！	11	$1{ }^{1} 1$	1）	（．2．${ }^{\text {a }}$ ，	\％，\％	3， 4	$1)$	11	0	（）	100．0
リリ1	1.	11	$1:$	（	11	1.7 .1	1．1－5	？${ }^{1}$ ， 3	1201	$1)$	0	$1)$	100．0

（i）

Percentage of Cater

1.1	
$11 / 11$	1
1111	！
1．1．＇	1
111，	1
1，\％ 1	i
1：14	
191！	
1＇i＇	

$\because \mathrm{O}$	l－${ }^{\prime}$	18.7		（）	（）	（1）	100.0
$n+1$	7心．	${ }^{1} \cdot 4$	$\cdots 1$	(1)	0	（）	100．0
		1． 3	－＂	（）	0）	0	100.0
31．5	θ, θ_{0}	1.9	－＇011	0	0	0	100.0
$\therefore .1$	很碞？	4.7	11	（1）	（）	O	10000
$\times 4.7$	かt	1.9	0	(1)	0	0	100．0
（1） 1	910	f？？	$1)$	（	$1)$	1	100.0
12.1	14．9	\％． 11	0	（1）	f）	1	100．0）
\％？	113.8		110%	（1）	（1）	（）	100．01

Source：Clec iross Larminys files．
Hote：A m mis sign indicates months in which the catct is conf dentia because fewer than four boats part e pated in the fishery．

> Norton Sound Set Gine Net Salnon i shery Number of ishermen by Month $1969-1977$

Year	Jom.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Hov.	Dec.	Total
1":	;	"	i	$1:$	${ }^{\prime}$	1! ${ }^{\text {a }}$	13%	4	1)	0	0	0	291
い!	"	11	11	"	"	10	110	54	:	0	n	0	257
1.111	"	${ }^{\prime}$	"	4	1	11	14%	6.3	10)	0	0	2868
1						1%	$4{ }^{4}$	30	$!$	11	n	1	302
111:	i;	!	9	11	4	80	C14	119	0	0	0	$1)$	4.7
1"?	'	"	!	11	\cdots	$\therefore 14$	212	36	0	0	0	0	527
;					-		290	8	-	0	!	0	326
1				t		14	$\therefore 3$	7	$1)$	0	0	0	434
1.11		4	${ }^{\prime}$	"	0	113	? 11	40)	3	$1)$	0	0	388
			-										
Sou	Crtc	uss	arl lgs	i es.									

Table 3.1.6]
Norton Sound Set Gill Net Sahmen Fishery Percentage of Fisherman Man Honths by Mont 1969-1977

Source: (fEC Gross Larm nys Files.
fisnery during 1.9 calendar months per year.

Kotzebue Sound

The kotzebue Sound salmon fishery is also a set gill net fishery. Ets anrual hariest weight ranged from 200 metric tons (0.1 miliion pounds: to 2, 125 netric tons (5.3 million pouncs) and averaged gi7 mazic tons (2.2 million pounds) vetween 1969 and 1979 . The arnual raat narvest yalue ranced from 50.1 nillion to 33.0 million and averaged 31.1 million (see Table 3 1.52). Both aterage hariast welght and real value are greater for 973 ghrough i977 than for the geriod as a whole. This indicates trat zoch harmest veight and rea? value have zenced to incrasaz.

The boats in the kotzebue samon fishery are jojobily less than 7.0 meters (2亏 feet) in length and have a oret 2 to one, the skipoer. it is a predominately local fishery; most of the fishemen are local residerts and the boats operate out of and land iish in local commuties, prinaripy kotzeoue.

```
The salmon season typically begins in July and ends in September.
Mugust is ghe nost oroducuve ronch. The seasonavity of this *ishery*s
Summarized in Tables 3.\.j3 tnrougn 3.1.6j. The alerage iength of zarot-
cigation by boats in this fishery is i.b months ger year.
```


Table 3.7.63
Kotzebue Set Gill Net Salmon Fishery Number of Boats and Catch by month 1969-1977

Number of Boats

Year	Jan.	Feb.	March	April	May	lime	July	Aug.	Sep	Oct.	Hov.	Dec.	Anmua
19\%	'	1)	'	()	ก	1	$3 t$,	48	17	0	0	0	49
1976	11	1	1	$1!$	0	,	6.7	75	14	0	0	0	78
1!!		1	11	11	0	(:	71	94	42	0	0	()	95
197%	'1	(1)	!	(1)	1	1	89	91	11	0	0	0	106
1113	1	11	1	!	?	0	135	111	O	0	0	0	183
1194	11	1	19	1	0	i)	204	293	11	0	0	0	321
19\%.	1	11	"	[)	0	()	10?	251	1	0	0	0	266
1916	11	1	i)	11	3	0	192	216	0	0	0	0	220
1017	11	1.	11	11	11	(100	216)	0	0	0	249

Catch ("1,000 pounds)

1: ${ }^{\text {a }}$:	$1!$	()	$1)$	1)	()	70	355	17	[)	0	0	442
19 in	11		11	(1)	0	0	290	1003	4	()	(1)	0	1296
11.11	11	11	11	11	0	(1)	128	1069	68	()	ก	0	1265
$1 ; 1 \%$	11	1	1)	0	()	(1)	$40)$	1i)39	7	0	0	0	1543
1:1]		$1)$	- 1	0	11	i	1124	2300	0	0	0	0	3326
$1 \cdot 1!$	11		(i)	()	()	0	176,	3571	6	(")	O)	0	5349
1/1"	-:	11	11	11	!	0	1011	3nha	$-\cap$	()	(1)	0	4891
1! !	1	4	11	(1)	介	0	6,16	900	0	()	i)	0	1416
$1 \% 1 \%$	i)	i)	i	11	(1)	O	436	4113	0	1)	i)	0	1847

Source: Cht Gross Earnings Files.
Note: A minus sign indicates months in which the catch is confidenthal because fewer than four boats participated in the fishery.

Table 3．1．6．
Kutcobte Set Gil！Net Satmon Pishery
The Mamor of Boats and ca ch by Month as a Percentage of Ammal Act vity 1969－1977

Percentage of beat．；

$\because こ こ$

＇ercentage of Catch

					＇．$\%$	H	3.1	$1)$	0	（）	100．0
1		：		0	$\therefore \therefore$ ，	！＇	0.3	1	（）	（）	100.0
1 ！ 1			，	\％	1.1	淮。＂	1．${ }^{1}$	1	0	$1)$	100.0
\cdots					$\therefore 1$	6．i．＇	11.6	1.	$1)$	11	100.0
；		1.		：	：19．0	いい。）	1	1）	d）	$1)$	100.0
$!$	1				3．1，	6， 6 ， 9	$10]$	0	0	0	100.0
$1:$				；	$\therefore 1.1$	小。？	\％ 1	（）	0	$(1$	100.0
$1 \cdot 1$	1	；	\because	1		いた．${ }^{\text {a }}$	${ }^{\prime}$	0	0	$1)$	100.0
！\cdot ；${ }^{\text {l }}$	＇		1.	1	\therefore＇。＇	$\cdots \mathrm{l}$	$1 \cdot$	$1)$	0	（）	100.0

Source：Cf C Coross Larminess F les．
Nobe：A mimes sign indicates months in which the catch is confidential because fower than four boals participated in the fishery．

Table 3.1.65
Kotzebue Set Gill Het Salmon Fishey Number of Fishermen by Monch

1969-1977

	$\frac{\text { Year }}{1}$	Jatl. 1	reb.	March	April	May	June	$\frac{\mathrm{July}}{4}$	Aug. 4, 8	$\frac{\text { Sept. }}{1 i}$	Oct.	Nov.	Dec.	$\frac{\text { Total }}{01}$
	$\cdots 11$	${ }^{\prime \prime}$	1	!	11	1	1	(3)	$\%^{6}$	14	11	0	0	151
	11:1	${ }^{1}$	1.	1	${ }^{\prime}$	1	1	11	134	$4 ?$	11	0	1	20t
\cdots	1			:				sis	7	1	$1)$	0	$1)$	197
	\cdots	!			0			,		(1)	0	1	0	30%
	4		:	1	1	:		: 4	\cdots				0	$50{ }^{4}$
	:		,	,	11	11	\because	101	\therefore	1	11	0	0	450
:				,				"	? 19	${ }^{\prime}$	0	0	$1)$	410
			,	:	,	;		-	- ${ }^{\text {\% }}$!	0	0		3 \%

Source: Che Gross lamings Files.

Sonree: Clle liross larn nos files.

There are to distinct halibut fleets in Western Alaska, a larga boat fleet that ranges throughout the Sult of Alaska and the Eastern Eering Sea and a small boat fleet. Fine boats in the latter fleet gend to fish in protected waters in the general yicinity of their nome ports and are primarify associated with other fisheries. Until recently the international Pactif talibut domission (2PHC) collectad data on the laree and Bicensed yessal fleet inclucing both the U.S. and Canad an boats, and the Jlaska Ceparment of fish and Game (ADFAG collecte data on the comestic - "ests, inclucing both smeli and large vessels. Another dit
 different regions (see Figures 3.2 and 3.3).

```
INHC data for Chtrikof through the Eauing Eaz incicate that zovolen
IE69 and 1979, annual hariest weignt ranged from 200 metric sons {. 3
Tillion pouncs) to 7,775 metris tons (13.3 nilition pounds) and averace
harrest value ranged from 5i.9 militon to 50.5 militon (see Mavle
3.7.57. Soth har|est meight and nominal value have decressed since tne
```



```
increases in tha ncminal exvessel price have moceravec the decrease in
gominal haryest ya:ua.
```

The annuai nerlast wetgn for the domestic theers gi hestem liaska

-


```
\3.3 milion (see Fable S.j.57, man!est vetgnt joes not exnibiz a
```


W．stum Mlaskd Halibut Have： 1969.1979
f＇omb．小．
（ $1,1010 \mathrm{j})$

$Y=1$	~ 1111	111	$\begin{aligned} & 11 \cdot 111 \\ & 11,1001 \end{aligned}$	$\begin{aligned} & \text { Wostern } \\ & \text { Aloblias } \end{aligned}$	$\begin{gathered} \text { Ber imm } \\ \text { Stat } \end{gathered}$	$\begin{aligned} & \text { An! \& } A \\ & \text { Wutern } \\ & \text { Alatat } \end{aligned}$	$\begin{aligned} & \text { HPll: } \\ & \text { Wיstern } \\ & \text { Nusta } \end{aligned}$	A！usha
$1 \quad \mathbf{i}_{1}$	1			，				Arica
1 －1；	1			11	11	$1)$	13017	人＂？＇${ }^{\prime}$
1－1－1	1		： 1	1）	1	（1）	14161 13020	$\therefore 2,4,11$
$\cdots:$	．（1）${ }^{\text {a }}$		1	i1	4\％ 11	24 ${ }^{11}$	1710 1030	$36,481$
1－1－	14， $2 \cdot$		$\therefore{ }^{\prime}$	11	146	3419 1978	$\begin{array}{r} 1030 ? \\ 4313 \end{array}$	3 3 3 3 3 81
1．${ }_{1}$	k， 1.1		is 3	（ 1	19	139？	$\because 375$	14．98
）－－	113		M	${ }^{\circ}$	$3 i 6$	15\％	3 185	211331
1－－1	M 1.		；${ }^{\prime}$	1	4．1．	1 2 194	$34_{4} 46$	$2(16)$
1－－1	1（．13）		1 \％	$3: 3$	45\％	っかけ6	4208	1 16.14
1－8，	1 31		＇${ }^{\text {a }}$	ris：	6以碞	1911	$\because 673$	$1 / 4,8 t$
1－${ }^{\prime \prime}$	1＇8：		\therefore	$4{ }^{4}$	918	151	1 76	

¢ 1	1	，	i	1	（）	\｛，4， 39	
（1）	1	，	！	：	1		113.24
＇1	1	，	©	！	$(1$	$44_{4} 84$	13601
	1．	，	1	） 3	14，1\％	$\therefore{ }^{2} 93$	$\because 1012$
\cdots	1＇，＂！	1	！	131	13：	$\therefore=11$	？1993
＇ 1		； 7		4	111	131，	1．2日C日
，	1614	$1!$	$1!$	1號	1403	11？1	1）924
1	1 n^{1}	11	1）	1，11	1744	4,301	2460，
，	$\cdots!i_{1}$	\therefore	： 1.	6．15	3303	¢！¢． 3	$? 10.9$
，	：1！		＇）：	1 \because,	$\cdots \%$	¢ 5 \％	＇${ }^{\prime \prime}$＇，
	；．	1	731：	$1+\cdots 1$	$\therefore 17$	3！	吅口＂，

411
111

			rable 3．1．					
	8 Ca Mataymam	Harver	$\begin{aligned} & \text { a lercenta } \\ & 1509 \text { 19/9 } \end{aligned}$	We Weste	a Harves			
			mbaje by foy					
		Mulab	We： 1 Mrn	liar inm	$\begin{gathered} A H \\| Z \\ U n, 1+r \\| \end{gathered}$	$\begin{gathered} \text { lHy } \\ \text { Wי. lern } \end{gathered}$		
Y＇．11		lindmer	A1011．ans	Ste	Alaska	Alasla		
＇\cdot		\cdots	－	11	11	1H1．11		
1．＇．		：	11		$1)$	1111． 1		
1：11	11	i	11	1	11	1！10．11		
$!\cdots$	1．1 1	11	11	3.0	23.4	1010．0		
1：＇；	＂．1	＇． 1	11	\％ 6	36．3	110．11		
$1: 1 \cdot$	$\therefore 11$	！．＇，	＂	－． 1	3100	1110.11		
1，＇＊	－．＂	\therefore ，	11	11.1	49。 ${ }^{\text {a }}$	1：0．11		
1．＇，	＇1．${ }^{1}$	1.1	11	11.4	40.3	1110.0		
1＇1！	3.1	\therefore－	1.1	1？ 3	1，1） 1	1110．0）		
11！	1＇．${ }^{\prime \prime}$	1.1	14．1	$x_{1} r_{1}$	11。＂	1110．11		
$\cdots \cdots$	＂．	1．	$\therefore{ }^{\prime}$	9，${ }^{\text {a }}$	$\because 1.1$	1111．11		

＂．

Percentane by Value

「吅，	11	11	1）	（1）	（	1111．11
1．11：	1	$1 '$	$1)$	$1!$		11） 0.0
11！	${ }^{\prime}$	11	$1)$	11	11	100.0
i＇i	1！＊ 1	！	1）	1． 6	$\therefore \therefore 1$	100． 11
1，＇1	＇4． 1	\cdots	1）	1.1.	（1）．0	160．1）
1\％！ 1	．＇＇－＇${ }^{\prime}$	1． 1	（）	4．${ }^{1}$ ，	3：$\%$	100．01
！1／ 1	$\because \therefore 1$		$1{ }^{1}$	111．1	，i。＇	1111．11
1．＇＇	$\therefore .1$	1.1	11	11．9	41.	1110．1
－＇$/$		$\therefore * *$	7.8	1．1．1	140＂	11．1）．11
	1 1．1	1．1	$\therefore{ }^{\prime} .1$	$\therefore 1$.	71．${ }^{5}$	111．1．
＇	$\cdots \cdot 1$	：1．4	\therefore＇	，${ }^{\text {a }}$ ，	$\therefore 1.1 i$	1111.

110 ：

$1969-19 / 9$

			（entayge				
Y（1，11	P（1111501．	$\begin{aligned} & \text { butch } \\ & \text { H.rrons. } \end{aligned}$	$\begin{aligned} & \text { Western } \\ & \text { Alentim: } \end{aligned}$	$\begin{gathered} \text { berrimy } \\ \text { sud } \end{gathered}$		$\begin{aligned} & \text { !Hlli } \\ & \text { Western } \\ & \text { Alaska } \end{aligned}$	Aldskut
11%	＇	1		＇	1	3．．${ }^{1}$	101． 11
$1: 1$	＂	＇			11	3， 0_{0}	1111.1
$11: 1$	$1!$	1	${ }^{1}$	！	11	33．3	100．0
1＂＇：	6.1	＇	0	1．1	7.4	3.08	10000
191	＇．．＇	1．1	1	1.9	96	$\because 1.4$	100． 1
101，	＇．．＇	1.2	11	1.1	1.6	14．4	100.0
11%	\cdots		${ }^{\prime}$	1.8	1 。l	1 ${ }^{1}$	100．0
1916	4.1	$1=1$	${ }^{\prime}$	$\therefore{ }^{2}$	6.9	11.1	1010．1
1911	＂．11	＇：1	$\therefore-1$	3.3	15．0	res．	100．0
19！	1．11	1．${ }^{\text {\％}}$	3.1	3.1	10.4	14.3	110）． 10
1\％\％	＂．＇	11.	\cdots	$\cdots \cdots$	リ．	\％，A	100＂，

Percentage by Value

$1 \cdot$		1）	（1）	（i）	1.	35．0	1（10，（1）
1，111		（1）	11	0	1	＋4．01	190．01
$1 / 1$	11	， 1	\％		11	1 1．${ }^{\text {a }}$	11） 0
1＇，＇	＇${ }^{\text {a }}$	（i）	1	－ 1	1．1）	21． 08	1000
1＂，	1，-1	11	11	－	（．） 4	21.4	190．0
1＇11．	．． 1	1，	1	11.1	1.1	14.4	1100．0）
$1^{\prime \prime}$ ，	，． 1	＇，	i）	1.0	11	1；\％γ	1n0．0
$1:$		1．	（1）	$\therefore \therefore 1$	\％．1	11.1	110， 11
	＇－＂	11.	$\therefore .1$	i． 3	$1+.11$	㕱。＇i	1110．r
1，＇＇	1	1！		；；	$\therefore=$ ，	$1^{\boldsymbol{\prime}} \times$	111.11
	．－	17.	\cdots ．	！．．＇	！	ひ，	1．1！ 1 ！

[^2]


```
montrs per year
```


harrast vetgrt nor value has exntoited a strong secular brena.

Ge former primerily as a secondary Fishery The boats nange in arath

ocerate out ot mon-ioca? oorti such as koatak.

al 2 3.1/
Penimsula Halibul I ishe y
Hamber of boats and Catet by Mor on
1060-197|

Number of Bos

$Y(: 1)$	d 111.	1 (b)	Har	An!i!	Hhy	Sunc	suly	A14.	Sept	Mo.	Nov:	He:	Ambum
\| . ';	\cdots	i	1	11	:	11	\square	18	11	11	9	0	$1)$
-				1	,		:		4		1		0
-			1	1		:	${ }^{1}$	4	:		i	0	$1)$
1					1%	I:	$\because 1$	$1 .{ }^{\prime}$	${ }^{4}$	-	"	11	*
! . ${ }^{\text {! }}$			1		\therefore	-	i)	4,	\because	t	0	,	: 1
1 ;			1	(1)	,	$1!$	$1{ }^{\prime}$	is,	11	$!$	()	;	3.
i ;				11	1	1:	"	$\because \cdot$	13	()	0	,	6, 6
$1:$				11	'	11	18	13	1)	11	$1)$	()	10
								0	0	11	0	0	68

 proliobiated in the tishery.
tab e 3．． 72
ferinsula Mal but I ishery ＇ercentage of Boats dad lateh by mon on 1969 1977
fation ye of bra os

Y_{101}	del1．	10	Mar．	April	May	． 1 man \％	duly	An！	3！口⿺尢	UCt．	Norv．	Her．	Anmad
					：		1			i	（）	11	（）
1		11			1	，	1		）	（！	（）	0	0
$1 \quad!$					：		［）			$1!$	0	（1）	（1）
1 ：		1			$1!$	14．．	1）$:$ ． 7	11．3．7	in．il	！	i）	（1）	1010.0
；；＇		1		＇	r 。	4_{1} ：	1， 13		4_{1} ！． 1	1109	i）	（1）	11）0 $0^{(1)}$
1 i ${ }^{\prime}$				；		90． 0^{1}	4%.	碞，（1）	$3 i_{6}$	1．1	11	$1!$	100．0）
＇ 1			4		1\％	، 1.40	$\cdots!$	111.1	$\because 4.1$	（！	d）	（	1 1008
$1{ }^{\prime}$ ；		，	11		4.	$\therefore 1.1)$	（\％）	$\therefore A$	1）	1）	1）	${ }^{1}$	1110．01
：							1	i）	11	（1）	1）	1	100.11

							11	11	0	0	0
，，		＇		\cdots	1	1	（i）	0	1	$1)$	1）
	＇${ }^{\prime}$	$\cdots{ }^{\prime \prime}$	4．${ }^{\text {a }}$	＇。＂	$\therefore 1$	16．9	11．1	0	0	1	111）．01
			－ 1	，, 1	$\therefore=1$	11.4	12.0	U．！	0	0	1－1）
	：		－－．11	1＇．${ }^{1}$	$\therefore 1$.	1．	11.0	（1）．1）	0	11	1碞安
i			1.1	1－1	\therefore ¢－：	$\therefore-1$	13．1	11	0	0	$1 \therefore 01$
			$\cdot{ }^{19}$	1.		：1．7	（i）	11	0	0	$1^{11} .0$
				$\stackrel{+}{ }$	11	${ }^{\prime}$	4	4	1	11	100．11

 participaled in the tistury．

lable $3 \quad 14$
Pentisule Halibut ishery
'ercenlage of I isterman Man Months by Month 1969. 977

$$
\begin{aligned}
& \text { arvestins Melivity } \\
& \text { astern Aloatians llalimot. shery } \\
& \text { 196!-19/9 }
\end{aligned}
$$

Giross lamings Files, and (a) Alask bepartmeni of lish and Cante reports.

$$
\begin{aligned}
& \text { the lisis amd y/y values are mat iminary astimates. }
\end{aligned}
$$

lable 3.1.70
Fibern Alewions matbut lishery
Ninde of Bcil and Catch by month
(光9-19/|
Number of Boat

Y(.a)	Jun.	14,	Mar	April	May	, 1910	dily	Nu4.	3015	Oct.	Nov.	IVC.	Antinde
' \cdot :	$!\cdot$	' ${ }^{\prime}$	11	$1:$	11	(1)	1	1)	1;	$1)$			
1.			:	$!$!	,	,	(1)	\bigcirc	0	(1)
$!1$					$!$,		,		1	$1)$	O	11
'	,			1	!	1)	;	()	1	$(1$	0	$1)$
: \cdot i				!	;	1	1	$?$	1	1	0	6	3
1 -			1	11	,	-	4	'2	1	(1)	\bigcirc	$1)$	\%
1, \%			[,		-,	P	; 2	${ }^{\prime}$	1	$1)$	11	\}
, , ',			,	1		${ }^{+}$	'	4	1	(11	()	1
'il				,	+	U	4	3	$1)$	0	()	()	1.
				1	\dagger	1	11	()	$1!$	11	()	()	4 :

Cateh (1,000) Pound

$$
\vdots 1: 03.1 .71
$$

Iashern Alcu!ians Halibat I ishory corembage of Bonts and Cates by mon at

- 309 -19/1

Prandage al Boals

Y0,	1:31.	106	11:11	A!r!	Huy	Jume	duly	An!	Y!1.	010	Minv:	Bers	Amumal
						1	1		;	:	1	11	$!$
					,		i				,	1	
11				1				;			()	()	
1					'	1		\cdots			,	1,	1.11
					:	\cdots		-. ${ }^{\text {a }}$			11	1	100.01
:				;	1.	4i, ${ }^{\text {a }}$		1.1.	;	')	(110.1!
1 1				,	-	. . 1	11.4	$\therefore \therefore 1$	14.3	1	i		1115.11
1							1 ,	!			$\bigcirc 1$		(1).1)
+ :							,			i!			: 。

Percerntaye ol Catch

$1 \ldots$	'	\cdots	1	11	11	.1	1	()	()	11
. 1				I:		-		1	,	()
					1					(
				1	1	1	1			()
1		t		1	1.1	-11.1		()	1	100.0
		1	$1:$		1.1	- 1		11	1	100.10
,	1	1	1.	1.1	1.1	, \%. 1	;	()	1	1110.0
i			!	; . -	.- . .	${ }^{\prime}$	1	1	1	100) 010
						1	;)	?	1(1).

 paticifated in the lighery.


```
gartic pated in the fishery in ig77. in that year th annuat haryest
weight and reat value were lo4 metric tons (330.000 pounds) and s37, a00,
Asspervuviy (see Tazle 3.?.30).
Sotn loca and ron-iocal boats asmacigata in tha lishery orimarily as
```



```
lengzo. Srev size yaries greatiy depending ypen a soet's grinciza?
Gishery. The average crem size is aporoximately f ve. The smatler doazs
```



```
Ooca' gorzs swon as kodiak.
```


11

for 9/8 and $19 / 9$ Valdue are pro! im may estimales.
la e 3 |:
Western An Woas hatibut fohery
Ruminer of bab amel (atel by Ponth
609.19/7
Nemmer of Boads

Year	J,11.	1!	Mar.	Api 1	Mry	Jume	duly	Aug.	Sept.	O6:	mov.)	Amma)
\therefore			,		!		:	1	;		n		0
$\cdot{ }^{\prime}$				$!$				(,	i)	()
!		1			,				1	11	;	11	0
,					;		\therefore	+	1	11	'	11	$1)$
1.	"	"	11	19	'	11	11	$1)$	11	11	n	11	0
\therefore				,	1		:	1	11	1)	\bigcirc	11	3
\therefore						;		;	0	1	11	(1)	$1)$
$1 \quad \therefore$:	11					11	1	11	'1	(1)
;	;	:	"	11	$!$	$1 \cdot$	(1)	0	0	11	!	0	6

Cation (1,000 lounks)

1	;		1	;	11	$\begin{aligned} & \text { i) } \\ & \text { i) } \end{aligned}$)	1	$1) \quad 1$	
							11	$1!$	(1)	()
!				,	11	i)	11	4	(i)	$1)$
1						,	11	1)	(1)	()
$!$			1	!		($(1$	((1)	()
	'	,			()	(1)	(1)	9	(1)	()
	.	;		1	(1)	i	11	$1)$	11	()
		;	1		-	i	i)	1	(1)	$1)$
					i	11	!	1	0	

$$
\text { \| } 1 \text { ! } \quad \because \because \therefore 11: 1 \geqslant 1
$$

 buttinipulal in lha lishay.

 parliciphated in ihe fishory.

Table 3.1.83
He stern het ians Hallbut fishery
Nember ordishermen by Month
$1969-19 / 1$

Yedr	dath.	10.	Wars.	Anil	May	: 11112	duly	Aut.	Sejt.	Uct.	Mov.	ber	Polal
1969	0	1	(1)	0)	0	0	0	0	(1)	0	O	()	11
1910	4	()	()	(1)	$1)$	\%	0	0	0	0	0	()	()
1\%/1	$1)$	()	()	U	1)	(i)	0	0	0)	0	O	U)	1)
919	$1)$	(1)	U	i)	()	0	1)	()	i	1	()	13	()
1/9			i	i	1	-		\because	:	Ξ	0	i	()
19\%!	(()	()	$1)$	${ }^{3}$	111	0	3	()	0	0	()	?
'/ /',	11	$1)$	1)	0	$1)$	()	0	O)	11	0	0	i	()
1915	(1)	0			1)	()	()	$1)$	1	1	0	0	1
$1 /$	()	1		i	;	1)	0		i)	()	;	1	

Tab e 3.1 .84
Western A eut ans $\mid a^{\circ}$ but F shery
Percentage of Fisherman Mar Months by Morth 1969-1977

Source: CFEC Gross Earn ngs i es.

The annual harvest weight of the Bering Sea hal ibut fishery ranged from 54 metric tons (120, 000 pounds) to 425 metric tons (938,000 pounds) bet ween 1972 and 1979 and averaged 206 metric tons ('455, 000 pounds). The annual real harvest. value ranged from 3127, 000 to $\$ 1,378,000$ and averaged 5765, 000 (see Table 3, 1. S5).

The boats in this fisheryrange in length from under 12.2 meters (10 feet) to over - 77.7 meters (75 feet); the smaller boats are primarily participants in other fisheries. 3oth local and non-local boats participate in this fishery and crew size varies depending upon the principal fishery of a boat. The average crew size is approxi mately five. The small boats operate out of and Iand fish in Aleutian Island commities. The Iarge non-local boats which dominate the fishery operate out of and I and fish in non-local ports such as Kodiak.

Although harvesting activity has occurred in April, June, and iugust through November, it has typically been concentrated in April and Sedtember through Vovember. The seasonality is summarized in Tables 3.1.86 through 3.1.89. The average leng th of partici pation of a boat in this fishery is 1.4 nonths peryear.

HERRING

```
There have been four distinct phases in the develocment of the vestern
4laska commercial herring fisheries (Nespestad 1979). Phase one began
```

Table 3.1.85
llarvestinq Activity
Bering Sea llalibut Fishery
1969-1979

Sources: This table was generatedrem data contained in (1) Commerciali fisheries Entry Conmission Gross Earnings Files, and (2) Al aska Vepartment of Fi sh and Game reports.
The redal values and prices were calculated using the U. S. CPI; 1980 is the base period.
The 1978 and 1979 va ües are preliminary esti nates.
able 3.1.86
Bering Sea Halibut Fishery Number of Boats and Catch by Month 1969-1977

Number of Boats

$\frac{\text { Year }}{1.1 \%}$	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
1"110	11	!		$1)$	9	0	1)	0	0	0	0	0	0
1910	$1!$	11	1)	1	${ }^{1}$	0	$1)$	0	0	${ }^{1}$	0	0	0
1!!	11	1	11	1	0	1	1)	n	0	0	0	0	0
191	11	11	1	3	0	11	n	0	$?$	3	2	0	6
11!	'	"	i'	l	0	11	0	1	1	2	1	0	9
167\%	1	11	1	1	0	'	n	1	3	$?$	0	0	8
1.1"	11	11	1	4	0	1	0	0	0	5	1	0	8
1"it	11	11	1.	A	n	0	0	0	8	4	1	0	11
1\%:	${ }^{\prime}$	11	،	1	11	0	ก	0	0	$1)$	0	0	23

$\stackrel{\rightharpoonup}{\mathrm{A}}$

Catch (, ,000 Pounds)

1't. ${ }^{\text {c }}$	1;	'	11	. 1	11	(1)							
1'! 1	11	11	11	\cdots	0	11	?	0	0	n	0	0	0
1! 1	+	1	1	1	の	i	i)	0	n	$1)$	0	0	0
11:'	"	1)	11	-9	0	0	()	0	-	-1	-	O	${ }^{1}$
1:i	1	11	$1)$	114)	n	0	-0	-0	-0	-0	0	316
')-			-		-	-	(1)	-0	-1)	-1	0	0	189
1	'	6	1	I	'	-o	0	0	0	112	-0	0	120
$1 \cdot \prime$	'	11	1.		\because,	!	$1)$	0	149	137	-0	0	356
1 ',	'					0		O	1	0	0	0	161 542

Source: Crlc Gross Earn igs F es.
Note: A minus sign indicates months
which the catch s conf dent a because fewer thar four boats participated in the fishery.

Tab＇e 3.1 .87
Bering Sea Halibut Fishery
Percentage of Boats and Catch by Mor th 1969－1977
Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	duly	Aug．	Sept．	Oct．	Nov．	Dec：	Annual
111：11	11	$!1$	11	＇i	$1)$	11	1）	（）	（）	$1)$	0	0	1）
1111！	1		＇ 1		11	（）			\bigcirc	O	$1)$	（）	0
$1 \cdot 11$	11	＂	$1{ }^{1}$	11	11	11	（1）	1 ＇	0	（）	（）	（）	0
1ヶ1．	1	$1)$	$i)$	1，1）．	11	11	0	$i^{\prime \prime}$	23．3	50.0	33.3	（）	100.0
$11: 1$	1	11	i，	＇r． 11	11	（1）	1）	11.1	11.1	77.2	11.1	（）	100.0
$1 \therefore$	1	1		${ }^{\prime}=1$	1	$\therefore .0$	$1)$	105	17.5	$2!0$	0	0	100．0
$1:{ }^{1}$		11	11	＇21．a	$1)$	\cdots	0	＇	0	63.5	12.5	0	100.0
14， 1	1	1.	$1)$	湤。	11	1	$1)$	＇	$r 2.1$	36.4	9.1	0	100.0
1.11	1	1.	11	$1)$	0	$6!$	）	，	1	）	0	）	100.0

					entage	C						
い！＂	1	i	；	0	11	1	＂	0	0	0	0	0
$1 \cdot \cdots$	，	＂	，	1	0	0	1	11	0	0	0	$1)$
1										$1)$	0	0
			－． 1	＂	${ }^{\prime}$	1	1	－1．0	－0．0	－0．0	0	100.0
1．．＇s		\cdots	人1．1	1	1	1	－1． 1	$-11 * 1$	-1.1	-0.1	0	100.0
1．1．		1	－${ }^{1}$ ．	1	-1.1	1	-11.1	-11	-0.1	0	0	100.0
				（1）	－11．0	11	1	0^{*}	42.7	－0．0	0	100.0
\cdots	，		\therefore	$1)$	11	i	11	3.31	29.7	－0．0	0	100.0
i				1	1	1	11	1）	11	$1)$	0	100.0

Source：CFEC Gross Earnings F es．
Note：A minus sign indicates months n which the catch is cor ident a because fewer t fan four boats participated in the fishery．

[^3]Table 3. . 89
Bering Sea Halibut Fishery
Percentage of F sherman Man Months by Month
1969-1977

9	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
				,	11	0	0	0	0	0	0	0	0	0
	$9 \%^{\prime}$,	11	0	0	0	0	ก	0	0	0	0
	911	1	${ }^{\prime}$,	11	0	0	0	0	0	f	0	0	0
	4: 2		${ }^{\prime}$	i	31.0		0	()	n	20.0	30.0	20.0	0	$0_{*} 0$
	3	1	i	${ }^{1}$	93.3	0	0	0	8.3	8.3	16.7	8.3	0	®
	914	1	11	1	-	0	22.2	0	11.1	33.3	22.2	0	0	100.0
	1193	:	11	0	36.4	1	9.	0	0	n	45.5	9.	-	100.0
	7 t	(i)	'	1	2. . $\%$	n	0	0	0	42.	21.1	5.3	0	100.0
	1017	$1 \cdot$	$1 \cdot$			0	0	0	0	0	0	0	0	0

Source: CFEC Gross Earnings files.
in the early 1900 s and consisted of small scale fisheries which supplied salted herring. Phase tuo began in 1928 and continued through 1945; it incl uded the establishment of Iarge scale salteries in Dutch Harbor and resulted in annual harvests of 1,000 to 2,000 netric tons (2.2 to 4.4 mili on pounds) fromthe late 1920 s through 1937. Market conditions, not resource abundance, ended this phase of devel opment. The third phase consi sted of Sovi et and Japanese expl oitation; it began in 1959, peaked in 1970 with a harvest of 145,579 netric tons (321 million pounds), and was limited to incidental catch in the late 1970s. The fourth and current phase consists of the devel opnent of donestic herring roe fisheries in the Norton Sound, Bristol Bay, and KuskokwimYukon managenent areas (see Fi gure 3.4).

As is indi cated by the harvest data in Table 3.1.90, the Western \mathbf{A} aska domestic herring roe fishery began in Norton Sound in 1964 and was characterized by noderate and sporadic annual harvests prior to 1977. Si nce 1977 the fishery has exhi bited rapid grouth which has been prompted by growing markets for Western Al aska herring roe products and whi ch has been facilitated by increases in resource abundance. The strong narkets for Vestern Al aska herring roe and the associ ated high exvessel prices are expl ai ned by low or deplet herring stocks of $f \mathrm{~J}$ apan and in the North Atlantic.

Exvessel prices for Bristol Bay roe herring for the past few years are indicative of Western Al aska prices. The average exvessel price increased from $\$ 110$ per metric ton in 1976, to $\$ 155$ in 1977, to $\$ 330$ in 1978, and then to a record high of \$650 in 1979 before decreasing to \$200 in 1980.

+1, 1 人 Maj or Fi shi ng Areas
-ADF\&G Managenent Area Boundaries
Fi gure 3.4: Maj or Herring Fi shing Areas, Western Al aska.
Source: Alaska Department of Fi sh and Gane, Alaska's Fi sheries Atlas, 1978.

Table 3.1. 90
Western Alaska Donestic Herring and Herring on Kelp Harvest 1964-1980
(Metric Tons)

	Bristol Bay	Kuskokwi m Yukon	Norton Sound	Total
1964	0	0	18	18
1965	0	0	0	
1966	0	0	11	
1967	122	0	0	11;
1968	107	0	0	107
1969	47	0	2	49
1970	43	0	7	50
1971	24	0	18	42
1972	103	0	15	118
1973		0	32	84
1974	1 \%	0	2	171
1975	101	0	0	101
1976	134	0	8	142
1977	2, 660	0	10	2, 670
1978	7,180	259	17	7,456
1979	10, 303	466	1,184	11, 953
1980	17, 774	1,632	2, 215	21, 162

Source: ADF\&G, Statistics of Herring Stocks and Fisheries in the Eastern Bering Sea, 1979. ADF\&G, Menoranduns, 1980.

Nbte: The 1980 val ues are preliminary esti mates.

An unsuccessful attempt of one company to corner the herring roe market in 1979 resulted in both exceptionally high prices that were not sustai nable and I arge inventories which in part expl ain the depressed prices in 1980.

The rel ative importance of the Western Al aska herring fisheries is depi cted in Tables 3.1 .97 through 3.1.93 and recent inf or nation concerni ng the vari ous herring fleets is summarized in Table 3.1.94.

The herring resources of the Eastern Bering Sea have only \mathbf{j} ust begun to be utilized by Alaska fishermen; there is, therefore, a tremendous potential for grouth. The grouth of the fishery will in part be determined by the gear restrictions that are imposed. In recent years nonI ocal purse seiners have taken a large proportion of the Western \mathbf{A} aska herring harvest. This has I ead to requests by Bristol Bay and Arctic Al aska fishernen that the herring fisheries be limited to gill netters which would tend to be local boats. There are two basic reasons why Iimiting the fishery to gill netters would greatly increase the ability of Iocal fishernen to participate in the fishery. Many local fishernen have gill net boats that are currently used in the sal non fisheries; and the cost of entering a gill net fishery is a fraction of the cost of entering a purse sei ne fishery due to the I arge differences between the prices of boats and gear in the tuo fisheries.

Table 3. 1. 91

Uestern Al aska Herring Harvest 1969-1979

Pounds
$(1,000)$

Sources: CFEC Gross Earnings Files and ADF\&G Catch Reports.
nOTE: 1978 and 1979 data are prelibinary.

Table 3. 1. 92
Herring Managenent Area Harvest as a Percentage of the Kestern Al aska Harvest 1969-1979

Percentage by Keig ght

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.
NOTE: 1978 and 1979 data are preliminary.

Table 3.1.93
Herring Managenent Area Harvest as a Percentage of the Al aska Harvest 1969-1979

Percentage by Weight

	Year	$\begin{gathered} \text { Bristol } \\ \quad \text { Bay } \\ \hline \end{gathered}$	Kuskokwim	Norton Sound	Mestern Al aska	Al aska
	1969	0	0	0	0	100.0
	1970	1.1	0	0	1.1	100.0
	1971	0.5	0	0	0.5	100.0
	1972	0	0	0	0	100.0
	1973	0	0	0.1	0.1	100.0
	1974	0	0	0.2	0.2	100.0
	1975	0.5	0	0	0.5	100.0
	1976	0.9	0	0	0.9	100.0
$\vec{\square}$	1977	$2 * 4$	0	0	2.4	100.0
+	1978	41.6	1.5	0.1	43.2	100.0
	1979	44.4	1.9	4.9	51.2	100.0

Percentage by Val ue

1969	0	0	0	0	100.0
1970	4.9	0	0 "	4.9	10(-).0
1971	1.9	0	0	1.9	100.0
1972	0	0	0	0	100.0
1973	0	n	0*a	0.0	100.0
1974	n	0	0.1	0.1	100.0
1975	2.5	n	0	2.5	100.0
1976	5.0	0	0	5. 0	100.0
1977	7.8	0	0	7,8	100.0
1918	30.9	1.1	0.1	32.1	100.0
1979	31.8	1.6	3.2	36.6	100.0

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.

Table 3.1.94
'derring Fl eet by Gear Type and Area

	Bristol Bay GII Net Purse Sei ne		Kuskokwi m Yukon Gill Net	$\begin{aligned} & \text { Norton } \\ & \text { Gi } 11 \text { Net } \\ & \hline \end{aligned}$	Sound Purse Sei ne
			Number of Boats		
1978	40			x	0
1979	350	$1 ;$	1: 2	46	17
1980	363	140	319	289	0
			Harvest (Metric Tons)		
1978	574	6, 606	259	17	,
1979	4,121	6, 182	466	343	841
1980	2,843	14, 930	1,632	2, 215	0
			rcent of Harvest		
1978	8	92	100	100	0
1979	40	60	100	29	71
1980	16	84	100	100	0
			arvest Per Boat (Metric Tons)		
1978	14.4	264. 2	x	x	
1979	11.8	35.3	4.6	7.5	49.:
1980	7.8	106. 6	5.1	7.7	0

Source: ADF\&G 1979, 1980
NOTE: An x appears if the datumis not available.

Between 1969 and 1979 there have been a variety of gear types used in the Bristol Bay herring fishery. The total annual harvest wei ght ranged fromzero to 10,664 metric tons (23.5 mili on pounds) and averaged 3, 664 netric tons (8.1 mi lion pounds) during the last five years. The total annual real harvest val ue ranged from $\$ 0$ to $\$ 8.6 \mathrm{mili}$ on and averaged $\$ 2.5 \mathrm{milli}$ on (see Table 3. 1.95). These figures however, greatly understate both the harvest for 1980 and the potential harvest. Preliminary figures indicate a 1980 harvest of 17, 774 metric tons (39.2 million pounds) with a nominal value of $\$ 3.3 \mathrm{milli}$ on. Harvesting activity by gear type is summarized in Tables 3.1.96 through 3.1.98.

The boats used in these fisheries, excl uding the seiners that have dominated the fishery in recent years, are typically under 7.9 meters (26 feet) in length and have a crew of four incl udi ng the ski pper. The crews and boats are predom natel y local. The seiners range in I ength from 9.2 to 17.6 neters (30 to 58 feet) and have a crew of four or five. They are not primarily localboats.

The herring fishery is concentrated in near shore areas in northern and northwest Bristol Bay. Harvesting activity is heavily concentrated in a very short period during May or June. The seasonality of the Br . Stol Bay herring fishery for all gear types is summarized in Tables 3. 199 through 3.1. 102.

Tabl e 3. 1.95
Bristol Bay Herring Harvest 1969-1979

					Val ue	Exv	
	Year	$\begin{aligned} & \text { Pounds } \\ & (1,000) \end{aligned}$	Metric Tons	Nomi nal	$\$ 1,000 \text { Real }^{1}$	Nomi nal	Real
	1969	0	0	0	0	0	0
	1970	82	37	8	17	0.10	0.20
	1971	52	24	5	10	0.10	0019
	1972	0	0	0	0	0	0
$\stackrel{\rightharpoonup}{\square}$	1973	0	0	0	0	0	0
	1974	0	0	0	0	0	0
	1975	166	75	47	70	0428	0.42
	1976	296	134	127	179	0.43	0.60
	1977	586	266	'149	197	0.25	0.34
	1978	15832	7181	2755	3384	0.17	0.21
	1979	23510	10664	7762	8585	0.33	0.37

[^4]Table 3.1.96
Harvesting Activity
Bristol Bay Beach Seine Herring Fi shery 1969-1977

	Year	Catch			Exvessel Price				Catch per Boat		
		Welght					Number of		$\begin{aligned} & \text { Catch per Boat } \\ & \text { Weight Val ue } \end{aligned}$		
		Pounds	Metric	(\$1,000)	(\$/Pound)				Pounds	\$1,000	
		m	Tons	Nomi nal" Reà'	Nominal	Real	Boats	Fi sher nen	(1,000)	Nominal	Real
		11	1	$11 \quad n$	$1)$	()	n	0	0	0	0
	1.70	43	21	? 4	(1) n^{5}	0.10	19	76	2	0	0
	1971	${ }^{11}$	1	n n	0	n	n	0	0	0	0
	1.17	${ }^{\prime}$	1	$\cdots \quad 0$	$1)$	0	n	0	0	0	0
∞	1:13	1.	11	$0 \quad 0$	It	0	n	n	0	0	0
	1014	1	11	0 n	0	$1)$	n	o	0	0	0
	1:16	${ }^{\prime}$	4	n n	n	f)	n	0	0	0	0
	1:1t	'	"	110	1	0	0	0	0	0	0
	1.17	'	!	0 n	n	0	0	0	0	0	n

Sources: This table was generated from data contai ned in (1) Commercial Fi sheri es Entry Commission Gross Earnings. Files, and (2) Al aska Department of Fish and Gane Reports.

${ }^{1}$ The real val ues and prices were cal cul ated using the U. S. CPI; 1980 is the base period.

Table 3. 1. 97
Harvesting Acti vity Bristol Bay Drift Gil ${ }_{1969 \text { Net } 1977}$ Herring Fishery

Year	Catch				Exvessel Price				Catch per Boat	
	Veli ght		Val ue"						Weight	value
	Pounds			000)	(\$/ Po	und]	Numb	er of	Pounds	(\$1,000)
	m	Tons	Nomi nal	Real ${ }^{\prime}$	Nomi nal	Real	Boats	Fi sher men	(1,000)	Nominal Real
$1 \% 9$	11	1	!	0	n	()	0	n	0	$0 \quad 0$
1910	11	11	$1)$	n	1	0	n	n	n	$0 \quad u$
1911	11	1	1	11	n	0	n	n	0	0 0
10\%?	4	'	n	0	$1)$	0	n	0	0	0 n
1013	"	1	0	1	0	0	n	0	0	$0 \quad 0$
1114	11	0	0	0	1	0	n	0	0	$0 \quad 0$
1197:	6.3	\cdots	3	4	$0 \cdot 0.5$	0.07	? 4	(ib)	3	$0 \quad 0$
1016	\square	"	\bigcirc	0	0	0	0	0	0	$0 \quad 0$
1071	211	141	25	33	ก. (1)	0.11	20	P0	16	12

Sources: This table was generated from data contained in (1) Commercial F sheries Entry Comm ssion. Gross Earnings Files, and (2) Al aska Department of Fish and Game Reports.
${ }^{1}$ The real val ues and pri ces were cal cul ated usi ng the' U. S. CPI; 1980 is the base period.

Table 3. 1.98
Harvesting Acti vity Bristol Bay Herring Spawn on Kel p Fi shery 1969-1977

	Year	Catch				Exvessel Price		Nunber of						
		Weight		Value				Catch per BoatWeight Val ue						
		Pounds	Metric	(\$1,	$\mathrm{ONO}_{1} 1$	$\frac{\text { (\$/ Pound) }}{}$				Pounds	(\$1,00			
		$(1,000)$	Tons	Nominal	Real	Llominal	Real			Boats	Fishermen	(1, 000)	Hominal	Real
	164.4	\%	11	11	n	0	\bigcirc	0	0	0	0	0		
	1071	:	0	0	0	0	0	0	0	0	0	0		
	1071	11	0	n	$1)$	0	0	1	0	0	()	0		
د	1072	11	1	f)	"	0	0	n	0	0	0	0		
	19?	1	1	(i)	0	1	0	0	0	0	0	0		
	14\%	11	0	11	0	0	0	0	0	0	0	0		
	167	119	41	44	6.6	0.43	1). 0.4	30	156	3	1.	2		
	1،16.	? 1.	134	177	179	0.43	0.60	52	208	6	$?$	3		
	10:7	? 1	$1{ }^{2}$	124	14.4	0.45	0.59	61	244	5	2	3		

Sources: This table was generated from data contai ned in (1) Commercial Fi sheries Entry Comission Gross Earnings Files, and (2) Al aska Departnent of Fish and Game Reports.
${ }^{1}$ The' real values and prices were cal cul ated usi ng the U. S. CPI ; 1980 is the base period.

Table 3.1.99
Bristo Bay Herring Fishery Number of Boats and Catch by Month 1969-1977

Number © Boats

Year	Jan.	Feb.	Mar.	April	May	June	July	Au-	Sept.	${ }^{\circ} \mathrm{ct}$	Nov.	Dec.	Annual
110.9	1	11	0	0	\bigcirc	0	0	0	0	0	0	0	0
1970	"	1	0	n	26	0	0	0	0	0	0	0	26
1411	"	11	n	n	12	0	0	0	0	0	0	0	12
197	i	0	n	0	n	0	0	0	0	0	0	0	0
1.173	"	11	()	n	0	0	0	0	0	0	0	0	0
1014	11	$1)$	1	0	0	0	0	0	0	\bigcirc	0	0	0
1015	"	0	0	0	63	5	0	0	0	0	0	0	63
1976	"	1	0	0	2.4	45	0	0	0	0	0	0	52
1977	11	$1)$	0	0	75	4	0	0	0	0	0	0	81

봅

Catch (, 000 Pounds)

1190	0	1	1)	0	ก	0	0	0	0	0	0	0	0
1970	"	1	${ }^{1}$	()	1?	0	0	0	0	0	0	0	82
$19 \% 1$	11	11	17	0	5 ?	0	0	0	0	0	0	0	52
11: ${ }^{1 / 7}$	11	$1)$	$)$	0)	0	\bigcirc	0	0	0	0	0	0
1478	\cdots	11	0	0	0	0	0	0	0	0	0	0	0
117	い	1)	\cdots	0	\bigcirc	0	0	0	0	0	0	0	0
1414	11	11	0	0	16^{4}	3	0	0	0	0	0	0	166
$1 \cdot 11$	\cdots	1	0	n	74	327	()	0	0	0	0	n	296
1479	11	11	1	\bigcirc	524	$5!$	0	0	0	0	0	0	586

Source: CFEC Gross Earnings Fi es.
Note: A minus sign indicates months in which the catch s conf dentia because fewer than four boats participated in the fishery.

Table 3.1 .100
Bristol Bay Herring Fishery Persentage of Boats and Catch by Month 1969-1977

Percentage of Boats

Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
1096	11	1	1)	11	()	0)	$1)$	0	O)	0	0	0	0
1970	(i)	11	n	\bigcirc	100.0	0	0	0	0	0	0	0	100.0
1971	11	1	1)	0	1000	0	0	$1)$	0	0	0	0	100.0
1012	11	1	11	i)		0	0	n	0	0	0	0	0
1973	1	1	0	1)	0	0	0	11	n	0	0	0	0
1014	1.	1	$1)$	i)	$1)$	0	0	0	0	0	0	0	0
1975	$1)$	1	0	()	กค.0	7.7	0	1	0	0	0	0	100.0
1516	11	1	n)	1)	$4+5 * ?$	46.5	0	n	0	0	0	0	100.0
1977	ir	1)	11	11	92*6	4.9	0	0	0	\bigcirc	0	0	100.0

~

Percentage of Catch

1'16.0	11	1	0	(1)	0	11	0	0	\bigcirc	0	0	0	0
1910	8	1.	0	0	1011.4	0	\bigcirc	0	0	0	0	0	$1 \cap 0.0$
$1 \cdot 71$	0	$1{ }^{1}$	0	ก	100.0	0	0	0	0	0	0	0	$1 \cap 0,0$
1972	i	"	0	11	0	0	0	0		0	0	0	0
1013	1	1	1	11	n	0	0	0	0	0	0	0	0
16.74	1	1	11	$1)$	n	0	0	0	0	0	0	0	0
$1 \cdot 7$	$1:$	1	0	r	99.8	1.8	n	\bigcirc	0	0	0	0	100.0
1971	1	',	0	\cdots	? 5.0	7!.0	0	0	0)	0	0	0	100.0
1917	1	i	0	0	129.4	9.4	0	0	0	0	0	0	100.0

Source: CFEC Gross Earnings F es.
Note: A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery.

Table 3．1． 101
Bristol Bay Herring Fishery
Number of Fishermen by Month
1969－1977

$\vec{\omega}$	Year	Jan．	Feb．	Mar．	April	May	June	Juty	Aug．	Sept．	Oct．	Nov．	Dec．	Total
	のッ．！	\therefore	1	0	0	0	${ }^{1}$	0	0	0	0	0	0	0
	970	：	\％		0	106	1	0	0	0	0	0	0	104
	7			0	0	4.8	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	48
	$91 ?$	i	）	0	0	0	0	0	0		\bigcirc	0	－	0
	913	11	1）	！	0	0	1	0	0	0	0	0	0	0
	\checkmark	＇	1	；	0	0	0	0	0	0	0	0	0	0
	Crim	\therefore	1	1	0	25.2	－ 26.	0	0	0	0	0	0	272
	い1．	1：	1	1	0	96	80	0	0	0	0	0	0	276
	$\therefore 77$		1	；	0	300	1 \％	0	0	0	0	0	0	316

Source：CFEC Gross Earnings Files．

Table 3.1.102

Bristol Bay Herring Fishery
 Percentage of F - sherman Man Months by Month 1969-1977

$\vec{\triangleright}$	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	$)^{4}$			r	.	\bigcirc	\bigcirc	0	0	\square	n	0	0	\bigcirc
	1670	1	1	0	0	100.0	0	0	0	0	0	0	0	100.0
	971	11	1	1	1	00.0	0	0	0	0	0	0	0	00.0
	972	"	'	0	0	ก	0	\bigcirc	0	n	0	0	0	0
	1983	11	${ }^{\prime}$	0	0	()	0	0	0	0	0	0	0	0
	19\%4	1	0	0	n	1	0	0	n	0	0	0	0	0
	119	1	1	${ }^{\prime}$	"	42.0	7.4	0	n	0	0	0	0	100.0
	1070	1	1	'	9	34.0	65.2	0	0	0	0	0	0	100.0
	1017	1	${ }^{\prime}$:	0	96.9	5.1	0	0		\bigcirc	ข	-	100.0

Source: CFEC Gross Earnings Files.

The Kuskokwim - Yukon roe herring fishery has been devel oping rapidly since 1978. It is a gill net fishery in which the boats are typically under 9.8 meters (32 feet) in length and have a crew of four including the skipper. Harvesting activity occurs in mid to late June and is concentrated in three areas; Goodnews Bay, Security Cove, and Cape Romanzo.

Norton Sound

The Norton Sound herring fishery was a set gill net fishery dominated by local fisher men from 1969 through 1977. Si nce then purse sei ners from other areas have entered and dom nated the fishery. The annual harvest wei ght ranged from zero to $\mathbf{1 , 1 7 2}$ metric tons ($\mathbf{2 . 6} \mathbf{~ m i l l i o n ~ p o u n d s) ~}$ between 1969 and 1979. The annual real harvest val ue ranged from $\mathbf{\$ 0}$ to \$0. 8 milion (see Table 3.1.103). The 1979 harvest is thought to be nore indicative of the potential of this fishery than are previ ous harvests. The potential of this and other Western Al aska herring fisheries is depicted in Table 3. 1. 104 which compares comercial harvest and resource abundance.

The gill netters are typically under 7.9 neters (26 feet) in length and have a crew of two including the ski pper. The fisher nen are primarily from local commities. Harvesting activity is concentrated in the eastern and southern parts of Norton Sound. The fishery usually occurs

Harvesting Activity Norton Sound Set Gill Net Herring Fishery 1969-1979

										Catch p	er Boat	Month
		Weigh				Exvessel	Price		mber of	Weight	Va	
		Pounds	Metric			(\$/Pour	nd)		Fisherman	Pounds		
	Year	(millions)) Tons	Nominal	Real	Ncminal	Real	Months	Months	$(1,000)$	Nominal	
	1969	0	0	0	0	0	0	0	0	0	0	0
	1970	0	0	0	0	0	0	0	0	0	0	0
	1971	0	0	0	0	0	0	0	0	0	0	0
	1972	0)	0	0	0	0	2	4	0	0	0
	1973	0.0	9	0.0	0.0	0.02	0.04	5	10	4.0	0.1	0.1
	1974	0.1	37	0.0	0.0	0.07	0.12	8	16	10.1	0.8	1.2
	1975	0	0	0	0	0	0	0	0	0	0	0
	1976	0	0	0	0	0	0	0	0	0	0	0
	1977	0	0	0	0	0	0	0	0	\bigcirc	\bigcirc	Q
or	1978	0.0	17	0.0	0.0	0.26	0.32					
	1979	2.6, 1	1172	0.9	0.9	0.30	0.33			Data not	availab	

Sources: This table was generated from data contained in (1) Commercial Fisheries Entry Commission Gross Earnings Files, and (2) Alaska Department of Fish and Game reports.
${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.
The 1978 and 1979 values are preliminary estimates.

Table 3. 1. 104
Wéstern Al aska Herring Resource Expl oration

| Comerci al
 Harvest
 [metricHerring Bi onass
 Esti mati ons | Expl orati on
 Rate |
| :---: | :---: | :---: |

```
Bristol Bay
```

1978	7,030	$172,600-308,300$	$2.2-4.0$
1979	10,115	$216,800-568,500$	$1.8-4.6$
1980	20,274	$69,300-146,000$	$13.9-29.3$

Security Cove and Goodnews Bay

1978	259	$9,800-15,900$	1.6-2.6
1979			
1980	466	$36,600-56,600$	$0.1-1.0$
	671	$2,700-4,500$	$13.6-22.6$

Norton Sound

1978	14	$4,800-10,500$	$0.1-0.3$
1979	1,173	$7,000-15,300$	$7.6-16.8$
1980	2,215	$10,300-23,800$	$9.3-20.5$

Source: $\begin{aligned} & \text { ADF\&G, Prel ininary Report on the } 1980 \text { Western Al aska Herring Fi shery. } \\ & \text { ADF\&G/NPFMC, Assessnent of Spawning Herring and Capelin Stocks at } \\ & \text { Sel ected Coastal Areas in the Bering Sea. }\end{aligned}$
${ }^{1}$ This 1980 data are for Security Cove al one.
NOTE: $\begin{aligned} & \text { The dranatic changes in bi onass estinntes reflect neasurenent } \\ & \text { difficulties as well as changes in resource abundance. }\end{aligned}$
during a brief period in June. The seasonality of the fishery is summarized in Tables 3. 1. 105 through 3.1. 108.

Kl NG CRAB

The Vestern Al aska king crab fishery has domi nated the \mathbf{A} aska ki ng crab fishery si nce the mid-1970s. The annual Uestern Al aska harvest wei ght ranged from 16,068 metrictons (35.4 million pounds) to 62,265 metric tons (137.2 milion pounds) and averaged 32, 749 metric tons (72.2 milion pounds) between 1969 and ?979. The real and nominal harvest val ues ranged from $\$ 16.3 \mathrm{mili}$ on to $\$ 213.2 \mathrm{mili}$ on and from $\$ 7.91$ milion to $\$ 173.5 \mathrm{mili}$ on, respectivel y ; the average real and noninal harvest val ues were $\$ 68.4 \mathrm{mili}$ on and $\$ 150.6 \mathrm{mili}$ (see Table 3.1. 109). The dom nance of the Vestern Alaska fishery, and the rel ative importance of each fishery within Western Al aska are summarized in Tables 3.1. 110 and 3.1.111. The data indicate that Western Alaska has accounted for up to $\mathbf{8 8} .9$ percent of the total Alaska $\mathbf{k i} \mathbf{n g}$ crab harvest and of this, up to 94 percent has cone fromthe Bering Sea Managenent Area. The locations of the Vestern \mathbf{A} aska ki ng crab Managenent Areas are depicted in Fi gure 3.5.

Peni nsul a

The annual harvest wei ght for the Al aska Peni nsula king crab fishery ranged from $\mathbf{3 5 5}$ netrictons ($\mathbf{7 8 3}$, $\mathbf{0 0 0}$ pounds) to 2,242 metric tons (4.9 milion pounds) and averaged 1,592 metric tons (3.5 mili on pounds)

Table 3. . 05
Norton Sound Herring Fishery Number of Boats and Catch by Month

1969-977
Number of Boats

Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annua 1
1969	11	(1)	0	n	?	0	0	0	0	0	0	0	0
19?0	0	1)	0	n	0	0	0	0	0	0	0	0
1711	1	1	0	0	0	0	0	0	0	0	0	0	0
1912	a	1	$1)$	0	9	$?$	0	0	0	0	0	0	2
1973	0	11	1	$1)$	1	4	0	0	0	0	0	0	4
1174	"	i	$1)$	n	1	7	0	0	0	0	0	0	- 8
11.76	1	1	9	0	0	0	0	0	0	0	0	0	0
1076.	0	1	0	$1)$	0	0	0		0	0	0	0	0
$10 \% 7$	11	1	n	0	n	0	0	0	0	0	0	0	2

$\stackrel{:}{6}$

$$
\text { Catch }(1,000 \text { Pounds }
$$

198.9	11	11	0	11	n	1	0	0	0	0	0	0	0
$19!3$	11	(9	n	0	$1)$	0	0	0	0	0	0	0
1911	11	0	1)	n	0	ri	0	0	0	0	0	0	0
1912	11	(i)	0	0	n	-5	$1)$	0	0	0	0	0	0
1413	11	a	0	n	-0	20	0	0	0	0	0	0	20
$1 \cdot 14$	"	1	0	1	-?	43	0	0	\bigcirc	0	0	0	81
1015	"	11	0	1	0	0	0	0	0	0	0	0	0
191i,	11	11	$1)$	1	0	0	0	0	\bigcirc	0	0	0	0
1917	11	1.	11	n	n	0	0	0	0	0	0	0	0

Source: CFEC Gross Earnings Files
Note: A minus sign indicates months in which the catch s confidential because fewer than four boats participated in the fishery.

Table 3. 1. 106
Norton Sound Herring Fi shery Percentage of Boats and Catch by Month 1969-1977

Percentage of Boats

Year	Jan.	Feb.	Mar.	Apri 1	May	J une	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
1969	1	0	n)	n	n	0	n	0	n	o	0	0	o
1070	1	11	n	f)	0	0	0	n	0	n	o	0	0
1971	0	11	$1)$	n	n	0	0	0	n	0	0	0	0
1977	$1!$	0	11	0	0	1100.0	0	n	0	0	0	0	100.0
1873	11	$(1$	0	n	2.5.0	100.0	n	0	n	0.	0	o	100.0
11974	11	11	0	r	12.5	87.5	()	0	n	0	0	0	100.0
1975	11	$1)$	n	n	0	0	0	0	n	0	0	0	0
1975	1	1	(J	n	n	n	0	0	0	0	0	0	\bigcirc
1977	11	0	n	0	n	(-1	0	n	0	0	0	0	100.0

Percentage of Catch

196)	1.	11	n	n	n	0	0	0	0	0	0	0	0
1910	1	11	n	n	$1)$	n	0	0	o	o	0	0	o
1911	i)	11	0	n	0	0	0	0	0	0	0	0	0
1917	(i)	11	0	0	n	0	0	0	0	0	o	0	o
1973	11	0	0	$1)$	-0. 5	100.0	0	n	0	0	0	0	100.0
1974	(1)	0	0	0	-0.1	65.4	0	0	0	0	0	0	100.0
1975	11	ri	()	$1)$	$1)$	0	0	0	n	0	0	0	0
1916	$1)$	11	11	0	1	0	0	0	n	0	0	0	0
19%	11	1	I')	0	$1)$	0	0	\bigcirc	n	0	0	0	o

Source: CFEC Gross Earnings Files.
Note: A minus sign indicates nonths in which the catch is confidential because fewer than four boats partici pated in the fishery.

Table 3.1.107
Norton Sound Herring Fishery Number of Fishermen by Month

1969-1977

	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
		a	0	n	0	0	0	0	0	0	0	0	0	0
	1976	11	1	0	0	\bigcirc	0	0	0	0	0	0	0	0
∞	1071	${ }^{\prime}$	1	0	1	0	0	0	0	0	0	0	0	0
	1972	0	1	0	\bigcirc	0	4	\bigcirc		0	0	0	0	4
	1072	"	'	0	,	$?$	(i)	0	0	0	0	0	0	10
	1974,	\square	11	0	n	?	14	\bigcirc	\bigcirc	0	0	0	0	16
	1.76.	(1)	1	0	1	\bigcirc	0)	\bigcirc	0	0	0	0	0
	1076	1	${ }^{\prime}$	1	\bigcirc	0	0	0	\bigcirc	0	0	0	0	0
	1077	r	,	0	0	0	0	0	0	0	0	0	0	0

Source: CFE ${ }^{-}$Gross Earnings Fi es.

Table 3.1. $\circ 8$
Norton Sound Herring Fishery
Percentage of Fisherman Man Months by Month 1969-1977

	Year	Jan.	Feb.		April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	$\because 6:$			0	'	0	,	0	0	0	\bigcirc	0	0	0
	- 710	1		;	n	0	0	0	\bigcirc	0	0	0	\bigcirc	0
$\stackrel{\sim}{\sim}$	4	0	1		0	0	\bigcirc	0	0	0	0	0	\bigcirc	\bigcirc
	1.7	1	11	0	0	\bigcirc	100.0	0	0	0	0	0	0	100.0
	913	1.	11	0	0	20.0	80.0	0	0	0	0	0	0	100.6
	974	11	6	0	\square	2. 5	87.5	0	0	0	0	0	0	100.0
	$7!$			1	0	r	11	n	0	0	0	0	0	0
	7			!		;	0	n	\bigcirc	0	0	0	0	\bigcirc
	1017	${ }^{1}$	11	a	1	n	0	n	n	n	0	0	0	0

Source: CFEC Gross Earnings Files.

Tabl e 3. 1. 109 Western Alaska Kina Crab Harvest 1969-1979

Pounds

$(1,000)$

Year	Peni nsul a	Eastern Al eutians	Western Al eutians	Bering	Western A aska	Al aska
196,9	4942	7492	18063	1001R	40515	57730
1970	3685	10719	12425	8594	35423	52061
1971	4218	11110	25850	12847	54025	$7(-) 703$
1972	4338	11297	16235	20963	52833	74427
1973	4780	127?3	11246	28240	56989	76824
1974	4497	13069	1335	49374	68275	95214
1975	2933	15049	5142	52112	75236	97629
1')76	882	11471	386	70411	83150	105899
1977	783	4131	2	76406	81322	99575
1978	3092	6847	953	98277	109169	122925
1979	4453	13065	808	118922	137248	154387
$\begin{aligned} & \text { Val ue } \\ & (\$ 1,000) \end{aligned}$						
196.9	1334	1648	3277	2204	8463	15644
1970	921	? 573	2705	1719	7918	13190
1971	1097	2777	5639	2569	12082	19077
1972	1301	? 937	4190	5241	13669	20519
1973	3107	76.34	5847	14685	31273	44702
1974	1799	5097	240	19256	26392	39154
1975	1202	5719	900	18239	26060	38251
1976	564	7112	166	43631	51473	68689
1977	783	4001	2	72585	77371	10C)4R1
1978	4916	10887	1515	156261	173579	195451
1979	4162	12212	755	111156	128285	144305

Source: CFEC Gross Earni ngs Files and ADF\&G Catch Reports. 1978 and 1979 data are preliminary.

Table 3. 1. 110
King Crab Managenent Area Harvest as a Percentage of the Mestern Al aska Harvest 1969-1979

Percentage by Weight

Year	Peni nsul a	Eastern Al eutians	Wéstern A eutians	Bering Sea	Mestern Al aska
1969	1?. 2	18.5	44.6	24.7	10 (-).0
1970	10.4	3(-)*3	35.1	24.3	100.0
1971	7.8	20.6	47.8	23.8	100.0
1972	8.2	21.4	30.7	39.7	100*0
1973	8.4	22.3	19.7	49.6	100.0
1974	6.6	19 *	2.0	72.3	100.0
1975	3.9	20.0	6.8	69.3	$1\left(-^{\prime}\right) 0.0$
1976	1.1	13.8	0.5	$84 * 7$	100.0
1977	1.0	5 \%	(). 0	94.0	100.0
197P	2.8	6.3	0.9	90.0	100.0
1979	3.2	9,5	0.6	86.6	100.0

$\underset{\sim}{\text { o }}$

1969	15.8	19.5	38.7	26.0		100. 0
1970	11.6	32.5	34.2	21.7		100.0
1971	9.1	23.0	46.7	21	3	100.0
1972	9.5	21.5	30.7	$38 * 3$		100. 0
1973	9.9	24.4	18.7	47* ${ }^{\text {- J }}$		100.0
1974	6.8	19.3	0.9	73.0		100.0
1975	4.6	21.9	3.5	70.0		100. 0
1976	1*1	13.8	0.3	84.8		100.0
1977	1.0	5.2	0.0	93.8		100.0
1978	2.8	6.3	0.9	90.0		100.0
1989	3.2	9.5	0.6	86.6		100.0

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.
1978 and 1979 data are preliminary.

Tabl e 3. 1. 111
King Crab Managenent Area Harvest as a Percentage of the Alaska Harvest 1969-1979

Percentage by Wei ght

Year	Peni nsula	Eastern Al eutians	Western Al eutians	Bering	Mestern Al aska	A aska
1969	8.6	13.0	31.3	17.4	70.2	100.(-)
1970	7.1	20.6	23,9	16.5	68.0	1(-)0.(-)
1971	6.0	15.7	36.6	18.2	76.4	100.(-)
1972	5.A	15.2	21.8	28.2	71.0	100.0
1973	6.2	16.6	14.6	36.8	74.2	100.0
1974	4.7	13.7	1.4	5109	71.7	100.0
1975	3.0	15.4	5.3	53.4	77.1	100.0
1976	0.8	10*R	0*4	66.5	78.5	100.0
1977	0.4	4.1	0*0	76.7	81.7	100.0
197 P	2.5	5.6	0.8	$79 * 9$	88.8	100.0
1979	2.9	8.5	0.5	77.0	88.9	100.0

Percentage by Val ue

1969	8.5	10.5	20.9		14.1	54.1	100.0
1970	7.0	19.5	20.5		13.0	60.0	100.0
1971	5.月	14.6	2.9 .6		13.5	63.3	100*O
1972	6.3	14.3	20.4		25.5	66.6	100.0
197-3	7.0	17.1	13	1	32.9	70.0	100.0
1974	4.6	13.0	0.6		49.2	67.4	100.0
1975	3*1	15.0	2.4		47.7	68.1	100.0
1976	0.8	10.4	O*2		63.5	74.9	10(-)* ${ }^{\text {O}}$
1977	ก.9	4.0	0.0		72.?	77.0	100.0
1978	2.5	5.6	0.8		79.9	88.8	100.0
1979	2.9	8.5	0.5		77.0	88.9	100.0

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.
1978 and 1979 data are prel i minary.

Maj or Blue King Crab Fi shi ng Areas
Maj or Red King Crab fi shing Areas
ADF\&G Managenent Area Boundari es
Fi gure 3, 5: Major King Crab Fi shing Areas, Western Alaska
Source: Alaska Departnent of Fish and Game, Alaska's Fisheries Atlas, 1978.
bet ween 1969 and 1979. The annual real harvest val ue ranged from $\$ 0.8$ milion to $\$ 6.0 \mathrm{mili}$ on and averaged $\$ 2.9 \mathrm{milion}($ see Table 3.1.112). Neither harvest wei ght nor real val ue has exhibited a secular trend for the period as a whole.

Al aska Peninsula king crab boats range in length from 7.9 to 29.0 meters (26 to 95 feet) and are typically 16.7 meters (55 feet) in length. The average crew size is four including the ski pper. The boats operate out of and I and crab in Kodiak and Aleutian Island and Peni nsula commities, such as Dutch Harbor and Sand Point.

Si nce 1977 the season has begun in September and ended in January; however, harvesting activity has been concentrated in Septenber through Novenber. The seasonality of this fishery is summarized in Tables 3.1. 113 through 3.1.116. During the past three seasons (1977-1979) the average boat participated in this fishery during 2.7 cal endar nonths per year.

Eastern Aleutians

The annual harvest wei ght for the Eastern Aleutians Managenent Area king crab fishery ranged from 1, 874 metric tons (4.1 million pounds) to $\mathbf{6 , 8 2 6}$ metric tons (15.0 milli on pounds) and averaged 4,825 metric tons (10.6 million pounds) between 1969 and 1979. The annual real harvest value ranged from $\$ 3.6 \mathrm{milli}$ on to $\$ 13.8 \mathrm{milli}$ on and averaged $\$ 8.4 \mathrm{mili}$ (see Table 3.1.117). Harvest wei ght has not exhibited a secular trend; however, real harvest val ue has tended to increase.

Table 3. 1. 112
Harvesting Activity Peni nsula King Crab Fi shery 1969-1979
18%

Year	Catch				Exvessel Price		Number of		Catch per Weight Pounds $(1,000)$	r Boat Month		
	Wei ght		Val ue				Val u					
	Pound	Metric	(mili	ons),	(\$/ Pound)				Boat Mont hsFi sher nan Mont hs		\$1,000)	
	(milli	ns) Tons	Nomi nal	Real	Nomi nal	Real	Noni nal	Real				
1969	4.9	2242	1.3	2.9	0.27	0.59	204	816	24.2	6.5	14.3	
1970	3.7	1672	0.0	1.9	0.25	0.5 ?	171	684	21.5	5 * 4	11.1	
1971	$4 . ?$	1913	1.1	? . ?	0.26	0.51	127	508	33.2	8.6	17.1	
1072	4.3	1968	1.3	?. 5	(--). 30	0.57	100	400	43.4	13.0	24.9	
1973	4.8	2.168	3.1	5.6	0.65	1.17	123	492	38.9	25.3	45.5	
1974	4.5	2040	1.8	2.9	(-).4(-I	0.65	108	432	41.6	16.7	27.1	
1975	?. 9	1330	1.2	1.8	0.41	0.61	116	464	25.3	10.4	15.4	
1976	(-). 9	400	O. 6	0.8	0.64	0.90	58	232] 5.2	9.7	13,7	
1.977	0.8	355	$0 . n$	1.0	1.00	1.32	34	136	?3.0	23.0	30.5	
1978	3.1	1403	4.9	6.0	1.59	1.95	85	340	36.4	57.8	71.0	
1979	4.5	2020	$4 . ?$	4.6	0.93	1.03	127	508	$35 * 1$	32.8	36.2	

Sources: Thi s table was generated from data contai ned in (1). Commercial Fi sheries Entry Conm ssion Gross Earnings Files, and (2) Al aska Department of Fish and Gane reports.
'The real val ues and prices were cal culated using the U.S. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.

Tab： 3.1113
Peninsula King Crab Fishery
Number of Boats and Catch By Month
1969－1979

					Numbe	of Boa						
$\frac{\text { Year }}{1 \frac{1}{1,4}}$	$\frac{\text { Jan. }}{3 ?}$	$\frac{\text { Feb. }}{13}$	$\frac{\text { Mar. }}{?}$	$\frac{\text { April }}{n}$	$\frac{\text { May }}{0}$	$\frac{\text { June }}{n}$	$\frac{\text { July }}{n}$	$\frac{\text { Aug. }}{19}$	$\frac{\text { Sept. }}{39}$	$\frac{0 c t .}{43}$	$\frac{\text { Nov. }}{\mathrm{g}}$	$\frac{\mathrm{Dec} .}{38}$
1ッサ	3.	1 ？	$1)$	0	0	0	n	14	21	30	31	28
1911	¢ ${ }^{\prime}$	4	11	＇	0	n	0	n	27	26	23	23
1917	1	11	1	0	0	0	0	21	30	32	0	0
1913	1	i）	1	1	0	0	1	313	37	33	6	6
1ッい	1	n	1	\square	0	0	0	0	34	35	20	12
1．9\％	＋	11	1	0	0	0	0	0	29	33	29	22
1：31．	11	1	11	0	0	0	0	13	27	0	2	16
1りけ	4	i	11	n	0	0	0	0	7	10	4	2
119\％	3	0	i	）	0	n	0	0	19	24	24	3
10%	1	0	1	0	0	0	0	0	2 H	46	36	3

๕

$$
\text { Catch (} 1, \infty \infty \text { Pounds) }
$$

1311	473	3 n 3	－1	0	0	0	0	495	1451	1589	53	572
10\％	74，8	102	1	0	0	0	0	340	868	946	650	422
1011	－い1	124	＂	0	1	0	0	0	1391	1211	702	550
1：12	$\because 61$	11	！	1	0	0	0	42.1	2216	1432	0	\bigcirc
1413	1.	$1)$	－1	－1	0	0	\checkmark－	143 ？	2148	628	87	140
リい！	128．	11	-1	n	0	0	0	0	1613	1967	661	160
14！	－1	11	，	1	0	0	0	0	723	924	491	627
1096	1	i	$1)$	0	0	0	0	155	554	0	-1	122
1197	1	1	1	n	0	0	0	0	0	0	0	\bigcirc
1：19	11	i）	i）	）	0	）	0	0	0	0	0	n
1019	1	11	（1）	）	0	0	0	0	0	0	0	0

Sources：CFEC Gross Earn＇ngs Files and ADF\＆G Western Alaska Month y She＇lfish Reports for 1977－1979．
Note：A minus sign indicates months in wh ch the catch is confidential because fewer than four boa s participated in the fishery．

Tabl e 3．1． 114
Peni nsul a King Crab Fi shery
Number of Boats and Catch by Month as a Percentage of Annual Activity 1969－1979

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept ：	Oct．	Nov．	Dec．	Annual
101.9	419	36．5	3.2	n	0	0	0	30.2	61.9	68.3	12.7	60.3	100.0
1970	71.7	26.7	11	11	n	0	0	31．1．	46.7	66.7	68.9	62.2	100.0
1971	17．	$1 \% 3$	0	11	n	0	0	17	87．1	83.9	74.2	74.2	100.0
197	51.5	U	0	11	0	0	0	63.6	90.9	97.0	0	0	100.0
1913	0	$1)$	2.6	7.6	0	0	2.6	97.4	94.9	84.6	15.4	15.4	100．（－）
1174	16．a	1	2.7	1	0	0	0	0	91.9	94.6	54.1	32.4	100.0
1976	7．	（i）	0	0	0	0	0	0	72.5	82.5	72.5	55.0	100．CJ
1970	0	0	0	\bigcirc	0	0	n	46.4	76.4	0	7.1	57.1	100．0
1977	briol	1	0	11	0	0	0	0	70．0	100.0	40.0	20.0	100．（－I
1074	1？	1 ：	1）	0	ก	0	0	0	70.2	100.0	100.0	12.5	100.0
1975	2.2	0	0	11	0	0	0	0	60.9	100.0	78.3	6.5	100.0

Percentage of Catch

146，	1）\％	6． 1	-11.0	9	n	0	0	10.0	29.4	32.2	1．1	11.6	100．0
13\％r．	1.7	？ 3	0	$1)$	0	$(1$	0	9.2	23.6	25.7	17.6	11.5	100.0
1971		2.9	0	1	0	0	\bigcirc	0	33.1	2A．7	16.6	13.0	100．0
19？	$6 . ?$	（	O	3	0	（）	0	9.7	51.1	33.0	0	0	100.0
1193	11	11	-11.1	－9．i	$1)$	0	－0．0	30.0	44.9	13.1	1.8	2.9	100.0
1916	$\because: 1$	（1）	－ 0.0	$1)$	\bigcirc	0	$1)$	0	35.9	43.7	14.7	3.6	100.0
18．1！	－1i． 11	11	$(1$	！	$1)$	（1）	0	0	24.7	31.5	16.7	21.2	100.0
1916	1	（1）	(1)	$1)$	11	1）	0	17.6	62.8	0	-0.1	13．8	100.0
1977	i）	1.	（1）	， 1	13	O	0	0	n	0	0	0	100.0
1111	i	11	11	11	ก	0	0	0	0	0	0	0	0
1リハ。	1	11	1	$1)$	0	（）	0	ก	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Uestern Alaska Monthly Shel Ifish Reports for 1977－1979．
Note：A minus sign indicates nonths in which the catch is confidential because fewer than four boats partici pated in the fishery．

Table 3．1． 115
Peni nsula King Crab Fi shery Number of Fi sher men by Month

1969－1979

	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nbv．	Dec．	
	19，4．1	$1 ? \%$	$\because ?$	8	n	0	0	0	76	156	17 ？	32	152	816
	10？ 0	1411	＜，${ }^{\prime}$	$1)$	0	a	1.	n	56	R4	120	124	112	684
	1：？1	3	16	n	0	\bigcirc	0	0	0	108	104	92	92	508
	19？	t：${ }^{\prime}$	＂	0	1	n	（t	n	84	120	128	0	0	400
	1073	\cdots	11	4	4	0	$1)$	4	157	148	132	24	24	492
	1194	24	1	4	0	$1)$	$1)$	n	n	136	140	80	48	432
	リいい	$1 ?$	$1:$	0	\square	0	1）	0	n	116	132	116	88	464
	19\％．	$1!$	11	a	0	n	0）	0	52	104	（）	R	64	232
	1911	\therefore	1	1	0	n	0	0	n	28	40	16	8	11？
	198	1%	＇	0	0	0	0	n	0	76	96	96	12	29 ？
	197\％	4	＂	n	n	ก	0	0	n	112	184	144	12	456

Sources：CFEC Gross Earni ngs Files and ADF\＆G Western A＇aska Monthly Shellfish Reports for 1977－979．

Table 3.1.116
Peninsula King Crab Fishery Percent of Fisherman Man Months by Month 1969-1979

$\stackrel{\rightharpoonup}{\sim}$	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	qea	15.7	11.3	1.0	0	\bigcirc	0	0	9.3	19.1	21.1	3.9	18.6	100.0
	1970	20.1	\because	1	0	0	0	0	8.2	12.3	17.5	18.1	16.4	00.0
	197		3.	1	"	\bigcirc	r.	0	\square	21.3	20.5	18.1	8.1	00.0
	197?	7.1	11	1	n	0	${ }^{\prime}$	0	21.0	30.0	32.0	0	0	100.0
	1013	11	1	".t:	11.3	0	0	0.8	30.9	30.	26. 8	4.9	4.9	100.0
		c. 6		1.9	1	0	0	0	0	31.5	32.4	18.5	11.1	00.0
	o.	$?$			$1)$	$1)$	${ }^{\prime}$	0	0	25.0	28.4	25.0	9.0	100.0
	197	1.	\because	;	n	1	1	0	22.4	46.6	\bigcirc	3.4	27.6	100.0
	F917	17.8	1	.	11	a	0	0	0	25.0	35.7	4.3	7.1	100.0
	191\%	$4_{6} .1$	11	1.	0	1	0	0	0	26.0	32.9	32.9	4.1	100.0
	ic	' \cdot,	!	11	${ }^{1}$	ก	1)	0	24.6	40.4	31.6	2.6	100.0

Sources: EFEC Gross Earn ngs F• es and ADF\&G Western Alaska Monthly Shellf sh Reports for 1977-1979.

Table 3. 1. 117

Harvesting Activity Eastern Aleutians King Crb Fi shery
 1969-1979

Year	Catch				Exvessel Price		Number of		Catch per Boat Month				
	Vei ght		Val ue				Weight	Val ue					
	Poun	Metric	(mill	Opes, 1	\$/ Pound)				BoatFi sher nan Mbnt hs Mont hs		Pounds$(1,000)$	(\$1,00	000)
	(mili	ns) Tons	Nomi nal	Real	Nomi nal	Real	Nominal	1 Real					
196.9	7.5	3394	1*6	3.6	0.22	0.48	155	620	48.3	10.6	23.2		
1970	10. -/	4862	2.6	5.3	(). 24	0.50	156	624	68.7	16.5	34.0		
1971	11.1	5039	2.8	5.5	0.25	0.49	90	360	123.4	30.9	61.0		
1072	11.3	51? 4	2.9	5.6	0.26	0.50	84	336	134.5	35.0	67.0		
1973	1?.7	5771	7.6	13.8	0.60	1.08	77	308	165.2	99.1	178.8		
1974	13.1	5928	5.1	8.3	0.39	0.63	96	384	136.1	53.1	86.3		
1975	1) . .-I	6826	5.7	R. 5	0.38	(). 57	141	564	106.7	40.6	60.		
1976	11.5	5203	7*	in. o	0.62	0.87	137	548	83.7	51.9	73.1		
1077	4.1	1814	4.0	5.3	0.97	1.28	119	476	34.7	33.6	44.5		
1978	6. R	3106	100 ,	13.4	1.59	1.95	99	396	69.2	110.0	135.1		
1979	13.1	5926	1?. ?	13.5	0.93	1.03	203	812	64.4	60.2	66. 5		

Sources: This table was generated from data contained in' (1) Commercial Fi sheries Entry Comission Gross Earnings Files, and (2) Al aska Departnent of Fish and Gane reports.

${ }^{1}$ The real val ues and prices were cal cul ated using the U. S. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.

The boats in this fishery range in length from 10.7 meters (35 feet) to over 38. 1 neters (125 feet). The average length is approxi natel y 30.5 meters (100 feet) and the average crew size is four. These boats operate out of and I and crab in Kodi ak, Dutch Harbor, and Akutan. The boats and fi sher men are al nost excl usi vel y non-local being predominatel y from Seattle.

Si nce 1977 the king crab season has begun in Septenber and ended in Decenber or January. Harvesting activity has been minimal in January since 1978. The seasonality of the fishery is summarized in Tables 3.1. 118 through 3.1.121. During the past three seasons (1977-1979) the average boat partici pated in this fishery during $\mathbf{2 . 2}$ cal endar nonths per year,

Western Aleutians

The annual harvest weight for the Western Al eutians king crab fishery ranged from 1.0 metric tons (2,200 pounds) to 11,726 netric tons (25.9 milion pounds) and averaged $\mathbf{3 , 8 1 2}$ metric tons (8.4 milion pounds) bet ween 1969 and 1979. The annual real harvest val ue ranged from $\mathbf{\$ 2 , 9 0 0}$ to $\$ 11.2 \mathrm{mili}$ on and averaged $\$ 4.3 \mathrm{mili}$ ion (see Table 3.1.122). There have been dranatic declines in both harvest wei ght and real val ue since the early 1970s.

The king crab boats range in length from 23.2 meters (76 feet) to over 38.1 neters (125 feet); they are typically over 30.5 meters (100 feet)

Eastern Al eutians King Crab Fi shery

 Number of Boats and Catch by Month 1969－1979Number of Boats

Year	Jan．	Feb．	Mar．	Apri1	May	J une	Jul y	Aug．	Sept．	Oct．	Nov．	Dec．
1910	111	$1!$	1	0	（）	1	1	n	？ 2	34	27	36
14.70	3 f	$\therefore 4$	？	0	0	1	1	（）	12	27	26	28
1971	？	11	$?$	1	0	1	1	1	24	33	1	1
1077	4	1	1	O	0	7	2	2	3	58	4	0
1473	11	11	0	n	n	0	0	0	0	0	58	19
1374	11	$1)$	1	0	（）	n	n	0	0	o	85	10
1975	7	11	$1)$	0	0	0	0	（）	0	2	76	56
1976	32	11	\bigcirc	0	0	n	0	0	0	0	57	48
1017	33	0	0	n	0	n	0	0	30	30	19	1－7
1978	1	11	\bigcirc	n	0	0	0	0	19	25	54	0
1979	11	11	0	n	0	0	0	0	30	60	74	39

Catch（1，000 Pounds）

1969	－29	200	－1	n	0	－1	－1	0	92.9	2364	533	2788
1971	？י口に号	？ 5 ，t	－1	0	0	－1	－1	0	810	3129	23 n 7	2148
1911	1119	i	－1	－1	0	－1	－1	－1	3071	6693	－1	－1
1918	1．5	－1	－1	n	0	192	－1	－1	-1	10433	264	）
1973	1	11	7	n	n	0	0	0	0	0	11704	1019
1914	$1)$	i）	－1	0	0	0	0	0	0	0	12168	86.3
1975	いいい	11	i）	0	0	0	0	（）	0	－1	100 R 9	39 q 2
197f	17101	11	0	n	0	0	0	0	0	＂ 0	6998	2773
1017	1,	（1）	1）	1	0	0	0	（）	0	0	0	0
197：	$1:$	11	n	0	0	0	n	0	0	0	0	n
1974	11	11	！）	n	0	n	0	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats partici pated in the fishery．

Table 3.119
Eastern Aleutians King Crab Fishery
Number of Boats and Catch by Month as a Percentage of Annua Act vity 1969－1979

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
198．9，	？ 1.11	？ 6.7	1.7	11	（）	1． 7	1.7	0	37.9	58．6	46.6	62.1	100．0
1け7い	61．4	$4: 1$	3． 1	1	0	1．18	1.8	0	2.1 .1	47.4	45.6	49.1	$\ln \%$
1711	1．1．\％	1.	4． 3	$\because \mathrm{r}$	1）	$2 \cdot 6$	$? .6$	2.6	63.2	96.8	2.6	2.6	10 畐
1リ1\％	1．${ }^{1} 1$	4． 4	1．5	11	\bigcirc	10.3	$\therefore .9$	2.9	4.4	85.3	5.9	0	100.0
1073	1	\cdots	0	r	0	0	（）	0	0	0	9H．3	32.2	$10_{0}^{0} 0$
14才，	1.	11	1．］	（）	0	0	0	0	0	0	97．7	11.5	1000
1いづ	13.1	11	0	（i）	0	0	0	0	0	2．5	97．8	69.1	1000
1276	43.2	11	0	1）	0	0	0	0	\bigcirc	0	77.0	64.9	$10^{*} 0$
$1 \circlearrowleft 17$	16．7	11	17	0	1	0）	0	1	00.0	100.0	63.3	56.7	$10^{\circ} \cdot 0$
197%	1．0	11	$1)$	$1:$	0	n	0	0	35.2	$46 \cdot 3$	100．0	0	$10^{*} 0$
1914				0	（1）		0	0	40.5	P1．1	100.0	52.7	100.0

๒

Percentage of Catch

1： 0	7.11	3.1	-11.1	11	0	-0.0	-0.0	0	12．4	31.6	7.1	37.2	100.0
$1: 10$	1：．7	？+4	$-10 \cdot 0$	\％	$1)$	-0.0	$-\cap .0$	0	7.6	$29 * 2$	21．5	20.0	100.0
$1: 1$	11.11	$1!$	v^{1}	－，\％	O	-0.0	-0.0	－0．0	27.6	60＊2	－0．0	－0．0	100.0
1＂＇，	1．＇i）	-1.1	$1{ }^{\text {\％}}$	1	11	1．7	-0.0	－0．0	-0.0	$92 * 4$	2． 3	0	100.0
，＂1	＂		－1 ii	11	0	$(1$	0	）	0	0	92.0	8.0	100.0
\cdots	11	，	1 1.4	1	0	0	0	0	0	0	93.1	6.6	100.0
$\because \cdot 1$	＇，＇t	＇＇	\rightarrow	11	（i）	0	0	\bigcirc	0	-1.0	67.0	26.5	100.0
$1{ }^{\prime} \cdot$	1＊＊	1	11	11	f．	1	0	1	0	0	61.0	24.2	100.0
$\because 1$	1.	1.	， 1	1	（）	0	0	0	0	0	0	0	100.0
＇． 1	，＇	．	＇．	11	11	0	0	0	n	0	0	0	0
$\cdots \cdot{ }^{\text {a }}$	1	，	1	\cdots	11	11	0	0	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Nestern Alaska Month y Shel fish Reports for 1977－1979．
Note：A minus sign indicates months in which the catch is confident al because fewer than four boats participated in the fishery．

Table 3.1. 120
Eastern Aleutians King Crab Fishery Number of Fishermen by Month

1969-1979

$\stackrel{\square}{9}$	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	0ct.	Nov.	Dec.	
	196	$1 ?$	(a)	4	0	0	4	4_{4}	0	H8	136	10^{8}	144	620
	10? 0_{0}	14.1	4,	ρ	0	0	4	4	0	48	108	104	112	624
	1197	$1 / 10$	1	a^{3}	4	0	4	4	4	86	132	4	4	360
	10!	1%	17	${ }_{4}$	0	0	28	\bigcirc	8	12	232	16	0	336
	1973	r	1	\bigcirc	0	,	0	0	0	0	0	232	76	308
	1196	a	11	4	0	n	0	0	n	0	0	340	40	3884
	いい	$?$	${ }^{1}$,	0	"	0	0	0	0	8	304	22.4	564
	lill	180	"	n	0	0	0	0	0	0	n	228	192	54.8
	1016	08	"	1	0	n	0	0	0	120	120	76	68	476
	19\%	$\stackrel{ }{ }$	1	1	0	0	0	0	0	76	100	216	0	396
	19!	11	r	0	n	\bigcirc	0	0	n	120	240	296	156	812

Sources: CFEC Gross Earnings Fi es and ADF\&G Western A aska Month y Shō fish Reports for 977-979.

Tabl e 3. 1. 121

Eastern Aleutians King Crab Fi shery Percent of Fi shernan Man Months by Month 1969-1979

$\stackrel{\rightharpoonup}{\infty}$	Year	Jan.	Feb.	Mar.	April	May	June	Jul y	Aug.	Sept.	$\underline{\alpha t}$.	Nov.	Dec.	Total
	1784	11.4	9.7	(0.t.	0	1	$0 . t$	0.6	n	14.2	?1.9	1?.4	23.2	100.0
	1070	2?.4	15.4	1.3	0	0	0.6	0.6	0	-?*7	17.3	16*7	17.9	100.0
	1971	27.1	11	2.2	1.1	\bigcirc	1.1	$1^{*} 1$	1.1	26.-7	36.?	1* L	1.1	100.0
	1:7?	4.8	3.1	1.2	0	r	0.3	2.4	2.4	3.6	69.0	4.8	0	100.0
	1913	\square	1.	0	i	n	11	o	0	n	o	75.3	24.7	100.0
	10.74	r.	11	1.0	"	0	0	0	0	n	0	88.5	10.4	100.0
	1:75,	'. ${ }^{1}$	1	(1)	'	n	$1)$	0	n	n	1.4	53.9	39.7	100.0
	107 c	23.4	11.	11	1	n	0	0	0	0	0	41.6	35.0	lo(-).(-)
	1677	10.3	1	1	0	0	0	0 "	r!	25.2	25.2	16.0	14.3	$100 n$
	1918	1.11	0	1	a	0	n	0	n	19.2	25.3	54.5	0	100.0
	1010	1	1.	11	n	n	9	0	n	14.8	29.6	36.5	19.2	100.0

Sources: CFEC Gross Earni ngs Files and ADF\&G Western Alaska Monthly Shel Ifish Reports for 1977-1979.

Table 3. 1. 122

Harvesting Activity
 Véstern Aleutians King Crab Fi shery
 1969-1979

										Catch p	er Boat	Month
		Weig Poun	$\frac{h t}{\overline{d s}} \overline{\text { Metric }}$	$\begin{array}{r} \text { Val } \\ \hline(\mathrm{mi} 11 \mathrm{i} \end{array}$	ns)	$\frac{\text { Exvesse1 }}{\text { (\$/Po }}$		$\frac{\mathrm{Nu}}{\text { Boat }}$	nber of Fi sher man	Weight Pounds	Val	
	Year	(millio	ons) Tons	Nomi nal	Real'	Nomi nal	Real	Mont hs	Months	$(1,000)$	Nomina	1 Real
	1969	18.1	8193	3.3	7.7	0.18	().4(-)	190	760	95.1	17.2	37.7
	1970	1?.4	1,63h	2.7	5.6	0.22	0.45	135	540	92.0	20.0	41.3
	19×71	25.8	11725	5.6	11.?	0.22	0.43	189	756	136.8	29.8	59. (-)
	1072	16.?	? 364	4*?	8.0	0.26	0.49	t-17	348	186.6	48.2	92.2
	1973	11.?	4101	5.8	i n .5	0.52	0.94	141	564	79.8	41.5	74.8
	1974	1.3	606	-.?	0.4	0.18	0.? 9	28	112	47.7	8.6	13.9
	1975	5.1	2332	$1) .9$	1.3	0.18	0.26	64	256	80.3	14.1	20.9
$\stackrel{\rightharpoonup}{0}$	1976	1). 4	175	$0 . ?$	f).?	0.43	0.61	9	36	42.9	18.4	26.0
	1977	0.0	1	0.0	0.0	0.97	1.28	2	8	1.2	1.1	1.5
	1978	1. ()	43 ?	1.5	1.9	1.59	1.95	11	44	86.6	137.8	169.2
	1979	ก.9	36,7	0.8	- . 8	0.93	1.03	13	52	62.2	58.1	64.3

Sources: This table was generated from dat a contai ned in (1) Commercial Fisheries Entry Comission Gross Earni ngs Files, and (2) Alaska Departnent of Fi sh and Gane reports.
${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.
in I ength and have a crew of four incl udi ng the ski pper. The boats operate out of and I and crab in Adak, Dutch Harbor, Akutan, and Kodi ak. The boats and fisher men are prinarily fromSeattle, and a few are from Kodi ak.

In ?978 and 1979 harvesting activity was limited to March. The seasonality of the fishery is summarized in Tables 3.1.123 through 3.1.126. During the past three seasons (1977-1979) the average boat participated in the fishery during 1.0 calendar months per year.

Bering Sea

The Bering Sea Managenent Area king crab fishery is the premier Al aska king crab fishery. Si nce 1977 it has accounted for over $\mathbf{5 0}$ percent of the Al aska king crab harvest (refer back to Table 3.1.111). The annual harvest wei ght for the Bering Sea Management Area ranged from 3, 898 metric tons (8.6 million pounds) to 53, 943 metric tons (118.9 milion pounds) bet ween 1969 and 1979 and averaged 22, 522 metric tons (49.7 million pounds). The annual real harvest val ue ranged from $\mathbf{\$ 3 . 5} \mathbf{~ m i l i o n ~}$ to $\$ 191.9 \mathrm{mili}$ on and averaged $\$ 52.8$ million (see Table 3. 1. 127). Both harvest wei ght and real val ue have increased dramatically during this el even year period. The nost recent harvests are theref ore, thought to be nore indi cative of the potential of the fishery than are the average figures.

Sources: CFEC Gross Earnings Files and ADF\&G Western Alaska Monthly Shellfish Reports for 1977-1979.
Note: A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery.

Table 3.1.124
Western Aleutian King Crab Fishery
Number of Boats and Catch by Month as a Percentage of Annual Activity 1969-1979

Percen age of Boats

Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
	"u."	$49 . ?$	3\%.'	0	0	0	0	0	32.2	49.2	47.5	61.0	100.0
1"7n	6.2.	13.1	1	n	n	0	0	0	0	0	59.6	63.5	100.0
1071	611.7	1.4 .1	1.6. 1	0	0	0	$1)$	0	0	0	73.2	73.2	100.0
1972	11	1	0	1	n	0	n	0	0	2.2	93.5	93.5	100.0
1973	44.3	45.2	19.?	i	1.9	7.7	0	0	0	2.2	75.0	76.9	100.0
1076	0	91.8	20.8	n	0	0	0	n	0	0	0	0	100.0
10\%	4, ${ }^{1}$	76.?	54.1	1	0	0	0	0	0	0	Q. 1	0	100.0
107\%	1	0	00.0	. 1	0	0	0	0	0	0	0	0	100.0
1077	00.0	0	0	11	n	n	0	0	0	0	0	0	100.0
1978	0	1	100.0	0	n	0	0	n	0	0	0	0	100.0
$1 ゙ 17$	11	"	100.:	$1)$	0	1	0	0	0	0	0	0	100.0

N Percentage of Catch

1709	17.6	13.6	1)."	(1)	0	0	0	0	$7 \cdot 8$	23.8	10.9	26.6	100.0
1971	$3: 3$	21.3	1	!	\cap	()	0	n	\bigcirc	0	22.7	22.2	100.0
1971	11.1	$\therefore 1.7$	11.1	ij	0	$1)$	0	n	$1)$	0	28.2	31.0	100.0
197%	i)	(!	1	1)	1)	0	0	()	0	-0.0	72.3	27.9	100.0
1971	11.1	6, b	1. 7	?	-0.0	3.18	0	0	()	0	$68 \cdot 4$	10.9	100.0
19^{19}	1	214.3	3.1	I	\bigcirc	O	0	0	0	0	0	0	100.0
19%	$\because " 9$	4.4	? ? ${ }^{1}$	1	0	1	0	\bigcirc	()	0	-0.0	0	100.0
$1) 11$	$1 \cdot$	i	41.0	,	0	11	0	0	$1)$	0	0	0	100.0
1911	1	1	i)	1)	0	(1)	0	()	()	0	0	0	0
1111	\therefore	!	1)	, 1	1)	n	\bigcirc	0	0	0	0	0
$1!1 \%$,	:1	n	I	+	()	n	$1)$	O)	0	0	0	0

Sources: CFEC Gross Earn ngs F es and ADF\&G Western Alaska Monthly She fish Reports for 1977-1979.
Note: A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery.

Table 3. 1. 125 Western Al eutian King Crab Fi shery Number of Fi sher nen by Month

	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	19,60	130	116	76	0	n	0	0	n	76	116	112	1f, 4	7th-)
	1470	13%	$16 ?$	11	0	n	0	0	0	0	0	124	13 ?	540
N	いい	13.	1414	1418	0	n	0	0	0	0	0	164	164	756
	10%	11	$1:$	n	n	r)	1	0	0	n	4	17 ?	172	348
	1073	; $;$	c,	40	1)	4	16	()	0	0	0	156	160	564
	10\%	1	9%	20	0	0	ri	0	0	0	0	0	n	112
	1474,	6.11	$1 \cdots$	\& 0	1	a	1	0	0	0	0	12	0	256
	19%	1	1	36	n	n	(1"	0	0	n	0	0	0	36
	1017	;	0	\bigcirc	n	n	0	0	0	0	n	0	0	8
	10.4.	11	(1)	4.4	0	n	0	0	0	0	(1)	0	0	44
	1.10	11	11	4.2	!	1	n	0	0	0	0	0	0	5 ?

Sources: GFEC Gross Earni ngs Files and ADF\&G Western Alaska Mbnthly Shellfish Reports for 1977-1979.

Tabl e 3．1． 126

Véstern Al eutian King Crab Fi shery Percent of Fi sherman Man Mbnths by Month 1969－1979

	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Total
	lye．	1r．＂	12.3	11.0	11	0	0	0	n	10.0	15.3	14.7	18.9	100.0
		24， 4	？$\because \cdot 1$	11	0	0	0	0	0	0	0	23.0	24.4	100.0
N	1971	1%＂	19.0	16.6	0	n	0	0	0	0	1	21.7	21． 7	10）． 0
	1012	1	\because	0	0	\bigcirc	n	0	n	0	1.1	49＊4	49＊4	100.0
	1073	18.3	17.6	7.1	0	0.7	2.8	n	0	n	0	27.7	28.4	100.0
	1074	r	：3．1	17．4	0	0	0	0	0	n	0	0	0	100.0
	196	21．4	． 11.1	21.7	1	0	0	0	n	n	0	4.7	0	100.0
	14\％	1	11	1（10） 0	11	n	$1 i$	0	n	n	0	n	0	10 （－） 0
	1،，＇7	11， 11	1	11	11	a	0	0	0	0	0	0	0	11－）（）．0
		\checkmark	11	10r．0．	＂	1.	0	（J	n	0	0	0	0	100.0
	1いい。	1	1.	1110．0）	0	0	0	n	0	n	0	n	0	$10(-) .0$

Sources：CFEC Gross Earni ngs Files and ADF\＆G Uestern Alaska Monthly She＇ 1 fish Reports for 1977－1979．

Harvesting Activity
Bering Sea King Crab Fi shery
1969-1979

Year	Catch			Exvessel Price		Number of		Catch per	r Boat Month			
	Weight	Val ue				Val ue						
	Pounds Metric	(mil7	ions)	(\$/ Pound)				Boat Mbnt hs	Fi shernan Mont hs	Pounds$(1,000)$		000)
	(millions) Tons	Nomina	1 Real	Nomi nal	Real	Nomi nal	Rea 1					
194.9	10.04544	2.3	4.8	0.22	0.48	187	748	53.6	11.9	25.8		
1970	8.6 7898	1*7	3.5	().? 0	0.41	173	692	49 * 7	9.9	20.5		
1071	12.85 5827	2.6	5.1	0.20	0.40	188	752	68.3	13.7	27.0		
1972	21.09609	5.2	10.0	(). 25	0.48	284	1136	73.8	18.5	35.3		
1973	28.212810	14.7	26. 5	0.52	0.94	? 45	980	115.3	59.9	108.1		
1974	49.427396	19.3	3]. 3	0.39	0.63	315	1260	156.7	6101	99.3		
1975	$6 \% .123639$	18.?	?-f.?	0.35	0.5 ?	270	1080	193.0	67.6	100.6		
1976	70.431938	43.6	61.4	0.62	0.87	448	1792	157.2	97.4	137.1		
1977	76.4 34658	72.6	3h.0	0.95	1.26	458	1832	166.8	158.5	209.6		
1979	98.3 44679	156.3	191.7	1.59	1.95	360	1476	266.3	423.5	520.1		
1979	118.753043	$111 . ?$	122.9	1.93	1.03	601	2404	197.9	185.0	204.6		

Sources: This table was generated from data contai ned in (1) Commercial Fisheries Entry Commission Gross Earni ngs Files, and (2) Al aska Department of Fi sh and Game reports.
${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.

Bering Sea crab boats range in length from 15.2 meters (50 feet) to well over 45.7 neters (150 feet) and are typically between 30.5 and 38.1 meters (100 and 125 feet) in length. The average crew size including the skipper is four. These boats principally operate out of and I and crab in Dutch Harbor and Akutan and less frequently in Adak and Kodi ak. Seattle is the dominant home port for Bering Sea crab boats and crevs. Kodi ak and other Al askan commities are al so incl uded anong the fleet's hone ports.

The Bering Sea Management Area king crab season has changed significantly si nce the early 1970s, when it lasted nost of the year. Primarily due to the tremendous increase in the size of the fleet, the length of the season has been dranatically reduced. In 1979 the season began in earnest in Septenber and was all but over in Novenber. The seasonality of the fishery is depicted in Tables 3. 1. 128 through 3.1.131. During the past three seasons (1977-1979) the average boat participated in this fishery during 2.7 cal endar months per year.

Norton Sound King Crab Fi sheries.

Although Norton Sound is within the Bering Sea King Crab Managenent Area, the king crab fisheries in Norton Sound are to some degree distinct from the Bering Sea fishery, and each of the Norton Sound fisheries is di stinct from the other. The dom nant fishery occurs in the summer and is participated in by large non-local crab boats that are part of the Bering Sea fleet. The other fishery occurs in the spring and is partici-

Bering Sea King Crab Fi shery Number of Boats and Catch by Month

1969－1979
Number of Boats

Year	Jan．	Feb．	Mar．	April	May	J une	July	Aug．	Sept．	Oct．	Nov，	Dec．
1いて	1	14	23	16	7	75	411	39	13	1	2	\cap
19／1	，	11	33	21）	13	14	25	30	0	2	0	2
1411	1	5	${ }^{\prime}$	10	t	7	33	38	37	29	9	5
197？	$1{ }^{\prime \prime}$	$\because 1$	19	）	0	3 ＂r	44	49	48	31	5	4
リリア	＇，	＇ 1	13	11	0	34	63	59	50	2	（）	n
1）	il	$1)$	）	0	24	15	0	96	37	93	0	（）
1！1！	11	11	i）	0	$1)$	n	0	2	91	97	66	$1 ?$
1516	1.1	1？	11	$?$	34	n	［1	$?$	42	$1 . ? 3$	11\＄	103
1017	11	11	0）	\bigcirc	0	0	9	1	90	118	125	116
1078	3	？ 1	7	77	0	（）	1	11	134	160	0	ก
$1 \% 10$	31	11	7	$1)$	0	（）	1	17	205	233	915	13

Catch（1，000 Pounds）

19	41： 1	$\therefore 1$	1057	8.609	389	1764	14，78	1893	100	－1	－1	n
1910	－1	171	$117 ?$	149	144	1105	165？	3274	53	－1	0	－1
1リ11	－1	$3:$		2.911	43	411	3．35 7	3774	2563	1415	2－70	395
$1 \% 1 ?$	． 11	31.5	75i）	0	11	3062	7040	4045	2671	1446	346	201
$1 \cdot 13$	24，1）	$\cdots 11$	1700	1336	0	2446	8979	8098	5170	－ 1	0	n
$1 リ 14$	1	：1	11	1）	2147	545	0	160日8	］ 6966	13627	0	1）
$1 \cdot 75$	${ }^{1}$	i）	1）	0	11	0	0	－1	11873	29242	9242	1018
lur	10.4	1，！${ }^{\text {a }}$	1）	－1	2367	0	0	-1	4221	29557	23111	19751
$1 \cdot 11$	11	11	1	，	1	i）	0	0	0	0	0	\bigcirc
！•11	4	1	1	11	0	11	0	0	0	0	0	0
1．90	1	$1 i$	11	0	0	n	\bigcirc	0	0	0	0	n

Sources：CFEC Gross Earnings Files and ADF\＆G Vestern Al aska Monthly Shel Ifish Reports for 1977－1979．
Note：A minus signindicates months in which the catch is confidential because fewer than four boats participated in the fishery．

Tabl e 3．1． 129
Bering Sea King Crab Fi shery
Number of Boats and Catch by Month as a Percentage of Annual Activity
1969－1979
Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nev．	Dec．	Annual
12\％9	11．1	20.3	33．3	33.7	10.1	36.2	58.0	56.5	in．f？	1.4	2.9	0	100.0
1911	1．${ }^{1}$	P9．4	57.4	50.1	27．8	24.6	43.9	52.6	10.5	3.5	0	3.5	100．（－）
197］	1.1	＂．${ }^{\text {a }}$	110．1	17．9	10.7	12.5	58.9	67.9	66.1	50.0	16.1	8.9	100.0
117？	$? i_{1}=1$	30．？	24． 7	0	0	50.0	59.5	$66 . ?$	64.3	4109	6.8	5.4	100.0
1973	7．4	13.2	1）．1	16．3	0	50.0	92．6	85．3	73.5	2.9	0	0	100.0
1974	1	11	$1)$	$1)$	22.9	14.3	0	91.4	82.9	88.6	0	0	100.0
いけ！	${ }^{1}$	1	11	9	0	0	0	1.9	97.5	95.2	63.5	11.5	100.0
191\％	1：${ }^{\prime}$		0	1.4	23.9	0	0	1.4	29．6	86.6	83.1	72.5	100.0
1917	11	11	0	11	0	0	6.4	0.8	72.0	94.4	100.0	92.8	100.0
1914	1.9	10.3	4.4	15.9	0	0	0.6	6.9	33.8	100.0	0	0	100.0
1．7！	1r．＇s，	1	1	の	0	0	0.4	7.3	88．0	100.0	41.2	5.6	Loo．（－）

Percentage of Catch

1409	4.1		11.4	6.1	3.9	17.6	34.7	19.9	$1 . .0$	－0．0	－0． 0	0	100.0
1019	－1．11	？．10	13.0	8.7	1.7	12．9	19.2	38.1	0.6	－0．0	0	－（－）． 0	100.0
1911	－9．11	ii． 7	1.5	7.11	n．6	3.2	25.4	29.4	20．0	11.0	2.1	$3 * 1$	100.0
191．	＇． 1	4.0	3.0	0	0	14.0	33.6	19.3	12.7	6.9	1.7	1.0	100.0
147	1．．＇	1.4	4.0	4.6	0	8.7	31.8	2月．7	18．3	－（－）．（）	0	o	100.0
10？	＇	1	0	\square	4.3	1.1	0	3？．6	34.4	27.6	0	0	100.0
1095	1	11	1	11	0	11	$1)$	$-\cap .0$	22．8	56.1	17.7	2.0	100.0
1： 10	1）．＂	11． 1	1	－1．1	3.4	11	11	$-1) .0$	6.0	42.0	32.8	13．8	100.0
1.17	＂	1	$1:$	1）	1）	11	0	n	n	0	0	n	100.0
1リ！	${ }^{\prime}$	$1:$	\cdots	0	0	11	0）	\bigcirc	n	0	0	0	0
19\％	1	11	1）	＂	0	11	0	0	n	0	0	0	0

Sources：CFEC Gross Earni ngs Files and ADF\＆G Western Al aska Monthly Shel Ifish Reports for 1977 － 1979.
Note：A minus si gn indi cates nonths in which the catch is confidential because fewer than four boats partici pated in the fishery．

Table 3．1． 130
Bering Sea King Crab Fishery Number of Fishermen by Month 1969－1979

	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	0ct．	Nov．	Dec．	Total
		$\frac{19}{9}$	\％${ }^{\text {f }}$	$9 ?$	6.4	？${ }^{\text {\％}}$	100	16,0	156	， 2	4	8	0	748
	10%	？	＋ 9	137	116.	57	5%	100	120	24	B	0	8	692
O	ば	،	$?$	36	40	24	28	132	152．	148	117	36	20	752
	，91x	$!$	111.	76	0	n	148	176	106	192	124	20	16	1136
	－．ヶ．；	$\because 1$	30	5.	$\therefore 4$	n	136	253	232	200	3	0	0	990
	1914	11	1	0	）	9% ．	60	0	384	34\％	372	0	0	1260
	1ッバ	11	1	1	0	\bigcirc	$(1$	0	8	3 H 4	396	264	48	1080
	1916	＂${ }^{\prime}$	4.	0	9	17\％	${ }^{1}$	0	8	16.8	492	47 ？	412	1792
	19， 9	1	11	0	11	0	0	37	4	360	472	500	464	1832
	1939	1.	11.4	24	108	0	${ }^{(1)}$	4_{4}	44	536	640	0	0	1476
	いッ	1：4	$1:$	$1)$	11	0	1	4	6.8	820	932	384	$5 ?$	2404

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．

Table 3．1．131
Bering Sea King Crab Fishery
Percent of Fisherman Man Months by Manth
1969－1979

N	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nev．	Dec．	Total
	1084	3.1	7.5	12．3	B．${ }^{\text {a }}$	3.7	13.4	21.4	20.9	7.0	0.5	1.1	0	100.0
	1900	1.	9.8	10.1	10．9	7.5	9.1	14.5	17.3	3.5	1.2	0	1.2	100.0
	$1 \cdot 11$	＊${ }^{\prime}$	2.7	4.8	5.3	$7 . ?$	3.7	17．6	20．？	19.7	14．9	4.8	2＊7	100.0
	いい	\cdots	110.2	6.9	1	0	13.0	15.5	17．7	16.9	10.9	1.8	14	100.0
	1113	،	3.7	「．${ }^{\text {a }}$	4.6	${ }^{1}$	13.9	25.7	23.7	20.4	0.8	0	0	100.0
	リリル		0	＂	r	7．t．	4.8	0	30.5	27.6	29.5	0	0	100.0
	リい兄	＂	1	0	＂	1	0	0	0.7	33.7	36.7	24.4	4.4	100.0
	1010	$\therefore 1$	$\because 1$	11	0.4	7.6	n	0	0.4	9.4	27.5	26.3	23：0	100.0
	1977	1	1	！	$1)$	0	0	1.7	0.2	19.7	25.8	27.3	253	100.0
	1，	－${ }^{\circ}$	1.1	．${ }^{8}$	7.3	0	${ }^{1}$	0.3	3.0	36.3	43.4	\bigcirc	0	100.0
	0%	$\cdots \times 1$			\square	f		$=2$	2.8	34.1	38.8	6.0	2.2	100.0

[^5]pated in by resi dents of the Nome area using snow machi nes and dog sleds to transport crab that is harvested through the ice.

The summer fishery began in 1977 when the Northern District of the Bering Sea Management Area was opened to commercial fishing. Norton Sound is part of the Northern District. The ADF\&G reports that 12 boats of 28.0 to 32.9 meters (92 to 108 feet) in length participated in the 1977 Northern District king crab fishery. After fishing inthe St. Matthew area, seven of these boats partici pated in the Norton Sound fishery. The 1977 Norton Sound harvest total ed 236 metric tons (519, 900 pounds) of which 97 metric tons (214,000 pounds) or 41 percent was dead loss. The probable causes of the hi gh dead loss are high water temperature and a high freshuater content in the crab boats' hol ding tanks. It should be noted that dead crabs are not purchased by processing plants, therefore, a boat's catch is stored in live hol ding tanks until it is delivered to a processor. Ten boats participated in the Northern District fishery in 1978 and harvested 911 metric tons (2 miliion pounds). The ADF\&G records are not clear as to what part of the harvesting activity occurred in Norton Sound, but it is estimated that the Norton Sound harvest was approximately 680 metric tons ($\mathbf{1 . 5} \mathbf{~ m i l i o n ~}$ pounds). The harvest of the Iarge boat fleet has been Ianded in the Aleutians due to the lack of adequate harbor and processing facilities in Norton Sound. An exvessel price of one dollar per pound was recei ved in 1978.

ADF\&G data indicate that 133 permits were \mathbf{i} ssued for the spring ice fishery in 1978. The harvest which totalled 11.4 metric tons (25, 193 pounds) and whi ch was val ued at $\$ 22,670$ was taken by 37 fishernen. The participants in this fishery have been residents of the None area and the catch has been Ianded in and processed in Nome. The 1978 fishery occurred from February through April.

TANER CRAB

The Western Al aska Tanner Crab fishery has doni nated the Al aska Tanner crab harvest in recent years and it has, itself, been dom nated by the Bering Sea Managenent Area harvest. The annual harvest weight for the Western Al aska Tanner crab fishery ranged from 810 metric tons (1.8 milion pounds) in 1969 to 29, 547 metric tons ($87.2 \mathbf{m i l i}$ on pounds) in 1979 and averaged 13, 528 metric tons (29.8 milion pounds) for the el even- year period. The annual real harvest val ue ranged from $\$ 0.4$ million to $\$ 54.2 \mathrm{mili}$ in and averaged $\$ 14.3 \mathrm{mili}$ on during the sane period; the range and average of annual nominal harvest value are $\mathbf{\$ 0 . 2}$ milion to $\$ 49.0 \mathrm{mili}$ on and $\$ 11.6 \mathrm{mili}$ in, respectively (see Table 3. 1. 132). Si nce 1977, the Kestern Alaska Tanner crab harvest has accounted for over 64 percent of the Al aska harvest, and over 80 percent of the Vestern \mathbf{A} aska Tanner crab harvest has been from the Bering Sea Management Area (see Tables 3.1. 133 and 3.1.134). The Tanner crab fishery grounds and managenent areas of Uestern Alaska are depicted in Fi gure 3. 6.

Tabl e 3. 1. 132
Hestern Alaska Tanner Crab Harvest
1969-1979
Pounds
$(1,000)$

Year	Peni nsul a	Eastern Al eutians
1969	653	77
1970	2094	$3+3$
1071	2293	0
1972	3968	39
1973	6? 51	24
1974	11556	499
1975	8550	77
1976	16752	551
1977	12178	1302
1978	12060	2533
1979	11192	1092

Western Al eutians	Bering Sea
2	1103
0	1101
0	162
0	112
169	302
71	5044
3	7028
62	22324
0	51876
23 H	69496
$19{ }^{\prime \prime} /$	74705

Western Al aska	Al aska
1785	11207
3558	14473
2455	12880
4119	30135
6746	61719
17170	63906
15659	46857
39689	80771
65356	98476
84327	130626
87186	131381

1969	65	3	0	110	178	1133
1970	18 A	33	0	99	320	1417
1971	229	0	0	15	244	1369
1972	436)	0	11	447	3731
1973	1000	4	29	51	1084	10756
1974	2311	105	15	1059	3490	13052
1975	1197	10	0	914	2121	7019
1976	3350	105	12	4242	7709	16166
1977	3944	472	0	19713	24(379	35465
1978	5.n36	1163	109	31898	38706	59957
1979	6, 86	613	111	41953	48962	73781

Source: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.
1978 and 1979 data are preliminary.

Table 3. 1. 133
Tanner Orab Management Area Harvest as a Percentage of the Mestern Al aska Harvest 1969-1979

Percentage by Wei ght

Year	Peni nsul a
1409	36.6
1970	5R.9
1971	93.4
1972	$96^{*} 3$
1973	92.7
1974	67.3
1975	54.6
1976	4?.2
1977	18.6
1978	14.3
1979	12.8

Eastern Al euti ans
1.5
10.2
0
0.9
$0 * 4$
$? * 9$
0.5
1.4
$2 * 0$
$3 .()$
$1 * 3$

Western Al euti ans
$\mathbf{0 . 1}$
$\mathbf{0}$
0
0
2.5
0.4
0.0
0.2
0
0.3
0.2

Bering
Sea
61.8
30.9
6.6
2.7
4.5
29.4
44.9
56.2
79.4
82.4
85.7

MeStern Al aska
$100 .(-1$
100.0
100.0
$100^{*} \mathrm{O}$
100.0
100.0
100.0
100.0
100.0
100.0
100.0

Percentage by Value

$1 * 7$	0.1
10.3	0
0	0
0.1	0
0.4	$? .7$
$3 .(-1$	0.4
0.5	$0 * 0$
1.4	0.2
1.8	0
3.0	0.3
1.3	0.2

> 61.7
> 30.9
> 6.1
> 2.5
> 4.7
> 30.3
> 43.1
> $55 .(-)$
> 81.9
> 82.4
> 85.7
100.0
100.0
100.0
100.0
100.(-)
100.0
100.0
100.0
$10(-) .0$
100.0
100.0

Source: CFEC Gross Earnings Files and ADF\&G Catch Reports.
1978 and 1979 data are prel iminary.

Table 3. 1. 134
Tanner Crab Managenent Area Harvest as a Percentage of the Al aska Harvest 1969-1979

Percentage by Veight

Year	Peni nsul a	Eastern Al eutians	Western Al eutians	Bering Sea	Vestern Al aska	Al aska
1969	5.8	0.2	0.0	9.8	15.9	100.0
1970	14.5	2.5	0	7.6	24.6	100.0
1971	17.8	0	0	1.3	19.1	100.(-)
1972	13.2	0.1	0	0.4	13.7	100.0
1973	10.1	0.0	0.3	0.5	10.9	100.0
1974	18.1	0.8	0.1	7.9	26.9	100.0
1975	18.2	0.2	O*O	15.0	33.4	100.0
1976	20.7	0.7	0.1	27.6	49.1	100.(-I
1977	12.4	1.3	0	5?.7	66.4	100.0
1978	9.?	1.9	0.2	$53 . ?$	64.6	100.0
1979	8.5	0.8	0.1	56.9	66.4	100.0

Percentage by Val ue

1969	5.7	I-). 3	0.0	9 * 7	15.7	100.0
1970	13.3	2.3	0	7.0	22.6	100.0
1971	16.7	0	0	1.1	17.8	100.0
1972	11.7	0.0	0	0.-3	12.0	100.0
1973	9.3	0.0	0.3	O*5	10.1	100.0
1974	17."/	0.8	0.1	8.1	26.7	100.0
1975	17*1	0.1	0.0	13.0	30.2	LOO*(-I
1976	? 0.7	(-). 6	0.1	$26 . ?$	47.7	100.0
1977	11.1	1.2	0	55.6	67.9	10(-). 0
1978	$9 . ?$	1.9	0.2	53.2	64.6	100.0
1979	$8 . ら$	0.8	0.1	56.9	66.4	100.0

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.
1973 and 1979 data are preliminary.

Figure 3.6: Major Tanner Crab Fishing Areas, Western Al aska
Source: Alaska Department of Fish and Game, Alaska's Fisheries Atlas, 1978.

The annual harvest wei ght for the Peni nsula Managenent Area Tanner crab fishery ranged from $\mathbf{2 9 6}$ metric tons ($\mathbf{0 . 7} \mathbf{7} \mathbf{m i l i}$ on pounds) to $\mathbf{7 , 5 9 9}$ metric tons (16.8 milli on pounds) bet ween 1969 and 1979 and averaged 3,610 metric tons (8.0 milli on pounds), The annual real harvest va"lue ranged from $\$ 0.1 \mathrm{mili}$ on to $\$ 7.0 \mathrm{mili}$ on and averaged $\$ 3.0 \mathrm{mili}$ on (see Table 3. 1. 135). The annual harvest wei ghts since 1974 have typically been si gnificantly greater than those for 1969 through 1973. The sane is true for annual real harvest val ues.

Peni nsula Tanner crab boats range in length from 11.0 meters ($\mathbf{3 6}$ feet) to over 38.1 neters (125 feet). The average length is approximately 25.9 neters (85 feet). The average crew size, incl uding the skipper, is four. This fleet predominately operates out of and lands crab in Kodi ak, and Kodiak is the hone port of much of the fleet.

Si nce 1976 the Peni nsula Tanner crab season has begun in Novenber and ended in May. The seasonality is summarized in Tables 3, 1. 136 through 3.1.139. During the past three seasons (1977-1979) the average boat participated in the fishery during 4.8 cal endar nonths per year.

Eastern Aleutians

The annual harvest wei ght for the Eastern Aleutians Managenent Area Tanner crab fishery ranged from zero to 1,149 metric tons (2.5 milli on

Table 3.1. 135

Harvesting Activity Peni nsul a Tanner Crab Fi shery 1969-1979

Year	Catch				$\frac{\text { Exvessel Price }}{\text { \$/Pound) }}$		Number of		Catch per Boat Month				
	Weight Pounds Metric (millions) Tons		$\begin{gathered} \hline \text { Val ue } \\ \text { [milli ons) } \\ \text { Nomi nal Real } \end{gathered}$				Vei ght	Val ue					
			Boat Fi shernan Months Mbnths				$\begin{aligned} & \text { Pounds } \\ & (1,000) \end{aligned}$	(\$1,0	000)				
			Nomi nal	Rea 1	Nominal	Rea 1							
1969	(). 7	296			0.1	0.1	0.10	0.? 2	86	344	7.6	0.8	1.7
1970	2.1	950	0.2	(). 4	0.09	0.19	116	464	18.1	1.6	3.3		
1971	2.3	1040	0.2	0.5	0.10	0.20	93	37?	24.7	2.5	4.9		
1977	4.0	1800	0.4	0.8	0.11	0.? 1	9 n	392	40	4.4	8.5		
1973	6.3	2835,	1.0	1.8	0.16	0.29	19?	768	32.6	5.2	9.4		
1974	11.6	5247	2.3	3.8	(-). 20	0.32	188	752	61.5	12.3	20.0		
1975	8.5	3878	$1 . ?$	$1 . \cap$	0.14	0.21	121	484	70.7	9.9	14.7		
1976	16.8	7590	3.3	ft.?	0.? ()	0.28	227	908	73.8	14. f !	20.8		
1977	12.2	55?4	3.9	5.2	0.3 ?	0.43	203	812	60.0	19.4	25.7		
1978	12.1	5470	5.5	h. 8	0.46	0.56	214	8 56	56.4	25.9	31.8		
1979	11.2	$50{ }^{77}$	6.3	7.0	0.56	0.62	227	9 n 8	49.3	27.7	30.6		

Sources: This table was generated from data contai ned in (1) Comercial Fi sheries Entry Comission Gross Earnings Files, and (2) Al aska Department of Fish and Gane reports.
${ }^{1}$ The real val ues and prices were cal cul ated using the US, CPI; 1980 is the base period.
The 1978 a nd 1979 val ues are preliminary estimates.

Pesinsu a Tanner Crab Fishery Number of Boats and Catch by Month 969－1979

Number of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．
$1 \cdots$	＇	11	‘	＇	4	0	1	1	0	21	3	27
10\％	$\therefore 1$	\because	13	14	11	2.	0	0	0	0	3	15
いい	16	14.	14	12	11	$?$	2	n	0	0	9	13
$1 \cdots ?$	13	4	12	$1 / 4$	15	3	3	1	0	$?$	10	16
1.113	11	$\because ?$	$? 4$	21	23	16	11	2	？	8	71	73
1914	11	1	34	40	37	74	18	2	0	0	0	0
1．15	＂	．）	${ }^{1}$	36	32	26	8	0	0	0	0	20
1016	33	31	38	51	53	13	0	0	0	0	1	17
1917	15	3	28	27	26	0	0	0	0	0	6	17
1918：	$2 ?$	$? 1$	$2{ }^{21}$	27	19	0	0	0	0	0	1	15
1010	1 H	211	3 n	40	11	0	n	0	－	0	12	5

N

1！	1	$3 ;$	148	178	37	0	-1	-1	0	167	－1	98
10：	193	497	（1）${ }^{1}$	50n	229	－1	0	0	0	0	－1	60
fip	$\because 1$ ，	119	$3!1$	「淅	402	－1	-1	0	n	0	54	94
1^{19}	， 8.2	？ 17	$\therefore 13$	9） 13	9F\％	-1	－1	－1	0	-1	302	436
$1{ }^{19}{ }^{*}$	410	い口，	47%	163	910	512	401	－1	-1	57	523	707
$1^{\prime \prime} \vdots$	， 12	（1．6．1）	$3 \cdots 9$	3009	20143	1320	142	-1	0	0	0	0
1＇t	＂	11	7%	$? ? 17$	26.64	2250	247	0	0	0	0	355
	－ 11	1149？	310%	12？010	4045	475	0	$1)$	0	0	－1	649
1＊19，	11	11	${ }^{\prime}$	$1)$	0	0	0	0	0	0	0	0
1＂：	1	，	11	（）	1	）	0	0	0	0	0	0
1．1：	1	11	11	1	0	0	0	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．
No e：A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery．

Table 3．1．137
Peninsula Tanner Crab Fishery
eer of Boats and Catch by Month as a Percentage of Annual Activity 1969－1979

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Au，	Sept．	Oct．	Nov．	Dec．	Annual
11%	\cdots	$\cdots \cdots$	14.7	14．1	11.8	0	？．9	2.9	0	61.8	8.8	79.4	100.0
10711	川．＂	71.8	い禹的	$4 ? .4$	37.3	i． 1	$1)$	1	0	1	9.1	45.5	100.0
1071	リ．＂	77.9	8%	60．7	6．1．1	11.1	11.1	0	0	0	50.0	72.2	100.0
197%	$42^{2} 3$	311.11	$4(1)$	46.9	50.0	10.0	10.0	3.3	0	6.7	33.3	53.3	100.0
1971	41.6	51）．${ }^{1}$	0．0．0	52．${ }^{\text {a }}$	4） 7.5	40.0	27.5	5.0	¢．0	20.0	52.5	57.5	100.0
1074	？6．9	21.1	53.4	4.5	56.0	36.9	27.7	3.1	0	0	0	0	100.0
10\％	1.	1	19.1	51.03	6re． 1	$5 \% .3$	17.0	0	0	0	0	42.6	100.0
1：76．	$3 \cdot 4$	44.3	54.3	72.9	75.7	18.6	0	0	ก	0	1.4	24.3	100.0
10：7	13．t	35.7	100.01	76.4	92.9	0	0	0	0	0	21.4	60.7	100.0
1918	い。か	12t．0＇t	100.0	$9 \mathrm{ar.4}$	67.9	0	0	0	0	0	3.6	53.6	100.0
1010	$4 \cdots 01$	70.0	18．5	00.0	4.5		0	n	0	0	30.0	12.5	100.0

ัㅜㅇ

Percentage of Catch

1：00	$*^{*}$	\cdots	$2 \cdot 7$	$19 . t$	$\therefore .7$	0	$-1) . ?$	-0.2	0	25.6	－0．2	15.0	100.0
1310	1	$\therefore 3.7$	$\because 9.3$	23.9	10.9	－0．0	0	0	0	0	-0.0	2.9	100%
1.11	\cdots,	10	15.5	？${ }^{\text {a }}$	17.5	－0．0	－0．0	0	0	0	2.4	4.1	100.0
1：！	1．${ }^{\prime}$	7＊	12.0	？ 4.5	P4． 1	-0.0	－0．0	-0.0	0	-17.0	7．6	11.0	100.0
$14!$	1	4.3	7.6	13.2	14．6	9.2	7.9	－0．0	-0.0	0.9	8.4	11.3	100%
191	$1 \times$	$\cdots t$	19.9	37.4	17.7	11．	7.3	－0．0	0	0	0	0	100.0
$1 \because 1$	11	${ }^{1}$	11．5	11.4	31.2	20.7	4.0	0	（）	）	0	4.2	100．0
	4	1.11	$1 \% .1$	11.17	$? 4.1$	$\therefore \mathrm{CH}$	0	0	0	0	-0.0	3.9	100.0
1911	＇	1	！	I	0	\bigcirc	0	$1)$	0	n	0	0	100＊＊
1 ＇	＇	1	1	11	＇	0	0	0	0	0	0	0	0
$1 \quad \therefore \cdots$	＇	1	1	11	1	0	0	0	0	0	\bigcirc	0	0

Sources：CFEC Gross Earn ngs Fi es and ADF\＆G Western Alaska Monthly Shellf sh Reports for 1977－1979．
Note：A minus sign indicates months in which the catch is confidentia because fewer than four boats participated in the fishery．

Table 3. 1. 138
Peni nsul a Tanner Crab Fishery
Number of Fi shermen by Month
1969-1979

Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1% \%	$2{ }^{2}$	41	21	\therefore	1\%	1	4	4	0	${ }_{4}{ }_{4}$	12	108	344
$1 \cdots$		10.6	79	i,t	4,4	"	1	0	0	1	12	60	464
以10	\ldots	1,	S,	4,8	4,	${ }^{\prime}$	B	0	,	0	36	52	372
107:	1..	2	4.3	1,	(0	17	$1 ?$	4	0	8	40	6.4	392
	"	\% ${ }^{\text {a }}$	', 6	" 4	n?	6.4	4.4	9	${ }^{8}$	32	84	92	768
10\%	6.'	\ldots	1461	16.1	148	16	-7?	8	0	0	0	0	752
16:	"	"	36.	11.4	129	104	3 ?	0	0	${ }^{\circ}$	0	80	484
い!	',	13	$16 ?$	21,4	213	1,2	0	0	0	0	4	68	908
1':	(1)	'"	11.	110.4	114	0)	0	n	0	24	68	572
10:	\ldots	11:"	112	10.1	\%	${ }^{\prime}$	${ }^{1}$	0	0	n	4	Ho	556
$1 \cdots \cdots$	1.	113	14.11	160	6.9	\bigcirc	0	0	n	0	48	20	620

Sources: CFEC Gross Earnings Files and ADF\&G Western Alaska Mbnthly Shellfish Reports for 1977-1979.

Tabl e 3. 1. 139
Peni nsula Tanner Crab Fi shery
Percent of Fi shernan Man Months by Month 1969-1979

	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec. Total
	lur:	10.5	11.6	\because	'*)	4.7	$1)$	$1 . ?$	1.7	n	24.4	3.5	31.4100 .0
	1076	27.3	$? 8$	15.0	12.1	9.5	1"-7	0)	0	$1)$	2.6	12.9100 .0
	1011	11..'	14.1	19, 1	12.)	11.8	2.2	2.2	n	n	0	9.7	14.0 10(-).(-)
	$191 ?$	12.3	\cdots - ${ }^{\text {a }}$	$1 ? \%$	14.3	15.3	3.1	3.1	1.0	0	. ?*0	10.2	16.3100 .0
N	$11_{i} \%$?	"."	11.'	1: 5	10.0	12.0	8.3	5.7	1.0	1.0	4.2	10.9	12.0100 .0
	1074	9.10	1.0	14.0	21.3	19.7	12.9	9.6	$1 * 1$	1	1	0	- 100.0
	1074	1	"	1.4	21.5	26.4	21.5	$6 * 6$	f)	$1)$	-	0	16.5100 .0
	1900	11.1	$1+.1$	16.7	2\%.	27.3	,0.-f	$1)$	0	0	0	0.4	7.5100 .0
	1111	16.1	11.0	10.4	18."	18.2	1	0	n	0	1	4.2	11.9100 .0
	19.4	15.	1.1.4	20.1	19.4	12.7	0	0	n	0	\bigcirc	I-). 7	I o n 100.0
	W\%	11.1.	1!.1	2?.t	25.11	11.0	()	0	()	1	0	7 . ?	3.210()$.(-1$

Sources: CFEC Gross Earnings Files and ADF\&G Western Alaska Monthly Shel Ifish Reports for 1977-1979.
pounds) between 1969 and 1979 and averaged 268 netric tons (0.6 milion pounds). The annual real harvest val ue ranged fromzero to $\$ 1.4 \mathrm{milli}$ on and averaged $\$ 0.3 \mathrm{mili}$ on (see Table 3.1.140). The annual harvest. wei ghts of the past three years have been significantly greater than the average, as have the annual real harvest val ues.

The boats in this fishery range in length from 20.1 neters (66 feet) to over 35.1 neters (115 feet) and average approxi mately 27.4 neters (90 feet). The average crew size incl udi ng the skipper is four. The fleet principally operates out of and Iands crabin Dutch Harbor and Akutan. Seattle is the hone port for many of the boats and creus, and Kodi ak and other Alaska commities are home ports for part of the fleet.

In 1979 the season extended from Decenber through June with little harvesting activity occurring in Decenber, February, or June. The seasonality of the Eastern Aleutians Management Area Tanner crab fishery is summarized in Tables 3.1. 141 through 3.1.144. During the past three seasons the average boat participated in the fishery during 3.4 cal endar nonths per year.

Western Aleutians

The Western Aleutians Managenent Area Tanner crab fishery has been inactive four of the past 11 years, and the level of harvesting activity has been minimalin the other seven years. Between 1969 and 1979,

Table 3. 1. 140

Harvesting Activity Eastern Al eutians Tanner Crab Fi shery 1969-1979

Sources: This table was generated from data contai ned in.(1) Comercial Fi sheries Entrv Comissi on Gross Earnings Files, and (2) Al aska Department of Fi sh and Game reports.
${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.
The 1978 and 979 values are preliminary estimates.

Table 3．1．14
Eastern A eutians Tanner Crab Fishery \quad Number of Boats and Catch by Month as a Percentage of $\begin{aligned} & 1969-1979\end{aligned} \quad$ Activity 1969－1979

Percentage of Boats

Year	Jan．	Feb.	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
！！！	（1．1）	ini.11	\bigcirc	1）	r	$1)$	（）	n	（）	10．0	0	T0．0	M07．0
1 $\cdot 1$	$1!$	$\therefore 11$	（i）	35．1）	？${ }^{5}$	25.0	50.6	0	0	0	0	（）	100．0
$1 \cdots r_{1}$	11	［！	196.0	0	1	0	0	\bigcirc	0	0	0	0	100.0
1，7：	11	い	11	0	ri	$(1$	（）	0	0	50， 0	$\cdots 0^{0}$	0	100.0
1．＇	11	＊	0	0	$1)$	0	0	0	25．0	25.0	0	50.0	100．0
1． 14	11．1	\triangle ．	1， 1.1	29.5	$4.2 \cdot 9$	42.9	0	\bigcirc	0	0	0	0	100.0
］＇ $1:$	1	4．510 ${ }^{11}$	$1,0.0$	1	0	1）	$(1$	0	0	O	0	0	100.0
$1{ }^{*} \div$	11	\therefore ，	33.3	4.4 .4	$? ? \cdot 2$	11．1	1	n	\bigcirc	0	0	0	100.0
1＇1＇1	$4, ~=1$	$\therefore 1.1$	1110.0	57.1	29.6	14.7	(1)	0	0	0	42.9	57.1	100.0
$1^{-3}+1$	411． 1	619， 11	11.11	（191）．11	10．0）	30.0	0	（1）	0	0	20.0	90.0	100.0
	－11	＊， 3	91.7	1．10．1）	かっt．7	8.3	11	0	0	（）	0	$8 \cdot 3$	100.0

\approx

						rcenta	of C						
1.3	11.	410＂	1,	（ 1	11	$1)$	0	I	0	-3.7	0	-3.7	100.0
1×1	，	－7，	0	－ 11.	-11.7	-11.3	-0.3	0	1）	（）	0	0	100.0
$11 \cdot 1$	1	$1{ }^{1}$	θ	${ }^{1}$	1	${ }^{(1)}$	（1）	0	0	0	0	0	）
$1: 1.3$	1	＇1	4	1）	$(1$	$1)$	11	0	0	0	0	0	0
1：11	1	1	1	${ }^{1}$	$1)$	$1)$	0	0	$-4 \cdot 2$	-4.2	0	-4.2	100.0
1204	－1．．）	$1)$	$\therefore 0.4$	-1.7	$-11 . ?$	－11．？	0	0	0	（1）	0	（）	100.0
1＇${ }^{\prime \prime}$	1	1.	11	11	11	1）	$1)$	0	n	0	0	0	0
1：it．	1	－＇1．	－1．？	$\therefore .10$	-11.2	-0.2	0	0	$1)$	11	0	0	100.0
1，＇1	1	11	1	13	A	0	（）	11	$1)$	（）	0	0	100.0
$1^{\prime \prime}!$	11	1.	\cdots	11	11	(1)	（）	（！	$1)$	0	0	0）	0
－$: 84$	11	$1{ }^{1}$	11	1	1	（	0	0	0	0	0	0	0

Sources：CFEC Gross Earnings F les and ADF\＆G Western Alaska Month y Shellf sh Reports for 1977－1979．
Note：A minus sign indicates months n which the catch is confident al because fewer than four boats participated in the fishery．

Table 3．1． 142
Eastern Al eutians Tanner Crab Fi shery Number of Boats and Catch by Month 1969－1979

Number of Boats

Year	J an．	Feb．	Mar．	April	May	J une	J ul y	Aug．	Sept．	Oct．	Nov．	Dec．
190；	4	i	＂	0	（）	0	0	0	0	1	0	1
1910	11	1	1.	1	1	1	$?$	n	0	0	0	0
16！	11	11	1	19	1	11	0	n	0	0	0	0
1472	11	11	0	0	(1)	0	0	0	n	1	1	0
1973	11	11	1）	0	（）	n	0	0	1	1	0	？
1914	｜	11	4	$?$	3	3	0	0	0	0	0	0
10゙5	11	1	1	0	0	0	0	0	o	0	0	0
1076．	11	$?$	3	4	？	1	n	0	0	（）	0	0
1907	3	4	7	4	？	1	0	1）	0	0	3	4
1914	4	1	7	10	s	3	0	0	0	0	2	9
1979	t	1	11	$1 ?$	8	1	0	0	0	0	0	1

Catch（1，000 Pounds）

190．	11	J1，	1）	0	11	$1)$	1.1	0	0	－1	0	－1
1916	！	－1	n	-1	－1	－1	－1	0	0	0	（）	0
1911	11	11	-1	17	11	0	0	（）	0	（）	0	0
1010	11	＂	9	n	0	0	0	（）	0	－1	－1	\bigcirc
197？	11	$1)$	i）	0	0	0	0	0	－1	－1	0	-1
10！4	－1	1	103	-1	－1	－1	0	0	0	0	0	0
1075	1	－1	－1	n	0	（）	n	（）	0	0	0	\｛）
1い16	11	－1	-1	164	－1	－1	0	0	（）	0	0	0
1い゙\％	12	11	$1)$	0	n	11	0	0	0	0	0	$1)$
1．984	1	11	11	n	11	0	（i）	0	0	0	0	0
1：7\％	11	：1	$1)$	0	11	n	n	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats partici pated in the fishery．

Table 3．1． 143
Eastern Al eutians Tanner Crab Fishery Number of Fi shernen by Month 1969－1979

Year	」an．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．＂	Dec．	Total
10,4	\because	${ }_{4}$	0	1	9	1	f）	0	0	4	0	4	52
1：711	11	4	11	4	‘	4	4	0	0	0	0	0	24
！ 11	1	，	¢	0	1	0	0	0	n	0	0	0	4
1）$:$	｜	11	1	11	n	0	0	0	r）	4	4	n	8
いい	，	${ }^{1}$	11	0	\bigcirc	n	0	0	4	4	0	¢	16
いいい	－	\％	16	μ	$1 ?$	12	（1）	0	0	n	0	0	52
1．1．	，	＂	4	11	0	0	n	n	n	n	0	0	
い曲	＂	5	1 ？	16	0	4	0	n	n	0	0	1	4 n
11.7	1.1	1%	0	1 t．	ค	f，	n	n	0	n	12	16	112
1\％1	1.	\％	［is	$4{ }_{4}$	36	12	）	${ }^{1}$	n	${ }^{1}$	H	36	200
191\％	＇：	4	،，	4 k	13	4	0	（1）	${ }^{1}$	0	n	4	16 （1

[^6]Table 3.1. 144
Eastern Aleutians Tanner Crab Fishery Percent of Fisherman Man Months by Month 1969-1979

[^7]annual harvest wei ght ranged fromzero to 108 metric tons (238,000 pounds) and averaged 31 metric tons (67,500 pounds). The annual real harvest val ue ranged from zero to $\$ 134,000$ and averaged . $\$ 32,000$ (see Table 3.1.145). The fishery has been active in the last two years, but a trend is not readily di scernible.

The boats in this fishery range in length from 26.2 meters (86 feet) to over 38.1 meters (125 feet); typically they are over 30.5 meters (100 feet) and have a crew of four, incl udi ng the ski pper. The fleet operates out of and I ands crab in Adak, Dutch Harbor, Akutan, and Kodi ak. Seattle is the home port for many of the boats and crems, and Kodiak and other Al askan commities are hone ports for part of the fleet.

In 1978 and 1979, harvesting activity was limited to two nonths bet ween February and April. The seasonality of the Nestern Aleutians Managenent Area Tanner crab fishery is summarized in Tables 3.1.146 through 3.1. 149. During the past two seasons (1978-1979) the average boat participated in the fishery during $\mathbf{1 . 2} \mathbf{2}$ cal endar nonths per year.

Bering Sea

The Bering Sea Managenent Area Tanner crab fishery has accounted for over 79 percent of the Vestern Alaska harvest and over 52 percent of the Al aska Tanner crab harvest si nce 1977 (refer back to Tables 3.1. 133 and 3. 1. 134). The annual Bering Sea harvest wei ght ranged from 51 netric tons (0.1 milli on pounds) to 33,888 metric tons (74.7 milli on pounds)

Table 3.145
Harvesting Activity
Western Aleutians Tanner Crab Fishery
1969-1979

Sources: This table was generated from data contained in ' 7) Commercial Fisheries Entry Commission Gross Earnings Files, and , 2) Alaska Department of Fish and Game reports.
${ }^{1}$ The real values and pr ces were calculated using the U.S. CPI; 980 is the base period.
The 1978 and 1979 values are preliminary estimates.

Western Aleutian Tanner Crab Fi shery Number of Boats and Catch by Mbnth

1969－1979
Number of Boats

Year	J an．	Feb．	Mar．	April	May	J une	July	Aug．	Sept．	Oct．	NeV．	Dec．
119．	1	11	1	11	11	0	（）	0	1	$1)$	0	0
14\％i，	11	1	i	$1)$	1	1）	n	n	0	0	0	0
1071	$1!$	11	1	1）	0	0	I	0	0	\bigcirc	0	n
191：	1	11	0	0	11	0	n	0	0	0	0	0
1412	1	5	1	0	2	1	0	0	0	0	0	6
167！	1	＇	1）	1	（）	1	0	0	0	0	（）	0
1975	11	11	1	0	0	0	11	0	0	0	0	（）
1い1t	11	11	$?$	0	0	（）	0	0	0	n	0	f）
1411	1	11	11	0	0	$(1$	n	（）	0	［）	0	\bigcirc
1675	11	｜	4	11	（）	11	n	1	0	0	0	0
19：	11	11	is	1	0	1	n	）	0	0	（）	0

Catch（1，000 Pounds）

1\％． 1	11	11	（1）	1	H	11	n	1	-1	f）	0	0
1910	1）	$1!$	i）	1	（）	（）	0	1	0	0	0	n
$1 \cdot 11$	11	（t	11	1	0	0	0	0	0	0	0	0
10＂	， 1	1	1	1	11	11	i）	11	0	（）	（）	0
11173	－1	$\therefore 0$	－1	11	－1	－1	\bigcirc	0	0	n	0	98
1116	－1	－ 1	11	－1	11	－ 1	n	$1)$	0	0	n	0
191	1	11	－1	11	11	11	0	0	0	0	（）	0
1い1，	${ }^{\prime}$	i）	－1	11	11	1	0）	0	0	（）	0	0
リップ	11	11	＇，	1	11	0	0	0	0	1	0	（）
117%	11	1	！	1	11	0	0	0	$1)$	0	0	0
11\％	，	1	1	0	1	0	n	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Al aska Mbnthly Shellfish Reports for 1977－1979．
Note：Aminus sign indicates months in which the catch is confidential because fewer than four boats partici pated in the fishery．
ab e 3．1．147
Western A eutian Tanner Crab Fishery
Number of Boats and Catch by Month as a Percentage of Annua Activ ty 1969－1979

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July．	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
1						：	，	）	$00 .{ }^{\circ}$	${ }^{1}$	0	0	100.0
1071	11		${ }^{\prime}$		1	11	0	0	n	0	0	0	0
$1 \cdot 1$	1	．	0		0	11	0	0	0	0	0	0	0
10%	$1 \cdot$	\because	11	．	\bigcirc	1）	0	0	0	0	0	0	0
119	7.1	＇R．s	1.1	1	5.4	7.7	0	n	0	0	0	46.2	$10^{0} \cdot 0$
1！：4	い．1．	－ 7.1	1	8.7	1	16.7	0	0	0	0	0	0	$10^{\circ} \cdot 0$
1， 14	\because	11	10600		0	0	11	0	0	0	0	0	$10^{\circ} \cdot 0$
1.15	1	\therefore	100.0	0	11	0	0	0	n	0	0	0	$10^{\circ} \cdot 0$
$1 i^{\prime \prime}$	i		＂	）	1	0	0	0	n	0	0	0	0
11：${ }^{\prime \prime}$	11	\cdots	1（10．0）	i）	12	0	0	0	0	0	0	0	$10^{\circ} \cdot 0$
1い品	，	＇	1111．0	0.7	n	0	n	0	0	0	，	0	$10 \stackrel{0}{=}$

Percentage of Catch

1180	11	11	11		）	0	0	0	1）	0	0	0	0	0
1．176	1.	11	1		，	11	0	0	ก	0）	0	0	0	0
$1 \cdot 1 / 1$	11	＇1	1）		）	n	$1)$	0	0	0	0	n	0	0
1／1．	11	$1)$	1		1	！	11	11	（）	0	0	0	0	0
1， $1 ;$	－－1． 1	14	－＇	，	1	－1）． 6	－0．6	0	$1)$	0	0	0	58.0	$1{ }^{\circ} 0.0$
$1 \cdot 11$	－．${ }^{\text {－}}$	-1.1	，		－1．4	$1)$	-1.4	0	（）	0	0	0	0	$1 \sim 0.0$
$1 \cdot 14$	＇	$1)$	＇		$1)$	1	0	0	－	\bigcirc	0	0	0	0
1．11，	1.	$1{ }^{1}$	；		1	0	0	11	17	\bigcirc	${ }^{1}$	0	0	0
$1 \cdot 11$	＇，	＂	＇		＂	（）	0	0	ก	0	0	0	0	0
$\cdots!$	＇	．	＇		＇	1	0	0	0	0	0	0	0	0
1＊）	11	$($	$1)$		＇）	$1)$	0	0	0	0	0	0	（）	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Morthly Shellf sh Reports for 1977－979．
Note：A minus sign indicates months n which the catch s conf dent a because fewer than four boats participated in the fishery．

Table 3．1． 148
Western Al eutian Tanner CrabFishery
Number of Fi shernen by Month
1969－1979

	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Total
	1% 为	II	11	）	0	）	n	n	0	4	（）	0	0	4
	1＂in	1	${ }_{1}$	11	$1)$	\bigcirc	1.	0	0	n	$1)$	$1)$	n	0
	$1 ッ 11$	1	${ }^{1}$	11	0	\bigcirc	＇	0	0	0	n	n	$1)$	0
$\stackrel{\sim}{\omega}$	以？	11	1	1	$1)$	n	（1）	ก	0	n	0	0	n	0
	1413	\checkmark	\because	4	r）	？	4	0	0	n	ก	0	24	64
		1．＇	＊	11	4	n	4	n	0	0	0	0	0	28
	1.11	1	11	4	0	n	1	n	0	o	n	0	0	4
	1：11	．	，	3	＂	a	1	0	0	0	0	0	n	8
	1：17	11	1	11	0	0	（1	i）	0	0	0	0	n	0
	1以1a	0	\therefore	211	$1)$	11	0	n	0	$1)$	0	0	n	24
	1.11	1	＇	24	4	0	（1	n	0	0	n	0	0	28

Sources：CFEC Gross Earnings Files and ADF\＆G Vestern A aska Monthly Shel IfishReports for 1977－1979．

Table 3．1． 149
Western Aleutian Tanner Crab F－shery Percent of Fisherman Man Months by Month 1969－1979

$\underset{\sim}{\text { ru }}$	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．				Total
	1＇．1．4	${ }^{\prime}$	${ }^{1}$	11	1	\cdots	0		n	100.0	0	0	0	100.0
	1，10	＂	1	9	1	1	1	0	0	0	0	0	0	0
	$1 \cdot 11$	＂	11	1	1	）	0	11	1	n	0	0	0	0
	10\％	11	1	9	$1)$	${ }^{\prime}$	0	0	0	0	0	0	0	0
	1．13	1．1	21.3	1.3	11	$12 \cdot 5$	6.3	0	1	n	0	0	37.5	00.0
	${ }^{4}$	4	2：00		4.3	0	4.3	；	0	0	0	0	\bigcirc	00.0
	1110	\because	1	1（1）．＂	1	＂	1	0	0	0	0	0	0	00.0
	1620	1	1	1ハい	11	0	0	$1)$	0	0	0	0	0	100.0
	$\cdots 1$	${ }^{\prime}$	${ }^{\prime}$	＂	11	${ }^{\prime}$	0	1	$1)$	$1)$	0	0	0	0
	141\％	＂	16.9	1．1．3	1）	11	a	1	0	n	0	n	0	100.0
	いい	＂	1	＊＊ 1	14.3	11	0	1	0	0	$1)$	0	0	100.0

Sources：CFEC Gross Earn ngs F es and ADF\＆G Western A aska Monthly She lfish Reports for 977－9 9.
bet ween 1969 and 1979 and averaged 9, 819 metric tons (21.2 milion pounds). The annual real harvest val ue ranged from $\$ 21,000$ to $\$ 46.4$ milion and averaged $\$ 11.0 \mathrm{mili}$ on (see Table 3.1.150). The annual harvest weight and real value have increased dranatically in the last four years. The nore recent harvests are theref ore thought to be nore indi cative of the potential of this fishery than are the averages for the el even- year period as a whole.

Bering Sea Tanner crab boats range in length from 17.1 meters (56 feet) to over 45.7 meters (150 feet). They are typical "y over $\mathbf{3 0 . 5}$ meters (100 feet) and have a crew of four, incl uding the ski pper. The fleet princi pally operates out of and lands crab inDuti h Harbor and Akutan; secondary poi nts of I andi ngs incl ude Adak and Kodiak. Many of the boats and crews are from the Seattle area. Others are from Kodiak and other Al askan commities.

In 1979, harvesting acti vity occurred from January through July and was nost heavily concentrated in March through May. The seasonality of the Bering Sea Managenent Area Tanner crab fishery is summarized in Tables 3.1. 151 through 3.1, 154. During the past three seasons (1977-1979) the average boat participated in the fishery during 3.4 cal endar months.

SHRIMP

The Uestern Al aska shrimp fishery with only minor exceptions, has been Iimited to the Peninsula and Eastern Aleutians Management treas. The

Table 3. 1. 150

Harvesting Activity Bering Sea Tanner Crab Fi shery
 1969-1979

Year		Catch			Exvessel Price (\$/Pound)		Number of		Catch per Boat Month						
		$\begin{aligned} & \text { Vei ght } \\ & \text { Pounds Mc } \end{aligned}$	Val ue -				Weight $-\frac{\text { Value }}{\text { Pounds }}$$(\$ 1.000)$ $(1, \mathbf{0 0 0})$ Nominal ReaL								
		Tmilli	ons) 1	Boat Fisherman Months Months											
		(mi 11 ions) Tons	Nomi nal					Real	Nominal	Real					
] 0,0		1.1500	(). 1	$\bar{\square} .2$	0.10				0.22	80	320	13.8	1.4	3.0
	1970	1.1499	0.1	0.. ?	0.09	O*19	48	192	22.9	2.1	4.3				
	1971	$0 . ? 73$	0.1	0.0	0.09	0.18	16	64	10.1	0.9	1.9				
	197?	0.151	0.0	O*)	0.10	0.19	20	80	5.6	0.6	1.1				
	1073	0.3137	0.1	0.1	0.17	0.30	39	156	7.7	1.3	2.4				
	1974	5.0 2288	1.1	1.7	0.21	0.34	48	192	105.1	22.1	35.8				
	1975	7.0) 3188	0.9	1.4	0.13	0.19	52	208	135.2	17.6	26.2				
	I 976	27.310120	$4 . ?$	6.0)	0.19	0.27	167	6688	133.7	25.4	35.8				
W	19.19	51.923531	19.7	26.1	0.38	0.50	288	1128	1 [14.0	69.9	92.4				
\%	1978	6.1. 531523	31.9	30.7	0.46	0.56	426	1704	163.1	74*9	92.0				
	1079	14.7 3a8R6.	42.0	46.4	0.56	0.62	431	17? 4	173.3	97.3	107.7				

Sources: This table was generated froml data contai ned in (1)Conmercial fi sheri es Entry, Conmi ssi on Gross Earnings Files, and (2) Al aska Department of Fish and Gane reports.
${ }^{1}$ The rea values and prices were cal cul ated using the $\mathbf{U} . \mathrm{S}$. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.

Table 3．1．151
Bering Sea Tanner Crab Fishery
Number of Boats and Catch by Month 1969－1979

Number of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	NYV．	Dec．
1119	1	$\stackrel{ }{4}$	1 ；	$1 ?$	6	11	17	9	1	0	0	0
110	1	4	7	1	$?$	10	6	8	0	1	0	0
11.1	，	1	3	$?$	1	1	1	2	$?$	0	2	1
$1 \cdot 1: ~$	＇	4，	1	0	0	$?$	1	0	0	0	1	0
！－	：	＂	\because	t.	2	t	；	1	1	1	0	0
1,	1	11	4	，	17	18	0	0	0	0	0	0
11	，	11	；	$?$	11	21	14	0	0	0	0	1
$1{ }^{1}$ ：	，	1	$1 \cdot$	$4:$	$4 ?$	43	10	）	0	0	1	1
＂ $0^{\text {do }} \mathrm{l}$	t	1．＇	$?$	\cdots	811	78	1	0	0	0	2	27
1，ine	11	4.	6.15	10？	105	54	3	1	0	0	3	13
リリバ	1%	！	113	135	113	4.0	7	1）	0	$1)$	0	0

237
Catch（1，000 Pounds）

1，	1	14	1：0．	n	20	113	480	219	-1	0	0	0
1.111	－1	11	19，	－1	29.1	375	149	72	1）	－1	0	0
1，i1	11	－1	－1	－	－1	－1	－1	-1	-1	0	－1	-1
，＇？．	＂	\because	6i，		）	－1	－1	0	0	0	－1	0
1＇1	1	1．1	‘，	3	-1	41	27	-1	－1	-1	0	0
1＇1！	$1 /$	＂	－＇${ }^{\text {a }}$	｜v．in	1415	1674	0	0	0	0	0	0
$1: 1$	＇	！	＇－1	～＇	2299	1290	1014	0	0	0	0	－1
$1 \cdot 1$	1	\cdots	31．）	㤩＂	5577	7834	373	）	0	0	-1	－1
1：11	＂	，	$\cdot 1$	）	$1)$	0	1	0	0	0	0	0
1：1：4	1	，	＂	11	11	0	（）	0	0	0	0	0
11．＂		＂	0	0	0	0	0	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery．

Table 3．1．152
Bering Sea Tanner Crab Fishery
Number of Boats and Catch by Month is a Percentage of Annual Activity 1969－「979

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
\cdots		11.1	3.	29．6	14.3	26.2	40.6	21.4	2.4	0	0	0	100.0
$\because \because$	${ }^{2}+1$	1．．＂	$\because{ }^{\prime}{ }^{\prime \prime}$	11.1	20．6	37.0	22．？	20．6	0	3.7	0	0	100.0
	析	$1 \cdot 1$	32.2	$\because \cdots$	11.1	11.1	11.1	2.2	2？．2	0	22.2	11.1	100.0
\cdots	11， 10	－•＊	1．3．15	（1）	，	15.4	7.7	0	，	0	7.7	0	100.0
10， 3	1＇．1	27.3	36.4	27.3	9.1	27.3	22.7	4.5	4.5	4.5	0	0	100.0
1.1	＇＇		15．4	34．6	64．4	64.2	0	．	0	0_{0}	0	0	100.0
1012	＇	11	11.1	7.4	40.7	77.8	51.9	0	0	0	0	3.7	100.0
161．	9.1	11.1	$\therefore 1$	63．6	tis．t	65．？	15.2	0	0	0	1.5	1.5	100.0
1．1．1	＇，	い $\because 1$	$\because 1$.	61.1	100.0	97.5	1.3	1	0	1	2.5	33.8	100.0
$1 \cdots$	， 1.	43.8	＋\therefore＋	127．1	100.0	51.4	2.9	1.0	n	0	2.9	12.4	100.0
11.10	11.1	4.2	［3．7	リリ！	83.7	29.6	5.7	0	0	0	？	0	100.0

Percentage of Catch

I i 1	$\pm{ }^{\prime}$	$1+1$	1.9	3.1	7．5	11．2	4.3 .5	19．9）	-0.1	（1）	0	0	100.0
1： 11	－．． 1	＜．${ }^{\prime}$	1推，（1）	-0.1	$\because 6, r$	34.1	13．\％	6.5	$1)$	-0.1	\bigcirc	0	100.0
1：11	，	-11.6		-11.0	－0． 0	-11.6	－0．6）	－1． 6	－ 0.6	0	-0.6	-0.6	100.0
$1 \times \cdots$	1．1	$\therefore 2 \cdot 11$	1，！＇${ }^{\text {a }}$	11	7	-11.9	－0．${ }^{0}$	O	ก	1	-0.9	0	100.0
1我；	1．${ }^{1}$	1，＊ 11	1 $1 .{ }^{*}$＊，	1．2．1	-11.3	12.6	8.4	-0.3	-0.3	-1.3	0	0	100.0
1919	1.		！		$\therefore 12.1$	33．？	0	（）	（）	（）	0	0	100.0
16，	1.	：	$-1)^{* \cdot}=$	$-11,0$	30.7	46.18	14.4	$1)$	（）	（）	0	－0．0	100.0
1＇irip	$-1{ }^{\circ}$ ．	3.4	＇，	39.	$\because 5.0$	$3!0$	1.7	$1)$	0	0	－0．0）	-0.0	100.0
	1	11	$1)$	1	（1）	0	$1)$	i）	）	0	0	0	100．0
1＇，${ }^{\prime \prime}$	，	1.	11	11	$1)$	1	$1)$	$1)$	0	（）	0	0	0
1＇19	1	11	11	1）	$1)$	0	1	$1)$	O	（）	0	0	0

Sources：CFEC Gross Earnings Fi es and ADF\＆G Western A aska Month y She fis Reports for 977－979．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery．

Table 31.53
Bering Sea Tanner Crab Fishery
Number of Fishermen by Month
1969-1979

Sources: CFEC Gross Earnings Files and ADF\&G Western Alaska Monthly Shell fish Reparts for 1977-1979.

Tab e 3．1．154
Bering Sea Tanner Crab Fishery
Percent of Fisherman Man Months by Month
1969－1979

N	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	0ct．	Hov．	Dec．	
	1．0．0	－．${ }^{\prime}$	4.3	1r．K	15.0	1.5	13.8	21.3	11.3	1.3	0	0		100.0
	1010	، ． 1	\cdots ．	14.4	6． 3	0.7	20.8	1？．5	16.7	0	2.	0	0	0）$=$
	171	1.	1.9	14．00	12．5	6.3	6.3	6.3	1？．5	12.5	0	12.5	6.3	100.0
	$1 \cdot \%$	$\therefore \cdots$	3 ar	3r．0	，	\bigcirc	10.0	5.0	\bigcirc	0	0	5.0	0	100.0
	$\%$	＊	14	20	：$*$	\bigcirc	14．4．4	2.8	？ 0	2.6	2.6	0	0	100.0
	1い14	1.	1.	＇．	14．3	35.4	37.5	0	a	1	0	0	0	100.0
	リリ	＇	1.	＇．＂	3.4	21.2	4 C .4	26.9	0			，	－9	100.0
		1		－	\cdots	2 s \％	25.7	6.0	${ }^{1}$	0	0	0.6	0.6	100.0
	1011	$\therefore 1$	$4 \cdot 3$		$1 \% .1$	2364	27.1	11.4	0	0	0	0.7	0.6	00.0
	1．＂	＇：	11.1	1f． 1	？ 1.0	24.6	12.7	0.7	0.7	0	0	0.7	3.1	00.0
	1\％${ }^{\text {a }}$	－	1.4	ご，	31.3	？ 1.6	＇，${ }^{\text {\％}}$	1.6	0	0	$1)$	0	0	00.0

Sources：CFEC Gross Earn ngs Fi es and ADF\＆G Western A aska Month y She fish Repor s for 1977－979．
annual harvest weight for the Western Alaska shrimp fishery ranged from 1, 393 metric tons ($\mathbf{3 . 1} \mathbf{~ m i l l i o n ~ p o u n d s) ~ t o ~} 34,847$ metric tons (75.8 million pounds) between 1969 and 1979 and averaged 14, 977 netric tons (35.2 million pounds). The annual real harvest value ranged from $\$ 0.3$ million to $\$ 12.1 \mathrm{mili}$ on and averaged 85.0 milion the range and average of the annual nominal harvest val ue were SO. $1 \mathbf{m i l l i}$ on to $\$ 9.1$ milion and S3. 6 milion, respectively (see Table 3. 1, 155). Both the annual harvest weights and real value have increased substantially since the early 1970s. The average harvest data, therefore, tends to understate the potential of this fishery.

The Peni nsula Managenent Area fishery has dominated the Western Alaska shrimp fishery, accounting for over 94 percent of the harvest prior to 1978 and over 84 percent of the harvest in 1978 and 1979 (see Table 3.1.156). The Peni nsula shrimp fishery has al so been an important part of the Alaska shrimp fishery, and has accounted for over 42 percent of the Alaska shrimp harvest since 1974 (see Table 3.1.157). The I ocations of the Western $\mathbf{A l}$ aska shrimp fishery grounds and managenent areas are depi cted in Fi gure 3. 7,

Peninsula

The Peninsula Management Area shrimp fishery annual harvest weight ranged from 1,393 metric tons ($\mathbf{3 . 1} \mathbf{1 m l l i o n}$ pounds) to 32,904 metric tons (72.5 million pounds) between 1969 and 1979 and averaged 14,946 metric tons (32.9 milli on pounds). The annual real harvest val ue ranged from

Table 3.1. 155
Western Alaska Shrinp Harvest 1969-1979
Pounds
(1,000)

Year	Peninsula
1969	3072
1970	5290
1071	6324
1972	39367
1973	46175
1974	43324
1975	66123
1976	72541
1977	34790
1078	26830

242

Eastern Aleutians
0
0
0
95
456
5749
894
3671
4282
6618
3237

Western	
Alaska	Alaska
3072	47851
5290	74256
6324	94891
18708	83830
39823	119964
51924	108741
44218	99984
69794	128682
76823	116995
41408	73327
30067	51059

1969	123	0	123	1909
1970	212	0	212	2980
1071	253	0	253	3909
1972	838	4	842	4493
1973	2874	33	2907	9341
1974	3694,	46.0	4154	11091
1975	$34.6,6$	63	3529	7904
1976	56,12	312	5974	11572
1977	86.21	514	9135	20640
1978	5740	1002	6832	12099
1979	4110	56.8	5279	8964

Sources: CFEC Gross Earnings Files and ADF\&G Catch Reports. 978 : nd 1979 data are pre iminary.

Table 3. 1. 156
Shrimp Management Area Harvest as a Percentage of the Western Alaska Harvest 1969-1979

Percentage by Wéi ght

Year	Peni nsul a	Eastern Aleutians	Vestern Al aska
1969	100.0	0	100. ()
1970	100.0	0	100.0
1971	100.0	0	100. 0
1972	99.5	0.5	100. 0
1973	98.9	1.1	100. 0
1974	88.9	11.1	100.0
1975	98.0	2.0	100.0
1976	94.7	5.3	100.0
1977	94.4	5.6	100.0
1978	84.0	16.0	100.0
1979	89.2	10.8	100.0

243

Percentage by Val ue		
0	100.0	
0	100.0	
	0	$100 * O$
0.5	100.0	
1.1.	100.0	
11.1	100.0	
1.8	100.0	
5.3	100.0	
5.6	100.0	
16.0	100.0	
10.8	100.0	

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports.
1978 and 1979 data are preliminary.

Table 3. 1. 157
Shrimp Managenent Area Harvest as a Percentage of the Al aska Harvest 1969-1979

Percentage by Weight

Year	Peni nsula
1969	6.4
1970	7.1
1971	6.7
$19-22$	22.2
1973	42.8
1974	43.5
1975	51.4
1976	62.0
1977	47.4
1978	$5 ? 5$
1979	

Eastern Aleuti ans
0
0
0
$\mathbf{0 . 1}$
$\mathbf{0 . 4}$
$\mathbf{5 . 3}$
0.9
$\mathbf{2 . 9}$
$\mathbf{3 . 7}$
9.0
6.3

Mestern Al aska	A aska
6.4	100.0
7*1	100.0
6*7	100.0
22.3	100.0
33.2	100.0
47.-1	100.0
44.7	100.0
54.2	100.0
65.7	100.0
56.5	100.0
58.9	100.0

$\stackrel{N}{\star}$

		Percentage by Val ue
1969	6.4	$\mathbf{0}$
1970	7.1	$\mathbf{0}$
1971	6.5	0
1972	18.7	0.1
1973	30.8	0.4
1974	33.3	$\mathbf{4 * 1}$
1975	43.9	$\mathbf{0 . 8}$
1976	48.5	2.7
1977	41.9	2.5
1978	47.4	$\mathbf{9 . 0}$
1979	52.5	$\mathbf{6 . 3}$

6.4	100.0
7.1	100.0
6.5	100.0
18.7	100.0
31.1	$10(-) .0$
37.5	100.0
44.6	$100 .(-)$
$51 * ?$	100.0
44.3	100.0
56.5	100.0
58.9	100.0

Sources: CFEC Gross Earni ngs Files and ADF\&G Catch Reports. 1978 and 1979 data are preliminary.

$\Longrightarrow \quad$ - ADF Major FirsirmyAreas Magenent Area Boundaries
Fi gure 3. 7: Maj or Shrimp Fi shi ng Areas, Western Al aska
Source: Alas'ka Departnent of $\mathbf{F i}$ sh and Game, Al aska' s Fi sheri es Atlas, 1978.
$\$ 0.3$ million to $\$ 11.4$ million and averaged $\$ 4.6$ million (see Table 3.1.158). The harvest wei ghts and real val ues have increased dranatically fromtheir levels of the early 1970s, theref ore the average harvest figures for the past five years are perhaps nore indicative of the potential of the fishery. The average annual wei ght and real val ue for 1975 through 1979 are $\mathbf{2 2}, \mathbf{1 0 0}$ netric tons (48.7 milli on pounds) and $\$ 7.3$ million.

The boats of the Peninsula shrinp fleet range in length from $\mathbf{2 0 . 1}$ neters (66 feet) to over 29.0 neters (95 feet). Typically they are about 22.9 neters (75 feet) and have a crew of three, incl udi ing the ski pper. These boats primarily operate out of and Iand shrimp in Kodiak. Kodiak is the hone port of many of the boats and crews. Other hone ports incl ude Al aska Peni nsula commuities, other \mathbf{A} aska commities, and non- $\mathbf{A l}$ askan communities predominately in Oregon and Whishington.

Until recently, harvesting activity occurred throughout the entire year. In 1979, harvesting activity occurred fromJune through Nbvenber, with over 75 percent of the harvest being taken in June and July. The seasonality of the Peninsula shrimp fishery is summarized in Tables 3.1. 159 through 3.1.162. During the I ast three seasons (1977-1979) the average boat participated in the fishery during 3.4 calendar months.

Eastern Al eutians

The Eastern Aleutians Managenent Area shrimp fishery has exi sted since

Table 3.1 .158

Harvesting Activity
 Peni nsula Trawl Shrimp Fi shery
 1969-1979

Year		Catch				Exvessel Price \$/Pound)				Catch per Weight	Boat Month			
		Weight		\qquad				Val ue						
		$\begin{gathered} \text { Poun } \\ \text { (m! } \mathrm{i} \end{gathered}$	ds Metric ons) Tons	(mill Nomi na	$\begin{aligned} & \text { Ons) } \\ & \text { Real } \end{aligned}$			Number of Boat Fi shernan Months Months	$\frac{\text { Weight }}{\text { Pounds }}$ $(1,000)$	$\begin{array}{r} 1 \\ \text { Nomin nal } \end{array}$	$\begin{aligned} & 0001 \\ & \text { Real } \end{aligned}$			
	1960	3.1	1393	0.1	0.3	0.04	0.09			14	42	219.4	R. 8	19.2
	1970	5.3	2400	$0 . ?$	0.4	0.04	0.08	28	84	188.9	7.6	15.6		
	1971	6.3	286.7	0.3	0.5	0.04	0.08	34	102	186.0	7.4	14.7		
	1977	18.6.	8443	0.8	1.6	0.05	0.09	84	752	221.6	10.0	19.1		
	1073	39.4	17857	2.7	5.2	0.07	()*13	136	408	289.5	21.1	38.1		
	1974	4 h .2	20945	3.7	6.0	0.08	0.13	161	4 P 3	286.8	22.9	37.3		
	1975	43.3	19652	3.5	$5 . ?$	0.08	0.12	239	717	181.3	14. 5	21.6		
	1976	6,t. 1	29993	5.6	$7 \cdot 9$	0.08	0.12	259	777	255. 3	21. 7	30.5		
$\stackrel{\sim}{\sim}$	1917	72.5	'329[)4	8.6	11.4	0.12	0.16	208	624	348.8	$41 * 4$	54.8		
	1978	34.8	15781	5.7	'1.1	0.17	0.20	99	297	351.4	58.0	71.2		
	1979	26.8	12170	4.7	5.2	0.18	0.19	99	297	271.0	47.6	52.6		

Sources: This table was generated from data contai ned in (1) Comercial Fi sheries Entry Comission Gross Earnings Files, and (2) Alaska Department of Fish and Game reports.
${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.

Table 3．1．159
Peninsula Shrimp Fishery Number of Boats and Catch by Month 1969－1979

Number of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．
10\％	1	1	1	0	0	0	1	2	2	7	2	2
1011	\because	；	？	？	0	？	3	3	3	3	3	3
1911	3	3	3	3	$?$	2	3	3	3	3	3	3
196	4	4	4	？	7	7	7	10	16	7	8	8
1913	7	1	0	9	12	2 h	26.	11	8	9	10	12
1914	＇ 6	12	1）	11	14	18	19	18	15	1 ？	12	14
14＂	1.	16	\cdot	10	5	20	41	17	15	65	14	12
19tt	． 7	11	$1)$	14	31	47	54	55	7	4	6	6
1917	7	17	？	0	24	35	35	39	13	13	18	5
10811	0	0	0	0	0	0	0	0	0	0	0	0
リアリ	1	${ }^{1}$	0	0	0	n	0	0	0	0	0	0

$\underset{+}{\sim}$

196＂	－1	－1	-1	0	$1)$	0	－1	-1	－1	－1	－1	－1
1970	-1	-1	-1	-1	0	－1	-1	－1	－1	－1	－1	－1
1971	－1	-1	－1	－1	－1	－1	-1	-1	－1	－1	－1	－1
197？	41%	1514	159	-1	478	1563	2025	3000	4031	1403	1723	1542
1913	1いいす	1191	＇	$17{ }^{\prime \prime}$	3108	5870	8050	3467	3247	2950	3370	3295
191%	3＇4 ${ }^{\text {a }}$	276	${ }^{\prime}$	$1 ? 91$	3916	6181	A） 39	6965	4794	3864	1807	3003
1！！	11，013		1464	6， 59	－1	3095	11387	5，296	4015	2987	3602	1789
101t	36．${ }^{\text {P }}$	200．	（1）	1773	63112	14380	17764	11258	2114	－1	1045	1068
1107	ir	＂	1	1	11	0	0	1	0	0	0	0
119\％	i	11	1	11	0	0	0	$1)$	0	0	0	0
1：in	${ }^{\prime}$	＂	11	0	1	0	0	0	0	0	0	0

Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery．

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annua 1
	1，${ }^{\text {a }}$	－1．0）	1，11．11	11	11	1	50.0	100．0	1010	100．0	100.0	100.0	100.0
$1.2 / 11$	ril． 1	（1．0）	1，11．11	［11．0	0	50.0	75.0	75.0	75.0	75.0	75.0	75.0	100.0
191）	，1．＊	＇1） 0	（1）． 1	31． 11	411.0	40.0	60.0	60.0	60.0	60.0	60.0	60.0	100.0
$1{ }_{1} 1$	1184	17.1	17.1	9.7	30.4	30.4	30.4	4.3 .5	69.6	30.4	34．8	34．8	100.0
$10 \% 1$	$\therefore \square_{0}{ }^{1}$	$11_{1} t_{1}$	$1)$	33.5	34．3	76.5	76．5	32.4	23.5	26.5	29.4	35.3	100.0
$1,1.1$	31.1	－1．${ }^{1}$	$1)$	$\cdots 3$	－い．2	37.5	39.6	37.5	71．3	25.0	25.0	24.2	100．0
19yy	$\cdots 6.3$	$\therefore 8.1$	15．8	$1 ?$	4.18	75．1	71.9	29．8	25．3	114.1	24.6	21.1	100.0
1）1t	$2 \therefore .3$	，4． 7	$1)$	311.9	44.3	67.1	77.1	78.6	10．0	5.7	8.6	8.6	100.0
$1^{\prime \prime \prime}$	11.1	43.6	4.1	1	61． 5	139．7	（1）． 7	100.0	33.3	33.3	46.2	12.8	100.0
吅：	i	（！	$1)$	11	$1)$	$1)$	0	0	\bigcirc	0	0	0	100.0
				－		0	0	n	0	0	n	0	100.0

Percentage of Catch

1）		\because	$1 "$	11	0	0	$1)$	11	0	0	0	0	0
1；1 ${ }^{\text {l }}$	－．	－1．	－ 11.0	－1）． 0	0	-11.0	－0．0	-0.0	－0．0）	－0．0	－0．0	－0．0	100.0
1，	－	$\cdots: \cdot 1$	－ 1.1 ！	－1． 01	-0.0	－0．0	－0．0	-0.0	－0．0	－0．0	－0．0	-0.0	$100 * 0$
$19: "$	．．＇	． 1	4.4	－1． 11	4.7	18．4	10.0	16．1	21.7	7.5	9.3	8.3	$100 *$
$1 ッ:$	4.1	1．1	1	3.1	0.6	16．9	2.2 .7	9.8	8.2	7.5	8.6	8.4	$100 * 0$
1＂！	7.1	1．1	1	${ }^{2} .4$	8.3	13.4	17.6	15.1	10.4	0.4	3.9	6.5	$100 *$
$1 \because$	$\% \cdot 1$	$\cdots \cdot$	2.	1.5	$-n .0$	7.1	26.3	12.2	9．3	6.9	8.3	4.1	100 n
1••1	＇．＇	$\cdots 1$	1	＇． 7	9.5	21.8	26.9	17.0	3.2	-0.0	1.6	1.6	$100 * 1$
1：$!$	1.	${ }^{\prime}$	11	11	）	0	0	）	0	0	0	0	$100 * 0$
		1	1	11	n	$1)$		n	0	0	0	0	0
1			0		i	${ }^{\prime}$	0	0	0	0	0	0	0

[^8]Note：A minus sign indicates months in which the catch s confidential because fewer than four boats participated in the fishery．

Table 3. 1. 161
Peni nsula Shri mp Fi shery
Number of Fishermen by Mbnth
1969-1979

Nㅗㅇ	Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	1res,	7	9	3	0	0	0	3	6	6	h	6	6	42
	10771	t.	i	6	6	0	6	9	9	9	9	9	9	84
	1×171	,	4	1	9	h	6	9	9	9	9	9	9	102
	1912	1%	12	$1 ?$	6	21	21	21	20	$4{ }^{1}$	21	24	24	252
	11.73	21	a	0	24	36	. ${ }_{6}$	78	33	24	27	30	36	408
	1014	415	3.1	n	33	43	64	57	5.4	45	36	36.	42	483
	1975	人 ${ }^{\text {d }}$, 6	27	30	15	60	173	51	45	195	42	36	717
	1.16	4	1.4	$1)$	4.2	93	1"41	16.7	10.5	21	12	18	$1{ }^{\text {P }}$	777
	11917	$? 1$	'1	6	0	72	10.6	105	117	39	39	54	15	62.4
	11,78	i.	¢	1	0	0	${ }^{\prime}$	0	0	0	0	0	0	0
	1014,	"	1	1)	0	n	0	n	0	0	0	0	0	n

Sources: CFEC Gross Earnings Files and ADF\&G Western Alaska Monthly Shellfish Reports for 1977-1979.

Table 3.1.162
Peninsula Shrimp Fishery
Per=ent of Fisherman Man Months by Monch
969-19 9

251

Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1!.9	-1	7.1	7.1	11	0	1	7.	4.3	4.3	4.3	14.3	14.3	00.0
i;	7.	\because	7.1	1.		7.	0.7	0.7	111.7	0.7	10.7	10.7	100.0
:	.		9.9	9.	$\because .9$	4.9	11.8	ค. ${ }^{\text {n }}$	$8 . \beta$	8.8	8.8	\&. 8	$0=0$
\cdots	،. ${ }^{\text {d }}$	-	$4 \cdot 3$	こ.4	4.3	4.3	13.3	11.1	17.0	8.3	9.5	9.5	00.0
193	1. . 1	\cdots	1	「.'	9.8	19.1	0.1	9.	5.9	6.6	7.4	1.8	00.0
4	-	7.1	,	6.4	9.7	. $?$. 8	. 2	9.3	7.6	7.5	8.7	100.0
- ${ }^{\text {a }}$	\cdots	.1	3.4	4.9	2.1	13.4	17.7	7.1	6.3	27.2	5.9	5.0	00.0
(1)	1. \cdot	*."		¢.'4	2.0	18.1	2. 13	21.2	2.7	. 5	2.3	2.3	100.0
77	2 4	.?	, 0	')	- ¢	6.8	6.8	4.8	6.3	6.3	8.7	2.4	Q 0
139	,	11	11	1	0	$1)$)	n	0	0	0	0	0
(9)	1.	${ }^{\prime}$	11	1	0	0	1)	n	0	0	0	0	0

[^9]1972. The harvests of 1974 through 1979 were substantially greater than those of 1972 and 1973, theref ore, the summary of harvests which follous is for the latter period. The annual harvest weight ranged from 406 metric tons (0.9 mili on pounds) to 3 , 002 netric tons (6.6 milli pounds) between 1974 and 1979 and averaged 1, 847 netric tons (4.1 milition pounds). The annual real harvest value ranged from $\mathbf{\$ 0} \mathbf{1} \mathbf{~ m i l l i o n ~}$ to $\$ 1.3 \mathrm{mili}$ ion and averaged $\$ 0.7 \mathrm{million}($ see Table 3.1.163).

The boats of the Eastern Aleutians Managenent Area shrimp fishery range in length from 17.1 meters (56 feet) to over 29.0 meters (95 feet). Typi cally, they are 22.9 meters (75 feet) and have a crew of three, incl uding the ski pper. This fleet primarily operates out of and Iands shrimp in Kodiak. Kodiak is the home port of many of the boats and crews; ot her hone ports incl ude Al aska Peni nsula commities, other Al aska communities, and non-Alaskan commities, principally in Oregon and Whshi ngton.

Historically, harvesting activity has occurred throughout nost of the year. The 1979 season incl uded all but October, with over 36 percent of the harvest being taken in July and August. The seasonality of the fishery is summarized in Tables 3. 1. 164 through 3.1.167. During the past three seasons (1977-1979) the average boat participated in the fishery during 5.9 cal endar nonths per year.

Table 3.1. 163
Harvesting Activity
Eastern Al eutians Traw
Shrimp Fi shery
1969-1979

1969-1979

										Catch per	r Boat	nth
		Weigh Poun	Is Metric	$\frac{V a}{(m i l]}$	$\frac{e}{n s)}$	Exvessel \$/Po	Price nd)	$\frac{\mathrm{Nu}}{\text { Boat }}$	nber of Fi sher nan	Weight Pounds	Val	
	Year	mlli	ns) Tons	Nomi na	Real ${ }^{\text {1/ }}$	Nomi nal	Rea 1	Mbnths	- Mont hs	$(1,000)$	Nomina	Real
	1969	0	$1)$	0	0	0	0	n	0	0	0	0
	1970	0	0	0	0	0	0	0	0	0	0	0
	1971	0	n	0	0	0	()	0	0	0	0	0
	1072	0.1	43	0.0	0.0	0.155	(). 09	4	12	23.7	1.1	2.1
	1973	0.5	207	0.0	0.1	0.07	0.13	1	3	456.0	33.3	60.0
	1974	5.7	2608	0.5	0.7	0.08	0.13	$2 ?$	66	261.3	20.9	$34 * O$
	1975	1.9	4016	0.1	0.1	$(-) .(-)-\mathrm{i}$	0.10	8	24	111.8	-7.9	11.7
	19%	3.7	16,65	0.3	010 /+	0.08	0.12	22	66	166.9	14.2	20.0
$\stackrel{\sim}{\omega}$	19%	4.3	1942	0.5	0.7	0.12	0.16	21	63	203.9	? 4.5	3?.4
	1978	6.6	3002	1.1	1.3	0.17	0.20	3 ?	96	206.8	34.1	41.9
	1919	3.2	146.8	0.6	0 .	0.18	0.19	27	81	119.9	21.0	23.3

Sources: This table was qenerated from data contai ned in (1) Commercial Fi sheries Entry Conmission Gross Earni ngs Files, and (2) Al aska Department of Fi sh and Gane reports.
${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.
The 1978 and 1979 val ues are preliminary estimates.

Table 3．1． 164
Eastern Aleutians Shrimp Fishery Number of Boats and Catch by Month

1969－1979

Nunber of Boats

Year	J an．	Feb．	Mar．	April	May	J une	Ju7y	Aug．	Sept．	Oct．	Nov．	Dec．
11．．9	11	11	n	$1)$	0	0	0	0	0	0	0	n
1016	11	11	11	n	0	0	0	0	0	0	0	0
1い11	11	1	0	0	0	0	0	0	0	0	0	0
リい	11	1	1	0	2	0	（）	0	0	0	0	0
1078	11	1	11	0	0	0	0	0	0	1	0	0
1リ14	，！	$?$	6	γ	3	$?$	0	0	0	0	0	0
107	11	1	$1)$	n	0	0	0	0	0	0	3	4
14t	s	1	；	4	2	0	0	0	0	0	0	n
1917	（i	1	4	4	4	1	0	1	0	0	1	3
1978	（1）	11	11	$1)$	0	0	0	0	0	0	0	0
1911）	11	0	0	0	0	n	0	0	0	（）	0	0

Catch \｛1，000 Pounds）

10，9	1	11	n	$1)$	0	n	n	0	0	0	0	（）
1910	11	1	$1)$	$1)$	（）	0	（）	0	0	0	0	o
1071	11	11	1）	1	n	n	0	0	0	0	0	0
1リ13	11	－ 1	－ 1	（）	－1	0	n	0	0	0	0	0
1913	11	11	1	0	11	0	0	0	0	－1	0	0
1974	－－1	－1	1400	1361	－1	－1	\bigcirc	0	0	0	0	0
1916	1）	－1	，	ก	（J	0	0	0	0	0	－o	6.52
19\％	6．1．	$\because ?$	11.15	167	－0	0	0	0	0	0	0	0
1017	＇	11	0	0	0	0	0	0	0	0	0	0
1＂＇！	． 1	$\cdot 1$	i	11	0	0	n	0	0	0	0	0
リい！	11	11	a	11	n	0	0	0	0	0	（）	0

Sources：CFEC Gross Earnings Files and ADF\＆G Uestern Alaska Mbnthly Shellfish Reports for 1977－1979，
Note：A minus sign indicates months in which the catch is confidential because fewer than four boats partici pated in the fishery．

Eastern Aleutians Shrimp Fishery
Number of Boats and Catch by Month as a Percentage of Annual Activity 1969－1979

Percentage of Boats

Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
10．4．	0	11	11	1	0	0	0	n	0	0	0	ก	0
117\％	$1 \cdot$	11	；	11	1	0	0	0	0	0	0	0	0
1911	1	1	\bigcirc	i）	$1)$	1	0	0	0	0	0	0	0
197\％	1	$4(1.0)$	50．0）	0	100.0	0	0	0	0	0	0	0	$10^{0} \cdot 0$
1073	1	1	0	11	0	0	0	0	0	100.0	0	0	100.0
1236	2\％．．	28．i	14.7	11000	42.0	2R．6	0	0	0	0	0	0	100.0
1975	＂	24.0	1	0	11	0	n	0	n	0	75.0	100.0	100.0
1976	6．${ }^{\prime}$	17．5	no．0	ron．n	25.0	1	n	n	n	0	0	0	100.0
177	1	ハ＊）	100.0	101.0	100.0	25.11	11	25.0	0	0	25.0	75.0	100.0
1978	1	1	0	．	$1)$	0	0	0	0	0	0	0	100．0
	1	0	0	0	0	0	1	0	0	0	0	0	100.0

100．0	\square	$1 \cdot$	11	$1)$	0	0	0	n	0	\bigcirc	0	0	0
1り品	1	11	11	i）	0	0	0	n	0	0	0	0	0
1い？	i	1	11	，	1	11	0	0	0	0	0	0	0
リいる	1	（＇	0	11	n	（i）	0	0	0	0	0	0	0
1，13	1.	0	0	1	0	0	0	0	0	0	0	0	0
107a	－1．${ }^{\text {－}}$	-1.11	24.1	33.4	-0.0	－0．0	0	0	0	）	0	0	100.0
19！	1	－11．0	$1 /$	n	n	\bigcirc	0	0	0	0	－0．0	72.9	100.0
1971	1．11	$\cdots 2$	4， 5	＋．	－0．0）	0	0	0	0	1	0	0	100．0
1：17	，	1	1	1	0	11	0	0	0	\square	0	0	100.0
1111．	＇	！	0	1	0	0	0	0	n	ก	0	0	0
りいい。	4	11	11	11	）	0	0	n	0	0	0	0	0

[^10]Table 3. 1. 166
Eastern Aleutians Shrimp Fi shery Number of Fi shernen by Month 1969-1979

	Year	Jan.	Feb.	Mar.	April	May	June	Jul y	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	119 co	11	1	0	(]	n	()	()	n	0	0	0	0	0
	1900	i)	11	0	0	0	0	\bigcirc	n	n	0	0	0	0
	1011	11	0	0	n	0	1	0	0	0	0	. 1	0	n
N	1072	"	3	3	n	6	0	0	$1)$	0	0	0	0	12
	$1: 17$	"	1)	11	n	n	!	$1)$	0	0	3	0	0	3
	1074	,	6	19	? 1	\square	t	n	0	0	0	0	0	66
	1910	1	$?$	$1)$	()	0	0	0	0	0	0	9	12	$2 \mathrm{f}^{\prime}$
	1971	$1 \cdot$	$? 1$	$1 ?$	17	t	11	0	0	0	0	0	0	66
	$10 \cdot 7$	'	"	$1 ?$	12	$1 ?$	3	0	3	0	0	3	9	63
	1076	,	1	0	0	0	0	0	n	ก	0	0	0	0
	1.90	'	${ }^{\prime}$	11	11	1	0	$1)$	$1)$	0	0	0	0	0

Sources: CFEC Gross Earnings Files and ADF\&G Western Al aska Monthly Shellfish Reports for 1977-1979.

Table 3．1．167
Eastern Al eutians Shrimp Fi shery Percent of Fi shernan Man Months by Month 1969－1979

N	Year	J an．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Total
	1ヵ0．9	，	11	$1:$	${ }^{1}$	0	1	（）	\bigcirc	n	0	0	0	cl
	1．97：	＂	$1)$	\prime	11	0	0	n	n	0	0	0	0	0
	1011	1	11	0	0	0	1	0	0	n	0	0	0	0
	リリ＇	1.	$\cdots 11$	つい。に	（）	50．0）	0	0	0	0	0	0	0	100.0
	11073	＂	11	＇）	0	0	0	0	0	0	100.0	0	0	100.0
	1714	9.1	1.1	27.3	31.9	13.6	9.1	n	0	0	0	0	0	100.0
	$1 \% 1$	1	$\cdots{ }^{1}$	11	0	0	；	0	0	${ }^{1}$	i）	37.5	50.0	100.0
	1＂11	$\because 1$	11．：	1＂．${ }^{\prime \prime}$	13．？	9.1	\bigcirc	11	0	0	0	0	0	100 ＊（ ${ }^{\text {I }}$
	197	${ }^{\prime}$	14．3	10.11	10．0）	10.0	4.18	$1:$	$\cdots \cdot \mathrm{H}$	n	0	4＊P	14.3	100.0
		1	11	1	\square	0	1	f）	0	0	1	0	f？	0
	1100	1	［1	1.	0	1	0	0	0	r）	0	0	0	0

Sources：CFEC Gross Earni ngs Files and ADF\＆G Western Alaska Monthly Shel Ifish Reports for 1977－1979．

DOMESTI C GROUNDFI SH

The donestic groundfish fishery of Western Alaska is similar to that of the rest of Alaska. The similarities are as follow it is just beginning to devel op, it has not devel oped to the stage that it is known with any certai nty how rapidly it will replace the foreign fishery which is extensi ve and well-devel oped, boats associ ated with other fisheri es have participated in the groundfish fishery intermittently on a casual basis, and the characteristics and level s of effort of past participants are not thought to be indicative of those of future participants, Due to the last similarity, the hi storical characteristics and trends of this fishery are not usef ul in predicting future trends and are, therefore, not considered in mach detail. The usef ul characteristics of the fishery, as it exi sts today, are the extent to which it underutilizes the groundfish resources of Vestern Al aska and its rapid rate of grouth in recent years. Both characteristics are depi cted by the harvest and abundance data presented in Table 3.1.168.

LOCAL HARVESTI NG EFFORT

In the preceding di scussi ons of the donestic comercial fisheries of Uestern Alaska it was noted whether harvesting activity is dominated by local or non-local fishermen and boats. This section provides quantitative neasures of local harvesting effort. The neasures, which are presented by census division, are the number of comercial fishernan by community, the number of year permit owners by community, and the

Western Alaska Groundfish, Donestic Catch and Resource Abundance

	Pounds			$A B C^{1}$
	Harvest			
	1976	1977	1978	
Pol l ock	0	96, 339	1, 133, 594	2, 425 milli on
Sablefish	0	4,322	808	11 mili on
Cod	369, 713	497, 228	1, 392, 076	129 million
Ot her	86, 193	239, 834	430,605	872 milic
Total	455,906	837, 723	2, 957, 083	3,437 million

Sources: The harvest statistics were provi ded by the ADF\&G, the ABC statistics are as reported in, Fi shery Mangement Pl an For the Groundfish Fi shery in the Bering Sea/ Al eutian Island Area, 1979.

1 Al owable Bi ol ogical Catch, a basic measure of resource abundance.
gross earni ngs of fishernen by census di vi si on. These neasures are presented in Tables 3. 1. 169 through 3. 1. 183.

FOREI GN TANER CRAB

The foreign Tanner crab fishery in Uestern \mathbf{A} aska has been very active, but as the capacity and interest of the donestic fishery have increased, the resources available to the foreign fishery have been reduced. Si nce it appears that the forei gn Tanner crab fishery will be completel y di splaced by the donestic fishery in the very near future, the following description of the foreign fishery is brief.

Both Japan and the Soviet Uni on have participated in the Western Al aska Tanner crab fishery. The Iargest annual Japanese harvest occurred in 1970, it total ed 19, 885 metric tons (43.8 mili on pounds). The largest Sovi et harvest occurred in 1969, it total ed 6, 825 netric tons (15.0 million pounds). The last Soviet harvest occurred in 1971 (see Table 3. 1. 184). The Japanese allocation for 1980 is 7,500 netric tons (16. 5 milion pounds) and it is limited to C. opilio. The Japanese fleet is Iimited to the Bering Sea north of $58^{\circ} \mathrm{N}$ I atitude. The nature of the Japanese fleet, as presented in the 1978 Tanner Crab Managenent Plan, is summarized in Table 3.1.185.

FOREI GN GROUNDFI SH FI SHERY

The annual groundfish harvest in Vestern Al aska ranged from 1,051, 100 netric tons (2, 317 mili on pounds) to $2,363,900$ metric tons (4, 209

Tabl e 3. 1. 169
Number of Commerci al Fi shernen, Al aska Peni nsul a Area, 1969-1976

	Year							
Community	1969	1970	1971	1972	1973	1974	1975	$\underline{1976}$
Chignjk	28	34	29	23	21	37	39	40
Chignik Lagoon	39	47	49	55	48	51	44	38
Chignik Lake	3	1	2	5	19	12	23	30
Cold Bay	1	4	2	--	1	- -	-	2
King Cove	61	67	72	78	80	61	63	75
Perryville	21	21	24	22	23	20	18	22
Port Hei den	2	4	8	7	6	7	7	15
Port Moller	8	5	1	4	2	6	5	6
Sand Point	77	91	102	102	116	89	89	118

Source: Commercial Fi sheries Entry Commission Data Files.
Note: \quad This table is based on the number of fi shermen who gave each community as a hone address.

Table 3. 1. 170
Number of Commercial Fi shing Pernits, Al aska Peni nsula Area, 1978

	\# of Permit Hol ders	10	15	8	2	55	9	27	23	112
	Salinon Purse Sei ne Chignik Area	9	14	8			9			1
	Sal non Purse Sei ne Peni nsul a- Al euti ans Area				1	38			3	59
	Salmon Drift Gill Net Peni nsul a- Al euti ans Area				2	40			17	33
	Salmon Set Gill Net Peni nsul a- Al euti ans Area				1	13		11	19	45
N	Salmon Drift Gill Net Bristol Bay Area							14		1
	Salmon Set GII Net Bristol Bay Area							4		1
	King Crab Pots, Vessel to 50' Peni nsula Area			1		7				31
	King Crab Pots, Vessel over 50' Peni nsula Area					9				13
	King Crab Pots, Vessel over 50' Bering Sea					6				13
	King Crab Pots, Vessel over 50' Dutch llarbor Area					4				1
-	-								d	ovt

Tanner Crab Pots, Vessel to 50' Statew de	2			11	32
Tanner Crab Pots, Vessel over 50' Statewide				13	19
Bottomfish Long Li ne Statewide				1	3
Bottomfish 0tter Trawl Statewide				2	3
Halibut Long Line, Vessel < 5 Tons Statewide				2	20
Halibut Long Line, Vessel: $\mathbf{5}$ Tons Statewi de	3	5	2	7	19
Shrimp Otter Traw, Statewi de	1				4

[^11]30 ne king crab, pots, vessel over 50 feet, Adak area permit held.
40 ne herring spawn on kelp, unspecified gear, statewi de permit held.
One bottomfish, unspecified gear, statewi de permit hel d.
One king crab, pots, vessels to $\mathbf{9 0}$ feet, Dutch Harbor area pernit held.
Source: Commercial Fi sheries Entry Comissi on Data Files.

Table 3. 1. 171
Number of Commercial Fi sher nen, Al eutian Islands Area, 1969-1976

Source: Comercial Fi sheries Entry Comissi on Data Files.
Note: This table is based on the number of fisher men who gave each commity as a hone address.

Table 3. 1. 172
Nunber of Commercial Fi shi ng Pernits, Al eutian Islands Area, 1978
Adak ${ }^{1}$ Akutan ${ }^{2}$ Atka Dutch Harbor ${ }^{3}$ False Pass Unalaska ${ }^{4}$ 10
21 12 52\# of Permit Hol ders 3"
Sal non Purse Sei neKodi ak Area4

- Sal non Purse Sei ne
Peni nsul a- Al euti anAreaPeni nsul a- Al eutian
Area
Sal non Set Gill Net
Peni nsul a- Al euti an
Area 8
King Crab Pots,Vessel to 50'
Dutch Harbor Area 2 13
1112

King Crab Pots,

King Crab Pots, Vessel over 50' Vessel over 50'
Dutch Harbor Area
Dutch Harbor Area 4 4 10 10
5
5 - -

2 7

King Crab Pots,

King Crab Pots, Vessel over 50' Vessel over 50' Bering Seà Area Bering Seà Area

Tanner Crab Pots,

Tanner Crab Pots,
Vessel to 50^{\prime}
Vessel to 50^{\prime}
Statewide
Statewide
Statewide 1
$1 \quad 1$86
Sal non Drift Gill Net Net

Tanner Crab Pots,
Vessel Over 50^{\prime}- Tanner Crab Pots,
Vessel Over 50^{\prime}Statewi de 4Vessel < 5 Tons$\begin{array}{llll}\text { Stat ewi de } & 3 & 1 & 2\end{array}$217Hal i but Long Li ne,Vessel ≥ 5 Tons
8 20
Statewi de 3 34
Hal i but Long Li ne,

- Statewide

[^12]Tabl e 3. 1. 173
Number of Comerci al Fi shernen, Bristol Bay Area, 1969-1976

Community	Year							
	1969	1970	1971	1972	1973	1974	1975	1976
Alaknagik	35	43	45	29	5	30	35	57
Clarks Poi nt	30	29	33	30	2	26	27	33
Dillingham	124	126	137	100	38	80	113	200
Egigik	26	40	36	19	14	10	17	22
Ekuk	4	2	--	5	-	1	1	2
E kno k	9	11	10	9	6	9	6	12
Igiugig	2	3	2	5	2	2	5	6
11 iamna	19	30	30	14	2	3	22	37
Ki ng Sal mon	13	14	13	4	3	13	14	15
Kokhanok	5	5	3	6	2	5	3	7
Koliganek	20	23	25	16	2	11	16	19
Levelock	7	17	15	11	5	14	12	21
Manokatak	10	1	19	15	3	10	2	52
Naknek	47	66	67	56	13	44	56	64
New Stuyahok	32	29	32	14	2	9	20	38
Nondalton	27	29	28	12	3	4	7	12
Pedro Bay	9	10	9	8	3	2	4	7
Pilot Point	7	10	16	10	5	7	11	13
South Naknek	24	28	17	17	17	6	12	23
Togiak	28	29	41	65	6	44	70	86
Tununak	12	10	24	6	--	--	1	3
Ugashik	4	5	2	8	2	4	3	1

Source: Commercial Fi sheries Entry Commission Data Files.
Note: This table is based on the number of fishermen who gave each community as a hone address.

Table 3.1. 174
Number of Commercial Fi shing Permits, Bristol Bay Area, 1978
Number of Permits

Alaknagik	73	39	28
Clarks Point	34	17	
Dillingham	392	218	$\mathbf{1 ;}$
Egigik	66	36	35
Ekuk	6	1	5
Ekuok	17	17	
Igiugig	3	1	
Ilianna2	57	33	26
King Salmon	61	21	26
Kokhanok	6	4	2
Koliganek	21	15	5
Levelock	33	14	8
Manokatak	136	43	59
Naknek	198	59	86
New Stuyahok	42	39	2
Nondal ton	31	12	19
Pedro Bay	4		4
Pi Iot Point	32	20	17
South Naknek	61	14	49
Togiak	210	102	49
Tununak	11	9	2
Ugashik	7	7	5

4	6	6
17	2	4
	65	14
	1	
	2	1
	1	
	6	2
	16	16
	13	12
	63	43
	1	
		2
	29	11

'Two herring, beach sei ne, westward area permits hel d. Two hal ibut, long line, statewi de permits hel d.
${ }^{2}$ One hal ibut, long Iine, statewi de permit held.
One sal mon, set gill net, lower Yukon area permit hel d.
3TuO sal non, set gill net, Peni nsula-A eutians area permits hel d.
One halibut, long line, statewi de pernit held.
Source: Commercial Fisheries Entry Commission Data Files.

Table 3. 1. 175
Number of Comerci al Fi sher men, Kuskokwim Area, 1969-1976

Community	Year							
	1969	1970	1971	1972	. 1973	1974	1975	1976
Akiachak	7	7	10	4	14	19	25	34
Aki ak	4	4	4	5	5	15	8	13
Aniak	2	1	7	1	1	3	2	5
Atmautlauk	--	3	3	2	3	4	5	7
Bet hel	51	66	81	81	73	91	85	165
Chefornak	5	6	6	6	--	--	6	7
Eek	12	17	11	13	8	21	9	21
Goodneus Bay	15	14	5	11	15	23	15	24
Kalskag	1	--	1	--	--	2	--	3
Kasigluk	12	12	6	6	12	9	7	20
Kipnuk	10	14	13	13	7	8	18	19
Kongiganak	4	3	3	4	6	13	3	6
Kwethluk	8	9	5	5	26	28	25	33
Kwigill ingok	6	6	10	7	2	8	7	8
Napaki ak	7	9	8	5	7	8	6	10
Napaskiak	7	6	5	2	1	3	5	5
Newtok	3	7	2	3	2	1	7	10
Nightmute	4	7	1	3	--	--	4	2
Nunapitchuk	15	14	12	7	10	20	9	20
Oscarville	--	--	--	--	1	--	1	--
Pl ati num	3	1	3	2	1	1	1	4
Quinhagak	16	12	11	23	18	17	12	29
Toksook Bay	17	17	18	10	--	--	12	24
Tuluksak	--	2	2	--	1	11	5	2
Tuntutuliak	7	6	4	12	15	17	12	18

Source: Commercial Fi sheries Entry Commission Data Files.
Note: This table is based on the number of fishernen who gave each commuity as a hone address.

Table 3. 1. 176
Number of Commerci al Fi shi ng Permits, Kuskokwin Area, 1978

Commun i ty		\# of Permit Holders	Nunber of Permits				
		Sal mon Set Gill Net Kuskokwinl Area		Sal mon Set G II Net Bristol Bay Area	Freshuater Fish Set Gill Net Statewi de		
	Akiachak		52	50	2		
	Akiak	26	25	1		2	
	Aniakl	9	7		1		
	Atmautlauk	29	29				
	Bethel ${ }^{2}$	215	199	12	1	8	
	Chefornak	8	3	7			
	Eek	46	42	9			
	Goodnews Bay	40	33	8	1		
	Kal skag 3	4	4				
	Kasigluk ${ }^{3}$	42	42				
	Ki pnuk	24	12	13			
N	Kongiganak	21					
0	Kwethluk	76	75	1		4	
	Kwigillingok	21	18	5			
	Napakiak	55	55	1			
	Napaskiak ${ }^{4}$	28	26	1			
	Newtok	7		7			
	Nightmute	5		5			
	Nunapitchuk	46	43	3			
	Oscarville	7	7				
	Pl ati num	12	7	6			
	Quinhagak 6	95	90	7			
	Tooksook Bay	14		14			
	Tuluksak	24	24				
	Tuntutuliak	58	57			7	

lone salmon, set gill net, lower Yukon area permit held
${ }^{2}$ One dungeness crab, pots, vessel 50 ft . or less, statewi de permit hel d. Four salmon, set gill net, Cook Inlet area permits hel d. One hal ibut, long line, statewi de permit held.
Tw sal non, se gill net, ower Yukon orea permits ield. \qquad
\qquad ntinund fnilnıin -. 0.

Tabl e 3. 1. 176 (Conti nued)
${ }^{3}$ One freshnater fish, drift aill net, statewide pernit hel d. 40 ne freshwater fish, drift gill net, statewide permit hel d. 50ne herring, beach seine, westward area permit hel d. One herring, drift gill net, westward area permit held. One herring, set gill net, westuard area permit hel d. ${ }^{6}$ Three herring, set gill net, westuard area permits hel d.

Source: Commercial Fi sheries Entry Comission Data Files.

Nunber of Commerci al Fi sher nen, Lower Yukon Area, 1969-1976

Community	Year							
	1969	1970	1971	1972	1973.	1974	1975	1976
Alakanuk	3	3	5	1	8	12	9	9
Emmonak	5	9	10	19	16	8	14	14
Fortuna Ledge	8	2	2	2	4	47	1	2
Holy Cross	8	6	6	4	8	9	12	17
Kotlik	4	10	7	2	4	6	4	5
Marshal I	--	--	--	--	--	1	1	8
Mountain Village	22	19	16	27	31	32	34	47
Pilot Station	9	12	5	5	7	66	1	3
Pitkas Point	?	2	2	--	7	4	7	9
Russi an Mssion	3	2	2	1	2	3	2	7
Scammon Bay	--	1	--	1	--	1	3	9
Shel don Poi nt	1	1	--	--	2	1	--	--
St. Marys	7	6	5	15	10	13	9	13

Source: Comercial Fi sheries Entry Commission Data Files.
Note: \quad This table is based on the number of fisher nen who gave each community as a hone address.

Table 3. 1. 178

Number of Commercial Fi shi ng Permits, Lower Yukon Area, 1978

Comminity
Alakanuk
Emmonak
Fortuna Ledge
Hol y Cross
Kotlik
Marshall 19
$\begin{array}{lll}\text { Mbuntain Village } & 112 \\ 110\end{array}$
Pilot Station 48
Pitkas Print. 15
Russian Mission ${ }^{2}$
Scammon Bay 41
Shel don Poi nt 24
St. Marys ${ }^{3} 63$

15 - 15
$19 \quad 19$
24 41
24 Hol ders 99
105
34
1:;
34
14 14
82
82
19

15
19

61

Number of Permits
Sal non
Set Gill Net
Lower Yukon Area
'One sal non, set gill net, Kotzebue area permit hel d. One sal non, set gill net, Norton Sound area permit hel d. 20ne herring, set gill net, westward area permit hel d. ${ }^{3}$ One freshwater fish, set gill net, statewi de permit hel d. One freshwater fish, long line, statewide permit held.

Source: Commercial Fi sheries Entry Comi ssi on Data Files,

Number of Commerci al Fi shernen, Norton Sound Area, 1969-1976

Community	Year							
	1969	1970	1971	1972	1973	1974	1975	1976
Council	--	--	--	--	--	--	3	3
Elim	1	4	29	3	5		12	9
Golovin	7	2	4	4	8	14	5	17
Nome	7	7	6	19	11	15	24	24
Shaktoolik	--	3	4	10	2	12	2	6
St. Michae]	2	1	--	--	1	1	3	--
Stebbens	--	--	--	--	--	--	--	--
Unalakleet	18	26	21	20	26	33	33	51
White Mbuntain	1	--	--	1	1	3	4	3

Source: Commercial Fi sheries Entry Commission Data Files.
Note: This table is based on the number of fishernen who gave each community as a home address.

Table 3.1. 180
Number of Commercial Fi shing Permits, Norton Sound Area, 1978

Hof $\begin{gathered}\text { Of } \\ \text { Pernit } \\ \text { Community } \\ \text { 1101 ders }\end{gathered}$		Number of Permits					
		Salmon Set Gill Net Norton Sound \qquad Area	"Other" Speci es Other Gear Statewide	King Crab Unspeci fi ed Gear Norton Sound Area	Merring Spawn on Kelp Unspeci fied Gear Statewide	Salmon Set GII Net Lower Yukon _Ri ver_Area	Herring Set GII Net West uard Area
Count il	1	1					
Elim	47	45	16				
Golovin	17	17					
Nome ${ }^{2}$	3136	23		113		1	1
Shaktoolik	35	29	5	1	13		1
St. M chae	el 19		10		9	1	
Stebbins	8					8	
Unalakleet ${ }^{4}$	492	58		13	15	16	10
White							
Mountain	3	3					

[^13]Source: Conlliercial Fi sheri es Entry Comissi on Data Files.

Table 3. 1. 181
Number of Commerci al Fi shermen, Kotzebue Area, 1969-1976

Community	Year							
	1969	1970	1971	1972	1973	1974	1975	$\underline{1976}$
Anbl er	--	--	2	2	2	7	7	8
Buckland	--	--	-	--	\cdots	3	2	2
Deering	--	--	--	1	-	10	15	1
Kivalina	--	3	4	3	8	8	7	5
Kotzebue	29	76	92	119	116	203	189	224
Noat ak	-	3	4	7	2	7	13	15
Noorvik	1	2	2	-	4	7	16	13
Selawik	1	-	-	2	3	7	10	7

Source: Commercial Fi sheries Entry Commission Data Files.
Note: This tableis based on the number of fisher men who gave each community as a home address.

Table 3. 1. 182

> Nunber of Commercial Fi shi ng Permits, Kotzebue Area, 1978

Community	$\begin{aligned} & =\text { of Pernit t } \\ & \text { Hol ders } \\ & \hline \end{aligned}$	Number of Permits	
		Sal non Set Gill Net	Freshuater Fish Set GII Net St at ewide
Anbl er	6	6	
Buckland	1	1	
Deering	8	8	
Kivalinal	10	10	
Kotzebue ${ }^{2}$	194	188	13
Noatak	15	15	
Noorvik	7	7	
Sel awi k	6	6	
${ }^{1}$ One freshwater, statewi de pernit hel d.			
${ }^{2}$ One sal non, drift gill net, Bristol Bay area permit held.			
Source: Commercial Fi sheries Entry Commission Data Files.			

Table 3.1. 183
Fi shernen' s Gross Earnings by Census Di vi si on 1969-1976 (Mil Ii ons)

1969	1970	1971	1972	1973	1974	1975	1976
\$ 3.9	\$ 5*5	\$5. 0	\$4. 6	\$9.7	\$ 8.0	\$ 7.0	S14. 8
0.8	1. 1	0.9	0.6	1.0	1.2	1.1	2.3
2.5	5. 1	4.4	1.5	2.1	3.0	2.7	7.7
0.6	1. 3	0.7	0.2	0.2	0.7	0.5	0.9
0.1	0.3	0.2	0.3	0.9	1.6	1.3	0.4
0.0	0.0	0.0	0.0	0+0	0.1	0.0	0.0
0.1	0.2	0.2	0.1	0.4	0.5	0.5	0.5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
0.7	1.0	2.0	1.5	2.1	2.7	2. 4	3.5
0.0	0.0	0.0	0.0	0.0	0.4	0.3	0.1

Source: Commercial Fi sheries Entry Comission, Distribution of Incones from Al aska Fi sheri es, 1978.
${ }^{1}$ During the years for which gross earnings of . $\mathbf{\$ 0 . 0} \mathbf{~ m i l l i}$ on are reported, the average gross earni ngs were $\$ 38,000, \$ 6,000$, and $\$ 33,000$ respecti vel y for the Kuskokwim, Upper Yukon, and Yukon/Koyukuk Census Di vi si ons.

Table 3. 1. 184
Foreign Tanner Crab Harvest in Vestern Al aska 1965-1977

Year	Mllions of Pounds	Metric tons	Sovi et MIII ons of Pounds	on Metric tons	Tot MIII ons of Pounds	Metri c tons
1965	2. 5	1, 125	1.6	727	4. 1	1,852
1966	3.6	1,628	1.6	727	5. 2	2, 355
1967	20. 8	9, 412	8. 2	3,705	28. 9	13, 118
1968	28. 9	13, 096	8.4	3,815	37. 3	16,911
1969	42.4	19, 229	15.0	6, 824	57.4	26, 054
1970	43.8	19, 884	13. 8	6,257	57.6	26, 142
1971	37. 9	17, 205	10. 1	4,595	48.1	21, 801
1972	37.6	17, 045	0.0	0	37. 6	17, 045
1973	33. 6	15, 242	0.0	0	33. 6	15, 242
1974	33. 7	15, 288	0.0	0	33. 7	15, 288
1975	22.2	10, 087	0.0	0	22. 2	10, 087
1976	23. 2	10, 541	0.0	0	23. 2	10, 541
1977	27. 6	12, 502	0.0	0	27. 6	12, 502

[^14]Tabl e 3. 1. 185
Number of Japanese Tanner Crab Fi shi ng Vessel s, 1975-1977

	$\underline{1975}$	$\underline{1976}$	$\underline{1977}$
Landbased Vessel s	28	31	11
Motherships	2	2	2
Catcher Boats	12	12	$\mathbf{1 2}$

Source: NPFMC, Fi shery Managenent Pl an for the Commerci al Tanner Crab Fi shery Off the Coast of Al aska, 1978

The sizes of the landbased vessel s, motherships, and catcher boats are 209454 metric tons, 6,800 metric tons, and 91 netric tons, respectivel y. A typical donestic Tanner crab boat is 28.5 meters (95 feet) and 127 netric tons.
milion pounds) between 1968 and 1978. Over 300 vessel: have participated inthis fishery in recent years. The vessel sinc ude: mothership of 5,000 to 27,000 metric tons, 300 -ton class traw ers, independent factory traw ers larger than 500 metric tons, 3,000 to 5,000 metric ton traw ers, 200 to 2, 500 netric ton longline-gillnet vessels, refrigerated transports, Dani sh seiners of 100 to $\mathbf{1 5 0}$ gross tons, and pair traw ers of ? $\mathbf{0 0}$ to 185 netric tons. Mbre conplete harvest and vessel activity data are presented in Tables 3. 1. 186 through 3.1.189, whi ch are taken fromthe North Pacific Fi shery Managenent Council Groundfish Plan for 1979. The I ocation of the princi pal fishing grounds are depicted in Fi gure 3. 8.

In addition to harvesting large quantities of the speci es targeted on, the forei gn groundfish fleets also harvest large quantities of nontarget ed species. Hal ibut, herring, crab, and salmon are anong the inci dental catch. It has been estimated that the annual incidental hal ibut catch by forei gn trawlers operating in the Bering Sea ranged from 52 metric tons ($\mathbf{0 . 1} \mathbf{~ m i l l i o n ~ p o u n d s) ~ t o ~} \mathbf{1 1}, 519$ metric tons (25.4 million pounds) between 1954 and 1974 (see Table 3.1.190). It is bel i eved that the inci dental catch has been reduced si nce 1974 due to reduced fishing effort and time/area closures, designed to protect hal i but (NPFMC, 1979, p. 5-29).

Japan and the Soviet Uni on have been the hi storic partici pants in the di rected di stant water herring fishery conducted primarily northeast of the Pribilof Islands. Due, however, to time/area restrictions and catch quotas, the herring caught by the foreign fleet is now incidental to the

Table 3 ${ }^{\circ}$ 1. 186. All-nation catc bs in the Berlng Sea/Aleutian Region ${ }^{\circ}$ by major spectes groups, for the last 10 years of record (1000's mt) 1 .

Species/	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	$19782 /$
Pollock	702	863	1,257	1,744	1,875	1,759	1,588	1,357	1,238	888.2	921.3
Pacific cod	63.7	53.3	74.6	50.5	47.0	58.6	67.0	55.1	57.8	36,5'	, 31.3
Pacific ocean perch	h 76.4	53.3	76.8	31.6	38.9	15.5	36.5	25.2	32,6	10.8	87.4
Sablefish	20.5	20.4	13.8	18.0	19.0	10.6	7.7	5.0	8.2	4.6	1.6
Hallbut	7.1	6.3	7.7	8.6	5.9	4.3	2.2	1.6	1.2	0.6	41
Flounders	149.9	236.2	234.9	323.4	237.7	207.1	196.3	200.4	187.2	121.9	208.3
Atka mackerel	3/	$3 /$	1.0	$3 /$	4.7	1.7	1.4	13.3	20.7	21.0	22.4
Others	31.5	14.4	25.9	41.5	134.7	62.3	79.9	61.9	45,6	57.3	73.9
All species 1	1,051.1	1,247.1	1,691.7	2,216.6	2,362.9	2,119.1	1,979.()	1,719.5 1	1,591.3	1,140.9	1,272.2

1/ Values in this table may differ slightly from those used elsewhere in this document because of differences in apportioning betuleen species not clearly listed in foreign statistical reports or differences in treating estimates based on U.S. surveillance when catches were not reported.
2/ Preliminary.
3/ Catch, if any, included under "Others".
4/ Unknown at this time
Source: North Pacific Fi shery Management Council, Fishery Managenent Plan for the Groundfish Fishery in the Bering Sea/ Al eutian Island Area, 1979.

Table 3.187
Number of fleets in the Japanese mothership fishery and number of vessels in Japanese North Pacific trawl and longline-gillnet fisheries and landasad traw fishery (datafromforrester et al. 1974; Yamaruchil974, i975; Sasaki 1977).

Year	Number of mothership fleets					Number of indenendent vessel:		
	```Freezing fleetl for flounders only )```	Freezing Eleet $2 /$   \{including other than flounders)	Meal mincefleet 3	$\begin{gathered} \text { Long- } \\ \text { line } \\ \text { gili- } \\ \text { net } \\ \text { fleet } 4 \end{gathered}$	Total	North Pacific trawl fishery 5	Norcin   Pacific   longlinegillnet fishery	Land-   based trawl Eishery-
1954	2	-	-		2	2	--	--
1955	2		-		2	3	-	-
i 956	4	-	-		4	1		--
1957	4		--	-	4	-	-	--
1958	2	-	1	1	4	--	--	-
1959	4	-	1	1	6	2	--	--
1980	3	1	5	4	13	--	-	--
1961	-	13	5	14	32	" 3		54
1962	--	$u$	5	5	21	2	--	
1963	-	10	2	5	17,	2		93
1964	-	6	4	2	12	2	--	103
1965	-	6	4	2	12	2	-	126
1966	-	8	4	1	13	2	-	172
1967	-	7	5	2	14	42	22	173
1968	-	6	5	1	12	42	22	184
1969	-	5 "	$S$	1	11	42	21	182
1970	-	3	6	1	10	42	22	182
1971	-	5	6	1	12	42	22	182
1972	-	4	6	8/	10	42	22	182
1973	--	4	6	--	10	42	26	182
1974	--	4	6		10	42	30	182.
1975	--	3	5	--	8	35	27	182
1976	-	3	5	--	8	54	32	182

I/ Flounder fleet: The fleets, each composed of a mothership of 7,000-9,000 tons, equipped with freezing facilities and having several 300-ton class crawlers atsached to it, caught mainly yellowfin sole for frtezing off Bristol Bay.

2/ Freezine fleet: The fleets, each composed of a mothership of 5, 000-10,000 tons with freezing equipment, accompanied bytrawlersaswell as Danish seiners, which also fished longlines and gillnets, caught halibut, blackcod, herring, Pacific oceanperch, etc. These flestsoperated along the continental slopebetween Unimat Pass and Cape Navarin, in the Gulf of Olyutorskif, and in Aleutian waters.
Source: North Pacific Fi shery Managenent Council, Fishery Management Pl an 'or the Groundfish Fishery in the Bering Sea/ Al eutian Island Area, 197.9.

Monthly range in number of" USSR vessels operating in the eastern 3ering Sea and Aleutian Islands in 1966-77 (Office of Enforcement and Surveillance 1967-70; Enforcement and Surveillance Division 1971 and 1973; Law Enforcement Division 1974, 1975, and 1977).

Range in monthly number						
Year	Factory	Factory stern trawlers	Other trawlers	Support²/	Total	bnth of maximum number

Eastern Sering Sea

$\mathbf{1 9 6 6}$	$\mathbf{0 - 1 4}$	$0-15$	$0-40$	$\mathbf{0 - 3}$	$0-72$	Ear.	
$\mathbf{1 9 6 7}$	$\mathbf{0 - 1 5}$	$0-12$	$0-60$	$\mathbf{0 - 3}$	$0-90$	Feb.	- Mar.
$\mathbf{1 9 6 8}$	$\mathbf{0 - 1 3}$	$0-25$	$2-60$	$\mathbf{0 - 2}$	$2-99$	Feb.	
$\mathbf{1 9 6 9}$	$\mathbf{0 - 8}$	$0-50$	$6-67$	$\mathbf{1 - 2 3}$	$7-147$	Feb.	
$\mathbf{1 9 7 0}$	$\mathbf{0 - 7}$	$0-52$	$8-92$	$\mathbf{0 - 2 2}$	$9-173$	Feb.	
$\mathbf{1 9 7 1}$	$\mathbf{0 - 8}$	$0-65$	$5-87$	$\mathbf{0 - 2 1}$	$6-171$	Feb.	
$\mathbf{1 9 7 2}$	$\mathbf{0 - 8}$	$0-39$	$1-89$	$\mathbf{0 - 2 1}$	$3-155$	Feb.	
$\mathbf{1 9 7 3}$	$\mathbf{0 - 6}$	$1-27$	$6-60$	$\mathbf{0 - 6}$	$7-82$	Feb.	
$\mathbf{1 9 7 4}$	$\mathbf{0 - 5}$	$4-30$	$6-51$	$\mathbf{1 - 1 0}$	$14-79$	Feb. and Apr.	
$\mathbf{1 9 7 5}$	$\mathbf{0 - 4}$	$4-13$	$5-36$	$\mathbf{1 - 7}$	$13-51$	June	
$\mathbf{1 9 7 6}$	$0-\mathbf{5}$	$2-30$	$7-48$	$\mathbf{0 - 6}$	$13-86$	Apr.	

Aleutian Islands

1966	$0-3$	$\mathbf{0 - 1 0}$	$0-10$	$\mathbf{0 - 1}$	$\mathbf{0 - 2 4}$	Aug.
1967	$0-6$	$0-12$	$0-21$	$\mathbf{0 - 3}$	$0-42$	June
1958	$0-4$	$0-14$	$0-23$	$\mathbf{0 - 1}$	$7-28$	Mar.
1969	0	$0-7$	$0-13$	$\mathbf{0 - 1}$	$3-14$	Jan. and Dec.
1970	0	$0-5$	$0-14$	$\mathbf{0 - 1}$	$1-15$	Jan.
1971	0	$0-6$	$\mathbf{- 1}$	$3-15$	$\mathbf{0 - 1}$	$6-17$
1972	$0-1$	$0-5$	Say			
1973	o	$0-4$	$\mathbf{0 - 1 7}$	$4-21$	Dec.	
1974	0	$0-2$	$0-19$	$\mathbf{0 - 3}$	$6-20$	Apr.
1975	$0-1$	$0-30$	$0-10$	$\mathbf{0 - 5}$	$0-24$	Mar.
$\mathbf{1 9 7 6}$	$\mathbf{0}$	$0-27$	$0-4$	$\mathbf{0 - 5}$	$2-33$	Sept.

[^15]2/ including tankers, tugs, cargo, and repair ships.
Source: North Pacific Fishery Managenent Council, Fishery Managenent 'Ian 'or the Groundfish Fishery in the Bering Sea/ Al eutian Island Area, 1979.

Table 3.1.189'
Number of vessels operating in the Korean groundfish fishery in the eastern Bering Sea, Aleutian Islands, and Gulf of Alaska, 1968-74 (Office of Enforcement and Surveillance 1969, 1970; Enforcement and Surveillance Division 1971, 1973; Law Enforcement Division 1974, 1975, and 1977).

Year	$\begin{gathered} \text { Pair } \\ \text { trawlers } \end{gathered}$	Stem trawlers	Longliners	Danish seiners	```Factog ships```	Processors and/or Emansport vessels	Total
1968	6	1	0	0	0	2	9
1969	7	4	0	0	1	3	15
1970	11	2	0	0	2	2	17
1971	10	3	0	0	1	3	17
1972	0	6	0	0	0	0	6
1973	8	10	I	0	3	0	22
1974	22	5	8	1	2	3	41
1975	0	13	9	1	0	0	23
1976	29	16	12	0	1	0	58

Source: North Pacific Fi shery Managenent Council, Fi shery Managenent Plan for the Groundfish Fi shery in the Bering Sea/A eutian Island Area, 1979.


Figure 3.8: Forei gn Groundfish Fishing Areas in the Bering Sea/ Al eutian Islands Area.

Source: North Pacific Fishery Management Counci], Fishery Management PI an for the Groundfish Fishery in the Bering Sea/ Aleutian islands Area, 1979.

Summary of the estimated halibut catch (m.t.) by Foreign Traw ers in the Bering Sea and the Northeast Pacific, 1954-1974

Year	Bering Sea			
	J apan			
	MothershipI ndependent Fl eet	Land-   Based   F] eet	$\underline{\text { U. S. S. R. }}$	Total
1954	52			52
1955	42			42
1956	102			102
1957	102			102
1958	168			168
1959	520		374	894
1960	1,590		576	2, 166
1961	2, 303		926	3,229
1962	1, 420	112	837	2, 369
1963	125	659	555	1,339
1964	412	1,278	476	2, 166
1965	440	1,386	540	2,366
1966	693	2, 533	600	3,826
1967	1,341	5,301	738	7, 380
1968	1,765	3,582	592	5,939
1969	2, 176	3,594	972	6, 742
1970	2, 759	5, 677	957	9, 393
1971	3,484	5, 728	2,307	11,519
1972	3, 259	3, 678	2, 178	9, 115
1973	2, 567	2, 489	1,937	7, 043
1974	1,807	1, 581	2, 458	5,846

[^16]winter pol lock traw fishery (NPFMC, August 1979, p. ii). The harvesting activity for the foreign herring fishery (both di rected and inci dental) is summarized in Tables 3.1. 191 through 3.1. 193.

King crab and Tanner crab are al so incidental catch of the foreign groundfish fleet. Estimates of the incidental crab catch by the foreign traw fishery in the Bering Sea are presented in Table 3.1.194, I nci dental catch of salmon al so occurs. The 1977 incidental catch is estimated to have been 191 metric tons ( 421,000 pounds), of which over 90 percent were ki ng sal non (NPFMC, November, 1979, p. 8-8).

## PROCESSI NG

The onshore components of the Western Alaska commercial fishing industry are di scussed in this section by census di vision, and the nature of the markets for seaf ood products and the organi zation of the industry are di scussed for the area as a whole. The onshore components consi dered are processing activity and commercial fishing industry use of commity infrastructure. The census divisions of Nestern Alaska are depi cted in Figure 3.9 and the onshore centers of industry activity are depicted in Figure 3. 10.

## ALEUTIAN ISLANDS CENSUS DIVISION

Commities within the $\mathbf{A l e u t i a n} \mathbf{I}$ slands Census Division serve as the principal bases of operation for the harvesting activities of both the

Comparison of catch quotas and reported catches in metric tons by cal endar year for foreign fisheries in the eastern Bering Sea, 1973-1979.

	1973	1974	1975	1976	1977	1978	1979
Japanese Trawl							
Quot a Catch	$\begin{gathered} 33,000 \\ 385 \end{gathered}$	$\begin{gathered} 33,000 \\ \text { 2, } 298 \end{gathered}$	$\begin{array}{r} 15,000 \\ \mathbf{1}, 078 \end{array}$	$\begin{array}{r} 15,000 \\ 3,760 \end{array}$	$\begin{aligned} & 5,800 \\ & 5,041 \end{aligned}$	$\begin{aligned} & \text { 2, } 580 \\ & 2,320 \end{aligned}$	2,413
J apanese Gillnet							
Quota Catch	$\begin{gathered} \mathbf{4 , 6 0 0} \\ 1,878 \end{gathered}$	$\begin{aligned} & 4,600 \\ & 3,337 \end{aligned}$	$\begin{array}{r} 3,000 \\ 736 \end{array}$	$\begin{aligned} & 3,000 \\ & 2,668 \end{aligned}$	$\frac{1}{551}$	$\begin{aligned} & 11 \\ & 21 \end{aligned}$	${ }_{198}$
USSR Trawl							
Quota Catch	$34,381$	$19,80 \frac{3 /}{}$	$\begin{gathered} 30,000 \\ \mathbf{1 4 , 2 0 1} \end{gathered}$	$\begin{gathered} 30,000 \\ 16,812 \end{gathered}$	$\begin{array}{r} 13,600 \\ \mathbf{1 3}, \mathbf{1 4 5} \end{array}$	$\begin{aligned} & 6,060 \\ & 6,663 \end{aligned}$	5,657
ROK							
Quot a Catch						$\begin{aligned} & 20 \\ & 19 \end{aligned}$	450
Tai wan							
Quota Catch						10	25
Poland							
Quota Catch							125
Combi ned Fi sheri es							
Quot a Catch	$36,274$	$25,435^{2}$	$\begin{aligned} & 2 / 48,000 \\ & 16,015 \end{aligned}$	$\begin{aligned} & \text { 48, } 000 \\ & 23,240 \end{aligned}$	$\begin{array}{r} 19,400 \\ 18,737 \end{array}$	$\begin{aligned} & 8,670 \\ & 8,983 \end{aligned}$	8,670
Conbi ned with traw fishing No effort   Quot as not established							

Source: North Pacific Fi shery Managenent Council, Bering-Chukchi Sea Herring, Draft Fi shery Managenent Plan, 1979.

Table 3. 1. 192

Total catch, di rected catch, incidental catch and percentage of inci dental catch of herring in the Japanese traw fishery, 1967-75,

Year (Jul-Jun)	Total traw catch (ret)	$\begin{array}{r} \text { Directed } \\ \text { catch } \\ \hline \end{array}$	I nci dent al catch (ret)	I nci dent al Total (\%)
1967-68	9,486	9, 209	277	3.0
1968-69	50,857	46, 392	4,465	9. 0
1969-70	23,901	22,861	1, 040	4. 0
1970-71	24,236	24, 125	111	0.5
1971-72	13,143	12,970	173	1.0
1972-73	346	70	276	80.0
1973-74	219	10	209	95.0
1974-75	2,663	292	2,371	89.0

1/ Di rected catches are those in which herring accounted for $\mathbf{3 0 \%}$ or nore in the nonthly catches in $\mathbf{1 / 2} \times 10$ statistical areas.

Source: North Pacific Fi shery Management Council , Berinç-Chukchi Sea Herring, Draft Fi shery Managenent ?lan, 1979.

Table 3. 1. 193
Nunber of vessel s in the. Sovi et and Japanese eastern' Bering Sea herring fleet by nonth, 1964-1976.


J apan

$1966-67$							$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1 9 6 7 - 6 8}$						$\mathbf{1 7}$	$\mathbf{1 7}$	
$\mathbf{1 9 6 8 - 6 9}$	14	14	$\mathbf{1 4}$	14	14	14	$\mathbf{2 4}$	$\mathbf{4 2}$
$1969-70$	6	$\frac{1}{3}$	25	13		1	$\mathbf{1 2}$	$\mathbf{1 4}$
$1970-71$	3	20	10			15	10	
$1971-72$	10	$\mathbf{3 1}$	$\mathbf{1 2}$	12	7	16	3	15
$\mathbf{1 9 7 2 - 7 3}$		$\mathbf{1 2}$	$\mathbf{1 2}$			$1 /$	13	15
$\mathbf{1 9 7 3 - 7 4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{1 2}$	12	12		8	11

1/Vesselspresent but number unknown.
2/ Fleet al so fishing for pollock.
3/ Al traw ers Hov-March; both traw ers and gillnetters during April; predomina gillnetters during May and June.
Sources: NMFS Law Enf orcement and Surveillance Division
Forei gn Fi sheri es Acti vities Reports, 1964-1975.
INPFC Annual Reports, 1965-1977.

Source: North Pacific Fishery Management Council, Bering-Chukchi Sea
Herring, Draft Fi shery Managenent Plan, 1979.

Table 3.1. 194
Estimated Incident al King and Tanner
Crab Catch by the Forei gn Traw Fleet in the Bering Sea, 1973-1977

Year	Number of Crabs	rab MIII ons of Pounds	Number of Crabs	rab Mllions of Pounds
1973	465, 600	1. 2	112, 000, 000	81.5
1974	489, 900	1. 2	155, 000, 000	112.8
1975	155, 900	0.4	60, 000, 000	43.7
1976 ${ }_{1}$	? 300	?	26, 000, 000	18.9
$1977{ }_{2}$	297, 300	0.7	9, 600, 000	7.0
1977	595, 800	1.5	17, 500, 000	12.7
Source:	NPFMC, Fi shery Management PI an for the Groundfish Fi shery in the Bering Sea/ Al eutian Island Area, November 1979			
The esti mates of inci dental catch of $\mathbf{1 9 7 3}$ through 1977 are based on data collected by U.S. observers who were aboard Japanese independent traw ers (large traw ers) and groundfish motherships.				
'The second estimate for 1977 al so incl udes U.S. observer data for the Japanese landbased dragnet (small trawers) fleet and the Sovi et and Korean traw fleets.				


I Kobuk	IV Kuskokwim	VII Bristol Bay
I I Home	V Nade Hampton	VIII Bristol Bay Sorougn
III Yukon- Koyukuk	VI Bethel	IXA eutian Isl ands

Figure 3. 9: Alaska Census Divisions



Fi gure 3. 10 (conti nued)

## Al aska Peni nsula Area Fi sh Processors:

Chignik $\quad 1$ processor, pernanent onshore facility, sal non; several nobile processing ships operate in the area, sal non;

King Cove 1 processor, permanent shorebased facility, species processed unknown;

Port Moller 1 processor, permanent onshore facility, sal non freezing; several nobile processing shi ps operate in the area, sal non;

Sand Point 1 processor, permanent onshore fac lity, sal mon and she lfish.

Aleutian Island Area Fish Processors:
Adak $\quad 1$ processor, permanent onshore facility, shellfish;
Akutan $\quad 5$ processors, sem -pernanent processing ships, shellfish;
Unalaska/ $\mathbf{1 7}$ processors, 4 onshore and $\mathbf{1 3}$ pernanent processing Dutch Harbor shi ps, shel Ifish;

Fal se Pass 1 processor, pernanent onshore facility, sal non and shel I fish.

Bristol Bay Area Fish Processors:
Clarks Point 1 processor, permanent onshore facility, sal mon;
Dillingham at least 2 processors, permanent onshore facilities, sal non; approxi natel y 6 nobile processing ships operate in area; sal non; approxi nately 20 buyers purchase salmon over the city dock.

King Salmon at least 2 Iarge icing operations, sal mon; several buyers, sal non;
King Sal mon ai rport is fly out point for much Naknek-landed
Naknek 9 processors, permanent facilities, ( 5 onshore, 4 floaters) sal non;
approxi mately $\mathbf{2 0}$ mobile processing ships operate in the area. sal non; approxi mately 45 buyers purchase salmon;

Togiak 2 processors, pernanent onshore facilities, saimon and herring; several mobile processing ships operate in the area, sal mon and herring.
Kuskokwim Area Fi sh Processors:
Bethel $\quad 3$ processors, permanent facilities, sal non;
nunerous mobile processing ships operate in Kuskokwim
Ri ver bel ow Bethel to Kuskokwim Bay, sal non.
Lower Yukon Area Fi sh Processors:
Approxi natel y 16 buyers and nobile processing ships work at the following
locations processing sal mon: Anvik Kwikpakak Slough
Black 只iver Lament Sl ough
Emmonak Marshal I
Hess Creek Mbuntain Village
Ingrihak Saint Marys
Kaltag Paimiut
Kwikluak Pass Russian Mission
Norton Sound Area Fish Processors:
Elim

Golovin	$\mathbf{1}$ buyer, sal non, flown out in round
Nome	4 processor, per nanent facility, freezes salmon
Unalakleet	$\mathbf{1}$ buyer, sal non, flown outin round
Kotzebue Area Fish Processors	
Kotzebue	$\mathbf{4}$ buyers, sal non, flown out in round

shellfish fisheries in the Peni nsula, Eastern $\boldsymbol{A}$ eutians, Western $\boldsymbol{A}$ eutians, and Bering Sea Managenent Areas arid the finfish fisheries of the Chignik, Peninsula, Eastern Aleutians, Western Aleutians, and Bering Sea Managenent Areas. The commities are al so the sites of much of the processing activity which results fromthe harvests in the aforenentioned management areas.

## Processing Activities

Processing facilities for various species of fish are located throughout the $\mathbf{A l e u t i}$ an Islands Census Division. Generally, the plants are more apt to specialize in shellfish processing as the location becones more westerly. Processing plants alono the Peni nsula often process salmon and shellfish, while plants as far west as Unalaska/Dutch Harbor usually process only crab.

Processing plants are located along the Peni nsul a at Chignik, Sand Point, Squaw Harbor, King Cove, Fal se Pass, and Port Moller. Facilities at these locations are often suppl enented by processing ships, each of whi ch may operate at a number of locations during the year. Shore-based facilities provide a mixture of canning and freezing capabilities; some specialize in shrimp, crab, or sal non, while others process a variety of species. Floating processing facilities a' most always freeze their product and are relied on most heavily dur ng the rel atively short and intense salmon harvest.

Unalaska/Dutch Harbor is the center of Western Al aska's shellfish
fishery. Little sal non or other finfish is caught or processed in the imediate area, The number of processing plants located at Unalaska/ Duich Harbor has increased rapidly due to the use of processing shi ps, or "floaters". Only four land-based processing facilities operate in the community, but there are nore than $\mathbf{1 2}$ pernanently noored floaters which are utilized during the king crab and Tanner crab seasons.

Akutan, whi ch is just northeast of Unalaska, has al so becone a processing center for western Alaska shelifish. Reportedly due to overcronding around Unalaska, approxi mately five floaters operate in Akutan Bay and two or three nore are expected to locate there soon. Adak, which is consi derably west of Unalaska, is the site of the nost westerly shellfish processing plant.

Processing activity in the Aleutian Islands Census Division is seasonal for most plants, with their operating schedul es dependent upon the speci es processed. Due to the sparce popul ation of the area, local residents are general ly not relied upon to provide a substantial portion of the plants' labor requi renents. Rather, entire crevs are usually recruited from otner areas of Alaska and from the "Lower 48", and housed in dormitories at the plants during the processingseasons. Many workers are college students seeking temporary empl oyment and imigrants 'who are recruited from the Seattle area.

Manufacturing employment. and wage statistics for the Aleutian Island Census Division are summarized in Täbles 3.2.1 through 3.2.3. Within this area, manufacturing is almost excl usively fish processing; and fish processing empl oynent incl udi ng warehousing and whol esal ing empl oyment is principally incl uded in manuf acturing; theref ore, the manuf acturing data closely approxi mates the data for fish processing. Department of I abor statistics indicate that broadly defined processing enploynent ranged between 101 and 105 percent of manuf acturing empl oynent from 1975 through 1978. The seasonality of processing employment within an indi vi dual community or regi on can be substantially greater than that for the census division as a whole since, as was mentioned above, there is a tendency for the processing activity within a community or area to be concentrated on a few species or species groups.

Broadly defined, the processing capacity of an area is its capacity both to act as a point of landing for fish and to prepare fish for transportation to other areas for further processing and marketing. The principal determinants of processing capacity incl ude (1) the capacity of buyi ng, icing, salting, and processing facilities and (2) the capacity of the transportation system which links an area with areas in which further processing and marketing occur, The dom nant characteristics of processing capacity are that it is difficult to measure and it is seldom neasured in a meani ngf ul way because it is a complex concept; and it can change rapidly. For example, using actual production as a lower limit measure of capacity, Western Alaska king crab processing capacity increased at an annual rate of 21 percent from 1972 through 1970,

Table 3.2.1
Aleutian island Division
Quarterly Manufacturing Employment and Wages
1970-1978


Source: Alaska Department of Labor, Statis tical Quarterly, 1970-1978.
Note: The number to the right of the decimal point indi cates the number of months or quarters data are not available due to confidentiality requi renents.
 basedonthenumber of people employed by indidual firms during a specific pay period each mion $h$.

Table 3．2．2
A eutian Island Division
Monthly Manufacturing Employment
1970－1978

$\stackrel{\omega}{8}$	$\frac{\text { Year }}{1,10}$	$\frac{\text { Jan. }}{5 \cdot 3.0}$	Feb.	$\frac{\text { Mar. }}{252}$	April	May	June		Aug．	Sept．			Dec．
	1971	いおの，						820.0	919.0	428.0	371.0	420.0	440.0
					36.50		6.06	912.0	996.0	614.0	666.0	958.0	773.0
	197	$4 \%$	470.0	449.0	344．0	475.0	526.0	995.0	A31．0	568.0	742.0	846.0	653.0
	1.173	42880	465	371.1	36.3 .11	391.0	595.0	86.3 .0	992.0	669.0	837：0	1082．0	1048．0
	19.74	8.370	1rim． 10	740.11	711.0	824.0	908.0	983.0	1113.0	1008.0	982.0	964.0	653.0
	1075	501.0	49700	$4 ? 10$	517.0	505.0	435.0	716.0	？ 3.0	798.0	1334.0	1287．0	1030.0
	119\％	4 4.0	米吅， 0	403.0	$88 \%$	1063.0	990.0	919.0	0．49．0	973.0	1169.0	1317.0	1307.0
	$1 \times 7$	59\％．0	46.4	1123．）	977.0	1150.0	1460.0	843.0	94？．n	1289．0	1635.0	1568.0	1342.0
	1074	9i	$24^{5}$	957．0）	1906．．0）	8．23．0i	1619.0	139？．0	1723．0	1832．0）	2234.0	1894.0	1267．0

Source：Alaska Department of Labor，Statistical Quarterly，1970－1978．
Note：The number to the right of the decimal point indicates the number of months data are not available due to confidentiality requirements．

Table 3. 2. 3
Al eutian Islands Census Di vision
I'/unber of Reporting Units in Manufacturing by Quarter 1970-1978

	Year	First Quarter	Second Quarter	Thi rd Quarter	Fourth Quarter
	1000	18	17	18	17
	1971	1 h	16	15	20
¢	1412	19	18	20	19
	1913	14	19	20	23
	191\%	$2 ?$	21	24	24
	1979,	22	21	19	19
	1476	19	19	19	19
	1971	20	17	19	19
	1978	18	19	20	18

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.

Tanner crab processing capacity increased at an annual rate of 150 percent, and the conbi ned processing capacity for king and Tanner crab increased at an annual rate of 30 percent (ADF\&G Statistical Leaflet No. 29).

Processing capacity is primarily important because it can constrain harvesting activity in an area; harvest levels therefore provide a usefullower limit measure of capacity. That is, if a particular harvest level is landed in an area and prepared for transportation to other areas for further processing and marketing, the processing capacity of the area is at least equal to that harvest level. Using recent harvest levels as measures of processing capacity, the Aleutian Islands Census Di vision processing capacities are as follows: sal non 29, $\mathbf{3 0 0}$ metric tons ( 64.6 milli on pounds), king crab 62, 200 metric tons $\{137.2$ million pounds), and Tanner crab 39, 600 metric tons ( 87.2 milion pounds). The sal mon processing capacity figure is based on the Chignik and Peninsula harvests in 1979. The crab processing capacity figures are based on the total Western Alaska crab harvests in 1979 because they are principally processed in the Aleutian Islands Census Division. Capacity figures for hal ibut and shrimp are not incl uded because the hal $\mathbf{i}$ but and shrimp harvested in waters adjacent to the $\mathbf{A l e u t i a n} \operatorname{Is}$ ands Census Division are primarily landed and processed in Kodiak.

The infrastructure of the commities of the Aleutian Islands Census Divison and the use nade of it by the commercial fishing industry are di scussed in this section.

## El ectricity.

El ectricity in the $\mathbf{A}$ aska $\mathbf{A l}$ eutian Islands Census $\mathbf{D i}$ vision is generated by di esel - powered equi pnent operated by commities or indi vidual consumers. Due to the small population and renoteness of the area, fish processing firns are usually self-sufficient for their el ectricity needs. Snall commities generally cannot afford to maintain adequate generating capacity to fulfill the needs of fish processing firns which often operate seasonally.

Unalaska/Dutch Harbor is the center of the area's popul ation and industry. The city generates only 600 KW of el ectricity out of an estimated com munity load of $15,000 \mathrm{KW}$ when the fi sh processing pl ants are operating at high levels. Due to the apparent permanence of the processing industry and the good probability of grouth, the city is attempting to have two hydroel ectric plants constructed which could accommodate the needs of present el ectricity consuners and provide nore attractive anenities to potential businesses. Construction of the hydroel ectric facilities could occur within five years, but no definite timetable is available.

Whter.

Commities located in the $\mathbf{A}$ aska Peni nsul a- $\mathbf{A l}$ eutian $\mathbf{I}$ slands area generally are quite small and do not have sophiticated water systens. With the exception of the fish processing boomin Unalaska, there has not been a need to devel op facilities to accommodate the needs of nany people and commercial users.

Unalaska and Sand Point are tho of the area's naj or communities. The City of Sand Point utilizes a reservoir to accuml ate enough runoff for its water needs. Unalaska operates a military noodstave system which is a type of dam and reservoi $r$, and can provide about 18,900 iters ( $5,000 \mathrm{gal} 1 \mathrm{ens}$ ) of water per minte except during extraordinary 1 y cold weather when the runoff is reduced by freezing. Unalaska has recently becone one of the nation's Iargest fish processing centers, and city officials report that continued grouth will require expansion of the water system.

The area recei ves a rather Iarge anount of precipitation throughout much of the year, which could be utilized to devel op Iarge capacity water systens for comercial users if necessary.

## Port Facilities.

Several ports are located in the Alaska Peninsula- Aleutian Islands area. Those of primary importance are at Unalaska/Dutch Harbor, Sand Point, and Cold Bay. Until the recent fish processing boom at Unalaska/Dutch

Harbor, there has been littie reason to fully devel op the port facilities at these locations. Al so, Cold Bay and Sand Point reportedly face water depth Iimitations which could force larger vessels to coordinate their arrivals and departures with the tide.

Due al nost sol ely to the rapid grouth of the seaf ood processing industry at Unalaska/Dutch Harbor, the local port is undergoing si gnificant upgrading. Aneri can Presi dent Li nes (APL), a maj or frei ght hauling firm is currently constructing a 122 neter (400-foot) dock, cold storage facilities, and other rel ated port facilities, with the estimated value of the project being $\$ 27$ million. Ocean- going freighters and barges will be able to call at the port with no difficulty, facilitating di rect shi pnent of processed seaf ood to the I arge Japanese market. In 1979, approxi nately $\mathbf{1 5}, 000$ netric tons of processed seafood were shi pped directly from Unalaska/Dutch Harbor to Japan. Japanese tranp steamers haul ed $\mathbf{1 2 , 0 0 0}$ netric tons, or 80 percent, of that anount. It is expected that Anerican firns such as APL and Sealand will largely displace the Japanese haulers within a few years, and that proper coordination of the Anerican shi ps' arrivals and departures will prevent serious congestion of the port.

Snal I Boat Harbor.

Commities located in the $\mathbf{A}$ aska Peni nsula- $\mathbf{A l}$ eutian $I$ sland area generally do not nai ntain small boat harbors. Commercial fishing boats in the area range fromskiffs of only about 6.1 neters ( 20 feet) long up to vessel s of around 61 meters ( 200 feet) long. Vessels usually tie up at
processing firns' docks, city docks, and at any other suitable places which can be found. Snaller boats can often be renoved fromthe water during periods of non-use.

The Gity of Sand Point mai ntains a state-constructed small boat harbor which is the nost complete facility in the Alaska Peninsula-Aleutian Island area. Stalls ranging from 9.1 neters ( 30 feet) to 18.9 neters ( 62 feet) in length are provided, and a 141.5 neter (464-foot) finger float offers moorage for larger vessel s.

Both Unalaska and Sand Point intend to construct harbor facilities. Construction of the small boat harbor at Unalaska designed to accommodate all sizes of fishing vessels operating in the area may begin 1980. Any new small boat facilities at Sand Point nay be incorporated into a port project; however, a timetable and further details are not known.

BRI STOL BAY - BRI STOL BAY BOROUGH CENSUS DI VISI ONS

Communties within the Bristol Bay Census Divisons are the principal bases of operations for harvesting and processing activities associated with the sal non and herring fisheries in the Bristol Bay Managenent Area.

Processing Activity

Dillingham and Naknek are consi dered centers of the Bristol Bay com nercial sal non industry. Mbst fishing is based out of these towns and
other smaller surrounding commities, and processing activities are also centered in these areas. Mbst of the Bristol Bay salmon harvest is either frozen or canned locally. When local processing capacity is inadequate, fish are flown to other areas for processing; this greatly increases the overall capability to process Bristol Bay sal non. Shorebased plants, which have provided nost of the area's canning capacity, are being converted from canneries to freezing plants. Processing ships, referred to as "floaters", are becoming increasi ngly preval ent; they usually freeze thei $r$ product.

Only two processing facilities actually operated in Dillingham in 1979, but several other processors including six floaters operated in the surrounding Nushagak Bay vicinity. Dillingham city officials reported that over 20 firns recei ved fish at the Dillingham city dock during the 1979 sal non season. The buyers who are not associated with local processing facilities primarily buy fish which are flown to other areas for processi ng.

Persons familiar with the local commercial fisheries indicated that approxi matel y 45 buyers were active in the Naknek area for the 1979 salmon season. Nine onshore plants and $\mathbf{2 0}$ floaters accounted for many of the buyers; buyers who fly fish to other areas comprise the bul $\mathbf{k}$ of the remai nder. Mst shore-based processing facilities still can their product, though a definite conversi on to freezing is occurring.

The City of King Sal non, though several miles inland, serves as an important link in the fly-out processing operations. King Sal non is connected to Naknek by road, and provides an adequatel y I arge ai rport to allow efficient air transport of salmon. Due to the strategic role of King Sal non, several buyers and chilling operations are located there.

Two onshore plants, several floaters, and over 20 buyers operate in the vicinity of Togiak, al ong Bristol Bay's northern coast. Their efforts are di rected primarily at canning, freezing, and flying out fresh salmon and salting or freezing herring. Bristol Bay's herring fishing is concentrated near Togiak. Fi ve processors and 27 buyers participated in the 1980 herring fishery (ADF\&G, July 1980). Only superficial processing of herring consisting of salting or freezing occurs in the local area bef ore the herring is shi pped to the Orient or Kodi ak for further processi ng.

Fish processing firns and buyers that operate in the Bristol Bay area are quite dependent upon imported labor. Often, entire crews will be recruited from other areas of Al aska and the Seattle area. The processing sector work is usually very intensi ve and lasts for only one to two nonths, and therefore is not very attractive to nost permanent residents of the area. Of the local residents who do accept processing $\mathbf{j}$ obs, many are students, housewi ves, and others who do not desi re permanent employnent.

Manuf act uring empl oyment and wage statistics for the Bristol Bay Census Di vi si ons are summarized in Tables 3. 2. 4 through 3.2.9. It should be

Table 3. 2.4
Bristol Bay Di vision
Quarterly Manufacturing Empl oynent and Kiges
1970-1978

	Man Months Quarter					Whges Quarter (\$1,000)				
Year	1 St	2nd	3rd	4th	Annual	1st	2nd	3rd	4th	Annual
19\%01	344.01	7310.0	4902.11	0.3	75.55.3	209.0	1451.0	6,808.0	0.1	8468.1
1071	97.1	? 434.0	$46,49.0$	0.3	7180.3	3h.0	1349.0	5530.(3	0.1	6915.1
1072	21 e.0	1598.01	2.734.0	320.0	4830.0	9 ra . 0	927.0	2895.0	242.0	4159.0
1073		1990.0	2856.0	660.00	5348.0	224.1	815.0	2466.0	389.0	3894. ()
1074	2以リ.01	513.6	1679.0	374.0	2024.0)	146.0	374.0	1642.0	350.0	2512.0
1915	40.0	26.70	750.0	104.0	1161.0	19.0	$30 t .0$	982.0	122.0	1429.(-)
101\%	29.11	26.30	1043.0	146.00	1481.0	14.0	329.0	2085.0	228.0	2656.0
1017	6.4.1,	2918.0	1047.0	163.0	1572.0	44.0	401.0	?(>63.(-)	185.0	3293.0
1016	$4 \cdot \mathrm{C}$	315.01	151?.0	()" 3	1850. 3	21.0	255.0	4040.0	0.1	4316.1

Source: Al aska Department of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the decimal point indicates the number of nonths or quarters data are not available due to confidentiality requirenents.

Quarterly and annual empl oynent data are the summation of nonthly empl oyment data which are based on the number of people employed by individual firns during a specific pay period each nonth.

Table 3. 2.5
Bristol Bay Division Monthly Manufacturing Employment 1970-1978

	$\frac{\text { Year }}{1611}$	$\frac{\text { Jan. }}{1117.1}$	$\frac{\text { Feb. }}{113.0}$	$\frac{\text { Mar. }}{124.1}$	$\frac{\text { April }}{2+9}$	$\frac{\text { May }}{581}$	June   1471	$\frac{\text { July }}{3319}$	Aug.	Sept.			Dec.
	11					526	1821.0	0	1011.0				
	1:1?	134.0	46,01	38.0	8.7 .0	390.0	1105.0	1835.0	598.0	301.0	162.0	118.0	40.0
	1619	14..er	194.0	$1+2.9$	175.0	423.0	692.0	1446.0	802.0	608.0	250.0	219.0	191.0
	1474	124.0	73.0	6.1.9	35.0	133.0	295.0	729.0	657.0	292.0	151.0	139.0	84.0
$\bigcirc$	140	13.6	13.0	14.9	2?.01	61.0	184.0	371.0	240.0	139.0	42.0	35.0	27.0
	1676	11.0	10.1	9.0	16.0	6.2 .0	185.0	549.0	390.0	104.0	79.0	42.0	25.0
	11.97	4.11	16.0:	15.	21.0	101.0	176.0	435.0	457.0	155.0	132.0	18.0	13.0
	19!6	$1 ? .1$	1 col	14.9	14.0	70.0	. 221.0	747.0	561.0	204.0	0.1	0.1	0.1

Source: A aska Department of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the decimal point ind cates the number of months data are not ava labe due to confidentiality requirements.

Table 3. 2.6
Bristol Bay Census Division Number of Reporting Units in Menuf acturing by Quarter 1970-1978

Year	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
1911	14	? 0	22	22
1071	20	20	20	21
197?	21	21	21	19
1973	20	21	23	22
1914	23	22	21	21
197	13	14	14	12
1916	4	13	13	14
1917	13	12	13	12
$107 \%$	13	11	12	12

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.

Table 3. 2.7
Bristol Bay Borough Di visi on Quarterly Manuf acturing Empl oyment and Viges 1970-1978

		Man Months Quarter					$\begin{aligned} & \text { Muges } \\ & \text { Quarter (\$1,000) } \end{aligned}$				
	Year	1st	2nd	3rd	4th-	Annual	1st	2nd	3rd	_ 4th	Annual
	1970	11	1	0	0	0	0	0	0	0	0
	1971	11	${ }^{1}$	0	0	0	0	()	0	0	0
	1912	11	fi	n	0	0	0	n	0	0	0
	1973	1	r.	$n$	0	0	0	0	0	0	0
$\stackrel{\sim}{n}$	1914	11	$r$	1	0	0	の	0	0	0	0
	1975	ra.l	338.01	1307.0	515.17	2328.0	44.(-)	225.0	1911.0	517.0	2697.0
	1976	(11.0)	45000	1354.0)	98.0	1976.0	30.0	525.0	1902.0	64.0	2521.0
	1917	41.0	34,00	10.34.9	122.0	1503.0	2R.0	422.0	1933.0	35.0	2418.0
	1078	? 1.11	5 figh .0	184? 010	56.01	2441.0	23.0	684.0	2938.0	76.0	3721.1

## Source: Alaska Department of Labor, Statistical Quarterly, 1970-1978.

Note: The number to the right of the deci mal point indicates the number of nonths or quarters data are not available due to confidentiality requirenents.

Quarterly and annual enpl oyment data are the summation of monthly empl oyment data whi ch are based on the number of people empl oyed by individual firms during a specific pay period each nonth.

Table 3． 2.8
Bristol Bay Borough Division Monthly Manufacturing Empl oynent 1970－1978

	Year	Jan．	Feb．	Mar．	April	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．
	1\％／4	11	11	0	0	0	0	（）	0	0	0	0	0
	1 yT	11	$n$	0	0	0	1	0	0	0	0	0	n
	リリ？	11	0	0	n	n	0	0	0	0	0	0	n
	1！33	1	＇J	0	0	1）	0	0	0	0	0	0	0
$\frac{\omega}{\omega}$	1） $\mathrm{id}_{4}$	＂	11	3	$\bigcirc$	0	0	0	$($	0	0	0	0
	1いい	21．1	20．1	3.20	311.0	114.0	194.0	8.1 .0	456.0	90.0	201.0	177.0	137．（－）
	1914．	11.0	1 ＇），（\}	39.1	12.0	67.0	371.0	792.0	401.0	175.0	45.0	$27 * \mathrm{O}$	26.0
	1： $2-1$	$1 ? \cdot 1$	14.0	15.0	73.0	t： 2.0	261.0	617.0	301.0	166．（）	33.0	49.0	41．0）
	$1: 1 ; 1$	11.1	13.11	13.7	30.0	90.0	406.0	7．？4．0	889.0	229.0	19．（－）	13.0	24.0

Source：Al aska Department of Labor，Statistical Quarterly，1970－1978．
Note：The number to the right of the deci mal point indicates the number of nonths data are not available due to confidentiality requirenents．

Table 3. 2. 9
Bristol Bay Borough Census Division Number of Reporting Units in Manufacturing by Quarter 1970-1978

Year	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
1416	n	()	0	0
1411	$n$	0	0	0
1.12	n	0	0	0
1613	0	0	0	0
1274	$1)$	0	0	0
1015	10	9	8	8
1419	11	$\bigcirc$	6	6
1917	人	6	6	6
1018	6	$\varepsilon$	7	5

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.
noted that prior to 1975, the Bristol Bay Borough Census Division was includedin the Bristol Bay Division. Within these areas manufacturing is al nost excl usi vel $y$ dominated by fish processing and processing employnent incl uding warehousing and whol esal ing empl oynent is primarily incl uded in the manuf act uring statistics. Theref ore, nanuf acturing data cl osel y approxi nate fish processing data. Department of Labor statistics indicate that broadly defined processing empl oynent ranged between 100 and 127 percent of manuf acturing empl oynent from 1975 through 1978 in the Bristol Bay Census Division and between 88 and 106 percent in the Bristol Bay Borough Census Division. The extrene seasonality of processing empl oynent in Bristol Bay is well documented by that data presented in the af orementioned tables.

The 1979 sal non and 1980 herring harvests in Bristol Bay indicate that the area's processing capacity is in excess of 59,000 metric tons ( 130 milion pounds) of sal mon and 18,000 netric 'tons ( 40 mili on pounds) of herring. The use of harvest level $s$ as measures of processing capacity is di scussed in a previ ous section. It should be noted that due to the extensi ve use of floaters, tenders, and cargo aircraft the processing capacity of the Bristol Bay area can change very rapidly. The 1976 herring processing capacity was less than 1 percent of what it is in 1980.

## Comminity Infrastructure

The infrastructure of the commities of the Bristol Bay Census Division
and the use made of $i t$ by the commercial fishing industry are di scussed in this section.

## El ectricity.

Commities in the Bristol Bay area generate their el ectricity with di esel-powered equi pnent. Each village or town generates only for its own use, as di stribution of rel ativel $y$ small anounts of el ectricity over I ong distances is uneconomical. Villages usually do not maintain large reserve generating capacities capable of accommodating newlarge com nercial el ectricity consuners.

The City of Dillingham is the population center of the Bristol Bay area, and serves as the area's comerci al hub. Nushagak El ectric Cooperative, Inc., provides el ectricity for the community. Fi ve diesel - powered generators of various sizes between 300 and 10 ClO KW are operated by the co-op and create a total I oad capacity of 2900 KW . During nost of the year, a conbi nation of tho units can accommodate the commity's electricity needs. Peak electricity consumption occurs during the sumer, with a load of around 1600 KW in July being 1979's maxi mum

Fish processing accounts for alarge portion of Dillingham's el ectricity consumption during the summer. Many processors operate in the Bristol Bay area, but only two sizable operations, a freezing facility and a cannery, purchase their electricity fromthe co-op. Even so, fish processing consumes nearly one thi rd of the co-op's production during
the sal non fishing season. In July, 1979, processors used 190, 840 KWH of the total 623, 857 KWH consumed by the comminity.

It is expected that Nushagak El ectric Co- op will be called upon to provide an increasing anount of power throughout the future. Fifty new HD houses will soon be constructed, and fish processing will requi re nore el ectricity as freezing continues to replace canning. The co-op is attempting to obtain a new unit of at least 1000 KW to accomodate the anticipated demand and will be able to retire sone ol der equi pnent if successful. The addition of a new unit should provide adequate generating capacity to accomodate the commity's growing denand for electricity for several years.

## Whter.

The City of Dillingham has the largest popul ation of any commity in the Bristol Bay area, and maintains a central water system with pi ped di stribution to consumers. A well serves as the water source, and a 310, 000 liter ( 82,000 gal on ) el evated tank is utilized for storage. During periods of peak water consumption which occurs during summer fish processing, about 322, 000 liters ( 85,000 gal lons) are used each day. This obvi ously stresses the city's water storage capacity and surpasses its ability to allow unrestricted consumption. At tines during the 1979 summer fish processing season, tenders and offshore processors were restricted to 7,500 liters ( 2,000 gallons) of water per trip to replenish their supplies. Under unrestricted use, these consumers would often obtain up to 56, 775 liters ( $\mathbf{1 5 , 0 0 0} \mathbf{~ g a l l o n s ) ~ p e r ~ t r i p . ~}$

Construction is al ready underway on a pad for a new 1.9 milion liter (500, 000 gal ion) tank whi ch should be ready for use during the 1980 fish processing season. Also, the city has a second well that will be put into service. It is bel $i$ eved that the additional pumping and storage capacities will be ample to allow totally unlimited water consumption for fish processing, and that additional large consuners of water could be accomodated by the system without liniting anyone el se's consumption patterns. Dillingham's water system could probably fulfill the needs of additional Iarge industrial users if the needs of maj or consumers are properly coordi nated.

## Pent Facilities.

As Bristol Bay's center of commerce, Dillingham also offers the area's maj or port. Due to the shallow water of the area, the port is a "port tide port", whi ch neans the dock can onl $y$ be reached by vessel during certain phases of the tides when water depthis adequate. Not only is the water depth insufficient much of the tine for vessel novenent, but the water line is nearly 4.6 neters ( 15 feet) fromthe dock at low tide. Vessel sthat do not leave the dock when the tide recedes are I eft beached until the next high tide period. Dillingham experiences about a 7. 32 meter ( 24 foot) tide, and it is necessary for all vessel s to work with it. Even deliveries of fish to local processors by tenders or small fishing boats must be coordi nated with the tide.

Though the tide situation greatly complicates shi pping to and from Dillingham, large barges can reach the dock. This eliminates the need
for expensive lightening by smaller barges fromlarge barges anchored several miles offshore. However, the barges sel domstay at the dock to be grounded during lowtides because of potential structural danage to the vessels. It is not uncommon for the same barge to require several trips to and fromthe port to complete cargo transfers. This becomes extrenely time consuming, and greatly sl ous cargo novenent.

The port usually recei ves around 16 barges each year, and has a shi pping season extending from late April through Iate Septenber if the weather is favorable. Inclenent conditions of ten shorten the shi pping season, and a later opening date is not unusual.

A single barge can and usually does tie up the entire dock, and coupled to the inconveni ence of working with the tide, barges can be idle for quite some time anaiting use of the dock. Also, the staging area is quite snall. The city is attenpting to put together a major project to improve the port facilities, but many maj or concerns remain in question. The State of $\mathbf{A}$ aska has al ready comitted $\$ 1 \mathrm{milli}$ on to improving the port, and the city will contribute $\$ \mathbf{1 0 0}, 000$. Currently, city officials are attenpting to secure $\$ \mathbf{3} \mathbf{m i l i}$ on of additional state funding so that an entirely new port can be constructed. Mst desi rable would be a pier extending 122 neters ( 400 feet) from shore so that the dock could be used during low tide. But an improved port tide port is a nore conservative, and probably more realistic, expectation of what may actually be constructed.

The City of Dillingham nai ntai ns a small boat harbor whichis operational from May through September. The predom nate users of the harbor are sal non gill net boats, which range up to a 9.8 neters ( 32 foot) maxi mum I ength legally allowed for Bristol Bay salmon fishing. Around 235 vessel $s$ are sometimes crouded into the harbor during the peak of sal non fishing activity, which reportedly requires that boats be stacked 18 across. The harbor has floating piers which allow nore stacking than stalls would, and ultimately nore vessels may be crouded into the harbor.

Canneries and processing firns have Iong provided noorage at their sites for many of the area's fishernen, and during the offseason cannery land has been used for out-of-nater storage. This practice is still common and expl ai ns how hundreds of local fishermen who do not have access to the harbor care for their vessel s. Sone private landhol ders in the area are al so offering moorage and on-I and storage, and it appears that the use of private facilities will grow in popularity.

The Dillingham small boat harbor requi res almost constant dredging from May through Septenber to nai ntain an adequate depth. This has resulted in high operating costs for the harbor, and may complicate any attempt to enl arge the present harbor or construct a new harbor.

BETHEL, WADE HAMPTON, AND KUSKOKWIM CENSUS DI Y SI ONS

Cormunities in the Bethel, Whde Hampton, and Kuskokwim Census Di vi si ons are the principal bases of the harvesting and processing activities associ ated with the sal non and herring fisheries of the Kuskokwim and Lower Yukon Managenent Areas.

## Processing Activity

The conmercial sal non fisheries located near the nouths of the Yukon and Kuskokwi $m$ Ri vers and the herring fisheries located near Goodnews Bay, Security Cove, and Cape Romanzof are served by over 20 buyers and processors. Probably due Iargely to the scarcity of large airports in the area whichwould facilitate flying fresh fish to plants in other areas, nost locally- caught fish are processed in the area. Processing shi ps, referred to as floaters, are common throughout the area and usually freeze their entire output. However, a few canning facilities still operate, and there are some salting operations. As is true in Bristol Bay, primarily superficial processing occurs to herring before it leaves the area.

Processors and buyers are scattered throughout the Yukon coastal area. Sone of the Iocations are Emmonak, Bl ack Ri ver, Lanent SI ough, Kwikpakak Sl ough, and Kwikluak Pass near Alakanuk. At least six or seven buyers are usually operating in these coastal locations, and many other buyers can be reached by traveling up river. It is estimated by persons familiar with the coastal Yukon comercial fishery that around 75 percent of the
catch is processed locally, and the remai nder is flown out for processing el sewhere.

The Kuskokwim sal non fishery is more concentrated than that of the Yukon, and occurs primarily in the wide Kuskokwim River nouth bel ow Bethel. The processors which operate in the area freeze nost of thei $\mathbf{r}$ product. Three pernanent structures are located in town and about five floaters operate between Bethel and Kuskokwim Bay. Bethel is linked to Anchorage through regul ar commercial air service, and is therefore able to fly fresh sal non to Anchorage and other locations for processing. This tends to gi ve the Kuskokwimfishery more flexibility in processing capacity than exi sts near the Yukon fishery.

Local residents are not able to fulfill all of the processors' labor needs. Processing empl oynent provi des a cash incone for local people who choose to work when not engaged in other activities, but imported I abor from other areas of $\mathbf{A}$ aska and the Seattle area is essential for the operations of nany facilities.

Manuf act uring empl oynent and wage statistics for the Bethel, Kuskokwim and Wade Hampton Census Division are summarized in Tabl es 3. 2. 10 through
3. 2. 18. Unf ort unatel $y$, there were frequently fewer than four reporting units in each census di vision and the data are confidential. Data provi ded by the Al aska Department of Labor indi cate that average nonthly fish processing, warehousing and whol esaling empl oyment for the Kuskokwim and Wade Hanpton Census Di visi ons ranged from 58 in 1975 to 97 in 1979

Tab e 3.2. 0
Bethe Division
Quarter y Manufacturing Employment and Wages
1970-1978

		Man Months Quarter					$\begin{aligned} & \begin{array}{l} \text { Wages } \\ \text { Quarter } \$ 1,000) \end{array} \end{aligned}$				
	Year	Ist	2nd	3rd	4th	Annual	1st	2nd	3 rd	4th	Annual
	197,		4-6, )	453.0	161.0	1059.3	0.1	130.0	129.0)	24.0	283.1
	1971	1.3	11.3	0.7	70.0	170.9	$? 1$	0.1	0.1	19.0	19.3
	$1+1 \%$	04.0	if.0)	0.3	0.3	250.6	20.0	24.0	0.1	0.1	44.2
	1073	11.3	794.0)	3.3 .	0.3	6. . 6	0.	68.0	124.0	0.1	192.2
W	19\%4	1.3	2?.01	n. 3	46.0	264.6	0.	68.0	0.1	30.0	98.2
	1.97	11.3	11.3	$\therefore$. ${ }^{\text {a }}$	* 3	1.2	0.	0.1	0.1	0.1	0.4
	1076	19.1	. 3	11.3	. 3	114.9	5.0	0.1	0.1	0.1	5.3
	1097	1.3	1.... 1	9,5.01	0.3	651.6	$\bigcirc * 1$	89.0	507.0	0.1	596.2
	1076	$\cdots$	$1 \because n$	538.0	;1.0)	763.0	80	03.0)	243.0	94.0	448.0

Source: A aska Department of Labor, Stat stical Quarter y, 1970-1978.
Note: The number to the right of the decimal point indicates the number of months or quarters data are not available due to confidentiality requirements.

Quarterly and annual employment data are the sumnation of monthly employment data which are based on the number of people employed by individual firms during a specific pay period each month.
able 3.2.
Bethe $D$ vision
Monthly Manufacturing Employment 1970-1978

	$\frac{\text { Year }}{1.176}$	$\frac{\operatorname{Jan} .}{1.1}$	$\frac{\text { Feb. }}{0.1}$	Mar.	April	$\frac{\text { May }}{2 n .0}$	$\frac{\text { June }}{416.0}$	$\frac{\text { July }}{5}$	Aug.	Sept.	oct.		Dec.
								F0.0	243.0	160.0	70.0	67.0	24.0
	1571	1.13	0.1	0.1	0.1	0.1	* 1	0.1	0.1	0.1	48.0	62.0	60.0
	197?	37.1	36.11	31.0	20.0	26.0	00.0	0.1	0.1	0.1	0.1	0.1	0.1
	1073	0.1	0.1	1.1	74.0	33.0	231.0	163.0	114.0	46.0	0.1	0.1	0.1
$\underset{\sim}{\text { ¢ }}$	1974	1.1	0.1	0.1	23.11	4.0	65.0	0 .	0.1	0.1	19.0	14.0	13.0
	190	0.1	11.1	0.1	0.1	0.1	$?$	$\cong 1$	0.1	0.1	0.1	0.1	0.1
	1910	4.0	5.0	9.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	1077	$\cdots .1$	0.1	0.1	11.0	5.0	90.0	279.0	230.0	36.0	0.1	0.1	0.1
	167\%	7.0	6.11	9.0	1?.0	8.0	22.0	260.0	237.0	41.0	36.0	8.0	7.0

Source: Alaska Department of Labor, Statistical Quarterly, 1970-978.
Note: The number to the right of the decimal poine ndicates the number of months data are not avallable due to confidentiality requirements.

Table 3.2.12
Bethel Census Di visi on
Number of Reporting Units in Manuf acturing by Quarter 1970-1978

	Year	First Quarter	Second Quarter	Thi rd Quarter	Fourth Quarter
	1910	4	6	5	5
	1071	;	5	5	5
${ }_{\sim}^{\sim}$	197	4	;	4	4
	$1+13$	4	5	5	5
	1074	4	5	5	5
	はい	4	¢	4	4
	$191 \%$	$4_{4}$	4	4	4
	1977	4	5	5	5
	1918	¢	5	5	7

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.

Table 3.2.13
Whde Hampton Di vi si on
Quarterly Manufacturing Employment and Wages 1970-1978"

	Man Months Quarter						$\begin{aligned} & \text { Wages } \\ & \text { Quarter }(\$ 1,000) \end{aligned}$				
	Year	1 St	2nd	3rd	4th	Annual	Ist	2nd	3rd	4th	Annual
	1076	11.3	11.3	0.3	284.0	284.9	( $\mathrm{I}_{\mathrm{e}} 1$	0*1	0.1	153.0	153.3
	1971	11.3	r. 3	0.3	0.3	1.2	0.1	0.1	O*1	0.1	0.4
	1076	11.3	0.3	932.0	0.3	832.9	0.1	0.1	543.0	0.1	543.3
	1973	11.3	10400	98.3010	0.3	1087.6		40.0	494.0	0.1	534. 2
$\stackrel{\text { N }}{\sim}$	1974	1.3	1.3	131.0	121.n	1052.6	0.1	0.1	541.0	152.0	693.2
	1975	9?.11	',1.0)	410.0	0.3	582.3	44.0	15.0	375.0	0.1	434.1
	197t.	13.0	20.0	0.3	50.0	83.3	24.0	25.0	0.1	59.0	108.1
	1911	1.1:91)	i. 3	730.0	105.7	943.3	152.0	0.1	467.0	148.0	767.1
	1018:	11.3	313.0	519.11	129.0	1020.3	0.1	225.0	3R9.0	198.0	812.1

Source: Al aska Depart nent of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the deci nal point indicates the number of nonths or quarters data are not available due to confidentiality requirements.

Quarterly and annual empl oynent data are the summation of nonthly empl oynent data whi ch are based on the number of people empl oyed by individual firns during a specific pay period each month.

Table 3.2.14
Wade Hampton Division Monthly Manufacturing Employment

## 1970-1978

Year		Feb.	Mar.	April	May	June	$\frac{\text { July }}{0.1}$	Aug.	Sept.	$\frac{\text { oct. }}{111 .)}$	$\frac{\text { Nov. }}{79.0}$	$\frac{\text { Dec. }}{94_{4} \cdot 0}$
1971	1.1	11.1	0.1	0.	0.1	0.1	0.1	0.1	0.	0.1	0.1	0.
1072	1.	0.	0.1	0.1	1.1	0.1	419.0	242.0	171.0	0.1	0.1	0.1
1073	11.	1.	0.1	$1 . n$	31.0	54.0	444.0	330.0	209.0	0.1	0.1	0.1
\%	-	1	0.1	0.	1.1	0.1	506.0	362.0	63.0	50.0	37.0	34.0
196	?3.0	6.01	23.11	0.0	17.0)	24.1	145.0	185.0	140.0	0.1	0.1	0.1
1076	¢.'1	4.	4.9	1.0	5.0	8.0	0.1	0.1	0.1	20.0	15.0	15.0
917	$42 \times 11$	34.11	32.11	1.	0.	0.1	267.0	252.0	211.0	36.0	35.0	34.0
918	"。	-	1.1	60.0	69.0	184.0	155.0	167.0	256.0	52.0	45.0	32.0

Source: A aska Department of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the decima point ndicates the number of months data are not ava able due to confidentiality requirements.

Table 3. 2. 15
Whde Hampton Census Di vi si on Number of Reporting Units in Menuf acturing by Quarter 1970-1978
First Quarter
6
5
6
6
7
7
6
5
5

Second Quarter
5
6
6
7
7
7
5
6
5

Third Quarter

Fourth Quarter
Year
19711
1971
1972
1973
1974
1075
1976
1977
1978

Source: Alaska Departnent of Labor, Statistical Quarterly, 1970-1978.

Table 3. 2.16
Kuskokwim Di visi on
Quarterly Manuf acturing Empl oyment and Wages
1970-1978

				Man Mo Quart					Vage Quart	, 000	
	Year	1st	2nd	3rd	4th	Annual	1st	2nd	3rd	4th	Annual
	1010	11.3	0.3	0.3	0.3	1.2	0.1	0.1	0.1	0.1	0.4
	1911	11.3	11.3	${ }^{(1)} 1$	0.3	1.2	0.1	n.]	0.1	0.1	0.4
	14.72	11.3	11.3	11.3	0.3	1.2	0.1	0.1	0.1	0.1	(7*4
	1197	11.3	(1.) 3	0.3	0.3	1.2	0.1	0.1	0.1	0.1	(-). 4
O	19.14	11.3	1.3	). 3	0.-3	1.2	0.1	0.1	0.1	0.1	0.4
	1075	${ }_{0}{ }^{*} 3$	1.13	(1.3	1.3	1.?	0.1	0.1	0.1	0.1	0.4
	1976	11.3	11.3	0.3	0.3	1.2	0.1	0.1	0.1	0.1	0.4
	1917	1.73	f. 3	11.7	0.3	1.2	0.1	0.1	0.1	0.1	0.4
	1919	1.1	1.3	17.3	0.3	1.2	(-). 1	[ ${ }^{*}$ 1	0.1	0.1	0.4

Source: Al aska Department of Labor, Statistical Quarterly, 1970-1978.
Nbte: The number to the right of the deci nal point indicates the number of nonths or quarters dat a are not available due to confidentiality requi renents.

Quarterly and annual empl oyment data are the summation of nonthly enpl oynent data whi ch are based on the number of people empl oyed by individual firns during a specific pay period each nonth.

Table 3.2.17
Kuskokwim Divisi on
Monthly Manuf acturing Empl oyment
197( 3-1978

Year	Jan.	Feb.	Mar.	April	May	June	July	Aug.		Oct.	Nov.	Dec.
10,	0.1	0.1	0.1	0.1	0.1	0.1	0.1	$0.1$	0.1	0.1	0.1	0.1
1071	0.1	(). 1	0.1	C) ${ }^{1}$	0.1	O*1	O*1	0.1	0.1	0.1	0.1	0.1
1012	3.1	1.1	0.1	0.1	0.1	0.1	O*1	0.1	0.1	()*1	0.1	0.1
1973	(). 1	0.1	0.1	0.1	0.1	()"1	0.1	0.1	0.1	0.1	0.1	0.1
1974	0.1	11, 1	0.1	$n .1$	0.1	(). 1	0.1	0.1	0.1	0.1	0.1	0.1
1514	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	O*1	$n .1$
1971	0.1	a. 1	0.1	0.1	0.1	0.1	0.1	0.1	() *1	0.1	0.1	0.1
1071	[1.1	1.1	0.1	0.1	0.1	0.1	0.1	$n .1$	0.1	0.1	0.1	0.1
16.1:	0.1	11.1	0.1	11.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	$0 . .1$

Source; Alaska Department. of Labor, Statistical Quarterly, 1970-1978
Note: The number to the right of the decimal point indicates the number of nonths data are not available due to confidentiality requi renents.

Table 3．2．18
Kuskokwim Census Divis on
Number of Reporting Units in Manufactur ny by Quarter 1970－1978

	Year	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
	1970	1	1	1	1
	1971	1	1	1	1
$\underset{\sim}{\text { w }}$	1912	1	1	1	1
	1013	1	1	1	1
	1014	1	1	1	1
	1075	1	1	1	1
	いい。	$?$	？	2	2
	1017	，	2	2	2
	197	，	2	2	$?$

Source：Alaska Department of Labor，Stat stica Quar erly，970－978．
and averaged 84; for the Bethel Census Di visi on empl oynent ranged from 56 to 100 bet ween 1975 and 1978 and averaged 78. The broadly defined Kuskokwim and Wade Hampton processing empl oyment was 111 and 118 percent of Whde Hampt on manuf acturing empl oyment in $\mathbf{1 9 7 7}$ and 1978 respectivel y ; and the broadl $y$ defined Bethel processing empl oyment was 98 percent of nanuf act uring enpl oynent in 1978. For the years data are available, processing empl oyment is denonstrated to be highly seasonal. This is, of course, to be expected since the plants process al nost excl usi vel y sal non and herring which are harvested during the late spring and summer.

Recent harvests in the Kuskokwim and Lower Yukon Managenent Areas indicate that the Bethel, Wade Hampton, and Kuskokwim areas are able to I and and prepare for transportation for further processing and narketing over 5, 443 metric tons ( 12 mili on pounds) of sal non and 1,572 metric tons ( 3.5 milli on pounds) of herring. The use of harvest levels as a neasure of processing capacity is di scussed in a previ ous section. It should be noted that processing capacity can change rapidly in this area due to the extensive use of floating processors and tenders and due to the airlift capability that exists.

## Comminity Infrastructure

The infrastructure of the commities of the Bethel, Wide Hampton, and Kuskokwim Census Di visi ons and the use nade of it by the comercial fishing industry are di scussed in this section.

## El ectricity.

Each commity in the Kuskokwi mower Yukon area generates its own el ectricity with di esel - powered equi pnent. The popul ation of the area is too sparce and villages and cities are too distant from one another to efficiently distribute el ectricity from a central generating facility. With the exception of area popul ation centers, commities generally do not nai ntain large reserve generation capacities which could be available to new I arge commerci al el ectricity consumers. Diesel-powered generation has resulted in extremely high el ectricity prices, but it has the advantage of allowing rapid al teration or expansi on of a systems capacity. If necessary, new units can be operational within only a few nonths, or sometimes weeks, of the deci si on to obtai $\mathbf{n}$ them

The City of Bethel is the area's popul ation center and the hub of fishing operations. The city adequately handles the el ectricity denands of local processors and utilizes about 60 percent of its generating capacity to do so. The fish processing industry is rapidly adopting the el ectricity-intensi ve practice of freezing rather than canni ng sal non. As this trend grous al ong $\mathbf{N}$ aska's west coast, increasi ng el ectricity consumption by firns operating in Bethel nay result.

Whter.

Municipal water systens with distribution nai ns to indi vidual resi dences and other buildings are generally not found in renote $\mathbf{N}$ aska villages.

The villages have adequate water sources, but usually rely upon individual s to procure their own supplies.

The City of Bethel nai ntains a water systemthat serves nost of the community's residents. About 100 hones have piped water which is obtai ned froma single well capable of providing 1, 324 liters ( 350 gallons) per minute. The city provi des water del ivery to the renai nder of the city's residences. The well provides ample water to neet the city's residential needs. Obtaining laborers at various times of the year to del iver nater to indi vidual homes poses the maj or operation problem There are currently plans to extend piped water to commercial buil dings, but no further expansi on of the systemis expected within the near future.

Fish processing does not particularly stress the water systems capacity. Most fish which are Ianded in Bethel are flown out fresh after very minimal preparation. Ground water in the area is abundant enough to al I ow additional wells to accomodate increased industrial consumption.

Port Facilities.

The City of Bethel offers the onl y port in the Kuskokwim-Lower Yukon area. The city is located al ong the Kuskokwim River about 81 kiloneters ( 50 miles) upriver fromits nouth. The Bethel port is the farthest north facility a ong Alaska] west coast that can accomodate fairly deep draft vesse s with water depth at dock side of $\mathbf{1 2 . 2}$ neters (40 feet). However, the water depth near the nouth of the river is
6. 4 meters ( 21 feet), which effectively prohi bits the utilization of the port's ample draft.

Four shi pping compani es currently serve Bethel, and each firm usually sends three to five barges to the community each year. The shi pping season typically runs from the end of May through the end of Septenber. The dock is 122 meters ( 400 feet) long, and can accommodate only one barge at anytine. This often causes del ays as barges lie idle avaiting use of the dock. The problemis amplified as smaller barges must al so obtain dock space to load cargo for distribution to villages throughout the area.

The City of Bethel has a $\$ \mathbf{5 0 0}, 000$ grant to expand the port's stagi ng area, but city of ficials indicate that extensive expansion of the actual docking facilities is necessary to greatly increase efficiency of cargo handling. The ability to unl oad tuo large barges at once, while sim ult taneously loading smaller village-bound barges would I argely el ininate the bottleneck which requi res barges to wait for dock space. But at thi s tine, such expansi on is not planned at the port. Vithout substantial expansion, it is felt that use of the port by additional users uould substantially increase the current congestion. City officials bel $i$ eve that the land requi red for port expansi on could be obtai ned at reasonable cost because of the benefits of an improved port to all parti es concerned.

There are no snall boat harbors in the Kuskokwim-Lower Yukon area. Mbst boats used by area resi dents are skiffs and generally do not exceed $\mathbf{7 . 3}$ neters ( 24 feet) in length. Therefore, the vessel s can be beached when not in use, and are easily transported on Iand when renoved fromthe water for wi nter storage.

The City of Bethel is the area's maj or popul ation center, and is conducting a feasibility study for a small boat harbor. City officials have indicated that a capacity of around 1,000 vessel $s$ is being considered, and that an even larger capacity could be fully utilized. A variety of stall sizes is envi sioned if the project materializes. However, it must be emphasi zed that the smaller vessel sused in the Kuskokwim-Lower Yukon area are not comparable with the larger vessel s of commities such as Kodi ak, and that harbor capacity based sol el y upon number of stalls can be misleading.

Land suitable for devel opment is a rel atively scarce comodity in Bethel, but the local native corporation has agreed to provide a site for the harbor if the project reaches construction. Based upon the experi ences of ot her $\mathbf{A}$ aska commities invol ved with small boat harbor projects, several years will probably lapse before all of the required studi es are completed, funding is arranged, and construction actually begi ns.

## YUKON - KOYUKUK CENSUS DI VSION

The comercial fishing industry activities associated with the Upper Yukon Managenent Area occur in or adjacent to commities within the Yukon - Koyukuk Census Di vi si on.

## Processing Activity

Commercial fishing al ong the upper Yukon River generally consi sts of harvesting salmon with set gill nets and fish wheels. The upper Yukon Ri ver fishery extends inl and from near the village of Anvik; however, the section from Anvik to Ramparts experiences the heavi est fishing activity. Sal non are al so taken commercially further upriver from Ramparts, but fewer fishernen participate and in less concentration.

The residents of nearly every village al ong the Yukon River are active in commerical sal non fishing. Fishing effort is not particularly concentrated in certain locations al ong the river beyond that caused by residents fishing in the vicinities of their villages. There is not an influx of nonl ocal people into commities to fish during the summers. Rather, almost all limited entry permits are held by residents of the general area. Several limited entry sal non fishing permits for the vicinity of the Trans-Alaska Pi peline bridge over the Yukon River have been purchased by residents of Fai rbanks and other Alaska cities, but there is no indication of this practice spreading to other areas al ong the river.

The maj ority of fish harvested in the area is transported by air to ot her areas such as Anchorage for processing. Mich of the fish is assenbled at Galena for icing prior to being flown out; sal non is tendered to Galena from as far away as Ruby and Nulato. Other villages are nai $\mathrm{nl} y$ dependent upon air transport of their fish fromlocal airfields, and icing is usually the extent of preparation.

Several rel atively small processing firns operate in the region and process a significant portion of the upper Yukon's sal non harvest when thei $r$ production is consi dered collectivel $y$. Most of the firns concentrate on fresh frozen salmon and a very limited canning capacity is reported. Sal non roe is packaged by the firns, usually under the direction of an morted technician.

Commities reported to have fish processing facilities incl ude Tanana, Manl ey Hot Springs, Anvik, and Grayling. The firns generally are not associ ated with maj or fish processing companies, are owned by Alaska residents, and empl oy local people with the exception of positions requi ring specialized skills.

As is indi cated by the manuf act uring empl oyment and nage data summarized in Tables 3. 2.19 through 3. 2. 21, there have been so few reporting units that the data are confidential. The small number of reporting units together with the small size of the reporting units indicate that manuf act uring and fish processing employment is minimal. The employment is al so known to be hi ghly seasona? due to the seasonality of harvesting activities.

Table 3. 2. 19
Yukon- Koyukuk Di vi si on
Quarterly Manuf act uring Enpl oyment and Wages
1970-1978

	Year	Man Months Qua rter					$\begin{aligned} & \text { Whages } \\ & \text { Quarter (\$1,000) } \end{aligned}$				
		1st	2nd	3rd	4th-	Annua 1	1st	2nd	3rd	4th	Annual
	1070	- ?	1	11	0	0.3	n. 1	0	0	0	$n .1$
	1911	11	11*3	17.3	0.3	0 -q	0	0.1	0.1	0.1	0.3
	1612	11.3	1	1	0	0.3	$n .1$	0	0	0	0.1
	1197 ?	11	1	n	0	0	0	0	0	0	0
$\underset{\omega}{\omega}$	1014	${ }^{\prime}$	9	$1)$	1	0	0	$1)$	0	0	0
	1015	1	Ci. 3	11.3	9.3	1.9	0	0.1	0.1	0.1	0.3
	1.97	11.3	11.3	0.3	0.3	1.2	0.1	0.1	0.1	0.1	0.4
	1917	11.3	8.3	0.3	0.3	1.?	0.1	0.1	0.1	0.1	0.4
	1914	1.3	$\because .3$	0.3	0.3	I * ?	0.1	0.1	0.1	(). 1	0.4

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the deci nal point indi cates the number of nonths or quarters dat a are not available due to confidentiality requirenents.

Quarterly and annual empl oyment data are the summation of nonthly empl oyment data which are based on the number of people empl oyed by individual firms during a specific pay period each nonth.

Table 3. 2. 20
Yukon-Koyukuk Di vi si on
Monthly Manuf acturing Empl oynent 1970-1978

Year	Jan.	Feb.	Mar.	April	May	$J$ une	July	Aug.	Sept.	Oct.	Nov.	Dec.
1016	0.1	1.1	0.1	$\bigcirc$	n	0	n	0	0	0	0	$o$
1971	11	11	0	0.1	$1)$.	0.1	0.1	0.	0.1	0.1	0.1	0.1
1.772	1.1	0.1	0.1	n	n	0	0	$1)$	0	0	0	0
11.13	11	0	(1)	0	0	0	0	0	0	0	0	n
1974	1	11	()	ก	$1)$	0	0	0	0	0	0	$n$
1076.	0	i)	0	0.1	). 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1.76	0.1	i') ${ }^{\text {a }}$	0.1	0.1	0.1	$n .1$	0.1	0.1	0.1	0.1	0,1	0.1
1197	1.1	11*1	0.1	0.1	O*I	0.1	0.1	0.1	0.1	0.1	0.1	0.1.
1)?	1.1	3.1	0.1	$n .1$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Source: Al aska Department of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the decimal point indicates the number of nonths data are not available due to confidentiality requi renents.

Table 3．2．21
Yukon－Koyukuk Census Division
Number of Reporting Units in Manufacturing by Quarter 1970－1978

	Year	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
	11970	1	0	0	$\bigcirc$
	1071	$n$	1	1	
㿾	1：72	，	0	0	－
	11973	1	1	0	n
	1074	1	0	0	0
	1974，	n	2	1	
	1－1t	，	2	2	2
	1917	$?$	2	1	
	リアア	1	1	1	1

Source：A aska Department of Labor，Statistical Quarter y，1970－978．

Recent harvests indi cate that the processing capacity of the area is over 750 metric tons ( 1.7 million pounds) of sal non. However, since unprocessed fish can be flown out of the area, processing capacity can change rapidly.

## Comminity Infrastructure

The infrastructure of the communities of the Yukon and Koyukuk Census Division and the use made of it by the commercial fishing industry are di scussed in this section.

## El ectricity.

El ectricity al ong the upper Yukon River is generated with di esel-powered generators mai ntai ned by each commity. Distribution systens do not extend beyond the village ortown sites being served, nor is the generating capacity usually great enough to serve a larger area. Due to the area's sparce popul ation and di stance between villages, a costly centralized generating facility and the appropriate di stribution net nork are not likely to repl ace the indi vi dual generators within the foreseeable future. Consumers requi ring nore el ectricity than the local generators can provide or I ying outsi de their service areas, must be prepared to assist in upgrading the local equi pnent or install private generating equi pment.

Water availability is not a problemfor villages along the upper Yukon River. However, nost communities do not naintain centralized freshwater systens that serve indi vi dual hones and busi nesses. Rather, procurenent of water is often left to the indi vi dual consumers. Any new water consumers in the regi on should be prepared to privately furnish and naintain equi pnent necessary for an adequate water suppl $y$.

Small Boat Harbors.

Commities al ong the Upper Yukon River do not nai ntain small boat harbors. Open skiffs are generally used for commercial fishing and are al so used for hunting and general transportation. They are usually not mach beyond 6.1 meters ( 20 feet) inlength, and can be beached or entirely renoved from the water when not in use.

## Port Facilities.

Villages located along the Upper Yukon Ri ver recei ve barge service during the sumer nonths. The barges that navi gate the Yukon Ri ver are quite versatile; they are often able to serve villages that naintain no dock facilities. Any dock facilities maintai ned in the area are intended for barge use and are not accessi ble by deep draft vessel s.

NOME CENSUS DI VISION

Communities in the None Census Di vision are closel y associ ated with the sal non, winter king crab, and set gill net herring fisheries of the Norton Sound Managenent Area.

## Processing Activity

The commercial sal non fishery in the None area extends around mach of Norton Sound. Therefore, the fishery is not centered near any particular community nor is the processing sector concentrated at any one location. Several fish buyers operate stations around Nbrton Sound and have the sal non they purchase transported to other areas of Alaska for processing. In nost instances these buyers represent large fish processing firns that are prominent within the industry. Norton Sound sal non are usually processed at facilities in Anchorage or on the Kenai Peninsul $a$.

Sone of the common fish buying locations in Nbrton Sound are at None, Golovin, Elim, Unalakleet, and St. Mchael. The sal non are usually chilledinice and nay undergo various stages of cleaning before being flown to a processing plant in Central Alaska. If the fish are to be processed soon after they are purchased, chilling is sonetines not requi red. At Golovin, a local co-op operates a freezing facility. This allous the firm to hold its fish in the fully-processed state and sell them at a later tine. Also, a freezer ship is used to transport the product, avoi ding costly air transport.

The nunber and close proximity of buyers appears to provide a reasonably competitive fish market in the area, and a number of processing jobs are created which provide a source of cash incone for local resi dents. In nost instances, local persons are able to fill the labor needs of the buyers, and few positions are occupi ed by nonl ocal s.

King crab has been taken through the ice in Norton Sound near None in recent years. The crab is steaned and frozen in None by a local firm and the product is then flown to Anchorage where it is often soldin I ocal narkets. Roe herring is another rel atively new fishery for the area. Prior to 1980, a transi ent processing ship bought al local harvests. In 1980, there were buyers from ei ght compani es, seven processing vessel s, si $x$ tenders, and one land based buying operation participating in the Norton Sound herring fishery. Local processing empl oyment resulting from the herring fishery is minimal due to the extensi ve use of processing vessel s and tenders.

Manuf acturing empl oyment and wage data for the Nome Census Di vi si on are summarized in Tabl es 3. 2. 22 through 3. 2. 24. Due, however, to the small number of reporting units, data for many quarters are confidential and data for fish processing al one are not available. Si gnificant seasonality in processing empl oynent is known to exi st since onshore processing is limited al nost excl usi vely to sal non.

Recent harvest levels indicate that over 1, 100 metric tons ( $\mathbf{2 . 4} \mathbf{~ m i l i}$ on pounds) of sal mon and 2, 200 netric tons ( 4.9 milli on pounds) of herring can be Ianded and prepared for transportation for further processing

Table 32.22
Nome D vision
Quarter y Manufacturing Emp oyment and 970-1978

				Man Mon Ouarter					Wages Quarte	$1,00$	
	$\frac{\text { Year }}{1979}$	$\frac{156}{196}$	4 na	$\frac{3 r d}{52}$	4 th	$\frac{\text { Annual }}{120}$	$\frac{15 t}{14}$	2nd	$\frac{3 \mathrm{rd}}{13}$	4th	Annual
				$5 \% .0$	0.3	120.6	14.0	0.1	13.0	0.1	27.?
	1971	$\cdots$ -	6.3	0.3	0.3	53.9	5.0	0.	*	$\cong 1$	15.3
	197?	1.3	0.3	1.3	. 3	1.2	0.1	0.1	0.1	0.	0.4
	1013	0.3	0.3	0.3	0.3	1.2	0.1	0.1	0.1	0.1	0.4
$\stackrel{\rightharpoonup}{\text { c }}$	1014	0.3	M, 1	0.3	1.3	. 2	0.1	0.1	0.1	0.1	0.4
	1096	1!.1	4.3	11.3	29.11	44.6	7.0	0.1	0.1	20.0	37.2
	1076	$1 \because$ 。	1.3	6.1 .1	1.3	73.6	10.0	0.1	91.0	0.1	01.2
	1.17	31."	B, ${ }^{2}$	c. ${ }^{3}$	21.0	52.6	13.0	0.1	0.1	17.0	30.2
	10\%	$\because \cdot \cdots$	-. 3	21.1	0.3	283.6	13.0	0.1	201.0	0.1	214.2

NOTE: Quarterly and annual employment data are the summation of monthly employment data which are based on the number of people employed by individual firms during a specific pay period each month.

Table 3．2．23
None Di vi si on
Mbnthly Manufacturing Empl oynent 1970－1978

Year	J an．	Feb．	Mar．	April	May	J une	July	Aug．	Sept．	Oct．	Nov．	Dec．
191！	20.11	！！． 11	23.1	0.1	0.1	O． 1	20.0	18.0	14.0	0． 1	0.1	0.1
1471	$1!01$	18.1	17.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$191 \%$	1： 1	1.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0． 1	0.1	0.1
1113	11.1	（＇1．）	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	n． 1
$1 \cdot 14$	1.1	1.1	（）． 1	0.1	（）． 1	0.1	O． 1	（）． 1	（）． 1	0.1	0.1	0.1
ぱい	＇． 11	＇．${ }^{\prime \prime}$	1．${ }^{1}$	0.1	（1．1	0.1	0.1	C． 1	0.1	12．（）	11.0	6.0
$10 \%$	4．11	$4{ }^{\prime}{ }^{\prime}$	$4 * I I$	1.1	0.1	0.1	38.0	16.0	7.0	0.1	0.1	0.1
1117	11.11	13.11	7.1	（）． 1	0.1	0.1	0.1	0.1	0.1	10.0	6.0	5.0
1ッい	$\therefore 1$.	$\therefore .1$	${ }_{4} .6$	1）． 1	0.1	0．1	130.0	100.0	41.0	0.1	0.1	n． 1

Source：Al aska Department of Labor，Statistical Quarterly，1970－1978．
Note：The number to the right of the deci nal point indicates the number of months data are not available due to confidentiality requi renents．

Table 3. 2. 24
Nome Census Di vi si on
Number of Reporting Units in Manufacturing by Quarter 1970-1978

Year	First Quarter	Second Quarter	Thi rd Quarter	Fourth Quarter
1970	3	4	4	4
1071	3	3	2	3
197?	3	2	2	?
1977	1	1	1	1
1974	1	1	?	2
$1(; / 1$.	4	4	4	5
1:16.	${ }_{4}$	4	5	5
1 cot	$\stackrel{ }{4}$	5	5	4
197\%	4	4	4	4

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.
and marketing. The extensi ve use of tenders, floating processors, and air frei ght allow rapid changes in capacity.

Commity Infrastructure

The infrastructure of the None Census Di vi si on and the use made of it by the commercial fishery industry are di scussed in this section.

## El ectricity.

El ectricity generation in the Norton Sound area is deri ved from dieselpowered units. Rather than having a central generating station and di stribution throughout the entire area, each commity mainains its own generating equi pnent. In nost instances, villages have rather nodest units and do not have sufficient capacity to accomodate large comerci al users.

The City of Nome's generation system presently has a namepl ate capacity of 6800 KW . The peak load usually occurs for a few days during the winter, and is approxi mately 2800 KW . A load of around 2400 KW is more common throughout the winter, and drops to around $1400 \mathrm{~K} N$ for the summer nonths. Therefore, the city has a generating capacity nearly $2 \mathbf{1 / 2}$ tines larger than its peak load, and from 4 to 5 times greater capacity than is necessary during low load periods. Seven units of various sizes are utilized, and the equipment is in fairly good nai ntenance. Residents of Nome and an area up to about 4.8 to 6.4 kilometers ( $\mathbf{3}$ to $\mathbf{4}$ miles)
from the city are served by the di stribution network. Due to the systems excess generating capacity, None could accommodate a rather substantial increase in el ectricity consumption before enl argenent of the system uould be necessary. Si nce di esel-powered generators are used, expansi on of generating capacity can be achi eved quickly. The cost of di esel-generated el ectricity is expected to continue to increase as petrol eum prices continue to rise.

Whter.

Many Norton Sound area residents live in villages, which generally do not have formal water systens with central di stribution networks to indi vi dual buildings. Though water is usually plentiful, commercial firns entering such a commity will find it necessary to devel op a private water system capable of suppl ying thei $r$ needs.

The City of None is the popul ation center of Norton Sound, and operates a central water systemthat serves nost of the city area. The water is obtai ned at Mbonlight Springs, 4.8 kiloneters ( 3 miles ) anay, and piped to Nome. The source utilized is capable of providing a quantity of water sufficient for a city several times larger than Nome, but storage tanks near town and a better nai $n$ system nould be requi red. Al though the water does not currently require treat ment, a treat ment facility is available should the need arise.

About 189, 000 liters (50, 000 gallons) of water are consumed each day, and consumption stays fairly constant year-round. Only about 60 percent
of the city is connected to the central water and sewer system The city lacks the financial resources to compl ete expansion of the systens to all potential users. If funds can be obtai ned to compl ete the water di stribution network, consumption would increase substantially.

## Port Facilities.

The City of Nome serves as the transportation hub for the Norton Sound area. The None port offers only minal facilities. Weather and water depth limit its use, but no alternative facility exists which could serve the area. Even with the limitations of the present port, there appears little Iikelihood that another port will be devel oped in the area due to the nargi nal anount of cargo to be handled and the renoteness of other possi ble sites.

The port requires al nost constant dredging to maintain a high tide depth of 2.4 meters ( 8 feet), and 7.7 meters ( 5.5 feet) at zero tide. Theref ore, cargo del i vered to the Nome port mast be "lightened". Li ghteni ng consi sts of anchoring a large seagoing barge several miles of fishore in deep water and offloading onto snall, shallow draft barges that del iver to the port. The process is very expensi ve and substantially increases transportation costs to Nome and surrounding communities. The snall barges then nake del iveries to the villages within the area that can be reached by water. Si nce port facilities do not exist at nost villages, the barges are usually beached at high tide, are quickly unl oaded during low tide, and leave with the next high tide. The smaller barges of ten must
be I oaded lightly to operate in very shal low depth; this causes further increases in transportation costs.

The I ength of the shi pping season varies from year to year due to annual variations of the weather. However, Nome's port is normally usable from sonetine in later May through the end of Septenber. All of the area's supplies must be obtained and distributed during this time or air cargo transport must be relied upon.

Most sea cargo is now handl ed in contai ner vans. Ocean going vessel s normally carry 12.2 neter ( 40 foot) vans, but 6.1 meter ( 20 foot) vans are utilized for service to the Norton and Kotzebue Sound areas. In nost instances, the smaller vans are of adequate size to accomodate specific orders, and are better suited for delivery to the villages.

Arctic Lighterage Company provi des lighterage services and subsequent di stribution of goods throughout the area. The managenent of lighterage operations in None believes that the company's capacity could be increased significantly within a very short tine due to the strength of its parent company, which is a maj or competitor anong long-haul shi ppers. Additional barges and appropriate cargo handling equi pment could be di verted from other locations if the denand warranted such act ion.

In addition to the shal low draft and Iimited season of operation, the port does not offer facilities necessary for naj or commercial use. The adj acent staging and storage areas are rel ativel y small and the dock itself is too snall for additional maj or users when the lighterage
company is active. Presently, nost equi prent is provided by the lighterage company, and its capacities are appropriate for present operations. Adequate moorage space, cargo handling equi pment, open areas, and water depth are not available for additional industrial activities.

There are no well-devel oped plans for port devel opment in Norton Sound. However, St. M chael, located along the south shore of Norton Sound, has been identified as a potential port site with adequate depth for deepdraft vessel s and natural protection.

## Snall Boat Harbor.

There are no small boat harbors in the Norton Sound area. Mbst boats in the area are skiffs of under 9.2 meters ( $\mathbf{3 0}$ feet) in length and can be beached when not in use. The vessel s are multi-purpose and are used for subsistence and commercial fishing, hunting, and basic transportation. The City of None has a protected area adjacent to its port which provi des a conveni ent tie-up area during the summer, However, moorage floats or stalls that are usually found in harbors are not present.

A number of fisher men in Nome are expressing an interest to enter new fisheries and obtain larger vessels. Should sone of these people succeed in obtaining larger fishing vessel s, the absence of a small boat harbor may becone a more important concern of the conmunity.

Kotzebue, which is in the Kobuk Census Division, is the center of the comercial fishing industry activity associ ated with the Kotzebue Sound Managenent Area.

Processing Activity

Mbst of the Kotzebue Sound comercial salmon harvest is transported to processing facilities in other parts of Alaska. No processing activity of significant magnitude was reported to occur withinthe area. Typically, buying stations are set up in proximity to the fishing grounds. Sone buyers operate independently and work out various schemes for narketing their purchases, but nost buyers represent large fish processing compani es. In nearly all instances, the fish are flown to processing plants in the Anchorage or Kenai areas for final processing. The sal non are often gutted and chilled in ice before leaving the Kotzebue area, but if air shi pnent is to occur soon enough, less cleaning or chilling is perforned locally.

Area fishermen usually have the opportunity to sell to any of the three or four or more local fish buyers. Based upon past market prices and the expressi on of several local persons invol ved with the fishery, prices paid to local fishernen reflect an acceptable degree of competition anong buyers and appear reasonable rel ative to sal non prices in other areas of Al aska.

Due to the limited degree of processing perforned locally, the need for processing labor is not large. Mbst labor needs can be filled by local residents, with few positions requiring the use of nonresidents.

The limited nanufacturing empl oynent arid wage data that are available are summarized in Tables 3.2. 25 through 3.2.27. Due to the small number of reporting units, employnent data for manufacturing and fish processing is confidential for nost reporting periods. The limited fish processing empl oyment that does occur in the Kobuk Census Division is highly seasonal since processing is limited al nost exclusi vely to sal non.

Recent harvests indi cate that the processing capacity of the Kotzebue area is in excess of 2,400 netric tons ( 5.3 mili on pounds) of sal mon. Si nce much of the area harvest is flown in the round for processing el sewhere, processing capacity can change rapidy.

Comminity Infrastructure

The infrastructure of the commities of the Kobuk Census Di vi si on and the use nade of it by the commercial fishing industry are di scussed in this section.

## El ectricity.

All electricity generated in the Kotzebue Sound area is derived from di esel - powered generators. Each community nai ntains its own system of generating equi pnent and lines for distribution. These commities

Table 3. 2. 25
Kobuk Di vi si on
Quarterly Manuf act uring Enpl oyment and Wages 1970-1978


Source: Alaska Department of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the deci mal point indicates the number of months or quarters dat a are not available due to confidentiality requi renents.

Quarterly and annual enpl oyment data are the summation of nonthly empl oynent data whi ch are based on the number of people empl oyed by indi vidual firms during a specific pay period each nonth.

	Tabl e 3. 2.26   Kobuk Di vi si on    Mont hl y    Manuf act uri ng Empl oynent    1970-1978												
	Year	Jan.	Feb.	Mar.	April	May	$J$ une	July	Aug.	Sept.	Oct.	Nov.	Dec.
	1.11	11	"	0	1	0	)	0	0	o	0	0	0
	1011	11	1	n	1	n	0	0.1	0.1	0.1	0	0	n
	19\%	1	11	$1)$	0	n	1	0	0	0	0	0	$1)$
	10\%	$!$	1	1	0	0	0	0	0	0	0	0	0
$\stackrel{w}{w}$	1:14	1).1	1.1	0.1	0.1	(). 1	0.1	0.1	0.1	(). 1	0.1	0.1	0.1
	1.11	0.1	11.1	${ }^{1} .1$	7.11	9.0	14.0	0.1	0.1	0.1	0.1	0.1	0.1
	1:1\%	1).1	1.1	0.1	). 1	(). 1	0.1	0	0	${ }^{1}$	0.1	0.1	0.1
	1ッ?	1).1	0.1	11.1	0.1	0.1	()*1	0.1	$\left(1^{*} 1\right.$	0.1	0.1	0.1	0.1
	1. ${ }^{\text {a }}$	8.1	1.1	11.1	0.1	0.1	0.1	0.1	n.l	0.1	0.1	0.1	0.1

Source: Al aska Departnent of Labor, Statistical Quarterly, 1970-1978.
Note: The number to the right of the deci mal point indicates the number of nonths data are not available due to confidentiality requi rements.

Table 3． 2.27
Kobuk Census Divi si on Number of Reporting Units in Manuf acturing by Quarter ．1970－1978

Year	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
1070	0	f）	0	0
1071	0	0	1	0
」ばす	0	，	0	0
1973	ก	0	（）	0
1274	1	1	1	1
1975	？	3	2	2
1076．	3	2	0	1
1.177	1	1	1	1
19\％	1	1	1	2

Source：Al aska Department of Labor，Statistical Quarterly，1970－1978．
typically do not maintain substantial anounts of excess generating capacity; therefore, maj or comercial users of el ectricity entering such commities must be prepared to provide for their own needs. This could be accomplished with the operation of private generators or by assisting a community in upgrading its system

Electricity is quite expensive in the Kotzebue Sound area. It costs approxi mately.SO. 34 per KWH in the $\mathbf{C i t y}$ of Kotzebue, and is even nore expensive in the village. Due to the dependence upon petrol eum to generate el ectricity, prices are expected to increase. However, di esel generation does permit rapid increases in capacity with little advance pl anni ng.

## Vhter.

Water is adequately abundant for commities in the Kotzebue Sound area. However, onl y the City of Kotzebue has devel oped a water system which incl udes a sizable storage capacity and distribution to indi vidual consumers. A drai nage pond on the tundra near the city serves as the nai $n$ source of water, and water is pumped froma nore di stant lake into the pond to supplenent the supply. By pumping heavily during the sumer to fill the pond, enough water is stored for winter use.

The City of Kotzebue consumes about 757, 000 Iiters ( $\mathbf{2 0 0}, \mathbf{0 0 0}$ gal Ions) of water per day. Excepting inclenent weather conditions, the present systemis adequate for the present consumption level. The system was
devel oped to serve the needs of residential users and the small businesses and government buildings in town. Nei ther the storage capacity nor the di stribution system was desi gned for industrial users. Any I arge commercial consumer of water in the Kotzebue Sound area will have to devel op its own water supplies, or assi st in upgradi ng the appropriate commuity's system

## Port Facilities.

The City of Kotzebue serves as the transportation center for all communities in the Kotzebue Sound area. Most cargo arrives by barge during the summer and s recei ved at the city's port for subsequent di stribution. The Kotzebue port faces weather and water depth problens nearly identical to those of Nome's port, and is operated by the same shi pping company in a similar manner. Kotzebue Sound experiences a shorter shipping season than Norton Sound, with the first barges usually arriving in late June and the season ending in mid-Septenber. For greater detail of the port's facilities and operation, refer to the Norton Sound Port Facilities Section.

Snal I Boat Harbor.

Formal small boat moorage in Kotzebue Sound is limited to a small, summer-use onl $\mathbf{y}$, harbor in the City of Kotzebue. Mst boats owned by area residents are skiffs of 5.5 to $\mathbf{7 . 3}$ meters ( $\mathbf{1 8}$ to $\mathbf{2 4}$ feet) long, and the harbor can accomodate about 150 at once. Due to the rel ativel $y$ snall boats which are used for fishing, hunting and basic transportation,
extensive harbor facilities are not necessary and harbors are totally absent in the surrounding villages. The skiffs are generally powered with large outboard engi nes, and can be beached when floating moorage is not available.

The harbor is not used during the winter nonths since ice danage to the boats would be quite severe. Al so, many owners prefer to store their boat close to their hone so that mai ntenance can be perforned nore conveni ently.

No snall boat harbor construction projects are planned for the area $a t$ thi s tine. However, plans have been formul ated to construct a large norkshop in Kotzebue that nould provide resi dents a suitable place to construct new vessel $s$ or perform nai ntenance on their boats. Several natters renai $n$ to be settled before the project can advance, and it is uncertain whether the project will be completed.

## MARKETS AND THE ORGAN ZATI ON OF THE I NDUSTRY

The narket structure of an industry is in part determined by the organi zation of the industry. The comercial fishing industry of Western Al aska is characterized by a very large number of independent fisher men and a snaller number of processors who participate infisheries which are distinct in terns of geography and species but which often supply fish that compete 'with one another in whol esale narkets. The large number of fishernen in each fishery and the potential competition anong
processors both within a fishery and anong fisheries tends to create a competitive narket structure. However, this tendency is greatly reduced by agreenents bet ween indi vi dual fisher men and processors and by Iinkages anong many processors.

Fi sher men of ten have seasonal to long-termagreenents to del $\mathbf{i}$ ver their catch to specific processors at prearranged prices. Such an agreenent benefits a processing plant by decreasing the uncertainty as to its supply of fish, and it benefits a fishernan by decreasing the uncertainty with respect to a market for his catch. The val ue of the latter benefit has often been demonstrated by the inability of a fisherman to sell his catch in the absence of such an agreenent. A processor may al so offer specific servi ces to a fisherman in exchange for a del ivery agreement. The servi ces can include assi stance in obtaining loans to finance capital or operating expenses, bookkeeping, moorage and storage of vessel and gear, travel arrangements, and a ready source of gear. The Bristol Bay sal mon fishery provides an extreme example of agreenents bet ween i ndi vi dual fisher men and processors. In Bristol Bay these agreenents approach those of a company town. Many local fishernen have an open account with a processor which is used to buy goods and services fromthe processor throughout the year. These goods and servi ces may i ncl ude boats, notors, and gear to prepare for a season; fuel and supplies to be used during the season; heating oil and other consumer goods to be used throughout the year by the fisherman's family; and bookkeeping services. The account is paid for by del ivering fish. The agreenent to del iver only to the processor with which a fisherman has an agreenent is
enforced by a processor's ability to determine which fishernen will be extended credit to prepare for the next season and which fishernan it will buy fish from The cost of such agreements to Bristol Bay fishermen or of less comprehensive agreenents to other fishermen is perhaps a lower exvessel price because the option to sell to the processor currently offering the hi ghest price has been given up.

The Iinkages anong processors which can tend to decrease conpetition within the industry include parent companies with interests in several processors, joint ownershi p of processors by other processors, and the existence of large processors with several plants. The complexity of the ownershiplinkages and the failure of the State of Alaska to rigidly enforce discl osure laws have prevented a public determination of the number of independent processing units which exist. However, it is bel $i$ eved that there are rel ativel $y$ few The potential dependence between processors is further increased because of the large Japanese interests in the Al aska commercial fishing industry and the propensity of Japanese firns to at times act $\mathbf{j}$ ointly in response to "administrative gui dance". Admini strative gui dance refers to policy jointly set by the Japanese governnent and industry for the good of al.

Although several studi es have begun to measure the interdependenci es anong processors and to determine both their effects and the effects of agreenent bet ween indi vidual fishernen and processors, these issues are I argel $y$ unexpl ored. In addition to the ownership linkages anong processors there are al so market generated Iinkages. Processors compete
within and anong regi ons for the harvesting services of fishermen or for their catch. The ability to tender or fly fish in the round to di stant regions for processing and the ability of sone fishernen to select their point of landing tend to decrease price differentials between areas by linking fisheries in different areas to each other. Processors al so compete within and anong regi ons for whol esale markets since the output of nost Al aska processors is destined for similar narkets. Al aska seaf ood products are predominatel y shipped to the Seattle area in preparation for shi pment to donestic and foreign markets or they are shi pped di rectly to Japan. In either case the markets are centralized enough or well enough organized that once again price differentials anong processors tend to be eliminated. The tendency of the market to eliminate price differentials at the exvessel and whol esale level s and often small profit nargins within the industry result in very strong linkages anong fisheries and greatly reduce the ability of a processor to offer exvessel prices or wages that are not consi stent with those offered elsewhere.

## IV. PRO ECTI ONS OF THE VESTERN ALASKA COMMERC AL FI SH NG I NCUSTRY I N THE ABSENCE OF OCS ACTI V TY PURSUANT TO LEASE SALE NUMBER 57

This chapter contains the non-OCS case projections of the level s of activity of the Western Al aska comercial fishing industry for 1980 through 2000. The source and nature of these projections are di scussed in a preceding chapter. The reader is advi sed that a well-defined set of assumptions is an integral part of the projections and therefore the projections cannot be neani ngfuly understood or used without first understanding thei $r$ ori gin.

The projections for the harvesting sector, the projections for the processing sector, and a di scussi on of the feasi bility of the projections for these tho sectors are presented in three separate sections. The projections of harvesting activity are presented by species or species group and by geographic area typically defined by ADF\&G managenent. areas. The projections of processing activity are presented by census di vi si on.

## Harvesting

The commercial fishing industry of Vestern $\mathbf{A l}$ aska has been extrenel $y$ productive in recent years and the projections presented in this section indi cate that these fisheri es are expected to becone even nore productive for U.S. fishermen as enhancenent, rehabilitation, and managenent prograns strengthen and stabilize the sal non fisheries; as the herring, groundfish,
and Tanner crab resources off Western Al aska are nore fully utilized by donestic fishernen; and as selected real exvessel prices increase. The harvest projections for the Vestern Al aska commercial fisheries as a who le' are "summartzéa in Table 4.1. The specifics of these projections are presented in the fo" I owing sections.

## SALMDN

As is indicated in Chapter III, the commercial fisheries of Western Al aska are very productive in absol ute terns and rel ative to the Alaska commercial sal non fishery as a whole. The factors which will tend to increase productivity are as follow

- enhancement, rehabilitation, and other managenent prograns are expected to provi de additional stability to the size of sal mon runs;
- dranatic decreases in fore gn high seas sal non fishery interceptions of sal non from aska tributaries are expected to favorably affect the I ong-term productivity of Western Alaska sal non fisheri es;
- long term narket conditions are expected to increase real exvessel sal non prices.

Table 4.1
Projected Western Alaska Harvest 1980-2000

Pounds (millions)

	Year	Salmon	Halibut	Herring	Groundfish	King Crab	Tanner Crab	Shrimp	Total
	1980	80.1	1.7	50.0	5.4	102.5	163.8	29.6	452.0
	1981	101.6	1.7	50.0	7.3	102.5	163.8	30.0	456.8
	1982	104.7	1.7	50.0	10.0	102.5	163.8	30.4	462.5
	1983	106.09	1.7	50.0	13.7	102.5	163.8	30.9	469.4
	1984	109.7	1.7	50.0	18.9	102.5	163.8	31.4	478.0
	1985	112.6	1.7	50.0	26.2	102.5	163.8	32.0	488.8
	1986	115.5	1.8	50.0	36.5	102.5	163.8	32.6	502.7
	1987	118.3	2.0	50.0	50.9	102.5	163.8	33.4	520.9
${ }_{\boldsymbol{\sim}}^{\text {¢ }}$	1988	121.2	2.2	50.0	71.3	102.5	163.8	34.2	545.2
$\checkmark$	1989	124.2	2.4	50.0	100.2	102.5	163.8	35.1	578.2
	1990	127.2	2.6	50.0	141.3	102.5	163.8	36.1	623.6
	1991	130.4	2.9	50.0	199.6	102.5	163.8	37.3	686.5
	1992	133.7	3.2	50.0	282.6	102.5	163.8	38.6	774.5
	1993	137.2	3.5	50.0	401.0	102.5	163.8	40.0	898.1
	1994	140.7	3.9	50.0	570.1	102.5	163.8	41.7	1072.6
	1905	144.4	4.3	50.0	811.7	102.5	163.8	43.5	1320.1
	1206	148.2	4.7	50.0	1157.4	102.5	163.8	45.5	1672.1
	1907	152.1	5.2	50.0	1652.4	102.5	163.8	47.8	2173.8
	1908	156.2	5.7	50.0	2361.9	102.5	163.8	50.3	2890.4
	1999	100.5	6.3	50.0	3379.3	102.5	163.8	53.2	3915.6
	2000	16.409	6.9	50.0	4839.4	102.5	163.8	56.4	5383.9

Table 4.1 (continued)
Metric Tons

	Year	Salmon	Hal i but	Herring	Groundfish	King Crab	Tanner Crab	Shrimp	Total
	1980	44935.1	753.0	226.79.9	2439.7	46493.7	74299.2	13426.5	205026.5
	19R1	46070.8	753.0	2?6-79.9	3316.4	46493.7	74299.2	13595.2	207208.1
	198?	47252.0	753 *	22679.9	4531.9	46493,7	74299.2	13784.2	209793.8
	1983	48481.1	753.0	23679.9	6222.9	46493.7	74299.2	13995.9	212925.6
	1984	49760.4	753.0	22679.9	8584.3	46493.7	74299.2	1.4232 .9	216803.4
	1985	51092.7	753.0	2?6-19.9	11893.0	46493.7	74299.2	14498.4	$2217(-) 9.8$
	179力	52391.6	826.2	22679.9	16543.2	46493.7	74299.2	14795.8	228029.5
	1987	53656.8	906.8	? 2679.9	23097.3	46493.7	74?99.2	]5128.9	236 ?62.6
\%	1988	$54965 . ?$	905.6	2.?679.9	32357.9	46493.7	74299.2	15501.9	247293.3
	1999	56318.3	1093.5	$2 ? 679.9$	45472.3	46493.7	? 4299.2	15919.7	262276.6
	1990	57718.3	1201.4	2?679.9	64081.8	46493.7	74299.2	16387.6	? 82861.9
	1991	50167.1	1320.3	22679.9	90536.6	46493.7	74299.2	16911.7	311408.5
	1992	woteter.a	1451.6	22679.9	128204.4	46493.7	74299.2	17498.6	351294.3
	1993	6.2220 .0	1596.4	22679.9	181914.2	46493.7	74299.2	18156.1	407359.3
	1994	63828.6	1756.2	22679.9	258594.8	46493.7	74299.2	18892.3	486544.8
	1295	65495.4	193?.13	22679.9	368193.6	46493.7	74299.2	19717.0	598811.4
	1996	67322.4	2177.9	32679.9	$524998 .()$	46493.7	74299.2	20640.6	758462.0
	1997	A9017.7	? 343.3	22679.9	749540.0	46493.7	74299.2	21675.0	986044.8
	1998	T0日71.0	2581.6	22679.7	1071337.0	46493.7	74299.2	22833.6	1311095.9
	1999	7279\%.t	2845.1	22679.9	$1532842 . ?$	46493.7	74299.2	24131.2	1776088.8
	2000	74796.9	3136.6	22679.9	?195137.?	46493.7	74299.2	25584.5	2442127.9

Table 4.1 (conti nued)

	Year	Salmon	Halibut	Herring	Groundf i sh	King Crab	Tanner Crab	Shrimp	Total
	19A0	ค月. 7	1.3	10.0	0.7	129.3	50.9	7.0	287.8
	1981	90.3	3.7	10.89	1.0	121.9	47.5	7.7	282.7
	1942	$99 . ?$	4.0	11.6	1.4	134.5	49.4	8.6	308.8
	1983	109.1	4.4	1 ?. 4	2.$]$	131.7	54.7	$9 * 5$	324.0
	1984	120.0	4.9	13.4	3.(-)	141.7	57.9	10.6	351.6
	1985	132.1	5.4	14.4	4.4	142.1	63.3	11.8	373.4
	1986	145.3	6.4	15.5	6.5	150.8	67.5	13.1	405.2
$\omega$	1987	159.8	7.7	16.7	9.5	153.5	73.3	14.6	435.2
8	1988	175.6	9.3	17.9	14.1	161.8	78. 5	16.3	473.6
	1989	193.1	11.1	19.3	2.1.0	166.4	85.0	18.3	514.2
	1990	217.4	13.3	20.7	31.4	174.7	91.3	20.4	564.3
	1991	233.6	16.0	2?.3	47..9	181.0	98.5	22.9	621.5
	1997	357.0	10.0	2.4.0	71.1	189.9	105.9	25.8	692.8
	1993	202.8	2?. ${ }^{\text {a }}$	25.8	107.6	197.7	114.2	29.1	780.0
	1004	311.2	27.2	27.7	163.3	? 07.5	122.9	32.8	892.8
	1995	342.6	37.5	29.8	248.7	217.0	132.4	37.2	1040.2
	1996	. 377.1	39.8	32.1	379.8	228.0	142.5	42.2	1240.5
	1997	415.2	4th. 3	34.5	581.6	239.1	153.5	48.0	1518.3
	1998	457.3	54.2	3-?*-1	892.7	? 51.7	165.2	54.8	1913.9
	1997	503.7	65.9	37.9	1373. ?	264.7	177.8	62.7	2487.9
	2000	51.4 .9	78.6	43.0	2116.7	.?79.1	191.4	71.9	3335.5

Nomi nal Val ue

Table 4.1 (continued)
Real ${ }^{1}$ Value

	Year	Salmon	Hal ibut	Herring	Groundfish	King Crab	Tanner Crab	Shrimp	Total
	1980	88.7	1.3	10.0	0.7	129.3	50.9	7.0	287.8
	1941	83.9	3.4	10.0	0.9	113.3	44.1	7.2	262.9
	1982	85. ${ }^{\text {8 }}$	3.5	10.0	1.2	116.3	42.7	7.4	267.0
	1983	87.7	3.6	10.0	1.7	105.8	44.0	7.7	260.4
	1984	89.7	3.6	10.0	2.3	105.9	43.2	7.9	262.7
	1985	91.7	3.7	10.0	3.1	98.7	44.0	8.2	259.4
	1986	93.9	4.2	10.0	4.2	97.4	43.6	8.5	261.7
$\underset{\sim}{\sim}$	1987	95.9	4.6	10.0	5.7	92.2	44.0	8.8	261.3
0	1988	98.0	5.2	10.0	7.9	90.3	43.8	9.1	264.4
	1989	100.2	5.8	10.0	10.9	86.3	44.1	9.5	266.8
	1990	102.5	6. 4	10.0	15.2	84.3	44.0	9.9	272.3
	1991	104.8	7.2	10.0	21.2	81.2	44.2	10.3	278.8
	1992	107.2	7.9	10.0	29.7	79.2	44.2	10.8	288.9
	1993	109.7	8.9	10.0	41.7	76.7	44.3	11.3	288.9 302.4
	1974	112.2	9.8	10.0	58.9	74.8	44.3	11.8	302.4 321.8
	1995	114.8	10.9	10.0	83.4	72.7	44.4	12.5	321.8 348.6
	1996	117.5	12.1	10.0	118.4	71.0	44.4	13.1	386.5
	1947	120.3	17.4	10.0	168.5	69.3	44.5	13.9	439.8
	1998	123.2	14.9	10.0	240.4	67.8	44.5	14.8	439.8 515.5
	1999	126.1	16.5	10.0	343.8	66.3	44.5	15.7	623.0
	2000	129.?	1 1.3	10.0	492.8	65.0	44.5	16.7	776.5

${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

It should be noted that the nean productivity of the fisheries over a number of years is expected to increase, not necessarily the peak year productivity. The projections of the sal non harvest for Western Al aska as a whole are presented in Table 4.2.

The proj ections by ADF\&G managenent area are presented bel ow The nethod used to project the commercial sal non harvest is not area specific. It utilizes infornation contained in ADF\&G's Alaska's Salmon Fisheries Plan, A Provisional Draft for Revi ew and Comment, hi stori cal harvest statistics, and the opinions or best guesses of ADF\&G managenent area finfish bi ol ogists. The use of the term "best guess" is not inappropriate because the determinants of the size of a sal mon run not sufficiently well understood or predi ctable to allow long-termforecasts to be made with a high degree of certainty. The methodol ogy is as follous. ADF\&G managenent area finfish biol ogists were asked to review and update the harvest objectives as stated in the 1976 Al aska Sal non Pl an, to indicate whi ch average wei ghts to use in converting the catch objective in terns of the number of fish into objectives in terns of harvest weight, and to indi cate an appropriate harvest level to use in 1980, the base year. Typi cally they suggested that the mean annual catch from 1969 through 1979 was an appropriate base. It is assuned that catch will increase at a constant rate from the 1980 base to the short-term objective by 1985 and will increase, agai n at a constant rate, fromthe short-termobjective in 1985 to the long-term objective in 2000. If a short-termobjective is equal to or less than the 1980 base, the projected annual catch for 1980 through 1985 is hel d constant at the 1980 level. This methodol ogy does not provide projections which exhi bit the run cycles that have been

Table 4. 2
Projected Vestern Al aska Sal non Harvest
1980-2000
Pounds (millions)

	Year	Chignik	Peni nsul a	Bristol Bay	Kuskokwi m	Yukon	Norton Sound	Kotzebue	Total
	1940	11.5	18.3	54.2	3.2	9.0	1.6	1.3	99. 1
	1981	11.7	19.1	55.1	3.2	9 * 5	1.6	1.3	101.6
	1942	11.9	19.9	56.0	3.3	10.1	1.7	1.3	104.2
	1983	12.1	20.7	57.0	3.3	I O * 7	1.8	1.3	106.9
	$19+4$	12.3	21.6	57.9	3.4	11.3	1*9	1.3	109.7
	1985	12.5	22.5	58.9	3.5	11.9	2*0	1.3	112.6
	1986	12.月	23.5	60.0	3.5	12.3	2.0	1.3	115.5
	1987	13.0	24.5	61.2	3.6	12.6	2.0	1.3	118.3
N	1988	13.3	25.6	62.4	3.7	12.9	2.0	1*3	121.2
	1989	13.5	2 har	63.6	3.8	$13 * 1$	2.0	1.3	124.2
	1990	13.8	29.0	64.9	3.8	13.4	2*0	1.3	127.2
	1991	14.0	29.3	66.2	3.9	13.7	2*0	1.3	130.4
	1497	14.3	30.6	67.5	4.(-)	14.0	2.0	1.3	133.7
	1993	14.6	3?.1	6.9 .8	4.1	14.3	?. 0	1.3	137.2
	1944	14.9	37.6	71.1	4.2	14.6	$2 * 0$	1.3	140.7
	1995	15.1	35.1	71.5	4.2	15.0	$2 * 1$	1.3	144.4
	1976	15.4	36.a	72.9	4.3	15.3	$2 * 1$	1.3	148.2
	1997	15.8	38.6	74.4	4*4	15.6	2.1	1.3	152.1
	1998	16.1	40.4	75.9	4.5	16.0	2.1	1.3	156.2
	1999	16.4	4.3 .4	77.4	4.6	16.3	2.1	1.3	160.5
	2000	10.7	44.4	78.9	4.7	16.7	$2 * 1$	1.3	164.9

Tabe 4.2 continued

					Metri	Tons			
	Year	Chignik	Peninsula	$\begin{gathered} \text { Bristol } \\ \text { Bay } \\ \hline \end{gathered}$	Kuskokwim	Yukon	Norton Sound	Kotzebue	Total
	1980	5200.3	8299.9	24604.0	1431.8	4093.7	706.7	598.7	44935.1
	1981	5292.9	8644.5	25007.5	1459.5	4327.3	740.3	598.7	46070. A
	1982	5387.9	$9007 . ?$	25418.5	1487.9	4575.5	776.2	598.7	47252.0
	1943	54985.3	9389.2	25837.?	1516.9	4839.2	814.5	598.7	48481.1
	1934	5585.2	9791.5	26263.6	1546.6	5119.6	855.3	598.7	49760.4
	1985	$56,87.6$	10215.3	26697. ${ }^{\text {2 }}$	1576.9	5417.6	898.7	598.7	51092.7
	1986	5792.7	106ta. 7	27236.6	1607.9	5585.5	908.4	598.7	52391.6
	$19 \mathrm{H7}$	59001.5	11132.0	27767.3	1639.7	5707.8	910.8	598.7	53656.8
山	1988	6011.0	11627.7	28309.5	1672.1	5832.9	913.2	598.7	54965.2
	1989	6124.5	12150.0	28963.3	1705.4	5960.8	915.6	598.7	56318.3
	1990	6240.9	12700.6	20420.1	1739.3	6091.6	918.0	598.7	57718.3
	1991	6360.4	13281.0	30007.1	1774.1	6225.4	920.4	598.7	59167.1
	1902	6,483.0	13892.9	30597.6	1809.6	6362.2	922.9	598.7	60666.9
	1993	68.09 .0	14534.1	31200.8	1846.0	6502.1	925.3	598.7	62220.0
	1994	6738.2	15219.6	31817.1	1883.2	6.645 .1	927.7	598.7	63828.6
	1995	6871.0	15936.2	32446.6	1921.2	6791.4	930.2	598.7	65495.4
	1996	7007.3	16603.2	33087.7	1960.2	6941.0	932.7	598.7	67222.8
	1997	7147.3	17491.7	3374 h. 7	2000.0	7094.0	935.2	598.7	69013.7
	1998	7291.?	18334.?	34417.9	2040.8	7250.5	937.6	598.7	70871.0
	1999	7638.9	19223.?	35103.6	2082.5	7410.5	940.1	598.7	72797.6
	20010	7590.e?	20161.3	35804.0	2125.2	7574.7	942.7	598.7	74796.9

Table 4. 2 (conti nued)
Nomi nal Val ue (millions)

	Year	Nominal Value (milions)							
		Chignik	Peni nsula	Bristol Bay	Kuskokwim	Yukon	Nort on Sound	Kotzebue	Total
	1980	10.9	12.5	55.5	2.3	6.0	0.5	1.0	88.7
	1981	10.9	13.2	55.2	2.5	6.8	0.6	1.1	90.3
	1982	11.9	14.9	60.4	2.7	7.6	0.7	1.1	99.2
	1983	13.0	1t. 5	66.1	2.9	8.6	0.8	$1 . ?$	109.1
	1984	14.2	18.5	7?.4	3.1	9*6	(). 9	1.3	120.0
	1985	15.6	20.7	79.2	3*4	10.9	1.0	1.4	132. 1
	1986	17.(1	23.2	87.0	3.7	11.9	1.1	1.5	145.3
$\omega$	1987	18.6	25.9	95.4	4.0	13.0	1. 2	1.7	159.8
	1988	20.3	29.1	104.7	4.3	14.2	1.3	1.8	175.6
	1989	22.2	$3 ? .6$	114.9	4.6	15.6	1.4	1*9	193.1
	1990	? 4.2	36. 5	126.1	5.0	17.0	1*5	2.1	212.4
	1991	26.4	40.9	138.4	5.5	18.6	1.6	2.2	233.6
	1992	28.9	45.9	151.9	6.0	20.3	1*7	2.4	257.0
	1943	31.5	51.5	1,66.7	6.5	22.3	1.8	2.6	282.8
	1994	34.4	57.7	182.9	7.1	24.4	$2 * \mathrm{O}$	2.7	311.2
	1995	37.6	64.8	200.7	7.7	26.7	2.1	3.0	342.6
	1945	41.1	72.1	220.3	8.4	29*?	?. 3	3.2	377.1
	1997	44.9	81.7	241.7	9.1	32.0	?* 4	3*4	415.2
	1994	49.0	91.7	265.3	9.9	35.0	2.6	3.7	457*3
	1999	53.4	103.0	291.1	10.8	38.4	2.8	3.9	503.7
	2000	58.5	115.9	319.4	11.8	42.1	3.1	4.2	554.9

Table 4.2 (conti nued)

				Re	Val ue (mil				
	Year	Chignik	Peni nsula	$\begin{gathered} \text { Bristol } \\ \text { Bay } \\ \hline \end{gathered}$	Kuskokwim	Yukon	Norton Sound	Kotzebue	Total
	1980	1.10 .9	12.5	55.5	2.3	6.0	0.5	1.0	88.7
	1981	10.1	12.3	51.3	2.3	6.3	0.6	1.0	83.9
	1982	10.3	12.8	52.2	2.3	6.6	0.6	100	05.8
	1983	10.5	13.3	53.1	2.3	6.9	006	1.0	87. 7
	1984	10.6	13.8	54.1	2.3	7.2	(3.7	1.0	89.7
	1985	10.8	14.4	55.0	2.3	7.5	O*7	1.0	91.7
	1986	11.0	15.0	56.2	2.4	7.7	0.7	1.0	93.9
	1987	11.1	15.6	57.3	2.4	7.8	0.7	1*O	95.9
ज̛	1988	11.3	16.2	58. 5	2.4	8.0	0.7	1.0	98.0
	1989	11.5	16.9	59.7	2.4	8.1	0.7	1.0	100.2
	1990	11.7	17.6	60.9	2.4	8.2	0.7	1.0	102.5
	1901	11.9	18.4	6?.1	2.5	8.3	O*7	1.0	104.8
	1997	12.0	19.1	63.4	2.5	8.5	0.7	1.0	107.2
	1903	12.2	20.0	64.6	2.5	8.6	0.7	1.0	109.7
	1904	12.4	? 0.8	65.9	2.5	8.8	0.7	1.0	112.2.
	1975	12.6	21.7	67.3	2.6	8.9	0.7	1.0	114.8
	1956	12.14	22.7	68.6	2.6	9.1	0.7	1.0	117.5
	1997	13.0	23.7	-r 0.0	2.6	9.3	0.7	1.0	120.3
	1998	13.9	24.7	71.4	2.7	9.4	0.7	1.0	123.2
	1999	13.4	25.8	72.9	?. 7	9.6	0.7	1.0	126.1
	20000	13.6	27.0	$74 \cdot 4$	2.3	9.8	0.7	1.0	129.2

' The real val ues and prices were cal cul ated using the U. S. CPI; 1980 is the base period.
and will no doubt continue to be, although perhaps to a lesser degree, characteristic of sal non fisheries. The reasons for and the results of not attempting to project cycles are discussed in Chapter II. The numerical bases for the projections by species by managenent area are summarized in Appendix A.

## Chignik

The annual Chignik Managenent Area commercial sal non harvest is projected to increase from 5, $\mathbf{2 0 0}$ metric tons ( 11.5 mili on pounds) in 1980 to 7, 591 metric tons ( 16.7 mili on pounds) in 2000, and the real val ue of the harvest is projected to increase from $\$ 10.9 \mathrm{mili}$ on to $\$ 13.6 \mathrm{mili}$ on (see Table 4.3). Thi s represents a 46 percent increase in harvest wei ght and a 25 percent increase in real harvest value; a $\mathbf{1 4 . 4} \mathbf{4}$ percent projected decrease in the real exvessel price explains the less rapid increase in harvest val ue (see Table 4.4). The projected annual rates of change in harvesting va ue are presented in Table 4.5, and projections of catch by species appear in Tables 4.6 through 4.9. The harvest wei ght projected for 2000 s less than the record harvest of 1979 because the 1979 harvest level is not expected to be sustai nable.

## Peni nsul a

The annual Peni nsul a Management Area sal non harvest wei ght is expected to increase from 8, 300 metric tons ( 18.3 mili ion pounds) in 1980 to 20,161 metric tons ( $44.4 \mathbf{m i l l i}$ on pounds) in 2000, and the real harvest value is expected to increase from $\$ 12.5 \mathrm{mili}$ on to $\$ 27.0 \mathrm{mili}$ on (see

Table 4. 3
Chignik Sal mon Fi shery Projected Harvesting Activity

1980-2000

${ }^{1}$ The real val ues and prices were cal cul ated using the U.S.CPI; 1980 is the base period.

Table 4.4
Chignik Sal non Fi shery
Harvesting Activity Projected Percentage Change from 1980
1980-2000

		Percentage Change									
		Catch			Exvessel Price		Number of Boat Months	Catch per Boat Month			
		Value						Val			
	Year	Wei ght	Nomi nal	$\underline{\text { Real }}$	Nomi nal	Real		Wei ght	Nomi nal	Real'	
	1980	0	0	$\bigcirc$	0	0		0	0	0	o
	1981	1.8	0.1	-7.0	-1.7	-8.6	0	1.8	0.1	- 7.0	
	1982	3.6	9.4	-5.5	5.5	-8.8	0	3.6	9.4	-5.5	
	1983	5.5	19.5	$-4 * \mathrm{O}$	13.3	-9.0	0	5.5	19.5	-4.0	
	1984	7.4	30.6	-7.5	21.6	-9.2	0	7.4	30.6	-2.5	
	1985	9.4	42.6	-0.9	30.4	-9.4	0	9.4	42.6	-(). 9	
	1986	11.4	55.8	0.6	39.9	-9.7	0	11.4	55.8	0.6	
	1987	13.5	70.2	2.2	50.0	-9.9	0	13.5	70.2	2*2	
$\stackrel{\sim}{\omega}$	1988	15.6	86.0	3.8	60.9	-10.2	0	15.6	86.0	3.8	
	1989	17.8	103.1	5.4	72.5	$-10.5$	0	17.8	103.1	5.4	
	1990	20.0	121.9	7.1	84.9	$-10.8$	0	20.0	121.9	7.1	
	1991	.??. 3	142.3	8.7	98.1	-11*1	0	22.3	142.3	8.7	
	1992	24.7	164.7	10.4	112.3	-11.4	0	24.7	164.7	10.4	
	1993	27.1	189.1	12.1	1,27.5	$-11.8$	0	27.1	189.1	1?.1	
	1994	29.6	215.8	13.9	143.7	-12.1	0	29.6	215.8	13.9	
	1995	32.1	245.0	15.6	161.1	-12.5	0	32.1	245* 3	15.6	
	1996	34.7	276.9	17.4	179.7	-12.9	0	34.7	276.9	17.4	
	1997	37.4	311.7	19.3	199.5	-13.2	0	37.4	311.7	19.3	
	1998	40.7	349.7	? 1.1	220.8	-13.6	0	40.2	349.7	21.1	
	1909	43.0	391.3	23.0	243.5	-14.0	0	43.0	391.3	23.0	
	2000	46.0	436.8	25.0	267.7	-14.4	n	46.0	436.8	25.0	

${ }^{1}$ The real val ues and prices were cal cul ated using the $U . S$. CPI; 1980 is the base period.

Table 4.5
Chignik Salmon Fishery
Harvesting Activity Projected Annual Rate of Change
1980-2000

						entage	Change			
			LdLen					vacur	L Lunc	
					Exvesse	Price	Number of		Val	
	Year	Weight	Nominal	Real	Nominal	Real	Boat Months	Weight	Nominal	Real
	1980	0	0	0	0	0	0	0	0	0
	1981	1.8	0.1	-7.0	-1.7	-8.6	0	1.8	0.1	-7.0
	1982	1.8	9.3	1.6	7.4	-0.2	0	1.8	9.3	1.6
	1983	1.8	9.3	1.6	7.3	-0.2	0	1.8	9.3	1.6
	1984	].8	9.3	1.6	7.3	-0.2	0	1.8	9.3	1.6
	1985	1.8	9.3	1.6	7.3	-0.3	0	1.8	9.3	1.6
	1986	1.8	9.2	1.6	7.3	-0.3	0	1.8	9.2	1.6
	1987	1.9	9.2	1.6	7.2	-0.3	0	1.9	9.2	1.6
$\underset{\text { H }}{\text { ¢ }}$	1988	1.9	9.7	1.6	7.2	-0.3	0	1.9	9.2	1.6
	1989	1.9	9.2	1.6	7.2	-0.3	0	1.9	9.2	1.6
	1940	1.9	9.2	1.6	7.2	-0.3	0	1.9	9.2	1.6
	1991	1.9	9.2	1.6	7.2	-0.4	0	1.9	9.2	1.6
	1992	1.9	9.2	1.6	7.2	-0.4	0	1.9	9.2	1.6
	1993	1.9	9.2	1.6	7.1	-0.4	0	1.9	9.2	1.6
	1994	2.0	9.2	1.6	7.1	-0.4	0	2.0	9.2	1.6
	1945	2.0	9.2	1.6	7.1	-0.4	0	2.0	9.2	1.6
	1996	2.0	9.2	1.6	7.1	-0.4	0	2.0	9.2	1.6
	1997	2.0	9.7	1.6	7.1	-0.4	0	2.0	9.2	1.6
	1998	2.0	9.2	1.6	7.1	-0.4	0	2.0	9.2	1.6
	1999	2.0	9.2	1.6	7.1	-0.4	0	2.0	9.2	1.6
	2000	2.0	9.3	1.6	7.1	-0.5	0	2.0	9.3	1.6

"The rea values and pr ses were ca culated using the U.S. CPI; 1980 is the base period.

Table 4.6
Chignik Sal mon Fi shery Projected Harvest by Speci es 1980-2000

## ( $1,000 \mathrm{Fi} \mathrm{sh}$ )

	Year	Kings	Reds	Pi nks	Sil vers	Chuns
	1980	2	1000	720	25	135
	1981	2	1013	746	26	135
	1982	2	1026	774	26	135
	1983	2	1040	802	27	135
	1984	2	1054	832	28	135
	1985	2	1067	862	29	135
	1986	2	1081	894	30	135
	1987	2	1096	92?	31	135
-	1988	2	1110	961	32	135
	1989	2	1124	996	32	135
	1990	2	1139	1032	33	135
	1991	2	1154	1070	34	135
	1992	2	1169	1110	35	135
	1993	2	1185	1150	36	135
	1994	2	1200	1193	30	135
	1995	2	1216	1236	39	135
	1996	2	1232	1282	40	135
	1997	2	1248	1329	41	135
	1998	2	1264	1377	42	135
	1999	2	1281	1428	43	135
	2000	2	1298	1480	45	135

Table 4.7
Chignik Sal non Fi shery
Projected Harvest Weight by Speci es 1980-2000


Table 4.8
Chignik Sal mon Fi shery
Projected Harvest Val ue by Species 1980-2000

				Val ue	\$1,000)			Rea	Val ue'	(\$1	) - -
	Year	Kings	Reds	Pinks	Sil vers	Chums	Kings	Reds	Pinks	Silver	Chuns
	1980	58	9000	985	173	$6 \mathrm{H9}$	58	9000	905	173	689
	1981	63	8417	1101	188	744	58	R197	1024	175	692
	1982	66	9628	12 ? 7	205	800	57	8322	1060	177	691
	1983	69	10512	1366	224	860	55	8448	1098	180	691
	1984	73	114"14	1572	244	925	54	8573	1137	183	691
	1985	77	12522	1695	267	995	53	8698	11 "77	185	691
	1986	91	136.63	1988	?92	1070	5 ?	8823	1219	188	691
	1987	85	14905	Z104	319	1151	51	8949	1263	192	691
心	1988	90	16258	2344	350	1237	50	9075	1308	195	691
	1989	95	17731	2611	383	1330	49	9202	1355	199	690
	1990	101	19335	2909	420	1430	49	9329	1404	203	690
	1991	107	21082	3.341	461	1538	48	9457	1454	207	690
	1992	113	22984	3611	505	1654	47	9585	1506	211	690
	1993	120	25045	4024	555	1778	47	9715	1560	215	689
	1994	1 ? 7	27310	4484	610	1911	46	9845	1616	220	689
	1995	135	29766,	$49 \mathrm{C}_{6}$	6.70	2055	45	9976	1674	225	689
	1996	144	32440	5567	737	2209	45	10108	1735	230	G88
	1997	153	35352	6204	Fill	2375	44	10241	1797	235	688
	1908	163	38527	6913	892	2554	44	10375	1862	240	6 n 8
	1909	174	41975	7703	982	2"?45	43	10511	1929	246	687
	2000	185	4'5-7"35	85185	1081	2951	43	10647	1998	257	6.87

${ }^{\text {T }}$ The real val ues are in terns of 1980 dollars.

Table 4.9
Chignik Salmon Fishery
Projected Exvessel Prices by Species
1980-2000

		Nominal Price (\$/Pound)					Real Price ${ }^{1}$ (\$/Pound)				
	Year	Kings	Reds	Pinks	Silvers	Chums	Kings	Reds	Pinks	Silvers	Chums
	1980	1.39	1.20	0.36	0.92	0.69	1.39	1.20	0.36	0.92	0.69
	1981	1.49	1.16	0.39	0.98	0.74	1.38	1.08	0.36	0.91	0.69
	198?	1.56	1.25	0.42	1.03	0.80	1.35	1.08	0.36	0.89	0.69
	1983	1.64	1.35	0.45	1.09	0.86	1.32	1.08	0.36	0.88	0.69
	1984	1.73	1.45	0.48	1.16	0.93	1.29	1.08	$\bigcirc{ }^{\circ}$	0.87	0.69
	1985	1.82	1.56	0.52	1.23	1.00	1.27	1.09	${ }^{*} 36$	0.86	0.69
	1986	1.92	1.688	0.56	1.31	1.07	1.24	1.09	- 36	0.84	0.69
$\omega_{\infty}^{\infty}$	1947	2.03	1.81	0.60	1.39	1.15	1.22	1.09	0.36	0.83	0.69
$\stackrel{\infty}{\infty}$	1988	2.14	1.95	0.64	1.48	1.24	1.20	1.09	-136	0.83	0.69
	1989	2.27	2.10	0.69	1.57	1.33	1.18	1.09	$\bigcirc 3^{6}$	0.82	0.69
	1990	2.40	2.26	0.74	1.68	1.43	1.16	1.09	$\bigcirc 36$	0.81	0.69
	1991	2.54	2.44	0.80	1.79	1.54	1.14	1.09	0.36	0.80	0.69
	1997	2.69	2.62	0.86	1.90	1.66	1.12	1.09	$\bigcirc 3^{6}$	0.79	0.69
	1993	2.86	2.82	0.92	2.03	1.78	1.11	1.09	0.36	0.79	0.69
	1904	3.03	3.03	0.99	2.17	1.91	1.09	1.09		0.78	0.69
	1995	3.22	3.26	1.06	2.31	2.06	1.08	1.09	$\bigcirc 3_{6}$	0.78	0.69
	1996	3.43	3.51	1.14	2.47	2.21	1.07	1.09	$\bigcirc{ }^{\circ} 6$	0.77	0.69
	1997	3.65	3.78	1.23	2.64	2.38	1.06	1.09	$\bigcirc 36$	0.77	0.69
	1998	3.88	4.06	1.32	2.82	2.56	1.05	1.09	$\bigcirc 36$	0.76	0.69
	1999	4.13	4.37	1.42	3.02	2.75	1.03	1.09	$\cdots 36$	0.76	0.69
	2000	4.40	4.70	1.53	3.23	2.95	1.03	1.09	$=36$	0.75	0.6 .9

${ }^{1}$ The real values are in terms of 1980 dollars.

Table 4. 10). The corresponding percentage increases are 143 percent and 116 percent respectively (see Table 4.11). The projected annual rates of change in harvesting activity are summarized in Table 4. 12, and the projections by species are presented in Tables 4.13 through 4.16. The harvest wei ght for 2000 is not expected to equal the record harvest of 1979 because such a high level of harvest is not thought to be sustainable.

## Bristol Bay

The Bristol Bay Managenent Area sal non fishery is expected to continue to dom nate the sal non fishery of Vestern Al aska and renai $n$ one of Al aska's leading sal non fisheries. The annual harvest wei ght is projected to increase from 24, 604 metric tons (54.2 million pounds) in 1980 to $\mathbf{3 5}, 804$ metric tons ( 78.9 million pounds) in 2000, and the real harvest val ue is expected to increase from $\$ 55.5 \mathrm{milli}$ on to $\$ 74.4 \mathrm{mili}$ on (see Table 4. 17). The projections for 1980 do not reflect the fact that the actual 1980 harvest is generally expected to be a peak year harvest; rather it reflects the nean harvest expected during the early 1980s. The projected increases in harvest wei ght and real harvest val ue are 45. 5 percent and 34.0 percent respectively (see Table 4.18). The projected annual rates of change in harvesting activity are sumarizedin Table 4. 19, and harvest projections by species are presented in Tables 4. 20 through 4.23. The harvest weight for 2000 is not expected to approach the record harvests of 1978 through 1980 because it is not bel $i$ eved that such harvests are sustai nable.

Table 4. 10
Peni nsul a Sal non Fi shery Projected Harvesting Activity

1980-2000

Catch					Exvessel Price (\$/Pound)		Number of		Cat ch Weight Pounds ( 1,000 )	Boat Month			
	Weight		Value				Val ue						
	unds	Metric	(miTh	ons)			Boat	Fi sher man			00)		
Y_a	- (mil)	Tons)	Nomi nal	Real			Mbnt hs	Months		Nomi nal	Real		
1980	in. 3	8300	12.5	12.5	0.68	0.68			660	1760	27.7	18.9	18.9
1981	19.1	8644	13.2	12.3	0.69	0.64	660	1760	28.9	20.0	18.6		
1982	19.9	9007	14.8	12.8	0.74	0.64	660	1760	30.1	22.4	19.3		
1983	20.?	9389	16.5	13.3	0.80	0.64	66(-I	1760	31.4	25.0	20.1		
1984	21.6	9792	18.5	13.8	0.86	0.64	660	1760	32.7	28.0	20.9		
1985	22.5	10215	? 0.7	14.4	0.92	0.64	660	1760	34.1	31.4	21.8		
1986	23.5	10662	23.2	15.0	0.99	0.64	660	1760	35.6	35.1	22.7		
1987	24.5	11132	25.9	15.6	1.06	0.63	66(7	1760	37.2	39.3	23.6		
1988	? 5.6	11628	29.1	16.7	1.13	0.63	660	1760	38.8	44.0	24.6		
1989	26.8	12150	32.6	16.9	1.22	0.63	660	1760	40.6	49.3	25.6		
1990	28.0	12701	36.5	17.6	1.30	0.63	660	1760	42.4	55.3	? 6.7		
1991	29.3	13281	40.9	18.4	1.40	0.63	660	1760	44.4	62.0	27.8		
1992	30.6	13893	45.9	1401	1.50	0.62	660	1760	46.4	69.5	29.0		
1993	32.1	14538	51.5	20.0	1.61	0.62	660	1760	48.6	78. о	30.2		
1994	33.6	15219	57.7	20.8	1.72	0.62	660	1760	50.8	87.5	31.5		
1995	35.1	15936	64.8	21.7	1.84	0.62	660	1760	53.2	98.2	32.9		
1996	36.8	16.693	72.7	2?.7	1.98	0.62	660	1760	55.8	110.2	34.3		
1997	38.6	1749 ?	A1.7	23."7	2.12	0.61	660	1760	58.4	123.7	35.8		
1998	40.4	18334	91.7	24.7	2.27	0.61	660	1760	61.2	139.0	37.4		
1999	42.4	19223	107.0	25.9	7.43	0.61	660	1760	64.2	156.1	39.1		
2000	44.4	20161	115.8	27.0	2.6(1)	0.61	660	1760	67.3	175.4	40.8		

[^17]Tabl e 4. 11
Peni nsul a Sal non Fisherv
Harvesting Activity Projected Percentage-Change from 1980 1980-2000

						ntage	hange			
			Catch					Cat	er Boat	nth
					Exvessel	ce	Number of			
	Year	Weight	Nomi nal	Real	Nominal	Real	Boat Months	Weight	Nomi nal	Real
	19R0	0	0	0	0	0	0	0	0	0
	1981	4.2	5.8	-1.6	1.6	-5.5	0	4.2	5.8	-1.6
	1982	8.5	18.4	2.3	9.1	- 5.7	0	8.5	18.4	2.3
	1983	13.1	32.4	6.4	17.1	- 5.9	0	13.1	32.4	6.4
	1984	18.0	$48 . ?$	10.7	25.6	-15.2	0	18.0	48.2	10.7
	1985	23.1	65.9	15.2	34.8	-6.4	0	23.1	65.9	15.2
	1986	28.5	85.7	19.9	44.6	-6.6	0	28.5	85.7	19.9
	1987	34.1	108.0	24.9	55.1	-6.9	0	34.1	108.0	24.9
$\stackrel{\infty}{\infty}$	19月8	40.1	133.0	30.0	66.3	- 7.2	0	40.1	133.0	30.0
	1989	46.4	161.0	35.5	78.3	-7.5	0	46.4	161.0	35.5
	1990	53.0	192.5	41.2	91.2	-7.8	0	53.0	192.5	41.2
	1991	60.0	228.0	47.1	105.0	-0.1	0	60.0	228.('I	47.1
	1992	67.4	267.8	53.4	119.7	-8.4	0	67.4	267.8	53*4
	1993	75.2	312.5	59.9	135.5	-8*7	0	75.2	312.5	59*9
	1994	83.4	362. ${ }^{\text {A }}$	66.8	152.4	-9.0	0	83.4	362.8	66
	1995	92.0	419.3	74.1	170.5	-9.3	0	92*O	419.3	74.1
	1996	101.1	483.0	81.6	189.8	-9.7	0	101.. 1	483.0	81.6
	1997	110.7	5,54.5	89.6	210.6	-10.0	0	110.7	554.5	89.6
	1998	120.')	635.1	98.0	232.8	-10.4	0	120.9	635.1	98.0
	1997	131.6	725.8	106.8	? 56.5	-10.7	0	131.6	725.8	106.8
	2000	142.9	827.9	116.0	282.0	-11.1	0	142.9	827.9	116.0

The real val ues and prices were cal culated using the U.S. CPI; 1980 is the base period.

Table 4. 12
Peni nsul a Sal non Fi shery
Harvesting Activity Projected Annual Rate of Change
1980-2000

Year	Percentage Change									
		Catch		Exvessel Price		Number of Boat Months	Catch per Boat Month			
		Val ue					Val ue			
	Weight	Nominal	$\underline{\text { Real }}$	Nomina 1	Real		w	Nomi nal	Real.	
1890	0	0	cl	0	0		0	0	0	0
1991	4.2	5.8	-1.6	1.6	-5.5	n	4.2	5.8	-1.6	
1982	4.2	11.9	4.0	7.3	-0. 2	0	4.2	11.9	4.0	
1983	4.2	11.9	4.0	7.3	-0.2	0	4.2	11.9	4.0	
$19 \mathrm{H4}$	4.3	11.9	4.(-)	7.3	-0.?	0	4.3	11.9	4.0	
1985	4.3	11.9	4.1	7.3	-0.3	0	4.3	11.9	4.1	
$19 \mathrm{H6}$	4.4	12.0	4.1	7.3	-0.3	0	4.4	12.(-I	4.1	
1987	4.4	12.0	4.1	7.3	-0.3	0	4.4	12*O	4.1	
1988	4.5	$12 *$ O	4.1	7.2	-0.3	0	4.5	12.0	4.1	
1989	4.5	12.0	4.2	7.2	-0.3	0	4.5	12.0	4.2	
1990	4.5	12.1	4.2	?. 2	-0.3	0	4.5	$12 * 1$	4.2	
1991	4.6	$12 * 1$	4.2	7.2	-0.3	0	4.6	12.1	$4 . ?$	
1992	4.6	12.1	4.3	7.2	-0.3	0	4.6	12.1	4.3	
1993	4.6	12.2	4.3	7.2	-0.3	0	4*6	$12 * 2$	4.3	
1944	4.7	12.2	4.3	7.2	-0.4	n	4.7	$12 * 2$	4	
1905	4.7	12.?	4.3	7.2	-0.4	0	4.7	12.2	4.3	
1996	4.7	1 ?. 3	4.4	7.2	-0.4	0	4.7	12.3	4.4	
1997	4.8	12.3	4.4	7.2	-0.4	0	4.0	12.3	4.4	
1998	4.8	12.3	4.4	7.1	$-0.4$	0	4.8	12.3	4.4	
1999	4.8	1 ?. 3	4.4	7.1	-0.4	0	4.8	12.3	4.4	
2000	4.9	$1 ? .4$	4.5	7.1	$-0.4$	0	4.9	12.4	4.5	

[^18]Table 4. 13
Peni nsula Salmon Fi shery Projected Harvest by Speci es

1980-2000

## (1,000 Fi sh)

	Year	Kings	Reds	Pinks	$\underline{\text { Si I vers }}$	Chuns
	1980	5	1000	2000	70	570
	1981	5	1039	2121	75	573
	1982	6	1080	2249	80	575
	1983	6	1123	2385	86	578
	1984	b	1167	2529	92	581
	1985	7	1213	2682	90	583
	1986	7	1261	2844	105	586
	1987	7	1311	3016	113	589
$\infty$	1988	8	1363	3198	120	591
	1989	8	1416	3392	129	594
	1990	9	1472	3597	138	597
	1991	9	1530	3814	148	600
	1992	9	1590	4045	158	602
	1993	10	1653	4289	169	605
	1994	11	1718	4549	181	608
	1995	11	1786	4824	194	611
	1996	12	1856	5115	207	613
	1997	12	1930	5424	222	616
	1998	13	2006	5752	237	619
	1999	14	2085	6100	254	622
	2000	15	2167	6469	272	625

Tabl e 4. 14
Peni nsula Sal non Fi shery Projected Harvest Wetight by Speci es 1980-2000

				ds ( 1,00					etric		
	Year	Ki ngs	Reds	Pi nks	Sil vers	C huns	Kings	Reds	Pi nks	Sil vers	Chuns
	1980	90	6100	7600	518	3990	41	2767	3447	235	1810
	1981	95	6340	8059	554	4008	43	2876	3656	251	1818
	1982	100	6590	8547	593	4027	45	2989	3877	269	1827
	1983	106	6050	9063	635	4045	48	3107	4111	288	1835
	1984	111	7120	9611	679	40154	51	3230	4360	308	1843
	1985	118	7401	10192	727	4083	53	3357	4623	330	1852
	1986	124	7693	10808	778	4102	56	3489	4903	353	1860
	1987	131	7996	11461	833	4120	59	3627	5199	378	1869
0	1988	138	8311	12154	891	4139	63	3770	5513	404	1878
	1989	146	8639	12889	954	4158	66	3919	5846	433	1886
	1990	154	8980	13668	1021	4178	70	4073	6200	463	1895
	1991	162	9334	14494	1093	4197	74	4234	6575	496	1904
	1992	171	9701	15370	1169	4216	78	4401	6972	530	1912
	1993	180	10084	16300	1251	4236	82	4574	7393	568	1921
	1994	190	10481	17285	1339	4255	86	4754	7840	607	1930
	1995	201	10895	18330	1433	4275	91	4942	8314	650	1939
	1996	212	11324	19438	1534	4294	96	5137	8817	696	1948
	1997	223	11771	20613	1641	4314	101	5339	9350	745	1957
	1998	236	12235	21859	1757	4334	107	5550	9915	797	1966
	1999	249	12717	23180	1880	4354	113	5768	10514	853	1975
	2000	262	13218	24581	2012	4374	119	5996	11150	913	1984

Table 4.15
Peninsula Salmon Fishery
Projected Harvest Value by Species
1980-2000

		Nominal Value ( $\$ 1,000$ )					Real Value ${ }^{1}(\$ 1,000)$				
	Year	Kings	Reds	Pinks	Silvers	Chums	Kings	Reds	Pinks	Silvers	Chums
	19P0	90	6710	2964	518	2195	90	6710	2964	518	2195
	1981	102	6744	3390	588	2379	95	6270	3152	547	2212
	1982	113	7556	3862	666	2570	97	6531	3338	576	2222
	1983	125	84.64	4400	755	2777	100	6802	3536	607	2232
	1984	139	9478	5013	857	3000	104	7082	3746	640	2242
	1985	154	10612	5713	974	3241	107	7372	3968	676	2252
	1986	172	11880	6510	1107	3502	111	7672	4204	715	2261
$\boldsymbol{H}^{\mathbf{O}}$	1987	191	13297	7418	1259	3783	115	7983	4454	756	2271
8	1988	213	14880	8453	1433	4086	119	8306	4719	800	2281
	1989	238	16650	9634	1632	4414	123	8641	5000	847	2291
	1990	26.5	186.27	10979	1860	4768	128	8988	5297	897	2300
	1991	296	20837	12513	2121	5150	133	9347	5613	951	2310
	1402	331	23307	14262	2420	5563	138	9720	594 A	1009	2320
	1993	371	26067	16255	2763	6008	144	10107	6303	1071	2330
	1994	415	29151	18527	3155	6490	150	10509	6679	1137	2339
	1995	466	32597	21118	3605	7009	156	10925	7078	1208	2349
	1996	52.2	36448	24071	4122	7570	163	11357	7500	1284	2359
	1997	586	40751	27437	4714	8176	170	11805	7948	1365	2369
	1908	658	45559	31274	5393	8831	177	12270	8423	1452	2378
	1990	739	50071	35649	6172	9537	185	12753	8927	1545	2388
	2000	831	56934	4.10 .36	7066	10300	173	13254	9460	1645	2398

The real values are in terms of 1980 dollars.

Table 4.16
Peninsula Salmon Fishery
Projected Exvessel Prices by Species
1980-2000


The real values are in terms of 1980 dollars.

Table 4.17
Bristol Bay Sal mon Fi shery Projected Harvesting Activity 1980-2000

	Catch				Exvessel Price		Number of		Catch per Baat Month				
	Weight		Val ue				Weight	Value					
	Pounds	Metric	( m I	Ons),					Boat	Fi shernan	Pounds	- (\$7,00	0)
Year	(millions)	Tons	i nal	Real	Nomi nal	Rea 1	Mont hs	Mont hs	(1,000)	Nominal	Real		
1980	54.2	24604	55.5	55.5	1.0?	1.02	3150	8640	17.2	17.6	17.6		
1981	55.1	25008	55.?	$51 * 3$	1.00	0.93	3150	8640	17. 5	17. 5	16.3		
1982	56.0	25419	60.4	52.2	1.08	0.93	3150	8640	17.8	19.2	16.6		
1983	57.0	25837	66.1	53.1	1.16	0.93	3150	8640	18.1	21.0	16.9		
1984	57.9	26264	72.4	54.1	1.25	0.93	3150	8640	18.4	23.0	17.2		
1985	58.7	26698	79.2	55.0	1.35	0.93	3150	8640	18.7	25.1	17.5		
1986	60.0	27237	87.0	56.2	1.45	0.94	3150	8640	19.1	27.6	17.8		
1987	6 ]. ?	27767	95.4	57.3	1.56	0.94	3150	8640	19.4	3(-). 3	18.2		
1988	62.4	28309	104.7	5 ¢. 5	1.68	0.94	3150	8640	19.8	33.3	18.6		
1989	63.6	28863	114.9	59.7	1.81	0.94	3150	8640	20.2	36.5	18.9		
1990	64.9	.?9429	1.76 .1	60.9	1.94	0.94	3150	8640	20.6	40.0	19.3		
1991	$66 . ?$	30007	138.4	62.1	2.09	O*Q4	3150	8640	21.0	43.9	19.7		
1992	67.5	30598	151.9	63.4	2.25	0.94	3150	8640	21.4	48.2	20.1		
1993	68.8	31201	166.7	64.6	.?. 42	0.94	3150	8640	21.8	52.9	20.5		
1994	70.1	31817	182.7	65.9	"2.61	0.94	3150	8640	22.3	58.1	20.9		
1995	71.5	3?447	200.7	67.3	2.81	(-). 94	3150	8640	22.7	63.-?	21.4		
1976	72.9	33090	270.3	68.6	3.02	0.74	-315(-)	8640	23.2	69.9	21.8		
1997	74.4	33747	? 41.7	70.0	3.25	0.94	3150	8640	23.6	76.7	22.2		
1098	75.9	34418	265.3	71.4	3.50	0.94	3150	8640	24.1	84.2	? 2.7		
1999	77.4	35104	291.1	72.9	3.76	0.94	3150	8640	24.6	92.4	23.1		
2000	78.9	35804	319.4	74.4	4.05	(). 94	3150	8640	25.1	101.4	23.6		

${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

Table 4.18
Bristol Bay Salmon Fishery
Harvesting Activ ty Projected Percentage Change from 1980 1980-2000

Percentage Change

Catch			Exvessel Price		Number of Boat Months	Catch per Boat Month			
	Value								
Weight	Nominal	Real	Nominal	Real		Weight	Nominal	Real	
0	0	0	0	0		0	0	0	0
1.6	-0. 5	-7.5	$-2.1$	-9.0	0	1.6	-0.5	-7.5	
3.3	8.7	-5.9	5.4	-8.9	0	3.3	8.9	-5. 3	
5.0	19.2	$-4.2$	13.5	-8.8	0	5.0	19.2	-4.2	
6.7	30.4	-2.6	22.2	-8.7	0	6.7	30.4	-2.6	
8.5	42.7	-0.9	31.5	-8.6	0	8.5	42.7	-0.7	
10.7	56.8	1.2	41.6	-8.6	0	10.7	56.8	1.2	
12.9	72.0	3.3	52.4	-8. 5	0	12.9	72.0	3.3	
15.1	88.8	5.4	64.1	-8.4	0	15.1	88.8	5.4	
17.3	107.2	7.5	76.6	-8. 3	0	17.3	107.2	7.5	
19.6	127.4	9.7	90.1	-8. 3	0	19.6	127.4	9.7	
22.0	149.5	11.9	104.6	-8.2	0	22.0	149.5	11.9	
24.4	173.8	14.2	120.2	-8.2	n	24.4	173.8	14.2	
26.8	200.5	16.5	137.0	-8.1	0	26.8	200.5	16.5	
29.3	227.7	18.9	155.0	-8.1	0	29.3	229.7	18.9	
31.9	261.月	21.3	174.4	-8.0	0	31.9	261.8	21.3	
34.5	297.1	23.7	195.2	-8.0	0	34.5	297.1	23.7	
37.2	335.7	26.7	217.7	$-8.0$	0	37.2	335.7	26.2	
39.9	378.1	28.8	241.8	$-7.9$	0	39.9	378.1	28.8	
42.1	424.7	31.4	267.7	-7.9	0	42.7	424.7	31.4	
45.5	47	34	295.6	-7	0	45.5	475	34	

${ }^{1}$ The real values ano prices vere calculated using the U.S. CPI; $98^{\circ} \mathrm{s}$ the base period.

Table 4.19
Bristol Bay Salmon Fishery
Harvessing Activity Projected Annual Rate of Change 1980-2000

Percentage Change

Year	Percentage Change									
	tatin			Exvessel Price		Number of Boat Months	Latch per Boat Month			
		value				Value				
	Weight	Nominal	$\underline{\text { Real }}$	Nominal	Real		Weight	Nominal	Real	
1980	)	0	0	()	0		0	0	0	0
1981	1.6	$-0.5$	-7. 5	-2.1	-9.0	0	1.6	-0.5	-7.5	
1982	1.6	9.5	1.8	7.7	0.1	n	1.6	9.5	1.8	
1983	1.6	9.4	1.8	7.7	0.1	0	1.6	9.4	1.8	
1984	1.7	9.4	1.7	7.7	0.1	0	1.7	9.4	1.7	
1985	1.7	9.4	1.7	7.7	0.1	0	1.7	9.4	1.7	
1986	2.0	9.8	2.1	7.7	0.1	0	2.0	9.8	2.1	
1987	1.9	9.7	2.0	7.7	0.1	0	1.9	9.7	2.0	
1988	2.0	9.7	2.0	7.6	0.1	0	2.0	9.7	2.0	
1989	2.0	9.7	2.0	7.6	0.1	0	2.0	9.7	2.0	
1990	2.0	9.7	2.0	7.6	$0 \cdot 1$	0	2.0	9.7	2.0	
1991	2.0	9.7	2.0	7.6	$0 \cdot 1$	?	2.0	9.7	2.0	
1992	2.0	9.7	2.0	7.6	$0 \cdot 1$	0	2.0	9.7	2.0	
1903	2.0	9.7	2.0	7.6	$0 \cdot 1$	0	2.0	9.7	2.0	
1994	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.0	
1995	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.0	
1996	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.0	
1997	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.0	
1908	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.0	
1099	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.01	
2000	2.0	9.7	2.0	7.6	0.0	0	2.0	9.7	2.0	



## Tabl e 4. 20 <br> Bristol Bay Sal non Fi shery Projected Harvest by Speci es

 1980-2000|  | Year | Kings | Reds | Pinks | Si lvers | Chuns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1980 | 100 | -200 | 700 | 70 | 585 |
|  | 1981 | 100 | 8353 | 712 | 71 | 585 |
|  | 1982 | 100 | 8508 | 725 | 72 | 585 |
|  | 1983 | 100 | 8667 | 738 | 73 | 585 |
|  | 1984 | 100 | 8828 | 751 | 74 | 585 |
|  | 1985 | 100 | 8992 | 765 | 75 | 585 |
|  | 1986 | 100 | 9197 | 778 | 75 | 586 |
|  | 1987 | 100 | 9399 | 792 | 76 | 587 |
| $\bigcirc$ | 1988 | 100 | 9604 | 806 | 77 | 588 |
|  | 1989 | 100 | 9815 | 821 | 78 | 589 |
|  | 1990 | 100 | 10030 | 835 | 79 | 590 |
|  | 1991 | 100 | 10249 | 850 | 80 | 591 |
|  | 1992 | 100 | 10474 | 865 | 81 | 592 |
|  | 1993 | 100 | 10703 | 881 | 82 | 593 |
|  | 1994 | 100 | 10938 | 897 | 83 | 594 |
|  | 1995 | 100 | 11177 | 913 | 84 | 595 |
|  | 1996 | 100 | 11422 | 929 | 85 | 596 |
|  | 1997 | 100 | 11672 | 945 | 87 | 597 |
|  | 199\$ | 100 | 11928 | 962 | 88 | 598 |
|  | 1999 | 100 | 12189 | 979 | 89 | 599 |
|  | ? 000 | 100 | 12456 | 997 | 9 9-I | 600 |

Table 4. 21
Bristol Bay Salmon Fi shery
Projected Harvest Wei ght by Speci es 1980-2000

				ds	1,00				ric To		
	Year	Kings	Reds	Pinks	Sil vers	Chums	Kings	Reds	Pi nks	Sil vers	Chums
	1980	2100	45100	2450	497	4095	953	20457	1111	225	1857
	1981	2100	45940	2494	503	4095	953	20838	1131	228	1857
	1982	2100	46795	2538	510	4095	953	21226	1151	231	1857
	1983	$21(-) 0$	47666	2583	516	4095	953	21621	1172	234	1857
	1984	2100	48554	2630	522	4095	953	22024	1193	237	1857
	1985	2100	49458	2676	529	4095	953	22434	1214	240	1857
	1986	2100	50584	27? 4	536	4102	953	22945	1236	243	1861
$\omega$	1987	2100	51692	2773	542	4109	953	23447	1258	246	1\$64
¢	1988	2100	5282.4	2822	549	4116	953	23961	1280	249	1867
	1989	2100	53981	2872	556	4123	953	24486	1303	252	1870
	1990	$210(-)$	55163	2924	563	4130	953	25022	1326	255	1873
	1991	2100	56371	2976	570	4137	953	255?0	1350	259	1876
	1992	2100	57606	3029	577	4144	953	26130	1374	26 ?	1880
	1993	2100	58867	3083	585	4151	953	26702	1398	265	1883
	1994	2100	60156	3138	592	4158	953	27287	1423	269	1886
	1995	2100	61474	3194	599	4165	953	27884	1449	272	1889
	1996	2100	62820	3251	607	4172	953	28495	1475	275	1892
	1997	2100	64196	3309	615	4179	953	29119	1501	279	1895
	1998	2100	65602	3368	622	4186	953	29757	1528	282	1899
	1999	2100	67039	3428	630	4193	953	30408	1555	286	1902
	2000	2100	68507	3489	638	4200	953	31074	1583	289	1905

Table 4. 22
Bristol Bay Sal non Fi shery Proj ected HarvestValue by Speci es 1980-2000

		Nomi nal Val ue ( $\$ 1,000$ )					Real Value ${ }^{1}(\$ 1,000)$				
	Year	Kings	Reds	Pi nks	$\underline{\text { Si I vers }}$	Chumis	Kings	Reds	Pinks	Silvers	Chums
	1980	2310	49610	яо9	497	2252	2310	49610	809	497	2252
	1981	2474	4896.3	88\%	534	2430	2301	45429	825	496	2260
	1982	2590	53651	970	572	2614	2246	46374	839	495	2259
	1983	2732	58493	106 I	614	2811	2196	47327	853	493	2 ? 59
	1984	2876	64633	1161	659	3023	? 148	48289	867	492	2259
	1985	3029	70418	1269	708	32,51	2104	49261	882	492	2258
	1986	3195	78117	1389	762	3502	2063	50448	897	492	2262
	1987	3372	85959	1518	820	3772	20? 5	51610	912	492	2265
$\stackrel{\square}{\square}$	1988	356, 3	94573	1661	883	4063	1989	52791	927	493	2268
	1989	3768	104036	1917	951	4376	1955	53992	943	494	2271
	$19 \% 0$	3947	114431	1987	1026	4713	1924	55212	959	495	2274
	1991	4.224	125850	2174	1107	5076	1895	56454	975	497	$2 ? 77$
	1992	4477	138393	2378	1195	5467	1 \$67	57717	992	498	2280
	1903	4.750	152171	2602	1291	5888	1842	59003	1009	500	2283
	1994	5043	167306	2846	1395	6341	1818	60312	1026	503	2286
	1905	5358	183971	3114	1508	6829	1 "196	61644	1044	505	2289
	1996	5696	202193	3406	1631	7354	1775	63002	1061	508	2291
	1097	6.059	$2222^{65}$	3727	176.5	7920	1755	64385	1080	511	2294
	1909	6.449	244286	4077	1910	8529	1737	65794	1098	514	2297
	1909	6.8ene	2684889	44.1	2069	9184	17?(-)	67?30	1117	518	2300
	2000	7319	295074	44981	2241	9890	1704	¢88,94	1136	522	2302

[^19]Table 4.23
Bristol Bay Sal non Fi shery
Proiected Exvessel Prices by Species
1980-2000

			Nomi nal	rice	Pound)			Real	ce' ${ }^{\text {/ }}$	und)	
	Year	Kings	Reds	Pinks	Silyers	Chuns	Kings	Reds	Pi nks	Silvers	Chuns
	1980	1.10	1*10	0.33	1.00	0.55	1.10	1*10	0.33	1.00	0.55
	1981	1.18	1 ob	0.36	1.06	0.59	1.10	0.99	0.33	0.99	0.55
	1982	1.24	1.15	0.38	1.12	0.64	1.07	0.99	0.33	0.97	0.55
	1983	1.30	1.24	0.41	1.19	0.69	1.05	O*99	0.33	0.96	0.55
	1984	1.37	1 "33	0.44	1.26	(-). 74	1.02	0.99	0.33	0.94	0.55
	1985	1.44	1.43	0.47	1.34	0.79	1.00	1.00	0.33	(-). 93	0.55
	1986	1.52	1.54	0.51	1.42	0.85	0.98	1.00	0.33	0.92	0.55
	1087	1.61	1.66	0.55	1.51	0.97	0.96	1.00	0.33	0.91	0.55
${ }_{\sim}^{\omega}$	1988	1.70	1.79	0.59	1.61	0.99	0.95	1.00	0.33	0.90	0.55
	1989	1.79	1.93	0.63	1.71	1.06	0.93	1.00	0.33	0.89	0.55
	1900	1.90	.?. 07	0.68	1.82	1.14	0.92	1.00	0.33	0.88	0.55
	1991	2.01	?. 23	0.73	1.94	1.23	0.90	1.00	0.33	0.87	0.55
	1992	2.13	2.40	0.79	2.07	1.32	0.89	1.00	0.33	0.86	0.55
	1993	2.26	2.58	0.84	2.21	1.42	0.88	1.00	0.33	0.86	0.55
	1994	?. 40	2.78	0.91	2.36	1.53	0.87	1.00	I-). 33	0.85	0.55
	1995	2.55	2.99	0.97	2.52	1.64	0.86	1.00	0.33	0.84	0.55
	1996	2.71	3.22	1.05	2.69	1.76	0.85	1.00	0.33	0.84	0.55
	1997	2.89	3.46	1.13	2.87	1.90	(). 84	1.00	0.33	0.83	0.55
	1998	3.07	3.72	1.21	"3.07	2.04	0.83	1.00	0.33	0.83	0.55
	1909	3.77	4.00	1.30	3.28	2.19	O.82	1.00	0.33	0.82	0.55
	2000	3.49	4.31	1.40	3.51	2.35	0.81	1.00	O*33	0.82	0.55

$\mathrm{I}_{\text {The }}$ real val ues are interns of $\mathbf{1 9 8 0}$ dollars.

The annual sal non harvest in the Kuskokwim Managenent Area is projected to increase from 1, 432 metric tons ( 3.2 million pounds) in 1980 to 2, 125 metric tons ( 4.7 milli on pounds) in 2000, and its real value is projected to increase from $\$ \mathbf{2 . 3} \mathbf{~ m i l i}$ on to $\$ 2.8 \mathrm{milli}$ on (see Table 4. 24). This represents a 48 percent increase in harvest wei ght and a 21 percent increase in real harvest val ue (see Table 4 25), The corresponding projected annual rates of change are summar zed in Table 4.26 and the harvest projections by species are presented in Tables 4. 27 through 4. 30. The projected harvest for 2000 exceeds the 1978 harvest and approaches the record 1979 harvest.

Yukon

The annual commercial sal non harvest in the Yukon Managenent Area is expected to increase from 4, 903 metric tons (9. 0 mill ion pounds) in 1980 to 7,574 metric tons ( 16.7 million pounds) in 2000, and its real value is expected to increase from $\mathbf{\$ 6 . 0}$ million to 59.8 million (see Table 4. 31). Thi s represents an 85 percent increase in harvest 'wei ght and a 63 percent increase in real harvest val ue (see Table 4.32). Table 4.33 contains projections of the annual rate of change in harvesting activity and Tables 4. 34 through 4.37 contain harvest projections by species. The projected harvest wei ght for 2000 is approxi natel y 50 percent greater than the 1978 or 1979 harvests which are substantially greater than the nean annual harvest from 1969 through 1979.

Table 4.24
Kuskokwim Salmon Fishery
Projected llarvesting Activity
1980-2000

Year		Catch				Exvessel Price		Number of		Catch per Boat Month		
		Weight						Weight Pounds (1,000)	$\begin{aligned} & \text { Value } \\ & (\$ 1,000) \end{aligned}$			
		Pounds	Metric	(mil	ons)	(\$/Pound)					Boat   Months	Fisherman Months
		millions)	Tons	Nominal	Rea $\}$	Nominal	Real		Nominal	Real		
	1980	3.2	1432	2.3	2.3	0.72	0.72	2025	2025	1.6	1.1	1.1
	1981	3.2	1460	2.5	2.3	0.77	0.72	2025	2025	1.6	1.2	1.1
	1982	3.3	1488	2.7	2.3	0.82	0.70	2025	2025	1.6	1.3	1.
	1983	3.3	1517	2.9	2.3	0.86	0.69	2025	2025	1.7	1.4	1.
	1984	3.4	1547	3.1	2.3	0.91	0.68	2025	2025	1.7	1.5	1.2
	1985	3.5	1577	3.4	$2 \cdot 3$	0.97	0.67	2025	2025	1.7	1.7	1.2
	198t	3.5	1608	3.7	2.4	1.03	0.66	2025	2025	1.8	1.8	1.2
	1987	3.6	1640	4.0	2.4	1.09	0.66	2025	2025	1.8	2.0	$1 . \frac{1}{4}$
令	1988	3.7	1672	$4 \cdot 3$	2.4	1.16	0.65	2025	2025	1.8	2.1	1.2
	1989	3.8	1705	4.6	2.4	1.24	0.64	2025	2025	1.9	2.3	1.2
	1990	3.8	1739	5.0	2.4	1.32	0.63	2025	2025	1.9	2.5	1.2
	1991	3.9	1774	5.5	2.5	1.40	0.63	2025	2025	1.9	2.7	1.
	1992	4.0	1810	6.0	2.5	1.49	0.62	2025	2025	2.0	2.9	1.2
	1993	4.1	184 6	6.5	7.5	1.59	0.62	2025	2025	2.0	3.2	1.2
	1994	4.2	1883	7.1	2.5	1.70	0.61	2025	2025	2.1	3.5	1.3
	1995	4.2	1921	7.7	?.6	1.81	0.61	2025	2025	2.1	3.8	1.3
	1900	4.3	1960	8.4	2.6	1.94	0.60	2025	2025	2.1	4.1	1.3
	1997	4.4	2000	9.1	2.6	2.07	0.60	2025	2025	2.2	4.5	1.3
	1998	4.5	2041	9.9	2.7	2.21	0.59	2025	2025	2.2	4.9	1.3
	1979	4.6	2083	10.8	2.7	2.36	0.59	2025	2025	2.3	5.4	1.3
	2000	4.7	7125	11.8	2. 1	2.53	0.59	2025	2025	2.3	5.8	1.4

[^20]Table 4. 25 Kuskokwill Sal non Fi shery Harvesting Acti vity Proj ected Percentage Change from 1980 1980-2000

						tage Cha				
			Catch					Catch	er Boat	
	Year	Weight	Noni nal	Rear ${ }^{\prime}$	Exvessel Nominal	$\frac{\text { ice }}{\text { Reat }}$	Number of Boat Months	Weight	$\frac{\text { Val }}{\text { Nomi }}$	Reat
	1980	-	-		- 0	0		0	0	
	1981	1.9	8.6	1.0	6.6	-0.9	0	1.9	8.6	1.0
	1982	3.9	17.2	1.3	12.7	-2.6	r.)	3.9	17.2	1.3
	1983	5.9	26.5	1.6	19.4	-4.1	0	5.9	26.5	1.6
	1984	8.0	36.6	?. 1	26.5	$-5.5$	0	8.0	36.6	2.1
	1985	10.1	4-?.7'	2.6	34.1	-6.8	0	10.1	47.7	2.6
	1986	12.3	59.9	3.2	42.4	-8.1	0	12.3	59,9	3. ?
	1987	14.5	73.2	4.0	51.2	-9.2	0	14.5	73.2	4.0
$\stackrel{\rightharpoonup}{3}$	1988	16.8	87.7	4.8	60.7	-10.3	0	16.8	87.7	4.8
	1989	19.1	103.6	5.7	70.9	-11.3	0	19.1	103.6	5*7
	1990	21.5	121.0	6.6	81.9	-12.2	0	21.5	121.0	6.6
	1991	23.9	140 " 1	7.7	93.7	-13.1	0	23.9	140.1	7.7
	1902	26.4	160.9	8.8	106.5	-13.9	0	26.4	160.9	8.8
	1903	28.9	183.8	10.0	120.1	-14.7	0	28.9	183.8	10.0
	1964	31.5	208.8	11.3	134.8	--15.4	0	31.5	208.8	11.3
	1995	34.2	236.?	12.7	150.6	-16.0	n	34.2	236. ?	12.7
	1996	36.09	26.6 .3	14.1	167.5	$-16.6$	0	36.9	266.3	14.1
	1997	39.7	?')'). ?	15.6	185.8	$-17.2$	0	39.7	299.2	15.6
	1998	42.5	335. 3	17.2	205.4	-17.7	0	42.5	335.3	17.2
	1009	4.5 .5	374.7	18.9	276.5	$-18.3$	0	45.5	374.9	18.9
	2000	48.4	419.2	20.6	249.1	$-18.7$	0	48.4	418.2	20.6

$1_{\text {The real }}$ values and prices were cal cul ated using the $\mathbf{U} . \mathbf{S}$. CPI; $\mathbf{1 9 8 0}$ is the base period.

Table 4.26
Kuskokwim Salnon Fishery
Harvesting Activity Projected Annual Rate of Change
1980-2000

${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

Table 4.27
Kuskokwim Salmon Fi shery Projected llarvest by Species

1980-2000
( $1,000 \mathrm{Fi} \mathrm{sh}$ )

	Year	Kings	Reds	Pi nks	Si I vers	Chuns
	1980	50	15	15	140	180
	1981	50	15	15	144	184
	1982	51	16	16	148	188
	1983	51	16	16	153	192
	1984	52	17	17	157	196
	1985	52	17	17	162	200
	1986	53	17	17	166	204
$\stackrel{\square}{\square}$	1987	53	18	18	171	208
8	1988	54	18	18	176	213
	1989	54	19	19	181	217
	1990	55	19	19	186	22.2
	1991	55	20	20	192	227
	1992	56	20	20	197	232
	1993	56	21	21	203	236
	1994	57	21	21	209	241
	1995	57	22	22	215	247
	1996	58	22	22	221	252
	1997	58	23	23	228	257
	1998	59	24	24	234	263
	1999	59	24	24	241	. 268
	2000	6 ()	25	25	248	274

Table 4. 28
Kuskokwim Salmon Fi shery
Projected Harvest Wei ght by Speci es 1980-2000

				nds	( 1 ,	$0)$			tric	ons	
	Year	Kings	Reds	Pinks	Sil vers	Chums	Kings	Reds	Pinks	Sil vers	Chur ns
	1980	1050	98	45	812	1152	476	44	20	368	523
	1981	1060	100	46	836	1176	481	45	21	379	534
	1982	1069	103	47	860	1201	485	47	21	390	545
	1983	1079	105	49	885	1227	489	48	22	401	556
	1984	1089	108	50	910	1253	494	49	23	413	568
	1985	1099	111	51	937	1279	498	50	23	425	580
	1986	1109	113	52	964	1306	503	51	24	43 ?	593
	1987	1119	116	54	992	1334	508	53	24	450	605
$\stackrel{+}{\circ}$	1988	1129	119	55	1021	1362	512	54	25	463	618
	1989	1139	122	56	1050	1391	517	55	26	476	631
	1990	1150	125	58	1081	1421	522	57	26	490	644
	1991	1160	129	59	1112	1451	52.6	58	27	504	658
	1992	1171	132	61	1144	1482	531	60	28	519	672
	1993	1181	135	+52	1177	1513	536	61	28	534	686
	1994	1192	139	64	1211'	1545	541	63	29	550	70
	1995	1203	142	66	1247	1578	546	65	30	565	716
	1996	1214	146	67	1283	1611	551	66	31	582	731
	1997	1225	150	69	1320	1645	556	68	31	599	746
	1998	1236	154	71	1358	1680	561	70	32	616	762
	1999	1248	157	73	1398	1716	566	71	33	634	778
	2000"	1254	161	75	1438	1752	571	73	34	652	795

Table 4.29 Kuskokwim Salmon Fishery
Projected Harvest Value by Species 1980-2000

	Year	Kings	Nominal Value ( $\$ 1,000$ )				Real Value ${ }^{1}(\$ 1,000)$				
			Reds	Pinks	Silvers	Chums	Kings	Reds	Pinks	Silvers	Chums
	1980	1050	59	7	6.50	518	1050	5;9	7	650	518
	1982	1135	5.8	7	709	571	1055	54	7	659	531
	1942	1203	64	8	772	6.7	1040	55	7	668	542
	1983	1276	71	9	842	689	1026	57	7	6.77	554
	1944	1355	78	10	919	757	1013	59	7	686	565
	19145	14.1	47	11	1003	831	1001	60	8	697	577
	1986	1533	46	12	1097	913	990	6.2	8	708	589
	1987	1633	106	13	1199	1002	981	63	8	720	602
O	1988	1741	117	15	1312	1100	972	6.5	8	733	614
	$1989$	1858	129	16	1437	1208	96.4	6.7	8	746	6.27
	$1090$	1985	142	18	1575	1327	958	68	9	760	6.40
	$1021$	2121	151	20	1727	1457	952	70	9	775	653
	$\begin{aligned} & 1002 \end{aligned}$	2260	173	22	1894	1599	946	72	9	790	$6 \times 7$
	$1903$	2429	191	74	2079.	1756	942	74	9	806	681
	19.4	2603	211	26	2283	1928	938	76	10	823	695
	1995	2790	732	29	2509	2117	935	78	10	841	709
	1996	2993	2ht	32	2758	2324	933	80	10	859	724
	1907	3213	283	35	3032	2551	931	Q 2	10	878	739
	1208	3452	317	39	3336	2801	930	84	11	898	754
	1989	3710	34.4	43	3671	3075	929	$8: 6$	11	919	770
	2010	3989	319	47	4041	3376	929	88	11	941	7R6

${ }^{1}$ The real values are in terms of 1980 dollars.

Table 4.30
Kuskokwim Salmon Fi shery
Projected Exvessel Prices by Speci es
1980-2000

			Nomi	Pric	( \$/ Pound			Real	'	und)	
	Year	Kings	Reds	Pinks	Silvers	Chums	Kings	Reds	Pi nks	Silver	Chupls
	1980	1.00	0.60	0.15	0.80	0.45	1.00	0.60	0.15	0.80	0.45
	1981	$1.0 " 7$	0.58	0.16	0.85	0.49	1.00	0.54	0.15	0.79	0.45
	1982	1.12	0.63	0.17	0.90	0.57	0.97	0.54	0.15	0.78	0.45
	1983	1.18	0.67	0.19	0.95	0.56	0.95	0.54	0.15	0.76	0.45
	1984	1.24	0.73	0.20	1.01	0.60	0.93	0.54	0.15	0.75	O*45
	1985	1.31	0.78	0.2 ?	1.07	0.65	0.91	0.54	0.15	0.74	0.45
	1986	I. 38	0.84	0.23	1.14	0.70	0.89	0.54	0.15	(-).73	0.45
	1987	1.46	0.91	0.25	1.21	0.75	0.88	0.54	0.15	0.73	0.45
$\stackrel{+}{\circ}$	1994	1.54	O. 98	ก. 27	1.29	0.81	0.86	0.55	0.15	0.72	0.45
	1989	1.63	1.05	0.29	1*3-7	0.87	0.85	0.55	0.15	0.71	0.45
	1990	1.73	1.13	0.31	1.46	0.93	0.83	0.55	0.15	0.70	0.45
	1991	1.133	1.22	ก. 33	1.55	1.00	ก.8?	0.55	0.15	0.70	0.45
	1997	1.94	1.31	0.36	1.66	1.08	0.81	0.55	0.15	0.69	0.45
	1893	2.06	1.41	0.38	1.77	1.16	0.80	0.55	0.15	0.68	$(-) * 45$
	1904	2.18	1.57	0.41	1.88	1.25	0.79	0.55	0.15	0.68	0.45
	1005	?. 32	1.6 .3	0.44	2.01	1.34	0.78	0.55	0.15	0.67	0.45
	1096	2.47	1.76	0.48	2.15	1.44	0.77	0.55	0.15	0.67	0.45
	1997	2.62	1.89	0.51	2.30	1.55	0.76	0.55	0.15	0.67	(). 45
	1978	2.79	2.03	0.55	?. 46	1.67	0.75	0.55	0.15	0.66	0.45
	1409	2.97	2.18	$1) .59$	?. 63	1.79	0.74	0.55	0.15	0.66	0.45
	2000	3.17	2.35	0.64	2.81	1.93	0.74	0.55	0.15	0.65	0.45

The real val ues are in terms of 1980 dol lars.

Table 4.31
Yukon Salnor Fishery
Projected llarvesting Activity 1980－2000

				ch						Catch p	$r$ Boat	th
		We 1	ght	Value		Exvessel	Price	Numb	er of	Weight	－VaTu	
		Pounds	Metric	（mil］io	s） 1	（\＄／Po		Boat F	isherman	Pounds	（\＄T	
	Year	millions）	Tons	Nominal	Real	Nominal	Real	Months	Months	（1，000）	Nominal	Real
	1980	9.0	4094	6.0	6.0	0.6 .7	0.67	1755	1755	5.1	3.4	3.4
	1981	9.5	4327	6.9	6． 3	0.71	0.66	1755	1755	5.4	3.9	3.6
	1982	10.1	4575	7．6	b．ts	0.76	0.65	1755	1755	5.7	4.3	3.8
	1983	10.7	4839	8.6	万． 9	0.80	0.65	1755	1755	6.1	4.9	3.9
	1984	11.3	5120	9．6	7.2	0.85	0.64	1755	1755	6.4	5.5	4.1
	1985	11.9	5418	10.9	7.5	0.91	0.63	1755	1755	6.8	6.2	4.3
	1986	12.3	5585	11.9	7.7	0.97	0.63	1755	1755	7.0	6.8	4.4
－	1987	12.6	5708	13.0	7.8	1.04	0.62	1755	1755	7.2	7.4	4.5
앙	1988	12.9	5833	$14 . ?$	8.0	1.11	0.62	1755	1755	7.3	8.1	4.5
	1989	13.1	5961	15.6	A． 1	1.18	0.61	1755	1755	7.5	8.9	4.6
	1900	13.4	0.092	17.0	8.2	1.27	0.61	1755	1755	7.7	9.7	4.7
	1991	13.7	6225	18.6	8.3	1.36	0.61	1755	1755	7.8	10.6	4.8
	1942	14.0	6363	20.3	8.5	1.45	0.60	1755	1755	8.0	11.6	4.8
	1993	14.3	6502	22.3	8． 6	1．955	0.60	1755	1755	8.2	12.7	4.9
	1994	14.6	6645	24.4	8.8	1.6 .6	0.60	1755	1755	8.3	13.9	5.0
	1995	15.0	6791	26.7	8.9	1.78	0.60	1755	1755	8.5	15.2	5.1
	1976	15.3	6041	29.2	9.1	1.91	0.59	1755	1755	8.7	16.6	5.2
	1997	15.6	7094	32.0	9.3	2.05	0.59	1755	1755	8.9	18.2	5.3
	1998	16.0	7250	$35.1)$	0.4	2.19	0.59	1755	1755	9.1	20.0	5.4
	1949	16.3	7411	38.4	9.6	2.35	0.59	1755	1755	9.3	21.9	5.5
	2100	16.7	つけ74	42.1	9．8	2.52	0.50	1755	1755	9.5	24．0	5.6

[^21]Table 4. 32
Yukon Sal non Fi shery
Harvesting Activity Projected Percentage Change from 1980
1980-2000

						tage	Change			
			atch			tage	Change	Catch	per Boat	
					Exvessel		Number of		Valu	
	Year	Weight	Nominal	Real	Nomi nal	Real	Boat Months	Weight	Nominal	Real
	1980	0	0	0	0	0	$1)$	0	0	0
	1981	5.7	1-3..?	5.7	7.1	-0. 5	O	5.7	13.?	5.2
	1982	11.8	27.0	9.8	13.7	-1.8	0	11.8	27.0	9.8
	1983	18.2	42 .-f	14.7	? 0.7	-3. n	0	18.2	42*7	14.7
	1984	25.1	60.6	20.0	28.4	-4.1	0	25.1	60.6	20.0
	1985	$3 ? .3$	80.8	25.6	36.6	-5.1	0	32.3	80.8	? 5.6
	1986	36.4	98.7	2H.5	45.8	-5.8	0	36.4	98.9	28.5
	1987	39.4	117.2	30.4	55.8	-6. 5	0	39.4	117.2	30.4
8	1988	4 ?. 5	137.3	32.4	66.5	-7.0	0	42.5	137.3	32.4
	1989	45.6	159.3	34.5	78.1	- 7.6	0	45.6	159.3	34,5
	1990	48.8	183.4	36.7	90.4	$-9.1$	0	48.8	1 [13.4	36.7
	1891	52.1	209.9	39.0	103.8	-8.5	0	52.1	209.9	39.0
	1992	55.4	238.9	41*4	118.1	-9.0	0	$55 * 4$	238.9	41.4
	1993	58.8	270.9	43.8	133.5	-9.5	0	58.8	270.8	43.8
	1994	62.3	305.9	46.3	150.0	-9.9	0	62.3	305.9	46.3
	1995	6.5 .9	344.3	48.9	167.8	-10.2	()	65.9	344.3	48.9
	1996	69.6	386.5	51.t,	186.9	$-10.6$	0	69.6	386.5	51.6
	1997	-13.3	4:3 $2 \cdot \square$	54.4	207.5	$-10.9$	0	73.3	432.8	54.4
	1998	77.1	483.7	$57 . ?$	229.6	-11.2	0	77.1	483.7	57.2
	1949	81.0	539.5	60.1	253.3	-11.5	0	81.0	539.6	60.1
	$\therefore 0000$	f? 5.01	6000.9	63.2	278.8	$-11.8$	0	85.0	600.9	63.2

The real values and prices were cal culated using the U.S. CPI; $\mathbf{1 9 8 0}$ is the base period.

Table 4.33
Yukon Salmon Fi shery
Harvesting Activity Projected Annual Rate of Change
1980-2000

						ntage	ange			
		. - ד.	'-'					Catch	er $\frac{\text { Boat }}{\text { Vat }}$	
	Year	Wei git	Nomi nal	Real		ice	Boat	Weights	Nominal	Real
	1980	0	0	0	0	0	0	0	0	0
	1981	5.-r	13.?	5 ..?	7.1	$-0.5$	0	$5 .-$ ?	13.2	5.2
	1982	5.7	12.7	4.3	6.1	-1.3	H	5.-7	12.2	4.3
	1983	5.8	12.4	4.5	6.2	$-1.2$	$1)$	5.8	12.4	4.5
	1984	5.8	12.5	4.6	6.3	-1.1	0	5.8	12.5	4.6
	1985	5.4	12.6	4.7	6.4	$-1 * 1$	0	5.8	12.6	4.7
	1986	3.1	10.0	2.3	6.07	$-0.8$	0	3.1	1 (-).0	2.3
	1987	2.2	$9 . ?$	1.5	6.83	-O. -1	0	2.2	9.2	1.5
0	1984	2.2	9.2	1.6	6.9	-0.6	0	2.2	9.2	1.6
	1989	2.2	9.3	1.6	6.9	-0.6	n	2.2	9.3	1.6
	1990	2.2	9.3	1.6	7.()	-0.6	0	2.2	9.3	1.6
	1991	2.2	9.3	1.7	7.0	-(). 5	n	2.2	9.3	1.7
	1902	$7 . ?$	9.4	$1 . .7$	7.0	-0.5	0	2.2	9.4	1.7
	1903	i?.?	9.4	1.7	7.1	$-0.5$	0	2.2	9.4	1.7
	1904	2.?	9.4	1.8	7.1	-0.4	0	7.2	9.4	1.8
	1905	2.2	9.5	1.8	7.1	$-0.4$	0	2.2	9.5	1.8
	1996	2.2	9.5	1.8	-7.1	$-0.4$	0	2.2	9.5	1.8
	1997	2.2	9.5	1.8	7.2	$-0.4$	0	2.2	9.5	1.8
	1908	2.2	9.5	1.9	'7.2	-0.4	0	2.2	9.5	1.8
	1949	2.?	9.6	1.')	$7 . .2$	-0.3	0	2.2	9.6	1*9
	2000	2.2	9.6	1.9	7.2	$-0.3$	n	2.2	9.6	1.9

The real values and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

1-able 4.34
Yukon Sal mon Fi shery Projected Harvest by Speci es 1980-2000

	Year	Kings	Reds	Pi nks	Silvers	c huns
	1980	95	0	0	20	1000
	1981	98	0	0	20	1067
	1982	101	0	0	20	1139
	1983	104	0	0	20	1216
	1984	107	0	0	20	1298
	1985	110	0	0	20	1385
	1986	112	0	0	20	1433
-	1987	114	0	0	20	1467
-	1988	115	0	0	20	1502
	1989	117	0	0	20	1538
	1990	119	0	0	20	157'5
	1991	121	0	0	20	1612
	1992	123	0	0	20	1650
	1993	125	0	0	20	1690
	1994	127	0	0	20	1730
	1995	129	0	0	20	1771
	1996	131	0	0	20	1813
	1997	133	0	0	20	1856
	1998	135	0	0	20	1900
	1999	138	0	0	20	1945
	2000	140	0	0	20	1992

Table 4. 35
Yukon Sal mon Fishery Projected Harvest Vái ght by Speci es 1980-2000

				ds (1,					ric To		
	Year	Kinqs	'Reds	Pinks	Silvers	Chums	Kings	Reds	Pinks	Sillvers	Chum
	1980	2185	0	0	140	6700	991	0	0	64	-3039
	1981	2249	0	0	140	7151	1020	0	0	64	3244
	1982	2315	0	0	140	7632	1050	0	0	64	3462
	1983	2383	0	0	140	8146	1081	0	0	64	3695
	1984	2453	0	0	140	8694	1113	0	0	64	3944
	1985	2525	0	0	140	9279	1145	0	0	64	4209
	1986	2571	0	0	140	9603	1166	0	0	64	4356
$\pm$	1987	2612	0	0	140	9831	1185	0	0	64	4459
二	1988	2654	0	()	140	10065	1204	()	0	64	4566
	1989	2697	0	0	140	10304	1223	0	0	64	4674
	1990	2740	0	0	140	10550	1243	0	0	64	4785
	1991	2784	0	0	140	10800	1263	0	0	64	4899
	1992	2829	0	0	140	11057	1283	0	0	64	5016
	1993	2874	0	0	140	11320	1304	0	0	64	5135
	1994	2921	0	0	140	11589	1325	0	0	64	5257
	1995	2967	0	0	140	11865	1346	0	0	64	5382
	1996	3015	0	0	140	12147	1368	0	0	64	5510
	1997	3064	0	0	140	12436	1390	-	0	64	5641
	1998	3113	0	0	140	12732	1412	0	0	64	5775
	1999	3163	0	0	140	13034	1435	0	0	64	5912
	2000	3214	()	0	140	13344	1458	H:	0	64	6053

Table 4. 36
Yukon Salmon Fi shery
Projected Harvest Value bv Species
1980-2000

				Val	(\$1,000)			Real	ue ${ }^{1}$ (\$	000)	
	Year	Kings	- Reds	Pī nks	Sily vers	Chum	Kings	Reds	Pink	Silvers	Chums
	1980	2185	0	)	133	36,85	2145	0	0	133	3685
	1981	2409	0	0	141	4244	2240	0	0	131	3946
	1932	2604	0	0	149	4872	2251	0	0	129	4211
	1043	2818	0	0	158	5592	2265	()	0	127	4494
	1984	3053	0	0	168	6418	2281	0	0	125	4795
	1985	3311	0	0	178	7367	2300	0	0	124	5117
	1986	3555	0	0	189	8198	2296	0	0	1 ? 2	5295
$\pm$	1987	3813	0	0	201	9026	2289	()	0	121	5419
	1988	4093	0	0	214	9936	2285	0	0	119	5546
	1989	4394	0	0	228	10937	2283	0	0	118	56.76
	1990	4730	()	o	242	12040	2282	0	0	117	5809
	1991	5090	1	0	258	132'53	2284	0	0	116	5945
	$199 ?$	5443	0	0	275	14588	2287	0	0	115	6084
	1993	5910	0	0	294	16058	22.92	0	0	114	6226
	1904	6.376	0	0	313	17675	2?98	0	-	113	6372
	1995	6.888?	0	0	335	19454	? 307	0	0	112	65 ? 0
	194\%	7434	0	0	357	21413	2317	0	0	111	6672
	1207	8036	0	0	382	23568	2328	0	0	111	68.28
	1908	8691	0	0	4088	.?5')40	2341	0	(-1	110	6987
	1909	19405	0	0	437	28551	2355	0	0	109	7149
	anoo	10183	6	0	467	31424	2371	()	0	109	7315

The real values are in term of 1980 dollars.

Table 4.37
Salmon Fishery
Projected Exvessel Prices by Species

			Nomin	ice 1	und) 198	2000			ice ${ }^{1}$	Ound)	
	Year	Kings	Reds	Pinks	Silvers	Chumis	Kings	Reds	Pinks	Silvers	Chums
	1980	1.00	0	0	0.95	0.55	1.00	0	0	0.95	0.55
	1981	1.107	0	n	1.01	0.59	1.00	0	0	0.94	0.55
	1987	1.12	0	0	1.07	0.64	0.97	0	0	0.92	0.55
	1983	1.18	0	0	1.13	0.69	0.95	0	0	0.91	0.55
	1984	1.24	0	0	1.20	0.74	0.93	0	0	0.90	0.55
	1985	1.31	0	0	1.27	0.79	0.91	0	0	0.88	0.55
	1986	1.38	0	0	1.35	0.85	0.89	0	0	0.87	0.55
+	1987	1.46	0	0	1.44	0.92	0.88	0	0	0.86	0.55
$\stackrel{\rightharpoonup}{\omega}$	1989	1.54	0	0	1.53	0.99	0.86	0	0	0.85	0.55
	1989	1.63	0	n	1.63	1.06	0.85	0	0	0.84	0.55
	1990	1.73	n	0	1.73	1.14	0.83	0	0	0.84	0.55
	1991	1.83	0	)	1.84	1.23	0.82	0	0	0.83	0.54
	1982	1.94	0	0	1.97	1.37	0.81	0	0	0.82	0.55
	1993	2.06	0	)	2.10	1.42	O. 80	0	0	0.81	0.55
	1944	2.18	0	()	2.24	1.53	0.79	0	0	0.81	0.55
	1905	2.37	0	)	2.39	1.64	0.78	0	0	0.80	0.55
	1996	2.4.7	0	0	2.55	1.76	0.77	0	0	0.80	0.55
	1997	2.6.2	0	0	2.73	1.90	0.76	0	0	0.79	0.55
	1908	2.79	$1)$	0	2.97	2.04	0.75	0	0	0.79	0.55
	1900	2.81	0	0	3.12	2.19	0.74	0	0	0.78	0.55
	2000	1.17	0	0	3.34	2.35	0.74	0	0	0.78	0.55

${ }^{1}$ re real va ues are in terms of 1980 dollars.

The annual harvest wei ght for the Norton Sound Managenent Area commercial sal non fishery is projected to increase from 707 metric tons ( $\mathbf{1 . 6} \mathbf{~ m i l i}$ on pounds) in 1980 to 943 metric tons ( 2.1 milli on pounds) by 2000; and the real harvest value is projected to increase from $50.5 \mathbf{m i l i}$ on to $\mathbf{S 0 . 7}$ million (see Table 4.38). The corresponding percentage increases are 33 percent and 30 percent respectively (see Táble 4. 39). Table 4.40 contains projections of the annual rate of change in harvesting activity and Tables 4.41 through 4.44 present harvest projections by speci es. The projected harvest weight for 2000 exceeds the 1979 harvest but is approxi matel y 18 percent bel ow the record harvest of 1978.

## Kotzebue Sound

Kotzebue Sound is at the extrene of the habitat range of sal non and has therefore not had a I arge commercial sal non fishery. The annual com nerci al sal non harvest wei ght is projected to remain constant throughout the forecast period at approximatel 600 metric tons ( 1.3 mili ion pounds); and the annual harvest val ue is projected to renain at Sl .0 milli on due to constant real exvessel prices (see Table 4.45). Projections of cumul ative and annual rates of change in harvesting activity are presented in Tables 4.46 and 4.47, and harvest projections by species are summarized in Tables 4.48 through 4, 51. The latter set of tables indi cates that Kotzebue Sound is expected to remain exclusively a chumsal non fishery. The potential contribution of the proposed sal non hatchery is not included in the harvest projections because there is substantial uncertainty

Table 4. 38
Nor ton Sound Sal 1 mon Fi shery
Projected larvesting Activity
19[10-2000"

	Year					Exvesse (\$/P   Nominal	$\begin{gathered} \text { Price } \\ \text { Red) } \\ \text { Rea } \end{gathered}$	Number of ..   Boat Fisherman Months Months		Catch per Boat MonthVal ueWeight$(1,000)$ Nom nal $\quad$ Real		
	1990)	1. 6	707	$0^{*}$;	0.'5	0.35	0.35	450	450	3.5	1.2	$1 . ?$
	1081	1.6	740	0. 0	0.6	0.38	0.35	450	450	3.6	1.4	1.3
	1937	1.7	776	(). ${ }^{\prime} \mathbf{r}$	0.6	0. 41	0.35	45 (.)	450	3.8	1. 5	1.3
	1983	1.8	814	0.8	0.6	0.44	0.35	450	450	4.0	1.7	1.4
	1984	1.9	855	0.7	$0^{*}-r$	() .4-7	0.35	450	450	4.2	2.0	1.5
	1985	2.0	A90	$1 . n$	0.7	0.50	0.35	450	450	4.4	2.2	1.5
	1986	2.0	908	1.1	$0 \cdot \mathrm{r}$	0.54	0.35	450	450	4.5	2.4	1.6
$p$	1987	2.0	411	1.?	0.7	0.58	0.35	450	450	4.5	2.6	1.6
-	1988	?.0	913	$1 .-3$	0.7	0.62	0.35	450	450	4.5	2.8	1.6
-	1989	2.0	916	1.4	0.7	0.67	0.35	450	450	4.5	3.0	1.6
	1900	2.0	918	1.5	(). 7	0.72	0.35	450	450	4*5	3.2	1.6
	1091	2.0	920	1.ts	0.1 r	()."?-?	0.35	450	450	4.5	3.5	1.6
	1902	?.1)	923	1.7	r-). -7	0.183	0.35	450	450	4.5	3.8	1.6
	1903	2.0	975	1.8	n •"r	0.89	0.35	450	450	4.5	4.0	1.6
	1994	2.0	928	2.0	0.7	0.96	0.35	450	450	4.5	4.4	1.6
	1905	2.1	930	?.1	0."r	1.03	0.34	45 (-)	450	4.6	4.7	1.6
	1996	2.1	933	?. 3	0.1	1.11	(). 34	450	450	4.6	5.0	1.6
	1907	2.1	935	2.4	$0 . \times 7$	1.19	0.34	45()	450	4.6	5.4	1.6
	1908	2.1	938	2.6	0.1	1.28	0.34	450	450	4.6	5.9	1.6
	1990	2.1	940	2.4	0.7	1.37	0. 34	450	450	4.6	6.3	$1 \mathrm{f})$
	2000	2.1	1943	3.1	0.7	1 .4-/	(). 54	450	450	4.6	6.8	1.6
	-		- -	-	---	.....	$\cdots$					
	${ }^{1}$ The r	l value	and pri	es wer	ulat	d usi ng	the U.S	CPI;1980	is the	base per	i od.	

Table 4. 39
Norton Sound Salmon Fi shery
Harvesting Activity Projected Percentage Change from 1980 1980-2000

'I he real values and prices were cal culated using the U.S. CPI: 1980 s the base period,

Table 4.40
Norton Sound Salmon Fi shery
Harvesting Activity Projected Annual Rate of Change 19[ 10-2000

${ }^{1}$ The red values and prices were cal cul ated using the U.S. CP1; 1980 is the base period.

Table 4.41
Norton Sound Sal non Fi shery Projected Harvest by Speci es 19~0_20(30

			( 1, 00			
	Year	Kings	Reds	Pi nks	Sil vers	chums
	1980	4	0	100	7	165
	1981	4	0	100	7	176
	1982	4	0	100	7	188
	1983	4	0	100	. 7	200
	1984	4	0	100	7	213
	1985	4	0	100	7	228
	1986	4	0	100	7	231
	1987	4	0	100	7	231
$\stackrel{+}{\infty}$	1988	4	0	100	7	232
	1989	4	0	100	7	233
	1990	4	0	100	7	233
	1991	5	0	100	7	234
	1992	5	0	100	7	235
	1993	5	0	100	7	235
	1994	5	$0^{\prime}$	100	7	236
	1995	5	0	100	7	237
	1996	5	0	100	-r	237
	1997	5	0	100	7	238
	1998	5	cl	100	7	239
	1999	5	0	100	7	239
	2000	5	0	100	7	240

Table 4.42
Norton Sound Salmon Fishery Projected Harvest Weight by Species 1980-2000

	Year.	ETMy	$\cdot{ }^{-1} \text { Reds }$	$\mathrm{ds}\left(\mathrm{l}_{2}\right.$ Pinks	Si TVers	Chuns	区i ngs	Reds	Mtric Tons	Si'l vers	Chūns
	1980	72	0	330	50	1106	33	0	150	23	501
	1981	73	0	330	50	1179	33	0	150	23	535
	1982	7 f ,	0	330	50	1257	33	0	150	23	570
	1983	74	0	330	50	1341	34	0	150	23	608
	1984	75	0	330	50	1430	34	0	150	23	649
	1985	76	0	330	50	1525	35	0	150	23	692
	1986	77	0	330	50	1545	35	0	150	23	701
+	1987	78	0	330	50	1550	35	0	150	23	703
$\bigcirc$	1988	78	0	330	50	1554	36	0	150	23	705
6		80	0	330	50	1559	36	0	150	23	70 " 7
	19'30	80	0	330	50	1563	36	0	150	23	709
	1991	81	0	330	50	1567	37	0	150	23	711
	1992	82	0	330	50	1572	37	0	150	23	-713
	1993	83	0	330	50	1576	38	0	150	23	715
	1994	84	0	330	50	1581	38	0	150	23	717
	1995	85	0	330	50	1585	39	0	150	23	719
	1996	86	0	330	50	1590	39	0	150	23	721
	1997	87	0	330	50	1594	39	0	150	23	723
	1998	88	0	330	50	1599	40	0	150	23	725
	1999	89	0	330	50	1603	40	0	150	23	7?7
	2000	90	0	330	50	1608	41	0	150	? 3	729

Table 4.43
Norton Sound Salmon Fishery Projected Harvest Value by Species 1980-2000

				a) Val	$(\$ 1,000)$				Value	\$1,000)	
	Year	Kings	Reds	Pinks	Silvers	Chums	Kings	Reds	Pinks	Silvers	Chunis
	1980	54	0	82	25	387	54	0	82	25	387
	1981	58	0	89	27	445	54	0	83	25	414
	1982	62	0	96	28	511	54	0	83	24	441
	1983	66	0	103	30	586	53	0	83	24	471
	1984	70	0	110	32	672	53	0	82	24	502
	1985	75	0	119	34	770	52	0	82	23	535
	1986	80	0	127	36	840	52	0	82	23	542
只	1987	85	0	137	38	905	51	0	82	23	544
-	1988	91	0	147	41	976	51	0	82	23	545
	1989	97	0	158	43	1053	51	0	82	22	546
	1990	104	0	170	46	1135	50	0	82	22	548
	1991	112	0	183	49	1224	50	0	82	22	549
	1992	120	0	196	52	1320	50	0	82	22	550
	1993	128	0	211	56	1423	50	0	82	22	552
	1994	138	0	227	59	1534	50	0	82	21	553
	19085	148	0	344	63	1654	50	0	82	21	554
	1996	159	0	26.2	68	1783	50	0	82	21	556
	1997	171	$1)$	282	72	1923	50	0	82	21	557
	1998	184	0	303	77	2073	50	0	82	21	558
	1990	198	0	325	93	2235	50	0	81	21	560
	2000	214	0	3.0	A9	2410	50	0	81	21	561

[^22]Table 4.44
Norton Sound Salmon Fishery
Projected [xvessel Prices by Species 1980-2000

	Year		Nominal Price (\$/Pound)			Chums	Kings	Real Price ${ }^{1}$ (\$/Pound)			Chins
		Kings	Reds	Pinks	Silvers			Reds	Pinks	Silvers	
	19840	11.7	$1)$	n. ${ }^{15}$	0.50	0.35	0. .75	0	0.25	0.50	0.35
	3981	1.80	$1)$	0.27	0.53	0.38	0.75	0	0.25	0.49	0.35
	1982		11	0.29	0.56	0.41	0.73	0	0.25	0.49	0.35
	1083	11.89	0	0.31	0.59	0.44	0.71	0	0.25	0.48	0.35
	1984	0.93	)	0.33	- 63	0.4.4	0.70	0	0.25	0.47	0.35
	1986	0.98	0	0.36	- 67	0.51	0.68	0	0.25	0.47	0.35
	1986	1.014	0	0.39	$\bigcirc$	0.54	0.67	0	0.25	0.46	0.35
克	1987	1.09	1	). 41	0.76	0.58	0.66	0	0.25	0.45	0.35
	1988	1.16	1	0.45	n.80	0.63	0.6 .5	0	0.25	0.45	0.35
	1989	1.22	0	0.48	n.86	0.68	0.63	0	0.25	0.44	$0.35{ }^{\prime}$
	1900	1.29	0	0.51	0.91	0.73	0.67	0	0.25	0.44	0.35
	1901	1.31	11	0.55	0.97	0.78	0.82	0	0.25	0.44	0.35
	$199 \%$	1.45	0	O.50	1.03	0.84	0.61	0	0.25	0.43	0.35
	1903	1. 5.44	n	1).644	1.10	0.90	0.60	0	0.25	0.43	0.35
	1994,	1. 6.4	n	0.6 .9	1.18	0.97	0.59	0	0.25	0.42	0.35
	1905	1.74	()	0.74	1.26	1.04	0.58	0	0.25	0.42	0.35
	1996,	1.85	)	0.79	1.34	1.12	0.58	0	0.25	0.42	0.35
	1907	1.97	$1)$	0.85	1.44	1.21	0.57	0	0.25	0.42	0.35
	1908	2.09	1)	0.92	1.53	1.30	0.56	0	0.25	0.41	0.35
	) (1)	2.23	()	0.90	1.6.4	1.39	0.56	0	0.25	0.41	0.35
	2010	?.38	$1)$	1.06	1.76	1.50	0.54	0	0.25	0.41	0.35

The real values are in terms of 1980 dollars.

Table 4.45
Kotzebue Sound Salnon Fishery Projected Harvesting Activity 1980-2000

				tch					Catch p	per Boat	Month
		Weic	ht	Value	Exvesse	Price	Numb	er of	Weight	Valu	
		Pounds	Metric	(millions)		ound)	Boat	isherman	Pounds	(\$1,0	00)
	Year	(millions)	Tons	Nominal Real	Nominal	Real	Months	Months	(1,000)	Nominal	Real
	1980	1.3	590	1.01 .0	0.75	0.75	425	425	3.1	2.3	2.3
	1981	1.3	599	$1.1 \quad 1.0$	0.81	0.75	425	425	3.1	2.5	2.3
	1982	1.3	599	$1.1 \quad 1.0$	0.87	0.75	425	425	3.1	2.7	2.
	1983	1.3	597	1.21 .0	0.04	0.75	425	425	3.1	2.9	2.
	1984	1.3	599	1.31 .0	1.01	0.75	425	425	3.1	3.1	?.
	1985	1.3	599	$1.4 \quad 1.0$	1.08	0.75	425	425	3.1	3.4	2.
	1986	1.3	599	1.51 .0	1.16	0.75	425	425	3.1	3.6	?.
F	1987	1.3	599	$1.7 \quad 1.0$	1.25	0.75	425	425	3.1	3.9	2.3
N	1904	1.3	599	$1.8 \quad 1.0$	1.35	0.75	425	425	3.1	4.2	2.3
	1989	1.3	599	$1.7 \quad 1.0$	1.45	0.75	425	425	3.1	4.5	2.3
	1990	1.3	599	2.11 .0	1.56	0.75	425	425	3.1	4.8	2.3
	1991	1.3	5,39	$2 . ? \quad 1.0$	1.67	0.75	425	425	3.1	5.2	2.3
	1992	1.3	590	2.41 .0	1.80	0.75	425	425	3.1	5.6	2.3
	1993 1904	1.3	599	2.61 .0	1.93	0.75	425	425	3.1	6.0	2.3
	1904 1905	1.3	599	2.11 .0	2.08	0.75	425	425	3.1	6.5	2.3
	1905 1900	1.3	599 590	3.01 .0	2.24	0.75	425	475	3.1	6.9	2.3
	1906 1097	1.3	599	3.21 .0	2.40	0.75	425	425	3.1	7.5	2.3
	1997 19098	1.3 1.3	599 9095	3.41 .0	2.58	0.75	425	425	3.1	8.0	2.3
	1909	1.3	490	$\begin{array}{ll}3.7 & 1.0 \\ 3.9 & 1.0\end{array}$	2.78 2.989	0.75	425 425	425	3.1	8.6	$2 \cdot 3$
	2010	1.3	599	4.21 .0	3.21	0. ${ }^{\text {a }} 7$	425 425	425 425	3.1	9.3 10.0	$2 \cdot 3$

1
The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

Table 4.46
Kotzebue Sound Salmon Fishery
Harvesting Activ ty Projected Percentage Change from 1980 1980-2000

						ano rhan				
			Catch					Lale	jer bude	
					Exvesse	ce	Number of		Value	
	Year	We jht	Nominal	Real	Nominal	Real	Boat Months	Weight	Nominal	Real
	1980	$1)$	0	1)	0	0	$\bigcirc$	0	0	0
	1081	11	7.9	0.3	7.9	0.3	0	0	7.9	0.3
	1982	()	16.1	0.3	16.1	0.3	0	0	16.1	0.3
	1983	0	24.8	0.3	2.4.13	0.3	0	0	24.8	0.3
	1984	0	34.2	0.3	34.2	0.3	0	0	34.2	0.3
	1985	0	44.3	0.3	44.3	0.3	0	0	$44 \cdot 3$	0.3
	1988	0	55.2	$0 . ?$	55.2	0.2	0	0	55.2	0.2
	1987	0	66.9	0.2	66.9	0.2	n	0	66.9	0.2
F	1989	0	79.5	0.2	79.5	0.2	0	0	79.5	0.2
	1989	0	93.0	0.2	93.0	0.2	0	0	93.0	0.2
	1900	0	107.5	0.1	107.5	0.1	0	0	107.5	nol
	1901	0	123.1	0.1	123.1	0.1	0	0	123.1	0.1
	1902	n	139.9	0.0	139.9	0.0	0	0	139.9	0.0
	1993	0	157.9	0.0	157.9	0.0	0	0	157.9	0.0
	1904	0	177.3	-0.0	177.3	-0.0	0	0	177.3	-0.0
	1905	0	19月.1	-0. 1	198.1	-0.1	0	0	198.1	-0.1
	1900	0	220.5	-0. 1	220.5	$-0.1$	0	0	220.5	-0.1
	1907	0	24.4.6	$-0.2$	$244 \cdot 6$	-0.2	0	0	244.6	-0.2
	1908	0	270.5	-0.7	270.5	-0. 2	0	0	270.5	-0.2
	1190	0	290.3	$-0.3$	298.3	-0. 3	0	0	298.3	-0.3
	a)00	!)	328.?	$-0.3$	3218.2	-0.3	0	0	328.2	-0.3

The real va ues and pres were calculated using the U.S. CPI; 1980 is the base period.

Table 4.47
Kotzebue Sound Salmon Fishery
tarvest ng Activity Projected Annual Rate of Change 1980-2000

					Per	ntage Ch	ance			
			atch					Lact	dual pro	
					Exvesse	Price	Number of		- Va	
	Year	Weight	Nominal	Real	Nominal	Real	Boat Months	Weight	Nominal	Real
	1980	0	0	0	0	0	0	0	0	0
	1941	0	7.9	0.3	7.9	0.3	0	0	7.9	0.3
	1982	0	7.6	$-0.0$	7.6	-0.0	0	0	7.6	-0.0
	1983	0	7.5	-0.0	7.5	-0.0	0	0	7.5	$-0.0$
	1984	0	7.5	-0.0	7.5	-0.0	0	0	7.5	-0.0
	1985	0	7.5	-0.0	7.5	-0.0	0	0	7.5	-0.0
	1986	0	7.5	-0.0	7.5	-0.0	0	0	7.5	-0.0
	19837	0	7.5	-0.0	7.5	-0.0	0	0	7.5	-0.0
寺	1988	0	7.5	$-0.0$	7.5	-0.0	0	0	7.5	-0.0
	1789	0	7.5	-0.0	7.5	$-0.0$	0	0	7.5	-0.0
	1900	0	7.5	-0.0	7.5	-0.0	0	0	7.5	$-0.0$
	1091	0	7.5	-0.0)	7.5	-0.0	0	0	7.5	-0.0
	1992	0	7.5	-0.0	7.5	$-0.0$	0	0	7.5	-0.0
	1993	0	7.5	-0.0	7.5	-0.0	0	0	7.5	-0.0
	1994	0	7.5	-0.0	7.5	-0.0	n	0	7.5	-0.0
	1990,	0	7.5	-0.0	7.5	-0.0	0	,	7.5	-0.0
	1996	0	7.5	-0.0	7.5	-0.0)	0	0	7.5	-0.0
	1997	0	7.5	$-0.0$	7.5	$-0.0$	0	0	7.5	-0.0
	1998	0	7.5	$-0.0$	7.5	-0.0	0	0	7.5	-0.0
	1999	0	7.5	-0.0	7.5	-0.0	0	0	7.5	-0.0
	2000	0	7.5	$-0.1$	7.5	$-0.1$	0	0	7.5	-0.1

The rea values and prices were calculated us ng the U.S. CPI; 1980 is the base period.

Table 4.48
Kotzebue Sound Salmor Fis ery Projec ed llarvest by Spec es 1980-2000
(1,000 sh

Year	Kings	Reds	Pinks	Silvers	Chums
1980	0		0	0	150
1981	0	0	0	0	150
1982	0	0	0	0	150
1983	0	$\bigcirc$	0	0	150
1984	0	0	0	0	150
1985	0	$\bigcirc$	0	0	150
1986	0	$\bigcirc$	0	0	150
1987	0	$\bigcirc$	0	0	150
1988	0	0	0	0	150
1989	0	$\bigcirc$	0	0	150
1990	0	$\bigcirc$	0	0	150
1991	0	0	0	0	150
1992	0	0	0	0	150
1993	0	0	0	0	150
1994	0	$\bigcirc$	0	0	150
1995	0		0	0	150
1996	0	0	0	0	150
1997	0	0	0	0	150
1998	0	$\bigcirc$	0	0	150
1990	0	$\bigcirc$	0	0	150
2000	0	0	0	0	150

Table 4.49
Kotzebue Sound Salmon Fishery
Projected larvest Weight by Species 1980-2000

				( 1,00					ic Tons		
	Year	Kings	Reds	Pinks	Silvers	Chumis	Kings	Reds	Pinks	Silvers	Chums
	1980	0	0	0	0	1320	0	0	0	0	599
	1981	0	0	0	0	1320	0	0	0	0	599
	1982	0	0	0	0	1320	0	0	0	0	599
	1983	0	0	0	0	1320	0	0	0	0	599
	1984	0	0	0	0	1320	0	0	0	0	599
	1985	0	0	0	0	1320	0	0	0	0	599
	1986	0	0	0	0	1320	0	0	0	0	599
	1987	0	0	0	0	1320	0	0	0	0	599
心	1988	0	0	0	0	1320	0	0	0	0	599
	1989	0	0	0	0	1320	0	0	0	0	599
	1990	0	0	0	0	1320	0	0	0	0	599
	1991	0	0	0	0	1320	0	0	0	0	599
	1992	0	0	0	0	1320	0	0	0	0	599
	1993	0	0	0	0	1320	0	0	0	0	599
	1994	0	0	0	0	1320	0	0	0	0	599
	1995	0	0	0	0	1320	0	0	0	0	599
	1996	0	0	0	0	1320	0	0	0	0	599
	1997	0	0	0	0	1320	0	0	0	0	599
	1998	0	0	0	0	1320	0	0	0	0	599
	1999	0	0	0	0	1320	0	0	0	0	599
	2000	0	0	0	0	1320	0	0	0	0	599

Table 4.50
Kotzebue Sound Salmon Fishery Projected liarvest Value by Spec es 1980-2000

			Nominal Value (\$1,000) ...					Real Value ${ }^{1}$ ( $\left.\$ 1,000\right)$			
	Year	Kings	Reds	Pinks	Silvers	Chums	Kings	Reds	Pinks	silvers	Chumis
	1980	0	0	0	0	920)	0	0	0	0	990
	1981	11	0	0	0	10668	0	0	0	0	903
	198:2	0	()	1)	0	1149	0	0	0	0	403
	1983	0	0	0	0	1236	0	0	0	0	993
	1984	0	0	0	0	1329	0	0	0	0	993
	1985	0	0	0	0	1429	0	0	0	0	993
	1986	0	0	O	0	1537	0	0	0	0	902
忍	1989	0	0	0	0	1052	0	()	0	0	992
U	1088	0	0	0	0	177	0	0	0	0	902
	1989	0	1	0	0	1911	0	0	0	0	992
	1000	0	1	0	0	20244	0	0	0	0	991
	1001	0	0	0	0	2209	0	0	0	0	901
	1992	0	0	0	0	2315	0	0	0	0	900)
	1943	0	0	0	0	2563	0	0	0	0	990
	$1904{ }_{4}$	1	$1)$	()	0	2745	0	0	0	0	900
	1045	0	1	0	0	2951	0	0	0	0	989
	19\%\%	1	$1)$	0	$1)$	3173	0	0	$1)$	0	989
	1997	0	1	0	0	3411	0	0	0	0	988
	1998	0	1	()	0	366.8	0	0	0	0	$\bigcirc 88$
	11009	0	1	0	1	3943	0	)	0	0	987
	$\therefore$ (1)0,	1	$1)$	0	0	4239	0	0	0	0	987

[^23]Tab e 4.5
Kotzebue Sound Salmon Fishery
Projected Exvessel Prices by Species
1980-2000


The real values are in terms of 980 do ars.
whether a hatchery can effectively operate in such an extreme habitat. If the hatchery s successful, it could add 400 to 4,000 metric tons ( 0.88 to 3.8 mi ion pounds) to the annual harvest weight and 50.7 to 36.6 million to he arnual real harvest value by the late 1980 s. Another factor which can have a large effect on the commercial harvest is the subsistence harvest. State law requires that Subsi stence needs be met first; therefore, a. decrease in subsistence catch would allow an increase in commercial harvest. It has been suggested that subsisterce catch will decrease as subsistance fishermen become more involyed with a casn economy, but it is difficult to predict how subsistence catch w 11 change. These comments are also of particular relevance in the kuskok'm, Yukon, and Norton Sound Management Areas.

## HALISUT


#### Abstract

The destern Alaska nalibut fishery is expected to become increasingly productive because of efforts to rebuild the halibut stocks in the julf of Alaska and the Bering Sea. These efforts included programs to reduce the incidental catch of juyenile nalibut by trawlers and to reduce directed fisning pressure by imposing lover glotas. These efforts are expected to result in increased annual harvest weight from 1985 through 2000. The annual harvest weignt for the western haska nalibut fishery is projected to increase from 753 metric tons ( 1.7 million jounds) in 1980 to 3,137 metric tons ( 0.3 milition pounds) in 2000 , and the annual real harvest value is projeczed to increase from 31.3 million to 318.3 million (see Table 4.52).


Tab e 4.52
Projected Wese.rn Alaska a ibut larvest
Pounds (millions)

	Year	Peninsula	Eastern Aleutians	Western 1 eutians	Bering Sea	Total
	lata	0.9	0.1	0.2	0.5	1.7
	1981	0.4	0.1	0.2	0.5	1.7
	108?	11.9	0.1	0.2	0.5	1.7
	1983	0.9	0.1	0.2	0.5	1.7
	1984	0.9	0.1	0.2	0.5	1.7
	1945	10.9	0.1	0.2	0.5	1.7
	1088,	0.9	0.1	0.3	0.6	1.8
	1987	1.0	0.1	0.3	0.6	2.11
$\stackrel{\sim}{\circ}$	1948	1.1	0.1	0.3	0.7	2.2
	198.5	1.?	0.1	0.3	0.8	2.4
	1900	1.3	0.1	0.4	0.9	2.6
	losi	1.4	0.1	0.4	1.0	2.9
	1992	1.5	0.1	0.4	1.2	3.2
	1043	1.7	0.1	0.5	1.3	3.5
	$10^{104}$	1.8	0.1	0.5	1.5	3.9
	lats	1.9	0.1	0.5	1.7	4.3
	1906,	2.1	0.1	0.6	1.9	4.7
	1097	2.3	0.1	0.6	2.1	5.2
	$1 ツ 18$	$\therefore 5$	0.7	0.1	2.4	5.7
	1909	$? \cdot 1$	0.2	0.7	2.7	6.3
	2010	2.9	$0 . ?$	0.9	3.0	6.9

「able 4.52 （continued
Metric Tons

	Year	Peninsula	Eastern Neutians	Western Aleutians	Bering Sea	Total
	14＊0	391.0	25.4	108.9	226.8	753.0
	1981	191．4	25.4	108.9	226.8	753.0
	108？	はり1．9	25.4	108.9	226.8	753.0
	12043	3910	25.4	08.9	226.8	753.0
	1984	391.9	25．4	108．9	276.8	753.0
	1985	39.0	25.4	108．9	226.13	753.0
	19 ck	425.11	27．4	118.1	25506	826.2
	19＊\％	460.9	29．9	128.0	288．0	906.88
$\stackrel{+}{ \pm}$	19pm	490.8	32.4	138．0．	324.5	9950
	1ッい	142．1	$3 \cdot \mathrm{Cl}$	150.6	365.7	1093.5
	1りい号	181．9	38.1	16.3 .3	417.1	1201.4
	1091	1．37．5	4.3	77.	464.4	1320．3
	1902	6.91 .6	4.4 .4	9\％。	423.3	1451．ts
	1903	74．9．8	48.6	209.3	589.7	1596.4
	190\％	131．1．1		225.9	664.6	1756.2
		18：1．3	1．7．2	24.409	748.9	1932.8
	16．at．	い6t．${ }^{\text {a }}$	6．2．01	26．5．6	843.9	2127.8
	$10 \% 1$	103\％．1	6．9．7	288.1	951.0	2343.3
	1909	11？ 12.7	7？．1	312.4	1071．6	2591．6
	100.4	121\％．1	79.1	318.8	1207.6	2845.1
	？ 0 and	13.2 .7	44.1	367.4	36.0 .8	3136.6

Table 4.52 （continued）
Nominal Value mil ions

	Year	Peninsula	Eastern Aleut ans	Western Aleutians	Bering Sea	Total
	19 n	1.7	0.0	0.2	0.4	1.3
	1941	1.9	0.1	0.5	1.1	3.7
	1917	2.1	0.1	0.6	1.2	4.0
	1983	2.3	0.7	0.6	1.3	4.4
	19844	2．r	0.7	0.7	1.5	4.9
	1095	2.0	0.2	0.8	1.6	5.4
	1974．	3.3	0.2	0.9	2.0	6.4
$\stackrel{\sim}{\omega}$	1917	3.9	1）． 3	1.1	2.5	7.1
N	1989	4.9	0.3	1.3	3.0	9.3
	1909	ヶ．	11.4	1.5	3.7	11.1
	19゙0	6．t．	11.4	1.3	4.6	13.3
	1091	1.1	11.5	2.1	5.6	16.0
	1997	9.1	0.6	2.5	toc	19.0
	1043	11.1	0.7	3.0	8.4	22．8
	1014	12.6	11.8	3.5	10.3	27.2
	1945	14．9	1.0	4.1	12.6	32.5
	196\％	17.4	1.1	4.13	15.4	38.8
	リッリ	810．	1.3	5.7	18.83	46.3
	19048	24.1	1． 1	6.7	22.9	55．？
	190\％	？ 3 ？	1.8	7.98	28．0	63.9
	， 100	33.1	$? \cdot 1$	$9 . ?$	34.1	73.6

Tab e 4.52 (continued)
Rea Value (millions)

	Year	Peninsula	tastern Aleutians	Western Aleutians	Bering Sed	Total
	19ヶ6	11.7	0.11	$1) .7$	0.4	1.3
	198]	1.8	O.1	1).5	1.0	3.4
	148:	1.8	0.1	0. $0^{5}$	1.1	3.5
	1983	1.4	0.1	0.5	1.1	3.6
	1984	1.9	0.1	1).5	1.1	3.6
	1989	1.1	0.1	0.5	1.1	3.7
	198E	2.1	0.1	0. 6	1.3	$4 . ?$
$\ddagger$	1967	2.4	1.2	0.7	1.5	4.6
$\omega$	11888	?.6	0.7	1.9	1.7	5.?
	1989	2.9	0.2	0.8	1.9	5.8
	1010	1.1	(1.2)	0.9	2.2	6.4
	1001	3.5	0.2	1.0	2.5	7.2
	190)	3.8	0.2	1.1	2.9	7.9
	1903	4.7	0.3	1. 2	3.3	8.8
	1904	4.1	0.1	1.3	3.7	${ }^{9} \cdot 18$
	1905	1.0	0.3	1.4	4.2	10.9
	1996	5.4	0.4	1.5	4.8	12.1
	1907	1.9	(1). 4	1.6	5.4	13.4
		f. . $r_{1}$	0.4	1.8	6.2	14.9
	11009	1.1	0. ${ }^{1}$	2.0	7.0	16.5
	2000	1.1	0.5	2.1	7.9	18.3

$I_{\text {Real }}$ va ues are calcula ed using the U.S. CPI; 1980 s the base year.

The following method is used to project annual harvest weight. The 1980 through 1985 annual harvests for IPHC Area 3 and Area 4 are set equal to the allowable biological catch (ABC) as reported in the NPFMC Summary Fishery Management Plan for Halibut off the Coast of Alaska. The
harvests for 1986 through 2000 are increased from the 1980-1985 level at the constant rate of growth which generates a 2000 harvest equa? to the estimate of maximum sustainable yiald presented in the Management plan. The naryast projections for Area 3 are allocated to the Chirikof, Shumagin, and Aleutian districts and to the Peninsula, Eastern Alettian, and Western Aleutian Management Areas on the basis of each area's contribution to Area 3 catch from 1969 through 1979. The numerical basis of these projections is presented in Appendix A.

## Peni nsul a

The annual harvest weight for the Peninsula Management Area nalibut is projected to remain at 392 metric tons ( 0.9 million pounds) from 1980 through 1985 and to increase to 1,323 metric tons (2.9 million pouncs) by 2000, and the real haryest value is projected to increase from 30.7 million to 57.7 million (see Table 4.53). This represents a 238 percent increase in annual harvest weight and a ? , 015 percent increase in annual real harrest value (see Table 4.34). The corrasponding annual rates of change in haryesting activity are summarized in Table 4.55. The large increase in the exvessel price in 1981 represents a return to the longrun price trend for halibut which was substartially deyiated from in
rable 4.53
Peninsula Halihut Fishery Projected Harvesting Activity

1980－2000

										Catch	er Boat	onth
		Weig	hit		1 e	Exvesse	Price	Numb	er of	Weight	－Vatue	
		pounds	Metric	$\text { (IIII } 17$	ons)	(\$/Po	nd)	Boat	Fisherman	pounds	（\＄7，	00）
	Year	（111711ons）	Tons	Nominal	Real	Nominal	Real	Months	Months	（1，000）	Nominal	Real
	1980	－ 9	$39 ?$	11.7	0.7	0.80	12.80	210	1050	4.1	3.3	3.3
	1091	．${ }^{1}$	392	1.3	1.8	2.20	2.05	210	1050	4.1	9.1	8.4
	190？	\％	397	？ 1	1.81	2.43	2.10	210	1050	4.1	10.0	8.6
	1118．3	－9	307	$? 3$	1.4	2.688	2.15	210	1050	4.1	11.0	8.9
	1984	1）${ }^{\circ}$	$39 \%$	7.5	1.9	2.94	2.20	210	1050	4.1	12．1	9.0
	11965	$0 \cdot 4$	312	2.9	1.9	3.23	2.24	210	1050	4.1	13.3	9.2
	1980．	1－9	$44^{25}$	3.3	$\cdots \cdot 1$	3.54	2.29	210	1050	4.5	15.8	10．：
	1981	－1	4.61	3.9	3.4	3.87	？．37	210	1050	4.8	18.7	11.2
只	11988	，	S（1）	4.1	$2 \cdot 6$	4.23	2.36	210	1050	5.2	22.2	12.4
	14゙い	－	54.2	＇．5	？．9	4.68	2.40	210	1050	5.7	26.3	13．6
	1990	－	51月3	t．． 5	3.1	5.13	2.43	210	1050	6． 2	31.0	15.0
	10！1	－	639	1.7	3.5	5.483	2.46	210	1050	t． 7	36.7	16.5
	190？	$\because$	691	19.1	3.13	勺．95	2.48	210	1050	7.3	43.2	18.0
	1903	．$\%$	「いい	10.1	$4 . ?$	6.48	2．51	210	10.0	7.9	51.0	19.8
	1いい兄	－ 13	813	1．A	4.5	1.03	2．53	210	1050	8.5	60.0	2．1．6
	1905	－${ }^{\prime \prime}$	（10）	14.3	3.0	7.63	2．56	210	1050	${ }^{9} .3$	70.6	23.7
	190\％	－ 1	けら6	17.4	${ }^{1} .4$	8.87	2.58	210	1050	10．0	83.0	25.9
	1967	\％ 3	11131	20．${ }^{\text {r }}$	\％．9	8.96	2．60）	210	1050	10.9	$9 \%$ ¢ ${ }^{1}$	28.3
	1908	－${ }^{1}$	11？	24.1	ticis	9． 10	$2 . t .1$	210	1050	11.8	114.5	30.8
	1969	$-1$	1？29	？ 18.	1.1	10．50	2.62	210	1050	12.8	134.4	33.7
	$\therefore 100$	$\therefore 0$	1323	33.1	7.7	11.36	2.64	210	1000	13.9	157.7	36.7

The real values and prices were calculated using the U．S．CPI； 1980 is the base period．

Table 4.54
Peninsula Halibut lishery Harvesting Activity
Projected Percentage Change from 1980
1980-2000


The real values and prices were calculated using the U.S. CPI; 1980 is the base period.
rable 4.55
Peninsula Halibut fishery llarvesting Activity Projected Annual Rate of Change 1980-2000


The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

1980 due to large cold storage inventories and the recession which began in 1980.

Eastern Aleutian

The annual hervest weignt for the Eastern Aleutian Manaçement frea haliout fisnery is projected to increase from 25 metric tons ( 0.1 milition pounds) in 1980 through 1985 to 80 metric tons ( 0.2 million pounds) in 2000, and the annual real harvest value is expected to increase from 345,000 to $\$ 500,000$ (see Table 4.56). The corresponding percentage increases are 238 percent and 1,015 percent (see Table 4.57). The projected annal rates of change in harvesting activity are summarized in Table 4.53.

Western Heutian

```
Annual haryest weight for the Western Aleutian Management Area halibut
Fisnery is exoected to increase from l09 metric tons (0.2 million jounds:
in 1980 througn 1985 to 367 netric tons (0.3 million pounds) in 2000,
and real harrest value is projected to increase from 50.2 milition to
52.1 million (ses Table 4.59). This is Equivalent to a 25% percent
increase in harvest weight and a l,015 percent increase in nariミs: val'e
(see .able 4.j0). The corresponding projected annual percentage rates
of cnange in harvesting activity appear in Table 4.51.
```

lable 456

> Eastern Aleutians Hal but Fishery
> Projected llarvesting Activity
> $1980-2000$


The real va res and pres were ca culated using the U.S. (.Pl; 980 $s$ the base period.
lable 4.57
Lastem Aleutian Halinut Vishery Harvesting Activity Projected Percentage Change from 1980

1980－2000

						entaue	Change			
			Catch				nange	Catc	per Boat	nth
						Price	Number of		－Va	
	Year	Weight	Nowinina	Real	Nomina！	Real	Boat Months	Weight	Nominal．	Real
	1930	0	0	$\bigcirc$	0	）	0	0	$1)$	（）
	1981	1	1700	$1 ヶ \% .7$	175．0	155．7	0	0	175．0	155.7
	1988	${ }^{1}$	203．1	162.0	203．8	162.6	0	0	203.8	162.6
	1483	1）	23500	169．2	235.0	160.2	ก	0	235.0	169.2
	1088	）	267.5	174．6	267.5	174,6	0	0	267．5	174.6
	1985	0	$303=18$	180.5	303．4	180．5	0	0	303.8	180.5
	1986	R． 4	170．7	200.4	342.3	185．8	0	8.4	379.9	209.9
1	1917	17.6	46.8 .0	$2{ }^{4} 1.0$	383.8	190.4	0	19.6	468.9	241.6
$\stackrel{\square}{0}$	1989	37.5	¢74．4	21t．4．4	429.8	195．2		27.5	574.4	276.4
	1999	13．3	（9）R．0	314.5	477.3	109.7	0	38.3	698.8	314.
	1000	4，1． 0	1843.1	165．1	428.18	203.4	0	50.0	84.3 .1	354．1
	1901	$6 ? .1$	1014．1	300.4	599．0	207.3	0	62.7	104．3	309.9
	1908	16． 4	1？1？．1	$44.7 . ?$	643.16	210.2	0	76.4	1212.1	447.8
	1903	111.3	144．4．0）	，（10）． 9	710.0	214.1	0	91.3	1449.6	500． 0
	19\％4	107\％	1733．2		778．8	216.8	0	107.5	1723.2	$557 . ?$
	100）	1240	？ 11450	611．？	353．8	219.6	1）	125.0	2045.9	619.2
	1006．	144．01	2422.4	（18t．0）	933．12	222.1	0	144.0	2422.4	696．0
	1いい	1，4．t．	23t，3． 1	144．t．	1020．0	224.5	0	164.6	2863.7	758.6
	190ヶ！	119.11	1319．5	131．1	1112.5	2？ 2.6	（）	187.0	3379.5	139．1
	1ツリ1）	$\therefore 11.3$	30114．7	12？ 3	121\％	328.7	0	211.2	3084.7	922．${ }^{\text {a }}$
	$\therefore 160$	$\because 31.5$	40，${ }^{\text {a }}$	1015．7	1330.0	230.6	，	237.5	4692.5	1015.7

The real values and prices were calculated usimy the U．S．CPl； 1980 is the base period．
able 4.58
Easte $n$ Neutian llalibut I ishery Harvesting Act vity Projected Ammal Rate of Change 1980－20000

						centage	hange			
			Catch					Catch	er Boal	
	Yedr	Weight．	Nomin	real	Ixves Nominal	＇rice   Real	Number of Boat Months	Weight	Nonlinal	Real
	19100	（）	11	O	11	11	0	0	0	0
	19！1	1）	17600	らい。	179．0		0	0	75.0	155．7
	196？	1	10．5	2.1	10.5	7.1	11	0	10.5	$? .7$
	11983	$1)$	11.3	2．5	10.3	？${ }^{5}$	）	0	10.3	2.5
	（1）134	1	1）． 7	？．11	4.7	2.11	0	0	9.7	2.0
	19ms	1	9	$? .1$	9.9	？．1	0	0	9.9	2.1
	19！t，	8.4	14．9	111.5	9.6	1.9	$1)$	8.4	18.9	10.5
＋	1901	13.4	13．6	10．2	9.3	1.6	）	8.4	18.6	10．？
－	1930	$0 \cdot 4$	$1 \% \%$	10.7	9.3	1.6	0	8.4	18.5	10．？
	1969	14．	18.4	10.1	9.2	1.5	（）	8．${ }^{14}$	18．4	10.1
	1900		1R．1	9.18	8.9	1.2	0	8.4	18.1	9.8
	190）	18．	18.1	1）． 1	9．9	1.3	11	8.4	18.1	9.8
	19いて	14	11.1	9.5	18.6	0.9	11	8.4	17.7	9.5
	1いいる	18.4	18．1	1）． 8	8.9	1.3	0	8.4	18.1	9.8
	19い兄	$8 \cdot 4$	11.7	${ }^{9} .4$	8． 5	0．${ }^{1}$	0	8.4	17.7	9.4
	191）	18．	11.1	1）．4	3．5	0.9	0	88.4	17.7	9.4
	1906		1 \％	19.3	8.4	0.12	0	8.4	17.5	9.3
	1307	$8 \cdot 4$	115	1）． 2	8.3	0.7	0	8.4	17.5	${ }^{9} .2$
	190\％	$r$－${ }^{\text {a }}$	11.4	（1）． 2	8.3	0.6	0	9.4	17．4	$9 . ?$
	190．	$\cdots$	11.4	17.1	\＆． 2	0.6	n	8.4	17.4	9.1
	$\therefore(110)$		17.3	1）． 1	18.2	0.6	0	8． 4	17.3	9.1

The real values and prices were calculated using the $1.5 . \mathrm{CPl}$ ；980 is the base period．

Table 459
Bering Sea Halibut fishery Projected Harvesting Aclivity 1980-2000

'The real values and prices were calculated using the U.S. CPl; 1980 is the base period.

## rable 460

Ber ny Sea lalibut 1 shery Marvesting Activity rojectec Percentage Change from 980
$1930-2000$

'he red va ues and orices were cod culated using the U.S. CP; 1980 is the base period.
ab) e 4.61
Bering Sea llalibut Fishery Harvesting nct $v$ ty Projected Ammal Rate of Change 1980-2000

' The real values and prices were calculated using the U.S. CPI; 1930 is the base period.

## Sering Sez

```
The Bering Sea vanagement Area nalibut fishery is expected to grom more
rapidly than the fisheries in Area 3. Annual narvest weight s pro-
jected to increase from 227 metric tons (0.5 million pounds) n 1980
through 1085 to 1,301 metric tons (2.0 million pounds) in 2000, and real
haryest yalue is projecsed to increase from 50.4 million to $7.9 million
(see Tabie 4.62). This represents a 500 percent increase in haryest
weignt and a l,883 percent increase in real narvest value (see Table
4.03). Tabie 4.64 contains the corresonding anrua? rates of change in
harvesting activity.
```

HERRMG

```
The level of harvesting activity of the riestern llaska herr ng fisnery
has changed rapidly in recent years. For example, vecueer 975 and l980
the number of voats participating in the fisnery incraased from less
than 50 to more thar 500 and annual haryest weignt increased from it?
metric tons (0.3 mili,on zounds) to aporoximateay 27, 200 mezric tons
(47.4 milition younds). The rapid changes nave not wil been increases;
```



```
tons whereas in laj` they had ranged from 5000 do 3',000. The levei
of harvescing activizy nas changed rapidiy and is #xpectad to continue
to chance razidy because its vwo zrincioiz deverminants, resouroき
abundance and exvesse` prices, are subject to rapid zhanges.
```

Table 4.62
Western Aleutians llal but Fishery
Projected Harvesting Notivity
1980－2000

Year	Catch				Exvessel Price		Number of		Catch per Boat Months				
	Weighe		Value				Weight	Value					
	Pounds	Metric	（III）	ons ） 7	（\＄／Pound）				Boat Fisherman		Pounds	（\＄1，	000）
	（millions）	Tons	Nominal	Real	Nominal	Real	Months	Months	（1，000）	Nominal	Real		
1980	．$?$	100	$0 . ?$	$0 . ?$	0.80	U． 80	15	75	16．0	12．8	12.8		
19n！	11.2	100	11.5	11.5	2.20	2.05	15	75	16.0	$35 . ?$	32.7		
1982	1）． 2	100	0.6	0.5	2.43	2.10	15	75	16.0	38.9	33.6		
1983	11.2	100	0.6	11.5	2.68	2.15	15	75	16.0	42.9	34.5		
1984	1）．？	109	0.7	0.5	2.94	2.20	$1 \%$	75	16.0	47.0	35.1		
1985	1）．？		0.3	0.6	3.23	2.24	15	75	16.0	51.7	35.9		
19830	1）． 3	$11 \%$	0.9	$0 \cdot 6$	3.54	2.29	15	75	17．4	61．4	39.7		
19819	$1) .3$	1： 12	1．1	0.7	3.87	2.32	15	75	18．9	72.8	43.7		
101\％	$1) .3$	130	1.1	0.1	4.23	2.36	15	75	20．4	86． 3	48.2		
1989	11.3	$1: 1$	1.5	11．${ }^{\text {a }}$	4.62	2.40	15	75	22.1	102．？	53.1		
1090	1）． 4	18，${ }^{1}$	1．18	17．9	4.03	2.43	15	75	24.0	120.7	58.2		
1941	11． 4	17	2.1	1.0	5.48	2.46	15.	75	26.0	142.6	0.4 .0		
194）	－ 1	$19 ?$	$2 \cdot 5$	1.1	5.95	2.43	15	75	28．2	167.9	70.0		
1017	＊＇	2618	3.11	1.2	6.48	2．51	15	75	30.6	198．4	76．09		
1リい宸	－＇	220	3.5	1.3	7.03	2.53	15	75	33.2	233.4	84.1		
1905	$\cdots$	74	4． 1	1.4	7.6 .3	$\therefore$－ 0	15	75	36．0	274．7	02.1		
193\％	$\cdots$	？ 6	4.9	1.5	8.27	2.58	15	75	39.0	322．9	100.6		
1901	$\cdots$	213	$\cdots \cdot 1$	1.6	8.96	2.60	15	15	42.3	379.4	109.9		
	1.7	$31 \%$	$\cdots \cdot 1$	1.8	9.70	2.61	15	75	45.9	445.4	120.0		
1009	1.1	334	7.17	$\because 0$	10.50	2.63	15	75	4.9 .8	522.8	130.9		
－ 6110	11.14	＂	9.3	？．1	11.36	2.64	15	75	54.0	613.4	142.8		

Ihe red va ues and mi ie－were calculated wing the U．S．Cbl； 1930 is the base period．

Tal e 4.63
Westerr Aleutims Halibut 1 ishery Harvesting Ac'iv ty Projected Percentage Change Fron 1980

980-2000


1
he ea values and prices were ca cu ated us no the U.S. CpI; 1980 s the base period.

Wes ern Aeutians Halibut Iishery Harvesting Act v ty Projected Ammal Rate of Change 1980－2000

					Per	ntage	Change			
			Catch					Catch	r Boat	
									Va	
	Year	Weight	Nomilal	Real	Nominal	Reat	Boal Months	Weight	Mominal	Real
	$1 \cdot 180$	1	11	1	0	0	0	0	0	0
	19！ 1	$1)$	115．0	45．7	75.0	155．9	0	0	175.0	155,7
	198？	11	11）． 5	$? \cdot 7$	10.5	2.7	0	0	10.5	2.7
	19143	11	10.3	2.5	10.3	2.5	0	0	10.3	2.5
	1994	0	9．1	2.0	4.7	200	$1)$	0	9.7	2.0
	1985：	0	9.17	2.1	9.9	2.1	0	0	9.9	2.1
	11818．	8.4	113．7	110.5	9.6	1.4	0	$3^{3} 4^{4}$	18．9	10．5
	198！	4.4	18.6	10．？	9.3	1.6	0	12.4	18．6	1．0．2
5	1488	18.4	13．5	10．？	9.3	1．6	0	8.4	18.5	10．？
	！989	18． 4	1：3．4	10.1	9.2	1．5	O	8.4	18.4	10.1
	190	18．4	18.1	9． B	8.9	1.2	O	83.4	18.1	9． 8
	19り1	8.4	18.1	9.8	8.9	1.3	0	8.4	18．1	9.8
	1つげ	8.4	17．1	9.5	8.6	0.9	n	8.4	17.7	9.5
	1943	${ }_{6}^{6} \cdot 4$	13．1	9.4	日．9	1.3	0	B，it	18.1	9.8
	リり兄	$\cdots$	$1 \% .1$	${ }^{7} \cdot 4$	8.5	0.9	0	8.4	17.7	9.4
	10り6	8.4	11.1	9.4	8 S	0.9	0	88.4	17.7	9.4
	しかりた。	6.4	11．	9.3	8.4	0.18	0	8.4	17．5	13．3
	1ひ31	11.4	17．1）	9.2	8.3	0.7	0	8.4	17.5	9.2
		8.4	11.4	1）．${ }^{1}$	4.3	0.6	0	8.4	17.4	9.2
	リツツ	！\％＇r	11．4	$\cdots .1$	$\theta$ ？	0.6	$1)$	8.4	17.4	9.1
	$\because 001$	i．${ }^{\text {a }}$	17.1	9.1	3.2	0.6	19	8． 4	17.3	9.1

[^24]```
Athough stock EDundence is rery itf:icutt so measure, large fluctua-
tions a resource asuncance apoear to be characteristio of herming
fisher es. For Example, if:30 summaries of me l2,3, l`79, anc l980
herring Fisheries of vesterm Alaske indicate thaz the herring biomass
was 137,000 to 235,000 retric tons in 1973, 260,000 to 540,000 metric
tons ir 1973, and 83,000 to 774,000 metric tons in 1980. Uust as rapid
Changes in resumrce abunance were in part rasponsible for the rapid
changes in annuav naryeszs whton occurred suring the iate ig70s, rapid
changes in rescurce abundance from la80 fhrough 2000 are expected to be
particaliy responsible for the razid changes in annual narvests inat
mi\\ characterize the iisnery trirougn 20co.
Fine Factors mrich exolain the racis changes in exvessel prices which
have occurred and whith are コкصectad to occur incluge the rapid crances
```



```
mas apparent:y a migny inevastio demand for herring roe, and the fiming
```



```
the consumotion of herming roe. The last Facoor has and wi`i aonzinue
```



```
The abriot frice doclines mion occurred in l980 are explainad dy ghe
greyious =actors and the unsustainably nign prices of l97#. It apoears anat the very hign 7979 exvessel prices resulted in retál prices whoh met with severe consumer resistance, that is, consumers mere not wiling to buy mucn roe at the high retall prices. As a result there dere excegtionaly large inventories of roe before the logo fishing season gegan. The lanse inventories naye depressec exvessel prices in y980, and he consumer resistance to the 1979 retail prices suggests that aven once the inventories are eliminated, exvessel prices wilh remein aelow the 1979 7evels.
```

During the next thenty years real exyessel prices are expected to

 herring stocks throughout the world and the timing of the western
 prices. The Fluctuations in expesse? prices and locat resource azunamae wit cause Fucutuations in arnual harveses. The intormezion anaz is necassary to accurately predict annual haryasss does not Exist. Me


```
the recors naryesz zf i=80 was adoroximeze\y 2i,500 metric zons ab
milion 2onds` exoluding 2,300 metruc oons of mestage. The proportion
```



```
Zristo\ 2ay, 32.ч geraent; Securtty Sove, 2.3 percent; Gocdnews 3ay,
T.g gercent; Jaze vomanzo: 2.3 percent; and ilorson Sound. IJ.3 percent.
To allow Ior tre Fluctuations in narveszgroportions that wily docur
```



```
specified arajs mmich mouid inciude the äorementioned areas and as ot
y^t unExp:oiner areas such as kotzevue sounc.
```


of doats and fistermen mich take the haryest as mith the stze anc value

particizazion of Junse seiners in oreer zo ernance the oboortunties


```
non-1002` Fishemmen for whom transportation, onsite, and ooportwnity
costs may ze higher. During the past year, the Alaska Boand of Fish-
eries limitad the use of purse setrers to tre Sristol Say area ard
set regulations which will tend to increzse the proportion of the
3ristol Say hamest taken by gill ret boats. The actions ot the
Board of Fishenies are in accordance witn its policy to assure an eomim
table distribution of fishery resources. In the absence of such regula-
tions, a relatively small number of purse seiners oould take muco of
the total narrest. The limits on purse seirers are to ve reaxamined in
terms of the zoility of the gill net fisnertes to fully wtibite zhe
nerming stocks. A preliminary A0-3G report on the T080 restem tiaske
Germing Fisnery fndicates that the gill net ilsneries currenty nave
this ability; therefore, the expectation is that the limitations or
purse seiners will remain in effect.
```

```
It shouli be noted that the 3ristol 3ay purse seine ifshary is noz
```

It shouli be noted that the 3ristol 3ay purse seine ifshary is noz
completeiy non-iocal nor are the gill net fisheries comoletely local
completeiy non-iocal nor are the gill net fisheries comoletely local
The Bristoi Eay purse seine fleet inclutes g. B neter (32 Foot) Sristal
The Bristoi Eay purse seine fleet inclutes g. B neter (32 Foot) Sristal
Bay samon zozas, some of wnich are goerated by loca, restdents, as
Bay samon zozas, some of wnich are goerated by loca, restdents, as
well as a larger purse seiners from eisawnere in tlaska. Me gili nez

```
well as a larger purse seiners from eisawnere in tlaska. Me gili nez
```



```
zpproximàe\y l20 gill net boat garucoatec in one Sevurioy gove fisnery,
```

```
zpproximàe\y l20 gill net boat garucoatec in one Sevurioy gove fisnery,
```



```
of the fishermen who made landings ,fere restdents of the lorton Sound
area and about bo percert of tne dotat naryest %as taken by these local
#isnermen.
The grojections ot harlesting actimty for the western liaska roe remring
```



```
cuning the nex= thensy vears. -ne zmual devizzions from bnese norms
```



```
In acgition to gne roe rerming ïsheries j= nestenn maska there rava
```



```
roe on kelp {isheries. The roe on kelp itsneries have seen relativeiz
```



```
domestio grismone Fishery may tevéog in addition to tre mear shore
```



```
rescurce zunndance irdiazzed bhat nerming stocks were not avatiable
```



```
Znat are axy=cteu, separe-a grobections ton tne ofisnore fishery ana
noむ oresentez in ghis rejort.
\thereforex:G20
```


able： 60
Projected Westean Alaska King Ciab Ilarvest 980－20） 0

Pounds（millions

| | Year | Meninsula | Gustern Alcutins | Western Aleutians | Bering sed | Tutal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Jobe | い兄 | 10.0 | 2.0 | 85.0 | 162.5 |
| | 1981 | いい | 11.0 | 2.0 | 85．0） | 102．5 |
| | 119\％ | \because | 110.0 | 7.17 | 85．0） | 1020 |
| | 11987 | \cdots | 110.0 | 2.0 | 85.0 | 102．5 |
| | 1964 | いい | 11.0 | $? .11$ | 85.0 | 102． 5 |
| | 1085 | ＇．＇， | 10.0 | 2.11 | 85， 0 | $102 \cdot 5$ |
| | lome | ＇．．．＇ | 11．01 | 2.0 | 82．00 | 1112.5 |
| | 10．0． | ！！ | 10．0） | 2.0 | 9\％．0 | 102： |
| | 190．8 | \cdots | 110.0 | 2.0 | 83.0 | 1102： |
| | 1ッツ | \cdots | 1110 | 2.19 | 45．0 | 102.5 |
| | $1 \cdots 0$ | $\because 5$ | 10.0 | $?$ | 38.0 | 1112．5 |
| | 10% | い ${ }^{\text {a }}$ | 10．0 | 2.11 | 85.0 | 1025 |
| | いい。 | ＇，＇${ }^{\text {a }}$ | 10．0 | 2.0 | ［日t．01 | 102.5 |
| | 1ヵり安 | \cdots | 11.0 | ？．01 | 83.0 | 102．5 |
| | 109\％ | ＇．${ }^{\prime}$ | 10.11 | 2.0 | 84， 01 | 102．5 |
| | ！いい。 | \cdots | 10.11 | 2.0 | 145．0 | 1019 ${ }^{\circ}$ |
| | | $\cdots \cdot$ | 10.01 | 2.11 | 8 BLO | 102． |
| | いいい | | 110.1 | $\therefore 0$ | 84， 11 | 111：${ }^{\prime \prime}$ |
| | 1 1里 | $\because{ }^{\prime}$ | 10.0 | $? 0$ | 84， 0 | 1102.5 |
| | いいい | $\cdots \cdot$ | 10．13 | $\therefore 11$ | At，（） | 103． |
| | ， $1 / \mathrm{m} \cdot$ | $\cdots{ }^{\prime}$ | 110.1 | 80 | 835.0 | 102．5 |

Table 4. 66 (conti nued)

| | Year | Peni nsula | Eastern Al eutians | Western Aleutians | Bering Sea | Tot al |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 19R0 | 2494.8 | 4536.0 | 907.2 | 38555.7 | 46493. 7 |
| | 1981 | 2494.8 | 45"36. 3 | 907.2 | 38555*7 | 46493, 7 |
| | 1987 | 2494.8 | 4536.0 | 907.2 | 30555. 7 | 46493.7 |
| | 1983 | 2494.8 | 4536.0 | 907.2 | 38555. 7 | 46493.7 |
| | 1984 | 2494.8 | 4536.0 | 9137.2 | 30555. 7 | 46493.7 |
| | 1985 | 2494.8 | 4536.0 | 907.2 | 38555. 7 | 46493, 7 |
| | 1986 | 2494.8 | 4536.0 | 907.2 | 30555. 7 | 46493, 7 |
| 感 | 1987 | 2494.8 | 4536.0 | 907.2 | 30555. 7 | 46493. 7 |
| , | 1988 | 2494.8 | 4536.0 | 907.2 | 38.555 .7 | 46493.7 |
| | 1989 | 2494.8 | 4536.0 | 907.2 | 38555.7 | 46493,7 |
| | 1990 | 2494.8 | 4536.0 | 907.2 | 38555.7 | 46493.7 |
| | 1991 | 2494.8 | 4536.0 | 907.2 | 38555. 7 | 46493.7 |
| | 1992 | 2494.8 | 4536.0 | 907.2 | 38555.7 | 46493.7 |
| | 1993 | 2494.8 | 4536 () | 907.2 | 38555. 7 | 46493.7 |
| | 1994 | 2494.8 | 4536.0 | 907.2 | 38555*7 | 46493.7 |
| | 1995 | 2494.8 | 4536.0 | $9(-) 7.2$ | 38555. 7 | 46493.7 |
| | 1996 | 2494.8 | 4536.() | 907.2 | 38555. 7 | 46493.7 |
| | 1997 | 2404.8 | 4536.0 | 907.2 | 38555. 7 | 46493.7 |
| | 1998 | 2494.8 | 4536.0 | 907.2 | 38555.7 | 46493.7 |
| | 1999 | 2494.8 | 4536.(-) | 907.2 | 38555.7 | 46493.7 |
| | 2010 | 2494.8 | 4536.0 | 907.2 | 38555. 7 | 46493.7 |

Metric Tons

Table 4. 66 (conti nued)
Nominal Val ue (millions)

| | Year | Peni nsul a | Eastern Al eutians | Western Aleutians | Bering Sea | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | 6.9 | 12.6 | 2.5 | 107.2 | 129, 3 |
| | 1981 | 6.5 | 11. 9 | 2.4 | 101.1 | 121.9 |
| | 1982 | 7.2 | 13.1 | 2.6 | 111.6 | 134. 5 |
| | 1983 | 7.1 | 12.8 | 2.6 | 109.2 | 131.7 |
| | 1984 | 7.6 | 13.8 | .2.\$ | 117.5 | 141. 7 |
| | 1985 | 7.6 | 13.9 | 2.8 | 117.8 | 142. 1 |
| | 1986 | 8.1 | 14.7 | 2.9 | 125.1 | 150.8 |
| $\stackrel{\square}{80}$ | 1987 | 8.2 | 15.0 | 3.0 | 127.3 | 153. 5 |
| ∞ | 1988 | H. 7 | 15.8 | 3.2 | 134.2 | 161.8 |
| | 1989 | 8.9 | 16.2 | 3.2 | 138.0 | 166. 4 |
| | 1990 | 9.4 | 17.0 | 3.4 | 144.9 | 174. 7 |
| | 1991 | 9.7 | 17.7 | 3.5 | 150.1 | 181.0 |
| | 1992 | 10.2 | 18.5 | 3.7 | 157.5 | 189. 9 |
| | 1993 | 10.6 | 19.3 | 3.9 | 164.0 | 197. 7 |
| | 1994 | 11.1 | 20.2 | 4.0 | 172.1 | 207.5 |
| | 1985 | 11.6 | ? 1.2 | 4.2 | 179.9 | 217.0 |
| | 1996 | 12.2 | 22.2 | 4.4 | 189.1 | 228.0 |
| | 1997 | 12.8 | ? 3.3 | 4.7 | 198.3 | 239.1 |
| | 1998 | 13.5 | 24.6 | 4.9 | 208.7 | 251. 7 |
| | 1999 | 14.,? | 25.8 | 5.2 | 219.5 | 264.7 |
| | 2000 | 15.0 | ? 7.2 | 5.4 | 231.4 | 279.1 |

Table 4.66 (conti nued)
 Real Value ${ }^{l}$ (millions)

| | Year | Peni nsula | Eastern Al eutians | Mestern Al eutians | Bering Sea | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | 6.9 | 12.6' | 2.5 | 107.2 | 1?9.3 |
| | 1981 | 6.1 | 11.1 | 2.2 | 94.0 | 113.3 |
| | 1982 | 6.2 | $11 * 3$ | 2.3 | 96.4 | 116.3 |
| | 1983 | 5.7 | 10.3 | 2.1 | 87.7 | 105.8 |
| | 1984 | $5 . ?$ | IO*3 | 2.1 | 87.8 | 105.9 |
| | 1985 | 5.3 | 9.6 | 1.9 | 81.8 | 98.7 |
| | 1986 | 5.2 | 9.5 | 1.9 | 80.8 | 97.4 |
| | 1987 | 4.9 | 9.0 | 1.8 | 76. 4 | 92.2 |
| $\stackrel{\stackrel{\rightharpoonup}{\circ}}{0}$ | 1948 | 4.8 | 8.8 | 1.8 | 74"9 | 90.3 |
| | 1989 | 4.6 | 9.4 | 1.7 | 71.6 | 86.3 |
| | 1990 | 4.5 | 8.2 | 1.6 | 69.9 | 84.3 |
| | 1991 | 4.4 | 7.9 | 1.6 | 67.3 | 81.2 |
| | 1992 | 4.2 | 7.7 | 1*5 | 65.7 | 79.2 |
| | 1993 | 4.1 | 7 . 5 | 1.5 | 63.6 | 76.7 |
| | 1944 | 4.0 | 7.3 | 1.5 | 6?, 0 | 74.8 |
| | 1995 | 3.5 | 7.1 | 1.4 | 60.3 | 72.7 |
| | 1996 | 3.8 | 6.9 | 1.4 | 58.9 | 71.0 |
| | 1997 | 3.7 | 6.8 | 1.4 | 57.4 | 69.3 |
| | 1998 | 3.6 | 6.6 | 1.3 | 56.2 | 67.8 |
| | 1999 | 3.6 | 6.5 | 1.3 | 55. 0 | 66.3 |
| | 2000 | 2.5 | 6.3 | 1.3 | 53.9 | 65.0 |

${ }^{1}$ Real val ues are cal cul ated using the U.S. CPI; 1980 is the base year.
pounds). Thi s example al so denonstrates the size of error in the point estimates that is not unexpected.

Peni nsul a

The annual harvest wei ght for the Peni nsula king crab fishery is expected to average 2,495 metric tons (5.5 mili on pounds) from 1980 through 2000, and the annual real harvest val ue is expected to decrease ، from $\$ 6.9$ million in 1980 to $\$ 3.5$ million in 2000 (see Table 4. 67). This represents a 50 percent decrease in real harvest val ue (see Table 4.68). The corresponding annual rates of change in harvesting activity are presented in Table 4. 69. The projected nean annual harvest wei ght exceeds the mean catch for ei ther 1969 through 1979 or 1975 through 1979 but is approxi natel y equal to the 1969 or 1973 catch.

Eastern Al eutians

The annual king crab harvest in the Eastern Aleutians Managenent Area is expected to average 4, 536 metric tons (10 mili on pounds) between 1980 and 2000; and the annual real harvest val ue is projected to decrease from $\$ 12.6$ million in 1980 to $\$ 6.3$ million in 2000 (see Table 4. 70). The 50 percent decrease in real value is due to the projected decrease in the real exvessel price (see Table 4.71). The projected annual percentage changes in harvesting activity appear in Table 4.72. The proj ected annual harvest wei ght is approxi natel y equal to the nean annual catch for both 1969 through 1979 and 1975 through 1979.

Table 4.67
Peni nsula King Crab Fi shery Projected Harvesting Activity 1980-2000

| Year | | Cat ch | | | | Exvessel Price | | Nunber | | $\frac{\text { Catch pe }}{\text { - Weight }}$ | er Boat Month | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Weight | | Val ue | | | | Val ue | |
| | | Pounds | Metric | (mili | - | (\$/ P | | | | Boat | Fi shernan | Pouninds | (\$1,0 | 00) |
| | | (mi 11 i | ons) Tons | Nomi na | Real | Nominal | Real | Mont hs | Mont hs | 11,000) | Nominal | Real |
| | 1780 | 5.5 | ? 495 | 6.9 | 万. 9 | 1.26 | 1.26 | 128 | 513 | 42.9 | 54*1 | 54.1 |
| | 1981 | 5.5 | 2495 | 6.5 | 6.1 | 1.19 | 1.11 | 133 | 533 | 4103 | 49.1 | 45.6 |
| | 1982 | 5.5 | 2495 | 7.2 | 6.2 | 1*31 | 1.13 | 132. | 529 | 41.6 | 54.6 | 47.2 |
| | 1983 | 5.5 | ? 495 | 7.1 | 5.7 | 1.28 | 1.03 | 136 | 544 | 40.4 | 51.9 | 41.7 |
| | 1984 | 5.5 | 2495 | 7.6 | 5.7 | 1.38 | 1.03 | 136 | 544 | 40. 4 | 55.9 | 41.8 |
| | 1985 | 5.5 | 2495 | 7.6 | 5.3 | 1.39 | 0.96 | 139 | 556 | 39. 6 | 54.9 | 38.1 |
| | 1986 | 5.5 | 2495 | 8.1 | 5.2 | 1.47 | 0.75 | 139 | 558 | 39. 4 | 58.0 | 37.5 |
| | 1987 | 5.5 | 2495 | 8.2 | 4*9 | 1.50 | (-). 90 | 142 | 567 | 38.8 | 58.1 | $34 * 9$ |
| 옥 | 1988 | 5.5 | 2495 | 8.7 | 4.8 | 1.58 | 0.88 | 143 | 570 | 38.6 | 60.9 | 34.0 |
| | 1789 | 5.5 | 2495 | 8.7 | 4*6 | 1.62 | 0.84 | 145 | 578 | 38. 1 | 61.8 | 32.1 |
| | 1990 | 5.5 | 2495 | 9.4 | 4.5 | 1.70 | 0.82 | 146 | 582 | 37.8 | 64.4 | 31.1 |
| | 1991 | 5.5 | ? 495 | 9.7 | 4*4 | 1.77 | 0.79 | 147 | 5P9 | 37*4 | 66.0 | 29.6 |
| | 1992 | 5.5 | 2495 | 10.2 | 4.2 | 1.85 | 0.77 | 148 | 593 | 37. 1 | 68.7 | 28.7 |
| | 1993 | 5.5 | 7495 | 10.6 | 4*1 | 1.,93 | 0.75 | 150 | 599 | 36. 7 | 70.9 | 27.5 |
| | 1994 | 5.5 | 2495 | 11.1 | 4.0 | 2.(-)2 | 0.73 | 151 | 603 | 36.5 | 73.8 | 26.6 |
| | 1995 | 5.5 | 2495 | 11.6 | 3.9 | 2.12 | 0.71 | 15 ? | 608 | 36. 2 | 76.5 | $25 * 7$ |
| | 1906 | 5.5 | 2495 | 12.? | 3.8 | 2.27 | 0.69 | 153 | 6] 3 | 35*9 | 79.9 | 24.9 |
| | 1997 | 5.5 | 2495 | 12.8 | $3 * 7$ | 2.33 | 0.68 | 154 | 617 | 35.6 | 83.2 | 24.1 |
| | 1998 | 5.5 | 2495 | 13.5 | 3.6 | 2.46 | 0.66 | 155 | 621 | 35. 4 | 87.0 | 23.4 |
| | 1909 | 5.5 | 2495 | 14.? | 3.6 | 2.58 | 0.65 | 156 | 625 | 35.2 | 90,9 | 22.7 |
| | 2000 | 5.5 | 2495 | 15.0 | 3.5 | 2.72 | 0.63 | 157 | 629 | 35. 0 | 95.2 | 22.? |

${ }^{1}$ The real val ues and prices were cal cul ated using the $\mathbf{U} . S$. CPI; 1980 is the base period.

Table 4. 68
Peni nsula King Crab Fi shery Harvesting Activity Proj ected Percentage Change from 1980

1980-2000

| | | Percentage Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | Exvessel Price | | Nunber of Boat Mbnths | Catch per Boat Month | | |
| | | | Value | | | | | Val | |
| | Year | Weight | Nomi nal | Real | Nomi nal | Real | | Weight | Mominal | Real |
| | 1980 | 0 | - | 0 | 0 | () | | n | 0 | 0 | 0 |
| | 1981 | 0 | - 5.7 | -12.3 | -5. 7 | -12. 3 | 4.0 | -3.8 | -9.3 | -15.7 |
| | 1982 | 0 | 4.1 | -10.0 | 4.1 | -10.0 | 3.2 | -3.1 | 0.8 | -12.8 |
| | 1983 | 0 | 1.9 | -18.1 | 1. 9 | -18.1 | 6.1 | -5.8 | -4.0 | -22.9 |
| | 1984 | 0 | 9.7 | -18.1 | 9.7 | -18.1 | 6.1 | -5.8 | 3. 3 | -22.8 |
| | 1985 | 0 | 9*9 | -23. 7 | 9. 9 | -23. 7 | 8.3 | -7*7 | 1.4 | -29.5 |
| | 1986 | 0 | 16.7 | -24.7 | 16.7 | -24.7 | 8.8 | -8.1 | 7.3 | - 30.7 |
| | 1987 | 0 | 18.8 | -28.7 | 18.8 | -28.7 | 10.6 | -9.6 | 7.4 | -35*5 |
| $\stackrel{+}{\circ}$ | 1988 | 0 | 25.1 | -30.1 | 25. 1 | -30.1 | 11.2 | -10.1 | 12.5 | -37.2 |
| N | 1989 | 0 | 28.7 | -33.2 | 28.7 | -33.2 | 12.7 | -11. 3 | 14.2 | -40.8 |
| | 1990 | 0 | 35.2 | -34.8 | 35. 2 | -34.8 | 13.5 | -11.9 | 19.0 | -42.6 |
| | 1991 | 0 | $40 *(-1$ | -37.2 | 40.0 | - 37.2 | 1.4.8 | -12.9 | 21. 9 | - 45.3 |
| | 1992 | 0 | 46.9 | -38.7 | 46.9 | -38.7 | 15.7 | -13.5 | 27.0 | -47.0 |
| | 1993 | 0 | 52.9 | -40. 7 | 52.9 | -40.7 | 16.8 | -14.4 | 31.0 | -49.2 |
| | 1994 | 0 | 60.5 | -4?. 1 | 60.5 | -42.1 | 17.6 | -15. 0 | 36.5 | -50.8 |
| | 1995 | 0 | 67.8 | -43.8 | 67.8 | -43.8 | 18.6 | -15.7 | 41.5 | -52.6 |
| | 1996. | 0 | 76.4 | -45.0 | 76. 4 | -45.0 | 19.5 | -16.3 | 47.6 | - 54.0 |
| | 1997 | 0 | 85.0 | -46.4 | 85.0 | -46. 4 | 20.4 | -16.9 | 53.7 | -5 5.5 |
| | 1998 | () | 94.7 | -47.6 | 94.7 | -47*6 | 21.1 | -17. 5 | 60.7 | -56.7 |
| | 1999 | 0 | 104.8 | -48.7 | 104.8 | -48.7 | 21.9 | -18.0 | 67.9 | -58.0 |
| | 20000 | f) | 115.9 | -49.7 | 115.9 | -49.7 | 22.7 | -18. 5 | 76.0 | -59.0 |

[^25]Table 4.69
Peni nsula King Crab Fi shery Harvesting Activity Proj ected Annual Rate of Change 1980-2000

| | | Percentage Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | Exvessel Price | | Number of Boat Months | Catch per Boat Month | | |
| | | | Val ue | | | | | Value | |
| | Year | Wei ght | Nomi nal | Real | Nomi nal | Real | | Height | Nomi nal | Real |
| | 1980 | 0 | () | n | 0 | 0 | | 0 | 0 | 0 | 0 |
| | 1981 | 0 | -5.7 | -12.3 | - 5.7 | -12.3 | 4.0 | -3. 8 | -9. 3 | -15. 7 |
| | 198? | () | 10"4 | 2.6 | 10.4 | ?. 6 | -0.8 | 0.8 | 11.2 | 3.4 |
| | 1983 | 0 | -2.1 | -9. 0 | -2.1 | -9.0 | 2.0 | -2. 8 | -4.8 | -11.5 |
| | 1984 | 0 | 7.7 | 0.1 | 7*7 | 0.1 | -0.0 | 0. 0 | 7.7 | 0.1 |
| | 1985 | 0 | 0.2 | -6.8 | 0.2 | -6.8 | 2.1 | -2. 1 | -1.8 | -0.7 |
| | 1986 | 0 | 6.2 | -1.3 | 6*2 | -1.3 | 0.4 | -0.4 | 5.7 | -1.7 |
| | 1987 | 0 | 1.月 | -5.4 | 1.8 | -5.4 | 1. 7 | -1. 6 | $0^{*} 1$ | -6.9 |
| $\stackrel{\text { ¢ }}{\stackrel{\text { d }}{ }}$ | 1988 | | 5.4 | -2.0 | 5.4 | -2.0 | 0.6 | -0. 6 | 4.7 | -2.6 |
| | 1989 | 0 | 2.9 | -4.4 | 2.8 | -4.4 | "1. 3 | -1. 3 | " 1.5 | -5. 7 |
| | 1990 | 0 | 5.0 | -2.4 | 5.0 | -2.4 | $\mathrm{O}^{\mathbf{4} 7}$ | -0.7 | 4. 3 | -3.0 |
| | 1991 | 0 | 3.6 | -3.7 | 3.6 | -3.7 | 101 | -1. 1 | 2.4 | -4.8 |
| | 1992 | 0 | 4.9 | -2.5 | 4.9 | -2.5 | 0.7 | -0.7 | 4.1 | -3. 2 |
| | 1993 | 0 | 4.1 | -3.2 | 4.1 | --3.2 | 1.0 | -1. 0 | 3*1 | -4. 1 |
| | 1994 | 0 | 5.0 | -2.4 | 5.0 | -2,4 | 0.7 | -0. 7 | 4. 2 | -3. 1 |
| | 1995 | 0 | 4.5 | -2.8 | 4.5 | -2.8 | 0.8 | -0.8 | 3*7 | -3*6 |
| | 1996 | 0 | 5.1 | -?. 3 | 5.1 | -2.3 | 0.7 | -0. 7 | 4.4 | -3. 0 |
| | 1997 | o | 4.9 | -2.5 | 4.9 | -2.5 | 0.7 | -0.7 | 4*1 | -3. 2 |
| | 1998 | 0 | $5 . ?$ | -?. 1 | 5.2 | -2.1 | 0.6 | -0. 6 | 4.6 | -2.8 |
| | 1009 | 0 | 5.2 | -?.? | 5.2 | -2.2 | 0.7 | -0.7 | 4.5 | -?. 9 |
| | 2000 | 0 | 5.4 | -? . 0 | 5.4 | -2.0 | 0.6 | -0. 6 | 4.8 | -2.6 |

[^26]Table 4.70
Eastern Aleutians King Crab Fishery Projected Harvesting Activity 1980-2000

| | | ratrh | | | | Exvessel Price | | Number of | | Catch ner Boat Month | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | weiyll | | vaiue | | | | Weight | Value | |
| | | Pounds | Metric | (mil1i | ns) | (\$/P | (d) | | | Boat | sherman | Pounds | (\$T,0 | 0) |
| | Year | (millions) | Tons | Nominal | Real ${ }^{1}$ | Nominal | Real | Months | Months | (1,000) | Nominal | Real |
| | 1980 | 10.0 | 4536 | 12.6 | 12.6 | 1.26 | 1.26 | 123 | 492 | 81.3 | 102.5 | 102.5 |
| | 1981 | 10.0 | 4536 | 11.9 | 11.1 | 1.19 | 1.11 | 123 | 492 | 81.3 | 96.7 | 89.9 |
| | 1982 | 10.0 | 4536 | 13.1 | 11.3 | 1.31 | 1.13 | 123 | 492 | 81.3 | 106.7 | 92.2 |
| | 1983 | 10.0 | 4536 | 12.8 | 10.3 | 1.28 | 1.03 | 123 | 492 | 81.3 | 104.4 | 83.9 |
| | 1984 | 10.0 | 4536 | 13.8 | 10.3 | 1.38 | 1.03 | 123 | 492 | 81.3 | 112.4 | 84.0 |
| | 1985 | 10.0 | 4536 | 13.7 | 9.6 | 1.39 | 0.96 | 123 | 492 | 81.3 | 112.7 | 78.3 |
| | 1986 | 10.0 | 4536 | 14.7 | 9.5 | 1.47 | 0.95 | 123 | 492 | 81.3 | 119.6 | 77.3 |
| 大 | 1987 | 10.0 | 4536 | 15.0 | 9.0 | 1.50 | 0.90 | 123 | 492 | 81.3 | 121.8 | 73.1 |
| + | 1988 | 10.0 | 4536 | 15.A | 8.8 | 1.58 | 0.88 | 123 | 492 | 81.3 | 128.3 | 71.6 |
| | 1989 | 10.0 | 4536 | 16.2 | 8.4 | 1.62 | 0.84 | 123 | 492 | 81.3 | 132.0 | 68.5 |
| | 1990 | 10.0 | 4536 | 17.0 | 8.2 | 1.70 | 0.82 | 123 | 492 | 81.3 | 138.6 | 66.9 |
| | 1991 | 10.0 | 4536 | 17.7 | 7.9 | 1.77 | 0.79 | 123 | 492 | 81.3 | 143.5 | 64.4 |
| | $199 ?$ | 10.0 | 4536 | 18.5 | 7.7 | 1.85 | 0.77 | 123 | 492 | 81.3 | 150.6 | 62.8 |
| | 1993 | 10.0 | 4536 | 19.3 | 7.5 | 1.93 | 0.75 | 123 | 492 | 81.3 | 156.8 | 60.8 |
| | 1994 | 10.0 | 4536 | 20.2. | 7.3 | 2.02 | 0.73 | 123 | 492 | 81.3 | 164.6 | 59.3 |
| | 1095 | 10.0 | 45.36 | 21.2. | 7.1 | 2.12 | 0.71 | 123 | 492 | 81.3 | 172.1 | 57.7 |
| | 1996 1997 | 10.0 | 4536 | 22.? | 6.9 | 2.22 | 0.69 | 123 | 492 | 81.3 | 180.8 | 56.3 |
| | 1997 1998 | 10.0 | 4536 | 23.3 | 6.8 | 2.33 | 0.68 | 123 | 492 | 81.3 | 189.7 | 54.9 |
| | 1979 | 10.0 | 4536 | 24.6 25.8 | 6.6 | 2.46 | 0.66 | 123 | 492 | 81.3 | 199.6 | 53.8 |
| | 2000 | 10.0 | 4536 | 27.2 | 6.3 | 2.72 | 0.63 | 123 | 492 | 81 | 210.0 | 52.6 |

[^27]Table 4.71
Eastern Aleutians King Crab Fi shery Harvesting Activity Projected Percentage Change from 1980

1980-2000

Percentage Change

| Year | | Percentage Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | Exvessel Price | | Number of Boat Months | Catch per Boat Month | | |
| | | | Value | | | | | Val u | |
| | | Weight | Nomi nal | Real | Nominal | Real | | Weight | Nomi | n meall |
| | 1980 | 0 | 0 | n | 0 | 0 | | n | 0 | 0 | 0 |
| | 1981 | 0 | -5.7 | -1?.3 | -5.7 | -12.3 | 0 | 0 | -5. 7 | -12.3 |
| | 1982 | 0 | 4.1 | -10.0 | 4.1 | -10.0 | 0 | 0 | 4, 1 | -10.0 |
| | 1983 | 0 | 1.9 | -18.1 | 1*9 | -18.1 | 0 | 0 | 1. 9 | -18.1 |
| | 1984 | 0 | 9.7 | -18.1 | 9.7 | -18.1 | 0 | 0 | 9*7 | -18.1 |
| | 1985 | 0 | 9.9 | -23.7 | 9.9 | -23.7 | 0 | 0 | 9. 9 | - ? 3.7 |
| | 1986 | 0 | 16.7 | -24.7 | 16.7 | -24.7 | 0 | 0 | 16, 7 | -24.7 |
| | 1987 | 0 | 18.? | -28.7 | 18.8 | -28.7 | 0 | 0 | 18.8 | -28.7 |
| $\stackrel{\text { Or}}{\square}$ | 1988 | 0 | 25.1 | -3(-). 1 | 25*1 | -30.1 | 0 | 0 | 25. 1 | -30.1 |
| | 1909 | 0 | 28.7 | -33.2 | 28.7 | - 33. ? | n | 0 | 28. 7 | -33.2 |
| | 1990 | 0 | 35.? | -34.8 | "35.2 | -34.8 | n | 0 | 35. 2 ! | -34.8 |
| | 1991 | 0 | 40.0 | - 37.7 | 40.0 | - 37.2 | 0 | 0 | 40.0 | -37.? |
| | 1992 | 0 | 46.9 | -34.7 | 46.9 | -38.7 | 0 | 0 | 46.9 | -38.7 |
| | 1993 | 0 | 52.9 | -40.7 | 52.9 | -40.7 | n | 0 | 52.9 | -40.7 |
| | 1994 | 0 | 60.5 | -42.1 | 60.5 | -42.1 | 0 | 0 | 60.5 | - 42 |
| | 1995 | 0 | 67.月 | -43.8 | 67.8 | -43.8 | 0 | 0 | 67.8 | -43.8 |
| | 1996 | cl | 76.4 | -45.0 | 76.4 | -45.0 | 0 | 0 | 76.4 | -45.(-) |
| | 1997 | 0 | 85.0 | -46.4 | 85.0 | -46.4 | 0 | 0 | 85.0 | -46.4 |
| | 1998 | n | 94."7 | -47.6 | 94.7 | -47.6 | 0 | 0 | 94.7 | -47.6 |
| | 1909 | 0 | 104.9 | -48.7 | 104.8 | -48.7 | 0 | 0 | 104.8 | -4[1."7 |
| | 2000 | 0 | 115.9 | -49.7 | 115.9 | -49.7 | 0 | 0 | 115.9 | -49.7 |

The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

Table 4. 72
Eastern Aleutians King Crab Fishery Harvesting Activity Projected Annual Rate of Change

1980-2000

[^28]The Vestern Aleutians king crab fishery is expected to remain a rel atively minor fishery with an annual harvest weight of 907 metric tons (2 mili on pounds) and annual real harvest value decreasing from $\mathbf{\$ 2 . 5} \mathbf{~ m i l i}$ on in 1980 to $\$ 1.3$ milition in 2000 (see Table 4. 73). Again the change in the real value is due to a projected $\mathbf{5 0}$ percent decrease in the real exvessel price (see Table 4.74). Table 4.75 contains projections of the annual rates of change in harvesting activity. The annual harvest weight has decreased significantly inthis fishery since the early 1970s, when a high of 11,700 metric tons (25.9 milion pounds) was harvested in 1971, to a low of 363 metric tons (0.8 milli on pounds) in 1979. The projected annual harvest wei ght exceeds the 1975 through 1979 mean of 680 metric tons (1.5 million pounds) but is significantly less than the 1969 through 1979 mean annual harvest of 3,810 metric tons (8.4 milli on pounds).

Bering Sea

The Bering Sea king crab fishery is expected to continue to dom nate the A aska king crab fishery and to renain the premer fishery in \mathbf{A} aska. The king crab stocks which have increased during the past five years are expected to peak in 1980 and to decline inthe early 1980s. During the forecast period, annual harvest weightis expected to average 38, 556 metric tons (85 milli on pounds), and annual real harvest value is projected to decrease from $\$ 107.2 \mathrm{mili}$ on in 1980 to $\$ 53.9 \mathrm{mili}$ on in 2000 (see Table 4.76). The 50 percent decrease in real value is due to the projected decrease in the real exvessel price (see Table 4.77). The projected

Table 4.73
Western Aleutians King Crab Fishery Projected Harvesting Activity 1980-2000

${ }^{1}$ The real val ues and prices were cal cul ated using the $\mathbf{U} . S$. CPI; 1980 is the base period.

Table 4. 74
Western Aleutians King Crab Fishery Harvesting Activity Projected Percentage Change from 1980 1980-2000

| | | Percentage Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | Exvessel Price | | Number of Boat Months | Catch per Boat Month | | |
| | | | Val ue | | | | | Val ue | |
| | Year | W | Nomi | n Real | Nomi nal | Real | | Weight | Nomi nal | Real |
| | 1940 | n | 0 | () | 0 | 0 | | n | 0 | 0 | 0 |
| | 1981 | 0 | - 5.7 | -12.3 | -5. 7 | -12. 3 | 0 | 0 | -5. 7 | -12.3 |
| | 1982 | | 4*1 | -10.0 | 4*1 | -10.0 | 0 | 0 | 4.1 | -10.0 |
| | 1983 | 0 | 1.9 | -18.1 | 1. 9 | -18.1 | 0 | 0 | 1.9 | -18.1 |
| | 1984 | 0 | 9.7 | -18.1 | 9. 7 | -18. 1 | 0 | 0 | 9. 7 | -18.1 |
| | 1985 | n | 9.9 | -2.3.7 | 9. 9 | -23. 7 | 0 | 0 | 9. 9 | -23.7 |
| | 1986 | 0 | 16.7 | -24.7 | 16. 7 | -24.7 | 0 | 0 | 16. 7 | -24.7 |
| | 1947 | () | 18.A | -28.7 | 18.8 | -28.7 | 0 | 0 | 18.8 | -28.7 |
| $\stackrel{\stackrel{+}{\circ}}{0}$ | 1988 | 0 | 25.1 | -30.1 | 25. 1 | -30.1 | 0 | 0 | 25. 1 | -3(-).1 |
| | 1984 | n | 28.7 | -33.2 | 28. 7 | -33.2 | 0 | 0 | 28. 7 | -33.? |
| | 1990 | $1)$ | 35.2 | -34.8 | 35. 2 | -34.8 | 0 | 0 | 35.2 | - 34.8 |
| | 1991 | 0 | 40.0 | -37.2 | 40.0 | -37. 2 | 0 | 0 | 40.0 | -37.2 |
| | 194 ? | 0 | 46.9 | -38.7 | 46.9 | -38.7 | 0 | 0 | 46.9 | -38.7 |
| | 1993 | 0 | 52.9 | -4(-).7 | 52.9 | -40. 7 | 0 | 0 | 52.9 | -40.7 |
| | 1094 | n | 60.5 | -42.1 | 60.5 | -42.1 | 0 | 0 | 60.5 | -42.1 |
| | 1975 | 0 | 67.8 | -43.8 | 67.8 | -43.8 | 0 | 0 | 67.8 | -43*R |
| | 1796 | 0 | 76,4 | -45.0 | 76.4 | -45.0 | 0 | 0 | 76. 4 | -45.0 |
| | 1997 | n | 85.0 | -4.6.4 | 85.0 | -46. 4 | 0 | 0 | 85. (-1 | -46.4 |
| | 1908 | 0 | 94.7 | -47.6 | 94.7 | -47.6 | 0 | 0 | 94*7 | -47.6 |
| | 1089 | n | 104.月 | -48.7 | 104.8 | -48.7 | 0 | 0 | 104.8 | -48.7 |
| | 20000 | n | 115.9 | -49.7 | 115.9 | -49. 7 | 0 | 0 | 115. 9 | -49.7 |

[^29]Table 4. 75
Western Aleutians King Crab Fi shery Harvesting Activity Proj ected Annual Rate of Change 1980-2000

Percentage Change

| | | | | | | ntage Ch | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Catch | | | | | Catch | r Boat | |
| | | | Val | | Exvess | Price | Number of | | | |
| | Year | Weight | Nomi nal | $\underline{\text { Real }}$ | Nomi nal | Rea 1 | Boat Months | Wei ght | Nomi nal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1991 | 0 | - 5.7 | -12.3 | -5. 7 | -12.3 | 0 | 0 | -5.7 | -12.3 |
| | 1982 | o | 10.4 | 2.6 | 10.4 | 2.6 | 0 | 0 | 10.4 | 2.6 |
| | 1983 | 0 | -2.1 | -9.0 | -2.1 | -9.0 | 0 | 0 | -2. 1 | -9, 0 |
| | 1984 | 0 | 7.7 | 0.1 | -1.7 | 0.1 | 0 | 0 | 7. 7 | 0.1 |
| | 1985 | 0 | $0 . ?$ | -6.8 | 0.2 | -6.8 | 0 | 0 | $0^{*} 2$ | -6.8 |
| | 1986 | 0 | 6.2 | -1.3 | 6. 2 | -1.3 | 0 | 0 | 6.2 | -1.3 |
| | 1987 | 0 | 1.3 | -5.4 | 1.8 | - 5.4 | 0 | 0 | 1.8 | -5.4 |
| Ŏ | 1988 | 0 | 5.4 | -2.0 | 5. 4 | -2.0 | 0 | 0 | 5.4 | -2.0 |
| | 1989 | 0 | 2.9 | -4.4 | 2.8 | -4.4 | 0 | 0 | 2.8 | -4. 4 |
| | 1990 | 0 | 5* | -2.4 | 5.0 | -?. 4 | 0 | 0 | 5.0 | -2. 4 |
| | 1991 | o | 3.6 | -3.7 | 3.6 | - 3.7 | 0 | 0 | 3.6 | -3.7 |
| | 1992 | n | 4.9 | -2. 5 | 4. 9 | - 2.5 | 0 | 0 | 4.9 | -2.5 |
| | 1993 | 0 | 4.1 | -3. 2 | 4.1 | -3.2 | 0 | 0 | 4.1 | -3.2 |
| | 1994 | () | 5. 0 | -2.4 | 5.0 | -2.4 | 0 | 0 | 5.0 | -2.4 |
| | 1995 | 0 | 4.5 | -2.8 | 4. 5 | -2.8 | 0 | 0 | 4.5 | -2.8 |
| | 1996 | 0 | 5.1 | -?. 3 | 5.1 | -2.3 | 0 | 0 | 5. 1 | -2. 3 |
| | 1997 | 0 | 4.9 | -2. 5 | 4*9 | -2. 5 | 0 | 0 | 4. 9 | -2. 5 |
| | 1998 | () | 5.2 | -2.1 | 5. 2 | -2. 1 | 0 | 0 | 5.2 | -2.1 |
| | 1099 | 0 | 5.2 | -2.? | 5. 2 | -2.2 | 0 | 0 | 5.2 | -2. 2 |
| | 2000 | n | 5.4 | -2.0 | 5. 4 | -2. 0 | 0 | 0 | 5.4 | -2.0 |

${ }^{7}$ The real values and prices were cal cul ated using the $U S$. CPI; 1980 is the base period.

Table 4.76
Bering Sea Ki ng Crab Fi shery Projected Harvesting Activity 1980-2000

| Year | | Catch | | | Exvessel Price | | Nunber of | | Catch Height Pounds $(1,000)$ | per Boat Month | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Weight | Value | | | | Val u | \mathfrak{e} | |
| | | Pounds Metric | (mill | | (\$/ Pound) | | | | Boat Fi shernanMonths Months | | | 00) |
| | | (millions) Tons | Nomi nal | Real ${ }^{1}$ | Nomi nal | Real | Mominal | Real | | |
| | 1980 | 85.0 38556 | 1(')'?? | 107.2 | 1. ? 6 | 1. 26 | 425 | 1700 | 200.0 | 252, 2 | 252.? |
| | 1981 | 85.0138556 | 101.1 | 94.0 | 1.19 | 1.11 | 425 | 1700 | 200.0 | 237.8 | 221. 1 |
| | 1982 | 85.0 28556 | 111.6 | 96.4 | 1.31 | 1.13 | 425 | 1700 | 200.0 | 262.5 | 226.9 |
| | 1983 | 85.038556 | $109 . ?$ | 87.7 | 1.28 | 1.03 | 425 | 1700 | 200,0 | 256.9 | 206.4 |
| | 1984 | 85.038556 | 117.5 | 87.8 | 1.38 | 1.03 | 425 | 1700 | 200.0 | 276.6 | 206.6 |
| | 1985 | 85.038556 | 117.8 | 81.8 | 1.39 | 0.96 | 425 | 1700 | 200.0 | 277.2 | 192.5 |
| | 1986 | 85.0 38556 | 125.1 | ค\%. A | 1.47 | 0.95 | 425 | 1700 | 20(-).0 | 294, 3 | 190. 0 |
| | 1987 | 85.03855 h | 127.3 | 76.4 | 1.50 | 0.90 | 425 | 1700 | 200.0 | 299.5 | 179*R |
| \pm | 1988 | 85.0388556 | 134.2 | 74.9 | 1.50 | 0.88 | 425 | 1700 | 200.0 | 315.6 | 176. 2 |
| | 1989 | 85.038556 | 138.0 | 71.6 | 1.62 | 0.84 | 425 | 1700 | 200.0 | 324.6 | 168.5 |
| | 1990 | 85.038556 | 144.9 | 69.9 | 1.70 | 0.87 | 425 | 1700 | 200.0 | 340.9 | 164. 5 |
| | 1901 | 85.038556 | 150.1 | 67.3 | 1.77 | 0.79 | 425 | 1700 | ?0(-). 0 | 353.1 | 158.4 |
| | 1992 | 85.038556 | 157.5 | 65.7 | 1.85 | (). 77 | 425 | 1700 | 200.0 | 370.5 | 154.5 |
| | 1993 | 85.038556 | 16.4 .0 | 63.6 | 1*93 | 0.75 | 425 | 1700 | 200.0 | 385.8 | 149. 6 |
| | 1994 | 85.0 3 8556 | 172.1 | 62.0 | 2.02 | (). 73 | 425 | 1700 | 200.0 | 404.9 | 146.0 |
| | 1905 | 85.038556 | 179.9 | 60.3 | 2.12 | 0.71 | 425 | $17(-) 0$ | 200.0 | 423.3 | 141. 9 |
| | 1996 | $85.03855 t$. | 189.1 | 58.9 | 2*?2 | 0.69 | 425 | 1700 | 200.0 | 444.8 | 138.6 |
| | 1997 | 85.0 38556. | 198.3 | 57.4 | 2.33 | 0.68 | 425 | 1700 | 200.0 | 466.6 | 135. 2 |
| | 1998 | 85.038556 | 208.7 | 56.2 | 2.46 | 0.66 | 425 | 1700 | 200.0 | $491 .(-)$ | 132. 3 |
| | 1998 | 85.038556 | 219.5 | 55.0 | 2.58 | 0.65 | 425 | 1700 | 200.0 | 51605 | 129.3 |
| | 20000 | 85.0 38556 | 231.4 | 53.9 | ?. 72 | 0.6 .3 | 425 | 1700 | 200.0 | 544.5 | 126.8 |

[^30]Table 4.77
Bering Sea King Crab Fi shery Harvesting Activity
Projected Percentage Change from 1980
1980-2000

| | | Percentage Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | ، $\begin{gathered}\text { Exvessel } \\ \text { Nomi nal } \\ \text { Price } \\ \text { Real }\end{gathered}$ | | Number of Boat Months | Catch per Boat Month | | |
| | | | Value | | | | | Value | |
| | Year | Weight | N O m | nemil | | | Height | Nomi nal | Real |
| | 1080 | 0 | 0 | 0 | () | 0 | | 0 | 0 | 0 | 0 |
| | 19H1 | 0 | -5.7 | -12.3 | -5*7 | -12.3 | | 0 | 0 | -5. 7 | -12.3 |
| | 19 Hz | 0 | 4.1 | -10.0 | 4.1 | -10. (-) | n | 0 | 4.1 | -10.0 |
| | 1983 | 0 | 1.9 | -18.1 | 1.9 | -18.1 | 0 | 0 | 1.9 | -18.1 |
| | 1984 | 0 | 9.7 | -18.1 | 9.7 | -18.1 | 0 | 0 | 9.7 | -18.1 |
| | 1985 | 0 | 9.9 | -23.7 | 9.9 | -23. 7 | 0 | 0 | 9.9 | -23.7 |
| | 1786 | 0 | 16.7 | -24.7 | 16.7 | -24. 7 | 0 | 0 | 16.7 | -24.7 |
| | 1987 | 0 | 18.8 | -28.7 | 18.8 | -28.7 | 0 | 0 | 18.8 | -28.7 |
| $\stackrel{\sim}{\sim}$ | 1998 | 0 | 25.1 | -30.1 | 25.1 | -30.1 | 0 | 0 | 25* I | -30.1 |
| | 1949 | 0 | 28.7 | -33.2 | 28.7 | -33. 2 | 0 | 0 | 28.7 | -33.2 |
| | 1990 | 0 | 35.? | -34.8 | 35.2 | -34.18 | 0 | 0 | 35.2 | -34.8 |
| | 1991 | () | 40.0 | -37.2 | 40.0 | -37. ? | 0 | 0 | 40.0 | -37.2 |
| | 1992 | n | 46.9 | -38.7 | 46.9 | -38.7 | 0 | 0 | 46.9 | -38.7 |
| | 1993 | 0 | 52.9 | -40.7 | 52.9 | -40.7 | 0 | 0 | 52.9 | -40.7 |
| | 1994 | 0 | 60.5 | -42.1 | 60.5 | -42.1 | 0 | 0 | 60.5 | -42.1 |
| | 1995 | n | 67.8 | -43.8 | 67.8 | -43.8 | 0 | 0 | 67.8 | -43.8 |
| | 1996 | 0 | 76.4 | -45.0 | 76.4 | -45.0 | 0 | 0 | 76.4 | -45.0 |
| | 1997 | 0 | 85.0 | -46.4 | 85.0 | -46. 4 | 0 | 0 | 85. (-) | -46.4 |
| | 1998 | 0 | 94.7 | -47.6 | 94.7 | -47.6 | 0 | 0 | 94.7 | -47.6 |
| | 1999 | 0 | 104.8 | -48.7 | 104.8 | -48.7 | 0 | 0 | 104.8 | -48.7 |
| | 2000 | 0 | 115.9 | -47.7 | 115.9 | -49.7 | () | 0 | 115.9 | -49.7 |

[^31]annual rates of change in harvesting activity are reported in Table 4. 78. The projected annual harvest vei ght is approxi matel y equal to the mean annual harvest for 1975 through 1979 but is less than either the 1978 or 1979 harvest.

The Norton Sound king crab fisheries have been and are expected to remain a rel ativel y insignificant part of the Bering Sea fishery. The I arge boat fishery which occurs during the sumer is expected to have annual harvests of approxi matel y 454-netric tons (1 milli on pounds) of red king crab in Norton Sound and 1, 361 metric tons (3 mili ion pounds) of bl ue king crab off St. Lawrence Island. The small local king crab fishery which occurs on the ice near None is not expected to exhi bit si gnificant grouth.

TANER CRAB

The dom nance of the Western Al aska Tanner crab fisheries is expected to increase as the Japanese fishery which has been targetting on C. opilio is replaced by the donestic fishery in the early 1980s. The average annual harvest weightis projected to average 74, 299 metric tons (164 million pounds) from 1980 through 2000; and the average annual real harvest value is projected to be approxi nately $\$ 44 \mathrm{milli}$ (4. 79). The met hod used to project the average annual harvest wei ght for C. bairdi Tanner crab is identical to that for king crab; the projection for C. opilio Tanner crab is based on the NPFMC's 1980 assessment of the optimal yield for Bering Sea C. opilio. The annual harvest projections

Table 4. 78
Bering Sea King Crab Fishery Harvesting Activity Proj ected Annual Rate of Change 1980-2000

| | | Percentage Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | Exvessel Price | | Number of Boat Months | Catch per Boat Month | | |
| | | | Value | | | | | Val | |
| | Year | Weight | Nominal | Real | Nomi nal | Real | | Weight | Nomi nal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
| | 1981 | 0 | -5.'? | -12.3 | -5.7 | -12.3 | 0 | 0 | -5*7 | -12.3 |
| | 1982 | 0 | 10.4 | 2.6 | 10.4 | $2 * 6$ | 0 | 0 | 10.4 | 2.6 |
| | 1983 | 0 | -2.1 | -9.0 | -2.1 | -9.0 | 0 | 0 | -2.1 | -9.0 |
| | 1984 | 0 | 7.7 | 0.1 | 7.7 | 0.1 | 0 | 0 | 7.7 | 0.1 |
| | 1985 | 0 | o. ? | -6.8 | 0.2 | -6.8 | 0 | 0 | 0.2 | -6.8 |
| | 1986 | 0 | 6.2 | -1.3 | 6.2 | -L*3 | 0 | 0 | 6.2 | -1.3 |
| | 1987 | 0 | 1.8 | -5.4 | 1.8 | - 5.4 | 0 | 0 | 1.8 | -5*4 |
| $\stackrel{\rightharpoonup}{*}$ | 1988 | 0 | 5.4 | -2.0 | 5.4 | -2.0 | 0 | 0 | 5. 4 | -2.0 |
| | 1989 | 0 | 2.8 | -4.4 | 2.8 | -4*4 | 0 | 0 | 2.8 | -4. 4 |
| | 1990 | 0 | 5.0 | -2.4 | 5.0 | -2.4 | 0 | 0 | 5. 0 | -2. 4 |
| | 1991 | 0 | 3.6 | -3.7 | 3.6 | -3.7 | 0 | 0 | 3. 6 | - -3.7 |
| | 1992 | 0 | 4.9 | -2.5 | 4.9 | $-2 * 5$ | 0 | 0 | 4. 9 | -2.5 |
| | 1993 | 0 | $4 \cdot 1$ | -3.2 | 4.1 | -3.2 | 0 | 0 | 4*1 | -3. 2 |
| | 1994 | 0 | 5.0 | -2.4 | 5.0 | -2.4 | 0 | 0 | 5. 0 | -2. 4 |
| | 1995 | 0 | 4.5 | -2.8 | 4.5 | -2.8 | 0 | 0 | 4*5 | -2.8 |
| | 1996 | 0 | 5.1 | -2.3 | 5.1 | -2.3 | 0 | 0 | 5*1 | -2. 3 |
| | 1997 | () | 4.9 | -2.5 | 4.9 | -2.5 | 0 | 0 | 4.9 | -2. 5 |
| | 1998 | 0 | 5.? | -2.1 | 5.2 | -2.1 | 0 | 0 | 5. 2 | -2.1 |
| | 1999 | 0 | '5.? | -2.2 | 5.2 | -2. 2 | n | 0 | 5.2 | -2.? |
| | 2000 | n | 5.4 | -2.0 | 5.4 | -2.0 | 0 | 0 | 5. 4 | -2. 0 |

[^32]Table 4.79
Projected Western Alaska Tanner Crab Harvest 1980-2000

Pounds (mi lions)

| | Year | Peninsu ${ }^{\text {a }}$ | Eastern Aleutians | Western Aleutians | Bering Sea | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | Q.0) | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1901 | 8.0 | * 7 | 0.1 | 155.0 | 163.8 |
| | 1982 | 8.0 | $0: 7$ | 0.1 | 155.0 | 163.8 |
| | 1983 | 8.0 | 7 | 0.1 | 155.0 | 163.8 |
| | 1984 | 8.0 | 0.7
 0.7 | 0.1 | 155.0 | 163.8 |
| | 1985 | 8.0 | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1986 | 8.0 | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1987 | 8.0 | * 7 | 0.1 | 155.0 | 163.8 |
| v | 1988 | 9.0 | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1989 | 9.0 | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1990 | 9.0 | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1991 | 8.0 | * 7 | 0.1 | 155.0 | 163.8 |
| | 1902 | 8.0 | $0 \cdot 7$ | 0.1 | 155.0 | 163.8 |
| | 1993 | 8.0 | * 7 | 0.1 | 155.0 | 163.8 |
| | 1904 | ¢.O | 0.7 | 0.1 | 155.0 | 163.8 |
| | 1995 | 9.0 | | 0.1 | 155.0 | 163.8 |
| | 1996 | 9.0 | $0 \cdot 7$ | 0.1 | 155.0 | 163.8 |
| | 1997 | 8.0 | $\stackrel{*}{*}$ | 0.1 | 155.0 | 163.8 |
| | 1978 | R.0 | $\stackrel{*}{0} .7$ | 0.1 | 155.0 | 163.8 |
| | 1979 | H .0 | 7 | 0.1 | 155.0 | 163. A |
| | 2000 | 8.0 | 0.7 | 0.1 | 155.0 | 163.8 |

Table 4． 79 （conti nued）
Metric Tons

| | Year | Peni nsula | Eastern Al eutians | Mestern Al eutians | Bering Sea | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1.980 | 3628.8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1981 | 3628.8 | 317.5 | 45.4 | 70307.5 | 74？99．2 |
| | 1982 | 3628．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1983 | 3628．8 | 317.5 | 45＊4 | 70307.5 | 74299.2 |
| | 1984 | 3628．8 | 317.5 | 45＊4 | 70307.5 | 74299.2 |
| | 1985 | 3628．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1986 | 36.28 .8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1987 | 3628.8 | 317.5 | $45 * 4$ | 70307.5 | 74299.2 |
| が | 1988 | 3628．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1989 | 3628.8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1990 | 3628．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1991 | 3628．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1992 | 3628．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1993 | 3628.8 | 317.5 | 45.4 | 7（－）307．5 | 74？99．2 |
| | 1994 | 362R．8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1995 | 3629.8 | 317.5 | 45＊4 | 70307.5 | 74 ？ 99 |
| | 1996 | 3628.8 | 317.5 | 45.4 | 70307.5 | 74299.2 |
| | 1997 | 3678.8 | 317.5 | 45.4 | 70307.5 | ？ 4299.2 |
| | 1998 | 362月．8 | 317.5 | 45.4 | 70307.5 | $74299 . ?$ |
| | 1909 | 3629．8 | 317.5 | 45.4 | 70307，5 | 74299.2 |
| | 2000 | $362 \mathrm{H.8}$ | 317.5 | 45.4 | 70307.5 | 74299.2 |

Table 4.79 (continued)
Nominal Value (millions

| | Year | Peninsu | Eastern Aleutiaus | Western Aleutians | Bering Sea | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | 4.4 | 0.4 | 0.1 | 46.0 | 50.9 |
| | 1981 | 4.1 | 0.4 | 81 | 42.9 | 47.5 |
| | 1982 | 4.3 | 0.4 | ${ }_{7}^{8} 1$ | 44.7 | 49.4 |
| | 1983 | 4.7 | 0.4 | $0 \cdot 1$ | 49.5 | 54.7 |
| | 1984 | 5.0 | 0.4 | * 1 | 52.4 | 57.9 |
| | 1985 | 5.5 | 0.5 | * ${ }_{*}$ | 57.3 | 63.3 |
| | 1986 | 5.8 | 0.5 | $\stackrel{*}{1}$ | 61.1 | 67.5 |
| P | 1987 | 6.3 | 0.6 | -1 | 66.3 | 73.3 |
| \checkmark | 1988 | 6.8 | 0.6 | * 1 | 71.1 | 78.5 |
| | 1989 | 7.4 | 0.6 | $\stackrel{*}{\circ} \mathrm{O}$ | 76.9 | 85.0 |
| | 1990 | 7.9 | 0.7 | $\bigcirc .1$ | 82.6 | 91.3 |
| | 1991 | 8.5 | 0.7 | $? 1$ | 89.2 | 98.5 |
| | 1992 | 9.2 | 0.8 | 01 | 95.9 | 105.9 |
| | 1993 | 9.9 | 0.9 | $\bigcirc 1$ | 103.4 | 114.2 |
| | 1994 | 10.6 | 0.9 | 01 | 111.2 | 122.9 |
| | 1995 | 11.5 | 1.0 | ${ }_{1}$ | 119.8 | 132.4 |
| | 1996 | 12.3 | 1.1 | \bigcirc | 128.9 | 142.5 |
| | 1997 | 13.3 | 1.2 | * 2 | 138.9 | 153.5 |
| | 1998 | 14.3 | 1.2 | $\stackrel{2}{ }$ | 149.4 | 165.2 |
| | 1999 | 15.4 | 1.3 | 0.2 | 160.9 | 177.8 |
| | 2000 | 16.5 | 1.4 | 0.2 | 173.2 | 191.4 |

| | Year | Peni nsul a | Eastern Aleutians | Vestern Aleutians | Bering Sea | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | 4.4 | 0.4 | 0.1 | 46.0 | 50.9 |
| | 1981 | 3.8 | 0*3 | 0.0 | 39.9 | 44.1 |
| | 1982 | 3*7 | 0.3 | 0.0 | 38.7 | 42.7 |
| | 1983 | 3.8 | 0.3 | 0.0 | 39.8 | 44.0 |
| | 1988 | 3.7 | 0.3 | (-). (-) | 39.1 | 43.2 |
| | 1985 | 3.8 | 0.3 | 0.0 | 39.8 | 44.0 |
| | 1986 | 3.8 | 0.3 | 0.0 | 39.4 | 43.6 |
| | 1987 | 3.8 | 0.3 | 0.0 | 39.8 | 44.0 |
| が | 1988 | 3.8 | 0.3 | 0.0 | 39.7 | 43.8 |
| | 1989 | 3.8 | 0.3 | 0.0 | 39.9 | 44.1 |
| | 1990 | 3.8 | 0.3 | 0.0 | 39.8 | 44.0 |
| | 1991 | 3.8 | 0.3 | 0.0 | 40.0 | 44.2 |
| | 1992 | 3.8 | 0.3 | 0.0 | 40.0 | 44.2 |
| | 1993 | 3.8 | 0.3 | 0.0 | 40.1 | 44.3 |
| | 1994 | 3.8 | 0.3 | 0.0 | 40.1 | 44.3 |
| | 1205 | 3.8 | 0.3 | 0.0 | 40.2 | 44.4 |
| | 1996 | 3.8 | 0.3 | 0.0 | 40.2 | 44.4 |
| | 1997 | $3 \cdot 8$ | 0.3 | 0.0 | 40.2 | 44.5 |
| | 1998 | 3.8 | 0.3 | 0.0 | 40.2 | $44 * 5$ |
| | 1999 | 3.9 | 0.3 | 0.0 | 40.3 | 44.5 |
| | 2000 | 3.9 | 0.3 | 0.0 | 40.3 | 44.5 |

[^33]
are for both species of Tanner crab. The donestic fishery did not target on C. opilio prior to 1979.

Peni nsul a

The Peninsula Tanner crab fishery is projected to have an average annual harvest weight of 3,629 metric tons (8 milli on pounds) from 1980 through 2000 and an average annual real harvest val ue of $\$ 3.8 \mathrm{mili}$ on (see Table 4.80). Secul ar trends are not expected in harvest wei ght, real harvest val ue, or real exvessel prices (see Tables 4.81 and 4.82); however, fluctuations in these measures of harvesting activity will occur. The projected annual harvest wei ght equal s the nean annual harvest for 1969 through 1979 and is approxi matel y 50 percent less than the mean annual harvest for 1975 through 1979.

Eastern Aleutians

The Eastern Aleutians Tanner crab fishery is expected to renain a rel atively mor fishery. The average annual harvest weightis projected to equal 318 metric tons (0.7 milli on pounds) from 1980 through 2000; and the average annual real harvest val ue is projected to be $\$ 0.3 \mathrm{milli}$ on (see Table 4.83). The projected cumilative and annual rates of change in harvesting activity appear in Tables 4. 84 and 4. 85. The projected average annual harvest wei ght approxi mately equal s the mean harvest for 1969 through 1979 but is less than 65 percent of the nean harvest for 1975 through 1979.

Table 4． 80
Peninsula Tanner Orab Fi shery Projected Harvesting Activity

1980－2000

| Year | | Catch | | | | Exvessel Price | | Number of | | Catch per Boat Month | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Height | | $\underset{\text { Value }}{\substack{\text {（millions）} \\ \text { Hominal } \\ \text { Real } \\ 1}}$ | | | | Height | Value | |
| | | Pounds | Met ri c | | | （\＄／P | | | | Boat | Fi sher man | Pounds | （\＄1， 0 | 00） |
| | | （millio | ）Tons | | | Nominal | Real | Mont hs | Mönths | $(1,000)$ | llominal | Real |
| | 1980 | 8.11 | 3629 | 4.4 | 4.4 | （－）． 55 | 0.55 | 193 | 773 | 41，4 | 22.8 | 22.8 |
| | 1981 | 8.0 | 3629 | 4.1 | 3.8 | 0.51 | 0.48 | 183 | 732 | 43.7 | 22.4 | 20.9 |
| | 1982 | 8.0 | 3629 | 4.3 | 3.7 | 0.53 | 0.46 | 181 | 723 | 44.2 | 23.6 | 20． 4 |
| | 1983 | 8.0 | 3629 | 4.7 | 3.8 | （－）． 59 | 0.48 | 183 | 731 | 43.8 | 25.9 | 20.8 |
| | 1984 | 8.0 | 3629 | 5.0 | 3.7 | 0.63 | 0.47 | 182 | 726 | 44.1 | 27.6 | ？0． 6 |
| | 1985 | 8.0 | 3629 | 5.5 | 3． 8 | 0.68 | 0.48 | 183 | 731 | 43.8 | 30.0 | 20.8 |
| | 1986 | 8.0 | 3629 | 5.9 | 3．月 | 0.73 | （－）． 47 | 182 | 728 | 43＊9 | 32.1 | 20． 7 |
| | 1987 | 8.0 | 3629 | 6.3 | 3.8 | 0.79 | 0.48 | 183 | 731 | 43.8 | 34， 7 | 20.8 |
| $\stackrel{+}{8}$ | 1988 | 8.0 | 3629 | 6.8 | 3.8 | 0.85 | 0.47 | 183 | 730 | 43.8 | 37． 2 | 20． 8 |
| | 1989 | 8.0 | 3629 | 7.4 | 3.8 | （）． 92 | 0.48 | 183 | 732 | 43.7 | 40． 2 | 20． 9 |
| | 1990 | 8.0 | 3629 | 7.9 | 3.18 | （）． 99 | 0.49 | 183 | 731 | 43.8 | 43． 2 | 20．8 |
| | 1991 | $8.0)$ | 3629 | 8.5 | 3.8 | 1.07 | 0.48 | 183 | 732 | 43.7 | 46． 6 | 20．9 |
| | 1992 | 8.0 | 3629 | 9.2 | 3．月 | 1.15 | 0.48 | 183 | 732 | 43.7 | 50.1 | 20.9 |
| | 1993 | 8.0 | 3629 | 9.9 | 3． 8 | 1.24 | 0.48 | 183 | 733 | 43.7 | 53＊9 | 20． 9 |
| | 1994 | 8.0 | 3629 | 10.6 | 3.9 | 1.33 | 0.48 | 183 | 733 | 43.7 | 58．0 | 20． 9 |
| | 1995 | 8.0 | 3629 | 11.5 | 3.8 | 1.43 | 0.48 | 183 | 733 | 43.6 | 62． 5 | 20.9 |
| | 1946 | 8.0 | 3629 | 12.3 | 3．$月$ | 1.54 | 0.48 | 183 | 733 | 43.6 | 67.2 | 20． 9 |
| | 1997 | 8.0 | 36.29 | 13.3 | 3.8 | 1.66 | 0.48 | 183 | 734 | 43.6 | 72． 3 | 21.0 |
| | 1998 | 8.0 | 3629 | 14.3 | 3.8 | 1.79 | 0.48 | 183 | 734 | 43.6 | 77.8 | 21． 0 |
| | 1999 | 8.0 | 3629 | 15.4 | 3.9 | 1.92 | 0.48 | 184 | 734 | 43.6 | 83.8 | 21． 0 |
| | 2000 | 9.0 | 3629 | 16.5 | 3.9 | 2.07 | （）． 48 | 184 | 734 | 43.6 | 90.1 | 21.0 |

${ }^{1}$ The real values and prices were cal cul ated using the U．S．CPI； 1980 is the base period．

Table 4.81
Peni nsula Tanner Crab Fi shery Harvesting Activity Projected Percentage Change from 1980

1980-2000
Percentage Change

| Year | | Percent age Change | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Catch | | | Exvessel Price | | Number of Boat Mbnt hs | Catch per Boat Month | | |
| | | | Value | | | | | Va | |
| | | Weight | Nomi nal | Real | Nomi nal | Real | | Weight | Nomi nal | Real |
| | 14930 | 0 | 万 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 " |
| | 1981 | 0 | -6. 7 | -13.3 | - 6.7 | -13.3 | -5.4 | 5.7 | -1.4 | -8.4 |
| | 1982 | 0 | -2.8 | -16.0 | -2.8 | -16.0 | -6.5 | 6.9 | 3.9 | -10.2 |
| | 1983 | 0 | 7.5 | -13.6 | 7.5 | -13.6 | -5.5 | 5.8 | 13.8 | - 8.6 |
| | 1984 | 0 | 13.8 | -15.0 | 13.8 | -15.0 | -6.1 | 6.5 | 21.1 | -9. 5 |
| | 1985 | 0 | 24.4 | -13.6 | 24.4 | -13.6 | -5.5 | 5.8 | 31.6 | -8. 6 |
| | 1986 | 0 | 32.7 | -14.3 | 32.7 | -14."3 | -5.8 | 6.1 | 40.8 | -9.1 |
| + | 1987 | $1)$ | 44, 1 | -13.5 | 44*1 | -13.5 | - 5 * 4 | 5.8 | 52.4 | -8.5 |
| - | 1988 | 0 | 54.4 | -13.8 | 54.4 | -13.8 | -5. 6 | 5.9 | 63.5 | -8.7 |
| | 1989 | 0 | 67.1 | -13.3 | 67.1 | -13,3 | -5.4 | 5.7 | 76.5 | -8. 4 |
| | 1990 | 0 | 79.4 | -13.4 | 79.4 | -13.4 | -5.4 | 5.7 | 8907 | -8. 5 |
| | 1991 | 0 | 93.7 | -17.1 | 93.7 | -13.1 | -5.3 | 5.6 | 104.5 | -8.3 |
| | 1902 | 0 | 108.2 | -13.2 | 108.2 | -13.2 | -5.3 | 5.6 | 119.9 | -8.3 |
| | 1993 | 0 | 124.6 | -1?.9 | 124.6 | -12.9 | -5*2 | 5.5 | 136.9 | -8.1 |
| | 1994 | 0 | 141.6 | -12.9 | 141.6 | -12.9 | -5.2 | 5.5 | 154.9 | -8.1 |
| | 1905 | 0 | 160.3 | -12.8 | 160.3 | -12.8 | -5.2 | 5.4 | 174.4 | -8.0 |
| | 1996 | n | 180.1 | -12.7 | 180.1 | -12.7 | -5*1 | 5*4 | 195.3 | -8.0 |
| | 1997 | 0 | 201.6 | -12.6 | 201.6 | -12.6 | -5.1 | 5.4 | 217.8 | -7.9 |
| | 1998 | n | 234.6 | -12.6 | 224.6 | -1?.6 | -5.1 | 5.3 | 242.0 | -7.9 |
| | 1990 | 0 | 249.5 | -1?.5 | 249.5 | -17.5 | -5.0 | 5.3 | 268.1 | -7.8 |
| | 2000 | 0 | 276.1 | -17.4 | ? 76.1 | -12.4 | -5.0 | 5.3 | 296.0 | -7. 8 |

[^34]Tab e 4.82
Peninsula Tanner Crab Fishery Harvesting Activity Projected Annual Rate of Change 1980-2000

Percentage

| | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | Catch | Boat M | |
| | | | | lue | Exvesse | Price | Number of | | | |
| | Year | Weight | Nominal | Real | Nominal | Real | Boat Months | Weight | Nominal | Rea 1 |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1981 | 0 | -6.7 | -13.3 | -6.7 | -13.3 | -5.4 | 5.7 | -1.4 | -8. 4 |
| | 1982 | 0 | 4.2 | -3.2 | 4.2 | -3.2 | -1.2 | 1.2 | 5.4 | -2.0 |
| | 1983 | 0 | 10.7 | 2.9 | 10.7 | 2.9 | 1.1 | -1.0 | 9.5 | -2.88 |
| | 1984 | 0 | 5.8 | -1.7 | 5.8 | -1.7 | -0.6 | 0.6 | 6.4 | -1.1 |
| | 1985 | 0 | 9.4 | 1.7 | 9.4 | 1.7 | 0.6 | -0.6 | 8.7 | 1.1 |
| | 1986 | 0 | 6.7 | -0.8 | 6.7 | -0.8 | -0.3 | -0.3 | 7.0 | -0.5 |
| | 1987 | 0 | 8.6 | 1.0 | 8.6 | 1.0 | 0.4 | -0.4 | 8.2 | -0.6 |
| + | 1988 | 0 | 7.1 | -0.4 | 7.1 | -0.4 | -0.1 | 0.1 | 7.3 | -0.3 |
| | 1989 | 0 | 8.2 | 0.6 | 8.2 | 0.6 | 0.2 | -0.2 | 8.0 | -0.4 |
| | 1990 | 0 | 7.4 | -0. 2 | 7.4 | -0.2 | -0.1 | 0.1 | 7.4 | -0.4 |
| | 1991 | 0 | 8.0 | 0.4 | 8.0 | 0.4 | 0.1 | -0.1 | 7.8 | -0.1 |
| | 1992 | 0 | 7.5 | -0.0 | 7.5 | -0.0 | -0.0 | -0.0 | 7.8 | -0.0 |
| | 1993 | 0 | 7.8 | 0.3 | 7.8 | 0.3 | 0.1 | -0.1 | 7.5 | -0.0 |
| | 1994 | 0 | 7.6 | 0.0 | 7.6 | 0.0 | 0.0 | -0.0 | 7.7 | 0.2 |
| | 1995 | 0 | 7.7 | 0.2 | 7.7 | 0.2 | 0.1 | -0.1 | 7.7 | 0.0 |
| | 1996 | 0 | 7.6 | 0.0 | 7.6 | 0.0 | 0.0 | -0.0 | 7.6 | 0.1 |
| | 1997 | 0 | 7.7 | 0.1 | 7.7 | 0.1 | 0.0 | -0.0 | 7.6 | 0.0 |
| | 1998 | | 7.6 | 0.1 | 7.6 | 0.1 | n.0 | -0.0 | 7.6 | 0.0 |
| | 1909 | 0 | 7.7 | 0.1 | 7.7 | 0.1 | 0.0 | -0.0 | 7.6 | 0.1 |
| | 2000 | 0 | 7.6 | 0.1 | 7.6 | 0.1 | 0.0 | -0.0 | 7.6 | 0.0 |

${ }^{1}$ The real values and pr ces were calculated using the U.S. CPI; 1980 is the base period.

Table 4.83
Eastern Al eutians Tanner Crab Fi shery Projected Harvesting Activity

1980-2000

| | | | | ch | | | | | | Catch | Boat | Mont h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Wei | | Val | | Exvesse | rice | Numbe | er of | Weight | Val u | |
| | | Pounds | Metric | | | | | Boat | Fi sher nan | Pounds | (\$1, 0 | 00) |
| | Year | (million | Tons | Noj ' \#a' | ! J 11 | Nomi nal | 'Real | Mont hs | Mont hs | (1,000) | Nominal | Real |
| | 1980 | 0.7 | 31 H | 0.4 | 0.4 | 0.55 | 0.55 | 2 a | 110 | 25.4 | 14.0 | 14.0 |
| | 1981 | 0.7 | 318 | 0.4 | 0.3 | 0.51 | 0.48 | 24 | 98 | 28.6 | 14.7 | 13.7 |
| | 1982 | 0.7 | 318 | 0.4 | 0.3 | 0.53 | 0.46 | 24 | 95 | 29.4 | $15 * 7$ | 13.6 |
| | 1983 | 0.7 | 318 | 0.4 | 0.3 | 0.59 | 0.48 | ? 4 | 98 | 28.7 | 17.0 | 13.6 |
| | 1984 | 0.7 | 318 | 0.4 | 0.3 | 0.63 | 0.47 | 24 | 96 | 29.1 | 18.2 | 13.6 |
| | 1985 | 0.7 | 318 | 0.5 | 0.3 | 0.68 | 0.48 | 24 | 98 | 28.7 | 19.6 | 13.6 |
| | 1986 | (). 7 | 319 | 0.5 | 0.3 | 0.73 | 0.47 | 24 | 97 | 28.9 | 2.1.1 | 13.6 |
| | 1987 | 0.7 | 318 | 0.6 | 0.3 | 0.79 | 0.48 | 24 | 98 | 28.7 | 22.7 | 13.6 |
| $\stackrel{+}{0}$ | 1988 | 0.7 | 318 | 0.6 | 0.3 | 0.85 | 0.47 | 24 | 97 | 28.8 | ? 4.4 | 13.6 |
| | 1989 | 0.7 | 318 | 0.6 | 0.3 | 0.92 | 0.48 | 24 | 98 | 28.6 | ? 6.3 | 13.7 |
| | 1970 | 0.7 | 318 | 0.7 | 0.3 | 0.99 | 0.48 | 24 | 98 | 28.7 | 28.3 | 13.6 |
| | 1991 | n. 7 | 318 | (). 7 | ()*3 | 1.07 | 0.48 | 24 | 98 | 28.6 | 30.4 | 13.7 |
| | 1992 | (-). 7 | 318 | 0.9 | 0.3 | 1.15 | 0.48 | 24 | 98 | 28.6 | 32.7 | 13.7 |
| | 1993 | 0.7 | 319 | 0.9 | 0.3 | 1.24 | 0.48 | 25 | 98 | 28.5 | 35.2 | 13.7 |
| | 1794 | 0.7 | 318 | 0.7 | 1-). 3 | 1033 | 0.48 | 25 | 98 | 28.5 | 37.9 | 13.7 |
| | 1495 | $(-) .7$ | 318 | 1.0 | 0.3 | 1.43 | 0.48 | 25 | 98 | 20.5 | 40.8 | 13.7 |
| | 1996 | (-). 7 | 318 | 1.1 | 0.3 | 1.54 | 0.48 | 25 | 98 | 28.5 | $43 * 9$ | 13.7 |
| | 1997 | 0.7 | 319 | 1 ..? | 0.3 | 1.66 | 0.48 | 25 | 98 | 28.4 | 47.2 | 13.7 |
| | 1998 | (). 7 | 318 | 1.2 | 0.3 | 1.79 | 0.48 | 25 | 98 | 28.4 | 50.8 | 13.7 |
| | 1979 | (). 7 | 31% | 1.3 | 0.3 | 1.92 | 0.48 | 25 | 99 | 20.4 | 54.6 | 13.7 |
| | 2000 | 0.7 | 314 | 1.4 | 0.3 | 2.07 | 0.48 | 25 | 99 | 28.4 | 58.7 | 13.7 |

[^35]Table 4.84
Eastern Aleutians Tanner Crab Fishery Harvesting Activity Projected Percentage Change from 1980 1980－2000

| | | | | | | $n+3$ | rbanm | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ：．n．：${ }^{\text {a }}$ | | | | | Catch | Boat M | |
| | | | | due 1 | Exvessel | | Number of | | Val | |
| | Year | Weight | Nominal | Real | Mominal | Real | Boat Months | Height | Nomina | Real |
| | 19R0） | n | 0 | n | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1981 | 0 | －6．7 | -13.3 | -6.7 | -13.3 | -11.4 | 12.8 | 5.2 | -2.2 |
| | 1982 | 0） | －2．8 | －16．0 | －2．8 | -16.0 | -13.7 | 15.9 | 12.6 | －2．7 |
| | 1943 | 0 | 7.5 | -13.6 | 7.5 | -13.6 | -11.6 | 13.1 | 21.7 | －2．2 |
| | 1984 | 0 | 13.8 | -15.0 | 13.8 | －15．0 | -12.8 | 14.7 | 30.5 | －2．5 |
| | 1985 | 0 | 24.4 | -13.6 | 24.4 | -13.6 | -11.6 | 13.1 | 40.8 | -2.2 |
| | 1986 | 0 | 32.7 | －14．3 | 32.7 | -14.3 | -12.2 | 13.9 | 51.2 | －2．4 |
| $\stackrel{+}{\infty}$ | 1987 | 0 | 44.1 | -13.5 | 44.1 | -13.5 | -11.5 | 13.0 | 62.9 | －2．2 |
| $\stackrel{1}{*}$ | 1988 | 0 | 54.4 | -13.8 | 54.4 | -13.8 | -11.8 | 13.4 | 75.1 | －2．3 |
| | 1980 | 0 | 67.1 | -13.3 | 67.1 | -13.3 | -11.4 | 12.8 | 88.5 | －2．2 |
| | 1990 | 0 | 79.4 | -13.4 | 79.4 | -13.4 | -11.5 | 13.0 | 102.7 | -2.2 |
| | 1991 | 0 | 93．7 | -13.1 | 93.7 | －13．1 | -11.2 | 12.6 | 118.1 | －2．1 |
| | 1992 | 0 | 108．2 | -13.2 | 108．？ | -13.2 | -11.2 | 12.7 | 134.6 | -2.2 |
| | 1943 | 0 | 124．6 | -12.9 | 124.6 | －12．9 | -11.1 | 12.4 | 152.5 | －2．1 |
| | 1994 1995 | 0 | 141．6 | -12.9 | 141.6 | －12．9 | -11.0 | 12.4 | 171.6 | －2．1 |
| | 1995 | 0 | 160.3 | -12.8 | 160.3 | －12．8 | －10．9 | 12.2 | 192.2 | －2．1 |
| | 1996 1997 | 0 | 180.1 | $-12 \cdot 7$ | 180.1 | -12.7 | -10.9 | 12.2 | 214.3 | -2.1 |
| | 1997 1098 | 0 | 201.6 | -12.6 | 201.6 | -12.6 | -10.8 | 12.1 | 238.1 | －2．1 |
| | 1908 1909 | 0 | 274.6 24.9 | -12.6 | 274.6 249.5 | -12.6 | -10.7 | 12.0 | 263.7 | -2.0 |
| | 2000 | 0 | 249.5 276.1 | －12．5 | 249.5 276.1 | -12.5 -12.4 | -10.7 -10.6 | 11.9 | 291.3 320.9 | －2．0 |
| | 子⿴囗十介＊） | 0 | －76．1 | -12.4 | 276.1 | －12．4 | -10.6 | 11.9 | 320.9 | －2．0 |

[^36]Table 4. 85
Eastern Al eutians Tanner Crab Fishery Harvesting Activity Projected Annụal Rate of Change

1980-2000
Percentage Change

[^37]The Uestern Aleutians Tanner crab fishery has been and is expected to renai n a very minor part of the Kestern Alaska fishery. The projected average annual harvest weight equals 45 metrictons (0.1 million pounds) ; and the projected average annual real harvest value is $\$ 47,000$ (see Table 4.86). Neither harvest nor real exvessel prices are expected to exhi bit a secular trend (see Tables 4.87 and 4.88). The projected average harvest wei ght equal s the nean harvest wei ght for 1975 through 1979.

Bering Sea

The Bering Sea is the site of the dom nant Tanner crab fishery in Alaska, and due to the concentration of only partially utilized C. opilio stocks, its dominance is expected to increase. The projected average annual harvest wei ght, including both C. bairdi and C. opilio, equal s 70, $\mathbf{3 0 8}$ metric tons ($\mathbf{1 5 5} \mathbf{~ m i l i o n ~ p o u n d s) ; ~ a n d ~ t h e ~ a v e r a g e ~ a n n u a l ~ r e a l ~}$ harvest val ue is projected to be $\$ 44 \mathrm{milli}$ (see Tables 4.89 through 4.91). The assumption that the C. opilio stocks will be fully utilized in 1980 is not correct, but it appears that they will be fully utilized by 1981. As is true for the other Western Al aska Tanner crab fisheries, annual harvest wei ght and the exvessel price are expected to fluctuate over time but without exhibiting secular trends for the period as a whole. Therefore, the projections presented in the af orementioned tables are of typical levels of harvesting activity.

Table 4.86
Western Aleutians Tanner Crab Fishery
Projected Harvesting Activity
1980-2000

| Year | | Catch | | Exvessel Price | | Number of | | Catch per Boat Month | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Weight | Value | | | Weight | Valu | |
| | | Pounds Metric | (millions) | (\$/Po | | | | Boat F | Fisherman | Pounds | (\$1,00 | 00) |
| | | millions) Tons | Nominal Real | Nominal | Real | Months | Months | (1,000) | Nominal | Real |
| | 1980 | 0.145 | 0.10 .1 | 0.55 | 0.55 | 8 | 32 | 12.5 | 6.9 | 6.9 |
| | 1981 | 0.145 | 0.10 .0 | 0.51 | 0.48 | 8 | 32 | 12.5 | 6.4 | 6.0 |
| | 1987 | 0.145 | 0.10 .0 | 0.53 | 0.46 | 8 | 32 | 12.5 | 6.7 | 5.8 |
| | 1983 | 0.145 | 0.10 .0 | 0.59 | 0.48 | 8 | 32 | 12.5 | 7.4 | 5.9 |
| | 1984 | 0.145 | 0.10 .0 | 0.63 | 0.47 | 8 | 32 | 12.5 | 7.8 | 5.8 |
| | 1965 | 0.1 45 | 0.10 .0 | 0.68 | 0.48 | 8 | 32 | 12.5 | 8.6 | 5.9 |
| | 1986 | 0.145 | 0.10 .0 | 0.73 | 0.47 | 8 | 32 | 12.5 | 9.1 | 5.9 |
| | 1987 | 0.145 | 0.1 0.0 | 0.79 | 0.48 | 8 | 32 | 12.5 | 9.9 | 5.9 |
| ${ }_{0}^{0}$ | 1988 | 0. $1 \quad 45$ | 0.10 .0 | 0.85 | 0.47 | 8 | 32 | 12.5 | 10.6 | 5.9 |
| | 1989 | 0.145 | 0.10 .0 | 0.92 | 0.48 | 8 | 32 | 12.5 | 11.5 | 6.0 |
| | 1990 | 0.145 | 0.10 .0 | 0.99 | 0.48 | 8 | 32 | 12.5 | 12.3 | 6.0 |
| | 1991 | $0 \cdot 145$ | 0.10 .0 | 1.07 | 0.48 | 8 | 32 | 12.5 | 13.3 | 6.0 |
| | 1992 | 0.145 | 0.1 0.0 | 1.15 | 0.48 | 8 | 32 | 12.5 | 14.3 | 6.0 |
| | 1993 | $0 \cdot 145$ | 0.100 | 1.24 | 0.48 | 8 | 32 | 12.5 | 15.4 | 6.0 |
| | 1004 | $0 \cdot 145$ | 0.10 .0 | 1.33 | 0.48 | 8 | 32 | 12.5 | 16.6 | 6.0 |
| | 1995, | $0 \cdot 1 \quad 45$ | 0.10 | 1.43 | 0.48 | 8 | 32 | 12.5 | 17.9 | 6.0 |
| | 1996 | $0 \cdot 145$ | 0.200 | 1.54 | 0.48 | 8 | 32 | 12.5 | 19.3 | 6.0 |
| | 1097 | 0.145 | 0.20 .0 | 1.66 | 0.48 | 8 | 32 | 12.5 | 20.7 | 6.0 |
| | 1998 | $0 \cdot 1$ 45 | 0.20 .0 | 1.79 | 0.48 | 8 | 32 | 12.5 | 22.3 | 6.0 |
| | 1909 | 0.145 | 0.20 .0 | 1.92 | 0.48 | 8 | 32 | 12.5 | 24.0 | 6.0 |
| | 2000 | * 145 | 0.2 ก.0 | 2.07 | 0.48 | 8 | 32 | 12.5 | 25.9 | 6.0 |

The real values and prices were calculated using the U.S. CPI; 1980 is the base per- $<$

Table 4.87
Western Aleutians Tanner Crab Fi shery Harvesting Activity Proj ected Percentage Change from 1980

1980-2000

| | | | | | | cent age | Change | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Catch | | | | | Cat | Boat Mo | |
| | | | | ue | Exvesse | rice | Number of | | Val | |
| | Year | Weight | Nomi nal | Real1 | Nomi nal | Real | Boat Months | Weight | Nomi nal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | O |
| | 1981 | 0 | -6.7 | -13.3 | -6.7 | -13.3 | 0 | 0 | -6.7 | -13.3 |
| | 1987 | () | -2. 0 | -16.0 | -2.8 | -16.0 | 0 | 0 | -2.8 | -16.0 |
| | 1983 | 0 | 7.5 | -13.6 | 7.5 | -13.6 | 0 | 0 | 7.5 | -13.6 |
| | 1984 | n | 13.8 | -15.0 | 13.8 | -15.0 | 0 | 0 | 13.8 | -15.0 |
| | 1985 | 0 | 24.4 | -13.6 | 24.4 | -13.6 | 0 | 0 | 24.4 | -13.6 |
| | 1986 | 0 | 32.7 | -14.3 | 32.7 | -14.3 | 0 | 0 | 32.7 | -14.3 |
| $\stackrel{+}{\infty}$ | 1987 | 0 | 44.1 | -13.5 | 44.1 | -13.5 | 0 | 0 | 44.1 | -13.5 |
| ∞ | 1988 | 0 | 54*4 | -13.8 | 54.4 | -13.8 | 0 | 0 | 54*4 | -13.8 |
| | 1989 | 0 | 67.1 | -13.3 | 67.1 | --13.3 | 0 | 0 | 67.1 | -13.3 |
| | 1290 | 0 | 79.4 | -13.4 | 79.4 | -13.4 | 0 | 0 | 79.4 | -13.4 |
| | 1991 | 0 | 93.7 | -13.1 | 93,7 | -13.1 | 0 | 0 | 93*7 | -13.1 |
| | 1992 | 0 | 108.2 | -13.2 | 108.2 | -13.2 | 0 | 0 | 108.2 | -13.2 |
| | 1993 | 0 | 124.5 | -12.9 | 124.6 | -12.9 | 0 | 0 | 124.6 | -12.9 |
| | 1994 | 0 | 141.6 | -12.9 | 141.6 | -12.9 | 0 | 0 | 141.6 | -12.9 |
| | 1995 | 0 | 160.3 | -12.8 | 160.3 | -12.8 | 0 | 0 | 160.3 | -12.8 |
| | 1946 | 0 | 180.1 | -12.7 | 180.1 | -12.7 | 0 | 0 | 180.1 | -12.7 |
| | 1997 | () | 201.6 | -12.6 | 201.6 | -12.6 | n | 0 | 201.6 | -12.6 |
| | 1988 | 0 | 224.6 | -17.6 | 224*6 | -12.6 | 0 | 0 | 224.6 | -12.6 |
| | 1989 | | 249.5 | -12.5 | 249.5 | -12.5 | 0 | 0 | 249.5 | -12.5 |
| | 2000 | 0 | 276.1 | -12.4 | 276.1 | -12.4 | 0 | 0 | 276.1 | -12.4 |

${ }^{1}$ The real values and prices were cal cul ated using the U.S. CPI; 1980 is the base period,

Table 4.88
Western Al eutians Tanner Crab Fi shery Harvesting Acti vity Proj ected Annual Rate of Change

1980-2000

| | | | | | | cent age | Change | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Catch | | | | | Cat | Boat M | |
| | | | | ue | Exvesse | rice | Nunber of | | Val | |
| | Year | Weight | Nomi nal | Real | Nominal | Real | Boat Mbnt hs | Weight | Nomi nal | Real |
| | 1980 | n | 0 | 0 | n | 0 | 0 | 0 | 0 | 0 |
| | 1991 | 0 | -6. 7 | -13.3 | -6. 7 | -13.3 | 0 | 0 | -6.7 | -13.3 |
| | 1982 | 0 | 4.? | -3.2 | 4.2 | -3.2 | 0 | 0 | 4.2 | - 3.2 |
| | 1983 | 0 | in. 7 | 2.9 | 10.7 | 2.9 | 0 | 0 | 10.7 | 2.9 |
| | 1984 | 0 | 5.9 | -1.7 | 5.8 | -1.7 | 0 | 0 | 5.8 | -1.7 |
| | 1985 | 0 | 9.4 | 1.7 | 9, 4 | 1.7 | () | 0 | 9.4 | 1.7 |
| | 986 | 0 | 6.7 | -0. 8 | 6.7 | -0.8 | 0 | 0 | 6.7 | -0.8 |
| | 987 | 0 | A.6 | 1.0 | 8.6 | 1.0 | 0 | 0 | 8.6 | 1.0 |
| $\mathbf{0}$ | O48 | 0 | 7.1 | -0.4 | 7.1 | -0.4 | 0 | 0 | 7.1 | - 3 * 4 |
| | 1989 | 0 | 8.7 | 0.6 | 8.2 | 0.6 | 0 | 0 | 8.2 | 0.6 |
| | 1990 | 0 | 7.4 | -0.2 | 7.4 | -0.2 | 0 | 0 | 7.4 | -0.2 |
| | 1991 | 0 | 8.0 | 0.4 | 8.0 | 0.4 | 0 | 0 | 8.0 | 0.4 |
| | 1992 | 0 | 7.5 | -0.0 | 7.5 | -0.0 | 0 | 0 | 7.5 | - 0.0 |
| | 1993 | 0 | 7.8 | 0 | 3-?.8 | 0.3 | 0 | 0 | 7.8 | 0.3 |
| | 1994 | n | 7.6 | 0.0 | 7.6 | 0.0 | n | 0 | 7.6 | 0.0 |
| | 1995 | 0 | 7.7 | 0.2 | 7.7 | 0.2 | 0 | 0 | 7.7 | 0.2 |
| | 1996 | 0 | 7.6 | 0.0 | 7.6 | 0.0 | 0 | 0 | 7.6 | 0.0 |
| | 1997 | 0 | 7.7 | 0.1 | 7.7 | 0.1 | 0 | 0 | 7*7, | 0.1 |
| | 1998 | 0 | 7.6 | 0.1 | 7.6 | 0.1 | 0 | 0 | 7.6 | 0.1 |
| | 1940 | 0 | 7.7 | I-)*1 | 7.7 | (). 1 | 0 | 0 | 7.7 | 0.1 |
| | 2000 | 0 | 7.6 | 0.1 | 7.6 | 0.1 | 0 | 0 | 7.6 | 0.1 |

[^38]Table 4.89
Bering Sea Tanner Orab Fishery Projected Harvesting Activity 1980-2000"

| | | | ch | | | | | | Catch | Boat | Mont h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Weight | Valu | | Exvesse | Price | Numbe | r of | Ueight | Val | |
| | | Pounds Metric | (mily | $\text { ons) } 1$ | | | Boat | Fi sher man | Pounds | (\$1. | 00) |
| | Year | (millions) Tons | Nominal | Real | Nomi nal | Real | Months | Months | $(1,000)$ | Nomina | Real |
| | 1980 | 155.070308 | 46.0 | 46.0 | 0.30 | 0.30 | 864 | 3454 | 179.5 | 53.3 | 53.3 |
| | 1981 | 155.070308 | 42.9 | 39.9 | 0.28 | 0.? 6 | 864 | 3454 | 179.5 | 49.7 | 46.2 |
| | $19 R 2$ | 155.070308 | 44.7 | 38.7 | 0.29 | 0.25 | 864 | 3454 | 179.5 | 51.8 | 44.8 |
| | 1983 | 155.070308 | 49.5 | 39.8 | 0.32 | 0.26 | 864 | 3454 | 179.5 | 57.3 | 46.1 |
| | 1984 | 155.07030R | 52.4 | 39.1 | 0.34 | 0.25 | 864 | 3454 | 179.5 | 60.6 | 45*3 |
| | 1985 | 155.0 70308 | 57.3 | 39.8 | 0.37 | 0.26 | 864 | 3454 | 179.5 | 66.3 | 46.1 |
| | 1986 | 155.070308 | 61.1 | 37.4 | 0.39 | 0.25 | 864 | 3454 | 179.5 | 70.7 | 45.7 |
| $\stackrel{+}{6}$ | 1987 | 155.07030R | 66.3 | 39.8 | O*43 | 0.26 | 864 | 3454 | 179.5 | 76. 8 | 46.1 |
| \bigcirc | 1988 | 155.070308 | 71.1 | 39.7 | 0.46 | 0.26 | 864 | 3454 | 179.5 | 82.3 | 45.9 |
| | 1989 | 155.070308 | 76.9 | 39.9 | 0.50 | 0.26 | 864 | 3454 | 179.5 | 89.1 | 46.2 |
| | 1990 | 155.070308 | 82.6 | 39.8 | 0.53 | 0.26 | 864 | 3454 | 179.5 | $95 * 6$ | 46.1 |
| | 1991 | 155.070308 | 89.2 | 40.0 | 0.58 | 0.26 | 864 | 3454 | 179.5 | 103.3 | 46.3 |
| | 1992 | 155.070309 | 75.7 | 40.0 | 0.62 | 0.26 | 864 | 3454 | 179.5 | 111.0 | 46.3 |
| | 1993 | 155.070308 | 103.4 | 40.1 | 0.67 | 0.26 | 864 | 3454 | 179.5 | 119.7 | 46.4 |
| | 1994 | 155.070308 | 111.2 | 40.1 | 0.72 | 0.26 | 864 | 3454 | 179.5 | 128.8 | 46.4 |
| | 1995 | 155.070308 | 119.8 | 40.2 | (?. 77 | 0.26 | 864 | 3454 | 179.5 | 138.8 | 46.5 |
| | 1996 | 155.070309 | 128.7 | 40.2 | 0.83 | 0.26 | 864 | 3454 | 179.5 | 149.3 | 46.5 |
| | 1997 | 155.070308 | 138.9 | 40.2 | 0.90 | 0.26 | 864 | 3454 | 179.5 | 160.8 | 46.6 |
| | 1908 | 155.070308 | 149.4 | 40.2 | 0.96 | 0.26 | 864 | 3454 | 179.5 | 173.1 | 46.6 |
| | 1790 | 155.076308 | 160.7 | 40.3 | 1.04 | 0.? 6 | 864 | 3454 | 179.5 | 186.3 | 46.7 |
| | 2000 | 15\%.07030¢ | 173.? | 40.3 | 1.12 | 0.? 6 | 864 | 3454 | 179.5 | 200.5 | 46.7 |

[^39]Table 4. 90
Bering Sea Tanner Orab Fi shery Harvesting Activity Projected Percentage Change from 1980

1980-2000

[^40]Table 4.91
Bering Sea Tanner Crab Fishery Harvesting Activity Projected Annual Rate of Change 1980-2000

Percentage Change

${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

The projected average annual harvest weight is approximately 245 percent greater than the nean harvest for 1975 through 1979 and approxi mately 100 percent greater than the record harvest of 1979. However, since over 35 percent of the 1979 harvest was taken in one nonth, it appears that the projected harvest levels will not be constrained by harvesting capacity.

The projected exvessel price of Tanner crab is substantially lower in the Bering Sea Managenent Area than el sewhere in Western Alaska because the Bering Sea harvest is expected to be dom nated by C. opilio, a species of Tanner crab which has had a lower exvessel price than C. bai rdi, the predominant speci es in the other managenent areas. The National Marine Fi sheri es Service "Fi shery Market News" reported prices of $\$ 0.56$ and $\$ 0.40$ respectivel \mathbf{y}, for C. bairdi and C. opilio landed in Kodiak in April and May of 1979, and prices of $\$ 0.555$ and $\$ 0.25$ during the spring of 1980. This represented a 28.6 percent price discount on C. opilio in 1979 and a 55.0 percent discount in 1980 . It is not known which di scount will prevail during the forecast period; however, the 55 percent discount apparently reflects a current market val uation of the two species of Tanner crab which was not significantly affected by the recent fishernen's strike. A price di scount of 55 percent is used in this report. The projected exvessel Tanner crab prices are not, however, 55 percent lower for the Bering Sea because the Bering Sea harvest will include both species of Tanner crab.

The Western Al aska shrimp fishery is expected to remain an important but not dominant part of the A aska fishery. The annual harvest wei ght is projected to increase from 13, 426 metric tons (29.6 million pounds) in 1980 to 25, $5 / 34$ metric tons (56.4 miliion pounds) in 2000 and therefore to partially recover from the dranatic decline of the late 1970s. Real harvest val ue is projected to increase from $\$ 7.0 \mathrm{milli}$ on to $\$ 16.7 \mathrm{mili}$ on (see Table 4.92\}. The harvest weight projections are similar to those for king crab and Tanner crab in that they al so reflect the best guesses of the $A D F \& G$ Uest ward Regi on shel Ifish bi ol ogi st. However, the recent collapse of the South Peninsula shrimp stocks and insufficient information about the rate at which the stocks nay recover increase the uncertainty associ ated with these projections.

Peni nsul a

The Peni nsula shrimp fishery includes the Chignik Management Area in which the harvest has been rel ativel y stable since 1975 and the South Peni nsul a Managenent Area in which the 1979 harvest was 6.7 percent of the 1977 harvest. It is not known if or how rapidly the latter fishery can be rebuilt. The projections presented bel ow are based on the assumption that the annual South Peninsula harvest wei ght will increase at a constant rate fromthe 1979 level to $\mathbf{1 3}, 608$ metric tons ($\mathbf{3 0} \mathbf{~ m i l i o n ~}$ pounds) in 2000. This is less than 65 percent of the record harvest of 1977.

Table 4.92

Projected Western Alaska Shrimp Harvest 1980-2000

Wei ght

| | | | (millions) | | | ic Tons | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Year | Peninsula | Eastern Al eutians | Total | Peni nsul a | Eastern Al eutians | Total |
| | 1980 | 27.1 | ?. 5 | 29.6 |]2292.5 | 1134.0 | 13426.5 |
| | 1981 | ?7.5 | 2.5 | 30.0 | 12461.2 | 1134.0 | 13595.2 |
| | 1982 | 27.9 | 2.5 | 30.4 | 1265(-).2 | 1134.0 | 13784.2 |
| | 1983 | 28.4 | 2.5 | 30.9 | 12861.9 | 1134.0 | 13995.9 |
| | 1984 | 28.9 | 2.5 | 31.4 | 13098.9 | 1134.0 | 14232.9 |
| | 1985 | 29.5 | 2.5 | 32.0 | 13364.4 | 1134.0 | 14498.4 |
| | 1986 | 30.1 | 2.5 | 32.6 | 13661.8 | 1134.0 | 14795.8 |
| | 1987 | 30.9 | 2.5 | 33.4 | 13994.9 | 1134.0 | 15128.9 |
| $\stackrel{+}{\circ}$ | 1988 | 31.7 | 2.5 | 34.2 | 14367.9 | 1134.0 | 15501.9 |
| | 1989 | 32.6 | 2.5 | $35 * 1$ | 14785.7 | 1134.0 | 15919.7 |
| | 1990 | 33.6 | 2.5 | 36.1 | 15253.6 | 1134.0 | 16387.6 |
| | 1991 | 34.9 | 2.5 | 37.3 | 15777.7 | 1134.0 | 16911.7 |
| | 1992 | 36. 1 | 2.5 | 38.6 | 16364.7 | 1134.0 | 17498.6 |
| | 1993 | 37.5 | ?. 5 | 40.0 | 17022.1 | 1134.0 | 18156.1 |
| | 1994 | 39.? | 2.5 | 41.7 | 17758.3 | 1134.0 | 18892 |
| | 1995 | 41.0 | 2.5 | 43.5 | 18583.0 | 1134.0 | 19717.0 |
| | 1996 | 43.0 | 2.5 | 45.5 | 19506.6 | 1134.0 | 20640.6 |
| | 1997 | 45.3 | 2.5 | 47.8 | 20541.0 | 1134.0 | 21675.0 |
| | 1998 | 47.8 | 2.5 | 50.3 | 21699.6 | 1134.0 | 22833.6 |
| | 1999 | 50.7 | 2.5 | 53.2 | 22997.2 | 1134.0 | 24131.2 |
| | 2000 | 53.9 | 2.5 | 56.4 | 24450.5 | 1134.0 | 25584.5 |

Table 4.92 (continued)

Value

| | | Nomi | ue fmillions | | | 1/minion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Year | Peninsula | Eastern Aleutians | Total | Peninsula | Eastern Aleutians | Total |
| | 1980 | 6.4 | 0.6 | 7.0 | 6.4 | 0.6 | 7.0 |
| | 1981 | 7.1 | 0.6 | 7.7 | 6.6 | 0.6 | 7.2 |
| | 1942 | 7.9 | 0.7 | 8.6 | 6.8 | 0.6 | 7.4 |
| | 1943 | 8.4 | 0.8 | 9.5 | 7.0 | 0.6 | 7.7 |
| | 1984 | 9.8 | 0.8 | 10.6 | 7.3 | 0.6 | 7.9 |
| | 1985 | 10.9 | 0.9 | 11.8 | 7.6 | 0.6 | 8.2 |
| | 1986 | 12.1 | 1.0 | 13.1 | 7.8 | 0.6 | 8.5 |
| \& | 1987 | 13.5 | 1.1 | 14.6 | 8.1 | 0.7 | 8.8 |
| ¢ | 1988 | 15.1 | 1.2 | 16.3 | 8.5 | 0.7 | 9.1 |
| | 1989 | 17.0 | 1.3 | 18.3 | 8.5 | 0.7 | 9.1 |
| | 1990 | 19.0 | 1.4 | 20.4 | 9.2 | 0.7 | 9.9 |
| | 1991 | 21.4 | 1.5 | 22.9 | 9.6 | 0.7 | 10.3 |
| | 1992 | 24.1 | 1.7 | 25.8 | 10.1 | 0.7 | 10.8 |
| | 1993 | 27.? | 1.8 | 29.1 | 10.6 | 0.7 | 11.3 |
| | 1994 | 30.9 | 2.0 | 32.8 | 11.1 | 0.7 | 11.8 |
| | 1995 | 35.0 | 2.1 | 37.2 | 11.7 | 0.7 | 12.5 |
| | 1996 | 39.4 | 2.3 | 42.2 | 12.4 | 0.7 | 13.1 |
| | 1997 | 45.5 | 2.5 | 48.0 | 13.2 | 0.7 | 13.9 |
| | 1998 | 52.0 | 2.7 | 54.8 | 14.0 | 0.7 | 14.8 |
| | 1909 | 59.7 | 2.9 | 62.7 | 15.0 | 0.7 | 15.7 |
| | 2000 | 68.7 | 3.2 | 71.9 | 1\%.0 | 0.7 | 16.7 |

[^41]The annual harvest weight for the Peni nsula (Chignik/South Peni nsul a) shrimp fishery is projected to increase from 12, 292 metric tons (27.1 million pounds) in 1980 to 24, 450 netric tons (53.9 million pounds) in 2000; and real harvest value is projected to increase from $\$ 6.4 \mathrm{milli}$ on to $\$ 16.0 \mathrm{mili}$ on (see Table 4.93). The 99 percent increase in harvest wei ght is accounted for by the projected recovery of the South Peni nsula fishery and the 150 percent increase in harvest val ue is explained by projected increases in both harvest wei ght and the real exvessel price (see Table 4.94). The corresponding annual rates of change in harvesting activity appear in Table 4.95. The projected harvest weight for 2000 is 10 percent greater than the nean harvest for 1975 through 1979, but it is $\mathbf{2 5}$ percent less than the record harvest of 1977.

Eastern Aleutians

The Eastern Aleutians shrimp fishery is a rel atively small fishery. Its annual harvest wei ght is projected to average 1, 134 metric tons (2.5 milion pounds) between 1980 and 2000; and its annual real harvest val ue is projected to increase from $\$ 0.6 \mathrm{mili}$ on to $\mathbf{\$ 0 . 7} \mathbf{~ m i l i o n ~ (s e e ~ T a b l e ~}$ 4.96). The 25.8 percent increase in real val ue reflects the projected increase in the exvessel price (see Table 4.97). Table 4.98 contains projections of the annual rates of change in harvesting activity. The average projected harvest weightis approxi mately 70 percent of the mean harvest for 1973 through 1979.

Table 4.93
Peninsula Shrimp Fishery Proj ected Harvestinq Acti vity

1980-2000

${ }^{\text {I }}$ The real values and prices were cal cul ated using the U.S. CPI; 1980 is the base peri od.

Peninsula Shrimp Fi Shery 4. 94
Proj ected Percentage Change from 1980 1980-2000

${ }^{1}$ The real values and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

Table 4.95
Peninsula Shrimp Fishery Harvesting Activity
Projected Annual Rate of Change
1980-2000

| | | | | | | | Change | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Catch | | | | | Catch | Boat Mo | |
| | | | | | Exvessel | ice | Number of | | | |
| | Year | Weight | Nominal | Real | Nomina! | Real | Boat Months | Weight | Nominal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1981 | 1.4 | 10.8 | 3.0 | 9.3 | 1.6 | 1.2 | 0.2 | 9.5 | 1.8 |
| | 1982 | 1.5 | 11.4 | 3.5 | 9.7 | 2.0 | 1.3 | 0.2 | 9.9 | 2.2 |
| | 1983 | 1.7 | 11.0 | 3.2 | 9.2 | 1. 5 | 1.5 | 0.2 | 9.4 | 1.7 |
| | 1984 | 1.8 | 11.4 | 3.6 | 9.4 | 1.7 | 1.6 | 0.2 | 9.6 | 1.9 |
| | 1985 | 2.0 | 11.4 | 3.6 | 9.2 | 1.5 | 1.8 | 0.2 | 9.4 | 1.7 |
| | 1986 | 2.2 | 11.4 | 3.5 | 8.9 | 1.3 | 1.9 | 0.3 | 9.2 | 1.6 |
| | 1987 1988 | 2.4 | 11.7 | 4.0 | 9.2 | 1.5 | 2.1 | 0.3 | 9.5 | 1.8 |
| 8 | 1988 1949 | 2.7 | 11.9 | 3.9 | 8.9 | 1.2 | 2.3 | 0.3 | 9.2 | 1.6 |
| | 1989 | 2.9 | 11.9 | 4.1 | 8.8 | 1.1 | 2.5 | 0.4 | 9.2 | 1.5 |
| | 1990 | 3.2 | 12.3 | 4.4 | 8.8 | 1.2 | 2.8 | 0.4 | 9.3 | 1.6 |
| | 1991 | 3.4 | 12.4 | 4.5 | 8.7 | 1.0 | 3.0 | 0.4 | $9 \cdot 1$ | 1.4 |
| | 1992 1993 | 3.7 4.0 | 12.R | 4.9 | 8.8 | 1.1 | 3.3 | 0.4 | 9.3 | 1.6 |
| | 1993 1994 | 4.0 | 12.9 | 4.9 | 8.5 | 0.9 | 3.5 | 0.5 | 9.0 | 1.4 |
| | 1994 1995 | 4.3 4.6 | 13.2 | 5.3 | 8.5 | 0.9 | 3.8 | 0.5 | 9.1 | 1.4 |
| | 1996 1996 | 4.6 5.0 | 13.5 13.8 | 5.6 5.8 | 8.5 | 0.9 | $4 \cdot 1$ | 0.6 | 9.1 | 1.4 |
| | 1997 | 5.3 | 14.2 | 6.1 | 9.4 | 0.8 0.8 | $4 \cdot 3$ | 0.6 | $9 \cdot 1$ | 1.4 |
| | 1998 | 5.6 | 14.4 | 6.3 | H. 3 | 0.6 | 4.6 4.9 | 0.6 0.7 | 9.1 9.0 | 1.4 1.3 |
| | 1909 | 6.0 | 14.7 | 6.7 | 8.3 | 0.7 | 5.2 | 0.7 | 9.0 | 1.4 |
| | 2000 | 6.3 | 15.1 | 7.0 | 8.2 | 0.6 | 5.5 | 0.8 | 9.1 | 1.4 |

[^42]Table 4.96
Eastern Al eutians Shrimp Fi shery Projected harvesting Activity 1980-2000

| Year | | Catch | | | | Exvessel Price | | Number of | | Catch per Boat Month | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Weight | | Val ue | | | | Weight | Val ue | |
| | | Pounds | Metric | (milli | ons), 1 | (\$/ P | | | | Boat | Fi sher man | Pounds | (\$1,0 | 00) |
| | | (millions) | Tons | Nomi nal | Real | Nomi nal | Rea 1 | Mont hs | Months | (1,000) | Nominal | Real |
| | 1980 | 2.5 | 1134 | 0.6 | 0.6 | 0.24 | 0.24 | ?3 | 68 | 109.8 | 25.9 | 25.9 |
| | 1981 | 2.5 | 1134 | 0.6 | 0.6 | 0.26 | 0.24 | 23 | 68 | 109.8 | 28.3 | 26.3 |
| | 19月2 | 2. 5 | 1134 | 0.7 | (-). 6 | 0.28 | 0.24 | 23 | 68 | 109.8 | 31.1 | 26.9 |
| | 1983 | 2.5 | 1134 | 0.8 | 0.6 | 0.31 | $0 ., 25$ | 23 | 68 | 109.8 | 33*9 | 77.3 |
| | 1984 | 2.5 | 1134 | 0.8 | 0.6 | 0.34 | 0.25 | 23 | 68 | 109.8 | 37.1 | 27.7 |
| | 1985 | 2.5 | 1134 | 0.9 | 0.6 | 0.37 | 0.26 | 23 | 68 | 109. H | 40.5 | 28.2 |
| | 1986 | 2.5 | 1134 | 1.0 | 0.6 | 0.40 | 0.26 | 23 | 68 | 109.8 | 44.2 | 28.5 |
| 0 | 1987 | 2.5 | 1134 | 1.1 | 0.7 | C). 44 | 0.26 | ? 3 | 6,8 | 109.8 | 48.2 | 28.9 |
| \bigcirc | 1988 | 2.5 | 1134 | 1.? | 0.7 | 0.48 | 0.27 | 23 | 68 | 109.8 | 52.5 | 29.3 |
| | 1989 | 2.5 | 1134 | 1.3 | 0.7 | 0.52 | 0.? 7 | ?3 | 68 | 109.8 | 57.1 | 29.6 |
| | 1990 | 2.5 | 1134 | 1.4 | 0.7 | 0.57 | 0.27 | 23 | 68 | 109.8 | 62.2 | 30.0 |
| | 1991 | 2.5 | 1134 | 1.5 | (3.7 | 0.62 | 0.28 | 23 | 68 | 109.8 | 67.5 | 30.3 |
| | 1907 | 2.5 | 1134 | 1.7 | 0.7 | 0.67 | 0.28 | 23 | 68 | 109.8 | 73.5 | 30.6 |
| | 1993 | 2.5 | 1134 | 1.8 | 0.7 | 0.73 | 0.28 | 23 | 68 | 109.8 | 79.7 | 30.9 |
| | 1994 | 2.5 |] 134 | 2.0 | 0.7 | 0.79 | 0.28 | 23 | 68 | 109.8 | 86.5 | 31.2 |
| | 1995 | 2. 5 | 1134 | 2.1 | 0.7 | 0.86 | 0.29 | 23 | 68 | 109.8 | 93.9 | 31.5 |
| | 1996 | 2.5 | 1134 | 2. 3 | 0.7 | 0.93 | 0.? 9 | 2.3 | 68 | 109.8 | 101.8 | 31.7 |
| | 1997 | 2.5 | 1134 | 2.5 | 0.7 | 1.00 | 0.29 | 23 | 68 | 109.8 | 110.4 | 32.0 |
| | 1998 | 2.5 | 1134 | 2.7 | 0.7 | 1.09 | 0.29 | 23 | 68 | 109.8 | 119.5 | 32. ? |
| | 1009 | 2.5 | 1134 | 2.9 | 0, 7 | 1.18 | 0.29 | 23 | 68 | 109.8 | 129,4 | 32. 4 |
| | 2000 | 2.5 | 1134 | 3.7 | 0.7 | 1.24 | 0.30 | 23 | 68 | 109.8 | 140.0 | 32.6 |

${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

Table 4.97
Eastern Aleutians Shrimp Fi shery Harvesting Activity Proj ected Percentage Change from 1980

1980-2000
Percentage Change

${ }^{1}$ The real values and prices were cal cul ated using the U.S.CPI; 1980 is the base period.

Table 4.98
Ęastern Aleutians Shrimp Fi shery Harvesting Activity
Projected Annual Rate of Change
1980-2000

[^43]As is indi cated in Chapter II, there is a trenendous anount of uncertainty concerning both how rapidly the donestic groundfish fishery will devel op and repl ace the foreign fishery and what the nat ure of the domestic fishery will be. The projections presented in this section are based on a set of assumptions which is defined and discussed in Chapter 11, and they are neani ngf ul onl y in the context of those assumptions. The reader is theref ore advi sed to review the rel evant section of Chapter II in order to nore fully understand the nature of the projections.

Western \mathbf{A} aska is expected to dom nate the \mathbf{A} aska groundfish fishery because the Alaska groundfish stocks are principally located in the Bering Sea. The annual Western \mathbf{A} aska groundfish harvest wei ght is projected to increase from 2, 439 metric tons in 1980 to 2.2 milion metric tons in 2000; and the annual real harvest val ue is projected to increase from $\mathbf{\$ 0 . 7} \mathbf{~ m i l i}$ on to $\$ 493 \mathrm{milli}$ on (see Table 4.99). The real harvest value projections reflect the assumption that real exvessel prices will remain constant and that nominal prices will theref ore increase at the same rate as the U.S. Consumer Price Index (CPI) for all goods and services. The projections of nominal exvessel prices appear in Table 4.100. Because 198(9 is used as the base year in determining real prices and val ues and because real prices are assumed to remain constant, the 1980 nom nal prices equal the real prices used for 1980 through 2000.

Table 4.99
Projected Western Alaska Groundfish Harvest 1980-2000

Weight

| Year | | Pounds (milions) | | | Metric Tons | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Chirikof/
 Shumagin | Bering Sea | Total | Chirikof/
 Shumagin | Bering Sea | Total |
| | 1980 | 0.7 | 4.7 | 5.4 | 299.1 | 2140.? | ? 439.2 |
| | 1981 | 0.9 | 6.4 | 7.3 | 393.9 | 2922.5 | 3316.4 |
| | 1982 | 1.1 | 8.8 | 10.0 | 521.6 | 4010.3 | 4531.9 |
| | 1983 | 1.5 | 12.2 | 13.7 | 694.4 | 5528.5 | 6222.9 |
| | 1984 | 2.0 | 16.9 | 18.9 | 929.7 | 7654.6 | 8584.3 |
| | 1985 | 2.4 | 23.5 | 26.2 | 1251.6 | 10641.4 | 11893.0 |
| | 1986 | 3.-? | 32.7 | 36.5 | 1694.1 | 14849.1 | 16543.2 |
| g | 1987 | 5.1 | 45.8 | 50.9 | 2305.3 | 20792,0 | 23097.3 |
| | 1988 | 7.0 | 64.4 | 71*3 | 3153.2 | 29204,6 | 32357.9 |
| | 1989 | 9.6 | 90.7 | 100.2 | 4334.4 | 41137.9 | 45472.3 |
| | 1990 | 13.2 | 128.1 | 141.3 | 5986.1 | 58095.7 | 64081.8 |
| | 1991 | 18.3 | 181.3 | 199.6 | 8303.9 | 82232.8 | 90536.6 |
| | 1992 | 25.5 | ? 5701 | 282.6 | 11566.7 | 116637.7 | 128204.4 |
| | 1993 | 35.7 | 365.4 | 401.0 | 16173.5 | 165740.7 | 181914.2 |
| | 1994 | 50.0 | 520.1 | 570.1 | 22695.5 | 235899.3 | 258594.8 |
| | 1985 | 70.4 | 741.3 | 811.7 | 31951.4 | 336242.2 | 368193.6 |
| | 1976 | 99.5 | 1057*? | 1157.4 | 45116.3 | 479881.7 | 524998.0 |
| | 1907 | 140.8 | 1511.6 | 1652.4 | 63879.5 | 685660.5 | 749540.0 |
| | 1998 | 199.9 | 2162.0 | 2361.9 | 90671.1 | 980665.9 | 1071337.0 |
| | 1909 | 284.4 | 3094.9 | 3379.3 | 128991.8 | 1403850.4 | 153?842.2 |
| | 2000 | 405.4 | 4434.() | 4839.4 | 183889.6 | 2011247.6 | ?195137.2 |

Table 4.99 continued)

[^44]Table 4. 99 (conti nued)

| | Year | Metric Tons | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Pollock | Cod | Sablefish | Other | Total |
| | 1980 | 1060 | 972 | 1 | 408 | 2441 |
| | 1981 | 1521 | 1206 | 2 | 590 | 3320 |
| | 1982 | 2184 | 1496 | 3 | 854 | 4536 |
| | 1983 | 3135 | 1856 | 5 | 1234 | 6229 |
| | 1984 | 4499 | 23(33 | 8 | 1783 | 8594 |
| | 1985 | 6458 | 2857 | 13 | 2578 | 11906 |
| | 1986 | 9271 | 3545 | 20 | 3727 | 16562 |
| | 1987 | 13307 | 4398 | 33 | 5387 | 23125 |
| - | 1988 | 19101 | 54.56 | 53 | 7787 | 32397 |
| | 1989 | 27418 | 6769 | 85 | 11255 | 45529 |
| | 1990 | 39357 | 8399 | 137 | 16270 | 64162 |
| | 1991 | 56493 | 10420 | 221 | 23518 | 90652 |
| | 1992 | 81091 | 12928 | 356 | 33996 | 128371 |
| | 1993 | 116399 | 16039 | 573 | 49141 | 182153 |
| | 1994 | 167082 | 19899 | 923 | 71033 | 258937 |
| | 1995 | 23983? | 24689 | 1485 | 102679 | 368685 |
| | 1996 | 344258 | 30631 | 2391 | 148423 | 525703 |
| | 1997 | 494154 | 38003 | 3049 | 214547 | 750552 |
| | 1998 | 709316 | 47149 | 6196 | 310128 | 1072790 |
| | 1999 | 1018164 | 58497 | 9975 | 448292 | 1534928 |
| | 2000 | 1461490 | 72576 | 16057 | 648009 | 2198131 |

Table 4.100
Projected Nominal Exvessel Groundfish Prices 1980-2000

| Year | |
| :---: | :---: |
| 1980 | |
| 1981 | |
| 1982 | |
| 1983 | |
| 1984 | |
| 1985 | |
| 1986 | |
| 0 | 1987 |
| 0 | 1988 |
| 1989 | |
| 1990 | |
| 1991 | |
| 1992 | |
| 1993 | |
| 19994 | |
| 1995 | |
| 1996 | |
| 1997 | |
| 1998 | |
| 1999 | |
| | 2000 |

| (Dollars/Pound) | | | |
| :---: | :---: | :---: | :---: |
| Pollock | Cod | Sablefish | $\overline{\text { Other }}$ |
| 0.07 | 0.19 | 0.65 | 0.15 |
| 0.08 | 0.20 | 0.70 | 0.16 |
| 0.08 | 0.22 | 0.75 | 0.17 |
| 0.09 | 0.24 | 0.81 | 0.19 |
| 0.09 | 0.25 | 0.87 | 0.20 |
| 0.10 | 0.27 | 0.94 | 0.22 |
| 0.11 | 0.29 | 1.01 | 0.23 |
| 0.12 | 0.32 | 1.08 | 0.25 |
| 0.13 | 0.34 | 1.16 | 0.27 |
| 0.13 | 0.37 | 1.25 | 0.29 |
| 0.15 | 0.39 | 1.35 | 0.31 |
| 0.16 | 0.42 | 1.45 | 0.33 |
| 0.17 | 0.46 | 1.56 | 0.36 |
| 0.18 | 0.49 | 1.68 | 0.39 |
| 0.19 | 0.53 | 1.80 | 0.42 |
| 0.21 | 0.57 | 1.94 | 0.45 |
| 0.22 | 0.61 | 2.09 | 0.48 |
| 0.24 | 0.66 | 2.24 | 0.52 |
| 0.26 | 0.71 | 2.41 | 0.56 |
| 0.28 | 0.76 | 2.60 | 0.60 |
| 0.30 | 0.82 | 2.79 | 0.64 |

In this report the groundfish fishery of Western \mathbf{A} aska is di vided into two fisheries; the Bering Sea fishery defined to consist of the entire Fi shery Conservation Zone (FCZ) of the Bering Sea and that portion of the North Pacific Ocean which is adjacent to the Aleutian Islands west of $170^{\circ} \mathrm{W}$; and the Chirikof/Shumagin fishery defined to consist of that portion of the FCZ of the North Pacific Ocean adjacent to the A eutian I slands or the Al aska Peni nsula bet ween $154^{\circ} \mathrm{W}$ and $170^{\circ} \mathrm{W}$.

Chirikof/Shumagin

The annual harvest weight for the Chirikof/Shumagin groundfish fishery is projected to increase from 220 netric tons in 1980 to 184, 103 netric tons in 2000; and the real harvest value is projected to increase from $\$ 0.1$ million to $\$ 47.6 \mathrm{milli}$ on (see Table 4.101). The fleet is projected to be comprised of 34 trawers and 12 catcher/processors by 2000 and to empl oy 510 crewmembers who will recei ve $\$ 15.3 \mathrm{milli}$ on dollars of real annual incone. Tabl es 4.102 and 4.103 present harvest projections by species. With the exception of the exvessel price, the indexes of harvesting activity are projected to increase at an annual rate of approxi mately 40 percent and by 83,500 percent for the twenty-year period as a whole.

Bering Sea

The groundfish resources of f the coast of Alaska are predon natel y located in the Bering Sea; groundfish harvesting activity is therefore expected to be concentrated in the Bering Sea. Annual harvest weight is

Table 4.101
Projected Chirikof/Shumagin Groundfish Harvesting Activity 1980-2000

| | | | ch ${ }^{\text {reat }}$ | | | | Number | | | Real $\langle \$$ | Wage
 000) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Year | Weight Metric Tons | ReaT Value (millions) | Exvess (\$/ Nomi | Price nd) Real | Traw ers | Processors | | Catcher/ Processor Fi sher nen | Trawler Fi shernen | Cat cher
 Processor
 Fi sher | |
| | 1980 | 220 | 0.10 | 0.21 | 0.21 | 0.04 | 0.02 | 0.24 | 0.40 | | 9 | |
| | 1981 | 308 | 0.13 | 0.21 | 0.19 | 0.06 | 0.02 | 0.34 | 0.55 | 11 | 13 | |
| | 1982 | 432 | 0.17 | 0.21 | 0.18 | 0.08 | 0.03 | 0.48 | 0.77 | 16 | 19 | |
| | 1983 | 604 | 0.22 | 0.21 | 0.17 | 0.11 | O*O4 | 0.67 | 1.08 | 22 | 26 | |
| | 1984 | 846 | 0.29 | 0.21 | 0.15 | 0.16 | 0.06 | O*94 | 1.51 | 31 | 37 | |
| | 1985 | 1184 | 0.38 | 0.21 | 0.15 | 0.22 | 0.08 | 1.32 | 2.10 | 44 | 51 | |
| | 1986 | 1657 | 0.50 | 0.21 | 0.14 | 0.31 | 0.12 | 1.84 | 2.93 | 62 | 72 | |
| | 1987 | 2320 | 0.67 | 0.22 | 0*13 | 0.43 | 0.16 | 2.58 | 4.09 | 87 | 101 | |
| \cdots | 1988 | 3248 | 0.89 | 0,22 | 0.12 | 0.60 | 0.23 | 3.61 | 5.70 | 122 | 141 | |
| - | 1989 | 4548 | 1.21 | 0.23 | 0.12 | 0.84 | 0.31 | 5*O5 | 7*94 | 172 | 198 | |
| | 1990 | 6367 | 1.64 | 0.24 | 0*12 | 1.18 | 0.44 | 7.07 | 11.07 | 242 | 277 | |
| | 1991 | 8913 | 2.23 | 0.25 | 0.11 | 1.65 | 0.61 | 9*90 | 15,44 | 340 | 388 | |
| | 1992 | 12478 | 3.07 | 0.27 | 0.11 | 2.31 | 0.84 | 13.86 | 21.51 | 478 | 543 | |
| | 1993 | 17468 | 4.24 | 0.28 | 0.11 | 3.23 | 1.18 | 19.41 | 29.98 | 673 | 761 | |
| | 1994 | 24455 | 5.89 | 0.30 | $0.11{ }^{\prime}$ | 4.53 | 1.63 | 27.17 | 41.77 | 947 | 106 | 5 |
| | 1995 | 34236 | 8.24 | 0.33 | 0*11 | 6.34 | 2.27 | 38*O4 | 58.20 | 1332 | 1491 | |
| | 1996 | 47929 | 11.58 | 0.35 | 0.11 | 8.88 | 3.16 | 53.25 | 81.06 | 1875 | 2087 | |
| | 1997 | 67099 | 16.37 | 0.38 | 0.11 | 12.43 | 4.39 | 74.55 | 112.90 | 263a | 2921 | |
| | 1998 | 93936 | 23.25 | 0.42 | 0.11 | 17.40 | 6.101 | 104.37 | 157.21 | 3712 | 4088 | |
| | 1999 | 131506 | 33.19 | 0.46 | 0.11 | 24.35 | 8.471 | 146.12 | 218.88 | 5223 | 5719 | |
| | 2000 | 184103 | 47.60 | 0.50 | 0.12 | 34,09 | 11.772 | 204.56 | 304.68 | 7349 | 8000 | |

[^45]Table 4.102
Proj ected Chirikof/Shumagin Groundfish Harvest Weight by Speci es 1980-2000

| | Year | Pollock | Cod | Metric Tons Sablefish | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | 81 | 184 | 0 | 34 | 299 |
| | 1981 | 116 | 228 | 1 | 49 | 394 |
| | 1982 | 166 | 283 | 1 | 71 | 522 |
| | 1983 | 238 | 351 | 1 | 103 | 694 |
| | 1984 | 342 | 436 | 2 | 149 | 930 |
| | 1985 | 491 | 541 | 4 | 216 | 1252 |
| | 1986 | 705 | 671 | 6 | 312 | 1694 |
| | 1987 | 1012 | 832 | 10 | 451 | 2305 |
| $\underset{\sim}{-1}$ | 1988 | 1453 | 1032 | 16 | 652 | 3153 |
| | 1989 | 2086 | 1281 | 25 | 943 | 4334 |
| | 1990 | 2994 | 1589 | 40 | 1363 | 5986 |
| | 1991 | 4298 | 1972 | 65 | 1970 | 8304 |
| | 1992 | 6169 | 2446 | 104 | 2847 | 11567 |
| | 1993 | 8855 | 3035 | 168 | 4116 | 16174 |
| | 1994 | 12710 | 3766 | 270 | 5950 | 22696 |
| | 1995 | 18245 | 4672 | 435 | 8600 | 31951 |
| | 1996 | 26188 | 5796 | 700 | 12432 | 45116 |
| | 1997 | 37591 | 7191 | 1127 | 17970 | 63880 |
| | 1998 | 53959 | 8922 | 1814 | 25976 | 90671 |
| | 1999 | 77454 | 11069 | 2921 | 37548 | 128992 |
| | 2000 | 111179 | 13733 | 4702 | 54276 | 183890 |

Table 4.103
Projected Chirikof/Shumagin Groundfish Harvest Value by Species 1980-2000

${ }^{1}$ The real values are in terns of 1980 dollars.
projected to increase from 2, 409 metric tons in 1980 to 2.0 million netric tons in 2000; annual real harvest val ue is projected to increase from $\$ 0.6 \mathrm{mili}$ on to $\$ 445 \mathrm{milli}$ on (see Table 4. 104). The annual rates of grouth are approxi mately 40 percent and the cuml ative percentage grouth from 1980 through 2000 is over 83, 500 percent. The fishery projected for 2000 nould incl ude 373 traw ers and 124 catcher/processors, and it woul d empl oy approxi natel y 5,500 crewmembers who would recei ve over $\$ 165 \mathrm{milli}$ on of real income. Harvest projections by species are presented in Tables 4.105 and 4. 106.

FOREI GN TANER CRAB

The foreign tanner crab fishery has been limited nore each year. In 1980 it is limited to a Japanese fleet targetting on C. opilio Tanner crab north of $58^{\circ} \mathrm{N}$ latitude. The general expectation is that the foreign Tanner crab fishery will be completel displaced by the donestic fishery in the early 1980 s.

FOREI GN GROUNDI SH

The donestic groundfish fishery is projected to grow at a constant rate until it has completely repl aced the foreign fishery by 2000. The harvesting activity of the foreign fishery is therefore projected to gradually decrease during the 1980s and to decrease quite rap dly during the 1990s. For example, the approxi mate cuml ative decreases in harvesting activity are 0.6 percent by 1985, 3.5 percent by 1990, 186 percent

Table 4.104
Projected Bering Sea Groundfish Harvesting Activity 1980-2000

[^46]Table 4.105
Projected Bering Sea Groundfish Harvest Weight by Speci es 1980-2000

Table 4. 106
Projected Bering Sea Groundfish Value by Species
1980-2000

| | Year | Nominal Value (millions) | | | | | $\begin{gathered} \text { Real value } \\ \text { (millions) } \end{gathered}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1980 | 0.2 | 0.3 | 0.0 | 0.1 | 0.6 | 0.2 | 0.3 | 0.0 | 0.1 | 0.6 |
| | 1981 | 0.2 | Q*4 | 0.0 | 0,2 | 0.9 | 0.2 | O*4 | 0.0 | 0.2 | 0.8 |
| | 1982 | 0.4 | 0.6 | 0.0 | 0.3 | 1.2 | 0.3 | 0.5 | O*O | 0*3 | 1.1 |
| | 1983 | 0.6 | 0.8 | 0.0 | 0.5 | 1.8 | 0.4 | 0.6 | 0.0 | O*4 | 1. 5 |
| | 1984 | 0.9 | 1.0 | 0.0 | 0.7 | 2,6 | 0.6 | 0.8 | 0.0 | 0.5 | 2. 0 |
| | 1985 | 1.3 | 1.4 | 0.0 | 1.1 | 3.9 | ()*9 | 1.0 | 0.0 | 0.8 | 2.7 |
| | 1986 | 2.0 | 1.9 | 0.0 | 1.7 | 5*7 | 1.3 | 1.2 | 0.0 | 1.1 | 3.7 |
| | 1987 | 3.2 | 2.5 | 0.1 | 2.7 | 8.4 | 1.9 | 1.5 | 0.0 | 1.6 | 5. 1 |
| $\frac{0}{0}$ | 1988 | 4.9 | 3.3 | 0.1 | 4.2 | 12.5 | 2.7 | 1.9 | 0.1 | 2.4 | 7,0 |
| | 1989 | 7.5 | 4.4 | 0.2 | 6.6 | 18.7 | 3.9 | 2.3 | 0.1 | 3.4 | 9.7 |
| | 1990 | 11.6 | 5.9 | 0.3 | 10.2 | 28. 0 | 5.6 | 2.9 | 0.1 | 4.9 | 13.5 |
| | 1991 | 17.9 | 7.9 | 0.5 | 15.9 | 42.2 | 8.0 | 3*5 | O*2 | 7.1 | 18.9 |
| | 1992 | 27.7 | 10.5 | 0.9 | 24.7 | 63.8 | 11.5 | 4.4 | O*4 | 10.3 | 26.6 |
| | 1993 | 42.7 | 14.0 | 1.5 | 38.4 | 96. 7 | 16.6 | 5.4 | 0.6 | 14.9 | 37.5 |
| | 1994 | 65.9 | 18.7 | 2.6 | 59.7 | 147* 0 | 23.0 | 6.8 | 0.9 | 21.5 | 53.0 |
| | 1995 | 101.8 | 25.0 | 4.5 | 92.8 | 224.1 | 34.1 | 8.4 | 1.5 | 31.1 | 75.1 |
| | 1996 | 157.2 | 33.4 | 7.8 | 144.3 | 342.7 | 49.0 | 10.4 | 2.4 | 45.0 | 106.8 |
| | 1997 | 242.7 | 44.6 | 13.5 | 224.4 | 525.1 | 70.3 | 12.9 | 3*9 | 65.0 | 152.1 |
| | 1998 | 374.7 | 59.5 | 23.3 | 348.9 | 806.3 | 100.9 | 16.0 | 6.3 | 94*O | 217.2 |
| | 1999 | 578.5 | 79.3 | 40.4 | 542.4 | 1240.6 | 144.9 | 19.9 | 10.1 | 135.8 | 310.7 |
| | 2000 | 893.1 | 16-) $5 * 9$ | 69.9 | 843.4 | 1912.3 | 207.9 | 24.6 | 16.3 | 196.3 | 445.2 |

${ }^{1}$ The realvalues are in terms of 1980 dol lars.
by 1995, 51 percent by 1998, and 100 percent by 2000. This suggests that the I evel s of foreign harvesting. activity will be nai ntai ned near current I evels through the early 1990s.

I nci dental catch tends to be a function of di rected catch, therefore foreign incidental catch is projected to decrease very gradually until the mid 1990s. As the foreign groundfish fishery is replaced by the donestic fishery, donestic incidental catch will tend to increase; however, the donestic incidental catch is not expected to becone large enough with respect to projected directed catch to significantly affect donestic landings. This expectation is in part based on the ability of a managenent agency, such as the NPFMC, to limit incidental catch and its propensity to do so wen incidental catch significantly affects the resources available to a di rected fishery.

Processi ng,

Thi s section contains projections of seafood processing plant empl oyment and wages by census di vision. The projections are based on the 1978 harvest for the adjacent managenent area(s), the 1978 empl oyment and wage statistics for manuf acturing, and the projected harvests for the adjacent managenent area(s). The 1978 statistics provided the nost current measures of the rel ationships between harvest levels and processing empl oynent available when the empl oynent projections were made. Tho sets of projections are presented for the traditional fisheries and a separate set of projections is presented for the groundfish industry.

The two sets of projections for the traditional fisheries are referred to as the high and low projections. The forner are based on the assumption that labor requi renents per unit of fish processed will not change, arid the latter are based on the assumption that per unit labor requirenents decrease at an annual rate of 2 percent. Projections have not been made of processing plant water and el ectric power requi rements because processing plants often provide their own sources of water and el ectric power, because the requi rements are typi cally not expected to exceed historical levels, and because the rates of change for these inputs are expected to parallel those for I abor.

A nore det ai led di scussi on of the method used to project empl oynent and nages appears in Chapter II. The census areas of Vestern Alaska are depi cted in Fi gure 4. 1.

ALEUTIAN I SLANDS CENSUS DI V SI ON

The management areas adj acent to the Aleutian Islands Census Di vi si on consi st of the Peni nsul a, Eastern Aleutians, Vestern Aleutians, and the Bering Sea shellfish management areas; the Chignik and Peni nsula sal mon nanagenent areas, and the Chirikof, Shumagin, Aleutian, and Bering Sea hal ibut and groundfish managenent areas. Although the harvests from these management areas are not excl usi vely landed and processed in the Al eutian Islands Census Division, processing activities in this census di visi on are projected to change proportionatel y with the harvest from these management areas.

Fi gure 4. 1 : Alaska Census Di vi si ons

The hi gh projections indi cate that annual empl oyment willincrease from 1, 820 man years in 1980 to 2,188 man years in 2000 and that annual real uages will increase from $\$ 30.7 \mathrm{milli}$ on to $\$ 40.8 \mathrm{milli}$ on in the processing sect or of the traditional fisheries (see Table 4. 107). The Iow projections call for empl oyment to decrease from 1, 748 in 1980 to 1, 403 in 2000 and for real wages to decrease from $\$ 29.5 \mathrm{milli}$ on to $\$ 26.2$ million. Projections of the cumlative and annual percentage changes in projected empl oyment and wages appear in Tables 4.108 and 4. 109.

The donestic groundfish industry is al so projected to generate significant employment in the Aleutian Island Census Division because the onshore processing and support activities associ ated with the Western Al aska groundfish harvest are expected to be concentrated in this area. The reasons for expecting this incl ude the following: processing activity of the Aleutian and Bering Sea shellfish fisheries, which have fishing boats and fishing grounds similar to those to be utilized in the groundfish fishery, is heavily concentratedinthis area; with the exception of this area, there are few deep water harbors in the general proximity of the major groundfish fishing grounds; and the State of Alaskahas identified this area a one in which to concentrate its groundfish devel opment efforts.

The projections for 2000 indicate that the Bering Sea and Chirikof/ Shumagin groundfish harvests will result in 20 onshore processing plants, whi ch will empl oy 8, 206 indi vi dual s and pay real wages of $\$ 95$ million; and they will result in a fleet of catcher/processors which will employ

Table 4. 107
Al eutian Islands Census Division Proiected Processing PI ant Employment and Waqes

1980-2000 " "

| Year | Total Harvest (1,000 Pounds) | High Projections | | | Low Projections | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Wages | | | VAges | | |
| | | Man Years | N O m i | n Reall | Man Years | Nomi nal | Real |
| 1980 | 328563 | 1820 | 30727?88 | 30727288 | 1748 | 29510487 | 295104137 |
| 1981 | 329898 | 1827 | 33351 ?49 | 31007112 | 1720 | 31389928 | 29183645 |
| 1982 | 331324 | 1835 | 3620月519 | 31297467 | 1693 | 33397505 | 288(57787 |
| 1983 | 332848 | 1843 | 39321391 | 31599231 | 1666 | 35543422 | 28563201 |
| 1984 | 334477 | 1852 | 42714549 | 31913371 | 1641 | 37838357 | 28270216 |
| 1985 | 3362?3 | 1867 ? | 46415377 | 32240959 | 1617 | 40294373 | 27989199 |
| 1986 | 338360 | 1874 | 50494012 | 32608825 | 1594 | 42958437 | 27742382 |
| 1987 | 340661 | 1887 | 54955083 | 32995321 | 1573 | 45818676 | 27509774 |
| 1988 | 343138 | 1900 | 59838538 | 33402170 | 1553 | 48892441 | 27292004 |
| 1989 | 345810 | 1915 | 65189179 | 33831280 | 1534 | 52199017 | 27089765 |
| 1990 | 348695 | 1931 | 71(-)57359 | 34284766 | 1515 | 55759896 | 26903828 |
| 1971 | 351813 | 1948 | 77499[100 | 34764976 | 1498 | 59599079 | 26735043 |
| 1992 | 355186 | 1967 | 84580528 | 35274507 | 1483 | 63743430 | 26584347 |
| 1993 | 358839 | 1987 | 92371999 | 35816250 | 1468 | 6R223101 | 26452774 |
| 1994 | 362800 | 2009 | 100956380 | 36393411 | 1454 | 73071996 | 26341467 |
| 1995 | 367100 | 2033 | 110427110 | 37009558 | 1442 | 78328346 | 26251683 |
| 1996 | 371"/71 | 2057 | 120890640 | 37668655 | 1431 | 84035353 | 26184811 |
| 1997 | 376.851 | 2087 | 13?468620 | 38375111 | 1422 | 90241941 | 26142376 |
| 1998 | 382382 | 2118 | 145300330 | 39133838 | 1414 | 97003655 | 26126061 |
| 1999 | 3884410 | 2151 | 15954569(-1 | 39950-307 | 1407 | 104383690 | 26137719 |
| 2000 | 394986 | 2188 | 175388690 | 40830608 | 1403 | 112454080 | 26179308 |

[^47]Table 4.108
Aleutian Islands Census Division
Processing Pl ant Empl oynent and Vhages Projected Cuml ative Percentage Change from 1978 Levels

1980-2000

| | | | Projecti | | | Project | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | Year | Man Years | Nomi nal | Real | Man Years | Nomi nal | Real |
| | 1980 | 12.3 | 31.2 | 6.8 | 7.8 | 26.0 | 2.6 |
| | 1981 | 12.7 | 42.4 | 7.8 | 6.1 | 34.0 | 1.4 |
| | 198? | 13.2 | 54.6 | 8.8 | 4.4 | 42.6 | 0.3 |
| | 1943 | 13.7 | 67.9 | 9.8 | 2.8 | 51.7 | -0.7 |
| | 1984 | 14.3 | 82.4 | 10.9 | 1.2 | 61.5 | -1.8 |
| | 1985 | 14.9 | 98.? | 12.0 | -0.3 | 72.0 | -2.7 |
| | 1986 | 15.6 | 115.6 | 13.3 | -1.6 | 83.4 | -3.6 |
| | 1987 | 16.4 | 134.6 | 14.7 | -3*0 | 95.6 | -4*4 |
| N | 1988 | 17.2 | 155.5 | 16.1 | -4.2 | 108.7 | -5.2 |
| | 1989 | 18.2 | 178.3 | 17.6 | -5.4 | 122.8 | -5.9 |
| | 1990 | 19.1 | 203.4 | 19.1 | -6.5 | 138.1 | -6. 5 |
| | 1991 | 20.2 | 230.9 | 20.8 | -7.6 | 154.4 | -7.1 |
| | 1992 | 21.4 | 26.1 .1 | 22.6 | -8. 5 | 172.1 | -7.6 |
| | 1993 | 22.6 | 294.4 | 24.5 | -9.4 | 191.3 | -8.1 |
| | 1994 | 24.0 | 331.0 | 26.5 | -10.3 | 212.0 | -8.5 |
| | 1995 | 25.4 | 371.4 | 28.6 | -11.0 | 234.4 | -8.8 |
| | 1996 | 27.0 | 416.1 | 30.9 | -11.7 | 258.8 | -9.0 |
| | 1997 | 28.8 | 465.5 | 33.4 | -12.3 | 285.3 | -9.2 |
| | 1908 | 30.6 | 520.3 | 36.0 | -12.8 | 314.1 | -9.2 |
| | 1909 | 32.7 | 581.1 | 38.8 | -13.2 | 345.6 | -9.2 |
| | 2000 | 35.0 | 648.8 | 41.9 | -13*5 | 380.1 | -9*O |

Table 4.109
Aleutian Islands Census Division Processing Pl ant Enpl oynent and Wages Projected Annual Percentage Change 1980-2000

| | | | j ecti | | | Proj ect | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | Year | Man Years | Nomi nal | $\underline{\text { Rea } 1}$ | Man Years | Nomi nal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1981 | 0.4 | 8.5 | 0.9 | -1.6 | 6.4 | -1.1 |
| | 1982 | 0.4 | 8.6 | 0.9 | -1.6 | 6.4 | -1*1 |
| | 1983 | 0.5 | 8.6 | 1,0 | -1. 5 | 6.4 | -1.1 |
| | 19×4 | O*5 | 8.6 | 1.0 | -1. 5 | 6*5 | -1.0 |
| | 19185 | (). 5 | 8.7 | 1.0 | -1.5 | 6.5 | -1.0 |
| | 1986 | 6-). 6 | 8.8 | 1.1 | -1*4 | 6.6 | -0.9 |
| | 1987 | (-). ${ }^{7}$ | 8.8 | 1.2 | -1.3 | 6.7 | -0.0 |
| $\underset{\sim}{\sim}$ | 19888 | (). 7 | 8.9 | 1.2 | -1.3 | 6.7 | -O*U |
| | 1989 | 0.9 | 8.7 | 1, 3 | -1.2 | 6.8 | -0.7 |
| | 1990 | ()* \boldsymbol{B} | 9.(-) | 1.3 | -102 | 6*8 | -0.7 |
| | 1991 | 0.9 | 9.1 | 1.4 | -1.1 | 6*9 | -0.6 |
| | 1992 | 1.10 | 3.1 | 1.5 | -1.1 | 7.0 | -0.6 |
| | 1993 | 1.0 | 9.2 | 1.5 | -1.0 | 7.0 | -0.5 |
| | 1994 | 1.1 | 9.3 | 1.6 | -0.9 | 7.1 | - 0 |
| | 1975 | 1.? | 9.4 | 1*-? | -0.8 | 7. 2 | -0.3 |
| | 1996 | 1.3 | 9.5 | 1.8 | -0.8 | 7.3 | -0.3 |
| | 1997 | 1.4 | 9.6 | 1.9 | -0.7 | 7.4 | -0.2 |
| | 1998 | 1.5 | 9.7 | 2.0 | -0.6 | 7*5 | -0.1 |
| | 1999 | 1.6 | 9.8 | 2.1 | -0. 5 | 7.6 | 0.0 |
| | 2000 | 1.7 | 9.9 | ?. 2 | -0.3 | 7. 7 | 0.2 |

3, 554 indi vi dual s who will recei ve real wages of $\$ 93.3 \mathrm{mili}$ (Tabl es 4.110 and 4. 111). The Aleutian Islands Census Di vision resident I abor force is not large enough to support this level of activity. The urban areas of \mathbf{A} aska and the Pacific Northwest are expected to be primary sources of I abor for both onshore and offshore processing.

BRISTOL BAY CENSUS DI Y SI ONS

The Bristol Bay sal non and herring managenent areas are adj acent to the Bristol Bay and Bristol Bay Borough Census Divisions, and the harvests fromthese nanagenent areas are the princi pal determinant of processing activity in these census divisions. Processing activity in this area is al nost excl usi vely limited to sal non and herring. The high projections indicate that empl oyment will increase from 212 man years in 1980 to 308 man years in 2000, and that real hages will ncrease from $\$ 5.5 \mathrm{mili}$ on to $\$ 8.9 \mathrm{milli}$ on (see Table 4. 112). The Iow projections cal I for empl oyment to decrease from 203 in 1980 to 197 n 2000 and for real uages to increase from $\$ 5.3 \mathrm{milli}$ on to $\$ 5.7 \mathrm{mili}$ on. The projected cumul ative and annual percentage changes in empl oynent and wages are presented in Tables 4.113 and 4.114.

These projections are based on the 1978 and projected sal non harvests in Bristol Bay and on 1978 empl oyment and wage statistics. The herring harvest for 1978 and the herring projections are not di rectly used because of the great uncertainty associ ated with the herring fishery. However, si nce the herring fishery was active in 1978, the projections

Table 4. 110
Projected Bering Sea Groundfish Processing Activity Inputs and Harvesting Empl oyment

1980-2000

| Year | Metric Tons of Groundfish | Nunber of | | | | | | Real Wages ($\$ 1,000)^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | Catc | | | | | |
| | | Proces sing Pl ants | Fillet Li nes | Processing
 Plant
 Enpl oyees | Trawler Fishermen | Proc. Fishermen | Total Empl oyees | $\begin{aligned} & \text { Proces- } \\ & \text { sing } \\ & \text { Pl ants } \end{aligned}$ | Traw ers | Cat cher/
 Processors | rs Total |
| 1980 | 2409 | 0.0 | 0.3 | 9.0 | 2.7 | 4.3 | 16 | 94 | 87 | 102 | 283 |
| 1981 | 3372 | 0.0 | 0.4 | 12.6 | 3.7 | 6.0 | 22 | 132 | 122 | 143 | 398 |
| 1982 | 4721 | 0.0 | 0.5 | 17.6 | 5.2 | 8.3 | 31 | 186 | 172 | 200 | 559 |
| 1983 | 6609 | 0.1 | 0.7 | 24.7 | 7.3 | 1106 | 44 | 262 | 242 | 281 | 785 |
| 1984 | 9252 | 0.1 | 1*O | 34.5 | 10.3 | 16. 2 | 61 | 369 | 340 | 393 | 1103 |
| 1985 | 12952 | 0.1 | 1.4 | 48.4 | 14.4 | 22.6 | 85 | 519 | 479 | 551 | 1549 |
| 1986 | 18132 | 0.2 | 2.0 | 67.7 | 20.1 | 31.5 | 119 | 731 | 674 | 772 | 2177 |
| 1987 | 25385 | 0.2 | 2.8 | 94.8 | 28.2 | 43.9 | 167 | 1028 | 948 | 1082 | 3058 |
| 1988 | 35537 | 0.3 | 3.9 | 132.7 | 39.5 | 6102 | 233 | 1447 | 1334 | 1515 | 4296 |
| 1989 | 49751 | 0.5 | 5.5 | 185.7 | 55.3 | 85.4 | 326 | 2036 | 1878 | 2122 | 6035 |
| 1990 | 69649 | 0.6 | 7.7 | 260.0 | 77.4 | 118.9 | 456 | 2865 | 2642 | 2971 | 8478 |
| 1991 | 975(-)6 | (). 9 | 10.8 | 364.0 | 108.3 | 165.7 | 638 | 4031 | 3718 | 4159 | 11908 |
| 1992 | 136504 | 1.3 | 15.2 | 509.6 | 151.7 | 230.8 | 892 | 5672 | 5231 | 5822 | 16725 |
| 1993 | 191100 | 1.8 | 21.2 | 713.5 | 212.3 | 321.4 | 1247 | 7982 | 7361 | 8148 | 23491 |
| 1994 | 267532 | 2.5 | 29.7 | 998.8 | 297.3 | 447.5 | 1744 | 11231 | 10358 | 11401 | 32990 |
| 1995 | 374533 | 3.5 | 41.6 | 1398.3 | 416.2 | 623.1 | 2438 | 15804 | $1457{ }^{\text {t }}$ | 15951 | 46330 |
| 1996 | 524331 | 4.9 | 58.3 | 1957.6 | 502.4 | 867.3 | 3407 | 22238 | 20509 | 22313 | 65059 |
| 1997 | 734041 | 6.8 | 81.6 | 2740.5 | 815.61 | 1207.0 | 4763 | 31291 | 28858 | 31206 | 91355 |
| 1998 | 1027627 | 9.5 | 114.2 | 3836.6 | 1141.81 | 1679.6 | 6658 | 44030 | 40607 | 436351 | 128272 |
| 1999 | 1438635 | 13.3 | 159.8 | 5371.11 | 1598.5 | 2336.7 | 9306 | 61955 | 57138 | 610021 | 180096 |
| ? 000 | 2014029 | 18.6 | 223,8 | 7519.42 | 2237.8 | 3250.2 | 13007 | 87178 | 80400 | 85?64 2 | 252843 |

[^48]Table 4. 111
FWjetted Chirikof/Shumagin Groundfish Processing Activity Inputs and Harvesting Empl oyment

1980-2000

| | | | | | Numbe | er of | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Number | er of | Catch/ | | | 1 Wages | \$1,000) ${ }^{1}$ | |
| | Year | Metric
 Tons of Groundfish | $\begin{aligned} & \text { Proces- } \\ & \text { sing } \\ & \text { Pl ants } \end{aligned}$ | Fillet Lines | Processing Plant Empl oyees | Traw er Fishermen | Proc. Fi sher nen | Total Empl oyees | Processing Pl ants | Trawlers | Catcher/ Processors | Total |
| | 1980 | 220 | 0.0 | 0.0 | 0.8 | 0.2 | 0.4 | 1 | 9 | 8 | 9 | 26 |
| | 1981 | 1308 | O* | $\mathrm{O}^{*} \mathrm{O}$ | 1.2 | 0.3 | 0.6 | 2 | 12 | 11 | 13 | 37 |
| | 1982 | 432 | 0.0 | 0.0 | 1.6 | 0,5 | 0.8 | 3 | 17 | 16 | 19 | 51 |
| | 1983 | 604 | 0.0 | 0.1 | 2.3 | 0.7 | 1.1 | 4 | 24 | 22 | 26 | 72 |
| | 1984 | 846 | 0.0 | 0.1 | 3.2 | 0.9 | 1.5 | 6 | 34 | 31 | 37 | 101 |
| | 1985 | 1184 | 0.0 | 0.1 | 4*4 | 1.3 | 2.1 | 8 | 47 | 44 | 51 | 142 |
| | 1986 | 1657 | 0.0 | 0.2 | 6.2 | 1.8 | 2.9 | 11 | 67 | 62 | 72 | 200 |
| | 1987 | 2320 | 0.0 | 0.3 | 8.7 | 2.6 | 4.1 | 15 | 94 | 87 | 101 | 281 |
| N | 1988 | 3248 | 0.0 | 0.4 | 12.1 | 3.6 | 5.7 | 21 | 132 | 122 | 141 | 395 |
| | 1989 | 4548 | 0.0 | 0.5 | 17.0 | 5.1 | 7.9 | 30 | 186 | 172 | 198 | 555 |
| | 1990 | 6367 | 0.1 | 0.7 | 23.8 | 7.1 | 11.1 | 42 | 262 | 242 | 277 | 780 |
| | 1991 | 8913 | 0.1 | 1.0 | 33.3 | 9*9 | 15.4 | 59 | 368 | 340 | 388 | 1096 |
| | 1992 | 12478 | 0.1 | 1.4 | 46.6 | 13.9 | 21.5 | A2 | 519 | 478 | 543 | 1540 |
| | 1993 | 17468 | 0.2 | 1.9 | 65.2 | 19.4 | 30.0 | 115 | 730 | 673 | 761 | 2163 |
| | 1994 | 24455 | 0.2 | 2.7 | 91.3 | 27.2 | 41.8 | 160 | 1027 | 947 | 1065 | 3039 |
| | 1995 | 34236 | 0.3 | 3.8 | 127.8 | 38.0 | 58.2 | 224 | 1445 | 1332 | 1491 | 4268 |
| | 1996 | 47929 | 0.4 | 5.3 | 178.9 | 53.3 | 81.1 | 313 | 2033 | 1875 | 2087 | 5995 |
| | 1997 | 67099 | 0.6 | 7.5 | 250.5 | 74.6 | 112.9 | 438 | 2860 | 2638 | 2921 | 8419 |
| | 1998 | 93936 | (). 9 | 10.4 | 350.7 | 104.4 | 157.2 | 612 | 4025 | 3712 | 4088 | 11824 |
| | 1999 | 131506 | 1.2 | 14.6 | 491.0 | 146.1 | 218.9 | 856 | 5663 | 5223 | 5719 | 16606 |
| | 2000 | 184103 | 1.7 | 20.5 | 687.3 | 204.6 | 304,7 | 1197 | 7969 | 7349 | 8000 | 23319 |

$1_{\text {Real values are in terns of }} \mathbf{1 9 8 0}$ dollars.

Table 4.112
Bristol Bay Census Di vi si ons
Projected Process ng Pl ant Empl oyment and Wages
1980-2000

| | | | | gh Projec i | | Low | Projections | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Total Harvest | | Wi ges | | | | |
| | Year | (1,000 Pounds) | Man Years | Nomi nal | Real | Man Years | Nomi nal | Real |
| | 1980 | 54242 | 212 | 5513614 | 5513614 | 203 | 5295275 | 5295275 |
| | 1981 | 55132 | 215 | 6057970 | 5632177 | 202 | 5701712 | 5300960 |
| | 1982 | 56038 | 219 | 6656294 | 5753484 | 202 | 6139554 | 5306831 |
| | 1983 | 56961 | 222 | 7313958 | 5877601 | 201 | 6611239 | 5312886 |
| | 1984 | 57901 | 226 | 8036866 | 6004593 | 200 | 7119396 | 5319123 |
| | 1985 | 58.858 | 230 | 8831513 | 6134528 | 199 | 7666862 | 5325541 |
| | 1986 | 60046 | 234 | 9739513 | 6289738 | 199 | 8286018 | 5351076 |
| | 1987 | 61216 | 239 | 10733569 | 6444491 | 199 | 8949089 | 5373080 |
| $\underset{\sim}{\square}$ | 1988 | 62411 | 243 | 11829541 | 6603309 | 199 | 9665596 | 5395384 |
| | 1989 | 63632 | 248 | 13037918 | 6766299 | 199 | 10439870 | 5417987 |
| | 1990 | 64879 | 253 | 14370271 | 6933573 | 199 | 11276592 | 5440890 |
| | 1991 | 66154 | 25 A | 15839365 | 7105246 | 198 | 12180826 | 5464093 |
| | 1992 | 67456 | 263 | 17459284 | 72131435 | 198 | 13158048 | 5487595 |
| | 1993 | 68785 | 268 | 1?245565 | 746?261 | 198 | 14214179 | 5511395 |
| | 1994 | 70144 | 274 | 21215352" | 7647848 | 198 | 15355623 | 5535494 |
| | 1995 | 71532 | 279 | 23387561 | 7838323 | 198 | 16589305 | 5559892 |
| | 1996 | 72950 | 285 | 25783060 | 8033816 | 198 | 17922715 | 5584589 |
| | 1097 | 74398 | 290 | 28424880 | 8234463 | 198 | 19363954 | 5609584 |
| | 1998 | 75878 | 296 | 31338426 | 844(-)400 | 198 | 20921782 | 5634878 |
| | 1999 | 77389 | 302 | 34551736 | 8651769 | 198 | 22605672 | 5660470 |
| | 2000 | 78934 | 309 | 38095746 | 8868716 | 197 | 24425874 | 5686360 |

[^49]Table 4.113
Bristol Bay Census Divisions
Processing Plant Empl oynent and Wages
Projected Cumul ative Percentage Change from 1978 Levels
1980-2000

| | | High Projections | | | Low Projections | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Vhges | | | Wages | |
| | Year | Man Years | Nominal | Reat | Man Years | Nomi nal | Reat |
| | 1980 | -40.9 | -30.9 | -43.8 | -43.2 | -33.7 | -46.0 |
| | 1981 | -39.9 | -24.1 | -42.6 | -43*5 | -28.6 | -46.0 |
| | 1982 | -38.9 | -16.6 | -41.3 | -43.7 | -23.1 | -45.9 |
| | 1983 | -37.9 | -8.4 | -40.1 | -43.9 | -17.2 | -45.8 |
| | 1984 | -36.9 | (-). 7 | -38.8 | -44* ${ }^{\text {d }}$ | -10.8 | -45.8 |
| | 1945 | -35.9 | 10.6 | -37.5 | -44.3 | .-4.0 | -45.7 |
| | 1986 | -34.6 | 22.0 | -35,9 | -44.3 | 3.8 | -45*4 |
| | 1987 | -33.3 | 34*4 | -34.3 | -44*4 | 12.1 | -45.2 |
| - | 1988 | -32.0 | 48.2 | -32.7 | -44.4 | 21.1 | -45*O |
| | 1989 | -30.7 | 63.3 | -31.0 | -44*5 | 30.8 | -44.8 |
| | 1990 | -29.3 | 80.0 | --29.3 | -44.5 | $41 * 3$ | -44.5 |
| | 1991 | -27.9 | 98.4 | -27.6 | -44.6 | 52.6 | -44.3 |
| | 1902 | -26.5 | 118.7 | -25.8 | -44.6 | 64.8 | -44.(1 |
| | 1993 | -25.1 | 141.1 | -23.9 | -44.6 | 78.0 | -43.8 |
| | 1994 | -23.6 | 165.7 | -22*0 | -44.7 | 92.3 | -43.6 |
| | 1995 | -72.1 | 193.0 | -20.1 | -44.7 | 107.8 | -43.3 |
| | 1996 | -20.5 | 223.0 | -18.1 | -44.7 | 124.5 | -43.1 |
| | 1997 | -18.9 | 256.0 | -16.0 | -44.8 | 142.6 | -42.8 |
| | 1908 | -17.3 | 292.5 | -13.9 | -44*8 | 162.1 | -42.5 |
| | 1999 | -15.7 | 732.8 | -11.8 | -44.8 | 183.2 | -42.3 |
| | 2000 | -14.0 | 377.? | -9.6 | -44.9 | 206.0 | -42.0 |

Tab' e 4.14
${ }^{\text {Er }}$ stol Bay Census Divis ons Processing Plant Employment and Wages Projected Annual Percentage Change 1980-2000

High Projections

| Man Years | Wages | |
| :---: | :---: | :---: |
| | Nominal | Real |
| 0 | 0 | 0 |
| 1.6 | 9.9 | 2.2 |
| 1.6 | 9.9 | 2.2 |
| 1.6 | 9.9 | 2.2 |
| 1.7 | 9.9 | 2.2 |
| 1.7 | 9.9 | 2.2 |
| 2.0 | 10.3 | 2.5 |
| 1.9 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |

| Low Projections | | |
| :---: | :---: | :---: |
| Man Years | Wages | |
| | Nominal | ReaT |
| 0 | 0 | 0 |
| -0.4 | 7.7 | 0.1 |
| -0.4 | 7.7 | 0.1 |
| -0.4 | 7.7 | 0.1 |
| -0.4 | 7.7 | 0.1 |
| $=0.4$ | 7.7 | 0.1 |
| -0.0 | 8.1 | 0.5 |
| _0. 1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| _0.1 | 8.0 | 0.4 |
| $\bigcirc 0.1$ | 8.0 | 0.4 |
| 0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.5 |
| -0.0 | 8.0 | 0.5 |
| -0.0 | 8.1 | 0.5 |

implicitly allow for processing activity associ ated with the herring fishery and assume that such activities will increase proportionately with the salmon harvest.

BETHEL CENSUS DI VISIN

The Kuskokwim sal non and herring managenent areas are adj acent to the Bethel Census Division, and the harvest from these managenent areas is a principal determinant of processing acti vity withinthis census di vision. The hi gh projections indicate that empl oynent will increase from 49 nan years in 1980 to $\mathbf{7 2}$ man years in 2000 and that real wages will increase from $\mathbf{\$ 0 . 4} \mathbf{~ m i l l i o n ~ t o ~} \mathbf{\$ 0 . 6} \mathbf{m i l l i}$ (see Table 4.115). The Iow projections call for empl oyment to renai n at approxi mately 47 nan years from 1980 to 2000 and for real wages to increase from \$0. 39 million to $\$ 0.42$ million. The projected cuml ative and annual percentage rates of change are presented in Tables 4.116 and 4. 117. These projections are similar to the Bristol Bay projections in that they are based on the 1978 and proj ected salmon harvests.

UADE HAMPTON CENSUS DI V SI ON

The Yukon Managenent Area commercial sal mon harvest has been a princi pal determinant of processing activity in the Vade Hampton Census Division. Although processing activity may result from the herring and groundfish fisheries which may devel op in the areas of the Bering Sea adjacent to this census division, the nature of that activity is too speculative

Table 4.115
Bethel Census Di visi on
Projected Processing Plant Empl oynent and Whges 1980-2000

| | | | | gh Project | | Low | Projections | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Total Harvest | | | | | | ges |
| | Year | (1,000 Pounds) | Man Years | Nomi nal | Real | Man Years | N 0 m i | n Beal |
| | 1980 | 3157 | 49 | 403150 | 403150 | 47 | 387185 | 387185 |
| | 1981 | 3218 | 50 | 444250 | 413025 | 47 | 418124 | 388736 |
| | 1982 | 3280 | 51 | 489569 | 423167 | 47 | 4S1562 | 390316 |
| | 1983 | 3344 | 52 | 539542 | 433584 | 47 | 487704 | 391926 |
| | 1984 | 3410 | 53 | 594653 | 444284 | 47 | 526769 | 393565 |
| | 1985 | 3476 | 54 | 655431 | 455274 | 47 | 568996 | 395235 |
| | 1986 | 3545 | 55 | 7?2463 | 466564 | 47 | 614645 | 396935 |
| | 1987 | 3615 | 56 | 796398 | 478162 | 47 | 663995 | 398666 |
| $\stackrel{\stackrel{\sim}{-}}{\sim}$ | 1988 | 3686 | 57 | 877951 | 490077 | 47 | 717350 | 400428 |
| | 1989 | 3760 | 58 | 967911 | 502318 | 46 | 775037 | 402222 |
| | 1990 | 3834 | 59 | 1067152 | 514895 | 46 | 837412 | 404046 |
| | 1991 | 3911 | 60 | 1176636 | 527817 | 46 | 9(34859 | 405903 |
| | 1992 | 3949 | 62 | 1297428 | 541095 | 46 | 977796 | 407792 |
| | 1993 | 4070 | 63 | 1430702 | 554739 | 46 | 1056672 | 409713 |
| | 1994 | 4152 | 64 | 1577758 | 568760 | 46 | 1141978 | 411667 |
| | 1995 | 4236 | 65 | 1740029 | 583169 | 46 | 1234240 | 413655 |
| | 1996 | 4321 | 67 | 1919099 | 597977 | 46 | 1334034 | 415675 |
| | 1997 | 4409 | 68 | 2116719 | 613197 | 46 | 1441978 | 417730 |
| | 1908 | 449 C | 69 | 2334821 | 628839 | 46 | 1558745 | 419818 |
| | 1999 | 4591 | 71 | 2575542 | 644917 | 46 | 1685063 | 421941 |
| | 2000 | 4685 | 72 | 2841242 | 661443 | 46 | 1821721 | 424098 |

[^50]Table 4.116
Bethel Census Division
Processing Plant Empl oyment and Wages
Projected Cuml ative Percentage Change from 1978 Level s
1980-2000

| | | High Projections | | | Low Projections | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Wages | | | | Wages | |
| | Year | Nan Years | Nominal | Real | Man Years | Nominal | Rea 1 |
| | 1980 | -23.8 | -11.0 | -27.5 | -26.8 | -14.5 | -30.4 |
| | 1981 | -23.4 | -1.9 | -25.8 | -26.9 | -7.7 | -30.1 |
| | 1982 | -20.8 | 8.1 | -23.9 | -27.0 | -0*3 | -29.9 |
| | 1983 | -19.3 | 19.1 | -22.1 | -27.1 | 7.7 | -29.6 |
| | 1984 | -17,7 | 31.3 | -20. 2 | -27.1 | 16.3 | -29.3 |
| | 1985 | -16.1 | 44.7 | -18.2 | -27.2 | 25.6 | -29.0 |
| | 1986 | -14.5 | 59.5 | -16.1 | -27.? | 35.7 | -28.7 |
| | 1987 | -12.8 | 75.8 | -14.1 | -27.3 | 46.6 | -28.4 |
| $\underset{\sim}{\sim}$ | 1988 | -11.0 | 93.8 | -11.9 | -27.3 | 58.4 | -28.0 |
| | 1989 | -9.3 | 113.7 | -9*7 | -27.4 | 71.1 | -27.7 |
| | 1990 | -7.5 | 135.6 | -7*5 | -27,4 | 84.9 | -27.4 |
| | 1991 | -5.6 | 159.8 | -5.1 | -27.4 | 99.8 | -27.1 |
| | 1992 | -3.7 | 186.5 | -2.8 | -27.4 | 115.9 | -26.7 |
| | 1993 | -1. ${ }^{\text {A }}$ | 215.9 | -0, 3 | -27.5 | 133.3 | -26.4 |
| | 1994 | 0.2 | 248.3 | 2.2 | -27.5 | 152.1 | -26.0 |
| | 1995 | 2..? | 284.? | 4.8 | -27.5 | 172.5 | -25.7 |
| | 1996 | 4.3 | 32.3.7 | 7.5 | -27.5 | 194.5 | -25.3 |
| | 1997 | 6.4 | 367.3 | 10.2 | -27.5 | 218.4 | -24.9 |
| | 1998 | 8.6 | 415.5 | 13.0 | $-27 * 5$ | 244.1 | -24.6 |
| | 1999 | 10.8 | 468.6 | 15.9 | -27.5 | 272.0 | -24.2 |
| | 2000 | 13.1 | 527.3 | 18.9 | -27.5 | 302.2 | -23.8 |

Table 4.117
Bethel Census Divis on
Processing Plant Employment and Wages Projected Annual Percentage Change 1980-2000
High Projections \qquad

| Man Years | Wages | |
| :---: | :---: | :---: |
| | Nominal | Real |
| 0 | 0 | 0 |
| 1.9 | 10.2 | 2.4 |
| 1.9 | 10.2 | 2.5 |
| 1.9 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.2 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.5 |
| 2.0 | 10.3 | 2.6 |
| 2.0 | 10.3 | 2.6 |
| 2. | 10.3 | 2.6 |

| Low Projections | | |
| :---: | :---: | :---: |
| | Hages | |
| Man Years | Nominal | Real |
| 0 | 0 | 0 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -1 | 8.0 | 0.4 |
| -0.1 | 8.0 | 0.4 |
| -0 | 8.0 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| -0.0 | 8.1 | 0.5 |
| $0 \cdot 0$ | 8.1 | 0.5 |
| 0.0 | 8.1 | 0.5 |

to be incl uded in these projections. The projections are therefore based on the expected commercial salmon harvest.

The high projections indicate that empl oyment will increase from 69 man years in 1980 to 128 man years in 2000, and that real wages will increase from $\$ 0.8 \mathrm{milli}$ on to $\$ 1.6 \mathrm{milli}$ (see Table 4.118). The low projections call for employnent to increase from 66 in 1980 to 82 in 2000 and for real wages to increase from $\mathbf{\$ 0 . 7 \mathrm { milli }} \mathbf{~ o n ~ t o ~} \$ 1.0 \mathrm{million}$. Projections of the cumul ative and annual percentage changes in empl oyment and wages appear in Tables 4.119 and 4.120. It should be noted that al though part of the Yukon Managenent Area harvest occurs in and is processed in the Yukon/Koyukuk Census Division, harvesting and processing activities within the Wade Fampton Census Division are expected to increase proportionately with the total Yukon Managenent Area sal non harvest.

NOME CENSUS DIVSION

The processing activity in the None Census Division is primarily determined by the salmon and herring harvests in the Norton Sound Managenent Area. The summer king crab harvest from Norton Sound is not landed in the Nome Census Division and the winter king crab fishery has resulted in minimal processing activity.

The hi gh projections are that employnent will increase from 15 man years in 1980 to $\mathbf{2 0}$ man years in 2000, and that real wages will increase from $\$ 151,000$ to $\$ 223,000$ (see Table 4. 121). The Iow projections are that

Table 4. 113
Whde Hampton Census Di visi on
Projected Processi ing Pl ant Empl oynent and Viges
1980-2000

| Year | Total Harvest (1,000 Pounds) | High Projections | | | Low Projections | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Whas | | | | Whages | |
| | | Man Years | Nomi nal | Real | Man Years | Nomi nal | Reai |
| 1980 | 9025 | 69 | 758743 | 758743 | 66 | 728697 | 728697 |
| 1981 | 9540 | 73 | 866999 | 806061 | 69 | 816013 | 758658 |
| 1982 | 10087 | 77 | 990980 | 856571 | 71 | 914049 | 790074 |
| 1983 | 10669 | 82 | 1133002 | 910497 | 74 | 1024144 | 823017 |
| 1944 | 11287 | 86 | 1295726 | 968078 | 76 | 11470(39 | 857564 |
| 1985 | 11944 | 91 | 1482210 | 1029570 | 79 | 1286745 | 893796 |
| 1986 | 12314 | 94 | 1651927 | 1066/308 | 80 | 1405398 | 907600 |
| 1987 | 12583 | 96 | 1824841 | 1095644 | 80 | 1521457 | 913491 |
| 1988 | 12859 | 98 | 2015484 | 1125277 | 80 | 1647124 | 919433 |
| 1989 | 13141 | 100 | 2226960 | 1155727 | 80 | 1783197 | 925427 |
| 1990 | 13430 | 103 | 24601"73 | 1187(-)19 | 81 | 1930538 | 931474 |
| 1991 | 13724 | 105 | 2717846 | 1219175 | 81 | 2090094 | 937573 |
| 1992 | 14026 | 107 | 3002550 | 1252220 | 81 | 2262847 | 943726 |
| 1993 | 14334 | 110 | 3317123 | 1286179 | 81 | 2449925 | 949932 |
| 1904 | 14650 | 11 ? | 3664705 | 1321077 | 131 | 2652505 | 956192 |
| 1995 | 14972 | 114 | 4048763 | 1356940 | 01 | 2871876 | 962507 |
| 1996 | 15302 | 117 | 4473131 | 1393795 | 81 | 3109431 | 968876 |
| 1997 | 15639 | 120 | 4942044 | 1431671 | 81 | 3366681 | 975301 |
| 1978 | 15984 | 12? | 5460185 | 1470596 | 82 | 3645263 | 981781 |
| 1999 | 16.337 | 125 | 6032730 | 1510598 | 82 | 3946948 | 988317 |
| 2000 | 16,698 | 128 | 6665397 | 1551709 | 82 | 4273657 | 994910 |

${ }^{1}$ Real val ues are in terns of 1980 dollars.

Table 4.119
Wade Hampton Census Division Processing Plant Empl oyment and Wages
Projected Cumulative Percentage Change from 1978 Levels 1980-2000

| | | | Projecti | | | ojections | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | Year | Man Years | Nominal | Real | Man Years | Nomi nal | Real |
| | 1980 | -18.8 | -5.2 | -22.8 | -22.1 | -8.9 | -25.9 |
| | 1981 | -14.2 | 8.4 | -18.0 | -19.3 | 2.0 | -22.8 |
| | 1982 | -9.3 | 23.9 | -12.8 | -16.3 | 14.3 | -19.6 |
| | 1983 | -4.1 | 41.6 | -7.4 | -13.3 | 28.0 | -16.3 |
| | 1984 | 1.5 | 62.0 | -1.5 | -10.1 | 43.5 | -12.7 |
| | 1985 | 7.4 | 85.3 | 4.8 | -6.8 | 60.8 | -9.1 |
| | 1986 | 10.7 | 106.5 | 8.5 | -5.8 | 75.7 | -7.7 |
| | 1987 | 13.2 | 12 R .1 | 11.5 | -5*7 | 90.2 | -7.1 |
| ¢ | 1988. | 15.6 | 152.0 | 14.5 | -5.5 | 105.9 | -6.5 |
| | 1989 | 18.2 | 178.4 | 17.6 | -5.4 | 122.9 | -5.8 |
| | 1990 | 20.8 | 207.5 | 20.8 | -5.2 | 141.3 | -5,2 |
| | 1991 | 23.4 | 239.7 | 24.0 | -5.1 | 161.3 | -4.6 |
| | 1982 | 26.1 | 275.3 | 27.4 | -4.9 | 182.8 | -4.0 |
| | 1993 | 28.9 | 314.6 | 30.9 | -4-8 | 204.2 | -3, 3 |
| | 1994 | 31.7 | 358.1 | 34.4 | -4.6 | 231.6 | -2.7 |
| | 1985 | 34.6 | 406.1 | 38.1 | -4.5 | 259.0 | -2.1 |
| | 1996 | 37.6 | 459.1 | 41.8 | -4.3 | 288.7 | -1.4 |
| | 1997 | 40.6 | 517.7 | 45.7 | -4.2 | 320.8 | -0.8 |
| | 1998 | 43.7 | 582.5 | 49.6 | -4*O | 355.6 | -0.1 |
| | 1989 | 46.9 | 654.1 | 53.7 | - 3 * 9 | 393.4 | 0.6 |
| | 2000 | 50.2 | 733.7 | 57.9 | -3.7 | 434.2 | 1.2 |

Table 4. 120
Khde Hampton Census Division Processing Pl ant Enpl oyment and Whges Projected Annual Percentage Change 1980-2000

| | | | Hig | Projec | | | Proj ect | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | g | |
| | Year | Man Years | | Nomi nal | Rea T | Man Years | Nomi nal | | Real |
| | 1980 | 0 | | 0 | 0 | 0 | 0 | | 0 |
| | 1981 | 5.-? | | 14.3 | 6.2 | 3.6 | 12. 0 | | 4.1 |
| | 1982 | 5.7 | | 14.3 | 6.3 | 3.6 | 12.0 | | $4 \cdot 1$ |
| | 1943 | 5.8 | | 14.3 | 6.3 | 3. 6 | 12. 0 | | 4.2 |
| | 1984 | 5.8 | | 14.4 | 6.3 | 3. "? | 12. 1 | | 4.2 |
| | 1985 | 5.8 | | 14.4 | 6*4 | 3. 7 | 12. 1 | ' | 4, 2 |
| | 1986 | 3.1 | | 11.5 | 3.6 | 1.0 | 9. 2 | | 1. 5 |
| $\boldsymbol{\sim}$ | 1987 | 2.2 | | 10.5 | 2.7 | 0.1 | 8. 3 | | 0.6 |
| $\underset{\sim}{\omega}$ | 1988 | 2.2 | | 10.5 | 2.7 | 0.1 | 8.3 | | 0.7 |
| | 1989 | 2.2 | | 10.5 | 2.7 | $0^{*} 1$ | 8.3 | | 0,7 |
| | 1990 | .?. 2 | | 10.5 | 2.7 | 0. 2 | 8. 3 | | 0.7 |
| | 1991 | 2.2 | | 10.5 | 2.7 | $0^{*} 2$ | 8. 3 | | 0.7 |
| | 1992 | 2.? | | 10.5 | 2.7 | 0.2 | 8.3 | | $0^{*} 7$ |
| | 1993 | 2.2 | | 10.5 | 2.7 | 0.2 | 8. 3 | | 0.7 |
| | 1994 | 2 | ? | 10.5 | 2.7 | 0.2 | 8.3 | | 0,7 |
| | 1995 | 2.? | | 10.5 | 2.7 | 0.2 | 8. 3 | | 0.7 |
| | 1996 | 2.7 | | 10.5 | 2.7 | 0.2 | 8.3 | | 0.7 |
| | 1997 | 2.2 | | 10.5 | 2.? | 0.2 | 8. 3 | | 0.7 |
| | 1998 | ?. 2 | | 10.5 | 2.7 | 0.2 | 8.3 | | 0.7 |
| | 1999 | 2.2. | | 10.5 | 2.7 | 0. 2 | 8. 3 | | 0.7 |
| | 2000 | ?. 2 | | 10.5 | 2.7 | 0.2 | 8.3 | | 0.7 |

Table 4.121
Nome Census Division Projected Processi ng Plant Empl oynent and Wages 1980-2000

[^51]empl oyment will decrease from 15 to 13 , and that real wages will decrease from $\$ 145,000$ to $\$ 143,000$. The corresponding cumul ative and annual percentage changes appear in Tables 4. 122 and 4.123. The projections of processing activity are based on the projected sal non harvests as are the projections for the Bristol Bay, Bethel, Wide Hampton, and Kobuk Census Di vi si ons.

KOBUK CENSUS DIVSI ON

The Kotzebue Sound Management Area sal non harvest has been and is expected to continue to be, a naj or determinant of processing activity in the Kobuk Census Division. The annual sal mon harvest is projected to average 600 metric tons (1.3 milli on pounds) bet ween 1980 and 2000. The resulting hi gh projections are that employnent will remain stable at 6.5 nan years and that real wages will increase from $\$ 64,000$ to $\$ 71,000$ (see Table 4. 124). The Iow projections indicate that empl oynent will decrease from 6 in 1980 to 4 in 2000 and that real wages will decrease from $\$ 62,000$ to $\$ 45,000$. Projections of the cumul ative and annual rates of change in empl oyment and wages appear in Tables 4.125 and 4. 126.

The Feasi bility of the Non-OCS Projections

With the exception of the groundfish industry, nodest rates of grouth are projected for 1980 through 2000, and for many fisheries the peak projected levels of harvesting and processing are bel ow record level s. This suggests that for the traditional donestic fisheries the projected

Table 4.122
Nome Census Di vi si on
Processing Plant Empl oynent and Whges Projected Cuml ative Percentage Change from 1978 Levels 1980-2000

Table 4.123
Nome Census Division
Processing Plant Employment and Wages Projected Annual Percentage Change 1980-2000

| Year | | High Projections | | | Low Projections | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Wages | | | | Wages | |
| | | Man Years | Mominal | Real | Man Years | Nominal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1981 | 4.8 | 13.3 | 5.3 | 2.7 | 11.0 | 3.2 |
| | 1982 | 4.8 | 13.3 | 5.4 | 2.8 | 11.1 | 3.3 |
| | 1983 | 4.9 | 13.4 | 5.5 | 2.8 | 11.2 | 3.3 |
| | 1984 | 5.0 | 13.5 | 5.5 | 2.9 | 11.2 | 3.4 |
| | 1985 | 5.1 | 13.6 | 5.6 | 3.0 | 11.3 | 3.5 |
| | 1986 | 1.1 | 9.3 | 1.6 | -0.9 | 7.1 | -0.4 |
| | 1987 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.3 |
| 自 | 1988 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1989 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1990 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1991 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1992 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1993 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1994 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1995 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1996 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1997 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1998 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 1999 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |
| | 2000 | 0.3 | 8.4 | 0.8 | -1.7 | 6.2 | -1.2 |

Table 4.124
Kobuk Census Division
Projected Processing Plant Empl oynent and Wages 1980-2000

| | | | | h Project | | | W Projec | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Total Harvest | | | | | | |
| | Year | $\text { (} 1,000 \text { Pounds) }$ | Man Years | Nominal | $\underline{\text { Real }}$ | Man Years | Nomi nal | Real |
| | 1980 | 1320 | 6 | 64067 | 64067 | 6 | 61530 | 61530 |
| | 1981 1982 | 1320 1320 | 6 | 99857 | 64389 64712 | 6 6 | 65184 69055 | 60602 59688 |
| | 1983 | 1320 | 6 | 80931 | 65037 | h | 73155 | $5 \mathrm{F7日B}$ |
| | 1984 | 1320 | 6 | 87486 | 6536.4 | 6 | 77499 | 57902 |
| | 1985 | 1320 | 6 | 94572 | 65692 | 6 | 82101 | 57029 |
| | 1986 1987 | 1320 1320 | 6 6 | 102233 | 66022 | 6 | 86976 | 56169 |
| | 1987 1983 | 1320 | 6 | 110514 119465 | 66353 66696 | 5 | 921412 | 55322 |
| | 1989 | 1320 | 6 | 129142 | 67021 | 5 | 103408 | 53666 |
| N | 1990 | 1320 | 6 | 139603 | 67357 | 5 | 109548 | 52856 |
| | 1991 1992 | 1320 1320 | 6 | 150910 | 67696 | 5 | 116053 | 52059 |
| | 1943 | 1320 | 6 | 176348 | 68837 | 5 | 130245 | 50501 |
| | 1974 | 1320 | 6 | 190632 | 68720 | 5 | 137979 | 4974 -J |
| | 1995 | | 6 | 206073 | 69065 | 5 | 146172 | |
| | 1996 1997 | 1320 1320 | 6 | 222765 240809 | 69412 69761 | 4 | 154852 164347 | 48251 47523 |
| | 1994 | 1320 | 6 | 260315 | 70111 | 4 | 173788 | 46806 |
| | 1999 | 1320 | 6 | 2 Al 400 | 70463 | 4 | 184108 | 4610 |
| | 2000 | 1320 | 6 | 304194 | 70817 | 4 | 195040 | 45405 |

[^52]Tabl e 4.125
Kobuk Census Di vi si on Processing Plant Empl oynent and Viges Projected Cuml ative Percentage Change from 1978 Level s

1980-2000
High Projections

| | Year |
| :---: | :---: |
| | 1980 |
| | 1981 |
| | 1982 |
| | 1983 |
| | 1984 |
| | 1985 |
| | 1986 |
| \% | 1987 |
| ω | 1988 |
| | 1989 |
| | 1990 |
| | 1991 |
| | 1992 |
| | 1993 |
| | 1494 |
| | 1995 |
| | 1996 |
| | 1997 |
| | 1998 |
| | 1999 |
| | 2000 |

| High Projections | | | |
| :---: | :---: | :---: | :---: |
| | Wages | | |
| Man Years | Nomi nal | | Real |
| 30.7 | 52.7 | | 24.3 |
| 30.7 | 65.1 | | 24.9 |
| 30.7 | 78.5 | | 25.6 |
| 30.7 | 92.9 | | 26.2 |
| 30.7 | 108.5 | | 26.8 |
| 30.7 | 125.4 | | 27.5 |
| 30.7 | 143.7 | | 28.1 |
| 30.7 | 163.4 | | 28.8 |
| 30.7 | 184.8 | | 29.4 |
| 30.7 | 207.8 | | 30.0 |
| 30.7 | 232.8 | | 30.7 |
| 30.7 | 259.7 | | 31.4 |
| 30.7 | 288.9 | | 32.0 |
| 30.7 | 320 | 4 | 32.7 |
| 30.7 | 354.4 | | 33*3 |
| 30.7 | 391. ? | | 34.0 |
| 30.7 | 431.0 | | 34.7 |
| 30.7 | 474.0 | | 35*4 |
| 30.7 | 520.5 | | 36.0 |
| 30.7 | 570.8 | | 36.7 |
| 30.7 | 625.1 | | 3-7.4 |

| Low Projections | | |
| :---: | :---: | :---: |
| | Whges | |
| Man Years | Nomi nal | Real |
| 25.5 | 46.7 | 19.4 |
| 23.0 | 55.4 | 17.6 |
| 20. 5 | 64.6 | 15.8 |
| 18. 1 | 74.4 | 14.1 |
| 15.8 | 84.7 | 12.4 |
| 13.5 | 95.7 | 10.7 |
| 1102 | 107.3 | 9.0 |
| 9.0 | 119.6 | 7*3 |
| 6.8 | 132.7 | 5.7 |
| 4. 7 | 146.5 | 4.1 |
| 2.6 | 161.1 | 2*6 |
| 0.5 | 176.6 | 1.0 |
| -1. 5 | 193.1 | -0.5 |
| -3. 5 | 210.5 | -2.0 |
| -5. 4 | 228.9 | -3.5 |
| -7. 3 | 240.4 | -4.9 |
| -9.2 | 269.1 | -6.4 |
| -11.0 | 291.1 | -7*0 |
| -12. 7 | 314.3 | -9*2 |
| -14. 5 | 338.9 | -10.5 |
| -16*2 | 364.9 | -11.9 |

Table 4.126
Kobuk Census Division Processing Plant Empl oyment and Wages Projected Annual Percentage Change 1980-2000

| | | High Projections | | | Low Projections | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | High Projections $\frac{\text { Wages }}{}$ | | | | Vages | |
| | Year | Man Years | Nominal | ReaT | Man Years | Nomi nal | Real |
| | 1980 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 1981 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1.5 |
| | 1982 | 0 | 8.1 | 0.5 | $-2 * 0$ | 5.9 | -1,5 |
| | 1983 | 0 | 8.1 | 0.5 | -2. 1 | 5.9 | -1. 5 |
| | 1984 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1.5 |
| | 1985 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1.5 |
| | 1986 | 0 | R. 1 | O*5 | -2.0 | 5.9 | -1.5 |
| ur | 1987 | 0 | 8.1 | 0.5 | -2*0 | 5*9 | -1*5 |
| F | 1988 | 0 | 8.1 | O*5 | -2.0 | 5.9 | -1.5 |
| | 1989 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1.5 |
| | 1990 | \bigcirc | 8.1 | 0.5 | $-2 * 0$ | 5.9 | -1.5 |
| | 1991 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1.5 |
| | 1992 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1.5 |
| | 1993 | 0 | 8.1 | 0.5 | -2.0 | 5*9 | -1. 5 |
| | 1994 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | - 1 * 5 |
| | 1995 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1. 5 |
| | 1996 | 0 | 8.1 | 0.5 | -2.0 | 5*9 | -1.5 |
| | 1997 | 0 | 8.1 | 0.5 | -2*0 | 5.9 | -1.5 |
| | 1998 | n | 8.1 | 0.5 | -2.0 | 5*9 | -1.5 |
| | 1989 | 0 | 8.1 | 0.5 | -2.0 | 5.9 | -1,5 |
| | 2000 | 0 | 8.1 | 0.5 | $-2 * 0$ | 5.9 | -1.5 |

levels of activity will not be constrai ned by the availability of harvesting or processing capacity or by the infrastructure of coastal commities. During peak harvest years in the cyclical fisheries, there has historically been inadequate capacity since it is not economically feasible to maintain sufficient processing capacity to meet peak year harvests. This situation is expected to continue to exist but perhaps to a lesser extent as fishery managenent prograns becone nore successful in stabilizing annual harvests and as the ability to transport fish in the round increases.

The groundfish projections are thought to be physically possibe, in part both because the groundfish industry in Western Alaska is expected to be self-sufficient with respect to water, electric power, and labor, and because nost of the human and physi cal capital necessary for this industry is expected to be non-local. The real issue is whether the groundfish projections are economically feasible. As is nentioned in Chapter II, there is no consensus with respect to the rate at which the donestic groundfish industry will devel op. The projections presented in this chapter are perhaps optimistic in that they assume that the donestic fishery will have completel replaced the foreign fishery by 2000. However, the constant rate of growth used in the projections results in the foreign fishery being repl aced at very noderate rates prior to the mid-1990s; in this respect, the projections are not particularly optimistic. The rapid expansi on of the king and Tanner crab fleets, which has resulted in very short king crab seasons and which will allow the donestic Tanner crab fishery to rapidly replace the foreign fishery,
provides a basis for the rapid deve opment of the donestic groundfish fishery; but market conditions have not yet been sufficiently favorable to attract nany idle crabbers into he groundfish fishery. However, once they are, a tremendous increase in harvesting activity can occur in one to two years and provide a level of activity from which further growth could proceed with greater certainty. This suggests that the fishery could experi ence expl osi ve growth once the narket conditions are favorable. The difficulty is that it is not known when this will happen. In the absence of this information, the projections presented in this report are thought to provide a representati ve scenario of the devel opment of the groundfish industry.

Factors of Change

The future devel opment of the Western Alaska commercial fishing industry will be determined by a large number of interdependent envi ronmental, market, and governmental factors. This section consists of a summary and brief di scussi on of what are thought to be the nost critical factors.

EMM RONENTAL FACTORS

Resource abundance is a principle determinant of harvesting and processing activity. It is a binding constraint on activity and/ or a principal determinant of the profitability of such activity in all comercial fisheries. The often rudi mentary measures of resource abundance which are used indi cate that resource abundance can change
rapidly in response to fishing pressure or changes in oceanographic and biol ogical conditions. Cyclical fluctuations with varying degrees of regularity have been observed for sone species; for other species, the fluctuations appear to be sonewhat random with respect to time. The potential for dramatic fluctuations is thought to be higher in an area at the extrene of a speci es' envi ronment; Vestern Al aska incl udes such areas f or a number of speci es. Typically, the nore narrow y fisheries are defined the greater the fluctuations in resource abundance because the location of stocks can vary and because aggregation tends to reduce fluctuations. For example, resource abundance in the sal mon fishery of Western \mathbf{A} aska as a whole is expected to be more stable than that in the Bristol Bay red sal mon fishery.

Although it is recognized that resource abundance will fluctuate, there are reasons to bel ieve that the total stocks of some species or the proportions of the stocks available to donestic fisheries will increase. Sal non run sizes are expected to increase as a result of enhancenent and rehabilitation prograns and decreased foreign high seas interceptions of Alaska sal non; and in some areas decreases in subsi stence harvests may allow increases in comerci al harvests. Tine and area closures which have reduced the incidental harvest of hal ibut and restrictive quotas are expected to allow a gradual, but only partial recovery of the Western Alaska hal ibut stocks. For the remaining species, there do not appear to be strong justifications for expecting secular increases or decreases in resource abundance during the forecast period. However, the proportions of Tanner crab, groundfish, and herring resources
available to the domestic commercial fishing industry are expected to i ncrease.

MARKET FACTORS

The level of harvesting and processing activity and/or the profitability of such activity is determined by the prices recei ved for the products of this acti vity and the prices of inputs used in conducting these activities. The former prices are determined by the supply of and demand for seafood products. The latter prices are pri marily determined by exogenous factors; for example, the price of diesel fuel is not measurably affected by the Western Alaska comercial fishing industry. The demand for seafood products is similarly determined by exogenous factors such as the levels of real incone and the consuner price indexes in the U.S. and in Japan and the foreign exchange rate.

J apan and the U.S. are currently the princi pal markets for Al aska seafood products. The Japanese demand for these products tends to be di rectly rel ated to income injapan and the exchange rate (Yen/Dollar), and it tends to be inversel y rel ated to other supplies of seaf ood products. The U.S. demand for seaf ood products appears to be procyclical, that is, it reflects the cyclical patterns of the national economy. A partial explanation of this is that a large proportion of the seaf ood consumed in the U.S. is consumed in restaurants and expenditures at restaurants tend to be pro-cyclical. Alhough U.S. and Japanese demand for Alaska seaf ood products is expected to increase over
time, cyclical increases and decreases will occur. In an attempt to i ncrease the overall demand for these products and to decrease the magni tude of the cycles, new markets are bei $n g$ devel oped. It is not yet known how successful this attenpt will be.

The \mathbf{j} oi nt vent ures that are underway bet ween U.S. and Sovi et and bet ween U.S. and Korean firns are examples of new markets that are being devel oped. In these joint ventures, U.S. groundfish traw ers are delivering fish to foreign processing shi ps on the fishing grounds. These direct sal es are beneficial to donestic fishernen because the donestic exvessel denand for groundfish is currently not adequate to cover the hi gher cost of del ivering fish to onshore processors. To the extent that joint ventures provide U.S. fishernen an opportunity to devel op groundfish fishing skills, they will tend to pronote the devel opnent of the donestic groundfish industry.

A factor which has been recei ving nore attention as the industry has sought to find new markets and strengthen existing ones is product quality. Quality control problens have reportedly both reduced the Japanese denand for Al aska sal non and prevented narket devel opnent in Europe. The State of Alaska and the commercial fishing industry are revi ewing the benefits of improved quality control for groundfish as well as for sal non; and it is anticipated that prograns to improve the quality and marketability of Al aska seafood products will appear.

Market devel opment activities are expected to provide improved narkets for heavily exploited species and to provide narketing opportunities for
underutilized species. For example, the surf clam resources of the Al aska Peni nsula are capable of supporting six to ten boats for three to four nonths per year in a \$5.9 million fishery (Alaska Fi sherman Journal, July 1980). During the next twenty years new fisheries are expected to devel op and broaden the base of the Western Al aska commercial fishing industry; the groundfish, herring, and clamfisheries are expected to be anong such fishing. The underutilized fishery resources of the Bering Sea can potentially support a variety of fisheries. The devel opnent of many of these fisheries will however be dependent on marketing efforts the timing of which is not known. The devel opment of the Tanner crab fishery provi des an example of anderutilized species becoming the base of a major fishery. In 1965, Japan and the Soviet Uni on harvested 1,853 metric tons (4.1 milion pounds) of Tanner crab in the Eastern Bering Sea (Orth 1979) and donestic fishermen did not harvest any Tanner crab (ADF\&G 1979); but by 1979 a donestic harvest which exceeded 39, 500 netric tons (87 milli on pounds) and had an exvessel val ue of over $\mathbf{\$ 4 0}$ milion was taken in Wéstern Al aska by a fleet of over 135 vessel s . Just as the Tanner crab fishery of the 1970s was not foreseen in the early 1960s, the new fisheries of the late 1980s or 1990s cannot be readily identified today.

Factors which have becone increasingly important with respect to the exvessel supply of fish are increasing fuel costs and increasing investments in vessels. Both have tended to decrease the return on vessel s in fisheries for-which exvessel prices and stocks are rel ativel y stable or declining. Limited entry has prevented an increase in the size of the sal non fleets but has not prevented increases in vessel investment and
fishing power. Limited entry has not yet been extended to the other commercial fisheries of Western Al aska; ther ef ore with few exceptions, fleet sizes have continued to grow The combination of increasing fuel costs, increasi ng investments in vessel s, and nonincreasing gross earnings will decrease the profitability of a fishery and will eventually limit entry. The absence of a large profit nargin will al so nean that during bad years a relatively large number of vessel s may be forced out of a fishery.

GOVERNENTAL FACTORS

There is a large number of state and federal prograns that are intended to benefit comercial fisheries and fishernen. These prograns assist in financing capital expenditures, provide information, assist in market devel opnent, provide ports and harbors and navi gational aids and rescue services, and attempt to manage fishery resources. Such prograns are expected to exist throughout the forecast period and perhaps be improved as governnent becones nore aware of how these prograns affect comercial fi sheri es.

There are other governnent prograns that are not specifically designed to benefit comercial fisheries. The water quality control prograns of the Envi ronnental Protection Agency (EPA) are incl uded in this category. These prograns benefit the comercial fishing industry by decreasing water quality degradation by other industries, but in the short-run they al so appear to hinder the industry by regulating the nethods seaf ood processing plants use to di spose of seafood waste. The industry has
suggested that EPA waste di sposal regul ations that requi re the finer screeni ng of waste before it is di scharged would be so costly that a large number of processing plants uould become unprofitable to operate and would be closed. Partially as the result of the political pressure of the industry, the screening requi rements for processing pl ants in nonrenote areas were temporarily revoked during 1980. The result was that non-renote plants did not have to neet the stricter screening requi rements during 1980. The di scharge requi rements for renote areas appear not to be sufficiently stringent to di srupt the industry. The industry has submitted data to support its $\mathbf{c l}$ ai \mathbf{m} that the stricter screening requirenents are not cost effective and it will no doubt continue to exert political pressure to minize the requi renents to be net by processing plants. The I atter combi ned with the ability of Kodi ak processing plants to meet the stricter screeni ng requi renents suggest that EPA regul ations will not si gnificantly affect the ability of seafood processing plants to operate in Western Al aska. A nore compl ete di scussi on of governmental prograns which affect the commercial fishing industry is incl uded in Appendi x B.

The prospects for devel opnent of the Western Alaska commercial fishing i ndustry during the next twenty years are promising. The high val ued species which are now heavily expl oited are expected to continue to support fisheries which domi nate Alaska commercial fisheries and which produce a significant portion of the total value of a?? U.S. commercial I andings; and the species which have been underutilized by the donestic fishing industry provide the potential for both significant grouth and
 Al aska and U. S. fi sheri es as a whol e.

v. POTENTI AL I MPACTS OF ALTERNATIVE LEVELS OF OCS DEVELOPMENT

Competition between the commercial fishing and OCS petrol eum industries for labor, ocean space use, and the services provided by the infrastructures of coastal commities can impact the devel opnent of a commercial fishing industry. The objective of this chapter is to anal yze the potential impacts on the comercial fishing industries of Wéstern Al aska that nay result fromalternati ve hypothesi zed level s of OCS acti vity pursuant to Lease Sale Nb. 57. The nethod used to meet this objective is as follows:

- The characteristics of the hypothesi zed OCS activity and the projected impacts on the popul ation, empl oyment, and infrastructure of the coastal commities as presented in other studi es program reports are summarized.
- Past experi ences of interactions bet ween the of f shore oil and commercial fishing industries and econonic anal ysis are used to identify potential impacts.
- The hypothesi zed characteristics of the devel opment of the commercial fishing and OCS industries are compared in light of past experiences to determine the types of impacts that nay occur.

The i mpacts that are consi dered are those on:

- Catch by species by wei ght and value.
- Level of fishing effort (number of vessel s by type, empl oynent, and incone).
- Level of processing effort (number of plants by type, empl oyment and income).
- Local partici pation in harvesting and processing.
- Fi sh narkets.
- Capacity, suitability and location of local ports, harbors, processing plants, fleets, and public services.
- Siting and public service requi rements of comercial harbors and onshore processing plants.
- Areas of conflict in ocean and harbor space use.
- Frequency and seasonality of ocean space and harbor use.
- Conflicts between recreational and commercial fishing activities.
- Organi zation of the comercial fishing industry and current economic and political trends of significance to the industry.

As is noted in Chapter I, there are serious Iimitations on the degree to which quantitative projections of impacts can be made. For this reason, the discussion of potential impacts is typically discussed in qualitative rather than quantitative terns.

The Hypothesi zed Characteristics of OCS Devel opment

In order to anal yze the potential impact of OCS devel opnent, it is necessary to know what the characteristics of the OCS and commercial fishing industries and coastal communties are expected to be. The projected characteristics of the commercial ishing industries of the study area are presented in Chapter IV. The projected characteristics of OCS devel opnent and of the coastal commun ties as described in other SESP reports are summarized in this section and subsequent sections by OCS devel opment scenario. The reports from which the summaries are drawn were written in preparation of the following SESP reports:

- Techni cal Report Number 49

Bering-Nort on
Pet rol eum Devel opnent Scenari os

- Techni cal Report Number 50

Beri ing- Nort on
Pet rol eum Devel opnent Scenari os Economic and Denographic Anal ysis

- Techni cal Report Number 52
Beri ng- Nort onPet rol eum Devel opment Scenari osTransportation Systens Anal ysis
- Techni cal Report Nunber 53
Beri ng-Nort onPet rol eum Devel opment ScenariosLocal Socioeconomic Systens Anal ysi s
- Techni cal Report Number 54
Beri ng- Nort on
Petrol eum Devel opment Scenari osSociocultural Systens Anal ysi s

These reports describe the hypothesized OCS activity and project the potential impacts that al ternative level s of OCS devel opnent may have on the envi ronments in which the commercial fisheries operate. These reports, therefore, provide information which serves as a basis for the anal ysis of the potential impacts on the fishing industries.

The four al ternative level s of OCS devel opment to be consi dered will be referred to as the expl oration only case and the low mean, and high find cases. The Iatter three are generated fromthe 95 percent, mean, and 5 percent probability resource level scenarios, respectively. The low find case encompasses the OCS devel opnent that is expected to occur if the actuallevelof the recoverable resources is found to be no greater than that which is thought to have a 95 percent probability of exi sting. Si milarly, the high find case encompasses the OCS devel opment that is expected to occur if the actual level of the recoverable resources is found to equal that which is thought to have at nost a 5 percent probability of existing. The mean find case is associated with a statistical nean level of recoverable resources.

VIth the exception of the expl oration only case in whi ch OCS activities associ ated with Lease Sale Number 57 are hypothesized to end after three years of unsuccessful attempts to di scover comercially viable oil or gas fields, the OCS devel opment scenari os presented in Techni cal Report Number 49 differ only in magnitude and in the placenent of oil and gas fields. The hypotheses shared by the three scenarios are as follow

- Commercial di scoveries of oil and gas occur.
- Pi pelines are used to transport oil and gas to onshore facilities at Cape None.
- A crude oil marine terminal with offshore berthing and a Iiquid natural gas (LNG) pl ant will be located at Cape Nome.
- The expl oration phase invol ves aerial support and Iight supply transshi pment provided from a service base in None, storage barges and frei ghters moored in Norton Sound, and an Aleutian Island storage and transshi pment facility.
- A forward service base supporting devel opnent and production activities is constructed adjacent to the other Cape None facilities; and devel opnent activities are al so supported by storage and accomodation barges and frei ghters noored in Norton Sound, and a rear support base located in the Aleutian I slands.
- The drilling season will be extended to a naxi mam of ei ght nonths by the use of ice-breaker support.
- Onshore petrol eum devel opnent will occur as a self-contai ned enclave, in a fashion similar to that at Prudhoe Bay. Onshore nork creus will be rotated to and fromthe Cape Nome facilities on a $\mathbf{? 4}$ day cycle. They will live in dormitory housing provi ded by the oil industry while on duty. This assumption is presented in Techni cal Report Number 53.

The nagnitude of these OCS activities as reported in Technical Report Number 49 and the resulting impacts on popul ation, empl oyment, and transportation systens as presented in Techni cal Reports Number 50, 52, and 53 are summarized bel ow by scenario.

EXPLORATI ON ONLY CASE

The exploration activities are hypothesi zed to begin in 1983, end in 1985, and result in eight wells, two of which will be drilled with conventional rigs from summer-constructed gravelislands. The marine trafic generated by these activities is sumarized in Table 5. 1. The associ ated popul ation and empl oyment impacts for the Nome/Wade Hampton Census Divisions are expected to be minal (see Table 5. 2).

Tab e 5.1

Marine $\begin{gathered}\text { Exploration Only Case } \\ \text { raffic Generated by OCS Activ ty } \\ 1983-2000\end{gathered}$
Pipeline Lay
and
$0 i 1$ \&
Bury Barges Tankers

| Year | Linehaul Vessels | Linehaul Lighters (Arrivals/Year) | Coastal
 Lighters | Supply Boats
 (Trips/Month) | Gravel Barges (Trips/Year) | and
 Bury Barges Number Onsite) |
 Tankers (Department/ Year) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 3 | 50 | 0 | 24 | 86 | \bigcirc | 0 |
| 1984 | 6 | 99 | 0 | 48 | 86 | \bigcirc | 0 |
| 1985 | \bigcirc | 50 | 0 | 24 | 0 | 0 | \bigcirc |
| 1986 | 0 | 0 | 0 | 0 | 0 | \bigcirc | 0 |
| 1987 | 0 | 0 | 0 | 0 | 0 | \bigcirc | 0 |
| 1988 | - | 0 | 0 | 0 | 0 | ๑ | 0 |
| 1989 | \bigcirc | 0 | 0 | 0 | 0 | \bigcirc | 0 |
| 1990 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1991 | | 0 | 0 | 0 | 0 | - | 0 |
| 1992 | 0 | 0 | 0 | 0 | 0 | \bigcirc | 0 |
| 1993 | \bigcirc | 0 | 0 | 0 | 0 | \bigcirc | 0 |
| 1994 | 0 | 0 | 0 | 0 | \bigcirc | - | |
| 1995 | 0 | 0 | | 0 | \bigcirc | \bigcirc | 0 |
| 1996 | 0 | 0 | \bigcirc | 0 | \bigcirc | \bigcirc | 0 |
| 1997 | | 0 | \bigcirc | 0 | 0 | 0 | 0 |
| 1998 | \bigcirc | 0 | \bigcirc | 0 | 0 | - | 0 |
| 1999 | 0 | 0 | \bigcirc | 0 | 0 | \bigcirc | 0 |
| 2000 | 0 | 0 | \bigcirc | 0 | 0 | \bigcirc | 0 |

Source: Peat, Marw ck, Mitchell \& Co. and James D. Lindsay \& Associates, 1980.
NOTE: These estimates do not include 15 to 19 linehau vessel arrivals, 143 to 1841 nehaul lighter vessel arrivals, or 16 to 21 coastal lighter vessel arrivals that are expected to occur in the absence of Lease Sale No. 57.

Table 5.2
Nome/Wade Hampton Ce:Isus Division
Exploration Only Case
Projected OCS Population and Employment Impacts 1980-2000

| Year | Population | | Employment | | Increment | | Percentage Increment | | Annual Percentage Change | | | | Cumulative Percentage Change | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | ithout | with | Without | , | | | Popula | | Emp | | Popula | | Eimploy! | |
| | OCS | OCS | OCS | OCS | Population | ment | | | Pop. | ment | OCS | 0CS | 0 CS | OCS | OCS | OCS | OCS | With OCS |
| 198a | 1116.6 | 16, 6 | 3119.1 | 3090 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1981 | 1176 | -17? | 35,44 | 30.54 | 0 | 0 | 0 | 0 | -0.6 | -0.6 | -0.8 | -0.8 | -0.6 | -0.6 | -0.8 | -0.8 |
| 1912 | 11.81 | 1.1.1 | 2007 | 296.? | 0 | 0 | 0 | 0 | -2.3 | -2.3 | -3.0 | -3.0 | -2.8 | $-2 \cdot 8$ | -3.8 | $\rightarrow 3.8$ |
| 1983 | 11763 | 1 Inat. | 31.34 | 36 Ha | 94 | 47 | 0.11 | 1.5 | 2.1 | 2.9 | 2.4 | 4.0 | -0. 8 | 0 | -1.5 | 0.0 |
| 1984 | 126.06, | . 26.36 | 3.27 | 3331 | 198 | 04 | 1.6 | 3.? | 5.6 | 6.4 | 6.4 | 8.1 | 4.7 | 6.4 | 4.8 | 8.1 |
| 1945 | 12\%\% | 187 | 30.0 | 3318 | 10 H | 58 | 0.9 | 1.H | 1.0 | 0.2 | 1.0 | -0.4 | 5.7 | 6.6 | 5.8 | 7.7 |
| 19 fig | 12587 | -1,-3 | 3291 | 321.0 | 6 | 1 | $n .0$ | 0.0 | -0.1 | -0.9 | -0.0 | -1.7 | 5.7 | $\mathrm{S}_{5} 7$ | 5.8 | 5.8 |
| 1987 | 12.2588 | 120, $0^{4} 9$ | 3.39 | 3249 | 3 | 0 | 0.0 | 0 | 0.3 | 0.3 | 0.9 | 0.9 | 6.0 | 6.0 | 6. 8 | 6.8 |
| 198 A | 120901 | 136, | 3itit | 3757 | 2 | 1 | 0 * | $0 * 0$ | 1.1 | 1.1 | 2.0 | 2.1 | 7.1 | 7.1 | 9.0 | 9.0 |
| 1489 | 12\%ms | 109 ${ }^{\circ}$ | 36.6.11 | 34,48 | 2 | 0 | 1) 0 | 0 | 1.5 | 1.5 | 2.7 | 2.7 | B.A | 8.8 | 11.9 | 11.9 |
| 1990 | 13101 | $1^{81} 1^{17}$ | 1595 | 34545 | 3 | 0 | 1) * | 0 | 1.7 | 1.7 | 2.8 | 2.8 | 10.7 | 10.7 | 15.1 | 15.1 |
| 1991 | 132% | 3) | 3631 | 36.11 | 7 | 0 | $0 *_{*}^{*}$ | 0 | 1.4 | 1.4 | 2.4 | 2.4 | 12.2 | 12.2 | 17.9 | 17.9 |
| 1992 | 134694 | 134, ${ }^{3}$, | 317% | | 2 | 0 | 0) ${ }^{*}$ | 0 | 1.5 | 1.5 | 2.6 | 2.6 | 13.9 | 13.9 | 20.9 | 20.9 |
| 1903 | 13 Aris | $1^{1}, l_{1}{ }^{1}$ | 1:16 | 341% | 2 | n | ก. 0 | 0 | 1.4 | .4 | 2.5 | 2.5 | 15.5 | 15.5 | 23.9 | 23.9 |
| 1904 | 17411/ | 15091 | 36.97 | 10? | 2 | 0 | a. 0 | 0 | 1.7 | .7 | 2.8 | 2.8 | 17.4 | 17.4 | 27.3 | 27.3 |
| 1995 | 14116 | 1416, 1 | 4 ald | 4014 | 2 | 0 | a. 0 | 0 | 1.4 | 4 | 2.5 | 2.5 | 19.1 | 19.1 | 30.5 | 30.5 |
| 1976 | | 4.eis | 4111 | 41111 | $?$ | 0 | 0.0 | 0 | 1-71 | 3 | 2.5 | 2.5 | 20.6 | 20.7 | 33.7 | 33.7 |
| 1927 | 14, $6 \cdot 1$ | '40, ${ }^{\text {a }}$ | $4{ }_{6} 3^{2}$ | 4075 | 2 | 0 | 0.0 | 0 | 1 - | ${ }_{*}^{4}$ | 2.6 | 2.6 | 22.3 | 22.3 | 37.2 | 37.2 |
| 1498 | 12,101 | ${ }^{14} 1111$ | 4, 6 | 4.362 | 2 | 0 | 0.0 | $1)$ | 1-0 | ${ }_{*} 5$ | 2.8 | 2.月 | 24.02 | 24.? | 41.0 | 41.0 |
| 1899 | 145.. | [4, 14, \mid | 4.171 | 4.6 .11 | 7 | 0 | 0.0 | 0 | 1-3 | .6 | 3.0 | 3.0 | ? 6.2 | 26.2 | 45.2 | 45.2 |
| 2000 | 101.10 | 16.142 | 4418 | | 2 | 0 | 0.0 | n | 1-3 | *3 | 2.6 | 2.6 | 27.A | 27.13 | 49.0 | 49.0 |

Source: This table sumbarizes project ons presented in Technical Report Number 50

LOWFI ND CASE, 95 PERCENT PROBABI LI TY RESOURCE SCENARI 0

In the Iow find case, expl oration activities are hypothesized to begin in 1983, end in 1988, include the drilling of 36 wells and the construction of gravel islands, and result in the discovery of two marginally comercial $0 i 1$ fields and one margi nally comercial non-associ ated gas field. The oil fields are located between 34 and 58 kilometers (21 and 36 miles) southwest of None, and the gas fieldis located about 34 kiloneters (21 miles) south of None (see Figure 5.1). The devel opment phase activity which begins in 1987 and ends in 1990, results in the installation of a single steel platformin each of the three fields, the construction of the associated pipelines, a small marine crude oil terminal, a small L NG plant, and a forward service base. The production phase activities begin in 1990 and end in 2009. The marine traffic generated by these activities is summarized in Table 5. 3, and the popul ation and enpl oyment i mpacts for the Nome area and the Nome/ Whde Hampt on Census Di vi si ons are summarized in Tables 5.4 and 5. 5.

MEAN FI ND CASE, MEAN PROBABI LI TY RESOURCE SCENAR OS

Mean find case expl oration activities beginin 1983, end in 1989, incl ude the drilling of 64 wells and the construction of seven gravel islands, and result in the di scovery of five commercial oil fields and tho comercial non- associated gas fields. The five oil fields are located in two groups of fields, one in inner Norton Sound, the second in the central Sound south of Nome, pl us a si ngle field in the outer Sound

Oil Field
(Reserves in MMBBL)
Gas Fi el d
(Reserves in BCF)
\square Crude Oil Terminal
$A \quad$ LNG Plant

$\leq=$ Gas Pi pel i ne Corridor

> Salmon Fi shi ng Areas - Herring Fi shi ng Areas

Fi gure 5.1: Low Fi nd Case, Offshore OCS Structures and Fi shing Grounds

Table 5. 3

Marine Traffic Generated by OCS Activity
1983-2000

| Linehaul Vessel s | Linehaul
 Li ghters
 (Arri val s/ Year) | Coast al Li ghters | Supply Boats (Trips/Month) | Gravel Barges (Tri ps/ Year) | Pi peline Lay and Bury Barges Number Onsite) | 0 il \& Tankers (Depart nent/ Year) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 136 | 0 | 24 | 0 | 0 | 0 |
| 5 | 204 | 0 | 48 | 75 | 0 | 0 |
| 5 | 3(-)7 | 1 | 613 | 122 | 0 | 0 |
| 6 | 377 | 1 | 72 | 122 | 0 | 0 |
| 19 | 170 | 1 | 36 | 122 | 0 | 0 |
| 14 | 9 | 1 | 60 | 0 | 0 | 0 |
| 12 | 12 | 1 | 138 | 0 | 3 | 0 |
| 15 | 27 | 3 | 102 | 0 | 1 | 39 |
| 15 | 27 | 1 | 112 | 0 | 0 | 77 |
| 6 | 21 | 3 | 16 ? | 0 | 0 | 114 |
| 3 | 16 | 1 | 12 | 0 | 0 | 152 |
| 3 | 16 | 2 | 12 | 0 | 0 | 148 |
| 3 | 18 | 2 | 12 | 0 | 0 | 124 |
| 2 | 17 | 2 | 12 | 0 | 0 | 104 |
| 3 | 17 | 2 | 12 | n | 0 | 88 |
| | 16 | 2 | 12 | 0 | 0 | 76 |
| 2 | 17 | 2 | 12 | 0 | 0 | 66 |
| 2 | 16 | 1 | 12 | 0 | 0 | 58 |

Source: Peat, Marwick, Mtchell \& Co. and Janes D. Li ndsay \& Associ ates, 1980.
NOTE: These estimates do not include 15 to 19 linehaul vessel arrivals, 143 to 184 linehaul lighter vessel arrivals, or 16 to 21 coastal lighter vessel arrivals that are expected to occur in the absence of Lease Sale No. 57.

Table 5.4
Nonie/Hade Hampton Census Division Low find Case
Projected ocs Population and Employment Impacts 1980-2000

| Year | Population | | Employment | | Increment | | Percentage Increment | | Annual Percentage Change | | | | Cunulative Percentage Change | | | | | | | |
|---|
| | | | Populati | ion | | | Employme | | Populati | | Employme | ent |
| | Without | With | | | Without | With | | | | Employ- | | Euploy- | Without | With | Without | With | Without | With | Without | With |
| | OCS | OCS | OCS | OCS | Population | n ment | Pop. | ment | OCS | OCS | OCS | OCS | 0CS | OCS | OCS | OCS |
| 19 Mo | 11846 | 11446 | 3041 | 3090 | 0 | 0 | 0 | n | 0 | 0 | 0 | 0 | 0 | n | 0 | 0 |
| \|041 | 11116 | 1111n | 2.15,4, | 3^54, | 0 | 0 | 0 | 0 | -0.6 | -n. 6 | - 1.8 | -0.81 | -0.6 | -0.6 | -0.8 | -0. ${ }^{\text {A }}$ |
| 104? | 11511 | 11811 | 2Mrs? | 278.? | 0 | 0 | 0 | 0 | -2.3 | -2.3 | -3.0 | -3.0 | -2. 8 | -2.9 | -3.8 | -3.8 |
| 1943 | 1136 | 11941 | 3034 | 3127 | 1819 | 73 | 1.b | 3.1 | 2.1 | 3.7 | 2.4 | 5.6 | -0.8 | 0.9 | -1.5 | 1.5 |
| 1984 | 12406 | 12700 | 7227 | 3379 | 294 | 152 | 2.4 | 4.7 | 5.6 | 6.4 | 6.4 | 8.1 | 4.7 | 7.2 | 4.8 | 9.7 |
| 19月5 | 125 S^{5} | 13049 | 3269 | 3519 | 1324 | 259 | 4.2 | 7.9 | 1.0 | 2.7 | 1.0 | 4.1 | 5.7 | 10.? | 5.8 | 14.3 |
| 19F6 | 12517 | 13777 | 3259 | 3636 | 760 | 377 | 6.1 | 11.6 | -0.1 | 1.7 | -0.0 | 3.3 | 5.7 | 12.1 | 5.8 | 18.1 |
| 1067 | 125, 56 | 1206.4 | 3.89 | 34.28 | 3018 | 179 | 2.5 | 5.4 | 0.3 | -3.1 | 0.9 | -4.6 | 6.0 | B.t | 6.8 | 12.6 |
| 1948 | 128.90 | 133119 | 3756 | 374; | 029 | 389 | 5.5 | 11.t. | 1.1 | 4.1 | 2.0 | 8.0 | 7.1 | 13.0 | 9.0 | 21.6 |
| 1989 | 12496 | 13812 | 3448 | 4033 | $9 ? 6$ | 585 | 7.2 | 17.0 | 1.5 | 3.2 | 2.7 | 7.7 | 0.8 | 16.6 | 11.9 | 30.9 |
| 1970 | 171013 | 11.377 | 354, 5 | 5103 | 2760 | 155 n | 17.3 | 43.9 | 1.7 | 11.3 | 2.1 | 2.6.5 | 10.7 | 29.8 | 15.1 | 65.7 |
| 1941 | 13292 | 15.507 | 36.31 | 5198 | 2210 | 1557 | 1 1., 6 | 42.9 | 1.4 | 0.8 | 2.4 | 1.7 | 12.2 | 30.9 | 17.9 | 68.4 |
| 19\%? | 11404 | 19211 | 3724 | 4970 | 1717 | 1206 | 17.7 | 37.4 | 1.5 | -1.7 | 2.6 | -5.0 | 13.9 | 23.4 | 27.9 | 60.1 |
| 1907 | 136882 | 19019 | 3×16 | 4756 | $1: 17$ | 940 | 9.8 | 24.61 | 1.4 | -1.3 | 2.5 | -3.5 | 15.5 | 26.8 | 23.9 | 54.4 |
| 1994 | 13000 | 15171 | 37?) | 4n? 4 | 1:の2 | 902 | 9.1 | 23.0 | 1.7 | 1.0 | 2.8 | 1.4 | 17.4 | 28.1 | 27.3 | 56.6 |
| 1005 | $1 \therefore 105$ | 1590\% | 41119 | ¢nct | 141)? | 10?? | 9.9 | 25.4 | 1.4 | 2.2 | 2.5 | 4.5 | 19.1 | 311.9 | 30.5 | 63.7 |
| 1946 | 14.291 | l6, 1503 | 4114 | 5145 | 13172 | 1027 | 9.7 | 24.9 | 1.3 | 1.1 | 2.5 | 2.1 | 20.6 | 32.4 | 33.7 | 67.6 |
| 1.277 | 14.4.91 | 15417 | 4225 | 5259 | 1332 | 1034 | 9.5 | 24.5 | 1.4 | 1.2 | 2.6 | $2 . ?$ | 22.3 | 34.01 | 37.2 | 79.7 |
| 1078 | 14,701 | 16070 | 4742 | 5343 | 1377 | 1041 | 9.3 | 24.0 | 1.5 | 1.3 | 2.8 | 2.4 | 24.2 | 35.7 | 41.0 | 74.8 |
| 1909 | 14949 | 163115 | 4471 | 5,517 | 1356 | 10\%t | 9.1 | 23.4 | 1.6 | 1.4 | 3.0 | 2.5 | 26.? | 37.6 | 45.2 | 79.1 |
| 20×0 | 151411 | 16.481 | $4 \therefore 87$ | 56.31 | 13.1 | 1050 | 8.9 | 22.9 | 1.3 | 1.1 | 2.6 | 2.2 | 27.8 | 39.1 | 49.0 | 83.1 |

Source: This tašle
projections presented in Techn $\mathrm{c}_{3}{ }^{\circ}$ Report Number $5^{\circ}=$

Table 5.5
None Ared Census Di vi si on
Low Fi nd Case
Projected OCS Popul ation and Enpl oynent I mpacts 1980－2000

| Year | Population | | Empl oynent | | i ncrement | | Per cent age i ncrement | | Annual Percentage Change | | | | Cumul ative Percent age Change | | | | | | | |
|---|
| | | | pulati | | | | mp loyms | nent | | | | |
| | Without OCS | With $0 C S$ | | | $\begin{aligned} & \text { Without } \\ & 0 \mathrm{cs} \end{aligned}$ | $\begin{array}{r} \text { With } \\ 0 \mathrm{CS} \end{array}$ | | | Popul a | Empl oy－ ＿＿ment | Pop． | Employ－ nent | Without OCS | With OCS | hout W | $\begin{aligned} & \mathrm{th} \\ & \mathrm{cs} \end{aligned}$ | $\begin{aligned} & \text { hout } \\ & \text { CS } \end{aligned}$ | $\begin{gathered} \text { With } \\ \text { Ocs } \end{gathered}$ | thout Ocs | $\begin{aligned} & \text { With } \\ & \text { OCS } \end{aligned}$ |
| 1\％\％0 | 31 ？ 5 | 31） 3 | 1014 | 100% | 0 | 0 | 0 | n | 0 | 0 | 0 | 0 | n | \bigcirc | 0 | 0 |
| 1941 | 3181 | 719n | 111% | 1110 | 0 | 0 | n | 0 | 2.0 | ？． 0 | 2.0 | 2.10 | 2.0 | 2.0 | 2.0 | 2.0 |
| 198% | $395 ?$ | 32\％？ | 117 | 1171 | 0 | $1)$ | n | 0 | 2.0 | 2.0 | 4.9 | 4.9 | 4.1 | 4.1 | 7.0 | 7.0 |
| 198：3 | 1317 | 3325 | 1194 | 1201 | H | 7 | n．？ | 0.6 | 2．0 | 2＊2 | 2． 0 | 2．6 | 6.1 | 6.4 | 9．1 | 9.8 |
| 178.4 | 1143 | 3391 | ？111 | 1279 | 1 | 11 | 0.2 | 1）．9 | 2.0 | 2．0 | 2． 0 | 2.3 | P． 3 | H．${ }^{5}$ | 11.3 | 12.3 |
| 19115 | 3451 | 3464 | 377 | 1791 | 13 | 14 | ก． 4 | 1.1 | 2.0 | 2＊．？ | 4.8 | 5.0 | 10.4 | 10．9 | 16.7 | 18．0 |
| 1946 | 15.20 | 3577 | 70 | 1727 | 11 | 71 | 0.5 | 1．t． | 2.0 | 2.1 | 2．（3 | 2.5 | 12．6 | 13．？ | 14.8 | 20.9 |
| 19\％：7 | 3.5120 | 394 ？ | 3711 | 14il | 257 | 12.3 | $7^{*}()$ | 9.3 | 2.0 | 8.6 | 2． 3 | 9.7 | 14.9 | 2？．4 | 21.4 | 32.6 |
| 1988 | 30，68 | 418 H | 307 | 1649 | \％7\％ | 2，7 | 14.4 | 19.5 | 2.0 | 9．01 | 4.8 | 13.6 | 17．2 | 34.0 | 21．2 | 50． 7 |
| 19149 | 3735 | 4，¢5， | 419 | 1月14 | H16． | 399 | 21．R | 7n．1 | 2.0 | 8． 7 | 1.9 | $10 . ?$ | 19．5 | 4.5 .6 | 29.7 | 66.2 |
| 19「0 | 3810 | 465 | 4，4，${ }^{\text {a }}$ | 1 1月．1 | 4， 4.5 | 4.13 | 23.7 | 28．5 | 2＊O | 2.3 | 2.0 | 2.4 | 21.7 | 4.70 | 3？．4 | 70.1 |
| 19.1 | 317% | 4 Cl 19 | C， 3 | 197月 | 791 | 345 | 20．6 | 25．8 | 0.5 | －n． 8 | 3． 1 | 11.9 | 22.5 | 47.8 | 3n． 5 | 71.7 |
| 1022 | 314\％ | 4,407 | 501 | 1×1 ？ | 6.4 | 311 | 16．6 | 20．7 | 0.5 | －2．9 | （3． 5 | -3.5 | 23． 1 | 47.6 | 37． 2 | 65.6 |
| 1963 | 3487 | 4384 | can | 1761 | 516 | 25.3 | 17.4 | 16．0 | 0.5 | －2．3 | 0.5 | －2．8 | 23.7 | 40.3 | 37.8 | 61＊ 0 |
| 19134 | 30ッ6 | 438% | 1417 | 171 | 500 | 2．44 | 17.9 | $11 . .5$ | 0.5 | n．n | －2． 1 | -2.3 | 74.4 | 411.4 | 35.0 | 57． 3 |
| 1205 | 3＇rum | 4， 4,588 | 14114 | 1713 | 4.19 | 26.7 | 14，？ | in． 1 | 0.5 | 1． 6 | 0.5 | 1.9 | 2r．n | 4.2 .7 | 35.6 | 60.2 |
| loce | 3435 | 4×79 | 1407 | 116.1 | $5 \cdot 3$ | 26.9 | 14.1 | 18．0 | 0.5 | 0.4 | 0.5 | $0 .:$ | 2i．to | 43.3 | 36.4 | 61.0 |
| 1997 | 314， | 4くり13 | 14.47 | 17an | $5 \cdot 13$ | 260 | 14．0 | 17.9 | 0.5 | 0.4 | 0.5 | 0.4 | 28．2 | 43.9 | 37.0 | 61.6 |
| 1900 | 31965 | 4511 | 11.17 | 1r\％ | 「ら3 | 269 | 13.9 | 17.9 | 0.5 | 0＊4 | 0.5 | 0.5 | 76.9 | $4 \cdot 6$ | 31．月 | 62． 3 |
| 1909 | 37ar | $44^{3} 30$ | 15．14 | 174 | 563 | 269 | 13.7 | 17．A | 0.5 | 0.4 | 0.5 | 0.4 | 27.5 | $45 . ?$ | 3 n .4 | 63． 0 |
| plar | 4 （1）${ }^{\text {a }}$ | 459 | 15．2？ | 1791 | $r_{2} 13$ | 260 | 13．9 | 17.7 | $(1.5$ | f． 1 ， | 0.5 | f） 4 | 20．？ | 45.7 | 30.1 | 63． 7 |

Source：This table summarizes projections presented in Technical Report Number
southwest of Cape Rodney. The gas fields are located close to each other about 48 kiloneters (30 miles) south of None (see Figure 5.2).

The nean find case devel opnent phase begins in 1986 and ends in 1990. It consists of the installation of sixel plat orns and tho gravel islands, and the construction of pipel ines, a medi umsized crude oil terminal, a LNG plant, and a forward service base. Construction of the onshore facilities at Cape None begins in 1986 and will be complet in 1988. The production phase begins in 1990 and continues through 2010. The narine traffic generated by OCS activities is summarized in Table 5.6, and the popul ation and empl oynent impacts for the None area and the. Nome/Wade Hampton Census Divisions are presented in Tables 5.7 and 5.8.

HIGH FI ND CASE, 5 PERCENT PROBABI LI TY RESORCE SCENARI 0

High find case exploration activities begi n in 1983, end in 1988, result in 90 wells being drilled and six gravel islands being constructed, and produce seven commercial oil fields and three commercial non- associated gas fields. The fields are inthree clusters located, respectively, in inner Norton Sound south of Cape Darby, central Nbrton Sound south of None, and outer Norton Sound about 64 kiloneters (40 miles) southwest of Cape Rodney \{see Fi gure 5.3).

Devel opnent phase activities which begin in 1986 and end in 1991 incl ude the installation of 11 steel platforns and four gravel platforns, and the construction of pipelines and onshore facilities at Cape Nome. The

Fi gure 5. 2: Mean Fi nd Case, Offshore OCS Structures and Fishing Grounds

Table 5.6

Mean Find Case
Marine Traffic Generated by OCS Activity
1983-2000

| | Year | Linehaul Vessel s | Linehaul
 Li ghters
 (Arrival $s /$ Year) | Coast al
 Li ghters | Supply Boats (I'rips/Mbnth) | Gravel Barges (Tri ps/ Year) | Pi peline Lay and Bury Barges Number Onsite) | $0 i 1 \&$ Tankers (Department/ Year) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1983 | 4 | 204 | 0 | 36 | 0 | 0 | 0 |
| | 1984 | 9 | 436 | 1 | 84 | 75 | 0 | 0 |
| | 1985 | 10 | 548 | 1 | 96 | 122 | 0 | 0 |
| | 1986 | 39 | 411 | 1 | 72 | 122 | 0 | 0 |
| | 1987 | 26 | 279 | 1 | 72 | 122 | 0 | 0 |
| | 1988 | 16 | 23 | 3 | 216 | 511 | 5 | 0 |
| | 1989 | 21 | 20 | 2 | 264 | 778 | 1 | 26 |
| ¢ | 1990 | 19 | 54 | 6 | 236 | 389 | 5 | 91 |
| | 1991 | 21 | 64 | 7 | 252 | 0 | 1 | 204 |
| | 1992 | 17 | 61 | 7 | 212 | 0 | 0 | 311 |
| | 1993 | 9 | 50 | 5 | 122 | 0 | 0 | 370 |
| | 1994 | 6 | 46 | 5 | 52 | 0 | 0 | 404 |
| | 1995 | 6 | 45 | 5. | 32 | 0 | 0 | 401 |
| | 1996 | 6 | 46 | 6 | 32 | 0 | 0 | 365 |
| | 1997 | 6 | 46 | 5 | 32 | 0 | 0 | 314 |
| | 1998 | 5 | 46 | 5 | 32 | 0 | 0 | 268 |
| | 1999 | 5 | 46 | 5 | 32 | 0 | 0 | 229 |
| | 2000 | 5 | 45 | 5 | 32 | 0 | 0 | 201 |

source : Peat, Marwick, Mitchell \& Co. and James D. Li ndsay \& Associates, 1980.
NOTE: These estimates do not include 15 to 1 linehaul vessel arrivals, 143 to 84 linehaul Iighter vessel arrivals, or 16 to 21 coastal 1 ghter vessel arrivals that are expected to occur in the absence of Lease Sale No. 57.

Table 5.7
Nome／Hade llampton Census Division Mean Find Case
Projected OCS Population and Employment lmpacts 1980－2000

| Year | Population | | ［mployment | | Increment | | Percentage increllent | | Annual Percentage Change Population Employment | | | | Cumulative Percentage Change | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Without | With | Without | With | | Employ－ | | Eiliploy－ | Without | With | Without | With | Without | With | Without | With |
| | OCS | O_{5} | OCS | OCS | Population | ment | Pop． | ment | OCS |
| （ora） | 117th | $1141 / 2$ | 3.710 | 3011 | 0 | n | \bigcirc | n | 0 | i） | 0 | 0 | 11 | 9 | n | 0 |
| 1231 | 1171% | 11710 | 719，4 | | 1 | 9 | 0 | 0 | －r． 6 | -0.6 | －0．0 | $5^{-0.4}$ | －0．6 | -11.6 | －0， 1 | －0．4 |
| 1717？ | 11511 | $\\| 1^{5} 11$ | 7367 | 206？ | 0 | n | 0 | 0 | $-2 * 3$ | －2：3 | －3．？ | －3．0 | －2． A | －2． 1 | -7.8 | －3 0 |
| 17以3 | 1176\％ | 12014 | 3074 | 3117 | 249 | 144 | 2.5 | 4.7 | 2 | 46 | 2． | 7.3 | -0.8 | 1.6 | -1.5 | 3． 2 |
| 1）M4 | 1240\％， | $10^{0} 10$ | 1721 | 35.10 | 6.73 | 34.3 | 5.4 | 10.6 | 5．${ }^{*}$ ， | A＊ | 1.4 | 2.3 | 4.7 | 10.4 | 4.8 | 15．9 |
| 19ヵ5． | 125.25 | $13^{6} 7^{3}$ | 3：9610 | 31794 | 10，0 | 5049 | H． 4 | 15.6 | 1.0 | 3＊ | 1.0 | 55 | 5.7 | 14.6 | 5.8 | 22．3 |
| 19月6， | 125.17 | $13^{4} 5^{\prime}{ }^{\prime}$ | 73：7 | 30.11 | 047 | 54.7 | 7.5 | 16．t | 0. | －0 ${ }_{*}^{*} 8$ | －0．0 | 0 －9 | c． 7 | 13.6 | 5.8 | 23.4 |
| 1947 | 1？『50 | | 3＞47 | 79131 | 9，${ }^{8}$ | 094 | 7.9 | 21.1 | 0 ＊${ }^{\text {a }}$ | $0{ }^{*} 7$ | 0.9 | $4 \cdot 8$ | t．0 | 14．4 | B．B | 29.3 |
| 1319 | 12600 | $1452 ?$ | 3356 | 435% | 1832 | 998 | 14.4 | 29.7 | 1 | 7.1 | 2.0 | 9.3 | 3.1 | 22.6 | 0.0 | 41.4 |
| 19198 | 178 Bt | 14420 | 3448 | 4425 | 1534 | 977 | 11.9 | 28．3 | 5 | －9 7 | 2.7 | 1． 6 | 11．月 | 21.7 | 11.9 | $4^{3}{ }^{3} 7$ |
| 1990 | 13104 | 17592 | 3515 | 6839 | 4．474 | 3094 | 34.1 | 97.3 | 17 | 21．9 | 2．8 | $50 \% 0$ | 10.7 | 4 A .4 | 15.1 | 1156 |
| 1791 | 13202 | 1 Bfal | 3－31 | 136？ | 5309 | 3731 | 34.9 | 102.8 | $1{ }^{4}$ | 5． 1 | 2.4 | 10.9 | 12.2 | 57.0 | 17.9 | 139.0 |
| 1972 | 13694 | $1 \mathrm{AS11}$ | 7724 | 7263 | 5017 | 3539 | 37.2 | 95.0 | 1.5 | $-0 * 5$ | 2.6 | -13 | 13.9 | 56.03 | 20.9 | $13^{5} \cdot 8$ |
| 1903 | 134.412 | | 3916 | 67：3 | 4146 | 2927 | 30.3 | 76.7 | 1 ＊4 | -3.7 | 2.5 | －7．？ | 15.5 | 50.5 | 23.9 | 118.9 |
| 1994 | 130109 | 176.34 | 307？ | 650 | 3729 | 2654 | 26．月 | 67．R | 1 ${ }^{*} 7$ | | 2.8 | -2.4 | 17.4 | 48.9 | 2．7．3 | 113° |
| 1905 | 14105 | 171as | 41719 | A6．17 | 36.93 | 2664 | 26．1 | 66.3 | .4 | 1.9 | 2.5 | 1．6 | 19.1 | 50.2 | 30.5 | 1170 |
| 1096 | 14291 | 18014 | 4119 | $697 ?$ | 3756 | 2754 | 26.3 | h6． 9 | | 0.5 | 2.5 | 2．${ }^{\circ}$ | 20.6 | 42.3 | 33.7 | $123 * 1$ |
| 1991 | 144．71 | 11.375 | 42.5 | 7035 | 3794 | 2810 | 26． 1 | 66.5 | ${ }^{\bullet} 4$ | 1.3 | 2.6 | 2．4 | 22.3 | 54.3 | 37.2 | 1254 |
| 1998 | 14707 | 114% | 4342 | 7170 | 37 th | 2828 | 25．6 | $6 F_{1} \cdot 1$ | 1．5 | 1.1 | 2.8 | 1.9 | 24.2 | 55.9 | 41.0 | 13 ¢－${ }^{\text {¢ }}$ |
| 1798 | 14．06，9 | 186．74， | 44.71 | 7313 | $37 \% 6$ | 2042 | 24.9 | 63.6 | 1.6 | 1.1 | 3.0 | $2 \cdot 0$ | 26．2 | 57.6 | 45.2 | 134.4 |
| $201(1)$ | 15140 | 1月ヶ2号 | 4.58 A | 74＇1 | 3ヵ月女 | 2653 | 24.4 | 62.2 | 1． 3 | 0.7 | 2.6 | 1 A | 27．月 | 519.7 | 49.0 | 14．6 |

Source：This table summarizes projections presented in Technical Report Number 50

Table 5.8
None Area Census Division
Mean Fi nd Case
Proiected 0cS Popubation and Employment Imoacts
1980－2000＂

| Year | Population | | Enpl oynent | | I ncrenent | | Per cent age I ncrement | | Annual Percentage Change C | | | | Cumul ative Percentage Change | | | | | | | |
|---|
| | | | pulatio | | | | Emin lovin | | | | | |
| | $\begin{aligned} & \text { Without } \\ & \text { OCS } \end{aligned}$ | $\begin{array}{r} \text { With } \\ \text { OCS } \end{array}$ | | | Wi thout OCS | $\begin{gathered} \text { Vith } \\ \text { Ocs } \end{gathered}$ | | | Popul | Employ－ ment | P_{0} | Employ ment | V／thout Ocs | With OCS | Without OCS | With | thout Ocs | With Ocs | Without Ocs | With OCS |
| 1010 | 3125 | 3125 | 1114 | 1904 | n | 0 | П | n | 0 | 0 | 0 | 0 | h | 0 | 0 | 0 |
| 14.41 | 318 n | 3148 | 111% | 116 | 0 | 0 | n | 0 | 2.0 | 2．0 | 2.0 | 12.0 | 2.0 | ？． 0 | 3.0 | 2.0 |
| 1962 | 3292 | 325？ | 1171 | 171 | 0 | 0 | \bigcirc | 0 | 2.0 | 2.0 | 4.9 | 4.9 | 4.1 | 4.1 | 7.0 | 7.0 |
| 1963 | 3317 | 3330 | 1174 | 296 | 13 | 12 | 0.4 | 1.0 | 2.0 | 2.4 | 2.0 | 3.11 | 6．l | 6.4 | 9．） | 10.2 |
| 1964 | 3743 | 3415 | 1219 | 747 | 32 | 29 | 0.9 | 2.4 | 2.0 | 2.6 | 2.0 | 3.4 | 8.3 | 9＊3 | 1.3 | 14＊O |
| 1985 | 34.61 | 34145 | 1771 | 310 | 34 | 33 | 1.0 | $2 \cdot 6$ | 2＊O | ？． 0 | 4.91 | 5.1 | 10.4 | 11.5 | 6.7 | 19.7 |
| 1096 | 3420 | 4209 | 1302 | 5317 | 649 | 337 | 17．6 | 25.9 | 2.0 | 20.8 | 2.0 | ？ 5.1 | 17.6 | 34.7 | 9.0 | 49，8 |
| 19 P | 35015 | 45.13 | 132 n | 197 | 9.3 | 48.9 | 26．09 | 35.3 | 2.0 | B． 2 | 2，0 | 9.6 | 14.9 | 45.7 | 1.4 | 64.3 |
| 1990 | 31.62 | 4.763 | 1302 | $19 \% 1$ | 1041 | 579 | 29.5 | 3\％．0 | 2．0 | 4.2 | 4．8 | 6.9 | $17 \cdot 7$ | 51.9 | 27.2 | 75.6 |
| 1989 | 3775 | $47 \mathrm{R1}$ | 1417 | $123 ?$ | 1046 | 513 | 2月．0 | 3t．？ | 2.0 | 0.8 | 1.9 | 0.6 | $19 * 5$ | 53.0 | 29.7 | 76.6 |
| 1075 | 3910 | 5110 | 14\％9 | ？ 0104 | 13110 | 636 | 34．1 | 43.9 | ？． 0 | 6.9 | 2.0 | 7.9 | 21.2 | 63.5 | 32.4 | 90.5 |
| 1921 | 3429 | 5164 | 1493 | 2144 | 1335 | 6511 | 34.9 | 43.6 | 0.5 | 1.1 | 3.1 | 2.9 | ？？＊5 | 65.2 | 36.5 | 96.0 |
| 1992 | 3 44% | 5136 | 1501 | 2170 | 120日 | 628 | 33.5 | 41.8 | 0.5 | －n． 5 | 0.5 | -0.7 | 23.1 | 6.4 .4 | | 94．6 |
| 13.37 | $3 \mathrm{~B} / 7$ | 913？ | 15.00 | 2110 | 1235 | 602 | 31.9 | 3 n .9 | 0.5 | －0．7 | 0.5 | －0．9 | 23.7 | 63.3 | 37.8 | 92.9 |
| 1934 | 3nat | 50189 | 14，77 | 20．2 | 1202 | 585 | 30.9 | 39.6 | （）． 5 | －0．3 | －2．1 | －2．3 | 24.4 | 62． 8 | 35.0 | B8． 5 |
| 1205 | 34015 | 5107 | 1484 | 2069 | 12い2 | 585 | 30.9 | 39.4 | 0.5 | 0.4 | 0.5 | 0.3 | 25.0 | 6.3 .4 | 35.6 | 89.1 |
| 10．6 | 3175 | 5127 | 149？ | 2077 | $120 ?$ | 5月5 | 30.6 | 39.2 | 0.5 | 0.4 | 0.5 | （）． 4 | 25.6 | 64.1 | 36.4 | 89.9 |
| 1097 | 3145 | 5147 | 14.97 | 20144 | 1212 | 585 | 30.5 | 39.0 | 0.5 | 0.4 | 0.5 | 0.3 | 21.2 | 64.7 | 37.0 | 90.5 |
| 194F | 301.5 | 516.7 | 1597 | 300？ | $1 ? 6 ?$ | 385 | 30.3 | 3A．A | 0.5 | 0.4 | 0.5 | 0.4 | 24.9 | 65.3 | 37.8 | 91 |
| 1999 | 3085 | 5197 | 1514： | 2009 | 12 W | 545 | 30.2 | 3 AD O | 0.5 | n e4 | 0.5 | 0.3 | ． 27.5 | 6\％．0 | 39.4 | 91.9 |
| 2000 | 41105 | | $1 \cdot 27$ | 21117 | 12ハ7 | 545 | 3 n .0 | 38.4 | 0.5 | 0.4 | 0.5 | 0.4 | ？P． 2 | ith．t | 39.1 | 92.6 |

Source：This table summarizes projections presentedin Technical Report Number 53.

Fi gure 5. 3: High Fi nd Case, Offshore OCS Structures and Fi shing Grounds
onshore facilities are a crude oil terminal, a LNG plant, and a forward service base; construction begi ns in 1986 and will be complet in 1988. Production phase activities begin in 1989 and continue through 2016. The marine traffic generated by OcS activities is summarized in Table 5. 9, and the empl oynent and popul ation impacts for the None area and the Nome/Wade Hampton Census Divi si ons appear in Tables 5.10 and 5.11.

Using Past Interactions Between the Offshore Petrol eum and Commerci al Fi shi ng I ndustries and Economic Anal yses to Identify Potential I mpacts

In the following sections, past experiences of interactions between the offshore petroleum and commercial fishing industries and economic anal yses are used to identify the impacts that nay result as these two i ndustries compete for labor, ocean space use, and services of the infrastructures of coastal commities.

COMPETI TI ON FOR LABOR

The commercial fishing industry is the Iargest private sector employer in Western Al aska, and its labor requi rements are projected to increase as the traditional fisheries continue to expand and as a donestic groundfish industry devel ops. The question to be addressed in this section is, can the labor requi rements of the comercial fishing industry be net as the OCS industry devel ops and becomes a naj or empl oyer? The answer to this question will be determined by a number of factors including:

Table 5. 9

High Find Case
Marine Traffic Generated by OCS Activity

| Year | Linehaul Vessel s | Linehaul
 Li ghters
 (Arri val s/ Year) | Coastal Li ghters | Suppl y Boats
 (Tri ps/ Mbnth) | Gravel Bar ges
 (Tri ps/ Year) | Pi peline Lay and Bury Barges Number ! ! @ - | $0 i 1 \&$ Tankers (Department/ Year) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 4 | 204 | 0 | 36 | n | - 0 | 0 |
| 1984 | 7 | 408 | 1 | 96 | 75 | 0 | 0 |
| 1985 | 11 | 616 | 2 | 132 | 75 | 0 | 0 |
| 1986 | 66 | 687 | 2 | 144 | 122 | 0 | 0 |
| 1987 | 4 \$ | 492 | 3 | 132 | 122 | 0 | 0 |
| 1988 | 27 | 667 | 4 | 267 | 572 | 6 | 0 |
| 1989 | 25 | 44 | 4 | 416 | 1411 | 7 | 24 |
| 1990 | 46 | 85 | 9 | 6 ? 9 | 839 | 5 | 114 |
| 1991 | 57 | 105 | 12 | 509 | 389 | 6 | 265 |
| 1992 | 52 | 108 | 12 | 433 | 389 | 1 | 468 |
| 1993 | 35 | 96 | 10 | 280 | 0 | 1 | 635 |
| 1994 | 18 | 87 | 10 | 170 | 0 | 1 | 711 |
| 1995 | 14 | 85 | 10. | 100 | 0 | 0 | 722 |
| 1996 | 11 | 83 | 10 | 80 | 0 | 0 | 687 |
| 1997 | 10 | 84 | 9 | 60 | 0 | 0 | 617 |
| 1998 | 9 | 83 | 9 | 60 | 0 | 0 | 537 |
| 1979 | 9 | 82 | 10 | 60 | 0 | 0 | 461 |
| 2000 | 9 | 83 | 9 | 60 | 0 | 0 | 379 |

Source: Peat, Marwick, Mtchel I \& Co. and Janes D. Li ndsay \& Associ ates, 1980.
NOE: These estimates do not incl ude 15 to 19 linehaul vessel arrival s, 143 to 184 linehaul Iighter vessel arrivals, or 16 to 21 coastal lighter vessel arrivals that are expected to occur in the absence of Lease Sale No. 57.

Table 5.10
Nome／Wade Hanpton Census Divistion
High Find Case
ted ocS Population and Employment Impacts
1980－2000

| Year | Population | | Employment | | Increment | | Percentage lincrement | | Annual Percentage Change Population Employment． | | | | Cumulative Percentage Change
 Population Emp loyment | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Without | With | Without | With | | Employ－ | | Employ－ | Without | With | Without | With | Without | With | Without | With |
| | OCS | OCS | OCS | OCS | Population | ment | Pop． | ment | OCS |
| 1940 | 11）446 | 1184\％ | 3060 | 31790 | $!$ | 0 | n | 0 | 6 | \bigcirc | n | 0 | 3 | n | n | 0 |
| 1911 | 11776 | 11776 | 30.64 | 3054 | 0 | 0 | 0 | 11 | －0．6 | －0．6 | －0．8 | －10． 8 | －0．6 | -17.6 | － 0.8 | －0．${ }^{\text {a }}$ |
| 1912 | 11511 | 11511 | 2962 | 206？ | 0 | 0 | 0 | 0 | －2．3 | －2． 3 | －3．0 | －3．1 | －？． 8 | －2．9 | -3.8 | －3．8 |
| 1983 | 11752 | 12035 | 3034 | 3174 | 203 | 147 | ？．4 | 4.6 | 2.1 | 4.6 | 2.4 | ${ }^{7} \mathrm{f}$ | －0． 8 | 1.6 | -1.5 | 3.1 |
| 1984 | 12406 | 17984 | 3727 | $35 \% 3$ | 4.78 | 296 | 4.7 | 9.7 | 5.6 | 7.9 | 6.4 | 110 | 4.7 | 9.6 | 4.8 | 14.4 |
| 1935 | 125．25； | 17731 | 7 360 | 3 96\％ | 170\％ | 600 | 4.6 | 10．6 | 1.0 | 5.9 | 1.0 | 9 \％ | 5.7 | 15.7 | 5.8 | 25.3 |
| 1906 | 12517 | 14053 | 3259 | 4136 | 1596 | 977 | 12.3 | 26．9 9 | -0.1 | 2.3 | -0.0 | 7.2 | 5.7 | 19．6 | 5.8 | 34.3 |
| 1917 | 175．151， | 14554 | 3299 | 4×11 | 1909 | 136.7 | 14．9 | 411． 1 | 0.3 | 3.6 | 0.9 | 12% | 1.00 | 27.9 | $6 . A$ | 50.4 |
| 19 BH | 12 i．mon | 15394 | 3756 | 4.346. | 2708 | 1600 | 21.3 | 47.7 | 1.1 | 5.8 | 2.0 | | 7.1 | 30.0 | 9.0 | 60.9 |
| 1910） | $1 ? 5 \mathrm{~mm}$ | 16.300 | 3448 | 54.94 | 3504 | 2060 | 27.2 | 50.5 | 1.5 | 6.4 | 2.7 | 1% \％ | P．$\frac{1}{}$ | 34．4 | 11.9 | 78． 5 |
| 1990 | 131011 | 20173 | 35．45 | A318 | 701\％ | 4773 | 57.5 | 134.6 | 1.7 | 2．2．A | 2.8 | $55_{5}{ }^{3}$ | 10.7 | 6.9 .9 | 15.1 | 170.1 |
| 1901 | 13297 | 219pa | 7631 | 9595； | asat | 5961 | 64.7 | 164．3 | 1.4 | 0.8 | 2.4 | $1{ }_{3}{ }^{*}$ | 17．7 | 14．${ }^{8}$ | 17.9 | 211.5 |
| 19？ | 13494 | ？ 364 | 3724 | 9031 | 1473 | 6107 | 6．．．A | 166．4 | 1.5 | 2.2 | 2.6 | | 13.9 | A $A_{\text {．}} \mathrm{A}$ | 20.7 | 222．1 |
| 1493 | 13802 | 21598 | 791\％ | 936.9 | 7416 | 45953 | 57.9 | 145.5 | 1.4 | －3．4 | 2.5 | －4 | 15.5 | R2． 3 | 23.9 | 204．2 |
| 1204 | 130000 | 210481 | $702 ?$ | ค948 | 7179 | 5026 | 51.3 | 12．9．1 | 1.7 | －2．5 | 2.8 | －0 | 17．1 | 77.7 | 27.3 | 190.5 |
| 1990 | 14.105 | 21068 | 4019 | 81941 | 6961 | 4962 | 4.124 | 123．5 | 1.4 | 0.1 | 2.5 | 0 宾 | 19.1 | 77．8 | 30.5 | 191.6 |
| lawe | 14．291 | 21130 | 4116 | 9ヵ5 | 6848 | 493 A | 47.9 | 119.9 | 1.3 | 0.3 | 2.5 | $1-9$ | 20．6 | 7 A .4 | 33.7 | 194.0 |
| 1097 | 144．41 | 31349 | 4.725 | 9231 | 6.175 | 5006 | 47.3 | 119．5 | 1.4 | 1.0 | 2.6 | $\square^{\prime \prime}$ | 22.3 | AO．？ | 37.7 | 199.7 |
| 1848 | 14.707 | 215.94 | 4342 | 9377 | 6.911 | 5036 | 44.4 | 11% ， | 1.5 | 0.0 | 2.8 | $\rightarrow 0$ | 24．7 | A1．7 | 41.0 | 204．5 |
| 1994 | 14.9643 | 21760 | 4471 | 9572 | 61111 | 5101 | 45.6 | 114.1 | 1.6 | 1.1 | 3.0 | ＊ 1 | 26． 2 | 83.7 | 45.2 | 210．8 |
| 2000 | 15146 | 21887 | 4 CBR | 9707 | 6.747 | 5121 | 44.6 | 111．t | 1.3 | 0.6 | 2．6 | $1 \cdot$ | 27． 1 | 日4．0 n | 40.0 | 215.2 |

Source：This table summarizes projections presented in Technical Report Number 50.

Table 5． 11
Nome Area Census Division
High Find Case
Projected OCS Population and Employment Impacts
1980－2000

| Year | Population | | Employment | | Increment | | Percentage Increment | | Annual Percentage Change Population Employment | | | | Cumulative Percentage Change Population Lmployment | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Without OCS | $\begin{gathered} \text { With } \\ \text { OCS } \end{gathered}$ | Without OCS | $\begin{aligned} & \text { With } \\ & \text { OCS } \end{aligned}$ | Po | Employ ment | | Employ- ment | $\begin{aligned} & \text { Without } \\ & \text { OCS } \end{aligned}$ | With | ithout 0CS | Jith OCS | Without OCS | With | Without 0CS | $\begin{aligned} & \text { With } \\ & \text { OCS } \end{aligned}$ |
| 1980 | 3125 | 3125 | 1004 | 1074 | 1 | 0 | 0 | 0 | 0 | \bigcirc | 0 | 0 | 0 | \bigcirc | 0 | 0 |
| 19月1 | 31 nl | 31814 | 1116 | 1116 | 0 | 0 | n | 0 | 2.0 | 2.0 | 2.0 | 12.0 | 2.0 | 3.0 | 2.0 | 2．0 |
| 1982 | $325 ?$ | 3）5？ | 1171 | 1111 | 0 | 0 | 0 | 0 | $2 * 0$ | 2.0 | 4.9 | 4.0 | 4.1 | $4 * 1$ | 7.0 | 70 |
| 10ヶ3 | 3317 | 73311 | 117% | 1206 | 13 | 12 | 0.4 | 1.0 | 20 | 2.4 | 2.0 | 3.0 | 6.1 | 6. | 9.1 | 10^{2} |
| 19144 | 3343 | 3411 | 1218 | 124．3 | 28 | 25 | 0.8 | 2.1 | 2 ＊ | 2.4 | 2.0 | 3.1 | 9.3 | 9.2 | 11.3 | $13 \cdot 6$ |
| 1985 | 34.51 | 34，96 | 1277 | 1317 | 45 | 40 | 1.3 | 3.1 | 2.0 | 2.5 | 4.8 | 6.0 | 10.4 | 11°＊ | 16.7 | 20.4 |
| 196．6 | 3520 | 456,3 | 130 ？ | 1811 | 1043 | 509 | 29.6 | 39.1 | 2.0 | 0.5 | 2.0 | 37.5 | 17.6 | 4 4．0 | 17.0 | 65．5 |
| 1987 | 3590 | 4.934 | － 7318 | 19 AO | 344， | 65 ？ | 37． 4 | 49.1 | 2.0 | A． 1 | 2.0 | 9.3 | 14.9 | 57.9 | 21.4 | 81.0 |
| 1084 | 34.62 | ¢025 | ． 392 | 2054 | 137．3 | 6， 6.2 | 37.2 | 47.6 | 2.0 | 1.8 | $4 \cdot 8$ | $3 \cdot 7$ | 17.7 | $6^{10} \cdot 1$ | 77.2 | 87．8 |
| 19 HO | 3734 | 520% | ． 418 | 2116 | 14t． 7 | 717 | 72.3 | 50.5 | 2.0 | 3.5 | － 9 | $4 \cdot 0$ | 17.5 | 66．5 | 29.7 | 95．？ |
| 1090 | 3 110 | 1，32？ | 14.8 | 2177 | 1512 | 737 | 39.7 | 51.0 | 2.0 | 7.3 | 2.0 | 2.4 | 21.9 | 70． 3 | 32.4 | 99.9 |
| 1991 | 3 P 29 | 5501 | 1493 | 2310 | 16.90 | 417 | 43.9 | 54.7 | 0.5 | 3.5 | 3.1 | 5.6 | 22.5 | 76.3 | 36.5 | 1112 |
| 1947 | 3 Bran | $1 ⿻ コ 一_{101}$ | 1501 | 2733 | 11.4 .9 | 日月2 | 43.9 | 53.4 | 0.5 | －0．2 | 0.5 | －0． 3 | 23.1 | 75.9 | 71.2 | $110^{\circ} 5$ |
| 10.3 | $3 \mathrm{RG} \mathrm{\%}$ | －1．24 | 1504 | 23tar | 145 | 758 | $4 \pi .3$ | ${ }^{5} 0 * 3$ | 0.5 | -1.3 | 0.5 | -1.6 | 23.7 | 73.6 | 37.8 | 1071 |
| 1994 | 3 ¢月． | 54112 | 1471 | 7214 | 1516 | 737 | 39.0 | 40.7 | 0.5 | －0．4 | －2．1 | -2.3 | 2.4 .4 | 72.9 | 35.0 | 10204 |
| 1905 | 31015 | $540{ }^{5}$ | 14.14 | 2214 | 14100 | 730 | 3 A． 4 | $49^{*} 2$ | 0.5 | 0.1 | 0.5 | 0 | 25．0 | 73.11 | 35.6 | 1024 |
| 190\％ | 3929 | 1，4，7 | 14.72 | 271 | 14.311 | 129 | 3n． 2 | $4^{\text {P．}} 9$ | 0.5 | 0.3 | 0.5 | 0.1 | 25．h | 73.5 | 36.4 | 103：0 |
| 1907 | 317， 5 | $5_{5} 44_{15}$ | 11.70 | 2739 | 15110 | 730 | 3 m .0 | 487 | 0.5 | 0.4 | 0.5 | 0.4 | 2t． 2 | 74．？ | 77.0 | 03% |
| 1490 | 358.5 | 94， 6.5 | 15.117 | 3．717 | 15190 | 730 | 37.8 | ， 8.8 | 0.5 | 0.4 | 0.5 | 0.4 | 26.9 | 74．4 | 37.8 | $104{ }^{\circ} 5$ |
| 19090 | 378 F | －4，47 | 151\％ | 23160 | 15012 | 73. | 37．「 | 4 A 3 | 0.5 | 0.4 | 0.5 | 0.4 | 27.5 | 7＊．6 | 12． 4 | ，05，3 |
| 20011 | 41105 | 6¢01 | 15.2 | 2254 | 1 ± 97 | 172 | 37．＇ | 4A． 1 | 0.5 | 0.4 | 0.5 | 0.4 | 2H．？ | 76．？ | 37.1 | 10690 |

Source：Th s table summarizes projections presented in Technical Report Number 5^{9}

- the skill requi renents of both industries,
- wage differentials between the industries,
-the hiring practices of both industries,
- the sources of labor that are available to each industry,
- the effect of OCS activity on the supply of Iabor in each comminity.

Skill Requi rements

Differences in skill requi rements tend to limit the competition for I abor bet ween two industries; an anal ysi s of the skill requi rements of the two industries can, therefore, be used to begin to determine whi ch types of labor the industries will compete for. Typically, the skill requi rements are sufficiently different to limit competition. For example, the offshore OCS operations requi re highly specialized Iabor, and the OCS supply boats are manned by licensed officers and crevs with seaman's papers. Conversel y, seaf ood processing requi res a large number of unskilled workers, and fishing boats are typically manned by indi vidual s who are not licensed oficers or do not have seaman's papers. Therefore, the offshore labor requirenents of the OCS industry tend not to compete with either the harvesting or processing labor requi rements of the fishing industry.

The OCS requi rements for onshore labor, particul arly for construction projects, can, however, compete directly with the I abor requi renents of the fishing industry since the skill requi rements for many onshore jobs
are mini mal and can be net by many of those who are employed in the fishing industry. In terns of skill requi renents, the OCS industry can al so compete with the fishing industry for nore skilled workers such as forenen and nechani cs.

Wage Differentials

For the types of labor for which there is direct competition between the two industries, the effect of the competition on the fishing industry's ability to neet its labor requirenents will be affected by the wage differential between the two industries. For example, the hourly wage in seafood processing is expected to be substantially bel ow the hourly wage in construction; therefore, to the extent that both can utilize unskilled labor, the onshore construction projects can provi de effective and, therefore, potentially adverse competition. - The shellfish fisheries of Western Al aska and the salmon and herring fisheries from Chignik to Bristol Bay often have nonthly crew shares in excess of \$5,000 per fisherman. In these fisheries, the equi val ent of nonthly wages are expected to be hi gher than construction wages; therefore, OCS construction labor requir renents are not expected to effectively compete with harvesting labor requirenents even though many fishernen are well qualified to work in construction. The sal non and herring fisheries in the Arctic-Yukon-Kuskokwim Regi on may have nonthly crew shares of less than \$1,000; however, due to the limited number of hours spent in these fisheries and the tine available for other pursuits, the equi valent of an hourly wage in these fisheries is expected to be adequate to limit the ability
of OCS I abor requi renent to effectively compete with the harvesting labor requi rements of these fisheries.

Hiring Practices

The hiring practices of an industry also influence the degree to which it provides effective competition for particular types of labor. Hiring practices of the OCS industry will tend to limit the competition for labor. The industry consi sts of oil compani es and servi ce compani es that participate in petrol eum devel opment on a global scale. As the activity of the industry begi ns in a new area, petrol eumindustry norkers from other areas are brought in; therefore, the points of entry into the i ndustry are typically not a new area of industry activity. A maj or exception to this hiring practice would incl ude hiring for Iarge onshore construction projects. For such projects, a large number of workers who are new to the industry are empl oyed. Thi s does not, however, mean that such workers will be hi red locally. If local hiring halls of the construction uni ons do not exi st or are not used, the I arge construction labor requi rements may less effectively compete with the labor requi rements of the fishing industry. The use of non-local hiring halls Iimits, but does not eliminate, access to local residents.

Hing practices in the fishing industry will al so tend to reduce the effective competition for labor bet ween the two industries. For example, crens are typically hi red in the home port of a fishing boat or its skipper; therefore, non-local boats do not draw heavily on the local

I abor force. The hiring of some processing plant empl oyees also occurs in part at distant locations. For example, processing plants recruit students on college campuses in Alaska and in the Pacific Northwest and recruit non-students from the Seattle and Anchorage areas. Effective competition will al so be reduced by the use of family nenbers to crew fishing boats. Family crew menbers have close ties to a fishery and in nany cases are too young to be empl oyed el sewhere or have little interest in al ternative empl oyment opportunities.

Source of Labor

The source of Iabor and hiring practices are closely rel ated; they both affect the effectiveness of the competition for labor generated by the OCS industry by differentiating between the labor pools from which each industry hi res. The anal ysis presented under hiring practices is, therefore, applicable to this section. A factor which is more appropriately di scussed in this section is the nat ure of employnent in the two industries and, thus, the type of worker each attracts.

Many indi vidual s are attracted to the fishing industry because bei ng a fishernan results in a lifestyle that could not otherwise be enjoyed. To the extent that fishermen are tied to the non- nonetary rewards of that lifestyle, they are not part of the labor pool in which other industries readily compete. This nay be particularly true for native fishermen in Vestern Al aska, because their participation in commercial fi sheries provides equi pnent and cash incone that are requi red to successfully partici pate in subsi stence fisheries (Ellana, 1980).

A distinction can be drawn between the part of the unskilled labor force utilized by fish processing plants and the part utilized by OCS onshore construction projects. Seaf ood processing pl ants have had a much hi gher propensi ty to hi re monen, students, minorities, and transi ents than have construction contractors; theref ore, the maj or source of labor in seaf ood processing has not been consi dered part of the labor pool for construction. Thi s is no doubt explai ned by the preferences of these empl oyees as well as those of prospective empl oyers; that is, those who work in processing plants may do so in part because they prefer such empl oynent to construction empl oyment and in part because the empl oynent opportunities in construction may be limited due to the desire of contractors to hire from their traditional labor pools. To the degree that some processing plant workers remain in a distinct labor pool, the labor competition of the OCS industry will be less effective in attracting the labor which has traditionally been available to processing plants.

An additional aspect of the source of I abor that determines the impact of I abor competition is the size of the labor pool the fishing industry can utilize. If an almost inexhaustible source of labor is available, the Iabor requi rements of the fishing industry can be net despite large OCS labor requi rements. For the traditional summer fisheries, the seaf ood processing sector of the industry has had access to such a labor pool. The large differential bet ween the min mum wage and the Al aska seaf ood processing wage and high seasonal unempl oyment rates in the United States have resulted in an nost unlimited supply of seasonal uorkers for Alaska processi ng plants.

The harvesting sector of the industry al so has access to a very large labor pool of prospective fishermen who are attracted to \mathbf{A} aska fisheries. This is denonstrated by the large number of letters fishing boat owners recei ve from such indi vidual s and the ability of a competent ski pper to turn such indi vidual sinto productive fishermen during one season.

Effects of OCS Activity on the Supply of Labor

The OCS I abor requir rements can adversel y or beneficially impact the fishing industry. If the increase in I abor denand due to OCS activity is greater than the increase in labor supply due to OCS activity, less I abor is available for the fishing industry and the impact is detrimental. Honever, if the OCS acti vity results in the Iabor supply increasi ng nore rapidly than denand, nore labor is available for the fishing industry and the impact is beneficial.

In the preceding sections, economic anal ysis is used to delineate factors that will tend to determine the impact of competition for labor. The proceedi ng sections provide additional insi ght into the nature of potential impacts by revi ewing the impacts that have occurred in the past.

The pet rol eum devel opnent which occurred in the Lower Cook Inl et bet ween. 1961 and 1968 provides an opportunity to measure the extent to which such competition exi sted and affected the processing sector of the comercial fishing industry. The experience in Cook Inl et is particularly useful in measuring the potential impact of high levels of OCS onshore empl oyment because the devel opment there was at first excl usi vel y onshore andincluded the construction of several $0 i 1$ and gas processing plants.

The Cook Inl et and Alaska oil boom began with the Swanson River strike of 1957. Onshore production began in 1959; offshore production did not., however, begin unti 1 1965. Bet ween 1961 and 1968 the pet rol eum devel opnent activities incl uded: (1) the expl oration for and/ or devel opnent of six oil fiel ds and 15 natural gas fields; (2) the construction of an 82mile gas pipeline to connect the Kenai fieldwith the Anchorage area; (3) the construction of marine terminal faci lities at Port $\mathbf{N i} \mathbf{k i}$ ski, completed in 1961; (4) the construction of the Standard Oil Company's refinery in 1962 and 1963; (5) the construction of offshore platforms, the first being compl eted in 1964; (6) the construction of pipelines connecting the offshore fields with on-shore facilities; (7) the construction of the Collier Carbon and Chemical Corp. ammonia plant, and the Collier Carbon and Chemi cal Corp. and Japan Gas-Chemical Co. urea plant; (8) the initiation of construction of the Phillips Petroleum Co. and Marathon 0 il Co. liquified natural gas plant and the $\mathbf{A l}$ askan $0 i 1$ and

Refining Co. refinery; and (9) the construction in 1961 of a 42 mile pi pel ine from Granite Point to the $D \times i f t$ Ri ver narine terminal and storage facilities which were complet the sane year. This brief overvi ew of the devel opnent which occurred bet ween 1961 and 1968 is based on material in A Social and Economic Impact Study of Off-Shore Petrol eum and Nat ural Gas i-n Al aska.

Empl oynent data are not available for fish processing or the petroleum industry, but are available for groupings of industries which are dom nated by one or the other. Empl oynent rel ated to the petroleum industry dominated ming and construction employnent during the 1960s and fish processing was the principal source of employnent in manufacturing. The empl oyment in the former two sectors is, theref ore, used as a proxy for empl oyment in the petrol eum industry, incl uding pet rol eum rel at ed construction. And manufacturing empl oyment, minus an estimate of employment in the manufacturing of petroleum products, is used to represent fish processing empl oynent.

A quick revi ew of the empl oynent, work force, and sal non harvest statistics presented in Table 5.12 indicates that the rate of increase in the Iabor force was sufficient to neet the growing empl oyment requirenents of the petrol eum industry without adversel y affecting employnent in manuf acturing. A nore rigorous denonstration of the lack of an adverse effect is provided by the results of the following regression equations:
5. 1 EM= 91. $45-0.00156 \mathrm{ClS}+0.00312 \mathrm{RCS}+0.159 \mathrm{EC}$ t-statistics (-0.34) (2.00)
(3.07)
$R^{2}=0.829 D \cdot W=1.51$

TABLE 5.12
UPPER COOK INLET COMMERCI AL FISHING AND PETROLEUM INDUSTRY STATI STI CS 1961-1968

| Year | Mining | Construction | Employ
 Mining \& Construction | ```ment' (number of perso Manufacturing Excluding Petrol eum Products }\mp@subsup{}{}{2``` | ns)
 Total Enpl oynent | Working
 Force | | Catch (1,000 lbs)
 Remai nder of Central Al aska |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961 | 156 | 68 | 224 | 227 | 2,585 | 2, 838 | 11,692 | 65, 263 |
| 1962 | 219 | 149 | 368 | 286 | 3,477 | 3, 724 | 34, 133 | 110, 709 |
| 1963 | 150 | 154 | 304 | 348 | 3, 307 | 3, 664 | 11,544 | 81, 711 |
| 1964 | 233 | 182 | 415 | 511 | 3,551 | 3, 807 | 25,140 | 121, 249 |
| 1965 | 255 | 479 | 734 | 331 | 4, 175 | 4, 462 | 14,119 | 59, 109 |
| 1966 | 458 | 582 | 1,040 | 447 | 5,160 | 5, 537 | 27, 393 | 89, 252 |
| 1967 | 1,122 | 1,266 | 2, 38\$ | 426 | 6, 362 | 6, 768 | 14,616 | 33, 023 |
| 1968 | 1,183 | 1,800 | 2,983 | 544 | 7,985 | 8, 136 | 29, 004 | 82, 823 |

1 Third quarter empl oynent July - August.
Manuf act uring empl oyment minus the empl oyment at the Standard 011 Company refinery, the later was provi ded by a representative of the Standard $0 i 1$ Company.

Sources: Catch and Production, ADF\&G 1961-1968
Statistic] Quarterly and Workforce Estimates by Area, Empl oynent and Security Division, Al aska Departnent of Labor 1961-1968

where
$\mathrm{EM}=$ third quarter empl oyment in nanuf act uri ng, excl udi ng petrol eum products: this is predom nantly fish processing;

CIS = Cook Inlet salmon harvest in 1,000 pounds;
RCS $=$ rest of Central Al aska sal non harvest;
$E C=$ third quarter construction empl oyment;
$E M C=$ third quarter mining and construction enpl oyment;
WF = third quarter total civilian work force; the empl oyment and work force statistics are for the Kenai - Cook Inl et Iabor narket.

Equations 5.1 and 5.2 are used to test the hypothesi s that increases in construction empl oyment or increases in construction and ming empl oyment, respectivel y, were at the expense of fish processing empl oynent. The coefficients of EC and EMC are not, however, negative; they are si gnificant and positive which indicates that the hypothesis can be rejected with a high degree of confidence. The results of equation 5.3 provide an expl anation of why the increased pet rol eum empl oyment was not detrimental to fish processing. The coefficient of WF is positive and highly si gnificant indicating that manuf acturing (fish processing) empl oyment increased as the work force increased. The increases in work force were primarily due to increased petrol eum industry empl oynent.

Commercial fishing industry sources associated with fish processing on the Kenai Peni nsula during the period under investigation have al so
i ndi cated that the supply of labor for processing plants was not adversel y affected by the petroleum industry. Tho persons who held management positions in Kenai fish processing plants during the period of the Kenai oil boom provi ded the following assessment of the impacts of the labor requi renents of the petrol eum industry. Petroleum industry activity did not adversel y affect the supply of labor for fish processing because the fish processing labor force was dominated by students and women, for whom the petrol eumindustry of fered Iimited empl oynent opport unities, and because many of the petrol eumrel ated \mathbf{j} obs were taken by peopl e who were attracted to the area by the petrol eumindustry. Skilled norkers in the fish processing plants were not hi red away by the petroleum industry; this may in part be due to the petrol eumindustry's desire to be a good nei ghbor and cause as little conflict with exi sting industries as possible. Fish processing wages did not increase significantly as a result of the petroleum industry's demand for labor. This is no doubt due to the fact that these two industries drew from di stinct labor pools.

The North Slope

The petrol eum devel opment activities associ ated with Prudhoe Bay provide another opportunity to determine whether the Iabor force can increase rapidly enough to neet the violatile labor requi rements of the petrol eum i ndustry, without decreasing the quantity of I abor available to other industries. As the data in Table 5.13 indicate, there was a dranatic increase in construction and total emp'loyment in 1974. Much of this was
due to the Iarge construction projects associ ated with the devel opment of the Prudhoe Bay oil field.

TABLE 5. 13
ALASKA EMPLOYMENT AND VORK FORCE STATI STI CS 1970 - 1977

| Year | Contract Const ruction Empl oyment | Total Givilian Empl oyment | Total Civilian Wbrk Force | $\begin{aligned} & \text { Unemploy- } \\ & \text { men t } \\ & \hline \end{aligned}$ | $\frac{\text { Unempl oynent }}{\text { A aska }}$ | $\frac{\text { Rate }}{\text { Us. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 6,893 | 99, 000 | 109, 000 | 10, 000 | 9. 1 | 4. 9 |
| 1971 | 7,443 | 104, 000 | 116, 000 | 12,000 | 10.6 | 5. 9 |
| 1972 | 7,893 | 110, 000 | 123, 000 | 13, 000 | 10.6 | 5. 6 |
| 1973 | 7,838 | 116, 000 | 130, 000 | 14, 000 | 10.8 | 4. 9 |
| 1974 | 14, 066 | 134, 000 | 149, 000 | 15, 000 | 10.2 | 5.6 |
| 1975 | 25, 876 | 165, 000 | 180, 000 | 15, 000 | 8.2 | 8.5 |
| 1976 | 30, 233 | 176, 000 | 195, 000 | 19, 000 | 9.7 | 7.7 |
| 1977 | 19, 546 | 132, 000 | 150, 000 | 18, 000 | 12.2 | 7.0 |

Sources: Al aska Department of Labor Statistical Quarterly 1970-1977, Federal Reserve Bank of San Franci sco, Western Economi c Indicators, Nbvember/ Decenber 1978.

Al though the construction of the Trans Alaska Pipeline, the production facilities at Prudhoe Bay, and the narine terminal and storage facilities at Val dez di rectly and indi rectly generated phenomenal increases in empl oyment, the increases in empl oyment were nore than matched by increases in the size of the work force. The unempl oyment rate was lower during the peak years of construction (1975 and 1976) than ithad been in the previ ous four years, but it renai ned high by U.S. standards and the number of unempl oyed actual ly increased.

The data for both Cook Inlet and the North SI ope suggest that I arge increases in the demand for labor due to petrol eum devel opment activity can be nore than net by increases in the work force. This does not
imply that increased empl oynent opportunities in the petrol eumindustry have not caused shortages in the supply of specific types of labor, but it does suggest that the total supply of labor tends to increase nore rapi dly than the total denand. There will, therefore, tend to be an excess supply of norkers who are, at least temporarily, part of the pool of unskilled Iabor, and this is the naj or source of labor for fish processi ng.

North Sea

The experience of Scotland's commercial fishing industry, rel ative to petrol eum devel opnent in the North Sea, can be used to determine the extent to which the Iarge Iabor requi rements of the petrol eumindustry can adversely affect the fishing industry. In this section, the Scottish experience, as outlined by John Sevy in Techni cal Report Number 28, is so used.

The Scottish experience reaffirns the belief stated previ ously that, to the extent that labor requi renents of the petrol eumindustry adversel y affect the commercial fishing industry, it. is the processing sector, not the harvesting sector, that is affected. Sevy cites several references to the impact of petrol eum devel opnent on fish processing empl oyment. A brief summary of these citations and their applicability to the Gulf of Al aska is as follows. George Hunter has noted a decline in fish pro= cessing empl oynent on the Shetland Islands, which he attributes to the hi gher job security offered by oil-rel ated firns. Whether fish processing
norkers are paid an hourly wage, as they are in Alaska, or on a pi ece rate basis as Sevy indicates they are in Shetland, the irregularity of I andings and resulting irregularity in hours worked per week or nonth does decrease incone and job security. However, in \mathbf{A} aska the peak season for fish processing, and the period in which income and job security are the hi ghest for fish processing workers are during the summer; so when the OCS demand for construction workers is at its hei ght, there will typically be high job security in fish processing. The lack of job security in fish processing may, therefore, be less important in A aska than Hunter suggests it was in Shetland. The seasonality of fish processing empl oyment in \mathbf{A} aska and the degree of $\mathbf{j o b}$ security can be neasured by di viding nonthly empl oyment by the average nonthly employnent for a year as a whole. When this is done using 1978 food processing empl oynent data, the quotient for October through May ranges from 0.58 to 0.91 and the quotient for June through Septenber ranges from 1. 23 to 1.89. The implication is that fish processing empl oyment is highly, al though not excl usi vel y, concentrated in the summer nonths. Hunter does not qualify the reduction in fish processing empl oynent due to petrol eum devel opment, and Sevy provides a possi ble explanation why he does not; British employment statics do not distingui shetween fish processing and meat processing and the harvesting sector of the commercial fishing industry had been declining. It is, therefore, difficult to measure the decline in fish processing employnent and even nore difficult to determine what part of the decline was due to petroI eum devel opment.

Mackay agrees with Hunter that any adverse affects of the increased competition for labor have been concentrated on fish processing, not harvesting; he notes that less than 0.3 percent of the Shetland fishermen have taken empl oyment di rectly rel ated to the petrol eumindustry. Mackay indi cates that the competition for labor is not only concentrated in fish processing, but within fish processing it has been focused on the skilled workers such as machi ne mai ntenance personnel. The com petition for unskilled workers has had less effect because the unskilled empl oynent in fish processing is fenale-intensive. The unskilled labor in Al aska fish processing can be characterized as highly transi ent and femal e-intensi ve; therefore, skilled fish processing workers are perhaps al so nore likely to be poached in Alaska, as Mackay suggests they are in the Shetlands. However, the access that nost Alaska processors have to pools of skilled Iabor in the Pacific Northwest and the rest of the country should reduce the adverse effects of competition for skilled labor. It should be noted that Scottish fish processing plants had access to skilled labor in that there was high unempl oyment of both skilled and unskilled labor throughout mach of Scotland; however, Scottish plants were apparently much less accustoned to accessing di stant pools of labor than are \mathbf{A} askan pl ants which are often managed from the Seatte area.

Nackay and Marr report that competition for labor was also concentrated on skilled I abor in the Peterhead area. Steel indi cates that, excl uding fishernen, cormercial fishing industry employment decreased by 20 percent in the Peterhead area bet ween 1972 and 1976, but that only a negligible
change occurred in Shetland. He does not, however, allocate the change to particular causes.

Perhaps what is best docunented about impacts on the comercial fishing industry of the competition for labor generated by petroleumindustry activity, as well as the other interactions between the petrol eum and commercial fishing industries, is that the impacts and/ or interactions are not well docunented.

Commercial Fi shing Industry Activities Potentially Affected by Competition for Labor

The preceding sections present an anal ysis of the factors which determine the extent to which competition for labor can be a source of impacts and an anal ysis of historical examples of competition for labor generated by the petroleum industry. The comercial fishing industry activities that can be affected by the competition for labor are the topic of this section.

The supply of labor available to the comercial fishing industry nay increase, decrease, or not change as a result of OCS I abor requi rements. If it does not change, competition for labor is not a source of impacts. The impacts will tend to be favorable if it increases and detrimental if it decreases. Each case is examined below.

If OCS activities decrease the supply of labor available to the com nercial fishing industry, the price of labor will increase; theref ore
costs will increase and activities constrained market conditions will tend to decrease. These activities would typically include all processing activities and harvesting activities in fisheries for which quotas or local processing activities are bi nding constraints. The ability of the comercial fishing industry to respond to a decrease in the supply of labor is di rectly rel ated to both the industry's ability to prepare for it and its duration. If there is little time to attempt to secure alternative sources of labor or to adopt labor-saving processi ng methods, the response will tend to be minimal, and the decreases in industry activity may be significant. The same will be true if the OCS impact on the price of labor is expected to be onl y temporary because the cost of responding nay not be warranted by a temporary increase in the price of labor. In the extreme case, higher Iabor prices would make processing activities unprofitable, and processing activities would cease in the short run and perhaps also in the long run. It should be noted that an important determinant of the supply of I abor is the availability of housing. OCS activities can decrease the supply of labor by hiring workers who were traditionally employed in the commercial fishing industry or by increasing the price of housing and thereby effectivel y reducing the housing available to the processing plant Iabor force.

OCS I abor requi renents are expected to primarily affect harvesting sector activities through their effects on processing activities. An increase in the price of labor which decreases processing activity will decrease the demand for fish and theref ore tend to decrease exvessel
prices; or in the extrene case, the termination of processing activities will eliminate the traditional market for fish. If harvesting activity is not constrai ned by market conditions, exvessel prices can decrease without decreasing fishing effort; income will of course decrease. If processing activities cease, alternative markets can be devel oped, but again the ability to respond is dependent on the tine available and the duration of time for which al ternative narket is necessary. For example, if local processing plants are expected to cease operations for only one season, the feasibility of devel oping a new market that will compl etely repl ace the traditional one is much less than if the existing processors are expected to permanently cease operations. However, the ability to tender and fly fish out of a commity for processing elsewhere greatly increases the probability of devel oping alternative markets on a temporary or permanent basis.

OCS I abor requi rements can increase the supply of labor available to the commercial fishing industry by attracting nore labor to coastal commities than is requi red by the di rect and indi rect OCS I abor requi rements or by i ncreasing popul ation and thus increasi ng the number of secondary workers who are available. Such an impact nould be particularly beneficial to fisheries which do not occur during the summer nonths in which sufficient numbers of transients are typically available to adequatel y supplenent resident labor forces. An increase in the supply of labor would eliminate one barrier to extending the processing season in an area. In many instances, the availability of labor is not, however, the only binding constraint on the length of the processing season; therefore, an increase
in the supply of labor nay not be enough to si gnificantly affect the level of harvesting or processing activity.

COMPETI TI ON FOR OCEAN SPACE

The use of ocean space by the OCS industry will prevent fishing in sone areas and will make fishing more costly in others. The objective of this section is to di scuss the characteristics of the OCS industry use of ocean space that lead to this concl usi on, the nat ure of these costs, and how these costs may potentially impact a fishery.

Offshore structures such as drilling and production platforms will prevent fishing in some areas, however, unless the number of such structures is extremely large, the proportion of a fishing ground that is lost due to such structures will be insignificant. For example, a platformwith a di ameter of 61 neters (200 feet) and a 500 neter (1,640 foot) safety buffer preempts 89 hectares (220 acres) of ocean space (O sen, 1977, pp. 226). And unl ess the target speci es is sedentary or attracted to such structures, the decrease in catch will be less than proportionate with the loss in fishing areas. The species under consideration are not sedentary. There is not sufficient biol ogical information to determine the extent to which various species will be attracted to each structure.

In addition to preempting an area within a fishing ground, an offshore structure can also increase the cost of fishing in the remaining areas.

The increased costs can occur because the structure prevents the nost efficient use of the renai nder of the fishing ground or because of navi gational hazards posed by the structure. The forner can occur in a fishery which utilizes non-fixed gear such as trawls or long-lines. The Iatter can occur despite the fact that the positions of such structures are reported in Notices to Mariners and despite the fact that their presence is di scernible from sone di stance by day or ni ght. The cost associated with the navi gational hazards such structures pose appears to be quite lows Coast Guard accident data indicate that collisions with such structures are infrequent, even in areas where there are a large number of such structures. This cost nay, in fact, be offset by the navi gational aid that such structures provide.

Subnarine pipelines will preempt fishing grounds if fishing is prohibited in sections of the pipeline corridor. They will tend to make fishing nore costly in the portion of the corridor in which fishing is pernitted unl ess the pipe is buried and renai ns buried and no debris is left on the seafloor after the pipe laying and burying operations. Past experiences indi cate that nei ther condition will be net; theref ore, submarine pi pelines are expected to increase the cost of harvesting activities.

Additional fishing costs would incl ude gear losses and associated fishing time losses due to undersea obstacles associated with the pipeline, the cost associated with less efficient fishing patterns in non-fixed gear fisheries resulting from the position of the pipeline, and other costs incurred in avoiding pi peline-rel ated gear losses. The
avoi dance costs could incl ude the cost of additional onboard el ectroni cs that will allow a vessel to more readily avoid gear losses al ong the pipeline corridor, or the additional cost of fishing in a less productive area if the pi peline corridor is through a highly productive fishing area and, to avoid gear losses, less productive areas must be fi shed.

It is not known how a submarine pipeline will affect biol ogical relationships in each fishery; therefore, any di scussion of a pipeline attracting fish and thus concentrating themin an area in which they can easily be caught, or not caught at all, is hi ghly specul ative. The sane is true for other offshore structures.

Vessel traffic generated by OCS activity will also use areas of ocean space within fishing grounds. These vessel sinclude supply boats, expl oration rigs, survey vessel s, barges used in the construction of submarine pi pel ines, barges and tankers used to del iver the naterial s needed for OCS operations, production platiorns prior to installation, tankers and LNG shi ps that will deliver Vestern Alaska oil and gas to markets el sewhere in the United States, and additional commercial traffic resulting from the population impacts of OCS activities. This additional vessel traffic will increase the cost of fishing. These costs will incl ude the costs of gear losses and collisions that occur because of OCS generated narine traffic, and the costs incurred by fishernen in attempting to reduce the probability of such gear losses and collisions. The Iatter can include the cost of additional naviga-
tion equi pnent and the cost associ ated with having such marine traffic determine the areas fished.

Coast Guard mari ne acci dent data indicate that the number of collisions between fishing boats and the OCS generated marine traffic will probably be very small. Fi shing vessel s have been fairly successful in avoiding each other and other narine traffic both in Alaska and in areas where the volume of traffic is mach greater and more concentrated than it is expected to be in Vestern \mathbf{A} aska during this century. The sophisticated navi gation equi pment on many fishing boats and vessel s associ ated with OCS activity, good seamanshi p, and good fortune greatly reduce, but do not eliminate, the probability of collisions.

East Coast fishermen report that they bear the cost of collision and gear I oss avoi dance; they indi cate that supply boats, which comprise the bulk of the OCS marine traffic, often ignore the right-of-way of fishing boats, run through fishing grounds on autonatic pilot, and consi der it the fishernen's fault when fishernen do not do what the supply boat tells them to do (Nati onal Fi shernan, October, 1975, p. B.3). Even under nore ideal conditions, gear losses are expected to occur. The potential for gear loss is greater for fixed gear fisheries than for non-fixed gear fisheries, si nce fixed gear such as crab pots and Iong lines are left unattended.

There are tuo gear loss problens associ ated with fixed and unattended gear; its presence is marked by a buoy that is much more difficult to
observe visually or on radar than a fishing boat and, when it is lost, the cause of the loss is not known. Therefore, it is difficult for a fisherman to gain compensation for his gear losses. The crab and shrimp pot fishermen are nore susceptible to gear losses than are hal ibut longliners because the concentration of pot gear in some areas greatly increases the probability of gear I osses when any OCS marine traffic enters the area. The necessity to completel y avoid an area of pot gear to avoid gear losses is evi denced by the successful efforts of West Coast crab fishermen and tug boat operators to all but eliminate what were once substantial gear losses. This was accomplished by identifying routes that the tugs and barges could use to avoid areas of heavy pot concentrations. Hal ibut longline gear, which can extend for several miles and is marked only at the buoyed ends, is nore vul nerable to vessel s that have an exceptional draft or are dragging gear. Survey vessel s are anong those for which such gear provi des a large but unobservable target.

Non-fixed gear such as a trawl, purse sei ne, or dredge is continuously nonitored by and is in the rel ative proximity of the fishing boat; therefore, gear losses to marine traffic are nore readily avoi ded than for fixed gear. However, the size of the gear and the I ack of maneuverability of a vessel using such gear can result in gear losses to marine traffic under adverse conditions. The greatest source of gear losses to non-fixed gear is, however, expected to result not from narine traffic but from debris that results frommarine traffic and other subnarine obstacles that result from OCS activity.

Debris on the seafloor has been a problemin areas of ofshore petroleum devel opnent despite prohibitions on intentional dumping and despite regul ations requi ring that the location of uni ntentional dumpings be reported. Evi dence fromthe North Sea, Upper Cook Inlet, and the Gulf of Mexi co suggests that the OCS debris problem can be reduced but not el iminated. For example, Cook Inl et fishermen have indicated that during early stages of the devel opnent of the Upper Cook Inlet offshore fiel ds debris was often found in fishing nets, but si nce the problens of this debris were nade known to the oil industry and si nce the industry has made a maj or effort to reduce intentional and accidental dumping, debris is seldom a problem It should be noted that in Upper Cook Inlet, floating debris was the maj or problemsince gill nets, not traws, are used in Upper Cook Inlet fisheries. Theref ore, gear Iosses will occur because of debris that results from OCS operations; and the cost of such losses in many cases will be borne by the fishernen, since it is in many instances difficult to determine whether it was, in fact, ocs debris that caused the Ioss.

The ability of a single undersea obstacle to continuously result in gear Iosses is denonstrated by a well-head in the Santa Barbara Channel which clained the gear of five or more vessel s over a period of several years bef ore it was renoved (National Fi sher man, January, 1979, p. 38). There are several factors which nake even known undersea obstacl es hazardous. Fi shermen may consider information ondersea obstacles to be proprietary, once they have found it at their own expense (in terns of gear loss and I ost fishing time). Also, the exact location of such an obstacle may be
difficult to determine, even after gear is lost, and infornation that the Coast Guard provides on the location of known obstacles is not in a form nost readily usable by fishernen. The last problem existed in the Santa Barbara Channel because fishermen used Ioran A or C for navi gation, but the I ocation of obstacles as provided by the Coast Guard was in terns of latitude and Iongitude. An additional problem was that oil compani es used the Lambert Grid system which is different from the systens used by either the fishernen or the Coast Guard (Nati onal Fi sher man, J anuary, 1979).

If OCS uses of ocean space increase the cost of fishing, and if the fishernen cannot typically be compensated by the OCS industry because of the physical, legal, and theoretical difficulties associ ated with identifying the party responsibe or the magni tude of the increased costs, the rel evant question is, how will the increased costs affect harvesting activity? The answer to this question is less obvi ous than it is rel evant.

If the bi nding constraint on harvesting activity is resource abundance and the subsequent quota, there is a margin within which costs can increase without causing harvesting activity to decline. In such a fishery, the sole effect of a cost increase within that margin nould be a decrease in net income to the fishermen and/ or boat owner. If entry into such a fishery is limited, the additional fishing costs would tend to reduce the val ue of the limited entry permit; in this case the burden of increased fishing costs is borne by those who own permits at
the tine when it is generally recognized that the cost of fishing will be hi gher due to OCS operations. New entrants into the fishery would not bear the higher costs if the price of the entry pernit accurately reflects the increases in fishing cost that will result from such operations. It should al so be noted that the margin within which costs can increase without reducing harvesting activity will tend to be larger for the limited entry fisheries, since mich of the adj ustment can occur through a decrease in the price of the limited entry permit.

Si nce costs and productivity vary anong boats in any one fishery, the margins within which costs can increase without affecting harvesting effort vary. The least efficient boats will be the first to decrease harvesting effort, and as they do so, the harvesting activity of the nore efficient boats will tend to increase as long as resource abundance remai ns the bi ndi ng constraint for the fishery as a whole. In this case, the number of boats and fishernen participating in a fishery will be reduced but catch will not change, and the net incone of fishermen and/ or boat owners may increase. If the increase in costs due to OCS operation is less than the decrease in cost that occurs as fishing effort becones concentrated anong the nore efficient boats and fishernen, net incone will increase.

If market conditions impose the binding constraint, an increase in fishing costs will result in a decrease in harvesting effort unless exvessel prices are increased to conpensate fishernen for the additional costs. However, since seaf ood products are quite nobile bet ween areas
and, therefore, tend to compete interregionally prior to processing, and since processed forns from different regi ons compete in the same markets, large exvessel price differentials are not possible. Small exvessel price differentials are possible and nay be sufficient to compensate fishernen for increased costs.

If exvessel prices are not increased to compensate fishermen, harvesting activity will decrease. The least efficient boats would be the first to reduce their effort and, as they do so, the effort of the remaining boats may increase as the resources per boat increase. It is therefore possi ble, however unlikely, that the total harvest will not decrease.

It should be noted that repl acing the activity of less efficient boats with increased activity anong the nore efficient boats is beneficial in that it tends to decrease the total cost of the harvest excl usi ve of gear loss costs; however, it reduces the number of fishermen who are employed in a specific fishery. The decrease in employment is an adverse effect to the extent that unempl oyed fisher men cannot readily find al ternati ve empl oynent.

If total harvest does decrease as a result of the increase in fishing cost caused by OCS operations, processing activity in the local commity will al so tend to decrease unl ess the decrease in harvest is matched by a decrease in sal es to non-local processors, or unl ess the decrease in the harvest availabe to local processors can be of fet by increased i mports of fish fromother areas,

The concl usi ons are as follous:

COMPETI TI ON FOR THE SERM CES OF THE I NFRASTRUCTURE

The OCS industry requi renents for the services of the infrastructure are substantial. If these requi rements cannot be met without decreasing the services that nould otherwi se be available to and requi red by the commercial fishing industry, OCS operations will adversel y affect the fishing industry. However, there are economies of scale associ ated with such servi ces; if the OCS operations result in increases in the supply of these services that neet the OCS requi renents, and al so increase the supply and/ or quality of the services available to the commercial fishing industry, the effect is beneficial. The services that are considered
in this report are water, electric power, and port and harbor facilities.

Al though the impact of competition for these services will depend upon the rates at which the supply of and denand for each service increase in each community, the general characteristics of the service requi rements of the two industries and past experi ences of OCS and fishing industry competition for servi ces provi de some general gui dance in determining what the impacts nay be. The remainder of this section summarizes infornation from such experi ences in the Upper Cook Inl et and the North Sea, and addresses the characteristics of the requi renents. The summary of the Cook Inl et experience is based on infornation provided by two persons who have hel d managerial positions in the Cook Inlet fish processing industry since the begi nni ng of the Upper Cook Inl et oil boom The summary of the North Sea experience is based on material presented by Sevy in Techni cal Report Number 28.

Commercial fishing industry sources reported that Upper Cook Inl et petrol eum devel opnent did not adversel y affect the supply of publ ic serivces to the commercial fishing industry. A beneficial impact on the infrasturcture, al though not. on the supply of public services, was said to be the establishment of busi nesses which exi sted to provide speci al ized services to the petroleumindustry but which were al so used by the fishing industry. Examples of such busi nesses or servi ces would incl ude under water wel di ng and marine el ectronics repai r.

For the services for which the tuo industries will tend to compete, the impact will be determined by the rates of increase in the supply of and demand for these services as a result of OCS operations, and by the ability of the fishing industry to find alternative inputs if the changes in supply and denand are adverse. For other services, the characteristics and/ or practices of the two industries will reduce or eliminate competition. The ability of the fishing industry to adapt when conf ronted with a lack of services and the factors that reduce competition are discussed bel ow

The comercial fishing industry has denonstrated a remarkable ability to survi ve and nake do when "requi red" servi ces are not available. An example of this is the fishing industry that continues to expand in Dutch Harbor/Unal aska despite the fact that adequate water, el ectric power, and port or harbor facilities are not provided by the community. When such services were not provided, the fishing industry has been capable of providing its own sources of services. Processing plants use di esel generators to produce their ownel ectric power; and si nce many commities al so use this high-cost nethod, the cost differential of generating their own electric power is minimal. Wells can often be drilled when the muni ci pal water system is inadequate, and freighters with self-contained cargo handling equi prent can be used when only minimal port facilities are available. The height to which selfsufficiency can be taken is denonstrated by the completely self-contai ned processing barges which have recently been built. The barges can recei ve fish on the fishing grounds directly from fishing boats, process the fish using workers who are hired for the duration of the season and who

Iive onboard, and load the processed fish directly onto shi ps or barges bound for markets in Seattle or Japan.

The characteristics of the water and el ectric power required by the tuo industries are quite similar; therefore, their requi renents will tend to be competitive. However, their requi rements for port and harbor facilities are different enough to greatly reduce the effective competition of the OCS servi ce requi rements. The snall boat harbors that provide moorage facilities for nost commerical fishing boats in the Vestern Al aska are not desi gned to accommodate vessel s as large as the snallest OCS vessel s; these vessles will theref ore not compete for moorage in the snall boat harbors. However, there are two reasons why competition for moorage space will occur outsi de the small boat harbors until OCS vessels use only facilities that are built for their exclusive use. The reasons are that the small boat harbors are not large enough to provi de moorage for all the fishing boats seeking it, nor are they large enough to service the larger fishing boats that are becoming nore numerous. Their vessels tie up wherever possibe and, in many cases, temporarily use the facilities that will be used by OCS vessels before their own facilities are avai I able.

The desire of the OCS industry to have facilities dedicated to OCS vessel s in order to assure that the facilities are available when required, once it becomes apparent that a commuity will be the site of field devel opnent support activities, will eliminate the competition between fishing boats and OCS boats for moorage space. However, this
nay al so precl ude the benefit to be had from devel opnent of a harbor facility that could both serve the OCS industry and provide better service to the fishing industry than is currently available from the small boat harbors. The OCS harbor requi renents could provide the impetus necessary for construction of are adequate facility. It should be noted that the Iarger fishing boats are quite similar in di nensi on to OCS supply boats and, in fact, the Alaska fishing fleet incl udes several vessel s that were originally OCS supply boats or were built using the basic desi gn of such boats.

Thi section has compled the review of past experiences of the interaction bet ween the comercial fishing and OCS industries and the general anal ysis of the potential impacts OCS operations nay have on a commercial fi shing industry. In the following section, this inf ormation is used, together with the naterial presented in the first section of this chapter, to discuss the area- and scenario-specific impacts that may occur.

Potential I mpacts

The nature of the potential impacts is sufficiently similar for each resource scenario that they can nost efficiently be discussed together by source of impact. The di scussi on of the potential impacts due respectively to the competition for labor, ocean space use, and infrastructure services is followed by a summary of potential impacts.

COMPETI TI ON FOR LABOR

The expected locations and characteristics of commercial fishing industry and OCS industry activities in Western Alaska will tend to prevent OCS labor requi rements from being a significant source of impacts. The particular aspects of these activities which will limit impacts are as follow:

- OCS empl oynent and popul ation impacts will be princi pally concentrated in the None area. This is an area in which nei ther harvesting nor process" ng activities have been or' are expected to be significant in terns of either Western Alaska commercial fishing industry activities or the overall level of economic activity in the Nome area.
- OCS compani es will build an enclave-onshore facility with dormitories and rotate onshore and offshore creus through Anchorage.
e Commercial fishing industry activities in the Aleutians, the site of an OCS rear support base, are principally conducted from self-sufficient encl aves which are not significantly dependent on resi dent labor forces.

These factors and the general determinants of the degree to which the comercial fishing and OCS industries effectively compete for labor, as
presented in a previ ous section, suggest that OCS labor requi renents will probably not significantly affect comercial fishing industry activities in Mestern Alaska as whole or in the None area despite the magni tude of OCS I abor requi renents in None. They al so suggest that the probability of beneficial impacts resulting from an increase in the popul ation of Nome and from the resulting increase in the resi dent labor force is greater than the detrimental impacts.

COMPETI TI ON FOR OCEAN SPACE USE

Area specific infornation about the nature and location of ocean space used by the comercial fishing and OCS industries is presentedin this section, and, together with the previ ously presented anal ysis of the competition for ocean space, is used to determine the potential impacts of OCS use of ocean space. The extent to whi ch OCS uses of ocean space will increase fishing costs in a particular fishery will depend on the extent to which the fishing grounds of each fishery are used for OCS operations, and on the nature of the fishing and OCS operations in areas of j oint use. There are a number of fisheries that will not compete with the OCS industry for ocean space because their principal fishing grounds are not incl uded in areas identified for OCS use. These fisheries incl ude all the sal non and herring fisheries of Uestern Alaska with the exception of the Norton Sound fisheries (see Figures 5.4 and 5.5). OCS ocean space use on the Norton Sound fishing grounds incl udes the offshore pipeline corridors that cross near-shore sal non and herring fishing grounds near Cape Darby and Cape None in the mean and high find

Gear Types and Major Fi shi ng Areas:

$$
\begin{aligned}
& \rightarrow \rightarrow \text { Drift Gill Net Purse Sei ne } \\
& \text {-. Set GII Net ADF\&G Managenent Area Boundari es }
\end{aligned}
$$

Fi gure 5.4: Major Salmon Fi shi ng Areas, Wéstern Al aska
Source: A aska Department of $\mathbf{F i}$ sh and Gane, Alaska' s Fi sheri es Atlas, 1978.

--- Major Fishing Areas
 ADF\&G Managenent Area Boundaries

Fi gure 5. 5: Maj or Herring Fi shing Areas, Western Al aska.
Source: Alaska Department of Fi sh and Gane, Alaska's Fisheries Atlas, 1978.
cases and near Cape None in the Iow find case (see Figures 5.1 through
5.3). The areas of \mathbf{j} oi nt use are very limited for the sal non and herring fisheries because both fisheries occur in near-shore areas where little OCS activity is expected.

The OCS activity along pi peline corridors is expected to minally reduce the area available for fishing, but not to adversely affect the catch as a whole because a small area is affected and because harvesting activity is rel ati vel y light in the areas desi gnated for OCS ocean space use. However, set gill net fishermen who have established property rights to the area of a pipeline corridor will suffer a loss unl ess equally productive areas are available to them It should be noted that gill net site property rights are not as well established in Norton Sound as they are, for example, in Cook Inlet, and the Ioss to a particular Norton Sound fisherman is expected to be less than it would if property rights were well defined. Perhaps no nore than one to two set gill net sites will be preenpted by each pipeline corridor, and if the pi peline is buried, the sites would only be affected during the year in which the pipeline is constructed. The total loss is therefore expected to be minor si nce annual real gross income per gill net boat is not expected to exceed $\$ 6,000$ in the sal non fishery or $\$ 4,000$ in the herring fishery by the year 2000.

Long Iine halibut fishing grounds include large areas in the Bering Sea and in the Gulf of \mathbf{A} aska through which OCS vessels will pass as they transport supplies, equi pnent, oil, and gas to or fromthe lease sale
area (see Fi gure 5.6). Gear losses which will increase fishing costs are expected to occur. However, there are two reasons such losses are not expected to neasurably affect harvesting activity. OCS traffic is expected to be within well-established sea lanes, and quotas, not narket conditions, are the binding constraints on harvesting activity.

The king crab and Tanner crab and, to a limited extent, the shrimp fishing grounds of Western Alaska al so incl ude Iarge areas through which OCS vessels will pass in transporting equipnent to the lease sale area and in transporting gas and oil from Cape None to markets outside the I ease sale area (see Figures 5.7 through 5.9). Crab fishery gear (i.e., pots) are particularly susceptible to losses to marine traffic because the pots are left unattended and because of the high concentrations of gear in some areas. The fact that the gear is unattended makes it nore difficult to spot and to avoid; it al so makes it difficult for a fisherman to determine the cause of the loss and to recei ve compensation when gear is lost to marine trafic. Gear losses will undoubtedly occur as the result of OCS activities; the Iosses are not however expected to decrease harvesting activity. There are two reasons for this; OCS traffic will typically be in well established sea lanes and quotas, not market conditions, are the binding constraints except perhaps for the C. opilio Tanner crab fishery. Within Norton Sound, the king crab grounds are in areas desi gnated for OCS ocean space use by OCS vessel s and the mean-find case pi peline corridor.

$\rightarrow \quad$ Major Fishing Areas
Figure 5.6 Major Halibut Fishing Areas
Source: International Pacific Hal ibut Commission, Technical Report No. 6; Alaska Department of Fi sh and Gane.

- Maj or Bl ue Ki ng Crab Fishing Areas - Maj or Red King Orab Fi shi ng Areas

Fi gure 5. 7: Maj or King Crab Fi shing Areas, Western Al aska
Source: Al aska Departnent of Fi sh and Gane, Alaska's Fi sheri es Atlas, 1978.

Figure 5. 8: Maj or Tanner Crab Fi shing Areas, Mestern Alaska
Source: Alaska Department of Fi sh and Gane, Al aska's Fi sheri es Atlas, 1978.

Figure 5. 9: Maj or Shrimp Fi shing Areas, Western Al aska Source: Al aska Departnent of Fi sh and Gane, Al aska' s Fi sheri es Atlas, 1978.

Athough it is not possible to determine the nagnitude of the gear losses that will occur since the actual losses will depend on a number of factors, incl udi ng the actions that both industries take to reduce losses, it is possible to consi der the type of loss that could occur to a single vessel and to place an upper bound on gear losses. The forner can be done by considering what could happen to an indi vidual vessel; the latter can be doneby considering other sources of gear losssuchas other fishing vessel s or ice flows.

The following is perhaps a high-loss scenario for a king crab or Tanner crab vessel. Crab boats in Western Alaska often fish with 400 to $\mathbf{5 0 0}$ pots and a pot typically costs about $\$ 500$. The total potential loss in pots al one is therefore over $\$ 200,000$ per boat. Pots are commonly placed at 183 to 274 neter (200 to $\mathbf{3 0 0}$ yard) intervals but are at tines placed within 27 neters (30 yards) of each other and if the pots are set at low tide their buoys nay not be visible. For the purposes of this scenario, assume that 100 pots are lost to OCS traffic. This nould be a di rect gear loss of $\$ \mathbf{5 0 , 0 0 0}$, and it would reduce the fishing power of a 400 pot boat by 25 percent. If the pots are not replaced during the season, and they usually are not, if the losses occur at the beginning of the season, and if the boat's catch is proportional to the number of pots it fishes; the boat's annual catch would be reduced by 25 percent. This would anount to a loss of approximately $\$ 100,000$ or $\$ 40,000$ in real gross incone for a Bering Sea king crab or Tanner crab boat, respecti vel y. These estimates are based on the preceding assumptions and the projected real harvest val ue per boat nonth for each fishery as
reported in Chapter IV. If the vessel or vessels which cause gear I osses cannot be identified, and typically they cannot be since the losses usually occur when pots are unattended, the crab boat sustaining the losses is not compensated and therefore bears the full burden of the I ost gear and perhaps the full burden of the reduced incone. The Iatter cost of a gear loss nay be shared by other boats in the fleet since it is common practice for other boats to lend pots to a boat which loses a large number of pots due to, for example, ice flows.

The high loss scenario can be put into perspective by considering normal gear Iosses and the longevity of the gear. Normal causes of gear loss i ncl ude: broken I ines, pots being dropped overboard, tangl ed lines pulling buoys under, and buoys being pulled under water when lines are not sufficiently long for the ocean depth. Pots are al so lost to marine traffic, including other fishing vessel s, and to ice flows. Gear Iosses and Iongevity vary greatly but it is not unusual for a 400 -pot boat to buy 40 pots per year to repl ace lost and worn gear. However, gear losses can be much greater; for example, it has been estimated that between 4,000 and 10,000 pots in the Bering Sea for storage between the king and Tanner crab seasons were lost in 1980 due to ice flows which occurred further south than was expected (National Fi sherman, June 1980).

There are two reasons gear losses due to the causes listed above are expected to be substantially greater than gear losses that will occur due to OCS marine traffic traversing fishing grounds in well-established sea lanes. The vol une of the OCS traffic is expected to be significantly
lower than the vol une of non- OCS traffic and the nature of the OCS traffic is expected to be less conduci ve to gear losses. Two examples of fishing boat traffic are as follow during February, 1980, a total of 194 indi vidual foreign fishing and associ ated support shi ps engaged in fisheries of \mathbf{A} aska, the number of vessel spresent simitaneously varied from 143 to 166 (Fi shery Market News, March 31, 1980, p. 2); and 373 traw ers and 124 catcher/processors are expected to participate in the Bering Sea donestic groundfish fishery by the year 2000.

The differences in the nat ure of the traffic which suggest that OCS traffic will not be the principal cause of gear losses include traffic patterns and vessel draft or gear depth. While OCS traffic will typically cross fishing grounds on a straight course to a specific destination, traw ers will remain on fishing grounds making repeated tows. The draft and beam of a trawer with gear in the water are typically greater than those of OCS marine traffic; fixed gear such as pots or long lines are theref ore nore vul nerable to losses to traw ers than they are to nost OCS rel ated marine traffic. This may to sone extent be offset by a know edge of areas of potential gear loss by commercial fishernen. How ever, the heavygear losses sustai ned by donestic crab fishermen as the result of foreigntraw activities southeast of Kodiak Island in 1979, suggest that this nay not be the case, at least not with foreign traw ers. Ten boats lost a total of nore than 50 pots to traw ers in a two- week peri od (Al aska Fi shernan Journal, Decenber 1979).

Abstract

The nost recent and complete data on gear losses were collected by the Cormercial Fi sheries Entry Commission in the mid-1970s. These data indicate that the average annual gear loss of vessel s participating in Al aska shel Ifish fisheries was approximately $\mathbf{\$ 8 , 4 0 0}$. This was about 13 percent of the total val ue of the gear used by these vessel sor about 17 percent of the fishing costs excluding I abor costs. These gear loss estimates include the cost of gear itsel fout do not include the cost associ ated with lost fishing time. Data on the cost of lost fishing tine incl uding the cost of lost fish are not available. OCS rel ated gear I osses are expected to be si gnificantly lower than other types of gear losses.

Another aspect of the increased fishing cost is the cost associ ated with collisions bet ween fishing vessels and OCS vessels or structures. It is not possible to determine the magnitude of these costs, but there are reasons for expecting them to be minor for the fishing industry as a whole. The probability of a collision increases as the volume of traffic increases, and OCS and fishing operations are expected to significantly increase the volume of marine traffic in the study area. However, as is indi cated in the Techni cal Report Number 52, the vol une of traffic is expected to be insignificant compared to the capacity of the system therefore, the projected increase in traffic is not expected to measurably increase the probability of a collision.

Fi shing vessel acci dent data indicate, for the United States as a whole, collisions account for approxi nately 18 percent of fishing boat acci-
dents and 45 percent of the collisions result from neglecting the rules of the road. The implication is that the expected increases in vessel traffic will not significantly affect the cost of vessel accidents, particularly if nore attention is paid to the rules of the road.

COMPETI TI ON FOR SERM CES OF THE I NFRASTRUCTURE

The locations of and nature of commercial fishing industry and OCS industry activities are expected to prevent OCS requi rements for el ectric power or water from adversel y affecting the commercial fishing industry of Vestern Al aska. OCS activities requiring el ectric power and water will be concentrated at Cape None and to a lesser degree at the site of the rear support base in the Aleutian Islands. OCS operations at Cape None are expected to be self-sufficient in terns of both water and el ectric power; they are theref ore not expected to adversel y affect the Iimited comercial fishing activities which occur in the None area. The i ncreased demand for el ectric power and water that does occur in Nome due to indi rect OCS empl oyment and popul ation impacts will adversel y affect the supply of water and el ectric power to all residential and commercial users, if the commity's capacity to provide these utilities does not keep pace with demand. The potential ability of the community to increase capacity, the ability of the comercial fishing industry to provide its own sources of water and el ectric power, and the Iow level of commercial fishing industry activity in None suggest the industry will not be significantly affected by OCS-generated utility requi rements in None. A potentially beneficial impact with respect to electric power
will occur due to OCS activities. The availability of natural gas will substantially reduce the cost of generating electricity and will therefore increase the feasibility of commercial fishing industry activities in None. The cost reduction is not, however, expected to significantly increase such activities.

There are three reasons OCS water and el ectric power requi renents for the rear support base in the Aleutians are not expected to significantly affect commercial fishing industry activities based in the Aleutians. OCS utility requirenents will be minimal OCS activities may occur in a self-sufficient enclave, and comercial fishing activities are not or need not be dependent on commity-wide sources of electric power or water.

With respect to port and harbor facilities, commercial fishing industry activities in None will probably benefit fromimprovenents to or the devel opnent of facilities that might not be feasible in the absence of OCS activities. These are expected to include significant improvenents to the None port facilities and small boat harbor and the devel opnent of port facilities at Cape Nome. The port projects, which are expected to be principally financed by the OCS industry, will eliminate the need to lighter freight into or out of Nome. They will significantly decrease transportation costs and, therefore, increase the feasibility of com nercial fishing activities in None. The improvenents to the snall boat harbor are expected to be, in part, financed by property tax revenues generated by OCS activities (Techni cal Report Number 53). The i mproved
small boat harbor and port facilities will provide sufficient moorage space and water depth to allow larger boats to land fish in or operate out of Nome. This will significantly increase the ability of Nome to participate in the commercial fisheries of Norton Sound and the Bering Sea. Because there are other factors which will affect Nome'spirticipation in these fisheries, it is not clear how the improved faci ities will change the level of comercial fishing industry activity in Nome. However, the absence of such facilities will severely limit such activity.

The port facilities requi red by the rear supply base in the Aleutians will adversel y affect the commercial fishing industry to the extent that they preempt the fishing industries' use of existing facilities or compete for future expansion sites. The facility and site requi rements are sufficiently similar that the two industries will tend to compete; however, si nce the magnitude of the OCS activities are expected to be I ow in comparison to fishing activities, OCS activities are not expected to si gnificantly affect the commercial fishing industry. For example, over 700 crab and groundfish vessel s are expected to be operating in the Bering Sea in 2000 and to use the Aleutian Islands as a base of operations. The centers of commercial fishing industry activities are expected to incl ude Dutch Harbor/Unalaska, Cold Bay, and Yakutan. The benefits of having a site which provides adequate roomfor a large supply base that can support exploration, devel opment, and production activities throughout Western \mathbf{A} aska suggest that the $O C S$ industry may choose its site where it does not have to compete with the fishing industry for either I and or port facilities. The selection of such a site uould significantly decrease the probability of adverse impacts for the fishing industry.

A potential benefit from OCS operations in the Aleutians is the additional i mpetus they may provide for the devel opment of improved harbor and port facilities. However, due to the OCS industry's propensity to require dedi cated port facilities such an impetus nay not be provided; or if it is, it is not clear that the benefits that would accrue to the fishing industry once the improved facilities are available would be greater than the costs imposed on the fishing industry by the j oint use of existing facilities in the interim

Concl usi ons

The hypothesi zed locations and characteristics of both OCS industry activities are expected to severely limit the degree to which competition for labor, ocean space use, or the services of coastal commuity infrastructures will impact the comercial fishing industry. Although indi vi dual participants in the commercial fishing industry of Western Alaska nay be si gnificantly affected by OCS operations because the impacts will not be evenly di stributed over all participants, the industry as a whole is not expected to be significantly i mpacted. The concentration of OCS activities in the None area suggests that com nercial fishing activities in None will be nore heavily affected than commercial fishing activities for Vestern Alaska as a whole. The shortterm impacts may adversely affect the minime fishing activities which occur in Nome; these activities nay in fact all but cease during the years in which OCS-generated economic grouth is most rapid if the expl osi ve grouth so di srupts the local economy that comercial fishing
industry activities are not economically viable. The Iong-term benefits due to a larger population and labor forces and due to improved port and harbor facilities may allow None to becone a much nore active participant in the comercial fisheries of Western Alaska.

The expected impacts with respect to specific indexes of comercial fishing industry activity are as follow

- Nei ther harvest wei ght nor value is expected to be neasurably affected in Western Al aska as a whole or in Norton Sound.
- The level of fishing activity (i.e., number of vessel s by type, empl oynent, and incone) is not expected to be affected in Western Al aska or in Norton Sound. However, the level of fishing effort associated with None is expected to decrease in the short run and increase in the long run as a result of OCS acti vities.
- The level of processing acti vity (i.e., number of plants by type, employment, and incone) is not expected to be affected, however the concentration of processing effort in None may be decreased in the short run and increased in the long run.
- Local participation in harvesting and processing is not expected to be significantly affected for Western Alaska as a whole, but local participation in None is expected to increase in the Iong run.
- With the possible exception of increased marketing opportunities in Nome, fish markets are not expected to be significantly affected by OCS activities.
o With the exception of None, the capacity, suitability, and l ocation of local ports, harbors, processing plants, fleets, and public services are not expected to be significantly affected by OCS activities.
- With the exception of Nome, siting and public service requi rements of commercial harbors and onshore processing plants are not expected to be significantly affected. The requi rements in None will probably increase as a result of OCS activities.
- Areas of conflict in ocean and harbor space use will tend to increase due to increased OCS and fishing industry traffic. The increased areas of conflict are not expected to significantly affect either industry.
o The frequency of ocean space and harbor use will increase due to OCS activities; the seasonality will tend to decrease because OCS use is less seasonal than that of the fishing industry. VIth the exception of None, the frequency and seasonality of use by the fishing industry is not expected to be affected.
o The empl oynent and popul ation impacts of OCS actities will tend to increase recreational fishing activities in the study area but not sufficiently to result in significant conflicts bet ween recreational and commercial fishing activities.
o The organi zation of the commercial fishing industry and economic and political trends of significance to the commercial fishing industry of Western Al aska are not expected to be measurably affected by OCS activities. In Nome, economic conditions that are conduci ve to the long-run devel opment of the industry are expected to occur. The dramatic change in the level and the composition of the None popul ation may change the community's attitude toward the industry. However, si nce Nome is not now a commercial fishing community, the di rection and impact of such a change are indeterminant.

VIth the exception of the expl oration only case, the nature of the i mpacts is not expected to vary dramatically anong devel opment scenarios. The nagnitude of sone, but not all, impacts will be proportionate to the I evel of OCS activity. For example, the conflicts associ ated with \mathbf{j} oi nt ocean space use will tend to increase proportionatel y, al though perhaps unneasurable, with the vol une of OCS marine traffic. But the benefits of improved port and harbor facilities in None nay be quite similar for the I ow, nean, and hi gh find cases si nce each case incl udes such improvenents. The expl oration only case does not include improvenents to both facilities; therefore, the beneficial impacts are less in the expl oration onl y case.

The Iimitations of the impact analysis presented in this report are summarized in Chapter II. The reader is urged to read or reread the appropriate section of Chapter II to be aware of the Iimitations. In particul ar, it should be noted that the potential impacts either resulting from chronic or major oil spills or resulting from other naj or ecol ogi cal changes linked to OCS industry activities are not considered.

APPENDI X A

Exvessel Price Model s and Data

Mbdel s Used to Project Boat Mbnths and Fi sher man Months

Numerical Basis of Harvest Wei ght Projections

King Salmon Exvessel Price Model

ORDINAR\% LEASTSQUARES

SUM OF SOUAREDRESIDUALS = $0 * 712155 \mathrm{E}-01$
 MEAN OF DEPENDENT VARIABLE $=0.0 .589997$
STANDARD DEVIATION =
0.385557

STANDARD DEVIATION
R-SQUARED $=$ ESOOA $9734=0.9681$ F-STATISTIC
LOG OFLIKELIHOOD FUNCTION LOG OFLIKELIHOOD FUNCTION = 19.26 .1118
NUMRER OF OBSERVATIONS = $0.55^{19} 1794 E-08$
DURBIN-WATSON STATISTIC (ADJ. FOR O. GAPS) $=1.5901$

STANDARD
ERROR
$0.950882 \mathrm{E}-01$
$0.94512 \mathrm{E}-02$
$0.775821 \mathrm{E}-01$
C). $851091 \mathrm{E}-01$

ESTIMATE OF VARIANCF-COVARIANCE MATRIX OF ESTIMATED COEFFICIENTS

PLOT OF ACTUAL(*) AND FIT TED(+) VALUES

Historical and Forecasted Data

| EPK | CSK | FK | EPCO |
| :---: | :---: | :---: | :---: |
| - 0.262637 | 8.54060 | 0.158159 | - $17 \square^{\circ} 42$ |
| 0.308844 | 8.73859 | 0.182054 | $0 \cdot 206374$ |
| 0.341316 | 9.16053 | 0.234885 | 0.171139 |
| 0.316583 | 11.5670 | 0.304395 | 0.170949 |
| 0.276935 | 11.0086 | 0.220171 | 0.246936 |
| 0.315361 | 9.35009 | 0.267146 | 0.229960 |
| 0.266515 | 11.6323 | 0.258496 | 0.256694 |
| 0.343698 | 11.2457 | 0.261529 | $0 \cdot 255701$ |
| 0.326232 | 10.7465 | 0.325651 | 0.277522 |
| 0.436040 | 11.5466 | 0.427653 | 0.295161 |
| 0.391611 | 11.9719 | 0.374122 | 0.246098 |
| 0.374152 | 9.97290 | 0.498645 | 0.428307 |
| 0.883747 | 8.91693 | 0.990770 | 0.759345 |
| 0.747567 | 9.29003 | 0.580627 | 0.676901 |
| 0.747293 | 7.16547 | 0.895684 | 0.568759 |
| 0.947399 | 8.91553 | 0.247654 | 0.901926 |
| 1.20000 | 12.0000 | 1.25000 | 0.948052 |
| 1.30147 | 13.6000 | 0.786127 | 1.03109 |
| - 1.42254 | 14.2000 | 1.27928 | - 12442 |
| 1.37983 | R.00000 | 1.27900 | - 18206 |
| 1.47805 | 10.1398 | 1.27900 | 1.25368 |
| 1.55230 | 10.2815 | 1.27900 | 1.32721 |
| 1.63203 | 10.4252 | 1.27900 | 1.40626 |
| 1.71763 | 10.5710 | 1.27900 | 1.49126 |
| 1.80955 | 10.7187 | 1.27900 | 1.58265 |
| 1.90827 | 10.8686 | 1.27900 | 1.68091 |
| 2.01429 | 11.0205 | 1.27900 | 1-78655 |
| 2.12815 | 11.1745 | 1.27900 | 1.90013 |
| 2.25045 | 11.3307 | 1.27900 | 2.02225 |
| - 2.38182 | 11.4891 | 1.27900 | 2.15354 |
| 2.52293 | 11.6497 | 1.27900 | 2.29470 |
| 2.67451 | 11.8126 | 1.27900 | 2.44646 |
| 2.83735 | 11.9777 | 1.27900 | 2.60962 |
| 3.01229 | 12.1451 | 1.27900 | 2.78503 |
| 3.20024 | 12.3149 | 1.27900 | 2.97363 |
| 3.40217 | 12.4870 | 1.27900 | 3.17638 |
| 3.61912 | 12.6616 | 1.27900 | 3.39436 |
| - 3.85224 | 12.8396 | 1.27900 | 3.62871 |
| 4.10271 | 13.0180 | 1.27900 | 3.88066 |
| - 4.37185 | 13.2000 | 1.27900 | 4.15152 |
| - 1 | 1.2 | -273 | -154 |

Source: ADF\&G Catch and Product on Leaf ets, and Preliminary Catch and Production Reports.
EPK = Alaska king salmon exvessel price.
CSK x Alaska king salmon harvest (million pounds).
FK = CSK/Alaska canned king salmon pact (in 1,000 48-pound cases.
EPCO = Alaska coho salmon exvessel price.

Red Sal mon Exvessel Pri ce Model

RIGHT-HAND

```
ORDINARY LEASTI SQUARES 
SUM OF SOUARED RESIDUALS E
STANDARD ERROROF THE REGRESSION = 0.64, 0.647063E-01
MEANOF DEPENDENT VARRIABLE =
STANDARD DEVIATION=
                0.238733
ADJUSTFD R-SOUARED = 0.9265
```



```
NUMBER OF OBSERVATIONS = 19 26.6928
NUMBER OF OBSERVATIONS = 0.119755E-07
```


STANDARD ERROR
$0.398148 \mathrm{E}=01$
$0.352291 \mathrm{E}-03$
0.135510

FSTIMATE OF VARIANCE-COVARIANCE MATRIX OF ESTIMATED cOEFFICIENTS

PLOT OF ACTUAL(*) ANDFITTED(+) VALUES

Historicaland Forecasted Data

| | | EPR | CSR | EPp |
| :---: | :---: | :---: | :---: | :---: |
| | 1961 | $\cdots 0.1847^{\circ}$ | $95.20^{\circ} 5^{\circ}$ | |
| | 1962 | 0.210216 | 52.9464 | 0.141656 |
| | 1963 | 0.215589 | 35.45 s 7 | 0.115670 |
| | 1964 | 0.226237 | 54.1319 | 0.105829 |
| | 1965 | -0.216865 | 1420034 | 0.102630 |
| | 1966 1967 | - $\quad 0.212756$
 $\quad 0.221678$ | 92.7667 | 0.135652 |
| | 1968 | 0.?61275 | 48.6958 | $0.13 \$ 031$ |
| | 1969 | 0.251572 | $71.734 \$$ | 0.148269 |
| | 1970 | 0.246992 | 150.812 | 0.132202 |
| | 1971 | 0.261764 | 87.2077 | 0.156711 |
| | 1972 | 0.313938 | 41.9835 | 0.181460 |
| | 1973 | - 0.434824 | 35.2481 | 0.318668 |
| | 1974 | - 0.685947 | 32.2465 | 0.345907 |
| | 1975 | 0.449552 | 42.8483 | 0.321264 |
| | 1976 | 0.607636 | 75.6894 | 0.340479 |
| | 1977 | 0.760579 | 89.8000 | 0.351623 |
| | 1978 | - 0.823680 | 117.400 | 0.381111 |
| | 1979 | - 0.900107 | 187.200 | 0.415765 |
| | 1980 | - 0.913678 | 180.000 | 0.433983 |
| | 1981 | - 0.883477 | 71.2596 | 0.468045 |
| | 1982 | 0.952304 | 72.5418 | 0.502834 |
| | 1983 | 1.02625 | 73.8471 | 0.540 ? 40 |
| | 1984 | 1.10568 | 75.1759 | 0.580460 |
| | 1985 | 1.19103 | 76.5286 | 0.623705 |
| ω_{0}^{ω} | 1986 | 1.28272 | 77.9056 | 0.670202 |
| | 1987 | 1.38124 | 79*3(-)74 | |
| | 1988 | 1.48709 | 80.7344 | 0.773948 |
| | 1989 | 1.60083 | 82.1872 | $0.831 " 742$ |
| | 1990 | 1.72305 | 83.6660 | 0.893879 |
| | 1991 | 1.85438 | 85.1715 | 0.960686 |
| | 1992 | 1.99550 | 86.7040 | 1.03251 |
| | 1993 1994 | 2.14714 2.31010 | 88.2641 89.8523 | 1.10974 |
| | 1994 | 2.310510 | 99.8523 | 1.19277 1.28203 |
| | 1996 | 2.67342 | 93.1150 | 1.37800 |
| | 1997 | 2.87567 | 94.7905 | 1.48118 |
| | 1998 | 3.09302 | 76.4961 | 1.59211 |
| | 1999 | 3.32661 | 98:2324 | 1.71137 |
| | 2000 | 3.57766 | 100.000 | 1.83959 |
| | | 1 | 2 | ${ }^{3}$ |

Source: ADF\&G Catch and Production Leaflets and Preliminary Catch and Production Reports

$E P R=$ Alaska red salmon exvessel price
CSR = Alaska red salmon harvest (million pounds).
EPP = Alaska pink salmon exvessel price.

Pink Salmon Exvessel Price Model

ORDINARY LEASTSDUARES
OEPENDENT VARIABLF: P P

```
SUM OF SOUARFN RESIDUALS =
STANDARD ERROR OF THE RFGRESSION =
MFAN OF DEPENDENT VARIABLE = * 113890.212793
```



```
R-SOUARED = 0.9505
ADJUSTED R-'SQUARED = 0.9364
F-STATIS.TIC1 4-. 
NUMBER OF OBSERVATIONS =
NUMBER OF IBSERVATIONS =-0.186265E-0.
SUMOF RESIDUASSA=TISTIC (ADj.186265E-0. FOR O. GAPS) = 1.4853
```

| FSTIMATEN | STANNARD |
| :---: | :---: |
| COEFFICIENT | ERRNR |
| 0.447156 | 0.170531 |
| $-0.736452 \mathrm{E}-04$ | $0.138539 \mathrm{E}-03$ |
| -3.02602 | 1.08488 |
| 0.186646 | $0.316882 \mathrm{E}-01$ |
| $-0.582443 \mathrm{E}-03$ | |

FSTIMATE OF VARIANCE-COVARIANCE MATRIX OF ESTIMATED COEFFICIENTS

PLOT OF ACTUAL * AND FITTED + VALUES

Historical and Forecasted Data

Source: ADF\&G Catch and Product on Leaf ets and Preliminary Catch and Production Data.
EPP = Alaska pink salmon exvessel price.
CSP = Alaska pink salmon harvest (millior pounds).
FP = CSP/Alaska canned pink salmon pack in 1,000 48-pound cases).
CPIJ = Japanese consumer price index.
EXCHJ = Exchange rate (yen per dollar).

```
ORDINARY LEAST SOUARFS 
SUM OF SOUARED RESIDUALS = NSTON OF THE REGRESSION = 0.652483F-02
MFAN OF DEPENDFNT VARIARLFF = 0.161250.224182
STANDARD DEVIATION= ARLF, = 0.161258
STANDARD DEVIATION =
NM,
LOGOF LIKELIHOOD'FUNCTION = 19 48.8177
NUMBEROF OBSERVATIONS = 0.279397E-08
```


| N | $\begin{aligned} & \text { RIGHT-HAND } \\ & \text { VARIABLF } \\ & \text { CSCH } \\ & \text { CSCH } \\ & \text { FC } \\ & \text { PP } \end{aligned}$ | | ESTIMATEO
 COEFFICIFNT $\begin{aligned} & -0.105201 \\ & 0.296339 E-03 \\ & 0.298890 \\ & 1.31811 \end{aligned}$ | $\begin{array}{r} \text { STANDA } \\ \text { ERROR } \\ 0.23678 \\ 0.40314 \\ 0.14559 \\ 0.60093 \end{array}$ | $\begin{aligned} & \text { RD } \\ & 2 E-01 \\ & 1 E-03 \\ & 7 E-01 \end{aligned}$ | $\begin{gathered} \text { STATISIIC } \\ -4.41,293 \\ 0.735076 \\ 2.05288 \\ 21.9342 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | FSTIMATE OF VARIANCF-COVARIANCEMATRIX OFESTIMATFD COEFFICIENTS | | | | |
| | | C | CSCH | FCH | PP | |
| | $\begin{aligned} & \mathrm{C} \\ & \mathrm{CSCH} \\ & \mathrm{FCH} \\ & \mathrm{PP} \end{aligned}$ | $0.068658 \mathrm{E}-03$ $\because \quad-0.792316 \mathrm{E}-05$ $-\quad 0.140538 \mathrm{~F}-02$ $-0.258356 \mathrm{~F}-04$ | $\begin{array}{r} -0.792316 \mathrm{~F}-05 \\ 0.162523 \mathrm{E}-06 \\ 0.442386 \mathrm{~F}-05 \\ -0.576305 \mathrm{~F}-06 \\ 2 \end{array}$ | $\begin{array}{r} -0^{\circ} 140538 \mathrm{~F}-02 \\ 0.442386 \mathrm{E}-05 \\ 0.211980 \mathrm{E}-01 \\ -0.608283 \mathrm{E}-02 \end{array}$ | $\begin{array}{r} -0.258356 E-04 \\ -0.576305 \mathrm{E}-06 \\ -0.608283 \mathrm{E}-02 \\ 0.361125 \mathrm{E}-02 \end{array}$ | |

PLOT OF ACTUAI. (*) ANO FITTED(+) VAI UES

Source: ADF\&G Catch and Production Leaflets and Pre iminary Catch and Product on Reports.
EPCH = Alaska chum salmon exvessel price.
$\mathrm{CSCH}=$ Alaska chum salmon harvest (million pounds).
FCH = CSCH/Alaska canned chum salmon pack (in 1,000 48-pound cases).
EPP = Alaska pink salmon exvessel price.

Coho Salmon Exvessel Price Mbdel

```
ORDINARY LEAST SOUARES
DFPENDFNT VARIABLF:
SUM OF SOUARFD RESIDUALS \(=\) 0.430848E-01
STANDARD ERROR OF THF REGRESSION = \(0.430848 \mathrm{E}-01\)
MFAN DF DEPENDFNT VAPIABLE \(=\)
STANDARD DEVIATION= \(=0.32(3945\)
R-SOUARFD \(=0.9779\)
ADJUSTFD R-SOUARED \(=0.9735\)
F-STATISTIC( 321.029
OG OF LIKELIHOOD FUNCTION = 19
NUMBFR OF OBSFRVATIONS =
```



```
DURBIN-WATSON STATIISTIC (ADJ. FOR OEOMSS) \(=2.8225\)
```


FSTIMATE OF VARIANCE-COVARIANCE MATRIX OF ESTIMATFD COEFFICIENTS

PLOT OF ACTU L * AND FITTFD(*) VAIUES

Historical and Forecasted Data

[^53]
Hallbut Exvessel Price Model

ORDINARY LEAST SOJARFS
DFPFNDFNT VARIARLF: PHAL

STANDARD DEVIATION=
0.476905

R-SOUARED $=0.9634$
ADJUSTFD R-SOUARED $=0.9613$

NUMAFR OF ORSERVATIONS=
SUM OF RESIDIJALS $=0.111759 E-07$
DURRIN-WATSON STATISTIC (ADJ. FOR O. GAPS) $=1.4 \mathrm{Cl}$

```
RIGHT-IIANI VARIABLF
CPI
```

FSTIMATED
COFFFICIFNT
.867567
STANDARD
ERROR
$0.751461 \mathrm{E}-01$
$0.560539 \mathrm{E}-01$

ESTIMATF OF VARIANCE-COVARIANCE MATRIX OF ESTIMATED COEFFICIENTS
C

CPI

$: \quad-0.403570 \mathrm{~F}-02 \quad 0.314203 \mathrm{~F}-02$

PLOT OF ACTUAI. * AND F TTFD *) VA UES

Historical and Forecasted Data

[^54]King Crab Exvessel Price Model

```
    COCHRAME-ORCITTTITERATIVF TECHN OUE
\(R H 6\)
\(* * *\)
-0.789486
-0.798476
-0.798932
FININL v^LUF OT RHO = NORATIONS= 0. -0.798932
```



```
SUM OF SOUAREN RFSIDIALS = OSION = 0.163756E-01
STANIARD ERROR OF, THE REGRESSION = 0. 0. 0.369410E-01
MFANH OF DFPENDFNT VARIABLF= =0.404781.418000
STANDARD DEVIATIOM= = 0.404781
R-SOIJARED= 0.9941
M,
```



```
SUMMOF RFSIDINALSAF
```

RIGHT-HAND
VARIABIE
C
S
GKC
FXGHJ
CPIJ
FQr
FSTIMATEO
COFFICIFNT
3.42098
-0.514105
$-0.436511 \mathrm{~F}-06$
$-0.910514 \mathrm{~F}-02$
0.201634
$-0.417775 \mathrm{~F}-0.5$
STANDARD
ERRNR
0.152781
$0.290595 \mathrm{E}-01$
$0.212562 \mathrm{~F}-06$
$0.339992 \mathrm{~F}-03$
$0.350256 \mathrm{~F}-01$
$0.100247 \mathrm{E}-05$

[^55]PLOT OF ACTUAI * AND FITTFD * VALUFS

Source: ADF\&G Catch and Production Leaf ets and Preliminary Catch and Production Reports.
EPKC = Alaska king crab exvessel price (Dollars pound).
$S=$ Dummy variable.
LKC $=$ Domestic Alaska king crab harvest, ,000 pounds
EXCHJ $=$ Exchange rate (Yen/Dollar).
CPIJ $=$ Japanese Consumer Price Index.
FKC $=$ Foreign Alaska king crab harvest (1,000 pounds).

Tanner Crab Exvesse Price Model

```
ORDINARY IEAST SOUAPFS
DI PENINFNT VARIABLF: pIC
SIMM OF SOUARED RESIDUALS = 0.2.45766E-02
STAMDARD ERROR OF THF RFGRFSSION = 0. 0. 24.0.0.221705F-01
MFAN OF DFPENDENT VARIABLFF=
STAIIDARD DEVIATION =
R-SOLIARFD=0.OA94
M, O.9810
MUMFFR OF ORSERVATIONS = 0. }10.
DURAIN-WATSON STATISTIC (ADJ. FOR 0. GAPS) = 2.6909
```

RIGHT-HAN
VARIARIE
CGC
EXCHJ
CPI
PXCL

FSTIM:TE OF VARIANFE-COVARIANCE MATRIX OF ESTIMATFD COEFFICIEN-S

PLOT OF ACTUAL * AND FITTFO + vALUES

Historical and Forecasted Data

[^56]Shrimp Exvessel Price Model

DFPFNDFNT VARIARI.F: PSHP
SUM OF SOUAREN RESIDIIALS
STANDARD ERROROFTHF REGRESSION $=0.420087 F-0273495-01$ MFANOFDFPEEMDFNT VARIARLEE $=0.00 .708947 E-O 1$
STANDARD DEVIATION = $0.488580{ }^{\circ}-01$
R-SQUARED $=\Omega$. я $2 \geqslant 2$
ADJUSTEDR-SOUARED $=0.8827$ 15.j $=46.1415$
LOG OF LIKFLIHOOOD FUNCTION = 53.0007
MLMAER OF ORSFRVATIONS =
SLIM OF RESIDUAI. S = $=0.465661 E-09$
OURRIN-WATSON STATISTIC (ADJ.FOR 0 . GAPS) $=2.2436$

STATISTIC
-3.12256
-3.63868
2.09865
10.6421

Plont af ACTUAL *) AND FITTFD + VA UES

Historical and Forecasted Data

| fPSH | AKLSHRR | Rw | CPI |
| :---: | :---: | :---: | :---: |
| | 1998i:0 | ${ }_{3}{ }^{\circ} .418171$ | $\begin{aligned} & 9895000 \\ & 0.907000 \end{aligned}$ |
| $0.400000 \mathrm{E}-1$ | 15127.0 | 3.06855 | 0.919000 |
| 6-1. $4.580880 \mathrm{E}=81$ | 16819.0 | 3. 30149 | 0:942000 |
| O. $41000 \mathrm{EF-01}$ | 41813° | 3*33000 | 1.00000 |
| O.550000E-01 | 420770 | 3. 1183902 | 1.04700 1.09300 |
| O* $400000 \mathrm{~F}-11$ | 72556 | 3. 06105 | 1.16300 |
| O.540000E-011 | 93370.0 | -3.55096 | 1.25600 |
| O. $1020000{ }^{\text {a }}$ | ORO741. | 3.622898 | 1.47700 |
| O. $900000 \mathrm{FF}-01$ | 128 ¢ ${ }^{\text {cos }}$ | 3. $444(-61$ | $1.61 .66-9$ 1.70900 |
| 0:176000 | 116995** | 3. ${ }^{3 *} 676966$ | 1.814--90 |
| 0.17600 | $51750{ }^{1}$ | 3.05091 | 2.17000 |
| 0. 235714 | 37600:0 | 产.28245 | $2 \cdot 58144$ |
| 0.282575 | 38389.0 | 3*18191 | 2.77660 |
| \%.3097641 | 3937A.0 | 3. 08445 | 3.21229 |
| 0.368711 | 396619:0 | - 2.036998 | 3.71634 |
| 0.438596 | 41353 :0 | 2. 94384 | 3.99730 |
| 0:437923 | 4175:0 | ${ }_{2} \cdot 65367$ | 4.62454 |
| (-). 5.5156027 | 45884 | 2. ${ }^{\text {2 }} 769663$ | 4.97415 5.35020 |
| 0.668758 0.72671 | $45578{ }^{\text {a }}$ (1) | 2. 72358 | 5.75467 |
| - 0.7288288 | 480650 | 2. 68154 $\mathbf{2} .64016$ | 6.185767 |
| 0.855141 0.927100 | 514690 55504 | 2.59941 | 7.16099 7.70236 |
| - 0.004882 | 5575:0 | 2* ${ }^{2} 1980$ | ${ }_{8}^{8} \cdot 2.24666$ |
| 1.08844 | $58339: 0$ $61200: 0$ | 2. 44262 | 9.58465 |
| 1:27547 | 64404:0 | ${ }^{*} \times 40492$ | 10.3092 |

[^57]Sal non

| | Mont h/ Boat | Boats | Boat Mont hs | Average Orew Size | Fi sherman Months |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Chignik | | | | | |
| Purse Sei ne | 3 | 90 | 270 | 5 | 1,350 |
| Peni nsul a | | | | | |
| Purse Sei ne | 2 | 110 | 220 | 5 | 1,100 |
| Peni nsul a | | | | | |
| Drift Gll Net | 2 | 150 | 300 | 1. 5 | 450 |
| Peni nsula | | | | | |
| Set GI? Net | 2 | 70 | 140 | 1.5 | 210 |
| Bristol Bay | | | | | |
| Drift Gill Net | 1.5 | 9,560 | 2,340 | 3 | 7,020 |
| Bristol Bay | | | | | |
| Set GIII Net | 1.5 | 540 | 810 | 2 | 1,620 |
| Kuskokwim 2 1,620 | | | | | |
| Set Gill Net | 2.5 | 810 | 2,025 | 1 | 2, 025 |
| Lower Yukon | | | | | |
| Set Gill Net | 2 | 700 | 1,400 | 1 | 1,400 |
| Upper Yukon | | | | | |
| Set Gill Net | 1.5 | 75 | 115 | 1 | 115 |
| Upper Yukon | | | | | |
| Fish Wheel | 1.5 | 160 | 240 | 1 | 240 |
| Norton Sound | | | | | |
| Set Gill Net | 2 | 225 | 450 | 1 | 450 |
| Kotzebue Sound | | | | | |
| Set Gill Net | 1.7 | 250 | 425 | 1 | 425 |

Boat Months = (nonths/boat) X boats
Fi sher man Months = boat months X average crew size

Hal ibut
During 1978351 Iicensed halibut vessels operated in IPHC Areas 3 and 4, and since limited entry is being consi dered for the halibut fishery, the number of boats is hel d constant at 351 for 1980 through 2000. The season is or is expected to be open during seven months and the average crew size is 6. The projected boat months and fisherman months for Areas 3 and 4 are then 2,457 and 14,742 , respectively. The projections of boat months and fisherman months for each Western $\mathbf{A l}$ aska hal ibut fishery are based on these totals and the proportion of Area 3 and Area 4 catch projected for each fi shery.

Shel I fish

Peni nsula King Crab
$\operatorname{lnBM}=-0.0763+0.580 \ln C$ 0297 InRP
Student's t-statistic:(-0.81) (4.90)
Adj usted R-Squared $=0.785$
Durbin-Watson statistic $=1.61$
Nunber of observations =11, 1969-1979
B = 40
Average crew size = 4
Eastern Al eutians King Crab
BM = 123 =nean $B M$ 1969-1979
B=75
Average crew size = 4
Western Aleutians Ki ng Crab
$\ln B M=-0.430+0.531 \ln C$
Student's t-statistic:(-0.88) (8.81)
Adj usted R-Squared $=0.88$
Durbin-Watson statistic ${ }^{=} 2.15$
Number of observations = 11, 1969-1979
B $=13$
Average crew size = 4
Bering Sea King Crab
$\operatorname{lnBM}=1.461+0.404$ lnC
Student's t-statistic:(2.58) (7.51)
Adj usted R-Squared $=0.85$
Durbin-Watson statistic $=2.50$
Number of observations = 11, 1969-1979$B=250$
Average crew size $=4$
Peni nsula Tanner Crab
$B M=57.48+0.00722 C+141.94 R P$
Student's t-statistic:(3.45) (4.25)(2.43)
Adj usted R-Squared $=0.35$
Durbin-Watson statistic $=2.58$
Number of observations =11, 1969-1979
B $=40$
Average crew size = 4

```
BM = 4.308 + 0.0119 C + 42.881RP
Student's t-statistic:
    (-1.31) (3.93)

Adj usted R-Squared \(=0.92\)
Durbin-Watson statistic \(=1.40\)
Number of observations \(=10,1969-1970\) and 1972-1979
\(B=10\)
Average crew size \(=4\)

\section*{Western Al eutians Tanner Orab}

BM = 8 =nean BM 1969, 1973-1976, 1973-1979
\(B=5\)
Average crew si ze \(=4\)
Bering Sea Tanner Crab
\(B M=32.60+0.00536 \mathrm{C}\)
Student's t-statistic:
\[
(3.97) \quad(23.0)
\]

Adj usted R-Squared \(=0.98\)
Durbin-Watson statistic \(=1.96\)
Number of observations \(=11\), 1969-1979
\(B=150\)
Average crew size \(=4\)
Peni nsula Shrimp
\(\ln B M=\mathbf{- 4 . 2 4 4 + 0 . 8 7 7 1 n C}\)
Student's t-statistic:
(-7.58) (15.67)
Adj usted R-Squared \(=0.97\)
Durbin-Watson statistic \(=1.83\)
Number of observations \(=11,1969-1979\)
8' 35
Average crew size \(=3\)

\section*{Eastern Aleutians Shrimp}
\(\mathrm{BM}=11=\) mean BM 1972-1979
\(B=4\)
Average crew size \(=3\)

Where:
\(\mathrm{BM}=\) boat nonths
\(\mathrm{c}=\) annual harvest (1,000 pounds)
\(\mathbf{R P}=\) real exvessel price (\$'s/pound)
in denotes natural log of

Peni nsula King Crab
\(\ln B M=-0.0763+0.580 \operatorname{lnC}-0297 \mathrm{InRP}\)
Student's t-statistic:
\((-0.81) \quad(4.90) \quad(-1.69)\)
Adj usted R-Squared \(=0.785\)
Durbin-Watson statistic \(=1.61\)
Number of observations \(=11\), 1969-1979
\(B=40\)
Average crew size=4
Eastern Aleutians King Crab
\(B M=123=\) mean \(B M\) 1969-1979
\(B=75\)
Average crew size \(=4\)
Western Al eutians King Crab
\(\operatorname{lnBM}=-\mathbf{0 . 4 3 0}+0.531 \mathrm{lnC}\)
Student's t-statistic:
(-0.88) (8.81)
Adj usted R-Squared \(=0.88\)
Durbin-Watson statistic \(=2.15\)
Number of observations \(=11\), 1969-1979
B \({ }^{=13}\)
Average crew size \(=4\)
Bering Sea King Crab
\(\operatorname{lnBM}=1.461+0.404 \operatorname{lnC}\)
Student's t-statistic:
(2.58) (7.51)

Adj usted R-Squared \(=0.85\)
Durbin-Watson statistic \(=\mathbf{2 . 5 0}\)
Nunber of observations \(=11\), 1969-1979
\(B=250\)
Average crew size \(=4\)
Peni nsul a Tanner Crab
\(B M=57.48+0.00722 C+141.94 R P\)
Student's t-statistic:
(3.45) (4.25)

Adj usted R-Squared \(=0.35\)
Durbin-Watson statistic \(=\mathbf{2} .58\)
Number of observations \(=11\), 1969-1979
B \(=40\)
Average crew size \(=4\)

\section*{Numeri cal Basi s of Sal non Harvest Weight Projections}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Kings & Reds & Pi nks & Sil vers & Chuns \\
\hline \multicolumn{6}{|l|}{Chignik} \\
\hline Mean Harvest 1969-1979 & 2 & 1,000 & 720 & 25 & 135 \\
\hline Short-Term Obj ecti ve & 2 & 1,000 & 720 & 25 & 135 \\
\hline Long-Term Obj ective & 2 & 1,300 & 1,500 & 45 & 135 \\
\hline Short-Term Grouth Rate & 0 & T. \(3 \%\) & 3. \(7 \%\) & 3.0\% & 0 \\
\hline Long-Term Grouth Rate & 0 & 1.3\% & 3. \(7 \%\) & 3. \(0 \%\) & 0 \\
\hline Average Véi ght (pounds/fish) & 21.0 & 7.5 & 3.8 & 7.5 & 7.4 \\
\hline
\end{tabular}

Peni nsul a
Mean Harvest 1969-1979
Short-Term Obj ecti ve
Long-Term Obj ecti ve
Short-Term Grouth Rate
Long-Term Grouth Rate
Average Wêi ght (pounds/fish)
\begin{tabular}{lllll}
5 & \(\mathrm{~J}, 000\) & \(\mathbf{2 , 0 0 0}\) & 70 & 570 \\
5 & 1,000 & \(\mathbf{2 , 0 0 0}\) & 70 & \(\mathbf{5 7 0}\) \\
15 & \(\mathbf{2 , 2 0 0}\) & \(\mathbf{6 , 7 0 0}\) & \(\mathbf{2 8 5}\) & \(\mathbf{6 2 5}\) \\
\(\mathbf{5 . 5 \%} \mathbf{3 . 9 \%}\) & \(\mathbf{6 . 0 \%}\) & \(\mathbf{7 . 0 \%}\) & \(\mathbf{0 . 0 4 \%}\) \\
\(\mathbf{5 . 5 \%} \mathbf{3 . 9 \%}\) & \(\mathbf{6 . 0 \%}\) & \(\mathbf{7 . 0 \%}\) & \(\mathbf{0 . 0 4 \%}\) \\
18.0 & 6.9 & \(\mathbf{3 . 8}\) & \(\mathbf{7 . 4}\) & \(\mathbf{7 . 0}\)
\end{tabular}

Bristol Bay
\begin{tabular}{lccccc} 
Mean Harvest 1969-1979 & 105 & \(\mathbf{8 , 2 0 0}\) & 700 & 70 & 585 \\
Short-Term Obj ecti ve & 100 & \(\mathbf{9 , 0 0 0}\) & 700 & 70 & .585 \\
Long-Term Obj ecti ve & 100 & \(\mathbf{1 2 , 5 0 0}\) & \(\mathbf{1 , 0 0 0}\) & 90 & 600 \\
Short-Term Grouth Rate & 0 & \(1.3 \%\) & \(1.8 \%\) & \(1.3 \%\) & \(0.2 \%\) \\
Long-Term Grouth Rate & 0 & \(1.9 \%\) & \(1.8 \%\) & \(1,3 \%\) & \(0.2 \%\) \\
Average Weí ght (pounds/fi sh) & \(\mathbf{2 1 . 0}\) & \(\mathbf{5 . 5}\) & \(\mathbf{3 . 5}\) & \(\mathbf{7 . 1}\) & \(\mathbf{6 . 5}\)
\end{tabular}

Kuskokwim
\begin{tabular}{llllll} 
Mean Harvest 1969-1979 & 50 & 15 & 15 & 140 & 180 \\
Short-Term Obj ecti ve & 50 & 15 & 15 & 140 & 180 \\
Long-Term Obj ecti ve & 60 & 25 & 25 & 250 & 275 \\
Short-Term Grouth Rate & \(0.9 \%\) & \(2.5 \%\) & \(2.5 \%\) & \(\mathbf{2 . 9 \%}\) & \(\mathbf{2 . 1 \%}\) \\
Long-Term Grouth Rate & \(0.9 \%\) & \(2.5 \%\) & \(2.5 \%\) & \(\mathbf{2 . 9 \%}\) & \(2.1 \%\) \\
Average Wei ght (pounds/fish) & 21.0 & 6.5 & \(\mathbf{3 . 0}\) & \(\mathbf{5 . 8}\) & 6.4
\end{tabular}

Yukon
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mean Harvest \({ }^{\text {] }}\) 1975-1979 & 95 & 0 & 0 & 20 & 1,000 \\
\hline Short-Term Obj ecti ve & 110 & 0 & 0 & 20 & 1,400 \\
\hline Long-Term Obj ective & 140 & 0 & 0 & 20 & 2,000 \\
\hline Short-Term Grouth Rate & 2. 9\% & 0 & 0 & 0 & \(6.7 \%\) \\
\hline Long- Term Growth Rate & 1.6\% & 0 & 0 & 0 & \(2.4 \%\) \\
\hline Average Weight (pounds/fish) & 23. 0 & 0 & 0 & 7.0 & 6.7 \\
\hline
\end{tabular}

\title{
Kings Reds Pinks Si 1 vers Chuns
}
Norton Sound
Mean Harvest \({ }^{1}\) 1975-1979 ..... 4 ..... \(100 \quad 7\) ..... 165
Short-Term Obj ective ..... 4
100 ..... 7 ..... 230
Long-Term Obj ecti ve Short-Term Growth Rate 1. 1\% ..... 100 7 ..... 240
Long-Term Grouth Rate 1. 1\% ..... 18. 0
Average Weight (pounds/fish)

\(0 \quad 0\) ..... 6. 6\%
3.3 7. 2 ..... 0. 3\% ..... 6. 7
Kotzebue Sound
Mean Harvest 1976-1979 ..... 150
Short-Term Obj ecti ve ..... 150
Long-Term Obj ecti ve ..... 150
Short-Term Grouth Rate ..... 0
Long-Term Grouth Rate ..... 0
Average Véi ght (pounds/fish) ..... 8.8
Sources: Al aska Sal non Fi sheri es Pl an, Provisional Draft for Review and Comment, ADF\&G;ADF\&G area finfish biologists; ADFßG data files.
\({ }^{1}\) The means and objectives are in thousands of \(\mathbf{f i} \mathbf{i s h}\).

APPENDI X B

Conflicts Anong Commercial Fi sheries, Recreati onal Fisheries and Nonfishing Marine Traffic

Fi shi ng Vessel Acci dents

Alaska Marine \(\mathbf{O l}\) Spills

Processing Plant Siting Requirements

Market Envi ronnent

\title{
Conflicts Anong Commercial Fi sheries, Recreati onal Fisheries and Non Fishing Marine Traffic
}

\begin{abstract}
The conflicts among commercial fisheries, recreational fisheries, and nonfishing narine traffic have, except in a few notable instances, been rel ativel \(\mathbf{y}\) minor and have theref ore not tended to constrai \(\mathbf{n}\) the devel opment of the commercial fishing industry in \(\mathbf{A}\) aska. The following sections provide an overview of the nature of these conflicts.
\end{abstract}

\section*{COMPETI TI ON FOR SMALL BOAT HARBORS}

The demand for small boat harbors in Al aska has increased nore rapidly than the supply; this conbi ned with a rel uctance to use the price mechanism to allocate the scarce harbor space has resulted in a shortage of harbor space in many coastal commities. The commercial fisheries compete with each other and with other small boat harbor users (primarily recreational boaters) for the limited harbor space that is available. The term "snall boat harbor" is perhaps a bit misleading; in Alaska the harbor facilities desi gned principally for fishing and recreational boats are referred to as small boat harbors although they may serve vessels over 40 meters (131 feet\} in length. Harbor masters have demonstrated a great deal of imagination and dexterity in their handling of the overcrowding problem, and it would appear that the competition for harbor space has typically not hindered the development of a commercial fishery. There are, of course, limits on what can be done with a given harbor facility; this in part explains the harbor improvement plans underway in many commities.

\section*{COMPETI TI ON FOR FI SFERY RESOURCES}

In \(\mathbf{A}\) aska the principal competition for fishery resources occurs in the salmon fisheries where commerical fishermen using various gear types compete with each other and with recreational and subsistence fishernen for the limited anounts of harvestable sal non. The competition and the resulting conflicts between gear types (e.g., purse seine, drift gill net, set gill net, beach sei ne, and troll) are in many cases limited by allocating different areas and/ or periods to different gear types. The competition between comercial and recreational fishermen and the resulting conflicts are greatest in the areas which are nost accessibe to the one large netropolitan area of the state, Anchorage. In most other areas, recreational fishing is insignificant compared to commercial fishing and/ or targets on species that are of less importance to commercial fisheries; therefore, the competition and the conflicts have been minimal. As the population of \(\mathbf{A}\) aska and/ or regi ons of \(\mathbf{A}\) aska increase and as recreational fishing increases in terns of both size of catch and areas fished, the conflicts between comercial and recreational fishing will increase. In the fisheries other than sal non, there is generally little competition anong commercial fishernen using different types of gear.

When the conflicts anong commercial fishermen and/or recreational fishermen have arisen, the Alaska Board of Fi sheries has often set policies to assign the resource to one user group. Such policies limit the physical if not the political conflicts between user groups. An example of such a policy is Policy \#7727FB; see Exhi bit B. 1 .

Pol icy : 777-27-FB

\section*{COMPREFENSI VE MANAGEMENT POLICY FOR THE UPPER COOK INLET}

The dranatically increasing popul ation of the Cook Inlet area has resulted in Increasing competition between recreational and commercial fishermen for the Cook Inlet sal non stocks. Concurrently, urbanization and associ ated road construction has increased recreational angler effort and may adversel y affect fisheries habitat. As a result the Board of Fisheries has deterni ned that a policy must now be determined for the long-term managenent of the cook Inlet salmon stocks. Thi s policy should rest upon the following considerations:
1. The ultimate management goal for the Cook Inlet stocks must be thei \(r\) protection and, where feasible, rehabilitation and enhancenent. To achi eve this biol ogical goal, priorities must be set anong beneficial uses of the resource.
2. The commercial fishing industry in CookInlet is a valuable Tongterm asset of this state and must be protected, white recognizing the legitinate claims of the non-commercial user.
3. Of the sal non stocks in Cook Inlet, the king and siJver salmon are the target species for recreational anglers while the chum pink, and red sal mon are the predominant conmercial fishery.
4. User groups should know what the management plan for salmon stocks will be in order that they can plan their use consi stent with that plan. Thus, comercial fi shernen must know if they are harvesting stocks which in the long-term will be managed primarily for recreational consumption so that they may plan appropriately. Conversel \(y\), as recreational demands increase the recreational user must be aware of what stocks will be managed primarily for commercial harvest in order that he not becone overiy dependent on these fish for recreational purposes.
5. Vari ous agencies should be aware of the I ong-term nanagenent plan so that sal mon managenent needs will be consi dered when naki ng deci si ons in areas such as land use planning and highway construction.
6. It is imperative that the Department of Fi sh and Gane recei ve longrange direction in managenent of these stocks rather than being called upon to respond to annuallychangi ng Board di rectives. Wi thin the Departnent, di visi ons such as F.R.E.D. , must recei ve such longterm direction.

Therefore, the Board establishes priorities on the following Cook Inlet stocks north of Anchor Point. In so doing it is not the Board's intent to establish excl uni va uses of sal non stocks; rather its purpose is to define the primary beneficial use of the stock while permitting secondary uses of the stock to the extent it is consistent with the requirements of the primary user group.
1. Stocks whit ch normally move in Cook "Inlet to spawning areas prior to June 30, shall be managed primarily as a non-conmercial resource:
2. Stocks which normally move in CookInletafter June 30, shall be managed primarily as a non-recreational resource until August 15; however existing recreational target fish shall only be harvested incidental to the non-recreational use; thereafter stocks novi ing to spawning areas on the Kenai Pent nsul a shall be managed primarily as a non-commercial resource. Other stocks shall continue to be managed primarily as a non-recreational resource.
3. The Susitna coho, the Kenai king, and the Kenaicoho runs cannot be separated from other stocks whit ch are being managed primarily as non-recreational resources; however, efforts shall be made, consistent with the primary management goal, to minimize the non-recreational catch of these stocks.


ADOPTED: December 13, 1977
VOTED:


A third source of conflict for commerical fisheries is the competition for ocean space in which to devel op and/ or harvest fishery resources. When two or nore fisheries compete for the same ocean space, gear conflicts can cause gear Iosses and/ or affect the abundance of other fishery resources. Gear loss conflicts are nost likely to occur when fixed gear (e.g., crab or shrimp pots, and hal ibut long line gear) and nonfixed gear (e.g., traw or dredge) are used in the same area at the sane tine. The timing and location fisheries has tended tolimit this type of conflict; but as the groundfish fishery, which will be primarily a traw fishery, develops in the areas of ocean space used by the traditional fisheries, the potential for gear loss conflicts willincrease.

Examples of gear conflicts which affect stock abundance in other fisheries i ncl ude the foll owing:
- destruction of juvenile king crab by scallop dredge
- incidental catch of a species that is the target species of another fishery (e.g., halibut and perch)
- destruction of \(\mathbf{j u v e n i l e s ~ b y ~ t r a w s ~}\)

An additional source of conflict of ocean space use is that the species targeted on by some fisheries are food for ot her speci es, for example, the harvest of salmon, a predator of herring will depend to sone degree on the harvest of herring. Al el se being equal, there will tend to be an inverse rel ationshi \(p\) between the sal non and herring harvest. The gear conflicts other than gear losses will al so tend to increase as the
groundfish fishery devel ops, with the maj or conflict being the incidental catch of halibut in groundfish traw gear.

In addition to the competition for ocean space anong comercial fisheries, there is al so competition between conmercial fisheries and other users of ocean space (e.g., vessels engaged in marine comerce). The potential impacts on commercial fisheries of this competition are the costs associated with collisions and gear losses. These costs include the costs of actual losses as well as the costs incurred in attenpting to reduce actual losses. Due to the rel atively small anount of nonfishery marine traffic in nost areas of Alaska, the costs associated with this type of conflict have not been significant. Exceptions to this occur in Cook Inlet and Prince William Sound, where freighter and tanker traffic has been sufficiently heavy that attempts have been made to restrict such marine traffic to desi gnated areas or lanes. The establishnent of sea I anes through fishing grounds has, however, proved to be a difficult task in Cook Inlet. The fishernen favor a single narrow lane for other users so a snall anount of fishing area is lost, white the narine transport users favor nore and broader lanes to reduce the probability of congestion and/ or collisions. Sea I anes which have been established in Pri nce William Sound have substantially reduced gear losses and associated conflicts. The potential for conflict willincrease in Alaska as its marine transportation system grows and as nore distant fisheries (e.g. groundfish) devel op. The extent to which the conflict will remain concentrated in Cook inlet will depend on the rates of growth of the vari ous regi ons of Alaska and the ability of the ports of Seward, Whittier, or Valdez to conpete with the Port of Anchorage for marine comerce.

\section*{Fi shi ng Vessel Acci dents*}

Approxi mately \(\mathbf{2 5}, 000 \mathrm{fi}\) shing vessel s of five net tons or larger are currently docunented with the U.S. Coast Guard (USCG). It is estinated that nearly four times that number of fishing vessel s are less than five net tons and regi stered by indi vidual states. These smaller boats accounted for only five percent of the casualty incidents recorded by the USCG during the 1972-1977 fiscal year period and, theref ore, comprose a minor portion of the data utilized for anal ysis of fishing vessel casual ties.

There has been a 51 percent increase in the number of Anerican fishing vessel s over the past 12 years. Al ong with this grouth of the fishing fleet has been a 53 percent increase in the number of fishing vessel casualties (Figure B.I). The U.S. Coast Guard separates vessel casual ties into five categories: operational collisions; grounding; explosion/fire; flooding/ foundering/ capsi zi ng; and material failure. No particul ar type of casual ty clearly predominated throughout the 1972-1977 period, but grounding and floodi ng/ founderi ng/ capsi zing were the nost preval ent casualties during the latter years of the period (Figure B.2). Each of the five categories experienced at least sone net growth from 1972 to 1977, with large annual fluctuations in the occurrence of any particular type of casual ty being quite common.

\footnotetext{
*Data used in this section refers to fiscal year 1972-1977 period, and incl udes U.S. Coast Guard documented fishing vessels which are five net tons or I arger.
}


Figure B.1: Growth of the Documented Fishing F eet \& Growth of Fishing Vessels Report ng Casua ties Source: Ecker, mm Will am J., Safety Analysis of Fishing Vessel Casualties, U.S. Coast Guard. 1978.


Fi gure 6. 2: Fi shing Vessel Casual ties
No. of vessel s invol ved in specific type casualties by fiscal year.

Source: Ecker, Commander WilliamJ., A Safety Anal ysis-of Fishing Vessel Casual ties, U. S. Coast Guard. 1978.

Nearly \(\mathbf{1 3}\) percent of the United States' documented fishing vessel s are I ocated in Alaska (Table B.1). Additionally, nany vessels migrate to Al aska from other states, particularly Whshington, to participate in variousfisheries throughout the year, and effectively increase the percentage of fishing vessel sthat actually operate in Alaskan waters. Though only 13 percent of Anerica's fishing vessel s were registered in A aska, 24 percent of the fishing vessel-rel ated deaths and 20 percent of fishing vessel losses occurred in \(\mathbf{A}\) aska (Table 6.2), attesting to the harsh conditions that vessel \(s\) are subjected to and the danger faced by anyone who experiences emergency survival in Alaska's cold waters.

Fl oodi ng/ Founderi ng/ Capsi zi ng (F/F/C) and grounding rated first and second respectivel \(y\) as causes of \(f i s h i n g\) vessel casualties in Alaska, in terns of number of deaths as well as number of vessel s lost (Table B.2). This compares very closel y with the ranking of casualty causes for the entire United States (Table B.3). The spec fic causes of F/F/C and grounding are presented in Tables B. 4 and B5. However, the information in Tables B. 4 and B. 5 is comprised of incidents fromall portions of the United States, and it is very likely that adverse weather conditions were invol ved in a higher proportion of Alaskan casualties than in other parts of the country. Personnel fault was nost commonly naned as the cause of \(F / F / C\) and grounding, with inattention and navi gational problens being nost preval ent. Explosion/fire, naterial failure, and operational collisions are the remaining categories of fishing vessel casualties in Al aska, in order of frequency, with specific causes listed in Tables B. 6 B.7, and B.8. Operational collisions are attributed to personnel fault nearly half of the time, while explos on/fire and naterial failure are more comonl \(y\) the result of equi pnent failure.

TABLE B. \(]\)
U. S. FISHING VESSEL FLEET GEOGRAPH C GROUPI NGS - SELECTED AREAS
\begin{tabular}{|c|c|c|}
\hline Area & Num Vess. & Percent of Fl eet \\
\hline \begin{tabular}{l}
New England \\
Maine, Mass., R.I., Corm
\end{tabular} & 1,723 & 6.8\% \\
\hline Middle Atlantic - North NY, N, Penn., Del. & 828 & 3. 3\% \(\quad \begin{aligned} & \text { 32. } 1 \% \\ & \text { At l anti c }\end{aligned}\) \\
\hline Mddle Atlantic - South MD, VA, Wash DC, NC, SC & 3,729 & 14. 7\% Coast \\
\hline \begin{tabular}{l}
Southern Atlantic \\
Gee., Fla., Virg. 1s., Puerto Rico
\end{tabular} & 1,856 & 7.3\% \\
\hline \begin{tabular}{l}
Gulf \\
Fla., Ala., Mss., LA Texas
\end{tabular} & 6, 065 & 24. \(0 \%\) Gull f Coast \\
\hline Southern California San Di ego, Los Angel es & 1, 075 & 4. \(3 \%\) \\
\hline Northern California SF, Eureka & 1,881 & 7.4\% 41. 7\% \\
\hline Pacific Northwest Oregon, Wash. & 4,410 & 17.4\% \(\quad \begin{aligned} & \text { Pacific } \\ & \text { Coast }\end{aligned}\) \\
\hline Alaska & 3,196 & 12.6\% \\
\hline
\end{tabular}

Source: Ecker, Commander Vill iamj., A SafetyAnal ysi s of Fishing Vessel Casual ties, U.S. Coast Guard, 1978. USCG Docunentation Records (vessels of 5 net tons or nore).

TABLE B. 2

\section*{SPECIFIC LOCATION* COMPARI SON}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Location} & \multicolumn{2}{|l|}{Operati onal Collisions} & \multicolumn{2}{|l|}{Groundi ng} & \multicolumn{2}{|l|}{Expl osi on/ Fire} & \multicolumn{2}{|l|}{Flood/ Found/ Cap.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Material \\
Fail ure
\end{tabular}} & \multicolumn{2}{|l|}{Total} \\
\hline & & Deaths & Vess. Lost & Deat hs & Vess. Lost & Deaths & \[
\begin{aligned}
& \text { Vess. } \\
& \text { Lost }
\end{aligned}
\] & Deat hs & \[
\begin{aligned}
& \text { Vess. } \\
& \text { Lost. }
\end{aligned}
\] & Deat hs & Vess. Lost & Deaths & Vess. Lost \\
\hline & Mai ne & & 1 & & 3 & & 2 & 16 & 6 & 1 & & 17 & 12 \\
\hline & Massachusetts & 4 & 3 & & 5 & 1 & 7 & 11 & 21 & & 8 & 16 & 44 \\
\hline & Rhode Is \({ }^{\text {and }}\) & & & & 2 & & 1 & 6 & 8 & & 4 & 6 & 15 \\
\hline & Corm NY, NJ & 1 & 1 & & 3 & & 4 & 10 & 12 & & 10 & 11 & 30 \\
\hline & Del. Bay & & 1 & & 1 & & & 1 & 3 & & & 1 & 5 \\
\hline & Del, MD, WA coast & & & & & & 1 & 1 & 2 & & & 1 & 3 \\
\hline & Chesapeake Bay & 4 & 6 & & 3 & 3 & & 17 & 12 & 6 & 5 & 30 & 26 \\
\hline & North Carol i na & & & 4 & 3 & 3 & 8 & 4 & 7 & & 2 & 11 & 20 \\
\hline & South Carolina & & 1 & & 9 & & 2 & 1 & 5 & & 5 & 1 & 22 \\
\hline 88 & Georgi a & & 2 & & 6 & & 13 & 1 & 6 & 2 & 1 & 3 & 28 \\
\hline - & Florida East & & 4 & 1 & 8 & 3 & 9 & 4 & 15 & 5 & 5 & 13 & 41 \\
\hline & Florida West & 2 & 5 & & 11 & & 10 & 5 & 11 & 5 & 7 & 12 & 44 \\
\hline & Al abama & & 2 & & 4 & 3 & 9 & 1 & 4 & & 1 & 4 & 20 \\
\hline & M ssi ssi ppi & & 2 & & 1 & & & 4 & 2 & & 2 & 4 & 9 \\
\hline & Loui si ana & 1 & 9 & & 5 & & 10 & 1 & 8 & 6 & 2 & 8 & 34 \\
\hline & Texas & & 25 & 1 & 32 & & 16 & 11 & 16 & 1 & 19 & 13 & 108 \\
\hline & Southern Calif. & & 4 & & 26 & & 14 & 10 & 27 & & 10 & 10 & 81 \\
\hline & Northern Calif. & 4 & 10 & 1 & 10 & 2 & 8 & 8 & 22 & 8 & 10 & 23 & 60 \\
\hline & Pacific Northwest & 3 & 7 & 3 & 15 & 4 & 28 & 11 & 34 & 7 & 14 & 28 & 98 \\
\hline & Alaska & 5 & 8 & 13 & 45 & 4 & 38 & 36 & 59 & 8 & 21 & 66 & 171 \\
\hline & TOTAL & 24 & 91 & 23 & 192 & 23 & 180 & 159 & 280 & 49 & 128 & 278 & 871 \\
\hline & A aska, \% of tota & l 20.8 & 8.8 & 56.5 & 23.4 & 17.4 & 21.1 & 22.6 & 21.1 & 16.3 & 16. 4 & 23.7 & 19.6 \\
\hline
\end{tabular}
*All locations not incl uded.
Source: Ecker, Commander William J., A Safety Anal ysis of Fishing Vessel Casual ties, U.S. Coast Guard, 1978.

TABLE B. 3
CASUALTY TYPE AND SERI OUSNESS OF CONSEQUENCES> FISH NG VESSEL CASUALTIES FY 72-77
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sel ected Casual ty Type} & \multicolumn{2}{|l|}{Casualty Freq.} & \multicolumn{2}{|l|}{Casualty Deaths} & \multicolumn{2}{|l|}{Vessel s Lost} \\
\hline & \[
\begin{gathered}
\text { Num } \\
\text { Vessel s }
\end{gathered}
\] & Ranki ng & \begin{tabular}{c} 
Num Vessel s/ \\
Num Deaths \\
\hline
\end{tabular} & Ranki ng & \[
\begin{gathered}
\hline \text { Num } \\
\text { Vessel s }
\end{gathered}
\] & Ranki ng \\
\hline Groundi ng & 1,221 & 1 & 19/29 & 3 & 218 & 2 \\
\hline Material Failure & 980 & 2 & 36/63 & 2 & 158 & 4 \\
\hline Operational Collisions & 880 & 3 & 14/24 & 4 & 114 & 5 \\
\hline Fl oodi ng, Founderi ng, \& Capsi zi ng & 819 & 4 & 121/238 & 1 & 397 & 1 \\
\hline Expl osi on/ Fire & 412 & 5 & 16/20 & 5 & 215 & 3 \\
\hline All Others & 542 & & 23/40 & & 72 & \\
\hline
\end{tabular}

\footnotetext{
Source: Ecker, Commander WilliamJ., Safety Anal ysis of Fishing Vessel Casualties, U.S. Coast Guard, 1978.
}

\section*{Casual ty type: Fl oodi ng/ foundering/ capsi zi ng} Casual ty peri od: FY 72 thru 77
PRI MARY CAUSES
PERCENT
1. Personnel Fault ..... 17.6
a. carel essness/i nattention (18. 8\%)
b. i mproper securing of vessel (13.9\%)
c. poor seamanshi p (9.0\%)
d. misjudge effects of current, wind, etc. (6.3\%)
2. Storns, Heavy Weather ..... 15.3
a. I arge swell across bar (37.6\%)
b. structural failure (11.2\%)
c. gal e force winds ( \(8.8 \%\) )
d. hurri cane wi nds ( \(4.8 \%\)
e. cargo shift ( \(3.2 \%\)
f. ice ( \(2.4 \%\)
3. Equi pnent Fai I ure ..... 14. 9
a. drai nage system ( \(27.0 \%\) )
b. el ectrícal \((8.2 \%\) )
c. other (48.4\%)
4. Structural Failure ..... 10.7
a. wasted plates \& internals (53.4\%
5. Striking Submerged Object ..... 7.0
6. Unseaworthy ..... 5. 1a. failure of nood hull (54.8\%b. failure of steel hull (14.3\%c. unsuitable for route (16.7\%)
7. I mproper Maint. - Failure of Wbod Hull ..... 2. 9
8. Exact Cause Unknown ..... 24. 5
a. progressi ve floodi ng (28.4%b. questionable stability ( \(10.4{ }^{\circ} \mathrm{M}\) )c. vandal i sm ( \(8.0 \%\) )d. i mproper nooring (7.0\%)
Source: Ecker, Comander William J., A Safety Analysis of Fishina VesselCasualties, U.S. Coast Guard.7978.

\section*{PRI MARY CAUSES \& CONTRI BUTI NG FACTORS}

Casual ty type: Groundings Casual ty period: FY 72 thru 77
PRI MARY CAUSES PERCENT
1. Personnel Fault ..... 62.3
a. navi gation - failed to ascertain position ..... (43.6\%)
b. carel essness/i nattention (11. 3\%
c. misjudge wind/current (11.1\%
d. poor seamanshi p (4.3\%)
e. I ack of Local Know edge (4.3\%
f. failed to determine hei ght of tide (2.0\%)
2. Equi pnent Fai I ure ..... 11.9
3. Heavy Weather, Storns, Currents ..... 10
4. Depth Less Than Charted ..... 9.4
5. Other Causes ..... 6.4
CONTRI BUTI NG FACTORS FREQUENTLY MENTI ONED
1. Restricted Maneuvering in Channel
2. Heavy Weather
3. Unusual Currents
4. Equi pnent Fai I ure - Mai n Propul si on, Steering Gear, Rudder, Propel ler Loss
5. Congested Area
6. Lack of Proper Lookout
Source: Ecker, Commander WilliamJ., A Safety Anal ysis of Fishing VesselCasual ties, U.S. Coast Guard. 1978.

TABLE B. 6
PRI MARY CAUSES \& CONTRI BUTI NG FACTORS

Casual ty Type: Expl osi on/ Fi re Casual ty Peri od: FY 72 thru 76

\section*{PRI MARY CAUSES \\ PERCENT}
1. Equi pment Fail ure
38.6
a. el ectrical (38.4\%)
b. fuel oil system (14.5\%)
c. ventilation ( \(5.0 \%\) )
2. Engine Room Fi res \(\quad 20.6\)
3. Fire From Undetermined Sources 14.8
4. Personnel Fault 11.2
a. i mproper safety precautions (54.3\%)
b. carel essness (30.4\%)
5. Unknown 6.7

CONTR BUTI NG FACTORS FREQUENTLY MENTI ONED
1. Diesel and Gasol ine Engi nes
2. El ectrical - Wiring
3. Gas/ Oil Heaters
4. Galley Equi pnent - Orens \& Ranges
5. Ventilation Systens
6. Yard Repai rs

Source: Ecker, Commander Villiam J., A Safety Anal ysis of Fishing Vessel Casualties, U. S. Coast Guard. 1978.

\section*{TABLE B. 7}

\section*{PRI MARY CAUSES}
Casual ty type: Materia Failure
Casualty period: FY 72 thru 77
PRI MARY CAUSE ..... PERCENT
1. Failure of \(\mathbf{O n}\)-Board Equi pnent ..... 74.8a. el ectrical (9.3\%)b. fuel oil system (6.1\%)c. I ube oil system ( \(5.7 \%\)
d. salt water system ( \(3.8^{\circ} \mathrm{f}\)
e. fresh water system ( \(3.5 \%\) )
f. hydraulic (3.0\%)
g. hul I drai nage (1.5\%)
2. Structural Failure - Nb Personnel Fault ..... 8. 9
a. wasted plates/rotted hull (58.6\%)
3. Unseaworthy ..... 4. 3
a. failure of nood planking (81\%)
4. Storns, Heavy Weather ..... 2. 9
5. Personnel Faul t ..... 2. 4
6. Unknown ..... 4.5
Source: Ecker, Commander William J., A Safety Anal ysis of Fishing VesselCasualties, U.S. Coast Guard. 1978.

\title{
PRI MARY CAUSES \& CONTRI BUTI NG FACTORS
}

Casual ty type: Operational Collisions
Casualty period: FY 72 thru 77
PRI MARY CAUSES ..... PERCENT
1. Personnel Fault ..... 47.7
a. rules of road (44.8\%
b. i mproper lookout ( \(22.6 \%\)
c. carelessness/inattention (6.2\%)
d. misjudge wind/current ( \(4.8 \%\) )
e. poor seananshi \(p\) (2.1\%)
2. Presence of a Subnerged Obj ect ..... 9.8
3. Equi pnent Fai I ure ..... 3.6
4. Fault Other Vessel ..... 28.4
5. Other Causes ..... 10.5
CONTRI BUTI NG FACTORS FREQUENTLY MENTI ONED
1. Restricted Maneuvering in Channel
2. Congested Area
3. Lookout not Alert
4. Poor Visibility
5. Currents \& Ti des
6. Weather, Generally
Source: Ecker, Commander William J., A Safety Anal ysi s of Fishing VesselCasualties, U.S. Coast Guard. 1978.

Though operational collisions are not the nost preval ent vessel " casualty in Alaska, this type of incident is of special interest in respect to increased marine traffic which may occur due to petrol eum devel opnent in an area. Collisions in which vessel s are neeting invo ve the nost fishing vessel s, followed by collisions with subnerged objects (Table B.9). The frequency of vessel meeting collisions invol ving fring vessel s increased steadily throughout the study period of 1972-1977, while the frequency of other types of collisions showed little gain or sizable decreases.

Table 8.10 reports the frequency of fishing vessel casual ties according to the fishing activity at the time of the incident. U.S. Coast Guard documentation records indi cate that approxi matel y one-third of American fishing vessel s participated in the shrimp fishery during the study period, and a similar number fished for sal non. An additional five percent were invol ved in the crab fisheries and the renai nder of the Anerican fishing fleet pursued other species of fish. However, it must be renenbered that nany vessel s participated in more than one fishery. Forty-ni ne percent of the vessel s lost and 34 percent of the fishernen killed were invol ved with shriming, while only eight percent of the vessel s lost and \(\mathbf{1 1}\) percent of the fishermen killed were fishing for sal non. Si \(x\) percent of the vessel \(s\) lost and ni ne percent of the deaths were rel ated to crabbing. Specific data were not available to indicate the proportion of acci dents which were attributable to \(\mathbf{A l}\) aska, nor the proportion of boats in each fishery. However, since \(\mathbf{A}\) aska is the top producer of crab and sal non, and has a very substantial shrimp fishery, it can be assumed that data concerning \(\mathbf{A}\) aska would indi cate that

TABLE B. 9
Trend Chart by Year
OPERATI ONL COLLISIONS - I NCI DENTS \& VESSEL I MOLVEMENT


Source: Ecker, Commander William J., A Safety Anal ysis of Fishing Vessel Casualties, U.S. Coast Guard. 1978.

TABLE B. 10

\section*{SPEC FIC FI SH NG ACTIVITY}
\begin{tabular}{|c|c|c|c|c|c|}
\hline - & \[
\begin{gathered}
\text { VESSEL } \\
\text { ACTI V TY/ } \\
\text { CONFI GRATI ON }
\end{gathered}
\] & \[
\begin{gathered}
\text { NUM } \\
\text { LOST } \\
\text { VESSELS } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \% \text { OF } \\
& \text { TOTAL }
\end{aligned}
\] & \[
\begin{aligned}
& \text { NUM } \\
& \text { PERSONS } \\
& \text { KI LLED } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \% \text { of } \\
& \text { TOTAL }
\end{aligned}
\] \\
\hline & Shrimping \({ }^{2}\) & 294 & 49 & 59 & 34 \\
\hline & Ground fishing & 124 & 21 & 18 & 10 \\
\hline & Salmon \({ }^{2}\) & 48 & 8 & 20 & 11 \\
\hline & Tuna & 36 & 6 & 15 & 8 \\
\hline & Oystering & 11 & 2 & 5 & 3 \\
\hline & K ng crab \({ }^{2}\) & 26 & 4 & 11 & 6 \\
\hline & Crab \({ }^{2}\) & 12 & 2 & 5 & 3 \\
\hline & Menhaden & 1 & \(<1\) & 3 & 2 \\
\hline & Lobster & 25 & a & 20 & 11 \\
\hline & Cl am & 13 & 2 & 12 & 7 \\
\hline - & Scal lop & 4 & \(<1\) & & \\
\hline & Hal ibut \({ }^{2}\) & 5 & 1 & 3 & 2 \\
\hline & Snapper/ grouper & 4 & 4 & 5 & 3 \\
\hline & Total & 603 & & 176 & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Where specifically noted on casual ty report.
\({ }^{2}\) Fisheries of substantial importance in Alaska.
Source: Ecker, Commander Villiam J., Safety Analysis of Fishing Vessel Casual ties, U.S. Coast Guard. 1978.
}
crabbing and shriming are rel atively hazardous, and that salmon fishermen face less danger.

Information concerning Al aska marine oil spills from 1973 through 1977 was obtai ned from data contai ned in the Pollution Incident Reporting System (PIRS), a system nai nt ai ned at U.S. Coast Guard Headquarters in Whshington, D. C. Al Al aska narine-rel ated oil spills recorded by the PI RS were examined in an attempt to expose any trends or occurrences which may be rel ated to Al aska's increasing vol une of marine traffic, and to its growing petroleum industry. With the exception of nore spills being reported in recent years, which was fully expected based upon increasing marine activity, it appears that there was no substantial change in the types of spills occurring throughout the data period.

Inspection of Tables 6.11 through \(B .18\) quickly verifies that oil spills are extremely diversified in quantity, source, cause, and even nateri al spilled. Spills of \(\mathbf{1 , 0 0 0}\) gallons or greater are presented indididually in Tables 8.11 through 8.15 , but many nore spills of only one to five gallons were recorded by the Coast Guard, and the renai nder lie between these extrenes. Of particular interest may be the fact that in 1975, 1976 and 1977, the occurrence of spills in excess of \(\mathbf{1 , 0 0 0} \mathbf{~ g a l l o n s ~}\) actually declined by over one-third rel ative to 1973 and 1974 level s. A so, it is notable that in nost years, a single spill has accounted for around three-fourths of the total recorded petroleum pollution in \(\mathbf{A}\) aska waters.

Li ght diesel fuel is the nost common pollant involving large spills (Table B.16). Light diesel is used extensi vely in Alaska, providing

1973 ALASKA MARI NE OL SPI LLS \(\geq 1,000\) GALLONS


TABLE B. 12
1974 ALASKA MARI NE \(\mathbf{O L}\) SPILLS \(\geq 1,000\) GALLONS
\begin{tabular}{|c|c|c|c|c|}
\hline & Material & Quantity & Source & Cause \\
\hline & Li ght di esel & 19, 000 & Land transportai on facility & Personnel error \\
\hline & Li ght diesel & 6, 000 & Tugboat or touboat & Hull rupture or leak \\
\hline & Jet Fuel & 5,000 & M scel I aneous & Equi pment fail ure \\
\hline & Li ght di esel & 5, 200 & Other vessel & Tank rupture or leak \\
\hline & Li ght diesel & 40, 000 & Onshore non-transportationrel ated facility & Pi pe rupture or leak \\
\hline & Li ght di esel & 33, 000 & Onshore non-transportationrel ated facility & Pi pe rupture or leak \\
\hline & Li ght crude oil & 1,050 & Offshore bulk cargo transfer & I mproper equi pnent handl i ng or operation \\
\hline & Light diesel & 7,000 & M scel \(I\) aneous & Structural failure \\
\hline 응 & Li ght di esel & 10,000 & Onshore fueling & Tank rupture or leak \\
\hline & Li ght di esel & 2, 500 & Land transportation facility & Val ue failure \\
\hline & Li ght diesel & 33, 000 & M scel I aneous & Tank overflow \\
\hline & Gasol ine & 5,800 & Unknown type of source & Unknown cause \\
\hline & Li ght diesel & 1,200 & Onshore non-transportationrel ated facility & Pi pe rupture or leak \\
\hline & Li ght diesel & 3,200 & Onshore bulk cargo transfer & Transportation Pi pel ine rupt ure or leak \\
\hline & Li ght di esel Total & \[
\frac{1,600}{173,550}
\] & H ghnay vehicle liquid bulk & Natural or chronic phenomenon \\
\hline & \begin{tabular}{l}
Largest si ngle Average quantity \\
All 1974 Al aska Marin Number: 153 Number of fishing Average quantity
\end{tabular} & : 40, 000 excl udi \(n\) 1ls (all uantity: oil spil hi ng vess & \begin{tabular}{l}
Average quantity spilled: gest spill: 9, 539 gal s. ties): \\
gal s. Average quantity per spill: 71 gals.
\end{tabular} & 186 gals. \\
\hline & Source: United States & Guard Pol I & I nci dent Reporti ng System dat & \\
\hline
\end{tabular}

TABLE B. 13
1975 ALASKA MARI NE OL SPILLS \(\geq 1,000\) GALLONS
\begin{tabular}{|c|c|c|c|}
\hline Material & Quantity & Source & C a us \\
\hline Li ght diesel & 1,100 & Highuay vehicle liquid bul \(k\) & Natural or chronic phenonenon \\
\hline Heavy diesel & 5,000 & Fi shi ng vessel & Hull rupture or leak \\
\hline Li ght di esel & 1,000 & M scel I aneous & Unknown causes \\
\hline Jet fuel & 1,500 & Onshore bulk storage facility & Equi prent failure \\
\hline Light di esel & 2,000 & Highway vehicle liquid bulk & Personnel error \\
\hline Light diesel & 65, 000 & Onshore pipeline & Pi peline rupture or l eak \\
\hline Gasol i ne & 300, 000 & Onshore fuel ing & Tank rupture or leak \\
\hline \multicolumn{4}{|c|}{Total 375,600 gal ons} \\
\hline \multicolumn{4}{|l|}{Largest single oil spill: 300, \(\mathbf{0 0 0} \mathbf{~ g a l l o n s ~}\) Average quantity spilled: 53,657 gallons Aver age quantity spilled excl uding I argest spili: 12, \(\mathbf{6 0 0}\) gallons} \\
\hline \multicolumn{4}{|l|}{All 1975 A aska Marine Oil Spills (all quantities):} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Number: 136 \\
Total quantity: 380, 275 gals. \\
Average quantity per spill: 2, 796 gal s . \\
Number of fishing vessel oil spills: 30 \\
Average quantity per fishing vessel oil spill: 201
\end{tabular}} \\
\hline
\end{tabular}

Source: United States Coast Guard Pollution Incident Reporting System data.

TABLE B. 14
1976 ALASKA MARI NE OL SPILLS \(\geq 1,000\) GALLONS


Source: United States Coast Guard Pollution Incident Reporting System data.

TABLE B. 15
1977 ALASKA MARI NE \(\mathbf{a L}\) SPILL \(\geq 1,000\) GALLONS
\begin{tabular}{|c|c|c|c|}
\hline Materi al & Quantity & Source & Cause \\
\hline Jet fuel & 10,192 & Onshore bulk storage facility & Pi pe rupture or l eak \\
\hline Light di esel & 72, 280 & Fi shi ng vessel & Hull rupture or leat \\
\hline Li ght di esel & 1,000 & Fi shing vessel & Hull rupture or leak \\
\hline Heavy di esel & 8,000 & Fi shi ng vessel & Hull rupture or leak \\
\hline Li ght diesel & 1,000 & Onshore bulk cargo transfer & Personnel error \\
\hline Li ght di esel & 10,000 & Onshore industrial plant or processing facility & Highway acci dent \({ }^{-}\) \\
\hline Li ght di esel & 8,000 & Fi shi ng vessel & Hull rupt ure or leak \\
\hline Li ght di esel & 2, 600 & Onshore non-trans-portation-rel ated facility & Tank overfl ow \\
\hline Uni dentified light 0 il & 1,600 & Onshore bulk storage facility & Pi pe rupture or l eak \\
\hline Total & 114, 672 & & \\
\hline
\end{tabular}

Largest single oil spill: 72, 280 gals.
Average quantity spilled: 12,741 gals.
Average quantity spilled excl udi ng-I argest spill: 5, 299 gal s.
All 1977 Al aska Marine Oil Spills (all quantities):
Nunber 229
Total quantity: 123, 633 gal s.
Average quantity per spill: 540 gal s.
Number of fishing vessel oil spills: 56
Average quantity per fishing vessel spill: 1,600 gals.

Source: United States Coast Guard Pol I ution Inci dent Reporting System data.

TABLE B. 16
NUMBER OF ALASKA MARI NE \(\mathrm{OLL}_{\text {L }}\) SPI LLS \(\geq 1,000\) GALLONS, BY MATERI AL SPI LLED 1973-1977

Number of I nci dents
\begin{tabular}{lllll}
1973 & 1974 & 1975 & 1976 & 1977
\end{tabular}

\section*{Material Spilled}
Light Crude Oil 1

Gasoline \(1 \quad 1\)
\(\begin{array}{llll}\text { Jet Fuel } & 1 & 1 & 2\end{array}\)
\(\begin{array}{lllll}\text { Li ght Diesel Fuel } & 10 & 12 & 4 & 5\end{array}\)
- Heavy Di esel Fuel 1 1 1

Mxture of Two or Mbre
Petrol eum Products
Uni dentified Light \(\quad\) il
Uni dentified Heavy \(\mathbf{O i} 1\)
Other Oil 1
Natural Occurrence 1
\(\begin{array}{llllll}\text { Total } & 14 & 15 & 7 & 11 & 9\end{array}\)

Source: United States Coast Guard Pollution Incident Reporting System data.

NUMBER OF ALASKA MARI NE OL SPI LLS > 1. 000 GALLONS. BY CAUSE 1973-1977 - "
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1973 & 1974 & ?975 & 1976 & 1977 \\
\hline \multicolumn{6}{|l|}{Cause of \(\mathbf{C i l}\) Spill} \\
\hline \multicolumn{6}{|l|}{Structural Failure or Loss} \\
\hline Hull Rupture or Leak & 1 & 1 & 1 & 1 & 4 \\
\hline Tank Rupture or Leak & 4 & 2 & 1 & 2 & \\
\hline Transportation Pi peline Rupt ure or Leak & & 1 & & 1 & \\
\hline Other Structural Failure & 1 & 1 & & & \\
\hline \multicolumn{6}{|l|}{Equi pment Fail ure} \\
\hline Pi pe Rupture or Leak & 2 & 3 & 1 & & 2 \\
\hline Hose Rupture or Leak & & & & 1 & \\
\hline Val ve Failure & 1 & 1 & & & \\
\hline Other Equi pnent Failure & 1 & 1 & 1 & 1 & \\
\hline \multicolumn{6}{|l|}{Personnel Error (Uni ntentional Di scharge)} \\
\hline Tank Overflow & 1 & 1 & & & 1 \\
\hline I mproper Equi pnent Handl i ng or Operation & & 1 & & 2 & \\
\hline Other Personnel Error & & & & & \\
\hline I ntentional Discharge & 2 & & & & \\
\hline \multicolumn{6}{|l|}{Other Transportation Casual ty} \\
\hline Rail road Acci dent & & & & 1 & \\
\hline Highuay Acci dent & & & & 1 & 1 \\
\hline Aircraft Acci dent & & & & 9 & \\
\hline Natural or Chronic Phenomenon & 1 & 1 & 1 & & \\
\hline Unknown Causes & & 1 & 1 & & \\
\hline Total & 14 & 15 & 7 & 11 & 9 \\
\hline
\end{tabular}
NUMBER OF ALASKA MARI NE \(\mathbf{O L}\) SPILLS > \(\mathbf{1 , 0 0 0}\) GALLONS,BY SORCE OF SPI LL 1973-1977
1973 ..... 19741975 ..... 1976 ..... 1977
Source of Cl Spill
Other Vessel ..... 2 ..... 1
Tankshi p 10, 000-19, 999
gross tons ..... 1
Tank Barge 1, 000-9,999
gross tons ..... 1
Tugboat or Towboat ..... 1
Fi shi ng Vessel ..... 11
Onshore Bulk Cargo Transfer ..... 1
Onshore Fueling ..... 1 ..... 1
Offshore Bulk Cargo Transfer
- Rail Vehicle Liquid Bulk ..... 11
Highway Vehicle Liquid Bulk1
Aircraft
Other Land Transportation
Facility2
Railuay Fueling Facility
Onshore Pi peline
Other Onshore Non-Trans-FacilityOnshore I ndustrial Plant orProcessing Facility

Onshore Oil or Gas Pro-
duction Facility
Offshore Production

Onshore Oil or Gas Pro-
duction Facility
Offshore Production  Onshore Oil or Gas
duction Facility
Offshore Production  Onshore Oil or Gas
duction Facility
Offshore Production
Onshore Oil or Gas
duction Facility
Offshore Production
Onshore Oil or Gas
duction Facility
Offshore Production
Facility
M scel laneous - or\(\begin{array}{ll}\text { Nat ural Source } & 4 \\ \text { Unknown Type of Source } & \end{array}\)Total1431
portation-Rel ated Facility ..... 3
Onshore Bulk Storage e

 ..... 1?11\(\begin{array}{lll}15 & 7\end{array}\)1
Source: United States Coast Guard Pollution Incident Reporting System data.
power in a large portion of the boats and to produce electricity in nost communities outside the Anchorage-Cook Inl et area. Therefore, nany opportunities exist for diesel spills when Iarge quantities are being I oaded onto or unl oaded from bulk supply vessel \(s\), and whenever a dieselpowered boat experiences problems whi ch allow fuel to escape. Di scarded waste oils and I ubricating oils account for a sizable portion of small spills of several gallons or less. These incidents often occur within or near small boat harbors, and are of ten associ ated with the performance of minor boat nai ntenance. However, harbor masters have reported that the occurrence of such spills is decreasing due to stricter prevention measures and better cooperation by boat operators who are becoming i ncreasi ngly aware of envi ronment al concerns.

The causes of oil spills and the sources of the pollutants cover a wide range (Tables B. 17 and B.18). In many cases, rather Iarge quantities of oil were lost in shore-based operations such as ref uel ing and fuel tank overflow Large shore-based spills far outnumbered large nonshore-based spills which were often attributable to hull rupture or leak or tank rupture or leak. Snaller oil spills of ten invol ve the intentional di scharge of waste oils,orlosses in which rather noderate anounts of I ubricating oils, hydraulic fluids, or engine fuel sescape unintentionally. Frequently personnel error or equipment malfunction is the primary cause of small spills.

The number of fishing vessel sinvolved with oil spills increased bet ween 1973 and 1977. The proportion of total spills attributable to fishing vessel s fluctuated from approxi mately 15 percent to 24 percent of all
spills, but it did not exhi bit a secular trend. Mbst fishing vessel inci dents invol ved diesel fuel, lubricating oils or hydraulic oils or waste oil, and only rarely were spills larger than a few hundred gallons.

Very little information was available concerning the affect the oil spills had upon the envi ronnent. Beginning with 1977 data, sone oil spills were recorded with an assessment of their envi ronmental impact. Pri or to 1977, a danage assessment was not included. Many 1977 spills did not incl ude assessnents, however, and none of the spills of 1,000 gallons or nore were assessed. All spills of which the degree of impact was eval uated recei ved a rating of "potential" or "negl igible", except for one spill rated "slight". Depending upon the location of the spill, the resources nost likely to be affected by the spills were boats and fish.

\section*{Processing Plant Siting Requi rements}

Fi sh processors have a number of criteria that must be met when choosing a site for a land-based plant. Oftentimes sites are chosen in close proximity to popul ation centers so as to utilize al ready existing anenities. Other times, plants are located in quite renote areas to mai ntain \(\mathbf{n c}\) oseness to the fishing grounds, and must be completely selfsufficient. However, the particular needs are met and aimost all plants, processing nearly any species of fist-t, have similar basic needs.

Adequate and suitable land must be available in a desi rable location. Various processors have indi cated that around 0.8 hectares (two acres) of I and is adequate for a fairly large plant, but an additional 1.2 or 1.6 hectares (three or four acres) of open storage area would be very desirable. Additional space would allow storage of contai ner vans away fromthe plant, greatly reducing congestion. Al so, many fishernen do not have adequate storage facilities for their gear, especially the large crab pots, and safe storage of their gear is a service which many pl ants try to extend to regul ar custoners when space allows.

A plant must have a means of obtaining the raw fish for processing. This normally necessitates the location of the plant where facilities can be constructed for off-loading of fishing vessel s. Fishing boats often have a draft of around \(2.4 \mathrm{~m}(8 \mathrm{feet})\), but drafts in excess of 3.7 \(\mathbf{m}(12\) feet) when loaded are no longer rare. Al so, the current trend toward I arger, multi-purpose vessel mist be consi dered to insure usef ul ness of the facilities well into the future. Sone plants presently
recei ve considerable portions of their fish by air-freight or truck. This suggests that with ingenuity, sites that at first appear inappropriate for fish processing facilities and are located away from the shore may actually prove adequate and nore readily available.

Electricity and fresh water are indi spensable for the operation of a fish processing plant. Both must be readily available to supply the plant at peak usage levels. Fish processing is usually seasonal, and a plant's entire pack for the year may be produced in a few short weeks during which the lines run nearly full time. Vast anounts of water are needed at various points ang the processing lines, with cleaning accounting for the Iargest consumption. Electricity powers nost of the machi nery along the processing lines and must be provided by a reliable source, as any del ays in processing fish can result in considerable quality loss. Sone plants opt to generate their own el ectricity, often due to hav ng no other source available. The use of el ectricity has grown more critical to the fish processing industry with the growing preval ence of freezing, because freezing consumes mach more el ectricity than the Canning process it is replacing.

Due to increasingly stringent envi ronmental protection regul ations, pl ants must provide adequate means of industrial waste di sposal. Mbre Ieni ency is exercised in renote areas where several plants are not grouped together. Particul ar EPA waste di sposal requi renents for any potential plant site could noticeably alter construction and operating costs.

Nodes of transportation available for servicing the plant site are a critical consideration. Nest Alaskan fisheries products are eventually transported to the Seattle area by freighter or barge in contai ner vans for further processing and di stribution. Plants must be serviced regularly and with such frequency to assure a supply of vans for loading so freezing and warehousing facilities do not becone overburdened, thus resulting in a production bottleneck.

Many other factors, such as availability of labor and certain economic factors, enter into the choice of a fish processing plant site. However, unl ess essential physical criteria are first net by a site, further investigation is unnecessary.

\section*{Market Envi ronment}

This section contains a description of the narket envi ronnent in which the commercial fishing industry is expected to operate during the remainder of this century. It includes assumptions concerning the structure of the fishery industry, the availability of inputs and the rate of technical progress.

\section*{FI NANCI NG PROGRAMБ AVA LABLE TO COMMERCI AL FI SH NG VENTURES}

Besi des commercial bank financing, there are ei ght other prograns available for financing fishing operations as well as a capital construction fund program available through the National Marine Fi sheries Service (NMFS). In addition, Alaska Fi sheri es Devel opment Corporation has been granted a block of SK funds through NNFS to hel p mitigate risk in the devel opment of the bottomfish fishery in the waters of \(f\) Alaska. A bri ef description of each of these prograns will now be gi ven.

The Federal Farm Credit System offers lending prograns to fishermen through the Bank for Cooperatives and Production Credit Associations.

Bank for Cooperatives \((B C)\), as its nane implies, requi res bona fide cooperative organi zations to qualify for loans. BC provides a full range of credit services requiring 40 percent equity at money market rates with a margin of 0.5 to 1.0 percent.

The Production Credit Association (PCA) extends short and intermediate credit services to indi vidual borrowers. Maxi mum termis seven years
with a three-year extension possibility. PCA requi res a 50 percent equity on loans for used vessel \(s\).

The \(\mathbf{A}\) aska Commerci al Fi shi ng Loan Act (A.S. 16. 10. 300 - A.S. 16. 10. 370) provi des for loan funds available to indi vi dual fishermen through the Al aska Depart nent of Commerce and Economic Devel opnent. Loans are availabe up to \(\$ 150,000\) at an interest rate not to exceed seven percent for a term of up to 15 years.

The Al aska Small Busi ness Loan Program extends credit to resi dent indi vidual s (one year) or corporations (head-quartered in Al aska) engagi ng in smal 1 business operations. The loan ceiling is \(\mathbf{\$ 3 0 0} \mathbf{0 0 0}\), with \(\mathbf{2 5}\) percent equity at 8.0 percent interest for up to 15 years.

The Fishing Vessel Obligation Guarantee programis administered by the National Marine Fi sheries Service and provides Ioans for construction, reconstruction or overhaul of vessel s over 4.5 M (five net tons) in wei ght. Gear integrally a part of an operating vessel, is included. The Ioan will cover up to 75 percent of cost and fishermen pay a 0.75 per cent charge on the outstanding bal ance. Conditional fisheries in Al aska (sal non and crab) are not eligible. The Farm Credit System and NMFS have reached an agreement whereby the vessel I oan guarantee could be used with PCA loans.

Under morat ori um si nce 1973 is another NMFS I oan program the Fi sheries Loan Fund. Authorized by the Fish and Vildife Act of 1956 as amended, the Fund made secured loans up to \(\$ 40,000\) at ei ght percent interest for
a maximum term of 14 years if the applicant had no" ot her source of funding. A aska fishernen still had \(\$ 91,000\) in loans outstanding as of October 1977. Draft legislation was under devel opment as of the same date to revi ve the Loan Fund as a nore comprehensi ve fisheries devel opnent financing program

NMFS al so administers a Fi shing Vessel Capital Construction Fund (CCF). The CCF al lows fishernen to save taxable income for construction, reconstruction or (under limited circunstances) acquisition of fishing vessel s by deferring federal tax payments on programaccounts. This, in effect, constitutes an interest-free loan from the governnent.

The Community Economic Devel opment Corporation (nonprofit) extends credit at low interest rates to rural Native fisheries devel opment busi nesses who are otherwi se not consi dered creditworthy by other institutions. The Corporation is funded by a grant from the Office of Economic Devel opment, Comminity Servi ce Administration.

Commercial banking institutions al so provide vessel financing for up to 75 percent of construction costs or 60 percent on used vessel acqui sition. Fi nancing duration is seven to ten years at a current interest rate of bet ween 11.0 and 11.5 percent.

Al aska Fi sheri es Devel opment Corporation has been chosen to recei ve federal SK funds administered through the National Marine Fisheries Service for Technical Assi stance, denonstration projects and scientific stock assessment work on groundfish in Al aska waters.

Representatives of the Federal Internediate CreditBank and the NMFS Fi nanci al Assi stance Di vi si on indi cate that capitalis currently seeking investment opportunities in the \(\mathbf{A}\) askan and Racific Northwest fishing industry. Much of the current boat construction is being financed by surpl us cash flow from within the industry. The Capital Construction Fund is a common vehicle for accomplishing this internal financing.

The current capital market situation is in marked contrast to the situation of ten years ago when the internal return on invest ment and surpl us cash flow was somewhat bel ow that of agriculture and ot her natural resource based industries It migh be assuned that capital will be available to neet grouth needs of the industry for loans of \(\mathbf{1 5}\) years orless at the prevailing interest rates. Several financial experts concur in this assumption.

A probable explanation of the increased availability of financing for fishing vessel s is the change in property rights to fishery resources that has occurred in the past few years. Both the Fi sheries Conservation and Management Act and the implementation of the limited entry prograns in \(\mathbf{A}\) aska have done mach to increase fishermen's rights to particul ar resources and thus to increase their ability to borrow investnent funds. The former gi ves donestic fishernen the excl usi ve right to resources within the 200 mile zone as soon as they are prepared to harvest them and the Iatter gi ves those who recei ve the limited number of gear permits the excl usi ve right to comercially harvest \(\mathbf{A}\) aska sal non and/ or herring.

\footnotetext{
\({ }^{\text {Smith, }}\) Frederick J., September, 1971. "Economic Condition of Sel ected Pacific Northwest Seafood Firns," Experiment Station Bulletin Special Report No. 27, Oregon State Uni versity.
}

The maj or capital good required for the growth of the Gulf of Al aska fishing industry will be boats capable of harvesting groundfish and pel agic species. The ability of donestic boatyards to neet the annual denand for new boats to be used in the traditional Alaska fisheries has been well established; and si nce the denand for such boats is not expected to exceed that of the past few years it is bel ieved that the grouth of the traditional fisheries will not be constrai ned by boat yard capacity.

However, the ability of the U.S. boatbuilding industry to produce traw ers in excess of 27.4 meters ( 90 feet) LOA in adequate numbers is uncertain. Fi ve maj or boat builders--Marco, Seattle, Whshi ngton; Martinac, Tacona, Whshi ngt on; Bender, Mbile, Alabana; and Desco and St. Augustine Traw ers-were questioned regarding their capacity and plans for capacity expansion.

Four of the five were optimistic that they could neet the increasing need. One (Martinac) was constricted on space and expansi on of capacity yould be a maj or undertaki ng.

The combi ned current capacity of these five yards is in excess of 30 boats over 27.4 neters ( 90 feet) in length, per year and Martinac estimates the industry could build 150 new boats per year in the 27.4-36.6 meter ( \(90-120\) foot) class with present facilities. Although Alaska will not be the only source of denand for new vessel sit is expected to be the naj or source si nce for the renai nder of the U.S., the exi sting
fleets arecapable of harvesting the entire allowable catch inside the 200 mile zone incl uding current foreign al locations (Keen, 1978).

If the present facilities prove inadequate there are three potential sources of additional boat building capacity. The yards that have traditionally built fishing boats could expand their capacity; the ability of these yards to expand capacity is denonstrated by the over 300 percent increase in capacity of the Hillstrom Shi pbuilding Company in Coos Bay, Oregon during the past year and the expansi on of the Patti Boat buil ding Industries boat yard in Pensacol a, FI ori da to allow the construction of steel fishing vessel s. Both yards are currently building vessels of 26 to 42 neters ( \(85-135\) feet) for \(A\) aska fisheries, (Fishing News International, April 1979). Forei gn vessel s and fore"ign shi pbuilding capacity could be made available to U.S. fisheries through a change in the Jones Act; such a change might becone politically fess"ible if the U.S. yards could not meet the denand for new vessels. And finally, boat yards that have not built fishing boats could begin to do so. Examples of such boat yards nould include those that are currently building boats under Navy contracts and those currently building offshore oil supply boats. The ability of the latter to build fishing boats is denonstrated both by a supply boat yard, which recently constructed a nodified revi si on of its standard supply boat to be used as a catcher/processor in the \(\boldsymbol{A}\) aska crab fisheries and by the conversion of a supply boat for the use in the same fisheries (National Fi sherman, March, 1979). The ability of non-fishing boat yards to serve the fishing industry is further evi denced by the Foss Shi pyard in Seattle which until last year concen-
trated on the naintenance of the Foss tug boat fleet. The Foss yard does not now build fishing boats but it converts boats into fishing boats (Nati onal Fi sherman, July 1978).

To determine whether boat yard capacity will tend to constrain the devel opment of the Alaska groundfish fishery it is necessary to speculate about the probable rate of grouth of the fishery as well as about boat yard capacity. The \(\mathbf{A}\) aska groundfish fleet is expected to consist of over 400 vessel s by 2000 but the grouth of the fleet is not expected to exceed 25 boats per year until the mid-1990s. The largest addition to the fleet is expected to be over 100 boats and is projected to occur in 1999. It is believed that the ability of boat yards to increase the supply of new vessel \(s\) and the nature of the projected grouth of the Al aska groundfish fleet will prevent boat yard capacity from constraining the projected long-term devel opnent of the groundfish fishery and/or the projected long-term grouth of the traditional fisheries. This does not mean that a prospective boat owner will be able to walk into any boat yard and expect to have work on the boat begun imedi atel \(y\), rather it means that the prospective boat owner can find a boat yard that can build the desired boat within one to tuo years.

\section*{PROCESSI NG EQU PMENT}

A large proportion of donestically used seafood processing equi pment is purchased from foreign manuf act urers. These manuf acturers have denonstrated considerable resilience and flexibility in the past. Although foreign
manuf acturers of processing equi pment were not intervi ewed di rectly, there are indications that their ability to manuf acture and supply processing equi pnent will match the industry's needs for the next 20 years.

Per haps a nore si gnificant factor is the existence of a large agricultural food processing equipment manufacturing capability in the U.S. Several of these U.S. firns have experimented with the production of seafood processi ng equi prent but have been unable to compete with the forei gn manuf acturers-- not because of lack of capacity, but because of lack of experience with the product.

One expert felt that the major bottleneck in seafood processing woul d be the ability of the domestic manufacturing industry to understand the difference between "peeling potatoes" and "skinning a pollock." \({ }^{2}\)

In the absence of mergers or \(\mathbf{j}\) oi nt vent ures, any equi pment manuf act ured donestically will have to go through a devel opment period al ready completed by forei gn manuf actured equi pnent.

Another problemwill be the inclination (or lack thereof) of processors to empl oy a techni cal expert in their plants. he present approach is to get by with a "shade tree" nechani c who bare' y keeps the equi prent operating. Performance of processing equipment will suffer until this

\footnotetext{
' Personal communi cation with John Peters, Food Technol ogist, Uni versity of Ukshi ngton.
}
approach is changed. \({ }^{3}\) In general, it does not appear that capital goods manuf acturing capacity will be a significant deterrent to fishery devel opment in Al aska.

\section*{LABOR}

With respect to the supply of labor, the comercial fishing industry is in a rel atively favorable position because its current labor requirenents are primarily for seasonal and unskilled labor, Due to both the rel atively high wages unskilled uorkers currently recei ve in the commercial fishing i ndustry and the high unemployment rate for seasonal and unskilled labor in the U.S., there is, for all practical purposes, an unlimited supply of unskilled Iabor during the summer nonths. The industry wage is expected to renai \(n\) above the mi mim wage and high rate of unempl oyment for unskilled Iabor in the U.S. is expected to continue, theref ore it is assumed that sufficient labor will be available during the summer nonths to neet the requi rements for unskilled labor both on fishing vessel s and in fish processing plants. The availability of unskilled labor for fishing boats is further denonstrated by boat owners' reports of recei ving several letters a week from indi vi dual s seeking empl oyment on a fishing boat.

However, the supplies of skilled ski ppers and year round labor are limited. The spotty record of success of donestic ski ppers entering new fisheries (e.g. hake and pollock in the Pacific Northwest) suggests that upon entering a new fishery, it takes time for a skipper to learn how to

\footnotetext{
\({ }^{3}\) Personal commini cation with Bob Price, Food Technol ogi st, Uni versity of California at Davis.
}
use gear, find fish, and generally become proficient. But once a new fishery begi ns to develop,' the crews of the boats in the developing fishery provide a potential source of new ski ppers. For example, if out of a crew of five, incl uding the ski pper, one crew nember is capable of becoming ski pper the following year, the number of ski ppers can increase by 100 percent a year. The rate of devel opment projected for the groundfish fleet would require this to happen in about one out of every four crews.

The availability of adequate year round labor is dependent to a si gnificant degree on the availability of Iow incone housing. Typically there is insufficient low incone housing in the Alaska fishing commities of the Gulf of Al aska to meet the current demand and unl ess substantial increases in housing occur the devel opnent of a year round fishery with onshore processing dependent on a permanent labor force will be limited. The devel opnent of a year round groundfish fishery may, however, be possiblein the absence of housing adequate for a permanent work force. The problem of an inadequate local I abor force due to the absence of adequate housing can be reduced by increasing the amount of processing whi ch occurs aboard fishing boats and by using self contai ned floating processors to reduce the local labor requirement, and/ or by rotating a work force in and out of an area to reduce the housing requirenents. The State of Alaska is al so aware of the housing problem and is at least considering possible renedi es.

Whether or not the availability of ski ppers and/ or the size of the per manent local force hi nder the devel opment of the commercial fishing
industry will depend on both the rate at which the industry and its I abor requi renents expand and the extent to which the expansi on can be planned for. This is, of course, true for the other inputs. If the devel opment is steady and thus the input requi rements becone predictable, the increases in requirenents can effectively be planned for and fewer bottlenecks will occur. The devel opnent of the groundfish industry is expected to be gradual enough that it can be well planned.

\section*{TECHNOLOGY}

Predicting technol ogical breakthroughs in the fishing industry is risky at best. Attempting such a prediction for 20 years into the future is a blind plunge into uncertainty.

After consulting with ni ne technol ogy experts, a rather clear historical pattern energes. The donestic industry has usually taken up to 20 years to adopt available technol ogy. For example, mid-nater trawling techniques have been well devel oped for 20 years, yet donestic fi sher nen are onl y now begi nni ng to adopt this technique. Net transducers have been available for 20 years, but not generally used by donestic fishermen until very recently. Exceptions are notable because they are so rare (i.e., the mach publicized power block).

There are, however, factors at work that may tend to change the role the U.S. fisheries have had as followers and slow adopters of harvesting and processing technol ogy. The increased property rights of donestic fishernen to U.S. fishery resources and the opportunities for
nore assured sources of fish for processors due to the FCMA and the A aska Iimited entry and resource enhancenent prograns have decreased the uncertainty hi storically associ ated with the commercial fishing i ndustry and thus have increased the incentive for innovation and/ or nore rapid adoption of availabe technol ogy. Although maj or changes in harvesting and processing methods will perhaps be more possible in the future than they were in the past, it is not possible to predict what the timing and/ or nature of such changes will be; it is, theref ore, assumed that due to technical progress, the gradual replacenent of labor with capital and economes of scale and regularity of operations, output per unit of labor will increase by tuo percent a year and that no technoI ogi cal breakthroughs that would radically transform harvesting or processing net hods will occur.

\section*{TRANSPORTATI ON}

As the Alaska commercial fishing industry has grown and expanded into new fisheries and as the industry's demand for transportation has increased, it has become increasingly apparent that adequate transportation to obtain needed supplies and to nove processed fish products to markets is critical to the devel opnent of the industry. This section briefly di scusses the dom nant characteri stics of the transportation system used by the commercial fishing industry and considers the transportation systems potential for providing the increased services that would be requi red by the expansi on of traditional fisheries and the devel opment of an Al aska groundf ish industry.

Generally, Alaska fish processing plants do not have large storage capacity, therefore transportation services for processed products are required at frequent intervals. Mst \(\mathbf{A}\) aska seafood products are shi pped in refrigerated truck-trailer vans that are loaded aboard seagoing frei ghters for reprocessing in the Seattle area or Japan. The direct contai nerized shipments to Japan began in the Spring of 1979 and are expected to becone increasi ngly i mportant. The vessel serving Alaska from the Seattle area are typically capable of carrying 6, 208 metric tons ( 13.7 million pounds) of processed fish. This capacity figure is based on a frei ghter carrying 365 vans from 35 to 40 feet in length and hol ding 35, 000 to 40,000 pounds of processed fish and is typical of the Seal and frei ghters serving \(\mathbf{A}\) aska from Seattle. The di rect cont ai neri zed shi pments to Japan were initiated by Sealand and Aneri can President Lines (APL). Kodiak and Unalaska/Dutch Harbor will be the initial ports of call and will be serviced by each company approxi nately once every three weeks. The three week schedule can be provided by one vessel allowing for del ays due to mai ntenance, bad weather, and other circum stances that might prevent one vessel from providing more frequent service. The Sealand frei ghter serving the di rect Al aska-J apan route is smaller than those that typically service Alaska from Seattle; it has a capacity of approximately 2720 metric tons ( 6 million pounds), (i.e., 172 vans of 35 feet in length); however by mid 1979 Sealand expects to repl ace this freighter with one capable of transporting 4, 445 metric tons ( 9.8 mili on pounds), (i.e., 280 35-foot vans). APL has indicated that it will use a smaller freighter capable of carrying 60 vans to service its Al aska-J apan route.

APL's plans to provide direct service from Kodiak to Japan have temporarily been complicated by Sealand's long term contract for preferential use of the contai nerized cargo pier and equi pnent in the port of Kodi ak.

The ability of the transportation system to respond to grouth in the commercial fishing industry is demonstrated by the interest several freight companies have shown in provi ding servi ce to Kodi ak and comments by a Seal and representative indicating that the service to any port can rapidly be increased by contracting the services of available freight vessel \(s\). The need f' or increased cargo handling equil pnent and docking facilities is minimed by the use of onboard cranes.

The industry's denand for transportation services will continue to increase due to enhancenent and/ or managenent prograns for the traditional fisheries and the expansi on of the industry into new fisheries. However, as the following nodel indicates even a facility capable of loading or unl oadi ng onl \(y\) one vessel at a tine has a very large freight handling capacity. Industry sources indicate that a vessei can be unl oaded and/ or I oaded in one day; theref ore assuming frei ghters with a capacity of 6,200 netric tons ( \(\mathbf{1 3 . 7} \mathbf{~ m i l i o n ~ p o u n d s ) , ~ 2 , ~ 2 5 3 , 0 0 0 ~ n e t r i c ~ t o n s ~ ( ~} 5\) billion pounds) of freight could annually go through a port facility capable of handling one vessel at a time. Alowing for days lost due to bad weather, breakdowns, and days in which the port facility is occupied by vessel sthat are not servicing the commercial fishing industry, perhaps 200 days per year would be available to the industry; in that case, 1,240,000 netric tons ( 2.7 billion pounds) of processed fish
products could be handled a year. This capacity is in excess of the processed fish products that are expected to be shi pped out of \(\mathbf{A}\) aska in any one year bef ore the end of this century; the foregoing analysis therefore suggests that the transportation system can rapidly \(\mathbf{r e s p o n d} \mathbf{t o}\) the increases infish processing that are expected to occur by the year 2000 。

For the Alaska commerical fishing industry, air freight is the only vi able transport alternative. However, due to both the cost advantages of shi pping by sea and the good storage characteristics of frozen fish products, air transportation is used al nost excl usi vely to serve the narkets for fresh fish products. At the present time fresh fish products account for a rel atively small part of Al aska seafood production. The availability of airports capable of handing jet transports, the current underutilization of these airports, and the excess capacity in the air transport industry should allow a rapid response to increases in the denand for air transportation services.

Many factors will determine whether the transportation systens will be adequate for the expected grouth in the comercial fishing industry. The grouth of both the comercial fishing industry and other industries such as agriculture and mineral extraction and the resulting growth in the rest of the econony will generate increased economic activity that nay compete for the available transportation services and/or provide the i mpet us for improved transportation services for all users. Si nce economes of scale exist in transportation, the latter effect will tend
to dominate in the long run, and the short run transportation bottlenecks that occur will not tend to limit the long run devel opment of the industry.

\section*{MARKET ARRANGEMENTS}

Research at Oregon State University indi cates that traditional market arrangenents and the resulting distribution of risk between the harvester and processor may be a maj or deterrent to fishery grouth in Alaska。 \({ }^{4}\)

In investing in the expl oitation of new fishery the boat owner retains a high degree of flexibility. He can switch fromfishery to fishery in \(\mathbf{A}\) aska depending upon rel ative profitability. He can also fish in other geographic locations and deliver wherever he wants.

The processor, however, must nake an investment in inflexible and fixed-in-place processing capability and in market development. The market devel opnent invest nent may be as risky as the capital facilities. If the market devel opment effort succeeds, the initial investor must compete successfully with other entrants to reap the benefits of that initial investment. If the effort fails, the initial investor is the sol e bearer of the total devel opment cost.

\footnotetext{
\({ }^{4}\) Martin, J ohn B. 1978. "An Eval uation of the Economic Feasibility of Pollock Processing in Southeast Al aska. " MS Thesi s, Oregon State Uni versity.
}

Fi shery devel opnent in Al aska may, therefore, be constrai ned until narket arrangenents between harvester and processor are nodified to nore equally di stribute the risks and benefits of investing in a new fishery. Delivery contracts between harvesters and processors provide one way of doing this.

A aska Dept. of Commerce and Economi c Devel opnent. 1978. Al aska Power and Economic Devel opment Program (Preliminary) 316 pp.

Alaska Commerci al Fi sheries Entry Comissi on. 1969-76. ADF\&G Fi sh ticket data files.
\(\qquad\) - 1969-76. Commercial Li cense files.
\(\qquad\) - 1974-76. Permit file.
\(\qquad\) . 1978. Di stri bution of Fi sher man I ncone. J uneau, AK

Alaska Commi ssi on on the Conf erence of the Law of the Sea. 1978. The Al aska Position on the Law of the Sea.

Alaska Dept. of Community and Regi onal Affairs. 1974. Pl anning powers of Al askan Muncipalities. 11 pp.
. 19.78. Pl anning for Offshore Oil Devel opment, Gulfor Al aska Handbook. Juneau, AK.

Al aska Dept. of Fi sh and Gane. 1961-78. Commercial Finfish and Shel Ifish Fi shing Regul ations.
\(\qquad\) . 1977. Intent to Operate List for 1977.
\(\qquad\) . Various years. Catch and Production Reports.
\(\qquad\) . Various years. Commercial Operators.
. Vari ous years. Annual Managenent Reports for: The Vestuard Regi on; Bristol Bay; Arctic - Yukon - Kuskokwim
\(\qquad\) . 1978. Al aska Sport Fi shing Seasons and Bag Li mits. Juneau, AK
\(\qquad\) . 1978, A aska's Private Nonprofit Hatchery Program Infornation Handbook ( Prel i minary). Juneau, AK 94 pp.
. Division of Comercial Fi sheri es. 1978. Eval uation of Al aska Salmon Processing Capacity for the 1978 Season.
. Di visi on of Comerci al Fi sheries. 1979. Eval uation of Al aska Sal non Processing Capacity for the 1979 Season.
- 1980. Preliminary Report on the 1980 Vestern Al aska Herring Fishery. Presented to the North Pacific Fisheries Managenent Council. Anchorage, AK.
\(\qquad\) - 1980. Assessnent of Spawning Herring and Capelin Stocks at Sel ected Coastal Areas in the Eastern Bering Sea. Prepared for the North Pacific Fisheries Managenent Council. Juneau, AK

Al aska Dept. of Labor, Employment Security Division. Data Files.
\(\qquad\) . Research and Anal ysi s Section. 1974. Jobs in the Fi shi ng Industry. 25 pp.
\(\qquad\) . 1980. Alaska Fishermen's Survey. Juneau, AK
\(\qquad\) . 1980. Al aska Seaf ood Processor Survey. Juneau, AK
\(\qquad\) . 1980. Wbnen In Al aska's Labor Force. Juneau, AK.

Alaska Dept. of Publ ic Wbrks. 1970-76 (Annual editions). Annual Report. J uneau, AK.

A aska Dept. of Transportation and Public Facilities, Div. of Harbor Construction and Design. 1978. State Harbors and Boating Facilities. 72 pp.

Al aska Div. of Comminity Pl anni ng. 1977. Pl anni ng for Offshore 0il Devel opment, Economic Forecasts, Lower Cook Inl et Lease Sal e. Alaska Dept. of Community and Regi onal Affairs. 39 pp.

Al aska Oiv. of Economic Enterprise. 1973. Al aska Div. of Economic Enterprise Community Profiles. Al aska Dept. of Economic Devel opnent.
__. 2972. Alaska Statistical Revi ew Al aska Dept. of Economic Devel opnent, J uneau. 198 pp.

Al aska \({ }^{\text {Oiven }}\) v. of Fi sheries Rehabilitation, Enhancement and Devel opment. 1977. Report to the 1977 Legi slature. 56 pp .

Alaska Div. of Pl anning and Research. 1973. Bi bliography of Commity Pl anni ng. Office of the Governor. 89 pp .

Alaska Div. of State Li braries and Miseuns. 1977. State and Federal Publ ications Recei ved. Al aska Dept. of Education, J uneau. 85 pp.

A aska Fi sheri es Devel opment Corporation, February, 1978. Devel opment Proposal for Bottomfish of \(f\) Al aska.

Arthur D. Little, Inc. 1978. The Devel opment of a Bottomfish Industry: Strategi es for the State of Alaska, Executive Summary. Prepared for the Office of the Governor.

Bottomfish Task Force. 1979. State of Al aska, Program for Devel opment of the Bottomfish I ndustry (PDGI). Juneau, AK.

Browning, R. J. 1974. Fi sheries of the North Pacific. Al aska Northwest Publishing co. Anchorage, AK 408 pp.

Bureau of Land Managenent. No date. Draft Envi ronmental Impact Statement, Proposed OCS Oil and Gas Lease Sale, Western Gulf of Al aska, OCS Sale No. 46. U. S. Dept. of the Interior. Al aska OCS office, Anchorage, AK
\(\qquad\) . .1976. Final Envi ronmental Statement, 3 vol unes, Proposed ?976 Outer Continental Shelf \(\mathbf{d I}\) and Gas Lease Sal e, Lower Cook Inl et, OCS Sal e No. CI. U.S. Dept. of the Interior. Al aska OCS office, Anchorage, AK
\(\qquad\) . 1975. Fi nal Envi ronment al I mpact Statement, 4 vol unes, Proposed OCS Oil and Gas Lease Sale, Northern Gulf of Al aska, OCS Sale No. 39. U.S. Dept of the Interior. Alaska OCS office, Anchorage, AK

Chapman, K 1976. North Sea ©il and Gas. David and Charles, North Pomfret (VT), Vancouver. 240 pp.

Chryssostomidis, M 1978. Offshore Petrol eum Engi neering, A Bibliographi c Gui de to Publications and Inf ornation Sources. MT Sea Grant Program Report No. MIT-SG-78-5, I ndex Nb. 78-605- Wbn.

Combs, E., and J. Hastings. 1978. Federal Law Devel opment of Uni ted States Fi sheri es; and Proceedi ngs of the 29th Al aska Sci ence Conference.

Cooley, R. A. 1963. Politics and Conservation, The Decline of the A aska Sal non. Harper and Row New York. 123 pp.

Cooperative Extensi on Service. 1976. Al aska Resource Devel opment Directory. Uni versity of Al aska. Publication No. 10. 73 pp.

Danes \& Mbore. 1979. Techni cal Report Number 49, Bering - Norton Petrol eum Devel opnent Scenari os. Prepared for the Bur eau of Land Managenent, Al aska OCS office, Anchorage, AK

Ellana, L. 1980. Techni cal Report Number 54, Bering - Norton Petrol eum Devel opnent Scenarios, Sociocultural Systens Anal ysi s. Prepared for Bureau of Land Managenent, Al aska OCS Office. Anchorage, AK

Energy Resources Company, Inc. and E. G Frankel, Inc. 1978. St udy to Assess the I mpact of Al aska Petrol eum Devel opment on the Coast Guard Through the Year 2000. Prepared for the U.S. Coast Guard.

Federal Fi el d Comittee for Devel opment Pl anningin Al aska. 1971 Alaska Community Inventory. 231 pp.

Fi shi ng Vessel Capital Construction Fund, National Fi shery Education Center, NMFS.

Food and Agricultural Organization of the United Nations. 1971. Pollution: An international problemfor fisheries. Rome. 85 pr.

Foster, W C., 1968. Fi shery Regul ation by State or Federal Government.
GIIette, Hel en. May 20, 1979. Anchorage Becomes I mportant Processing Town. The Anchorage Ti nes newspaper, Anchorage, AK

Gilman, G. and C. Allen. 1975. The Impact of Offshore dil, New Hampshire and the North Sea Experience. New Hampshi re Dept. of Resources and Economic Devel opment, Concord, NH 97 pp.

Governor's Study Group on Limited Entry. 1973. A Li inted Entry Program for Al aska's Fi sheries. 307 pp.

Gray, G. W, Jr., and R. J. Si mon. 1965. Devel opment of the King Crab Fi shery off Kodi ak I sl and. A aska Dept. of Fi sh and Gane. Informational Leaflet 52. Juneau, AK 16 pp .

Haynes, E. B. , and G. C. Powel I. 1968. A Prel iminary Report on the Al aska Sea Scallop - Fi shery Expl oration, Bi ol ogy and Commercial Processi ng. Alaska Dept. of Fi sh and Gane. I nf ornati onal Leaflet 125. Juneau, AK 20 pp.

Heighway, A. J., Publication, Ltd. Monthly. Fi shing News International, London, Engl and.

Institute of Social and Economi c Research. 1979. Techni cal Report Number 50. Berina-Norton Pet rol eum Devel opment Scenari os, Economi c and Denographic Annalysis. Prepared for the Bureau of Land Management, Alaska OCS office, Anchorage.

J ackson, D. P. Publ i sher. Monthly. National Fi shernan. Journal Publ cations, Inc. Camden, ME.

Jaeger, S.1978. Comparative Trawl Analysis in 200-Mile Fishery. Testimony submitted bef ore the subcommittee on Fi sheries and VIIdlife Conservation and the Committee on Merchant Marine Fi sher \({ }^{\text {e }}\) es. House of Representatives, Ninety-fifth Congress. Serial 95-28 pl 365-393.

Jensen, K., ed. 1976. Aquiculture 1976. Al aska Shellfish Regulations: Present I mpacts on Fi shery Partici pants. Page 505-529. Transactions of the Aneri can Fi sheri es Soci ety. 106(6).

Ki sner, W. Semi-nonthly. The Fi sher men's News. Seattle, WA.
Kristjonsson, \(\mathbf{H}\), ed. Fish Finding, Purse Sei ing and Ai med Traw ing. Mbdern Fi shi ng Gear of the Wbrld: 3. Fi shi ng Nevs (Books) Ltd., London, Engl and.

Laevastu, T. and F. Favorite. 1978. The control of pel agic fisheries resources in the eastern Bering Sea (a numerical eco-system study of factors affecting fluctuations of pelagic fishery resources with emphasis on herring). NMFS, NWand AK Fish. Center, Seattle, WA 64 pp.

Liao, D. S., and J. B. Stevens. 1975. Oregon's Dungeness Crab Fi shery: An Economic Anal ysis of Productivity and Profitability. Sea Grant Program Oregon State Uni versity. Publication no. ORESU-T-75-005. Corvallis, OR. 18 pp.

Marti n, J. B. 1978. An Eval uation of the Economic Feasi bility of Pollock Processi ng in Sout heast Al aska. Unpubl i shed M.S. thesi s, Oregon State Uni versity, Corvallis, OR

Mathenati cal Sci ences Northwest, Inc. 1975. A Soci al and Economic I mpact Study of \(\mathbf{O l}\) Rel ated Activities in the Gulf of Al aska. Bellevue, WA 319 pp. . 1.1976. A Soci al and Economic Study of Offshore Petrol eum and Natural Gas Devel oprent in Al aska: final report. Bellevue, WA

McClean, R. F., W A Bucher, and B. A Cross. A compilation of fish and wildife resource information for the State of \(\mathbf{A}\) aska: Vol une 3 - Commercial fisheries. Al aska Dept. of Fish and Game, Anchorage, AK 606 pp.

McClean, R. F., and K. J. Del aney. 1977. A fish and wildife resource i nvent ory of Sout heastern Al aska: Vol ume 2 - Fi sheri es. Al aska Dept. of Fi sh and Game, Anchorage, AK. 355 pp.

McClean, R. F., K. J. Del aney, and B. A Cross. 1977. A fish and wildife inventory of the Al aska Peni nsula, Aleutian Islands, and Bristol Bay: Vol une 2 - Fi sheries. Al aska Department of Fish and Game, Anchorage, AK. 556 pp.

National Fi sherman. Annual, 1973-1978. Pacific Packers Report. Nati onal Fi sher nan, Seattle, WA. .1976 Pacific Packers Report 1976. Directory of West Coast
-Fisheries Organi zation, Canden, ME. Pages 57 and 58.
National Mari ne Fi sheri es Service (NMFS). ( nonthly). Current Fi shery Statistics. NOAA Whshi ngton, D.C. . 1977. High Seas Sal non Fi sheries of Japan, and King and Tanner Crabs of the Eastern Bering Sea. Envi ronmental Impact St atement/ Preliminary Management Pl ans. NOAA
\(\qquad\) . ( nonthly). Marine Fi sheries Revi ew NOAA Seattle, WA.

Nati onal Oceani c and At nospheric Admi ni stration. 1977. Envi ronment al Assessment of Al askan Continental Shel f. Sponsored by Bureau of Land Managenent. Envi ronnental Research Laboratories, Boul der, CO. Numerous vol unes.
\(\qquad\) . 1977. Report to the Congress on Ocean Pollution, Overfishing and Offshore Devel opment, Part 111.

Nautilus. Weekly. Coastal Zone Management \({ }_{\mathrm{a}}\) Whshi ngton, D.C.
\(\qquad\) , Weekly. Ocean Sci ence New Washi ngt on, D.C.

North Pacific Fi shery Managenent Council. 1978. Fi shery Managenent Pl an for the Gulf of Alaska Groundfish Fishery During 1978. Anchorage, AK.
. 1978. Fi shery Managenent Pl an for the Comercial Tanner Crab Fishery off the Coast of Al aska. Anchorage, AK.
\(\qquad\) . 1977. Fi shery Managenent Pl an for Al askan Ki ng Crab. Anchorage, AK.
\(\qquad\) - 1978. Summary for the Fi shery Managenent Plan for Halibut of \(f\) the Coast of Al aska. Anchorage, AK
1978. The Social and Economic Impacts of a Comercial Herring Fi shery on the Coastal Villages of the Arctic/Yukon/Kuskokwim Area. Anchorage, AK.
\(\qquad\) . 1979. Draft Fi shery Managenent Plan, Bering - Chukchi Sea Herring. Anchorage, AK.
. 19:79. Draft Envi ronmental I mpact Statement for the Fi shery Management Pl an for Herring in the Bering - Chukchi Sea. Anchorage, AK

Office of Marine Affairs, North Carolina Dept. of Admin., and The Center for Devel opment and Resource Planning, Research Triangle Institute. 1976. I mpacts of a Petrol eum Industry Devel opnent in Eastern North Car ol ina.

Office of the Governor, et a7. 1964 and 1965. Al aska Bureau of Vital Statistics - Comminity Gazetteer of Alaska. Joi ntly by the Al aska legi slative Council, Al aska Dept. of Labor, Alaska Dept. of Health and Welfare, and the Office of the Governor. Juneau, AK

01 sen, S., S. B. Saila, and T. Kowalski, 1977. Section 8: The Potential I mpact on Comercial Fisheries of Ground Pre-empted by Petrol eum Rel ated structures on Georges Bank. Pages 219-270 in Fi shi ng and Petrol eum Interactions on Georges Bank. Vol ume II: The Characteristics of the Two Industries, Potential Future Trends, and an Assessment of Foreseeable Conflicts. Prepared for the New Engl and Regi onal

Commissi on by the Coastal Resource Center, Graduate School of Oceanography, Uni versity of Rhode Island. 323 pp.

Orth, F., C. Snelter, H M Feder and J. Villians. 1975. The Al aska Clam Fi shery: A Survey and Anal ysi s of the Economic Potential. Uni versity of Al aska. Institute Marine Science Tech. Rep. R75-3. . 1977. Fi nanci ng Al aska Commerci al Fi sheri es Busi nesses: Probl ens and Alternative Sol utions.
\(\qquad\) . 1978. Market Structure of the \(\mathbf{A}\) aska Seaf ood Processi ng I ndustry, Vol. I: Shel Ifish; Vol. II: Finfish, Prel iminary Draft. Al aska Sea Grant Program Uni versity of Al aska, Fairbanks.

Paul, T. 1976. For Bio-Dry Making Mbney is Offal Busi ness. Alaska I ndustry, Decenber 1976: 30-50.

Peat, Marwick, M tchel I \& Co. and Janes D. Li ndsay. 1980. Techni cal Report Number 52, Beri ng - Nort on Petrol eum Devel opment Scenari os, Transportation Systens Anal ysis. Prepared for the Bureau of Land Managenent, Al aska OCS Office. Anchorage, AK

Peters, A F. \{cd.). 1974. I mpact of Offshore Oil Operations. Shel I I nternati onal Petrol eum Co., Ltd., London, U.K. 205 pp.

Policy Anal ysts, Limited. 1980. Techni cal Report Number 53, BeringNort on Pet rol eum Devel opment Scenari os, Local Soci oeconomic Systens Anal ysis. Prepared for the Bureau of Land Managenent, Al aska OCS Office, Anchorage, AK

Ri chardson, J. A, and F. L. Orth. 1978. The Histori cal Role of Regul ations of Foreign Fi shing in the Devel opment of Al aska' s Shel Ifish Industry. Unpublished. Al aska Sea Grant Program Uni versity of Al aska, Fai rbanks. 19 pp.

Ritchie, T. 1977. A comprehensi ve Revi ew of the Commercial Clam Industri es in the United States, U.S. Dept. of Commerce, NOAA, DEL-SG-26-76, March 1977.

Rosenberg, D. H ed. 1975. Proceedi ngs of the Conference to Revi ew the Draft Study Pl an for Soci al and Economic I mpact Assessnent of Al aska Outer Conti nental Shelf Petrol eum Devel opnent. Al aska Sea Grant Program Uni versity of Al aska. Report 75-14. Fai rbanks. 144 pp.

Schnei der, D. M ed. 1977. Pl anni ng for Onshore Devel opment: Di scussi on Papers. U.S. Dept. of the Interior and U.S. Envi ronnental Protection Agency. Aneri can Soci ety of Pl anning Official s, Chi cago, IL.

Sevy, J. Habi tat North, Inc. 1979. Techni cal Report Number 28, Soci oeconomi c I mpacts of Sel ected Forei gn OCS Devel opments. Prepared for the Bureau of Land Managenent, Al aska OCS office, Anchorage, AK

Sibthorp, M M and M Univin(eds.). 1977. Oceani c Managenent: Conflicting Uses of the Celtic Sea and Other Vestern U.K. Waters. Report of a Conference hel d at Uni versity College of Swansea, September 19-22, 1975. Eur opa Publ ications, London. 220 pp.

Statistics and Market News Div. 3 times weekly. Fishing Market News Report. NMFS, Seattle, WA.

Stokes, R. L. 1978. The Economi cs of Al aska Groundfish Devel opments: A Preliminary Assessnent. Proceedings of the 29th A aska Sci ence Conference. Al aska Fi sheries: 200 Years and 200 Mles of Change. Al aska Sea Grant Report 79-6.

Trasky, L. L., L. B. Flagg, and D. C. Burbank. 1977. Envi ronment al Studi es of Kachemak Bay, Vol ume 1. Marine/ Coastal Habitat Managenent, Al aska Dept. of Fi sh and Gane, Anchorage.

United Fi shernen of Al aska. Monthly. Al aska Fi sherman. Juneau, AK.
Us. Dept. of Commerce, National Mari ne Fi sheri es Service. 1973. King and Dungeness Crabs, 1947-72. Whshi ngt on, D.C.Basic Economi c Indi cators, Current Fi sheries Statistics No. 6133. NOAA XCFSA 6123. 52 pp .

Us. Dept. of the Army, Corps of Engi neers. 1960-76 (Annual Editions). Part 4: Whterways and Harbors, Pacific Coast, Alaska and Hawai. Whterborne Commerce of the United States. San Franci sco, CA
U.S. Geol ogic Survey. Soci oeconomi c I mpacts of Outer Conti nent al Shel f \(0 i 1\) and Gas Devel opnent = A Bi bliography. U.S. Dept. of the Interior. Geol ogi cal Survey Circul ar 761. Arlingt on, VA

Weaver, L. K, C. J. Jiri K, and H F. Pi erce. 1969. I mpact of Petrol eum Devel opment In the Gulf of Mexico. Bureau of M nes Inf ornation Circular 8408, U.S. Dept. of the Interior. 58 pp.

Weaver, L. K, H. F. Pi erce, and C. J. Jirik. 1972. Offshore Petrol eum Studi es Composition of the Offshore U.S. Petrol eum Industry and Estimated Costs of Producing Petrol eum in the Gulf of Mexico. Bureau of \(M\) nes Inf ornati on Circul ar 8557, U.S. Dept. of the Interi or, Dallas Mneral Supply Field Office, Dallas, TX. 168 pp.

Wilcox, S. M and W J. Mead. 1973. The Impact of Offshore Oil Production on Santa Barbara County, Cal iforni a. 23 pp.

Wbods Hole Oceanographic Institute, The Marine Policy and Ocean Managenent Program 1976. Effects on Commercial Fi shing of Petroefum Devel opnent off the Northeastern United States. 80 pp .

Wespestad, V. G and L. H. Barton. 1979. Distribution and Mgration and Status of Pacific Herring. National Oceanic and At nospheric Admi ni stration. Seattle, WA

Youde, J. G., and J. R. Wix. 1967. Economics of the Dungeness Orab Fi shery. Agricultural Experi ment Station, Oregon State Uni versity. Circular of Information 627. Corvallis, OR. 24 pp.

Zinn, J. 1978. Vol ume-II: Effects on Coastal Commities. Envi ronmental Pl anning for Offshore \(0 i l\) and Gas. U.S. Dept. of the Interior, Fi sh and Wildlife Service. 60 pp.

Larson, D. M 1979. Processing groundfish. Personal comminication. Tel ephone conversati on with Jon Black, New Engl and Fi sh Co., Kodi ak, AK.

Stol es, R. G 1979. Observations of petrol eum industry devel opnent in Cook Inlet and on the Kenai Peninsula, and its effect upon the commercial fisheries, I ocal economy and Iifestyle. Personal com muni cation. Tel ephone Intervi ew with Vance Sutter, nanagerial position with Witney Fidelgo, Seattle, WA, February 13, 1979.
. 1.979. Past, present, and future operation of the processing plant, concerns of seafood processors, and past affects upon the fi shing i ndustry of petrol eum devel opment in the Kenai-Cook Inl et area. Personal commini cation. Tel ephone intervi evs with Fred MtGII, plant manager for Kenai Packers, Kenai, AK, February 15 and May 22, 1979.
\(\qquad\) . 1979. General information about operation of the refinery, with emphasi s on level of empl oynent si nce openi ng. Personal communi cati on. Tel ephone intervi ew with George Day, manager of Kenai Refinery, Kenai, AK, February 16, 1979.
\(\qquad\) . 1979. General information about operation of the plant, with emphasi \(s\) on level of empl oynent si nce opening. Personal comminication. Tel ephone intervi ew with LeRoy Henrich, empl oyee of Uni on Cheni cal, Kenai, AK, February 27, 1979.
\(\qquad\) . 1979. General infornation about operation of the refinery, with emphasi s on level of empl oynent si nce openi ng. Personal commini cation. Tel ephone intervi ew with Dawn Rogers, empl oyee of the Tesoro refinery, Kenai, AK, February 27, 1979.
1979. Crew and gear inf ormation about western Alaska fisheries. Personal comminication. Personal intervi ew with Frederick Andersen, Al aska Department of Fi sh and Gane, Yukon assi stant area bi ol ogi st, Fai rbanks, AK. February 26, 1980.
\(\qquad\) . 1979. Sommprsial fisheries hi story and potential in the Alaska Peninsula-Aleutian Islands area, and enhancement and rehabilitation efforts and potential in the area. Personal communication. Telephone intervi ews with Marlin Bricker, Alaska Dept. of Fi sh and Gane Fi sheries Rehabilitation and Enhancenent Di vision (FRED) bi ol ogist, Cold Bay, AK February 29, 1980.
_. 1979 Commercial fisheri es infornation. Personal communi cation. Telephone intervi ews with Vés Bucher, Al aska Dept. of Fi sh and Game bi ol ogi st, Dillingham, AK. Novenber 14, 1979.
\(\qquad\) . 1979. Current situations and devel opment plans for Unalaska. Personal commini cation. Tel ephone intervi ew with Jess Burton, city nanager of Unalaska, AK Decenber 4, 1979.
. 10,79. Gear and crew inf ornation for Al aska Peni nsul a- Al euti an Isalnds fisheries. Personal commication. Tel ephone intervi ew with Jack Foster, Jr., commercial fishernan from Sand Point, AK Decenber 13, 1979.
- 1979. General area fisheries information and management policies and goal s. Personal commini cation. Tel ephone intervi ens with Me Gei ger, Yukon area managenent bi ol ogi st, Al aska Dept. of Fi sh and Gane, Anchorage, AK Decenber 4, 1979.
\(\qquad\) - 1979. Area fisheri es inf or mation and management policies and goal s. Personal commini cation. Tel ephone intervi ew with Kenneth Griffin, Al aska Dept. of Fish and Gane, Bering Sea, Eastern and Wéstern Al eutians area shel Ifish managenent bi ol ogi st, Unalaska, AK Decenber 3, 1979.
\(\qquad\) . 1979. Area fisheries infornation and managenent policies and goals. Personal comminication. Tel ephone intervi evs wi th John Hilsinger, Alaska Dept. of Fi sh and Gane, area shellfish managenent bi ol ogi st, Chignik-South Peni nsul a Area, Sand Poi nt, AK. Decenber 3, 1979.
. 19,79. Current situation and devel opnent plans for Bethel. Personal communi cation. Tel ephone intervi ew with Lyman Hoff nan, city nanager of Bethel, AK Novenber 2, 1979.
\(\qquad\) . 1979. Fi sheries inf ornation and managenent policies and goal s. Personal communication. Tel ephone intervi ew wi th M ke J onrowe, Al aska Dept. of Fi sh and Gane, area nanagenent bi ol ogi st, Bethel, AK Novenber 1, 1979.
\(\qquad\) . 1979. Local fishing i ndustry structure and pl ans. Personal commini cation. Personal intervi ew with Ron Munsen, local fish buyer, Kotzebue, AK. October 17, 1979.
. 1979. Information about local el ectric power generation and di stribution. Personal commication. Tel ephone intervi ew with Jeri Nel son, office manager of Nushagak El ectric Cooperative, Inc., Dillingham, AK December 13, 1979.
. 1979. Area fisheries information and managenent policies and goals. Personal commini cation. Tel ephone intervi ew with Ri chard Randal I, Al aska Dept. of Fi sh and Gane, area managenent bi ol ogi st for Naknek-Kvichak area, Anchorage, AK December 5, 1979.
. 1979. Area fisheries management policies and goal s. Personal commini cation. Tel ephone intervi ew with Gary Schaef er, Al aska Dept. of Fi sh and Gane, area nanagenent bi ol ogi st, Nome, AK April 24, 1980.
\(\qquad\) . 1979. Area fisheries inf ormation and managenent policies and goal s. Personal commini cation. Tel ephone intervi ew with Arnold Shaul, Al aska Dept. of Fish and Game, finfish area nanagenent biologi st, Al aska Peni nsul a- Al euti an Isl ands area, Cold Bay, AK Decenber 3, 1979.
\(\qquad\) . 1979. General inf ormation about Dillingham, and the role of commercial fisheries. Personal communi cation. Tel ephone intervi ew with Laura Shroeder, city manager of Dillingham, AK Nbvenber 14, 1979.

Terry, J. M 1979. Conflicts between commercial fishing vessel sand narine traffic. Personal commication. Tel ephone intervi ew with Ed Condon, Extensi on Oceanographer, Oregon State Uni versity, Corvallis, OR. May 26, 1979.
\(\qquad\) . 1979. Conflicts between comercial fishing vessel s and marine traffic. Personal communication. Tel ephone conversation with Chi ef Davi s, Commander Park, and Lt. Commander Wi ght, U.S. Coast Guard, Seattle, WA, May 26, 1979.
- 1979. Conflicts between commercial fishing vessel s and marine traffic. Personal comminication. Tel ephone conversation with Peter Granger, Mari ne Advi sory Agent, Uni versity of Wishi ngton Sea Grant Program Bellingham, WA, J une 25, 1979.

Terry, J. M. and R. G. Stoles. 1979. Location of Vestern Al aska fish processing plants, and general comercial fishing industry situation in the Western Al aska area. Personal communi cation. Tel ephone conversations and personal conversations with John Doyle, I eader of the Marine Advi sory Program Anchorage, AK, numerous occasions, 1979.
. 1978. Data sources available within Al aska Dept. of Fish and Game. Personal commini cation. Personal intervi ew and tel ephone conversati on with Pete Jackson, Al aska Dept. of Fi sh and Gane, OCS St udy, Kodi ak, AK.
. 1978. Fi sh processing, plant site needs. Personal comminication. Personal intervi ew with Lyle Negus, Supt. of B\&B Fi sheries, Kodi ak, AK, July 19, 1978.
1978. Commerci al fi shing, fi sher men's organi zations and bargai ni ng. Personal commini cation. Personal intervi ew and tel ephone conversations with Alvin Burch, Head of Kodi ak Shrimp Traw ers Assoc., Kodi ak, AK.
__ 1, Commercial fishing. Personal commini cation. Personal interview with Oral Burch, conmercial shrimp fisherman, Kodiak, AK, July 20, 1978.
__. 1978. Fi sh processing, pl ant site needs. Personal communication. Personal intervi ew with Chuck Jensen, Supt. of Pacific Pearl Seaf oods, Kodi ak, AK, July 19, 1978.
- o 1978. Market structure infornation, and contacts within the commercial fi sheri es i ndustry. Persona? commini cation. Personal i ntervi ews with Jim Wilson and Jim Richardson, conducting market structure research of Al aska seaf ood industry, Alaska Sea Grant Program Uni versity of Alaska, Fai rbanks, AK.
1979. Western Al aska fishing industry struct ure, and organizational and fisheries nanagenent goal s of fishernen. Personal commini cation. Personal intervi ew with Garrett Aukon, President of the Berinq Sea Fi shermen's Associ ation and empl ovee of Kawerak, Inc. , Nome, AK Oct ober 18, 1979.
1979. History, current status, and potential of Kotzebue area fisheries. Personal commini cation. Personal intervi ew and tel ephone conversations with Frank Bi rd, area bi ol ogi st with the Alaska Dept. of Fish and Gane, Kotzebue, AK October 17, 1979.
1979. Current situation and devel opment pl ans for Nome. Personal commini cation. Personal interview with Andy Edge, city manager of None, AK October 19, 1979.
1979. Past and pl anned devel opnent of None area commercial fisheries. Personal commication. Personal intervi ew with Howard Farly, commerci al fi sherman, Nome, AK. Oct ober 19, 1979.
\(\qquad\) . 1979. Devel opment of Vestern Al aska fisheries and appropriate nanagenent policies. Personal commication. Personal intervi ew with Jack Fuller, State Representative from None, AK. October 18, 1979.
1979. General information about None and contacts with appropriate persons to gather fisheries infornation. Personal communi cation. Personal intervi ew with Albrow Gregory, publ isher of the Nome Nuggett neuspaper, None, AK October 18, 1979.
1979. Western \(\mathbf{A}\) aska frei ght handl ing, with emphasis on Nome and Kotzebue areas. Personal commini cation. Personal intervi ew with Mke Grines, operations manager of Arctic Lighterage Company, None, AK October 19, 1979.
1979. General inf ornation about Kotzebue, its economy, and fish cries. Personal commini cation. Personal intervi ew with Dr. "Jake" J acobson, D. D. S. , of Kotzebue, AK. Oct ober 17, 1979.
1979. Alaska nati ves' plans and goals for invol venent with None area fisheries, Personal commication. Personal intervi ew with Charles Johnson, head of Kawerak, Inc., a native corporation, None, AK October 18, 1979.
\(\qquad\) 1979. General inf ornation about None area and contacts for fisheri es infornation. Personal communi cation. Personal intervi ew with Myrtle Johnson, special assi stant to the Governor, Governor's Office, None, AK. Oct ober 19, 1979.
\(\qquad\) . 1979. Economic devel opment of Kotzebue with emphasis on native policies and goal s. Personal commini cation. Personal intervi ew with Bob Knol I, economic planner for Maeneluk Associ ation, Kotzebue, AK October 17, 1979.
\(\qquad\) - 1979. Area fisheries information and management policies and goals. Personal commication. Personal intervi ew with Frederic (Fritz) Kuhlmann, Al aska Dept. of Fi sh and Gane, area bi ol ogi st, None, AK October 19, 1979.
\(\qquad\) 1979. I nf ormation about Kotzebue, and devel opment plans of the community. Personal commini cation. Personal intervi ew with Gene More, city manager of Kotzebue, AK. October 17, 1979.
1979. Locai fishing industry structure and pl ans. Personal commini cation. Personal intervi ew with C. J. Phillips, local fish buyer and busi nessman, Nome, AK. October 20, 1979.
1979. Local fishing i ndustry structure and pl ans. Personal commini cation. Personal intervi ew with Rosemary Phillips, local fish buyer and busi nessuoman, Nome, AK. October 20, 1979.
1979. Native invol vement in fishing industry and its devel opment. Personal commini cation. Personal interview with Cal eb Pungowiyi, deputy di rector of Kawerak, Inc., Nome, AK. October 18, 1979.
1979. None devel opnent goal s, with emphasis on fisheries. Personal commini cation. Personal intervi ew with Leo Rasmussen, Mayor of Nbme, AK October 18, 1979.
. . 1979. General infornation about Nome's devel opnent goal s, with emphasis on the role of fisheries and native participation. Personal commini cation. Personal intervi ew with Barbara Shaffer, city council nenber, None, AK. October 18, 1979.
\(\qquad\) 1979. Frei ght handl ing in Western Al aska. Personal communicati on. Personal intervi ew with Don Stultz, operations manager, Arctic Li ghterage Co., Nome, AK October 19, ?979.```


[^0]:    sources: This table was generated from data contained in (1) Connercial fisheries Entry Commission (iross Earnings files, and (2) Alaska Department of lish and Game Reports

[^1]:    

[^2]:    
    

[^3]:    Source: CFEC Gross Earnings Files.

[^4]:    Sources: This table was generated from data contained in (1) Conmercial Fi sheries Entry Comission Gross Earnings Files, and (2) Al aska Departnent of Fish and Gane Reports.
    ${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period. NOTE: 1978 and 1979 data are prel iminary.

[^5]:    Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellf－sh Reports for 1977－1979．

[^6]:    Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Mbnth＂ly Shell－fish Reports for f977－1979．

[^7]:    Sources: CFEC Gross Earnings Files and ADF\&G Western A aska Month y Shel f sh Reports for 1977-1979.

[^8]:    Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Month y Shellfish Reports for 977－1979．

[^9]:    Sources: CFEC Gross Earnings Files and ADF\&G Western A aska Month y She fish Reports for 1977-1979.

[^10]:    Sources：CFEC Gross Earnings Files and ADF\＆G Western Alaska Monthly Shellfish Reports for 1977－1979．
    Note：A minus sign indicates months in which the catch is confidential because fewer than four boats participated in the fishery．

[^11]:    ${ }^{1}$ One king crab, pots, vessel s to 50 feet, Kodiak area permit hel d. 20ne shri mp, beamtrawl, statew de permit held.

[^12]:    $40 n e$ king crab, unspecified gear, Norton Sound area permit held. One king crab, pots, vessel over 50 feet, Peni nsula area permit held. One king crab, pots, vessel over 50 feet, Adak area permit hel d. One king crab, pots vessel to 50 feet, Bering Sea area permit hel d. One king crab, pots, vessel to 50 feet, Kodi ak area permit hel d. One bottomfish, otter trawl, statew de permit hel d. One sal non, drift gill net, Bristol Bay area permit held. One shrimp, pots, vessel to 50 feet, statewi de permit hel d. One dungeness crab, pots, vessel to 50 feet, statewi de pernit held.

    Source: Commercial Fi sheries Entry Comission Data Files.

[^13]:    ${ }^{l}$ One king crab, unspecified gear, Norton Sound area permit hel d.
    One herring, beach sei ne, westward area pernit hel d.
    20ne unspecified species, set gill net, statewide permit held.
    One freshwater fish, set gill net, statew de permit hel d.
    One sal non, hand troll, statewi de perimit hel d.
    One salmon, set !gill net, Kotzebue area permit hel d.
    One king crab, unspecified gear, Bering Sea permit held.
    One sal non, drift gill net, Bristol Bay area permit held.
    One king crab, pot gear, vessel over 50 ft ., Cook Inlet area permit hel d.
    One hal ibut, long iline, statewi de permit hel d.
    30 ne herring, beach sei ne, west ward area permit held.
    Three salmon, set gill net, lower Yukon Ri ver area permits hel d.
    4Three herring, beach sei ne, westward area permits hel d.
    Four sal mon, drift gill net, Bristol Bay area permits held.
    One unspecified species, beach seine, statewide permit hel d.

[^14]:    Source: Market Structure of the A aska Seaf ood Processing Industry Vol I Shel Ifish. F. L. Orth, J. A. Ri chardson and S. M. Pi dde, University of Al aska, Sea Grant Report 78-10, 1979

[^15]:    - 1/ Including all processing and refrigerated transport vessels.

[^16]:    Source: IPHC Scientific Report No. 60, The Incidental Catch of Halibut by Forei gn Traw ers.

[^17]:    The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the baseperiod.

[^18]:    ${ }^{1}$ The real val ues and prices were cal cul ated using the $\mathbf{U} . \mathbf{s}$. CPI; $\mathbf{1 9 8 0}$ is the base period.

[^19]:    The real val ues are in terns of 1980 dollars.

[^20]:    ${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

[^21]:    The real values and prices were ca culated using the U．S．CPI； 1980 is the base period．

[^22]:    The real values are in terms of 1980 dollars.

[^23]:    The real va ues are terms of 1980 do lars.

[^24]:    The red valles and pr ces were calcu deed using the U．S．CPI； 1980 s the base period．

[^25]:    ${ }^{l}$ The realvalues and prices were cal cul ated using the U.S.CPI; 1980 is the base period.

[^26]:    ${ }^{1}$ The real val ues and prices were cal cul ated usi ng the $\mathbf{U}$. S. CPI ; 1980 is the base period.

[^27]:    ${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

[^28]:    ${ }^{1}$ The real values and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

[^29]:    ${ }^{1}$ The real val ues and prices were cal culated using the U.S. CPI; 1980 is the base period.

[^30]:    The real values and prices were cal culated using the U.S. CPI; 1980 is the base period.

[^31]:    ${ }^{1}$ The rea val ues and prices were cal cul ated using the U.S. CPI; 1980 s the base period.

[^32]:    ${ }^{1}$ The real values and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

[^33]:    $1_{\text {Real values are cal cul ated using the U.S. CPI; } 1980 \text { is the base year. }}$

[^34]:    ${ }^{1}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

[^35]:    ${ }^{7}$ The real val ues and prices were cal cul ated using the U.S. CPI; 1980 is the base peri od.

[^36]:    The real va ues and prices were calculated using the U．S．CPI； 1980 is the base period．

[^37]:    ${ }^{1}$ The real val ues and prices were cal cul ated using the $\mathbf{U} . \mathrm{S}$. CPI; 1980 is the base period.

[^38]:    ${ }^{1}$ The rea values and prices were cal cul ated using the U.S. CPI; 1980 is the base period.

[^39]:    The real values and prices were cal cul ated using the U.S. CPI; 1930 is the base period.

[^40]:    ${ }^{1}$ The real val ues and prices were cal cul ated using the U. S. CPI; 1980 is the base period.

[^41]:    ${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

[^42]:    ${ }^{1}$ he real values and prices were calculated using the U.S. CPI; 980 is the base perió

[^43]:    ${ }^{1}$ The real values and prices were calculated using the u.s. CPI; 1980 is the base peri od.

[^44]:    ${ }^{1}$ The real values and prices were calculated using the U.S. CPI; 1980 is the base period.

[^45]:    $\varliminf_{\text {Real prices and }}$ val ues are in terns of 1980 dol $I$ ars.

[^46]:    ${ }^{1}$ Real prices and values are in terns of 1980 dol l ars.

[^47]:    ${ }^{1}$ Real val ues are in terns of 1980 dollars.

[^48]:    ${ }^{\text {Real }}$ val ues are in terns of 1980 dol I ars.

[^49]:    ${ }^{1}$ Real val ues are in terns of 1980 dollars.

[^50]:    ${ }^{1}$ Real values are in terns of 1980 dol I ars.

[^51]:    ${ }^{1}$ Real values are in terns of 1980 dollars.

[^52]:    ${ }^{1}$ Real values are in terns of 1980 dollars.

[^53]:    Source: ADF\&G Catch and Production Leaflets and Preliminary Catch and Production Reports.
    EPCO = Alaska coho salmon exvessel price.
    $\mathrm{CSCO}=\boldsymbol{A}$ aska coho sal non harvest (million pounds).
    FCO = CSCO/Alaska canned coho sal mon pack (in 1, 000 48-pound cases).
    $\mathbf{E P P}=\mathbf{A l}$ aska $\mathbf{p i} \mathbf{n k}$ sal non exvesselprice.

[^54]:    Source: ADF\&G Catch and Production Leaflets.
    EPHAL = Alaska halibut exvessel price (Dollars/pound).
    CPI = U.S. Consumer PRice Index.

[^55]:    STATISTIC
    22.3914
    -17.6915
    $-2.05385$
    -2.05385
    -26.7804
    $-26.7804$
    5.75676
    -4.16744

[^56]:    Sources: ADF\&G Catch and Production Leaflets and Preliminary Catch and Production Reports EPTC = Alaska Tanner crab exvessel price.
    FTC = Foreign Alaska Tanner crab harvest (1,000 pounds)
    EXCHJ = Exchange rate (Yen/Dollar).
    CPI = U.S. Consumer Price Index.
    PKCL = Alaska king crab exvessel price in the previous years.

[^57]:    Source: ADF\&G Catch and Production Leaflets.
    EPSH = Al aska shrimp exvessel price (Dollars/pound).
    AKLSHR $=A$ aska shrimp harvest ( 1,000 pounds).
    RW = Real wage, Al aska seaf ood processing.
    CPI = U.S. Consumer Price Index.

