
 
OCS Study MMS 2006-059 

  

 

 

 

Alternative Oil Spill Occurrence 
Estimators for the Beaufort/Chukchi Sea 

OCS (Statistical Approach) 
MMS Contract Number 1435 – 01 – 00 – P0 – 17141 

September 5, 2006 

 
 

Submitted by:  TGE Consulting 

Anchorage, Alaska 
 
 

Authored by:  Ted G. Eschenbach 

                   William V. Harper 
 
 
 
 
 
 

MMS U. S. Department of the Interior 
Minerals Management Service 

Alaska Outer Continental Shelf Region 
 

 



 

Alternative Oil Spill Occurrence 
Estimators for the Beaufort/Chukchi Sea 

OCS (Statistical Approach) 
September 5, 2006 

 
Submitted by: Dr. Ted Eschenbach, P.E. 

TGE Consulting 
4376 Rendezvous Circle 
Anchorage, AK 99504 
907-333-7817 
fax: 337-2928 
ted1@alaska.net 

 
Authored by: Dr. Ted G. Eschenbach, P.E. 
 Dr. William V. Harper, P.E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This study was funded by the U.S. Department of the Interior, Minerals Management Service 
(MMS), Alaska Outer Continental Shelf Region, Anchorage Alaska, under Contract No. 1435 – 
01 – 00 – P0 – 17141, as part of the MMS Alaska Environmental Studies Program. 
 

The opinions, findings, conclusions, or recommendations expressed in this report or product are 
those of the authors and do not necessarily reflect the views of the U.S. Department of the 
Interior, nor does mention of trade names or commercial products constitute endorsement or 
recommendation for use by the Federal Government. 

 



Abstract 
This study analyzes GOM statistics for pipeline and platform oil spills, and with statistically 
appropriate techniques develops Poisson models for spill rates.  These models are tested through 
analysis of exponential inter-spill intervals for several exposure variables.  These exposure 
variables include time, oil production, pipeline mile-years, and platform-years.  Weibull and 
lognormal models for spill volumes are developed and used to support analyses at spill 
thresholds of 50, 100, 500, and 1000 barrels.  In each case confidence limits are calculated and 
reported.  The stability of the results has been confirmed for different time periods. 
 
Significant differences from past MMS publications include Poisson confidence intervals, exact 
binomial confidence intervals, detailed analyses for the exposure variables of pipeline mile-years 
and platform-years, the use of the larger spill data set of spills exceeding 50 barrels to estimate 
rates at higher thresholds, and the inclusion of more recent data (through 2005).  A declining rate 
of platform spills is statistically verified, so that platform results are generally based on spills 
1990 to 2005, while pipeline results are based on data from 1972 to 2005. 
 
Spill causes are analyzed to identify spills with GOM-specific causes, such as hurricanes and 
fishing trawl gear.  This is modeled as a binomial proportion for GOM-specific and applicable to 
the Arctic spills at the spill size thresholds.  These results are extended to the Arctic with a 
method that provides a conservative confidence interval and a method that provides a minimum 
width confidence interval – both at each spill size threshold.   
 
For extension from the GOM data to the Arctic using a Beaufort development scenario, spill 
rates per production volume are found to be unreliable as compared with spill rates per pipeline 
mile-year and per platform-year.  There was insufficient data on the Beaufort development 
scenario to estimate the spill rates for ice keel gouging, but a rough approximation for strudel 
scour suggested that this was less significant than applicable causes, such as corrosion, human 
error, and operational impacts. 
 
The estimated rates of Arctic applicable pipeline spills per pipeline mile-year and of platform 
spills per platform-year at spill thresholds of 50, 100, 500, and 1000 barrels are presented with 
minimum and conservative confidence intervals.  Thus, the existing data from the GOM is 
extended through statistically supported techniques.   
 
Preliminary results from a new approach to modeling pipeline spill rates based on “platform-
related” spills and pipeline mile-years are presented with the conclusions and recommendations. 
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Glossary of Acronyms 
 
Bbbl   billion barrels  
ccdf  complementary cumulative distribution function 
cdf  cumulative distribution function 
KMiles  thousands of miles  
KPlatform thousands of platforms 
KWell  thousands of wells 
LCL  lower confidence limit 
Mbbl   million barrels  
pdf   probability distribution function 
TLAR  that looks about right 
UCL  upper confidence limit 
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Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

1 Introduction 

This study is not a comprehensive study of all potential sources of oil spills related to 
development of oil fields in the Beaufort and Chukchi Seas.  It does not address for example, the 
probability of oil spills during exploration, the possibility of oil spills during transport in TAPS, 
or from tanker traffic after leaving Valdez.   
 
What this study emphasizes is the development of statistical measures with confidence intervals 
to describe the uncertainty in the estimate for pipeline and platform spills during production.  
These measures are applied both to the existing MMS data base (mostly Gulf of Mexico) and 
extrapolated to the Beaufort and Chukchi Seas.  For statistical robustness and validity these 
measures are linked as closely as possible to causal relationships rather than to simple statistical 
correlations.  This study relies on the larger context of other studies for much of the data and 
scenario development.   

1.1 Overview of Study 
There is an extensive history of MMS statistical analysis of oil spill occurrences, for example see 
Smith et al. (1982); Lanfear & Amstutz (1983); LaBelle & Anderson (1985); Anderson & 
LaBelle (1990, 1994, and 2000).  For this project to add value to this extensive history, it cannot 
merely refine data by adding or subtracting a spill or three or by relying on a more recent subset 
of the data.  Instead this project must evaluate whether alternative statistical approaches can 
improve estimated spill occurrence probabilities for Alaskan OCS areas of the Beaufort and 
Chukchi Seas. 
 
Current MMS spill occurrences are expressed in terms of spills per billion barrels (Bbbl) 
produced.  For example, the rate for US OCS pipeline spills is reported as 1.33 spills of 1000 or 
more bbl per Bbbl handled in Anderson & LaBelle (2000, p. 311).  The data base for these 
statistical measures is dominated by operations in the Gulf of Mexico.  Thus evaluation of 
possible statistical measures for Alaskan OCS areas of the Beaufort and Chukchi Seas must 
address two questions.   
 
The first question is “Are alternative measures in terms of spill probabilities per platform-year 
and per pipeline-mile-year more appropriate for this purpose than occurrences measured in spills 
per billion barrels?”  These measures represent an approach that is intermediate between the 
single production measure of number of billion barrels produced and a detailed fault-tree 
approach that relies on relatively detailed development scenarios.   
 
The second question is “How to account for differences between probable Alaskan development 
scenarios and the historical data base?”  These differences include: 
 

1. Given the cost of operating in an Arctic environment, it is reasonable to expect that 
Alaskan prospects must generate higher production levels to be economically justified.  
Thus fewer facilities will be required for the same level of production.  For the same level 
of production, the presence of fewer facilities means a lower contribution to the 
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probability of an oil spill occurrence.  On the other hand, facilities with larger capacities 
may increase the size of spills if they do occur. 

 
2. There are substantial differences linked to pigging and maintenance between the historic 

data base and expected Alaskan operating conditions.  These can also be linked to general 
differences in the time series in the Gulf of Mexico as the U.S. regulatory and operating 
environment has evolved. 

 
3. Given the difficulties in operating in the Arctic, at least initial development is likely to be 

at shorter average distances than in the Gulf of Mexico.  This will reduce the length of 
required pipelines with some reduction in the probability of an oil spill occurrence.  On 
the other hand, the Arctic has harsh environmental conditions, which may increase the 
probability of oil spills due to human errors in operations.  

 
4. Finally, some of the typical causes of spills have substantially different probabilities of 

occurring in the Gulf of Mexico and Arctic environments.  For example, fishing gear in 
the Gulf of Mexico has damaged valves and caused spills.  On the other hand, in certain 
depths of water in the Arctic Ocean there can be damage from ice keels in moving pack 
ice. 

 
The difficulty in answering these questions – statistically or with any other approach – is that the 
available data are relatively limited.  It is worth noting that since the key data are based on oil 
spills, it is good that the number of data points is not larger – even though this makes the 
statistical analysis more difficult. 
 
A third question that must be addressed is the robustness of the results as the underlying data are 
refined and extended by time.  As the data records are examined there are significant periods 
with no spills – especially at larger spill thresholds, and brief periods with several spills.  This is 
intrinsic in the stochastic nature of this problem, but for decision-makers to rely on the study’s 
results; those results should be reasonably stable if analyzed over different periods of time. 
 
This study addresses this specifically by analyzing spill rates over time.  This identifies changes 
and trends in the historical series.  Other results and conclusions will be analyzed at three stages.  
The first was represented in the reviewed preliminary analysis, where the time periods were 
chosen to match earlier work (Anderson & LaBelle, 2000; and Bercha, 2002).  The second stage 
is the 1972 – 1999 analyses that contained corrections, changes, additions, or deletions identified 
by MMS during review.  The level of consistency of the 1972 – 1999 with the third stage is 
discussed as needed and key results are included in an appendix to this report.  The third stage 
includes data through 2005, which represents the bulk of the work in this report.   
 
The balance of Chapter 1 is organized to match the balance of the report.  That is Section 1.2 
introduces Chapter 2 on the data, Section 1.3 introduces Chapter 3 on analyzing the existing 
OCS data, Section 1.4 introduces Chapter 4 on extending the results to the arctic environment of 
the Beaufort and Chukchi Seas, and Section 1.5 introduces Chapter 5 on recommendations and 
conclusions. 
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1.2 Overview of Data 

1.2.1 Data for MMS Analyses 
Previous MMS analyses have focused on spills from platforms and pipelines in OCS areas of the 
Gulf of Mexico (GOM) and in the Pacific.  Because of the GOM’s much larger operational 
scope, in a statistical sense these data are essentially GOM data.  The published portion of the 
MMS analyses has focused on spills of 1000 bbl or more.  These data have been carefully 
checked, and they are the best quality data available.  The most recent publication (Anderson & 
LaBelle, 2000) covers 1967 to 1999. 
 
The exposure variable in these MMS analyses has been the volume of crude oil produced, so that 
spill rates are reported per billion bbl (Bbbl) produced.  In addition to the exposure data of 
volume of oil production, MMS also has made available data on the number of platforms, the 
number of pipeline segments, and the number of miles of pipeline miles for various product 
codes.  Data from 1972 to 2005 has been relied on for this report. 
 
Both the exposure and spill data supplied by MMS are described in more detail in Chapter 2. 
 
MMS also maintains a database of “all” spills, but data on the smaller spills have received less 
scrutiny and checking.  This larger database is statistically desirable, and it is the foundation for 
much of the analysis in this report.  This data base includes information on location, date 
reported, spill volume, primary spill cause, secondary spill cause, spill volume, etc. 
 

1.2.2 Data for Bercha Report 
Bercha (2002 & 2006) relied heavily on the MMS data, but it also drew upon spill statistics from 
elsewhere in the world.  Its analysis of the MMS data identified some discrepancies and some of 
these were corrected at that time, and some have been corrected since.  The data on experience in 
other parts of the world are most applicable to the problem of extending results based on GOM 
data to the Arctic.  
 
Because of the need to construct measures of statistical confidence for the results in this report, 
this report is analyzing the MMS data in more detail.  Thus, the results in Bercha (2002 & 2006) 
from the MMS data are used more as a double-check than directly. 
 

1.2.3 Data Supplied for this Report  
Because this report is being completed after Anderson & LaBelle (2000) and Bercha (2002), it 
has been able to add data for more recent spills.  Historical and recent data supplied by MMS are 
identified in Chapter 2.  This data has been supplied with extensive discussions as to how to most 
reliably use and adapt it.  The more recent data are being used to check the stability of the results 
presented here over different data sets.   
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1.3 Methodological Approach for GOM Spill Rate Estimation 
This study was funded to estimate rates of oil spill occurrences and rates in the Beaufort and 
Chukchi Seas of the Arctic Ocean.  Because the data set is drawn almost exclusively from the 
Gulf of Mexico, the authors believe the estimation methodology must first be applied in this 
context.  If the methodology does not work with the data from which it was drawn, then 
extrapolating the results to the Arctic Ocean would be questionable.  
 

1.3.1 What Oil Spill Occurrence Rate Measures Should be Considered 
In estimating oil spill occurrences, one of the first choices is what is the exposure variable.  In 
other words, how is the spill occurrence rate measured?  All of the possibilities considered are 
spill rates which equal some number of spills per some volume or amount.  Thus, to describe a 
spill occurrence rate without referencing a measure, it is simply referred to as a spill rate.  
Choices include the following: 

Spills per billion barrels of production, 
Spills per year, 
Spills per platform-year or per well-year, and  
Spills per pipeline-mile-year.   

 
The choice must be made by balancing different concerns, and there are reasonable justifications 
for different choices considering the trade-offs between the concerns.  These concerns include 
the following:  

The historical MMS measure is spills per billion barrels of production.  The measure was 
chosen by knowledgeable professionals for good reasons, and it now has a long history of 
use.  Because users are already familiar with the measure, it is easier for them to use in 
the future, and it is much easier to compare past and future uses.  
 
Much of the data for this problem is available on an annual basis.  For example, the 
volume of oil production, the number of platforms, and the total number of pipeline miles 
were supplied as annual data.  This means that it is easier to compute occurrences 
annually (per year), than it is to attempt to disaggregate the data into shorter periods.   
 
The concern over data categorization and occurrence exposure even extends to the 
classification of some spills.  For example, a spill from a pipeline riser onto a platform is 
currently classified as a pipeline spill.  If the exposure variables include the number of 
platforms and the amount of pipeline mileage, then it might be better classified as a 
platform spill.  That is the probability of a spill from the riser is more related to the 
platform than to the length of the pipeline.  For example, the probability of a ship 
crushing a riser does not change if the length of a pipeline doubles, but doubling the 
number of platforms would roughly double that probability. 
 
As much as possible, there should be a sound logic that links spills to the exposure 
variable.  This is particularly important when the probability is changing or when the spill 
occurrence is being extrapolated to a different environment.  The presence of this logic is 
reflected in a subtle, but important, change in language.  The presence of a linking logic 
between exposure and spill probability allows the description of that exposure as a 
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driving variable.  In other words, the description is not of just a simple statistical 
correlation, rather a causal linkage is suggested.  In general, statistical relationships that 
are based on causality are much more reliable than relationships based on correlation. 
 
As the data that can be potentially used covers as much as 40 years, one concern is 
changes in spills per each of the occurrence measures over time.  Technology, regulatory 
and operating environments, volume of facilities, and the effects of corrosion have not 
been constant – they are changing.  Thus, this study does analyze if spill rates are 
homogeneous or inhomogeneous over time, and how fast these rates are changing (if they 
are). 
 

The choice of occurrence probability drivers involves tradeoffs among the above concerns.  
Moreover the desire to estimate now or in the future the probabilities of different size spills, from 
different causes, from platforms and pipelines, at different locations, etc. mean that other 
tradeoffs must also be considered.   
 
Before discussing which spill occurrence measures are included in this analysis, and which are 
recommended for extrapolation to the arctic environment, the next section briefly discusses some 
of the spill occurrence drivers that might be useable – if there were far more data.  
 

1.3.2 Spill Occurrence Drivers that Cannot be Considered 
If the occurrence of spills is examined for contributing factors from the perspective of the system 
of platforms and pipelines, there are a number of factors that can be logically linked to the 
occurrence of spills.  Data for some of these exists in some cases, but in general, the MMS 
database that has been made available to the study team, does not support analysis of the 
following potential factors.  These are listed with the logical causal link that suggests that each 
would be “nice to know.” 

 
Each pipeline termination or connection represents another opportunity for human error 
and/or an increased vulnerability to damage.  Thus, the number of such points is linked to 
the probability of a spill.  It is possible that this may be approximated by the number of 
platforms, wells, and/or pipeline segments. 
 
As each pipeline ages, it is clearly more likely to have accumulated sufficient corrosion 
to either be a problem for pipeline integrity or to increase the vulnerability of the pipeline 
to damage from other causes.  Also the age of a pipeline is linked to the technology, 
technical understanding, and regulatory environment that were used for its design, 
construction, and operation.  So the date each pipeline was put in service and how old it 
is do contribute to the probability of a spill, which can also be reduced by inspection or 
maintenance activities linked to the age and condition of the pipeline.  Note that Bercha 
(2002) includes aggregate mileage placed in service in each year, but the small number of 
corrosion caused accidents and the lack of detailed knowledge of which pipe segments 
were placed in service each year, means that this cannot be linked statistically to 
corrosion. 
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The thicker the wall of a pipeline, the more likely that pipeline will survive impact 
damage from an anchor, ship, or fishing net.  The required thickness is also connected 
with the operating pressure and diameter at the design stage.  In turn, the diameter, 
operating pressure, and length of pipe between shut-off valves contribute to the size of a 
spill, if a spill occurs. 
 
The depth of water over the pipeline and the depth of any cover (if any) from trenching, 
backfilling, or deposited sediments affect the vulnerability of the pipe to damage.  That 
change clearly impacts the probability of a spill occurring on a segment of pipeline. 
 
The maintenance and operating regime clearly impacts the probability of a spill.  For 
example, if a pipeline is “piggable” and pigging is regularly conducted, then the 
probability of spills due to corrosion is significantly reduced.  Weaknesses due to 
corrosion will generally be identified before they can be a threat to pipeline integrity.  At 
the same time, spills may be caused by human error or mechanical problems when the pig 
is being loaded into or unloaded from the system.  Similarly, the presence and use of 
effective leak detection systems can dramatically reduce the time required to discover a 
spill and the resulting size of the spill.  This in turn reduces the probability of a spill of at 
least 500 or 1000 bbls. 
 

While all of the above conditions influence the probability of a spill, separating out the relative 
impact of multiple factors requires hundreds of data points, rather than the ten to thirty-six to 
seventy-eight spills analyzed here.  To analyze multiple factors the already small data set would 
have to be divided into smaller and smaller groups. 
 
Instead, this study must focus its attention on a few of the most important factors.  It is believed 
that the major variables of time, amount of production, number of platforms or wells, and the 
number of pipeline-miles represent the most that can be effectively analyzed here.  In addition, 
correctly determining the status of all pipelines for the above data would be problematic at best. 

 

1.3.3 Recommended Measure of Spill Probability 
In order to choose between spill probability measures, it is helpful to analyze what causes of 
spills are based on volume of production, on time, or on the amount of physical facilities.  It is 
also necessary to describe the data that are required about a potential development prospect in 
order to apply the proposed measure.   
 
It is difficult to identify driving variables for production volume that directly increase the 
probability of an oil spill.  However, there is no question that production volume is a proxy 
variable for many other variables that change the probability of an oil spill.  More production 
means more platforms, more pipelines, more operators, etc.  More importantly, if spill 
probability is based on volume of production, then there is no need for scenarios of development 
with numbers of platforms and miles of pipe.  Instead this detail is replaced by the assumption 
that the situation where the probability measure is developed is sufficiently similar to the new 
situation, that the extrapolation from one to the other is valid.  
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As an example of a driving variable that is based on time, consider boats traveling to or from 
platforms and the number of fishing days in a season.  The first may be linked to the schedule to 
move operators on/off the platform, and the latter determines for how much of the year fishing 
nets are a factor.  Scheduled maintenance activities may also be based on time, and there is at 
least some level of increased probability of operator error or equipment malfunction any time 
operational changes are made.  Time is also the driving variable behind probabilities due to 
hurricanes and moving pack ice.  At extreme examples, there are certainly hurricane forces that 
are possible that would damage virtually any facility and cause a spill.  Whether this is the 100-
year, 500-year, or 1000-year storm is a time-based probability measure. 
 
In order to apply a time-based probability variable to analyze a potential development prospect, 
it is necessary to have some measure of the expected rate of facility development and production.  
This will be required to compare the probabilities to the benefits for the proposed development.  
And it is also needed to prevent logical nonsense, such as, a time based spill probability when 
there are not yet any facilities in place.   
 
It is reasonable to model exposure to dragging anchors, ice keel gouges, fishing gear from 
trawlers, mud slides, etc. with pipeline mileage as a driving variable.  However, oil spill 
probabilities from pipelines are not strictly a linear function of mileage, there is a certain 
probability that is linked to the number of pipeline connectors, terminators, etc.  However, an 
analysis of the causes of pipeline failures (see Bercha, 2002) suggests that most of the spills are 
linked to modes (corrosion, third party impact, and mud slides) that can be modeled with 
pipeline mileage as a driving variable.   
 
Similarly, the number of wells or platforms will be a driving variable for the probability of a spill 
from a platform.  The data in Anderson & LaBelle (2000) (see also Section 2.3) indicate that 
platform spills have historically typically been larger than pipeline spills.  Thus, a complicating 
factor in the possible treatment of riser spills as platform spills is their different size distributions. 
 
Another reason for using pipeline mileage and the number of platforms as driving variables is an 
observation from other complex systems.  Basically as systems become larger and more 
complex, there seems to be a tendency to focus on more common or more controllable causes of 
system failure.  Thus, operator and managerial errors of commission or inattention are more 
likely to miss the less common causes of system failure. 
 
One difficulty in using the number of pipeline miles and the number of platforms as driving 
variables is that the calculation of spill probabilities now requires some level of scenario 
development for potential oil fields to determine how many platforms and how many miles of 
pipeline will be required.  In this particular case, that requirement can be satisfied through 
reference to Bercha (2006). 
 
Thus, the principal choices are the following: 

Spills per billion barrels of production, 
Spills per year, and  
Spills per platform or well-year & per pipeline-mile-year.   

 

MMS 7 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

This study will actually use all of these methods for analyzing the OCS data, and it will test two 
and recommend one of these methods for calculating oil spill probabilities in the Beaufort and 
Chukchi Seas.  One of the projection methods will be based on the volume of production.  This is 
being chosen because it is more like past MMS practice, thus allowing a better opportunity to 
examine other factors in constructing estimates of oil spill probabilities.  Also, it does not require 
the estimation of the development system.  So for potential fields where development scenarios 
do not yet exist, some estimation of oil spill probabilities will still be possible.  
 
The second recommended approach for extrapolation from GOM data to the arctic will be based 
on pipeline mileage and number of platforms.  Because the requirement for a development 
scenario can be satisfied through Bercha (2006), it is possible to apply this and to compare the 
results with an extrapolation based on spill rates per production volume.   
 
It is the professional judgment of the authors that the extrapolation based on pipeline mileage 
and number of platforms is better than the extrapolation based on production volume.  This is 
detailed in Chapter 4, but a brief example is illustrative of why this recommendation is made.  
There are substantial differences for example in the average production volume per platform, 
which averaged about 130,000 bbl/year from 1972 to 2005 in the GOM and which are projected 
to average 8.6 Mbbl/year in the Beaufort development scenario.  The factor of 66 difference 
means that platform spill rates/bbl of production are less reliable for extrapolation than spill 
rates/platform-year. 
 

1.3.4 Spill Sizes and Data Set Size 
The GOM data are extensive, and they can be analyzed in several ways.  In particular, it is 
possible to identify spills of a variety of sizes.  For example, Anderson & LaBelle (2000) 
identifies 16 pipeline and 13 platform spills of over 1000 barrels in the interval of 1964-1999.  
Bercha (2002) identifies 31 pipeline spills of over 50 barrels in the interval of 1972-1999. 
 
Statistically models that are based on larger sets are more reliable, and the larger sample size 
permits tighter confidence intervals about estimated quantities.  Also reporting pipeline spill 
probabilities for several different size spills facilitates the use of the results for a variety of 
purposes.  Thus, this report estimates spill probabilities for pipeline and platform spills in four 
size ranges: 

50 barrels or greater,  
100 barrels or greater,  
500 barrels or greater, and  
1000 barrels or greater.   

 
One of the ways that this study offers the opportunity to improve upon past MMS practice is 
through the use of exact confidence intervals for the spill rate parameter of the Poisson 
distribution.  This is described in Section 3.2.2. 

 
While the focus of this study is the probability of a pipeline or platform spill of a particular size, 
the spill data also support statistically derived models for the size of potential spills.  This is done 
in Section 3.3.3 for pipelines and in 3.4.3 for platforms.   
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One approach for validating models is to estimate key parameters in several ways and to show 
that consistent results are obtained.  In this case, it is possible to connect the estimated spill rates 
for different sizes of spills by using the spill size distribution.  A more rigorous definition is 
presented in Chapter 3, but a hypothetical example can illustrate this.  Assume that the spill rate 
for 50 or more barrels is 3.6 spills per year.  If the spill size distribution indicates that spills of 
1000 barrels or more are 1/3 as likely as the smaller spill, then the indicated rate for the larger 
spill is 1.2 spills per year.   
 
This approach has the advantage of deriving the results for the larger spill sizes from the larger 
data set available at the smaller spill size. 

1.3.5 Links between Probability Exposure Variables 
As detailed in Section 2.4.6, there are very high correlations (as high as 99%) between 
cumulative production volume, time, and cumulative pipeline mileage for the GOM data.  Thus, 
if a Poisson model works with one of these probability drivers, an analogous Poisson model is 
likely to work for the other probability drivers.  This is demonstrated in Chapter 3.  The high 
correlation between these three probability drivers is also one reason why a Poisson model can 
meet the standards for statistically satisfactory performance.  All of the drivers are working 
together, instead of in different directions. 
 
As detailed in Chapter 3, this does not mean that models based on the drivers are statistically 
equivalent.  The length of a year is constant over time, and the annual production volumes are 
relatively stable.  However, the amount of pipeline mileage and the number of wells and 
platforms are increasing at a relatively steady rate over time.  Thus, the cumulative mileage and 
the cumulative number of pipelines (which are the probability drivers) are non-homogeneous or 
changing over time.  
 

1.3.6 Poisson Distribution used in Previous MMS Models 
Anderson & LaBelle (2002) nicely describes (thus not repeated here) the Poisson model for the 
relatively uncommon event of an oil spill.  As shown in numerous statistics text, this is 
equivalent to modeling the time between events (in this case – oil spills) as an exponential 
distribution.  This linkage provides another approach to modeling oil spill probabilities in this 
situation.  Using the exponential distribution provides us a way to use a continuous model of 
spill dates, rather than a discrete model of number of spills per year, per interval of a billion 
barrels of production, or per a quantity of pipeline miles or a number of platforms. 
 
For this study the general approach is to use the year, the production volume per year, or the total 
pipeline mileage (or number of spills) in each year.  Thus, there is a clear identification of the 
year, the corresponding production volume, and the corresponding values of pipeline miles or 
platforms in service.  This means that others can reproduce our results to try other variations or 
to check our results.   
 
The previous work reported in Anderson & LaBelle (2000) has used a somewhat different 
approach to modeling spill probability per billion barrels than taken in this study.  That approach 
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was to construct “bins” of one billion barrels of production, and then calculate the number of 
spills in each bin. 
 
The spill rate per billion barrels (Bbbl) of production developed in this study is consistent with 
the results of the above work.  In addition, as previously noted, the approach of this study 
supports the construction of exact confidence intervals for the spill probability.  The formulas for 
that approach are specified in Chapter 3.  While the estimation of the point estimate for spill 
probability does not depend on the assumed distribution – the construction of the exact 
confidence intervals does.  Thus, the validation of the Poisson model in Chapter 3 is an essential 
step. 
 

1.3.7 Summary on GOM Spill Probability Estimation 
 
Chapter 3 of this report entails numerous analyses including statistical distribution fitting to both 
inter-spill and volume data.  Section 3.2 covers some initial Poisson probability distribution 
issues including the use of an exponential distribution goodness of fit approach to assess if a 
Poisson distribution is reasonable for spill rates.  This issue is also examined in more detail later 
in Chapter 3 when other exposure variables are examined.  This section also presents the 
mathematical formulas to compute exact Poisson confidence intervals if the Poisson assumption 
is justified.  Exact Poisson confidence intervals are computed for pipeline spill rates and 
compared to those available on the MMS website.   
 
Section 3.3 focuses on the Anderson and LaBelle (2000) pipeline spill data. This section shows 
that a Poisson distribution adequately fits the observed data based on time as an exposure 
variable (other exposure variables are considered later in Chapter 3).  Additionally a Weibull 
distribution is found to fit the pipeline spill volumes for this ≥ 1000 bbl data.   
 
Section 3.4 examines the Anderson & LaBelle (2000) platform spill data.  While a Poisson 
distribution is found to adequately fit the 1964-1980 time interval, it is shown that the likelihood 
of these same Poisson data fitting subsequent years is very low.  A Weibull distribution fits the 
platform spill data well. 
 
Section 3.5 has analyses for pipeline spills ≥ 50 bbl.  Evidence is presented illustrating that the 
use of the larger ≥ 50 bbl data set adds value to an understanding of OCS pipeline spills.  Section 
3.5.1 shows that the exponential distribution fits the inter-spill data well for exposure variables of 
time, production volume in Bbbl, and pipeline mile-years.  Thus a Poisson distribution is 
justified for the corresponding pipeline spill rates.  Section 3.5.2 provides the exact Poisson 
confidence intervals for the three different exposure variables as well as illustrating some useful 
comparisons related to the Poisson and exponential distributions.  Weibull distributions are 
found to fit pipeline spill volumes for the four data sets with thresholds of ≥ 50 bbl, ≥ 100 bbl, ≥ 
500 bbl, and ≥ 1000 bbl in Section 3.5.3.  Section 3.5.4 examines the comparison of the four 
volume data sets including applications of the Weibull distribution.  Conditional probabilities are 
introduced in this section to provide additional insights.  Section 3.5.5 raises the issue of 
nonstationary Poisson processes in which the spill rates change over time.  Alternative ways of 
quantifying spill rate uncertainty are explored in Section 3.5.6. 
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Section 3.6 examines platform spills ≥ 50 bbl.  Concerns about the Poisson assumption were 
raised in the discussion of Table 2.5 for the Anderson & LaBelle (2000) platform spills data 
since 11 platform spills of ≥ 1,000 bbl occurred before 1980 and no spills from then until 1999.  
However for this 1971 – 2005 ≥ 50 bbl data set, the lower spill threshold includes more spills.  
Furthermore, the time period is split into two parts and a Poisson is found to fit both parts – with 
a declining spill rate.  The 1990 – 2005 time period is the focus of the platform analyses. 
 

1.4 Methodology for Extending GOM Spill Rate Estimate to Alaskan OCS 
Section 4.1 introduces the structure of the problem and lists the uncertainties that make this a 
challenging problem.  Section 4.2 introduces the Beaufort development scenario, which has been 
used by MMS and by Bercha (2006).  In this case, it provides a concrete example to test the spill 
rates developed in Section 4.3 for pipelines and platforms.   
 
The spill rate development methodology described in Section 4.3 includes methods based on 
using the largest possible data base and models of spill size to develop spill rates.  It also 
includes methods driven by selecting subsets of spill data and then building a statistical model. 
 
Section 4.4 introduces the problem of estimating spill rates for major Arctic specific pipeline 
hazards – ice keel gouging, strudel scour, upheaval buckling, and thaw settlement.  A less 
quantitative discussion follows on platform hazards such as the impact of cold, dark 
environments or the probability of human error. 
 
These spill rates are applied to the Beaufort development scenario, which allows for useful 
conclusions about the relative merit for Arctic application of spill rates per bbl of production and 
spill rates per pipeline mile-years and per platform-years. 
 

1.5 Recommendations and Conclusions  
Much of the final chapter is presented through three sets of “bullets” that succinctly summarize 
the key results, the caveats and cautions, and possible future work.  Section 5.4 presents an 
innovative approach to modeling pipeline spill rates that should produce more accurate models. 
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2 Data 

2.1 Introduction to Data Sets  
As the authors of this study are statisticians and not oil field experts, this study has relied on 
previously published works and data bases supplied by MMS.  The data bases relevant to the 
statistical estimation questions in Chapter 3 focus on oil spills, oil production, and the associated 
platform and pipeline facilities.  In most cases the data focus on OCS operations and production 
in the Gulf of Mexico (GOM), however, some production data from the Pacific and Alaska OCS 
regions were also included. 
 
As this study has been completed over a period of time, there has been the opportunity to update 
the various data sets.  During the preliminary analysis of this study, data sets with an end date of 
1999 were analyzed.  The review by MMS of the preliminary analysis allowed the data sets to be 
examined in detail, and some corrections were made.  For this final report, it is the current 
corrected version of that data that is reported and analyzed.  Most analyzes have been conducted 
with two end dates – 1999 and 2005. 
 
In most cases the data sets through 1999 and the more recent 2000 to 2005 data are reported 
separately, as there are often some specific issues to be addressed. 
 

2.2 Pipeline Spill Size and Frequency 

2.2.1 Pipeline Spill Data from MMS 
The OCS or GOM data have been drawn from three sources.  Table 2.1 for pipeline spills of 
more than 1000 barrels is drawn from Anderson & LaBelle (2000).  For comparison purposes, 
Table 2.2 includes those points from Table 2.1 in the date range of 1972 to 1999.  For the 
reviewed preliminary analysis of this report, data for Table 2.2 for pipeline spills of more than 50 
barrels was drawn from PPLrepairs.mdb received from Cheryl Anderson in April 2001.  For this 
final report, the data for Table 2.2 for pipeline spills of more than 50 barrels is based on the best 
available MMS data provided in OCSGOM50plus17April2006.xls. 
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Table 2.1  OCS Pipeline Spills of 1000 bbl or More (1964-1999) 
 

Spill date Volume
October 15, 1967 160,638
March 12, 1968 6000
February 11, 1969 7532
May 12, 1973 5000
April 17, 1974 19,833
September 11, 1974 3500
December 18, 1976 4000
December 11, 1981 5100
February 7, 1988 15,576
January 24, 1990 14,423
May 6, 1990 4569
August 31, 1992 2000
November 16, 1994 4533
January 26, 1998 1211
September 29, 1998 8212
July 23, 1999 3200

 
As this analysis and an earlier approach using probabilistic risk assessment (Bercha 2002) both 
estimate oil spill probabilities for the Beaufort and Chukchi Seas, the data used for Bercha is also 
included in Table 2.2.  This data was established by matching spill size and cause with 
information in the MMS data.  This is intended to support comparison of the results of the two 
different approaches.  Where differences in the data exist, in several cases it was the joint work 
of MMS and the Bercha group which supported the cleaner data set on which this report is based. 
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Table 2.2  GOM Pipeline Spills of 50 bbl or More (1972-1999) 
 

  
A&L 

Volume 

Spill 
Volumes 
in Bercha

N = 31 

Spill 
Volume 
N = 32 

June 13, 1972 100 100 
May 12, 1973 5,000 5,000 5,000 
April 17 1974 19,833 19,833 19,833 
May 21, 1974 65 65 
September 11, 1974 3,500 3,500 3,500 
February 29, 1976 414 414 
December 18, 1976 4,000 4,000 4,000 
March 29, 1977 250 250 
June 5, 1977 50 50 
October 18, 1977 300 300 
April 8, 1978 135 135 
July 17, 1978 900 900 
July 15, 1979 50 50 
January 29, 1980 100 
August 5, 1981 80 80 
December 11, 1981 5,100 5,100 5,100 
January 20, 1983 80 80 
February 16, 1985 323 323 
November 9, 1985 50 50 
February 3, 1986 119 119 
December 30, 1986 210 210 
February 7 1988 15,576 15,576 15,576 
January 24, 1990 14,423 14,423 14,423 
May 6, 1990 4,569 4,569 4,569 
January 3, 1992 190 
August 31, 1992 2,000 2,000 2,000 
June 17, 1993 50 50 
November 16, 1994 4,533 4,533 4,533 
January 22, 1998 800 800 
January 26, 1998 1,211 1,211 1,211 
September 29, 1998 8,212 8,212 8,212 
July 23, 1999 3,200 3,200 3,200 
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2.2.2 Pipeline Spill Data from 2000-2005 
Table 2.3 summarizes spills over the most recent period.  The availability of this data makes it 
possible to test the robustness of the methodology and the results.  However, there are some 
caveats that are necessary with this data.  First, some of the results are preliminary (especially for 
2005) and they may be revised over time.  As one example of this, the total for Hurricane Ivan 
includes a 1720 barrel spill which is in a pipeline buried under a mudslide.  Recovery efforts 
have not yet been successful, but effort is continuing so that spill volume may be reduced. 
However, it was felt that the advantages of including the additional data were larger than the 
uncertainties introduced by potential future changes. 
 
The second caveat is that the data for hurricanes Ivan (2004), Katrina (August 2005), and Rita 
(September 2005) differ from the data reported in earlier years for other hurricanes.  For these 
spills MMS has asked for the reporting of fluids presumed lost with destroyed platforms and the 
linked damage to pipelines.  Thus, there are more spills counted as part of each hurricane.  
Specifically, the Ivan total comes from 8 spills from 95 to 1720 bbl, the Katrina total comes from 
6 spills, and the Rita total from 8 spills (note: one 50 bbl spill may be from either so it is counted 
in both the 6 and the 8 count, but as 25 bbl in each total).  Undoubtedly, there were similar spills 
in earlier years, but the reporting focused on spills that produced a witnessed oil spill. 
 

Table 2.3  GOM Pipeline Spills of 50 bbl or More (2000-2005)
 

Spill date Volume
January 21, 2000 2240
September 15, 2004 3445
August 29, 2005 553
September 24, 2005 8162

 

2.2.3 Pipeline Spill Data from Bercha Report  
Table 2.4 summarizes the 31 OCS pipeline spills from 1972-1999 that were relied on for the 
Bercha report [reproduced from Table 2.1, p. 2.2 and Table A.2.2, p. A.2.6, Bercha, 2002].  This 
data is included because it provides significant information about sub-categories of key 
variables.  Fortunately, the number of spills is small enough that more statistically reliable results 
are obtainable if the data set is used as a whole rather than as a collection of sub-categories, such 
as large diameter pipe, that is longer than 5 km and in deep water. 
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Table 2.4  OCS Pipeline Spills Summary (1972-1999)1, 2

 
Spill Statistics 

OCS Pipeline Spills 
By Category 1972-1999 Number 

of Spills

Average 
Volume

(bbl) 

Median 
Volume 

(bbl) 

Exposure 
(km-
years) 

Frequency 
(spill per 
104 km-

yr) 
< 10" 16 2,141 173 142,892 1.1197 By Pipe Diameter ≥ 10" 15 4,070 1,211 111,011 1.3512 

Bad Depth Data 14     
< 10 m 6 2,310 1,211 161,966 0.3704 1By Minimum Depth 
≥ 10 m 11 3,165 1,040 94,641 1.1623 1

< 0.5 km 0 0 0 2,359 0.0000 
.5 ≤ x < 2 km 2 2,335 2,335 25,484 0.7848 
2 ≤ x < 5 km 7 820 100 35,279 1.9842 By Segment Length 

≥ 5 km 22 3,859 850 192,270 1.1442 
Small 6 58 50 253,903 0.2363 

Medium 12 317 230 253,903 0.4726 
Large 10 4,133 4,267 253,903 0.3939 By Spill Size 

Huge 3 16,611 15,576 253,903 0.1182 
By Diameter, By Spill Size      

Small 4 58 50 142,892 0.2799 
Medium 7 266 135 142,892 0.4899 

Large 4 4,436 4,551 142,892 0.2799 <10" 

Huge 1 14,423 14,423 142,892 0.0700 
Small 2 58 58 111,011 0.1802 

Medium 5 387 312 111,011 0.4504 
Large 6 3,932 3,600 111,011 0.5405 ≥ 10" 

Huge 2 17,705 17,705 111,011 0.1802 
 

Small 50 ≤ spill size < 100 bbl 
Medium 100 ≤ spill size < 1,000 bbl

Large 1,000 ≤ spill size < 10,000 
bbl 

Huge  10,000 bbl ≤ spill size 
1 The frequency rates for different pipeline depths were dropped from Bercha 
(2006) because MMS determined the water depths in the MMS GOM database 
were suspect.  The results in Bercha (2002) ignore the 14 spills with missing 
depth data.  If these 14 spills are distributed proportionately between the 
shallower and deeper depths, then the frequency rates would be 0.6755 spills per 
104 km-yr for the shallower category and 2.1195 spills per 104 km-yr for the 
deeper category.   

 
2 An early version of a data spreadsheet for Bercha (2002) was found to have 17 
of 33 records (1985+) with segment, date, and general location mismatched with 
rest of data.  This may have been corrected after transmission, and Bercha (2002) 
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does not use spill dates (except to separately analyze 1985+), thus the reported 
results should not be affected but caution should be used if this data source is used 
for further work. 

 

2.2.4 Spills in State Waters 
Table 2.2 does not include spills that were in state rather than federal waters.  These have also 
been omitted from Anderson & LaBelle (2000) and from Bercha (2002).  This is of some 
consequence for the extension of these results to the Beaufort and Chukchi Seas, as on-shore 
terminations of pipelines seem likely to with some frequency pass through state waters.  It also 
seems likely that from the perspective of most stakeholders it is the occurrence of a spill that 
matters – not whether it is in federal or state waters.  It also seems likely that distance from spill 
to shore will have impacts on dispersion of any spill.  
 
There are good reasons for this omission. 

1.  MMS does not have quality control over, or legal access to oil industry data in state 
waters.  Spill data are incomplete to an unknown extent.  Pipeline and platform data, 
especially pipeline mileage data by year, depth, etc. are unavailable.  Given the 
incomplete data, it would be misleading to include unknown fractions of the spills, 
pipelines, platforms, and production.  It is even possible that including some recorded 
“state” spills could lead to a false “sense of security and completeness” for some users of 
the data. 
 
2.  How do you treat spills of commingled oil?  If a pipeline that transports 5% OCS oil 
and 95% state oil, has a spill of 1000 bbl, does this count as 50 bbl OCS spill or 0.05 of a 
1000 bbl OCS spill?  Also, given the data problems discussed in the first point, it may 
even be difficult to establish the federal and state shares. 
 
3.  State waters in theory extend either 3 miles or 3 leagues (9 miles).  However, offshore 
of Louisiana, this boundary was fixed long ago, before several additional miles of coast 
were eroded away.  These differences exacerbate the difficulties of state-to-state 
comparisons and extrapolations. 

 
From a statistical perspective the difficulty is that for some measures of spill occurrence 
probabilities, it seems inappropriate to remove spills in state waters.  For other measures of spill 
occurrence, it may be appropriate to remove the “state” spills.  The principle that drives the 
choice is that the event (the spill) and the measure should treat the “state” question the same way.  
The following are suggested as consistent choices: 

Eliminating spills, platforms, and pipeline miles for state waters has the effect of treating 
the event and the variable consistently.  Thus, the total of pipeline miles and of platforms 
must also be only in “federal” waters, if only “federal” spills are reported. 
 
Then the estimation of the probability of spills in state waters would be addressed using 
data bases specific to the pipeline and platform development, hurricane exposure, 
distances, etc. of each state.  This is obviously beyond the scope of this study. 
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The following are inconsistent choices: 
Eliminating spills in state waters for models using oil production or time as the 
occurrence measure is inconsistent.  It reduces the event by removing spills in state 
waters from the data set.  But there is no corresponding reduction in the measure of spills 
per billion barrels or spills per year.  Thus this combination understates the true 
probability of an oil spill for oil that starts in “federal” pipelines but passes through 
“state” pipelines. 

 
This decision must balance the above principle with the complication and potential confusion 
created by using different data sets for different models.  Also in some cases the pipeline and 
platform information may not exist for a proposed development, so that only spill rates based on 
production or time are possible. 
 
The application of spill rates to the Beaufort and Chukchi Seas is clearly affected by this choice.  
This can be illustrated by comparing the application of a spill rate per pipeline mile with a spill 
rate per Bbbl of production.  For MMS’s responsibility for OCS areas, the focus may be on spills 
in that “federal” area.  However, for other stakeholders and especially those state residents who 
live on the North Slope and who depend on marine subsistence resources, the question is the 
probability of a spill – not whether it is in state or federal regulated areas.  Thus, approach 1 is 
recommended over approach 2. 
 

1. Applying a spill rate per pipeline mile can be applied to the total length of a pipeline 
through both federal and state areas.  This does require the assumption that the 
probability of a spill in the two areas is not statistically different.  Different water depths 
and different patterns of activity may imply this is a weak assumption; but, it is clearly 
better than no assumption at all. 

 
2. Applying the spill rate per Bbbl of production which includes only the “federal” spills 

analyzed in this report would mean that there would be no consideration of spills from 
pipelines in state areas.   

 
MMS applications in oil spill risk analyses for the Alaska OCS Region do include estimates of 
spills from existing or permitted offshore State platforms and pipelines.  In the recent past, 
spillage estimates have derived from a combination of onshore North Slope spill statistics, TAPS 
experience, and extrapolation of OCS spill rate estimates.   

2.3 Platform Spill Size and Frequency 

2.3.1 OCS Platform Spill Data from MMS for 1964 – 1999 
The OCS platform data have been drawn from two sources. Table 2.5 for spills of more than 
1000 barrels is drawn from Anderson & LaBelle (2000).  This table includes the 1969 Santa 
Barbara spill of 80,000 barrels.  Table 2.6 for GOM spills of more than 50 barrels is drawn from 
OCSGOM50plus17April2006.xls received from MMS in April 2006.  Since Table 2.6 is limited 
to GOM spills it does not include any Pacific spills.   
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A major distinction from the spills reported for pipelines is that many of these platform spills 
involve refined petroleum products such as diesel rather than crude oil or condensate.  This will 
be addressed in more detail when spill causes are analyzed. 
 
Two items from Table 2.5 are worth noting.  First Anderson & LaBelle (2000) reasonably 
combined three spills caused by one hurricane into a single spill “event,” which is done 
throughout this report.  This can be justified as the three spills have a common cause.  However, 
it is also necessary as the Poisson distribution assumes events do not happen simultaneously.  
The exponential inter-spill time is not zero.  If needed the time interval is measured more finely.  
Similar statistical issues arise with the multiple spills reported at a common size such as 50 bbl 
(see also, discussion of estimated 50 & 100 values at end of this section).  For estimating spill 
events this treatment of a hurricane as a common cause is appropriate, but it would not be for 
modeling the requirements for spill response equipment. 
 
The second item is that the data in Table 2.5 from 1964 to 1999 reflect a non-homogenous data 
series.  There are 11 spills in 17 years and then 0 spills in 19 years.  Unfortunately the long-
period without large spills ended in 2005 with spills associated with hurricanes Katrina and Rita. 
 

Table 2.5  OCS Platform Spills ≥ 1000 bbl (1964-1999) 
 

Spill date Volume
April 8, 1964 2559
October 3, 1964 11,8691

July 19, 1965 1688
January 28, 1969 80,000
March 16, 1969 2500
February 10, 1970 30,000
December 1, 1970 53,000
January 9, 1973 9935
January 26, 1973 7000
November 23, 1979 1500
November 14, 1980 1456

1Hurricane Hilda destroyed 3 platforms with 
spill volumes of 5180, 5100, & 1589 bbl.  
The total volume is entered as a single spill. 
 

Table 2.6 uses a 1971 start date rather than the 1972 start date used with the bulk of the platform 
analysis and with the pipeline data.  This was done because 1972 happened to be a year with no 
GOM platform spills ≥ 50 barrels, while 1971 has 8 spills of this size.  For consistency most 
analyses are done with the 1972 start date, but the inclusion of the 1971 data supports analysis of 
the impact of this choice.   
 
Table 2.6 with its 77 spills illustrates one of the difficulties with these data.  Some of it is 
estimated rather than measured so the round numbers like 50 (10 spills) or 100 barrels (5 spills) 
are vastly over-represented in the data base.   
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As discussed in Chapter 3, this requires that some values be adjusted by small amounts.  With 
continuous probability distributions the probability is zero that two values will be the same if 
measured with sufficient accuracy, such as 50.00 and 50.01.  Thus, statistical tests can be 
affected by measurement accuracy in a data set, and some tests require that values not be 
identical.  These clusters of estimated values are adjusted so they are not identical so that the 
tests will work.  However, these adjustments are much smaller than the variability concealed by 
estimating a spill of 75 to 125 barrels as 100 barrels.  Thus, the statistically tested fit of the 
adjusted data to an assumed distribution (such as exponential inter-spill intervals) is worse than 
would be the fit of “measured or real” data.  Thus, the statistical tests are more likely to reject the 
“fit” with estimated data than they would be with measured or real data.  
 
A second complication is that the use of 50 or 100 may have a systematic bias.  Those reporting 
spills may round-up to be safe that they are not “under-reporting” or they may round-down to 
minimize the seriousness of the spill.  MMS review acknowledged the potential of this bias, but 
suggested that estimating to round numbers is more likely than systematic bias. 
 
One consequence of the 10 spills estimated at 50 barrels is an unknown amount of over-
estimation of spill rates.  If there is no bias of under- or over-reporting of spill volumes, then 
about half of the 10 spills should be below the 50 barrel threshold; and would thus if measured 
not be part of the data for this study.  The impact of this overestimation is limited by the 
unknown number of spills whose reported (estimated) volume was less than 50 bbl, but whose 
actual volume was over the threshold. 
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Table 2.6  GOM Platform Spills of ≥ 50 bbl (1971-1999) N = 77 
 

Spill Date Volume  Spill Date Volume  Spill Date Volume 
1971-04-05 200 1980-01-23 286 1985-01-23 60 
1971-05-15 50 1980-03-08 258 1985-02-23 50 
1971-05-27 50 1980-03-11 95 1985-06-03 643 
1971-05-29 135 1980-05-16 150 1985-07-30 50 
1971-07-20 100 1980-06-11 80 1985-09-02 66 
1971-08-13 50 1980-10-15 83 1985-09-26 58 
1971-10-16 450 1980-11-14 1,456 1986-11-13 52 
1971-12-09 50 1980-12-02 118 1987-03-20 60 
1973-01-09 9,935 1981-02-15 58 1988-02-19 50 
1973-01-26 7,000 1981-04-06 210 1988-11-07 64 
1973-06-20 239 1981-08-19 50 1988-11-16 55 
1973-12-08 95 1981-11-28 64 1989-02-15 400 
1974-07-10 130 1982-01-19 400 1991-10-13 280 
1974-09-07 75 1982-04-29 228 1992-12-26 100 
1974-10-04 50 1982-08-18 214 1994-11-23 148 
1974-11-27 120 1983-01-30 600 1995-01-25 600 
1974-12-22 200 1983-02-01 125 1995-07-06 75 
1975-03-18 166 1983-03-09 77 1995-10-03 89 
1975-09-21 100 1983-03-20 320 1995-12-15 435 
1976-10-19 300 1983-04-14 200 1996-09-29 105 
1977-12-14 77 1983-05-09 77 1996-12-31 62 
1978-05-11 104 1983-05-16 95 1997-12-16 170 
1979-01-30 321 1983-08-02 119 1998-04-29 100 
1979-01-31 165 1984-06-20 50 1999-01-23 105 
1979-04-14 60 1984-07-08 100 1999-09-09 125 
1979-11-23 1,500 1985-01-22 107   

 
 
Table 2.7 compares the Bercha (2002, 2006) spill data set with this data set for platform spills.  
While the individual spills were not identified with dates in Bercha (2002, 2006), the provided 
list of spill sizes and spill causes (Bercha 2002, Table 2.4 and Bercha 2006, Table 2.5) could be 
matched with the current data set.  The subset of spills from Table 2.6 that are listed in the last 
column of Table 2.7 was formed by deleting all spills that were not crude oil or condensate (i.e. 
diesel and other refined petroleum products) and all spills that involved a well blowout. 
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Table 2.7  Comparison of Bercha (2002) and Similarly Selected Spills from 
Current GOM Platform Spill Data Set (1972-1999) N = 21 

 

Spill Date
Bercha 
Volume

Current 
Volume

1973-01-09 9,935 9,935
1973-01-26 7,000 7,000
1974-07-10 130 130
1974-09-07 75 75
1974-10-04 50 50
1974-11-27 120 120
1978-05-11 104 104
1979-04-14 60 60
1980-11-14 1,456 1,456
1981-02-15 58 58
1983-02-01 125 125
1984-06-20 50 50
1985-09-02 66 66
1988-02-19 50 50
1988-11-16 55 55
1989-02-15 400 400
1991-10-13 280 280
1995-01-25 600 600
1995-07-06 75 75
1995-12-15 435 435
1997-12-16 1701

1998-09-17 1082 5
1Product spill was mix of condensate and yellow paraffin, and loss 
of control during well shut-in.  Either could be why not included in 
Bercha platform spill data set. 
2Incident explanation noted that 103 bbl of 108 bbl spill recovered, 
so could be classified based on initial or final spill volume.  

2.3.2 GOM Platform Spill Data from MMS for 2000 – 2005 
The 9 spills from 2000 to 2005 included in Table 2.8 are drawn from 
OCSGOM50plus17April2006.xls received from MMS in April 2006.  Since Table 2.8 is limited 
to GOM spills it does not include any Pacific spills.  The 2005 spills from hurricanes Katrina and 
Rita are based on MMS interim working documents with the information provided by Cheryl 
Anderson (personal communication, April 2006). 
 
While different platforms may have been damaged on different days by the same hurricane, it is 
much more reasonable to treat these as single events.  As detailed in the notes to Table 2.8, the 
most recent hurricane spills are each aggregated values that can represent multiple products and 
multiple platforms.   
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While there is no question about the severity of the hurricanes with spills included in Table 2.8, 
there was a significant difference in how the data were gathered as compared with earlier 
hurricane related spills.  Those earlier spills typically were reported as a result of some spill 
response activity.  Beginning with hurricane Lili, MMS adopted a much more aggressive 
strategy in identifying spills.  Operators were queried about quantities of petroleum products that 
were never recovered as a result of the hurricanes. 
 
For example the 6 individual Ivan spills that were aggregated into a total volume of 1053 barrels 
include 4 platforms that were destroyed or missing.  In each case crude oil and refined petroleum 
products on the platform before the hurricane are included in the spill total.  If a similarly 
aggressive data collection strategy had been started in 1972, we believe that hurricanes would 
have placed more spills into this data base. 
 

Table 2.8  GOM Platform Spills ≥ 50 bbl (2000-2005) N = 9 
 

Spill Date Volume
2000-02-28 200
2000-08-09 60
2001-03-30 127
2002-10-03 1,5881

2003-05-09 264
2003-05-10 430
2004-09-15 1,0532

2005-08-29 2,2253

2005-09-24 7,3714

1 Lili (3 spills of ≥ 50 bbls) 
2 Ivan (6 spills of ≥ 50 bbls) 
3 Katrina (14 spills of ≥ 50 bbls) 
4 Rita (10 spills of ≥ 50 bbls) 

 

2.3.3 GOM Platform Spill Data Set  
The 78 GOM platform spills combine the data from Table 2.6 (except for the 1971 spills) with 
the data from Table 2.8.  A few summary statistics are shown in Table 2.9, as two key decisions 
were required for this data. 
 
First, after consultation with MMS it was decided to include spills of refined petroleum products, 
as well as spills of crude and condensate.  This was done because diesel spills were in many 
years the most common type of spill, and the average volumes were significant.  The inclusion of 
the refined petroleum product spills is the major difference for platform spills between the 
Bercha (2002 & 2006) reports and this report.  That is the main reason why Table 2.7 is a subset 
of Table 2.6.  Second, as detailed in Chapter 3, the rate of platform spills has declined over the 
1972 – 2005 time period. 
 

MMS 23 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

Table 2.9  Summary of GOM Platform Spills ≥ 50 bbl (1972-2005) N = 78 
 

 Average bbls (#) 

 
Crude & 

Condensate
Refined 

Petroleum Mixed All 
1972-1989 1,005 (20) 215 (36) (0) 498 (56) 
1990-2005 217 (10) 163 (08) 3,059 (4) 714 (22) 
1972-2005 743 (30) 206 (44) 3,059 (4) 559 (78) 

 

2.4 Spill Occurrence Exposure Variables 

2.4.1 Potential Spill Occurrence Factors 
Section 2.4 describes the data for the exposure variables, which were discussed in Section 1.3.1 
and 1.3.3.  These are combined with spill information for measures that include: 

Spills per year, 
Spills per billion barrels of production, 
Spills per pipeline-mile-year, and  
Spills per platform-year or per well-year. 
 

2.4.2 Time as a Spill Occurrence Measure 
For spill causes such as hurricanes, time seems to be a possibly appropriate spill occurrence 
measure.  Each year there is a hurricane season and so each year this is a potential spill 
occurrence cause.  This cause is logically related more strongly to the season than to the volume 
of oil production.  
 
Spills per year is also the most easily understood platform spill occurrence measure, so if it can 
adequately model a situation it is a natural choice. 
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Table 2.10  Yearly GOM Pipeline and Platform Spills of 50 bbl or More (1972-2005) 
 

year Pipeline 
Spills 

 Platform 
Spills 

1971   8 
1972 1  0 
1973 1  4 
1974 3  5 
1975 0  2 
1976 2  1 
1977 3  1 
1978 2  1 
1979 1  4 
1980 1  8 
1981 2  4 
1982 0  3 
1983 1  8 
1984 0  2 
1985 2  7 
1986 2  1 
1987 0  1 
1988 1  3 
1989 0  1 
1990 2  0 
1991 0  1 
1992 2  1 
1993 1  0 
1994 1  1 
1995 0  4 
1996 0  2 
1997 0  1 
1998 3  1 
1999 1  2 
2000 1  2 
2001 0  1 
2002 0  1 
2003 0  2 
2004 1  1 
2005 2  2 

2.4.3 Volume of Oil Produced 
For use when scenario information on facilities cannot yet be estimated, this is the only 
probability measure possible.  As the measure currently used by MMS, this also facilitates 
comparison with past work.  There is one significant difference between how this variable is 
treated in this study and previous work by MMS.  This report relies on exact Poisson confidence 
intervals for reported spill rates rather than other approaches used by MMS  
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For analysis of production volume as a probability measure, this study takes the approach of 
measuring the interval between spills in units of production.  Then this interval data can be tested 
as an exponential distribution to validate the Poisson assumption.  If the Poisson function is 
acceptable, then the spill rate and exact Poisson confidence intervals can be estimated using the 
number of spills over the total exposure variable. 
 
While this data is dominated by OCS production in the Gulf of Mexico, about 5% and 0.7% of 
the volume in recent years are respectively from the Pacific and Alaska regions.  Table 2.11 
summarizes the data extracted from “OCS Crude&Condensate Production 1954 to Estimated 
2005  28April2006.xls” that was received from MMS. 
 
Since spill statistics are for GOM spills without inclusion of Pacific spills, the most consistent 
choice of production volume is for the GOM.  That is what was done for all analyses related to 
platform spills. 
 
However, the total OCS production volume was used for the calculations of pipeline spills in 
Chapter 3.  Key spill rate values were re-calculated using GOM production volume for 
extrapolations to Alaska in Chapter 4.  As discussed in Section 2.4.6, these are highly correlated 
values so the statistical validity of Chapter 3 is not affected, although there are differences in 
calculated values.   
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Table 2.11  Oil Production Volume (1972-2005) 
 

Year 

OCS 
Production 

Volume  
(106 bbl) 

GOM 
Production 

Volume  
(106 bbl) 

1972 395.9 373.3
1973 384.8 366.0
1974 354.9 338.1
1975 325.3 309.8
1976 314.5 300.5
1977 295.9 283.7
1978 287.9 276.0
1979 334.2 318.2
1980 274.7 264.6
1981 282.9 263.3
1982 314.5 286.1
1983 350.8 320.2
1984 385.1 354.6
1985 380.0 350.3
1986 384.3 355.5
1987 358.6 327.5
1988 332.7 301.2
1989 323.7 290.6
1990 304.4 274.5
1991 326.3 294.7
1992 347.5 304.8
1993 359.2 308.6
1994 372.3 314.0
1995 417.4 345.0
1996 433.1 368.8
1997 466.1 411.6
1998 490.6 444.3
1999 534.4 495.3
2000 559.1 523.0
2001 591.7 558.3
2002 602.3 567.4
2003 594.8 561.1
2004 567.0 535.0
2005 488.0 459.1
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2.4.4 OCS Pipeline Exposure 
Table 2.12 summarizes the number of miles of pipeline and number of pipeline segments for the 
OCS area of the GOM and Pacific.  These data were provided by MMS 
[OCSOilPipelines1948to2006.xls, March 2006], and they are limited to those pipelines carrying 
oil.  While petroleum spills can occur from other products, such as condensate, these are clearly 
the pipelines that represent a very large share of the spill occurrence rate.  While it is better to 
focus on these data, as detailed in Table 2.14 this table of pipeline miles is proportional (r values 
exceed 99%) to the total number of km (miles) of pipeline used in Bercha (2002) and the draft 
data initially supplied with a much broader array of product codes.   
 
With the large correlations for different mileage measures, the results within the existing GOM 
dominated database would be comparable for all measures.  However, when extrapolating to the 
Beaufort and Chukchi Seas, selection of the correct mileage data base is quite important as total 
reported mileage ranges from less than 8000 miles to more than 33,000 miles. 
 
If a pipeline segment were doubled in length, the spill probability associated with it would not 
double.  Some portion of the probability depends on the number of connections to other 
pipelines, risers, and valves the pipeline has.  That is probably better measured using the number 
of segments variable in Table 2.12.  However, as detailed in Table 2.16, the correlation between 
pipeline segments and pipeline mileage is 0.905, thus both cannot be included in a statistical 
model based on a small data set due to problems with multi-collinearity.   
 
While the best data available, these values should be treated as estimates and not exact values.  
There are no available data on the accuracy of the estimate.  However, it is likely that most errors 
in these data would consist of segments that are either erroneously included or excluded, and this 
type of error is likely to be reasonably consistent from year-to-year.  Thus for estimating trends 
these data can be treated as being accurate enough that other uncertainties will be far more 
important. 
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Table 2.12  OCS Pipeline Mileage and Segments  

 

Year 
Number 

of 
Segments 

Miles 
 

Year 
Number 

of 
Segments

Miles 

1964 859 537 1985 2,095 4,063 

1965 870 565 1986 2,134 4,238 

1966 885 654 1987 2,173 4,345 

1967 919 742 1988 2,213 4,451 

1968 957 887 1989 2,250 4,562 

1969 1,002 1,170 1990 2,294 4,737 

1970 1,062 1,339 1991 2,345 4,836 

1971 1,153 1,504 1992 2,362 4,979 

1972 1,249 1,740 1993 2,395 5,030 

1973 1,312 1,932 1994 2,436 5,287 

1974 1,344 2,049 1995 2,462 5,536 

1975 1,389 2,200 1996 2,501 6,148 

1976 1,442 2,451 1997 2,531 6,433 

1977 1,497 2,563 1998 2,576 6,753 

1978 1,568 2,818 1999 2,578 6,996 

1979 1,643 2,956 2000 2,584 7,247 

1980 1,695 3,120 2001 2,594 7,466 

1981 1,766 3,343 2002 2,578 7,651 

1982 1,837 3,511 2003 2,463 7,842 

1983 1,907 3,703 2004 2,466 8,516 

1984 2,012 3,925 2005 2,388 8,369 
 
To support comparison of the results of Bercha (2002 & 2006) with this study, Table 2.13 
summarizes that data.  The original data (Bercha 2002, Table A.2.1 (a), 8th column) is stated in 
terms of kilometers of pipeline placed in service in each year with an additional 2% added for 
pipelines with undated origins.  This is the second column of Table 2.13.  The third column of 
Table 2.13 is simply the cumulative values for each year.  For comparison purposes with Table 
2.12 the fifth column of Table 2.13 states these cumulative values in terms of miles rather than 
kilometers, and the last column reports comparable values from Table 2.12. 

MMS 29 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

 
It is suggested that the differences between the last two columns are the result of the additional 
efforts by MMS subsequent to the Bercha work to provide better quality data on the existing 
GOM infrastructure. 
 
Bercha (2002 & 2006) calculate the spill rate as the number of spills during the total time frame 
divided by the total exposure over the period.  Thus, the total number of kilometer-years of 
pipelines represents the total exposure.  This is calculated as the sum of the number of 
cumulative kilometers for each year.  This exposure is shown in the last row of Table 2.13. 

 
Table 2.13  Bercha Pipeline Exposure  

 

Year Pipeline 
(km) 

Cumulative 
Pipeline 

(km) 

Cumulative 
Pipeline 
Mileage 

Cumulative 
Pipeline 
Mileage 

from Table 
2.12 

1972 435 435 270 1,740 

1973 324 759 472 1,932 

1974 214 973 605 2,049 

1975 358 1,331 827 2,200 

1976 526 1,857 1,154 2,451 

1977 373 2,230 1,386 2,563 

1978 657 2,887 1,794 2,818 

1979 339 3,226 2,005 2,956 

1980 343 3,569 2,218 3,120 

1981 508 4,077 2,533 3,343 

1982 400 4,477 2,782 3,511 

1983 439 4,916 3,055 3,703 

1984 469 5,385 3,346 3,925 

1985 425 5,810 3,610 4,063 

1986 385 6,195 3,849 4,238 

1987 399 6,594 4,097 4,345 

1988 610 7,204 4,476 4,451 

1989 682 7,886 4,900 4,562 

1990 808 8,694 5,402 4,737 
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1991 501 9,195 5,714 4,836 

1992 394 9,589 5,958 4,979 

1993 291 9,880 6,139 5,030 

1994 821 10,701 6,649 5,287 

1995 667 11,368 7,064 5,536 

1996 1358 12,726 7,908 6,148 

1997 997 13,723 8,527 6,433 

1998 947 14,670 9,116 6,753 

1999 667 15,337 9,530 6,996 

Total Exposure 185,694 115,385 114,705 
 
The total exposure value shown in Table 2.13, 185,694 km-years does not precisely match the 
value of 187,183 km-years given in Bercha (2006, Table 2.1, spill size exposure).  Note the value 
in Bercha (2002) must be lower, as all spill rates reported in 2002 (Table 2.1) are 35.65% higher 
than in 2006 (Table 2.1).  While the cumulative mileage reported in each year for this report 
differs from the Bercha reports, the total exposure is very similar and the variables are very 
highly correlated, which will be discussed in section 2.4.6. 
 
 

2.4.5 Number of Platforms and Number of Operating Wells 
Table 2.14 summarizes the number of platforms in the GOM.  This data was transmitted as 
Fixed_Facilities_production_history.xls by MMS in April 2006.  This data included sub-
categorizations of platforms by type and amount of production and drilling activities.  The most 
promising groups were all platforms, platforms with oil production, and all platforms except 
those with no production.  For these three groups the minimum correlation was 0.975, so 
statistically their predictive abilities are virtually identical.  During consultation with MMS, the 
professional judgment was that the total platform count variable was the most reliable, so that is 
listed in Table 2.14 and used for analysis. 
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Table 2.14  GOM Number of Platforms 

 

Year 
GOM # of 
Platforms 

 
Year 

GOM # of 
Platforms 

1972 1623  1990 3444 
1973 1691  1991 3456 
1974 1749  1992 3434 
1975 1798  1993 3478 
1976 1869  1994 3466 
1977 1956  1995 3513 
1978 2075  1996 3557 
1979 2179  1997 3601 
1980 2296  1998 3551 
1981 2411  1999 3585 
1982 2562  2000 3595 
1983 2735  2001 3575 
1984 2854  2002 3573 
1985 3009  2003 3578 
1986 3052  2004 3530 
1987 3159  2005 3435 
1988 3307    
1989 3391    

 
 
Table 2.15 is drawn from Bercha (2002) Table A.3.1, and it presents the data that was used to 
judge the spill rate for platforms in Bercha (2002 & 2006).  The final row shows the total of 
well-years (119,714) that was used in both reports as the total exposure over the 1972 – 1999 
time frame. 
 
Table 2.15  Active Oil Wells from Platforms (Bercha 2006, from Federal Offshore Statistics 

report, MMS, October 2000) 
 

Year 
Active Oil 

Wells 
 

Year 
Active Oil 

Wells 
1972 3,744  1986 4,406 
1973 3,814  1987 4,543 
1974 3,686  1988 4,627 
1975 3,477  1989 4,507 
1976 3,555  1990 4,515 
1977 3,747  1991 4,549 
1978 3,648  1992 4,612 
1979 2,781  1993 4,774 
1980 5,375  1994 4,846 
1981 4,522  1995 4,950 
1982 4,734  1996 5,040 
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1983 4,142  1997 4,727 
1984 4,138  1998 4,731 
1985 4,321  1999 3,203 

  
 Total well-

years 119,714 
 

2.4.6 Correlation Analysis  
There are very high correlations between time, cumulative production volume, and cumulative 
pipeline mileage in the OCS data base.  Table 2.16 contrasts data from several sources including:  

Year 1972 – 2005  
Number pipeline segments Table 2.12 
Pipeline mileage Table 2.12 
Platforms Table 2.14 
OCS Cumulative production volume  Table 2.11 
GOM Cumulative production volume  Table 2.11 
Bercha pipeline exposure (km-year) Table 2.14 
Bercha platform exposure (well-year) Table 2.15 
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Table 2.16  Correlations between Exposure Variables 
 

 
# pipeline 
segments 

Pipeline 
mileage 

# 
Platforms

OCS 
Cum. 
prod. 

GOM 
Cum. 
prod. 

Bercha 
pipe km1

Bercha 
wells1

Year 0.949 0.990 0.926 0.775 0.711 0.984 0.530
# pipeline segments 1.000 0.905 0.992 0.636 0.548 0.936 0.570
Pipeline mileage  1.000 0.875 0.832 0.783 0.995 0.481
# Platforms  1.000 0.571 0.480 0.890 0.592
OCS cum. prod.  1.000 0.989 0.807 -0.005
GOM cum. prod.   1.000 0.733 -0.176
Bercha pipe km   1.000 0.468
Bercha wells    1.000

1The correlations with the Bercha data set are only for 1972 – 1999. 
 

Most of these correlations are strong, and some are very nearly equal to 1.0 or a perfect 
correlation.  This has two major implications.  First, there is likely to be little or no added value 
to models that have more than 1 predictor variables.  Second, results that are true for one 
exposure variable are almost certainly true for other highly correlated exposure variables.  

2.5 Spill Cause Analysis 

2.5.1 Introduction to Spill Cause Analysis 
There are several issues that must be addressed in developing statistically valid estimates for the 
causes of oil spills.  These are required for this effort because of the differences between the Gulf 
of Mexico and the Beaufort and Chukchi Seas with respect to exposure to the different causes.  
One frequent cause of pipeline spills in the Gulf of Mexico is “third party impacts,” which are 
predominantly due to dragging anchors and fishing nets.  Neither of these will be common in the 
arctic environment. 
 
These issues can be divided into four major categories.  Spills can also be differentiated between 
those occurring on platforms and those from pipelines.  Sections 2.5.3 and 2.5.5 include results 
for both pipeline and platform data. 

1. Identifying the primary spill cause 
2. Multinomial statistical variability 
3. Differences due to time and the manner of development 
4. Binomial statistical variability for GOM vs. general causes. 

 
An additional issue with respect to spill cause is the relationship between cause and size, which 
is analyzed in the final sub-section of this section.   

2.5.2 Identifying the Primary Spill Cause  
During the time span in which the Bercha reports (2002 & 2006) and this report have been 
conducted, MMS has made extensive efforts to improve the quality of information in its 
databases that summarize oil spills.  This has included discussions for this analysis of which 
classification would be most appropriate for particular spills.  As a result there are some 
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significant differences between the causes reported here, the earlier Bercha work, and past 
classifications in the MMS data bases. 

2.5.2.1 Pipeline Spill Causes  
In spite of this work, spill cause classification still requires the exercise of judgment as to which 
of several causes is the primary one.  So that others can double-check or modify this work, Table 
2.17 details how each GOM pipeline spill from 1972 – 2005 is classified as to cause.  Table 2.17 
divides the causes into two groups, which will be important for the extension of GOM spill rates 
to the Beaufort and Chukchi Seas.  Some spills have causes that occur in the GOM but not the 
Arctic, such as hurricanes, damage from trawl fishing gear, and damage from the anchors of 
general ship traffic.  In some cases it is unclear whether the anchor damage is from a workboat or 
third party traffic.  Indicators such as distance from a platform or a greater likelihood that the 
damage from workboats will be noticed and reported have been used as needed.  Other spills are 
due to causes such as corrosion and oil field operations that can occur anywhere.  Table 2.18 
summarizes this into categories. 
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Table 2.17  Primary Cause of GOM Pipeline Oil Spills 
 

Spill Date 
Spill 
Size 

GOM 
Specific Cause 

1972-06-13 100  Corrosion 
1973-05-12 5,000  Corrosion 
1974-04-17 19,833 GOM Anchor drag 
1974-05-21 65  Operational: anchor from derrick barge 
1974-09-11 3,500 GOM Hurricane Carmen 
1976-02-29 414  Corrosion: after pipeline kinked by anchor 
1976-12-18 4,000 GOM Shrimp trawl damaged valve 
1977-03-29 250  Natural: mud slide 
1977-06-05 50  Operational: lay barge anchor 
1977-10-18 300 GOM Anchor drag 
1978-04-08 135  Mechanical/operational 
1978-07-17 900  Operational: anchor drag 600’ from platform 
1979-07-15 50  Operational: workboat searching for rig anchor 
1980-01-29 100 GOM Trawler drag broke valve 
1981-08-05 80  Corrosion: external or metal fatigue 
1981-12-11 5,100  Operational: service vessel anchor 
1983-01-20 80  Natural: mud slide 
1985-02-16 323  Operational: pipeline dented, cracked during construction 
1985-11-09 50  Operational: spud barge anchor 
1986-02-03 119  Mechanical/operational: pinhole leak during abandonment 
1986-12-30 210  Mechanical/operational: anchor or original construction 
1988-02-07 15,576 GOM Ship illegally dropped and dragged anchor 
1990-01-24 14,423 GOM Fishing net or anchor 
1990-05-06 4,569 GOM Trawler net drag 
1992-01-03 190  Unknown 
1992-08-31 2,000 GOM Rig broke loose during Hurricane Andrew 
1993-06-17 50  Operational: workboat anchor 
1994-11-16 4,533 GOM Trawl net damaged valve 
1998-01-22 800 GOM Mechanical damage: probably anchor 
1998-01-26 1,211  Operational: anchor during overboard rescue 
1998-09-29 8,212 GOM Hurricane Georges 
1999-07-23 3,200  Operational: jackup rig set down on pipeline 
2000-01-21 2,240  Operational: anchor drag from drill rig 
2004-09-15 3,445 GOM Hurricane Ivan 
2005-08-29 553 GOM Hurricane Katrina 
2005-09-24 8162 GOM Hurricane Rita 
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Table 2.18  Summary of Primary Cause of GOM Pipeline Oil Spills (N = 36) 
 

Number of Spills GOM Specific Cause 
9    Third party damage 
6    Hurricanes 
 Non-GOM Specific Cause 

14    Operational/mechanical 
4    Corrosion 
2    Natural: mud slide 
1    Unknown  

 
Table 2.19 summarizes the causes of the pipeline oil spills as previously reported in the Bercha 
reports.  The table has been simplified from the original, by reporting on the number of spills in 
each cause classification without breaking these categories down into their sub-categories.  For 
the purposes of this report it does not matter whether the corrosion was internal or external or 
whether the third party impact was due to anchors or trawling gear.  Also the more aggregated 
data support statistical estimates with tighter confidence intervals due to the larger percentage of 
items in each category.  
 
One of the major differences between Table 2.19 and the work reported here is the definition of 
third party impact.  For example the 3200 bbl spill listed in Table 2.19 under third party cause is 
from a jack-rig or spud barge.  Due to the oil field related nature of the cause in the previously 
reported data this is classified as an operational impact.  Similarly, several of the “anchor” 
impacts have been from work boats.  Thus, the third party category in Table 2.18 contains 
significantly fewer spills than that category in Table 2.19. 

 
Table 2.19  Causes of GOM Pipeline Oil Spills from Bercha (2002 Table 2.2 & 2006 Table 

2.2) 
 

Cause classification   
 # of 
spills  Spill sizes (Bbls) 

 Corrosion   4 80, 100, 5000, 414 
 Third party impact  
  

16 19833, 65, 50, 300, 900, 323, 15576, 2000, 800, 
1211, 3200, 4000, 100, 14423, 4569, 4533 

 Operation impact   4 50, 50, 5100, 50 
 Mechanical   2 135, 210 
 Natural hazard   4 250, 80, 8212, 3500 
 Unknown   1 119 
 Totals   31  

 

2.5.2.2 Platform Spill Causes  
  
The data on platform spills is presented differently than that for pipelines for two reasons.  First, 
in several cases it is simply not possible to identify a primary cause.  As a simple example, when 
a spill occurs during a diesel transfer from a coupling that breaks or separates is it a mechanical 
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failure or human error because the transfer was unattended.  Second, unlike pipelines the only 
GOM specific cause is hurricanes.  Thus, the level of detail that was needed to present the 
classification of pipeline spills as operational or third party is not needed here.  Thus Table 2.20 
identifies the spills where a hurricane was identified as the primary cause.  Table 2.21 
summarizes the number of spills by spill cause.  A useful reference on platform spills is Sharples 
et al. (1989). 
 

Table 2.20  GOM Specific Cause (Hurricanes) Platform Spills 
 

Spill Date 
Spill 
Size Cause 

1974-09-07 75 Carmen 
1974-12-22 200 repair of Carmen damage 
1985-09-02 66 Elena 
2002-10-03 1,588 Lili  
2004-09-15 1,053 Ivan  
 2005-08-29 2,225 Katrina  
 2005-09-24 7,371 Rita  

 
Table 2.21  Summary of Causes of GOM Platform Spills 1971-2005 (N = 78) 

 

Cause 
Primary 
Cause GOM Specific Cause (N = 7) 

7 7    Hurricanes 
  Non-GOM Specific Cause (N = 71) 

65 35    Equipment failure 
33 23    Human error 
17 6    Sea condition 
13 5    Collision  
2 2    External damage 

 
Table 2.22 summarizes the causes of the platform oil spills from Table 2.5 of Bercha (2002).  As 
indicated in the discussion with Table 2.7, these 21 spills are the crude or condensate spills that 
did not involve a fire or blowout from 1972 – 1999.   
 
Table 2.22  Causes of GOM Platform Oil Spills from Bercha (2002 Table 2.4 & 2006 Table 

2.5) 

Cause classification   
 # of 
spills  Spill sizes (Bbls) 

 Process facility release   13 130, 50, 120, 104, 60, 1456, 125, 50, 50, 55, 400, 
280, 75 

 Storage tank release   3 9935, 7000, 435 
 Structural failure   1 58 
 Hurricane/storm   2 75, 66 
 Collision   2 600, 108 
 Totals   21  
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2.5.3 Statistical Variability and Multinomial Confidence Intervals 
When examining spill causes the appropriate probability distribution is the multinomial.  This is 
a multiple category generalization of the two category binomial distribution which in a set of 
random events counts the number of heads or tails, the number of successes or failures, etc.  
Because this is a relatively straight-forward application of descriptive statistics it is included in 
this chapter rather than Chapter 3. 
 
One large difference from previously published work is the inclusion of confidence intervals on 
the multinomial proportions (Goodman, 1965).  This will help clarify realistic limits for the 
accuracy of these proportions and any calculations that might be based on them.  Table 2.23 
shows a variety of confidence intervals for a specific cause and Table 2.24 shows 95% 
confidence intervals for all pipeline spill causes.  In both tables the estimated proportion is 
simply divides the number of spills for the category (shown in Table 2.18) by the total number of 
spills (N = 36). 
 

Table 2.23  Confidence Intervals for Third Party GOM Pipeline Spill Proportion with 
Estimated Proportion of 25.0% = 9/36 

 

Confidence 
Level 

Lower 
Confidence 

Limit 

Upper 
Confidence 

Limit 
80% 11.8% 38.2% 
90% 9.6% 40.4% 
95% 7.7% 42.3% 
99% 3.8% 46.2% 

 
Table 2.23 shows that even at a low or 80% confidence level for a high proportion category; the 
upper confidence limit is about 3.5 times the lower limit.  At a high or 99% confidence level the 
upper limit is more than 10 times the lower limit.  The 6 listed causes and the relatively small 
number of spills are the reason why these limits are relatively broad.  Table 2.23 has been 
included to give a sense of how much difference the choice of a confidence level makes.  In 
keeping with typical practice, Table 2.24 reports 95% confidence intervals for all causes. 

 
Table 2.24  95% Confidence Intervals for GOM Pipeline Spill Cause Proportions  

 

Estimated 
Proportion 

Lower 95% 
Confidence 

Limit 

Upper 95% 
Confidence 

Limit GOM Specific Cause 
25.0% 7.7% 42.3%    Third party damage 
16.7% 1.8% 31.5%    Hurricanes 

   Non-GOM Specific Cause 
38.9% 19.4% 58.3%    Operational/mechanical 
11.1% 0% 23.7%    Corrosion 
5.6% 0% 14.7%    Natural: mud slide 
2.8% 0% 9.3%    Unknown  
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Table 2.25 applies the same statistical approaches to the 31 spills summarized in Table 2.19 from 
Bercha (2002 & 2006). 

 
Table 2.25  95% Confidence Intervals for Bercha (2002 & 2006) Pipeline Spill Cause 

Proportions  
 

Estimated 
Proportion 

Lower 95% 
Confidence 

Limit 

Upper 95% 
Confidence 

Limit Cause 
12.9% 0% 27.3%  Corrosion   
51.6% 30.1% 73.1%  Third party impact  
12.9% 0% 27.3%  Operation impact   
6.5% 0% 17.0%  Mechanical   
12.9% 0% 27.3%  Natural hazard   
3.2% 0% 10.8%  Unknown   

 
The data in this study for platform spill cause (Table 2.21) is used to construct Table 2.26 which 
reports 95% confidence intervals for all causes. 

 
Table 2.26  95% Confidence Intervals for GOM Platform Spill Cause Proportions  

 

Estimated 
Proportion 

Lower 95% 
Confidence 

Limit 

Upper 95% 
Confidence 

Limit GOM Specific Cause (N = 7) 
9.0% 1.2% 16.7%    Hurricanes 

   Non-GOM Specific Cause (N = 71) 
44.9% 31.4% 58.4%    Equipment failure 
29.5% 17.1% 41.8%    Human error 
7.7% 0.5% 14.9%    Sea condition 
6.4% 0% 13.0%    Collision  
2.6% 0% 6.8%    External damage 

 
Table 2.27 applies the same statistical approaches to the 21 spills summarized in Table 2.22 from 
Bercha (2002 & 2006). 
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Table 2.27  95% Confidence Intervals for Bercha (2002 & 2006) Platform Spill Cause 
Proportions  

 

Estimated 
Proportion 

Lower 95% 
Confidence 

Limit 

Upper 95% 
Confidence 

Limit Cause 
61.9% 37% 86.6%  Process facility release   
14.3% 0% 32.0%  Storage tank release   
4.8% 0% 15.6%  Structural failure   
9.5% 0% 24.4%  Hurricane/storm   
9.5% 0% 24.4%  Collision   

 
 

2.5.4 Differences Due to Time and Conditions 
While the focus of this study is on the extrapolation of GOM data to the arctic, there are 
additional differences between the data and potential developments which are outside the scope 
of this study.  While some of these have been mentioned before, their potential impact on these 
estimates requires some further discussion. 
 
The GOM database analyzed here includes about four decades of data, and the extrapolation into 
the arctic will extend the time frame by several more decades.  Over that period of time, there 
have been and will be advances in technology and regulation that can reasonably be expected to 
reduce the probability of oil spills.  However, the effect of this is clearly not uniform across the 
various spill causes.  For example, the understanding of corrosion, and the ability to monitor and 
control it are steadily advancing; along with the regulatory environment to improve in this area.  
On the other hand, the ability of an oil pipeline to withstand the impact of a dragging anchor or 
the ice keel of pack ice may not be advancing at the same rate. 
 
While this study focuses on statistically extrapolating from the experience represented in the 
GOM data base to the arctic environment, this initial study cannot address all issues.  This study 
can reasonably be expected to address, and it does address larger issues such as GOM or arctic 
unique hazards, such as trawling gear and strudel scour.  The scope of this study does not address 
more subtle impacts.  For example, the probability of human error is linked to working 
conditions, such as extreme cold or darkness, which are larger issues in the arctic. 
 
There are also the impacts due to differences in the manner of development.  Such differences 
include the typical platform size, water depth, and distance from shore and the typical pipeline 
diameter, length, water depth, and depth of burial (if any).  These details are better addressed 
through engineering studies rather than this type of statistical analysis. 
 
As these factors are outside the scope of this study, the approach taken is to assume that the net 
effect of them would leave the statistically calculated oil spill risk unchanged.  Obviously, this 
assumption is simply for the purposes of this study, as those with greater knowledge of the 
factors will apply that knowledge to move beyond the limitations of this study. 
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2.5.5 Statistical Variability and Binomial Confidence Intervals  
Instead of focusing on the individual spill causes which requires the use of a multinomial 
distribution, this problem can be thought of as involving two binomial probability distributions.  
For the application to the arctic, there is the binomial proportional split between arctic and 
“applicable or general” causes.  For the GOM spill data, there is the binomial proportional split 
between GOM-specific causes and “applicable or general” causes. 
 
Thus, for pipelines the spill cause analysis is simplified to estimating the proportion of GOM 
pipeline spills with causes that are relevant to the Beaufort and Chukchi Seas.  Table 2.28 is 
based on a characterization of hurricane and third party impact causes as GOM specific (at least 
as compared with Beaufort and Chukchi Seas spills).  Table 2.28 is based on the normal 
approximation to the binomial, which is covered in most introductory statistics texts and courses. 
 
Exact binomial confidence limits (Clopper and. Pearson, 1934) implemented as Excel functions 
(Harper, 2005) are used to compute exact binomial confidence intervals used in some of the 
tables below and at various parts of subsequent chapters.  The lower and upper confidence 
bounds are given below.  Unlike the approximate normal based intervals, exact binomial 
confidence intervals are generally not symmetric.  Normal based approximations to the binomial 
may not be accurate for small sample sizes or proportions that are close to 0 or 1. 
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where B is the number of successes in the n Bernoulli trials and is the upper 

1 2, ,n nfγ
thγ percentile of the F distribution with n1 and n2 degrees of freedom. 

 
Table 2.29 provides the exact binomial confidence intervals that may be compared to the normal 
approximation intervals in Table 2.28. Since the proportion (p-bar in the table) is close to 50% 
the normal approximation is mainly limited by the small sample size in this case.  The normal 
approximation is in this case too optimistic with tighter confidence intervals than given with the 
exact Table 2.29 intervals. 
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Table 2.28  Binomial Characterization of the Causes of Pipeline Oil Spills (Normal 
Approximation) 

 
# general causes 21

# GOM specific causes 15
total 36

p-bar 58.3%
σp 0.082

±conf. int. 
80% 6.9%
90% 10.5%
95% 13.5%
99% 19.1%

 
Table 2.29  Exact Binomial Characterization of the Causes of Pipeline Oil Spills  

 
# general causes 21 

# GOM specific causes 15 
total 36 

p-bar 58.3% 
σp 0.082 

Conf. Int. 
80% (46.3%, 69.6%) 
90% (43.3%, 72.3%) 
95% (40.8%, 74.5%) 
99% (35.9%, 78.5%) 

 
For platforms the spill cause analysis is simplified to estimating the proportion of GOM platform 
spills with causes that are relevant to the Beaufort and Chukchi Seas.  Table 2.30 uses the normal 
approximation to the binomial, and it is based on a characterization of hurricane causes as GOM 
specific (at least as compared with Beaufort and Chukchi Seas spills).  Table 2.31 reports the 
same results but as exact confidence intervals.  Once again the normal approximation is too 
optimistic though the main reason in this case is the closeness of the proportion p-bar to 100%.  
As the proportion gets close to 0% or 100%, the normal approximation variance gets 
unrealistically small.   
 
All binomial confidence intervals used in subsequent chapters are based on the exact binomial 
Excel functions. This results in a more defensible approach to quantifying distribution based 
parameter uncertainty. 
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Table 2.30  Binomial Characterization of the Causes of Platform Spills (Normal 
Approximation) 

 
# general causes 71

# GOM specific causes 7
total 78

p-bar 91.0%
σp 0.032

±conf. int. 
80% 2.7%
90% 4.1%
95% 5.3%
99% 7.5%

 
Table 2.31  Exact Binomial Characterization of the Causes of Platform Spills  

 
# general causes 71

# GOM specific causes 7
total 78

p-bar 91.0%
σp 0.032

Conf. int. 
80% (85.4%, 94.9%) 
90% (83.8%, 95.7%) 
95% (82.4%, 96.3%) 
99% (79.4%, 97.3%) 

 
 

2.6 Arctic Hazards and Extrapolating to the Arctic Environment 
Because some readers of this report will be relatively unfamiliar with Arctic specific hazards, 
this section is written at an introductory level.  While these Arctic specific hazards are a key part 
of defining oil spill risk in the Arctic, this study’s focus has been on the extension of statistical 
results from the GOM to the Arctic.   
 
While much of the research cited here dates back to the 1970s and 1980s, there have been 
significant recent advances in knowledge driven by the Northstar and Liberty projects.  The 
former is in production (14.4 Mbbl from 2001 to 2005 according to OCS Crude&Condensate 
Production 1954 to Estimated 2005  28April2006.xls transmitted by Cheryl Anderson).  
Northstar involves a subsea pipeline that has some to significant exposure to each of the hazards 
presented here.  Because Northstar is placed on a man-made gravel island (Seal Island), the 
recent experience is more relevant to subsea pipelines than it is to oil platforms in the Arctic.  
Example differences between gravel islands and platforms include size, typical ice forces, do 
ships dock or anchor, and the use of ice roads vs. ships and helicopters.  
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A good summary of Northstar can be found in Owen et al. (2001), while more specific topics are 
addressed in Paulin et al. (2001), Leidersdorf et al. (2001), Dickins et al. (2001), and Miller 
(2001). 
 

2.6.1 Ice Keel Gouging 
As noted in Palmer and Niedoroda (2005),  

“gouges are found almost everywhere in the Arctic, that they occur from shore to 
water depths of at least 40 m, that some gouges are very deep (> 5m) and wide (> 
50 m), and that gouges are contemporary and not relic.  A simple calculation 
shows that the force that the ice must apply to cut a deep gouge is very large, 
often of the order of 100 MN.  It is not practicable to design a pipeline to 
withstand such a force.” 
 

While more recent work is also cited, the definitive work on ice keel gouging is still Weeks, et 
al. (1983, 1984).  The scale of the effort and some key observations are summarized in the 
following quote from the 1984 reference (p. 229): 

“… between the barrier islands and the 38-m isobath the deepest gouge among 
20,313 measured along 1500 km of sampling track was 3.6m.  In protected 
lagoons, on the other hand, the deepest gouge (0.7m) was much shallower (from a 
sample of 41 gouges obtained from 298 km of sampling track) and a large 
percentage of the 1-km segments examined (92%) contained no gouges at all.” 
 

The spatial distribution for this data is from Smith Bay in the west to near Camden Bay in the 
east with the heaviest concentration off-shore of the current North Slope on-shore infrastructure.  
This is the most likely area for initial off-shore developments. 
 
One important parameter for ice keel gouging is the number of gouges per mile or per kilometer.  
For the gouge density, Weeks et al. (1983, p. 20) obtained an average of 5.2 gouges/km-year 
(with a range from 2.4 to 7.9 over 3 years).  In addition, no relationship with water depth was 
found (for deeper water).  The shallower segments in the lagoons had fewer gouges. 
 
From 1974 to 1990 data on 5329 gouges was gathered in the Canadian Beaufort Sea (reported in 
Chayes et al. (2006).  This showed a decreasing rate of gouging in deeper water (from about 1.5 
gouges/km in about 8 m to about 0.22 gouges/km in 30 m of water).  There are a variety of 
explanations that could be advanced for the differences between the Weeks and Chayes results, 
but resolution of this is outside the scope of this study.  As the Weeks data represent a larger 
sample in the right spatial location, this study relies on the Weeks data set. 
 
A second important parameter for ice keel gouging is the depth of the incision.  Weeks et al. used 
the exponential distribution to model the probability of different incision depths.  The parameter, 
λ, which is the inverse of the average incision depth, was found to depend on water depth.  
Specifically, the deeper the water was, then the deeper was the average incision depth (and the 
smaller was the λ).  The relationship between water depth, z, and λ (both measured in meters) is 
shown in Equation 2.1.  Note this equation is shown with the data it is derived from in Weeks et 
al. (1983, Figure 10 & 1984, Figure 4).   
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λ = 9.97e– 0.04z       (2.1) 

 
More recently between 1996 and 1999, 48 ice gouges exceeding the minimum measurement 
threshold of 0.1 m were detected in the Northstar pipeline corridor (Leidersdorf, et al., 2001).  
These were all in shallower waters (< 12 m) and the maximum incision depth was 0.4 m.  “In all 
four years, however, measurable gouges were confined to water depths exceeding 5 m.”  These 
results are consistent with the earlier work, and these results are limited to shallow water.  Thus, 
this study will rely on the earlier work by Weeks et al. which includes deeper gouges and deeper 
water depths. 
 
The work by Weeks et al. included the development of a probabilistic model for an ice keel 
gouge contacting the pipeline.  Thus, rather than attempting to summarize a voluminous and 
detailed analysis, this study will simply rely on that probabilistic model.  However, one key 
parameter of the probabilistic model is addressed in the data included in that original work.  A 
key question is: what is the orientation of the ice gouge relative to the pipeline?  If the ice gouge 
is angled to the pipeline then a gouge of a given length has a smaller probability of contacting the 
pipeline.  Thus, the original example application is done at angles of 90o and 20o.  This appears 
to have been done for illustrative purposes, and an angle must be chosen for this study. 
 
In shallower waters the gouge orientation has more variability.  However, “because the fast ice 
edge generally parallels the isobaths, ice-ice interactions tend to force the nearshore ice to drift 
parallel to the coast even when the free-drift direction is not exactly parallel with the coast.”  
Since the principal ice movement in deeper waters is parallel to the coast and pipelines will 
generally be perpendicular to the coast, the angle between the pipeline and the ice gouge is best 
modeled as nearly perpendicular. 
 
Other work on ice keel gouging includes  

• Croasdale et al. (2005) which focuses on failure modes for the ice in ice keel gouging, 
• Croasdale et al. (2001) which focuses on design for icebergs (on the Grand Banks), 
• Morrison and Marcellus (1985) comparing Alaskan & Canadian Beaufort Sea scour data 

and methodologies, 
• Wadhams (1977) which describes ice keels in the Arctic. 

 

2.6.2 Strudel Scour 
Strudel scours represent the removal of bottom material by the drainage of fresh water on top of 
the ice during the spring.  The most thorough study and modeling of the phenomenon was done 
in May 2000 to support the proposed Liberty Development Pipeline (Blanchet, Cox, Leidersdorf, 
and Cornell, 2000) with review by Eschenbach (2001). 
 
Based on that study and review, the following observations are made: 

1. Concerns about strudel scour are the largest directly in front of river mouths, as the rivers 
are the source of the water on top of the ice.  During spring flows not all of the water 
flows under the ice.  Thus, the more distant pipeline routes are from river mouths, the less 
of a concern there is with strudel scour. 
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2. The width and depth of the strudel scour depends on the water depth.   

a. While scours do occur under ice that is bottom-fast, those scours are smaller in 
size.  While their relative significance has not been verified, there are at least two 
limiting factors for shallow water strudel scours.  First, because the ice is bottom-
fast or nearly so, it cannot be depressed by the weight of water on top of the ice to 
form a pool of significant depth.  Second, the limited space under the ice, can 
limit the ability of water to flow away from the strudel scour.  

 
b. For the Liberty Pipeline Data Set, the majority of the strudel scours occurred in 5 

to 10 feet of water.  In water deeper than this, the strudel scours were shallower.  
Essentially, the water between the ice and the bottom is dissipating the erosive 
force of the water draining through the scour.  A second possible effect is the 
“relief” provided by water draining through strudel features closer to shore.  
While the water depth limits may vary with the volume of water being discharged 
by a particular river in a particular year, further data gathering and analysis could 
define whether a 12’, 15’, or 20’ water depth represents a limit to the area of 
concern for strudel scour.  Note that in strudel scour studies linked to the 
Northstar development (Leidersdorf, 2001) “all of the strudel scour depths greater 
than 1.5 m were found to occur in water depths less than 4 m.” 

 
c. A second limit for the water depth in which strudel scour can occur is the 

maximum extent of the “over-flood” limit.  For example, Blanchet et al. (2000, p. 
130) identifies a maximum over-flood extent of 3.3 miles off-shore with an 
average over 11 years of 2.59 miles (2.79 typo in final draft).  This was in the area 
of the Sagavanirktok, Kadleroshilik, and Shaviovik Rivers.  As another example 
measured a different way, Walker (1974) reported that overflood off of the 
Colville River extended only to the 3-6 m water depth in the Colville delta in 
three years of observations. 

 
3. While scour occurrence statistics can be calculated, the water depth limits imply that only 

a limited portion of any pipeline length is truly exposed to strudel scour.  A pipeline from 
an off-shore platform generally starts at the deepest depth it is exposed to and goes 
relatively directly to shore.  Thus, it is much more nearly perpendicular to the shore, than 
parallel with it.  Thus, the question for determining the concern with strudel scour, is how 
much of this pipeline is in for example, 5 to 12 or 15 or 20 feet of water? 

 
More recent work by Leidersdorf, Hearon, and Swank (2006) included data that suggests 
pipelines with hot oil may induce strudel scours – at least in shallow waters.  “Given this 
relatively low frequency, an unexpected finding was the occurrence of five scour depressions in 
close proximity to the Northstar pipeline alignment.  Four of the depressions were relatively 
small features in water depths less than 1.5 m, suggesting that the heat radiating from the 
pipelines predisposes the ice to strudel formation in shallow water.”  While not advanced in the 
paper, another possible explanation is the trapping of along-shore flow of overflood waters when 
an ice road is built over the pipeline (see Trefrey et al., 2004, Figure 3-28b, p. 45).   
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Strudel scour alone does not cause a pipeline spill.  Rather it represents the possibility of 
uncovering enough of a buried pipeline, which could lead to failure modes such as upheaval 
buckling, or even digging out underneath a pipeline to create a free-span.  Thus, probability 
models must consider the density of strudel scours and the probability of scours of sufficient 
dimension to uncover a critical length of pipeline.   
 
Blanchet et al. (2000, Table 3.10) calculated a density at the Liberty location of 4.0 scours/mile2-
year for 1997 data, 1.1 for 1998 data, and 2.9 for the combined data.   
 
There are several issues that cannot be addressed in this study for these data from Blanchet et al.  
First, it is not known how representative these values are of other potential pipeline locations.  
Second, while detailed strudel scour information from other years was not available, analysis of 
photo imagery indicated that in 11 years of data, the 1997 and 1998 years had the smallest extent 
of overflooding at this location.  (Overflooding extent represents how far out to sea the 
freshwater has flowed on top of the ice.)  See also Dickins et al. (2001) for more discussion of 
overflooding.  
 
To calculate the probability of uncovering a “critical length,” it is also necessary to know 
(Liberty values used shown in parentheses) the following: 
 Depth of burial (8’) 
 Probability distribution for width of scour (see Blanchet et al. 2000) 
 Relationship between width and depth of scour (assumed 45o slope) 
 Length of pipeline vulnerable to strudel scours (1.8 miles) 
 Critical length of uncovered pipe (100’). 
 
In the sensitivity analysis, use of a 27o slope rather than 45o was tested, and it reduced the 
probabilities by an order of magnitude.  Perhaps due to granular sediments in the area of the 
Liberty pipeline route for those data points with width and depth measurements, the calculated 
average slope values were much lower.  These were average slopes for individual scours ranging 
from 1o to 27o off the Sagavanirktok River, 1o to 14o off the Kadleroshilik River, and 1o to 5o off 
the Shaviovik River (Blanchet et al., 2000, p. 90).   
 
As a first order approximation within the limits of that data, it is reasonable to believe that 
likelihood of larger scours from years with more overflooding is balanced by the conservatism 
between the 45o assumed average slope, and the measured average slopes that were typically 
much less than 27o value used in the sensitivity analysis.  
 
With these parameters the probability of a free span greater than 0’ was calculated to be 3.8x10-4 
and the probability of a free span ≥ 100’ was calculated to be 5.2x10-5 (Blanchet et al., 2000, p. 
ix). 
  

2.6.3 Upheaval Buckling 
Upheaval buckling is more of an issue in the Arctic than in other locations, because the principal 
force is due to thermal expansion of the pipeline when filled with warmer oil as compared to its 
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temperature during construction – which is colder in the Arctic.  However, for a spill to occur, 
this must result in fracture or buckling – not just result in pipe movement. 
 
As the engineering expertise and assumptions to model this are not within the scope of this 
study, it is assumed that the critical length defined for the probability of a strudel scour has 
appropriately considered the probability of upheaval buckling.  Thus, the probability of upheaval 
buckling is assumed to equal the probability of a strudel scour. 
 
Assuming that the probability of upheaval buckling is equal to the probability of a problem due 
to strudel scour requires the assumption that design and construction of any buried pipeline has a 
sufficient margin of safety that upheaval buckling does not occur on its own.  Note that if a 
pipeline is not restrained by burial in a trench, thermal expansion can be accommodated by side 
to side rather than vertical movements. 

2.6.4 Thaw Settlement 
Thaw settlement has been an issue for portions of the Trans-Alaska pipeline, where warm oil has 
melted permafrost and ice lenses below the pipe.  This sinking of the pipe can be likened to an 
electric line that sags due to the weight of ice on it until the line snaps.   
 
Erosion due to the melting of permafrost is common along the North Slope of Alaska, thus the 
problems with thaw settlement start on-shore, can be high at pipeline landing sites, and can 
extend off shore due to subsea permafrost.  This subsea permafrost off the North Slope of Alaska 
has long been recognized as a potential problem for oil and gas infrastructure.  Nearest to the 
shore, the ice is frozen to the bottom and permafrost can form just as it does on-shore, but as 
detailed in Miller (2001) salt concentrations may be high and large ice lens and ice bonding may 
be rare.  Farther off-shore permafrost does not extend all the way to the soil/water boundary.  
More importantly, the further off-shore that you are the deeper into the soil are the boundaries 
between unfrozen soil, seasonally frozen soil, and permafrost.  It is only in permafrost that you 
find ice lens which when they melt lead to the most extreme cases of thaw settlement.  
 
This suggests that once a pipeline is “far” enough off-shore, then thaw settlement is not likely to 
be a problem.  While more data and engineering analysis of heat flows is required to determine 
how “far” off-shore this is, there is substantial work on subsea permafrost that has been done.  
For example one approach to defining the problem is the mapping of permafrost depths.  Work 
of this type for the North Slope includes Osterkamp and Harrison (1977 and 1976), Neave and 
Sellman (1982), Rogers et al. (1975), Sellman et al. (1989), and Barry (1989).   
 
Paulin et al. (2001) describes how thaw settlement was an issue near-shore for the Northstar 
project, and the modeling and over-trenching with thaw stable backfill that was done (see also 
Owen and Miller, 2001).   
 
A potential complication in some less expected locations may be the presence of relic 
permafrost.  In the Laptic Sea of eastern Siberia, where the OCS is wider than is Alaska’s, relic 
permafrost from when the sea levels were lower and the shelf was land has been found 
(Romanovsky, 2006). 
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As there is no statistical basis for estimating the probability of an oil spill due to thaw settlement, 
this study will not attempt to do so.   
 
While it is outside the scope of this study, it is worth noting that if a clear design standard will be 
applied to this phenomenon, then the design standard is potentially another way to establish a 
spill probability.  For example, suppose that the design standard is for 1 spill every 100 or every 
1000 years.  Such values can be converted into the probability of a spill. 
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3 Gulf of Mexico Spill Rate Estimation 

3.1 Introduction to Analysis of Data 
This chapter covers numerous statistical analyses and often involves fitting theoretical statistical 
distributions to the data sets described in Chapter 2.  The primary focus of the distribution fitting 
is either on modeling the inter-spill distributions or on the volume of the spills.  The inter-spill 
distributions lead directly to assessing if the assumption of a Poisson distribution is appropriate 
for the OCS and GOM data.  The Poisson process assumption has been attacked in some reviews 
(Givens 2002 & Zeh 2002) of the Anderson & LaBelle (2000) publication.  Because of the 
criticality of the Poisson assumption, Section 3.2 will focus on the general use of the Poisson 
distribution before subsequent sections assess the applicability of the Poisson for the OCS data. 
 
After the initial Poisson section, the data from Anderson & LaBelle (2000) are analyzed for both 
inter-spill and volume aspects in Section 3.3.  Applications of the exact Poisson confidence 
intervals described in Section 3.2 are applied to these data.  Pipeline spills are covered in Section 
3.3, and platform spills are covered in Section 3.4. 
 
Sections 3.5 and 3.6, respectively for pipelines and platforms, introduce extensions to the work 
in Anderson & LaBelle (2000).  One form of extension is using smaller thresholds, such as spills 
≥ 50 bbls, for data selection as described in Chapter 2.  Results of integrating distributions based 
on differing thresholds is given, as it may be more accurate to use larger data sets to predict even 
just those spills of at least 1000 bbl.  These sections also address a key issue of different 
exposure variables and tests if the Poisson assumption is relevant over time, production volumes, 
pipeline miles, and platform numbers. 
 
Minor adjustments in spill volumes are sometimes made to avoid duplicate values.  For example 
if there are four spill volumes of 50 bbl, these are changed to 50 bbl, 51 bbl, 52 bbl, and 53 bbl.  
If many volume ties are found at say 50 bbl, these are changed to 50 bbl, 50.1 bbl, 50.2, etc.  
Theoretically, the probability of any two continuous values being identical is zero, and these 
minor adjustments avoid some technical issues such as the stacking of points on a probability 
plot and do not impact the relevance of the findings presented here. 

3.2 Poisson Distribution 

3.2.1 Poisson Concerns about Exposure Variables 
The Poisson distribution is often used in counting processes in which events occur over some 
elapsed exposure variable.  Often the exposure variable is time and the Poisson is used to 
estimate the likelihood of so many events over a time period of interest.  For example, what is 
the likelihood of 15 phone calls in a ½ hour time period at a call center?  Even if a Poisson is 
appropriate, does the mean arrival rate of phone calls change over time?  If the arrival rate 
changes over time, such as spills becoming less likely due to better regulation and management, 
then the Poisson process is defined by statisticians as non-stationary.   
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Time is only one of many potential exposure variables.  One of the beauties of the Poisson is that 
it is flexible over both time and space, and that it can be measured in units of produced oil, 
pipeline-miles, or number of platform-years.   
 
One issue with testing the Poisson assumption is that few discrete distributions are in common 
practice compared to the many continuous distributions used.  Additionally fewer methods exist 
to test discrete distribution assumptions than for continuous distributions. The approach 
undertaken in Chapter 3 indeed relies on a link between the Poisson and a continuous 
distribution. 
 
Generally found in calculus based probability and statistics text is the relationship between the 
discrete Poisson distribution that can realize only values of 0, 1, 2 … for counting events and the 
continuous exponential distribution that can realize any observed values > 0.  In such texts it is 
shown that if and only if the inter-event times are exponentially distributed then the process 
generating the discrete events is a Poisson process.  Thus one can test the inter-event times to see 
if a theoretical exponential distribution adequately fits the observed data.  If so, then the 
assumption of a Poisson distribution for the events is justified.  As discussed earlier there are 
generally more ways to test a goodness-of-fit question when the distribution is continuous. 
 
In the context of the OCS data, inter-event is inter-spill for each of the potential exposure 
variables.  For both pipeline spills and platform spills, three exposure variables are analyzed.  
Time is the first exposure variable and is tested in subsequent sections of Chapter 3.  A second 
exposure variable has been production volume in Bbbl.  A third exposure variable is pipeline 
mile-years in thousands of miles (KMiles).  For platforms the third exposure variable is 
platform-years.   
 
Testing the Poisson assumption via an exponential goodness-of-fit requires that the days between 
spills, or the production volume between spills, or the number of pipeline mile-years between 
spills, etc. be computed.  If these inter-spill amounts are found to be adequately modeled by an 
exponential distribution, then using a Poisson for the spill events is justified.   
 
Data given in Chapter 2 show the annual production volumes and annual pipeline miles.  To 
compute the volume and pipeline mile-years between spills, the number of days in each year of 
the study horizon that capture the inter-spill time is computed.  Assuming that the production 
volumes and mileage are relatively constant with any given year, the Bbbl of production and 
KMiles of pipeline mile-years represented by the inter-spill time period are computed.  These 
numbers are then input to the corresponding exponential goodness-of-fit tests.  If the exponential 
fits these inter-spill amounts, then a Poisson assumption is justified for that exposure variable.   

3.2.2 Exact Poisson Confidence Intervals 
Once a Poisson distribution has been justified, one can begin to estimate the spill rate.  The rate 
is merely the mean of the Poisson distribution.  Concern still must exist to see if a time varying 
Poisson mean (also known as a non-stationary Poisson process or a non-homogeneous Poisson 
process) is needed.  For the time being in this section it is assumed that the assumption of a 
stationary non-changing mean is appropriate though this assumption is examined in Section 3.6. 
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Bounding the uncertainty in a parameter estimate is standard statistical practice, and it has been 
mentioned in several reviews.  Quantification of this uncertainty is based on the level of 
confidence desired and the appropriate method for the parameter of interest.  The parameter of 
interest for OCS is the estimate of the mean of the Poisson process.  This is the rate at which 
events (spills) are estimated to occur.  As discussed earlier this rate depends on the selection of 
an exposure variable (time, production volume, pipeline mile-years, platform-years are used in 
Chapter 3). 
 
While not mandatory it is common practice to develop 95% confidence intervals.  For the 
Poisson distribution the corresponding interval should not be developed using standard normal 
based confidence interval approaches.  That is, one should not break an exposure variable – say 
the continuous variable production volume in Bbbl into individual bins from which a mean and 
standard deviation are computed to form a confidence interval.  Exact methods for Poisson 
confidence intervals have been documented (in obscure places admittedly) for many years and 
are given below.  These may easily be computed in Excel though with a caution (Buchan, 2004 
on the web at http://www.nwpho.org.uk/sadb/Poisson%20CI%20in%20spreadsheets.pdf) due to 
an Excel function inaccuracy that does not impact the OCS application. 
 
From Johnson and Kotz (1969, pp. 96) are the formulas in Equation 3.1 where λ (the more 
common Poisson mean notation) is used instead of the θ  used in Johnson and Kotz.  The first 
formula for Lλ  represents an exact lower confidence interval for the mean spill rate λ  while the 
second for Uλ  is the formulation for the upper confidence interval.  Taken together these form 
the 95% confidence interval used later in Chapter 3 where α  is set to 0.05.  These confidence 
intervals are based on the chi-square (χ2) distribution.   
 

2 2
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1 1
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    (3.1) 

 
Generally in statistics increasing the sample size decreases the width of confidence intervals.  In 
this case, the subscript x is the number of spills, and the basis for the number of degrees of 
freedom for the chi-square variable.  Then the amount of the exposure variable is in the 
denominator of Equation 3.1.  To check that this formula behaves as expected, assume that the 
number of spills and the amount of exposure are both doubled (which keeps the spill rate 
constant).  Doubling the number of degrees of freedom more than doubles the lower χ2 value, so 
the lower limit goes up and is closer to the estimated average, since the exposure doubled.  In 
like fashion doubling the number of degrees of freedom less than doubles the upper value, so the 
upper limit has decreased.  Thus, a larger sample at the same spill rate has a tighter or narrower 
confidence interval. 
 
The resulting confidence interval will generally be tighter than the inaccurate intervals based on 
dividing the exposure variable into artificial subunits.  
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3.2.3 Comparison of MMS and Exact Poisson Confidence Intervals  
Below is a comparison of the 95% confidence intervals found on the web at 
http://www.mms.gov/eppd/sciences/osmp/pdfs/ConfidenceIntervals2.pdf and exact Poisson 
confidence intervals.  Both are endeavoring to create 95% confidence intervals for the pipeline 
spill rates between the time periods given in the below Table 3.1. 
 

 
Table 3.1  95% Confidence Interval Comparison Based on Anderson & LaBelle (2000) 

Pipeline Data with Production Volume as the Exposure Variable 
 

OCS 
Pipelines 

# 
Spills 

Volume 
(Bbbl) 

Rate 
(Spills/Bbbl) 

MMS Confidence 
Interval 

Exact 95% Poisson 
Confidence Interval 

1964-
1999 16 12.00 1.333 (0.54, 2.12) (0.76, 2.17) 

1985-
1999 8 5.81 1.377 (0.00, 2.77) (0.59, 2.71) 

 
The intervals reported on the web are based on dividing the production volume into 1 Bbbl units 
and then computing the confidence intervals based on N = 12 (for 1964 – 1999) assumed 
independent observations.  With small sample statistics, this approach would also typically 
assume that the data are from a normal distribution.  This introduces an unnecessary binning 
process and one that may be inaccurate for non-integer Bbbl.  The associated statistical 
procedure may allow the possibility of negative values in the confidence intervals which are then 
set to zero.  The exact approach with results seen in the final column of Table 3.1 is based on 
sound conceptual theoretical underpinnings and is also easier to compute. 

3.2.4 Compound Poisson Distribution 
A topic worth mentioning is the compound Poisson distribution (also called a mixture of Poisson 
distributions).  Clark & Harper (2000, beginning pp. 113) discuss this topic from an application 
perspective while Johnson & Kotz (1969, beginning pp. 111) provide a more theoretical 
foundation.   
 
For example, if there are multiple spill modes each represented by a Poisson, then the combined 
spill probability may be represented by a combination of individual Poisson distributions.  The 
weighting function for each individual Poisson depends on the appropriate assumptions that 
should be based on sound engineering and/or statistical rationale.  In future work, this could 
potentially be employed in the GOM to Arctic transition.  It would have to fold in both the 
uncertainty in the Poisson rates and the uncertainty in the proportions (weighting functions) for 
the different spill modes.  
 

3.3 Pipeline Spill Analyses Based on Spills ≥ 1000 bbl (1964 – 1999) 
Section 3.3 covers pipeline spills using the data found in Anderson & LaBelle (2000).  Both 
inter-spill and volumes are analyzed.  In a similar vein Section 3.4 examines platform spills 
using the data from Anderson & LaBelle (2000). 
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3.3.1 Pipeline Inter-Spill Distribution Analysis 
A variety of statistical hypothesis tests and graphical procedures were used in the analyses 
supporting Chapter 3; however, the presentation in this chapter will often be limited to the two 
graphical based procedures found to be the most understandable and informative.  These figures 
will be supplemented by other results when felt necessary to support a given situation.  We note 
for the non-statistician that fitting statistical distributions to data is both an art and a science.  
Different statistical tests may give differing results and an engineering statistician must be 
willing to blend these sources to find the most logical choice. 
 
Figures 3.1 and 3.2 are based on the 16 pipeline spills of at least 1000 bbl found in Table 2 of 
Anderson & LaBelle (2000) (also in Table 2.1 of this report).  For each spill the inter-spill time 
in days was computed resulting in 15 inter-spill times.  As this is approximately a 31 year time 
interval (1967 – 1998), the mean inter-spill time is 773.6 days (a little over 2 years).  This 
excludes an inter-spill time for the final spill of July 23, 1999 as there is no subsequent spill date.   
 
Figure 3.1 is a probability plot for an exponential distribution.  The blue lines represent 95% 
confidence limits on the modeled exponential distribution while the red circles represent the 
actual observed data.  The AD (Anderson-Darling) goodness-of-fit test statistic of 0.337 is not 
meaningful by itself; however, the associated p-value of 0.739 clearly indicates that an 
exponential distribution adequately fits the data based on this test statistic.  P-values ≥ 0.05 
indicate that the associated goodness-of-fit test is not rejected at the 95% confidence level.   
 
Statistical tests are aids and should not be relied on in isolation.  Graphical assessments are more 
important and some language is needed to represent the application of professional assessment.  
While somewhat colloquial, this report uses the acronym of TLAR (That Looks About Right) in 
line with what may be approaching nearly a century of use.  In Clark and Harper (2000a) the 
acronym is credited to Walt Giffin who introduced it to the authors in their graduate statistical 
work.  The TLAR (That Looks About Right) is a visual assessment of how the empirical or 
observed data fits a given theoretical model.  Data analysis should always involve visual 
assessments as this provides a medium easily understood by almost anyone and the human 
pattern recognition capability is a needed tool for identifying trends, outliers, and data requiring 
detailed analyses.  While it does take a trained eye with necessary experience to fully assess such 
visual goodness-of-fit measures, it allows the selection of statistical distributions in those cases 
where numerical statistics are not sufficient to make a final determination.  Figure 3.1 along with 
the Anderson-Darling results support an exponential distribution. 
 
Figure 3.2 further supports an exponential distribution for the inter-spill times based.  The 
smooth line represents the theoretical cumulative distribution function (cdf) for the hypothesized 
distribution (exponential in this case) versus the step function empirical cdf.  A visual TLAR 
comparison finds these two lines in good agreement.  Since these inter-spills times are 
adequately modeled by an exponential, as explained in Section 3.2.1, the assumption of a 
Poisson distribution over time is justified.   
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Figure 3.1  Exponential Probability Plot of Pipeline Inter-Spill Times Using Anderson & 

LaBelle (2000) Data 
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Figure 3.2  Exponential Empirical CDF Plot of Pipeline Inter-Spill Times Using Anderso
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3.3.2 Poisson Rate for ≥ 1000 bbl Spills  

 

 is justified. 

L 

The last section examined and affirmed the validity of the Poisson assumption for larger spills 
when using time as the exposure variable.  Table 3.2 defines the rate and confidence intervals for
that data set and a later subset. The later subset 1985-1999 inter-spill times have also been found 
to be well fit by an exponential distribution (though the results are not shown) and thus the 
application of the Poisson distribution for quantification of spill rates
 

Table 3.2  Spill Rate per Year for ≥ 1000 bbl Spills 
 

Time Period  # Spills Exposure 
Variable 

Sum Exposure 
Variable 

Rate 
(Spills/year) LCL UC

1964-1999 16 Integer Years 36 0.444 0.254 0.722 
1985-1999 8 Integer Years 15 0.533 0.230 1.051 

 
Intuitively, one would expect the average rate for the Poisson distribution (spills/year) to be the 
inverse of the average rate for the exponential inter-arrival time between spills.  This is only 
pproximately true, because the inter-arrival distribution da

ig
ata have 1 less data point, and it 

nores the time before the first spill and after the last spill.  Thus for 1964-1999 inverting the 
 days to years equals 0.472 spills/year (= 

 

 

tinuous 
distributions such as the exponential and Weibull distributions used often in this report.  No 
goodness of fit for a Poisson existed in Mintab until summer 2005 in which a downloadable 
patch that upgrades the user to Minitab 14.2 adds a chi-square goodness of fit test for the 

60 spills for a quality application of the Chi square test.  This 

average 773.6 days between spills, and converting from
365/773.6) rather than the 0.444 spills per year shown in Table 3.2.   
 
Because of its importance, the exact relationship between the Poisson and exponential is detailed
and illustrated for three exposure variables in Section 3.5.2.  This important relationship allows 
the better set of statistical tools for continuous distributions to be used effectively; otherwise, less
precise goodness of fits goodness of fit tests for discrete distributions such as the Poisson would 
require binning of the data and more serious sample size concerns.   
 
For example, Minitab 14 (the current version of this well known statistical package) does 
probability plots along with the Anderson-Darling goodness of fit test for numerous con

Poisson.  However chi-square goodness of fit tests requiring binning of the data, which is 
somewhat arbitrary, so that different users may get varying results.  Additionally the chi-square 
goodness of fit tests requires minimum expected bin frequencies to be valid.  A common 
standard is an expected bin count of at least 5 observations.  Thus, 12 bins of one Bbbl of 
production would require roughly 
is likely to be a problem for the small data sets available. 
 

3.3.3 Pipeline Spill Volume Distribution Analysis 
A brief overview of the Weibull distribution is included here.  The cumulative distribution 
function (cdf) in all of the empirical cdf plots, such as Figure 3.2, is the probability of the 
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random variable being ≤ some value.  The cdf is represented in the statistical literature by F(x).  
For continuous distributions such as the exponential or Weibull, this is the integral of the f(x) 
that represents the probability density function (pdf).  The random variable x in F(x) is whatever 
variable is being modeled such as spill volumes.  For example F(5000) = P(x ≤ 5000) or 
probability that a spill volume would be less than or equal to 5000 bbl. For the Weibull 
distribution F(x) is given below where , ,ν α β  represent the threshold (or Thresh on the plots), 

ale, and shape parameters given in the Minitab probability and empirical cdf Weibull plots. sc

.

exp .

, ; 0( ) 1 exp

where implies e raised to a power

for x otherwisexF x
β

νν
α

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥⎣ ⎦

>−= − −  

The complementary cumulative distribution function (ccdf) is 1 – F(x).  For example P(x > 5000 
bbl) = 1 – F(5000), and it is the probability that a given spill will exceed 5,000 bbl.  Since each 
Weibull Minitab plot gives us values for Thresh, Scale, and Shape or , ,ν α β  it is relatively easy 
to compute either F(x) or 1 – F(x).   
 
The analysis reported here supports the Weibull distribution (parameters for shape, location, and 
threshold given in figures) as an adequate model for the sixteen pipeline spill volumes in 
Anderson & LaBelle (2000).  This fit of a Weibull distribution is not as good as subsequent 
Weibull fits for volumes in other sections of this chapter primarily due to the inclusion of the 
1967 spill volume of 160,638 bbl that is not in the time period covered in other sections.  The 
Weibull is the best fit based on the Input Analyzer’s Squared Error criterion (Kelton, Sadowski, 
and Sturrock, 2004, chapter 4), is not rejected by the Input Analyzer’s Kolmogorov-Smirnov 
goodness-of-fit test (p-value > 0.15), and looks reasonable visually in the probability plot below 
in Figure 3.3 as well as the empirical cdf plot in Figure 3.4.  It does not pass the Anderson-
Darling test as seen in Figure 3.3; however, the other evidence leads to the overall acceptance of 
the Weibull distribution. 
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Figure 3.3  Weibull Probability Plot of Pipeline Spill Volumes Using Anderson & LaBelle 

(2000) Data 
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Figure 3.4  Weibull Empirical CDF Plot of Pipeline Spill Volumes Using Anderson & 

LaBelle (2000) Data 
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The Weibull distribution will be used considerably later in this chapter to provide linkages 
between various thresholds (e.g. 50 bbl, 100 bbl, 500 bbl, & 1000 bbl) choices in data sets.

3.4 Platform Spill Analyses Based on Spills ≥ 1000 bbl (1964 – 1999) 

3.4.1 Platform Inter-Spill Distribution Analysis 
The OCS Platform Inter-spill data are examined in this section using the data f

 

rom Anderson & 
aBelle (2000, p. 306) (also Table 2.6 in this report).  Eleven platform spills occurred between 

1964 and 1980.  None occurred between 1980 and the publication of the Anderson & Labelle 
2000 article.  The assumption of a Poisson distribution for the frequency of spills based on time 
is tested in this section.  This is addressed by examining if the exponential distribution 
adequately fits the inter-spill times.   
 
Figures 3.5 and 3.6 show that the inter-spill times in days between 1964 and 1980 are reasonably 
fit by an exponential distribution implying the Poisson arrivals are reasonable over this time 
frame.  In addition to the visual assessment, the Anderson-Darling goodness-of-fit test (p-value = 
0.496) is not rejected.  Thus modeling the process (at least based on time) by a Poisson 
distribution for this time period is justified, but there have been no platform spills between 1980 
and the publication of Anderson & LaBelle (2000).  How this lack of platform spills impacts the 
Poisson assumption is addressed in Section 3.4.2. 
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Figure 3.5  Exponential Probability Plot of Platform Inter-Spill times Using Anderson &

LaBelle (2000) Data 
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Figure 3.6  Exponential Empirical CDF Plot of Platform Inter-Spill times Using Anderson 

& LaBelle (2000) Data 

3.4.2 Platform Inter-Spill Distribution Analysis with Hypothetical 1/1/1999 Spill 
Gi
(2000), it is necessary to examine the on distribution.  A hypothetical spill 

as added on 1/1/1999 to examine this issue.  Figure 3.7 clearly shows that the exponential 
distribution no longer adequately fits the data with this hypothetical platform spill added.  

nderson-Darling test (p-value = 

latform spills over the 16.61 year time frame in Anderson & LaBelle (2000) 
e annual spill rate is 0.662 platform spills/year.  For a 19 year time period after this, the 

y 

r 
n 

s may be appropriate) for spills ≥ 1,000 bbl. 
 

Exponential 

ven that no spills have occurred between 1980 and the publication of Anderson & LaBelle 
 applicability of a Poiss

w

Supplemental statistical support is provided by the failing A
0.017) though more weight should be given to failing the TLAR comparison. 
 
Another way to approach this issue is to ask if a Poisson adequately fits the 1964-1980 data, 
what would that particular Poisson distribution tell us about the subsequent 19 years through 
1999?  For the 11 p
th
expected number of spills would be 12.58 spills versus the 0 spills observed.  More specificall
using a Poisson distribution with this mean, the probability of 0 spills in 19 years would be only 
0.000003, i.e., a very unlikely situation.  Thus it is concluded that the use of a single Poisson fo
platform spills over the time period from 1964 to 1999 is not currently justified (separate Poisso
distributions for different interval
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Figure 3.7  Exponential Probability Plot of Platform Inter-Spill times Using Anderson & 

LaBelle (2000) Data Supplemented w l Spill on 1/1/1999 
 

.4.3 Platform Volume Distribution Analysis  
A Weibull distribution fits the platform spill volumes as illustrated in Figures 3.8 and 3.9.  This 
is supplemented by the Anderson-Darling goodness-of-fit (p-value > 0.25) seen in Figure 3.8.  
The Weibull distribution is a flexible distribution compared to several common continuous 
distributions, and we use the Weibull distribution extensively (see Section 3.5) to generalize the 
work seen in Anderson & LaBelle (2000). 
 
It is not uncommon to see p-values, such as in Figure 3.8, given as either > some value or < some 
value in goodness of fit applications.  The underlying null hypothesis sampling distribution of 
the test statistic has not been fully solved for all potential statistical distributions being tested 
with goodness of fits tests such as the Kolmogorov-Smirnov and the Anderson-Darling.  In such 
cases as seen in Figure 3.8 for a three parameter Weibull distribution current statistical methods 
are unable to give an exact p-value but can assess that the p-value is greater than 0.25 which is 
all that is needed for most hypothesis testing.  
 

ith a Hypothetica

3

MMS 62 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

Volume - Threshold

Pe
rc

en
t

1000000100000100001000

99

90

80
70
60
50
40
30

20

10

5

3

2

1

Shape 0.6082
Scale 11569

0.385
P-Value >0.250

Thresh 1000
N 11
AD

Pro e
3-Parameter Weibull - 95% CI

 
Figure 3.8  Weibull Probability Plot of Platform Spill Volumes Using Anderson & LaBelle 

(2000) Data 
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Figure 3.9  Weibull Empirical CDF Plot of Platform Spill Volumes Using Anderson & 

LaBelle (2000) Data 
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3.5 Analyses Based on Pipeline Spills ≥ 50 bbl  
Section 3.5 extends published MMS work by including smaller spills.  The reasons for adding 
extra data by lowering the threshold of 1,000 bbl include providing additional insights, testing if 
such extended data provides further support of the analyses based on the 1,000 bbl threshold, 
searching for other ways to estimate spill rate uncertainty, and examining the statistical value of 
a larger data set.   
 
Another key extension is in the area of exposure variables.  As mentioned before the Poisson 
distribution has tremendous flexibility, but it should be tested to see if it fits the actual observed 
data.  Earlier in Chapter 3 this was examined only for the time between spill events.  Does the 
Poisson assumption hold when the exposure variable is no longer time, but instead production 
volume or pipeline mile-years?   

3.5.1 Pipeline Inter-Spill Analysis Based on Three Exposure Variables 
A data set with 36 observations (Table 2.2 combined with Table 2.3) starting with June 13, 1972 
was used to see if a Poisson process can be justified based on time, on production volume (Table 
2.11) in millions of barrels (Mbbl), and from Table 2.12 on thousands of pipeline mile-years 
(KMiles).  The rationale for this start date was due to the availability of both production volume 
and pipeline miles data.   
 
T  
exam  

ays in 1972 and the re roduction volume 
nd pipeline miles were fairly constant throughout a given year, the total production volume and 

a

igures 3.10 through F dequately fits all 
ree exposure variables (time, production volume, and pipeline mile-years) for this data set.  

Both visual a nts and th  g -fit upp s de .  
Thus now it i le to take is tio stim the
spills.  Having said that a Poisson le, it essa xam ity 
of tio
 

his analysis required that the number of days in each year between each spill be computed.  For
ple the first inter-spill time from June 13, 1972 to May 12, 1973 covered 333 days with 202

maining 131 days in 1973.  Then assuming that the pd
a
the tot l pipeline mile-years between spills were computed.   
 
The inter-spill data for time, production volume, and pipeline mile-years are then tested to see if 
an exponential distribution fits the observed data.  As before, if an exponential fits the inter-spill 
data for a given exposure variable (time, production volume, or pipeline mile-years) then a 
Poisson may be used to estimate the likelihood of the number of spills per unit of the exposure 

ariable.   v
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Figure 3.10  Exponential Probability Plot of Pipeline Inter-Spill (Spills ≥ 50 bbl) Times 

Using N = 36 Data Set 
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Figure 3.11  Exponential Empirical CDF Plot of Pipeline Inter-Spill (Spills ≥ 50 bbl) Times
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Figure 3.12  Exponential Probability Plot of Pipeline Inter-Spill Production Volumes 

(Mbbl) Using N = 36 Data Set (Spills ≥ 50 bbl) 
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Figure 3.15  Exponential Empirical CDF Plot of Pipeline Inter-Spill Pipeline Mile-Years 

(KMiles) Using N = 36 Data Set (Spills ≥ 50 bbl) 
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3.5.2 Exposure Variable Poisson Confidence Intervals and an Introduction to the Poisson 
– Exponential Relationship 

Once the Poisson assumption has been validated by testing exponential inter-arrival measures, it 
is possible to compute spill rates with exact Poisson confidence intervals (LCL, UCL) or (lower 
confidence limit, upper confidence limit) for each exposure variable.  The results are shown in 
Table 3.3.  
 

Table 3.3  Spill Rates for ≥ 50 bbl Spills (N = 36) 
 

Label Exposure Variable
Sum 

Exposure 
Variable 

Rate LCL UCL 

Pipeline Spills/KMile-year KMile-years 161.80 0.223 0.156 0.308 
Pipeline Spills/Bbbl Bbbl Production 13.5 2.660 1.863 3.682 
Pipeline Spills/year Time, whole years 34 1.059 0.742 1.466 

 
As detailed in earlier chapters, the relationship between the discrete Poisson distribution and the 
continuous exponential distribution allows the testing of the Poisson assumption for small data 
sets that could not directly be assessed from a discrete distribution approach.  
 

ypically in modern statistics book
 

T sλ is used to represent the true unknown Poisson mean and 
λ̂ represents its estimate based on the observed data.  Computationally λ̂ is simply computed by 
div

one in Table 3.3 above.  Since
iding the number of events (spills) by the sum of the relevant exposure variable such as was 

d  λ̂ is only a sample estimate of the true population parameterλ it 
is critical to bound this estimate with a confidence interval as done in Table 3.3 to convey the 
uncertainty in the estimation.  In what follows below the concern is not on the associated 
confidence interval but instead on using the Poisson and exponential relationship to provide an 
estimate ofλ . 
 
Each of the Minitab plots for the exponential distribution showed the value of the mean,1/λ .  
Examining these exponential means and inverting them, one might intuitively expect to get the 
same Poisson rates seen in Table 3.3.  Instead the following is obtained. 
 

Table 3.4  Rate Estimates using Exponential Distribution 
 

Exposure Variable Exponential Mean Rate 
Pipeline Spills/KMile-year 4.539 0.220 
Pipeline Spills/Bbbl 0.3781 2.645 
Pipeline Spills/year 347.3 days 1.051 per year 

 
While the agreement is close between the two sets of rates shown in Tables 3.3 and 3.4, there are 
minor differences.  These minor differences are based on the use of the data set.  In this case the 
exponential analysis deals with the 35 intervals between the 36 spills used for the Poisson 
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approach.  Thus the exponential data set does not use the time (or amount of some other 
exposure variable) before the first spill or after the last spill which is part of the Poisson data set.   
 
If the Poisson approach focuses in on these same data, that is the interval between the first and 
last spill, then an exact match to the exponential rate is found.  This has one less spill, since “the 
clock starts” with the first spill (now spill 0) and ends with the last one.  Thus, the rates in Table 
3.5 match the rates in Table 3.4.  
 

Table 3.5  Poisson Rates based on Inter-Spill Data (N = 35) 
 

Label # Spills Exposure 
Variable 

Sum 
Exposure 
Variable

Rate LCL UCL 

Pipeline Spills/KMile-year 35 KMile-years 158.861 0.220 0.153 0.306 
Pipeline Spills/Bbbl 35 Bbbl Production 13.235 2.645 1.842 3.678 
Pipeline Spills/year 35 Time, years 33.304 1.051 0.732 1.462 

 
Table 3.5 also allows a clear statement of how the exponential mean for the inter-arrival interval 
is estimated.  It is simply the sum of the exposure variable divided by the number of spills.  For 
KMile-year this is 158.861 divided by the 35 inter-spill observations.  This gives the same exact 
expo  
tatistics, empirical CDF, and probability plot require the computation of all the inter-spill 

exposure variables.  
 

s
2005), it is not true that the final data sets end with significant spans of time without spills.  
Thus, it is left to further research and other spill data sets whether it is desirable to consider a 
final long-period without spills as a “censored” application for the exponential distribution.  For 
example, suppose the period of no platform spills exceeding 1000 bbl from 1980 were to have 
continued through 2005.  This is the same issue faced in mortality estimation when some people 
in a study are still alive, which is handled by using censored data techniques.  If a person is still 
alive, that period is known, even if their life span is not.  It is a direct analogue to the last spill 
and thus the methods used on biostatistics could be applied to spill data. 
 

3.5.3 Pipeline Spill Volume Models  
In examining the pipeline spill volumes there are some ties for spills sizes ≤ 100 bbl and minor 
adjustments were made to break the ties.  Of the 36 pipeline spill volumes, 31 (86%) were 
unchanged, 3 (8%) were increased by 1 bbl, 1 (3%) was increased by 2 bbl, and 1 (3%) was 
increased by 3 bbl.  There were four spills listed as 50 bbl and two of these were the ones 
changed by 2 or 3 bbl.  The average increase was 0.222 bbl.  These changes are minor and do not 
impact the statistical results in this report.  However, avoiding ties is important for some of the 
statistical work. 
 
This section shows that Weibull distributions fit Pipeline spill volumes for draft spill volumes in 
the left-hand column of Table 2.2 with thresholds of 50 bbl, 100 bbl, 500 bbl, and 1000 bbl.  

nential mean seen in Table 3.4 of 4.539.  While this is straightforward, the goodness-of-fit
s

A  there are large pipeline and platform spills near the end of the studied time frame (1972 – 
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Sub
 1972 to 2005, 

rows from 16 with a threshold of 1,000 bbl, to 19 with a threshold of 500 bbl, to 29 with a 
threshold of 100 bbl, and to 36 spills with a threshold of 50 bbl. 
 

he authors believe that the more complete data set (spills ≥ 50 bbl) offers the opportunity for 
further insight and possibly better estimation.  Even this larger (N = 36) data set ignores pipeline 

data set.  What is 

nderson-Darling goodness-of-fit results in each probability plot 
upport the selection of the Weibull distribution.  Data sets with labels that include text such as 

n 

sequent sections use these results to present some conceptual approaches that extend the 
work of Anderson & LaBelle (2000).  The dataset used here, based on data from
g

T

spills less than 50 bbl and hence cannot be considered a complete pipeline spill 
the impact of ignoring spills less than 50 bbl?  It depends on what proportion of the full 
population of pipeline spills are less than 50 bbl.  The 50 bbl data set is used to estimate what 
conditional proportion of the ≥ 50 bbl population falls into the ≥ 1,000 bbl population.  The 
results are encouraging.  
 
Figure 3.16 through Figure 3.23 show that the Weibull distribution is a reasonable fit for all four 
thresholds shown.  Visual TLAR assessments of both the probability plots and empirical cdf 
plots supplemented by the A
s
50_1 have been very slightly modified to break the lower level ties.  For example rather tha
leaving say three values at 50 bbl, a label such as 50_1 implies that ties have been broken as 
discussed in the first paragraph of this section.  Such modifications allow better visual 
distributional assessments as well as aiding the statistical goodness of fits tests. 
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Figure 3.16  Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 50 bbl 
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Figure 3.17  Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 50 bbl 
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Figure 3.18  Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 100 bbl 
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Figure 3.19  Weibull Empirical CDF Plot of Pipeline Spill Volumes 
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Figure 3.20  Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 500 bbl 
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Figure 3.21  Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 500 bbl 
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Figure 3.22  Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 1000 bbl 
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Figure 3.23  Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 1000 bbl 
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3.5.4 Comparing Pipeline Spill Volume Models for Different Thresholds 
our Weibull (see Section 3.3.3 for explanation of Weibull) distributions to Fitting the f the four 

data sets, allows the computation of some measures of consistency.  That is because with any of 
the spill distributions it is also possible to comp ity  For example, 
for the spill distribution for ≥ 50 bbls it is also possible to compute the probability of ≥ 100 bbls, 
≥ 500 bbls, and ≥ 1000 bbls.  Table 3.6 is a table of odds ratios comparing the four models.  
Notice that the blan lls corres size comp that canno e with a probability 
distribution at a hig reshold  distribution for spills ≥ 500 bbl cannot be used to 
predict spills of ≥ 50 bbl). 
 

or example, consider the row comparing 100 bbl spills vs. 500 bbl spills.  In the ≥ 50 bbl 

he odds 

stimating the likelihood of spills exceeding 2000 bbl to spills exceeding 15,000 bbl.  It is not 
tainty; however, it is 

e  1000 bbl models have led to less 

ute the probabil  of larger spills. 

k ce pond to arisons t be mad
her th  (e.g., the

F
column the odds ratio is 1.46 implying that the odds of spilling more than 100 bbl compared to 
500 bbl is 1.46 to 1.  In the ≥ 100 bbl column of this row, the odds of spilling more than 100 bbl 
compared to spilling more than 500 bbl is estimated to be 1.51.  Note the consistency of t
ratios in the ≥ 50 bbl and ≥ 100 bbl columns.  This implies that these two Weibull models are 
providing similar predictions.   
 
While the odds ratios for the ≥ 500 bbl and ≥ 1,000 bbl columns are similar to the other rows for 
some values, these two columns have much higher odds ratios for the last row 2000 vs. 15000 
e
unusual to find the extremes (tails) of a distribution having the largest uncer
believ d that the smaller data sets available for the ≥ 500 and ≥
reliable results.  It seems to be a better approach to use a larger data set (e.g., ≥ 50 bbl) to more 
completely estimate the spill distribution.  Indeed if data were available for all spills regardless 
of size, then those data should be examined to assess their potential worth. 
 

Table 3.6  Odds Ratios for the Four Different Threshold Weibull Distributions 
 

 Thresholds for the four Weibull models 
Spill sizes compared ≥ 50 bbl ≥ 100 bbl ≥ 500 bbl ≥ 1,000 bbl 
50 vs. 100 1.25    
100 vs. 500 1.46 1.51   
500 vs. 1000 1.27 1.24 1.13  
1000 vs. 2000 1.37 1.34 1.24 1.16 
2000 vs. 15,000 5.37 5.62 10.50 12.00 

 
Another w o l) 
to estimate e  much of the ≥ 100 bbl distribution should represent 
giv t r vein the ≥ 50 bbl distribution was used to do the 
same for th  rtions 
(pro b onditional probabilities are then 
used to adj s to 
allow a gra ic four cdfs as given in Figure 3.24.   
 
This paragraph and the next detail how this is done.  The conditional probability of one event 
happening given another will happen is just the ratio of two probabilities.  The numerator is the 

ay t  compare these four Weibull distributions is to use the largest data set (≥ 50 bb
th  conditional proportion of how

en hat the spill is ≥ 50 bbl.  In a simila
e ≥ 500 bbl and ≥ 1000 bbl distributions.  These conditional propo

ba ilities) are 0.793, 0.544, and 0.429, respectively.  These c
ust the cumulative distribution functions of these three larger threshold distribution
ph al overlay comparison of the 

MMS 75 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

joint proba
conditioned n bl 
given that the s f the required ratio is P(x ≥ 1000 bbl and x ≥ 50 
bbl h x ≥ 50 bbl) where x is the spill size.  
Unfortunat  
approach th p
the full spill si bl.  Thus 

hen this model is used to compute P(x ≥ 1,000 bbl), it is instead computing the probability of a 

bility that both events will occur.  The denominator is the probability that the event 
 o  will occur.  For example, what is the conditional probability of a spill ≥ 1,000 b

pill is ≥ 50 bbl?  The top half o
) w ile the bottom probability is the probability that P(

ely we have no way with the available data of assessing P(x ≥ 50 bbl).  Instead we 
e roblem from a different perspective.  Our Weibull distribution for ≥ 50 bbl is not 

ze distribution.  It is a conditional distribution for only those spills ≥ 50 b
w
spill being ≥ 1,000 bbl given that the spill size is at least 50 bbl and hence a conditional 
probability. Jumping ahead to compute this probability which is one of three conditional 
probabilities in the next paragraph, 1- F(1000 bbl using the ≥ 50 bbl model) is the desired 
conditional probability.  The math for this example is: 
 

0.43981000 50x v β ⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞− −1 (1000) 1 1 exp exp 0.429
1391

F
α

⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
− = − − − = − =  

 

 represents the likelihood that a spill will 
e ≥ 500 bbl given that the spill is ≥ 50 bbl.  The ≥ 50 bbl model covers any spills of at least 50 

f this 

ell the Weibull for ≥ 50 bbl fits the other data sets based on larger 
resholds is that the theoretical conditional proportions (0.793, 0.544, 0.429) based solely on the 

ual data which are 
0.8 0.52
smaller sam f 
observation se results are very encouraging.  This supports the belief that 
the 
 
Figure 3.24  100 bbl cdfs are similar, but with some differences 
from urther 
away,” for 
differences  of 2000 vs. 15,000 bbl spills in Table 3.6.   
 
The main i  be 
bala d w
that it is pr
 

 
The next paragraph provides such conditional probabilities for ≥ 100 bbl, ≥ 500 bbl, and ≥ 1,000
bbl thresholds given that the spill is ≥ 50 bbl.  As another example, what happens to the 
conditional probability of a spill of ≥ 500 bbl when it is conditioned on the ≥ 100 bbl model?   
Conceptually consider what should happen, i.e., should this probability increase or decrease from 
a computed 0.544?  What does the 0.544 represent?  It
b
bbl.  If a smaller range of potential spills is examined, such as at least 100 bbl, the proportion of 
this distribution that represents ≥ 500 bbl should be larger than the corresponding ≥ 500 bbl 
proportion of the ≥ 50 bbl distribution.  Hence this new conditional probability should be larger 
than 0.544.  Indeed it is larger and is 0.663 using the ≥ 100 bbl Weibull model as the base o
calculation. 
 
One measure of how w
th
≥ 50 bbl Weibull distribution are close to the proportions based on the act

06, 8, 0.444 respectively.  Given that the larger threshold data sets have progressively 
ple sizes and these latter numbers are based on small integer values (number o
s in the data sets), the

≥ 50 bbl data set can be used to make predictions for larger thresholds. 

 shows that the ≥ 50 bbl and ≥
 the curves for the 500 & 1000 bbl spills.  Also the curve for the ≥ 500 bbl spills is “f

smaller spills so it is not a logical progression as the sample size is reduced.  These 
 are also seen in the comparison

mplication of these results is that the reliability offered by a larger data set must
nce ith the reliability offered by a data set that has seen greater scrutiny.  It is believed 

udent to examine the statistical results from both approaches.  
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ts over time visually seems to show a potential decrease in spill 
tes over time, Bbbl, and KMiles.  Efforts using moving averages and regression with different 

ays 
nd may 

.5.6 Alternative Confidence Interval Approaches Applied to Pipeline Spills 

nalyzed here.  Spill rate confidence intervals are initially developed for all four thresholds as a 

mating 

Figure 3.24  Overlay of Weibull Empirical CDFs 
 

3.5.5 Concerns about Non-stationarity of the Poisson Process 
Examination of various data se
ra
exposure variables have yielded inconsistent results.  For example a regression of inter-spill d
versus spill year does not result in a statistically significant slope (p=0.155). While a tre
exist, the data is noisy enough that it cannot be confirmed for the GOM pipeline spills.  When 
more evidence exists of a non-stationary process (as will be found for platforms) more 
sophisticated approaches are used to quantify the relationship of the changing rate. 
 

3
This section examines the development of confidence intervals for spill rates using different 
methods.  The analysis in this section is based on the 36 spills ≥ 50 bbl shown in Tables 2.2 and 
2.3.  Three subsets of these data using higher spill thresholds form the set of four models 
a
function of production volume.  The same methodology can be applied to other exposure 
variables. 
 
One reason for pursuing this approach is to establish a statistically credible basis for esti
the probabilities of larger spills, such as ≥ 10,000 bbl or ≥ 100,000 bbl.  At these spill levels 
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there are respectively only 3 pipeline spills and 0 pipeline spills, which are too small for any 
reliable estimation process. 

sed 
ller 

 than 

 be 
 results from other approaches that are based on the larger data set for spills ≥ 50 

bl.  The disadvantage of the Table 3.7 results is the reduction in sample size as the spill 

  
Table 3.7  Exact Poisson Confidence Intervals for Different Pipeline Spill Thresholds with 

eshold N for Bbbl Lower Upper 

 
Using the four thresholds with the exposure variable of Bbbl of production volume, Table 3.7 
gives the four pipeline spill rates with their exact Poisson confidence intervals.  These are ba
on the formulation given in Section 3.2.2.  The confidence intervals below are based on sma
and smaller data sets as the threshold size increases.  Thus, the Poisson spill rate falls faster
the upper limit on its value as the threshold increases.   
 
These results are useful in estimating the probability of different size spills, but they can also
compared with
b
thresholds increase. 

Production as Exposure Variable 
 

Thr Poisson Rate Exact Poisson CI Exact Poisson CI 

50 36 2.72 1.91 3.77 
100 29 2.19 1.47 3.15 
500 19 1.44 0.86 2.24 
1000 16 1.21 0.69 1.96 

 
Table 3.8 presents the fraction of the ≥ 50 bbl spills that are ≥ the higher thresholds using the 
previously developed Weibull probability distribution.  More formally, the Weibull based model 

the conditional probability of 
 
 

ely 
 

Lower Binomial 
Confidence 

Upper Binomial 
Confidence Actual 

100 0.7932 .9181 0.8060 = 29/36

for pipeline spill volumes for ≥ 50 bbl is used to estimate 
exceeding larger thresholds.  Then assuming this probability represents a binomial proportion for
the N = 36 observations in the ≥ 50 bbl data set, exact binomial confidence intervals are given in
the last two columns.  While the assumption that the conditional probability may be treated as a 
binomial in this manner may be questioned, it does provide one way of bounding the lik
proportion of the ≥ 50 bbl population that would exceed the larger thresholds indicated and thus
is useful information in its own right. 
 

Table 3.8  Exact Binomial Confidence Intervals for the Proportion of the ≥ 50 bbl Model 
Spills Exceeding the Larger Threshold with Production as Exposure Variable 

 

Threshold P(≥ Threshold) Interval Interval Proportion 
0.6398 0

500 0.5440 0.3810 0.7206 0.5280 = 19/36
1000 0.4293 0.2551 0.5924 0.4440= 16/36
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The models and the confidence intervals in Tables 3.7 and 3.8 can be used in three ways to 
estimate confidence intervals for spills ≥ the different thresholds.  The three approaches are 
summarized in Tables 3.9 through 3.11.   
 
Table 3.9 uses the values in Table 3.8 in two ways.  First the P(≥ Threshold) column of Table 3.8 
is used to estimate the spill rate per Bbbl for larger threshold based strictly on the > 50 bbl 
Weibull model.  This is done by multiplying the value in the P(≥ Threshold) column by the 
estimated spill rate based just on the ≥ 50 bbl data.  For example, the estimated spill rate for ≥ 
100 bbl spills is 2.16 (= 2.72*.79). 
 
Note how closely these spill rates match the ones developed separately based on their individual 
data sets.  This is encouraging and lends strength to the concept of basing spill probabilities for 
any threshold on the largest possible data set.  The last two columns of Table 3.9 are the same 
2.72 spills per Bbbl rate for the ≥ 50 bbl data multiplied by the corresponding lower or upper 
column in Table 3.8.  Thus, this represents one way to bound uncertainty at any threshold level 
by using only the ≥ 50 bbl data. 
 
One of the benefits of using the full data set is the ability to tighten the confidence intervals 
around the Poisson rates.  While Table 3.7 does give exact Poisson confidence intervals for the 
four thresholds, each increasing threshold uses a smaller data set.  This results in wide 
confidence intervals as the number of data points decreases.  Using the full N = 36 data set in 
ta
thresholds of interest.   resulting in the 
bility to reduce the width of the corresponding confidence intervals compared to the Table 3.7 

 bbl 

Threshold P(≥ Threshold) Adjusted Poisson Adjusted LCL  Adjusted UCL 

100 0.79 2.16 1.74 2.50 

bles such as Table 3.9 does more than provide alternative confidence interval approaches for 
These tables more completely uses the larger data set

a
intervals based on reducing sample sizes as the thresholds increase in magnitude. 
 
Table 3.9  Spill Rate Estimates and Confidence Intervals Using 2.72 Spill Rate for ≥ 50

Times Values in Table 3.8 with Production as Exposure Variable 
 

Rate per Bbbl 

500 0.54 1.48 1.04 1.96 

Table 3.10 might be in some sense considered a worst case for the spill rate per Bbbl production 
volume in that it works with the exact Poisson confidence intervals in Table 3.7 for the ≥ 50 bbl 
spill and combines this information with the binomial proportion uncertainty given in Table 3.8.  
Table 3.10 has the widest intervals because it assumes for example, that the lower confidence 
interval rate for ≥ 50 bbl (1.91 in Table 3.7) and the lower confidence interval proportion for ≥ 
100 bbl (0.64 in Table 3.8) occur simultaneously.  Thus, 1.22 (= 1.91*0.64) is the tabulated 
value.  While this is not the recommended approach for GOM volumes, the method has 
applicability in the extension from the GOM to the Arctic where both the proportion of GOM 
spills that may be applicable to the Arctic (the binomial component) and the rate (the Poisson 
component) are quite uncertain.   
 

1000 0.43 1.17 0.69 1.61 
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Table 3.10  Confidence Intervals for “Binomial Adjusted” Approach Using (1.91, 3.77) 
Table 3.7 Poisson Confidence Intervals from ≥ 50 bbl Model and the Binomial Confidence 

Intervals in Table 3.8 

Threshold Adjusted LCL Based on both 
Confidence Intervals 

Adjusted UCL Based on 
both Confidence IntervalsI 

100 1.219 3.457 
500 0.726 2.714 
1000 0.486 2.231 

 
Table 3.11 also uses the (1.91, 3.77) exact Poisson confidence interval for ≥ 50 bbl.  It multiplies 
this by the estimated proportion of the ≥ 50 bbl population that would exceed the larger 
thresholds (see Table 3.8).  This provides a third approach to estimating the confidence interval 
for any threshold directly from the largest data set based on the 50 bbl threshold. 
 
Table 3.11  Confidence Intervals Using (1.91, 3.77) Poisson Confidence Intervals from ≥ 50 

bbl Model and P(≥ threshold) with Production as Exposure Variable 

Threshold P(≥ threshold) Adjusted LCL  Adjusted UCL  

50 658 1.0000 1.9052 3.7
100 0.7932 1.5112 2.9872 

., 
e 
e 

Chapter 4 for the extension from the GOM to the Arctic. 

gives analogous Figures and Tables to 
e pipeline information in Section 3.5 using a numbering scheme to make the matching of the 

through 1999 analysis figure/table to the through 2005 figure/table seen in the main body of the 

500 0.5440 1.0364 2.0487 
1000 0.4293 0.8179 1.6167 

 
What is nice about the approaches summarized in Tables 3.9 to 3.11 is that a new subset of the 
data is not required each time a question arises about a different threshold.  The quality of these 
estimates does depend on how well the ≥ 50 bbl data can be used to model the censored 
population above this threshold.  These results are encouraging.  While each approach has its 
own appeal, the Table 3.9 method is recommended for this section in which the proportions, i.e
P(≥ threshold), are thought to be reasonably estimated.  If such proportions are more speculativ
than data based estimates, then the broader intervals of Table 3.10 are recommended. The Tabl
3.10 is related to the approach used in 
 

3.5.7 Comparison of Through 2005 versus Through 1999 
ppendix A parallels the pipeline analysis in Section 3.5.  In Section 3.5, analyses for pipeline A

spills ≥ 50 bbl are documented for data through 2005.  Since the preliminary analysis  submitted 
in the fall of 2005 analyzed data only through 1999, it was felt important to provide the reader an 
opportunity to see what has changed by adding six additional years of pipeline spill data.  While 
some of the results in Appendix A are the same as given in the earlier preliminary analysis, 

thers reflect changes due to corrected data.  Appendix A o
th
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report obvious.  For example Figure A3.10 is Appendix A may be compared to Figure 3.10 in 
Section 3.5. 
 
The comparison between the Appendix A through 1999 and Section 3.5 through 2005 analyses 
may be summarized in the following areas: 

• Pipeline Exposure Variable Goodness of Fit Distribution Analysis 
o All fits are very good and there are no major differences between the through 

1999 and through 2005 data. 
• Poisson Exposure Variable Rates 

o Spill rates have dropped somewhat in the through 2005 data.  
• Weibull Distribution Volume Goodness of Fit Analysis 

o All fits are very good and there are no major differences between the through 
1999 and through 2005 data. 

• Comparison of the four Weibull Volume Threshold Data Sets 
o Results compare well between the through 1999 and through 2005 data with the 

through 2005 data visually showing a somewhat better match between the four 
curves at low spill thresholds. 

• Alternative Spill Threshold Confidence Intervals 
o Following the pattern in the 2nd bullet above, spill rates have dropped somewhat 

in the through 2005 data.  Slightly higher probabilities of larger spills are found in 
th this. 

 

3.5.8
ection 3.5 has analyzed pipeline spil n inter-spill perspective as well as 
ill volume.  The three exposure variables studied (time, volume, and pipeline miles) were all 

found to be adequate y e tial utio us isso mption for the spill 
rates for each exposu ble fie  al e c  of oisson confidence 
intervals based on all OM sure bles
 

ipeline spill volumes wel  a W  dis on.  F hresholds (50 bbl, 100 bbl, 

 
ta 

s. 

e through 2005 data though the reduction in spill rate dominates 
 
The second and fifth bullets above mention the reduced spill rates in the through 2005 data 
versus the through 1999 data.  This is not a major change and the resulting spill rates easily fall 
into the confidence intervals of the other time period’s spill rates.  Additionally the earlier 
mentioned regression analyses among other things in Section 3.5.5 do not point to a non-
stationary system.  The major conclusion that can be supported is that the methodology and the
results are robust enough that the addition of 6 years of data has not led to significant changes. 
 

 Summary and Conclusions 
ls ≥ 50 bbl from both aS

sp
ly fit b
r

xponen
 

distrib
d

ns.  Th
l

the Po
rea

n assu
 ee varia is justi .  This ows th tion xact P

three G  expo  varia . 

P  were l fit by eibull tributi our t
500 bbl, and 1,000 bbl) were used to develop the approach given in this part of the report.  The 
results of using a larger database of ≥ 50 bbl are very encouraging.  Several methods were also 
derived for using the larger ≥ 50 bbl data to estimate spill rates and associated confidence 
intervals for the larger thresholds.  These new methods make more complete use of the full N =
36 data set for spills ≥ 50 bbls, rather than depending on increasingly smaller subsets of spill da
or larger thresholdf

 
The following conclusions may be made from the results in this section: 
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1. The use of the larger data set for pipeline spills ≥ 50 bbl adds remarkable modeling
flexibility and improves the validation of the conceptual underpinnings of the 
statistical modeling. 

2. Production and pipeline mile-years are useful exposure variables to help understand
and model not only the GOM but will be advantageous in the Chapter 4 extension 
from the GOM to the Arctic. 

3. Exploiting the relationship

 

 

 between the Poisson and exponential distributions 
provides a natural path to test whether the Poisson distributions is applicable to spill 

s 

d 
posure 

line spill volumes ≥ 50 bbl provides a more complete 
use of available data and reduces uncertainty of spill rate confidence intervals. 

7. The Table 3.9 approach to assessing pipeline production spill rate confidence 

Table 3.10 approach that ncertainty will be applied in 
Chapter 4 for the extension from the GOM to the Arctic.  This table expands earlier 

s.   
bbl 

ns 
ts, 

ded data provides further support of the analyses based on the 1000 bbl 
resho ng the 
atistic

Another key extension is in the area of exposure variables, where three are tested – time, 
produ nd the num of platfo After t e spill analyses were 
completed in Section 3.5, it was h d that the orm spills would easily fo  the same 
pattern ll v  th

3.6.1 rm Inter-Spill Analysis Based on Three Exposure Variables 
A data starting with April 5, 1971 was 
constr ne, and  that some effort was 
needed to test the impact of includin he 1971 d s not in .  This an ysis is 
docum  3.6.2. 
 
To be consistent with pipeline analysis that started with 1972 and the analysis in the Bercha 
report 006), a subset spi focus of na  Thi includ s 
examination of whether a Poisson process can be justified based on time, on production volume 

rates for an exposure variable. 
4. The application of exact Poisson confidence intervals for differing exposure variable

provides a more firm foundation for uncertainty quantification and prediction. 
5. Table 3.3 for pipeline spill rates for all three exposure variables is the recommende

source for spill rates ≥ 50 bbl.  The rates are given separately for each of the ex
variables and are for ≥ 50 bbl rate estimates. 

6. A Weibull distribution for pipe

intervals for thresholds ≥ 50 bbl is recommended for GOM application, while the 
 folds in other sources of u

work for just the exposure variable production that was based on ≥ 50 bbl prediction
8. Table 3.9 allows the generalization to predictions for 100 bbl, 500 bbl, and 1,000 

as well as other desired thresholds. 
 

3.6 Analyses Based on Platform Spills ≥ 50 bbl  
Section 3.6 extends the published MMS work by including smaller platform spills. The reaso
for adding extra data by lowering the threshold of 1000 bbl include providing additional insigh
esting if such extent

th ld, searching for other ways to estimate spill rate uncertainty, and examini
al value of a larger data set.   st

 

ction volume, a ber r  ms. he linpipe
ope  platf llow

.  However platform spi s have pro ed more difficult an envisioned.   

Platfo
 set with 86 observations (Table 2.6 + Table 2.8) 
ucted.  The year 1971 had 8 spills and 1972 had no

 
 it was felt
cluding itg t ata versu al

ented in Section

s (2002 & 2  with 78 lls was the  a lysis. s e
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in Mbbl, and on number of platf rs. sis requ r of days in 
ach year between each spill be computed.  Then assuming that the production volume and 

rved data.  As 
efore, if an exponential fits the inter-spill data for a given exposure variable then a Poisson may 

d 

  A Weibull distribution is a generalization of the exponential distribution.  Unlike the 
ensored (each had a lower threshold of 50 bbl, 100 bbl, 500 bbl, or 1000 bbl) Weibull 

r 
hold 

 reliability theory the hazard function (defined further below) is often used to assess the failure 
rate as a function of time.  The hazard function may increase or decrease dynamically (i.e., 
showing time dependence) indicating a rising or dropping failure rate.  A horizontal hazard 
function is time independent (i.e., static) so the failure rate is not changing.  This static or  
constant hazard function is the special case of the Weibull distribution that is the exponential 
distribution.  The Weibull (Weibull, 1951) distribution allows a non-constant failure rate (or 
hazard function), so that the Weibull distribution is one of the major tools used in reliability 
assessments. 
 
The hazard function or conditional failure function is defined as: 

orm-yea  This analy ired that the numbe
e
number of platforms were fairly constant throughout a given year, the total production volume 
and the number of platform-years between spills were computed.   
 
The inter-spill data are then tested to see if an exponential distribution fits the obse
b
be used to estimate the likelihood of the number of spills per unit of the exposure variable.   
 
While the exponential distribution did pass relevant goodness of fit statistical measures an
visual TLAR approaches some of the time, a Weibull distribution often fit the inter-spill data 
better.
c
distributions used for the pipeline spill volumes in Section 3.5, most Weibull distributions fo
inter-spill time have a lower bound of 0 and not some higher value.  In such cases the thres
parameter ν = 0.   
 
In

( )( )
1 ( )

f th t
F t

=
−

 

where h(t) is the hazard function, f(t) is the probability density function, and F(t) is the 
cumulative distribution function.  Thus 1 – F(t) is the probability that the component will survive 
to time t. 
 
When the Weibull distribution shape parameter β = 1 we have a constant hazard function and 
thus an exponential distribution.  When β < 1, the Weibull has a hazard function that is 
decreasing with time.  When β > 1, the Weibull has a hazard function that is increasing with 
time.  In the Weibull analyses that follow in this section, the shape parameter β < 1 and thus a 
decreasing spill rate is indicated.  This also matches the Anderson and Labelle platform data 
d

3.6.1.1 Platform Inter-Spill Anal

ft hand portion of the curve sh blem.  There were numerous 
es especially among the smaller values.  Out of the 77 inter-spill days, 62 (81%) were 

unchanged, 8 (10%) were lengthened by 1 day, 5 (6%) were lengthened by 2 days, and 2 (3%) 

iscussion for platforms in Section 3.4.2. 

ysis Based on Time 
Figure 3.25 shows an exponential distribution fit to the inter-spill exposure time in days.  The p-
value of 0.304 is not rejected by the Anderson-Darling goodness of fit test; however, the initial 

ows a common (in this section) prole
ti
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were lengthened by 3 days to remove all the ties. The maximum change was 3 days and the 
average change was 0.31 days. A revised version based on tie breaking adjustments results in 
Figure 3.26.  The p-value is higher (improved) though the main improvement is visual.  Similar 
changes would be possible for other exposure variables but were not done as it is more difficult 
to adjust them. 
 

Days Interspill

Pe
rc

en
t

1000.0100.010.01.00.1

99.9
99

90
80
70
60
50
40
30
20

10

5

3
2

1

Mean 155.1
N 77
AD 0.665
P-Value 0.304

Probability Plot of Days Interspill
Exponential - 95% CI

0.1

 
Figure 3.25  Exponential Probability Plot of Platform Inter-Spill (Spills ≥ 50 bbl) Times 

using 1972-2005 Data Set 
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Figure 3.26  Exponential Probability Plot of Tie-breaking Adjusted Platform Inter-Spill 

(Spills ≥ 50 bbl) Times using 1972-2005 Data Set 
 
Figure 3.27 fits a Weibull distribution to the same data as used in Figure 3.25, i.e., not adjusted 
for ties.  Two things are worth noting; 1) more of the data points are within the 95% confidence 
limits; 2) the shape parameter (labeled β in the mathematics given earlier) is 0.8756 < 1.0.  
Again, this shape parameter implies that the inter-spill time is increasing and that the spill rate is 
decreasing. 
 

77
AD 0.482
P-Value 0.511
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Figure 3.27  Weibull Probability Plot of Platform Inter-Spill (Spills ≥ 50 bbl) Times using 

 
igures 3.28 and 3.29 show good empirical distribution function fits of the exponential and 

Weibull, respectively.  A better fit for the Weibull is seen for smaller spill sizes.   

1972-2005 Data Set 
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Figure 3.28  Exponential Empirical Distribution Function Fit of Platform Inter-Spill (Spills 

≥ 50 bbl) Times using 1972-2005 Data Set 
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Figure 3.29  Weibu ter-Spill (Spills ≥ 

50 bbl) Times using 1972-2005 Data Set 

 
 

re 3.29 shows a better fit 
r the Weibull than Figure 3.28 for the exponential.  The major discussion of a new approach 

e 

he shape parameter for the Weibull fit for all three exposure variables is < 1.  This means the 
hazard of spills is declining over time.  The significance of the decline is demonstrated through 

h 

ll Empirical Distribution Function Fit of Platform In

 
While the exponential distribution does not fare too badly in this section for time as the exposure
variable, its performance is not as good for the other two platform exposure variables.  This in
turn led to the analysis that follows in this section.  Even with time, Figu
fo
based on the Weibull and a dropping failure rate will be detailed in this section but relevant 
applications for production volume and the number of platforms as exposure variables will b
given in Sections 3.6.1.2 and 3.6.2.2. 
 
T

linear regression, and by dividing the time span into two parts. 
 
Figure 3.30 is a straight line regression of the inter-spill days versus spill year. While the R^2 is 
small the regression slope is statistically significant (p-value 0.009).  The positive slope says that 
over the time period the average increase in inter-spill days is 5.774 each year.  This is not a hig
rate but over periods of 5 to 10 years or more, it adds up. 
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Figure 3.30  Regression of Inter-Spill time versus Spill Year 

 
Table 3.12 summarizes the predicted inter-spill time, which is found by using the equation at the 
top of Figure 3.30.  The table also lists 95% confidence limits for the average inter-spill time
95  
confidence limits make it clea gh to matter on average.  
The prediction intervals are so broad that it is clearly impossible to expect to see the 

 
Table 3.12  Predicted Average Inter-spill Times (days) with 95% Confidence and 

Prediction Intervals 
 

Year 
Inter-
spill LCL UCL LPL UPL 

2000 239.0 166.1 311.9 0.0 579.0 
2005 267.9 176.0 359.7 0.0 614.4 
2010 296.7 184.9 408.5 0.0 647.1 

 
While potentially very useful for prediction in the GOM, this technique is clearest using time as 
the variable.  It is possible that similar results might be obtained if inter-spill intervals are 
measured in production units or platform-years.  To convert these calculated inter-spill values 
and limits to spill rates they are simply inverted.  This may be a desirable approach for longer-
range predictions. 
 
Given the difficulty of implementing and explaining this approach, a better starting point for 
analyzing changes in platform spill rates is to simply divide the 1972 to 2005 interval into two 

 and 
% upper and lower prediction limits (LPL, UPL) for a single inter-spill time in that year.  The

r that the interval is increasing by enou

improvement by looking at individual inter-spill times. 
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parts.  Without examining the data, it was decided that 1990 would be a good break point for 
analysis purposes.  It was felt that this was a nice round year to work with and broke the full time 
interval into fairly equal parts.  Thus the question is: Is there a statistically significant difference 
in the inter-spill data for 1972 to 1989 versus 1990 to 2005?  To avoid losing a data point the 
inter-spill time between 1989 and 1990 was included in the earlier interval.  This is one of the 
longest inter-spill times; thus including it in the earlier interval is a conservative approach to 
estimating the rate of improvement.   
 
Figure 3.31 is an Analysis of Means (ANOM) comparing the 1972 – 1989 average inter-spill 
days to the 1990 – 2005 average.  The centerline shows an overall average over the full 1972 – 
2005 time frame of 155.1 inter-spill days.  The “stairstep” lines represent upper or lower bounds 
around this grand average.  The interval is tighter for the earlier data due to more data points 
falling into the earlier time period.  Since both averages fall outside the bounds, both are 
significantly different from the overall grand average.  Hence we have a non-stationary system 
without a constant failure rate over time. 
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Figure 3.31  Analysis of Means Comparing Inter-Spill Averages between Data for 1

 
Similar statistical result may be seen in the two sample t-test (p-value of 0.012) comparing the 
two means and the nonparametric Kruskal-Wallis test (p-value of 0.001) comparing the two 
corresponding medians.  The two rounded inter-spill sample means of 122 days for 1972 – 1989 
and 243 days for 1990 – 2005 are seen below in the two sample t-test output.  The inter-sp
d
one half of the 1972 – 1989 time interval.  This will be further quantified later with a confide
interval for the ratio of these two rates.  The Kruskal-Wallis shows the median inter-spill day
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are approximately three times (218 days versus 69.5 days) for the 1990 – 2005 versus 1972 – 
1989 time intervals. 
 

Table 3.13  Comparing 1972-1989 and 1990-2005 Platform Inter-Spill Times 
 

Two-sample T-test 
 N Mean Std. Dev. SE Mean 
Y1972-Y1989 56 122 159 21 
Y1990-Y2005 21 243 183 40 
Estimate for difference -120.280 95% Conf. Int.  (212.688, -27.871) 
T-test t = -2.65 P-value = 0.012 DF = 31 
    
Kruskal-Wallis Test of Median Inter-spill Times 

 N Median 
Average 

Rank z 
Y1972-Y1989 56 69.50 34.0 -3.23 
Y1990-Y2005 21 218.00 52.4 3.23 
Overall 77  39.0  
H = 10.40 DF = 1 P = 0.001   
H = 10.41 DF = 1 P = 0.001 (adjusted for ties) 

 
All of this implies that the rate of spills varies significantly across these two time periods.  Thus, 
the next step is to test if the two time periods can be shown to be adequately modeled separately 
by exponential distributions.  If so, then separate Poisson distributions could be fit to each time 
interval.  There is also a statistical test to directly compare the two Poisson rates. 
 
Figures 3.32 and 3.33 show the two different exponential fits to the inter-spill days for the two 
time intervals.  The main point to be made is that both exponential distributions adequately fit 
each interval based on the p-values.  Hence there is no reason here to discard the Poisson 
assumption.  For the other two exposure variables only the panel display style of Figure 3.33 is 
used. 
 
Figure 3.34 can be compared with Figure 3.33 to examine how “breaking ties” (as in Figure 
3.26) improves the resulting fits.  This is shown primarily for illustration and to hopefully 
convey the idea that the ties in the lower end of the distributions are not as important as they may 
visually appear to be. 
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Figure 3.34  Panel Displayed Exponential Distribution Fits to Adjusted (Tie Breaking) 
Platform Inter-Spill time for the 1972-1989 versus 1990-2005 

 
Building on the work of Przyborowski and Wilenski (1940), Chapman (1952) illustrates the 
development of an exact confidence interval for the ratio of two Poisson rates.  In this case it is 
desired to know how the Poisson rate drops going from 1972 – 1989 to 1990 – 2005.  First keep 
in mind that the higher average inter-spills days for the exponential distribution for 1990 – 2005 

gives the mean inter-spill time, w ber of spills per time (or per unit 
f another exposure variable). 

 

mean rate for X be λ ple size will be the 
um of x and y where there are x inter-spill and y inter-spill values in the 1972 – 1989 and 1990 

Probability Plot of Days fixed

versus 1972 – 1989 implies the Poisson rates will vary in the opposite direction.  The exponential 
hile the Poisson rate is the num

o

Let X and Y be two Poisson random variables with x and y spills, respectively.  Let the Poisson 
 and let the Poisson mean rate for Y be γλ.  The total sam

s

– 2005 time intervals, respectively.  Let 1(1 )
1

andτ λ γ ρ
λ

= + =
+

.  Then X has a binomial (n, 

ρ) distribution.  Using the exact Excel binomial confidence interval function described in Section 
2.5.5, ( , )ρ ρ  may be developed.  As given in Chapman (1952), a confidence interval for the rat

γ of the two Poisson mean rates is 

io 

1 11, 1
ρρ

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
.  Thus we can compute an exact confidence 

interval for the ratio of the two Poisson mean rates.  If the resulting interval does not contain the 
alue 1.0 at a given level of confidence, then the two Poisson rates are significantly different. 

 
v
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Implementing this results in a 95% two sided confidence interval for the Poisson mean rate ratio 

 to 
 

rly in the exponential results.  But now this ratio is bounded by confidence limits.  

 section the exponential fails the Anderson-
arling goodness of fit test (p = 0.017) at the 95% confidence level.  Hence even more reason to 

e is 

d version of the same procedure given 
 Section 3.6.1.1 for time as the exposure variable.  A more direct approach is used in this 

section as the major concepts and concerns have been given in the prior section.  The 1972 – 
1989 versus 1990 – 2005 comparison is also presented.  Fundamentally, the conclusion is the 
same.  Modeling the entire interval with one distribution is better done with the Weibull, but the 
increasing inter-spill production volume and decreasing spill rate can be modeled with two 
exponential distributions for the two time periods.  
 

γ of (0.3051, 0.8330) with the point estimate of 0.5041 for γ.  Since 1.0 is not in this Poisson 
mean rate ratio confidence interval, this implies at the 95% confidence level that the two rates 
are significantly different and the 1990 – 2005 rate is significantly lower.  Thus we have 
statistical backing for claiming that platform spill rates have dropped from the 1972 – 1989
1990 – 2005 time interval.  Indeed the rate is roughly ½ of the earlier time period rate as
indicated ea

3.6.1.2 Platform Inter-Spill Analysis Based on Production Volume (Mbbl) 
This section analyzes production volume in millions of barrels (Mbbl) as an exposure variable 
for platform spills.  As seen in Figures 3.35 through 3.38, the Weibull distribution fits inter-spill 
production better than an exponential.  Indeed in this
D
move away from fitting an exponential to the full time period.  Also note the Weibull shap
0.8224 < 1.  Again, this shape parameter implies that the inter-spill production volume is 
increasing and that the spill rate is decreasing 
 
This section with production volume follows an abbreviate
in
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igure 3.35  Exponential Probability Plot Platform Inter-Spill (Spills ≥ 50 bbl) Production 
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Figure 3.36  Weibull Probability Plot P Inter-Spill (spills ≥ 50 bbl) Production 
(Mbbl) using 1972-2005 Data Set 
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Figure 3.37  Exponential Empirical Distribution Function Fit of Platform Inter-Spill (Spills
≥ 50 bbl) Production (Mbbl) using 1972-2005 Data Set 
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Figure 3.38  Weibull Empirical Distribution Function Fit of Platform Inter-Spill (spills ≥ 50 

bbl) Production (Mbbl) using 1972-2005 Data Set 
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Figure 3.39  Panel Displayed Exponential Distribution Fits to Platform Inter-Spill 

Production (Mbbl) for 1972-1989 versus 1990-2005 
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Separate exponential distributions fit the to the two time periods 1972 – 1989 and 1990 – 2005 
pass the Anderson-Darling Goodness of fit test as seen in Figure 3.39.  The corresponding inter-
spill means are 103.7 Mbbl and 292.4 Mbbl.  This is even more evidence that the time based 

sults that the spill rate has dropped in the 1990 – 2005 time interval.   

3.6.
This section analyzes the number of platfo osure variable for platform spills.  As 

en in Figures 3.40 through 3.43, the Weibull distribution fits inter-spill production better than 
an exponential.  As seen with  ex tion n-Darling 
goodness of 0.01 n ce o move 
away from fitting an exponential to the full tim
1.  The 1972 – 1989 versus 1990 – 2005 comparison is presented below. 
 

mentally, the conclusion is the same as with the other exposure variables.  Modeling the 
ntire interval with one distribution is better done with the Weibull, but the increasing inter-spill 

pl
e period

re
 
The point estimate for the ratio of the two Poisson means rate is 0.3547 indicating the rate over 
the 1990 – 2005 time interval is only around 1/3 that of the 1972 – 1989 time interval.  The 
corresponding 95% confidence interval for this ratio is (0.1997, 0.5930).  With 1.0 not falling 
into the confidence interval it is seen that the two Poisson mean rates are significantly different. 
 

1.3 Platform Inter-Spill Analysis Based on Number of Platforms 
rms as an exp

se
 production the

1) at the 95% co
ponential distribu

fidence level.  Hen
e period. Also note the W

 fails the Anderso
 even more reason t

eibull shape is 0.8007 < 
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Funda
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Figure 3.40  Exponential Probability Plot Platform Inter-Spill (spills ≥ 50 bbl) Number of

Platforms using 1972-2005 Data 
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ig 3.41  Weibull Probability Plot Platform Inter-Spill (Spills ≥ 50 bbl) Number of 
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Figure 3.42  Exponential Empirical Distribution Function Fit of Platform Inter-Spill (Spil

≥ 50 bbl) Number of Platforms using 1972-2005 Data Set 
ls 
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Figure 3.43  Weibull Empirical Distribution Function Fit of Platform Inter-Spill (Spills ≥ 

50 bbl) Number of Platforms using 1972-2005 Data Set 
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Separate exponential distributions fit the to the two time periods 1972 – 1989 and 1990 – 2005 
are seen in Figure 3.44.  Technically the 1972 – 1989 time period does not quite pass the 

d est at the 95% confidence level since its p-value is < 0.05.  
However the visual TLAR assessment is reasonable.  Keep in mind also that if the ties were 

ted for time as the exposure variable) both the visual fit and the 

e 

ponding 95% 
con nfidence 
inte 005 
tim
 
The
rati oisson 
con approach to 
test  
200
num  (commonly 
use
pow
 

An erson-Darling goodness of fit t

adjusted (as was illustra
Anderson-Darling results would improve.  Using Arena’s Input Analyzer the exponential 
distribution passes the Kolmogorov-Smirnov Test with a p-value > 0.15.  Hence an exponential 
distribution can be used for the 1972 – 1989 interval.  The corresponding inter-spill means are 

61.2 platform-years and 2349 platform-years.  This indicates that spill rate has dropped in th8
1990 – 2005 time interval since the average number of platform-years between spills has 
increased. 
 
The i po nt estimate for the ratio of the two Poisson means rate is 0.3666.  The corres

fidence interval for this ratio is (0.2157, 0.6292).  With 1.0 not falling into the co
rval it is seen that the two Poisson mean rates are significantly different with the 1990 – 2
e frame having the lower spill rate with number of platforms as the exposure variable. 

 above binomial based confidence intervals provide an exact confidence interval for the 
os of the two Poisson rates.  Table 3.14 based on inter-spill data shows the exact P
fidence intervals for each time period and for all exposure variables.  An inexact 
ing whether the Poisson mean rates are different would be to see if the UCLfor the 1990 – 
5 falls below the LCLof the 1972 – 1989 time period.  This does occur for production and 
ber of platforms, but not quite for time as an exposure variable.  Such a method

d but incorrect) for comparing Normal means is well documented to be ad hoc and not 
erful; however, it is still used in practice by many. 
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Table 3.14  GOM Platform Spill Rates (Spills ≥ 50 bbls) for 1972-1989 and 1990-2005 

.874 

  

CL 

 

0 4.040 

990-2005 Using Inter-Spill Exponential Distribution 

xposure Variable Sum Exposure 
Variable Rate LCL UCL 

Production Bbbl 6.141 3.420 2.117 5.227 

0 

 

l 6.766 3.252 2.038 4.923 

2 

re variable.  
 is expected that the other two exposure variables would respond in similar fashion. 

und 

 
Platforms 1972-1989 Using Inter-Spill Exponential Distribution 

Label # 
Spills Exposure Variable Sum Exposure 

Variable Rate LCL UCL 

Spills/Bbbl 56 Production Bbbl 5.806 9.645 7.286 12.52 
Spill/(Number of Platforms) 56 KPlatforms-Years 48.23 1.161 0.8771 1.508 

Spills/year 56 Time, years 18.77 2.984 2.254 3

     
Platforms 1972-1989 Using Full Years 

Label # 
Spills Exposure Variable Sum Exposure 

Variable Rate LCL U

Spills/Bbbl 56 Production Bbbl 5.680 9.860 7.448 12.80
Spill/(Number of Platforms) 56 KPlatforms-Years 43.72 1.281 0.9677 1.663 

Spills/year 56 Time, years 18 3.111 2.35
       
Platforms 1

Label # 
Spills E

Spills/Bbbl 21 
Spill/(Number of Platforms) 21 KPlatforms-Years 49.34 0.4257 0.2635 0.6507

Spills/year 21 Time, years 13.96 1.504 0.931 2.30
       
Platforms 1990-2005 Using Full Years 

Label # 
Spills Exposure Variable Sum Exposure 

Variable Rate LCL UCL

Spills/Bbbl 22 Production Bbb
Spill/(Number of Platforms) 22 KPlatforms-Years 56.37 0.3903 0.2446 0.5909

Spills/year 22 Time, years 16 1.375 0.862 2.08
 

3.6.2 Platform Spills Comparing a 1971 Start with a 1972 Start 
A data set with 86 observations (Table 2.6 + Table 2.8) starting with April 5, 1971 was 
constructed.  The year 1971 had 8 spills and 1972 had none, and it was felt that some effort was 
needed to test the impact of including the 1971 data versus not including it.  This section 
analyzes the impact on including versus dropping 1971 using time as the only exposu
It
 
Figures 3.45 and 3.46 show that an exponential distribution is not rejected by the Anderson-
Darling goodness of fit test since all p-values are > 0.05.  Figure 3.46 has broken the ties fo
in the original data resulting in better fits both visually and based on p-values.  The difference in 
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the exponential inter-spill mean days is small with the 1971 – 2005 inter-spill mean slightly 
smaller.  The difference is NOT statistically significant, as is detailed at the end of this section
 
While the difference might be significant if comparing 1971 – 1989 with 1972 – 1989, that 
comparison does not matter because the earlier time period is not used for any projections to th
Beaufort and Chukchi Seas which is the focus of this study.  Thus, only analysis for the entire 
time sp

. 

e 

an was done. 
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eans rate is 0.9550.  The corresponding 95% 
onfidence interval for this ratio is (0.6066, 1.56338).  With 1.0 falling into the confidence 

 
 

ger 
resholds well, but did not fit as well as the lognormal distribution for the smaller two 
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Figure 3.46  Panel Displayed Exponential Distribution Fits to Platform Inter-Spill Adjus

(Tie Breaking) Time for 1971-2005 versus 1972-2005 
 
The point estimate for the ratio of the two Poisson m
c
interval it is seen that the two Poisson mean rates are not significantly different. 
 
Since exponentials fit both the 1971 – 2005 and the 1972 – 2005 time intervals and there is no 
statistically significant difference in the corresponding Poisson rates, it is felt that there is no 
reason to further analyze platform data using a 1971 start.  The platform volume spill analysis 
that follows uses the 1972 – 2005 data. 
 

3.6.3 Platform Spill Volume Models 
This section shows that three parameter lognormal distribution fits platform spill volumes with
thresholds of 50 bbl, 100 bbl, 500 bbl, and 1000 bbl.  Subsequent sections use these results to
present some conceptual approaches that extend the work of Anderson & LaBelle (2000).  A 
three parameter Weibull distribution (as was used for the pipeline spills) fit the two lar
th
thresholds. 
 
It is our belief that the more complete data set (spills ≥ 50 bbl) offers the opportunity for further 
insight and possible better estimation.  Even this larger data set ignores pipeline spills less than 
50 bbl and hence cannot be considered a complete pipeline spill data set, but as discussed earlier 
it is a reasonable choice given data quality issues.   
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Figure 3.47 through Figure 3.50 show that the three parameter lognormal distribution is a 
reasonable fit for all four thresholds shown.  Visual TLAR assessments of the probability plots 
supplemented by the Anderson-Darling goodness-of-fit results in each probability plot suppo
the selection o

rt 
f the three parameter lognormal distribution. In this section all the ties were broken 

long the lines of breaking volume ties for pipeline spills. a
 

Spill >= 50_1 bbl - Threshold

Pe
rc

en
t

10
00

00
0.0

0

10
00

00
.00

10
00

0.0
0

10
00

.00

10
0.0

0
10

.001.0
0

0.1
0

0.0
1

99.9

99

95
90
80
70
60
50
40

Loc 4.267
Scale 2.083
Thresh 49.99
N 78
AD 0.647
P-Value 0.088

Probability Plot of Spill >= 50_1 bbl
3-Parameter Lognormal - 95% CI

30
20
10
5

1

0.1

 
≥ 50 Figure 3.47  Three Parameter LogNormal Probability Plot of Platform Spills for Spills 
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3. arin atform Spill Volum odels for ent Thr
itting the four lognormal distributions to the four data sets, allows a comparison of consistency 

l spills.  In the ≥ 50 bbl 
column the odds ratio is 3.02 implying that the o ds of spilling more than 100 bbl compared to 

l 
on of the 

ng 
.  Thus the value of a larger data set (e.g., ≥ 50 bbl) may be used to reasonably 

redict the likelihood of larger platform spill sizes. 
 
The consistency of the four lognormals is rather striking.  Following the approach that led to the 
pipeline Figure 3.24, Figure 3.51 illustrates the excellent match between the four cumulative 
distribution functions based of the conditional probability approach detailed in Section 3.5.4 for 
pipelines. 
 

ility Plot of Spill >= 1000_

 
lity Plo form Sp r Spills ≥

100

6.4 Comp g Pl e M  Differ esholds 
F
across the models.  Table 3.15 presents the odds ratios comparing the four models.  Notice that 
the blank cells correspond to size comparisons that cannot be made with a probability 
distribution at a higher threshold (e.g., the distribution for spills ≥ 500 bbl cannot be used to 
predict spills of ≥ 50 bbl). 
 
For example, consider the row comparing 100 bbl spills vs. 500 bb

d
500 bbl is 3.02 to 1.  In the ≥ 100 bbl column of this row, the odds of spilling more than 100 bb
compared to spilling more than 500 bbl is estimated to be 3.67.  With the minor excepti
5.76, note the consistency of the odds ratios in the all columns.  This is done by looking at each 
row separately.  If the values in the row are in the same ballpark, then the models are predicting 
similar outcomes.  The results in this table imply that these lognormal models are providi
similar predictions
p

MMS 105 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

Table 3.15  Odds Ratios for the Four Lognormal Distributions for Platform Spills 
 

 Thresholds for the four lognormal models 
 > 50 bbl > 100 bbl > 500 bbl > 1,000 bbl 
50 vs. 100 1.76    
100 vs. 500 3.02 3.67     
500 vs. 10 1.76 1.56 .52 00  1  
1000 vs. 2 1.91 1.63 .70 1.88 000  1
2000 vs. 15000 10.9 5.76 .24 8.51 1 9

 

CDF Comparison for Platform Lognormal Distributions
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he volume was well modeled by the lognormal distribution, but this was based on the full set of 
spills independent of which time frame the spill fell into.  The two volume means for the time 
periods are not be significantly different (p-value = 0.591) in a two sample t-test.  Thus the full 
volume data set is used regardless of the spill date.   

 
Figure 3.51  Overlay of Lognormal Empirical CDFs for Platform Spill Data 

 
 

3.6.5 Platform Spill Volume Confidence Intervals 
Section 3.5.6 on pipeline spills presents alternative ways to develop confidence intervals. 
xplained in that section the recommee

thresholds is the one given in Table 3.9.  Thus in this section it is the only approach applied.  A
in the pipeline Section 3.5.6 the approach is given here only for the production exposur
variable. 
 
T
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ile the full set of volumes is used, this section focuses on applying that data only to the 199

variable.  The 1990 – 2
Wh 0-
2005 production volume exposure 005 production spill rate is 3.420 

ills/Bbbl production as given in the earlier Table 3.13.  To implement the confidence interval 
approach recommended the binomial confidence eed to be computed.  Table 3.16 
does that below and then the results are used to get the desired Poisson based confidence 
intervals  th
 

Tab act om terv ario o e 
shol

 

Threshold P(≥ Threshold) Lower Binomial Upper Binomial 

sp
 intervals first n

 for higher re ldsho s in Table 3.17. 

le 3.16  Ex Bin ial Confidence In als for V us Platf rm Spill Volum
Thre ds 

Confidence Level Confidence Level 
100 0.57 0.45 0.68 
500 0.19 0.11 0.30 
1000 0.11 0.05 0.19 

 
Table m te for us orm 

V usin 0 – t
 

Threshold P(≥ T shold oisson
Bbbl ted  

1 0 7  .53

 3.17  Reco mend 
olume

Rate Estimates and
 Spill Thresholds (

 Confidence In
g the 199

rvals 
005 R

 Vario
) 

 Platf
2 a e

hre ) Rate per 
Adjusted P  Adjus LCL Adjusted UCL

00 .5 1.94 1  2.31 
500 0.19 0.64 0.38 1.02 
1000 0.11 0.37 0.16 0.66 

 

Threshold) is relatively well estimated.  This is felt to be the case for 
utions developed. 

erspective.  Inter-spill analyses used three different exposure variables: time, 

 the declining rates between the two time intervals. 

Three parameter lognormal distributions fit the platform volume data very well.  Using the larger 
≥ 50 bbl data set, it was shown how to estimate the likelihood of spills exceeding over 

 
The above Table 3.17 is useful for estimating spill volumes for the thresholds given above.  It is 
based on the larger ≥ 50 bbl data set.  Other thresholds of interest can easily be examined in the
same manner.  In addition to providing rate estimates for the 100 bbl, 500 bbl, and 1,000 bbl 
thresholds, this table bounds the rate with the recommended approach to establishing confidence 
intervals when the P(≥ 
platform spills using the three parameter lognormal distrib
 

3.6.6 Summary and Conclusions 
Section 3.6 analyzed platform spills ≥ 50 bbl from both an inter-spill perspective as well as a 

olume pv
production, and platform-years.  This analysis showed that platform spill rates have significantly 
dropped over time for all exposure variables.  The data was divided into two fairly equal time 
intervals 1972 – 1989 and 1990 – 2005.  Exact Poisson rate ratio analysis provided confidence 
ntervals fori
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thresholds  bound 
ese rates.  This methodology can be applied to any desired spill threshold. 

 
In summary, it is believed that th ger  set such as used in this section can add 
considerable value.  In addition t to e ate rates for other spill thresholds, this 
larger data set conclusively show rm spill rates have indeed fallen over time.  This 
was not evident in earlier analyses based on data ≥ 00 bbl. 
 
The following conclusions are dr e re  in this section: 

1. The use of the larger latf ≥ 50 bbl adds remarkable modeling 
flexibility and improv tion he conceptual underpinnings of the 
statistical modeling.  arg ta set, it is unlikely that the statistically 
significant drop in pla tes would have been detectable. 

2. Production and platfo  use xposure variables to help understand and 
model not only the GOM but will be advantageous in the GOM to Arctic extension of 
Chapter 4. 

3. The application of ex onfi ce intervals for differing exposure variables 
provides a more firm foundation for uncertainty quantification and prediction. 

4. The application of ex at  c ence intervals allows quantification 
of the uncertainty in t an  p atform spill rates for the two time 
periods used. 

5. Table 3.13 provides p  r r ee exposure variables for spill rates 
≥ 50 bbl for both the 1972 – 1989 and 1990 – 2005 time intervals. 

6. A three parameter log ib o form spill volumes ≥ 50 bbl provides 

ibutions for pipelines and 
latforms. 4 

examine h  The 
data in these tw re lim po butio sis 
shows that the Poisson distribution assumption e e ble t  this 
data.  s fit the sp  volumes for both pipelines and platforms. 
 
Section 3.5 expands the pipeline da o include spil  50 bbl.  Three exposure variables are 
used: tim , production, and pipeline miles.  The inter-spill data for line expo e 
variables are found to be adequately fit by exponential distributions.  Therefore a Poisson 
distribution can be used to assess spill rates for these exposure variables as well as quantifying 
the associated uncertainty.  This section also highlig the relation tween the onential 
and Poisson and illustrates their relationship.  Pipeline spill volum odeled w y a 
Weibull distribution and ways to estimate rates for spills of varying thresholds are given along 

, e.g., 100 bbl, 500 bbl, and 1,000 bbl.  Confidence intervals were developed to
th

e use of a lar  data
o being able stim
ed that platfo

 1,0

awn from th sults
data set for p orm spills 
es the valida  of t
Without the l er da
tform spill ra
rm-years are ful e

act Poisson c den

act Poisson r e ratio onfid
he relative ch ge in l

latform spill ates fo all thr

normal distr ution f r plat
a more complete use of available data and reduces the width of spill rate confidence 
intervals. 

7. Table 3.17 presents the recommended production spill rate confidence intervals for 
thresholds ≥ 50 bbl. 

 

3.7 Chapter Summary 
hapter 3 examines inter-spill distributions and spill volume distrC

p   Section 3.2 introduces exact Poisson confidence intervals. Sections 3.3 and 3.
e Ande nd Labelle (2000) data and respectively.  t rson a

o sections a
 for pipelines 
≥ 1,000 bbl. Ex

is vali  for th

 platforms, 
nential distri
xposu e varia

ited to spills n analy
ime ford r

W ibull die stribution ill

ta t ls ≥
e  eall pip sur

hts ship be  exp
es are m ell b
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with alternative confidence interval approaches.  The recommendation approach is documented.  

pill rates from 1972 – 1989 versus 1990 – 
005.  All techniques strongly showed that platform spill rates are significantly lower in the latter 

and confidence intervals a parately for the time 
eriods.  Three parameter lognormal distributions fit the platform spill volume data and methods 

were pr  to estimate spill thresholds from bl data.   

There was no statistical evidence of a spill rate change over time for pipelines. 
 
Section 3.6 performs a similar analysis for platform spills ≥ 50 bbl, but complications arose in 
that the spill rates cannot be modeled by a single Poisson distribution for the full ≥ 50 bbl data 
set for any of the three platform exposure variables (time, production, and platform-years).  
Several statistical techniques were used to examine s
2
time period.  Each of these two time periods separately is well modeled by Poisson distribution 

re provided for all three exposure variables se
p

esented  rates for other  the ≥ 50 b
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4 Extending to Alaska 

4.1 Introduction 
Rather than repeating discussions about the similarities and differences between the GOM and 
the Beaufort and Chukchi Seas, this section will simply describe the organization of this chapter 
and the methodology used to construct oil-spill probabilities for OCS areas north of Alaska. 
 
However, it is appropriate to begin with a description of the uncertainties that must be addressed 
so that the level of accuracy of the results can be placed in a realistic context.  These 
uncertainties include: 

1. What is the best mix of drivers by which to measure oil spill probabilities? 
2. What is the average rate of oil spills within the existing OCS infrastructure? 
3. What is the best way to deal with GOM oil spills with GOM specific causes, such as 

hurricanes and third party damage from fishing trawlers? 
4. What is the relationship between spill rates at the different spill thresholds of 50, 100, 

500, or 1000 bbl? 
5. Since different values will be calculated depending on the exact data set and 

methodology, how should the uncertainty over which is best be reflected? 
6. Is the average rate shifting over time, and if so what is it now and what is it projected to 

be? 
7. How should this average rate be extended to new regions, such as Alaska? 
8. What is the mix of infrastructure that will be used to produce oil in the OCS region of 

Alaska? 
9. What spill probabilities are linked to Alaska specific spill causes and how do 

probabilities for existing causes such as human error change with increased cold and 
darkness? 

10. What reductions in oil spill probabilities are possible through regulatory requirements for 
design and operations? 

Many of these uncertainties are beyond the scope of this study, and some may in fact be 
unknowable.  However, they collectively enforce the humble recognition that the uncertainties 
defined in this study are only the starting point for where other uncertainties begin. 
 
Oil spills in Alaskan waters can occur for reasons such as corrosion and human error that operate 
anywhere.  The probabilities of these spills detailed in Section 4.3 are estimated using GOM 
data.  The results are built upon, but distinct from the material of Chapter 3, as some spills 
included in the spill rates of Chapter 3, such as those from hurricanes and third party impacts, are 
extremely unlikely or impossible in the Arctic. 
 
One of the sets of spill rate estimates derived for the GOM is clearly unusable for extension to 
the Arctic.  These are the spill rates based on time.  For example, Table 3.13 includes platform 
spill rate estimates for 1990 to 2005 of 1.375 or 1.504 spills per year, depending on approach.  
This is for an average of 3523 platforms, thus applying it to a development scenario with a 
maximum of 8 platforms would clearly be absurd.  Thus, rates per year derived for the GOM 
should only be applied within the GOM. 
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The spill rates developed in this chapter, like the ones in Chapter 3, are stated as x pipeline spills 
per pipeline mile-year or y platform spills per platform-year.  Thus, it is necessary to have a 
development scenario of how many pipeline miles and platforms in each year to produce what 
volume of production.  Since any development is some time in the future, any scenario is in 
some sense speculative.  However, for its own planning purposes and in conjunction with Bercha 
(2002 and 2006) MMS has constructed a Beaufort Sea development scenario.  This is detailed in 
Section 4.2.  While it is unlikely to match development if it occurs, it is certainly a realistic 
representation of one possibility.  As such, it is a solid example of how the spill rates can be 
used, and a useful test case as to what methodologies are the most realistic. 
 
Sections 4.4 and 4.5 addresses what is known about Arctic specific causes that can be linked 
respectively with pipeline and with platform oil spills.  Not surprisingly, some of this cannot 
currently be stated in statistical terms because not enough is known. 
 
Section 4.6 applies the spill rates to the Beaufort development scenario in order to calculate life-
of-field (LOF) probabilities where possible.  This can be compared with results in Section 4.7 for 
the data in Bercha (2006).  This is done in order to examine the level of agreement and 
disagreement between the two reports on oil spill occurrence estimators for the Beaufort/Chukchi 
Sea OCS. 
 
Section 4.8 summarizes this chapter. 

4.2 Development Scenario 
Table 4.1 summarizes a hypothetical development scenario for the Beaufort Sea.  This is a 
simplification of data supplied by MMS for Bercha (2006, Table 3.2) and also directly for this 
study.  As this study does not for example generally consider the water depth for pipelines or 
platforms, nor the diameter for pipelines; the scenario is simplified so that only the total rows 
and columns from the more detailed scenario are repeated in Table 4.1.  While not part of the 
original scenario, the final row for total exposure has been created by simply counting the years 
or summing the platforms, pipelines, or production.  
 
One of the uncertainties described in Section 4.1 concerned the mix of infrastructure that will be 
used to produce oil in the OCS region of Alaska.  This uncertainty includes both the details for 
each category, and the relationships between them.  Obviously, the precise mix of miles of 
pipelines, numbers of platforms, and numbers of wells will not be known until and if they are 
built.  This uncertainty means that probabilities derived from spill rates for each driver are 
combined in an uncertain way.  Perhaps the most important of these uncertainties is how much 
production will come from the infrastructure, as fundamentally it is the level of production which 
produces the benefits and justifies all costs of development – economic, environmental, and 
social.  This study can only recognize this uncertainty; this study cannot quantify it. 
 
The scale of the Beaufort development introduces another source of uncertainty.  Unlike the 
GOM which has a large infrastructure that forms a sizeable statistical universe, the Beaufort 
development would be an example of small sample statistics – where greater variability in 
average outcomes is expected.  While the GOM of Mexico has a platform spill rate for ≥ 50 bbls 
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of about 1.5 per year, it is not unexpected to have 5 spills in some years, but 15 spills in 1 year 
(or 10 times the average) would be extremely unlikely.  On the other hand, if Alaska were to 
have a platform spill rate of 1 every 30 years; the year with a spill is 30 times the average.  
Predicting the average spill rate is not significantly affected by this scale difference, but the 
uncertainty over the reasonable range of possible outcomes for an Alaskan scenario is heavily 
affected.  Thus, it should be emphasized that it is average rates that are being estimated in this 
study. 
 

Table 4.1  Beaufort Sea Development Scenario 
 

Year   

Cumulative 
Production 
Platforms 

Cumulative 
Production 

Wells 

In-use 
Pipeline 
Length 
[miles]   

Production 
Mbbl  

2009 1 3     
2010 1 13 10 7.9 
2011 2 26 10 15.7 
2012 3 39 20 23.6 
2013 3 59 30 39.4 
2014 4 72 30 44.4 
2015 4 82 50 55.3 
2016 5 95 50 59.5 
2017 6 108 80 74.5 
2018 7 132 80 76.1 
2019 8 156 115 102.5 
2020 8 176 115 103.5 
2021 8 196 115 97.9 
2022 8 206 115 93.1 
2023 8 206 115 85.6 
2024 8 206 115 79.2 
2025 7 183 105 67.5 
2026 7 183 105 59.0 
2027 6 160 95 49.9 
2028 5 137 80 42.2 
2029 5 137 80 37.0 
2030 5 137 70 32.4 
2031 5 137 70 28.5 
2032 5 137 70 25.0 
2033 5 137 70 21.9 
2034 4 114 60 17.0 
2035 4 114 60 14.9 
2036 2 68 40 8.3 
2037 2 68 40 7.3 
2038 2 68 40 6.5 

Total exposure for variable 
30 148 3555 2035 1375.6 
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4.3 Extension of Non-GOM Specific Spills to the Arctic 

4.3.1 Methodology 
This section focuses on how the extension to the Arctic of GOM based models can be done.  
This allows the large data base of past experience to be used, but the results are expected to be 
less reliable predictors for the Arctic than they are the GOM.  
  
Two ways are envisioned to extend the GOM results to the Arctic: 

1. Use estimated spill rates from Chapter 3 for the GOM by exposure variable.  To estimate 
rates for spills exceeding the threshold, use information from the spill size modeling 
sections of Chapter 3.  Adjust these rates by using binomial probabilities for “applicable 
spills.”  These binomial probabilities would be based on the best estimates as to which of 
the GOM spills above each spill threshold might be applicable to the Arctic.   

2. Discard GOM spill data that is thought to be not applicable to Arctic.  Apply 
methodology similar to Chapter 3 to derive spill rates for the “applicable spills.”  To 
calculate rates for spills exceeding the threshold, count the number spills exceeding 
threshold in the data. 

 
This section relies on the statistical foundation of Chapter 3, and some of the results are used 
here.  There is a difference which affects the rates for pipeline spills with the production 
exposure variable.  Chapter 3 analyses of pipeline spills used total OCS production, while 
chapter 3 analyses of platform spills used GOM production.  In this chapter, GOM production 
has been used for both pipeline and platform spills.  
 
Method 1 is presented in Section 4.3.2.1 and 4.3.3.2, respectively for pipelines and platforms, for 
spills sizes ≥ 50 bbl.  Since it starts with the full data set of spills ≥ 50 bbl, its statistical 
reliability is maximized.  It is applied to spill rates exceeding size thresholds with three exposure 
variables – production, pipeline mile-years, and platform-years.  Extensive work has gone into 
carefully analyzing the GOM data for each of the relevant exposure variables for pipelines and 
platforms.  In addition, various approaches to defining confidence intervals for spill size 
thresholds were examined in detail with production as the exposure variable. 
 
There has not been detailed examination within the GOM data of spill size thresholds with 
pipeline mile-years and platform-years as the exposure variable.  However, the basic work on 
what proportion lies within above each spill size threshold does not depend on the exposure 
variable.  Thus, the authors believe that method 1 can be applied with the same validity to the 
exposure variables of production, pipeline mile-years, and platform-years. 
 
Method 1 allows the uncertainty in the selection of what is applicable or not applicable from the 
GOM to the Arctic to be directly folded into the analysis.  Method 1 results in conservative 
estimates for the lower and upper confidence limits (LCL, UCL).  Consider the LCL for method 
1.  It is found by multiplying (1) the LCL for the Poisson rate times (2) the LCL for the binomial 
proportion of the ≥ 50 spills above each threshold times (3) the LCL for the binomial proportion 
of the spills within above each threshold that are applicable.  Because it is relatively unlikely for 
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the Poisson rate, the threshold binomial proportion, and the applicable binomial proportion to be 
simultaneously at their respective LCLs, the resulting computation is conservative.  That is, the 
confidence interval is wider than it needs to be to account for the combination of these three 
uncertainties. 
 
The results of method 2, which considers only data from applicable spills at each spill size 
threshold, are presented respectively in Sections 4.3.2.2 and 4.3.3.3 for pipeline and platform 
spills.  The calculation of Poisson rates and confidence intervals is relatively straight-forward 
given the number of spills and the exposure variable.  Detailed testing of exponential inter-spill 
quantities for “applicable spills” has not been possible within the constraints of this study.  Nor is 
it obvious that such testing (the equivalent of much of Chapter 3) is warranted, since the focus is 
on the predicted spill rate parameter.  Under method 2, it is not possible to consider the two 
uncertainties in the fraction of spills to be included.  Under this method, a spill is either dropped 
(GOM specific) or not dropped (applicable).  There is no uncertainty about it.  Similarly, there is 
no uncertainty in the proportion of spills exceeding any size threshold.  The exact number is 
counted in the data. 
 
Before applying these methods, it is appropriate to look again at the scale issue briefly discussed 
in Section 4.1 for the extension of GOM results to the Arctic.  The scale issue is an analog of the 
distribution of the sample mean.  A particular time period (or quantity of other exposure 
variable) may be used to develop an estimate of the spill rate which is an average of the number 
of spills divided by the quantity of exposure variable (time, production, pipeline mile-years, or 
number of platforms).  Fewer spills are expected for the Arctic than for GOM.  Thus the inter-
spill times will likely be more uncertain resulting in the exponential distribution taking longer to 
stabilize on a good estimate (assuming the system is time homogeneous).  Thus, the numerator of 
the spill rate is more variable.  For the denominator the number of pipeline-miles (platforms) 
may be as much 60 (400) times larger in the GOM than in the Arctic.  In some sense these 
exposure variables may be thought of as volumes.  In geostatistics (Clark and Harper, 2000, 
chapter 11) the volume variance relationship explains the phenomena.  As volumes increase the 
resulting standard deviation decreases.  With increased variability in the Arctic, the resulting 
confidence intervals should be wider for the Arctic than for GOM.  
 
Method 2, which uses only data for applicable spills to derive estimates, is equivalent to another 
intuitively appealing, but limited approach.  If one simply used portion ρ of the GOM spills 
(pipeline or platform) for an Arctic analysis, one gets a simple but possibly misleading Poisson 
approach.  While intuitively appealing, it underestimates the uncertainty in the Arctic rate.  
 
The difficulty is that for a Poisson process, the rate parameter λ is the mean and variance of the 
distribution.  Hence a lower mean implies a lower variance and thus a lower standard deviation.  
This is not a justifiable procedure for extending the GOM results to the Arctic.  While the rate 
for “applicable spills” is lower, the confidence intervals must recognize the uncertainties in the 
binomial proportions of “applicable spills” and of “spills above the threshold.” 
 
In addition to the work presented here, analysis has also been done for two other approaches.  
The first is similar to method 1, but it used a single binomial proportion applicable for all spills, 
instead of using a different proportion applicable for each spill size threshold.  While 
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conservative, this approach ignored the apparent relationship between spill size and 
“applicability.”  Its usefulness was clearly surpassed by the method 1 presented here.  An ad hoc 
modification to method 2 is also not presented, as the improved method 1 made it less necessary 
and because its complexity made it difficult to explain and validate. 
 
Method 2 represents a lower bound on the uncertainty involved in the extension from the GOM 
data to the Arctic, while method 1 provides an upper bound for the sources of uncertainty 
consider.  This analysis deals with the known statistical uncertainties as completely as possible 
and method 1 does so in conservative way that overestimates that statistical uncertainty.  
However, the results in Sections 4.3.2 and 4.3.3 do not address some of the different 
uncertainties summarized in Section 4.1 – in particular the uncertainties related to the Arctic.  
Thus, the confidence intervals for both methods are most likely still an underestimation of the 
overall uncertainty in any Arctic predictions.  As more data and better methods of estimation 
become available, Arctic predictions can be improved. 
 

4.3.2 Pipeline Spills 

4.3.2.1 Pipeline Spills using Method 1  
Method 1 starts with the basic uncertainty in the Poisson rate which was detailed for GOM 
pipeline spills in Table 3.3.  However, in Table 4.2 the value for the production exposure 
variable is based upon GOM rather than OCS production from 1972 to 2005.  Since the exposure 
volume is lower, the spill rate is slightly higher than in Table 3.3.  

 
Table 4.2  Method 1 Arctic Pipeline Spill ≥ 50 bbl Poisson Based Rate and 95% Confidence 

Intervals  
 

Label # 
Spills Exposure Variable Sum Exposure 

Variable Rate LCL UCL 

Spills/Bbbl 36 Production Bbbl 12.445 2.8927 2.0260 4.0048 
Pipeline Spills 
/KMile-year 36 KMile-years 161.796 0.2225 0.1558 0.3080 

 
The second source of uncertainty that must be addressed by method 1 is the proportion of spills 
at each spill size threshold.  Chapter 3 examined spill rates for varying spill thresholds using the 
rates per Bbbl of production for ≥ 50 bbl spills and the distribution of spill volumes.  For 
pipelines a Weibull distribution fit the GOM spill volumes.  Table 3.8 (relevant part reproduced 
below) describes the proportion and the exact binomial confidence intervals for the proportion of 
a spill data set above the thresholds of 100, 500, and 1000 bbl.  Multiplying Table 3.8 times the 
Poisson rates and confidence limits was the conservative procedure in Chapter 3 to estimate 
pipeline spill rates at higher spill thresholds with production volume as the exposure variable.  
Exactly the same approach can be applied for pipeline mile-years using the last row of Table 4.2 
times the proportion and exact binomial confidence intervals for spill size thresholds shown in 
Table 3.8.   
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Table 3.8  Proportion of ≥ 50 bbl Pipeline Spills above Different Thresholds with 95% 
Binomial Confidence Limits  

 
Threshold P(≥ Threshold) LCL UCL 

50 1 1 1 
100 0.7932 0.6398 0.9181
500 0.5440 0.3810 0.7206
1000 0.4293 0.2551 0.5924

 
The third source of uncertainty is the proportion of spills above each threshold that are applicable 
to the Arctic vs. those with a GOM-specific cause.  Table 4.3 details that the spill sizes are on 
average larger for GOM-specific spill causes than the non-GOM or applicable spill causes.  The 
number of GOM-specific pipeline spills is about the same for each threshold, while the number 
of applicable spills falls sharply as the threshold increases. 
 
Table 4.3  GOM and Applicable Pipeline Spills at Different Thresholds with 95% Binomial 

Confidence Limits (Based on Table 2.17)  
 

Spill 
Threshold 

GOM 
Specific 

Applicable 
or Non-
GOM Total 

Proportion 
Applicable LCL UCL 

≥ 50 bbl 15 21 36 .5833 0.4076 0.7449 
≥ 100 bbl 15 14 29 .4828 0.2945 0.6747 
≥ 500 bbl 13 6 19 .3158 0.1258 0.5655 
≥ 1000 bbl 11 5 16 .3125 0.1102 0.5866 

 
The estimated Arctic pipeline spill rate for each spill threshold is simply the Poisson rate times 
the size proportion times the applicable proportion for that size threshold.  For conservative 
estimates of the lower and upper confidence limits, the three LCLs are multiplied, as are the 
three UCLs.  As noted in Section 4.3.1, calculating a lower confidence limit by multiplying the 
LCLs for two or three variables is a conservative approach, as it is relatively unlikely that all 
variables will simultaneously be at their lower confidence limits. 

 
Tables 4.4 and 4.5 are the result.  They specifically consider (1) the underlying uncertainty in 
estimating the Poisson rate using the full data set of 36 pipeline spills ≥ 50 bbl, (2) the 
uncertainty in estimating what fraction of spills ≥ 50 bbl exceed higher spill size thresholds, and 
(3) the uncertainty in the binomial proportion that is applicable to the Arctic.  Since, for example, 
the LCL is formed by multiplying the LCL for each source of uncertainty, the result is a 
conservative one. 
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Table 4.4  Method 1 Conservative Procedure to Estimate Arctic Pipeline Spill Rates for 
Various bbl Thresholds with Exposure Variable = Production  

 
 Adjusted Poisson   

x Rate per Bbbl LCL UCL 
50 1.6874 0.8257 2.9830 

100 1.1077 0.3817 2.4805 
500 0.4969 0.0971 1.6320 
1000 0.3881 0.0569 1.3918 

 
Table 4.5  Method 1 Conservative Procedure to Estimate Arctic Pipeline Spill Rates for 

Various bbl Thresholds with Exposure Variable = Pipeline Mile-Years  
 

 Adjusted Poisson   
x Rate per KMile-yr LCL UCL 
50 0.1298 0.0635 0.2294 
100 0.0852 0.0294 0.1908 
500 0.0382 0.0075 0.1255 
1000 0.0299 0.0044 0.1071 

 

4.3.2.2 Pipeline Spills using Method 2  
Method 2 is using the actual data rather than a fitted distribution for the number of spills 
exceeding each size thresholds and for whether the spill cause is GOM-specific or applicable to 
the Arctic.  Thus, for method 2 it is only the number of applicable spills for each spill size 
threshold (see Table 4.3) that is used in calculating the rates and Poisson confidence limits.  
Thus, for each spill size threshold the rate, LCL, and UCL depend only on the number of spills 
and the exposure variable. 
 
Tables 4.6 and 4.7, respectively, show the result of method 2 for production and pipeline mile-
years.  As detailed in Section 4.3.1, this method limits the data to spills above each threshold that 
are “applicable to the Arctic” or stated another way, spills that have a “non-GOM specific 
cause.”  This approach assumes the lower rate for these spills lowers the variability and tightens 
the confidence interval values.  This ignores the uncertainty in the proportion of spills that are 
applicable to the Arctic vs. GOM-specific causes and the uncertainty about the proportion of 
spills above each spill size threshold. 
 
Methods 1 and 2 get slightly different results for the rate estimate for spills at thresholds of 100 
bbls or larger.  Tables 4.6 and 4.7 are based on the number of spills found in each category, not 
on a distribution of spill sizes.   
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Table 4.6  Method 2 Results (Ignores Uncertainty in Applicability and Spill Size) for Arctic 
Pipeline Spill ≥ 50 bbl Poisson Based Rate 95% Confidence Intervals with Exposure 

Variable = Production 
 

Spill 
Threshold 

# 
Spills Exposure Variable

Sum Exposure 
Variable Rate LCL UCL 

≥ 50 bbl 21 Production Bbbl 12.445 1.6874 1.0445 2.5794
≥ 100 bbl 14 Production Bbbl 12.445 1.1249 0.6150 1.8875
≥ 500 bbl 6 Production Bbbl 12.445 0.4821 0.1769 1.0494
≥ 1000 bbl 5 Production Bbbl 12.445 0.4018 0.1305 0.9376

 
 
Table 4.7  Method 2 Results (Ignores Uncertainty in Applicability and Spill Size) for Arctic 

Pipeline Spill ≥ 50 bbl Poisson Based Rate 95% Confidence Intervals with Exposure 
Variable = Pipeline Mile-Years 

 
Spill 

Threshold 
# 

Spills Exposure Variable
Sum Exposure 

Variable Rate LCL UCL 
≥ 50 bbl 21 KMile-years 161.796 0.1298 0.0803 0.1984
≥ 100 bbl 14 KMile-years 161.796 0.0865 0.0473 0.1452
≥ 500 bbl 6 KMile-years 161.796 0.0371 0.0136 0.0807
≥ 1000 bbl 5 KMile-years 161.796 0.0309 0.0100 0.0721

 
 

4.3.3 Platform Spills 
The extension of GOM pipeline spill statistical results to the Arctic was done using method 1 in 
Section 4.3.2.1 and method 2 in Section 4.3.2.2.  A parallel structure for platforms will be found 
in Sections 4.3.3.2 and .3.  However, it is first necessary to deal with a complication found in the 
data for platform spills. 

4.3.3.1 Applicable vs. GOM-Specific Platform Spills  
Both methods for extending the GOM statistical results rely on data about applicable spills for 
each spill size threshold.  Method 1 uses the proportion, LCL, and UCL; while method 2 uses the 
number of spills.  While straightforward for pipeline spills, there are complications for platform 
spills.   
 
Table 4.8 lists platform spills for the 1990 – 2005 period, which are then summarized in top half 
of Table 4.9, which lists the number of GOM-specific and “applicable” spills at each spill size 
threshold.   
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Table 4.8  GOM Platform Spills – Hurricane & Applicable (1990 – 2005)  
 

1991-10-13 280
1992-12-26 100
1994-11-23 148
1995-01-25 600
1995-07-06 75
1995-10-03 89
1995-12-15 435
1996-09-29 105
1996-12-31 62
1997-12-16 170
1998-04-29 100
1999-01-23 105
1999-09-09 125
2000-02-28 200
2000-08-09 60
2001-03-30 127
2002-10-03 1,588 Lili 
2003-05-09 264  
2003-05-10 430  
2004-09-15 1,053 Ivan 
2005-08-29 2,225 Katrina 
2005-09-24 7,371 Rita 

 
As shown in Table 4.9, the platform spills for 1990 – 2005 exhibit a problem that can occur with 
small samples.  In this case all of the GOM specific platform spills exceed 1000 bbl and there are 
no “applicable” spills of that size in that time frame.  This means that there is a relationship 
between spill size and spill cause measured at the GOM/applicable level.  More importantly, this 
would also imply that all calculated values for extending to the Arctic for ≥ 1000 bbl would 
indicate a probability of zero.  This is clearly not true, since there are 4 applicable spills of that 
magnitude in the earlier portion of the 1972 – 2005 period.   
 

Table 4.9  GOM and Applicable Platform Spills at Different Thresholds  
 Spill 

Threshold GOM 
Applicable or 

Non-GOM 
Proportion 
Applicable Total 

1990 – 2005     
 ≥ 50 bbl 4 18 81.8% 22 
 ≥ 100 bbl 4 14 77.8% 18 
 ≥ 500 bbl 4 1 20.0% 5 
 ≥ 1000 bbl 4 0 0.0% 4 

1972 – 2005     
 ≥ 50 bbl 7 71 91.0% 78 
 ≥ 100 bbl 5 44 89.8% 49 
 ≥ 500 bbl 4 7 63.6% 11 
 ≥ 1000 bbl 4 4 50.0% 8 
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A conservative solution is to use the larger data set from 1972 – 2005 to define the proportion of 
spills in the ≥ 1000 bbl category (50%) that are applicable.  This increases the number of 
applicable spills above the top spill threshold to 2, and these two spills increase the number of 
applicable spills ≥ 500 bbl to 3.  The lower two spill thresholds are left unchanged.  Table 4.10 is 
the result with the changed numbers in italics.  Table 4.10 also includes the exact binomial lower 
and upper confidence limits for these proportions.   
 
Table 4.10  Adjusted GOM and Applicable Platform Spills at Different Thresholds for N = 

22 Spills  (Changed Values in Bold Italic) 
 

Spill 
Threshold GOM 

Applicable or 
Non-GOM Total 

Proportion 
Applicable LCL UCL 

≥ 50 bbl 4 18 22 .8182 0.5972 0.9481 
≥ 100 bbl 4 14 18 .7778 0.5236 0.9359 
≥ 500 bbl 2 3 5 .6000 0.1466 0.9473 
≥ 1000 bbl 2 2 4 .5000 0.0676 0.9324 

 
Because the number of spills ≥ 500 and 1000 bbl is small, the lower and upper confidence limits 
for the applicable proportions are very wide. 

4.3.3.2 Platform Spills using Method 1  
For method 1 the first factor in the confidence limits is the basic uncertainty in the Poisson rate 
which was detailed for GOM platform spills in Table 3.13.  Table 4.11 is extracted from Table 
3.13 for ease of reference.   
 
Table 4.11  GOM Platform Spill ≥ 50 bbl Exact 95% Poisson Confidence Intervals for 1990 

– 2005 
 
GOM Platforms 1990-2005       

Label # 
Spills Exposure Variable Sum Exposure 

Variable Rate LCL UCL 

Spills/Bbbl 22 Production Bbbl 6.766 3.252 2.038 4.923 
Spill/(Number of Platforms) 22 KPlatforms-Years 56.37 0.3903 0.2446 0.5909

 
Chapter 3 examined spill rates for varying spill thresholds using the rates per Bbbl of production 
for ≥ 50 bbl spills and the distribution of spill volumes.  However, the results of fitting a three 
parameter lognormal to the GOM platform spill volumes can be applied to all exposure 
variables.  Table 3.15 for platform spills describes the proportion and the exact binomial 
confidence intervals for the proportion of a spill data set above the thresholds of 100, 500, and 
1000 bbl.   
 
The average platform spill size for 1990 and later cannot be shown to be statistically 
significantly higher than the average spill size for 1972 and later.  However, the proportion ≥ 100 
bbl and ≥ 500 bbl is larger in the later time frame, which matches the break point used for the 
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lower spill rate.  Thus, to ensure that the results are conservative a new 3-parameter lognormal fit 
was done for the 1990 to 2005 data.  The parameters for that fitted distribution are location = 
5.047, scale = 1.606, and threshold = 49.9.  Table 4.12 summarizes the binomial proportions and 
confidence limits for the number of spills exceeding the higher thresholds.  This is the second 
source of uncertainty included in method 1. 
 

Table 4.12  Proportion of ≥ 50 bbl Platform Spills above Different Thresholds with 95% 
Binomial Confidence Limits (1990-2005 Data) 

 
Threshold P(≥ Threshold) LCL UCL 

50 1 1 1 
100 0.7597 0.5463 0.9218
500 0.2541 0.1073 0.5022
1000 0.1299 0.0291 0.3491

 
The third source of uncertainty is the proportion applicable in each of the spill size categories.  
The proportions and lower and upper confidence limits were defined in Table 4.10 for each spill 
size threshold. 
 
The estimated Arctic platform spill rate for each spill threshold is simply the Poisson rate times 
the size proportion times the applicable proportion for that size threshold.  For conservative 
estimates of the lower and upper confidence limits, the three LCLs are multiplied, as are the 
three UCLs.  As noted in Section 4.3.1, calculating a lower confidence limit by multiplying the 
LCLs for two or three variables is a conservative approach, as it is relatively unlikely that all 
variables will simultaneously be at their lower confidence limits. 

 
Tables 4.13 and 4.14 are the result.  They specifically consider (1) the underlying uncertainty in 
estimating the Poisson rate using the full data set of 22 pipeline spills ≥ 50 bbl for 1990 – 2005, 
(2) the uncertainty in estimating what fraction of spills ≥ 50 bbl exceed higher spill size 
thresholds, and (3) the uncertainty in the binomial proportion that is applicable to the Arctic.  
Since, for example, the LCL is formed by multiplying the LCL for each source of uncertainty, 
the result is a conservative one. 
 
Table 4.13  Method 1 Conservative Procedure to Estimate Arctic Platform Spill Rates for 

Various bbl Thresholds with Exposure Variable = Production 
 

 
Adjusted 
Poisson   

x Rate per Bbbl LCL UCL 
50 2.6606 1.2169 4.6679 

100 1.9215 0.5829 4.2474 
500 0.4958 0.0321 2.3421 

1000 0.2112 0.0040 1.6026 
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Table 4.14  Method 1 Conservative Procedure to Estimate Arctic Platform Spill Rates for 
Various bbl Thresholds with Exposure Variable = Platform-Years 

 
 Adjusted Poisson   
x Rate per Platform-Year LCL UCL 
50 0.3193 0.1461 0.5602 
100 0.2306 0.0700 0.5098 
500 0.0595 0.00385 0.2811 

1000 0.0254 0.00048 0.1923 
 

4.3.3.3 Platform Spills using Method 2  
Method 2 is using the actual data rather than a fitted distribution for the number of spills 
exceeding each size thresholds and for whether the spill cause is GOM-specific or applicable to 
the Arctic.  Since this assumes the lower rate for “spills applicable” to the Arctic and for larger 
spill sizes also reduces the variability, this has tighter confidence intervals than the conservative 
approach.  This ignores the uncertainty in the proportion of spills for each spill threshold and the 
proportion that is applicable to the Arctic vs. GOM-specific causes.   
 
The number of applicable spills from Table 4.10 is then used to generate Table 4.15 and 4.16, 
which show the results for different spill sizes when production and platform-years are used as 
the exposure variables.   
 

Table 4.15  Method 2 Results (Ignores Uncertainty in Applicability and Spill Size) for 
Arctic Platform Spill ≥ 50 bbl Poisson Based Rate 95% Confidence Intervals with 

Exposure Variable = Production 
 

Spill Threshold 
# 

Spills Exposure Variable
Sum Exposure 

Variable Rate LCL UCL 
≥ 50 bbl 18 Production 6.766 2.6606 1.5768 4.2048
≥ 100 bbl 14 Production 6.766 2.0693 1.1313 3.4720
≥ 500 bbl 3 Production 6.766 0.4434 0.0914 1.2959
≥ 1000 bbl 2 Production 6.766 0.2956 0.0358 1.0679
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Table 4.16  Method 2 Results (Ignores Uncertainty in Applicability and Spill Size) for 
Arctic Platform Spill ≥ 50 bbl Poisson Based Rate 95% Confidence Intervals with 

Exposure Variable = Platform-Years 
 

Spill Threshold 
# 

Spills Exposure Variable
Sum Exposure 

Variable Rate LCL UCL 
≥ 50 bbl 18 KPlatforms-yrs 56.37 0.3193 0.1892 0.5047
≥ 100 bbl 14 KPlatforms-yrs 56.37 0.2484 0.1358 0.4167
≥ 500 bbl 3 KPlatforms-yrs 56.37 0.0532 0.0110 0.1555
≥ 1000 bbl 2 KPlatforms-yrs 56.37 0.0355 0.0043 0.1282

 
 

4.4 Arctic Specific Hazards for Pipeline Oil Spills 
Section 2.6 which discusses the data on Arctic specific hazards is the introduction to this section.  
While these Arctic specific hazards are a key part of defining oil spill risk in the Arctic, this 
study’s focus has been on the extension of statistical results from the GOM to the Arctic.  Thus, 
these results are much less comprehensive than other sections of the report.  The statistically 
based results within this section are relatively limited, but where possible they are presented.   
 

4.4.1 Ice Keel Gouging 
Weeks, et al. (1983, 1984) included modeling of required burial depths for one ice impact during 
a 100-year period.  Lacking detailed engineering analysis, and to demonstrate the estimation 
methodology, this study will rely on the Weeks model.  This requires an assumption as to the 
burial depth of the pipeline.  For consistency, this study will use the same 2.5 m that is assumed 
in Bercha (2006), which is nearly identical with the 8’ that was assumed for the Liberty pipeline 
in Blanchet et al. (2000). 
 
While the burial depth of 2.5 m is assumed to be critical, which matches Weeks, detailed 
engineering analysis is appropriate to determine whether the critical incision depth is shallower 
or deeper than the burial depth.  It is possible that shallower incisions may be an issue, if the 
region of soil deformation which extends below the incision is an issue for pipeline integrity.  In 
Paulin et al. (2001) this appeared to be the design approach used for Northstar.  On the other 
hand, if the pipeline can resist, break-off, or be safely displaced by ice ridges that have some 
scale of contact, then the key incision depth is deeper than the burial depth.  This latter 
possibility can be modeled using HS, the conditional failure probability for the pipeline given an 
ice gouge impact (Bercha, 2002 & 2006).  For descriptions of the pipeline’s strength and testing 
at Northstar see Lanan and Ennis (2001). 
 
Equation 17 from Weeks et al. (1983, p. 30) can be simplified as equation 4.1 to calculate the 
number of km-years for a single ice keel (gouge) to pipeline contact.  Note that 0.2 m is 
subtracted from the burial depth to match this calculation to the probability distribution derived 
from the censored data (no gouges shallower than 0.2 m were measured).  The flux or gouge 
density measured by Weeks et al. was 5.2 gouges/km-yr for deeper water gouges. 
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1 contact/km-yr = e–λ(x – 0.2) g sinθ     (4.1) 

 
Where λ = parameter for probabilistic distribution of incision depth 
 x = burial depth (2.5 m assumed) 
 g = average number of gouges/km-year along pipeline route (5.2 gouges/km-yr) 
 θ = angle between the route and the trend of the gouges (90o assumed) 
 
For this study θ, angle between the route and the trend of the gouges, is assumed to be 90o.  As 
detailed in Chapter 2, this value was chosen because the bulk of the ice movement is roughly 
parallel to the shore and the pipeline is assumed to be largely perpendicular to the shore.  This is 
also a conservative assumption.  It is worth noting that Bercha (2002 & 2006) uses 45o for an 
average orientation.  The impact of this assumption on the results can be estimated by the ratio 
between 1 and the sin(45o) = 0.707. 
 
Table 4.17 summarizes the key inputs and outputs for the probabilistic model developed by 
Weeks et al.  There are two pairs of columns λ and for the corresponding gouge rate.  The first 
pair is based on calculating λ from Equation 2.1, and the second pair is based on subtracting 1 
from the value of λ to adjust for the difference between all gouges (used to derive λ) and new 
gouges (Weeks et al., 1983, p. 30).  Note: that adjustment accounts for the fact that if all gouges 
are used to build the depth distribution, infilling over time has reduced the average incision 
depth. 
 

Table 4.17  Gouge rate for a burial depth of 2.5 m 
 

Water 
depth 
(m) λ 

Gouge 
/km-yr 

Gouge 
/mi-yr λ - 1 

Gouge 
/km-yr 

Gouge 
/mi-yr 

5 8.16 3.65E-08 5.88E-08 7.16 3.64E-07 5.86E-07
10 6.68 1.10E-06 1.77E-06 5.68 1.09E-05 1.76E-05
15 5.47 1.78E-05 2.87E-05 4.47 1.78E-04 2.86E-04
20 4.48 1.74E-04 2.80E-04 3.48 1.74E-03 2.80E-03
25 3.67 1.13E-03 1.82E-03 2.67 1.13E-02 1.81E-02
30 3.00 5.21E-03 8.38E-03 2.00 5.19E-02 8.36E-02
35 2.46 1.82E-02 2.93E-02 1.46 1.82E-01 2.92E-01

 
Table 4.17 makes it clear that each 5 m increase in depth from 10 m to 25 m makes about an 
order of magnitude increase in the probability of a keel to pipeline contact.  Thus, if the burial 
depth is constant, the probability of an oil spill is dominated by how much of the pipeline is in 
deeper water beyond the barrier islands.  There is also an order of magnitude difference at all 
water depths depending on whether the adjustment for new versus all gouges is made. 
 
If these values are compared with the 5.23 x 10 – 6spills/km-yr reported in Bercha (2006), they 
are roughly comparable at a water depth of 10 m.  However, they differ radically from Bercha 
for deeper water depths where Bercha reduces the rate, and Table 4.17 indicates an order of 
magnitude increase for each 5 m of water depth. 
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In the future, it should be possible to apply the results of Table 4.17 or the underlying equation, 
but it will require information on how much pipeline would be in each water depth class, and 
how much cover or what burial depth should be assumed for each water depth class.  In addition 
it would seem appropriate to consider the presence of barrier islands or other geological shields 
from the moving ice. 
 
Finally, there is the question of whether keel contact with the pipeline is required (  decrease 
the effective burial depth of pipe in above calculations, because the pressure of displaced soil is a 
problem) or can say 0.5m of a keel impact the pipe without damage (  increase the effective 
burial depth of pipe in above calculations)?  Note: because there is an order of magnitude change 
for each 5m of depth, it is suggested that changing the effective burial depth is a superior 
modeling choice to using a conditional probability for pipeline spill given keel to pipeline 
contact.  That conditional probability might be better used to account for a pipeline that is 
damaged (bent and needing replacement) versus one that is broken and spilling oil. 
 

4.4.2 Strudel Scour 
Section 2.6.2 on strudel scour concluded with the calculated probabilities for a free span greater 
than 0’ of 3.8x10-4 and for a free span ≥ 100’ of 5.2x10-5 (Blanchet et al., 2000, p. ix).  As this 
was for 1.8 miles of pipe vulnerable to strudel scours for a year, the latter probability can be 
converted to a value of 2.9x10-5 per mile-yr or 0.029 per KMile-yr for comparison with rates for 
non-GOM specific spill causes.  Note: that the further off-shore a platform is; the more 
opportunity there is to select landfall locations that are as remote as possible from major river 
outlets, which will minimize the probability of strudel scours. 

 
There are 2035 mile-years for pipelines within the Beaufort development scenario.  This can be 
split between 985 miles in 10 m to 20 m water depth and 1035 mile-years in less than 10 m 
depth.  Without more detailed information, it is not possible to calculate how many mile-years of 
strudel scour exposure there is over the life of the field.   
 
However, at this level of detail a first-order approximation would place about 30% of the shallow 
water pipeline-years in 2 to 5 m water depth (30% of the shallow water range) where strudel 
scour is most likely to be a problem.  This assumes that some platforms are in say 6 m of water 
depth so that pipeline would have a larger fraction in the critical range and other platforms are in 
say 9 m of water depth – and connected to the platform in 6 m – so that none of that pipeline 
would be in the critical range of water depths. 
 
Thus, an estimate for the Beaufort Development Scenario for the number of pipeline spills due to 
strudel scour is 0.009 (= 2.9x10-5 per mile-yr * 1035 mile-years * 30%) over the life of the field. 

4.4.3 Upheaval Buckling 
As the engineering expertise and assumptions to model upheaval buckling are not within the 
scope of this study, it is assumed that the critical length defined for the probability of a strudel 
scour has appropriately considered the probability of upheaval buckling.  Thus, the probability of 
upheaval buckling is assumed to equal the probability of a strudel scour. 
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4.4.4 Thaw Settlement 
As there is no statistical basis for estimating the probability of an oil spill due to thaw settlement, 
this study will not attempt to do so.  However, it is worth noting that thaw settlement is a much 
more gradual phenomenon than the impact of an ice keel.  Thus, an appropriate schedule for an 
appropriate pig can identify any thaw settlement before pipeline integrity is compromised.  
 
While it is outside the scope of this study, it is worth noting that if a clear design standard will be 
applied to this phenomenon, then the design standard is potentially another way to establish a 
spill probability.  For example, suppose that the design standard is for 1 spill every 100 or every 
1000 years.  Such values can be converted into the probability of a spill. 

4.5 Arctic Specific Oil Spill Causes for Platforms 
The focus of this study has been on MMS data for the GOM and OCS total, and on data focused 
on Alaska specific natural hazards for pipelines.  While Arctic effects on platform spills are 
clearly potentially important, this study does not address these beyond the following discussion.   
 
Bercha (2006) included values for ice forces, low temperature, and a category for other.  Ice 
forces that can move or damage a platform must clearly be considered, and the low temperatures 
of the Arctic are a hazard.  However, this is based on spill cause classifications that do not 
include the second most common cause of platform oil spills – human error (see Table 2.21). 
 
The authors of this study suggest that the significant share of spills caused by human error could 
quite possibly increase in the Arctic environment.  There is absolutely no question that human 
errors increase in the dark and in the cold, as well as in other forms of more challenging 
environments.  Thus, there is the potential that platform spills due to human error could increase 
beyond the level experienced in the GOM.   
 

4.6 Application of Spill Rates to Development Scenario  
The exposures summarized at the bottom of Table 4.1 can be combined with the spill rates and 
limits calculated in Section 4.3.  If method 1 rates are used, then the rates include the uncertainty 
in the rate and the uncertainty in the fraction of the spills that are “applicable” to the Arctic.  For 
spill sizes exceeding 100, 500, and 1000 bbl then the uncertainty in the size variable is included.  
The results are predicted numbers of spills for the life of the field (LOF) represented by the 
development scenario.  Method 2 considers only the uncertainty in the Poisson rate of spills. 
 
Table 4.18 is the expected number of spills over the LOF for the Beaufort development scenario 
using the conservative approach of method 1.  This is only for the “applicable” spills and it does 
not include factors for increasing or reducing the impact of specific spill causes in the Arctic.  It 
does adjust the exposures so measured in thousands of pipeline mile-years, thousands of 
platform-years, and billions of barrels of oil.  This is required so that exposures are measured in 
the same units as the spill rates derived from the GOM with its much larger values. 
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Table 4.18  Application of Conservative (Method 1) Extended “Applicable” GOM Spill 
Rates (Spills ≥ 50 bbl) to Beaufort Development Scenario 

 
 Pipeline Spills       Platform Spills 

 

 In-use 
Pipeline 
Length 

[KMiles]  
Production 

Bbbl  

Platforms-
Years 

[KPlatforms]
Production  

Bbbl 
Exposure 2.035 1.3756 0.148 1.3756 

rate 0.1298 1.6874 0.3193 2.661 
95% LCL 0.0635 0.8257 0.1461 1.217 
95% UCL 0.2294 2.9830 0.5602 4.668 

LOF # spills 0.2641 2.3212 0.0473 3.6605 
95% LCL 0.1292 1.1359 0.0216 1.6741 

 UC 0 4.1034 9 213 
 
One of the most important conclusions from examining Table 4.20, is that selecting the right 
driver to determine the spill rate is enormously important.  For pipeline spills using spills per 
Bbbl oil produced versus spills per pipeline KMile-years makes about an order of magnitude 
difference in the predicted spill number and confidence limits.  For platforms, it makes nearly 
two orders of magnitude difference. 
 
Consider the more extreme case of platform spills. The difficulty is that in the GOM from 1990 – 
2005 an average of 3523 platforms averaged 0.12 Mbbl of production per year each, while in the 
Beaufort development scenario an average of 5.1 platforms averaged 8.6 Mbbl of production per 
year for each.  The authors believe that the probability of an oil spill is much more closely linked 
to the activities associated with each platform, than it is to the volume of oil produced by each 
platform. 
 
The authors suggest that using spills per volume of oil produced is not a reliable approach for 
estimating oil spills in the Arctic.  Thus, further analysis in this section will be done only with 
the exposure variables of pipeline mile-years and platform-years. 
 
In contrast with these spill rates, the expected number of strudel scour caused oil spills is an 
addition of 0.009 expected pipeline spills over LOF is much, much smaller than 0.264 number of 
pipeline spills expected over LOF, and much smaller than the level of uncertainty associated 
with other causes.  Thus, while strudel scour must be a design and planning issue, it is not the 
key uncertainty or source of potential oil spills. 
 
On the other hand, ice keel gouging can possibly have much larger values, but there is not yet a 
scenario against which those rates can be applied. 
 
Table 4.19 for applicable pipeline spills in the Arctic combines the information from Tables 4.5 
and 4.7 to make it easy to compare the conservative confidence limits (method 1) and minimum 
(method 2) confidence limits at different spill thresholds.  These are the values that should be 
multiplied by the exposure variables for the Arctic to produce life of field probabilities of 

95% L .4668  0.082 6.4
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applicable pipeline oil spills at each spill threshold.  This is only for “applicable” spills with 
causes similar to those that occur in the GOM, and it does not include Arctic-specific causes. 
 
One significant difference between the GOM and the development scenario is the average length 
of the pipelines.  As noted in the list of cautions and caveats in Chapter 5, this seems likely to 
overstate the spill rates for the pipelines in the Arctic.  
 

Table 4.19  Arctic Pipeline Spills for Applicable Causes – Rates and 95% Confidence 
Limits (Spills/KMile-Years)  

 
 Method 1 Conservative Method 2 
Spill Threshold Rate  LCL UCL Rate LCL UCL 

50 0.1298 0.0635 0.2294 0.1298 0.0803 0.1984 
100 0.0852 0.0294 0.1908 0.0865 0.0473 0.1452 
500 0.0382 0.0075 0.1255 0.0371 0.0136 0.0807 
1000 0.0299 0.0044 0.1071 0.0309 0.0100 0.0721 

 
Table 4.20 for applicable platform spills in the Arctic combines the information from Tables 4.14 
and 4.16 to make it easy to compare the conservative confidence limits (method 1) and minimum 
(method 2) confidence limits at different spill thresholds.  These are the values that should be 
multiplied by the exposure variables for the Arctic to produce life of field probabilities of 
applicable platform oil spills at each spill threshold.  This is only for “applicable” spills with 
causes similar to those that occur in the GOM, and it does not include Arctic-specific causes. 
 

Table 4.20  Arctic Platform Spills for Applicable Causes – Rates and 95% Confidence 
Limits (Spills/KPlatforms-Years)  

 
 Method 1 Conservative Method 2 
Spill Threshold Rate  LCL UCL Rate LCL UCL 

50 0.3193 0.1461 0.5602 0.3193 0.1892 0.5047 
100 0.2306 0.0700 0.5098 0.2484 0.1358 0.4167 
500 0.0595 0.00385 0.2811 0.0532 0.0110 0.1555 
1000 0.0254 0.00048 0.1923 0.0355 0.0043 0.1282 

 
Tables 4.19 and 4.20 have been left as spill rates, rather than being multiplied by the exposure 
variables for the Beaufort development scenario, because it only requires a multiplication to 
convert to LOF spill probabilities.  Also the Beaufort development scenario is itself subject to 
considerable uncertainty. 
 
The many uncertainties listed at the start of this chapter may increase or lower the spill rate, but 
they certainly widen the confidence intervals.   
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4.7 Sensitivity Analysis of Platform Spill Rates to Data Adjustment 
In Section 4.3.3.1 the number of applicable spills ≥ 1000 bbl was adjusted from 0 to 2.  This was 
done because there were 4 such spills in the 1972 – 1989 time frame, but none in 1990 – 2005.  
This is a conservative choice, as it increases the number of large spills with an applicable cause.  
While it may be unreasonable to use 0 for the number of such spills, it is certainly possible that a 
better adjustment might have been a single spill. 
 
Table 4.21 summarizes the rates and confidence limits for assuming 2 (as before) large 
applicable spills and for assuming 1 large spill.  Not surprisingly, all rates and confidence limits 
are lower if the spill data adjustment is 1 spill rather than 2 spills. 
 

Table 4.21  Sensitivity Analysis for Arctic Platform Spills for Applicable Causes – Rates 
and 95% Confidence Limits (Spills/KPlatforms-Years)  

 
 Method 1 Conservative Method 2 
Spill Threshold Rate  LCL UCL Rate LCL UCL 
1000 (2 appl.) 0.0254 0.00048 0.1923 0.0355 0.00430 0.1282 
1000 (1 appl.) 0.0104 0.00002 0.1389 0.0177 0.00045 0.0988 

 
While the lower level assumption may be appropriate, given the limited data it is the original 
assumption of a 2-spill adjustment that is recommended. 
 

4.8 Comparison with Bercha (2006) 
To facilitate comparison of this methodology with the results of the probabilistic risk assessment 
done in Bercha (2002 and 2006), Poisson spill rates and confidence intervals are calculated for 
that data.  Since the relevant data is reproduced in this report, all references in this section are to 
this report.  This analysis is done only at the aggregated level for all spills ≥ 50 bbls and over the 
entire 1972 – 1999 time frame used in Bercha. 
 
There are 31 pipeline spills listed in Table 2.4 and 21 platform spills listed in Table 2.7.  There 
are 117,705 pipeline mile-years listed in Table 2.13 and 119, 714 well-years listed in Table 2.15.  
These values can be used to compute exact confidence limits for the spill rates for ≥ 50 bbl spills.  
The results are shown in Table 4.22. 
 

Table 4.22  Poisson Rates for Bercha (2006) Data for 1972-1999 
 

 n 
exposure 
variable 

Sum 
Exposure 
variable rate LCL UCL 

Platforms 21 KWell-yr 119.714 0.1754 0.1086 0.2681 
Pipelines 31 KMile-yr 115.385 0.2687 0.1825 0.3813 

 
The uncertainty reported in Table 4.22 can most easily be put into context by considering the 
ratio between the upper and lower confidence limits for the 95% confidence interval.  That ratio 
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for platforms is about 2.5 and about 2 for pipelines.  This is the uncertainty for rates based in the 
GOM assuming time stationarity.  It does not consider any of the many sources of uncertainty in 
moving to applications in the Arctic.  This is a lower bound on the uncertainty from this data, as 
this uncertainty applies to every pipeline and well and it is not reduced through an averaging 
process. 
 
It also does not consider the increase in uncertainty that results if the data sets of 21 and 31 spills 
are subdivided by pipe size, water depth, spill size, or spill cause.  Nor does it consider any of the 
data refinements that MMS has been able to provide or that have been developed in this study.  
Table 4.23 illustrates this by deriving the Poisson rates for pipeline spills due to corrosion (4 of 
31) pipeline spills and for platform spills due to storage tank releases (3 of 21) platform spills.  In 
this case the ratio of the upper and lower confidence levels is about a factor of 10 or an order of 
magnitude. 
 

Table 4.23  Poisson Rates for Specific Spill Causes for Bercha (2006) Data for 1972-1999 
 

 n 
exposure 
variable 

Sum 
Exposure 
variable rate LCL UCL 

Platforms: storage 
tank release 3 KWell-yr 119.714 0.0251 0.0052 0.0732
Pipelines: 
corrosion 4 KMile-yr 115.385 0.0347 0.0094 0.0888

 
Thus the uncertainty of a factor of 2 or 2.5 is the absolute minimum range, and realistic estimates 
of the uncertainty in extrapolation to the Arctic are larger by some unknown amount, which in 
some cases is at least an order of magnitude. 
 

4.9 Summary and Conclusions 
It is suggested that Tables 4.19 and 4.20 represent a valid way to estimate with rates and 
confidence limits the probabilities of “applicable” pipeline and platform spills in the Arctic.  
Method 1 in a conservative way considers the statistical uncertainties in spill size and the 
applicability of the spill cause to the Arctic.  Method 2 provides a lower bound on the amount of 
uncertainty that is unavoidable. 
 
Because these tables do not include adjustments for Arctic-specific spill causes, the spill rates 
can only go up.  However, preliminary analysis indicates that strudel scour is less significant 
than the applicable causes.  No conclusions can be reached for ice keel gouging. 

MMS 130 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

 

5 Recommendations and Conclusions 

In order to maximize ease of use and clarity of references, this chapter is structured and written 
as “bullet points.”  In addition, using the detailed results from and methods of this study is best 
done within the context provided by the discussions in this chapter.  For example, there is about 
an 8.7% adjustment required for pipeline spill rates applied to the GOM based on volume of oil 
production.  Fundamentally, the authors are concerned that abstracting key numbers may lead to 
their use out of context.  
 
Sections 5.1 to 5.3 are based on the body of this report.  Section 5.4 presents a promising 
alternative approach to modeling pipeline spill risks that was first conceptualized and developed 
while this report was in the final review stage. 

5.1 Major Conclusions 
The Poisson distribution for pipeline and platform spill rates is satisfactory.  Other distributions 
could be chosen, but the Poisson  

1. Fits with historical practice  
2. Has a theoretical foundation – it is not just an empirical curve fit 
3. Is “not rejected” at reasonable levels of statistical confidence 
4. Even though the fit of any distribution may be imperfect, the key question when 

estimating rates, is “how much do these imperfections change the estimated rate?  
Generally, the answer is very little.” 

 
For the GOM, any of the exposure variables can be used to model the rate of oil spills, due to the 
high level of correlation between them.  Furthermore, with production as the exposure variable, 
the results are generally consistent with MMS published results. 
 
The best exposure variables for extension to the Arctic are pipeline mile-years and platform-
years.  Using production volumes as the exposure variable seems to significantly overstate the 
risk.  Time cannot be used as the exposure variable.  
 
The level of uncertainty for Arctic extension is very high due to the many uncertainties.  
However, it is possible to make reasonable, justifiable extensions from the GOM data to the 
Arctic. 
 

5.2 Cautions in Using and Interpreting the Results  
Platform spills for this study have included spills of refined petroleum products such as diesel, 
while other studies such as Bercha (2002 & 2006) focus on crude and condensate. 
 
For GOM use for pipeline spills if production is the exposure variable.  It is suggested that the 
spill rate and confidence limits be adjusted upwards by dividing by 0.92.  This is the ratio 
between GOM production from 1972 – 2005 to total OCS production.  This would closely 
approximate the results that would have been obtained if the GOM spills had been measured 
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against GOM production.  (No similar adjustment is required for platforms or for the extensions 
to the Arctic, as GOM production was used.) 
 
Many users of statistics are accustomed to the idea that variability averages out by having many 
years, many pipelines, and many platforms.  Variations of this principle have been part of several 
discussions in this report, however, the principal uncertainty addressed in this report is the basic 
uncertainty about what is the average spill rate.  This affects every pipeline and platform equally, 
and it is NOT averaged out by independent, identically distributed random selections. 
 
The more recent aggressive data collection effort for platform spills linked to hurricanes suggests 
that recent reported spill volumes are relatively higher, so that true spill rate declines for 
platforms are probably somewhat larger than reported here. 
 
Using a constant or average spill rate per pipeline mile-year will overestimate the rate for 
pipeline runs longer than average and underestimate the rate for pipeline runs shorter than 
average.  In particular, rates developed for average length pipeline runs in the GOM are likely to 
overstate the spill rate per pipeline mile-year for the longer Arctic pipelines.  This is addressed in 
much more detail in Section 5.4. 
 
The rates and confidence intervals for spills exceeding the thresholds of 100, 500, and 1000 bbl 
are less reliable than the results for the 50 bbl threshold.  There are more uncertainties in which 
statistical approach is better, and there are fewer spills so that small sample variability is more of 
an issue.   

5.3 Suggestions for Future Work 
The very preliminary work in Section 5.4 on platforms as an exposure variable for pipeline spills 
should be extended.  Other potential “termination” exposure variables such as number of 
segments should also be explored.  A very significant fraction of pipeline spills happen because 
of a connection to a platform.  The connection may be severed when a platform is moved or 
destroyed by a hurricane, a work boat may collide with a riser, or an anchor may damage the 
pipeline during operations around a platform.  Accurately representing the oil spill probabilities 
associated with this should support better estimates and better extensions to different operating 
environments.  Using a constant or average spill rate per pipeline mile-year will overestimate the 
rate for pipeline runs longer than average and underestimate the rate for pipeline runs shorter 
than average.  In particular, rates developed for average length pipeline runs in the GOM are 
likely to overstate the spill rate per pipeline mile-year for the longer Arctic pipelines. 
 
The influence of the scale of development in the Arctic on the predictability of the spill history 
that will be experienced has not yet been explored.  To avoid future surprises, it should be. 
 
Given the robustness of using spill models for volume of oil produced based on the larger data 
sets available for spills ≥ 50 bbl; these models should be applied to the spill rates used in the 
extension of GOM spill experience to the Arctic, which are based on pipeline spills per thousand 
mile-years and platform spills per thousand platform-years.  This will support the production of 
more reliable estimates for the spill rates for larger spills, such as exceeding 1000 bbl. 
 

MMS 132 TGE Consulting 



Oil Spill Occurrence Estimators for Beaufort and Chukchi Sea OCS (Statistical Approach) 

Two different methods for extending the GOM data to the Arctic with confidence intervals were 
explored.  Additional approaches should be explored.  For example, simulation might be an 
appropriate tool for estimating how conservative an LCL is produced by multiplying the LCL’s 
for three different variables.  Clearly, verifying whether the confidence limits are realistic, 
optimistic, or overly conservative would greatly increase their value. 
 
It should be possible to construct confidence intervals for the Arctic specific risks as the 
scenarios are better defined. 

5.4 Potential New Pipeline Spill Model 
This section describes a different approach for modeling pipeline spills that is based on the fact 
that each pipeline spill occurs either in conjunction with a platform termination or elsewhere 
along its length.  This appears to produce a model that more accurately reflects pipeline spill 
risks. 
 
As described in Section 5.3 and detailed in Tables 5.1 and 5.2, many pipeline spills have a 
platform-related cause.  For this preliminary work, it is assumed that all pipelines, short or long, 
have about the same risk of pipeline spills at a platform termination.  (There have not been 
enough spills to differentiate spill rates by pipe diameter, water depth, etc. in this report.  Thus, 
we do not believe it will be possible to initially differentiate between risks linked to floating vs. 
fixed platforms, water depth, etc.)  
 
This work is at an early stage, and it has not yet received the detailed analysis and review that the 
other models presented in this report have received.  It is also incomplete, as it only presents one 
approach for developing confidence intervals; and some points are illustrated but not fully 
developed.  Nevertheless, the authors suggest that it is an approach that merits further review, as 
it does appear to more realistically model the risk of a pipeline spill, and it is much more robust 
for pipeline lengths different from “average.” 
 
The model is first explained by analogy in Section 5.4.1.  Since each pipeline has a termination 
at each end, the spill rate at the terminations is like a fixed cost, which is incurred by every single 
pipeline no matter how long.  The spill rate along the length of a pipeline is like a variable cost 
that depends on how long each pipeline is.  Then spill rates for different spill sizes are developed 
in Section 5.4.2.  Then in Section 5.4.3 the rates are applied to the Beaufort development 
scenario for comparison with the results developed earlier in this report.  
 
This class of model is useful both for extrapolating from the GOM to the Arctic and for 
estimating spill rates for new GOM developments that are at significantly higher distances from 
shore than the statistical average for the GOM.  The specific model presented here uses pipeline 
mile-years and platform-years as variables.  While future models may use different variables, the 
intent is to show the value of a new approach.  
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5.4.1 Analogy to Fixed and Variable Cost Model vs. Average Cost Model 
The clearest way to introduce this model is by analogy with another model that most readers will 
have previously used.  There are many circumstances where a choice must be made between two 
cost models, which are summarized in Figure 5.1.   
 
The constant rate model uses an average cost, such as cost per mile, cost per square foot, or cost 
per call.  For any volume, the estimated cost equals the average cost multiplied by the expected 
volume.  This model is analogous to the models presented previously in this report, which 
present average spill rates per pipeline mile-year, per platform-year, per billion barrels of 
production, or per year. 
 
The other model defines a fixed cost that must be incurred for any non-zero volume, and a 
variable cost for each unit of that volume.  The new approach presented here is analogous to the 
fixed/variable cost model (henceforth called fixed cost model for linguistic convenience).  This 
approach recognizes that whether a pipeline is short or long, it typically has at least one 
termination at a platform.  And that the spill rate for those terminations depends on the number 
of terminations, and not on the length of each pipeline.  This is analogous to the fixed cost.  The 
spill rate along the pipeline’s length is analogous to the variable cost. 
 
For those who are unfamiliar with these models, Figure 5.1 was developed using the following 
data.  There is a fixed cost of $800 for any volume, and then there is a variable cost of $50 per 
unit.  Thus, if the average volume is 20, the total cost is $1800 (= 800 + 50*20).  The average 
cost per unit is the total cost divided by the average volume or $90 (= 1800/20). 
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Figure 5.1  Average Cost versus Fixed and Variable Cost Models 
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This familiar context of fixed/variable cost versus average cost can be used to illustrate why each 
type of model is used for situations where there is a significant fixed cost.  The average cost is 
easiest to determine or to statistically estimate.  And for volumes close to the average volume 
(which is the point where the two lines cross) it provides a realistic estimate.  In many situations 
this is enough for good results.  For the example data the average cost model works pretty well 
for volumes between 15 and 25. 
 
However, for volumes that are significantly different than the average volume, the estimated 
value for the average cost model is considerably less accurate than the inherently more accurate 
fixed cost model.  For the example in Figure 5.1 consider the estimated cost for volumes of 5 or 
40.  The average cost model performs poorly.  The average rate is too low for low volumes and 
too high for high volumes.  
 
Thus, if it is possible to estimate the fixed and variable costs, this model is more accurate.  Note: 
the fixed cost model can use a fixed cost of zero, thus the average cost model is a special case of 
the fixed cost model, and non-zero fixed costs are only used when they provide a more accurate 
model. 
 
There are at least two situations where the average model for spill rates is likely to be inferior.  
First, a fixed cost class of model is useful for extrapolating from the GOM to different 
environments, such as the Arctic.  Second, the fixed cost class of model is useful for estimating 
spill rates for new GOM developments that are at significantly higher distances from shore than 
the statistical average for the GOM. 
 

5.4.2 Determining Pipeline Spill Rates for Fixed and Variable Probability Model   

5.4.2.1 Platform-Related Pipeline Spills vs. “Pipeline” Spills  
Table 5.1 details the authors’ categorization of pipeline spills between platform-linked spills and 
those “pipeline” spills without such a link.  This was done using the same database that was used 
for Table 2.17.  The added information is in the new fourth and fifth columns.  The last three 
hurricane-caused spills were listed as having both pipeline and platform-linked causes because 
the spills are actually the accumulation of multiple spills with a common cause. 
 
In many cases the categorization was clear and unambiguous.  For example, if a platform is 
destroyed and the pipeline severed, then the platform cause is clear.  For another example, if the 
anchor from a platform service vessel damaged the pipeline, it is reasonable to classify this as 
platform related as both the vessel and the pipeline are being brought together at the platform.  In 
others, the lead author’s judgment was used, as the distance from the platform was longer or the 
connection to platform operations was weaker.   
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Table 5.1  Modified Table 2.17 Platform Related Primary Cause of GOM Pipeline Oil 
Spills 

Spill Date 
Spill 
Size 

GOM 
Specific 

Pipe-
line 

Plat-
form Cause 

1972-06-13 100  Y  Corrosion 
1973-05-12 5,000  Y  Corrosion 
1974-04-17 19,833 GOM Y  Anchor drag 
1974-05-21 65   Y Operational: anchor from derrick barge 
1974-09-11 3,500 GOM Y  Hurricane Carmen 
1976-02-29 414  Y  Corrosion: after pipeline kinked by anchor 
1976-12-18 4,000 GOM Y  Shrimp trawl damaged valve 
1977-03-29 250  Y  Natural: mud slide 
1977-06-05 50  Y  Operational: lay barge anchor 
1977-10-18 300 GOM Y  Anchor drag 
1978-04-08 135   Y Mechanical/operational 
1978-07-17 900   Y Operational: anchor drag 600’ from platform 
1979-07-15 50   Y Operational: workboat searching for rig anchor 
1980-01-29 100 GOM Y  Trawler drag broke valve 
1981-08-05 80  Y  Corrosion: external or metal fatigue 
1981-12-11 5,100   Y Operational: service vessel anchor 
1983-01-20 80  Y  Natural: mud slide 

1985-02-16 323  
Y  Operational: pipeline dented, cracked during 

construction 
1985-11-09 50  Y  Operational: spud barge anchor 

1986-02-03 119  
Y  Mechanical/operational: pinhole leak during 

abandonment 

1986-12-30 210  
Y  Mechanical/operational: anchor or original 

construction 
1988-02-07 15,576 GOM Y  Ship illegally dropped and dragged anchor 
1990-01-24 14,423 GOM Y  Fishing net or anchor 
1990-05-06 4,569 GOM Y  Trawler net drag 
1992-01-03 190  Y  Unknown 
1992-08-31 2,000 GOM  Y Rig broke loose during Hurricane Andrew 
1993-06-17 50  Y  Operational: workboat anchor 
1994-11-16 4,533 GOM Y  Trawl net damaged valve 
1998-01-22 800 GOM Y  Mechanical damage: probably anchor 
1998-01-26 1,211   Y Operational: anchor during overboard rescue 
1998-09-29 8,212 GOM Y  Hurricane Georges 
1999-07-23 3,200   Y Operational: jackup rig set down on pipeline 
2000-01-21 2,240  Y  Operational: anchor drag from drill rig 
2004-09-15 3,445 GOM Y Y Hurricane Ivan 
2005-08-29 553 GOM Y Y Hurricane Katrina 
2005-09-24 8162 GOM Y Y Hurricane Rita 

 
Table 5.2 summarizes the N = 36 spill data in Table 5.1 by spill size for the spill causes that are 
applicable to the Arctic, and in total for GOM-specific causes.  The spills with GOM-specific 
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causes are not analyzed further for four reasons.  First, this analysis is intended to explore and 
demonstrate the value of a new approach, not to provide definitive well-supported results.  
Second, results for the GOM are complicated by the hurricane spills.  Third, the number of 
platform related spills is much smaller for GOM-specific causes.  Fourth, the focus of this study 
is the Arctic not the GOM. 
 

Table 5.2  Summary of Platform vs. Pipeline Related GOM Pipeline Oil Spills 
 

Applicable or GOM 
Specific 

Pipeline 
Related 

Platform 
Related 

Applicable   
≥ 50 bbl 14 7 
≥ 100 bbl 9 5 
≥ 500 bbl 2 4 
≥ 1000 bbl 2 3 

GOM Specific          15 11 + 3 1 + 3 
 
The fraction of the pipeline spills linked to a platform ranges from 66.7% for spills over 500 bbl 
down to 33.3% for spills over 50 bbl.  These percentages are clearly a significant portion of the 
pipeline spills, which is the reason this model was analyzed. 
 

5.4.2.2 Spill Rates for Platform-Related Pipeline Spills vs. “Pipeline” Spills  
In developing spill rates for platform-related pipeline spills, the data summarized earlier offers 
two potential exposure variables – segments of pipeline and number of platforms.  Further work 
may identify better exposure variables.   
 
The number of pipeline segments over time was detailed for the GOM in Table 2.12, however, 
similar information was not available for the Beaufort development scenario.  Thus, even if rates 
were developed they could not yet be applied.  In addition, the connection between pipeline 
segments and potential exposure variables is not yet well defined.  Previous MMS work suggests 
that it could be.  If each segment has a termination at each end, then this would be a very logical 
exposure variable, which would be preferred unless the data quality is poor.  (Note that 
underwater terminations represent somewhat different spill probabilities than do platform 
terminations.)  However, if a pipeline with a termination at each end may have many logical 
segments to help identify where leaks, repairs, or other actions take place, then this would not be 
a good exposure variable.  It is unclear how many pipeline segments fit either of these two 
possibilities. 
 
Thus in the preliminary analysis reported here, the exposure variable for platform-related 
pipeline spills is platform-years.  The span of time for this exposure variable is 1972 to 2005, 
since pipeline spills were not shown to have a significant time dependence (unlike platform-
spills which were split into 1972 – 1989 and 1990 – 2005).  This initial work did not include an 
analysis of whether either the “pipeline” or “platform-related” pipeline spill rates are time 
dependent.  
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Thus, the “fixed cost” model for oil spills uses platform-years as the exposure variable for 
platform-related pipeline spills and pipeline mile-years for “pipeline” spills. 
 
Table 5.3 applies method 2 with the data in Table 5.2 for applicable spills.  With this approach 
exact Poisson confidence intervals can be derived with only the number of spills and the 
exposure variable.  This initial work has not included testing of exponential inter-spill intervals 
for these two subsets of the data. 
 
 

Table 5.3  Spill Rates for Platform vs. Pipeline Related Applicable Pipeline Oil Spills 
 

Threshold 
bbl N 

Exposure 
Variable 

Sum 
Exposure 
Variable rate LCL UCL 

Pipeline-Related Pipeline Spill Rates 
≥ 50 14 Kmile-yr 161.796 0.0865 0.0473 0.1374 
≥ 100 9 Kmile-yr 161.796 0.0556 0.0254 0.0974 
≥ 500 2 Kmile-yr 161.796 0.0124 0.0015 0.0344 
≥ 1000 2 Kmile-yr 161.796 0.0124 0.0015 0.0344 

Platform-Related Pipeline Spill Rates 
≥ 50 7 Kplatform-yr 100.087 0.0699 0.0281 0.1305 
≥ 100 5 Kplatform-yr 100.087 0.0500 0.0162 0.1023 
≥ 500 4 Kplatform-yr 100.087 0.0400 0.0109 0.0876 
≥ 1000 3 Kplatform-yr 100.087 0.0300 0.0062 0.0722 

 
These spill rates cannot be compared directly with previous spill rates.  That comparison is 
summarized in Section 5.4.2.3, and then these rates are applied to the Beaufort development 
scenario in Section 5.4.3. 

5.4.2.3 Consistency of Spill Rates for “Fixed/Variable” Rate and Average Rate Models  
While straight-forward, it is a first test of validity to show that the two models give consistent 
results for the GOM.  This is done for the 21 spills ≥ 50 bbl, but it true for all spill size 
thresholds.  The rates cannot be directly compared, rather they must be applied to the exposure 
variables to compute the number of spills of each type. 
 
For each of these Poisson models, the spill rate was computed as the number of spills divided by 
the exposure variable.  Thus, the number of predicted spills of each spill type is simply the spill 
rate multiplied by the exposure variable. 
 Number of Applicable Oil Spills (from Table 4.7) 
  21 = (161.796 Kmile-yr) * 0.1298 
 Number of Applicable Pipeline-Related Oil Spills (from Table 5.3) 
  14 = (161.796 Kmile-yr) * 0.0865 

Number of Applicable Platform-Related Oil Spills (from Table 5.3) 
  7 = (100.087 Kplatform-yr) * 0.0699 
 And of course 21 = 14 + 7 
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Thus, the new approach that uses platform-years as the exposure variable for the “fixed cost” of 
spills at terminations and pipeline mile-years as the exposure variable for the “variable cost” of 
spills along a pipeline’s length has results that are consistent with those from the previous model 
that uses the average spill rate per pipeline mile-year.  

5.4.3 Applying Spill Rates for “Fixed/Variable” Rate Model  
As shown above, the numbers of spills for the two models are equivalent when applied to the 
total exposure within the GOM from 1972 to 2005.  However, if these spill rates are applied to 
data with a different mix between platforms and pipeline lengths, then the results are different as 
well. 
 
One measure of the difference between the GOM data and the Beaufort development scenario is 
the number of pipeline miles per platform.  For the GOM dividing the 161,796 pipeline mile-
years by the 100,087 platform-years gives a result of 1.62 pipeline miles per platform.  For the 
Beaufort development scenario dividing the 2035 pipeline mile-years by the 148 platform-years 
gives a result of 13.8 pipeline miles per platform.  Thus, there is about an order of magnitude 
difference in the number of pipeline miles per platform for the Beaufort development scenario.  
Thus, there will be a large difference in results between the fixed/variable rate model and the 
average rate model. 
 
The reasons for this difference include: 

• Most of the thousands of platforms in the GOM are close to shore 
• GOM mileage does not include the 3 nautical miles or 3 leagues (prior to years of 

shoreline retreat) between shore and the boundary of OCS waters 
• Beaufort Sea pipeline mileage does include the 3 nautical miles from OCS waters to land 

 
The GOM has numerous platforms far offshore, yet there are only 1.62 pipeline miles per 
platform.  Thus, it is reasonable to conclude that there must be very substantial variability in the 
length of GOM pipelines.  Thus, the predicted spill rates for different GOM facilities will differ 
substantially between the potentially more accurate fixed/variable model versus the average spill 
rate model.  In particular the average spill rate model may dramatically overestimate the spill rate 
for long pipelines. 
 
To apply the spill rates shown in Table 5.3 to the Beaufort development scenario, the “pipeline” 
values are multiplied by the exposure variable of 2.035 thousands of pipeline mile-years.  
Similarly, the “platform-related” values are multiplied by the exposure variable of 0.148 
thousands of platform-years.  The resulting values for expected number of life-of-field spills are 
shown in the top two sections of Table 5.4.  The total expected number of life-of-field spills is 
the sum of the two spill types, and the results are shown in the bottom section of Table 5.4. 
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Table 5.4  Expected Life-of-Field Spill Numbers for Beaufort Development Scenario for 
Pipeline Oil Spills 

Threshold 
bbl 

Exposure 
Variable 

Sum 
Exposure 
Variable 

LOF 
E(#) LCL UCL 

Pipeline-Related Expected Pipeline Spill Numbers 
≥ 50 Kmile-yr 2.035 0.176 0.096 0.280 
≥ 100 Kmile-yr 2.035 0.113 0.052 0.198 
≥ 500 Kmile-yr 2.035 0.025 0.003 0.070 
≥ 1000 Kmile-yr 2.035 0.025 0.003 0.070 

Platform-Related Expected Pipeline Spill Numbers 
≥ 50 Kplatform-yr 0.148 0.010 0.004 0.019 
≥ 100 Kplatform-yr 0.148 0.007 0.002 0.015 
≥ 500 Kplatform-yr 0.148 0.006 0.002 0.013 
≥ 1000 Kplatform-yr 0.148 0.004 0.001 0.011 

Total Expected Pipeline Spill Numbers 
≥ 50   0.186 0.100 0.299 
≥ 100   0.121 0.054 0.213 
≥ 500   0.031 0.005 0.083 
≥ 1000   0.030 0.004 0.081 

 
Table 5.5 provides the results for method 2 using the average rates summarized in Table 4.19 
times the 2.035 thousands of pipeline mile-years for the Beaufort development scenario.  For 
ease of comparison the values from Table 5.4 are repeated.   
 
 

Table 5.5  Comparing Expected Life-of-Field Spill Numbers for Beaufort Development 
Scenario for Pipeline Oil Spills for Fixed/Variable and Average Models 

 
 Fixed/Variable Model Average Model 

Threshold 
bbl 

LOF 
E(#) LCL UCL 

LOF 
E(#) LCL UCL 

≥ 50 0.186 0.100 0.299 0.2641 0.1635 0.4037
≥ 100 0.121 0.054 0.213 0.1761 0.0963 0.2954
≥ 500 0.031 0.005 0.083 0.0755 0.0277 0.1643
≥ 1000 0.030 0.004 0.081 0.0629 0.0204 0.1468

 
Because the number of pipeline miles per platform is much higher for the Beaufort development 
scenario than for the GOM data, the expected number of spills is much lower with the new 
model.  To use the analogy with the fixed/variable cost model of Figure 5.1, pipelines that have 
more length have more “volume” and are better estimated with the new model; and have lower 
estimated values. 
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5.4.4 Summary and Conclusions for Fixed and Variable Cost Model  
The model that is introduced here inherently has the potential to improve the accuracy of 
extrapolated results.  The flexibility of separating spill rates into a fixed portion linked to 
pipeline terminations and a variable portion linked to the pipeline’s length greatly extends the 
accuracy of projections to environments and projects with lengths different from the average in 
the GOM data base. 
 
While promising, this approach has not yet received the level of review and validation that 
underlie the average spill rate models that are presented earlier in this report.  In particular, the 
following issues merit attention: 

• After review and discussion how much does the classification of pipeline spills as 
platform- or pipeline-related change? 

• Is there a better exposure variable for the pipeline terminations than platform-years? 
• Does the analysis of exponential inter-spill intervals support the use of the Poisson model 

for platform-related pipeline spills and for “pipeline” pipeline spills? 
• Is there an analogous method 1 approach for defining the confidence limits that is more 

conservative than this method 2 approach? 
• What are the results for use in the GOM? 
• How to handle hurricane spills when applying this approach to potential GOM 

developments? 
 
The following observations may also be useful in examining this approach further. 

• In extrapolating from the GOM data to the Arctic, one of the key variables was the 
proportion of the oil spills at each spill size threshold that was “applicable or non-GOM 
specific.”  The uncertainty in this binomial proportion was a key part of the method 1 
approach to the confidence limits for the spills per pipeline mile-year models.  While 
there is uncertainty in the proportional split between “platform-related” and “pipeline” 
spills, these are complementary binomial proportions that must sum to 1.  Thus, 
examination of this uncertainty is better done through sensitivity analysis than by 
expanding the confidence limits as method 1 does. 

• The spill cause classification as platform- or pipeline-related has less impact on the 
results than the GOM/applicable classification.  This is true because the as the weight on 
platform-related spills (and the estimated number of such spills) goes up; the weight on 
pipeline-related spills (and the estimated number of such spills) goes down.  So the total 
of the two moves up or down more slowly with the difference between the two parts.  On 
the other hand the GOM/applicable classification excludes or includes spills which 
directly decreases or increases the estimated spill rates and numbers of spills. 
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Appendix A.  Pipeline Spills ≥ 50 bbl through 1999 

Appendix A parallels the pipeline analysis in Section 3.5 of the main body of the report.  In 
Section 3.5, analyses for pipeline spills ≥ 50 bbl are documented for data through 2005.  Since 
the earlier draft report submitted in the fall of 2005 analyzed data only through 1999, it was felt 
important to provide the reader an opportunity to see what has changed by adding six additional 
years of pipeline spill data.  While much of the data in this appendix is the same as given in the 
earlier draft report, the data in Appendix A are an update of the pipeline data through 1999 used 
in the draft.  This was done to address re-interpretations of the earlier data based on dialogue 
with the MMS.  We would like to thank Cheryl Anderson for her guidance on these efforts. 
 
The remainder of this section show analogous Figures and Tables to the pipeline information in 
Section 3.5 using a numbering scheme to make the matching of the through 1999 analysis 
figure/table to the through 2005 figure/table seen in the main body of the report obvious.  For 
example Figure A3.10 is this appendix may be compared to Figure 3.10 in the main report.  
There may be minor differences in the titles to some Figures and Tables, as some revision has 
taken place. 
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Figure A3.10 Exponential Probability Plot of Pipeline Inter-Spill (spills ≥ 50 bbl) Times 
Using n = 32 through 1999 Data Set 
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Figure A3.11 Exponential Empirical CDF Plot of Pipeline Inter-Spill (spills ≥ 50 bbl) Times 
Using n = 32 through 1999 Data Set 
 

Prod Interspill Bbbl through 1999
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1

Figure A3.12 Exponential Probability Plot of Pipeline Inter-Spill Production Volumes 
(Bbbl) Using n = 32 though 1999 Data Set (spills ≥ 50 bbl) 
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Figure A3.13 Exponential Empirical CDF Plot of Pipeline Inter-Spill Production Volumes 
Using n = 32 through 1999 Data Set (spills ≥ 50 bbl) 
 

KMiles Interspill through 1999
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Figure A3.14 Exponential Probability Plot of Pipeline Inter-Spill Pipeline Mile-Years 
(KMiles) Using n = 32 through 1999 Data Set (spills ≥ 50 bbl) 
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Figure A3.15 Exponential Empirical CDF Plot of Pipeline Inter-Spill Pipeline Mile-Years 
(KMiles) Using n = 32 through 1999 Data Set (spills ≥ 50 bbl) 
 

Table A3.3 
Spill Rates for ≥ 50 bbl Spills through 1999 

Label # 
Spills 

Exposure 
Variable 

Sum 
Exposure 
Variable 

Rate LCL UCL 

Pipeline Spills/Kmile-year 32 Kmile-years 114.7 0.2790 0.1908 0.3938
Pipeline Spills/Bbbl 32 Bbbl Production 10.13 3.158 2.160 4.459
Pipeline Spills/year 32 Time, whole years 28 1.143 0.7817 1.613

 
 

Table A3.4  
Rate estimates using Exponential Distribution through 1999 

Exposure Variable Exponential 
Mean  Rate 

Pipeline Spills/Kmile-year 3.577  0.2796
Pipeline Spills/Bbbl 0.3137  3.188 
Pipeline Spills/year 319.4 Days, not years 1.143 
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Table A3.5 
Poisson Rates based on Inter-Spill Data through 1999 

Label # 
Spills 

Exposure 
Variable 

Sum 
Exposure 
Variable 

Rate LCL UCL 

Pipeline Spills/Kmile-year 31 Kmile-years 110.9 0.2796 0.1899 0.3968
Pipeline Spills/Bbbl 31 Bbbl Production 9.724 3.188 2.166 4.525 
Pipeline Spills/year 31 Time, years 27.13 1.143 0.7765 1.622 
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Figure A3.16 Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 50 bbl through 
1999 
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Figure A3.17 Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 50 bbl 
through 1999 
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Figure A3.18 Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 100 bbl 
through 1999 
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Figure A3.19 Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 100 bbl 
through 1999 
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Figure A3.20 Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 500 bbl 
through 1999 
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Figure A3.21 Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 500 bbl 
through 1999 
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Figure A3.22 Weibull Probability Plot of Pipeline Spill Volumes for Spills ≥ 1000 bbl 
through 1999 
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Figure A3.23 Weibull Empirical CDF Plot of Pipeline Spill Volumes for Spills ≥ 1000 bbl 
through 1999 

Table A3.6 
Odds Ratios for the Four Different Threshold Weibull Distributions 
 U> U 50 bbl U> U 100 bbl U> U 500 bbl U> U 1,000 bbl 
50 vs. 100 1.303    
100 vs. 500 1.495 1.586   
500 vs. 1000 1.276 1.243 1.094  
1000 vs. 2000 1.373 1.336 1.194 1.154 
2000 vs. 15000 5.079 4.986 9.706 9.553 
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Figure A3.24 Overlay of Weibull Empirical CDFs 
 

Table A3.7 
Exact Poisson Confidence Intervals for Different Pipeline Spill Thresholds through 1999 

Threshold N Poisson Rate 
for Bbbl 

Exact Poisson CI 
Lower 

Exact Poisson CI 
Upper 

50 32 3.702 2.251 4.646 
100 25 2.982 1.664 3.795 
500 15 1.954 0.863 2.544 
1000 13 1.645 0.712 2.286 

 
 
 

Table A3.8 
Confidence Intervals for the Proportion of the ≥ 50 bbl Model 

Spills Exceeding the Larger Threshold  

Threshold P(> Threshold) 
Adjusted 

Poisson Rate 
per Bbbl 

Adjusted LCL 

100 0.7615 0.5660 0.8854 
500 0.5095 0.3189 0.6811 
1000 0.3994 0.2370 0.5936 
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Table A3.9 

Spill Rate Estimates and Confidence Intervals through 1999 using 3.70 Spill 
Rate for ≥ 50 bbl Times Values in Table A3.8 

Threshold P(> Threshold) Adjusted Poisson 
Rate per Bbbl Adjusted LCL Adjusted UCL 

100 0.7615 2.819 2.095 3.278 
500 0.5095 1.886 1.181 2.522 
1000 0.3994 1.479 0.8774 2.197 

 
 
 

Table A3.10 
Confidence Intervals for “Worst Case” Approach through 1999 Using (2.25, 

4.65) Table A3.7 Poisson Confidence Intervals from ≥ 50 bbl Model and 
Confidence Interval Proportions from Table A3.8  

 

Threshold 

Adjusted LCL 
based on both 

CI 
Adjusted UCL 

based on both CI
100 1.274 4.113 
500 0.7178 3.164 
1000 0.5334 2.758 

 
 

Table A3.11 
Confidence Intervals Using (2.25, 4.65) Poisson Confidence Intervals from ≥ 

50 bbl Model and P(≥ threshold)  

Threshold P(≥ threshold) 
Adjusted 

LCL 
Adjusted 

UCL 
50 1.000 2.251 4.646 

100 0.7615 1.714 3.538 
500 0.5095 1.147 2.367 
1000 0.3994 0.8991 1.856 
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The Department of the Interior Mission 
 
As the Nation's principal conservation agency, the Department of the Interior has 
responsibility for most of our nationally owned public lands and natural resources. This 
includes fostering sound use of our land and water resources; protecting our fish, 
wildlife, and biological diversity; preserving the environmental and cultural values of 
our national parks and historical places; and providing for the enjoyment of life through 
outdoor recreation. The Department assesses our energy and mineral resources and 
works to ensure that their development is in the best interests of all our people by 
encouraging stewardship and citizen participation in their care. The Department also has 
a major responsibility for American Indian reservation communities and for people who 
live in island territories under U.S. administration.  
 
 
The Minerals Management Service Mission  
 
As a bureau of the Department of the Interior, the Minerals Management Service's 
(MMS) primary responsibilities are to manage the mineral resources located on the 
Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and 
onshore Federal and Indian lands, and distribute those revenues. Moreover, in working 
to meet its responsibilities, the Offshore Minerals Management Program administers 
the OCS competitive leasing program and oversees the safe and environmentally sound 
exploration and production of our Nation's offshore natural gas, oil and other mineral 
resources. The MMS Royalty Management Program meets its responsibilities by 
ensuring the efficient, timely and accurate collection and disbursement of revenue from 
mineral leasing and production due to Indian tribes and allottees, States and the U.S. 
Treasury. The MMS strives to fulfill its responsibilities through the general guiding 
principles of: (1) being responsive to the public's concerns and interests by maintaining a 
dialogue with all potentially affected parties and (2) carrying out its programs with an 
emphasis on working to enhance the quality of life for all Americans by lending MMS 
assistance and expertise to economic development and environmental protection. 
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