

# Pre-migratory Ecology and Physiology of Shorebirds Staging on Alaska's North Slope 

Abby N. Powell
Principal Investigator

Additional Authors:
Audrey R. Taylor
Richard B. Lanctot

Final Report
OCS Study MMS 2009-034

September 2010

Minerals Management Service Department of the Interior
and the
School of Fisheries \& Ocean Sciences

This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) through Cooperative Agreement No. 1435-01-02-CA-85294, Task Order No. M05AC12290, between BOEMRE, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks.

This report, OCS Study MMS 2009-063, is available from the Coastal Marine Institute (CMI), School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK 99775-7220.
Electronic copies can be downloaded from the MMS website at
www.mms.gov/alaska/ref/akpubs.htm. Hard copies are available free of charge, as long as the supply lasts, from the above address. Requests may be placed with Ms. Sharice Walker, CMI, by phone (907) 474-7208, by fax (907) 474-7204, or by email at skwalker@alask.edu.
Once the limited supply is gone, copies will be available from the National Technical Information Service, Springfield, Virginia 22161, or may be inspected at selected Federal Depository Libraries.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government.


# Pre-migratory Ecology and Physiology of Shorebirds Staging on Alaska's North Slope 

Abby N. Powell
Principal Investigator

Additional Authors:
Audrey R. Taylor
Richard B. Lanctot

Final Report
OCS Study MMS 2009-034

September 2010

Minerals Management Service Department of the Interior
and the
School of Fisheries \& Ocean Sciences

## Contact information

email: skwalker@alaska.edu
phone: 907.474.7208
fax: $\quad 907.474 .7204$
Coastal Marine Institute
School of Fisheries and Ocean Sciences
University of Alaska Fairbanks
P. O. Box 757220

Fairbanks, AK 99775-7220

## CONTENTS

LIST OF TABLES ..... 4
LIST OF FIGURES ..... 5
LIST OF APPENDICES ..... 6
ABSTRACT ..... 7
INTRODUCTION ..... 9
OBJECTIVES \& HYPOTHESES ..... 12
STUDY AREA ..... 13
METHODS ..... 14
Objective 1: Abundance, Distribution, and Species Composition ..... 14
Objective 2: Phenology, Habitat Use, Time to Departure, and Movement Patterns. ..... 16
Phenology ..... 16
Shorebird community characteristics ..... 17
Habitat use. ..... 18
Time to departure and movement patterns. ..... 18
Objective 3: Physiological Assessment of Staging Site Quality ..... 20
RESULTS ..... 21
ObJective 1: Abundance, Distribution, and Species Composition ..... 21
Abundance and distribution within years ..... 21
Abundance and distribution across years. ..... 26
Species composition. ..... 26
Objective 2: Phenology, Habitat Use, Time to Departure, and Movement Patterns ..... 28
Phenology - semipalmated sandpiper. ..... 28
Phenology - dunlin ..... 28
Phenology - red-necked phalarope ..... 28
Phenology - red phalarope. ..... 32
Phenology - western sandpiper. ..... 32
Phenology - other species. ..... 32
Shorebird community characteristics. ..... 32
Habitat use ..... 33
Time to departure ..... 36
Movement patterns - general ..... 36
Movement patterns - semipalmated sandpiper ..... 38
Movement patterns - dunlin ..... 39
Movement patterns - red phalarope ..... 39
Movement patterns - red-necked phalarope ..... 39
Objective 3: Physiological Assessment of Staging Site Quality ..... 39
DISCUSSION ..... 41
Objective 1: Abundance, Distribution, and Species Composition ..... 42
Peard Bay ..... 42
Pt. Barrow/Elson Lagoon ..... 43
Cape Simpson ..... 43
Smith Bay to Cape Halkett. ..... 43
Jago and Kongakut River deltas ..... 43
Other locations. ..... 44
Deltas versus coastline. ..... 45
Variability and reliability of aerial surveys ..... 45
Objective 2: Phenology, Habitat Use, Time to Departure, and Movement Patterns ..... 46
Phenology. ..... 46
Shorebird community characteristics ..... 48
Habitat use. ..... 49
Time to departure. ..... 50
Movement patterns ..... 50
Objective 3: Physiological Assessment of Staging Site Quality ..... 52
CONCLUSIONS ..... 54
Important Staging Sites on Alaska’s North Slope ..... 54
Potential Effects of Development on Staging Shorebirds ..... 55
DATA AVAILABILITY ..... 56
ACKNOWLEDGEMENTS ..... 56
STUDY PRODUCTS ..... 57
REFERENCES ..... 59
APPENDICES ..... A1

## LIST OF TABLES

Table 1. Dates and area surveyed for North Slope aerial surveys, 2005-2007............................ 15
Table 2. Dates and survey periods for North Slope ground transects, 2005-2006. 17

Table 3. Shorebird species richness, evenness, and diversity at North Slope ground camps33

Table 4. Model selection results for survival analysis to estimate time to departure.................. 36
Table 5. Detections of radio-equipped shorebirds heard multiple times after leaving capture site. 38

## LIST OF FIGURES

Figure 1. Aerial survey regions, ground camp locations, and ARTS locations, 2005-2007 ..... 14
Figure 2a-d. Aerial survey distribution results (coastline). ..... 22
Figure 3. Aerial survey distribution results (deltas) ..... 27
Figure 4a-b. Shorebird species composition from ground camp surveys ..... 29
Figure 5. Habitat selection at ground camps ..... 34
Figure 6. Time to departure of radio-equipped shorebirds. ..... 37
Figure 7. Compass rose diagrams of shorebird movement patterns ..... 37
Figure 8. Plasma triglyceride concentrations averaged across ground camps ..... 40
Figure 9. Plasma triglyceride concentrations for semipalmated sandpipers at each camp ..... 41
Figure 10. Baseline corticosterone for semipalmated sandpipers at each ground camp. ..... 41
Figure 11. Maximal corticosterone for semipalmated sandpipers at each ground camp ..... 42

## LIST OF APPENDICES

Appendix 1. Radio transmitters deployed per species and location on North Slope Shorebirds ..... A1
Appendix 2. Aerial survey raw data, 2005-2007 ..... A3
Appendix 3. Kasegaluk transect data by habitat and species 2006. ..... A58
Appendix 4. Peard Bay transect data by habitat and species 2005 and 2006 ..... A65
Appendix 5. Pt. Barrow transect data by habitat and species 2005 and 2006 ..... A76
Appendix 6. Colville transect data by habitat and species 2005 and 2006 ..... A90
Appendix 7. Sagavanirktok transect data by habitat and species 2005 and 2006 ..... A102
Appendix 8. Okpilak transect data by habitat and species 2005 and 2006 ..... A113


#### Abstract

Preliminary work conducted in the 1970's in Barrow, Alaska, indicated that arctic littoral habitats were of critical importance for most arctic-breeding shorebirds during the staging period (prior to southbound migration to wintering areas). However, relatively little recent, quantitative information exists on pre-migratory shorebird use of coastal areas on Alaska's North Slope or what factors may influence site use. This information is critical given increased levels of human activity and development near North Slope coastline. This project was initiated in 2004 to gain a better understanding of the overall ecology of postbreeding shorebirds during the staging period, and to inform future assessments of how future industrial and human activity across the North Slope may affect shorebird populations.

During the summers of 2005-2007, we conducted aerial surveys for shorebird abundance and distribution along the North Slope coast from the southwest end of Kasegaluk Lagoon on the Chukchi Sea to Demarcation Bay in the Beaufort Sea, at the Alaska/Canada border. Our objective for this portion of our research was to assess whether there are persistent concentration areas for shorebirds on the North Slope that may be considered important staging sites. We also collected data on staging phenology, community characteristics, and habitat use in 2005 and 2006 by surveying transects at six ground camps: Kasegaluk Lagoon, Peard Bay, Pt. Barrow/Elson Lagoon, Colville River Delta, Sagavanirktok River Delta, and Okpilak River Delta. We captured and radio-equipped shorebirds at each of these ground camps to examine the length of time individual birds remain at staging sites after capture (time to departure) and the large-scale movement patterns exhibited by shorebirds once they leave their capture site. We also sampled the birds we captured for triglyceride levels (an index of fattening rate) and baseline/maximal corticosterone levels (indices of an individual's body condition/ability to respond to a stressful situation) to assess whether either of these physiological parameters could be used as a measure of staging site quality.

We found concentrations of staging shorebirds that persisted within and between years at Peard Bay, Pt. Barrow/Elson Lagoon, Cape Simpson, between Smith Bay and Cape Halkett (including Pitt Point/Pogik Bay), and at the Jago and Kongakut River deltas in the eastern Beaufort Sea. River deltas on the Beaufort Sea coast did not attract larger numbers of shorebirds than did surrounding coastal areas despite our expectations. We determined that aerial surveys would be most reliable for assessing shorebird abundance and distribution if conducted frequently within a single year, repeated across multiple years, and combined with ground surveys for species composition and habitat use. Ground surveys in particular may increase our understanding of detectability differences for various species and habitats.

Using data obtained from our six ground camps across the North Slope, we determined there were species-specific differences in staging phenology, habitat use, time to departure, and movement patterns. Semipalmated sandpipers exhibited the earliest arrival and departure dates from North Slope staging areas, and there was a west-to-east trend in dates of peak abundance of this species. Red and red-necked phalaropes had intermediate arrival and departure dates, and their dates of peak abundance were highly variable across our camps. Western sandpipers arrived at staging areas later than semipalmated sandpipers and departed later from the North Slope. Dunlin were present throughout most of the staging period at most sites. In three of the


most common species we studied (semipalmated sandpiper, red phalarope, and red-necked phalarope); adults left staging areas earlier than juvenile birds. The shorebird community was more even (evenness E) and diverse (Shannon Weiner $H^{\prime}$ ) along the Beaufort Sea versus the Chukchi Sea, and in 2005 versus 2006. In general, black-bellied plovers, red phalaropes, rednecked phalaropes, ruddy turnstones, and sanderlings were found in gravel beach habitat, whereas dunlin and semipalmated sandpipers used mudflats. American golden-plovers, longbilled dowitchers, pectoral sandpipers, and western sandpipers used salt marshes. Stilt sandpipers were found in pond edge habitat, as were several species that were also found commonly in other habitats: long-billed dowitchers, pectoral sandpipers, red-necked phalaropes, and western sandpipers. We examined time to departure for radio-equipped shorebirds of five species, using a Cormack-Jolly-Seber mark-recapture model that allowed survival to vary by species. Semipalmated sandpipers exhibited the shortest time to departure ( 4.3 days); both phalarope species combined had similar but slightly longer time to departure ( 4.5 days); western sandpipers had intermediately long time to departure ( 7.9 days); dunlin exhibited the longest time to departure ( 12.9 days). Movement patterns of dunlin, red phalaropes, and red-necked phalaropes were variable and reflected major differences in individuals' movement directions during the staging period. Semipalmated sandpipers moved mainly west to east, and many were detected on or near the Canning River Delta in the eastern Beaufort Sea, suggesting that this species may use the Canning River as a migration corridor south through the Brooks Range.

We examined blood triglyceride and corticosterone levels for semipalmated sandpipers, dunlin, and western sandpipers only. Semipalmated sandpipers had significantly higher triglyceride levels than dunlin in both years. Western sandpipers had intermediate triglyceride levels in 2005 but had similar levels as semipalmated sandpipers in 2006. Semipalmated sandpipers captured at Pt. Barrow/Elson Lagoon had the highest triglyceride levels when individuals of this species were compared across our six ground camps, suggesting that site quality in terms of fattening rate was highest at this camp. Comparison of corticosterone levels across the six ground camps for semipalmated sandpipers was equivocal, in that baseline and maximal levels did not show the same trends among camps. However, semipalmated sandpipers captured at Pt. Barrow/Elson Lagoon had high maximal corticosterone levels, indicating that birds using this site are more capable of responding physiologically to a stressful event. We suggest that triglyceride levels may be more useful than corticosterone levels as a physiological index of site quality.

## INTRODUCTION

At least twenty species of shorebirds stage along the littoral zones of Alaska's North Slope prior to fall migration (Connors et al. 1984), where they acquire fat reserves necessary for long distance flight. Although there is a considerable body of literature on stopover ecology of shorebirds during migration (e.g., Holmgren et al. 1993, Skagen and Knopf 1994, Lyons and Haig 1995), less research has been conducted on shorebirds staging prior to migration. Numerous past studies have addressed shorebird use of North Slope littoral habitats, but many of these are relatively dated, somewhat anecdotal in nature, and focused on a single or few study areas (Johnson 1978, Spindler 1978, Lehnhausen and Quinlan 1981, Gill et al. 1985, Andres 1989, Johnson et al. 1993). In addition, shorebirds have often been surveyed ancillary to larger, more obvious species (such as waterfowl); few studies have been designed specifically to examine the distribution of small shorebird species that are difficult to identify. Much of what is known regarding North Slope staging shorebird populations resulted from research done during the Outer Continental Shelf Environmental Assessment Program in the mid-1970's (Connors et al. 1979, 1984). These studies indicated that shorebirds changed habitat use from upland tundra breeding sites to coastal littoral staging areas as the summer progressed. Postbreeding densities of shorebirds in littoral habitats were higher than breeding densities in adjacent tundra habitats. These results underscore the importance of coastal littoral zones in the life cycles of migratory shorebirds in Alaska.

However, many knowledge gaps exist regarding staging shorebird ecology on the North Slope. First, we lack information on regional-scale abundance, distribution and species composition of staging shorebirds. Johnson et al. (2007) recently reported on the distribution of breeding shorebird species across the entire Arctic Coastal Plain of Alaska, but similar data are lacking for staging shorebirds in coastal areas. This data gap makes it difficult to pinpoint areas that host large numbers of birds during the postbreeding period and therefore are highly important to staging shorebirds. Also, because ecological change is likely to result in shifts in the distribution and range of species and communities (McCarty 2001), predicting the future distributions of Arctic flora and fauna in response to environmental change requires knowledge of present distributions and processes that affect them. Where individual species patterns are poorly known, a community-level assessment of diversity and abundance can aid in setting conservation priorities. Additionally, entire assemblages of species in their historic proportions may be conservation targets in their own right (Stein and Davis 2000). Thus knowledge of large-scale patterns of shorebird distribution, abundance, and species composition across the North Slope would be valuable for setting management objectives to maintain current population sizes or species diversity.

Second, although previous studies have reported on the phenology of staging shorebirds at various locations on the North Slope, there has been little comparative work done that would shed light on how timing of arrival after breeding, dates of peak use, length of stay at staging areas, and/or movement patterns change among species at different sites. Within a community of organisms, even where all members appear to be using the same sites or habitats, similar species may use the overall landscape at different temporal scales (Naugle et al. 1999). Such variation in phenology is important for understanding how highly mobile birds use multiple sites within a region, and whether this connectivity could be impacted by disturbance. Because movements of
individuals within or between seasons may link habitats at a regional level (Plissner et al. 2000), landscape connectivity as defined by timing of use and movement patterns is also an important consideration in the development of area-wide conservation strategies (Haig et al. 1998). Thus it is critical that species- and site-specific phenology and movements are compared and contrasted prior to setting management priorities or indentifying important conservation sites. Additionally, accelerated rates of warming in the Arctic may change the phenology of shorebird staging on the North Slope more than any other aspect of postbreeding ecology. It is unclear whether to expect the length of the staging period to expand or contract as a result of predicted changes in Arctic ecosystems (Callaghan et al. 2005, Sereze and Francis 2006), or whether initiation and termination dates will change in concert while the overall length remains the same. If snowmelt in the Arctic is accelerated and breeding begins earlier, fledging of chicks and subsequent movement of shorebirds to coastal areas may begin earlier. Warmer summer temperatures could push the timing of insect emergence earlier, leading to an earlier pulse of invertebrate abundance at coastal staging areas. If food availability then declines, staging opportunities may terminate earlier (Tulp and Schekkerman 2008). Alternatively, a protracted summer season with longer periods of insect activity and abundance may mean that shorebirds are under fewer climatic constraints to migrate quickly out of the Arctic at the end of the breeding season, leading to a longer staging period. There is some evidence to suggest that Arctic-breeding shorebirds are capable of replacing clutches lost early in incubation (Naves et al. 2008), and this capability may increase as climate change results in more favorable weather for longer periods during the breeding season (Callaghan et al. 2005). Large-scale movements of birds to coastal staging areas could be delayed if more individuals replace lost clutches (or attempt second clutches) and chicks fledge later in the breeding season (Jenni and Kery 2003). Current data on pre-migratory staging phenology may be compared to data collected historically and in the future to examine the impact of climate change on timing of life history events.

While large-scale patterns of abundance and distribution of staging shorebirds may lead us to a better understanding of what sites are important during the postbreeding period, this approach can be expensive and time-consuming since surveys over a large area of the North Slope are required, and surveys by themselves do not explain why shorebirds occur where they do. It is desirable to have a metric for determining site quality from the perspective of a staging shorebird, since high quality sites may be important in preparing birds for migration. Because the staging period in a shorebird's life cycle functions primarily as an opportunity to refuel after breeding, high quality staging sites should occur where fat deposition rates are maximized (Andres 1994) within the constraints of species-specific molt and migration strategies. To test this idea of quality-dependent site selection and importance, researchers at Simon Fraser University have employed blood plasma metabolite analyses to assess the rate of mass gain (assumed to be analogous to fattening rate of actively feeding birds) of a captured individual (Williams et al. 1999, Guglielmo et al. 2002, Acevedo Seaman et al. 2006). Plasma metabolites (the byproducts of cellular fat metabolism) have the advantage of being able to predict the physiological state of birds with respect to their rate of fat deposition, which better reflects fattening rates over previous days than a static assessment of body condition such as sizecorrected mass (Williams et al. 1999). Triglycerides (which appear as a result of dietary fat ingestion) have been shown to be the best measure of fattening rate in captive western sandpipers (Calidris mauri; Guglielmo et al. 2002). The feasibility of using triglycerides to infer site quality has been examined in free-living western sandpipers at migratory stopovers (Ydenburg et
al. 2002, Acevedo Seaman et al. 2006), but has so far not been tested at pre-migratory staging areas. Another possibility for a physiological index of site quality is corticosterone, a steroid hormone produced by birds to facilitate life history changes or respond to stressful events (Romero 2002). The regulation of fat deposition prior to migration is likely accomplished by modulation of corticosterone levels. Increases in baseline corticosterone levels prior to migration may stimulate foraging activity and lipogenesis, thus aiding in storage of fat resources necessary for long-distance flight (reviewed by Holberton et al. 1996). On an individual basis, body condition may have a significant effect on baseline corticosterone level prior to capture and its maximal level during the adrenocortical response to stress (Kitaysky et al. 1999). Birds in poor condition may have high baseline corticosterone levels to stimulate foraging, yet may be unable to produce high maximal corticosterone levels in response to capture (corticosterone levels during a stressful event become elevated to facilitate survival). If corticosterone levels are related to site quality, baseline levels should be highest (to stimulate maximum foraging) at locations where site quality is lowest (and therefore body condition and energy reserves are lowest). The difference between baseline and maximal levels of corticosterone should be similar at these sites because birds may be unable to mount a distinct stress response. Conversely, baseline levels should be lowest where site quality is highest because good food availability or quality obviates the need for additional foraging stimulated by corticosterone. Here, maximal levels should be much higher than baseline levels, indicating that a bird has adequate body reserves to respond to a stressful event. If these relationships hold, corticosterone levels may lend insight into what sites enable birds to fatten faster and thus what sites are of highest quality. A physiological assessment of staging site quality and importance via triglyceride and corticosterone levels has the potential to clarify the mechanisms influencing shorebird distribution across North Slope staging areas, and help pinpoint sites where changing environmental conditions may have a disproportionate effect on staging shorebird populations.

Escalating environmental change on the North Slope hastens the need for addressing the knowledge gaps described above. Industrial development is increasing in scope and intensity across the Arctic (Gilders and Cronin 2000, National Research Council 2003), and increases in surface air temperature leading to rapid environmental change are believed to be amplified at higher latitudes (Sereze et al. 2000, IPCC 2001, Holland and Bitz 2003). Increased industrial development has created the potential for disturbance, habitat modification, and oil spills that could impact a large segment of a species' population. Shoreline oiling from offshore spills could affect staging shorebirds directly by oiling their plumages, or indirectly by contaminating or killing invertebrate food sources (Andres 1994). In addition, construction and maintenance of industrial development could negatively influence shorebirds by causing them to flee from noise or human presence, or may eliminate important staging habitats. Accelerated environmental change may add to the effects of development by changing the spatial or temporal availability of littoral habitats suitable for staging shorebirds. Studies in other areas of the country have identified shorebirds as an avian group highly susceptible to human-induced disturbance (Burger 1981). Based on this evidence, it is plausible that the effects of energy development and environmental change on staging shorebirds could be detrimental to populations that already appear to be in decline (Brown et al. 2001). A mechanistic understanding of shorebird abundance, distribution, phenology, and site use during the staging period will enhance managers' ability to predict and mitigate effects of environmental change on the North Slope, and allow proactive rather than reactive management.

## OBJECTIVES \& HYPOTHESES

The specific objectives and associated predictions for this research are to:

1. Assess the abundance, distribution, and species composition of shorebirds staging along North Slope coastlines prior to the fall migration. We predict that shorebirds should be distributed across the North Slope in a non-uniform fashion, and that species composition within a staging area will reflect the surrounding breeding community.
2. Quantify phenological aspects of staging, such as timing of arrival after breeding for adult and hatch-year birds, overall and species-specific peaks in shorebird numbers, length of stay at staging sites, and movement patterns of birds across the North Slope. We will also investigate species-specific habitat use at staging sites. First, we predict that adult birds will arrive at and depart from staging areas prior to hatch-year birds, following the breeding phenological pattern in which adults abandon young to prepare for migration. Second, we predict that the peak of staging shorebird abundance will be later as one moves from west to east across the North Slope, based on trends documented by Connors (1983) for western and semipalmated sandpipers (Calidris pusilla) between Cape Krusenstern, Pt. Barrow, and Prudhoe Bay. In contrast, the peak of abundance for dunlin (Calidris alpina arcticola) should increase from east to west given that they winter to the west in East Asia. Third, we predict that length of stay and movement patterns will vary by species, due to differences in life history strategies. Semipalmated sandpipers may show the shortest length of stay because they migrate to wintering areas to molt, whereas dunlin may show the longest length of stay because they molt most of their primaries and body feathers prior to migration to wintering areas (Holmes 1972, Prater et al. 1977, Gratto-Trevor 1992). For this reason as well, individual semipalmated sandpipers may stage only briefly in the Arctic, and birds moving between North Slope staging sites may reflect a continuous directional migration along the coastline rather than multiple staging events. We considered "continuous migration" to be evidenced by birds stopping at a number of sites for a day or less, and "multiple staging events" to be evidenced by birds stopping for more than a day at a time at one or more sites. Detections of radio-equipped individuals at staging sites for only a short period of time, and in a linear pattern along the coastline, would be consistent with the hypothesis that semipalmated sandpipers migrate quickly and directly out of the Arctic. Fourth, we believe that birds will be more likely to stage close to where they bred (adults) or fledged (hatch-year birds) at the beginning of the staging period but will disperse farther from breeding or natal areas as the season progresses. Lastly, we predict that different species will use available staging habitats in different proportions, and that this species-specific habitat selection will be similar to habitat use patterns reported by Connors et al. $(1979,1984)$ during their studies of staging shorebirds on the North Slope in the 1970's.
3. Examine differences in measures of physiological condition (fattening rates and stress hormone concentrations) among species and staging sites. We predict that species will exhibit differences in fattening rates as a result of differential molt and migration strategies that affect the amount of time required to accumulate necessary fat resources prior to migration. We also predict that shorebirds sampled at different staging sites along the North Slope will show quantifiable differences in both fattening rates and stress hormone

## STUDY AREA

Our study area included all coastal habitats of Chukchi and Beaufort Seas between the western end of Kasegaluk Lagoon and Demarcation Bay (the Alaska/Canada border; Figure 1). Typical littoral habitats along this portion of the North Slope include brackish water mudflats and marsh, low-lying saline tundra, mud and gravel shores of sloughs, river deltas, and lagoons, and gravel mainland and barrier island beaches. Tidal influence in the absence of storms is $<30 \mathrm{~cm}$ vertical fluctuation, but wind-driven tidal intrusion, common during the ice-free period (July-September), maintains brackish habitats well above normal high tide lines (Connors et al. 1979).

We flew aerial surveys across the entire study area to collect geographic distribution and telemetry data. We also established six ground camps to examine local distribution, species composition, and phenology, and to capture birds for marking and blood sample collection. From west to east, the camps were located at: Kasegaluk Lagoon $\left(70.301^{\circ} \mathrm{N}, 161.888^{\circ} \mathrm{W}\right.$; operated 2006 only), Peard Bay ( $70.812^{\circ} \mathrm{N}, 158.323^{\circ} \mathrm{W}$ ), Pt. Barrow/Elson Lagoon ( $71.290^{\circ} \mathrm{N}$, $\left.156.788^{\circ} \mathrm{W}\right)$, the Colville River delta $\left(70.473^{\circ} \mathrm{N}, 150.564^{\circ} \mathrm{W}\right)$, the Sagavanirktok River delta ( $70.291^{\circ} \mathrm{N}, 148.202^{\circ} \mathrm{W}$ in 2005 ; moved to $70.246^{\circ} \mathrm{N}, 147.832^{\circ} \mathrm{W}$ in 2006), and the Okpilak River delta $\left(70.080^{\circ} \mathrm{N}, 144.011^{\circ} \mathrm{W}\right.$, Figure 1). The ground camp locations were selected based on (a) the presence of either a large lagoon system (Peard Bay, Pt. Barrow/Elson Lagoon, Kasegaluk) or a large river delta (Colville, Sagavanirktok, Okpilak), both of which might support large numbers of staging shorebirds, (b) the potential for logistical support from other project collaborators for conducting work at the site, and (c) the ability to access the sites with helicopters or fixed-wing aircraft.


Figure 1. Aerial survey regions (1-4), ground camp locations, and ARTS station locations, 2005-2007.

## METHODS

## Objective 1: Abundance, Distribution, and Species Composition

To obtain a broad-scale perspective on staging shorebird abundance and distribution through time, we conducted aerial surveys of North Slope littoral areas from 2005-2007. Surveys were conducted such that we were able to count birds in a 150 meter band along the land/sea interface of the coastline. From 7-16 August 2005, we conducted a single survey of the North Slope coastline between the western end of Kasegaluk Lagoon and Demarcation Bay (Alaska/Canada border) with a Robinson R-44 helicopter at an altitude of 15 m and a cruising speed of 95-115 $\mathrm{km} / \mathrm{hr}$ (depending on wind speed). The front left biologist identified and counted birds within 150 m to the left of the centerline of the aircraft, while the rear left biologist recorded data and watched for birds missed by the front surveyor. We recorded all shorebirds within belt transect sections designated by GPS locations recorded every two minutes. The use of two-min intervals enabled calculation of bird densities on a per-time period, per-transect, or per-habitat basis (Johnson et al. 1993). Between 22 July and 27 August 2006, we conducted four surveys of the

North Slope coast in a Bellanca Scout fixed-wing aircraft, flying at an altitude of 15 m and a cruising speed of $130-170 \mathrm{~km} / \mathrm{hr}$. The area covered during each survey varied because weather prohibited the extent and number of flights (Table 1). Shorebird observations were recorded by a single observer from the rear seat of the plane, looking on one side of the aircraft only. We limited observations of birds to those within 150 m of the aircraft. We used a voice-recorder interface program developed by the U.S. Fish and Wildlife Service (John Hodges, Juneau, AK) that records a GPS fix and audio file for each observation; these were later transcribed into georeferenced data points. In 2007, we utilized the same fixed-wing aircraft survey techniques as in 2006 but limited our surveys to only the Arctic National Wildlife Refuge coast from the Canning River to Demarcation Bay because this area was infrequently surveyed in 2006. In 2006 and 2007, wherever river deltas or other staging habitat existed more then 150 m inland from the coast, we surveyed for birds along transects spaced $1-\mathrm{km}$ apart that ran perpendicular to the coastline.

Table 1. Dates, aircraft used, and area surveyed for each of six aerial surveys conducted between 2005-2007 along the North Slope coast of Alaska. Refer to Figure 1 for location of endpoints.

| Year | Survey | Dates | Aircraft | Endpoints (W to E) |
| :--- | :--- | :--- | :--- | :--- |
| 2005 | Survey 1 | 7-16 August | Helicopter | S end Kasegaluk Lagoon to Demarcation Point |
| 2006 | Survey 1 | 22-26 July | Fixed-wing | Peard Bay to Demarcation Point |
| 2006 | Survey 2 | 3-7 August | Fixed-wing | Kasegaluk Lagoon camp to Demarcation Point |
| 2006 | Survey 3 | 9-17 August | Fixed-wing | S end Kasegaluk Lagoon to Camden Bay |
| 2006 | Survey 4 | 23-27 August | Fixed-wing | S end Kasegaluk Lagoon to Canning River Delta |
| 2007 | Survey 1 | 7-8 August | Fixed-wing | Canning River Delta to Demarcation Point |

Small shorebirds were generally not identifiable to species from the air, so we categorized individuals as "small sandpiper", "medium sandpiper", "phalarope" and "plover." Based on ground observations (see below), "small sandpiper" likely included semipalmated, western, white-rumped (C. fuscicollis), or Baird's (C. bairdii) sandpipers, "medium sandpiper" included dunlin, sanderling (C. alba), pectoral sandpiper (C. melanotos), stilt sandpiper (C. himantopus), ruddy turnstone (Arenaria interpres), or long-billed dowitcher (Limnodromus scolopaceus), "phalarope" included either red (Phalaropus fulicarius) or red-necked phalaropes (P. lobatus), and "plover" included either American golden-plover (Pluvialus dominica) or black-bellied plover ( $P$. squatarola). Where possible we identified individuals to species.

We divided the North Slope coast into four main regions to analyze the aerial survey data: 1) the south end of Kasegaluk Lagoon to the Chukchi Sea side of Pt. Barrow, 2) the Elson Lagoon side of Pt. Barrow to the west side of the Colville River delta, 3) the Colville River delta to the West Canning River delta, and 4) the West Canning River delta to Demarcation Point (Figure 1). We then created subregions of similar habitat within each of the four larger regions. For each subregion, we imported the coordinates of the boundaries of each two-minute flight intervals (representing ca. 3.5 km on the ground) from the 2005 helicopter survey and plotted these in ArcMap 9.1 (ESRI Inc., 2005). We next plotted the total number of birds observed in each twominute period in ArcMap to show shorebird distributions for the 2005 helicopter survey. Then,
we overlaid the 2006-2007 fixed-wing data on top of the 2005 intervals and summed the total number of birds within each two-minute interval for each survey period in 2006 and 2007. There were a total of four survey periods in 2006 and one in 2007 (Table 1). We report mean perinterval counts for each subregion in each survey period and compare these with per-interval counts from 2005 to assess intra- and interannual variability in shorebird distribution. For the purpose of delineating important staging areas, we defined a "shorebird concentration area" as sub-region with mean per-interval counts of birds at least $50 \%$ higher than other sub-regions within that region during the same time period.

We considered river deltas along the Beaufort coast separately because these areas were surveyed via linear transects flown perpendicular to the coast. We determined the total number of shorebirds detected within each two-minute interval (ca. 3.5 km linear transects) and report the mean per-interval count for each delta. Standardizing the data in this way facilitated comparisons between the deltas and the linear coastlines. Our definition of an important delta in terms of staging shorebird concentration was less rigorous than for important subregions (above) because we had less comparative data for the deltas than for the coastal subregions. We considered a delta to be a "shorebird concentration area" if it had per-interval counts of shorebirds at least $50 \%$ higher than other deltas during the second 2006 survey, when all deltas were surveyed over a relatively short period of time.

All aerial survey data are reported as raw count data uncorrected for detectability. We stress that our emphasis is on comparative abundance and distribution of staging shorebirds across the entire North Slope rather than on exact density or abundance in any one location.

## Objective 2: Phenology, Habitat Use, Time to Departure, and Movement Patterns

Phenology. During the postbreeding seasons of 2005 and 2006, we conducted a series of surveys at each of the ground camps to assess phenology and habitat use, and to provide a ground-based means of validating species composition for our aerial surveys. At each ground camp, we established nine $1-\mathrm{km}-$ long transects within a $10-\mathrm{km}$ diameter study area. Transects were not located randomly, but rather were located where (1) birds were seen or believed to be foraging, and (2) in each of four habitat types in proportion to their availability in the study area. Habitat types included gravel beach, mudflat (silt barren), pond edge, and salt marsh. Gravel beach was typically found on exposed shorelines along the Chukchi Sea, and along barrier islands in the Beaufort Sea. Mudflat consisted of open riverine silt deposits or dried pond/lake basins. Pond edge was comprised of shallow water, mud, and sand found along the border of small ponds, lakes, or lagoons. Salt marsh was characterized by low-growing, saline tolerant vegetation and periodically inundated substrate. Transects at each camp were surveyed by a single observer on foot once every three days throughout the field season (24 July-30 August in 2005, 15 July-4 September 2006), although exact survey dates varied slightly by camp. We recorded species, group size and age composition (adult and juvenile), and habitat for all shorebirds observed within 100 m of each transect. To characterize available habitat for later assessment of habitat use, we also recorded the proportion of each of the four habitat types along each transect.

To assess phenological patterns in ground transect data, we plotted the number of individuals of each species recorded during a given transect survey against time (survey date), after standardizing survey dates across camps (Table 2). We did not use densities because there were
distinct spatial differences in how shorebirds were observed on transects making calculations and thus comparability of densities in different habitats problematic. For example, along gravel beach shorelines and pond or lagoon edges, bird activity was concentrated in a strip along the water edge and would be best presented as linear density. In contrast, in mudflat and salt marsh habitats shorebird activity occurred within a wider band and would be better presented as areal density (Connors et al. 1979). Reporting actual counts rather than densities also facilitated comparisons with previous studies. We considered the five most common species (semipalmated sandpiper, dunlin, red-necked phalarope, red phalarope, and western sandpiper) separately; all other species were combined into a single category for further analysis.

Table 2. Survey dates for ground-based transect surveys at each of six ground camps located on the North Slope of Alaska in 2005 and 2006.

| Period | 2005 Dates | 2006 Dates |
| :---: | :---: | :---: |
| 1 |  | 17-19 Jul |
| 2 |  | 20-22 Jul |
| 3 | 23-25 Jul | 23-25 Jul |
| 4 | 26-28 Jul | 26-28 Jul |
| 5 | 29-31 Jul | 29-31 Jul |
| 6 | 1-3 Aug | 1-3 Aug |
| 7 | 4-6 Aug | 4-6 Aug |
| 8 | $7-9$ Aug | $7-9$ Aug |
| 9 | 10-12 Aug | 10-12 Aug |
| 10 | 13-15 Aug | 13-15 Aug |
| 11 | 16-18 Aug | 16-18 Aug |
| 12 | 19-21 Aug | 19-21 Aug |
| 13 | 22-24 Aug | 22-24 Aug |
| 14 | $25-27$ Aug | $25-27$ Aug |
| 15 | $28-30$ Aug | $28-30$ Aug |
| 16 |  | 31 Aug-2 Sep |

Shorebird community characteristics. We also examined shorebird community composition using the ground transect data. This was not possible with our aerial survey data since assigning observations of birds to particular species was difficult from the air. For each camp in each year, we calculated species richness (number of species), evenness ( E , abundance of each species), and the Shannon-Wiener diversity index ( $H^{\prime}$, a measure of the proportion of the total community belonging to each species) to summarize variability in community composition across our study area (Pielou 1974). To obtain measures of precision for E and $H^{\prime}$, we performed a series of 100 bootstrap simulations of the observed count data by species and used their standard errors for subsequent comparisons of geographic variation (Kowalewski et al. 2006). We tested whether species evenness and diversity varied by camp with one-way ANOVA (Proc GLM, SAS 9.1, SAS Institute, Inc. 2003) and by coast (Chukchi vs. Beaufort) with t-tests (Proc TTEST, SAS 9.1, SAS Institute, Inc. 2003), using Satterthwaite's approximation for df because sample sizes were not equal across camps (Snedecor and Cochran 1980:97).

Habitat use. We also used the ground transect data to create resource selection functions (RSF; Manly et al. 2002) in TreeNet (Salford Systems 2003) to assess habitat use for 12 species: American golden-plover, black-bellied plover, dunlin, long-billed dowitcher, pectoral sandpiper, red phalarope, red-necked phalarope, ruddy turnstone, sanderling, semipalmated sandpiper, stilt sandpiper, and western sandpiper. TreeNet is a data mining program that constructs additive regression trees by sequentially fitting a simple parameterized function via least squares at each iteration. For increased accuracy a subset of the training data was randomly selected without replacement and used in place of the full training set to compute the model update at each step (stochastic gradient boosting; Friedman 2001). All species datasets entered into TreeNet were randomly split into $90 \%$ training data and $10 \%$ testing data for model accuracy assessment. For each species, we examined the relative importance of habitat type, ground camp, season (early: 15-31 July, peak: 1-15 August, or late: 16 August to end of field season), and year in determining the ratio of used vs. available habitat. We considered the number of birds (by species) counted in each habitat type/camp/season/year combination as a metric of habitat used, and the proportion of habitats across each of the nine transects within a camp as habitat availability. We present results of the TreeNet analysis as partial dependence plots, which allow visualization of the effect of the predictor variable (habitat category) on the modeled response (in this case the resource selection ratio) after accounting for the average effect of all other nuisance predictors (in this case ground camp, season, and year; Friedman 2001, Hochachka et al. 2007). The lower the overall partial dependence values for a given predictor, the less dependent the response is on variation within that predictor. For a given species, positive partial dependence values for a habitat category indicate preferential use of that habitat; negative values indicate no evidence of preferential use. Because ground camps and transects were not randomly located, we recognize that our results cannot be extended beyond the area directly sampled by our transects.

Time to departure and movement patterns. To understand how long shorebirds remain at staging sites after capture (hereafter called "time to departure") and how adult and juvenile birds move across the North Slope (i.e., their movement patterns), we captured adult (AHY) shorebirds on nests during the breeding period (15 June-15 July) 2005-2007, and juvenile shorebirds (HY) at coastal staging areas during post-breeding (16 July-1 September) 2005-2007. Captured individuals were fitted with radio transmitters (model BD-2, 0.9-1.6 g, Holohil Systems Ltd., Ontario, Canada; Appendix 1). We clipped all body feathers from an area slightly larger than the transmitter centered approximately 1 cm above the uropygial gland, then attached the transmitter using superglue and a spray-on catalyst (Loctite 454 Prism Instant Adhesive and 7452 Accelerator). Previous research indicates that retention time for transmitters attached with this method is at least seven weeks (Warnock and Warnock 1993). Because we wished to track dunlin away from the North Slope to their staging areas in western Alaska, we attached transmitters to this species using both glue and a leg-loop harness made of 1-mm thick, stretchable beading cord (StretchMagic; Pepperell Braiding Company, Inc.). All birds were released at their capture site after radio attachment, usually within 30 minutes of capture. Three hundred sixty-one shorebirds of five species (semipalmated sandpiper, western sandpiper, dunlin, red phalarope, and red-necked phalarope) were fitted with radio transmitters during the three years of the study (Appendix 1).

We monitored movements of radio-equipped shorebirds throughout the postbreeding period using several different methods. First, personnel at each of the six ground camps listened for all
possible radio-equipped birds within their $10-\mathrm{km}$ study area on a daily basis using hand-held yagi antennas and ATS R4000 radio receivers. Camps were staffed in 2005 from 23 July- 30 August, in 2006 from 17 July-2 September, and in 2007 (Canning Delta camp only) from 20 July-20 August. Secondly, automated remote telemetry stations (ARTS) were located within each study area at each of the camps, and at accessible coastal locations at three remote (unstaffed) sites: Ikpikpuk Delta $\left(70.794^{\circ} \mathrm{N}, 154.299^{\circ} \mathrm{W}\right.$; operated as a remote site in 2005 only), Canning River $\left(69.863^{\circ} \mathrm{N}, 146.413^{\circ} \mathrm{W}\right.$; operated as a remote site in 2006 and staffed as a ground camp in 2007, and Canning Delta $\left(70.146^{\circ} \mathrm{N}, 145.866^{\circ} \mathrm{W}\right.$; operated as a remote site in 2005 and 2006, and staffed as a ground camp in 2007). The Ikpikpuk Delta ARTS site was located on the mouth of the Ikpikpuk River between the Pt. Barrow/Elson Lagoon and Colville Delta camps. The Canning River ARTS site was located approximately 80 km south of the Canning Delta ARTS along the same river, between the Sagavanirktok and Okpilak Delta camps (Figure 1). The ARTS were comprised of two 4-element yagi antennas situated $90^{\circ}$ apart at the top of a $6-\mathrm{m}$ tall tower. The antenna configuration was designed to maximize coverage of the most likely flight path of migrating shorebirds. Detections of radio-equipped birds were recorded by an ATS R4500 receiver programmed to continuously scan all possible frequencies from all deployment locations while the ground camps were staffed. Third, we listened for radio-equipped birds during aerial surveys conducted in 2006-2007; planes were equipped with H -antennas and ATS R4000 receivers, and survey personnel scanned all possible frequencies continuously while in flight.

To determine time to departure for radio-marked shorebirds at each of the six ground camps, we used mark-recapture methods implemented in Program MARK (White and Burnham 1999). The detection records for each radio-marked bird (combining data from all detection methods described above) were transformed into encounter histories with a 1 denoting the bird being present at a particular camp and a 0 denoting that bird's absence. To obtain estimates for time to departure, we used the Cormack-Jolly-Seber (CJS) open-population model framework to conduct a survival analysis on these encounter histories. Model parameters included species (semipalmated sandpiper, western sandpiper, dunlin, both phalarope species combined); the encounter history for each bird, and a suite of covariates that turned the encounter history off if the camp was not doing telemetry on a particular date. Within our suite of a priori models, we allowed survival to vary by (1) all five species separately, (2) four species, with the two phalarope species combined into a single category, (3) either a linear or quadratic effect of capture date, and (4) an interaction between species and capture date. We also included a model holding survival constant across all species and capture dates. We used QAIC ${ }_{c}$ as a model selection criterion (Burnham and Anderson 2002). We corrected for a high level of overdispersion in our telemetry data by adjusting the c-hat value in MARK to 10.0. We transformed the CJS model estimates of survival (Ф) for marked animals into life expectancy (i.e., time to departure) according to the following formula (Kaiser 1995):
life expectancy = -1/ln(Ф).

We used Oriana Version 2.02c (Kovach Computing Services 2005) to perform circular statistics on the between-site movement data for radio-equipped birds. Specifically, we calculated the mean vector (in degrees) and distance moved (in km ) for four species (semipalmated sandpiper, dunlin, red phalarope, and red-necked phalarope). We considered only detections of birds from
locations other than their initial capture site, and used each bird only once in the analysis. For all individuals, we used the location that represented the farthest distance the bird had moved from its initial capture location; no birds returned to a site they had previously left. We combined data for each species across all three years due to low sample sizes within a given season. Because detections of semipalmated sandpipers were more numerous than any other species, we examined the movement patterns of this species across the North Slope in more depth. Specifically, we used the date and time period of detections of radio-equipped semipalmated sandpipers to assess whether movements of individual birds between sites represented multiple staging events or directional migratory movements (birds moving rapidly between locations without stopping to feed for $>1$ day). We also report the number of detections of semipalmated sandpipers at either the Canning Delta or along the Canning River as evidence to suggest that this species may use the river as a migration corridor south through the state of Alaska.

## Objective 3: Physiological Assessment of Staging Site Quality

To assess physiological condition (fattening rates and stress hormone concentration) among species and staging sites, we collected small (200-300 $\mu$ ) blood samples from three species of shorebirds (semipalmated sandpiper, western sandpiper, and dunlin) captured during the staging period at each of the six ground camps. Blood samples were obtained via brachial venipuncture using a sterile 26 -gauge needle and heparinized capillary tubes at two different times. Initial samples were taken within three minutes of capture to assess baseline corticosterone level, and a second sample was taken 30 minutes post-capture to assess stress-induced corticosterone level. We assumed the latter measurement represented the maximal corticosterone level based on stress response time series data from other small bird species (Alexander Kitaysky, UAF, pers. comm.). We divided whichever sample was larger in half, and used the second half to measure triglyceride since this metabolite may be sampled any time within 45 minutes of capture. Captured birds were banded, measured, weighed, and held in bird bags in a box between bleedings. The collected blood was subsequently centrifuged for 15 minutes; plasma was then drawn off and frozen immediately after separation.

The triglyceride analyses were conducted under the guidance of Dr. Tony Williams at Simon Fraser University in two separate assay periods (December 2005 for 2005 samples and December 2006 for 2006 samples). Triglyceride levels in duplicate $5-\mu$ l plasma samples were determined by enzymatic endpoint assay, using Sigma Trinder reagents A ( $240 \mu \mathrm{l}$ ) and $\mathrm{B}(60 \mu \mathrm{l})$ to first assess total glycerol content, then free glycerol content. Triglyceride concentration was calculated as the difference between free and total glycerol levels. We first transformed the triglyceride data using $\log _{10}$ (trig) +1 to meet assumptions of normality. We examined whether triglyceride concentration differed between species (semipalmated sandpiper, western sandpiper, and dunlin) and across camps (semipalmated sandpiper only) with ANCOVA, using package R Commander in R Version 2.6.2 (The R Foundation for Statistical Computing 2008). Mass, date, bleed time, and year were used as covariates in all analyses because they have been shown to have significant effects on triglyceride levels in previous studies (Guglielmo et al. 2002). A potential drawback to using triglycerides to determine fattening rates is that birds must remain at a given site for long enough that a bird sampled for its triglyceride level at that site will not have just arrived from another site, such that its triglyceride level reflects food availability elsewhere. Triglyceride levels are thought to reflect a bird's fattening rate over the previous 1-2 days (Williams et al. 1999). We will use our time to departure results to determine whether we can
reasonably assume that most shorebirds we sampled for triglycerides had been at the sampling site for at least 1-2 days prior to capture.

Seven corticosterone assays were conducted between November 2006 and March 2007 to examine baseline and maximal corticosterone levels in semipalmated sandpipers across camps. Corticosterone levels were determined by direct radioimmunoassay (Wingfield et al. 1992) in Dr. Alexander Kitaysky's lab at the University of Alaska Fairbanks. The radioimmunoassay procedure involved (1) the extraction of plasma steroids with dichloromethane, and (2) competitive binding between corticosterone in the sample and radioactively-labeled synthetic corticosterone. A standard curve produced for each assay using synthetic, non-radioactive corticosterone was used to assess the amount of natural corticosterone in each plasma sample. We log-transformed both baseline and maximal corticosterone values to meet assumptions of normality. We analyzed for differences among camps controlling for date of capture, with an ANCOVA in package R Commander in R Version 2.6.2 (The R Foundation for Statistical Computing 2008). Unlike the triglyercide analyses, we did not control for mass because corticosterone levels have not been shown to be affected by this parameter, and bleed time was controlled for as part of the sampling process.

All shorebird survey, capture, handling, and sample collection activities for this project were conducted under a UAF Institutional Animal Care and Use Committee protocol (\#04-31), and a US Federal Bird Banding Permit (Subpermitee under Dr. Richard Lanctot's master permit \#23269).

## RESULTS

## Objective 1: Abundance, Distribution, and Species Composition

Abundance and distribution within years. We found concentrations of staging shorebirds at Kasegaluk Lagoon, Peard Bay, Pt. Barrow/Elson Lagoon, Cape Simpson, Smith Bay to Halkett Bay, and at numerous lagoons along the eastern Beaufort coast in 2005 (see maps in Figure 2ad). In 2006, shorebird counts varied by subregion and across surveys 1-4 (see graphs in Figure 2a-d). Despite this spatial and temporal variability, we did find some patterns in the 2006 shorebird counts. Peard Bay in Region 1 had higher counts than the southern portion of the Chukchi coast during the first three surveys. The coastline to either side of Peard Bay had high counts of birds during the fourth survey. The western Beaufort coast (Region 2) had higher overall counts than any other region in 2006, although Admiralty Bay and the west side of Harrison Bay had low counts compared to other subregions within Region 2. Overall counts were low in Region 3 for all 2006 surveys, particularly for the fourth survey when almost no shorebirds were observed. Prudhoe Bay had a relatively high count compared to the other subregions during the second survey. Within-season patterns were more difficult to discern for Region 4 because only the first two surveys were completed in 2006 due to poor survey conditions later in the season (the third survey only covered Camden Bay and no fourth survey was conducted in Region 4). Per-interval shorebird counts during the second survey were generally higher than those recorded during the first survey, especially for the Beaufort Lagoon subregion which was much higher.

Figures 2a-d. Aerial survey distribution results for the coastline of Regions 1-4, respectively. The map in each panel shows 2005 helicopter survey results based on shorebird numbers per two-minute survey interval. Shorebird numbers within each two-minute interval are presented on each map as follows: blue dot: 50-99 birds; red dot: 100-499 birds; green dot: 500-999 birds; purple dot: $\geq \mathbf{1 0 0 0}$ birds. No dot for a given interval indicates there were fewer than 50 birds counted in that interval. The graph in each panel shows the four 2006 and the single 2007 fixed-wing (region 4 only) survey results. Each symbol represents the mean perinterval counts of shorebirds for each survey and subregion. A lack of symbols on the graph for a given survey period indicates that no transect surveys were conducted in that subregion in that period.

2a.



2 b .


2c.


2d.



Abundance of shorebirds on Beaufort Sea river deltas was also variable within a single year (Figure 3). The Ikpikpuk Delta had higher counts of birds in 2006 during surveys 3 and 4. The Kuparuk and Sagavanirktok Deltas had higher counts during survey 2. The Jago and Kongakut Deltas also had extremely high concentrations of shorebirds during survey 2 , although we were unable to determine how these counts varied with time because we did not survey these areas during the third and fourth surveys (see above). We did not survey river deltas in 2005.

Abundance and distribution across years. We compared results from the single 2005 helicopter survey to the results from the third 2006 fixed-wing survey to assess similarities across years in abundance and distribution. These two surveys were conducted during approximately the same time period (August 7-16 in 2005 vs. August 9-17 in 2006; Table 1). Peard Bay had higher counts of staging shorebirds than other areas of Region 1 in both years. In Region 2, Elson Lagoon and the Cape Simpson area had the highest counts of staging birds in both years, while Smith Bay to Cape Halkett showed moderate concentrations of staging birds in both years (Figure 2b). We observed few staging shorebirds in Region 3 in either year (Figure 2c). We were unable to survey much of Region 4 in 2006 and thus are unable to make between- year comparisons. However, we were able to survey Region 4 in 2007 (Survey 1 2007; Figure 2d); these results are most comparable to the second fixed-wing survey of 2006 since they were conducted at approximately the same time (August 6-7 in 2006 and August 7-8 in 2007; Table 1). In both 2006 and 2007 the Camden Bay area had higher counts of staging shorebirds than other areas of the Region 4 coast, while Beaufort Lagoon had two times as many shorebirds during the second survey in 2006 than any other lagoon in either year. Demarcation Bay had low counts of shorebirds in both 2006 and 2007.

We were able to examine between-year results for river deltas only for the eastern Beaufort coast (from the West Canning to the Kongakut deltas). Distribution of shorebirds on these deltas was also variable across years (Figure 3). Most notably, counts for the eastern-most deltas (Jago and Kongakut) were dramatically higher in 2006 (second survey) than in 2007, although these counts took place over the same time period in both years. The high numbers of shorebirds counted on the Jago and Kongakut deltas during the second survey in 2006 correspond to similarly high numbers recorded in the Beaufort Lagoon subregion (Figure 2d) during the same survey, although per-interval counts in Beaufort Lagoon were not as large. The higher counts of shorebirds recorded at the Kuparuk and Sagavanirktok deltas during the second survey in 2006 also correspond to the peak count at Prudhoe Bay (located between the two deltas) during the same survey.

Species composition. We were unable to draw many conclusions regarding species composition from our aerial surveys given the difficulty of positively identifying shorebirds to species from an aircraft. We report on shorebird community composition at the six ground camps as part of our results for Objective 2.

Figure 3. Aerial survey distribution results for river deltas along the Beaufort Sea on the North Slope of Alaska. Map shows location of deltas; graph shows mean per-interval counts of shorebirds across each delta. A lack of symbols on the graph for a given survey period indicates that no transect surveys were conducted in that subregion in that period.


## Objective 2: Phenology, Habitat Use, Time to Departure, and Movement Patterns

We observed distinct species-specific patterns of phenology, habitat use, time to departure, and movement patterns at our six ground camps on the North Slope of Alaska. Overall, the postbreeding shorebird community was comprised of three species (semipalmated sandpiper, dunlin, and red-necked phalarope) common to all locations we studied and two species (western sandpiper and red phalarope) that were common on the Chukchi coast, but declined in relative abundance going east along the Beaufort coast. We present data on staging phenology separately for these five species (Figure 4a); the remainder of the species that stage on the North Slope were less common and are considered as a group (Figure 4b).

Phenology - semipalmated sandpiper. This species was more numerous at the western Beaufort Sea ground camps (Colville and Sagavanirktok Deltas) than elsewhere. Few adults were present except at Peard Bay, where they outnumbered juvenile birds in 2006. Temporally, semipalmated sandpipers were present at all camps only early in the staging period, and were mostly absent after survey period 8 (7-9 August) on the Chukchi coast and period 10 (13-15 August) on the Beaufort coast. The period of peak abundance of juveniles occurred during survey periods 5-6 (29 July-3 August) on the Chukchi coast and during survey periods 7-8 (4-9 August) on the Beaufort coast. Adults preceded juveniles at staging areas by approximately two survey periods (six days) at most camps, except at Peard Bay, where the peak of juveniles was one survey period (three days) earlier than the peak of adults. Adult semipalmated sandpipers were mostly absent from our transects after survey period 5 (29-31 July) on the North Slope.

Phenology - dunlin. Dunlin were more common at the Kasegaluk Lagoon, Colville Delta, and the Sagavanirktok Delta camps; highest numbers were recorded at the Colville Delta. Adults were more common than juveniles everywhere except Peard Bay and Okpilak, which had lower overall numbers of dunlin than other camps. The peak of abundance tended to be more protracted in this species than in others. Temporally, dunlin were present at staging areas mostly after survey period 6 (1-3 August), although they were counted at Kasegaluk Lagoon in 2006 starting in survey period 4 (26-28 July). The period of peak abundance was earliest at Kasegaluk Lagoon (survey period 4; 26-28 July) and latest at the Okpilak Delta (survey period 16; 31 August-2 September), although there was not a clear directional trend across the camps in between. Adult dunlin arrived earlier than juvenile dunlin at Kasegaluk Lagoon, Pt. Barrow/Elson Lagoon, the Colville Delta, and the Sagavanirktok Delta camps, but both age groups were present until the end of the field season. Within each camp, the dates of peak abundance for both age groups were similar.

Phenology - red-necked phalarope. Red-necked phalaropes exhibited highest abundances at the Pt. Barrow/Elson Lagoon and Okpilak camps. In 2005, juveniles were more common than adults at Pt. Barrow but were observed in almost equal proportion to adults at the Okpilak camp. In 2006 juveniles far outnumbered adults at both camps. Red-necked phalaropes were abundant for only a short period of time at the Kasegaluk Lagoon, Peard Bay, and Okpilak camps, while their period of peak abundance at the Pt. Barrow/Elson Lagoon, Colville Delta, and Sagavanirktok Delta camps was more protracted. Temporally, the period of peak abundance for this species varied between survey period 4 (1-3 August) at the Kasegaluk Lagoon camp and survey period 10 (13-15 August) at Pt. Barrow/Elson Lagoon. There was no clear directional trend in date of peak abundance. Adults peaked in abundance up to four survey periods ( 12 days) in advance of juveniles, and were absent from the transects before juveniles at most camps.

Figure 4a.




\# birds observed










Survey period


## Survey period

Figure 4b.


## Survey period

Figures 4a-b. Species composition, age distribution, and phenology of staging shorebirds at six ground camps on Alaska's North Slope in 2005 and 2006. Fig 4a shows absolute counts of adult (AHY) and juveniles (HY) of the five most common species summed across all nine transects within each survey interval and location in 2005 and 2006. SESA $=$ Semipalmated Sandpiper, DUNL $=$ Dunlin, RNPH $=$ Red-necked Phalarope, REPH = Red Phalarope, WESA = Western Sandpiper. Fig 4b shows composition of other species (ages combined) through time at each of the six ground camps. Total bar height and the height of each colored bar section is sum of individuals of all "other" species and individual species (see legend), respectively, within each survey interval. Data on other species is presented for 2006 only. BBPL = Black-bellied Plover, STSA = Stilt Sandpiper, PESA = Pectoral Sandpiper, SAND = Sanderling, RUTU = Ruddy Turnstone, BASA = Baird's Sandpiper, BBSA = Buff-breasted Sandpiper, AMGP = American Golden-plover, LBDO = Long-billed Dowitcher, SEPL = Semipalmated Sandpiper. Refer to Table 2 for survey interval dates. A lack of symbols on the graph for a given survey period indicates that no transect surveys were conducted at that camp in that period. Note that $y$-axis scale varies between camps.

Phenology - red phalarope. This species did not occur east of the Colville Delta, but were recorded in large numbers at the Peard Bay and Pt. Barrow/Elson Lagoon camps. Juvenile birds typically greatly outnumbered adults (although the reverse was true in 2006 at Kasegaluk Lagoon). They were relatively abundant throughout most of the staging period rather than exhibiting a short peak of abundance. Temporally, the peak of abundance for red phalaropes was survey period 6 (1-3 August) or 7 (4-6 August) at all four camps where they were recorded, thus there was no clear directional trend in abundance from west to east. At Kasegaluk Lagoon, (the only camp with substantial numbers of adults), the period of peak abundance was the same for both age groups, and both adults and juveniles were present almost to the end of the field season. At the other camps where red phalaropes were present, adults peaked between one and four survey periods (3-12 days) in advance of juveniles, and were absent from the transects prior to juveniles.

Phenology - western sandpiper. This species was only recorded along the Chukchi coast; the highest number was recorded at Kasegaluk Lagoon. Individuals observed were almost entirely juvenile birds. Temporally, western sandpipers were present at Chukchi Sea staging areas after survey period 6 (1-3 August) for a relatively long period of time compared to other species. Their peak of abundance was during survey period 10 (13-15 August) at all camps, thus there was no directional trend in abundance from west to east.

Phenology - other species. Less common species recorded along our ground transects were almost entirely juvenile birds. Long-billed dowitchers were more common on the Chukchi coast than on the Beaufort coast. They exhibited a distinct short pulse of abundance that was later in the staging period as one moved south along the Chukchi coast. Black-bellied plovers, American golden-plovers, and stilt sandpipers were more common on the Beaufort coast than on the Chukchi. Both plover species were present sporadically throughout most of the staging period, while stilt sandpiper numbers were concentrated between survey periods 4 (26-28 July) and 11 (16-18 August). Pectoral sandpipers were present in at least low numbers at all camps throughout the staging period. Temporally, this species was present throughout most of the staging period at all camps except Peard Bay, where most individuals were observed during the first half of the staging period. Sanderlings were recorded mostly at the Peard Bay and Okpilak camps, and mostly later in the staging period. Ruddy turnstones were present throughout the entire staging period only at Pt. Barrow/Elson Lagoon, but were also recorded at the Colville and Okpilak camps, albeit early at the Colville, and later at the Okpilak. Baird's sandpipers were observed primarily at Pt. Barrow/Elson Lagoon, and early in the staging period. Buff-breasted sandpipers and semipalmated plovers were rarely observed anywhere during staging. The largest numbers of both species were recorded at Pt. Barrow/Elson Lagoon during the first half of the staging period.

Shorebird community characteristics. We found that five species (semipalmated sandpipers, dunlin, western sandpipers, red phalaropes, and red-necked phalaropes) comprised the majority of the postbreeding shorebird community across our study sites. Overall, species richness, evenness, and diversity were higher in 2005 than in 2006 (Table 3). In both years, species richness was lowest at the Peard Bay and Sagavanirktok camps, and highest at the Pt. Barrow/Elson Lagoon and Colville Delta camps. Richness at Kasegaluk Lagoon was also low in

2006 (the only year for that camp). Species evenness across ground camps varied significantly within each year (2005 E: $F=49588.6, \mathrm{df}=4, P<0.001$; $2006 \mathrm{E}: F=2094510$, $\mathrm{df}=5, P<$ 0.001; Table 3); although there was not a consistent pattern across space or time. The same was true for species diversity ( $2005 \mathrm{H}^{\prime}: F=72725.9$, $\mathrm{df}=4, P<0.0001 ; 2006 \mathrm{H}^{\prime}: F=1674642$, df = 5, $P<0.00001$; Table 3). Therefore, we grouped camps located along each coast (Chukchi Sea vs. Beaufort Sea) and analyzed these regions for evenness and diversity. Species richness did not differ between the Beaufort or Chukchi coasts in either year (2005: $\mathrm{t}=0.52, P=0.32 ; 2006: \mathrm{t}$ $=0.16, P=0.44$ ). The Beaufort coast had greater diversity and evenness in both 2005 and 2006 than did the Chukchi coast (Table 3).

Table 3. Species richness, evenness and Shannon-Weiner diversity index values derived from shorebird transect surveys collected at each of six ground camps on the North Slope of Alaska. Results are presented by camp and ocean coast (i.e., Chukchi and Beaufort); $95 \%$ confidence intervals were derived through bootstrap simulations using camp transect data.

| Year | Camp/ <br> Coast | Richness | Evenness <br> $(\mathrm{E})$ | $95 \% \mathrm{CI}(\mathrm{E})$ | Diversity <br> $\left(\mathrm{H}^{\prime}\right)$ | $95 \% \mathrm{Cl}\left(\mathrm{H}^{\prime}\right)$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 2005 | Peard Bay | 11 | 0.4117 | $0.4111,0.4123$ | 0.9873 | $0.9857,0.9887$ |
|  | Barrow | 12 | 0.5283 | $0.5277,0.5289$ | 1.3128 | $1.3114,1.3142$ |
|  | Chukchi | $\mathbf{1 1 . 5}$ | $\mathbf{0 . 4 7 0 0}$ | $\mathbf{0 . 4 4 2 0 , 0 . 4 9 8 0}$ | $\mathbf{1 . 1 5 0 0}$ | $\mathbf{1 . 0 7 1 9 , 1 . 2 2 8 2}$ |
|  |  |  |  |  |  |  |
|  | Colville | 14 | 0.5732 | $0.5726,0.5738$ | 1.5128 | $1.5114,1.5142$ |
|  | Sag | 10 | 0.5762 | $0.5756,0.5768$ | 1.3267 | $1.3253,1.3282$ |
|  | Okpilak | 13 | 0.5051 | $0.5045,0.5057$ | 1.2955 | $1.2941,1.2969$ |
|  | Beaufort | $\mathbf{1 2 . 3}$ | $\mathbf{0 . 5 5 1 5}$ | $\mathbf{0 . 5 3 9 0}, \mathbf{0 . 5 6 4 0}$ | $\mathbf{1 . 3 7 8 3}$ | $\mathbf{1 . 3 4 1 9}, \mathbf{1 . 4 1 4 8}$ |
|  |  |  |  |  |  |  |
| 2006 | Kasegaluk | 8 | 0.6175 | $0.6172,0.6177$ | 1.2840 | $1.2834,1.2846$ |
|  | Peard Bay | 10 | 0.3698 | $0.3695,0.3700$ | 0.8514 | $0.8508,0.8520$ |
|  | Barrow | 14 | 0.1407 | $0.1404,0.1409$ | 0.3713 | $0.3707,0.3719$ |
|  | Chukchi | $\mathbf{1 0 . 7}$ | $\mathbf{0 . 3 7 6 0}$ | $\mathbf{0 . 3 0 2 0}, \mathbf{0 . 4 4 9 9}$ | $\mathbf{0 . 8 3 5 6}$ | $\mathbf{0 . 6 9 4 0}, \mathbf{0 . 9 7 7 1}$ |
|  |  |  |  |  |  |  |
|  | Colville | 12 | 0.3256 | $0.3253,0.3259$ | 0.8091 | $0.8085,0.8097$ |
|  | Sag | 8 | 0.5927 | $0.5924,0.5929$ | 1.2325 | $1.2319,1.2330$ |
|  | Okpilak | 11 | 0.5567 | $0.5564,0.5570$ | 1.3349 | $1.3344,1.3355$ |
|  | Beaufort | $\mathbf{1 0 . 3}$ | $\mathbf{0 . 4 9 1 7}$ | $\mathbf{0 . 4 4 6 7 , 0 . 5 3 6 6}$ | $\mathbf{1 . 1 2 5 5}$ | $\mathbf{1 . 0 3 9 1 , 1 . 2 1 1 9}$ |

Habitat use. We detected several primary species-habitat associations within the transects surveyed at our six ground camps (Figure 5). Black-bellied plovers, red phalaropes, ruddy turnstones, and sanderlings showed strong selection for gravel beaches, whereas dunlin and semipalmated sandpipers strongly selected for mudflats. American golden-plovers, long-billed dowitchers, pectoral sandpipers, and western sandpipers selected for salt marshes, although three of these species (long-billed dowitchers, pectoral, and western sandpipers) also selected for pond edge, which is often interspersed with salt marsh at North Slope coastal areas. Red-necked phalaropes showed approximately equal selection for gravel beach and pond edge. Stilt sandpipers, while not widely distributed or numerous across our study area, selected for pond edge where they were locally present, mostly east of the Colville River Delta.

Figure 5. Habitat selection by twelve species of shorebirds commonly found on North Slope, Alaska, staging areas. Graphs show partial dependence values indicating the strength of the association of that species with four categories of habitat: gravel beach, mudflat, pond edge, and salt marsh. See text for descriptions of habitat type. AMGP = American Golden-Plover, BBPL = Black-bellied Plover, DUNL = Dunlin, LBDO = Long-billed Dowitcher, PESA = Pectoral Sandpiper, REPH = Red Phalarope, RNPH = Red-necked Phalarope, RUTU = Ruddy Turnstone, SAND = Sanderling, SESA = Semipalmated Sandpiper, STSA = Stilt Sandpiper, WESA = Western Sandpiper.



Time to departure. One hundred ninety-seven radio-equipped shorebirds (of 361 total) were detected multiple times at their banding site and could be used in our survival models. The modeling results for our Cormack-Jolly-Seber survival analysis are shown in Table 4. After adjusting for overdispersion in the telemetry data likely caused by variability between individual radio-equipped birds, camps, dates, and years, our best model for tenure time was one of constant survival and detection probability across all five study species. Using this model, we estimated tenure time for all species to be 6.5 days ( $95 \%$ confidence interval: 3.4-9.6 days). Detection probability for all species (conditional upon survival) was $68 \%$ ( $95 \% \mathrm{CI}$ : 58-78\%). The second ranked model included a survival estimate that varied by species (with both phalarope species combined). Although less likely than the first model, the small change in $\Delta$ QAIC $_{\mathrm{c}}$ values between both models suggest that this model may also have power to explain variation in time to departure. Based on the second ranked model, semipalmated sandpipers and both phalarope species exhibited shorter times to departure than western sandpipers, which in turn had a shorter time to departure than dunlin (Figure 6).

Table 4. Model selection results for Cormack-Jolly-Seber survival analysis to estimate time to departure for radio-equipped shorebirds on the North Slope, 2005-2006. Model parameters were: $\Phi$ (survival probability), and $\mathbf{p}$ (detection probability). Parameters were either kept constant across all species (dot models) or allowed to vary across all five species (semipalmated sandpiper, western sandpiper, dunlin, red phalarope, and rednecked phalarope), only four species (phalarope species combined), with a linear or quadratic trend over time, or by an interaction between species and individual day captured. QAICc (Akaike's information criterion adjusted for small sample sizes and lack of model fit) was used as our model selection criterion; $\boldsymbol{\Delta}$ QAICc indicates the change in QAICc units between the top model and the model of interest; QAICc weight $(\mathrm{wt})$ is a measure of the relative support in the data for each model.

| Model | QAICc |  | $\Delta$ QAICc |  | QAICc wt |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Likelihood | No. Par. |  |  |  |
| $\Phi(),. \mathrm{p}()$. | 202.760 | 0.00 | 0.6154 | 1.0000 | 2 |
| $\Phi(4$ species $), \mathrm{p}()$. | 205.188 | 2.43 | 0.1827 | 0.2970 | 5 |
| $\Phi(4$ species* linear trend $), \mathrm{p}()$. | 207.013 | 4.25 | 0.0734 | 0.1192 | 6 |
| $\Phi(5$ species $), \mathrm{p}()$. | 207.040 | 4.28 | 0.0724 | 0.1177 | 6 |
| $\Phi(4$ species*quadratic trend $), \mathrm{p}()$. | 209.009 | 6.25 | 0.0271 | 0.0440 | 7 |
| $\Phi(5$ species*day cap $), \mathrm{p}()$. | 209.063 | 6.30 | 0.0263 | 0.0428 | 7 |
| $\Phi(5$ species $), \mathrm{p}(5$ species $)$ | 214.181 | 11.42 | 0.0020 | 0.0033 | 10 |
| $\Phi(5$ species*day cap $), \mathrm{p}(5$ species $)$ | 216.221 | 13.46 | 0.0007 | 0.0012 | 11 |

Movement patterns - general. Forty-four of 361 radio-equipped individuals were detected at locations other than their initial capture site ( $85 \%$ by ARTS, $10 \%$ by aerial telemetry, and $5 \%$ by manual telemetry) and thus provided information on how birds move from breeding to staging areas, and among staging areas. These included six dunlin (4 adults, 2 juveniles), five red phalaropes ( 1 adult, 4 juveniles), three red-necked phalaropes ( 1 adult, 2 juveniles), and 30 semipalmated sandpipers ( 10 adults, 20 juveniles). Most adults (unless noted below) were initially captured at breeding sites and moved to coastal staging areas, whereas juvenile birds were captured at coastal areas after fledging and moved among coastal sites.

Figure 6. Time to departure (days) for radio-equipped shorebirds staging at six ground camps on the North Slope, Alaska. See Fig. 1 for ground camp locations. DUNL = dunlin, SESA = semipalmated sandpiper, WESA = western sandpiper, phalarope = both red and red-necked phalaropes combined. Error bars are $\mathbf{9 5 \%}$ confidence limits for each species' mean.


Figure 7. Compass rose diagrams showing circular statistics for shorebird movement patterns for four species. Blue wedges indicate number and direction of individual radio-equipped bird detections; samples sizes are indicated by numbered arcs within diagram. Solid black lines within diagram are mean movement vectors (in degrees); black or red arcs at outside of diagram are $95 \%$ confidence limits (red arcs indicate unreliable C.I. estimates due to low sample size).


Movement patterns - semipalmated sandpiper. Both adults and juvenile semipalmated sandpipers displayed a distinct pattern of movement north along the Chukchi coast (if initially captured at either Kasegaluk Lagoon or Peard Bay), then east along the Beaufort coast. The mean movement vector for semipalmated sandpiper was approximately east, at $97.0^{\circ} \pm 31.4^{\circ}$ ( n $=30$; Figure 7). Eight individuals were detected multiple times, each time farther north (if along the Chukchi) or east of their previous location (Table 5). For six of these eight, the length of time between successive detections was a single day or less, despite most travel distances being 100 km or greater. We detected only two adults captured during the breeding season at the coast during the postbreeding period; they moved almost directly north to the coast within 10 km of their breeding location. Semipalmated sandpipers appeared to stop moving east once they reached the Canning River area. Indeed, 19 of 30 radio-equipped semipalmated sandpipers that were used in our analysis of movement patterns were last heard at either the Canning Delta ARTS (14), the Canning River ARTS (3), or at both (2). None of these individuals were subsequently detected at the Okpilak Delta located farther east on the Beaufort coast, suggesting the birds may have begun traveling south along the Canning River.

Table 5. Locations of, length of time between detections, and distances traveled between initial capture sites (first line of data for each individual) and subsequent detection sites (second and third lines of data for each individual) by eight radio-equipped semipalmated sandpipers heard multiple times along North Slope coastlines in 2005-2007. See Figure 1 for detection locations.

| Individual | Age | Capture Location | Date Captured | Detection Location | $\begin{aligned} & \text { Detection } \\ & \text { Date } \end{aligned}$ | Distance (km) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | adult | Kasegaluk | 4-Aug-06 | btwn Kasegaluk \& Peard | 9-Aug-06 | 128.23 |
|  |  |  |  | Peard Bay | 14-Aug-06 | 142.98 |
| 2 | juvenile | Peard Bay | 1-Aug-05 | Colville Delta | 8-Aug-05 | 290.74 |
|  |  |  |  | Sagavanirktok Delta | 8-9 Aug 05 | 381.15 |
|  |  |  |  | Canning Delta | 10-Aug-05 | 470.26 |
| 3 | juvenile | Peard Bay | 28-Jul-06 | Colville Delta | 6-7Aug 06 | 285.43 |
|  |  |  |  | Sagavanirktok Delta | 7-Aug-06 | 390.65 |
| 4 | juvenile | Barrow | 30-Jul-05 | Colville Delta | 4-Aug-05 | 241.14 |
|  |  |  |  | Sagavanirktok Delta | 5-Aug-05 | 329.54 |
|  |  |  |  | Canning Delta | 5-Aug-05 | 416.41 |
| 5 | juvenile | Barrow | 4-Aug-05 | Sagavanirktok Delta | 7-Aug-05 | 330.52 |
|  |  |  |  | Canning Delta | 7-Aug-05 | 417.47 |
| 6 | juvenile | Barrow | 28-Jul-06 | Sagavanirktok Delta | 6-Aug-06 | 343.35 |
|  |  |  |  | Canning River | 9-Aug-06 | 411.22 |
| 7 | juvenile | Barrow | 31-Jul-06 | Colville Delta | 8-Aug-06 | 241.09 |
|  |  |  |  | Canning River | 9-Aug-06 | 411.31 |
| 8 | juvenile | Colville | 1-Aug-05 | Sagavanirktok Delta | 4-Aug-05 | 89.09 |
|  |  |  |  | Canning Delta | 5-Aug-05 | 178.27 |

Movement patterns - dunlin. The mean movement vector for dunlin was approximately south, at $172.1^{\circ} \pm 107.3^{\circ}(\mathrm{n}=6$; Figure 7b). This represents an average between two groups of dunlin: three moving southwest and three moving eastward. Three of six dunlin moved southwest along the Chukchi coast after capture, from Pt. Barrow/Elson Lagoon to Peard Bay. Two of these were adults radio-equipped at Pt. Barrow while attending nests. They were both detected at Peard Bay 56 days after radio-marking and seen in close proximity to each other. The third southwesttraveling dunlin was a juvenile bird initially captured while staging at Pt. Barrow/Elson Lagoon; it arrived at Peard Bay 22 days after radio-marking. The three other dunlin moved generally eastward after capture. One adult captured at an inland breeding location near Peard Bay moved northeast to Pt. Barrow (detected 51 days post-capture), another adult from an inland site near Prudhoe Bay moved east to the coast on the Sagavanirktok Delta (detected 70 days post-capture), and the third juvenile bird moved from its initial capture location at Kasegaluk Lagoon northeast to Pt. Barrow/Elson Lagoon (detected 20 days post-capture). The four adults we detected on the coast after they left their breeding territories moved an average of $56.9 \pm 39.9 \mathrm{~km}$ between breeding and staging locations.

Movement patterns - red phalarope. The mean movement vector for red phalarope was approximately southeast, at $123.3^{\circ} \pm 90.3^{\circ}(n=5$; Figure 7c). This represents an average between two groups of red phalaropes: two moving southwest and three moving northeast. Two juveniles moved southwest along the Chukchi coast after capture, from Pt. Barrow/Elson Lagoon to Peard Bay. One arrived in Peard Bay eight days after being captured at Pt. Barrow; the other arrived 23 days post-capture. Another reversed this pattern and moved northeast from Peard Bay to Pt. Barrow/Elson Lagoon in 13 days. A fourth also moved eastward, from the Colville Delta to the Sagavanirktok Delta in three days. The only adult we detected after initially capturing the bird at an inland breeding site near Peard Bay was detected 25.1 km east to the coast at Peard Bay after a 37-day hiatus.

Movement patterns - red-necked phalarope. The mean movement vector for red-necked phalarope was approximately west, at $288.5^{\circ} \pm 84.5^{\circ}(\mathrm{n}=3$; Figure 7d). This represents an average between two groups of red-necked phalaropes: two moving west and one moving east. Two juvenile red-necked phalaropes captured at the Okpilak Delta moved west across the Beaufort coast: one to the Canning Delta (detected nine days post-capture), and the other to the Ikpikpuk Delta (detected five days post-capture). Conversely, the single adult red-necked phalarope we tracked during the study moved from its breeding location at Prudhoe Bay to the Canning Delta and then to the Okpilak Delta. This bird moved at least 170.4 km and was located 25 days after being captured at the Okpilak. The final segment of his/her travel from the Canning Delta to the Okpilak Delta occurred in less than a day.

## Objective 3: Physiological Assessment of Staging Site Quality

Triglyceride levels varied among species (likelihood ratio test: $\chi^{2}=52.9, P<0.001$ ) although the shape of the relationship between species differed across years (year*species likelihood ratio test: $\chi^{2}=29.7, P<0.001$; Figure 8 ). In 2005 western sandpipers had triglyceride levels intermediate between dunlin (lower) and semipalmated sandpipers (higher). In 2006 western and semipalmated sandpipers showed very similar levels. To assess whether different staging sites were of different quality (i.e., birds were able to acquire fat reserves at varying rates) in different years, we also investigated whether triglyceride levels varied by location and year. Because we
had already demonstrated that species differ in terms of fattening rates, we restricted our analysis of location effects to a single species for which we had sufficient data (semipalmated sandpipers, $\mathrm{n}=217$ ). We did not find a year effect on triglyceride levels (regression coefficient different than $0: \mathrm{t}=-0.48, P=0.63$ ), but did find a difference between camps after combining data across years (likelihood ratio test: $\chi^{2}=20.34, P<0.01$ ). Semipalmated sandpipers captured at Pt.
Barrow/Elson Lagoon had higher triglyceride levels than those captured at any other camp (Figure 9).

Baseline corticosterone levels for semipalmated sandpipers differed across camps in 2006 (likelihood ratio test: $\chi^{2}=52.415, P<0.001$ ), with birds captured at the Colville Delta camp exhibiting the highest levels and birds captured at Peard Bay having the lowest levels (Figure 10). Maximal corticosterone levels also differed across camps in 2006 (likelihood ratio test: $\chi^{2}=$ $14.179, P=0.015$ ), with birds captured at Pt. Barrow/Elson Lagoon and the Sagavanirktok Delta camps exhibiting highest levels and Kasegaluk Lagoon birds exhibiting lowest levels (Figure 11). There was insufficient data to analyze baseline or maximal corticosterone patterns in 2005.

Figure 8. Mean and 95\% CI level of triglyceride concentration (in $\log [t r i g]+1$ ) for dunlin (DUNL), semipalmated sandpipers (SESA) and western sandpipers (WESA) averaged across six ground camps on the North Slope in 2005 and 2006. Dotted lines show $95 \%$ confidence limits for the effect of species on triglyceride levels. Sample sizes given in parenthesis below species on $\mathbf{x}$-axis.


Figure 9. Mean and 95\% CI level of triglyceride concentrations (in $\log [t r i g]+1)$ for semipalmated sandpipers captured at each of six ground camps on the North Slope, Alaska, 2005-2006. Dotted lines show 95\% confidence limits for the effect of camp on triglyceride. Sample sizes given in parenthesis below camp names on x -axis.


Figure 10. Mean and standard error levels of baseline corticosterone for semipalmated sandpipers captured at each of six ground camps on the North Slope, Alaska, 2006 only. Error bars show one standard error of the mean. Sample sizes given in parenthesis below camp names on $x$-axis.


Figure 11. Mean and standard error levels of maximal corticosterone for semipalmated sandpipers captured at each of six ground camps on the North Slope, Alaska, 2006 only. Error bars show one standard error of the mean. Sample sizes given in parenthesis below camp names on $x$-axis.


DISCUSSION

## Objective 1: Abundance, Distribution, and Species Composition

A primary goal of this research was to determine whether pre-migratory shorebirds exhibit a relatively uniform distribution across the North Slope, or whether there are distinct areas of concentration that persist across years. Based on previous research done in the late 1970's as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP; Connors et al. 1981), our prediction was that shorebird distribution would be non-uniform. We found support for this hypothesis: there were consistent shorebird concentration areas at Peard Bay, Pt. Barrow/Elson Lagoon, Cape Simpson, between Smith Bay and Cape Halkett, and at the Jago and Kongakut river deltas. Below, we compare our results to those reported by previous investigators (where they exist) for each of these concentration areas. We use Connors et al. (1981) where possible because this study examined many potential staging areas across the North Slope in terms of shorebird abundance, and assessed whether certain staging sites were concentration areas relative to others. Studies conducted at single locations are more difficult to compare to the present study because they provide little information on how shorebird abundance at that site compared to other sites during the same study period.

Peard Bay. Peard Bay had higher numbers of shorebirds than surrounding areas in 2005 and higher per-interval counts than other Region 1 areas in 2006. Gill et al. (1985) conducted three sets of aerial surveys along the shoreline of Peard Bay in 1983, and recorded lineal densities of shorebirds per km of shoreline surveyed. Higher per-km counts of shorebirds were recorded
during their 10-14 August survey period than during the 15-20 July or 25 August-7 September survey periods. This corresponds to our results, wherein we recorded higher per-interval counts of shorebirds during the third survey in 2006 ( $9-17$ August) than during other survey periods. They also found that shorebird concentrations at Peard Bay were less than those reported for Kasegaluk Lagoon by Lehnhausen and Quinlan (1981), although they recognized that interannual variability in staging shorebird numbers may preclude a comparison between a single year of data at Kasegaluk Lagoon and two different years of data at Peard Bay. Gill et al. (1985) considered Peard Bay to represent a transition zone between estuarine systems typical of the Arctic and those typical of more subarctic areas. If this transitional habitat is related to food availability, Peard Bay may attract birds migrating south from the Arctic as the first quasisubarctic staging area on the Chukchi Sea.

Pt. Barrow/Elson Lagoon. We recorded the highest per-interval count of staging shorebirds of all surveyed regions in the Pt. Barrow/Elson Lagoon subregion during the third fixed-wing survey in 2006. Counts of birds in this subregion were comparatively high in 2005 and during the other 2006 surveys as well. Connors et al. (1981) reported both Pt. Barrow (at the western edge of this subregion) and the Plover Islands (the chain of barrier islands trending eastward from Pt. Barrow along the northern edge of Elson Lagoon) as having high densities of staging shorebirds during the OCSEAP study, although they did not survey the mainland coastline of this subregion. Connors et al. (1981) surmised that the extensive gravel spits and barrier islands of this area were attractive to staging shorebirds, particularly phalaropes.

Cape Simpson. The Cape Simpson subregion had large numbers of shorebirds in 2005 and high per-interval counts in the second, third, and fourth surveys in 2006. There are no other comparative data on staging shorebird abundance in Cape Simpson subregion. The Cape Simpson area is characterized by many small- to medium-sized lakes near the coastline, many of which show evidence of being breached by salt water during storms. This type of habitat is denoted as "tapped basins" by Jorgenson and Brown (2005) in their characterization of Beaufort Sea coastlines, and is found only near Cape Simpson and at Pitt Point/Pogik Bay. Given the large concentrations of staging shorebirds found in this subregion and at Pitt Point/Pogik Bay (see below), it is possible that this type of habitat is highly important to postbreeding shorebirds.

Smith Bay to Cape Halkett. The Smith Bay to Cape Halkett subregion had relatively high numbers of birds during the 2005 survey, and higher per-interval counts during the third and fourth surveys in 2006 than did other subregions in Region 2, although counts were lower than for Elson Lagoon or Cape Simpson. Interestingly, although they did not systematically survey the area, Connors et al. (1981) hypothesized that Pitt Point/Pogik Bay (in the Smith Bay to Cape Halkett subregion) might attract large concentrations of postbreeding shorebirds due to the presence of extensive littoral flats and lagoon/slough edge habitat (Figure 2b, circled region). We recorded large per-interval counts in both 2005 and the latter two surveys in 2006 at Pitt Point/Pogik Bay, where the habitat is also classified as "tapped basins" by Jorgenson and Brown (2005). The suitability of this type of habitat for staging shorebirds compared to other habitat types along the Beaufort Sea should be addressed in future studies.

Jago and Kongakut River deltas. Spindler (1978) conducted aerial surveys 0.5 km inland of the coast across the Arctic National Wildlife Refuge in the eastern Beaufort Sea. He recorded higher
densities of shorebirds in the eastern lagoons of the Arctic National Wildlife Refuge (including the Jago and Kongakut deltas) than in the western lagoons, which was true in our study as well. The overall habitat of both deltas is similar (gentle shoreline slopes and sand/silt substrate; Jorgenson and Brown 2005), but is not substantially different than other deltas on the eastern Beaufort coast.

Other locations. Our study and Connors et al. (1981) had two shorebird concentration areas in common: Peard Bay and Pt. Barrow/Elson Lagoon. Connors et al. (1981) also considered the following to be shorebird concentration areas: Kasegaluk Lagoon (at Icy Cape), Fish Creek Delta (west of and adjacent to the Colville Delta), and the Jones Islands west of Prudhoe Bay. Although we did not consider Kasegaluk Lagoon to be a concentration area across years, it did have high numbers of shorebirds during our 2005 helicopter survey. Connors et al. (1981) recorded high levels of bird use at Icy Cape (located between Kasegaluk Lagoon N and S; Figure 2a) during the OCSEAP study (1974-1979), although visits to the Icy Cape area during this study were irregular and brief. Johnson et al. (1993) reported large numbers of shorebirds across the entire lagoon during aerial surveys from 1989-1991. Most notably, Johnson et al. (1993) recorded over 29,000 small shorebirds on the mudflats at the far southwestern end of Kasegaluk Lagoon on 26 August 1991. We did not find similar abundances during our surveys in 20052006; the total number of birds recorded in Kasegaluk Lagoon during the 2006 surveys ranged from 39-1606 total individuals per survey. We suspect that shorebird migration through Kasegaluk Lagoon may happen rapidly and that our surveys may have missed large pulses of birds moving through this area. For example, we flew the Kasegaluk Lagoon portion of our 2005 helicopter survey much earlier (7-8 August) than when Johnson et al. (1993) observed large numbers in late August. Similarly, we may have missed large concentrations between the third and fourth surveys (conducted 9 and 23 August, respectively) in 2006. Given the historically high numbers of birds in this area, Kasegaluk Lagoon may merit further investigation as a concentration area for shorebird staging/migration.

We did not observe large numbers of birds during any year or survey at Fish Creek Delta (located at the far east side of Harrison Bay; Figure 2b). In fact, the west side of Harrison Bay had the lowest per-interval counts of shorebirds of any of the subregions within Region 2. On the other hand, we have little data to address shorebird abundance along the Jones Islands west of Prudhoe Bay (located mainly in the Sagavanirktok River to Canning River subregion of Region 3) because weather prevented us from surveying these off-shore areas in a single-engine aircraft. Also of note is the fact that extensive areas of coastline were not surveyed during the Connors et al. (1981) study, particularly east of Prudhoe Bay, which may explain why no concentration areas were reported in this area in the OCSEAP study.

One other staging site that has been studied extensively is the Colville River Delta. We did not find this site to be a concentration area in this study. However, Andres (1989) reported the Colville Delta as being highly important to postbreeding dunlin, and estimated that upwards of 41,000 shorebirds (of multiple species) might pass through the Colville Delta during fall staging. It is possible that the enormous size and homogeneity of the delta (the area provides the most extensive salt marsh and mudflat habitat along the central Beaufort coast; Andres 1989) may have made it more difficult to locate shorebirds during aerial surveys, since it is the contrast of birds flying against background substrate and vegetation that enables their detection from the air
(see below). Alternatively, if pulses of shorebirds move through the Colville Delta rapidly (as we suspected for Kasegaluk Lagoon), our aerial surveys conducted only four times throughout the staging period in 2006 may have missed large groups of birds migrating through the area. This seems less likely given that dunlin were the most numerous species present on the delta during Andres' study in 1989, and exhibited a time to departure of almost two weeks in our study. Thus individual dunlin on the Colville Delta were likely to be present for at least one of our aerial surveys in 2006 rather than moving through between surveys.

Deltas versus coastlines. Andres' (1989) assessment of the importance of the Colville River delta to staging dunlin led us to predict that other river deltas might attract large concentrations of staging shorebirds. Spindler (1979) also observed "pockets" of higher bird density (mostly phalaropes, pectoral sandpipers, loons, and diving ducks) during aerial surveys conducted 0.5 km inland of the coast in 1978 and 1979 on the Canning, Okpilak-Hulahula, Jago, and Aichilik deltas, indicating that at times, delta habitats may attract more birds than surrounding coastal areas. Contrary to this prediction, our data do not suggest that birds use deltas to the exclusion of coastal areas. In fact, our 2006 surveys indicated that when shorebirds occurred in high numbers on a given delta, they were also abundant on the nearby coastlines. Examples of this include the Kuparuk and Sagavanirktok river deltas and the Prudhoe Bay coast, and the Jago and Kongakut river deltas and the Beaufort Lagoon coast during the second fixed-wing survey in 2006. In addition, Pt. Barrow/Elson Lagoon and Cape Simpson, neither of which contains large river deltas, had the highest per-interval counts of all areas in 2006. It is possible that shorebirds migrate through coastal areas in waves, using different littoral habitats concurrently rather than cueing on specific coastal landforms. It is also possible that detectability of shorebirds is less on river deltas than along distinct coastlines due to the expansive, homogeneous nature of staging habitat on deltas compared to the more linear coastlines.

Variability and reliability of aerial surveys. Our aerial surveys indicated there was a high level of spatial and temporal variability in the number and location of shorebirds within and between years. Similar levels of variability have also been found during other aerial surveys conducted across the North Slope (Spindler 1979, Johnson et al. 1993, Gill et al. 1985). Such documented variability is likely a result of both sampling error and inherent variability in shorebird numbers caused by the underlying processes creating distribution and abundance patterns.

Sampling error arises if the likelihood of detecting an individual shorebird varies with size, behavior (i.e., flying or standing, in a group or by itself), what type of habitat it is using, the weather conditions when the survey was conducted, and other factors. If any of these factors affect detection, then the observed variation in aerial survey data across time or space may be an artifact of different detection rates rather than real differences in the numbers of shorebirds. We know that some of these factors are likely to affect our counts. For example, shorebirds are easier to see (and thus count) when in the water or the air and harder to see if they remain on the ground, especially in taller vegetation. Similarly, poor visibility from the aircraft, due to inclement weather, is likely to lead to an underestimate in the number of birds. Unfortunately our efforts to estimate detectability using Program DISTANCE (Thomas et al. 2005) proved unsuccessful due to a violation of key assumptions of this program.

Besides the difficulty of detecting birds, another component of sampling error relates to when surveys are conducted (i.e., sampling design). We conducted four fixed-wing surveys over the staging period in 2006 (a period of 37 days) to assess shorebird abundance and distribution across the North Slope coast. However, shorebird numbers could have varied widely between our survey dates. For example, our ground camp data from Kasegaluk Lagoon shows three distinct peaks of dunlin abundance with the highest count between 26 and 28 July. In contrast, our more limited aerial survey data indicated only a single peak for dunlin on 3 August. Similarly, Johnson et al. (1993) reported 5,364 small shorebirds in Kasegaluk Lagoon on 1 August 1991; the number jumped to 29,070 on 26 August 1991. It is unknown what number of shorebirds was present between these two dates, and whether the large number counted on 26 August 1991 was unusual.

Undoubtedly, inherent variability in shorebird numbers and distribution also occurs. Such variation arises from a variety of intrinsic and external factors, such as molt and migration schedules, breeding season termination date, weather conditions, coastal geomorphology and hydrology, and food availability. All of these factors are likely to vary across years, and some will vary within a season. For example, individual river deltas, lagoons, and shorelines may be extremely important to shorebirds during one portion of the season (or one year if conditions remain stable) and less important later on depending on shoreline availability, which changes with changing water levels caused by wind-driven waves. This is comparable to the unpredictable, ephemeral wetland complexes in the prairie pothole region of the Northern Great Plains, which have been shown to significantly affect the distribution of migrating small shorebirds (Skagen and Knopf 1993).

While we acknowledge these limitations of aerial surveys to detect true staging shorebird abundance and distribution, there currently is no better method available to survey such a large area (approximately 1000 km of coastline) or detect small birds that can not be detected remotely via satellite or GPS tracking devices. Further research will be required to determine adequate and efficient methods for estimating detection rates for aerial surveys of shorebirds.
Additionally, surveys should be conducted over many years using similar methods to facilitate detecting trends in abundance even if true population size remains unknown.

Objective 2: Phenology, Habitat Use, Time to Departure, and Movement Patterns
Phenology. Red phalaropes were the most abundant species overall due to the exceptionally large numbers recorded at the Peard Bay and Pt. Barrow/Elson Lagoon camps. Semipalmated sandpipers showed the most consistent numbers across all camps, and the earliest peak of abundance. Dunlin and western sandpipers generally exhibited a later and more protracted peak of abundance than semipalmated sandpipers. Red and red-necked phalaropes were intermediate to and more variable than other species with respect to date and length of peak abundance.

We predicted that adult birds would arrive at and depart from coastal sites earlier in the staging period than would juveniles. The peak of abundance for adult semipalmated sandpipers was on average six days earlier than juveniles of the same species. The peak of abundance for adults of both phalarope species was also earlier than juveniles, although the magnitude of the difference varied between camps. Correspondingly, adults of these three species were absent from transects earlier than juveniles at most camps. This pattern is expected given that in most shorebird
species, adults depart earlier than juveniles for southbound migration, leaving juvenile birds to find their own route south to wintering areas. On the other hand, dunlin did not show this pattern of adults arriving and departing earlier than juveniles; adult and juvenile dunlin were present at our ground camps until the end of the field season. The species-specific differences in adult vs. juvenile arrival and departure dates for semipalmated sandpipers and dunlin is likely related to molt and migration patterns. Semipalmated sandpipers tend to migrate south rapidly, then molt flight and body feathers at wintering areas (Gratto-Trevor 1992). Dunlin of both age groups tend to molt at postbreeding staging areas prior to migration, requiring simultaneous fattening and growth of new feathers (Warnock and Gill 1996). These two processes conflict energetically, resulting in this species likely needing a longer period of time to acquire the necessary fat resources for southbound migration. Adult birds are regrowing both flight and body feathers, whereas juveniles are only regrowing body feathers. The additional energetic constraint for adult dunlin of growing an entirely new set of feathers may explain why they do not exhibit the typical shorebird pattern of abandoning staging areas earlier than juveniles. These species-specific differences in molt and migration strategies may also explain why we observed that peak periods of abundance varied by species, as we predicted. Semipalmated sandpipers peaked in abundance earliest, then declined, whereas other species exhibited later and more protracted periods of peak abundance.

We also predicted that the peak of shorebird migration will be later as one moves from west to east across the North Slope. We found a west-to-east trend in date of peak abundance for semipalmated sandpipers, but not for western sandpipers. This contrasts with Connors (1983), who found a west-to-east trend for both species. Radio-equipped semipalmated sandpipers in our study moved almost exclusively eastward after departing from their tagging site, indicating a generally eastbound migration direction. The fact that we did not detect any radio-equipped western sandpipers at our coastal camps or ARTS stations after they left their tagging site is perhaps indicative of this species migrating away from the North Slope along an inland route rather than coastally as semipalmated sandpipers do. On the other hand, because western sandpipers were only common along the Chukchi Sea, we may have had limited ability to detect either a directional trend in peak abundance or movements of radio-equipped birds. In contrast to our prediction, dunlin did not exhibit an east-to-west trend in peak abundance at our ground camps despite their known pattern of migrating to Asia for the winter. This prediction is further countered by the fact that radio-equipped dunlin in our study showed a bi-directional movement pattern, with some birds migrating east along the North Slope and others migrating southwest along the Chukchi coast. Despite the known direction of migration in this species, individual birds may show a large degree of variability in movement pattern, perhaps reflecting their extended postbreeding period in northern Alaska that allows them to visit a range of sites prior to migration.

We noted a number of differences between our study and previous research on the phenology of staging on the North Slope. Lehnhausen and Quinlan (1981) reported a peak in dunlin use of beach transects at Kasegaluk Lagoon in mid August 1980, whereas the peak of dunlin abundance at Kasegaluk Lagoon in our study was approximately two weeks earlier. Similarly, Gill et al. (1985) reported a peak in red phalarope abundance at Peard Bay in mid-August in 1983; our data from Peard Bay indicate the peak in early August. Johnson (1978) recorded the highest densities of staging phalaropes at Simpson Lagoon (located on the Beaufort coast between the Colville

Delta and Prudhoe Bay) during 10-20 August 1977, whereas we observed the highest counts of phalaropes at least one week earlier at our camps on the Beaufort coast in 2005-2006. These differences are consistent with a pattern of earlier overall staging in recent years. Conversely, Johnson (1993) reported that western sandpipers were the most common small shorebird along Kasegaluk Lagoon shorelines in late July and early August 1990-1991. In our study, however, western sandpipers did not become more numerous than dunlin or semipalmated sandpipers until mid-August in 2006, possibly indicating a delay in the movement of western sandpiper juveniles from tundra breeding areas to coastal staging areas. Although our study was not designed to provide evidence of phenological change, our data may provide a baseline for developing testable hypotheses regarding the effects of climate change on the length and timing of shorebird staging on the North Slope.

Shorebird community characteristics. We found that species diversity (a combination of species richness and evenness) was lower on the Chukchi coast (Kasegaluk Lagoon, Peard Bay, and Pt. Barrow/Elson Lagoon camps combined) than on the Beaufort coast (Colville, Sagavanirktok, and Okpilak camps combined). The low evenness estimates for the Chukchi coast were likely due to dominance of the shorebird community by phalaropes at Peard Bay and Pt. Barrow/Elson Lagoon. In 2005, phalaropes comprised $80 \%$ and $75 \%$ of shorebird sightings at the Peard Bay and Pt. Barrow/Elson Lagoon camps, respectively. In 2006 the proportions were $82 \%$ and $97 \%$. Because evenness is a component of diversity, it is logical to find that although species richness between the Chukchi and Beaufort regions was not significantly different in either year (and in fact, Pt. Barrow/Elson Lagoon had high species richness in both years of the study), diversity was lower on the Chukchi as a result of large numbers of phalaropes staging there. It should be noted that a reverse pattern was found when all staging birds (loons, waterfowl, shorebirds, and larids) were considered in species evenness and diversity measurements. Johnson et al. (1993) remarked that species richness and diversity at Kasegaluk Lagoon was much greater than similar lagoons along the central Alaska Beaufort Sea, mostly due to the dominance by long-tailed ducks (Clangula hyemalis) at most Beaufort sites.

Our prediction that species composition and abundance at coastal staging sites should reflect the surrounding breeding community (from Objective 1, but addressed with ground camp data) was supported in some cases. For example, four of our five common species (with the exception of western sandpipers) were recorded in more than $25 \%$ of the tundra plots surveyed by Johnson et al. (2007) in their investigation of the distribution of breeding shorebirds on the North Slope of Alaska. In both our study and that of Johnson et al. (2007), western sandpipers and red phalaropes were more commonly observed in western Beaufort plots than in eastern plots. In contrast, Johnson et al. (2007) also recorded pectoral sandpipers, long-billed dowitchers, and American golden-plovers in more than $25 \%$ of their survey plots. We did not observe any of these species however, as most typically staged in tundra habitats and therefore were not often recorded on coastal transects.

There were distinct differences in community composition at the Sagavanirktok Delta camps between years (more pectoral sandpipers and red-necked phalaropes in 2005; more semipalmated sandpipers and dunlin in 2006), but this is most likely a result of the camp moving locations from a more inland site in 2005 to a true river delta site in 2006. We believe the 2006 data more fully reflect patterns of species composition at the Sagavanirktok delta and suggest the 2005 data are
more representative of inland sites typically dominated by species that tend to stage in tundra habitats (such as pectoral sandpipers) or near human settlements (red-necked phalaropes using the sewage pond in Deadhorse).

Habitat use. As we predicted, species differed in their postbreeding habitat use, and our determination of habitat selection by staging shorebirds was similar to that of Connors et al. (1981). Red phalaropes, ruddy turnstones, and sanderlings selected for gravel beaches, dunlin selected for mudflats, and long-billed dowitchers and pectoral sandpipers selected for slough or pond edge. Red-necked phalaropes in both studies presented a contrast to their sister species, red phalaropes, by preferring slough/pond edge, although in our study they were also found on gravel beaches.

Connors (1983) reported that semipalmated and western sandpipers at Pt. Barrow used similar foraging habitats. We found that across the entire North Slope, semipalmated sandpipers tended to select for mudflats, whereas western sandpipers selected for salt marsh and pond edge. Western sandpipers have longer bills, which allow them to forage in the slightly deeper water found in salt marsh and pond edge habitats on the North Slope. This separation of foraging habitat may reduce potential competition between these two otherwise similar species that overlap along Chukchi Sea staging areas. Lehnhausen and Quinlan (1981) and Gill et al. (1985) reported that dunlin at Icy Cape (Kasegaluk Lagoon) and Peard Bay also used salt marsh habitat extensively. We did not observe this, although our conclusions on habitat use can not be extended beyond our transects (i.e., dunlin may have been using salt marsh habitat outside of our transects). Andres (1989) found evidence to suggest that dunlin and sanderlings formed a foraging guild along shorelines at the Colville River delta, although dunlin were many times as numerous as sanderlings in these habitats. Across all North Slope locations we studied, dunlin and sanderlings did not forage in similar habitat: dunlin used mudflats while sanderlings used gravel beach. It is likely that sanderlings were using littoral flat and slough edges at the Colville delta in part due to a lack of gravel beaches at that site. The transects at the Colville Delta camp in our study did not include any gravel beach habitat, and only one sanderling was observed at that camp between 2005 and 2006.

Although we did not measure this directly, our observations suggest that wind speed/direction and rainfall can greatly influence the amount of local habitat availability to shorebirds for foraging. Data that inform predictions of how these factors affect water levels at coastal staging sites on the North Slope would be particularly useful in understanding the mechanisms underlying variation in shorebird distribution and habitat use. For example, a study on dunlin and semipalmated sandpipers at Pea Island (North Carolina) and Merritt Island (Florida) National Wildlife Refuges indicated the number of birds present decreased as water depth increased, and dunlin preferred deeper water than semipalmated sandpipers at local scales (Collazo et al. 2002). The depth of water along shorelines and in coastal ponds and lagoons sites is also important because shorebird species staging on the North Slope differ generally in size, and particularly in tarsus and bill length (both morphological characteristics that determine the depth of water in which the species is able to feed). Thus variation in water levels may affect not only habitat use but also species composition at a particular location.

Time to departure. We predicted there would be species-specific differences in the amount of time each species spent staging on the North Slope. Our best model for time to departure was one with no species effect, while our second best model indicated a species effect on time to departure, combining both phalarope species into one. There was substantial support in the data for the second best model ( $\triangle \mathrm{QAICc} \sim 2$ ) and we believe that species-specific differences in time to departure are logical based on our understanding of each species' molt and migration patterns. As discussed above, semipalmated sandpipers migrate to South America, then molt into winter plumage, whereas dunlin molt all feathers (adults) or body feathers (juveniles) prior to fall migration in a energetically-demanding process that may reduce an individual's ability to rapidly acquire fat reserves (Gratto-Trevor 1992, Holmes 1971, Holmes 1972, Warnock and Gill 1996). Because the proportion of fat to body mass likely determines when a bird is ready to depart on southbound migration (Lindstrom and Alerstam 1992), birds that are fattening more slowly may remain at staging areas longer than birds that are fattening rapidly. If this is true, we should expect semipalmated sandpipers to stage for a relatively short period of time while dunlin should stage for longer; this prediction was supported by our time to departure results. Adult and juvenile western sandpipers are thought to undergo a partial molt of body feathers on the breeding grounds, then suspend molt and complete the process on the wintering grounds (Wilson 1994). We should thus expect western sandpipers to fatten at a rate intermediate to dunlin or semipalmated sandpipers, and should exhibit an intermediate departure time. Our data also supported this prediction, at least in 2005. We also captured many juvenile birds on the Chukchi coast in varying stages of body molt (A.Taylor, unpub. data).

We have less confidence in our ability to explain time to departure results for phalaropes, because they spend some unknown portion of time feeding pelagically during the staging period and thus become unavailable for detection by coast-based telemetry methods. The relatively short time to departure exhibited by the phalarope species may reflect birds moving on- and offshore rather than actually departing individual staging sites. More intense tracking efforts involving aerial telemetry flights for radio-equipped phalaropes would be necessary to determine their time to departure, and help reduce uncertainties in the encounter histories used to construct the time to departure models. The latter effect would lessen the variability of the results particularly for species with longer times to departure. For example, many radio-equipped individuals (of all species) were detected at their capture site for a short period of time immediately after tagging. Some of these were later heard at the same site after a period of absence. These gaps in the encounter histories during which birds appeared to be absent, but may have been present yet undetected, create high levels of sampling error and thus variability in the data. Species with longer times to departure have more instances of uncertain encounter histories and thus increased variance. Additional efforts to track birds beyond the immediate study area (possibly using aerial telemetry flights) would help ascertain whether a bird has truly left its capture site or is merely beyond the range of ground-based telemetry efforts.

Movement patterns. We predicted that shorebirds would be more likely to stage near where they bred earlier in the staging period, whereas concentrations of birds observed later in the staging period would be more likely to be from outside the local breeding community. Our limited number of resightings of adult shorebirds that were equipped with radios at breeding locations indicated they moved to nearby coastal areas. Although few adults were detected at more than one coastal location, movement patterns of radio-equipped juveniles captured at staging sites
later in the season indicated that many individuals moved away from their initial tagging location while still remaining on the North Slope coast. These results taken together suggest that a concentration of adult shorebirds at a given location early in the staging period is likely comprised of birds from the local breeding area. While later in the staging period, concentrations of birds (both adults and juveniles) may represent individuals from a much wider range as birds move between areas.

Warnock and Gill (1996) suggest that because dunlin from northern Alaska (arcticola subspecies) migrate to Asia for the winter, individuals of this subspecies likely move west from the North Slope to western Alaska prior to migration across the Bering Sea. However, we documented movements of this species both east and west across the study area. Andres (1989) also observed bi-directional movements of dunlin: in his study, $67 \%$ of Dunlin staging at the Colville River Delta moved west but $22 \%$ moved east toward Canada. It is currently unknown whether some arcticola dunlin migrate south through the Great Plains or along the Atlantic coast, as the hudsonia subspecies breeding in Canada does. This seems unlikely since no marked arcticola dunlin have been resighted south of Alaska, but the possibility merits further study because arcticola dunlin are considered a bird of conservation concern (U.S. Fish and Wildlife Service 2008).

Given known molt and migration patterns of semipalmated sandpipers (described above), we predicted this species to exhibit a relatively brief staging period in northern Alaska, with individuals departing for wintering grounds earlier than other species. Our data on semipalmated sandpiper movements indicated that individuals move rapidly along the Chukchi and Beaufort coasts to the eastern side of the North Slope, often covering the $>100 \mathrm{~km}$ between detection locations in less than a day. This pattern is consistent with our hypothesis that birds moving between North Slope staging sites may reflect a continuous directional migration of this species along the coastline rather than multiple staging events, and suggests that detections of individuals at multiple sites likely reflect migratory movements (with little or no stopover) rather than refueling events. We also examined the possibility that semipalmated sandpipers migrating south from the North Slope may use the Canning River as a migration corridor. Flock (1973) surmised that radar observations of birds flying eastward past Distant Early Warning stations on the North Slope were likely shorebirds heading east to the McKenzie River delta, where they might head south, using the river as a navigational landmark. In our study, 19 of 30 radioequipped semipalmated sandpipers were detected at the Canning River (either on the delta or along the river itself) post-capture, and no individuals were detected east of the Canning River. One individual radio-marked at East Arey Lagoon near Barter Island was later detected at the Canning Delta ARTS, having moved west (contrary to the predominant direction of semipalmated sandpiper movement) to reach the vicinity of the Canning River. One interpretation of these data is that semipalmated sandpipers from northern Alaska may use the Canning River as a migration route to interior Alaska. The Canning (which runs from the Continental Divide in the Brooks Range to the coast) is a logical choice for the first leg of the journey south through Alaska for several reasons: 1) Carter Pass (at the headwaters of the Canning) is a relatively low pass that might be easy for migrating birds to cross, and 2) the south side of Carter Pass is very close to the Spring Creek drainage of the Junjik River, which has significant riparian habitat and thus could serve as a recognizable landmark. From the Junjik drainage, migrating birds could follow the Yukon and Tanana Rivers through the flats of interior

Alaska, joining up with the Copper River through the Chugach Mountains of southern Alaska. This interpretation is supported by the resighting of a semipalmated sandpiper, originally colormarked at Pt. Barrow on 19 August 2005, on the Copper River Delta on 1 September 2005, 12 days post-capture (R. Gates, Prince William Sound Science Center, pers. comm.).

Our movement pattern results point to the connectivity of the larger North Slope landscape for postbreeding shorebirds. Individual radio-marked birds in our study moved widely between staging areas on a regional scale, stopping over at a given site for a variable length of time depending on species. Thus assessments of staging shorebird abundance and distribution on the North Slope should take into account this movement propensity such that the possibility of double-counting individuals across survey periods is minimized. Double-counting would inflate the number of shorebirds recorded at coastal staging areas on the North Slope and bias high estimates of population size.

Our radio telemetry data should be viewed as descriptive of general patterns and timing of movements rather than as a quantitative analysis of distances moved, phenology, or survival of radio-marked birds because of our limited sample sizes. Managers utilizing these results or researchers planning additional telemetry studies should be aware of the limitations of radio telemetry for detecting movements of small, mobile birds. First, radio telemetry data may represent only a segment of each possible movement trajectory, thus individuals may have moved through our North Slope study area both before and after we detected them at a particular staging area. Movement patterns we report are thus conservative estimates of the timing and number of locations used by migrating shorebirds on the North Slope; individuals may have remained longer and used additional sites than we were able to record. Second, detection probabilities for different listening methods (ARTS vs. manual telemetry vs. aerial telemetry) are likely dissimilar. In this study, $85 \%$ of detections of shorebirds at locations other than their initial capture site came from ARTS stations, probably because the ARTS collected data continuously whereas aerial and manual telemetry efforts were limited by research schedules, weather, and plane availability. However, due to the expansive nature of our North Slope study area, we did not have complete coverage by the network of ARTS, which are only capable of detecting birds within a $3-5 \mathrm{~km}$ (diameter) area around each station. Thus a radio-equipped bird could have been present at a staging site but not detected because it was outside the listening area of the ARTS, and was present between bouts of aerial or manual telemetry. The fact that we were only able to detect movements of 44 (out of 357) radio-equipped shorebirds reflects these limitations. However, radio telemetry provided the only reasonable means by which to obtain data on shorebird use of a vast landscape such as the North Slope; band or mark resighting methods would have resulted in a much lower detection probability (Plissner et al. 2000).

## Objective 3: Physiological Assessment of Staging Site Quality

We found some evidence for interspecific differences in fattening rates of semipalmated sandpipers, dunlin, and western sandpipers staging on the North Slope. Because both premigratory fattening and feather molt are energetically costly processes, it is logical to predict that a bird undergoing both at the same time will fatten less quickly than a bird that is not molting. As a species, semipalmated sandpipers, which stage, migrate, then molt, should be able to fatten more quickly than dunlin, which stage and molt at the same time. Western sandpipers should fatten at an intermediate rate because they sometimes, but not always, molt during staging or
migration. In 2005, species-specific patterns in fattening rates matched these predictions. Data from 2006 were less conclusive because both semipalmated and western sandpipers showed similar fattening rates. Additional years of data would be necessary to determine which pattern is typical for differences in fattening rates across these three species.

Our ultimate goal for this portion of our research was to determine whether differences in staging site quality across the North Slope were quantifiable on the basis of fattening rates, using triglyceride concentrations as an index. We predicted that sites where birds were fattening more rapidly, as indicated by higher triglyceride levels, would also have higher invertebrate density. We were able to examine this prediction for only the semipalmated sandpiper because our sample size was limited and our earlier results indicated that species varied in triglyceride levels after controlling for individual mass and capture date, thus comparisons across species within a given location may not be valid. We found that semipalmated sandpipers captured at Pt. Barrow/Elson Lagoon had higher triglyceride levels than semipalmated sandpipers captured at any other site. An exploratory analysis of invertebrate samples collected at shorebird staging locations (in mudflat, salt marsh, or gravel beach habitats) at each field camp indicated that Pt. Barrow/Elson Lagoon had higher invertebrate density and diversity than any other camp (A. Burr and A. Taylor, University of Alaska Fairbanks, unpub. data). Although these analyses are preliminary, they suggest that staging site quality, as measured by invertebrate abundance in suitable foraging habitat, may be detectable via plasma metabolite (triglyceride) analysis. If a rapid assessment of comparative site quality is needed, it may be relatively easier to capture staging shorebirds for blood sampling and conduct subsequent triglyceride assays than to attempt a field-based assessment of food availability. The latter requires knowledge of invertebrate taxonomy, distribution, and diversity to design an appropriate study, and the necessary data is very time-consuming to collect and analyze. As described in the methods for this objective, a potential drawback to the triglyceride method is that birds must remain at a given site for long enough that a bird sampled for its triglyceride level at that site will not have just arrived from another site, such that its triglyceride level reflects food availability elsewhere. Triglyceride levels likely reflect a bird's fattening rate over the previous 1-2 days (Williams et al. 1999). In this study, our time to departure results indicate that shorebirds stage at a single location for at least 4.5 to 13.9 days on average, depending on the species. Therefore it is likely that the majority of birds we sampled for triglyceride levels had been at the location where we sampled them for longer than 1-2 days.

Our results for the effect of location on baseline and maximal corticosterone levels were equivocal. Baseline corticosterone levels were highest at the Colville Delta camp and lowest at the Sagavanirktok Delta camp, whereas maximal corticosterone levels were highest at Pt. Barrow/Elson Lagoon and the Sagavanirktok Delta camps and lowest at Kasegaluk Lagoon. If corticosterone levels are related to site quality stemming from food availability, baseline levels should have been highest (to stimulate foraging) at camps where food availability and therefore body condition was lowest. Correspondingly, maximal levels should have been lowest (indicating a reduction in birds' ability to respond to a stressful event such as capture and handling) where baseline levels are highest. If these relationships had been supported by our data, we should have observed opposite trends in baseline and maximal corticosterone levels. For example, if baseline levels were highest at the Colville camp, maximal levels should have been lowest there. Also, given that triglyceride levels suggested that fattening rates in
semipalmated sandpipers were highest at Pt. Barrow/Elson Lagoon, we expected to see the lowest baseline corticosterone levels and highest maximal corticosterone levels there. We did see high maximal corticosterone levels at Pt. Barrow/Elson Lagoon but not especially low baseline levels. However, corticosterone is thought to regulate many physiological processes having to do with cessation of breeding activity and subsequent preparation for migration (Romero 2002). Our ability to utilize corticosterone levels as an indication of site quality may be confounded by the individual physiology of birds in varying stages of transition between breeding and migratory readiness. We suggest that future emphasis be placed on using triglyceride levels as indicators of site quality because interpretation of site-specific differences may be less influenced by individual physiology of the sampled birds.

## CONCLUSIONS

## Important Staging Sites on Alaska's North Slope

Our data provide a first step toward identifying sites that are important to the postbreeding shorebird community on the North Slope. From our aerial surveys for abundance and distribution, we determined that Peard Bay, Pt. Barrow/Elson Lagoon, Cape Simpson, Smith Bay to Cape Halkett (including Pitt Point/Pogik Bay), Camden Bay, and the Jago and Kongakut River deltas were important staging areas for postbreeding shorebirds. Our comparison of data obtained from our ground camps at Kasegaluk Lagoon, Peard Bay, Pt. Barrow/Elson Lagoon, Colville Delta, Sagavanirktok Delta, and Okpilak Delta indicated that in terms of the total number of staging shorebirds, species richness, and fattening rates of semipalmated sandpipers, Pt. Barrow/Elson Lagoon was the most important of the six likely staging areas. Development or other anthropogenic activities occurring on the mainland coast of the Pt. Barrow/Elson Lagoon area, or along the Plover Islands barrier island chain, are likely to impact larger numbers and a greater diversity of staging shorebirds than in other areas. However, the scale at which we collected data for each portion of the study precluded exact comparisons of staging site quality or importance.

Our data from this study provide a baseline for future research on postbreeding shorebird abundance, distribution, and staging ecology on the North Slope of Alaska. We suggest other investigators, particularly those examining areas to be impacted by development or disturbance, utilize our data to understand how a particular area of interest may contribute to preparing shorebirds for fall migration. In particular, our results indicate that postbreeding shorebirds are highly mobile, and thus different staging areas may be important at different times or for different purposes. For example, the Canning River delta did not generally have large concentrations of shorebirds during our aerial surveys, yet our movement data for semipalmated sandpipers indicate that this may be an important landmark for birds migrating south through Alaska.

A qualitative comparison of our aerial and ground survey data indicates the aerial survey data may be able to detect general patterns in shorebird numbers and distribution, but should be combined with on-the-ground investigation of species composition, phenological patterns, and habitat use in order to properly interpret survey results and correct for detectability of different species in different habitats. If aerial surveys are chosen as the sole method for determining staging site importance based on abundance of birds through time, we recommend more frequent
aerial surveys be conducted to avoid missing occasions when shorebirds peak at a given staging site. Our ground camp data indicated that large fluctuations in abundance of shorebirds may occur within as few as three days; aerial surveys conducted at longer time intervals would not capture these fluctuations. Total population estimates for the entire staging period would thus be biased in an unknown direction if based solely on aerial surveys. Repeating aerial surveys over many years using the same methods would also provide information on the degree of inherent variability in shorebird numbers over time, which is necessary to detect trends in population size resulting from natural or anthropogenic causes. Unfortunately, we suspect that in many cases, financial costs and logistics (e.g., weather) may inhibit implementation of this approach.

## Potential Effects of Development on Staging Shorebirds

Our research highlights the number and mobility of staging shorebirds using North Slope coastlines prior to fall migration. This suggests that it is important to consider that industrial activities and environmental change occurring in one location may impact shorebirds breeding and/or staging in other locations, and that protection of single, small staging areas without maintenance of connectivity is unlikely to be an effective conservation strategy for shorebird habitat on the North Slope. Given existing infrastructure, and the predicted increase in both oil and gas development and its associated human footprint across Arctic Alaska (Bird et al. 2008), the potential exists for a significant contaminant spill to occur in coastal or nearshore habitats during the ice-free season, when birds are present in these areas. Our data imply that such an event could impact a large segment of a shorebird species or population because birds from a wide geographic area pass through and congregate at a given staging area. Impacts from such a spill should be also considered on a species-specific basis, because some species (e.g., dunlin) remain at staging areas for longer than others (e.g. semipalmated sandpipers). In addition, our data indicate that not all apparently suitable staging habitat on the North Slope is important to postbreeding shorebirds; certain areas attracted large numbers of shorebirds during our study (e.g., Pt. Barrow/Elson Lagoon) while other seemingly attractive areas did not appear to be as heavily used (e.g. many river deltas on the eastern Beaufort coast). Industrial development or anthropogenic disturbance would have a larger impact on shorebirds at heavily used or important sites than at sites of lesser importance.

Lastly, increasing anthropogenic disturbance near existing and future infrastructure could affect patterns of species prevalence, distribution, and habitat use in unpredictable ways if presently uncommon types of habitats (such as roads, pipelines, housing tracts, or sewage lagoons) become more prevalent. For example, over the course of the staging period in 2006, we counted 5,512 phalaropes in the Barrow sewage treatment lagoon (Middle Salt Lagoon). These individuals were not included in our analysis of abundance or habitat use because they were not located on our survey transects, and there was no comparable habitat type at the other staging sites we studied. However, the number of phalaropes observed at Middle Salt Lagoon would have greatly increased the total number of birds seen at Pt. Barrow/Elson Lagoon during the staging period if we had added them to our analysis. This example may foreshadow the degree to which environmental change and development could affect distribution and habitat use of staging shorebirds. It will be necessary to repeat studies such as ours (perhaps on a more limited spatial scale) to monitor changes resulting from changing environmental conditions on the North Slope.

## DATA AVAILABILITY

The aerial survey data collected during this project are available either in Excel spreadsheet or ArcGIS shapefile format. The ground camp transect data are available as Excel spreadsheet files. There is also a metadata file (written to FDGC standards) available that describes the data collection and analysis methodology. Contact the Coastal Marine Institute, Minerals Management Service, or A. Taylor (audreyrebeccataylor@gmail.com) to obtain any of these documents.

## ACKNOWLEDGEMENTS

We thank the following for project funding: Coastal Marine Institute/Minerals Management Service, U.S. Fish Wildlife Service (Quick Response Program, Migratory Bird Management \& Arctic National Wildlife Refuge), Bureau of Land Management, ConocoPhillips Alaska, Inc., BP Exploration (Alaska) Inc., the Angus Gavin Migratory Bird Research Fund, Sigma Xi, and the Arctic Audubon Society. Brad Andres, Caleb Ashling, Kelly \& Josh Boadway, Stephen Brown, Ryan Burner, Benjamin Flemer, Dan Fontaine, Scott Freeman, Kerri Frangioso, Laura Ganis, Jeff Gleason, Cory Gregory, Robin Hunnewell, Ayme Johnson, Jim Johnson, Steve Kendall, Terry Kowalczyk, Meg Laws, Fabrice leBouard, Amy Leist, Trevor Lloyd-Evans, Taylor McKinnon, Julie Morse, Liliana Naves, Deb Nigro, Greg Norwood, Kevin Pietrzak, Slade Sapora, Jen Selvidge, Blake Trask, Aaron Wells, Alexis Will, Cashell Villa, the 2005-2007 breeding shorebird/AI crews in Barrow (USFWS Migratory Bird Management), the 2005-2007 Canning Delta breeding shorebird/AI crews (USFWS Arctic National Wildlife Refuge), and the 2006 Prudhoe Bay breeding shorebird/AI crew (Wildlife Conservation Society) all provided invaluable field assistance. Many thanks are also due to the staff of the Arctic National Wildlife Refuge, the Bureau of Land Management's Northern Field Office, and the Barrow Arctic Science Consortium for superb logistical support. Karen Brenneman (USFWS Migratory Bird Management), Mary Mae Aschoff and Brent Veltcamp (ConocoPhillips - Alpine), and Bill Streever and Wilson Cullor (BP) assisted with the logistics and equipment necessary for conducting fieldwork on the North Slope. Larry Larrivee of Pollux Aviation, Sandy Hamilton, Chris Zimmer, and Robert Wing of Arctic Air Alaska, Morgan Stanton of Alaska Air Taxi, and Hageland Aviation provided reliable transportation of people, equipment, and samples across the North Slope. The Kaktovik Inupiat Corporation kindly permitted us to conduct this research on their land. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

## STUDY PRODUCTS

Taylor, A.R., A.N. Powell, and R.B. Lanctot. October 2008. Distribution and movements of staging shorebirds on Alaska's North Slope. Minerals Management Service, $11^{\text {th }}$ Information Transfer Meeting, Anchorage, AK (oral presentation by A. Powell).

Taylor, A.R., A.N. Powell, and R.B. Lanctot. March 2008. Length of stay of staging shorebirds on Alaska's Chukchi and Beaufort coasts. $13^{\text {th }}$ Annual Alaska Bird Conference, Fairbanks, Alaska (oral presentation by A. Taylor).

Taylor, A.R., A.N. Powell, and R.B. Lanctot. February 2008. Use of radio telemetry to determine tenure time and movement patterns of staging shorebirds on Alaska's North Slope. Coastal Marine Institute Annual Research Review, Fairbanks, AK (oral presentation by A. Powell).

Powell, A.N., A.R. Taylor, and R.B. Lanctot. September 2007. Pre-migratory movements and physiology of shorebirds staging on Alaska's North Slope. Annual report to Coastal Marine Institute.

Taylor, A.R., R.B. Lanctot, and A.N. Powell. July 2007. Using radiotelemetry to determine tenure time and movement patterns of staging shorebirds on Alaska's North Slope. Association of Field Ornithologists’ Annual Meeting, Orono, ME (oral presentation by A. Taylor).

Taylor, A.R., A.N. Powell, and R.B. Lanctot. February 2007. Distribution and movements of staging shorebirds on Alaska's North Slope: patterns and conservation implications. Coastal Marine Institute Annual Research Review, Fairbanks, AK (oral presentation by A. Taylor).

Taylor, A.R., and A.S. Kitaysky. December 2006. Corticosterone in post-breeding dunlin: regulating molt or pre-migratory fattening? Tenth Western Sandpiper Group Meeting, Simon Fraser University, Vancouver, B.C. (oral presentation by A. Taylor).

Powell, A.N., A.R. Taylor, and R.B. Lanctot. September 2006. Pre-migratory movements and physiology of shorebirds staging on Alaska's North Slope. Annual report to Coastal Marine Institute.

Taylor, A.R., R.B. Lanctot, A.N. Powell, and T.D. Williams. March 2006. Should I stay or should I go now: importance of staging sites on Alaska's North Slope. Shorebird Science in the Western Hemisphere Conference, Boulder CO (oral presentation by A.Taylor).

Taylor, A.R., A.N. Powell, and R.B. Lanctot. February 2006. Staging shorebirds on Alaska's North Slope: results from intensive camps and an extensive survey. Coastal Marine Institute Annual Research Review, Fairbanks, AK (oral presentation by A. Taylor).

Powell, A.N., A.R. Taylor, and R.B. Lanctot. September 2005. Pre-migratory movements and physiology of shorebirds staging on Alaska's North Slope. Annual report to Coastal Marine Institute.

Taylor, A.R., A.N. Powell, R.B. Lanctot, and T.D. Williams. February 2005. Staging behavior and physiology of shorebirds on Alaska's North Slope. Coastal Marine Institute Annual Research Review, Fairbanks, AK (oral presentation by A. Taylor).

Taylor, A.R., A.N. Powell, R.B. Lanctot, and T.D. Williams. January 2005. Using fat metabolites to infer staging site quality for post-breeding shorebirds on Alaska's North Slope. Waterbird Society Annual Meeting, Portland, OR (poster presentation by A. Taylor)

Powell, A.N., A.R. Taylor, and R.B. Lanctot. September 2004. Pre-migratory movements and physiology of shorebirds staging on Alaska's North Slope. Annual report to Coastal Marine Institute.

## REFERENCES

Acevedo Seaman, D.A., C.G. Guglielmo, R.W. Elner, and T.D. Williams. 2006. Landscapescale physiology: site differences in refueling rates indicated by plasma metabolite analysis in free-living migratory sandpipers. Auk 123:563-574.

Andres, B.A. 1989. Littoral zone use by post-breeding shorebirds on the Colville River Delta, Alaska. M.S. Thesis, Ohio State University. 116 pages.

Andres, B.A. 1994. Coastal zone use by postbreeding shorebirds in northern Alaska. Journal of Wildlife Management 558(2):206-213.

Bird, K.J., R.R. Charpentier, D. L. Gautier, D.W. Houseknecht, T.R. Klett, J.K. Pittman, T.W. Moore, C.J. Schenk, M.W. Tennyson, and C.J. Wandrey. 2008. Circum-arctic resource appraisal: estimates of undiscovered oil and gas north of the Arctic Circle. USGS Fact Sheet 2008-3049. Available online at http://pubs.usgs.gov/fs/2008/3049/.

Brown, S., C. Hickey, B. Harrington, and R. Gill, eds. 2001. The U.S. Shorebird Conservation Plan, $2^{\text {nd }}$ edition. Manomet Center for the Conservation Sciences, Manomet, MA.

Burger, J. 1981. The effect of human activity on birds at a coastal bay. Biological Conservation 21:231-241.

Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd Edition. Springer-Verlag, New York, New York, USA. 488 pp .

Callaghan, T., L.O. Björn, F.S. Chapin III, Y. Chernov, T.R. Christensen, B. Huntley, R. Ims, M. Johansson, D.J. Riedlinger, S. Jonasson, N. Matveyeva, W. Oechel, N. Panikov, and G. Shaver. 2005. Arctic tundra and polar desert ecosystems. Arctic Climate Impact Assessment, chapter 8. Cambridge: Cambridge University Press, pp 243-352.

Collazo, J.A., D.A. O’Hara, and C.A. Kelly. 2002. Accessible habitat for shorebirds: factors influencing its availability and conservation implications. Waterbirds 25 (Special Publication 2):13-24.

Connors, P.G. 1983. Distribution and biology of Semipalmated Sandpipers and Western Sandpipers in Alaska. RU-0172 report, Bodega Bay, California: Bodega Marine Laboratory. 29 pages.

Connors, P.G., C.S. Connors, and K.G. Smith. 1981. Shorebird littoral zone ecology of the Alaska Beaufort Coast. Final Report of Principal Investigators, Outer Continental Shelf Environment Assessment Program, National Oceanic and Atmospheric Administration 23:295396.

Connors, P.G., J.P. Myers, and F.A. Pitelka. 1979. Seasonal habitat use by Arctic Alaskan shorebirds. Studies in Avian Biology 2:101-111.

Flock, W.L. 1973. Radar observations of bird migration along the arctic coast of Alaska. Wilson Bulletin 85:259-275.

Friedman, J. 2001. Greedy function approximations: a gradient boosting machine. Annals of Statistics 29:1189-1232.

Gilders, M.A., and M.A. Cronin. 2000. North Slope oil field development. In: Truett, J.C., and Johnson, S.R., eds. The natural history of an Arctic oil field. San Diego: Academic Press. Pages 15-33.

Gill, R.E., C.H. Handel, and P.C. Connors. 1985. Bird utilization of Peard Bay and vicinity. In: Kinney, P.J., ed. Environmental characterization and biological utilization of Peard Bay. Anchorage: Bureau of Land Management/National Oceanic and Atmospheric Administration, Outer Continental Shelf Environmental Assessment Program. Final Reports of Principal Investigators 35:244-323.

Gratto-Trevor, C.L. 1992. Semipalmated sandpiper. In The Birds of North America, No. 6 (A. Poole, P. Stettenheim, and F. Gill, Eds.). The Academy of Natural Sciences, Philadelphia, and The American Ornithologists' Union, Washington, DC.

Gugleilmo, C.G., P.D. O’Hara, and T.D. Williams. 2002. Extrinsic and intrinsic sources of variation in plasma lipid metabolites of free-living western sandpipers (Calidris mauri). Auk 119(2):437-445.

Haig, S.M., and L.W. Oring. 1998. Wetland connectivity and waterbird conservation in the western Great Basin of the United States. Wader Study Group Bulletin 85:19-28.

Hochachka, W.M., R. Caruana, D. Fink, A. Munson, M. Riedewald, D. Sorokina, and S. Kelling. 2007. Data-mining discovery of pattern and process in ecological systems. Journal of Wildlife Management 71:2427-2437.

Holberton, R.L. 1999. Changes in patterns of corticosterone secretion concurrent with migratory fattening in a neotropical migratory bird. Journal of Comparative Endocrinology 116:49-58.

Holland, M.M., and C.M. Bitz. 2003. Polar amplification of climate change in coupled models. Climate Dynamics 21:221-232.

Holmes, R.T. 1971. Latitudinal differences in the breeding and molt schedules of Alaskan Redbacked Sandpipers (Calidris alpina). Condor 73:93-99.

Holmes, R.T. 1972. Ecological factors influencing the breeding season schedule of Western Sandpipers (Calidris mauri) in subarctic Alaska. American Midland Naturalist 87:472-491.

Holmgren, N., H. Ellegrin, and J. Pettersson. 1993. Stopover length, body mass, and fuel deposition rate in autumn migrating Dunlins Calidris alpina: evaluating the effects of moulting status and age. Ardea 81:9-19.

IPCC. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 881 pp.

Jenni, L., and M. Kery. 2003. Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proceedings of the Royal Society of London. B 270:1467-1471; DOI 10.1098/rspb.2003.2394.

Johnson, J.A., R.B. Lanctot, B.A Andres, J.R. Bart, S.C. Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution of breeding shorebirds on the Arctic Coastal Plain of Alaska. Arctic 60:277293.

Johnson, S.R. 1978. Beaufort Sea Barrier Island-Lagoon ecological process studies, section II: avian ecology in Simpson Lagoon, 1977. Boulder, CO: Bureau of Land Management/National Oceanic and Atmospheric Administration, Outer Continental Shelf Environmental Assessment Program. Annual Reports of Principal Investigators, 1978.

Johnson, S.R., D.A. Wiggins, and P.F Wainwright. 1993. Late-summer abundance and distribution of marine birds in Kasegaluk Lagoon, Chukchi Sea, Alaska. Arctic 46:212-1227.

Jorgenson, M.T., and J. Brown. 2005. Classification of the Alaskan Beaufort Sea coast and estimation of carbon and sediment inputs from coastal erosion. Geo-Marine Letters 25:69-80. DOI 10.1007/s00367-004-0188-8.

Kaiser, A. 1995. Estimating turnover, movements, and capture parameters of resting passerines in standardized capture-recapture studies. Journal of Applied Statistics 22: 1039-1047.

Kitaysky, A.S., J.C. Wingfield, and J.F. Piatt. 1999. Dynamics of food availability, body condition, and physiological stress response in breeding Black-legged Kittiwakes. Functional Ecology 13:577-584.

Kovach Computing Services. 2005. Oriana Version 2.02c. Anglesey, Wales, U.K.
Kowalewski, M., W. Kiessling, M. Aberhan, F.T. Fursich, D. Scarponi, S.L. Barbour Wood, and A.P. Hoffmeister. 2006. Ecological, taxonomic, and taphonomic components of the postPaleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.

Lehnhausen, W.A., and S.E. Quinlan. 1981. Bird migration and habitat use at Icy Cape, Alaska. Anchorage: U.S. Fish and Wildlife Service, unpublished report. 298 pp.

Lyons, J.E. and S.M. Haig. 1995. Fat content and stopover ecology of spring migrant Semipalmated Sandpipers in South Carolina. Condor 97:427-437.

Manly, B.F.J., L.L. McDonald, D.L. Thomas, T.L. McDonald, and W.P. Erickson. 2002. Resource selection by animals: statistical design and analysis for field studies, 2nd ed. Dordrecht, the Netherlands: Kluwer Academic Publishers.

McCarty, J.P. 2001. Ecological consequences of recent climate change. Conservation Biology 15: 320-331.

National Research Council. 2003. Cumulative environmental effects of oil and gas activities on Alaska's North Slope. Washington, D.C.: National Academies Press.

Naugle, D.E., K.F. Higgins, S.M. Nusser , and W.C. Johnson. 1999. Scale-dependent habitat use in three species of prairie wetland birds. Landscape Ecology 14:267-276.

Naves, L.C., R.B. Lanctot, A.R. Taylor, and N.P. Coutsoubos. 2008. How often do Arctic shorebirds lay replacement clutches? Wader Study Group Bulletin 115: 2-9.

Pielou, E.C. 1974. Population and community ecology: principles and methods. New York: Gordon and Breach Science Publishers, Inc.

Plissner, J.H., S.M. Haig, and L.W. Oring. 2000. Postbreeding movements of American Avocets and implications for wetland connectivity in the western Great Basin. Auk 117:290298.

Prater, A.J., J.H. Marchant, and J. Vuornen. 1977. Guide to the identification and aging of holarctic waders. Field Guide No. 17, British Trust for Ornithology, Tring, U.K. 168 pp.

Romero, L.M. 2002. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. General and Comparative Endocrinology 128:1-24.

SALFORD SYSTEMS, Inc. 2003. TreeNet Questions and Answers. Available online at http://www.salfordsystems.com/faq4TreeNet.php.

SAS Institute, Inc. 2003. SAS Version 9.1, Cary, NC, USA.
Sereze, M.C., and J.A. Francis. 2006. The polar amplification debate. Climate Change 76:241264.

Sereze, M.C., J.E.Walsh, F.S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W.C. Oechel, J. Morison, T. Zhang, and R.G. Barry. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46:159-207.

Skagen, S.K., and F.L. Knopf. 1993. Toward conservation of midcontinental shorebird migrations. Conservation Biology 7:533-541.

Skagen, S. K. and F.L. Knopf. 1994. Residency patterns of migrating sandpipers at a midcontinental stopover. Condor 96:949-958.

Snedecor, G.W., and W.G. Cochran. 1980. Statistical methods, $7^{\text {th }}$ ed. Ames, IA: Iowa State University Press.

Spindler, M.A. 1979. Bird populations in coastal habitats, Arctic National Wildlife Range, Alaska: results of 1978 and 1979 aerial surveys. Available as unpublished report, U.S. Fish and Wildlife Service, Arctic National Wildife Refuge, $10112^{\text {th }}$ Ave., Fairbanks, AK 99701. 22 pp.

Stein, B.A., and F.W. Davis. 2000. Discovering life in America: tolls and techniques of biodiversity inventory. Pages 19-54 in Precious Heritage: the Status of Biodiversity in the United States. Stein, B.A., Kutner, L.A., and Adams, J.A., eds. Oxford: The Nature Conservancy and Oxford University Press.

Thomas, L., J.L. Laake, S. Strindberg, F.F.C. Marques, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, S.L. Hedley, J.H. Pollard, J.R.B. Bishop, and T.A. Marques. 2005. Distance 5.0. Release 1. Research Unit for Wildlife Population Assessment, University of St. Andrews, UK. http://www.ruwpa.st-and.ac.uk/distance/.

Tulp, I., and H. Schekkerman. 2008. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61:48-60.
U.S. Fish and Wildlife Service. 2008. Birds of Conservation Concern 2008. United States Department of Interior, Fish and Wildlife Service, Division of Migratory Bird Management, Arlington, Virginia. 85 pp . Online version available at http://www.fws.gov/migratorybirds/.

Warnock, N..D., and R.E. Gill. 1996. Dunlin (Calidris alpina). In Poole, A., and F. Gill, eds. The Birds of North America, No. 203. The Academy of Natural Sciences, Philadelphia, and The American Ornithologists' Union, Washington, DC.

Warnock, N., and S. Warnock. 1993. Attachment of radio-transmitters to sandpiper: review and methods. Wader Study Group Bulletin 70:28-30.

White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46 Supplement:120-138.

Williams, T.D., C.G. Guglielmo, O. Egeler, and C. J. Martyniuk. 1999. Plasma lipid metabolites provide information on mass change over several days in captive western sandpipers. Auk 116:994-1000.

Williams, T.D., N. Warnock, J.Y. Takekawa, and M.A. Bishop. 2007. Flyway-scale variation in plasma triglycerides as in index of refueling rate in spring-migrating western sandpipers (Calidris mauri). Auk 124:886-897.

Wilson, W. H. 1994. Western Sandpiper (Calidris mauri), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/090.

Wingfield, J.C., C.M. Vleck, and M.C. Moore. 1992. Seasonal changes in the adrenocortical responses to stress in birds of the Sonoran Desert. Journal of Experimental Zoology 264:419428.

Ydenberg, R.C., R.W. Butler, D.B. Lank, C.G. Guglielmo, M. Lemon, and N. Wolf. 2002.
Tradeoffs, condition dependence, and stopover site selection by migrating sandpipers. Journal of Avian Biology 33:47-55.

Appendix 1. Number of radio transmitters deployed per camp, species, and age group on the North Slope in 2005-2006. Only adult birds (no juveniles hatched yet) were equipped with radio during breeding season. See text for description of general locations. DUNL = dunlin, REPH = red phalarope, RNPH = red-necked phalarope, SESA = semipalmated sandpiper, WESA = western sandpiper.

| Season | Location | Species | $\begin{gathered} 2005 \\ \text { HY } \end{gathered}$ | $\begin{aligned} & 2005 \\ & \text { AHY } \end{aligned}$ | $\begin{gathered} 2006 \\ \text { HY } \end{gathered}$ | $\begin{aligned} & 2006 \\ & \text { AHY } \end{aligned}$ | $\begin{gathered} 2007 \\ \mathrm{HY} \end{gathered}$ | $\begin{aligned} & 2007 \\ & \text { AHY } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Breeding | Barrow | DUNL |  | 8 |  | 5 |  | 10 |
|  |  | SESA |  | 3 |  | 5 |  | 0 |
|  |  | REPH |  | 5 |  | 5 |  | 0 |
|  | NPR-A ${ }^{1}$ | DUNL |  | 6 |  | 10 |  | 0 |
|  |  | SESA |  | 7 |  | 10 |  | 0 |
|  |  | REPH |  | 10 |  | 10 |  | 0 |
|  | Prudhoe Bay | DUNL |  | 0 |  | 5 |  | 0 |
|  |  | SESA |  | 3 |  | 5 |  | 0 |
|  |  | RNPH |  | 0 |  | 4 |  | 0 |
|  | Canning | DUNL |  | 0 |  | 4 |  | 0 |
|  |  | SESA |  | 3 |  | 5 |  | 0 |
|  |  | RNPH |  | 4 |  | 4 |  | 0 |
|  | Arctic Refuge ${ }^{2}$ | SESA |  | 0 |  | 8 |  | 13 |
|  |  | RNPH |  | 0 |  | 8 |  | 0 |
| Total breeding |  |  |  | 49 |  | 88 |  | 23 |
| Post-breeding | Kasegaluk | DUNL | 0 | 0 | 3 | 3 | 0 | 0 |
|  |  | SESA | 0 | 0 | 4 | 1 | 0 | 0 |
|  |  | REPH | 0 | 0 | 4 | 0 | 0 | 0 |
|  |  | RNPH | 0 | 0 | 0 | 1 | 0 | 0 |
|  |  | WESA | 0 | 0 | 4 | 0 | 0 | 0 |
|  | Peard Bay | DUNL | 3 | 0 | 0 | 0 | 0 | 0 |
|  |  | SESA | 5 | 0 | 5 | 0 | 0 | 0 |
|  |  | REPH | 6 | 0 | 5 | 0 | 0 | 0 |
|  |  | RNPH | 0 | 0 | 3 | 0 | 0 | 0 |
|  |  | WESA | 0 | 0 | 3 | 0 | 0 | 0 |
|  | Barrow | DUNL | 3 | 0 | 11 | 0 | 0 | 0 |
|  |  | SESA | 5 | 0 | 5 | 0 | 0 | 0 |
|  |  | REPH | 6 | 0 | 5 | 0 | 0 | 0 |
|  |  | RNPH | 0 | 0 | 1 | 0 | 0 | 0 |
|  |  | WESA | 5 | 0 | 4 | 0 | 0 | 0 |
|  | Colville | DUNL | 4 | 0 | 6 | 0 | 0 | 0 |
|  |  | SESA | 4 | 1 | 3 | 2 | 0 | 0 |
|  |  | REPH | 3 | 0 | 3 | 0 | 0 | 0 |
|  |  | RNPH | 3 | 0 | 2 | 1 | 0 | 0 |
|  | Sag | DUNL | 0 | 0 | 5 | 1 | 0 | 0 |
|  |  | SESA | 4 | 0 | 5 | 0 | 0 | 0 |
|  |  | RNPH | 4 | 0 | 3 | 0 | 0 | 0 |
|  | Okpilak | DUNL | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | SESA | 6 | 7 | 10 | 0 | 1 | 14 |
|  |  | RNPH | 2 | 5 | 4 | 1 | 0 | 0 |
|  |  | WESA | 1 | 1 | 0 | 0 | 0 | 0 |
| Total post-breeding |  |  | 64 | 14 | 98 | 10 | 1 | 14 |

${ }^{1}$ NPR-A locations: 2005: 6 miles southeast of Teshekpuk Lake $\left(70.4^{\circ} \mathrm{N}, 153.1^{\circ} \mathrm{W}\right)$ and 5 miles west of Atqasuk, AK ( $70.5^{\circ} \mathrm{N}, 157.7^{\circ} \mathrm{W}$ ). 2006: inland of Kasegaluk Lagoon ( $70.5^{\circ} \mathrm{N}, 160.4^{\circ} \mathrm{W}$ ), inland of Peard Bay ( $70.6^{\circ} \mathrm{N}, 158.3^{\circ} \mathrm{W}$ ), inland of Barrow $\left(71.0^{\circ} \mathrm{N}, 156.3^{\circ} \mathrm{W}\right)$, inland of Colville Delta $\left(70.8^{\circ} \mathrm{N}, 154.0^{\circ} \mathrm{W}\right)$.
${ }^{2}$ Arctic Refuge locations: 2006: Jago-Bitty $\left(69.7^{\circ} \mathrm{N}, 143.7^{\circ} \mathrm{W}\right)$, Jago Delta $\left(70.1^{\circ} \mathrm{N}, 143.2^{\circ} \mathrm{W}\right)$, East Arey Lagoon ( $70.1^{\circ} \mathrm{N}, 143.7^{\circ} \mathrm{W}$ ), 2007: Canning River Delta ( $70.146^{\circ} \mathrm{N}, 145.866^{\circ} \mathrm{W}$ ).

Appendix 2. Raw data from aerial surveys for shorebird distribution conducted on the North Slope, 20052007. Appendix available electronically as Excel spreadsheet from MMS. The file contains six spreadsheets containing raw survey data for: 1) 2005 helicopter survey, 2) all four 2006 fixed-wing surveys, and 3) 2007 fixed-wing survey conducted only in Arctic National Wildlife Refuge. In 2005 helicopter survey Flock Size is the category for the number of birds observed in a 2 -minute interval ending at given point ( $0=0-49$ birds, $50=50-99$ birds, $100=100-499$ birds, $500=500-999$ birds, $1000=\geq 1000$ birds)

## 2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE | TIME_DATE |
| :---: | :---: | :---: | :---: | :---: |
| 001 | 71.16413891 | -157.04889008 | 0 | CRTD 12:39 07-AUG-05 |
| 002 | 71.07363582 | -157.20673271 | 0 | CRTD 12:53 07-AUG-05 |
| 003 | 71.00093186 | -157.36111530 | 0 | CRTD 13:00 07-AUG-05 |
| 004 | 70.93651593 | -157.54964241 | 0 | CRTD 13:06 07-AUG-05 |
| 005 | 70.87446570 | -157.77669677 | 0 | CRTD 13:13 07-AUG-05 |
| 006 | 70.83379805 | -158.01791855 | 0 | CRTD 13:20 07-AUG-05 |
| 007 | 70.81855774 | -158.19876381 | 0 | CRTD 13:24 07-AUG-05 |
| 008 | 70.81809640 | -158.20468077 | 100 | CRTD 13:24 07-AUG-05 |
| 009 | 70.81726491 | -158.22722741 | 100 | CRTD 13:25 07-AUG-05 |
| 010 | 70.81795156 | -158.29531797 | 0 | CRTD 13:27 07-AUG-05 |
| 011 | 70.82791328 | -158.42070588 | 0 | CRTD 13:31 07-AUG-05 |
| 012 | 70.82850873 | -158.42522272 | 100 | CRTD 13:31 07-AUG-05 |
| 013 | 70.82894862 | -158.44767817 | 100 | CRTD 13:34 07-AUG-05 |
| 014 | 70.82068205 | -158.39198478 | 100 | CRTD 13:35 07-AUG-05 |
| 015 | 70.81659436 | -158.29167017 | 0 | CRTD 13:38 07-AUG-05 |
| 016 | 70.80172420 | -158.38223764 | 0 | CRTD 15:32 07-AUG-05 |
| 017 | 70.79873621 | -158.39815387 | 0 | CRTD 15:33 07-AUG-05 |
| 018 | 70.80566704 | -158.45358976 | 0 | CRTD 15:35 07-AUG-05 |
| 019 | 70.79285681 | -158.51613888 | 0 | CRTD 15:37 07-AUG-05 |
| 020 | 70.79526007 | -158.57044824 | 0 | CRTD 15:39 07-AUG-05 |
| 021 | 70.78754067 | -158.63435456 | 0 | CRTD 15:41 07-AUG-05 |
| 022 | 70.78788936 | -158.74278554 | 0 | CRTD 15:44 07-AUG-05 |
| 023 | 70.78985274 | -158.81186851 | 0 | CRTD 15:46 07-AUG-05 |
| 024 | 70.79270124 | -158.88338693 | 0 | CRTD 15:48 07-AUG-05 |
| 025 | 70.79813540 | -158.95844587 | 0 | CRTD 15:50 07-AUG-05 |
| 026 | 70.79828024 | -158.95958313 | 0 | CRTD 15:50 07-AUG-05 |
| 027 | 70.81173412 | -159.03499075 | 0 | CRTD 15:52 07-AUG-05 |
| 028 | 70.81195951 | -159.03621384 | 0 | CRTD 15:52 07-AUG-05 |
| 029 | 70.80429375 | -159.06667837 | 0 | CRTD 15:54 07-AUG-05 |
| 030 | 70.79240620 | -158.97636839 | 0 | CRTD 15:56 07-AUG-05 |
| 031 | 70.79230964 | -158.97434064 | 0 | CRTD 15:56 07-AUG-05 |
| 032 | 70.79207361 | -158.97161015 | 0 | CRTD 15:56 07-AUG-05 |
| 033 | 70.79161763 | -158.96929809 | 0 | CRTD 15:56 07-AUG-05 |
| 034 | 70.77296555 | -158.95921835 | 0 | CRTD 15:58 07-AUG-05 |
| 035 | 70.76450050 | -159.02464279 | 0 | CRTD 16:00 07-AUG-05 |
| 036 | 70.76928556 | -159.06233319 | 0 | CRTD 16:02 07-AUG-05 |
| 037 | 70.75908780 | -159.12113794 | 0 | CRTD 16:04 07-AUG-05 |
| 038 | 70.76098144 | -159.17642900 | 0 | CRTD 16:06 07-AUG-05 |
| 039 | 70.77007413 | -159.23851677 | 0 | CRTD 16:08 07-AUG-05 |

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 040 | 70.75550973 | -159.27166888 | 0 |
| 041 | 70.73626220 | -159.28631374 | 0 |
| 042 | 70.76809466 | -159.30967041 | 0 |
| 043 | 70.79323769 | -159.34208759 | 0 |
| 044 | 70.80599427 | -159.31247064 | 0 |
| 045 | 70.81332207 | -159.23183271 | 0 |
| 046 | 70.81904054 | -159.11833772 | 0 |
| 047 | 70.83940387 | -159.15309378 | 0 |
| 048 | 70.85516453 | -159.18231376 | 0 |
| 049 | 70.84588408 | -159.22974058 | 0 |
| 050 | 70.84434986 | -159.25518402 | 0 |
| 051 | 70.84461808 | -159.31039461 | 0 |
| 052 | 70.84433377 | -159.35273060 | 100 |
| 053 | 70.84102929 | -159.38821622 | 0 |
| 054 | 70.84603965 | -159.35613700 | 0 |
| 055 | 70.85800231 | -159.26661559 | 50 |
| 056 | 70.86925149 | -159.15605494 | 0 |
| 057 | 70.88131070 | -159.04140123 | 0 |
| 058 | 70.89440525 | -158.92432817 | 0 |
| 059 | 70.90678096 | -158.80908438 | 50 |
| 060 | 70.88729203 | -158.70942959 | 100 |
| 061 | 70.85834563 | -158.65053364 | 0 |
| 062 | 70.83814323 | -158.52624008 | 50 |
| 063 | 70.82551003 | -158.41555604 | 100 |
| 064 | 70.81793547 | -158.31820258 | 100 |
| 065 | 70.81705570 | -158.23282787 | 100 |
| 066 | 70.82641125 | -159.47025427 | 0 |
| 067 | 70.80200851 | -159.60625836 | 0 |
| 068 | 70.78735292 | -159.66422089 | 0 |
| 069 | 70.76855600 | -159.71215733 | 0 |
| 070 | 70.74511886 | -159.76757714 | 0 |
| 071 | 70.72183728 | -159.83003506 | 0 |
| 072 | 70.69893658 | -159.89989051 | 0 |
| 073 | 70.67019403 | -159.97014829 | 0 |
| 074 | 70.64815700 | -160.01988181 | 0 |
| 075 | 70.63078701 | -160.04949340 | 0 |
| 076 | 70.60603023 | -160.11754104 | 0 |
| 077 | 70.58788776 | -160.14931449 | 0 |
| 078 | 70.57181597 | -160.18631824 | 0 |
| 079 | 70.55712283 | -160.22112259 | 0 |
| 080 | 70.53766072 | -160.27423033 | 0 |
| 081 | 70.51724374 | -160.32807299 | 0 |
| 082 | 70.49721837 | -160.38591214 | 0 |
| 083 | 70.47931194 | -160.44053265 | 0 |
| 084 | 70.46331525 | -160.48674175 | 0 |
| 085 | 70.44674993 | -160.53687760 | 0 |
| 086 | 70.43024361 | -160.59575745 | 0 |

TIME_DATE
CRTD 16:10 07-AUG-05 CRTD 16:12 07-AUG-05 CRTD 16:14 07-AUG-05 CRTD 16:16 07-AUG-05 CRTD 16:23 07-AUG-05 CRTD 16:25 07-AUG-05 CRTD 16:27 07-AUG-05 CRTD 16:29 07-AUG-05 CRTD 16:31 07-AUG-05 CRTD 16:33 07-AUG-05 CRTD 16:34 07-AUG-05 CRTD 16:36 07-AUG-05 CRTD 16:38 07-AUG-05 CRTD 16:40 07-AUG-05 CRTD 17:00 07-AUG-05 CRTD 17:02 07-AUG-05 CRTD 17:04 07-AUG-05 CRTD 17:06 07-AUG-05 CRTD 17:08 07-AUG-05 CRTD 17:10 07-AUG-05 CRTD 17:12 07-AUG-05 CRTD 17:14 07-AUG-05 CRTD 17:16 07-AUG-05 CRTD 17:18 07-AUG-05 CRTD 17:20 07-AUG-05 CRTD 17:21 07-AUG-05 CRTD 09:55 08-AUG-05 CRTD 09:58 08-AUG-05 CRTD 10:00 08-AUG-05 CRTD 10:02 08-AUG-05 CRTD 10:04 08-AUG-05 CRTD 10:06 08-AUG-05 CRTD 10:08 08-AUG-05 CRTD 10:10 08-AUG-05 CRTD 10:12 08-AUG-05 CRTD 10:58 08-AUG-05 CRTD 11:00 08-AUG-05 CRTD 11:02 08-AUG-05 CRTD 11:04 08-AUG-05 CRTD 11:06 08-AUG-05 CRTD 11:08 08-AUG-05 CRTD 11:10 08-AUG-05 CRTD 11:12 08-AUG-05 CRTD 11:14 08-AUG-05 CRTD 11:16 08-AUG-05 CRTD 11:18 08-AUG-05 CRTD 11:20 08-AUG-05

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 087 | 70.41693985 | -160.64611324 | 0 |
| 088 | 70.40283680 | -160.70262739 | 0 |
| 089 | 70.39194703 | -160.74567684 | 0 |
| 090 | 70.37847698 | -160.79689630 | 0 |
| 091 | 70.36711514 | -160.85345873 | 0 |
| 092 | 70.35511494 | -160.91612049 | 50 |
| 093 | 70.34219205 | -160.97681888 | 0 |
| 094 | 70.33034205 | -161.04627737 | 0 |
| 095 | 70.32160878 | -161.11435183 | 0 |
| 096 | 70.31105697 | -161.18422338 | 0 |
| 098 | 70.28927207 | -161.31024965 | 0 |
| 099 | 70.29412687 | -161.40825757 | 0 |
| 100 | 70.29511392 | -161.47861191 | 0 |
| 101 | 70.29855251 | -161.54850491 | 0 |
| 102 | 70.30657232 | -161.64114305 | 0 |
| 103 | 70.31363726 | -161.71271511 | 0 |
| 104 | 70.32100260 | -161.78639003 | 0 |
| 105 | 70.32530487 | -161.86158308 | 0 |
| 106 | 70.31998873 | -161.90345773 | 0 |
| 107 | 70.30331612 | -161.95189842 | 0 |
| 108 | 70.29095113 | -161.99819871 | 50 |
| 109 | 70.28118789 | -162.03831383 | 0 |
| 110 | 70.26534140 | -162.08473214 | 0 |
| 111 | 70.25173187 | -162.13525423 | 0 |
| 112 | 70.23738742 | -162.18758413 | 0 |
| 113 | 70.21966338 | -162.24866339 | 0 |
| 114 | 70.20734131 | -162.28349456 | 0 |
| 115 | 70.19325435 | -162.32979485 | 0 |
| 116 | 70.17239213 | -162.36817726 | 0 |
| 117 | 70.15657246 | -162.40018674 | 0 |
| 118 | 70.14007688 | -162.44065055 | 0 |
| 119 | 70.12704134 | -162.46572920 | 0 |
| 120 | 70.10603964 | -162.49134966 | 0 |
| 121 | 70.08582115 | -162.52281734 | 0 |
| 122 | 70.07182002 | -162.55455323 | 0 |
| 123 | 70.04827559 | -162.58331724 | 0 |
| 124 | 70.02992928 | -162.61030563 | 0 |
| 125 | 70.01332641 | -162.63641425 | 0 |
| 126 | 69.99366581 | -162.66469547 | 0 |
| 127 | 69.97685909 | -162.69158729 | 0 |
| 128 | 69.95724142 | -162.72561916 | 0 |
| 129 | 69.93916869 | -162.76639947 | 0 |
| 130 | 69.92280722 | -162.79605933 | 0 |
| 131 | 69.90685344 | -162.82059082 | 0 |
| 132 | 69.89575982 | -162.83796080 | 0 |
| 133 | 69.88633454 | -162.86568948 | 0 |

TIME_DATE
CRTD 11:22 08-AUG-05 CRTD 11:24 08-AUG-05 CRTD 11:26 08-AUG-05 CRTD 11:28 08-AUG-05 CRTD 11:30 08-AUG-05 CRTD 11:32 08-AUG-05 CRTD 11:34 08-AUG-05 CRTD 11:36 08-AUG-05 CRTD 11:38 08-AUG-05 CRTD 11:40 08-AUG-05 CRTD 11:44 08-AUG-05 CRTD 11:47 08-AUG-05 CRTD 11:49 08-AUG-05 CRTD 11:51 08-AUG-05 CRTD 11:53 08-AUG-05 CRTD 11:55 08-AUG-05 CRTD 11:57 08-AUG-05 CRTD 11:59 08-AUG-05 CRTD 12:01 08-AUG-05 CRTD 12:03 08-AUG-05 CRTD 12:05 08-AUG-05 CRTD 12:07 08-AUG-05 CRTD 12:09 08-AUG-05 CRTD 12:11 08-AUG-05 CRTD 12:13 08-AUG-05 CRTD 12:15 08-AUG-05 CRTD 12:17 08-AUG-05 CRTD 12:19 08-AUG-05 CRTD 12:21 08-AUG-05 CRTD 12:23 08-AUG-05 CRTD 12:25 08-AUG-05 CRTD 12:52 08-AUG-05 CRTD 12:54 08-AUG-05 CRTD 12:56 08-AUG-05 CRTD 12:58 08-AUG-05 CRTD 13:01 08-AUG-05 CRTD 13:03 08-AUG-05 CRTD 13:05 08-AUG-05 CRTD 13:07 08-AUG-05 CRTD 13:09 08-AUG-05 CRTD 13:11 08-AUG-05 CRTD 13:13 08-AUG-05 CRTD 13:15 08-AUG-05 CRTD 13:17 08-AUG-05 CRTD 13:19 08-AUG-05 CRTD 13:21 08-AUG-05

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE | TIME_DATE |
| :---: | :---: | :---: | :---: | :---: |
| 134 | 69.87138391 | -162.89266714 | 0 | CRTD 13:23 08-AUG-05 |
| 135 | 69.85312343 | -162.92971917 | 0 | CRTD 13:25 08-AUG-05 |
| 136 | 69.83594656 | -162.96420702 | 0 | CRTD 13:27 08-AUG-05 |
| 137 | 69.81761098 | -162.99765953 | 0 | CRTD 13:29 08-AUG-05 |
| 138 | 69.79714036 | -163.02323171 | 0 | CRTD 13:31 08-AUG-05 |
| 139 | 69.77544665 | -163.04056951 | 0 | CRTD 13:33 08-AUG-05 |
| 140 | 69.75615621 | -163.05446872 | 0 | CRTD 13:35 08-AUG-05 |
| 141 | 69.73790109 | -163.06269773 | 0 | CRTD 13:37 08-AUG-05 |
| 142 | 69.72437203 | -163.07857641 | 0 | CRTD 13:39 08-AUG-05 |
| 143 | 69.70537663 | -163.09143492 | 0 | CRTD 13:41 08-AUG-05 |
| 144 | 69.68591988 | -163.10192772 | 0 | CRTD 13:43 08-AUG-05 |
| 145 | 69.66880739 | -163.11083266 | 0 | CRTD 13:45 08-AUG-05 |
| 146 | 69.65114772 | -163.13105115 | 0 | CRTD 13:47 08-AUG-05 |
| 147 | 69.63262439 | -163.14114162 | 0 | CRTD 13:49 08-AUG-05 |
| 148 | 69.61164951 | -163.14935991 | 0 | CRTD 13:51 08-AUG-05 |
| 149 | 69.59415078 | -163.14810463 | 0 | CRTD 13:53 08-AUG-05 |
| 150 | 69.57386255 | -163.14443001 | 0 | CRTD 13:55 08-AUG-05 |
| 151 | 69.55599904 | -163.14153322 | 0 | CRTD 13:57 08-AUG-05 |
| 152 | 69.53576446 | -163.14144739 | 0 | CRTD 13:59 08-AUG-05 |
| 153 | 69.51563179 | -163.14065346 | 0 | CRTD 14:01 08-AUG-05 |
| 154 | 69.49983358 | -163.13827165 | 0 | CRTD 14:03 08-AUG-05 |
| 155 | 69.48052168 | -163.14432272 | 50 | CRTD 14:05 08-AUG-05 |
| 156 | 69.46247041 | -163.14508446 | 0 | CRTD 14:07 08-AUG-05 |
| 157 | 69.44684386 | -163.14537414 | 0 | CRTD 14:09 08-AUG-05 |
| 158 | 69.43077207 | -163.13962349 | 0 | CRTD 14:11 08-AUG-05 |
| 159 | 69.41024244 | -163.15020748 | 0 | CRTD 14:13 08-AUG-05 |
| 160 | 69.38940704 | -163.16243836 | 0 | CRTD 14:15 08-AUG-05 |
| 161 | 69.37354982 | -163.17382165 | 0 | CRTD 14:17 08-AUG-05 |
| 162 | 69.35724735 | -163.17938455 | 0 | CRTD 14:19 08-AUG-05 |
| 163 | 69.34119701 | -163.19393286 | 0 | CRTD 14:21 08-AUG-05 |
| 164 | 69.32831168 | -163.21075031 | 0 | CRTD 14:23 08-AUG-05 |
| 165 | 69.31225061 | -163.22702595 | 0 | CRTD 14:25 08-AUG-05 |
| 166 | 69.29978371 | -163.24975499 | 0 | CRTD 14:27 08-AUG-05 |
| 167 | 69.28489745 | -163.27090689 | 0 | CRTD 14:30 08-AUG-05 |
| 168 | 69.28301990 | -163.22827050 | 0 | CRTD 14:32 08-AUG-05 |
| 169 | 69.31235254 | -163.18812319 | 0 | CRTD 14:34 08-AUG-05 |
| 170 | 69.33727562 | -163.15017530 | 0 | CRTD 14:36 08-AUG-05 |
| 171 | 69.36877549 | -163.11746308 | 0 | CRTD 14:38 08-AUG-05 |
| 172 | 69.39627886 | -163.10122498 | 0 | CRTD 14:40 08-AUG-05 |
| 173 | 69.42491412 | -163.08650502 | 0 | CRTD 14:42 08-AUG-05 |
| 174 | 69.45292711 | -163.07788440 | 0 | CRTD 14:44 08-AUG-05 |
| 175 | 69.48466301 | -163.08673033 | 0 | CRTD 14:46 08-AUG-05 |
| 176 | 69.49396491 | -163.03584882 | 0 | CRTD 14:48 08-AUG-05 |
| 177 | 69.52493370 | -163.03600439 | 0 | CRTD 14:50 08-AUG-05 |
| 178 | 69.53333437 | -163.03323635 | 0 | CRTD 15:18 08-AUG-05 |
| 179 | 69.56400275 | -163.04149219 | 0 | CRTD 15:20 08-AUG-05 |
| 180 | 69.58445728 | -163.10143420 | 0 | CRTD 15:22 08-AUG-05 |


| IDENT | LAT | LONG | FLOCK_SIZE | TIME_DATE |
| :---: | :---: | :---: | :---: | :---: |
| 181 | 69.63538706 | -163.02901992 | 0 | CRTD 15:26 08-AUG-05 |
| 182 | 69.66605544 | -163.04007062 | 0 | CRTD 15:28 08-AUG-05 |
| 183 | 69.69708323 | -163.03573617 | 0 | CRTD 15:30 08-AUG-05 |
| 184 | 69.76859093 | -162.96302148 | 0 | CRTD 15:34 08-AUG-05 |
| 185 | 69.79488194 | -162.93646761 | 0 | CRTD 15:36 08-AUG-05 |
| 186 | 69.81224120 | -162.84591624 | 0 | CRTD 15:38 08-AUG-05 |
| 187 | 69.83573735 | -162.80697056 | 0 | CRTD 15:40 08-AUG-05 |
| 188 | 69.86380935 | -162.74236151 | 0 | CRTD 15:42 08-AUG-05 |
| 189 | 69.88745034 | -162.67277964 | 0 | CRTD 15:44 08-AUG-05 |
| 190 | 69.91330147 | -162.61863121 | 0 | CRTD 15:46 08-AUG-05 |
| 191 | 69.92522120 | -162.56495484 | 0 | CRTD 15:48 08-AUG-05 |
| 192 | 69.97768521 | -162.47397431 | 0 | CRTD 15:52 08-AUG-05 |
| 193 | 70.01025259 | -162.45619663 | 0 | CRTD 15:54 08-AUG-05 |
| 194 | 70.03491282 | -162.45811709 | 0 | CRTD 15:56 08-AUG-05 |
| 195 | 70.04452586 | -162.40443536 | 0 | CRTD 15:58 08-AUG-05 |
| 196 | 70.07587016 | -162.34742769 | 0 | CRTD 16:00 08-AUG-05 |
| 197 | 70.09122312 | -162.30535456 | 0 | CRTD 16:02 08-AUG-05 |
| 198 | 70.11942387 | -162.27273353 | 0 | CRTD 16:04 08-AUG-05 |
| 199 | 70.13966382 | -162.21846708 | 0 | CRTD 16:06 08-AUG-05 |
| 200 | 70.15663675 | -162.15613254 | 0 | CRTD 16:08 08-AUG-05 |
| 201 | 70.15711963 | -162.15620228 | 0 | CRTD 16:08 08-AUG-05 |
| 202 | 70.17959654 | -162.11517521 | 0 | CRTD 16:10 08-AUG-05 |
| 203 | 70.20688534 | -162.05736288 | 0 | CRTD 16:12 08-AUG-05 |
| 204 | 70.20731449 | -162.05656894 | 0 | CRTD 16:12 08-AUG-05 |
| 205 | 70.20792067 | -162.05549070 | 0 | CRTD 16:12 08-AUG-05 |
| 206 | 70.22943735 | -162.00824627 | 0 | CRTD 16:14 08-AUG-05 |
| 207 | 70.25849104 | -161.97116741 | 0 | CRTD 16:16 08-AUG-05 |
| 208 | 70.29776931 | -161.89817914 | 0 | CRTD 16:19 08-AUG-05 |
| 209 | 70.29831111 | -161.89653763 | 0 | CRTD 16:19 08-AUG-05 |
| 210 | 70.30355215 | -161.85501167 | 0 | CRTD 17:51 08-AUG-05 |
| 211 | 70.28276503 | -161.80113682 | 0 | CRTD 17:53 08-AUG-05 |
| 212 | 70.26659131 | -161.73564264 | 0 | CRTD 17:55 08-AUG-05 |
| 213 | 70.25777221 | -161.67408594 | 0 | CRTD 17:57 08-AUG-05 |
| 214 | 70.24268746 | -161.61620923 | 0 | CRTD 17:59 08-AUG-05 |
| 215 | 70.24009109 | -161.53242775 | 50 | CRTD 18:01 08-AUG-05 |
| 216 | 70.24198472 | -161.45586141 | 50 | CRTD 18:03 08-AUG-05 |
| 217 | 70.24136245 | -161.40671798 | 50 | CRTD 18:05 08-AUG-05 |
| 218 | 70.24673223 | -161.34758064 | 0 | CRTD 18:07 08-AUG-05 |
| 219 | 70.25624335 | -161.28672668 | 0 | CRTD 18:09 08-AUG-05 |
| 220 | 70.27078629 | -161.21333607 | 0 | CRTD 18:11 08-AUG-05 |
| 221 | 70.28926671 | -161.12898597 | 0 | CRTD 18:13 08-AUG-05 |
| 222 | 70.30629337 | -161.07851752 | 0 | CRTD 18:15 08-AUG-05 |
| 223 | 70.32061100 | -160.97284921 | 0 | CRTD 18:19 08-AUG-05 |
| 224 | 70.33371091 | -160.88940569 | 100 | CRTD 18:21 08-AUG-05 |
| 225 | 70.35467505 | -160.81269988 | 0 | CRTD 18:23 08-AUG-05 |
| 226 | 70.36978662 | -160.75559565 | 0 | CRTD 18:25 08-AUG-05 |
| 227 | 70.39242446 | -160.69470950 | 0 | CRTD 18:27 08-AUG-05 |

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE | TIME_DATE |
| :---: | :---: | :---: | :---: | :---: |
| 228 | 70.41748166 | -160.62787422 | 0 | CRTD 18:29 08-AUG-05 |
| 229 | 70.43413281 | -160.55809387 | 0 | CRTD 18:31 08-AUG-05 |
| 230 | 70.45136333 | -160.50420293 | 0 | CRTD 18:33 08-AUG-05 |
| 231 | 70.47145307 | -160.45385250 | 0 | CRTD 18:35 08-AUG-05 |
| 232 | 70.49372613 | -160.38238236 | 50 | CRTD 18:37 08-AUG-05 |
| 233 | 70.51332772 | -160.33113071 | 0 | CRTD 18:39 08-AUG-05 |
| 234 | 70.53213000 | -160.27207383 | 0 | CRTD 18:41 08-AUG-05 |
| 235 | 70.56279302 | -160.20151564 | 0 | CRTD 18:43 08-AUG-05 |
| 236 | 70.58206737 | -160.14487811 | 0 | CRTD 18:45 08-AUG-05 |
| 237 | 70.61485469 | -160.06938466 | 0 | CRTD 18:47 08-AUG-05 |
| 001 | 71.34535432 | -156.59427174 | 0 | CRTD 09:51 10-AUG-05 |
| 002 | 71.32709384 | -156.56618365 | 0 | CRTD 09:53 10-AUG-05 |
| 003 | 71.29904330 | -156.53555819 | 100 | CRTD 09:55 10-AUG-05 |
| 004 | 71.28698945 | -156.47983261 | 50 | CRTD 09:57 10-AUG-05 |
| 005 | 71.28114760 | -156.42756172 | 0 | CRTD 09:59 10-AUG-05 |
| 006 | 71.26509718 | -156.38524183 | 0 | CRTD 10:01 10-AUG-05 |
| 007 | 71.25980258 | -156.30037674 | 100 | CRTD 10:03 10-AUG-05 |
| 008 | 71.25893354 | -156.23386332 | 50 | CRTD 10:05 10-AUG-05 |
| 009 | 71.24887526 | -156.16196939 | 100 | CRTD 10:07 10-AUG-05 |
| 010 | 71.24078035 | -156.09519311 | 0 | CRTD 10:09 10-AUG-05 |
| 011 | 71.22170985 | -156.08778485 | 0 | CRTD 10:11 10-AUG-05 |
| 012 | 71.20355666 | -156.03564807 | 0 | CRTD 10:13 10-AUG-05 |
| 013 | 71.18448615 | -156.04884454 | 0 | CRTD 10:15 10-AUG-05 |
| 014 | 71.16887033 | -156.05252990 | 50 | CRTD 10:17 10-AUG-05 |
| 015 | 71.18262470 | -155.98465928 | 0 | CRTD 10:19 10-AUG-05 |
| 016 | 71.20162010 | -155.94241449 | 50 | CRTD 10:21 10-AUG-05 |
| 017 | 71.19809031 | -155.91385969 | 50 | CRTD 10:23 10-AUG-05 |
| 018 | 71.18593454 | -155.86574622 | 50 | CRTD 10:25 10-AUG-05 |
| 019 | 71.19382560 | -155.80310591 | 50 | CRTD 10:27 10-AUG-05 |
| 020 | 71.19187295 | -155.73983260 | 0 | CRTD 10:29 10-AUG-05 |
| 021 | 71.18140161 | -155.66350230 | 0 | CRTD 10:31 10-AUG-05 |
| 022 | 71.16905808 | -155.58665165 | 0 | CRTD 10:33 10-AUG-05 |
| 023 | 71.14834070 | -155.57308503 | 50 | CRTD 10:35 10-AUG-05 |
| 024 | 71.11982882 | -155.54722854 | 0 | CRTD 10:37 10-AUG-05 |
| 025 | 71.09362364 | -155.51490792 | 0 | CRTD 10:39 10-AUG-05 |
| 026 | 71.06795490 | -155.53505667 | 50 | CRTD 10:41 10-AUG-05 |
| 027 | 71.04665279 | -155.59308895 | 0 | CRTD 10:43 10-AUG-05 |
| 028 | 71.03574157 | -155.64548858 | 0 | CRTD 10:45 10-AUG-05 |
| 029 | 71.02001309 | -155.69995889 | 0 | CRTD 10:47 10-AUG-05 |
| 030 | 70.99521875 | -155.71404585 | 0 | CRTD 10:49 10-AUG-05 |
| 031 | 70.98520875 | -155.77866026 | 0 | CRTD 10:51 10-AUG-05 |
| 032 | 70.96652985 | -155.83062538 | 0 | CRTD 10:53 10-AUG-05 |
| 033 | 70.96702337 | -155.91459461 | 0 | CRTD 10:55 10-AUG-05 |
| 034 | 70.96109569 | -156.01064988 | 0 | CRTD 10:57 10-AUG-05 |
| 035 | 70.93906939 | -155.99306532 | 0 | CRTD 10:59 10-AUG-05 |
| 036 | 70.90870678 | -155.97531446 | 0 | CRTD 11:01 10-AUG-05 |
| 037 | 70.81447542 | -155.98325917 | 0 | CRTD 12:42 10-AUG-05 |

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 038 | 70.78833997 | -155.95304140 | 0 |
| 040 | 70.77535808 | -155.88367947 | 0 |
| 041 | 70.80393970 | -155.92141815 | 0 |
| 042 | 70.82873404 | -155.86516150 | 0 |
| 043 | 70.83315432 | -155.81060537 | 0 |
| 044 | 70.83423793 | -155.70850977 | 0 |
| 045 | 70.82702816 | -155.65655538 | 0 |
| 046 | 70.82521498 | -155.58973619 | 0 |
| 047 | 70.83220482 | -155.57538101 | 0 |
| 048 | 70.84708571 | -155.53973981 | 0 |
| 049 | 70.84896863 | -155.49220570 | 0 |
| 050 | 70.87478757 | -155.48415908 | 0 |
| 051 | 70.90478003 | -155.48680373 | 0 |
| 052 | 70.93686461 | -155.51116356 | 0 |
| 053 | 70.95459402 | -155.43600806 | 0 |
| 054 | 70.98175943 | -155.37550815 | 0 |
| 055 | 71.00226223 | -155.32525429 | 0 |
| 056 | 70.98835230 | -155.22689768 | 0 |
| 057 | 70.98258555 | -155.16920337 | 0 |
| 058 | 71.01649404 | -155.15882322 | 0 |
| 059 | 71.03996336 | -155.20374485 | 0 |
| 060 | 71.06382966 | -155.26406237 | 0 |
| 061 | 71.09002948 | -155.21552511 | 0 |
| 062 | 71.10854208 | -155.12566575 | 0 |
| 063 | 71.08752429 | -155.13502666 | 0 |
| 064 | 71.06936566 | -155.09884902 | 100 |
| 065 | 71.04323566 | -155.06754228 | 500 |
| 066 | 71.04201257 | -155.05592831 | 100 |
| 067 | 71.09880567 | -155.06498345 | 0 |
| 068 | 71.12648606 | -155.10978707 | 0 |
| 069 | 71.14223599 | -155.09061464 | 100 |
| 070 | 71.13165200 | -155.04882046 | 50 |
| 071 | 71.11302137 | -155.02617725 | 0 |
| 072 | 71.09203577 | -155.00433334 | 100 |
| 073 | 71.10219061 | -154.90078934 | 100 |
| 074 | 71.08108163 | -154.88091954 | 500 |
| 075 | 71.08564130 | -154.81301674 | 100 |
| 076 | 71.06887758 | -154.75722679 | 100 |
| 077 | 71.04719996 | -154.70880219 | 0 |
| 078 | 71.02512538 | -154.63556715 | 0 |
| 079 | 70.99787414 | -154.57853802 | 1000 |
| 080 | 70.98387837 | -154.56730493 | 100 |
| 081 | 70.97011864 | -154.60992523 | 0 |
| 082 | 70.93927860 | -154.61793968 | 50 |
| 083 | 70.90830445 | -154.61747834 | 0 |
| 084 | 70.90234995 | -154.66899821 | 0 |
| 085 | 70.87152064 | -154.61774656 | 0 |

TIME_DATE
CRTD 12:44 10-AUG-05 CRTD 12:51 10-AUG-05 CRTD 12:53 10-AUG-05 CRTD 12:55 10-AUG-05 CRTD 12:57 10-AUG-05 CRTD 12:59 10-AUG-05 CRTD 13:01 10-AUG-05 CRTD 13:03 10-AUG-05 CRTD 13:05 10-AUG-05 CRTD 13:07 10-AUG-05 CRTD 13:09 10-AUG-05 CRTD 13:11 10-AUG-05 CRTD 13:13 10-AUG-05 CRTD 13:15 10-AUG-05 CRTD 13:17 10-AUG-05 CRTD 13:19 10-AUG-05 CRTD 13:21 10-AUG-05 CRTD 13:25 10-AUG-05 CRTD 13:27 10-AUG-05 CRTD 13:29 10-AUG-05 CRTD 13:31 10-AUG-05 CRTD 13:33 10-AUG-05 CRTD 13:35 10-AUG-05 CRTD 13:37 10-AUG-05 CRTD 13:39 10-AUG-05 CRTD 13:41 10-AUG-05 CRTD 13:43 10-AUG-05 CRTD 13:45 10-AUG-05 CRTD 13:49 10-AUG-05 CRTD 13:51 10-AUG-05 CRTD 13:53 10-AUG-05 CRTD 13:55 10-AUG-05 CRTD 13:57 10-AUG-05 CRTD 14:15 10-AUG-05 CRTD 14:17 10-AUG-05 CRTD 14:19 10-AUG-05 CRTD 14:21 10-AUG-05 CRTD 14:23 10-AUG-05 CRTD 14:35 10-AUG-05 CRTD 14:37 10-AUG-05 CRTD 14:39 10-AUG-05 CRTD 14:41 10-AUG-05 CRTD 14:43 10-AUG-05 CRTD 14:45 10-AUG-05 CRTD 14:48 10-AUG-05 CRTD 14:49 10-AUG-05 CRTD 14:52 10-AUG-05

| IDENT | LAT | LONG | FLOCK_SIZE | TIME_DATE |
| :---: | :---: | :---: | :---: | :---: |
| 087 | 70.81904590 | -154.53794547 | 0 | CRTD 14:56 10-AUG-05 |
| 088 | 70.79332352 | -154.30252262 | 0 | CRTD 17:06 10-AUG-05 |
| 089 | 70.77995002 | -154.26272937 | 0 | CRTD 17:13 10-AUG-05 |
| 090 | 70.76826096 | -154.18258497 | 0 | CRTD 17:15 10-AUG-05 |
| 091 | 70.78057230 | -154.11038526 | 0 | CRTD 17:17 10-AUG-05 |
| 092 | 70.80557048 | -154.03747209 | 0 | CRTD 17:20 10-AUG-05 |
| 093 | 70.82569242 | -153.98731478 | 0 | CRTD 17:22 10-AUG-05 |
| 094 | 70.85306168 | -153.95584711 | 0 | CRTD 17:24 10-AUG-05 |
| 095 | 70.87539375 | -153.94207665 | 0 | CRTD 17:26 10-AUG-05 |
| 096 | 70.88310242 | -153.87679704 | 0 | CRTD 17:28 10-AUG-05 |
| 097 | 70.88742614 | -153.77999076 | 0 | CRTD 17:30 10-AUG-05 |
| 098 | 70.88413775 | -153.67294916 | 50 | CRTD 17:32 10-AUG-05 |
| 099 | 70.88373005 | -153.57152411 | 0 | CRTD 17:35 10-AUG-05 |
| 100 | 70.88381588 | -153.49700161 | 50 | CRTD 17:37 10-AUG-05 |
| 101 | 70.88911057 | -153.42137941 | 0 | CRTD 17:39 10-AUG-05 |
| 102 | 70.89998960 | -153.34399232 | 0 | CRTD 17:41 10-AUG-05 |
| 103 | 70.91436088 | -153.27911505 | 0 | CRTD 17:43 10-AUG-05 |
| 104 | 70.92108250 | -153.19300541 | 50 | CRTD 17:45 10-AUG-05 |
| 105 | 70.91798723 | -153.12714108 | 0 | CRTD 17:47 10-AUG-05 |
| 106 | 70.91778874 | -153.12583753 | 0 | CRTD 17:47 10-AUG-05 |
| 107 | 70.91238141 | -153.06093344 | 100 | CRTD 17:49 10-AUG-05 |
| 108 | 70.89601457 | -153.00549754 | 0 | CRTD 17:51 10-AUG-05 |
| 109 | 70.91062188 | -153.24224004 | 0 | CRTD 09:51 11-AUG-05 |
| 110 | 70.89478612 | -153.00050327 | 500 | CRTD 09:57 11-AUG-05 |
| 111 | 70.88288248 | -152.90397056 | 50 | CRTD 09:59 11-AUG-05 |
| 112 | 70.85844219 | -152.88334438 | 50 | CRTD 10:01 11-AUG-05 |
| 113 | 70.84772944 | -152.81700262 | 0 | CRTD 10:03 11-AUG-05 |
| 114 | 70.87457836 | -152.78350719 | 0 | CRTD 10:05 11-AUG-05 |
| 115 | 70.87534547 | -152.72295901 | 0 | CRTD 10:07 11-AUG-05 |
| 116 | 70.87823689 | -152.64349588 | 0 | CRTD 10:09 11-AUG-05 |
| 117 | 70.88022172 | -152.57451483 | 0 | CRTD 10:11 11-AUG-05 |
| 118 | 70.86975038 | -152.51027056 | 0 | CRTD 10:13 11-AUG-05 |
| 119 | 70.85926294 | -152.42693969 | 50 | CRTD 10:15 11-AUG-05 |
| 120 | 70.84500968 | -152.36025461 | 0 | CRTD 10:17 11-AUG-05 |
| 121 | 70.83356738 | -152.28073784 | 0 | CRTD 10:19 11-AUG-05 |
| 122 | 70.82417965 | -152.22089776 | 100 | CRTD 10:21 11-AUG-05 |
| 123 | 70.80463707 | -152.19364651 | 0 | CRTD 10:23 11-AUG-05 |
| 124 | 70.79816222 | -152.20550724 | 0 | CRTD 10:25 11-AUG-05 |
| 125 | 70.79354346 | -152.26049789 | 0 | CRTD 10:27 11-AUG-05 |
| 126 | 70.77371657 | -152.31292435 | 0 | CRTD 10:29 11-AUG-05 |
| 127 | 70.74946940 | -152.34480509 | 0 | CRTD 10:31 11-AUG-05 |
| 128 | 70.73737800 | -152.38708206 | 0 | CRTD 10:33 11-AUG-05 |
| 129 | 70.72184801 | -152.39168474 | 0 | CRTD 10:35 11-AUG-05 |
| 130 | 70.70489109 | -152.41280981 | 0 | CRTD 10:37 11-AUG-05 |
| 131 | 70.69322348 | -152.46193179 | 0 | CRTD 10:39 11-AUG-05 |
| 132 | 70.67375064 | -152.47544476 | 0 | CRTD 10:41 11-AUG-05 |
| 133 | 70.64811945 | -152.46598729 | 0 | CRTD 10:43 11-AUG-05 |

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 134 | 70.62439799 | -152.44212099 | 0 |
| 135 | 70.60613751 | -152.38681384 | 0 |
| 136 | 70.60564935 | -152.31780597 | 0 |
| 137 | 70.59202373 | -152.25122818 | 0 |
| 138 | 70.58542550 | -152.17299887 | 0 |
| 139 | 70.58472276 | -152.08488830 | 0 |
| 140 | 70.55220894 | -152.03416237 | 0 |
| 141 | 70.56189179 | -151.99264177 | 0 |
| 142 | 70.55448353 | -151.92219623 | 0 |
| 143 | 70.55175304 | -151.84718021 | 0 |
| 144 | 70.54978430 | -151.76464328 | 0 |
| 145 | 70.55084646 | -151.70562395 | 0 |
| 146 | 70.53990304 | -151.73283764 | 0 |
| 147 | 70.51786065 | -151.76852711 | 0 |
| 148 | 70.49860775 | -151.78863295 | 0 |
| 149 | 70.49875796 | -151.73299857 | 0 |
| 150 | 70.48755705 | -151.79160484 | 0 |
| 151 | 70.47924221 | -151.85205110 | 0 |
| 152 | 70.47086835 | -151.92461559 | 0 |
| 153 | 70.45546710 | -151.95077249 | 0 |
| 154 | 70.43626249 | -151.96007439 | 0 |
| 155 | 70.43143988 | -151.93923899 | 0 |
| 156 | 70.43564022 | -151.90171489 | 0 |
| 157 | 70.43205142 | -151.73143753 | 0 |
| 158 | 70.43354809 | -151.65038117 | 0 |
| 159 | 70.43362319 | -151.54935845 | 0 |
| 160 | 70.42478263 | -151.48841330 | 0 |
| 161 | 70.37113309 | -151.22522959 | 0 |
| 162 | 70.35256684 | -151.20618590 | 0 |
| 163 | 70.36396623 | -151.20734998 | 0 |
| 164 | 70.43892324 | -151.02046438 | 100 |
| 165 | 70.43885887 | -151.02034100 | 0 |
| 166 | 70.44632614 | -150.97873458 | 0 |
| 167 | 70.46056330 | -150.92456468 | 0 |
| 168 | 70.42162299 | -150.28072723 | 0 |
| 169 | 70.43280780 | -150.20313093 | 0 |
| 170 | 70.42847872 | -150.11319109 | 0 |
| 171 | 70.44107974 | -150.06662794 | 0 |
| 172 | 70.46015561 | -150.00903019 | 0 |
| 173 | 70.47874868 | -149.95074579 | 0 |
| 174 | 70.48609793 | -149.76791569 | 50 |
| 175 | 70.49801230 | -149.69755598 | 0 |
| 176 | 70.50239503 | -149.63706144 | 0 |
| 177 | 70.49625278 | -149.58939859 | 0 |
| 178 | 70.49790502 | -149.52345380 | 0 |
| 179 | 70.51412702 | -149.46847388 | 0 |
| 180 | 70.49142480 | -149.42216822 | 0 |

TIME_DATE
CRTD 10:45 11-AUG-05 CRTD 10:47 11-AUG-05 CRTD 10:49 11-AUG-05 CRTD 10:51 11-AUG-05 CRTD 10:53 11-AUG-05 CRTD 10:55 11-AUG-05 CRTD 11:00 11-AUG-05 CRTD 11:02 11-AUG-05 CRTD 11:04 11-AUG-05 CRTD 11:06 11-AUG-05 CRTD 11:08 11-AUG-05 CRTD 11:10 11-AUG-05 CRTD 11:12 11-AUG-05 CRTD 11:14 11-AUG-05 CRTD 11:16 11-AUG-05 CRTD 11:18 11-AUG-05 CRTD 11:20 11-AUG-05 CRTD 11:22 11-AUG-05 CRTD 11:24 11-AUG-05 CRTD 11:26 11-AUG-05 CRTD 11:28 11-AUG-05 CRTD 11:30 11-AUG-05 CRTD 11:32 11-AUG-05 CRTD 11:36 11-AUG-05 CRTD 11:38 11-AUG-05 CRTD 11:40 11-AUG-05 CRTD 11:42 11-AUG-05 CRTD 12:01 11-AUG-05 CRTD 12:03 11-AUG-05 CRTD 12:05 11-AUG-05 CRTD 12:31 11-AUG-05 CRTD 13:19 11-AUG-05 CRTD 13:21 11-AUG-05 CRTD 13:23 11-AUG-05 CRTD 14:03 12-AUG-05 CRTD 14:05 12-AUG-05 CRTD 14:07 12-AUG-05 CRTD 14:09 12-AUG-05 CRTD 14:11 12-AUG-05 CRTD 14:13 12-AUG-05 CRTD 14:18 12-AUG-05 CRTD 14:21 12-AUG-05 CRTD 14:23 12-AUG-05 CRTD 14:25 12-AUG-05 CRTD 14:27 12-AUG-05 CRTD 14:29 12-AUG-05 CRTD 14:31 12-AUG-05

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 181 | 70.48195660 | -149.37552460 | 0 |
| 182 | 70.48615694 | -149.34553214 | 0 |
| 183 | 70.49504578 | -149.31934842 | 0 |
| 184 | 70.48942924 | -149.25551721 | 0 |
| 185 | 70.48431158 | -149.17505094 | 0 |
| 186 | 70.47202170 | -149.13552591 | 0 |
| 187 | 70.46369076 | -149.07204338 | 0 |
| 188 | 70.44390142 | -149.01411303 | 0 |
| 189 | 70.39871156 | -148.79972943 | 0 |
| 190 | 70.41162372 | -148.72023412 | 0 |
| 191 | 70.40495038 | -148.65394601 | 0 |
| 192 | 70.39669454 | -148.58610758 | 0 |
| 193 | 70.37803710 | -148.53671738 | 0 |
| 194 | 70.36629438 | -148.49026152 | 0 |
| 195 | 70.33551335 | -148.46459814 | 0 |
| 196 | 70.30998945 | -148.48734864 | 0 |
| 197 | 70.30706584 | -148.42720815 | 0 |
| 198 | 70.30261874 | -148.35568436 | 0 |
| 199 | 70.31947374 | -148.29422959 | 0 |
| 200 | 70.22486687 | -147.78984555 | 0 |
| 201 | 70.21319389 | -147.72855171 | 0 |
| 202 | 70.20066261 | -147.67095395 | 0 |
| 203 | 70.20262063 | -147.61332401 | 0 |
| 204 | 70.20125806 | -147.54162856 | 0 |
| 205 | 70.19613504 | -147.47096845 | 0 |
| 206 | 70.18565297 | -147.40060874 | 0 |
| 207 | 70.18903255 | -147.33084985 | 0 |
| 208 | 70.19644618 | -147.27964112 | 0 |
| 209 | 70.18622160 | -147.23755189 | 0 |
| 210 | 70.17092764 | -147.21723148 | 0 |
| 211 | 70.16021490 | -147.18849429 | 0 |
| 212 | 70.15526354 | -147.12434658 | 0 |
| 213 | 70.14643908 | -147.06340143 | 0 |
| 214 | 70.15331626 | -147.02015349 | 0 |
| 215 | 70.15199661 | -146.96371445 | 0 |
| 216 | 70.16678631 | -146.91552588 | 0 |
| 217 | 70.16846001 | -146.87488505 | 0 |
| 218 | 70.17893136 | -146.83994659 | 0 |
| 219 | 70.17708600 | -146.75149807 | 0 |
| 220 | 70.17449498 | -146.68591806 | 0 |
| 221 | 70.17925858 | -146.61465176 | 0 |
| 222 | 70.18438697 | -146.53269419 | 0 |
| 223 | 70.18142045 | -146.46430858 | 0 |
| 224 | 70.18004179 | -146.41687104 | 50 |
| 225 | 70.17826080 | -146.36171409 | 0 |
| 226 | 70.17376006 | -146.29325875 | 0 |
| 227 | 70.16582608 | -146.24056407 | 0 |

TIME_DATE
CRTD 14:33 12-AUG-05 CRTD 14:35 12-AUG-05 CRTD 14:37 12-AUG-05 CRTD 14:39 12-AUG-05 CRTD 14:41 12-AUG-05 CRTD 14:43 12-AUG-05 CRTD 14:47 12-AUG-05 CRTD 14:50 12-AUG-05 CRTD 15:21 12-AUG-05 CRTD 15:25 12-AUG-05 CRTD 15:27 12-AUG-05 CRTD 15:29 12-AUG-05 CRTD 15:31 12-AUG-05 CRTD 15:33 12-AUG-05 CRTD 15:35 12-AUG-05 CRTD 15:37 12-AUG-05 CRTD 15:39 12-AUG-05 CRTD 15:41 12-AUG-05 CRTD 15:43 12-AUG-05 CRTD 10:43 13-AUG-05 CRTD 10:45 13-AUG-05 CRTD 10:47 13-AUG-05 CRTD 10:49 13-AUG-05 CRTD 10:51 13-AUG-05 CRTD 10:53 13-AUG-05 CRTD 10:55 13-AUG-05 CRTD 10:57 13-AUG-05 CRTD 10:59 13-AUG-05 CRTD 11:01 13-AUG-05 CRTD 11:03 13-AUG-05 CRTD 11:05 13-AUG-05 CRTD 11:08 13-AUG-05 CRTD 11:10 13-AUG-05 CRTD 11:12 13-AUG-05 CRTD 11:14 13-AUG-05 CRTD 11:16 13-AUG-05 CRTD 11:18 13-AUG-05 CRTD 11:20 13-AUG-05 CRTD 11:22 13-AUG-05 CRTD 11:24 13-AUG-05 CRTD 11:26 13-AUG-05 CRTD 11:28 13-AUG-05 CRTD 11:30 13-AUG-05 CRTD 11:32 13-AUG-05 CRTD 11:34 13-AUG-05 CRTD 11:36 13-AUG-05 CRTD 11:38 13-AUG-05

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 228 | 70.16056359 | -146.18974158 | 0 |
| 229 | 70.15882015 | -146.13465437 | 0 |
| 230 | 70.14344573 | -146.08745822 | 0 |
| 231 | 70.14363885 | -146.08641752 | 0 |
| 232 | 70.14228702 | -146.03329905 | 0 |
| 233 | 70.13795257 | -145.98971316 | 0 |
| 234 | 70.15143871 | -145.82851776 | 0 |
| 235 | 70.13676167 | -145.79080590 | 0 |
| 236 | 70.12258351 | -145.73998877 | 0 |
| 237 | 70.10839999 | -145.69816777 | 0 |
| 238 | 70.09547174 | -145.65942057 | 0 |
| 239 | 70.08327842 | -145.60963341 | 0 |
| 240 | 70.05009413 | -145.47661194 | 0 |
| 241 | 70.04998684 | -145.47773310 | 0 |
| 242 | 70.04029870 | -145.44914075 | 0 |
| 243 | 70.03046036 | -145.39670357 | 100 |
| 244 | 70.02340615 | -145.35606273 | 100 |
| 245 | 70.01581550 | -145.30587324 | 0 |
| 246 | 70.02042890 | -145.24986872 | 0 |
| 247 | 70.02775133 | -145.19360670 | 0 |
| 248 | 70.01222134 | -145.22369036 | 0 |
| 249 | 69.99052227 | -145.23151704 | 0 |
| 250 | 69.99040425 | -145.17734178 | 0 |
| 251 | 69.98497546 | -145.10632225 | 0 |
| 252 | 69.97988999 | -145.02433249 | 0 |
| 253 | 69.96475697 | -144.97410544 | 0 |
| 254 | 69.96214986 | -144.93089505 | 0 |
| 255 | 69.97242272 | -144.85164651 | 0 |
| 256 | 69.97955739 | -144.79859241 | 0 |
| 257 | 69.96898949 | -144.73223456 | 0 |
| 258 | 69.96532559 | -144.65549120 | 0 |
| 259 | 69.97316837 | -144.59792563 | 50 |
| 260 | 69.99119282 | -144.54721042 | 50 |
| 261 | 70.01722634 | -144.49062117 | 0 |
| 262 | 70.02231717 | -144.42835637 | 0 |
| 263 | 70.02898514 | -144.37109658 | 0 |
| 264 | 70.03059447 | -144.29308721 | 0 |
| 265 | 70.03287971 | -144.23027524 | 0 |
| 266 | 70.03478944 | -144.16222760 | 0 |
| 001 | 70.12483656 | -143.60260614 | 0 |
| 002 | 70.10037482 | -143.66749951 | 0 |
| 003 | 70.07581115 | -143.66111048 | 50 |
| 004 | 70.08078933 | -143.55190166 | 0 |
| 005 | 70.09182930 | -143.51668962 | 0 |
| 006 | 70.11294365 | -143.52979481 | 0 |
| 007 | 70.11466026 | -143.51107844 | 0 |
| 008 | 70.08809566 | -143.44289132 | 0 |

TIME_DATE
CRTD 11:40 13-AUG-05 CRTD 11:42 13-AUG-05 CRTD 11:44 13-AUG-05 CRTD 11:44 13-AUG-05 CRTD 11:46 13-AUG-05 CRTD 11:48 13-AUG-05 CRTD 12:58 13-AUG-05 CRTD 13:00 13-AUG-05 CRTD 13:02 13-AUG-05 CRTD 13:05 13-AUG-05 CRTD 13:07 13-AUG-05 CRTD 13:09 13-AUG-05 CRTD 13:23 13-AUG-05 CRTD 13:23 13-AUG-05 CRTD 13:25 13-AUG-05 CRTD 13:27 13-AUG-05 CRTD 13:29 13-AUG-05 CRTD 13:31 13-AUG-05 CRTD 13:33 13-AUG-05 CRTD 13:35 13-AUG-05 CRTD 13:37 13-AUG-05 CRTD 13:39 13-AUG-05 CRTD 13:41 13-AUG-05 CRTD 13:43 13-AUG-05 CRTD 13:45 13-AUG-05 CRTD 13:47 13-AUG-05 CRTD 13:49 13-AUG-05 CRTD 13:51 13-AUG-05 CRTD 13:53 13-AUG-05 CRTD 13:55 13-AUG-05 CRTD 13:57 13-AUG-05 CRTD 13:59 13-AUG-05 CRTD 14:01 13-AUG-05 CRTD 14:04 13-AUG-05 CRTD 14:06 13-AUG-05 CRTD 14:08 13-AUG-05 CRTD 14:10 13-AUG-05 CRTD 14:12 13-AUG-05 CRTD 14:14 13-AUG-05 CRTD 10:47 14-AUG-05 CRTD 10:49 14-AUG-05 CRTD 10:51 14-AUG-05 CRTD 10:55 14-AUG-05 CRTD 10:57 14-AUG-05 CRTD 10:59 14-AUG-05 CRTD 11:01 14-AUG-05 CRTD 11:05 14-AUG-05

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 009 | 70.09395361 | -143.38248261 | 0 |
| 010 | 70.09295583 | -143.34606358 | 0 |
| 011 | 70.10770798 | -143.19793590 | 0 |
| 012 | 70.09217799 | -143.14312228 | 0 |
| 013 | 70.07916927 | -143.08399566 | 0 |
| 014 | 70.07754385 | -143.01724621 | 0 |
| 015 | 70.06029725 | -142.99759098 | 0 |
| 016 | 70.05485773 | -142.93334135 | 0 |
| 017 | 70.05667090 | -142.87240156 | 0 |
| 018 | 70.04700959 | -142.81177291 | 0 |
| 019 | 70.03917217 | -142.75682517 | 0 |
| 020 | 70.02556801 | -142.68274792 | 0 |
| 021 | 70.00543535 | -142.60801085 | 0 |
| 022 | 70.00507057 | -142.60690042 | 0 |
| 023 | 69.98248100 | -142.57882842 | 0 |
| 024 | 69.95961785 | -142.56049820 | 0 |
| 025 | 69.96665061 | -142.50594744 | 0 |
| 026 | 69.94655013 | -142.47680255 | 0 |
| 027 | 69.92949128 | -142.40123400 | 0 |
| 028 | 69.91140246 | -142.40548798 | 0 |
| 029 | 69.90723968 | -142.33688244 | 0 |
| 030 | 69.87996161 | -142.31674441 | 0 |
| 031 | 69.88014400 | -142.27927395 | 0 |
| 032 | 69.85634744 | -142.25251623 | 0 |
| 033 | 69.84878898 | -142.18498358 | 50 |
| 034 | 69.84201908 | -142.08655723 | 0 |
| 035 | 69.81939197 | -142.02682972 | 0 |
| 036 | 69.79891062 | -141.99180015 | 0 |
| 037 | 69.79137361 | -141.94353112 | 0 |
| 038 | 69.74144161 | -141.58543476 | 0 |
| 039 | 69.72490311 | -141.53003641 | 0 |
| 040 | 69.70613301 | -141.48776480 | 0 |
| 041 | 69.67479944 | -141.43459805 | 0 |
| 042 | 69.64950621 | -141.40898296 | 0 |
| 043 | 69.63138521 | -141.35028013 | 0 |
| 044 | 69.62985098 | -141.25634381 | 0 |
| 045 | 69.64318156 | -141.24458500 | 0 |
| 046 | 69.68065739 | -141.20773681 | 0 |
| 047 | 69.67568994 | -141.13302120 | 0 |
| 048 | 69.67549682 | -141.13188931 | 0 |
| 049 | 69.66046035 | -141.06689938 | 0 |
| 050 | 69.67792690 | -141.24492832 | 0 |
| 051 | 69.68378484 | -141.36307963 | 100 |
| 052 | 69.69928801 | -141.44707032 | 0 |
| 053 | 69.72807348 | -141.51931294 | 0 |
| 054 | 69.75316823 | -141.58775219 | 0 |
| 055 | 69.77564514 | -141.66826137 | 0 |

TIME_DATE
CRTD 11:07 14-AUG-05 CRTD 11:09 14-AUG-05 CRTD 11:27 14-AUG-05 CRTD 11:29 14-AUG-05 CRTD 11:31 14-AUG-05 CRTD 11:34 14-AUG-05 CRTD 11:36 14-AUG-05 CRTD 11:38 14-AUG-05 CRTD 11:40 14-AUG-05 CRTD 11:42 14-AUG-05 CRTD 11:44 14-AUG-05 CRTD 11:46 14-AUG-05 CRTD 11:48 14-AUG-05 CRTD 11:48 14-AUG-05 CRTD 11:50 14-AUG-05 CRTD 11:52 14-AUG-05 CRTD 11:54 14-AUG-05 CRTD 11:56 14-AUG-05 CRTD 11:58 14-AUG-05 CRTD 12:00 14-AUG-05 CRTD 12:02 14-AUG-05 CRTD 12:04 14-AUG-05 CRTD 12:06 14-AUG-05 CRTD 12:08 14-AUG-05 CRTD 12:10 14-AUG-05 CRTD 12:13 14-AUG-05 CRTD 12:15 14-AUG-05 CRTD 12:17 14-AUG-05 CRTD 12:19 14-AUG-05 CRTD 13:37 14-AUG-05 CRTD 13:40 14-AUG-05 CRTD 13:42 14-AUG-05 CRTD 13:45 14-AUG-05 CRTD 13:47 14-AUG-05 CRTD 13:49 14-AUG-05 CRTD 13:51 14-AUG-05 CRTD 13:53 14-AUG-05 CRTD 13:56 14-AUG-05 CRTD 13:58 14-AUG-05 CRTD 13:58 14-AUG-05 CRTD 14:00 14-AUG-05 CRTD 14:28 14-AUG-05 CRTD 14:30 14-AUG-05 CRTD 14:32 14-AUG-05 CRTD 14:34 14-AUG-05 CRTD 14:37 14-AUG-05 CRTD 14:39 14-AUG-05

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 056 | 69.77592409 | -141.66942545 | 0 |
| 057 | 69.79129314 | -141.73980125 | 0 |
| 058 | 69.80664074 | -141.83105537 | 0 |
| 059 | 69.81876433 | -141.90965482 | 0 |
| 060 | 69.83306587 | -141.99286767 | 50 |
| 061 | 69.84729758 | -142.05432245 | 0 |
| 062 | 69.86656666 | -142.15101608 | 100 |
| 063 | 69.89625871 | -142.25769826 | 0 |
| 064 | 69.91390765 | -142.31934079 | 0 |
| 065 | 69.93472695 | -142.38743671 | 100 |
| 066 | 69.95487034 | -142.44346269 | 50 |
| 067 | 69.97543752 | -142.51449295 | 0 |
| 068 | 70.00070930 | -142.59126314 | 0 |
| 069 | 70.04253566 | -142.75167533 | 0 |
| 070 | 70.05725018 | -142.84790763 | 0 |
| 071 | 70.07334352 | -142.93862530 | 100 |
| 072 | 70.09086370 | -143.01410266 | 0 |
| 073 | 70.10776699 | -143.09245535 | 100 |
| 074 | 70.12741148 | -143.17328640 | 100 |
| 075 | 70.14746368 | -143.24395188 | 0 |
| 076 | 70.14189005 | -143.31558832 | 0 |
| 077 | 70.12462199 | -143.42073091 | 0 |
| 078 | 70.13795257 | -143.52173218 | 50 |
| 079 | 70.13620377 | -143.58594426 | 0 |
| 080 | 70.13609111 | -143.59574505 | 50 |
| 081 | 70.13477683 | -143.67231139 | 0 |
| 082 | 70.12896180 | -143.73166868 | 0 |
| 083 | 70.11337280 | -143.71437379 | 0 |
| 084 | 70.09212434 | -143.67797085 | 50 |
| 085 | 70.08640051 | -143.69177886 | 0 |
| 086 | 70.09861529 | -143.68771263 | 0 |
| 087 | 70.09904444 | -143.72996815 | 0 |
| 088 | 70.09158790 | -143.75397393 | 0 |
| 089 | 70.07364392 | -143.79937836 | 0 |
| 090 | 70.07653534 | -143.82031032 | 0 |
| 091 | 70.07542491 | -143.88802537 | 0 |
| 092 | 70.06444395 | -143.91865083 | 0 |
| 093 | 70.05838215 | -143.95366975 | 0 |
| 094 | 70.07790327 | -143.99760433 | 0 |
| 095 | 70.08847117 | -144.03837928 | 0 |
| 096 | 70.08105755 | -144.11736497 | 0 |
| 097 | 70.06055474 | -144.19287452 | 0 |
| 098 | 70.04636049 | -144.28285726 | 0 |
| 099 | 70.04051328 | -144.37512525 | 100 |
| 100 | 70.03167272 | -144.46284958 | 0 |
| 101 | 69.98359144 | -144.84650203 | 0 |
| 102 | 69.99775350 | -145.20656177 | 0 |

TIME_DATE
CRTD 14:39 14-AUG-05 CRTD 14:41 14-AUG-05 CRTD 14:43 14-AUG-05 CRTD 14:45 14-AUG-05 CRTD 14:47 14-AUG-05 CRTD 14:49 14-AUG-05 CRTD 14:51 14-AUG-05 CRTD 14:54 14-AUG-05 CRTD 14:56 14-AUG-05 CRTD 14:58 14-AUG-05 CRTD 15:00 14-AUG-05 CRTD 15:02 14-AUG-05 CRTD 15:05 14-AUG-05 CRTD 15:08 14-AUG-05 CRTD 15:10 14-AUG-05 CRTD 15:38 14-AUG-05 CRTD 15:40 14-AUG-05 CRTD 15:42 14-AUG-05 CRTD 15:44 14-AUG-05 CRTD 15:46 14-AUG-05 CRTD 15:48 14-AUG-05 CRTD 15:51 14-AUG-05 CRTD 15:53 14-AUG-05 CRTD 15:55 14-AUG-05 CRTD 09:37 15-AUG-05 CRTD 09:39 15-AUG-05 CRTD 09:41 15-AUG-05 CRTD 09:43 15-AUG-05 CRTD 09:45 15-AUG-05 CRTD 09:47 15-AUG-05 CRTD 09:49 15-AUG-05 CRTD 09:51 15-AUG-05 CRTD 09:53 15-AUG-05 CRTD 09:55 15-AUG-05 CRTD 09:57 15-AUG-05 CRTD 10:00 15-AUG-05 CRTD 10:02 15-AUG-05 CRTD 10:04 15-AUG-05 CRTD 11:15 15-AUG-05 CRTD 14:53 15-AUG-05 CRTD 14:55 15-AUG-05 CRTD 14:57 15-AUG-05 CRTD 14:59 15-AUG-05 CRTD 15:01 15-AUG-05 CRTD 15:03 15-AUG-05 CRTD 15:13 15-AUG-05 CRTD 15:24 15-AUG-05

2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE |
| :---: | :---: | :---: | :---: |
| 103 | 70.02482235 | -145.24952539 | 0 |
| 104 | 70.04125357 | -145.35467871 | 0 |
| 105 | 70.05163372 | -145.40611275 | 0 |
| 106 | 70.20556033 | -147.54229375 | 0 |
| 107 | 70.20611823 | -147.62682089 | 0 |
| 108 | 70.25665641 | -147.76884385 | 0 |
| 109 | 70.27830175 | -147.77699777 | 0 |
| 110 | 70.29600978 | -147.82036372 | 0 |
| 111 | 70.39828241 | -148.55741330 | 0 |
| 112 | 70.42250276 | -148.61998388 | 0 |
| 113 | 70.43496966 | -148.73434254 | 0 |
| 114 | 70.45264006 | -148.78772923 | 50 |
| 115 | 70.47486484 | -148.83736082 | 0 |
| 116 | 70.48155427 | -148.89340290 | 0 |
| 117 | 70.48068523 | -148.96265217 | 0 |
| 118 | 70.48890889 | -149.03491088 | 0 |
| 119 | 70.49202561 | -149.08343204 | 0 |
| 120 | 70.51670730 | -149.14664098 | 0 |
| 121 | 70.52651882 | -149.22802457 | 0 |
| 122 | 70.53593329 | -149.30820116 | 0 |
| 123 | 70.54215610 | -149.41572019 | 0 |
| 124 | 70.55759490 | -149.48429354 | 0 |
| 125 | 70.56326509 | -149.57553693 | 0 |
| 126 | 70.56886554 | -149.66400691 | 0 |
| 127 | 70.56535184 | -149.76175197 | 0 |
| 128 | 70.55931151 | -149.82454785 | 0 |
| 129 | 70.55539548 | -149.92806503 | 0 |
| 130 | 70.54944098 | -150.01344510 | 0 |
| 131 | 70.54002106 | -150.11828729 | 0 |
| 132 | 70.54061651 | -150.13425180 | 0 |
| 133 | 70.55294394 | -150.21091470 | 0 |
| 134 | 71.14643633 | -155.04851469 | 100 |
| 135 | 71.16180539 | -155.11847206 | 0 |
| 136 | 71.17114484 | -155.18900343 | 100 |
| 137 | 71.18018925 | -155.27763971 | 0 |
| 138 | 71.18059695 | -155.38128563 | 100 |
| 139 | 71.19785964 | -155.42337486 | 100 |
| 140 | 71.21259570 | -155.49741455 | 50 |
| 141 | 71.22654855 | -155.58167347 | 0 |
| 142 | 71.23331308 | -155.68281957 | 0 |
| 143 | 71.23181105 | -155.75058826 | 0 |
| 144 | 71.25797331 | -155.92256078 | 0 |
| 145 | 71.28252089 | -155.93871304 | 0 |
| 146 | 71.30432189 | -155.98867723 | 0 |
| 147 | 71.32077992 | -156.05863997 | 0 |
| 148 | 71.33231878 | -156.13131710 | 0 |
| 149 | 71.34355724 | -156.23767206 | 0 |

TIME_DATE
CRTD 15:26 15-AUG-05 CRTD 15:29 15-AUG-05 CRTD 15:32 15-AUG-05 CRTD 16:38 15-AUG-05 CRTD 16:40 15-AUG-05 CRTD 16:45 15-AUG-05 CRTD 16:47 15-AUG-05 CRTD 16:49 15-AUG-05 CRTD 09:47 16-AUG-05 CRTD 09:49 16-AUG-05 CRTD 09:52 16-AUG-05 CRTD 09:54 16-AUG-05 CRTD 09:56 16-AUG-05 CRTD 09:58 16-AUG-05 CRTD 10:00 16-AUG-05 CRTD 10:02 16-AUG-05 CRTD 10:04 16-AUG-05 CRTD 10:06 16-AUG-05 CRTD 10:08 16-AUG-05 CRTD 10:10 16-AUG-05 CRTD 10:13 16-AUG-05 CRTD 10:15 16-AUG-05 CRTD 10:17 16-AUG-05 CRTD 10:19 16-AUG-05 CRTD 10:21 16-AUG-05 CRTD 10:23 16-AUG-05 CRTD 10:25 16-AUG-05 CRTD 10:27 16-AUG-05 CRTD 10:29 16-AUG-05 CRTD 10:31 16-AUG-05 CRTD 10:33 16-AUG-05 CRTD 13:30 16-AUG-05 CRTD 13:32 16-AUG-05 CRTD 13:34 16-AUG-05 CRTD 13:36 16-AUG-05 CRTD 13:38 16-AUG-05 CRTD 13:40 16-AUG-05 CRTD 13:42 16-AUG-05 CRTD 13:44 16-AUG-05 CRTD 13:46 16-AUG-05 CRTD 13:48 16-AUG-05 CRTD 13:52 16-AUG-05 CRTD 13:54 16-AUG-05 CRTD 13:56 16-AUG-05 CRTD 13:58 16-AUG-05 CRTD 14:00 16-AUG-05 CRTD 14:02 16-AUG-05

## 2005 helicopter survey

| IDENT | LAT | LONG | FLOCK_SIZE | TIME_DATE |
| :--- | :--- | :--- | :--- | :--- |
| 150 | 71.35421634 | -156.29049012 | 0 | CRTD 14:04 16-AUG-05 |
| 151 | 71.36138856 | -156.37070426 | 100 | CRTD 14:06 16-AUG-05 |
| 152 | 71.38103843 | -156.43859097 | 0 | CRTD 14:08 16-AUG-05 |
| 153 | 71.36577666 | -156.50081285 | 0 | CRTD 14:10 16-AUG-05 |
| 154 | 71.34815991 | -156.59361728 | 0 | CRTD 14:12 16-AUG-05 |

2006 fixed-wing survey 1

| Day | Month | Year | FromLoc | ToLoc | GPS N | GPS_W | Species | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | july | 2006 | peardbay | wainwright | 70.8222 | -159.5140 | phalarope | 10 |
| 22 | july | 2006 | peardbay | wainwright | 70.8304 | -159.4639 | phalarope | 2 |
| 22 | july | 2006 | peardbay | wainwright | 70.8314 | -159.4568 | phalarope | 2 |
| 22 | july | 2006 | peardbay | wainwright | 70.8387 | -159.4121 | phalarope | 1 |
| 22 | july | 2006 | peardbay | wainwright | 70.8411 | -159.3978 | phalarope | 25 |
| 22 | july | 2006 | peardbay | wainwright | 70.8414 | -159.3959 | phalarope | 2 |
| 22 | july | 2006 | peardbay | wainwright | 70.8419 | -159.3923 | phalarope | 7 |
| 22 | july | 2006 | peardbay | wainwright | 70.8448 | -159.3696 | phalarope | 3 |
| 22 | july | 2006 | peardbay | wainwright | 70.8449 | -159.3542 | phalarope | 25 |
| 22 | july | 2006 | peardbay | wainwright | 70.8456 | -159.3364 | phalarope | 30 |
| 22 | july | 2006 | peardbay | wainwright | 70.8455 | -159.3474 | phalarope | 4 |
| 22 | july | 2006 | peardbay | wainwright | 70.8445 | -159.3551 | phalarope | 7 |
| 22 | july | 2006 | peardbay | wainwright | 70.8448 | -159.3153 | phalarope | 50 |
| 22 | july | 2006 | peardbay | wainwright | 70.8439 | -159.3087 | phalarope | 1 |
| 22 | july | 2006 | peardbay | wainwright | 70.8498 | -159.3190 | phalarope | 200 |
| 22 | july | 2006 | peardbay | wainwright | 70.8450 | -159.3155 | phalarope | 30 |
| 22 | july | 2006 | wainwright | barrow | 70.8557 | -159.1715 | phalarope | 9 |
| 22 | july | 2006 | wainwright | barrow | 70.8537 | -159.1698 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 70.8330 | -159.1493 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 70.8325 | -159.1491 | phalarope | 3 |
| 22 | july | 2006 | wainwright | barrow | 70.8319 | -159.1485 | phalarope | 10 |
| 22 | july | 2006 | wainwright | barrow | 70.7804 | -159.3744 | phalarope | 12 |
| 22 | july | 2006 | wainwright | barrow | 71.1749 | -157.0315 | phalarope | 2 |
| 22 | july | 2006 | wainwright | barrow | 71.2188 | -156.9493 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.2691 | -156.8459 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3645 | -156.5121 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3781 | -156.4860 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3836 | -156.4863 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3861 | -156.4851 | phalarope | 6 |
| 22 | july | 2006 | wainwright | barrow | 71.3872 | -156.4840 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3877 | -156.4831 | phalarope | 12 |
| 22 | july | 2006 | wainwright | barrow | 71.3883 | -156.4807 | phalarope | 4 |
| 22 | july | 2006 | wainwright | barrow | 71.3890 | -156.4762 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3889 | -156.4741 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3883 | -156.4704 | phalarope | 10 |
| 22 | july | 2006 | wainwright | barrow | 71.3781 | -156.4288 | phalarope | 30 |
| 22 | july | 2006 | wainwright | barrow | 71.3771 | -156.4259 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3750 | -156.4199 | phalarope | 3 |
| 22 | july | 2006 | wainwright | barrow | 71.3743 | -156.4177 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3671 | -156.3944 | phalarope | 4 |
| 22 | july | 2006 | wainwright | barrow | 71.3759 | -156.4274 | phalarope | 6 |
| 22 | july | 2006 | wainwright | barrow | 71.3814 | -156.4443 | phalarope | 3 |
| 22 | july | 2006 | wainwright | barrow | 71.3795 | -156.4671 | phalarope | 11 |
| 22 | july | 2006 | wainwright | barrow | 71.3784 | -156.4698 | phalarope |  |
| 22 | july | 2006 | wainwright | barrow | 71.3775 | -156.4720 | phalarope | 13 |

## 2006 fixed-wing survey 1

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | july | 2006 | wainwright | barrow | 71.3764 | -156.4745 | phalarope | 5 |
| 22 | july | 2006 | wainwright | barrow | 71.3753 | -156.4773 | phalarope | 3 |
| 22 | july | 2006 | wainwright | barrow | 71.3727 | -156.4831 | phalarope | 25 |
| 22 | july | 2006 | wainwright | barrow | 71.3667 | -156.4949 | phalarope | 50 |
| 22 | july | 2006 | wainwright | barrow | 71.3654 | -156.4971 | phalarope | 6 |
| 22 | july | 2006 | wainwright | barrow | 71.3644 | -156.4989 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3638 | -156.5002 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3626 | -156.5031 | phalarope | 30 |
| 22 | july | 2006 | wainwright | barrow | 71.3613 | -156.5060 | phalarope | 30 |
| 22 | july | 2006 | wainwright | barrow | 71.3607 | -156.5072 | phalarope | 30 |
| 22 | july | 2006 | wainwright | barrow | 71.3591 | -156.5107 | phalarope | 5 |
| 22 | july | 2006 | wainwright | barrow | 71.3581 | -156.5132 | phalarope | 15 |
| 22 | july | 2006 | wainwright | barrow | 71.3574 | -156.5148 | phalarope | 4 |
| 22 | july | 2006 | wainwright | barrow | 71.3565 | -156.5185 | phalarope | 6 |
| 22 | july | 2006 | wainwright | barrow | 71.3559 | -156.5211 | phalarope | 30 |
| 22 | july | 2006 | wainwright | barrow | 71.3556 | -156.5230 | phalarope | 1 |
| 22 | july | 2006 | wainwright | barrow | 71.3548 | -156.5316 | phalarope | 3 |
| 22 | july | 2006 | wainwright | barrow | 71.3544 | -156.5335 | phalarope | 7 |
| 22 | july | 2006 | wainwright | barrow | 71.3538 | -156.5368 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3541 | -156.5455 | phalarope | 50 |
| 22 | july | 2006 | wainwright | barrow | 71.3532 | -156.5493 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3526 | -156.5525 | phalarope | 20 |
| 22 | july | 2006 | wainwright | barrow | 71.3521 | -156.5553 | phalarope | 5 |
| 22 | july | 2006 | wainwright | barrow | 71.3509 | -156.5625 | phalarope | 4 |
| 22 | july | 2006 | wainwright | barrow | 71.3496 | -156.5708 | phalarope | 25 |
| 22 | july | 2006 | wainwright | barrow | 71.3493 | -156.5726 | phalarope | 10 |
| 22 | july | 2006 | wainwright | barrow | 71.2902 | -156.5342 | radio | 5607(35) |
| 22 | july | 2006 | barrow | capesimpson | 71.2426 | -156.1326 | phalarope | 2 |
| 22 | july | 2006 | barrow | capesimpson | 71.2344 | -156.0793 | phalarope | 6 |
| 22 | july | 2006 | barrow | capesimpson | 71.2299 | -156.0835 | phalarope | 3 |
| 22 | july | 2006 | barrow | capesimpson | 71.2284 | -156.0858 | phalarope | 2 |
| 22 | july | 2006 | barrow | capesimpson | 71.2278 | -156.0873 | phalarope | 10 |
| 22 | july | 2006 | barrow | capesimpson | 71.1878 | -155.8378 | phalarope | 6 |
| 22 | july | 2006 | capesimpson | barrow | 71.0984 | -154.9201 | phalarope | 6 |
| 22 | july | 2006 | capesimpson | barrow | 71.2558 | -155.9319 | phalarope | 200 |
| 22 | july | 2006 | capesimpson | barrow | 71.2571 | -155.9274 | phalarope | 3 |
| 22 | july | 2006 | capesimpson | barrow | 71.2581 | -155.9250 | phalarope | 100 |
| 22 | july | 2006 | capesimpson | barrow | 71.2620 | -155.9232 | phalarope | 300 |
| 22 | july | 2006 | capesimpson | barrow | 71.2652 | -155.9246 | phalarope | 3 |
| 22 | july | 2006 | capesimpson | barrow | 71.2743 | -155.9313 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.2808 | -155.9390 | phalarope | 3 |
| 22 | july | 2006 | capesimpson | barrow | 71.2814 | -155.9399 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.2819 | -155.9409 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.2828 | -155.9425 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.2842 | -155.9454 | phalarope | 50 |
| 22 | july | 2006 | capesimpson | barrow | 71.2848 | -155.9464 | phalarope | 1 |

2006 fixed-wing survey 1

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | july | 2006 | capesimpson | barrow | 71.2872 | -155.9502 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.2880 | -155.9514 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.2885 | -155.9523 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.2915 | -155.9584 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.2924 | -155.9610 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.2935 | -155.9649 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.2973 | -155.9760 | phalarope | 20 |
| 22 | july | 2006 | capesimpson | barrow | 71.3000 | -155.9824 | phalarope | 4 |
| 22 | july | 2006 | capesimpson | barrow | 71.3137 | -156.0348 | phalarope | 6 |
| 22 | july | 2006 | capesimpson | barrow | 71.3194 | -156.0595 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.3194 | -156.0594 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.3204 | -156.0645 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3220 | -156.0736 | phalarope | 5 |
| 22 | july | 2006 | capesimpson | barrow | 71.3229 | -156.0783 | phalarope | 15 |
| 22 | july | 2006 | capesimpson | barrow | 71.3239 | -156.0837 | phalarope | 20 |
| 22 | july | 2006 | capesimpson | barrow | 71.3268 | -156.1002 | phalarope | 3 |
| 22 | july | 2006 | capesimpson | barrow | 71.3271 | -156.1022 | phalarope | 5 |
| 22 | july | 2006 | capesimpson | barrow | 71.3272 | -156.1025 | phalarope | 7 |
| 22 | july | 2006 | capesimpson | barrow | 71.3272 | -156.1025 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3286 | -156.1112 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3291 | -156.1146 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3302 | -156.1239 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3305 | -156.1266 | phalarope | 5 |
| 22 | july | 2006 | capesimpson | barrow | 71.3307 | -156.1285 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3310 | -156.1310 | phalarope | 50 |
| 22 | july | 2006 | capesimpson | barrow | 71.3318 | -156.1376 | phalarope | 50 |
| 22 | july | 2006 | capesimpson | barrow | 71.3326 | -156.1439 | phalarope | 50 |
| 22 | july | 2006 | capesimpson | barrow | 71.3333 | -156.1488 | phalarope | 50 |
| 22 | july | 2006 | capesimpson | barrow | 71.3348 | -156.1588 | phalarope | 50 |
| 22 | july | 2006 | capesimpson | barrow | 71.3360 | -156.1679 | phalarope | 20 |
| 22 | july | 2006 | capesimpson | barrow | 71.3367 | -156.1723 | phalarope | 20 |
| 22 | july | 2006 | capesimpson | barrow | 71.3379 | -156.1801 | phalarope | 5 |
| 22 | july | 2006 | capesimpson | barrow | 71.3384 | -156.1849 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3400 | -156.1995 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3408 | -156.2072 | phalarope | 3 |
| 22 | july | 2006 | capesimpson | barrow | 71.3420 | -156.2267 | phalarope | 20 |
| 22 | july | 2006 | capesimpson | barrow | 71.3423 | -156.2329 | phalarope | 5 |
| 22 | july | 2006 | capesimpson | barrow | 71.3427 | -156.2370 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3450 | -156.2726 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.3457 | -156.2737 | phalarope | 15 |
| 22 | july | 2006 | capesimpson | barrow | 71.3495 | -156.2794 | phalarope | 5 |
| 22 | july | 2006 | capesimpson | barrow | 71.3521 | -156.2872 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3527 | -156.2889 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3535 | -156.2913 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3555 | -156.2970 | phalarope | 3 |

2006 fixed-wing survey 1

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | july | 2006 | capesimpson | barrow | 71.3567 | -156.3035 | phalarope | 15 |
| 22 | july | 2006 | capesimpson | barrow | 71.3572 | -156.3080 | phalarope | 150 |
| 22 | july | 2006 | capesimpson | barrow | 71.3578 | -156.3151 | phalarope | 10 |
| 22 | july | 2006 | capesimpson | barrow | 71.3588 | -156.3233 | phalarope | 2 |
| 22 | july | 2006 | capesimpson | barrow | 71.3589 | -156.3239 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3601 | -156.3321 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3604 | -156.3370 | peep | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3604 | -156.3373 | phalarope | 1 |
| 22 | july | 2006 | capesimpson | barrow | 71.3611 | -156.3443 | phalarope | 30 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9459 | -154.6585 | phalarope | 1 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9352 | -154.6546 | phalarope | 2 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9307 | -154.6439 | peep | 10 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9306 | -154.6407 | peep | 5 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9307 | -154.6392 | peep | 20 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9308 | -154.6372 | peep | 30 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9312 | -154.6298 | peep | 1 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9224 | -154.6244 | phalarope | 4 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9211 | -154.6186 | phalarope | 1 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8492 | -154.7437 | phalarope | 1 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8550 | -154.7493 | phalarope | 3 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8017 | -154.4454 | peep | 50 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.7920 | -154.0712 | phalarope | 1 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8687 | -153.6795 | phalarope | 4 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8807 | -153.5438 | phalarope | 10 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8773 | -153.5376 | phalarope | 15 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8701 | -153.5070 | phalarope | 2 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9025 | -153.1838 | phalarope | 10 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8956 | -153.1821 | phalarope | 8 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.9072 | -153.1712 | phalarope | 3 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8043 | -152.4847 | peep | 1 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8042 | -152.4703 | radio | 5795(35) |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8588 | -152.4538 | peep | 10 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.8222 | -152.3513 | peep | 3 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.6953 | -152.4281 | peep | 3 |
| 24 | july | 2006 | capesimpson | kogru_river | 70.6048 | -152.3511 | peep | 7 |
| 25 | july | 2006 | deadhorse | border | 70.0589 | -145.4829 | phalarope | 9 |
| 25 | july | 2006 | deadhorse | border | 70.0502 | -145.4721 | peep | 15 |
| 25 | july | 2006 | deadhorse | border | 70.0492 | -145.4785 | peep | 1 |
| 25 | july | 2006 | deadhorse | border | 70.0346 | -144.1820 | dunl | 7 |
| 25 | july | 2006 | deadhorse | border | 70.1009 | -143.7145 | peep | 20 |
| 25 | july | 2006 | deadhorse | border | 70.1207 | -143.2577 | phalarope | 15 |
| 25 | july | 2006 | deadhorse | border | 70.0972 | -143.2288 | peep | 2 |
| 25 | july | 2006 | deadhorse | border | 70.0790 | -143.0198 | phalarope | 2 |
| 25 | july | 2006 | deadhorse | border | 69.8404 | -142.0755 | peep | 100 |

2006 fixed-wing survey 1


2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Aug | 2006 | Barrow | Peard | 71.1396 | -157.0974 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1346 | -157.1073 | phalarope | 12 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1312 | -157.1132 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1269 | -157.1205 | phalarope | 3 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1257 | -157.1225 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1250 | -157.1238 | phalarope | 4 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1224 | -157.1283 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1191 | -157.1339 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1137 | -157.1427 | phalarope | 10 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1116 | -157.1461 | phalarope | 7 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1092 | -157.1499 | phalarope | 3 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1072 | -157.1529 | phalarope | 3 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1070 | -157.1533 | phalarope | 4 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1056 | -157.1554 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1023 | -157.1604 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.1023 | -157.1603 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0991 | -157.1651 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0984 | -157.1661 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0930 | -157.1753 | phalarope | 6 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0912 | -157.1783 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0885 | -157.1830 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0863 | -157.1865 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0855 | -157.1878 | phalarope | 3 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0783 | -157.1999 | phalarope | 5 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0745 | -157.2062 | phalarope | 4 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0465 | -157.2581 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0271 | -157.2997 | phalarope | 3 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 71.0133 | -157.3315 | phalarope | 3 | 20 |
| 3 | Aug | 2006 | Barrow | Peard | 70.9607 | -157.4674 | phalarope | 1 | 20 |
| 3 | Aug | 2006 | Barrow | Peard | 70.9076 | -157.6541 | phalarope | 2 | 50 |
| 3 | Aug | 2006 | Barrow | Peard | 70.8902 | -157.7139 | phalarope | 4 | 30 |
| 3 | Aug | 2006 | Barrow | Peard | 70.8720 | -157.7900 | phalarope | 12 | 20 |
| 3 | Aug | 2006 | Barrow | Peard | 70.8569 | -157.8656 | phalarope | 1 | 30 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8020 | -158.4526 | phalarope | 200 | 10 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8028 | -158.4574 | peep | 50 | 30 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7997 | -159.0388 | phalarope | 100 | 50 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7983 | -159.0277 | phalarope | 7 | 50 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7848 | -158.9519 | phalarope | 2 | 30 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7665 | -158.9807 | peep | 1 | 40 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7716 | -159.0443 | phalarope | 2 | 10 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7767 | -159.0458 | phalarope | 3 | 10 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7667 | -159.0711 | peep | 2 | 40 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7647 | -159.0866 | phalarope | 1 | 50 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7761 | -159.2618 | phalarope | 8 | 30 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.7889 | -159.3420 | phalarope | 10 | 60 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8100 | -159.2835 | peep | 1 | 50 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8328 | -159.1438 | phalarope | 1 | 10 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8359 | -159.1480 | phalarope | 9 | 20 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8365 | -159.1490 | phalarope | 2 | 20 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8594 | -159.1631 | phalarope | 3 | 20 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.8505 | -159.3170 | phalarope | 20 | 20 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.2934 | -161.3733 | phalarope | 4 | 20 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.3035 | -161.6113 | phalarope | 1 | 10 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.3051 | -161.6327 | phalarope | 3 | 10 |
| 3 | Aug | 2006 | Peard | Kasegaluk | 70.3099 | -161.9283 | radio | 5021(55) |  |
| 3 | Aug | 2006 | Kasegaluk | UtukokRiver | 70.2812 | -162.0348 | phalarope | 3 | 20 |
| 3 | Aug | 2006 | Kasegaluk | UtukokRiver | 70.1405 | -162.4360 | phalarope | 6 | 30 |
| 3 | Aug | 2006 | Kasegaluk | UtukokRiver | 70.0811 | -162.5142 | phalarope | 10 | 30 |
| 3 | Aug | 2006 | Kasegaluk | UtukokRiver | 70.0215 | -162.6191 | phalarope | 12 | 50 |
| 3 | Aug | 2006 | UtukokRiver | Barrow | 70.3060 | -161.8434 | radio | 7071(35) |  |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3271 | -156.6872 | dunl | 20 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3501 | -156.5855 | phalarope | 2 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3519 | -156.5734 | phalarope | 50 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3558 | -156.5509 | dunl | 30 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3571 | -156.5437 | phalarope | 25 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3726 | -156.4944 | phalarope | 50 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3734 | -156.4932 | phalarope | 12 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3745 | -156.4916 | phalarope | 3 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3768 | -156.4885 | phalarope | 7 | 40 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3784 | -156.4866 | phalarope | 20 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3887 | -156.4831 | phalarope | 9 | 75 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3895 | -156.4748 | phalarope | 25 | 60 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3877 | -156.4628 | phalarope | 25 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3860 | -156.4569 | phalarope | 12 | 0 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3799 | -156.4648 | phalarope | 4 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3782 | -156.4699 | phalarope | 3 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3539 | -156.5426 | phalarope | 20 | 10 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3535 | -156.5458 | phalarope | 100 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3526 | -156.5530 | phalarope | 100 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3499 | -156.5700 | phalarope | 3 | 10 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3476 | -156.5843 | phalarope | 25 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3464 | -156.5881 | phalarope | 100 | 40 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3432 | -156.5923 | phalarope | 200 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3419 | -156.5931 | phalarope | 100 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3391 | -156.5933 | phalarope | 100 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3365 | -156.5893 | phalarope | 25 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3131 | -156.5585 | phalarope | 50 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3122 | -156.5567 | phalarope | 50 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3116 | -156.5551 | phalarope | 50 | 70 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3107 | -156.5521 | phalarope | 50 | 100 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3043 | -156.5399 | phalarope | 50 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3013 | -156.5361 | phalarope | 3 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.3006 | -156.5353 | phalarope | 10 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2981 | -156.5335 | phalarope | 15 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2952 | -156.5278 | phalarope | 10 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2908 | -156.4419 | phalarope | 50 | 60 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2813 | -156.4261 | phalarope | 10 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2449 | -156.1418 | phalarope | 30 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2182 | -156.0656 | phalarope | 4 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1816 | -156.0538 | phalarope | 8 | 10 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2018 | -155.9451 | phalarope | 20 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2048 | -155.9447 | phalarope | 50 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2067 | -155.9442 | phalarope | 50 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2077 | -155.9440 | phalarope | 50 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.2110 | -155.9433 | phalarope | 8 | 0 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1881 | -155.8954 | phalarope | 4 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1594 | -155.6003 | phalarope | 4 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1576 | -155.5996 | peep | 12 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1505 | -155.5922 | peep | 12 | 10 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1564 | -155.5822 | peep | 20 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1584 | -155.5831 | peep | 3 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1593 | -155.5837 | peep | 12 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1612 | -155.5853 | peep | 5 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1621 | -155.5861 | peep | 8 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1685 | -155.5902 | peep | 15 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1409 | -155.5901 | peep | 12 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1390 | -155.5766 | peep | 13 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.1342 | -155.5647 | peep | 3 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.0893 | -155.5112 | phalarope | 10 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.0706 | -155.5291 | phalarope | 2 | 30 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.0602 | -155.5471 | peep | 50 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.0574 | -155.5667 | phalarope | 3 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.0559 | -155.5746 | phalarope | 3 | 20 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 71.0528 | -155.5841 | peep | 5 | 100 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 70.9597 | -155.8238 | peep | 2 | 50 |
| 4 | Aug | 2006 | Barrow | Kuparuk | 70.9600 | -156.0101 | peep | 10 | 50 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.8931 | -156.0410 | plover | 4 | 70 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.7510 | -156.0047 | phalarope | 50 | 10 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.7530 | -156.0039 | phalarope | 10 | 1 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.7536 | -156.0030 | plover | 2 | 10 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.7548 | -156.0009 | plover | 20 | 10 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.7624 | -155.9931 | phalarope | 3 | 30 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.7569 | -155.8946 | peep | 3 | 30 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.8443 | -155.6038 | phalarope | 1 | 30 |
| 4 | Aug | 2006 | AdmiraltyBay | Kogru | 70.8495 | -155.6058 | phalarope | 1 | 20 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Aug | 2006 | MilnePoint | border | 70.4274 | -148.9654 | peep | 5 | 100 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4060 | -148.9522 | dunl | 4 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4142 | -148.9461 | peep | 1 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4142 | -148.9028 | phalarope | 3 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4271 | -148.8912 | peep | 100 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4083 | -148.8795 | phalarope | 1 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4152 | -148.8424 | peep | 25 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4102 | -148.8587 | phalarope | 3 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4074 | -148.8654 | phalarope | 3 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4041 | -148.8730 | peep | 20 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4048 | -148.8286 | peep | 1 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4030 | -148.8333 | peep | 25 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4014 | -148.8372 | peep | 5 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.3990 | -148.8037 | peep | 10 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.4103 | -148.7404 | peep | 15 | 100 |
| 6 | Aug | 2006 | MilnePoint | border | 70.2034 | -147.5356 | peep | 5 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.2028 | -147.5320 | peep | 15 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1846 | -147.3151 | peep | 12 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1833 | -147.2949 | peep | 4 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.2025 | -147.2735 | peep | 2 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.2217 | -147.1965 | peep | 2 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1924 | -147.2566 | dunl | 1 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1931 | -147.2412 | peep | 20 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1776 | -147.2401 | peep | 2 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1759 | -147.2185 | dunl | 2 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1605 | -147.1896 | peep | 15 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1511 | -146.9946 | peep | 3 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1799 | -146.4797 | peep | 5 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1783 | -146.4110 | peep | 7 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1811 | -146.3985 | peep | 4 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1809 | -146.3887 | phalarope | 50 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1785 | -146.3659 | peep | 4 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1797 | -146.3572 | phalarope | 70 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1789 | -146.3513 | phalarope | 3 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1774 | -146.2880 | phalarope | 2 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1760 | -146.2846 | phalarope | 1 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1469 | -146.0543 | phalarope | 10 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1405 | -146.0218 | phalarope | 6 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1375 | -146.0077 | phalarope | 5 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1397 | -145.9905 | phalarope | 1 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1311 | -145.9275 | peep | 10 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1433 | -145.8989 | phalarope | 3 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1313 | -145.8597 | phalarope | 3 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1573 | -145.8326 | phalarope | 2 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1351 | -145.7826 | dunl | 20 | 30 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Aug | 2006 | MilnePoint | border | 70.0570 | -145.4731 | peep | 2 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0486 | -145.4727 | peep | 25 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0478 | -145.4814 | peep | 3 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0471 | -145.4732 | peep | 4 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0406 | -145.4478 | peep | 2 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0150 | -145.2509 | phalarope | 50 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0191 | -145.2466 | peep | 20 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0237 | -145.2472 | peep | 5 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0275 | -145.1887 | phalarope | 15 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9808 | -145.0481 | peep | 3 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9805 | -145.0249 | peep | 9 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9801 | -145.0192 | phalarope | 1 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9775 | -145.0027 | phalarope | 10 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9749 | -144.9930 | phalarope | 2 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9728 | -144.9866 | peep | 3 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9822 | -144.8259 | phalarope | 10 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 69.9777 | -144.5824 | peep | 3 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0177 | -144.4858 | peep | 20 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0183 | -144.4615 | peep | 5 | 60 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0239 | -144.4278 | peep | 10 | 120 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0267 | -144.4093 | peep | 150 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0291 | -144.4061 | peep | 100 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0353 | -144.1800 | peep | 4 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0455 | -144.1286 | dunl | 20 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0426 | -144.1182 | peep | 50 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0396 | -144.1059 | peep | 8 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0385 | -144.0903 | peep | 15 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0392 | -144.0870 | peep | 10 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0690 | -144.1190 | peep | 4 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0759 | -144.0817 | peep | 10 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0803 | -144.0175 | peep | 10 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0809 | -143.9777 | peep | 40 | 70 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0821 | -143.9551 | peep | 20 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0817 | -143.9510 | peep | 15 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0799 | -143.9458 | peep | 10 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0752 | -143.9532 | lbdo | 20 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0777 | -143.9148 | peep | 20 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0778 | -143.9092 | peep | 3 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0859 | -143.7763 | peep | 10 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0882 | -143.7671 | peep | 3 | 40 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0891 | -143.7638 | peep | 6 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0909 | -143.7571 | phalarope | 10 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1008 | -143.6926 | peep | 12 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0955 | -143.6663 | peep | 10 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0973 | -143.5123 | peep | 3 | 30 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Aug | 2006 | MilnePoint | border | 70.1063 | -143.3409 | peep | 100 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1093 | -143.3465 | plover | 6 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1143 | -143.3520 | peep | 200 | 60 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1135 | -143.3394 | peep | 150 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1226 | -143.3090 | peep | 25 | 70 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1162 | -143.2059 | peep | 50 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 70.1004 | -143.2390 | peep | 7 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 70.0594 | -142.9889 | peep | 5 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8556 | -142.2485 | peep | 8 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8511 | -142.1561 | peep | 50 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8504 | -142.1689 | plover | 3 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8460 | -142.1384 | phalarope | 15 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8463 | -142.1151 | dunl | 2 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8462 | -142.1049 | peep | 20 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8396 | -142.1099 | peep | 2 | 10 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8465 | -142.0983 | plover | 7 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8478 | -142.0921 | peep | 35 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8436 | -142.0886 | peep | 75 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8375 | -142.0979 | phalarope | 4 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8384 | -142.0891 | phalarope | 20 | 20 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8402 | -142.0824 | peep | 20 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8402 | -142.0821 | peep | 25 | 60 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8404 | -142.0745 | peep | 75 | 70 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8399 | -142.0702 | peep | 200 | 70 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8389 | -142.0673 | peep | 100 | 70 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8361 | -142.0557 | peep | 150 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8253 | -142.0491 | peep | 15 | 60 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8227 | -142.0384 | peep | 10 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8032 | -142.0214 | peep | 20 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.8033 | -141.9269 | peep | 30 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7944 | -141.8270 | phalarope | 7 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7831 | -141.7761 | phalarope | 7 | 0 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7819 | -141.7243 | phalarope | 25 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7802 | -141.7137 | peep | 10 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7716 | -141.6819 | peep | 50 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7572 | -141.6568 | peep | 50 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7579 | -141.6522 | peep | 75 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7588 | -141.6450 | peep | 120 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7555 | -141.6189 | peep | 40 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7546 | -141.6146 | peep | 40 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7529 | -141.6089 | peep | 20 | 30 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7515 | -141.6067 | peep | 50 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7504 | -141.6050 | peep | 100 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.7448 | -141.5884 | peep | 400 | 50 |
| 6 | Aug | 2006 | MilnePoint | border | 69.6417 | -141.3941 | peep | 15 | 30 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4005 | -148.7974 | peep | 7 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4036 | -148.6736 | peep | 10 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3954 | -148.6019 | phalarope | 100 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3955 | -148.6080 | peep | 20 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3942 | -148.5875 | phalarope | 30 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3592 | -148.4730 | peep | 20 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3156 | -148.2286 | peep | 30 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3140 | -148.2285 | phalarope | 3 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3054 | -148.2260 | peep | 7 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3370 | -148.1657 | peep | 10 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3306 | -148.1561 | peep | 30 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3280 | -148.1568 | peep | 30 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3132 | -148.1558 | peep | 10 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3254 | -148.1327 | peep | 15 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3338 | -148.1101 | peep | 15 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3328 | -148.1067 | peep | 20 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3322 | -148.1020 | peep | 20 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3278 | -148.0737 | rutu | 2 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3210 | -148.0570 | peep | 15 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3140 | -148.1164 | peep | 5 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3178 | -147.9898 | peep | 50 | 0 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3059 | -147.9841 | peep | 50 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3012 | -147.9855 | dunl | 6 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2759 | -148.0279 | peep | 13 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2737 | -148.0309 | peep | 20 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2999 | -147.9466 | peep | 500 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2954 | -147.9074 | peep | 40 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2939 | -147.9245 | Ibdo | 1 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2879 | -147.9691 | Ibdo | 6 | 0 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2856 | -147.9846 | peep | 50 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2801 | -147.9578 | peep | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2709 | -147.7917 | peep |  | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2646 | -147.7908 | phalarope | 10 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2622 | -147.7910 | peep | 10 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2560 | -147.8104 | radio | 5332(55) |  |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2635 | -147.8389 | peep | 10 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2498 | -147.8537 | radio | 6219(35) |  |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.2446 | -147.7856 | phalarope | 6 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5085 | -149.4467 | peep |  | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5028 | -149.6460 | phalarope | 20 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5016 | -149.8534 | phalarope | 25 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4195 | -150.1195 | peep | 3 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4177 | -150.1090 | peep | 6 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4269 | -150.1587 | peep | 7 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4279 | -150.1533 | phalarope | 6 | 30 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4300 | -150.1502 | phalarope | 6 | 0 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4352 | -150.1932 | peep | 5 | 0 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4269 | -150.2483 | peep | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4187 | -150.2882 | phalarope | 4 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4147 | -150.3089 | phalarope | 5 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4079 | -150.3448 | peep | 4 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4728 | -150.3640 | peep | 20 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4753 | -150.3574 | peep | 70 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4778 | -150.3552 | peep | 25 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4771 | -150.3681 | peep | 3 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4763 | -150.5224 | phalarope | 7 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4456 | -150.5550 | phalarope | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4634 | -150.5820 | peep | 12 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4583 | -150.5958 | peep | 2 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4605 | -150.5965 | peep | 3 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4607 | -150.5964 | peep | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4623 | -150.5962 | phalarope | 1 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4642 | -150.5958 | phalarope | 3 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4760 | -150.6322 | phalarope | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4691 | -150.6295 | phalarope | 15 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4715 | -150.6426 | peep | 5 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4797 | -150.6519 | peep | 25 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4478 | -150.9331 | phalarope | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4459 | -150.9869 | phalarope | 3 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3884 | -151.2866 | peep | 10 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4018 | -151.3629 | peep | 25 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.3865 | -151.4283 | phalarope | 35 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4050 | -151.4309 | dunl | 6 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4078 | -151.4313 | peep | 5 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4489 | -151.9620 | rutu | 4 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4626 | -151.9534 | peep | 2 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4795 | -151.8675 | phalarope | 9 | 15 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.4870 | -151.8221 | peep | 3 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5113 | -151.7865 | peep | 15 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5517 | -151.8489 | peep | 25 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5523 | -151.8511 | peep | 15 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5617 | -151.9628 | peep | 7 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5413 | -152.6208 | phalarope | 1 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5552 | -152.6351 | peep | 25 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5510 | -152.6378 | peep | 15 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5454 | -152.6150 | phalarope | 8 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.5729 | -152.1422 | peep | 7 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.6089 | -152.4236 | peep | 2 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.6685 | -152.5104 | peep | 30 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.7119 | -152.3983 | peep | 10 | 20 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.7536 | -152.3392 | dunl | 1 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.7966 | -154.2266 | peep | 2 | 10 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8034 | -154.3373 | peep | 10 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.7979 | -154.3417 | peep | 20 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8051 | -154.4900 | phalarope | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8253 | -154.5418 | peep | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8106 | -154.5501 | dunl | 4 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.7975 | -154.5615 | lbdo | 7 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8672 | -154.6851 | peep | 2 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8684 | -154.6846 | dunl | 5 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.8754 | -154.6837 | dunl | 5 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9023 | -154.6781 | peep | 4 | 0 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9085 | -154.6230 | peep | 5 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9296 | -154.6309 | dunl | 3 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9292 | -154.6377 | peep | 12 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9293 | -154.6455 | peep | 5 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9303 | -154.6492 | peep | 25 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0431 | -154.6870 | pesa | 1 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0628 | -154.7357 | phalarope | 6 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0739 | -154.7729 | phalarope | 20 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0759 | -154.7788 | phalarope | 20 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0771 | -154.7839 | phalarope | 20 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0788 | -154.7892 | phalarope | 2 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0833 | -154.8216 | phalarope | 300 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0822 | -154.8277 | phalarope | 50 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0737 | -154.8390 | phalarope | 7 | 0 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0803 | -154.8838 | peep | 7 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0815 | -154.8838 | phalarope | 4 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0908 | -154.8900 | peep | 25 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0915 | -154.8947 | phalarope | 20 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0915 | -154.8986 | peep | 30 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0890 | -154.9043 | peep | 10 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1007 | -154.8968 | peep | 20 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1017 | -154.9025 | peep | 20 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1020 | -154.9051 | phalarope | 30 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0358 | -155.0110 | phalarope | 3 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0339 | -155.0115 | peep | 8 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0527 | -155.0325 | dunl | 7 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0538 | -155.0330 | peep | 4 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0701 | -155.0426 | peep | 2 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1183 | -155.0316 | peep | 3 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1319 | -155.0499 | peep | 30 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1338 | -155.0597 | peep | 25 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1363 | -155.0640 | peep | 5 | 30 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1430 | -155.0845 | dunl | 20 | 30 |

2006 fixed-wing survey 2

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1390 | -155.0906 | phalarope | 15 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1360 | -155.0842 | phalarope | 10 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1270 | -155.0873 | phalarope | 2 | 40 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1219 | -155.1005 | phalarope | 15 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1074 | -155.0642 | phalarope | 2 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0659 | -155.0896 | phalarope | 5 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0794 | -155.1305 | phalarope | 100 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0826 | -155.1340 | peep | 50 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0840 | -155.1355 | peep | 7 | 20 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0858 | -155.1372 | phalarope | 50 | 60 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0937 | -155.1443 | phalarope | 50 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.1015 | -155.1508 | phalarope | 50 | 70 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9958 | -155.2390 | phalarope | 25 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 70.9980 | -155.2417 | peep | 50 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0041 | -155.2489 | phalarope | 6 | 50 |
| 7 | Aug | 2006 | SagDelta | Barrow | 71.0082 | -155.2525 | peep | 15 | 50 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | total | 9853 |  |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | Aug | 6 | Barrow | Kasegaluk | 0 | 0 | phalarope | 300 | 10 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3703 | -156.488 | phalarope | 2 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3774 | -156.472 | phalarope | 15 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3823 | -156.45 | phalarope | 100 | 70 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3808 | -156.442 | phalarope | 200 | 70 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3767 | -156.431 | phalarope | 25 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3725 | -156.419 | phalarope | 15 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3714 | -156.416 | phalarope | 15 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3679 | -156.406 | phalarope | 5 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3653 | -156.396 | phalarope | 25 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3644 | -156.393 | phalarope | 5 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3637 | -156.39 | phalarope | 15 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3583 | -156.364 | phalarope | 1 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3623 | -156.364 | phalarope | 100 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3665 | -156.391 | phalarope | 200 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3675 | -156.395 | phalarope | 200 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3688 | -156.399 | phalarope | 100 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.371 | -156.407 | phalarope | 75 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3733 | -156.414 | phalarope | 50 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3756 | -156.421 | phalarope | 50 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3776 | -156.426 | phalarope | 50 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3848 | -156.447 | phalarope | 200 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3867 | -156.455 | phalarope | 200 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3879 | -156.463 | phalarope | 100 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3886 | -156.468 | phalarope | 100 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3891 | -156.474 | phalarope | 100 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3875 | -156.481 | phalarope | 100 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3856 | -156.482 | phalarope | 200 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3821 | -156.48 | phalarope | 100 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3734 | -156.489 | phalarope | 15 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3723 | -156.491 | phalarope | 25 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3697 | -156.496 | phalarope | 5 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3596 | -156.524 | phalarope | 10 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3581 | -156.532 | phalarope | 50 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3564 | -156.54 | phalarope | 50 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3556 | -156.544 | phalarope | 50 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3541 | -156.552 | phalarope | 100 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.353 | -156.557 | phalarope | 100 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3515 | -156.566 | phalarope | 50 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3504 | -156.573 | phalarope | 100 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3487 | -156.585 | phalarope | 50 | 70 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3209 | -156.702 | phalarope | 5 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.3189 | -156.709 | phalarope | 10 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.2427 | -156.898 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.2387 | -156.906 | phalarope | 3 | 20 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.0973 | -157.166 | phalarope | 10 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.0903 | -157.178 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 71.0503 | -157.247 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.9448 | -157.514 | phalarope | 5 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8737 | -157.777 | phalarope | 2 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8732 | -157.779 | phalarope | 3 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8358 | -157.996 | phalarope | 4 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8317 | -158.025 | phalarope | 6 | 0 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8303 | -158.037 | phalarope | 7 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8175 | -158.208 | phalarope | 4 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8172 | -158.217 | phalarope | 50 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8169 | -158.228 | phalarope | 2 |  |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8169 | -158.228 | phalarope | 25 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8166 | -158.241 | phalarope | 25 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.817 | -158.268 | phalarope | 200 | 0 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.817 | -158.282 | phalarope | 20 | 10 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7982 | -158.399 | phalarope | 5 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7965 | -158.44 | phalarope | 4 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7927 | -158.579 | phalarope | 10 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7869 | -158.719 | phalarope | 3 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7869 | -158.719 | dunl | 1 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7942 | -158.919 | phalarope | 2 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7948 | -158.927 | phalarope | 1 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8072 | -159.013 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.804 | -159.065 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8003 | -159.04 | phalarope | 100 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7997 | -159.032 | phalarope | 50 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7839 | -158.951 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7718 | -158.958 | phalarope | 15 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.7683 | -159.063 | dunl | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8566 | -159.178 | phalarope | 3 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8519 | -159.188 | lbdo | 1 | 10 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8457 | -159.247 | peep | 20 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8442 | -159.253 | phalarope | 40 | 10 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.8435 | -159.285 | peep | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.843 | -159.367 | реep | 25 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.6734 | -159.96 | peep | 3 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.6149 | -160.102 | phalarope | 25 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.5442 | -160.259 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.4399 | -160.549 | phalarope | 2 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.4382 | -160.551 | phalarope | 4 | 30 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.4373 | -160.552 | phalarope | 4 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.4367 | -160.553 | phalarope | 10 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.4334 | -160.561 | peep | 10 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.4184 | -160.627 | phalarope | 4 | 20 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.3698 | -160.767 | peep | 10 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.3368 | -160.881 | peep |  | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.3127 | -161.05 | phalarope | 2 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.2815 | -161.171 | dunl | 6 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.2473 | -161.321 | phalarope | 50 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.2413 | -161.461 | phalarope | 10 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.2785 | -161.805 | peep | 12 | 0 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.3026 | -161.834 | peep | 25 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.18 | -162.11 | peep | 25 | 70 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 70.0892 | -162.307 | peep | 3 | 40 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.9628 | -162.501 | peep | 25 | 0 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.7637 | -162.968 | phalarope | 10 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.6731 | -163.032 | phalarope | 12 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.67 | -163.029 | phalarope | 50 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.6652 | -163.041 | peep | 20 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.6444 | -163.003 | peep | 30 | 60 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.6437 | -163.027 | phalarope | 10 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.6342 | -163.045 | dunl | 5 | 20 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.5976 | -163.093 | peep | 3 | 50 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.5932 | -163.119 | phalarope | 10 | 0 |
| 9 | Aug | 6 | Barrow | Kasegaluk | 69.4828 | -163.071 | peep | 10 | 70 |
| 11 | Aug | 6 | Barrow | ScottPoint | 71.3364 | -156.588 | rutu | 9 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3059 | -156.579 | peep | 10 | 0 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3007 | -156.591 | peep | 12 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3069 | -156.572 | dunl | 3 | 10 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3608 | -156.342 | phalarope | 50 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3602 | -156.334 | phalarope | 10 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3596 | -156.328 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3591 | -156.323 | phalarope | 20 | 10 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3588 | -156.321 | phalarope | 3 | 10 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3579 | -156.315 | phalarope | 20 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3571 | -156.309 | phalarope | 15 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3557 | -156.298 | phalarope | 50 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3536 | -156.292 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3523 | -156.289 | phalarope | 10 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3507 | -156.284 | phalarope | 10 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3502 | -156.282 | phalarope | 40 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3479 | -156.276 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3465 | -156.275 | phalarope |  | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3443 | -156.273 | phalarope | 5 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3416 | -156.223 | phalarope | 15 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3413 | -156.215 | phalarope | 1 | 10 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3411 | -156.207 | phalarope | 10 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3405 | -156.202 | phalarope | 10 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3394 | -156.193 | phalarope | 20 | 10 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Aug | 6 | Barrow | ScottPoint barrier | 71.3385 | -156.184 | phalarope | 20 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3376 | -156.177 | phalarope | 10 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3356 | -156.161 | phalarope | 30 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3321 | -156.139 | phalarope | 50 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3313 | -156.133 | phalarope | 20 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3302 | -156.123 | phalarope | 10 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3296 | -156.118 | phalarope | 50 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3294 | -156.115 | phalarope | 10 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3284 | -156.108 | phalarope | 10 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.327 | -156.099 | phalarope | 10 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3262 | -156.094 | phalarope | 10 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3256 | -156.091 | phalarope | 10 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3246 | -156.086 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3236 | -156.08 | phalarope | 20 | 40 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3228 | -156.075 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint barrier | 71.3221 | -156.07 | phalarope | 20 | 60 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3207 | -156.062 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3199 | -156.059 | phalarope | 20 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3191 | -156.055 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3173 | -156.047 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3154 | -156.039 | phalarope | 50 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3145 | -156.036 | phalarope | 20 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3145 | -156.036 | phalarope | 50 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3114 | -156.019 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3108 | -156.016 | phalarope | 20 | 40 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3104 | -156.014 | phalarope | 10 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3092 | -156.009 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3081 | -156.004 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3075 | -156.002 | phalarope | 20 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3075 | -156.002 | phalarope | 30 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3052 | -155.996 | phalarope | 50 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3042 | -155.992 | phalarope | 50 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3026 | -155.987 | phalarope | 20 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.3013 | -155.984 | phalarope | 30 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2999 | -155.981 | phalarope | 50 | 30 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2946 | -155.968 | phalarope | 20 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2921 | -155.96 | phalarope | 5 | 10 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2909 | -155.957 | phalarope | 5 | 10 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2908 | -155.956 | phalarope | 5 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2884 | -155.951 | phalarope | 10 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2869 | -155.949 | phalarope | 3 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.279 | -155.935 | phalarope | 2 | 20 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.277 | -155.934 | phalarope | 6 | 50 |
| 11 | Aug | 6 | Barrow | ScottPoint_barrier | 71.2612 | -155.924 | phalarope |  | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2202 | -156.073 | phalarope | 2 | 30 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2212 | -156.075 | phalarope | 2 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2227 | -156.082 | phalarope | 4 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2229 | -156.087 | phalarope | 4 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2223 | -156.105 | dunl | 2 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.221 | -156.111 | phalarope | 4 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2246 | -156.098 | peep | 3 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2246 | -156.098 | phalarope | 3 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2259 | -156.092 | phalarope | 5 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.228 | -156.093 | phalarope | 10 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2292 | -156.093 | phalarope | 2 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2324 | -156.083 | phalarope | 1 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2308 | -156.084 | phalarope | 1 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2325 | -156.082 | phalarope | 2 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2361 | -156.079 | phalarope | 1 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.24 | -156.085 | phalarope | 20 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2415 | -156.096 | peep | 1 | 20 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.245 | -156.141 | реep | 4 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2503 | -156.164 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2567 | -156.201 | phalarope | 1 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2581 | -156.212 | peep | 15 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2595 | -156.229 | peep | 4 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2688 | -156.311 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2605 | -156.297 | peep | 15 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.265 | -156.41 | phalarope | 2 | 50 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2663 | -156.413 | phalarope | 2 | 10 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2669 | -156.411 | phalarope | 5 | 30 |
| 11 | Aug | 6 | ScottPoint | Barrow_coast | 71.2927 | -156.528 | dunl | 5 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.2084 | -156.045 | phalarope | 5 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.205 | -156.04 | phalarope | 8 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.2026 | -156.035 | phalarope | 10 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1986 | -156.034 | phalarope | 3 | 10 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1825 | -156.053 | phalarope | 2 | 10 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1822 | -156.056 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1778 | -156.072 | phalarope | 20 | 10 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.17 | -156.096 | phalarope | 5 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1645 | -156.104 | phalarope | 2 | 70 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1664 | -156.092 | phalarope | 10 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1685 | -156.068 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.171 | -156.032 | phalarope | 2 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1722 | -156.019 | phalarope | 2 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1759 | -156.002 | phalarope | 1 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1779 | -155.992 | phalarope | 3 | 10 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1808 | -155.989 | phalarope | 2 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1823 | -155.979 | phalarope | 2 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay | 71.1823 | -155.979 | phalarope | 2 | 20 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1846 | -155.959 | phalarope | 4 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1882 | -155.952 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1965 | -155.946 | phalarope | 5 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2005 | -155.943 | phalarope | 20 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2086 | -155.942 | phalarope | 4 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2308 | -155.752 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2322 | -155.74 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2318 | -155.721 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2314 | -155.692 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2336 | -155.672 | phalarope | 50 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2338 | -155.663 | phalarope | 50 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2328 | -155.655 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2321 | -155.651 | phalarope | 50 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2312 | -155.639 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2308 | -155.635 | phalarope | 20 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.23 | -155.629 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2291 | -155.621 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.228 | -155.613 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2262 | -155.603 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2256 | -155.599 | phalarope | 20 | 60 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2241 | -155.591 | phalarope | 10 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2237 | -155.586 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2231 | -155.561 | phalarope | 20 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2218 | -155.554 | phalarope | 5 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2211 | -155.552 | phalarope | 50 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2201 | -155.549 | phalarope | 30 | 60 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2188 | -155.547 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2139 | -155.514 | phalarope | 5 | 60 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2104 | -155.491 | phalarope | 10 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2097 | -155.487 | phalarope | 5 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2091 | -155.482 | phalarope | 20 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2076 | -155.459 | phalarope | 2 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2066 | -155.453 | phalarope | 5 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2057 | -155.449 | phalarope | 2 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.2045 | -155.445 | phalarope | 15 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1967 | -155.424 | phalarope | 3 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1843 | -155.404 | phalarope | 15 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1785 | -155.36 | phalarope | 2 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1768 | -155.348 | phalarope | 3 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1801 | -155.305 | phalarope | 5 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1801 | -155.305 | phalarope | 5 | 60 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1796 | -155.297 | phalarope | 10 | 60 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1795 | -155.288 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1791 | -155.277 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1788 | -155.272 | phalarope | 10 | 30 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1784 | -155.257 | phalarope | 20 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1782 | -155.252 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1781 | -155.246 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.177 | -155.231 | phalarope | 8 | 20 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1758 | -155.218 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1743 | -155.21 | phalarope | 20 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1727 | -155.201 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1717 | -155.196 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1708 | -155.192 | phalarope | 50 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1652 | -155.184 | phalarope | 20 | 0 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1639 | -155.174 | phalarope | 15 | 10 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.163 | -155.164 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1599 | -155.115 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1582 | -155.103 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.157 | -155.095 | phalarope | 20 | 40 |
| 11 | Aug | 6 | ScottPoint | FatigueBay_barrier | 71.1554 | -155.089 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1803 | -155.685 | phalarope | 10 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1796 | -155.696 | phalarope | 10 | 30 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1809 | -155.715 | phalarope | 30 | 70 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1825 | -155.72 | phalarope | 30 | 20 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1843 | -155.724 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1902 | -155.732 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1919 | -155.737 | phalarope | 20 | 30 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1925 | -155.749 | phalarope | 15 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.19 | -155.769 | phalarope | 50 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1903 | -155.772 | phalarope | 100 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1919 | -155.783 | phalarope | 15 | 30 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1936 | -155.79 | phalarope | 30 | 40 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.19 | -155.831 | phalarope | 20 | 40 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1874 | -155.854 | phalarope | 9 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1869 | -155.878 | phalarope | 10 | 60 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.186 | -155.889 | phalarope | 15 | 0 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1819 | -155.878 | phalarope | 20 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1803 | -155.877 | phalarope | 10 | 50 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1774 | -155.896 | peep | 15 | 60 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.187 | -155.889 | phalarope | 40 | 10 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.2084 | -155.918 | phalarope | 5 | 20 |
| 11 | Aug | 6 | ChristiePoint | ? | 71.1358 | -155.791 | phalarope | 2000 |  |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.777 | -154.25 | peep | 6 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.7762 | -154.243 | phalarope | 2 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.7712 | -154.199 | dunl | 2 | 40 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8842 | -153.564 | peep | 20 | 50 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8838 | -153.52 | phalarope | 20 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8839 | -153.507 | phalarope | 20 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8841 | -153.501 | rutu | 3 | 10 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS N | GPS W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8845 | -153.489 | phalarope | 50 | 50 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8892 | -153.427 | rutu | 2 | 10 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8962 | -153.373 | dunl | 10 | 50 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.9103 | -153.042 | phalarope | 5 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8857 | -152.997 | phalarope | 4 | 10 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8884 | -153.037 | phalarope | 3 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.89 | -153.008 | phalarope | 20 | 10 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8877 | -152.913 | phalarope | 15 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8858 | -152.907 | phalarope | 20 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8843 | -152.904 | phalarope | 50 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8686 | -152.9 | phalarope | 10 | 10 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8662 | -152.898 | phalarope | 20 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8641 | -152.893 | phalarope | 50 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8624 | -152.89 | phalarope | 20 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8574 | -152.88 | phalarope | 20 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8512 | -152.866 | phalarope | 20 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8489 | -152.855 | phalarope | 100 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8486 | -152.846 | phalarope | 50 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.864 | -152.727 | phalarope | 2 | 10 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.881 | -152.688 | phalarope | 200 | 50 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8789 | -152.589 | peep | 10 | 30 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.881 | -152.579 | rutu | 4 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.8805 | -152.573 | rutu | 1 | 20 |
| 11 | Aug | 6 | AnagruakPoint | ? | 70.7415 | -152.391 | rutu | 3 | 20 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4961 | -149.757 | phalarope | 4 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.5025 | -149.725 | phalarope | 5 | 20 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4992 | -149.705 | peep | 25 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.495 | -149.541 | peep | 1 | 20 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4886 | -149.274 | dunl | 1 | 60 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4285 | -148.874 | peep | 25 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4163 | -148.844 | peep | 20 | 60 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.3315 | -148.466 | peep | 15 | 20 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4923 | -149.919 | phalarope | 2 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4303 | -150.223 | phalarope | 3 | 40 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4751 | -150.611 | phalarope | 5 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4141 | -151.195 | phalarope | 4 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.3699 | -151.147 | peep | 25 | 50 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.3677 | -151.153 | peep | 25 | 30 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.3645 | -151.231 | phalarope | 3 | 40 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4229 | -151.422 | peep | 50 | 50 |
| 12 | Aug | 2006 | Kuparuk | OliktokPoint | 70.4017 | -151.377 | phalarope | 25 | 0 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8 | -154.247 | dunl | 2 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.7889 | -154.234 | dunl | 3 | 20 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.7837 | -154.269 | phalarope | 10 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8198 | -154.454 | dunl | 10 | 30 |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8229 | -154.511 | phalarope | 1 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.807 | -154.541 | phalarope | 2 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.802 | -154.563 | phalarope | 50 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8299 | -154.61 | peep | 2 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8489 | -154.616 | peep | 3 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8607 | -154.608 | phalarope | 25 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8671 | -154.61 | phalarope | 50 | 0 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8863 | -154.643 | phalarope | 100 | 0 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.89 | -154.658 | phalarope | 100 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8898 | -154.771 | phalarope | 4 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8968 | -154.72 | phalarope | 4 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8965 | -154.716 | phalarope | 2 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8962 | -154.713 | phalarope | 5 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8926 | -154.706 | phalarope | 20 | 50 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.892 | -154.69 | phalarope | 200 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.896 | -154.686 | phalarope | 10 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.8986 | -154.683 | phalarope | 10 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9033 | -154.666 | phalarope | 4 | 20 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9077 | -154.637 | phalarope | 20 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9074 | -154.634 | phalarope | 50 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.907 | -154.627 | phalarope | 20 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9069 | -154.623 | phalarope | 20 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.94 | -154.635 | phalarope | 20 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9246 | -154.638 | phalarope | 50 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9233 | -154.631 | peep | 3 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9242 | -154.624 | peep | 4 | 20 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.946 | -154.62 | dunl | 15 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9479 | -154.621 | phalarope | 10 | 40 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.948 | -154.625 | dunl | 2 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9527 | -154.614 | phalarope | 10 | 0 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9933 | -154.572 | radio | 5720(55) |  |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 70.9978 | -154.577 | phalarope | 25 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 71.0391 | -154.673 | phalarope | 20 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 71.0428 | -154.684 | phalarope | 10 | 30 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 71.0443 | -154.689 | phalarope | 50 | 20 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 71.0552 | -154.717 | phalarope | 200 | 20 |
| 12 | Aug | 2006 | IkpikpukDelta | FatigueBay | 71.0775 | -154.784 | phalarope | 500 | 30 |
| 12 | Aug | 2006 | FatigueBay | Kuparuk (inland) | 70.8474 | -153.548 | radio | 5469(35) |  |
| 14 | Aug | 2006 | BullenPoint | Kuparuk | 70.1675 | -146.916 | phalarope | 20 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.3226 | -148.079 | peep | 3 | 100 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2978 | -148.069 | phalarope | 1 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2973 | -148.043 | peep | 5 | 50 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2746 | -148.023 | phalarope | 12 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2347 | -147.791 | dunl | 200 | 70 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2313 | -147.79 | radio | 5294(55) |  |

2006 fixed-wing survey 3

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2084 | -147.603 | dunl | 1 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.2074 | -147.599 | phalarope | 1 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1964 | -147.255 | phalarope | 20 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.19 | -147.259 | dunl | 5 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.19 | -147.259 | peep | 1 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.185 | -147.23 | dunl | 9 | 50 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1705 | -147.231 | dunl | 5 | 20 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1677 | -146.868 | phalarope | 9 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1721 | -146.722 | peep | 3 | 70 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.181 | -146.615 | phalarope | 14 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1818 | -146.458 | phalarope | 3 | 20 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1797 | -146.382 | phalarope | 13 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1795 | -146.353 | phalarope | 15 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1383 | -146.006 | phalarope | 3 | 50 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.0735 | -145.549 | dunl | 200 | 20 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.0209 | -145.252 | dunl | 25 | 50 |
| 17 | Aug | 2006 | Deadhorse | Canning | 69.9911 | -145.17 | plover | 1 | 70 |
| 17 | Aug | 2006 | Deadhorse | Canning | 69.9873 | -145.129 | plover | 2 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 69.9825 | -145.07 | phalarope | 20 | 30 |
| 17 | Aug | 2006 | Deadhorse | Canning | 69.9815 | -145.037 | plover | 12 | 60 |
| 17 | Aug | 2006 | Deadhorse | Canning | 69.9753 | -144.994 | phalarope | 4 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 69.9786 | -144.837 | dunl | 5 | 40 |
| 17 | Aug | 2006 | Deadhorse | Canning | 70.1163 | -145.93 | radio | $5107(35)$ |  |
|  |  |  |  |  |  |  | total | 12844 |  |
|  |  |  |  |  |  |  | 3 |  |  |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.2441 | -156.8965 | phalarope | 200 | 30 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.2361 | -156.9138 | phalarope | 50 | 20 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.2216 | -156.9433 | phalarope | 5 | 20 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.2157 | -156.9554 | phalarope | 50 | 20 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.2066 | -156.9734 | phalarope | 50 | 30 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.2043 | -156.9778 | phalarope | 100 | 50 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.1949 | -156.9965 | phalarope | 50 | 20 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.1749 | -157.0311 | phalarope | 20 | 30 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.1641 | -157.0492 | phalarope | 50 | 40 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.1399 | -157.0961 | phalarope | 20 | 30 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.1173 | -157.1354 | phalarope | 20 | 50 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.0841 | -157.1925 | phalarope | 100 | 30 |
| 23 | Aug | 2006 | Barrow | PeardBay | 71.0231 | -157.3082 | phalarope | 20 | 50 |
| 23 | Aug | 2006 | Barrow | PeardBay | 70.9837 | -157.4041 | phalarope | 20 | 30 |
| 23 | Aug | 2006 | Barrow | PeardBay | 70.9795 | -157.4152 | phalarope | 10 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8239 | -158.3911 | phalarope | 50 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8400 | -158.5461 | phalarope | 2 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7996 | -159.0605 | phalarope | 5 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7970 | -159.0203 | phalarope | 50 | 40 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7923 | -158.9820 | dunl | 10 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7902 | -158.9663 | phalarope | 8 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7693 | -158.9531 | phalarope | 8 | 100 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7692 | -158.9381 | phalarope | 12 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7592 | -159.1961 | phalarope | 3 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7953 | -159.3458 | phalarope | 12 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8430 | -159.3839 | phalarope | 25 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8401 | -159.4039 | phalarope | 50 | 10 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8359 | -159.4300 | phalarope | 50 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8334 | -159.4460 | phalarope | 50 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8283 | -159.4774 | phalarope | 20 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8233 | -159.5089 | phalarope | 50 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8186 | -159.5386 | phalarope | 50 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8125 | -159.5689 | phalarope | 50 | 40 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8054 | -159.6072 | phalarope | 15 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.8039 | -159.6149 | phalarope | 50 | 40 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7972 | -159.6439 | phalarope | 50 | 40 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7920 | -159.6557 | phalarope | 10 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7644 | -159.7147 | phalarope | 12 | 70 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7563 | -159.7319 | phalarope | 20 | 60 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7333 | -159.7960 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7298 | -159.8055 | phalarope | 10 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7201 | -159.8323 | phalarope | 10 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7189 | -159.8358 | phalarope | 50 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7141 | -159.8503 | phalarope | 50 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7087 | -159.8682 | phalarope | 100 | 50 |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.7016 | -159.8905 | phalarope | 200 | 30 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.6966 | -159.9042 | phalarope | 50 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.6762 | -159.9552 | phalarope | 15 | 40 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.6567 | -159.9997 | phalarope | 20 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.6317 | -160.0559 | phalarope | 20 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.6226 | -160.0832 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.5531 | -160.2333 | phalarope | 2 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.5176 | -160.3250 | phalarope | 10 | 70 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.5094 | -160.3505 | phalarope | 20 | 100 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4962 | -160.3865 | phalarope | 20 | 100 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4831 | -160.4317 | phalarope | 15 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4740 | -160.4593 | phalarope | 10 | 10 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4690 | -160.4706 | phalarope | 5 | 40 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4542 | -160.5116 | phalarope | 10 | 80 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4239 | -160.6154 | phalarope | 25 | 80 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.4043 | -160.6945 | phalarope | 8 | 70 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.3953 | -160.7304 | phalarope | 5 | 60 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.3839 | -160.7718 | phalarope | 4 | 60 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.3729 | -160.8191 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.3324 | -161.0328 | phalarope | 5 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.3099 | -161.1917 | phalarope | 3 | 80 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.2990 | -161.5536 | phalarope | 15 | 20 |
| 23 | Aug | 2006 | PeardBay | IcyCape | 70.3137 | -161.7222 | phalarope | 10 | 30 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 70.2879 | -162.0111 | radio | 5095(55) |  |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 70.1405 | -162.4367 | phalarope | 11 | 70 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 70.1258 | -162.4658 | phalarope | 30 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 70.0206 | -162.6212 | dunl | 2 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 70.0011 | -162.6504 | phalarope | 1 | 20 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9764 | -162.6649 | phalarope | 2 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9833 | -162.6489 | dunl | 200 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9856 | -162.6459 | dunl | 100 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9932 | -162.6365 | dunl | 50 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9951 | -162.6398 | dunl | 50 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9524 | -162.7380 | phalarope | 30 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9385 | -162.7674 | dunl | 10 | 70 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9044 | -162.8059 | dunl | 10 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.9028 | -162.8022 | dunl | 50 | 40 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.8916 | -162.8517 | phalarope | 2 | 30 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.8728 | -162.8869 | phalarope | 15 | 30 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.8710 | -162.8906 | dunl | 7 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.8512 | -162.9349 | phalarope | 3 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.8340 | -162.9692 | phalarope | 15 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.7928 | -163.0288 | dunl | 30 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.7496 | -163.0593 | dunl | 25 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.7459 | -163.0622 | dunl | 5 | 60 |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.6019 | -163.1475 | phalarope | 2 | 10 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.5420 | -163.1429 | phalarope | 15 | 30 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.5239 | -163.1428 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.5044 | -163.1396 | dunl | 20 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.5021 | -163.1393 | dunl | 20 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4803 | -163.1453 | phalarope | 4 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4737 | -163.1445 | dunl | 75 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4737 | -163.1445 | phalarope | 30 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4690 | -163.1442 | phalarope | 50 | 70 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4631 | -163.1420 | phalarope | 80 | 40 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4464 | -163.1391 | dunl | 25 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4427 | -163.1383 | phalarope | 10 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.4317 | -163.1412 | dunl | 25 | 60 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.3506 | -163.1810 | phalarope | 30 | 20 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.3448 | -163.1893 | dunl | 25 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.3367 | -163.1971 | phalarope | 25 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.3367 | -163.1971 | dunl | 25 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.3078 | -163.2189 | dunl | 300 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.2920 | -163.2505 | dunl | 6 | 50 |
| 23 | Aug | 2006 | IcyCape | endKasegaluk | 69.2761 | -163.2617 | dunl | 100 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3064 | -156.7552 | phalarope | 20 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3460 | -156.6120 | phalarope | 5 | 20 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3522 | -156.5683 | phalarope | 20 | 20 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3629 | -156.5110 | phalarope | 100 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3671 | -156.5006 | phalarope | 4 | 40 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3844 | -156.4824 | phalarope | 5 | 60 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3818 | -156.4839 | phalarope | 20 | 40 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.3550 | -156.5508 | phalarope | 5 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1801 | -155.6867 | lbdo | 50 | 100 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1562 | -155.5801 | peep | 20 | 0 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1095 | -155.5298 | phalarope | 30 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.9591 | -156.0114 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.9471 | -155.9971 | dunl | 25 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.7569 | -155.9205 | phalarope | 1 | 40 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.7569 | -155.8980 | plover | 1 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.8540 | -155.5021 | phalarope | 2 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.8598 | -155.4860 | phalarope | 3 | 60 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.9884 | -155.3751 | dunl | 2 | 20 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 70.9947 | -155.2327 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0187 | -155.1641 | phalarope | 1 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0255 | -155.1735 | dunl | 1 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0406 | -155.2088 | phalarope | 1 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1082 | -155.1388 | phalarope | 1 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0972 | -155.1472 | dunl | 15 | 20 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0566 | -155.0821 | phalarope | 50 | 30 |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0320 | -155.0490 | phalarope | 2 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0336 | -155.0463 | dunl | 20 | 0 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0355 | -155.0446 | dunl | 10 | 0 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0370 | -155.0445 | dunl | 15 | 0 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0465 | -155.0493 | phalarope | 20 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0529 | -155.0507 | phalarope | 3 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0546 | -155.0516 | phalarope | 1 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.0970 | -155.0669 | phalarope | 3 | 100 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1037 | -155.0680 | phalarope | 2 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1139 | -155.0767 | peep | 3 | 70 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1358 | -155.0802 | phalarope | 15 | 0 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 71.1248 | -155.0322 | peep | 100 | 70 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 0.0000 | 0.0000 | реep | 100 | 50 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 0.0000 | 0.0000 | phalarope | 30 | 30 |
| 23 | Aug | 2006 | Barrow | AdmiraltyBay | 0.0000 | 0.0000 | peep | 7 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0228 | -155.0483 | phalarope | 50 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0045 | -155.0444 | dunl | 15 | 60 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0201 | -154.9991 | phalarope | 15 | 30 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0327 | -155.0166 | dunl | 8 | 30 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0349 | -155.0164 | dunl | 20 | 70 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0420 | -155.0140 | dunl | 50 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0439 | -154.9926 | phalarope | 10 | 30 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0672 | -154.9845 | dunl | 4 | 70 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0481 | -154.9281 | dunl | 30 | 30 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0787 | -154.9398 | dunl | 50 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0853 | -154.9472 | dunl | 30 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.1110 | -154.9159 | dunl | 100 | 60 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0913 | -154.9084 | phalarope | 10 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0862 | -154.8862 | dunl | 30 | 100 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0751 | -154.8381 | phalarope | 15 | 0 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0590 | -154.8637 | dunl | 20 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0607 | -154.8604 | dunl | 20 | 10 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0681 | -154.8463 | phalarope | 100 | 10 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0729 | -154.8415 | phalarope | 100 | 50 |
| 23 | Aug | 2006 | Barrow | CapeSimpson | 71.0722 | -154.7654 | dunl | 2 | 30 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.3348 | -148.0923 | dunl | 100 | 30 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.3335 | -148.1028 | phalarope | 4 | 0 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4533 | -150.5489 | dunl | 11 | 20 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4594 | -150.5443 | dunl | 25 | 20 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4926 | -150.5124 | dunl | 100 | 0 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4940 | -150.5098 | dunl | 50 | 0 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4889 | -150.5834 | dunl | 100 | 30 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4951 | -150.7368 | dunl | 50 | 0 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4345 | -151.0784 | dunl | 30 | 40 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4144 | -151.0795 | dunl | 2 | 20 |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4373 | -151.1498 | dunl | 100 | 50 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.4164 | -151.1959 | dunl | 25 | 20 |
| 24 | Aug | 2006 | SagDelta | FishCreek? | 70.3741 | -151.2611 | phalarope | 7 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8322 | -152.7196 | plover | 1 | 20 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8354 | -152.7224 | phalarope | 2 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8624 | -152.7551 | dunl | 25 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8790 | -152.7712 | dunl | 25 | 20 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8526 | -152.8078 | plover | 1 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8314 | -152.8712 | dunl | 10 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8555 | -152.9146 | phalarope | 7 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8539 | -152.9272 | dunl | 50 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8655 | -152.8955 | phalarope | 10 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8673 | -152.9087 | plover | 1 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8643 | -152.9255 | dunl | 20 | 60 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8685 | -152.9159 | dunl | 20 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8823 | -152.9582 | dunl | 25 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8944 | -152.9998 | dunl | 25 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8959 | -153.0845 | dunl | 50 | 70 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8983 | -153.0909 | dunl | 50 | 70 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.8984 | -153.1130 | dunl | 80 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9033 | -153.1220 | phalarope | 3 | 0 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9172 | -153.1648 | phalarope | 15 | 30 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9132 | -153.1842 | dunl | 10 | 20 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9178 | -153.1803 | dunl | 50 | 0 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9205 | -153.1837 | phalarope | 2 | 20 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9215 | -153.2017 | phalarope | 50 | 20 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9210 | -153.2355 | phalarope | 200 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9193 | -153.2581 | phalarope | 100 | 50 |
| 27 | Aug | 2006 | PogikBay | PtLonely | 70.9171 | -153.2741 | phalarope | 50 | 30 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8982 | -153.3555 | phalarope | 4 | 30 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8938 | -153.3842 | phalarope | 3 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8851 | -153.4645 | phalarope | 20 | 30 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8840 | -153.4883 | phalarope | 15 | 60 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8855 | -153.6294 | phalarope | 3 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8834 | -153.6468 | phalarope | 5 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8709 | -153.6430 | dunl | 3 | 20 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8719 | -153.6486 | dunl | 15 | 20 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8744 | -153.9447 | phalarope | 10 | 20 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8667 | -153.9368 | phalarope | 10 | 100 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8642 | -153.9388 | phalarope | 10 | 30 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8328 | -153.9794 | dunl | 35 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8296 | -153.9828 | phalarope | 50 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8168 | -154.0045 | peep | 10 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8018 | -154.0446 | dunl | 15 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7973 | -154.0549 | phalarope | 20 | 100 |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7862 | -154.0876 | dunl | 12 | 20 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7810 | -154.1086 | dunl | 2 | 20 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7858 | -154.2374 | dunl | 100 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7855 | -154.2580 | dunl | 50 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7888 | -154.2272 | dunl | 3 | 0 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7941 | -154.2284 | dunl | 3 | 0 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.7989 | -154.2403 | plover | 1 | 40 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8103 | -154.3141 | dunl | 15 | 100 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8193 | -154.2980 | dunl | 5 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8000 | -154.3877 | plover | 1 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8014 | -154.3856 | phalarope | 3 | 50 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8158 | -154.3528 | dunl | 25 | 20 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8303 | -154.3400 | dunl | 100 | 10 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8287 | -154.3531 | dunl | 25 | 100 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8162 | -154.3769 | dunl | 25 | 80 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8269 | -154.3773 | dunl | 75 | 60 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8251 | -154.4289 | dunl | 8 | 40 |
| 27 | Aug | 2006 | PtLonely | CapeSimpson | 70.8156 | -154.4581 | dunl | 10 | 60 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8131 | -154.5132 | dunl | 10 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8135 | -154.5601 | phalarope | 3 | 20 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8188 | -154.5578 | dunl | 7 | 20 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8215 | -154.5648 | phalarope | 10 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8352 | -154.5846 | dunl | 20 | 20 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8557 | -154.6052 | phalarope | 3 | 10 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8494 | -154.6270 | dunl | 10 | 10 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8572 | -154.6300 | phalarope | 15 | 10 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8590 | -154.6263 | phalarope | 2 | 10 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8619 | -154.6205 | phalarope | 1 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8643 | -154.6159 | phalarope | 15 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8662 | -154.6123 | phalarope | 3 | 50 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8729 | -154.5999 | dunl | 200 | 70 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8750 | -154.6049 | dunl | 25 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8634 | -154.6389 | dunl | 25 | 50 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8750 | -154.6394 | phalarope | 5 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8797 | -154.6297 | plover | 2 | 50 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8812 | -154.6651 | phalarope | 30 | 50 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8857 | -154.6551 | dunl | 10 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8952 | -154.7117 | dunl | 7 | 80 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8923 | -154.7554 | dunl | 4 | 50 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8912 | -154.7028 | dunl | 2 | 10 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8948 | -154.6904 | phalarope | 5 | 10 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.8962 | -154.6889 | phalarope | 4 | 20 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.9090 | -154.6168 | dunl | 15 | 50 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 70.9391 | -154.6389 | dunl | 7 | 30 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 71.0385 | -154.6752 | phalarope | 50 | 30 |

2006 fixed-wing survey 4

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 71.0450 | -154.6929 | phalarope | 50 | 60 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 71.0467 | -154.6977 | phalarope | 50 | 60 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 71.0478 | -154.7009 | phalarope | 100 | 60 |
| 27 | Aug | 2006 | IkpikpukDelta | CapeSimpson | 71.0497 | -154.7062 | phalarope | 100 | 60 |
|  |  |  |  |  |  |  |  |  |  |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | August | 2007 | Canada border | Barter | 69.6347 | -141.2387 | peep | 20 | 30 |
| 7 | August | 2007 | Canada border | Barter | 69.7542 | -141.6169 | phalarope | 1 | 30 |
| 7 | August | 2007 | Canada border | Barter | 69.7544 | -141.6294 | phalarope | 17 | 30 |
| 7 | August | 2007 | Canada border | Barter | 69.7550 | -141.6462 | phalarope | 4 | 30 |
| 7 | August | 2007 | Canada border | Barter | 69.7686 | -141.6627 | peep | 20 | 80 |
| 7 | August | 2007 | Canada border | Barter | 69.7544 | -141.6711 | phalarope | 2 | 30 |
| 7 | August | 2007 | Canada border | Barter | 69.7741 | -141.6716 | peep | 20 | 50 |
| 7 | August | 2007 | Canada border | Barter | 69.7640 | -141.6816 | phalarope | 10 | 50 |
| 7 | August | 2007 | Canada border | Barter | 69.7506 | -141.6902 | phalarope | 2 | 80 |
| 7 | August | 2007 | Canada border | Barter | 69.7670 | -141.6909 | peep | 10 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7719 | -141.6995 | peep | 1 | 40 |
| 7 | August | 2007 | Canada border | Barter | 69.7514 | -141.7000 | peep | 1 | 100 |
| 7 | August | 2007 | Canada border | Barter | 69.7395 | -141.7275 | phalarope | 1 | 60 |
| 7 | August | 2007 | Canada border | Barter | 69.7624 | -141.7271 | phalarope | 1 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7769 | -141.7274 | phalarope | 2 | 40 |
| 7 | August | 2007 | Canada border | Barter | 69.7813 | -141.7478 | phalarope | 15 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7348 | -141.7576 | phalarope | 6 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7699 | -141.7658 | phalarope | 10 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7720 | -141.7659 | phalarope | 15 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7742 | -141.7768 | phalarope | 15 | 0 |
| 7 | August | 2007 | Canada border | Barter | 69.7364 | -141.7775 | phalarope | 7 | 20 |
| 7 | August | 2007 | Canada border | Barter | 69.7536 | -141.8050 | plover | 7 | 30 |
| 7 | August | 2007 | Canada border | Barter | 69.7787 | -141.8133 | phalarope | 1 | 20 |
| 7 | August | 2007 | Canada border | Barter | 69.7937 | -141.8690 | phalarope | 12 | 100 |
| 7 | August | 2007 | Canada border | Barter | 69.8010 | -141.8760 | phalarope | 13 | 20 |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | August | 2007 | Canada <br> border | Barter | 69.7988 | -141.8924 | phalarope | 3 | 10 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8044 | -141.8928 | phalarope | 3 | 80 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.7886 | -141.9697 | pesa | 8 | 50 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8080 | -142.0270 | stilt | 3 | 100 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8098 | -142.0316 | plover | 5 | 20 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8136 | -142.0176 | plover | 2 | 20 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8143 | -142.0250 | plover | 2 | 50 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8235 | -142.0135 | phalarope | 9 | 20 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8279 | -142.0415 | plover | 30 | 20 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8283 | -142.0214 | stilt | 1 | 20 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8223 | -142.0613 | peep | 4 | 20 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8341 | -142.0465 | phalarope | 8 | 60 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8341 | -142.0606 | peep | 25 | 50 |
| 7 | August | 2007 | Canada <br> border | Canada <br> border | Barter | 69.8365 | -142.1038 | peep | 50 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8366 | -142.1239 | peep | 20 | 50 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.8464 | -142.1576 | phalarope | 3 | 20 |
| 7 | August | 2007 | Canada <br> border <br> 7 | Barter | 69.8490 | -142.2553 | phalarope | 2 | 80 |
| 7 | August | 2007 | Canada <br> border | Barter | 69.9589 | -142.5116 | pesa | 20 | 100 |
| 7 | Canada <br> border | Barter | 70.0035 | -142.6012 | pesa | 15 | 100 |  |  |
| 7 | August | 2007 | Canada <br> border | Barter | 70.0613 | -142.8728 | phalarope | 3 | 40 |
| delta |  |  |  |  |  |  |  |  |  |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1273 | -143.3094 | phalarope | 20 | 80 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1015 | -143.3301 | plover | 1 | 50 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.0958 | -143.3384 | peep | 1 | 100 |
| 7 | August | 2007 | Jago delta | Barter | 70.1172 | -143.3458 | plover | 5 | 0 |
| 7 | August | 2007 | Jago delta | Barter | 70.1172 | -143.3458 | peep | 10 | 0 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1082 | -143.3523 | plover | 10 | 0 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.0946 | -143.3834 | phalarope | 5 | 0 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.0858 | -143.6716 | plover | 9 | 0 |
| 7 | August | 2007 | Jago delta | Barter | 70.0813 | -143.6941 | pesa | 10 | 0 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.0829 | -143.7130 | peep | 30 | 60 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.0836 | -143.7034 | peep | 8 | 0 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.0910 | -143.6850 | phalarope | 9 | 0 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1039 | -143.7071 | peep | 20 | 40 |
| 7 | August | 2007 | Jago delta | Barter | 70.1196 | -143.7308 | plover | 1 | 50 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1212 | -143.7324 | plover | 3 | 50 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1226 | -143.7336 | phalarope | 3 | 50 |
| 7 | August | 2007 | Jago delta | Barter | 70.1337 | -143.5501 | phalarope | 2 | 100 |
| 7 | August | 2007 | $\begin{aligned} & \text { Jago } \\ & \text { delta } \end{aligned}$ | Barter | 70.1240 | -143.5283 | plover | 1 | 70 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1360 | -143.5121 | phalarope | 5 | 50 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1372 | -143.5222 | phalarope | 3 | 30 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1452 | -143.5628 | phalarope | 10 | 30 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1428 | -143.5769 | phalarope | 6 | 30 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1392 | -143.5814 | phalarope | 100 | 40 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1174 | -143.7710 | phalarope | 3 | 60 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1156 | -143.7732 | phalarope | 50 | 50 |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1135 | -143.7755 | phalarope | 200 | 50 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1246 | -143.7726 | plover | 6 | 70 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1083 | -143.7916 | phalarope | 50 | 80 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1076 | -143.8160 | phalarope | 25 | 70 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.1033 | -143.7028 | phalarope | 10 | 40 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0889 | -143.7501 | stilt | 8 | 10 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0736 | -143.8325 | phalarope | 4 | 60 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0733 | -143.8473 | phalarope | 20 | 100 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0781 | -143.9709 | peep | 4 | 10 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0750 | -143.9524 | plover | 2 | 80 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0819 | -143.9692 | stilt | 20 | 60 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0819 | -143.9752 | phalarope | 10 | 100 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0910 | -143.9925 | peep | 30 | 100 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0873 | -144.0275 | peep | 25 | 50 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0392 | -144.1122 | peep | 20 | 80 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0861 | -144.0474 | peep | 9 | 80 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0790 | -144.0677 | peep | 5 | 70 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0483 | -144.1371 | peep | 10 | 50 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0641 | -144.1206 | peep | 4 | 100 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0718 | -144.1457 | plover | 5 | 0 |
| 8 | August | 2007 | Okpilak | Okpilak | 70.0360 | -144.1501 | peep | 2 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 70.0385 | -144.1896 | phalarope | 2 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 70.0358 | -144.2128 | phalarope | 3 | 90 |
| 8 | August | 2007 | Okpilak | Canning | 70.0337 | -144.2717 | peep | 50 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 70.0264 | -144.4331 | peep | 4 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 70.0238 | -144.4454 | phalarope | 3 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 70.0280 | -144.4560 | peep | 20 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 70.0314 | -144.4591 | peep | 2 | 60 |
| 8 | August | 2007 | Okpilak | Canning | 70.0212 | -144.4757 | peep | 4 | 40 |
| 8 | August | 2007 | Okpilak | Canning | 70.0189 | -144.4885 | peep | 8 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0036 | -144.5185 | phalarope | 8 | 70 |
| 8 | August | 2007 | Okpilak | Canning | 70.0021 | -144.5213 | phalarope | 5 | 60 |
| 8 | August | 2007 | Okpilak | Canning | 69.9773 | -144.5807 | phalarope | 3 | 10 |
| 8 | August | 2007 | Okpilak | Canning | 69.9745 | -144.5906 | phalarope | 6 | 20 |
| 8 | August | 2007 | Okpilak | Canning | 69.9697 | -144.6117 | peep | 2 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 69.9645 | -144.6610 | peep | 1 | 80 |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | August | 2007 | Okpilak | Canning | 69.9654 | -144.6911 | peep |  | 80 |
| 8 | August | 2007 | Okpilak | Canning | 69.9675 | -144.7184 | dunl | 25 | 10 |
| 8 | August | 2007 | Okpilak | Canning | 69.9761 | -144.7795 | phalarope | 1 | 80 |
| 8 | August | 2007 | Okpilak | Canning | 69.9804 | -144.8129 | phalarope | 10 | 0 |
| 8 | August | 2007 | Okpilak | Canning | 69.9815 | -144.8237 | phalarope | 4 | 20 |
| 8 | August | 2007 | Okpilak | Canning | 69.9819 | -144.8287 | phalarope | 5 | 60 |
| 8 | August | 2007 | Okpilak | Canning | 69.9839 | -144.8553 | phalarope | 300 | 20 |
| 8 | August | 2007 | Okpilak | Canning | 69.9785 | -144.8330 | phalarope | 3 | 60 |
| 8 | August | 2007 | Okpilak | Canning | 69.9726 | -144.8575 | phalarope | 200 | 40 |
| 8 | August | 2007 | Okpilak | Canning | 69.9726 | -144.8641 | phalarope | 6 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 69.9659 | -144.9723 | phalarope | 4 | 20 |
| 8 | August | 2007 | Okpilak | Canning | 69.9743 | -144.9955 | phalarope | 4 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 69.9762 | -145.0012 | phalarope | 2 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 69.9784 | -145.0130 | peep | 17 | 40 |
| 8 | August | 2007 | Okpilak | Canning | 69.9809 | -145.0565 | phalarope | 5 | 80 |
| 8 | August | 2007 | Okpilak | Canning | 69.9781 | -145.0246 | phalarope | 12 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 69.9810 | -145.0700 | phalarope | 2 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 69.9879 | -145.1453 | phalarope | 7 | 60 |
| 8 | August | 2007 | Okpilak | Canning | 69.9901 | -145.1791 | phalarope | 10 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 69.9966 | -145.2027 | phalarope | 7 | 0 |
| 8 | August | 2007 | Okpilak | Canning | 70.0087 | -145.2313 | phalarope | 8 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 70.0246 | -145.2137 | peep | 150 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0235 | -145.2194 | phalarope | 50 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0225 | -145.1935 | phalarope | 200 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0246 | -145.1796 | phalarope | 6 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0121 | -145.2519 | phalarope | 20 | 40 |
| 8 | August | 2007 | Okpilak | Canning | 70.0163 | -145.2572 | phalarope | 12 | 0 |
| 8 | August | 2007 | Okpilak | Canning | 70.0129 | -145.2814 | phalarope | 2 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0118 | -145.2925 | phalarope | 20 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0116 | -145.3031 | phalarope | 5 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 70.0324 | -145.4281 | phalarope | 2 | 70 |
| 8 | August | 2007 | Okpilak | Canning | 70.0478 | -145.4542 | phalarope | 4 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 70.0474 | -145.4841 | phalarope | 7 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0549 | -145.4682 | phalarope | 3 | 30 |
| 8 | August | 2007 | Okpilak | Canning | 70.0816 | -145.5505 | stilt | 50 | 100 |
| 8 | August | 2007 | Okpilak | Canning | 70.0900 | -145.5566 | phalarope | 30 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0896 | -145.5538 | phalarope | 50 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0909 | -145.5636 | phalarope | 10 | 50 |
| 8 | August | 2007 | Okpilak | Canning | 70.0905 | -145.5607 | phalarope | 50 | 50 |
| 8 | August | 2007 | Canning | west border | 70.1166 | -145.7261 | phalarope | 6 | 100 |
| 8 | August | 2007 | Canning | west border | 70.1387 | -145.7973 | phalarope | 1 | 30 |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | August | 2007 | Canning | west border | 70.1567 | -145.8332 | stilt | 1 | 100 |
| 8 | August | 2007 | Canning | west border | 70.1229 | -145.8893 | phalarope | 1 | 40 |
| 8 | August | 2007 | Canning | west border | 70.1453 | -145.8991 | phalarope | 6 | 100 |
| 8 | August | 2007 | Canning | west border | 70.1322 | -145.9957 | peep | 8 | 80 |
| 8 | August | 2007 | Canning | west border | 70.1388 | -145.7636 | phalarope | 8 | 50 |
| 8 | August | 2007 | Canning | west border | 70.1375 | -145.7599 | phalarope | 17 | 80 |
| 8 | August | 2007 | Canning | west border | 70.1141 | -145.6879 | phalarope | 2 | 50 |
| 8 | August | 2007 | Canning | west border | 70.0988 | -145.6353 | plover | 1 | 100 |
| 8 | August | 2007 | Canning | west border | 70.0972 | -145.6191 | phalarope | 15 | 100 |
| 8 | August | 2007 | Canning | west border | 70.0963 | -145.6054 | plover | 1 | 100 |
| 8 | August | 2007 | Canning | west border | 70.0924 | -145.5729 | plover | 1 | 80 |
| 8 | August | 2007 | Canning | west border | 70.0917 | -145.5672 | phalarope | 100 | 100 |
| 8 | August | 2007 | Canning | west border | 70.0914 | -145.5650 | plover | 3 | 80 |
| 8 | August | 2007 | Canning | west border | 70.0910 | -145.5621 | phalarope | 20 | 80 |
| 8 | August | 2007 | Canning | west border | 70.0904 | -145.5585 | phalarope | 100 | 80 |
| 8 | August | 2007 | Canning | west border | 70.0899 | -145.5549 | plover | 3 | 80 |
| 8 | August | 2007 | Canning | west border | 70.0894 | -145.5520 | phalarope | 20 | 20 |
| 8 | August | 2007 | Canning | west border | 70.0868 | -145.5351 | plover | 1 | 90 |
| 8 | August | 2007 | Canning | west border | 70.0863 | -145.5291 | plover | 1 | 20 |
| 8 | August | 2007 | Canning | west border | 70.0806 | -145.5588 | plover | 3 | 20 |
| 8 | August | 2007 | Canning | west border | 70.0806 | -145.5588 | phalarope | 20 | 20 |
| 8 | August | 2007 | Canning | west border | 70.0810 | -145.5559 | phalarope | 2 | 0 |
| 8 | August | 2007 | Canning | west border | 70.0719 | -145.5448 | phalarope | 2 | 100 |
| 8 | August | 2007 | Canning | west border | 70.0748 | -145.5448 | phalarope | 12 | 20 |
| 8 | August | 2007 | Canning | west border | 70.0721 | -145.5385 | stilt | 20 | 70 |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | August | 2007 | Canning | west border | 70.0766 | -145.5254 | stilt | 12 | 0 |
| 8 | August | 2007 | Canning | Barter | 70.0753 | -145.5171 | plover | 2 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0780 | -145.5191 | stilt | 60 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0819 | -145.5016 | plover | 1 | 10 |
| 8 | August | 2007 | Canning | Barter | 70.0834 | -145.5057 | plover | 1 | 50 |
| 8 | August | 2007 | Canning | Barter | 70.0848 | -145.5123 | plover | 1 | 80 |
| 8 | August | 2007 | Canning | Barter | 70.0851 | -145.5319 | peep | 10 | 30 |
| 8 | August | 2007 | Canning | Barter | 70.0822 | -145.5031 | plover | 2 | 80 |
| 8 | August | 2007 | Canning | Barter | 70.0799 | -145.4946 | phalarope | 5 | 90 |
| 8 | August | 2007 | Canning | Barter | 70.0786 | -145.4907 | plover | 1 | 80 |
| 8 | August | 2007 | Canning | Barter | 70.0782 | -145.4889 | plover | 1 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0770 | -145.4837 | plover | 2 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0766 | -145.4821 | plover | 2 | 90 |
| 8 | August | 2007 | Canning | Barter | 70.0752 | -145.4770 | plover | 8 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0726 | -145.4690 | plover | 1 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0716 | -145.4662 | plover | 2 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0712 | -145.4651 | plover | 3 | 0 |
| 8 | August | 2007 | Canning | Barter | 70.0708 | -145.4640 | plover | 1 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0697 | -145.4616 | plover | 5 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0690 | -145.4603 | plover | 4 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0682 | -145.4586 | plover | 8 | 80 |
| 8 | August | 2007 | Canning | Barter | 70.0677 | -145.4575 | plover | 1 | 80 |
| 8 | August | 2007 | Canning | Barter | 70.0657 | -145.4531 | phalarope | 50 | 80 |
| 8 | August | 2007 | Canning | Barter | 70.0609 | -145.4442 | plover | 1 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0577 | -145.4387 | phalarope | 5 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0562 | -145.4341 | phalarope | 7 | 60 |
| 8 | August | 2007 | Canning | Barter | 70.0543 | -145.4214 | phalarope | 40 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0434 | -145.3609 | phalarope | 50 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0374 | -145.3538 | phalarope | 120 | 40 |
| 8 | August | 2007 | Canning | Barter | 70.0385 | -145.2380 | phalarope | 200 | 30 |
| 8 | August | 2007 | Canning | Barter | 70.0390 | -145.2308 | phalarope | 140 | 40 |
| 8 | August | 2007 | Canning | Barter | 70.0393 | -145.2158 | phalarope | 500 | 40 |
| 8 | August | 2007 | Canning | Barter | 70.0382 | -145.2062 | dunl | 300 | 40 |
| 8 | August | 2007 | Canning | Barter | 69.9893 | -144.9301 | phalarope | 30 | 100 |
| 8 | August | 2007 | Canning | Barter | 69.9903 | -144.9240 | phalarope | 100 | 60 |
| 8 | August | 2007 | Canning | Barter | 69.9845 | -144.8902 | phalarope | 12 | 30 |
| 8 | August | 2007 | Canning | Barter | 70.0220 | -144.4878 | peep | 3 | 100 |
| 8 | August | 2007 | Canning | Barter | 70.0403 | -144.2752 | plover | 1 | 40 |
| 8 | August | 2007 | Canning | Barter | 70.0561 | -144.2550 | phalarope | 7 | 30 |
| 8 | August | 2007 | Canning | Barter | 70.0577 | -144.2486 | phalarope | 4 | 30 |
| 8 | August | 2007 | Canning | Barter | 70.0597 | -144.2318 | phalarope | 3 | 30 |

2007 fixed-wing survey in Arctic National Wildlife Refuge

| Day | Month | Year | FromLoc | ToLoc | GPS_N | GPS_W | Species | Number | PerpDist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | August | 2007 | Canning | Barter | 70.0661 | -144.1469 | phalarope | 2 | 50 |
| 8 | August | 2007 | Canning | Barter | 70.0735 | -144.1468 | plover | 2 | 50 |
| 8 | August | 2007 | Canning | Barter | 70.0764 | -144.1375 | plover | 1 | 40 |
| 8 | August | 2007 | Canning | Barter | 70.0991 | -143.9519 | phalarope | 9 | 50 |
| 8 | August | 2007 | Canning | Barter | 70.1020 | -143.9383 | plover | 1 | 50 |
| 8 | August | 2007 | Canning | Barter | 70.1187 | -143.8714 | phalarope | 1 | 50 |

Appendix 3a. Kasegaluk 2006 transect data by habitat.

| $\stackrel{\text { 厄̈ }}{\stackrel{\text { ® }}{2}}$ |  | $\stackrel{y}{0}$ |  | $\begin{aligned} & \text { U } \\ & \mathbb{U} \\ & \stackrel{N}{\widetilde{\pi}} \end{aligned}$ | $\begin{aligned} & \overline{\bar{O}} \\ & \text { B } \end{aligned}$ |  | $\begin{aligned} & \overline{\boxed{0}} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \frac{0}{\Sigma} \end{aligned}$ | $\begin{aligned} & \stackrel{\Gamma}{0} \\ & \mathbb{\pi} \\ & \stackrel{\otimes}{0} \end{aligned}$ |  |  | $\begin{aligned} & 0 \underset{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \hline 0 \end{aligned}$ | ¢ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 1 | 25-Jul-06 | 206 | 1 | 45 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 1 | n/a | n/a | 2 | n/a |
| 2006 | 1 | 25-Jul-06 | 206 | 3 | 45 | 1 | 0 | n/a |
| 2006 | 1 | 25-Jul-06 | 206 | 4 | 45 | 1 | 0 | n/a |
| 2006 | 1 | 25-Jul-06 | 206 | 5 | 45 | 1 | 0 | n/a |
| 2006 | 1 | 25-Jul-06 | 206 | 6 | 45 | 1 | 25 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 25-Jul-06 | 206 | 7 | 45 | 1 | 0 | n/a |
| 2006 | 1 | 25-Jul-06 | 206 | 8 | 90 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 25-Jul-06 | 206 | 9 | 45 | 1 | 0 | n/a |
| 2006 | 1 | TOTALS |  |  |  |  | 27 | 25 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 28-Jul-06 | 209 | 1 | 45 | 1 | 0 | n/a |
| 2006 | 2 | n/a | n/a | 2 | n/a |
| 2006 | 2 | 28-Jul-06 | 209 | 3 | 45 | 1 | 0 | n/a |
| 2006 | 2 | 28-Jul-06 | 209 | 4 | 45 | 1 | 0 | n/a |
| 2006 | 2 | 28-Jul-06 | 209 | 5 | 45 | 1 | 13 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 28-Jul-06 | 209 | 6 | 45 | 1 | 360 | 360 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 28-Jul-06 | 209 | 7 | 23 | 1 | 0 | n/a |
| 2006 | 2 | 28-Jul-06 | 209 | 8 | 23 | 1 | 0 | n/a |
| 2006 | 2 | 28-Jul-06 | 209 | 9 | 45 | 1 | 9 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
| 2006 | 2 | TOTALS |  |  |  |  | 382 | 373 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 31-Jul-06 | 212 | 1 | 270 | 1 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 2 | 270 | 1 | 39 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 31-Jul-06 | 212 | 3 | 270 | 1 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 4 | 270 | 1 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 5 | 270 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 31-Jul-06 | 212 | 6 | 270 | 1 | 56 | 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 31-Jul-06 | 212 | 7 | 270 | 1 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 8 | 270 | 1 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 9 | 270 | 1 | 0 | n/a |
| 2006 | 3 | TOTALS |  |  |  |  | 96 | 56 | 39 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 1 | 0 | 2 | 203 | 191 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 2 | 45 | 2 | 0 | n/a |
| 2006 | 4 | 3-Aug-06 | 215 | 3 | 45 | 2 | 0 | n/a |
| 2006 | 4 | 3-Aug-06 | 215 | 4 | 45 | 2 | 0 | n/a |
| 2006 | 4 | 3-Aug-06 | 215 | 5 | 45 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 6 | 45 | 2 | 438 | 433 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 7 | 45 | 2 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 8 | 45 | 2 | 0 | n/a |
| 2006 | 4 | 3-Aug-06 | 215 | 9 | 45 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | TOTALS |  |  |  |  | 649 | 625 | 3 | 6 | 5 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 1 | 225 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 2 | 225 | 3 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 3 | 270 | 3 | 10 | 8 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 4 | 225 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 5 | 225 | 3 | 27 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 6 | 225 | 2 | 47 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 7 | 225 | 1 | 44 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 8 | 225 | 2 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6-Aug-06 | 218 | 9 | 225 | 1 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | TOTALS |  |  |  |  | 143 | 129 | 9 | 3 | 2 | 0 | 0 | 0 | 0 |

Appendix 3a. Kasegaluk 2006 transect data by habitat.

| $\stackrel{\text { 厄̈ }}{\stackrel{\text { ® }}{2}}$ |  | $\begin{aligned} & \text { \# } \\ & \stackrel{\pi}{0} \end{aligned}$ | $\begin{aligned} & \frac{0}{\overleftarrow{0}} \\ & \stackrel{0}{亏} \end{aligned}$ | $\begin{aligned} & \overleftarrow{U} \\ & 0 \\ & \text { N} \\ & \stackrel{\widetilde{0}}{=} \end{aligned}$ | $\begin{aligned} & \text { ㅡㅡ } \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\vdots} \\ & \frac{D}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { © } \\ & \text { OU } \end{aligned}$ |  | $\begin{aligned} & \frac{\widetilde{\sigma}}{0} \\ & \vdots \\ & \risingdotseq \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \mathbf{O} \end{aligned}$ | $$ | ฐ్ర్ర్ర |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 6 | 9-Aug-06 | 221 | 1 | 180 | 1 | 0 | n/a |
| 2006 | 6 | 9-Aug-06 | 221 | 2 | 203 | 1 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 3 | 225 | 0 | 39 | 6 | 0 | 33 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 4 | 225 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 5 | 225 | 0 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 6 | 225 | 1 | 106 | 96 | 7 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 7 | 180 | 1 | 25 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 8 | 180 | 1 | 15 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9-Aug-06 | 221 | 9 | 180 | 1 | 12 | 3 | 4 | 0 | 5 | 0 | 0 | 0 | 0 |
| 2006 | 6 | TOTALS |  |  |  |  | 212 | 114 | 17 | 36 | 45 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 1 | 90 | 4 | 21 | 1 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 2 | 90 | 4 | 22 | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 3 | 90 | 4 | 85 | 66 | 0 | 19 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 4 | 90 | 4 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 5 | 90 | 4 | 78 | 54 | 0 | 24 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 6 | 90 | 4 | 139 | 136 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 7 | 90 | 4 | 4 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 8 | 90 | 4 | 4 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 9 | 90 | 4 | 15 | 0 | 11 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | TOTALS |  |  |  |  | 370 | 261 | 56 | 53 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 1 | 0 | 3 | 56 | 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 2 | 0 | 3 | 13 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 3 | 23 | 4 | 29 | 25 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 4 | 45 | 4 | 12 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 5 | 23 | 4 | 77 | 2 | 10 | 65 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 6 | 0 | 3 | 79 | 66 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 7 | 315 | 1 | 0 | n/a |
| 2006 | 8 | 15-Aug-06 | 227 | 8 | 315 | 1 | 19 | 0 | 0 | 14 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 8 | 15-Aug-06 | 227 | 9 | 315 | 0 | 18 | 0 | 4 | 14 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | TOTALS |  |  |  |  | 303 | 149 | 27 | 109 | 13 | 5 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 1 | 45 | 3 | 14 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 2 | 45 | 3 | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 3 | 45 | 3 | 0 | n/a |
| 2008 | 9 | 18-Aug-06 | 230 | 4 | 45 | 3 | 29 | 3 | 20 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 5 | 45 | 3 | 14 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 6 | 45 | 3 | 24 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 7 | 45 | 3 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 8 | 23 | 3 | 3 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
| 2008 | 9 | 18-Aug-06 | 230 | 9 | 23 | 3 | 5 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | TOTALS |  |  |  |  | 99 | 59 | 24 | 14 | 2 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 1 | 45 | 3 | 7 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 2 | 45 | 4 | 38 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 3 | 45 | 3 | 0 | n/a |
| 2006 | 10 | 21-Aug-06 | 233 | 4 | 45 | 3 | 7 | 0 | 4 | 0 | 2 | 0 | 1 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 5 | 45 | 3 | 13 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 6 | 45 | 4 | 15 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 7 | 45 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 8 | 45 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 9 | 45 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |

Appendix 3a．Kasegaluk 2006 transect data by habitat．

| $\stackrel{\text { ® }}{\text { б }}$ |  | $\begin{aligned} & \text { \#, } \\ & \boxed{\pi} \end{aligned}$ | $\begin{aligned} & \stackrel{y}{\pi} \\ & \stackrel{0}{\pi} \\ & 亏 \end{aligned}$ |  |  | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{0}{7} \\ & \widetilde{\sim} \\ & \varnothing \sim \end{aligned}$ | $\begin{aligned} & \text { त⿹丁口㇒ } \\ & \stackrel{0}{\circ} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \sum \sum \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { Ø} \\ & \text { O} \end{aligned}$ |  | $\frac{\sqrt[\pi]{0}}{\frac{1}{\square}}$ | $\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & 0 . \end{aligned}$ | 믕 |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 10 | TOTALS |  |  |  |  | 85 | 55 | 14 | 13 | 2 | 0 | 1 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 1 | 90 | 3 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 2 | 90 | 3 | 0 | n／a |
| 2006 | 11 | 24－Aug－06 | 236 | 3 | 90 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 4 | 90 | 2 | 13 | 0 | 1 | 8 | 0 | 4 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 5 | 90 | 2 | 14 | 0 | 0 | 9 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 6 | 90 | 3 | 28 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 7 | 90 | 2 | 20 | 0 | 0 | 17 | 3 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 8 | 90 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 24－Aug－06 | 236 | 9 | 90 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | TOTALS |  |  |  |  | 81 | 28 | 1 | 36 | 6 | 9 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 1 | 90 | 4 | 15 | 9 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 2 | 90 | 4 | 0 | n／a |
| 2006 | 12 | 27－Aug－06 | 239 | 3 | 90 | 3 | 11 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 4 | 90 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 5 | 90 | 4 | 24 | 21 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 6 | 90 | 4 | 21 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 7 | 90 | 3 | 12 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 8 | 90 | 3 | 17 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 27－Aug－06 | 239 | 9 | 90 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | TOTALS |  |  |  |  | 102 | 59 | 1 | 36 | 6 | 0 | 0 | 0 | 0 |
| 2006 | 13 | n／a | n／a | 1 | n／a |
| 2006 | 13 | 30－Aug－06 | 242 | 2 | 315 | 1 | 17 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | 30－Aug－06 | 242 | 3 | 315 | 1 | 13 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | 30－Aug－06 | 242 | 4 | 0 | 1 | 9 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | 30－Aug－06 | 242 | 5 | 315 | 2 | 0 | n／a |
| 2006 | 13 | 30－Aug－06 | 242 | 6 | 315 | 1 | 0 | n／a |
| 2006 | 13 | 30－Aug－06 | 242 | 7 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | 30－Aug－06 | 242 | 8 | 0 | 1 | 0 | n／a |
| 2006 | 13 | 30－Aug－06 | 242 | 9 | 0 | 1 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | TOTALS |  |  |  |  | 45 | 30 | 9 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 1－Sep－06 | 244 | 1 | 90 | 3 | 0 | n／a |
| 2006 | 14 | 1－Sep－06 | 244 | 2 | 90 | 4 | 16 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 1－Sep－06 | 244 | 3 | 90 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 1－Sep－06 | 244 | 4 | 90 | 3 | 0 | n／a |
| 2006 | 14 | 1－Sep－06 | 244 | 5 | 90 | 2 | 0 | n／a |
| 2006 | 14 | 1－Sep－06 | 244 | 6 | 90 | 4 | 0 | n／a |
| 2006 | 14 | 1－Sep－06 | 244 | 7 | 90 | 3 | 0 | n／a |
| 2006 | 14 | 1－Sep－06 | 244 | 8 | 90 | 3 | 0 | n／a |
| 2006 | 14 | 1－Sep－06 | 244 | 9 | 90 | 3 | 7 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | TOTALS |  |  |  |  | 24 | 17 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2006 |  | TOTAL FOR | CIES |  |  |  |  |  |  |  |  |  |  |  |  |


|  | 7dヨS | $\bigcirc$ | $\stackrel{\text { ® }}{\geq}$ | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | O | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0087 | $\bigcirc$ | $\frac{\pi}{\text { }}$ | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | O | O | O | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | O | O | $\bigcirc$ | $\bigcirc$ |
|  | dЭWV | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | O | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | O | $\bigcirc$ |
|  | ＊S98 | $\bigcirc$ | $\frac{\pi}{\leq}$ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\perp}$ | $\bigcirc$ |
|  | VSVG | $\bigcirc$ | $\frac{\pi}{\text { I }}$ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\perp}$ | $\bigcirc$ |
|  | OLO¢ | $\bigcirc$ | $\frac{\pi}{\leq}$ | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | O | $\bigcirc$ |
|  | CNVS | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | $\stackrel{\pi}{ \pm}$ | $\bigcirc$ |
|  | $\forall$ VヨM | $\bigcirc$ | $\frac{\pi}{\text { I }}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{1}{\square}$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\stackrel{\rightharpoonup}{\square}$ | $\bigcirc$ | $\frac{\pi}{I}$ | $\bigcirc$ | $\bigcirc$ | の | $\infty$ | $\bigcirc$ | $\bigcirc$ | の | $\left\|\begin{array}{l} \hat{N} \\ \underset{\sim}{1} \end{array}\right\|$ | $\bigcirc$ | $\stackrel{O}{-}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | VSヨd | $\bigcirc$ | $\frac{\pi}{\geq}$ | $\bigcirc$ | $\frac{\pi}{\perp}$ | $\bigcirc$ | O | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | O | $\bigcirc$ | O | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{+}{\top}$ | $\bigcirc$ |
|  | $\forall S \perp S$ | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | $\stackrel{\pi}{ \pm}$ | $\bigcirc$ |
|  | Hdヨy | $\bigcirc$ | $\frac{\pi}{\geq}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{ \pm}$ | $\bigcirc$ | $\bigcirc$ | $\neg$ | $\infty$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | の | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | O | O | O | $\bigcirc$ | $\stackrel{\bigcirc}{-1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | の | m |
|  | HdNY | $\bigcirc$ | $\frac{\pi}{\leq}$ | $\bigcirc$ | $\frac{\pi}{x}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\underset{\sim}{\infty}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\left\|\begin{array}{c} \infty \\ \underset{\sim}{2} \end{array}\right\|$ | $\bigcirc$ |
|  | 7d98 | $\bigcirc$ | $\frac{\pi}{\leq}$ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{ \pm}$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | 7Nก0 | $\bigcirc$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | の | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | a | $\bigcirc$ | $\frac{\pi}{\perp}$ | $\bigcirc$ | O | N | $\stackrel{M}{N}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\left\|\begin{array}{l} 10 \\ \stackrel{0}{N} \end{array}\right\|$ | $\bigcirc$ | $\hat{m}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ल | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 악 | $\underset{\sim}{\text {－}}$ | $\bigcirc$ | O | O | $\bigcirc$ | $\stackrel{\text { N }}{\stackrel{1}{+}}$ | m |
|  | $\forall$ SヨS | $\checkmark$ | $\frac{\pi}{\beth}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | N | $\bigcirc$ | $\frac{\pi}{\perp}$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\stackrel{\sim}{*}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\underset{+}{\prime}$ | O | $\sim$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\mathfrak{n}$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{2}}$ | $\bigcirc$ | O | $\bigcirc$ | $\checkmark$ | 안 | $\bigcirc$ |
|  | ｜セıO1 | $\checkmark$ | $\frac{\widetilde{\sigma}}{\beth}$ | $\bigcirc$ | － | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\stackrel{N}{N}$ | $\bigcirc$ | $\frac{\pi}{\perp}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{m}{न}$ | O | $\bigcirc$ | $\bigcirc$ | の | $\left\|\begin{array}{l} \infty \\ \infty \\ m \end{array}\right\|$ | $\bigcirc$ | $\stackrel{\rightharpoonup}{m}$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \end{aligned}\right.$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | o | $\begin{aligned} & \mathrm{M} \\ & \underset{N}{2} \end{aligned}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | ¢ | $\bigcirc$ |
| $\begin{aligned} & \frac{4}{0} \\ & 0 \\ & \hline 0 \end{aligned}$ | みoıneəg | － | $\stackrel{\pi}{\beth}$ | $-1$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\frac{\widetilde{\sigma}}{\underline{1}}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\cdots$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\cdots$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\sim$ | N | N | N | N | $N$ | $\sim$ |
| 入ి | ג！Qpu！M | $\stackrel{\leftrightarrow}{4}$ | $\stackrel{\pi}{\text { }}$ | $\stackrel{\bigcirc}{8}$ | $\|\stackrel{\leftrightarrow}{4}\|$ | $\|ে\|$ | $\|\stackrel{\leftrightarrow}{\mid}\|$ | $\mid \stackrel{\leftrightarrow}{4}$ | ৪ | $\mid \stackrel{\circ}{\square}$ |  | $\|\stackrel{\leftrightarrow}{\mid}\|$ | $\frac{\pi}{\beth}$ | $\|\stackrel{8}{\square}\|$ | $\|\stackrel{\rightharpoonup}{\circ}\|$ | $\stackrel{\leftrightarrow}{\mathrm{O}}$ | $\stackrel{1}{\square}$ | $\stackrel{m}{N}$ | $\stackrel{\sim}{N}$ | $\|\stackrel{\circ}{\square}\|$ |  | $\stackrel{O}{\stackrel{O}{\mathrm{~N}}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{o}{\stackrel{O}{N}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{O}{\mathrm{~N}}$ | $\frac{O}{N}$ | $\stackrel{O}{\mathrm{O}}$ |  | $\bigcirc$ | $\mid \stackrel{\leftrightarrow}{\bullet}$ | $\|\stackrel{\leftrightarrow}{\mid}\|$ | $\mid \stackrel{\rightharpoonup}{\mid}$ | $\underset{\sim}{\circ}$ | $\stackrel{\square}{\square}$ | $\stackrel{10}{7}$ |
| U | $\downarrow$ əsue」1 | $\checkmark$ | N | ๓ | $\checkmark$ | ம | $\bigcirc$ | $\wedge$ | $\infty$ | の |  | $\checkmark$ | N | ल | － | $\cdots$ | 0 | $\wedge$ | $\infty$ | の |  | $\checkmark$ | N | ल | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\wedge$ | $\infty$ | の |  | $\checkmark$ | N | ๓ | $\checkmark$ | $\cdots$ | 0 | N |
|  | әпеवй | $\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\frac{\pi}{\beth}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ \mathrm{~N} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} e \\ 0 \\ \underset{N}{2} \end{array}\right\|$ |  | $\left.\begin{aligned} & \text { or } \\ & \dot{\sim} \end{aligned} \right\rvert\,$ | $\frac{\pi}{\beth}$ | $\begin{array}{\|c} \hline \\ \mathrm{O} \\ \mathrm{~N} \end{array}$ | $\left\lvert\, \begin{aligned} & \text { or } \\ & \underset{N}{2} \end{aligned}\right.$ | $\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { O } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { or } \\ & 0 \\ & \text { N } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { oi } \\ & \text { N } \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \text { B } \\ & \text { N } \end{aligned}\right.$ |  | $\stackrel{\underset{N}{N}}{\sim}$ | $\stackrel{\sim}{N}$ | $\underset{\sim}{N}$ | $\left\|\begin{array}{c} \underset{N}{N} \end{array}\right\|$ | $\mid \stackrel{N}{N}$ | $\stackrel{\underset{N}{N}}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{N}$ | $\left\lvert\, \begin{aligned} & N \\ & \underset{N}{2} \end{aligned}\right.$ |  | $\stackrel{\stackrel{1}{2}}{\underset{N}{2}}$ | $\stackrel{n}{\stackrel{1}{N}} \mid$ | $\left\lvert\, \begin{aligned} & \stackrel{1}{\lambda} \\ & \underset{N}{2} \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}\right.$ | $\stackrel{\stackrel{1}{n}}{\underset{N}{N}}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ |
|  | әґеன | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \vdots \\ \vdots \\ N \end{array}\right\|$ | $\frac{\pi}{\leq}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \vdots \\ \stackrel{1}{2} \\ \underset{N}{2} \end{array}\right\|$ | $\left\lvert\, \begin{gathered} 0 \\ \frac{1}{3} \\ \frac{1}{3} \\ \underset{N}{2} \\ \underset{N}{2} \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ \frac{1}{3} \\ \vdots \\ \stackrel{1}{N} \\ \underset{N}{2} \end{gathered}\right.$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{3} \\ \underset{\sim}{2} \\ \stackrel{1}{N} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{3} \\ \vdots \\ \hat{N} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \vdots \\ \stackrel{1}{2} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \underset{1}{1} \\ \stackrel{1}{n} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \frac{0}{4} \\ & \frac{1}{6} \\ & 0 \\ & 1 \end{aligned}\right.$ |  | $\frac{\pi}{\text { I }}$ | $\left\|\begin{array}{c} e \\ 0 \\ \frac{1}{5} \\ \underset{\sim}{2} \\ 0 \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \vdots \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \underset{\sim}{2} \\ 0 \\ N \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \frac{0}{1} \\ & \frac{1}{5} \\ & \underset{\sim}{0} \\ & \underset{N}{2} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \underset{\sim}{2} \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ \frac{1}{3} \\ \frac{1}{3} \\ \underset{\sim}{2} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \underset{\sim}{2} \\ 0 \\ \sim \end{array}\right\|$ |  | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ \frac{1}{3} \\ \vdots \\ \underset{n}{1} \\ \hline \end{gathered}\right.$ | $\begin{gathered} 0 \\ 0 \\ \frac{1}{5} \\ \vec{n} \\ \underset{n}{4} \end{gathered}$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ \frac{1}{5} \\ \vec{n} \\ \underset{n}{4} \end{gathered}\right.$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{3} \\ \stackrel{1}{2} \\ \underset{n}{1} \\ \hline \end{array}\right\|$ |  | $\left\|\begin{array}{l} 0 \\ 0 \\ \frac{1}{3} \\ \underset{\sim}{2} \\ \underset{n}{1} \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & \frac{1}{5} \\ & \frac{1}{2} \\ & \dot{m} \end{aligned}$ | $\begin{aligned} & 0 \\ & \frac{1}{5} \\ & \frac{1}{2} \\ & \stackrel{1}{9} \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \frac{1}{5} \\ \underset{\sim}{2} \\ \underset{n}{1} \end{array}\right\|$ | $\frac{\mathrm{c}}{\frac{1}{\mathbb{1}}}$ | 0 0 1 1 1 $\vdots$ $\vdots$ é | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 3 \\ \vdots \\ \vdots \\ m \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ ल \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 1 \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ ल \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \vdots \\ & \frac{9}{3} \\ & \vdots \\ & \\ & \hline \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \frac{0}{3} \\ & \dot{1} \\ & \text { c } \end{aligned}$ | 0 <br>  <br> 1 <br> $\frac{1}{0}$ <br> $\frac{1}{4}$ <br> m |
| $\underline{x}$ | pdイəлıns | $\checkmark$ | $\cdots$ | $\checkmark$ | N | N | N | N | N | N | N | $N$ | N | N | ツ | m | $\cdots$ | m | ๓ | ल | m | m | m | m | $\checkmark$ |
| $\begin{aligned} & \frac{1}{0} \\ & \frac{0}{0} \\ & \hline 1 \end{aligned}$ | леə入 | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & \hline \mathbf{O} \\ & \mathbf{N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | － | $\left\|\begin{array}{l} 0 \\ \hline 0 \\ \hline \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\begin{array}{\|l} 0 \\ \hline 0 \\ \hline \\ \mathrm{~N} \end{array}$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \hline 0 \\ \hline \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \hline \\ \text { O } \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & \hline \\ & 0 \\ & \text { N } \end{aligned}\right.$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \hline \mathbf{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \stackrel{\circ}{\circ} \\ & \text { N } \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { N } \end{aligned}\right.$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}$ | $\left\lvert\, \begin{aligned} & 0 \\ & \hline \\ & \hline \\ & \text { N } \end{aligned}\right.$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \mathrm{~N} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & \hline \\ & \hline \\ & \text { N } \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & \hline 8 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \hline \mathrm{O} \\ & \text { N } \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\begin{aligned} & \mathrm{e} \\ & \hline \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{array}{\|l} 0 \\ \mathrm{O} \\ \mathrm{O} \end{array}$ | $\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}\right.$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{O} \\ & \mathrm{~N} \end{aligned}$ | － | － |





Appendix 4a. Peard 2005 transect data by habitat.

| $\begin{aligned} & \stackrel{\rightharpoonup}{\varpi} \\ & \underset{\sim}{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \\ & \vdots \end{aligned}$ | $\begin{aligned} & \text { \#, } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \stackrel{0}{\tilde{0}} \\ & \stackrel{0}{5} \end{aligned}$ | U U N त्र | $\begin{aligned} & \text { 흐 } \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\square} \\ & \frac{5}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { ᄃ్ర } \\ & \text { ®0 } \\ & \text { O} \end{aligned}$ |  | $\frac{\frac{\pi}{0}}{5}$ | $\begin{aligned} & \mathbb{O} \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | 믕 |  | $\begin{aligned} & \stackrel{\widetilde{\dddot{x}}}{\substack{0 \\ 0}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 1 | 28-Jul-05 | 209 | 1 | 45 | 4 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 2 | 45 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 3 | 45 | 3 | 0 | n/a |
| 2005 | 1 | 29-Jul-05 | 210 | 4 | 45 | 3 | 0 | n/a |
| 2005 | 1 | 29-Jul-05 | 210 | 5 | 45 | 3 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 29-Jul-05 | 210 | 6 | 45 | 3 | 0 | n/a |
| 2005 | 1 | 30-Jul-05 | 211 | 7 | 45 | 2 | 35 | 33 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 2005 | 1 | 30-Jul-05 | 211 | 8 | 45 | 2 | 0 | n/a |
| 2005 | 1 | 30-Jul-05 | 211 | 9 | 45 | 3 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | TOTALS |  |  |  |  | 50 | 41 | 6 | 1 | 0 | 2 | 0 | 0 | 0 |
| 2005 | 2 | 1-Aug-05 | 213 | 1 | 45 | 3 | 149 | 0 | 149 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 1-Aug-05 | 213 | 2 | 45 | 2 | 62 | 58 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 1-Aug-05 | 213 | 3 | 45 | 3 | 0 | n/a |
| 2005 | 2 | 2-Aug-05 | 214 | 4 | 68 | 3 | 0 | n/a |
| 2005 | 2 | 2-Aug-05 | 214 | 5 | 45 | 2 | 55 | 47 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 2-Aug-05 | 214 | 6 | 45 | 3 | 108 | 0 | 108 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 3-Aug-05 | 215 | 7 | 45 | 2 | 166 | 0 | 43 | 0 | 7 | 116 | 0 | 0 | 0 |
| 2005 | 2 | 3-Aug-05 | 215 | 8 | 90 | 2 | 9 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 3-Aug-05 | 215 | 9 | 45 | 2 | 119 | 0 | 119 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | TOTALS |  |  |  |  | 668 | 105 | 436 | 4 | 7 | 116 | 0 | 0 | 0 |
| 2005 | 3 | 5-Aug-05 | 217 | 1 | 45 | 2 | 433 | 0 | 178 | 0 | 0 | 9 | 0 | 0 | 246 |
| 2005 | 3 | 5-Aug-05 | 217 | 2 | 68 | 2 | 34 | 10 | 1 | 9 | 0 | 2 | 12 | 0 | 0 |
| 2005 | 3 | 5-Aug-05 | 217 | 3 | 68 | 2 | 48 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 6-Aug-05 | 218 | 4 | 135 | 1 | 32 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 6-Aug-05 | 218 | 5 | 135 | 2 | 11 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 6-Aug-05 | 218 | 6 | 135 | 2 | 70 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 49 |
| 2005 | 3 | 7-Aug-05 | 219 | 7 | 225 | 2 | 13 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 7-Aug-05 | 219 | 8 | 135 | 1 | 236 | 0 | 236 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 7-Aug-05 | 219 | 9 | 180 | 3 | 111 | 0 | 111 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | TOTALS |  |  |  |  | 988 | 54 | 603 | 9 | 0 | 11 | 12 | 0 | 295 |
| 2005 | 4 | 9-Aug-05 | 221 | 1 | 270 | 3 | 37 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 9-Aug-05 | 221 | 2 | 225 | 3 | 130 | 0 | 112 | 18 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | n/a | n/a | 3 | n/a |
| 2005 | 4 | 10-Aug-05 | 222 | 4 | 135 | 2 | 0 | n/a |
| 2005 | 4 | 10-Aug-05 | 222 | 5 | 225 | 2 | 0 | n/a |
| 2005 | 4 | 10-Aug-05 | 222 | 6 | 225 | 2 | 10 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 11-Aug-05 | 223 | 7 | 180 | 2 | 18 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 11-Aug-05 | 223 | 8 | 225 | 2 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 11-Aug-05 | 223 | 9 | 225 | 2 | 0 | n/a |
| 2005 | 4 | TOTALS |  |  |  |  | 202 | 0 | 184 | 18 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 13-Aug-05 | 225 | 1 | 45 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 13-Aug-05 | 225 | 2 | 45 | 2 | 26 | 0 | 0 | 0 | 22 | 4 | 0 | 0 | 0 |
| 2005 | 5 | n/a | n/a | 3 | n/a |
| 2005 | 5 | 14-Aug-05 | 226 | 4 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 14-Aug-05 | 226 | 5 | 0 | 1 | 0 | n/a |
| 2005 | 5 | 14-Aug-05 | 226 | 6 | 0 | 2 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 15-Aug-05 | 227 | 7 | 0 | 1 | 60 | 0 | 32 | 0 | 0 | 28 | 0 | 0 | 0 |
| 2005 | 5 | 15-Aug-05 | 227 | 8 | 45 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 15-Aug-05 | 227 | 9 | 0 | 3 | 0 | n/a |
| 2005 | 5 | TOTALS |  |  |  |  | 96 | 0 | 42 | 0 | 22 | 32 | 0 | 0 | 0 |
| 2005 | 6 | 17-Aug-05 | 229 | 1 | 45 | 2 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |


| Appendix 4a．Peard 2005 transect data by habitat． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { 厄̈ }}{\stackrel{\text { ® }}{\prime}}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{\infty} \\ & \vdots \\ & \vdots \end{aligned}$ | $\stackrel{\text { ®}}{\stackrel{\pi}{0}}$ | $\begin{aligned} & \stackrel{0}{\tilde{\pi}} \\ & \frac{0}{5} \end{aligned}$ |  | － | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\otimes}{\oplus} \end{aligned}$ |  |  | $$ |  | $\xrightarrow{\text { T }}$ | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { D⿳亠口口几 } \\ & \hline \end{aligned}$ | O <br> O <br> O | ฐ్ర్ర్ర |
| 2005 | 6 | 17－Aug－05 | 229 | 2 | 45 | 2 | 5 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 17－Aug－05 | 229 | 3 | 45 | 2 | 27 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 18－Aug－05 | 230 | 4 | 45 | 3 | 0 | n／a |
| 2005 | 6 | 18－Aug－05 | 230 | 5 | 90 | 3 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 18－Aug－05 | 230 | 6 | 45 | 3 | 0 | n／a |
| 2005 | 6 | 19－Aug－05 | 231 | 7 | 135 | 3 | 37 | 0 | 14 | 0 | 0 | 23 | 0 | 0 | 0 |
| 2005 | 6 | 19－Aug－05 | 231 | 8 | 45 | 3 | 0 | n／a |
| 2005 | 6 | 19－Aug－05 | 231 | 9 | 45 | 3 | 0 | n／a |
| 2005 | 6 | TOTALS |  |  |  |  | 82 | 27 | 31 | 1 | 0 | 23 | 0 | 0 | 0 |
| 2005 | 7 | 20－Aug－05 | 232 | 1 | 90 | 2 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 20－Aug－05 | 232 | 2 | 90 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | n／a | n／a | 3 | n／a |
| 2005 | 7 | 21－Aug－05 | 233 | 4 | 45 | 2 | 0 | n／a |
| 2005 | 7 | 20－Aug－05 | 232 | 5 | 90 | 2 | 0 | n／a |
| 2005 | 7 | 20－Aug－05 | 232 | 6 | 90 | 2 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 21－Aug－05 | 233 | 7 | 90 | 1 | 32 | 0 | 3 | 0 | 0 | 29 | 0 | 0 | 0 |
| 2005 | 7 | 21－Aug－05 | 233 | 8 | 180 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 21－Aug－05 | 233 | 9 | 45 | 2 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 67 | TOTALS |  |  |  |  | 51 | 0 | 19 | 3 | 0 | 29 | 0 | 0 | 0 |
| 2005 |  | TOTAL FOR SPECIES |  |  |  |  |  | 2137 |  |  |  |  |  |  |  |

Appendix 4b. Peard 2006 transect data by habitat.

|  | $\begin{aligned} & 0 \\ & \frac{0}{\lambda} \\ & \stackrel{1}{2} \\ & 0 \end{aligned}$ | $\begin{aligned} & \frac{1}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \frac{y}{\tilde{0}} \\ & \stackrel{0}{亏} \end{aligned}$ | $\overleftarrow{U}$ $\dot{\sim}$ $\stackrel{0}{0}$ $\stackrel{\rightharpoonup}{\nabla}$ |  | $\begin{aligned} & \stackrel{ \pm}{0} \\ & \stackrel{\rightharpoonup}{\bar{T}} \\ & \stackrel{\rightharpoonup}{\otimes} \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\square} \\ & \sum \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { © } \\ & \text { © } \end{aligned}$ |  | $\begin{aligned} & \frac{\mathbb{T}}{0} \\ & \vdots \\ & \vdash \end{aligned}$ | ¢ | O | ¢ O O | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 1 | 18-Jul-06 | 199 | 1 | 180 | 3 | 0 | n/a |
| 2006 | 1 | 18-Jul-06 | 199 | 2 | 180 | 3 | 0 | n/a |
| 2006 | 1 | n/a | n/a | 3 | n/a |
| 2006 | 1 | 17-Jul-06 | 198 | 4 | 315 | 3 | 0 | n/a |
| 2006 | 1 | 18-Jul-06 | 199 | 5 | 180 | 3 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 18-Jul-06 | 199 | 6 | 180 | 3 | 50 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 18-Jul-06 | 199 | 7 | 180 | 3 | 0 | n/a |
| 2006 | 1 | 17-Jul-06 | 198 | 8 | 315 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 17-Jul-06 | 198 | 9 | 315 | 2 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | TOTALS |  |  |  |  | 61 | 0 | 61 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 20-Jul-06 | 201 | 1 | 315 | 1 | 0 | n/a |
| 2006 | 2 | 21-Jul-06 | 202 | 2 | 270 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | n/a | n/a | 3 | n/a |
| 2006 | 2 | 19-Jul-06 | 200 | 4 | 270 | 3 | 0 | n/a |
| 2006 | 2 | 20-Jul-06 | 201 | 5 | 315 | 1 | 0 | n/a |
| 2006 | 2 | 20-Jul-06 | 201 | 6 | 315 | 1 | 0 | n/a |
| 2006 | 2 | 21-Jul-06 | 202 | 7 | 270 | 3 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 19-Jul-06 | 200 | 8 | 270 | 4 | 0 | n/a |
| 2006 | 2 | 19-Jul-06 | 200 | 9 | 270 | 3 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | TOTALS |  |  |  |  | 14 | 0 | 13 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 24-Jul-06 | 205 | 1 | 315 | 2 | 0 | n/a |
| 2006 | 3 | 25-Jul-06 | 206 | 2 | 45 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 24-Jul-06 | 205 | 3 | 315 | 2 | 0 | n/a |
| 2006 | 3 | 23-Jul-06 | 204 | 4 | 270 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 24-Jul-06 | 205 | 5 | 315 | 2 | 0 | n/a |
| 2006 | 3 | 24-Jul-06 | 205 | 6 | 135 | 2 | 0 | n/a |
| 2006 | 3 | 25-Jul-06 | 206 | 7 | 45 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 23-Jul-06 | 204 | 8 | 315 | 3 | 0 | n/a |
| 2006 | 3 | 23-Jul-06 | 204 | 9 | 315 | 2 | 0 | n/a |
| 2006 | 3 | TOTALS |  |  |  |  | 4 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 28-Jul-06 | 209 | 1 | 135 | 1 | 17 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 2 | 90 | 1 | 46 | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | n/a | n/a | 3 | n/a |
| 2006 | 4 | 27-Jul-06 | 208 | 4 | 45 | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 28-Jul-06 | 209 | 5 | . | . | 0 | n/a |
| 2006 | 4 | 28-Jul-06 | 209 | 6 | 45 | 2 | 53 | 0 | 53 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 30-Jul-06 | 211 | 7 | 270 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 27-Jul-06 | 208 | 8 | 45 | 1 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 27-Jul-06 | 208 | 9 | 45 | 1 | 12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | TOTALS |  |  |  |  | 139 | 0 | 139 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 2-Aug-06 | 214 | 1 | 45 | 1 | 93 | 0 | 93 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 3-Aug-06 | 215 | 2 | 315 | 1 | 29 | 0 | 10 | 19 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | n/a | n/a | 3 | n/a |
| 2006 | 5 | 1-Aug-06 | 213 | 4 | 45 | 1 | 0 | n/a |
| 2006 | 5 | 2-Aug-06 | 214 | 5 | 45 | 1 | 243 | 0 | 243 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 2-Aug-06 | 214 | 6 | 45 | 1 | 121 | 0 | 121 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 3-Aug-06 | 215 | 7 | 45 | 1 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 1-Aug-06 | 213 | 8 | 45 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

Appendix 4b. Peard 2006 transect data by habitat.

| $\begin{aligned} & \stackrel{\star}{\text { 厄}} \\ & \hline \end{aligned}$ |  | $$ | $\begin{aligned} & \stackrel{y}{\tilde{\pi}} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{O}} \\ & \text { 들 } \end{aligned}$ |  |  |  | $\begin{aligned} & \stackrel{్}{0} \\ & \mathbb{Z} \\ & \stackrel{\otimes}{0} \end{aligned}$ | $\begin{aligned} & \frac{\tilde{\omega}}{\omega} \\ & \dot{\widetilde{\omega}} \\ & \dot{\zeta} \end{aligned}$ | $\begin{aligned} & \frac{\mathfrak{W}}{\mathbf{O}} \\ & \vdots \\ & \risingdotseq \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O} \\ & 0 \end{aligned}$ | O | ¢ O ¢ | §̃ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 5 | 1-Aug-06 | 213 | 9 | 45 | 1 | 41 | 0 | 41 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | TOTALS |  |  |  |  | 533 | 0 | 514 | 19 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 5-Aug-06 | 217 | 1 | 45 | 2 | 13 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 6-Aug-06 | 218 | 2 | 45 | 1 | 20 | 0 | 4 | 16 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | n/a | n/a | 3 | n/a |
| 2006 | 6 | 4-Aug-06 | 216 | 4 | 0 | 1 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 5-Aug-06 | 217 | 5 | 45 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 5-Aug-06 | 217 | 6 | 45 | 2 | 90 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 6-Aug-06 | 218 | 7 | 45 | 2 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 4-Aug-06 | 216 | 8 | 0 | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 4-Aug-06 | 216 | 9 | 0 | 1 | 17 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | TOTALS |  |  |  |  | 157 | 0 | 141 | 16 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 9-Aug-06 | 221 | 1 | 135 | 2 | 43 | 0 | 43 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 10-Aug-06 | 222 | 2 | 45 | 1 | 27 | 0 | 10 | 17 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | n/a | n/a | 3 | n/a |
| 2006 | 7 | 8-Aug-06 | 220 | 4 | 315 | 3 | 10 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 9-Aug-06 | 221 | 5 | 135 | 2 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 9-Aug-06 | 221 | 6 | 135 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 10-Aug-06 | 222 | 7 | 45 | 1 | 18 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 8-Aug-06 | 220 | 8 | 270 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 8-Aug-06 | 220 | 9 | 315 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | TOTALS |  |  |  |  | 106 | 0 | 89 | 17 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 13-Aug-06 | 225 | 1 | 45 | 3 | 85 | 0 | 85 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 14-Aug-06 | 226 | 2 | 135 | 1 | 51 | 0 | 3 | 48 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | n/a | n/a | 3 | n/a |
| 2006 | 8 | 13-Aug-06 | 225 | 4 | 45 | 4 | 0 | n/a |
| 2006 | 8 | 13-Aug-06 | 225 | 5 | 45 | 4 | 209 | 0 | 209 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 13-Aug-06 | 225 | 6 | 45 | 4 | 91 | 0 | 91 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 14-Aug-06 | 226 | 7 | 135 | 1 | 50 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 12-Aug-06 | 224 | 8 | 45 | 4 | 15 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 12-Aug-06 | 224 | 9 | 0 | 4 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | TOTALS |  |  |  |  | 509 | 0 | 461 | 48 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 17-Aug-06 | 229 | 1 | 315 | 4 | 42 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 18-Aug-06 | 230 | 2 | 45 | 3 | 36 | 0 | 27 | 9 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 18-Aug-06 | 230 | 3 | 45 | 2 | 27 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 16-Aug-06 | 228 | 4 | 315 | 3 | 17 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 17-Aug-06 | 229 | 5 | 315 | 4 | 21 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 17-Aug-06 | 229 | 6 | 315 | 4 | 51 | 0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 18-Aug-06 | 230 | 7 | 45 | 1 | 52 | 0 | 52 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 16-Aug-06 | 228 | 8 | 315 | 2 | 23 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 16-Aug-06 | 228 | 9 | 315 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | TOTALS |  |  |  |  | 273 | 44 | 220 | 9 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 1 | 0 | 2 | 73 | 0 | 73 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 2 | 45 | 2 | 14 | 0 | 4 | 10 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | n/a | n/a | 3 | n/a |
| 2006 | 10 | 20-Aug-06 | 232 | 4 | 45 | 3 | 0 | n/a |
| 2006 | 10 | 21-Aug-06 | 233 | 5 | 0 | 2 | 43 | 0 | 43 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 21-Aug-06 | 233 | 6 | 0 | 2 | 28 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |

Appendix 4b. Peard 2006 transect data by habitat.

|  |  | $\begin{aligned} & \frac{1}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{y}{\tilde{\circ}} \\ & \stackrel{0}{亏} \end{aligned}$ | $\overleftarrow{U}$ $\dot{\sim}$ $\stackrel{0}{0}$ $\stackrel{\rightharpoonup}{\nabla}$ | $\begin{aligned} & \text { 드 } \\ & \text { 들 } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\bar{J}} \\ & \stackrel{\sim}{\infty} \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{ \pm} \\ & \frac{0}{\Sigma} \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{O} \\ & \vdots \\ & \risingdotseq \end{aligned}$ | $\begin{aligned} & \text { D } \\ & \text { D } \\ & 0 \end{aligned}$ | O | ¢ | ¢్ర్ర |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 10 | 22-Aug-06 | 234 | 7 | 45 | 2 | 60 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 20-Aug-06 | 232 | 8 | 45 | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 20-Aug-06 | 232 | 9 | 45 | 4 | 17 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | TOTALS |  |  |  |  | 237 | 0 | 227 | 10 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 26-Aug-06 | 238 | 1 | 45 | 2 | 10 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 27-Aug-06 | 239 | 2 | 90 | 2 | 15 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 27-Aug-06 | 239 | 3 | 90 | 2 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 25-Aug-06 | 237 | 4 | 45 | 3 | 0 | n/a |
| 2006 | 11 | 26-Aug-06 | 238 | 5 | 90 | 2 | 12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 26-Aug-06 | 238 | 6 | 90 | 2 | 16 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 27-Aug-06 | 239 | 7 | 90 | 3 | 21 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 25-Aug-06 | 237 | 8 | 45 | 4 | 0 | n/a |
| 2006 | 11 | 25-Aug-06 | 237 | 9 | 45 | 4 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | TOTALS |  |  |  |  | 82 | 5 | 62 | 15 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 1 | 315 | 2 | 23 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 2 | 315 | 2 | 0 | n/a |
| 2006 | 12 | n/a | n/a | 3 | n/a |
| 2006 | 12 | 29-Aug-06 | 241 | 3 | 315 | 2 | 57 | 0 | 57 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 5 | 315 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 6 | 315 | 1 | 82 | 0 | 82 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 2-Sep-06 | 245 | 7 | 45 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 29-Aug-06 | 241 | 8 | 315 | 1 | 66 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 29-Aug-06 | 241 | 9 | 315 | 1 | 63 | 0 | 63 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | TOTALS |  |  |  |  | 294 | 0 | 294 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 |  | TOTAL FOR | S SPE | CIES |  |  |  | 2392 |  |  |  |  |  |  |  |

IdヨS $0000000000000000000000000000000000000 \frac{\pi}{2} 000000$

 VS99 $00000000000000000000000000000000 \frac{\pi}{2} 00000$



 $\forall S \exists \mathrm{C} 000000000000000000000000000000000000 \frac{\pi}{2} 000000$


 7d99 $000000000000000000000000000000000000 \frac{\pi}{2} 00000$







| әтеवIn¢ | 웅 | 웅 | $\stackrel{\circ}{\mathrm{N}}$ | $\|\stackrel{\rightharpoonup}{\mathrm{N}}\|$ | $\|\stackrel{0}{\mathrm{~N}}\|$ | $\stackrel{\mathrm{O}}{\mathrm{~N}} \mid$ | $\vec{N}$ | $\|\underset{N}{\mathrm{~N}}\|$ | $\|\underset{N}{7}\|$ |  | $\underset{\sim}{i} \underset{\sim}{\underset{\sim}{2}}$ | $\stackrel{m}{N}$ | $\|\underset{N}{\vec{N}}\|$ | $\|\underset{N}{A}\|$ | $\stackrel{\underset{N}{N}}{ }$ | $\stackrel{\sim}{~}$ |  | N | $\stackrel{N}{N}$ | N | $\stackrel{\rightharpoonup}{\mathrm{N}}$ | N |  |  |  |  |  |  | $N$ |  |  |  | $\underset{N}{N}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| әұе๐ | $\left\lvert\, \begin{aligned} & 0.0 \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 0 \\ & 0 \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & \frac{1}{5} \\ & \frac{1}{2} \\ & \infty \end{aligned}$ | $\left\|\begin{array}{c} \stackrel{n}{0} \\ \frac{1}{5} \\ \underset{\sim}{2} \\ \underset{\sim}{\infty} \end{array}\right\|$ | $\left\|\begin{array}{c} \stackrel{\sim}{0} \\ \frac{1}{2} \\ \underset{\sim}{2} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \frac{1}{2} \\ \underset{1}{6} \\ \mathbf{O} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{3} \\ \vdots \\ \underset{N}{2} \end{array}\right\|$ | $\left.\begin{array}{\|c} n \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$ | $\left\|\begin{array}{c} \stackrel{n}{0} \\ \frac{1}{5} \\ \vdots \\ 0 \\ 0 \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{c} \stackrel{n}{0} \\ \frac{1}{5} \\ \\ 0 \\ \hline \end{array}\right\|$ |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$ | $\left\|\begin{array}{c} \stackrel{n}{0} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ \vdots \\ \vdots \\ i \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ N \end{array}\right\|$ | $\stackrel{9}{4}$ | $\begin{array}{l\|l\|} n \\ 0 \\ 0 \\ 0 \\ \vdots \\ \end{array}$ | ¢ | $\underset{i}{\underset{1}{2}}$ | - | $\stackrel{1}{0}$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  | $\underset{\sim}{\mathbb{C}}$ |  | 2 |  |  |  | Of |

pdKəлиns




|  | 7dヨS | $\bigcirc$ | － | 0 | － | － | － | 0 | － | $\Sigma$ | － | 0 | 0 | － | － | － | － | － | $\stackrel{\widetilde{ } \text { ® }}{ }$ | － | 0 | 0 | 0 |  |  | 0 | － |  |  | 0 | － | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | － | 0 | 0 | － | － | － | － | $\bigcirc$ | $\stackrel{\widetilde{1}}{\sim}$ | 0 | － | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | － | $\stackrel{\widetilde{0}}{ }$ | － | 0 | 0 | 0 | 0 |  | 0 | $\bigcirc$ | $\stackrel{\widetilde{5}}{ }$ | 0 | － | － | － | $\bigcirc$ |
|  | dЭWも | $\bigcirc$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\stackrel{\widetilde{1}}{\sim}$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | － | $\stackrel{\text { ® }}{ }$ | O | $\bigcirc$ | 0 | $\bigcirc$ | 0 |  | 0 | $\bigcirc$ | $\stackrel{\text { ® }}{ }$ | 0 | 0 | O | － | $\bigcirc$ |
|  | VS98 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\widetilde{2}}{\sim}$ | $\bigcirc$ | 0 | $\bigcirc$ | － | 0 | 0 | $\bigcirc$ | $\bigcirc$ | ¢ | 0 | $\bigcirc$ | 0 | 0 | 0 |  | 0 | 0 | $\stackrel{\text { ® }}{ }$ | 0 | 0 | 0 | － | $\bigcirc$ |
|  | VSVG | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\widetilde{1}}{\sim}$ | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\stackrel{\text { ® }}{ }$ | － | $\bigcirc$ | $\bigcirc$ | 0 | 0 |  | 0 | 0 | $\stackrel{\text { ® }}{ }$ | 0 | 0 | － | 0 | $\bigcirc$ |
|  | nıny | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\widetilde{2}}{\sim}$ | $\bigcirc$ | 0 | $\bigcirc$ | － | － | 0 | $\bigcirc$ | － | $\frac{\pi}{2}$ | － | $\bigcirc$ | 0 | 0 | 0 |  | 0 | 0 | $\stackrel{\text { ® }}{ }$ | 0 | 0 | 0 | － | $\bigcirc$ |
|  | ONVS | $\bigcirc$ | $\bigcirc$ | 0 | － | － | － | $\bigcirc$ | $\bigcirc$ | $\stackrel{\text { ¹ }}{ }$ | $\bigcirc$ | 0 | 0 | 0 | － | 0 | $\bigcirc$ | $\bigcirc$ | $\stackrel{\text { ® }}{ }$ | － | $\bigcirc$ | 0 | 0 | 0 |  | 0 | 0 | $\stackrel{\text { ® }}{ }$ | 0 | $\bigcirc$ | － | － | $\bigcirc$ |
|  | $\forall S \exists M$ | － | － | 0 | － | － | － | $\checkmark$ | 0 | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | － | 0 | － | － | － | － | － | $\bigcirc$ | $\frac{\mathfrak{\pi}}{\boldsymbol{z}}$ | $\bigcirc$ | 0 | 0 | 0 | 0 |  | 0 | $\infty$ | $\stackrel{\text { ® }}{ }$ | 0 | － | － | $\checkmark$ | － |
|  | VSヨd | － | － | － | － | － | － | － | 0 | $\stackrel{\pi}{2}$ | 0 | － | 0 | － | － | 0 | N | $\bigcirc$ | $\frac{\mathfrak{\pi}}{\boldsymbol{c}}$ | － | 0 | 0 | N | 0 |  | ナ | $\bigcirc$ | $\stackrel{\widetilde{1}}{ }$ | 0 | 0 | － | － | － |
|  | VSıS | $\bigcirc$ | － | － | － | － | － | － | 0 | $\stackrel{\mathfrak{c}}{\sim}$ | 0 | 0 | 0 | － | － | 0 | $\bigcirc$ | － | $\stackrel{\text { ® }}{ }$ | － | 0 | 0 | 0 | 0 |  | － | 0 | $\stackrel{\Im}{¢}$ | 0 | 0 | － | － | － |
|  | Hdヨu | － | N | 0 | － | N | N | $\infty$ | N | $\stackrel{\text { c }}{\text { c }}$ | $\bigcirc$ | $\underset{\sim}{\underset{\sim}{N}}$ | $\xrightarrow{\sim}$ | 0 | $\rightarrow$ | － | $\bigcirc$ | $\bigcirc$ | $\stackrel{\text { ® }}{ }$ | $m$ | ナ | 8 | 0 | m | － | $\bigcirc$ | $\sim$ | $\stackrel{\text { ® }}{ }$ | $\infty$ | m | － | $\cdots$ | $\sim$ |
|  | HdNy | － | － | － | 0 | － | － | 入 | 0 | $\stackrel{\widetilde{ }}{\sim}$ | 0 | $\checkmark$ | $\bigcirc$ | － | 0 | $\pm$ | $\bigcirc$ | － | ¢ | － | 0 | 0 | 0 | 0 |  | $\bigcirc$ | $\cdots$ | $\stackrel{\widetilde{1}}{ }$ | $\sim$ | 0 | － | N | 0 |
|  | 7 dg | $\bigcirc$ | － | 0 | － | － | 0 | 0 | $\bigcirc$ | $\stackrel{\text { T }}{ }$ | $\bigcirc$ | $\bigcirc$ | 0 | － | － | 0 | $\bigcirc$ | $\bigcirc$ | ¢ | － | $\bigcirc$ | 0 | 0 | － |  | 0 | 0 | $\stackrel{\text { ® }}{ }$ | 0 | 0 | － | － | $\bigcirc$ |
|  | 7NกO | $\bigcirc$ | － | 0 | 0 | $\bigcirc$ | 0 | 0 | $\rightarrow$ | $\stackrel{\widetilde{ }}{\sim}$ | 0 | 0 | 0 | － | － | $\bigcirc$ | 0 | － | $\stackrel{\widetilde{ }}{ }$ | － | 0 | 0 | 0 | － |  | 0 | $\checkmark$ | $\stackrel{\widetilde{ }}{ }$ | 0 | 0 | － | － | － |
|  | $\forall$ VヨS | － | $\checkmark$ | －1 | 0 | － | $\hat{6}$ | m | 0 | $\stackrel{\widetilde{ }}{\sim}$ | 0 | 0 | 0 | $\bigcirc$ | － | － | － | $\infty$ | $\frac{\mathfrak{\pi}}{\mathrm{c}}$ | $\rightarrow$ | 0 | 0 | $\checkmark$ | 0 | － | $\mathrm{H}_{0}$ | － | $\stackrel{\widetilde{ }}{ }$ | 0 | 0 | － | － | － |
|  | ¡セıO」 | － | กู | $-1$ |  | $\underset{\sim}{\sim}$ | $\stackrel{\underset{\sim}{9}}{ }$ | ¢ | $\stackrel{\sim}{2}$ | $\stackrel{\widetilde{1}}{ }$ | － | $\stackrel{\substack{\mathrm{N}}}{ }$ |  | $\bigcirc$ | $\checkmark$ | $\underset{\sim}{7} \text { N }$ | $\cdots$ | $\bigcirc$ | $\frac{\text { ® }}{}$ | － | $\checkmark$ | 8 | $\bigcirc$ | $m$ | － | $\bigcirc$ | N | ก | $\bigcirc$ | m | $\sim$ | $\infty$ | $\sim$ |
|  | นołneәg |  | N | ＊ |  | $r$ |  | $\checkmark$ |  |  | $-$ | $\rightarrow$ | $\checkmark$ | $\rightarrow$ | 1 | － | N |  | $\frac{\widetilde{8}}{}$ | $\checkmark$ | $\sim$ | N | N | $\cdots$ | $\rightarrow$ | $\sim$ | $\cdots$ | $\stackrel{\text { ® }}{ }$ | m | N | － | $\checkmark$ | $\cdots$ |
| $\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$ | ג！ดpu！M |  | $\stackrel{1}{\square}$ | $\stackrel{\stackrel{\rightharpoonup}{N}}{ }$ | $\stackrel{\sim}{\square}$ | ） |  | $\stackrel{\leftrightarrow}{4}$ | $\left\lvert\, \begin{aligned} & n \\ & ल \end{aligned}\right.$ | $\frac{\mathfrak{x}}{2}$ | $\stackrel{\sim}{\square}$ | $\stackrel{\sim}{\text { ¢ }}$ | ¢ | $\stackrel{\square}{\text { ¢ }}$ | ¢ | f | $\stackrel{\text { ¢ }}{ }$ |  | $\frac{\pi}{己}$ | － | $\stackrel{\sim}{\square}$ | $\stackrel{1}{\sim}$ | ¢ | 0 | 0 |  | ¢ | $\frac{\pi}{2}$ | $\stackrel{n}{\mathrm{~m}}$ | $\xrightarrow{\sim}$ | $\xrightarrow{7}$ | $\stackrel{\square}{8}$ | $\stackrel{0}{\circ}$ |
| $\stackrel{\widetilde{\pi}}{\pi}$ | ฉэəsu®」」 | ค | $\bigcirc$ | N | $\infty$ | 0 |  | $\rightarrow$ | $\sim$ | $m$ | － | ค | $\bigcirc$ | $\wedge$ | $\infty$ | の | $\checkmark$ | $\sim$ | m | － | ค | 0 | ， | $\infty$ | $\infty$ |  | $\sim$ | m | $\checkmark$ | ๑ | $\bigcirc$ | N | $\infty$ |
|  | әъедın¢ | $\stackrel{\rightharpoonup}{\mathrm{O}}$ | $\underset{\sim}{8}$ | $\stackrel{\rightharpoonup}{\mathrm{N}}$ | $\underset{\sim}{\infty}$ | $\underset{\sim}{\circ}$ |  | $\underset{N}{\mathrm{~N}}$ | $\stackrel{n}{N}$ | $\frac{\pi}{\Sigma}$ | $\stackrel{m}{N}$ | $\underset{N}{N}$ | $\underset{N}{\mathrm{~N}}$ | $\stackrel{\sim}{\sim}$ | $\underset{\sim}{n}$ | $\stackrel{n}{\mathrm{~N}}$ | $\stackrel{\rightharpoonup}{\mathrm{N}}$ |  | $\frac{\mathfrak{\pi}}{\mathrm{I}}$ | $\begin{gathered} 0 \\ N \end{gathered}$ | $\underset{N}{N}$ | $\stackrel{\lambda}{N} \mid$ | $\stackrel{\infty}{\mathrm{N}}$ |  | $\cdots$ |  | $\underset{N}{N}$ | $\frac{\mathfrak{\pi}}{\mathrm{L}}$ | $\stackrel{\mathrm{N}}{\mathrm{~N}}$ | N | $\sim$ | N | 스N |
|  | әег | $\left\|\begin{array}{c} 0 \\ \hline \\ \frac{1}{5} \\ \underset{\sim}{2} \\ \underset{\sim}{\infty} \end{array}\right\|$ |  |  |  |  |  | $\begin{gathered} 0 \\ 0 \\ \vdots \\ \frac{1}{c} \\ \vdots \\ \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ \vdots \\ \vdots \\ \frac{1}{c} \\ \dot{c} \end{gathered}$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ \vdots \\ \frac{1}{1} \\ i \end{array}\right\|$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \lambda \end{gathered}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ i \\ \vdots \\ \frac{1}{4} \\ \dot{\lambda} \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 1 \\ & \frac{1}{c} \\ & \frac{1}{4} \\ & \dot{m} \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ \vdots \\ 4 \\ -1 \end{gathered}$ |  |  |  | $\stackrel{\text { ๔ }}{ }$ | $\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \frac{1}{c} \\ & \dot{d} \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ i \end{gathered}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 1 \end{array}\right\|$ | O | $\begin{aligned} & 0 \\ & i \\ & 0 \\ & \frac{1}{4} \\ & \dot{子} \end{aligned}$ | $\stackrel{e}{c}$ |  |  |  | $=\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \dot{c} \\ 0 \end{gathered}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ \vdots \\ \frac{1}{1} \\ \vdots \\ 0 \end{array}\right\|$ |  | － | ¢ |
| $\begin{aligned} & \dot{\mathrm{o}} \\ & \underline{x} \end{aligned}$ | PdKəлuns | $\checkmark$ | $\checkmark$ | － | － | $\checkmark$ | $\checkmark$ | ๑ | $\bigcirc$ | ค | ம | ค | ம | $\bigcirc$ | $\Omega$ | $\sim$ | $\bigcirc$ | 0 |  | N | 人 | N | － |  | N |
| $\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \frac{1}{4} \end{aligned}$ | лед入 | $\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array}$ | $$ |  |  |  | $$ | On | $\begin{array}{\|c} 0 \\ \hline 0 \\ N \end{array}$ |  | $\begin{array}{\|c} \hline 0 \\ \hline 0 \\ \hline \end{array}$ | $\begin{array}{\|c} \hline 0 \\ \hline \\ \mathrm{~N} \end{array}$ | $\left\lvert\,\right.$ |  | $\begin{aligned} & \hline 0 \\ & \hline \mathbf{N} \end{aligned}$ |  | So | $3$ | $3 \times \underset{N}{3}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{array}{\|c} \hline 0 \\ \hline 0 \\ N \end{array}$ | O-ষ | $\begin{aligned} & \hline 0 \\ & 0 \\ & N \end{aligned}$ | N |  |  |  |  | $\underset{\sim}{3}$ | $\begin{array}{\|c} \hline \stackrel{O}{\mathrm{O}} \\ \hline \end{array}$ | O |  | － |



|  | 7dヨS | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{\leq}$ | $\bigcirc$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | N | $\bigcirc$ | O | N | $\bigcirc$ | $\bigcirc$ | $\stackrel{\widetilde{\sigma}}{\perp}$ | O | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | dЭW＊ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\perp}$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\ominus}{+}$ |
|  | ＊S98 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\perp}$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\checkmark$ |
|  | $\forall$ SVG | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\underline{\geq}}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |
|  | กคПソ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{ \pm}$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ |
|  | CNVS | $\bigcirc$ | $\bigcirc$ | ナ | N | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bullet$ | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{x}$ | $\bigcirc$ | $\checkmark$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ค | $\bigcirc$ |
|  | $\forall S \exists M$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{ \pm}$ | $\bigcirc$ | N |
|  | VSヨd | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\underline{\geq}}$ | O | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | N |
|  | $\forall \mathrm{S} \perp \mathrm{S}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\frac{\widetilde{\sigma}}{\boldsymbol{x}}$ | O | $\bigcirc$ | O | － | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Hdヨy | $\bigcirc$ | $\bigcirc$ | $\infty$ | $\stackrel{\rightharpoonup}{\text { F }}$ | N | $\bigcirc$ | м | $\mathfrak{n}$ | $\underset{\sim}{N}$ | $\bigcirc$ | $\frac{\pi}{\text { I }}$ | へ | $\bigcirc$ | $\infty$ | $\bigcirc$ | $0$ | － | $\left\|\begin{array}{l} \infty \\ \infty \\ \underset{N}{\infty} \end{array}\right\|$ | $\bigcirc$ |
|  | HdNY | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{ \pm}$ | O | $\bigcirc$ | O | － | $\bigcirc$ | N | N | ¢ <br> 8 <br> -1 |
|  | 7d98 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | O | $\bigcirc$ | $\frac{\pi}{ \pm}$ | O | $\bigcirc$ | O | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 8 |
|  | 7Nก0 | م | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | $\infty$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\widetilde{\sigma}}{\perp}$ | O | $\bigcirc$ | O | N | O | $\bigcirc$ | N | $\bigcirc$ |
|  | VSヨS | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\text { N }}{ }$ | $\bigcirc$ | O | $\underset{7}{N}$ | $\bigcirc$ | $\bigcirc$ | $\frac{\pi}{\perp}$ | O | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\stackrel{\sim}{\text {－}}$ |
| $\begin{aligned} & \dot{\omega} \\ & \dot{0} \\ & \underset{Q}{0} \\ & \dot{\omega} \end{aligned}$ | ｜®łO1 | ค | $\bigcirc$ | $\stackrel{\text { N }}{ }$ | $\left\|\begin{array}{c} 0 \\ -1 \end{array}\right\|$ | N | $\bigcirc$ | m | $\underset{\infty}{\infty}$ | $\underset{\sim}{N}$ | $\bigcirc$ | $\frac{\pi}{\geq}$ | $\stackrel{\sim}{n}$ | $\checkmark$ | － | $\sim$ | $\bigcirc$ | $\stackrel{3}{6}$ | $\underset{N}{\underset{N}{\prime}}$ | $\stackrel{\text { N}}{\sim}$ |
|  | uofneәg | N | $\cdots$ | N | N | ल | $\checkmark$ | $\checkmark$ |  | N | $\sim$ | $\frac{\pi}{\leq}$ | N | $\checkmark$ | $\checkmark$ | N | $\cdots$ | $\checkmark$ |  |  |
|  |  | ৪ | $\stackrel{\leftrightarrow}{2}$ | ৪ | ৪ | ৪ | $\mid \stackrel{\leftrightarrow}{2}$ | $\stackrel{\rightharpoonup}{\mathrm{L}}$ |  | $\left\|\begin{array}{l} n \\ \underset{m}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{N} \\ \underset{\mathrm{~N}}{ } \end{array}\right\|$ | $\frac{\pi}{ \pm}$ | n | $\left\lvert\, \begin{aligned} & n \\ & \underset{m}{2} \end{aligned}\right.$ | $\begin{aligned} & \stackrel{1}{n} \\ & \underset{M}{2} \end{aligned}$ | $\stackrel{\square}{\sim}$ | $\left\|\begin{array}{l} n \\ \underset{m}{n} \end{array}\right\|$ | $\stackrel{10}{\sim}$ |  |  |
| transect data | ŋэəsue»」 | ๓ | $\checkmark$ | 上 | $\bigcirc$ | N | $\infty$ | の |  | $\checkmark$ | N | $m$ | m | $\llcorner$ | $\bigcirc$ | N | $\infty$ | $\sigma$ |  | ค |
|  | әпедй | $\begin{aligned} & \mathbf{9} \\ & \underset{N}{2} \end{aligned}$ | $\underset{N}{N}$ | $\left\|\begin{array}{c} \infty \\ \underset{N}{2} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \infty \\ & \underset{N}{n} \end{aligned}\right.$ | $\begin{gathered} \underset{\sim}{N} \\ \underset{N}{2} \end{gathered}$ | $\begin{gathered} \hat{N} \\ \underset{N}{2} \end{gathered}$ | $\begin{aligned} & \hat{N} \\ & \underset{N}{2} \end{aligned}$ |  | $\underset{\sim}{\sim}$ | $\mid \underset{\sim}{\sim} \underset{\sim}{\sim}$ | $\frac{\pi}{\leq}$ | $\mid \underset{\sim}{\underset{\sim}{N}}$ | $\underset{\sim}{\sim}$ | $\underset{\sim}{\underset{\sim}{\sim}}$ | $\stackrel{i}{\sim} \underset{\sim}{N}$ | $\|\underset{\sim}{\underset{\sim}{N}}\|$ | $\underset{\sim}{\underset{\sim}{\sim}}$ |  | U $\sim$ $\sim$ $\sim$ $\sim$ |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | әґе๐ | 0 0 1 0 2 1 $\vdots$ $\vdots$ | $\begin{array}{\|c\|} \hline 0 \\ 0 \\ 1 \\ 0 \\ \hline 1 \\ \vdots \\ n \\ N \\ \hline \end{array}$ | 0 0 1 0 2 $\vdots$ $\vdots$ $\vdots$ $\vdots$ | $\begin{array}{\|c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{1} \\ \vdots \\ 0 \\ \end{array}$ | 0 <br> 0 <br> 1 <br> 0 <br> 2 <br> 3 <br> $\vdots$ <br> $\vdots$ <br>  |  | $\begin{array}{\|c} \hline 0 \\ 0 \\ 1 \\ \hline \\ \hline \frac{1}{1} \\ \dot{1} \\ N \end{array}$ | $\left\lvert\, \begin{aligned} & \infty \\ & \underset{4}{4} \\ & \stackrel{0}{2} \\ & \vdash \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \frac{3}{1} \\ & \vdots \\ & \vdots \\ & m \end{aligned}$ | $\begin{array}{\|c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \hline \end{array}$ | $\frac{\pi}{\text { a }}$ | $\begin{array}{\|c} \hline 0 \\ 0 \\ 1 \\ \frac{3}{3} \\ \frac{1}{1} \\ 0 \\ \hline \end{array}$ | 0 <br> 0 <br> 1 <br> 1 <br> 2 <br> $\vdots$ <br> $\vdots$ <br> $i$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 1 \\ 0 \\ \hline 1 \\ \vdots \\ i \\ 0 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \dot{N} \\ \hline \end{array}$ | $\begin{array}{\|c} 0 \\ 0 \\ 1 \\ 0 \\ \hline 1 \\ 1 \\ \vdots \\ 0 \\ N \end{array}$ | $\begin{array}{\|c} \hline 0 \\ 0 \\ 1 \\ \hline \\ \hline 1 \\ \frac{1}{1} \\ 0 \\ N \end{array}$ | $\begin{array}{\|c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$ | $\begin{aligned} & \frac{4}{4} \\ & \stackrel{1}{6} \\ & \stackrel{O}{-} \end{aligned}$ |
| $\begin{aligned} & \dot{\mathrm{O}} \\ & \underline{x} \end{aligned}$ | pdイə八ıns | $\overrightarrow{7}$ | $\vec{ন}$ | $\overrightarrow{-1}$ | $\overrightarrow{7} \mid$ | $\overrightarrow{7}$ | $\overrightarrow{7}$ | $\cdots$ | $\overrightarrow{7}$ | $\stackrel{\sim}{-}$ | $\stackrel{\text { N }}{ }$ | $\underset{\sim}{N}$ | $\stackrel{\sim}{-}$ | $\stackrel{\sim}{1}$ | $\stackrel{\sim}{-}$ | $\stackrel{\text { N }}{ }$ | $\stackrel{\sim}{1}$ | $\stackrel{\sim}{7}$ | $\stackrel{\text { N }}{ }$ |  |
| $\begin{aligned} & \overline{0} \\ & \frac{0}{2} \\ & \frac{1}{4} \end{aligned}$ | леə入 | $\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline \mathrm{O} \\ \mathrm{~N} \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ \mathrm{O} \\ \mathrm{~N} \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ \mathrm{O} \\ \mathrm{~N} \end{array}$ | $\begin{aligned} & \hline 0 \\ & \hline 0 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \mathrm{O} \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \text { N } \end{array}$ | $\left.\begin{array}{\|l\|} \hline 0 \\ \mathrm{O} \\ \mathrm{~N} \end{array} \right\rvert\,$ | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \mathrm{~N} \end{array}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\left.\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ N \end{array} \right\rvert\,$ | $\begin{array}{\|l\|} \hline 0 \\ \hline \mathrm{O} \\ \mathrm{~N} \end{array}$ | $\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | － | － | $\begin{aligned} & \hline 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | － |

Appendix 5a. Barrow 2005 transect data by habitat.

| $\begin{aligned} & \stackrel{\text { ® }}{\text { ® }} \end{aligned}$ | $\begin{aligned} & \text { ס } \\ & \stackrel{\vdots}{\grave{0}} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \cong \\ & \stackrel{\pi}{0} \end{aligned}$ | $\begin{aligned} & \underline{\#} \\ & \stackrel{0}{0} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \text { 흘 } \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{5} \\ & \frac{0}{\Sigma} \end{aligned}$ | $\begin{aligned} & \widetilde{్} \\ & \mathbb{Z} \\ & \text { © } \\ & \hline \mathbb{O} \end{aligned}$ | $\begin{aligned} & \frac{\widetilde{\omega}}{\omega} \\ & \dot{\widetilde{\omega}} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{6} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & 00 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | O | 응 <br> O <br> 1 | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 1 | 24-Jul-05 | 205 | 1 | 90 | 3 | 0 | n/a |
| 2005 | 1 | 24-Jul-05 | 205 | 2 | 90 | 3 | 0 | n/a |
| 2005 | 1 | 24-Jul-05 | 205 | 3 | 90 | 3 | 0 | n/a |
| 2005 | 1 | 24-Jul-05 | 205 | 4 | 90 | 3 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 25-Jul-05 | 205 | 5 | 90 | 4 | 9 | 3 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 25-Jul-05 | 205 | 6 | 90 | 4 | 0 | n/a |
| 2005 | 1 | 25-Jul-05 | 205 | 7 | 90 | 4 | 8 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 25-Jul-05 | 205 | 8 | 90 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 25-Jul-05 | 205 | 9 | 90 | 4 | 0 | n/a |
| 2005 | 1 | TOTALS |  |  |  |  | 22 | 3 | 1 | 18 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 27-Jul-05 | 208 | 1 | 45 | 4 | 18 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 27-Jul-05 | 208 | 2 | 45 | 4 | 0 | n/a |
| 2005 | 2 | 27-Jul-05 | 208 | 3 | 45 | 3 | 0 | n/a |
| 2005 | 2 | 27-Jul-05 | 208 | 4 | 68 | 5 | 11 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 28-Jul-05 | 209 | 5 | 90 | 2 | 24 | 0 | 23 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 28-Jul-05 | 209 | 6 | 90 | 3 | 0 | n/a |
| 2005 | 2 | 28-Jul-05 | 209 | 7 | 90 | 3 | 9 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 28-Jul-05 | 209 | 8 | 90 | 2 | 0 | n/a |
| 2005 | 2 | 28-Jul-05 | 209 | 9 | 90 | 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | TOTALS |  |  |  |  | 63 | 0 | 41 | 22 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 30-Jul-05 | 211 | 1 | 90 | 2 | 13 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 30-Jul-05 | 211 | 2 | 90 | 3 | 0 | n/a |
| 2005 | 3 | 30-Jul-05 | 211 | 3 | 90 | 3 | 0 | n/a |
| 2005 | 3 | 30-Jul-05 | 211 | 4 | 90 | 3 | 21 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 31-Jul-05 | 212 | 5 | 90 | 2 | 57 | 0 | 4 | 53 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 31-Jul-05 | 212 | 6 | 90 | 2 | 0 | n/a |
| 2005 | 3 | 31-Jul-05 | 212 | 7 | 90 | 2 | 92 | 0 | 0 | 92 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 31-Jul-05 | 212 | 8 | 90 | 2 | 0 | n/a |
| 2005 | 3 | 31-Jul-05 | 212 | 9 | 90 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | TOTALS |  |  |  |  | 185 | 0 | 17 | 168 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 2-Aug-05 | 214 | 1 | 68 | 1 | 18 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 2-Aug-05 | 214 | 2 | 90 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 2-Aug-05 | 214 | 3 | 68 | 2 | 126 | 0 | 0 | 126 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 2-Aug-05 | 214 | 4 | 90 | 2 | 0 | n/a |
| 2005 | 4 | 3-Aug-05 | 215 | 5 | 90 | 1 | 37 | 0 | 3 | 34 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 3-Aug-05 | 215 | 6 | 90 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 3-Aug-05 | 215 | 7 | 90 | 2 | 126 | 0 | 0 | 126 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 3-Aug-05 | 215 | 8 | 90 | 1 | 11 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 3-Aug-05 | 215 | 9 | 90 | 1 | 7 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | TOTALS |  |  |  |  | 328 | 0 | 36 | 292 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 5-Aug-05 | 217 | 1 | 90 | 3 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 5-Aug-05 | 217 | 2 | 90 | 3 | - | 0 | 1007 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 5-Aug-05 | 217 | 3 | 90 | 3 | 101 | 0 | 101 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 5-Aug-05 | 217 | 4 | 90 | 3 | 88 | 0 | 0 | 88 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 6-Aug-05 | 218 | 5 | 135 | 2 | 196 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
| 2005 | 5 | 6-Aug-05 | 218 | 6 | 135 | 1 | 0 | n/a |
| 2005 | 5 | 6-Aug-05 | 218 | 7 | 90 | 1 | 79 | 0 | 0 | 79 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 6-Aug-05 | 218 | 8 | 135 | 2 | 0 | n/a |
| 2005 | 5 | 6-Aug-05 | 218 | 9 | 135 | 2 | 150 | 0 | 145 | 4 | 0 | 1 | 0 | 0 | 0 |

Appendix 5a. Barrow 2005 transect data by habitat.

| $\stackrel{\bar{\varpi}}{\stackrel{\text { ® }}{\sim}}$ | $\begin{aligned} & \text { ס } \\ & \stackrel{0}{0} \\ & \stackrel{y}{亏} \\ & \omega \end{aligned}$ | $\stackrel{y}{\stackrel{y}{\tilde{0}}}$ | $\begin{aligned} & \cong \\ & \stackrel{y}{\sigma} \\ & \stackrel{0}{亏} \end{aligned}$ | $\begin{aligned} & \ddot{U} \\ & \underset{\sim}{n} \\ & \stackrel{N}{\overleftarrow{W}} \end{aligned}$ | $\begin{aligned} & \overline{\bar{O}} \\ & \text { 들 } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{0}{\tau} \\ & \stackrel{\sim}{0} \end{aligned}$ |  |  | $\begin{aligned} & \widetilde{్} \\ & \mathbb{\pi} \\ & \mathbb{Q} \end{aligned}$ | $\begin{aligned} & \frac{\widetilde{\omega}}{\omega} \\ & \stackrel{\omega}{\sigma} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\mathbb{T}}{0} \\ & \vdots \\ & \vdash \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | O | $\begin{aligned} & \text { 을 } \\ & \text { O} \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \text { ๔్ } \\ & \text { §ु } \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 5 | TOTALS |  |  |  |  | - | 0 | 1260 | 171 | 0 | 11 | 0 | 0 | 0 |
| 2005 | 6 | 8-Aug-05 | 220 | 1 | 135 | 6 | 85 | 0 | 85 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 8-Aug-05 | 220 | 2 | 90 | 3 | 0 | n/a |
| 2005 | 6 | 8-Aug-05 | 220 | 3 | 135 | 3 | 0 | n/a |
| 2005 | 6 | 8-Aug-05 | 220 | 4 | 90 | 3 | 50 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 10-Aug-05 | 222 | 5 | 45 | 1 | 69 | 0 | 16 | 0 | 0 | 53 | 0 | 0 | 0 |
| 2005 | 6 | 10-Aug-05 | 222 | 6 | 90 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 10-Aug-05 | 222 | 7 | 90 | 2 | 11 | 0 | 9 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 10-Aug-05 | 222 | 8 | 45 | 2 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 10-Aug-05 | 222 | 9 | 45 | 1 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | TOTALS |  |  |  |  | 225 | 0 | 119 | 52 | 1 | 53 | 0 | 0 | 0 |
| 2005 | 7 | 11-Aug-05 | 223 | 1 | 90 | 2 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 11-Aug-05 | 223 | 2 | 90 | 2 | 77 | 0 | 77 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 11-Aug-05 | 223 | 3 | 90 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 11-Aug-05 | 223 | 4 | 90 | 2 | 12 | 0 | 5 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 13-Aug-05 | 225 | 5 | 90 | 1 | 40 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 13-Aug-05 | 225 | 6 | 90 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 13-Aug-05 | 225 | 7 | 90 | 1 | 10 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 13-Aug-05 | 225 | 8 | 90 | 1 | 0 | n/a |
| 2005 | 7 | 13-Aug-05 | 225 | 9 | 90 | 1 | 21 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | TOTALS |  |  |  |  | 165 | 0 | 147 | 18 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 14-Aug-05 | 226 | 1 | 90 | 1 | 31 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 14-Aug-05 | 226 | 2 | 90 | 2 | 91 | 0 | 91 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 14-Aug-05 | 226 | 3 | 90 | 2 | 271 | 0 | 271 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 14-Aug-05 | 226 | 4 | 90 | 2 | 189 | 0 | 152 | 37 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 15-Aug-05 | 227 | 5 | 45 | 1 | 294 | 0 | 271 | 23 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 15-Aug-05 | 227 | 6 | 45 | 1 | 6 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 |
| 2005 | 8 | 15-Aug-05 | 227 | 7 | 90 | 2 | 15 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 |
| 2005 | 8 | 15-Aug-05 | 227 | 8 | 45 | 1 | 0 | n/a |
| 2005 | 8 | 15-Aug-05 | 227 | 9 | 45 | 1 | 19 | 0 | 15 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | TOTALS |  |  |  |  | 916 | 0 | 831 | 67 | 0 | 18 | 0 | 0 | 0 |
| 2005 | 9 | 17-Aug-05 | 229 | 1 | 45 | 1 | 33 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 9 | 17-Aug-05 | 229 | 2 | 45 | 2 | 0 | n/a |
| 2005 | 9 | 17-Aug-05 | 229 | 3 | 90 | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 9 | 17-Aug-05 | 229 | 4 | 90 | 2 | 27 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 9 | 18-Aug-05 | 230 | 5 | 90 | 3 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 9 | 18-Aug-05 | 230 | 6 | 90 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 9 | 18-Aug-05 | 230 | 7 | 90 | 3 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| 2005 | 9 | 18-Aug-05 | 230 | 8 | 90 | 3 | 0 | n/a |
| 2005 | 9 | 18-Aug-05 | 230 | 9 | 90 | 3 | 0 | n/a |
| 2005 | 9 | TOTALS |  |  |  |  | 73 | 0 | 42 | 27 | 0 | 4 | 0 | 0 | 0 |
| 2005 | 10 | 20-Aug-05 | 232 | 1 | 90 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 10 | 20-Aug-05 | 232 | 2 | 90 | 3 | 0 | n/a |
| 2005 | 10 | 20-Aug-05 | 232 | 3 | 90 | 2 | 0 | n/a |
| 2005 | 10 | 20-Aug-05 | 232 | 4 | 90 | 3 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 10 | 21-Aug-05 | 233 | 5 | 90 | 1 | 597 | 0 | 596 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 10 | 21-Aug-05 | 233 | 6 | 90 | 1 | 0 | n/a |
| 2005 | 10 | 21-Aug-05 | 233 | 7 | 90 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 10 | 21-Aug-05 | 233 | 8 | 90 | 1 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |

Appendix 5a. Barrow 2005 transect data by habitat.

|  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \omega \end{aligned}$ | $\stackrel{\cong}{\tilde{\sigma}}$ | $\begin{aligned} & \text { \#} \\ & \stackrel{\pi}{0} \\ & \stackrel{\varrho}{亏} \end{aligned}$ | $\begin{aligned} & \text { U } \\ & \mathbb{U} \\ & \text { N} \\ & \stackrel{\pi}{0} \end{aligned}$ | $\begin{aligned} & \text { ¿} \\ & \text { 믈 } \\ & \vdots \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{ \pm} \\ & \frac{1}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { Ø} \\ & \text { DO } \end{aligned}$ | $\begin{aligned} & \frac{\widetilde{\omega}}{\omega} \\ & \dot{\widetilde{\sigma}} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{\underline{O}} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \hline \mathrm{O} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 10 | 21-Aug-05 | 233 | 9 | 90 | 1 | 0 | n/a |
| 2005 | 10 | TOTALS |  |  |  |  | 614 | 0 | 607 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 11 | 23-Aug-05 | 235 | 1 | 90 | 2 | 10 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 11 | 23-Aug-05 | 235 | 2 | 90 | 5 | 0 | n/a |
| 2005 | 11 | 23-Aug-05 | 235 | 3 | 45 | 3 | 0 | n/a |
| 2005 | 11 | 23-Aug-05 | 235 | 4 | 45 | 3 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 11 | 24-Aug-05 | 236 | 5 | 90 | 1 | 537 | 0 | 537 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 11 | 24-Aug-05 | 236 | 6 | 45 | 2 | 11 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 11 | 24-Aug-05 | 236 | 7 | 45 | 1 | 12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 11 | 24-Aug-05 | 236 | 8 | 90 | 2 | 0 | n/a |
| 2005 | 11 | 24-Aug-05 | 236 | 9 | 90 | 1 | 0 | n/a |
| 2005 | 11 | TOTALS |  |  |  |  | 576 | 0 | 559 | 17 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 12 | 26-Aug-05 | 238 | 1 | 45 | 1 | 19 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 12 | 26-Aug-05 | 238 | 2 | 45 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 12 | 26-Aug-05 | 238 | 3 | 45 | 1 | 161 | 0 | 161 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 12 | 26-Aug-05 | 238 | 4 | 45 | 1 | 0 | n/a |
| 2005 | 12 | 27-Aug-05 | 239 | 5 | 90 | 1 | 7 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 12 | 27-Aug-05 | 239 | 6 | 135 | 1 | 0 | n/a |
| 2005 | 12 | 27-Aug-05 | 239 | 7 | 90 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 12 | 27-Aug-05 | 239 | 8 | 90 | 1 | 0 | n/a |
| 2005 | 12 | 27-Aug-05 | 239 | 9 | 90 | 1 | 0 | n/a |
| 2005 | 12 | TOTALS |  |  |  |  | 189 | 0 | 182 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 13 | 29-Aug-05 | 241 | 1 | 45 | 1 | 14 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 13 | 29-Aug-05 | 241 | 2 | 90 | 2 | 33 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 13 | 29-Aug-05 | 241 | 3 | 45 | 2 | 0 | n/a |
| 2005 | 13 | 29-Aug-05 | 241 | 4 | 45 | 2 | 0 | n/a |
| 2005 | 13 | 30-Aug-05 | 242 | 5 | 315 | 2 | 0 | n/a |
| 2005 | 13 | 30-Aug-05 | 242 | 6 | 315 | 2 | 0 | n/a |
| 2005 | 13 | 30-Aug-05 | 242 | 7 | 0 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 13 | 30-Aug-05 | 242 | 8 | 315 | 2 | 0 | n/a |
| 2005 | 13 | 30-Aug-05 | 242 | 9 | 315 | 3 | 0 | n/a |
| 2005 | 13 | TOTALS |  |  |  |  | 48 | 0 | 47 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 |  | TOTAL FOR | SPECI |  |  |  |  | 5032 |  |  |  |  |  |  |  |

Appendix 5b．Barrow 2006 transect data by habitat．

| $\stackrel{\stackrel{\rightharpoonup}{\circlearrowright}}{\underset{\sim}{\circ}}$ |  | $\stackrel{\cong}{\stackrel{\pi}{0}}$ |  | $\overleftarrow{0}$ <br>  <br>  <br> $\stackrel{\rightharpoonup}{*}$ | $\begin{aligned} & \overline{\bar{O}} \\ & \text { B } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{⿳ 亠 丷 厂 彡} \\ & \frac{D}{2} \end{aligned}$ |  | $\begin{aligned} & \frac{్}{n} \\ & \stackrel{\omega}{\tilde{\omega}} \\ & \underset{\omega}{n} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | 응 | ¢ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 1 | 21－Jul－06 | 202 | 1 | 225 | 3 | 16 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 21－Jul－06 | 202 | 2 | 225 | 3 | 0 | n／a |
| 2006 | 1 | 21－Jul－06 | 202 | 3 | 225 | 2 | 0 | n／a |
| 2006 | 1 | 21－Jul－06 | 202 | 4 | 225 | 3 | 103 | 0 | 95 | 8 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 22－Jul－06 | 203 | 5 | 225 | 2 | 119 | 0 | 1 | 1 | 0 | 20 | 97 | 0 | 0 |
| 2006 | 1 | 22－Jul－06 | 203 | 6 | 225 | 2 | 7 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 1 | 22－Jul－06 | 203 | 7 | 225 | 2 | 0 | n／a |
| 2006 | 1 | 22－Jul－06 | 203 | 8 | 315 | 1 | 30 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 22－Jul－06 | 203 | 9 | 225 | 2 | 29 | 2 | 0 | 0 | 0 | 0 | 27 | 0 | 0 |
| 2006 | 1 | TOTALS |  |  |  |  | 304 | 2 | 142 | 14 | 0 | 22 | 124 | 0 | 0 |
| 2006 | 2 | 24－Jul－06 | 205 | 1 | 90 | 3 | 75 | 0 | 75 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 24－Jul－06 | 205 | 2 | 90 | 3 | 0 | n／a |
| 2006 | 2 | 24－Jul－06 | 205 | 3 | 90 | 3 | 0 | n／a |
| 2006 | 2 | 24－Jul－06 | 205 | 4 | 90 | 3 | 0 | n／a |
| 2006 | 2 | 25－Jul－06 | 206 | 5 | 225 | 4 | 33 | 12 | 11 | 0 | 0 | 0 | 10 | 0 | 0 |
| 2006 | 2 | 25－Jul－06 | 206 | 6 | 225 | 4 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 25－Jul－06 | 206 | 7 | 225 | 3 | 0 | n／a |
| 2006 | 2 | 25－Jul－06 | 206 | 8 | 225 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 25－Jul－06 | 206 | 9 | 225 | 4 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | TOTALS |  |  |  |  | 114 | 12 | 90 | 0 | 2 | 0 | 10 | 0 | 0 |
| 2006 | 3 | 27－Jul－06 | 208 | 1 | 135 | 2 | 110 | 0 | 110 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 27－Jul－06 | 208 | 2 | 135 | 2 | 23 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 27－Jul－06 | 208 | 3 | 135 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 27－Jul－06 | 208 | 4 | 135 | 2 | 0 | n／a |
| 2006 | 3 | 28－Jul－06 | 209 | 5 | 90 | 3 | 140 | 14 | 111 | 0 | 0 | 7 | 8 | 0 | 0 |
| 2006 | 3 | 28－Jul－06 | 209 | 6 | 90 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 28－Jul－06 | 209 | 7 | 90 | 3 | 0 | n／a |
| 2006 | 3 | 28－Jul－06 | 209 | 8 | 90 | 4 | 0 | n／a |
| 2006 | 3 | 28－Jul－06 | 209 | 9 | 90 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | TOTALS |  |  |  |  | 276 | 14 | 246 | 0 | 1 | 7 | 8 | 0 | 0 |
| 2006 | 4 | 30－Jul－06 | 211 | 1 | 180 | 4 | 27 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 30－Jul－06 | 211 | 2 | 180 | 3 | 17 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 6 |
| 2006 | 4 | 30－Jul－06 | 211 | 3 | 180 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 30－Jul－06 | 211 | 4 | 180 | 4 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 31－Jul－06 | 212 | 5 | 45 | 2 | 222 | 0 | 3 | 8 | 0 | 0 | 211 | 0 | 0 |
| 2006 | 4 | 31－Jul－06 | 212 | 6 | 45 | 2 | 20 | 0 | 3 | 16 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 31－Jul－06 | 212 | 7 | 45 | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 31－Jul－06 | 212 | 8 | 45 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2006 | 4 | 31－Jul－06 | 212 | 9 | 45 | 2 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | TOTALS |  |  |  |  | 301 | 0 | 51 | 31 | 1 | 0 | 211 | 0 | 7 |
| 2006 | 5 | 2－Aug－06 | 214 | 1 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2006 | 5 | 2－Aug－06 | 214 | 2 | 0 | 1 | 9 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2006 | 5 | 2－Aug－06 | 214 | 3 | 0 | 2 | 221 | 0 | 221 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 2－Aug－06 | 214 | 4 | 0 | 2 | 16 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 14 |
| 2006 | 5 | 3－Aug－06 | 215 | 5 | 45 | 3 | 218 | 0 | 208 | 8 | 0 | 0 | 2 | 0 | 0 |
| 2006 | 5 | 3－Aug－06 | 215 | 6 | 45 | 2 | 17 | 0 | 0 | 7 | 0 | 10 | 0 | 0 | 0 |
| 2006 | 5 | 3－Aug－06 | 215 | 7 | 45 | 3 | 26 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 11 |
| 2006 | 5 | 3－Aug－06 | 215 | 8 | 45 | 1 | 349 | 0 | 6 | 44 | 0 | 10 | 0 | 0 | 289 |
| 2006 | 5 | 3－Aug－06 | 215 | 9 | 45 | 1 | 645 | 0 | 1 | 2 | 0 | 0 | 642 | 0 | 0 |
| 2006 | 5 | TOTALS |  |  |  |  | 1504 | 0 | 457 | 63 | 0 | 20 | 644 | 0 | 320 |
| 2006 | 6 | 5－Aug－06 | 217 | 1 | 23 | 3 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |

Appendix 5b. Barrow 2006 transect data by habitat.

| $\stackrel{\text { ® }}{\text { ঠ/ }}$ |  | $\stackrel{\cong}{\tilde{\pi}}$ | $\begin{aligned} & \cong \\ & \stackrel{y}{\sigma} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \text { 믈 } \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\top} \\ & \frac{0}{2} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { Ø} \\ & \text { DO } \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\underline{O}} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \mathbb{0} \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | 응 | ¢ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 6 | 5-Aug-06 | 217 | 2 | 23 | 3 | 55 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 44 |
| 2006 | 6 | 5-Aug-06 | 217 | 3 | 23 | 3 | 22 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2006 | 6 | 5-Aug-06 | 217 | 4 | 23 | 3 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 |
| 2006 | 6 | 6-Aug-06 | 218 | 5 | 135 | 3 | 3073 | 0 | - | 58 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 6-Aug-06 | 218 | 6 | 135 | 3 | 22 | 0 | 0 | 13 | 5 | 0 | 4 | 0 | 0 |
| 2006 | 6 | 6-Aug-06 | 218 | 7 | 225 | 1 | 11 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 6-Aug-06 | 218 | 8 | 90 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
| 2006 | 6 | 6-Aug-06 | 218 | 9 | 135 | 1 | 528 | 0 | 501 | 25 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 6 | TOTALS |  |  |  |  | 3779 | 0 | - | 96 | 5 | 2 | 4 | 0 | 111 |
| 2006 | 7 | 8-Aug-06 | 220 | 1 | 315 | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 8-Aug-06 | 220 | 2 | 315 | 5 | 218 | 0 | 61 | 0 | 0 | 0 | 0 | 0 | 157 |
| 2006 | 7 | 8-Aug-06 | 220 | 3 | 315 | 5 | 0 | n/a |
| 2006 | 7 | 8-Aug-06 | 220 | 4 | 315 | 4 | 209 | 0 | 36 | 12 | 0 | 0 | 0 | 0 | 161 |
| 2006 | 7 | 9-Aug-06 | 221 | 5 | 45 | 1 | 1766 | 0 | 0 | 2 | 0 | 6 | 1758 | 0 | 0 |
| 2006 | 7 | 9-Aug-06 | 221 | 6 | 45 | 2 | 235 | 0 | 0 | 2 | 0 | 0 | 233 | 0 | 0 |
| 2006 | 7 | 9-Aug-06 | 221 | 7 | 90 | 2 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
| 2006 | 7 | 9-Aug-06 | 221 | 8 | 90 | 1 | 132 | 1 | 11 | 0 | 0 | 0 | 0 | 0 | 120 |
| 2006 | 7 | 9-Aug-06 | 221 | 9 | 90 | 2 | 261 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 256 |
| 2006 | 7 | TOTALS |  |  |  |  | 2838 | 1 | 111 | 20 | 0 | 6 | 1991 | 0 | 709 |
| 2006 | 8 | 11-Aug-06 | 223 | 1 | 90 | 2 | 13 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 9 |
| 2006 | 8 | 11-Aug-06 | 223 | 2 | 90 | 2 | 46 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 27 |
| 2006 | 8 | 11-Aug-06 | 223 | 3 | 90 | 1 | 485 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 479 |
| 2006 | 8 | 11-Aug-06 | 223 | 4 | 90 | 1 | 17 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
| 2006 | 8 | 12-Aug-06 | 224 | 5 | 68 | 4 | 2060 | 0 | 200 | 10 | 0 | 0 | 1850 | 0 | 0 |
| 2006 | 8 | 12-Aug-06 | 224 | 6 | 68 | 4 | 65 | 0 | 1 | 10 | 0 | 0 | 54 | 0 | 0 |
| 2006 | 8 | 12-Aug-06 | 224 | 7 | 68 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2006 | 8 | 12-Aug-06 | 224 | 8 | 90 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 12-Aug-06 | 224 | 9 | 68 | 4 | 10 |  |  | 2 |  |  | 8 |  |  |
| 2006 | 8 | TOTALS |  |  |  |  | 2700 | 5 | 230 | 22 | 0 | 0 | 1912 | 0 | 531 |
| 2006 | 9 | 14-Aug-06 | 226 | 1 | 90 | 2 | 70 | 0 | 70 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 14-Aug-06 | 226 | 2 | 90 | 1 | 29 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 25 |
| 2006 | 9 | 14-Aug-06 | 226 | 3 | 90 | 2 | 15 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 14-Aug-06 | 226 | 4 | 45 | 3 | 368 | 85 | 76 | 144 | 0 | 0 | 0 | 0 | 63 |
| 2006 | 9 | 15-Aug-06 | 227 | 5 | 0 | 1 | 8 | 0 | 3 | 0 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 9 | 15-Aug-06 | 227 | 6 | . |  | 5 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 15-Aug-06 | 227 | 7 | 0 | 2 | 16 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 15-Aug-06 | 227 | 8 | . | . | 164 | 2 | 15 | 0 | 0 | 0 | 0 | 0 | 147 |
| 2006 | 9 | 15-Aug-06 | 227 | 9 | 0 | 1 | 9 | 0 | 6 | 0 | 0 | 3 | 0 | 0 | 0 |
| 2006 | 9 | TOTALS |  |  |  |  | 684 | 91 | 203 | 147 | 0 | 8 | 0 | 0 | 235 |
| 2006 | 10 | 17-Aug-06 | 229 | 1 | 45 | 2 | 66 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 65 |
| 2006 | 10 | 17-Aug-06 | 229 | 2 | 45 | 2 | 381 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 380 |
| 2006 | 10 | 17-Aug-06 | 229 | 3 | 45 | 2 | 847 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 805 |
| 2006 | 10 | 17-Aug-06 | 229 | 4 | 45 | 2 | 65 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 40 |
| 2006 | 10 | 18-Aug-06 | 230 | 5 | 0 | 2 | 327 | 0 | 326 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2006 | 10 | 18-Aug-06 | 230 | 6 | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 190 | 0 | 0 |
| 2006 | 10 | 18-Aug-06 | 230 | 7 | 45 | 3 | 10 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 18-Aug-06 | 230 | 8 | 0 | 0 | 58 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 50 |
| 2006 | 10 | 18-Aug-06 | 230 | 9 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | TOTALS |  |  |  |  | 1757 | 3 | 385 | 51 | 0 | 1 | 190 | 0 | \#\#\# |
| 2006 | 11 | 20-Aug-06 | 232 | 1 | 45 | 4 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
| 2006 | 11 | 20-Aug-06 | 232 | 2 | 45 | 4 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |

Appendix 5b. Barrow 2006 transect data by habitat.

| $\stackrel{\stackrel{\rightharpoonup}{\circlearrowright}}{\underset{\sim}{\circ}}$ | $\begin{aligned} & 0 \\ & 0 \\ & \frac{0}{0} \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$ | $\stackrel{y}{\stackrel{0}{0}}$ | $\begin{aligned} & \stackrel{0}{\tilde{0}} \\ & \stackrel{0}{亏} \\ & \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{\prime}} \\ & \frac{\bar{c}}{3} \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\vdots} \\ & \sum \sum \end{aligned}$ |  |  |  | $\begin{aligned} & \text { O} \\ & \text { O} \\ & 0 \end{aligned}$ | 응 | ¢ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 11 | 20-Aug-06 | 232 | 3 | 45 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 2006 | 11 | 20-Aug-06 | 232 | 4 | 45 | 4 | 39 | 0 | 0 | 22 | 0 | 0 | 0 | 0 | 17 |
| 2006 | 11 | 21-Aug-06 | 233 | 5 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 92 | 0 | 0 |
| 2006 | 11 | 21-Aug-06 | 233 | 6 | 0 | 2 | 205 | 0 | 4 | 3 | 1 | 0 | 197 | 0 | 0 |
| 2006 | 11 | 21-Aug-06 | 233 | 7 | 315 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2006 | 11 | 21-Aug-06 | 233 | 8 | 0 | 2 | 44 | 1 | 12 | 0 | 0 | 0 | 0 | 0 | 32 |
| 2006 | 11 | 21-Aug-06 | 233 | 9 | 315 | 3 | 11 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 |
| 2006 | 11 | TOTALS |  |  |  |  | 357 | 1 | 18 | 25 | 1 | 1 | 300 | 0 | 107 |
| 2006 | 12 | 23-Aug-06 | 235 | 1 | 0 | 3 | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87 |
| 2006 | 12 | 23-Aug-06 | 235 | 2 | 0 | 3 | 181 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 181 |
| 2006 | 12 | 23-Aug-06 | 235 | 3 | 45 | 2 | 88 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 82 |
| 2006 | 12 | 23-Aug-06 | 235 | 4 | 45 | 2 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2006 | 12 | 24-Aug-06 | 236 | 5 | 315 | 2 | 0 | n/a |
| 2006 | 12 | 24-Aug-06 | 236 | 6 |  | . | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 |
| 2006 | 12 | 24-Aug-06 | 236 | 7 | 45 | 2 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 |
| 2006 | 12 | 24-Aug-06 | 236 | 8 | 90 | 2 | 48 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 39 |
| 2006 | 12 | 24-Aug-06 | 236 | 9 | 315 | 2 | 0 | n/a |
| 2006 | 12 | TOTALS |  |  |  |  | 451 | 0 | 19 | 0 | 0 | 0 | 1 | 0 | 431 |
| 2006 | 13 | 26-Aug-06 | 238 | 1 | 135 | 2 | 351 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 314 |
| 2006 | 13 | 26-Aug-06 | 238 | 2 | 135 | 2 | 76 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 74 |
| 2006 | 13 | 26-Aug-06 | 238 | 3 | 135 | 2 | 0 | n/a |
| 2006 | 13 | 26-Aug-06 | 238 | 4 | 135 | 2 | 29 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 24 |
| 2006 | 13 | 27-Aug-06 | 239 | 5 | 135 | 2 | 120 | 0 | 0 | 9 | 0 | 0 | 111 | 0 | 0 |
| 2006 | 13 | 27-Aug-06 | 239 | 6 | 135 | 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | 27-Aug-06 | 239 | 7 | 45 | 2 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| 2006 | 13 | 27-Aug-06 | 239 | 8 | 180 | 2 | 96 | 0 | 26 | 0 | 0 | 0 | 0 | 0 | 70 |
| 2006 | 13 | 27-Aug-06 | 239 | 9 | 45 | 2 | 0 | n/a |
| 2006 | 13 | TOTALS |  |  |  |  | 681 | 1 | 72 | 10 | 0 | 0 | 111 | 0 | 490 |
| 2006 | 14 | 29-Aug-06 | 241 | 1 | 0 | 1 | 117 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 117 |
| 2006 | 14 | 29-Aug-06 | 241 | 2 | 0 | 1 | 0 | n/a |
| 2006 | 14 | 29-Aug-06 | 241 | 3 | 0 | 1 | 0 | n/a |
| 2006 | 14 | 29-Aug-06 | 241 | 4 | 0 | 2 | 0 | n/a |
| 2006 | 14 | 30-Aug-06 | 242 | 5 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 30-Aug-06 | 242 | 6 | 225 | 1 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 30-Aug-06 | 242 | 7 | 0 | 1 | 372 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 372 |
| 2006 | 14 | 30-Aug-06 | 242 | 8 | 225 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 30-Aug-06 | 242 | 9 | 0 | 1 | 6 | 0 | 1 | 0 | 0 | 4 | 1 | 0 | 0 |
| 2006 | 14 | TOTALS |  |  |  |  | 500 | 0 | 1 | 4 | 1 | 4 | 1 | 0 | 489 |
| 2006 | 15 | 1-Sep-06 | 244 | 1 | 135 | 2 | 0 | n/a |
| 2006 | 15 | 1-Sep-06 | 244 | 2 | 135 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2006 | 15 | 1-Sep-06 | 244 | 3 | 135 | 2 | 0 | n/a |
| 2006 | 15 | 1-Sep-06 | 244 | 4 | 135 | 2 | 0 | n/a |
| 2006 | 15 | 2-Sep-06 | 245 | 5 | 135 | 2 | 13 | 0 | 2 | 0 | 6 | 0 | 5 | 0 | 0 |
| 2006 | 15 | 2-Sep-06 | 245 | 6 | 135 | 2 | 0 | n/a |
| 2006 | 15 | 2-Sep-06 | 245 | 7 | 135 | 2 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2006 | 15 | 2-Sep-06 | 245 | 8 | 135 | 2 | 0 | n/a |
| 2006 | 15 | 2-Sep-06 | 245 | 9 | 135 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 15 | TOTALS |  |  |  |  | 21 | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 5 |
| 2006 |  | TOTAL FOR | SPEC | S |  |  |  | 16575 |  |  |  |  |  |  |  |



|  | 7dヨS | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | 0 | $\bigcirc$ | 0 | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0087 | － | $\bigcirc$ | － | $\bigcirc$ | － | － | － | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | － | － | $\bigcirc$ | － | － | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | － |
|  | dЭWV | － | O | － | $\bigcirc$ | － | － | － | $\bigcirc$ | － | － | O | － | － | － | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | $\bigcirc$ | $\bigcirc$ | － | － | － | O | － |
|  | ＊S98 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |
|  | $\forall S \forall 8$ | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | O | $\bigcirc$ | $\bigcirc$ | O | O | － | － | － | － | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\checkmark$ | O | $\bigcirc$ | $\bigcirc$ | O | O | $\bigcirc$ |
|  | กL＠ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | N | $\bigcirc$ | $\sim$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | O | $\bigcirc$ | $\checkmark$ | ＊ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ |
|  | CNVS | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\cdots$ | $\bigcirc$ | ナ | － | $\bigcirc$ | $\bigcirc$ | N | $\bigcirc$ | $\bigcirc$ |
|  | $\forall S \exists M$ | $\bigcirc$ | O | O | $\bigcirc$ | $\bigcirc$ | O | － | － | $\bigcirc$ | $\bigcirc$ | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{9}{-}$ | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | O | $\cdots$ | N | $1)$ | $\bigcirc$ | $\bigcirc$ | $\left\lvert\, \begin{gathered} 0 \\ \hline \end{gathered}\right.$ | M | $\bigcirc$ | ल | － | $\bigcirc$ | กூ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\stackrel{-}{\square}$ | $\bigcirc$ |
|  | $\forall$ Sヨd | $\bigcirc$ | － | － | $\checkmark$ | $\bigcirc$ | $\neg$ | $\bigcirc$ | $\bigcirc$ | $\sim$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $0$ | $\neg$ | － | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | 0 | $\checkmark$ | $\checkmark$ |
|  | $\forall S \perp S$ | $\bigcirc$ |
|  | Hdヨy | $\bigcirc$ | $\checkmark$ | O | $\underset{F}{ }$ | N | － | $0$ | $\bigcirc$ | ＇ | 윽 | $\underset{\sim}{n}$ | $\left.\begin{aligned} & \hat{N} \\ & \hat{1} \end{aligned} \right\rvert\,$ | － | － | $\bigcirc$ | $\stackrel{N}{\underset{\sim}{1}}$ | ＇ | $\underset{O}{N}$ | $\bigcirc$ | $\bigcirc$ | $\cdots$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $0$ | $\checkmark$ | $\stackrel{\bullet}{\sim}$ | $\bigcirc$ | $\checkmark$ | $\checkmark$ | $\bigcirc$ |
|  | HdNy | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | N | $\bigcirc$ | $\sim$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | O | ค | 0 | $\bigcirc$ | $\bigcirc$ | $0$ | $\begin{array}{\|c} 6 \\ - \end{array}$ | $\checkmark$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | m | $\checkmark$ | $\bigcirc$ | $\checkmark$ | O | $\bigcirc$ | 각 | $\bigcirc$ |
|  | $7 \mathrm{dg9}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $-1$ | $\bigcirc$ | $\bigcirc$ | $\neg$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ |
|  | 7N00 | $\bigcirc$ | O | $\bigcirc$ | $\begin{aligned} & \mathrm{m} \\ & \mathbf{0} \end{aligned}$ | $\bigcirc$ | $\bigcirc$ | $\underset{\sim}{0}$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | 5 | $\checkmark$ | O | $\left\lvert\, \begin{array}{\|c\|} \hline \\ \hline \end{array}\right.$ | － | $\bigcirc$ | $\begin{aligned} & \underset{7}{\mathrm{I}} \end{aligned}$ | $\left\|\begin{array}{l} -1 \end{array}\right\|$ | O | O | $\bigcirc$ | $0$ | $\bigcirc$ | N | $\checkmark$ | $\bigcirc$ | N | $\checkmark$ | O | $\bigcirc$ | ल | $\checkmark$ | $\bigcirc$ |
|  | $\forall \mathrm{S} \exists \mathrm{S}$ | $\bigcirc$ | e | $\sim$ | $\stackrel{\sim}{\circ}$ | $\bigcirc$ | N | $\stackrel{n}{0}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{ }{ }$ | $\sigma$ | 0 | $\bullet$ | $\bigcirc$ | 10 | $\stackrel{\rightharpoonup}{N}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ल1 | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | N | N | $\bigcirc$ |
|  | ןヤO1 | $\bigcirc$ | ल | $\sim$ | $\begin{aligned} & 0 \\ & \underset{\sim}{1} \end{aligned}$ | 극 | N | $\begin{gathered} \infty \\ \underset{\sim}{N} \end{gathered}$ | N | ， | $\left\|\begin{array}{r} -1 \\ -1 \end{array}\right\|$ | $\infty$ | $\begin{aligned} & 0 \\ & 0 \\ & -1 \end{aligned}$ | $\bigcirc$ | N | $\bigcirc$ | $\begin{aligned} & 0 \\ & 0 \\ & 7 \end{aligned}$ | ． | $\mid$ | $\bigcirc$ | O | $\bigcirc$ | 8 | $\checkmark$ | 극 | － | $\checkmark$ | $\stackrel{\sim}{N}$ | m | N | $\checkmark$ | $\underset{\sim}{\sim}$ | 앙 | $\nabla$ |
|  | みoıneәg | N | $\checkmark$ | N | N | $\checkmark$ | $\checkmark$ |  | m | ल | $\cdots$ | ल | N | $\cdots$ | $\checkmark$ | $N$ | N |  | $\bullet$ | $\cdots$ | m | $\cdots$ | $\checkmark$ | $\checkmark$ | $N$ | N | $\checkmark$ |  | N | N | N | N | $\checkmark$ | $\checkmark$ |
| $\begin{aligned} & \text { dे } \\ & \stackrel{0}{n} \end{aligned}$ | I！Qpu！M | ৪ | o | O | ৪ | O | 잉 |  | 앙 | 이 | 잉 | ৪ | $\begin{aligned} & 10 \\ & \end{aligned}$ | $\left\lvert\, \begin{gathered} \stackrel{n}{\mathrm{n}} \\ \hline \end{gathered}\right.$ | 앙 | $\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathbf{n}}$ | $\stackrel{1}{n} \underset{\sim}{n}$ |  | $\left\lvert\, \begin{aligned} & n \\ & \underset{7}{n} \end{aligned}\right.$ | 앙 | $\left\lvert\, \begin{gathered} n \\ \underset{\sim}{n} \end{gathered}\right.$ | ৪ | $\stackrel{\rightharpoonup}{\mathrm{O}}$ | O | ol | $\mid \underset{\downarrow}{\circ}$ | $\mid \stackrel{\rightharpoonup}{\bullet}$ |  | ৪ | 앙 | ৪ | ৪ | ¢ | ¢ |
| $\underset{\sim}{\mathbb{\pi}}$ | $\downarrow$ ŋəsue」」 | － | م | $\bigcirc$ | N | $\infty$ | の |  | $\neg$ | $\sim$ | m | ＊ | ロ | $\bigcirc$ | N | $\infty$ | の |  | $\neg$ | $\sim$ | m | ナ | ค | $\bigcirc$ | N | $\infty$ | の |  | $\square$ | $\sim$ | m | － | ロ | $\bullet$ |
| $\begin{aligned} & 0 \\ & \mathbb{U} \\ & \underset{\widetilde{O}}{0} \end{aligned}$ | әпедй | $\underset{\sim}{\underset{N}{N}}$ | $\begin{aligned} & \mathrm{N} \\ & \underset{N}{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \stackrel{N}{N} \\ & \hline \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \stackrel{n}{N} \\ & \hline \end{aligned}\right.$ | $\left\|\begin{array}{l} 1 \\ \underset{N}{2} \end{array}\right\|$ | $\begin{array}{\|c} \stackrel{\circ}{\mathrm{N}} \\ \hline \end{array}$ |  | $\begin{array}{\|c} \vec{N} \\ \underset{N}{2} \end{array}$ | $\left\lvert\, \begin{gathered} \mathrm{N} \\ \mathrm{~N} \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \underset{N}{2} \end{aligned}\right.$ | $\vec{\lambda}$ | $\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \infty \\ & \underset{\sim}{N} \end{aligned}$ | $\left\|\begin{array}{l} \infty \\ \underset{\sim}{\lambda} \end{array}\right\|$ | $\underset{\sim}{\infty}$ | $\begin{aligned} & \infty \\ & \underset{\lambda}{N} \end{aligned}$ |  | $\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\|\stackrel{O}{\mathrm{~N}}\|$ | $\|\stackrel{O}{\mathrm{~N}}\|$ | $\begin{aligned} & \mathrm{O} \\ & \underset{N}{2} \end{aligned}$ | $\underset{N}{N}$ | $\underset{N}{N}$ | $\mid \underset{N}{N}$ | $\underset{N}{N}$ | $\underset{N}{N}$ |  | $\begin{aligned} & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \underset{N}{N} \\ & \end{aligned}$ | $\underset{\sim}{N}$ | $\stackrel{N}{N}$ | $\stackrel{\stackrel{N}{N}}{N}$ | $\stackrel{\sim}{\sim}$ |
|  | әృ | $\begin{gathered} 10 \\ 0 \\ 1 \\ \frac{0}{3} \\ \frac{1}{1} \\ \stackrel{1}{2} \end{gathered}$ | $\begin{gathered} 10 \\ 0 \\ 1 \\ 0 \\ \frac{1}{1} \\ i \\ m \end{gathered}$ |  | $\left\|\begin{array}{c} 10 \\ 0 \\ 1 \\ 0 \\ \frac{1}{1} \\ \vdots \\ n \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ \frac{1}{1} \\ 1 \\ n \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\frac{0}{\frac{1}{6}}$ | $\left\|\begin{array}{c} 1 \\ 0 \\ 1 \\ \vdots \\ \frac{1}{2} \\ \frac{1}{1} \\ 1 \\ 1 \end{array}\right\|$ | $\left\|\begin{array}{c} 10 \\ 0 \\ 1 \\ 0 \\ 3 \\ \frac{1}{4} \\ 1 \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ \vdots \\ \frac{1}{1} \\ \dot{1} \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ \vdots \\ 0 \\ \vdots \\ \vdots \\ i \\ i \end{array}\right\|$ | $\left\|\begin{array}{l} 1 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 10 \\ 0 \\ 1 \\ 0 \\ 1 \\ 4 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{l} 10 \\ 0 \\ 1 \\ 0 \\ \frac{1}{1} \\ \dot{0} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ \vdots \\ 6 \end{array}\right\|$ |  | $\left\|\begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \frac{1}{1} \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 10 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 4 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{array}\right\|$ | 1 0 1 0 $\vdots$ $\vdots$ $i$ $i$ $i$ | $\left\|\begin{array}{l} 10 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \end{array}\right\|$ | $n$ <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ -1 \end{array}\right\|$ | $\stackrel{c}{c}$ |  |  |  |  |  |  |
| $\stackrel{+}{\square}$ | pdイə八ıns | － | ＊ | － | ＊ | － | $\checkmark$ | － | 10 | 10 | 10 | เ | 10 | 10 | $1 \times$ | 10 | 10 | ம | $\bullet$ | $\bullet$ | 0 | $\bullet$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bullet$ | $\bigcirc$ | $\bullet$ | N | $\wedge$ | $\wedge$ | $\wedge$ | N | $\wedge$ |
| $\begin{aligned} & \frac{c}{0} \\ & \frac{0}{2} \\ & \frac{1}{4} \end{aligned}$ | ノə入 | $\begin{aligned} & \mathrm{l} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & N \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & N \end{aligned}$ | $\left.\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & N \end{aligned} \right\rvert\,$ | $\left\|\begin{array}{l} 1 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\begin{aligned} & \stackrel{1}{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$ | $\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & N \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \mathrm{L} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { N } \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$ | $\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & N \end{aligned}$ | $\begin{aligned} & \text { LO} \\ & 0 \\ & 0 \\ & N \end{aligned}$ | $\left.\begin{array}{\|l\|} \hline 0 \\ \hline \\ 0 \\ N \end{array} \right\rvert\,$ | $\left\|\begin{array}{l} 1 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\begin{array}{\|c} 1 \\ 0 \\ 0 \\ \mathrm{~N} \end{array}$ | $\begin{aligned} & 1 \\ & \hline 0 \\ & 0 \\ & N \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathrm{n} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{O} \\ \mathrm{O} \end{array}\right\|$ | $\begin{array}{\|l} \stackrel{\rightharpoonup}{0} \\ \mathbf{O} \\ \underset{N}{2} \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$ | $\left.\begin{array}{\|l} \mathbf{0} \\ \mathbf{O} \\ 0 \\ N \end{array} \right\rvert\,$ | $\begin{aligned} & \mathrm{n} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}$ | L |



|  | 7dヨS | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | － | 0 | 0 | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | $\bigcirc$ | $\bigcirc$ | － | － | － | $\bigcirc$ | $\bigcirc$ | － | － | 0 | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | 0 | － | － | 0 | － | N | － | － | 0 | 0 | $\bigcirc$ | NO | － | － | $\bigcirc$ | N | － | － | 0 | O | N | 0 | － | － | $\bigcirc$ | － | － | 0 | 0 | O | － | $\sigma$ |
|  | d〇W＊ | 0 | － | － | － | － | － | － | 0 | 0 | 0 | 0 | 0 | － | － | － | $\bigcirc$ | － | － | 0 | － | 0 | 0 | － | － | $\bigcirc$ | － | 0 | 0 | 0 | O | － | － |
|  | VS98 | 0 | － | － | － | － | － | － | 0 | 0 | 0 | 0 | 0 | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | 0 | － | － | － | － | 0 | 0 | － | － | － | － |
|  | ＊SVG | 0 | 0 | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | － | 0 | 0 | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | $\bigcirc$ | － | － | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | － | m |
|  | กคก¢ | $\rightarrow$ | $m$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\llcorner$ | $\bigcirc$ | 0 | 0 | $0 \infty$ | $\infty 0$ | － | － | － | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\rightarrow$ | 0 | － | － | － | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ |
|  | QNVS | 0 | － | － | $\bigcirc$ | $\bigcirc$ | － | － | － | 0 | － | 0 | 0 | － | － | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | 0 | － | 0 | $\bigcirc$ | 0 | － | $\stackrel{\square}{-1}$ |
|  | $\forall S \exists M$ | $\stackrel{\sim}{\sim}$ | $\checkmark$ | $\bigcirc$ | － | $\bigcirc$ | $\stackrel{\square}{\square}$ | $\bigcirc$ | $\checkmark$ | 0 | － | $\bigcirc$ | 10 | － | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ | 0 | － | － | － | － | － | － | 0 | $\bigcirc$ | － | $\bigcirc$ | $\stackrel{-1}{\sim}$ |
|  | $\forall S \exists d$ | 0 | － | － | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | 0 | $\bigcirc$ | － | － | $0-$ | $\rightarrow 0$ | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ | － | 0 | － | － | － | － | $\bigcirc$ | － | 0 | － | － | $\bigcirc$ | $\stackrel{\sim}{\sim}$ |
|  | $\forall S \perp$ S | 0 | － | － | $\bigcirc$ | － | － | － | － | 0 | － | 0 | 0 | － | － | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | － | $\bigcirc$ | － | － | － | 0 | － | $\bigcirc$ | － | － |
|  | Hdヨy | $\stackrel{N}{\mathrm{~N}}$ | － | － | $\bigcirc$ | $\bigcirc$ | $\mid \stackrel{\circ}{\sim}$ | O | $\neg$ | 0 |  | $\bigcirc$ | $\bigcirc$ | － | $\stackrel{8}{7}$ | $\bigcirc$ | $\bigcirc$ | － | － | 0 | 0 | $\bigcirc$ | $\stackrel{\square}{7}$ | m | － | － | － | － | 0 | $\bigcirc$ | － | － |  |
|  | HdNU | $\stackrel{\mathbf{N}}{\mathrm{N}}$ | $\bigcirc$ | － | － | $\bigcirc$ | $\mid \underset{\sim}{\mathrm{N}}$ | $\bigcirc$ | － | 0 | － | － | － | 0 | － |  | － |  | － | 0 | － | N | － | － | － | － | － | － | － | － | － | － | 8 |
|  | 7 dag | 0 | 0 | － | 0 | － | － | － | 0 | 0 | － | 0 | 0 | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ | 0 | － | － | － | － | － | － | － | － | $\bigcirc$ | － | $\bigcirc$ | $\rightarrow$ |
|  | 7Nก0 | N | $\bullet$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | － | $\bigcirc$ | N | 0 | $\sim$ | － | － | － | $\bigcirc$ | 0 | 0 | 9 | － | － | － | － | － | － | $\rightarrow$ | $\bigcirc$ | $\bigcirc$ | $\rightarrow$ | ¢ |
|  | $\forall S \exists \mathrm{~S}$ | $\rightarrow$ | 0 | － | 0 | 0 | $\bigcirc$ | － | 0 | 0 | － | 0 | 0 | － | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | － | 0 | 0 | － | 0 | － | － | $\bigcirc$ | － | 0 | － | － | － | $\bigcirc$ | $\stackrel{7}{7}$ |
|  | ¢¢¢○」 | $\left\|\begin{array}{c} \underset{~}{d} \end{array}\right\|$ | $\bigcirc$ | － | 0 | $\bigcirc$ | $\left\lvert\, \begin{gathered} N \\ \hline N \end{gathered}\right.$ | $\cdots$ | $\underset{\sim}{\sim}$ | 0 | － | $0 \left\lvert\, \frac{0}{i}\right.$ | $\bigcirc$ | － | $\stackrel{-1}{9}$ |  |  |  |  | 0 | － | $\underset{\sim}{8}$ | $\underset{7}{7}$ | m | $\bigcirc$ | － | － | － | $\checkmark$ | － | － | $\stackrel{\infty}{\square}$ |  |
|  | みояneәg |  | $\sim$ | ค | $m$ | m | $\checkmark$ | $\sim$ | $\rightarrow$ | $\sim$ | － | $-1$ | $\checkmark$ | $\sim$ | － | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | － |  | $\rightarrow$ | $\sim$ | $\sim$ | N | N | N | m | N | $\cdots$ |  |  |
| $\stackrel{0}{\omega}$ | п！ |  | 8 | 8 | $\stackrel{4}{\square}$ | $\stackrel{\circ}{\square}$ | ৪ | $\stackrel{1}{4}$ | $\stackrel{4}{\square}$ | ¢ | 앙 | 8 | $\stackrel{\text { ¢̧ }}{ }$ | $\stackrel{4}{4}$ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\text { ¢̧ }}{ }$ | ¢ | $\stackrel{\sim}{7}$ | 8 | ¢ | － |  | $\stackrel{\square}{4}$ | ¢ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\text { ¢̧ }}{ }$ | $\stackrel{\sim}{\mathrm{m}}$ | $\stackrel{\sim}{\text { ¢ }}$ | $\bigcirc$ | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{m}$ |  |  |
| $\underset{\sim}{\tilde{\sigma}}$ |  |  | $\checkmark$ | $\sim$ | m | $\checkmark$ | ๑ | $\bigcirc$ | N | $\infty$ | $\sigma$ | の | $\checkmark$ | $\sim$ | m | $\checkmark$ | م | $\bigcirc$ | N | $\infty$ | の |  | $\checkmark$ | N | $m$ | $\checkmark$ | م | $\bigcirc$ | 入 | $\infty$ | の |  |  |
| $\begin{aligned} & \dot{0} \\ & \stackrel{\sim}{\tilde{O}} \end{aligned}$ | әъедı¢ |  | $\stackrel{\sim}{\sim}$ | $\stackrel{n}{N}$ | $\stackrel{\stackrel{N}{\mathrm{~N}}}{\mathrm{~N}}$ | $\mid \stackrel{\sim}{N}$ | $\stackrel{\infty}{N}$ | $\stackrel{0}{N}$ | $\stackrel{\bullet}{N}$ | $\stackrel{\substack{N \\ N}}{ }$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\infty}{\sim}$ | $\stackrel{\substack{0 \\ \sim}}{\sim}$ | $\stackrel{\infty}{\sim}$ | $\underset{\sim}{\infty}$ | $\stackrel{\rightharpoonup}{\sim}$ | $\underset{\sim}{\sim}$ | $\underset{\sim}{\sim}$ | N | － |  | $\underset{\sim}{7}$ | $\underset{\sim}{\sim}$ | $\stackrel{7}{\sim}$ | $\stackrel{7}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\underset{\sim}{\sim}$ | $\underset{\sim}{\underset{\sim}{N}}$ | $\underset{\sim}{\sim}$ | ～ |  | － |
|  | әџе | $\left\|\begin{array}{l} 0 \\ \vec{x} \\ \stackrel{1}{6} \\ \hline \end{array}\right\|$ |  |  |  |  |  |  | $n$ 0 0 $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ | $\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \sim \end{aligned}$ |  |  |  |  |  |  |  |  | $\left\{\begin{array}{l} n \\ 0 \\ \vdots \\ \frac{0}{1} \\ \frac{1}{\lambda} \\ \end{array}\right.$ |  |  | $\frac{c}{c}$ |  |  |  |  | $\left\{\begin{array}{l} n \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ \hline \end{array}\right.$ |  | $\begin{aligned} & n \\ & 0 \\ & 1 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \stackrel{u}{0} \\ & \vdots \\ & 0 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$ | on | $\stackrel{\text { L }}{\text { ¢ }}$ |
| － | pdKəл．ns | $\bigcirc$ | 7 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 7 |  | $\cdots$ | $\cdots$ | $\cdots$ | ～ | $\cdots$ | ～ | フ | $\cdots$ | $\underset{\sim}{7}$ | $\underset{\sim}{7}$ | N | $\stackrel{\square}{7}$ | $\stackrel{\sim}{7}$ | $\stackrel{7}{7}$ | $\stackrel{\square}{7}$ | $\stackrel{7}{7}$ | $\stackrel{1}{7}$ | $\stackrel{\square}{9}$ | $\cdots$ | $\stackrel{\sim}{7}$ | $\stackrel{\square}{7}$ |  |
| $\begin{aligned} & \frac{c}{0} \\ & \frac{0}{2} \\ & \hline \mathbf{c} \end{aligned}$ | »ед | $\begin{array}{\|c} 10 \\ \hline 0 \\ \hline \end{array}$ | $\underset{\sim}{2}$ | $\underset{\sim}{n}$ | $3$ | $\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}\right.$ | $\underset{\sim}{n}$ | $\underset{\sim}{3}$ | $\stackrel{\sim}{0}$ | $\left\lvert\, \begin{gathered} \underset{\sim}{0} \\ \underset{N}{2} \end{gathered}\right.$ | $\underset{\sim}{3}$ |  |  | $\underset{\sim}{3}$ |  | $\left\|\begin{array}{c} 0 \\ \hline 0 \\ N \end{array}\right\|$ | $3 \text { Non }$ | $\underset{\sim}{n}$ | $1 \begin{gathered} n \\ 0 \\ \hline \end{gathered}$ | $\left\|\begin{array}{c} 10 \\ 0 \\ 0 \\ N \end{array}\right\|$ | Non | $\begin{array}{\|c} \substack{0 \\ 0 \\ N} \end{array}$ | Non | $3 \text { Non }$ | $\underset{\sim}{3}$ |  | Non | － | N | － | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | － | － |















ןIOL $\underset{-}{ } 0$ ○ Appendix 5d．Barrow 2006 transect data by species．
uofneəg m $\quad$ の $N \sim N \rightarrow \sim$


－প০০


ŋəəsue»」

әұедй N N N N N





лə入
















| uoıneəg |  | $\checkmark$ | － | $\sim$ | N | m | N | м | $\checkmark$ | $-1$ |  | $\cdots$ | m | ल | м | м | m | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\bigcirc$ | م | $\checkmark$ | $\checkmark$ | $\sim$ | N | $\checkmark$ | $\sim$ |  | $\sim$ | $\sim$ | $-1$ | － | $\checkmark$ | $\checkmark$ | $N$ | $\nabla$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I！Opu！M |  | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\stackrel{\square}{\square}$ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\square}{\square}$ | $\stackrel{\square}{\square}$ | $\stackrel{\text { ¢ }}{\text {－}}$ |  | $\underset{\sim}{N}$ | $\underset{N}{N}$ | $\underset{N}{n}$ | $\underset{N}{N}$ | $\stackrel{\stackrel{\circ}{\mathrm{N}}}{ }$ | $\left\|\begin{array}{c} \stackrel{0}{\sim} \\ \underset{1}{2} \end{array}\right\|$ | $\stackrel{\llcorner }{N}$ | ৪ | $\stackrel{\stackrel{1}{n}}{\stackrel{\sim}{n}}$ |  | $\begin{aligned} & n \\ & \underset{m}{n} \end{aligned}$ | $\left\|\begin{array}{l} n \\ \underset{n}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \stackrel{\circ}{7} \\ ल \end{array}\right\|$ | $\left\|\begin{array}{l} 1 \\ \underset{m}{2} \end{array}\right\|$ | $\stackrel{\square}{\square}$ | $\stackrel{\bigcirc}{\odot}$ | 8 | O | 8 |  | ৪ | ৪ | ০ | ৪ | $\bigcirc$ | $\left\lvert\, \begin{gathered} \infty \\ 0 \end{gathered}\right.$ | 0 | 앙 |
| ฉวəsuセ」1 |  | $\checkmark$ | N | $\cdots$ | $\checkmark$ | $\bigcirc$ | $\bullet$ | N | $\infty$ | の |  | $\checkmark$ | N | m | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | N | $\infty$ | の |  | $\checkmark$ | N | m | $\checkmark$ | $\bigcirc$ | $\varphi$ | N | $\infty$ | $\sigma$ |  | $\checkmark$ | N | m | $\checkmark$ | 10 | $\bigcirc$ | N | $\infty$ |
| әџеव！n¢ |  | $\stackrel{\rightharpoonup}{\underset{N}{N}}$ | $\begin{gathered} \underset{N}{N} \end{gathered}$ | $\stackrel{\underset{\sim}{N}}{\underset{N}{2}}$ | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$ | $\stackrel{\sim}{N}$ | $\stackrel{\stackrel{i}{\mathrm{~N}}}{ }$ | $\left\|\begin{array}{l} \mathrm{N} \\ \underset{N}{2} \end{array}\right\|$ |  | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{\rightharpoonup}{\lambda}$ | $\stackrel{\rightharpoonup}{\lambda}$ | $\stackrel{N}{N}$ | $\stackrel{\infty}{\underset{N}{N}} \mid$ | $\left\|\begin{array}{c} \infty \\ \underset{\sim}{n} \end{array}\right\|$ | $\stackrel{\infty}{\underset{\sim}{N}}$ | $\begin{aligned} & \infty \\ & \underset{\sim}{N} \end{aligned}$ | $\left.\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned} \right\rvert\,$ |  | $\stackrel{O}{\mathrm{~N}}$ | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{\rightharpoonup}{\mathrm{N}}$ | $\stackrel{O}{\mathrm{~N}}$ | $\underset{\sim}{\mathrm{N}}$ | $\underset{N}{N}$ | $\stackrel{\underset{N}{N}}{ }$ | $\stackrel{ন}{N}$ | $\stackrel{\rightharpoonup}{N}$ |  | $\stackrel{N}{N}$ | $\begin{aligned} & \underset{N}{N} \\ & \hline \end{aligned}$ | $\stackrel{\sim}{N}$ | $\stackrel{N}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{\underset{N}{N}}$ | $\underset{\sim}{\mathrm{N}}$ | $\underset{\sim}{\underset{N}{N}}$ |
| әґеД | $\left\|\begin{array}{c} c \\ \stackrel{1}{\mathbb{1}} \\ \stackrel{0}{\bullet} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 4 \\ i \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ \frac{1}{2} \\ \frac{1}{1} \\ \cdots \end{array}\right\|$ | $\begin{gathered} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{4} \\ \underset{N}{1} \end{gathered}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ \lambda \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \frac{1}{3} \\ & \frac{4}{4} \\ & ल \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \hline 1 \\ \frac{1}{c} \\ ल \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{4} \\ & \stackrel{1}{n} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \hline 1 \\ & \frac{1}{c} \\ & ल \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{c} \\ \vdots \\ m \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{\mathbb{6}} \\ & \stackrel{O}{\circ} \\ & -1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \frac{1}{c} \\ & \stackrel{1}{1} \\ & \hline 0 \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{4} \\ \vdots \\ 1 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ \vdots \\ \frac{1}{2} \\ \frac{1}{t} \\ \dot{n} \end{array}\right\|$ | $\begin{array}{\|c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{4} \\ \stackrel{1}{n} \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \frac{1}{4} \\ & 0 \\ & 0 \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 4 \\ \vdots \\ 0 \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \frac{1}{4} \\ & 0 \\ & 0 \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \hline 1 \\ 4 \\ 6 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{4} \\ 1 \\ 0 \end{array}\right\|$ | $\left.\begin{gathered} c \\ \stackrel{y}{\mathbb{1}} \\ \stackrel{0}{1} \end{gathered} \right\rvert\,$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{1} \\ \frac{1}{1} \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 4 \\ \vdots \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \hline 1 \\ 4 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ \vdots \\ 1 \\ 0 \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \hline 1 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ i \\ 0 \\ \frac{1}{1} \\ \frac{1}{i} \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \frac{1}{4} \\ \vdots \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ \frac{1}{1} \\ \frac{1}{1} \\ \sigma \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ \frac{1}{3} \\ \frac{1}{1} \\ 0 \end{array}\right\|$ | $\frac{0}{\frac{1}{6}}$ | 0 0 1 0 1 1 1 -1 -1 | 0 0 1 1 0 $\frac{1}{4}$ 1 -1 -1 |  | 0 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br> 1 |  |  | 0 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br>  | 0 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br>  |
| pdKəлins | $\checkmark$ | 10 | $\bigcirc$ | 10 | L | 1 | ம | 1 | 10 | 10 | 上 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | 0 | $\bullet$ | $\bullet$ | 0 | $\bullet$ | N | N | N | N | N | N | N | N | $\sim$ | $\wedge$ | $\infty$ |
| ノセə入 | $\circ$ $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{2}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \\ \text { N } \end{array}$ | - <br> - <br> $\stackrel{\rightharpoonup}{2}$ | 0 <br>  | $\begin{aligned} & 0 \\ & \hline \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | - <br> - <br> $\stackrel{\rightharpoonup}{2}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \\ \text { N } \end{array}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { N } \end{aligned}$ | - $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{2}$ | $\circ$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | - <br> - | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \\ \text { N } \end{array}$ | 0 <br>  | O <br>  <br> N <br> N | - <br> - | - <br>  | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \\ \text { N } \end{array}$ | $\circ$ <br> - | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & N \end{aligned}$ | - <br> - <br> $\stackrel{\rightharpoonup}{N}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \\ \text { N } \end{array}$ | - <br>  <br>  | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \mathrm{~N} \end{aligned}$ | - <br> - <br> $\stackrel{\rightharpoonup}{2}$ | - <br>  <br> $\stackrel{\rightharpoonup}{2}$ | - <br>  <br>  | - <br>  | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ 0 \\ N \end{array}$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & N \end{aligned} \right\rvert\,$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$ | － | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & \underset{N}{2} \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ \mathrm{O} \\ \mathrm{~N} \end{array}$ | - <br> - <br> $\stackrel{\rightharpoonup}{2}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \mathrm{~N} \end{aligned}$ | － |


|  | 7 l 7 ${ }^{\text {d }}$ |  | 0 | 0 | － | － | 0 | 0 |  | － | 0 | － |  | － | － | 0 |  | － | － | 0 | $\bigcirc$ | － | － | － | － | $\bigcirc$ | － | － | 0 | 0 | － | － | － | － | 0 | $\bigcirc$ | － | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 |  | － | － | － | － | － | － | $\bigcirc$ | 0 | 0 | － | 0 | － | － | － | $\bigcirc$ | m | $\bigcirc$ | $\bigcirc$ | 0 | m | － | － | $\bigcirc$ | － | － | － | － | － | － | 0 | － | － | 0 | － | － | － | － |
|  | dכW＊ |  | $\bigcirc$ | － | － | － | － | － | $\bigcirc$ | － | 0 | － | 0 | － | － | 0 | － | 0 | － | － | － | － | － | － | $\bigcirc$ | － | － | $-1$ | － | $\bigcirc$ | － | － | － | － | 0 | $\bigcirc$ | － | － | － |
|  | VS98 |  | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | － | $\bigcirc$ | $\bigcirc$ | － | － | － | － | 0 | $\bigcirc$ | 0 | － | $\bigcirc$ | 0 | － | $\bigcirc$ | － | $\bigcirc$ | － | 0 | 0 | － | 0 | － | － | 0 | $\bigcirc$ |
|  | $\forall S \forall 8$ |  | O | － | － | － | － | 0 | － | 0 | 0 | － | － | － | $\bigcirc$ | 0 | － | － | － | － | － | － | － | － | － | O | － | － | － | $\bigcirc$ | － | － | － | － | 0 | － | 0 | － | － |
|  | nıกy |  | $\checkmark$ | － | 0 | － | $\rightarrow$ | － | $\bigcirc$ | － | 10 | $\sim$ | ， 0 | － | $\sim$ | $m$ | $\bigcirc$ | 0 | － | $\sim$ | $\bigcirc$ | $\infty$ | 0 | － | － | 0 | － | － | － | 入 | － | 入 | $\bigcirc$ | － | 0 | － | － | － | － |
|  | aNVS |  | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $-1$ | － | $\bigcirc$ | － | 0 | － | 10 | $\bigcirc$ | － | $\bigcirc$ | － | － | － | － | $\bigcirc$ | － | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | － | 0 | $\bigcirc$ | － | $\bigcirc$ | － | － | － | 0 |
|  | $\forall S \exists M$ | $\rightarrow$ | ค | 0 | $\bigcirc$ | － | 0 | － | － | － | のー | $\checkmark$ | 0 | $\bigcirc$ | 0 | N | － | － | $\bigcirc$ | $m$ | $\bigcirc$ | ค | $\bigcirc$ | － | － | 0 | － | － | － | m | $\bigcirc$ | m | $\bigcirc$ | － | 0 | － | － | － | － |
|  | $\forall \mathrm{S} \exists \mathrm{d}$ |  | － | － | $\rightarrow$ | － | － | － | $\checkmark$ | － | 0 | $\sim$ | ， 0 | － | － | 0 | － | － | O | － | － | $\rightarrow$ | － | － | － | － | － | － | － | － | － | 0 | － | $\bigcirc$ | 0 | － | － | － | － |
|  | $\forall S \perp$ S |  | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | 0 | － | － | 0 | － | － | － | － | $\bigcirc$ | $\bigcirc$ | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | 0 | $\bigcirc$ | 0 | $\bigcirc$ | － | － | $\bigcirc$ |
|  | Hdヨy | $\infty$ |  | ？ | 今 | $\stackrel{1}{\sim}$ | $0$ | m |  | 9 | 0 | $\stackrel{\rightharpoonup}{c}$ |  | ¢ | $\underset{\infty}{\infty}$ | ¢ |  | N | の | $\bigcirc$ | $\bigcirc$ |  | $\pm$ | ¢ | $\bigcirc$ | $\stackrel{\infty}{\sim}$ | 欠ু | N | N | N | न | $\stackrel{\sim}{7}$ | － | $\stackrel{\sim}{0}$ | $\infty$ | $\bigcirc$ | 0 | N | ～ |
|  | HdNU |  | $\stackrel{\odot}{\sim}$ | － | 0 | － | － | － | － | 0 | 0 | － | － | 1 | － | 0 | － | 0 | － | 앙 | $\bigcirc$ | $\stackrel{\sim}{\circ}$ | － | － | － | － | － | $\bigcirc$ | － | － | 0 | － | 0 | － | － | － | 0 | － | － |
|  | $7 \mathrm{dg9}$ |  | $\bigcirc$ | － | $\infty$ | $\bigcirc$ | － | － | $\bigcirc$ | － | 0 | $\infty$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | － | － | － | － | 0 | $\bigcirc$ | － | 0 | 0 | － | 0 | － | － | － | － |
|  | 7Nกロ |  | $\checkmark$ | 0 | － | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | － | $\bigcirc$ | $\infty$ | 1 | － | － | － | N | － | N | － | $m$ | m | $\stackrel{\sim}{0}$ | － | － | － | N | N | $\rightarrow$ | － | $\sim$ | － | $\stackrel{\circ}{\sim}$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | － |
|  | $\forall \mathrm{S} \exists \mathrm{S}$ | $\rightarrow$ | － | $\bigcirc$ | m | － | $\bigcirc$ | $\neg$ | $\bigcirc$ | $\bigcirc$ | $\rightarrow-$ | 10 | 0 | － | － | － | $\bigcirc$ | － | O | $\bigcirc$ | 0 | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | 0 | － | 0 | $\bigcirc$ | － | 0 | $\bigcirc$ |
|  | ๒れ二」 | $0$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | ○ | $\stackrel{\sim}{\sim}$ | $\stackrel{1}{7}$ | $\left.\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$ | $\infty$ | レ | $\bigcirc$ | O 0 | ¢ | 0 | － | － | $\stackrel{\sim}{6}$ |  | O | $\bigcirc$ | 0 | m | $\stackrel{N}{N}$ | $\stackrel{\rightharpoonup}{*}$ | 0 | $\bigcirc$ | ® | 0 | N | $\sim$ | J | न | N | － | $\stackrel{\sim}{\square}$ | $\infty$ | $\bigcirc$ | － | $m$ | ¢ |
| . | นоృnеәя | $\checkmark$ |  | $\sim$ | $\rightarrow$ | $\sim$ | $\cdots \mathrm{m}$ | $\checkmark$ |  | $\sim$ | － |  | $\sim$ | $\sim$ | $\sim \sim$ | N | $\sim$ | $\bigcirc$ | m | 0 | $\sim$ |  | ナ | $\checkmark$ | ナ | － | － | $\sim$ | m | $\sim$ | m |  | m | m | $N$ | N | N |  | $\sim$ |
| $\begin{aligned} & \text { む } \\ & \text { へ } \end{aligned}$ | л！ори！м | $\otimes$ |  | 8 | － | 앙 | $\stackrel{1}{4}$ | $\bigcirc$ |  | $\bigcirc$ | － |  | $\stackrel{\square}{4}$ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\text { ¢ }}{\sim}$ | － | － | $\stackrel{\text { ® }}{ }$ | － | 0 |  | $\stackrel{\sim}{\square}$ | ¢ | ¢ | ¢ | － | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\stackrel{n}{\mathrm{~m}}$ |  | $\bigcirc$ | $\bigcirc$ | $\stackrel{\circ}{\square}$ | $\stackrel{\sim}{\sim}$ | $\bar{m}$ |  | $\stackrel{\text { ¢ }}{\square}$ |
| $\underset{\sim}{\circ}$ | ŋวəsue»」 | の |  | $\rightarrow$ | $\sim$ | m | $\checkmark$ | ค | $\bigcirc$ | 入 | $\infty 0$ |  | $\checkmark$ |  | $\checkmark \mathrm{m}$ | $\checkmark$ | 10 | $\bigcirc$ | N | $\infty$ | a |  | $\checkmark$ | $\sim$ | m | ナ | $\bigcirc$ | $\bigcirc$ | N | $\infty$ | $\sigma$ |  | $\checkmark$ | $\sim$ | $m$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | 入 |
| $\stackrel{\stackrel{C}{\widetilde{C}}}{\substack{C}}$ | әґе๐｜n¢ | $\underset{\sim}{\sim}$ |  | $\left\|\begin{array}{l} 0 \\ N \end{array}\right\|$ | $\underset{\sim}{N}$ | $\stackrel{\rightharpoonup}{N} \underset{\sim}{N}$ | $\stackrel{\stackrel{\rightharpoonup}{N}}{\stackrel{\sim}{N}}$ | $\stackrel{\rightharpoonup}{\mathrm{N}} \underset{\mathrm{~N}}{\mathrm{~N}}$ | $\underset{\sim}{\mathrm{N}}$ | $\underset{\mathrm{N}}{\mathrm{~N}}$ | $\underset{N}{\mathrm{~N}}$ |  | N | $\underset{N}{N}$ |  | $\underset{\sim}{N}$ | ON | No | ON | $\underset{\sim}{n}$ | O্N |  | N | $\underset{\sim}{N}$ | $\stackrel{\sim}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{\sim}$ | $\stackrel{m}{N}$ | $\stackrel{\substack{N \\ N}}{ }$ | $\underset{\sim}{\sim}$ | N |  | $\stackrel{N}{N}$ | $\stackrel{n}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{N}$ | N |  | $\stackrel{\sim}{\sim}$ |
| $\begin{aligned} & 0 \\ & 0 \\ & N \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | әңе๐ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \underset{~}{1} \end{array}\right\|$ |  |  |  |  |  |  |  | 0 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> $\vdots$ <br> $n$ <br>  |  |  |  |  |  | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \lambda \\ \lambda \end{gathered}$ |  |  |  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \frac{1}{1} \\ & \vdots \\ & \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \vdots \\ & \vdots \\ & \lambda \end{aligned}$ |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \end{aligned}$ |  | ¢ |  | － | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \\ N \end{gathered}$ | $\stackrel{\sim}{\sim}$ |  |  |
| $\times$ | Pdイəлıns | $\infty$ | $\infty$ | の | の | $\bigcirc$ | の | の | の | － | の○ |  | $\bigcirc$ | O | 0 | $\bigcirc$ |  | 악 | $\bigcirc$ | 익 | $\bigcirc$ | $\bigcirc$ | 7 | $\cdots$ | $\cdots$ | 7 | $\underset{-1}{ }$ | 7 | $\cdots$ | 7 | － | 7 | ～ | ～ | N | N | N | N | $\underset{\sim}{\sim}$ |
| $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{0}{0} \\ & \stackrel{1}{4} \end{aligned}$ | гед | $\begin{array}{\|l} \hline 0 \\ \hline 0 \\ \sim \end{array}$ | $\begin{array}{\|c} \hline 0 \\ \hline 0 \\ \mathrm{~N} \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ N \end{gathered}$ | $\begin{array}{\|c} \hline 0 \\ \hline 0 \\ N \end{array}$ |  | $\stackrel{\rightharpoonup}{2} \stackrel{\rightharpoonup}{i}$ | bio | $\begin{aligned} & \circ \\ & \dot{O} \\ & \mathrm{~N} \end{aligned}$ | $\begin{array}{\|c} \hline 0 \\ \hline 0 \\ \hline \end{array}$ |  |  |  |  |  | $\begin{array}{\|c} \hline 0 \\ \hline 0 \\ N \end{array}$ |  |  |  | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | O- O- | Bo | Oion | $0 \begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & N \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{N} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ |  | $\begin{array}{\|l\|l\|l\|l\|l\|} \hline 0 \\ \hline \end{array}$ | $\begin{array}{\|l\|l} \hline 0 \\ 0 \\ \hline \end{array}$ | O-O | $\begin{aligned} & 0 \\ & \hline 0 \\ & \sim \\ & N \end{aligned}$ | $\begin{array}{\|l\|} \hline \hline \mathrm{O} \\ \hline \end{array}$ | $3 \times$ | O- | $\begin{array}{\|l} \hline 0 \\ \hline \\ \hline \end{array}$ | N |  | － |



Appendix 6a. Colville 2005 transect data by habitat.

| $\stackrel{\text { ® }}{\text { б }}$ | $\begin{aligned} & \underset{O}{0} \\ & \stackrel{\rightharpoonup}{\widehat{\omega}} \\ & \vdots \\ & \vdots \end{aligned}$ | $\stackrel{\cong}{\overleftarrow{\pi}}$ | $\begin{aligned} & \frac{0}{\tilde{\sigma}} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{O}} \\ & \text { ㅡㅡㄹ } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \sum \sum \end{aligned}$ | $\begin{aligned} & \widetilde{\widetilde{\pi}} \\ & \stackrel{\mathbb{O}}{0} \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{0} \\ & \frac{\vdots}{ً} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O } \end{aligned}$ |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 1 | 27-Jul-05 | 208 | 1 | ne | 5 | 0 | n/a |
| 2005 | 1 | 27-Jul-05 | 208 | 2 | ne | 5 | 0 | n/a |
| 2005 | 1 | 27-Jul-05 | 208 | 3 | ne | 5 | 0 | n/a |
| 2005 | 1 | 28-Jul-05 | 209 | 4 | ne | 4 | 9 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 5 | ne | 5 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 6 | ne | 4 | 42 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 7 | ne | 5 | 8 | 0 | 0 | 4 | 2 | 0 | 2 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 8 | ne | 4 | 14 | 0 | 0 | 0 | 1 | 13 | 0 | 0 | 0 |
| 2005 | 1 | 28-Jul-05 | 209 | 9 | ne | 4 | 8 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 |
| 2005 | 1 | TOTALS |  |  |  |  | 83 | 0 | 0 | 52 | 8 | 21 | 2 | 0 | 0 |
| 2005 | 2 | 30-Jul-05 | 211 | 1 | ne | 4 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 30-Jul-05 | 211 | 2 | ne | 4 | 67 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 30-Jul-05 | 211 | 3 | ne | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 1-Aug-05 | 213 | 4 | ne | 4 | 98 | 22 | 0 | 5 | 4 | 67 | 0 | 0 | 0 |
| 2005 | 2 | 31-Jul-05 | 212 | 5 | ne | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 31-Jul-05 | 212 | 6 | ne | 3 | 337 | 7 | 0 | 29 | 0 | 281 | 20 | 0 | 0 |
| 2005 | 2 | 31-Jul-05 | 212 | 7 | ne | 3 | 50 | 13 | 0 | 1 | 1 | 35 | 0 | 0 | 0 |
| 2005 | 2 | 31-Jul-05 | 212 | 8 | ne | 3 | 7 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 |
| 2005 | 2 | 31-Jul-05 | 212 | 9 | ne | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | TOTALS |  |  |  |  | 572 | 118 | 0 | 42 | 5 | 387 | 20 | 0 | 0 |
| 2005 | 3 | 2-Aug-05 | 214 | 1 | ne | 3 | 33 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 2-Aug-05 | 214 | 2 | ne | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 2-Aug-05 | 214 | 3 | ne | 2 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 3-Aug-05 | 215 | 4 | ne | 4 | 12 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| 2005 | 3 | 3-Aug-05 | 215 | 5 | ne | 4 | 134 | 43 | 0 | 17 | 0 | 74 | 0 | 0 | 0 |
| 2005 | 3 | 3-Aug-05 | 215 | 6 | ne | 3 | 21 | 11 | 0 | 1 | 0 | 9 | 0 | 0 | 0 |
| 2005 | 3 | 3-Aug-05 | 215 | 7 | ne | 3 | 239 | 2 | 0 | 13 | 16 | 208 | 0 | 0 | 0 |
| 2005 | 3 | 3-Aug-05 | 215 | 8 | ne | 3 | 58 | 0 | 0 | 1 | 3 | 55 | 0 | 0 | 0 |
| 2005 | 3 | 3-Aug-05 | 215 | 9 | ne | 4 | 61 | 27 | 0 | 0 | 0 | 34 | 0 | 0 | 0 |
| 2005 | 3 | TOTALS |  |  |  |  | 563 | 121 | 0 | 32 | 19 | 392 | 0 | 0 | 0 |
| 2005 | 4 | 5-Aug-05 | 217 | 1 | ne | 2 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 5-Aug-05 | 217 | 2 | ne | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 5-Aug-05 | 217 | 3 | ne | 2 | 0 | n/a |
| 2005 | 4 | 6-Aug-05 | 218 | 4 | se | 1 | 73 | 0 | 0 | 23 | 0 | 49 | 1 | 0 | 0 |
| 2005 | 4 | 6-Aug-05 | 218 | 5 | se | 1 | 65 | 0 | 0 | 40 | 0 | 17 | 8 | 0 | 0 |
| 2005 | 4 | 7-Aug-05 | 219 | 6 | S | 3 | 832 | 0 | 0 | 6 | 1 | 15 | 810 | 0 | 0 |
| 2005 | 4 | 7-Aug-05 | 219 | 7 | S | 3 | 99 | 0 | 0 | 63 | 8 | 25 | 3 | 0 | 0 |
| 2005 | 4 | 6-Aug-05 | 218 | 8 | S | 1 | 23 | 0 | 0 | 0 | 1 | 20 | 2 | 0 | 0 |
| 2005 | 4 | 6-Aug-05 | 218 | 9 | . | 0 | 37 | 0 | 0 | 0 | 0 | 25 | 4 | 0 | 0 |
| 2005 | 4 | TOTALS |  |  |  |  | - | 10 | 0 | 132 | 10 | 151 | 828 | 0 | 0 |
| 2005 | 5 | 9-Aug-05 | 221 | 1 | sw | 4 | 0 | n/a |
| 2005 | 5 | 9-Aug-05 | 221 | 2 | sw | 4 | 6 | 86 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 9-Aug-05 | 221 | 3 | sw | 3 | 0 | n/a |
| 2005 | 5 | 11-Aug-05 | 223 | 4 | S | 1 | 5 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 0 |
| 2005 | 5 | 11-Aug-05 | 223 | 5 | S | 2 | 47 | 0 | 0 | 30 | 0 | 6 | 11 | 0 | 0 |
| 2005 | 5 | 11-Aug-05 | 223 | 6 | S | 2 | 17 | 0 | 0 | 6 | 0 | 11 | 0 | 0 | 0 |
| 2005 | 5 | 11-Aug-05 | 223 | 7 | S | 2 | 4 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 |
| 2005 | 5 | 11-Aug-05 | 223 | 8 | S | 2 | 4 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 11-Aug-05 | 223 | 9 | sw | 2 | 12 | 0 | 0 | 0 | 10 | 2 | 0 | 0 | 0 |
| 2005 | 5 | TOTALS |  |  |  |  | 95 | 89 | 0 | 42 | 11 | 21 | 12 | 0 | 0 |

Appendix 6a．Colville 2005 transect data by habitat．

| $\stackrel{\text { 厄̈ }}{\stackrel{\text { ® }}{\prime}}$ | 0 0 2 0 2 0 0 | $\begin{aligned} & \cong \\ & \stackrel{\pi}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{y}{\tilde{0}} \\ & \stackrel{0}{亏} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{O}} \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \frac{0}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { 区్ } \\ & \text { © } \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \risingdotseq \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & 0 . \end{aligned}$ | O | 응 <br> 응 <br> 1 | ¢్ర్ర |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 6 | 13－Aug－05 | 225 | 1 | ne | 1 | 90 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 13－Aug－05 | 225 | 2 | ne | 2 | 14 | 11 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| 2005 | 6 | 13－Aug－05 | 225 | 3 | ne | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 15－Aug－05 | 227 | 4 | nw | 1 | 5 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 |
| 2005 | 6 | 15－Aug－05 | 227 | 5 | n | 1 | 26 | 23 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| 2005 | 6 | 14－Aug－05 | 226 | 6 | ne | 3 | 7 | 1 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
| 2005 | 6 | 14－Aug－05 | 226 | 7 | ne | 3 | 0 | n／a | n／a | n／a | n／a | n／a | $\mathrm{n} / \mathrm{a}$ | n／a | n／a |
| 2005 | 6 | 14－Aug－05 | 226 | 8 | e | 3 | 0 | n／a |
| 2005 | 6 | 14－Aug－05 | 226 | 9 | ne | 3 | 0 | n／a |
| 2005 | 6 | TOTALS |  |  |  |  | 144 | 127 | 0 | 0 | 2 | 8 | 7 | 0 | 0 |
| 2005 | 7 | 16－Aug－05 | 228 | 1 | ne | 2 | 58 | 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 16－Aug－05 | 228 | 2 | ne | 2 | 0 | n／a |
| 2005 | 7 | 16－Aug－05 | 228 | 3 | ne | 2 | 0 | n／a |
| 2005 | 7 | 17－Aug－05 | 229 | 4 | ne | 2 | 5 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 |
| 2005 | 7 | 17－Aug－05 | 229 | 5 | ne | 2 | 0 | n／a |
| 2005 | 7 | 18－Aug－05 | 230 | 6 | ne | 3 | 15 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 |
| 2005 | 7 | 18－Aug－05 | 230 | 7 | ne | 3 | 8 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 18－Aug－05 | 230 | 8 | ne | 3 | 4 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 |
| 2005 | 7 | 18－Aug－05 | 230 | 9 | ne | 3 | 0 | n／a |
| 2005 | 7 | TOTALS |  |  |  |  | 90 | 58 | 0 | 8 | 7 | 2 | 15 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 1 | n | 2 | 768 | 768 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 2 | n | 2 | 42 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 3 | n | 2 | 71 | 71 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 4 | n | 2 | 28 | 0 | 0 | 6 | 14 | 8 | 0 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 5 | n | 2 | 166 | 0 | 0 | 11 | 0 | 155 | 0 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 6 | ne | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 2005 | 8 | 20－Aug－05 | 232 | 7 | ne | 2 | 21 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 0 |
| 2005 | 8 | 22－Aug－05 | 234 | 8 | ne | 2 | 10 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
| 2005 | 8 | 22－Aug－05 | 234 | 9 | ne | 2 | 11 | 0 | 0 | 4 | 0 | 7 | 0 | 0 | 0 |
| 2005 | 8 | TOTALS |  |  |  |  | － | 881 | 0 | 21 | 14 | 201 | 1 | 0 | 0 |
| 2005 |  | TOTAL FOR | PECIE |  |  |  |  | － |  |  |  |  |  |  |  |

Appendix 6a. Colville 2006 transect data by habitat.

| $\stackrel{\text { ® }}{\text { 厄 }}$ | $\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \cong \\ & \stackrel{\pi}{\pi} \end{aligned}$ | $\begin{aligned} & \stackrel{y}{\overleftarrow{0}} \\ & \stackrel{0}{亏} \end{aligned}$ |  |  | $\begin{aligned} & \stackrel{ \pm}{0} \\ & \stackrel{\rightharpoonup}{\widetilde{N}} \\ & \stackrel{\sim}{\otimes} \end{aligned}$ |  |  |  | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\omega}{\sigma} \\ & \underset{\sim}{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{\mathbf{o}} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { D } \\ & 0 \end{aligned}$ | O |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 1 | n/a | n/a | 1 | n/a |
| 2006 | 1 | n/a | n/a | 2 | n/a |
| 2006 | 1 | n/a | n/a | 3 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 4 |  | 0 | 3 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 |
| 2006 | 1 | 20-Jul-06 | 201 | 5 |  | 0 | 6 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | 0 |
| 2006 | 1 | 21-Jul-06 | 202 | 6 | 270 | 1 | 31 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 21-Jul-06 | 202 | 7 | 270 | 3 | 5 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 |
| 2006 | 1 | 20-Jul-06 | 201 | 8 | 0 | 1 | 0 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 9 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
| 2006 | 1 | TOTALS |  |  |  |  | 51 | 0 | 0 | 39 | 0 | 12 | 0 | 0 | 0 |
| 2006 | 2 | 22-Jul-06 | 203 | 1 | 315 | 1 | 0 | n/a |
| 2006 | 2 | 22-Jul-06 | 203 | 2 | 315 | 1 | 32 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 22-Jul-06 | 203 | 3 | 315 | 2 | 0 | n/a |
| 2006 | 2 | 25-Jul-06 | 206 | 4 | 0 | 3 | 0 | n/a |
| 2006 | 2 | 25-Jul-06 | 206 | 5 | 0 | 3 | 0 | n/a |
| 2006 | 2 | 24-Jul-06 | 205 | 6 | 0 | 3 | 0 | n/a |
| 2006 | 2 | 24-Jul-06 | 205 | 7 | 0 | 2 | 9 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 24-Jul-06 | 205 | 8 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| 2006 | 2 | 24-Jul-06 | 205 | 9 | 0 | 3 | 0 | n/a |
| 2006 | 2 | TOTALS |  |  |  |  | 45 | 32 | 0 | 9 | 0 | 4 | 0 | 0 | 0 |
| 2006 | 3 | 27-Jul-06 | 208 | 1 | 90 | 2 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 27-Jul-06 | 208 | 2 | 225 | 2 | 206 | 206 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 27-Jul-06 | 208 | 3 | 90 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 29-Jul-06 | 210 | 4 | 0 | 3 | 0 | n/a |
| 2006 | 3 | 29-Jul-06 | 210 | 5 | 0 | 3 | 51 | 0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 28-Jul-06 | 209 | 6 | 0 | 3 | 63 | 0 | 0 | 31 | 0 | 32 | 0 | 0 | 0 |
| 2006 | 3 | 28-Jul-06 | 209 | 7 | 45 | 2 | 151 | 0 | 0 | 151 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 29-Jul-06 | 210 | 8 | 45 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2006 | 3 | 28-Jul-06 | 209 | 10 | 0 | 4 | 21 | 0 | 0 | 1 | 0 | 20 | 0 | 0 | 0 |
| 2006 | 3 | TOTALS |  |  |  |  | 504 | 217 | 0 | 234 | 0 | 53 | 0 | 0 | 0 |
| 2006 | 4 | 30-Jul-06 | 211 | 1 | 45 | 3 | 53 | 53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 30-Jul-06 | 211 | 2 | 45 | 3 | 708 | 708 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 30-Jul-06 | 211 | 3 | 45 | 3 | 15 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 1-Aug-06 | 213 | 4 | 0 | 1 | 7 | 0 | 0 | 2 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 4 | 1-Aug-06 | 213 | 5 | 0 | 1 | 20 | 0 | 0 | 2 | 0 | 9 | 2 | 0 | 0 |
| 2006 | 4 | 1-Aug-06 | 213 | 6 | 0 | 1 | 32 | 0 | 0 | 11 | 0 | 18 | 3 | 0 | 0 |
| 2006 | 4 | 1-Aug-06 | 213 | 7 | 0 | 2 | 45 | 0 | 0 | 3 | 0 | 37 | 5 | 0 | 0 |
| 2006 | 4 | 1-Aug-06 | 213 | 8 | 0 | 3 | 11 | 0 | 0 | 5 | 0 | 6 | 0 | 0 | 0 |
| 2006 | 4 | 1-Aug-06 | 213 | 10 | 45 | 1 | 40 | 0 | 0 | 0 | 7 | 30 | 3 | 0 | 0 |
| 2006 | 4 | TOTALS |  |  |  |  | 931 | 776 | 0 | 23 | 7 | 105 | 13 | 0 | 0 |
| 2006 | 5 | 4-Aug-06 | 216 | 1 | 0 | 1 | 828 | 828 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 4-Aug-06 | 216 | 2 | 0 | 2 | 184 | 184 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 4-Aug-06 | 216 | 3 | 23 | 3 | 47 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 5-Aug-06 | 217 | 4 | 45 | 4 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 5 | 5-Aug-06 | 217 | 5 | 45 | 4 | 42 | 0 | 0 | 33 | 0 | 9 | 0 | 0 | 0 |
| 2006 | 5 | 5-Aug-06 | 217 | 6 | 0 | 4 | 41 | 0 | 0 | 1 | 0 | 40 | 0 | 0 | 0 |
| 2006 | 5 | 5-Aug-06 | 217 | 7 | 0 | 4 | 54 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 5-Aug-06 | 217 | 8 | 45 | 4 | 0 | n/a |
| 2006 | 5 | 5-Aug-06 | 217 | 10 | 0 | 4 | 11 | 0 | 0 | 5 | 0 | 6 | 0 | 0 | 0 |
| 2006 | 5 | TOTALS |  |  |  |  | - | - | 0 | 93 | 0 | 57 | 0 | 0 | 0 |

Appendix 6a. Colville 2006 transect data by habitat.

| $\begin{aligned} & \stackrel{\star}{\text { 厄}} \\ & \underset{\sim}{\circ} \end{aligned}$ | $\begin{aligned} & \text { ס} \\ & \stackrel{n}{\grave{\varrho}} \\ & \vdots \\ & \vdots \end{aligned}$ |  | $\begin{aligned} & \text { \#} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{亏} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\omega}{0} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$ |  |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{5} \\ & \frac{5}{\Sigma} \end{aligned}$ | $\begin{aligned} & \widetilde{\widetilde{0}} \\ & \stackrel{\mathbb{D}}{0} \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\omega}{\tilde{\sigma}} \\ & \underset{\zeta}{6} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \mathbb{0} \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | O |  | $\begin{aligned} & \text { ్ָ } \\ & \text { © } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 6 | 8-Aug-06 | 220 | 1 | 270 | 3 | 0 | n/a |
| 2006 | 6 | 8-Aug-06 | 220 | 2 | 270 | 3 | 0 | n/a |
| 2006 | 6 | 8-Aug-06 | 220 | 3 | 270 | 3 | 0 | n/a |
| 2006 | 6 | 8-Aug-06 | 220 | 4 | 270 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 2006 | 6 | 8-Aug-06 | 220 | 5 | 270 | 3 | 8 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 |
| 2006 | 6 | 8-Aug-06 | 220 | 6 | 225 | 3 | 15 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 |
| 2006 | 6 | 8-Aug-06 | 220 | 7 | 225 | 3 | 6 | 0 | 0 | 1 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 6 | 8-Aug-06 | 220 | 8 | 270 | 3 | 8 | 0 | 0 | 0 | 0 | 3 | 5 | 0 | 0 |
| 2006 | 6 | 8-Aug-06 | 220 | 10 | 225 | 3 | 14 | 0 | 0 | 5 | 0 | 9 | 0 | 0 | 0 |
| 2006 | 6 | TOTALS |  |  |  |  | 53 | 0 | 0 | 10 | 0 | 32 | 11 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 1 | 45 | 4 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 2 | 45 | 4 | 56 | 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 3 | 45 | 4 | 53 | 53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 11-Aug-06 | 223 | 4 | 45 | 3 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 7 | 11-Aug-06 | 223 | 5 | 45 | 3 | 13 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 6 | 45 | 4 | 15 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 |
| 2006 | 7 | 11-Aug-06 | 223 | 7 | 45 | 4 | 5 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 7 | 11-Aug-06 | 223 | 8 | 45 | 3 | 18 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 |
| 2006 | 7 | 12-Aug-06 | 224 | 10 | 23 | 4 | 12 | 0 | 0 | 1 | 0 | 10 | 1 | 0 | 0 |
| 2006 | 7 | TOTALS |  |  |  |  | - | - | 0 | 1 | 0 | 63 | 1 | 0 | 0 |
| 2006 | 8 | 17-Aug-06 | 229 | 1 | 45 | 2 | 910 | 910 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 17-Aug-06 | 229 | 2 | 45 | 2 | 0 | n/a |
| 2006 | 8 | 17-Aug-06 | 229 | 3 | 45 | 2 | 76 | 76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 16-Aug-06 | 228 | 4 | 315 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2006 | 8 | 16-Aug-06 | 228 | 5 | 315 | 2 | 0 | n/a |
| 2006 | 8 | 16-Aug-06 | 228 | 6 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 2006 | 8 | 16-Aug-06 | 228 | 7 | 0 | 2 | 8 | 0 | 0 | 3 | 0 | 5 | 0 | 0 | 0 |
| 2006 | 8 | 16-Aug-06 | 228 | 8 | 315 | 2 | 9 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
| 2006 | 8 | 16-Aug-06 | 228 | 10 | 0 | 2 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | TOTALS |  |  |  |  | - | 986 | 0 | 7 | 0 | 15 | 2 | 0 | 0 |
| 2006 | 9 | 20-Aug-06 | 232 | 1 | 45 | 2 | 458 | 458 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 20-Aug-06 | 232 | 2 | 45 | 2 | 151 | 63 | 0 | 88 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 20-Aug-06 | 232 | 3 | 45 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 19-Aug-06 | 231 | 4 | 23 | 3 | 0 | n/a |
| 2006 | 9 | 19-Aug-06 | 231 | 5 | 23 | 3 | 13 | 0 | 0 | 1 | 0 | 12 | 0 | 0 | 0 |
| 2006 | 9 | 19-Aug-06 | 231 | 6 | 0 | 4 | 0 | n/a |
| 2006 | 9 | 19-Aug-06 | 231 | 7 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 9 | 19-Aug-06 | 231 | 8 | 23 | 3 | 8 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 |
| 2006 | 9 | 19-Aug-06 | 231 | 10 | 0 | 4 | 2 |  |  | 2 |  |  |  |  |  |
| 2006 | 9 | TOTALS |  |  |  |  | 636 | 523 | 0 | 91 | 0 | 22 | 0 | 0 | 0 |
| 2006 | 10 | 24-Aug-06 | 236 | 1 | 45 | 1 | 421 | 421 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 24-Aug-06 | 236 | 2 | 45 | 1 | 133 | 133 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 24-Aug-06 | 236 | 3 | 45 | 2 | 385 | 385 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 4 | 315 | 2 | 8 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 5 | 315 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 6 | 315 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 7 | 315 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 8 | 315 | 2 | 44 | 0 | 0 | 1 | 0 | 43 | 0 | 0 | 0 |
| 2006 | 10 | 22-Aug-06 | 234 | 10 | 315 | 3 | 7 | 0 | 0 | 1 | 0 | 6 | 0 | 0 | 0 |
| 2006 | 10 | TOTALS |  |  |  |  | - | 939 | 0 | 11 | 0 | 49 | 3 | 0 | 0 |


| Appendix 6a. Colville 2006 transect data by habitat. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 0 \\ & \stackrel{0}{\lambda} \\ & \stackrel{\rightharpoonup}{0} \\ & \vdots \end{aligned}$ |  | $\begin{aligned} & \stackrel{y}{\pi} \\ & \stackrel{0}{亏} \end{aligned}$ | $\begin{aligned} & \stackrel{\overleftarrow{U}}{0} \\ & \stackrel{N}{\widetilde{W}} \end{aligned}$ |  |  | $\begin{aligned} & \overline{\widetilde{0}} \\ & \stackrel{n}{0} \text { O } \end{aligned}$ | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{5} \\ & \frac{2}{2} \end{aligned}$ | $\begin{aligned} & \text { 듫 } \\ & \text { D } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\omega}{\tilde{\sigma}} \\ & \underset{\zeta}{6} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{\mathbf{o}} \\ & \vdots \\ & \vdots \end{aligned}$ |  | 응 | ¢ <br> O <br> O | ¢ |
| 2006 | 11 | 29-Aug-06 | 241 | 1 | 0 | 1 | 165 | 165 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 29-Aug-06 | 241 | 2 | 0 | 1 | 521 | 521 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 29-Aug-06 | 241 | 3 | 0 | 1 | 15 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 26-Aug-06 | 238 | 4 | 45 | 2 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 26-Aug-06 | 238 | 5 | 45 | 2 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 26-Aug-06 | 238 | 6 | 0 | 2 | 0 | n/a |
| 2006 | 11 | 26-Aug-06 | 238 | 7 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2006 | 11 | 26-Aug-06 | 238 | 8 | 45 | 2 | 0 | n/a |
| 2006 | 11 | 26-Aug-06 | 238 | 10 | 0 | 2 | 9 | 0 | 0 | 6 | 0 | 1 | 2 | 0 | 0 |
| 2006 | 11 | TOTALS |  |  |  |  | 717 | 701 | 0 | 12 | 0 | 2 | 2 | 0 | 0 |
| 2006 | 12 | 2-Sep-06 | 245 | 1 | 0 | 2 | 0 | n/a |
| 2006 | 12 | 2-Sep-06 | 245 | 2 | 0 | 3 | 382 | 382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 2-Sep-06 | 245 | 3 | 0 | 3 | 0 | n/a |
| 2006 | 12 | 30-Aug-06 | 242 | 4 | 315 | 2 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 5 | 315 | 1 | 96 | 0 | 0 | 96 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 6 | 315 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 7 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 8 | 315 | 1 | 28 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 30-Aug-06 | 242 | 10 | 0 | 2 | 10 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
| 2006 | 12 | TOTALS |  |  |  |  | 525 | 382 | 0 | 131 | 0 | 12 | 0 | 0 | 0 |
| 2006 |  | TOTAL FOR SPECIES |  |  |  |  |  | - |  |  |  |  |  |  |  |


 VS99 00000000000000000000000000000000000000000


 $\forall S \exists M 1000000000000000000000000000000000000000100$








долпеәя



әғе๐пи $\qquad$



әдед

pdKəлuns

лед人


7 IJ S 00000000000000000000000000000000000000000













$\forall$ SヨS

Appendix 6c．Colville 2005 transect data by species．

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| みояneәg | m | － | $\bigcirc$ |  | $\checkmark$ | $\checkmark$ | m | － |  | N | N | N | N | N |  | $\checkmark$ | N | m | $\rightarrow$ | $\checkmark$ | m | m | m | m |  | $\sim$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ | m | m | m | m |  | $\sim$ | $N$ | N |
| ג！Qpu！M | $\sim$ | $\omega$ |  |  | 3 | 3 | 3 | 0 |  | 0 | © | 0 | 0 | 3 |  | $\stackrel{\square}{¢}$ | $\stackrel{\otimes}{\square}$ | $\stackrel{\otimes}{\circ}$ | 3 | ＝ | $\stackrel{\otimes}{ \pm}$ | $\stackrel{\square}{\square}$ | － | $\stackrel{\square}{\square}$ |  | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{1}{\square}$ | $\stackrel{ \pm}{ \pm}$ | $\stackrel{\otimes}{ \pm}$ | $\stackrel{ \pm}{ \pm}$ | $\stackrel{1}{ \pm}$ | $\stackrel{\text { ® }}{\sim}$ | $\stackrel{8}{\sim}$ |  |  | $=$ | ＝ | ＝ |
| ๒əวsue」」 | $\wedge$ | $\infty$ | の |  | $\rightarrow$ | $\sim$ | $m$ | $\checkmark$ | ＋ | $\Omega$ | $\bigcirc$ | 入 | $\infty$ | の |  | $\checkmark$ | N | m | － | ค | 0 | N | $\infty$ | の |  | $\rightarrow$ | $\sim$ | $m$ | － | $\bigcirc$ | $\bigcirc$ | 入 | $\infty$ | の |  | $\checkmark$ | $\sim$ | m |
| әłе๐｜n¢ | $\|\stackrel{9}{\mathrm{~N}}\|$ | $\|\stackrel{\infty}{\mathrm{N}}\|$ | $\stackrel{\infty}{\sim}$ |  | $\|\underset{N}{N}\|$ | $\underset{N}{N}$ | $\underset{N}{N}$ | $\underset{N}{N}$ | $N$ | $\stackrel{\sim}{N}$ | $\stackrel{N}{N}$ | $\underset{N}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{N}$ |  | $\stackrel{\sim}{N}$ | $\stackrel{\stackrel{N}{N}}{ }$ | $\stackrel{\stackrel{N}{N}}{N}$ | $\mathrm{N}$ | $\underset{N}{N}$ | $\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \underset{N}{2} \end{aligned}\right.$ | $\underset{\sim}{N}$ | $\mathbb{N}$ | $\underset{\sim}{\sim}$ |  | $\stackrel{\infty}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{\sim}$ | $\underset{\sim}{N}$ | N | $\stackrel{\sim}{N}$ | O্N্N | শ্ল্N | ON |  | $\underset{\sim}{N}$ | $\underset{\sim}{N}$ | N |
| әৃе๐ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \lambda \\ \lambda \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ \dot{0} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{array}\right\|$ |  | $\left\lvert\, \begin{gathered} n \\ 0 \\ \vdots \\ \vdots \\ \frac{c}{1} \\ 0 \end{gathered}\right.$ |  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{1}{4} \\ & i \\ & \vec{\lambda} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & i \\ & \vec{\lambda} \end{aligned}$ | $\begin{aligned} & 1 \\ & \stackrel{1}{c} \\ & \frac{1}{4} \\ & \vec{~} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{1}{4} \\ & i \\ & \vec{\lambda} \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \stackrel{1}{1} \\ 0 \\ - \end{array}\right\|$ | $\left\|\begin{array}{c} \stackrel{e}{0} \\ \vdots \\ \vdots \\ \underset{1}{4} \\ \underset{\sim}{2} \end{array}\right\|$ |  |  | $n$ 0 0 0 $\vdots$ $\vdots$ $\vdots$ $n$ $n$ |  | $n$ 0 0 0 $\vdots$ $\vdots$ $\vdots$ $\vdots$ 1 |  |  |  | $\begin{aligned} & 9 \\ & \stackrel{y}{〔} \\ & \stackrel{\rightharpoonup}{-} \end{aligned}$ | $\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 1 \end{aligned}$ |  | $\circ$ <br> 0 <br> 0 <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br> 0 |  |  |  |  |  |  | $\stackrel{9}{\stackrel{0}{4}}$ |  | $\circ$ <br> 1 <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ <br> $\vdots$ | Non |
| pdKəл．．ns | － | － | $\checkmark$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | ค | $\llcorner$ | $\llcorner$ | $\bigcirc$ | ค | $\bigcirc$ | $\bullet$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | N | N | $\wedge$ | N | N | $\wedge$ | $\wedge$ | N | $\wedge$ | N | $\infty$ | $\infty$ | $\infty$ |
| лед | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{c} \circ \\ \hline 0 \\ \text { N } \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \mathrm{n} \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned}\right.$ | $\left\|\begin{array}{l} n \\ 0 \\ \mathrm{~N} \end{array}\right\|$ | 茴 | $\begin{aligned} & \circ \\ & \stackrel{O}{\mathrm{O}} \end{aligned}$ | $\stackrel{\sim}{\circ}$ | $\underset{V}{ }$ |  | Non | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \hline \\ & \text { N} \end{aligned}$ | $$ | $\left\|\begin{array}{c} i \\ 0 \\ \hline \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ |  | $\begin{array}{\|c} \stackrel{n}{\mathrm{O}} \\ \hline \end{array}$ |  | $\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { N } \end{aligned}$ | $\stackrel{\sim}{\circ}$ | $\stackrel{n}{2}$ | $\stackrel{n}{2}$ |  | $\stackrel{\circ}{\circ}$ | $\stackrel{n}{2}$ | $\stackrel{\wedge}{2}$ |  | $\stackrel{\sim}{\circ}$ | $\stackrel{\sim}{\mathrm{O}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\sim}{0}$ | N |


|  | $7 \mathrm{~d} \mathrm{\exists S}$ | $\bigcirc$ | 0 | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | － | － | － | $\bullet$ | － | － | $\bigcirc$ | の |
|  | d〇W＊ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | 9 | \％ |
|  | VS98 | － | $\bigcirc$ | － | － | － | － | $\bullet$ | $\stackrel{\sim}{\sim}$ |
|  | VSVG | － | － | － | － | － | － | O | N |
|  | กıก¢ | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | － | － | $\bigcirc$ | － | N |
|  | aN甘S | $\bigcirc$ | 0 | － | － | 0 | － | 0 | － |
|  | $\forall S \exists M$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | O | $\bigcirc$ |
|  | $\forall S \exists d$ | － | － | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ |
|  | $\forall S \perp S$ | － | － | $\bigcirc$ | － | － | － | 0 | $\stackrel{\text {－}}{ }$ |
|  | Hdヨy | $\bigcirc$ | － | － | － | － | － | 0 | へ |
|  | HdNY | － | － | － | － | 0 | 0 | － | － |
|  | 7 dg | － | $\sim$ | － | － | － | － | $\bigcirc$ | $\stackrel{\sim}{\circ}$ |
|  | 7Nก0 | ค | $\stackrel{\text { G }}{\text { G }}$ | $\bigcirc$ | $\stackrel{\sim}{\square}$ | $\bigcirc$ | न |  |  |
|  | $\forall S \exists$ S | m | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | 0 | 0 |  |
|  | ¢1010 | $\stackrel{\sim}{\sim}$ | $\stackrel{\ominus}{-1}$ | － | $\cdots$ | $\bigcirc$ | $ন$ |  |  |
|  | доґпеәя | $\sim$ | N | $\sim$ | $\sim$ | N | $\sim$ |  |  |
|  | I！वри！M | $=$ | $=$ | － | c | c | $\stackrel{1}{8}$ |  |  |
|  | ฉəวsue＾」 | － | $\bigcirc$ | 0 | N | $\infty$ | O |  | 0 |
|  | әъ¢й¢ | $\underset{N}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{N}$ | $\stackrel{N}{N} \underset{\sim}{N}$ | $\stackrel{\text { N}}{N}$ | $\stackrel{\sim}{\sim}$ |  | － |
|  | әџе | $\left\|\begin{array}{c} \stackrel{n}{0} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ |  |  |  |  |  |  | $O$ |
|  | pdイəлıns | $\infty$ |  |
|  | лед | $\left\|\begin{array}{c} \circ \\ 0 \\ 0 \\ N \end{array}\right\|$ | 会 |  | － | $\bigcirc$ | $\begin{aligned} & \mathrm{N} \\ & \underset{N}{2} \end{aligned}$ |  | N |


|  | $7 \mathrm{~d} \exists \mathrm{~S}$ | $\frac{\pi}{2}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\mathfrak{r}}{\mathfrak{c}}$ | O | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | 0 | － | － | － | $\bigcirc$ | － | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － |  |  | － | － |  |  |  |  |  |  |  |  | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | $\frac{\pi}{\beth}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\pi}{c}$ | － | － | － | $\bigcirc$ | － | 0 | － | － | － | － | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | － | － | － | － | 0 | 0 | 0 | － | － | － | － | － | － | － | 0 | 0 |
|  | dOW＊ | $\frac{\pi}{2}$ | $\frac{\pi}{c}$ | $\frac{\mathfrak{x}}{2}$ | － | － | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | O | $\bigcirc$ | － | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | － | － | － | － | － | － | $N$ | － | － | － | － | 0 | － |
|  | VS98 | $\frac{\tilde{\pi}}{\boldsymbol{I}}$ | $\frac{\sqrt[\pi]{2}}{2}$ | $\frac{\pi}{d}$ | $\bigcirc$ | $\sim$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\sim$ | 0 | O | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | 0 | － | － | － | － | － | － | － | － | － | 0 | $\bigcirc$ |
|  | $\forall S \forall G$ | $\frac{\pi}{\beth}$ | $\stackrel{\pi}{c}$ | $\left.\frac{\pi}{c} \right\rvert\,$ | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | － | $\bigcirc$ | 0 | － | － | $\bigcirc$ | － | － | － | － | － | － | － | － | － | 0 | － | － | － | － | － | － | － |  | － | 0 | $\bigcirc$ |
|  | O＾n¢ | $\frac{\pi}{\beth}$ | $\frac{\pi}{c}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\bigcirc$ | $\bigcirc$ | の | $\bigcirc$ | 0 | $\bigcirc$ | の | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | － | － | － | m | m | － | － | － | － | － | － | $\bigcirc$ |
|  | QNVS | $\frac{\pi}{2}$ | $\frac{\pi}{己}$ | $\frac{\pi}{c}$ | O | － | － | $\bigcirc$ | $\bigcirc$ | 0 | － | － | 0 | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | 0 | 0 | 0 | 0 | 0 | 0 | － | － | － | － | － | － | $\bigcirc$ |
|  | $\forall S \exists M$ | $\frac{\pi}{2}$ | $\stackrel{\pi}{c}$ | $\stackrel{\pi}{c}$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ | 0 | － | 0 | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | － | － | － | － | － | － |  | － |  |  |  | 0 | $\bigcirc$ |
|  | $\forall$ Sヨd | $\frac{\pi}{\beth}$ | $\frac{\pi}{\Sigma}$ | $\frac{\pi}{己}$ | $\sim$ | － | $\underset{\sim}{\infty}$ | m | 0 | $\bigcirc$ | m | － | 0 | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\sim$ | $\bigcirc$ | $\bigcirc$ | $\sim$ | $\bigcirc$ | $\bigcirc$ | － | － | － | 0 | － | 0 | N | N | － | － | － | － | － | － | 0 |
|  | VS」S | $\frac{\pi}{\Omega}$ | $\frac{\pi}{2}$ | $\frac{\mathfrak{r}}{\mathrm{d}}$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | － | － | 0 | 0 | － | － | － | － | － | － | － | － | － | $\checkmark$ |
|  | Hdヨy | $\frac{\pi}{2}$ | $\stackrel{\pi}{c}$ | $\stackrel{\pi}{c}$ | － | － | － | $\bigcirc$ | $\bigcirc$ | 0 | － | － | － | － | － | 0 | － | － | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | 0 | 0 | － | 0 | － | $\bigcirc$ | － | － | f |  | $\bigcirc$ | $\sim$ |
|  | HdNU | $\frac{\pi}{2}$ | $\stackrel{\pi}{c}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\bigcirc$ | － | － | $\bigcirc$ | 0 | 0 | － | － | － | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | － | 0 | 0 | 0 | 0 | － | － | － | － | － | m | $\sim$ |
|  | $7 \mathrm{d98}$ | $\frac{\pi}{\Sigma}$ | $\frac{\pi}{c}$ | $\frac{\pi}{2}$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | 0 | － | － | 0 | 0 | $\bigcirc$ | － | － | － | － | － | － | － | － | 1 | － | － | － |  | f | － | $\bigcirc$ |
|  | 7NกO | $\frac{\mathfrak{x}}{\mathfrak{I}}$ | $\stackrel{\pi}{c}$ | $\stackrel{\mathfrak{x}}{\beth}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ | N | 0 | 0 | － | 0 | $m$ | － | $\bigcirc$ | N | $\rightarrow$ | $\bigcirc$ | N | － | $N$ | － | － | － | － | $\bigcirc$ |  |  | － | － | － | － | － |
|  | $\forall \mathrm{S} \exists \mathrm{S}$ | $\frac{\pi}{1}$ | $\frac{\mathfrak{r}}{\mathfrak{d}}$ | $\stackrel{\pi}{d}$ | $-1$ | － | $\checkmark$ | $\sim$ | $\bigcirc$ | 0 | $\wedge$ | $\bigcirc$ | m | $\bigcirc$ | － | － | $\bigcirc$ | $\checkmark$ | $\dagger$ | $\bigcirc$ | न | $\infty$ | OㅇN | － | － | 子 | O | － |  |  | ¢ |  |  |  | m |  | N | \％ |
|  | ¢10101 | $\frac{\pi}{\beth}$ | $\frac{\mathfrak{d}}{\mathfrak{c}}$ | $\frac{\mathfrak{d}}{\mathfrak{c}}$ | m | $\bigcirc$ | लু | $\llcorner$ | 0 | $\bigcirc$ | กิ | － | $\stackrel{\sim}{\text { M }}$ | $\bigcirc$ | － | 0 | － | の | － | $\bigcirc$ | $\stackrel{1}{7}$ | の | $\stackrel{\circ}{\circ}$ | N | － | ก | － | － | － | N | O |  |  |  |  | N | N | $\stackrel{\square}{7}$ |
| $\begin{aligned} & \frac{1}{0} \\ & \dot{0} \end{aligned}$ | นолneәg | $\frac{\pi}{2}$ | $\stackrel{\pi}{\mathrm{x}}$ | $\frac{\pi}{2}$ | $\bigcirc$ | 0 | $\checkmark$ | $\cdots$ | $\rightarrow$ | $\checkmark$ |  | $\checkmark$ | － | N | m | m | m | $\sim$ | m | $\cdots$ |  | $\sim$ | $\sim$ | $N$ |  | m | m | N | N | ナ |  | n | $m$ | 3 | － | － | － | N |
| 入 | य！Qpu！M | $\frac{\mathfrak{\pi}}{\text { I }}$ | $\stackrel{\pi}{c}$ | $\stackrel{\pi}{c}$ |  |  | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\circ}{\mathrm{N}}$ | $\bigcirc$ | 0 |  | $\begin{aligned} & n \\ & \hline \mathrm{~m} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{m}} \\ & \hline \end{aligned}\right.$ | $\stackrel{\stackrel{n}{\mathrm{~m}}}{ }$ | $\bigcirc$ | 0 | 0 | 0 | － | $\bigcirc$ |  | 8 | $\stackrel{N}{N}$ | ） |  | － | 0 |  | ） | 0 |  | ） |  | － | － | － | － | － |
| O | ŋəəsu®」」 | $\checkmark$ | N | m | － | $\llcorner$ | $\bigcirc$ | － | $\infty$ | の |  | $\checkmark$ | N | $m$ | － | ค | $\bigcirc$ | － | $\infty$ | の |  | $\checkmark$ | $\sim$ | $m$ | 寸 | $\bigcirc$ | 0 | － | $\infty$ | 0 |  | － | v | 3 | ナ | $\bigcirc$ | $\bigcirc$ | 入 |
| $\stackrel{\widetilde{\pi}}{\stackrel{\sim}{0}}$ | әъедı¢ | $\frac{\pi}{\text { º }}$ | $\frac{\pi}{己}$ | $\left.\frac{\pi}{\Delta} \right\rvert\,$ | $\stackrel{-1}{-1}$ | $\underset{\sim}{-1}$ | $\underset{N}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{-1}$ | $\underset{\sim}{\sim}$ |  | $\stackrel{N}{N}$ | $\|\underset{\sim}{\underset{N}{2}}\|$ | $\stackrel{\sim}{N}$ | $\stackrel{\circ}{\mathrm{N}}$ | On | Non | $\underset{\sim}{\sim}$ | $\underset{\sim}{n}$ | $\stackrel{\stackrel{\sim}{\mathrm{N}}}{\mathrm{~N}}$ |  | $\mid \underset{\sim}{\infty}$ | $\underset{\sim}{\infty}$ | － | $\mathrm{N}^{-}$ | － | － | $N$ |  | N |  |  |  |  |  |  |  | $\stackrel{m}{N}$ |
| $\begin{gathered} 0 \\ \frac{0}{\overline{3}} \\ \hline 0 \end{gathered}$ | әъе๐ | $\frac{\text { ฮల }}{\text { In }}$ | $\stackrel{\pi}{\mathrm{c}}$ | $\stackrel{\pi}{\Sigma}$ |  | $\begin{aligned} & 0 \\ & \hline \frac{0}{2} \\ & \frac{1}{2} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{gathered} e \\ \frac{0}{2} \\ \vdots \\ \vdots \\ \end{gathered}$ |  | $\begin{aligned} & 0 \\ & \hline \frac{0}{2} \\ & \frac{1}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ \frac{0}{2} \\ \frac{1}{2} \\ \underset{N}{N} \end{array}\right\|$ |  | $\underset{\sim}{2}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ \underset{N}{N} \\ \underset{N}{2} \end{array}\right\|$ |  | $\left\|\begin{array}{c} 0 \\ \frac{0}{2} \\ \frac{1}{2} \\ \stackrel{\rightharpoonup}{n} \\ \end{array}\right\|$ | $0 \begin{gathered} 0 \\ \frac{1}{2} \\ \vdots \\ \\ \end{gathered}$ | $\begin{aligned} & e \\ & \frac{0}{2} \\ & \frac{1}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{⿳ 亠 口 冋 口} \\ \underset{\sim}{2} \end{array}\right\|$ | $\begin{aligned} & e \\ & \frac{0}{1} \\ & \frac{1}{2} \\ & \underset{\sim}{2} \end{aligned}$ |  |  | $\begin{gathered} e \\ \frac{1}{5} \\ \underset{N}{N} \end{gathered}$ | － | － | ¢ | $\stackrel{+}{1}$ | － | － | － | － | － |  |  | \％ |  | － | － | － |
| $\begin{aligned} & 0 \\ & \times \underline{x} \\ & \hline \end{aligned}$ | рдイəлuns | $\checkmark$ | $\checkmark$ | － | － | $\checkmark$ | $-1$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $\sim$ | N | $\sim$ | N | $\sim$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ | m | m | m | m | $m$ | m | m | の | m | m | ナ | ナ | ナ | 寸 | ＋ | － | － |
| $\begin{aligned} & \overline{0} \\ & \stackrel{⿳ 亠}{\mathbf{\alpha}} \end{aligned}$ | леә人 | \|o | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\stackrel{\circ}{\mathrm{O}}$ | $\stackrel{\circ}{\mathrm{O}}$ | O | $\left\|\begin{array}{c} 0 \\ \hline 0 \\ N \end{array}\right\|$ | On | O | $\left\|\begin{array}{c} 0 \\ \hline 0 \\ \mathbf{N} \end{array}\right\|$ | $\left\|\begin{array}{l} \circ \\ \hline 0 \\ \hline \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \hline \end{aligned}$ | $\left\|\begin{array}{l} \stackrel{\circ}{\circ} \\ \hline \mathbf{N} \end{array}\right\|$ | － | － | － | － | $\begin{aligned} & 0 \\ & \hline \mathbf{N} \\ & \hline \end{aligned}$ | $10$ |  | O | O | － | N | ＋ | N | － | － | － | － | － |  | N |  | N | － | N | － |


| $7 \mathrm{l} \exists$ S | $\bigcirc$ | $\bigcirc$ | － | O | 0 | O | － | － | － | － | － | － | － | － | － | － | － | － | － |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |  | － | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0087 | $\bigcirc$ | － | － | － | － | － | － | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ |  |  | － | － |  |  | － | 0 |  | 0 |  |  |  |  |  |  | － | － |
| dכW＊ | $\bigcirc$ | 0 | N | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | 0 | － | － | － | － | － | － | － | $\bigcirc$ | 0 | － | 0 | － | － | 0 | － | 0 | N | O | － | 0 | O | － | － | N | － | － | － | － |
| VS98 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | 0 | － | － | － | $\bigcirc$ | － | － | － | － | － | $\bigcirc$ | － | $\bigcirc$ | － | － | － | 0 | 0 | － | － | － | － | － | 0 | － | － | － | － | － | － | － | 0 |
| $\forall S \forall 8$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | O | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | － | 0 |  | － | 0 | － |  |  |  |  |  |  |  | － | － | 0 |
| กคпy | $\bigcirc$ | $m$ | m | 0 | 0 | 0 | － | 0 | － | － | － | － | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ | 0 | － | － | 0 | － | － | － | － | － |  | － | － | 0 |  |  | － | － | － |
| QNVS | $\bigcirc$ | 0 | － | $\bigcirc$ | 0 | 0 | － | － | － | － | － | － | $\bigcirc$ | － | － | － | $\bigcirc$ | $\bigcirc$ | － | － | － | － | － | － | － | － | － | － | － | 0 | － | 0 | 0 | － | － | － | 0 |
| $\forall S \exists M$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | － | 0 | － | － | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | 0 | 0 | － | 0 | － | － | 0 | － | － | － | 0 | － | 0 | － | － | － | － | 0 |
| $\forall S \exists d$ | － | $\infty$ | $\infty$ | $\checkmark$ | 0 | 0 | － | － | $\bigcirc$ | $\checkmark$ | $\bigcirc$ | － | N | － | － | － | － | $\bigcirc$ | $\bigcirc$ | 0 | 0 | m | m | － | － | － | 0 | 0 | － | － | － | ナ | ナ | － | － | － | － |
| $\forall S \perp S$ | 0 | $\bigcirc$ | $\rightarrow$ | － | 0 | 0 | － | － | － | $\underset{-}{\text { I }}$ | － | － | $\stackrel{\infty}{\sim}$ | － | 0 | － | $\bigcirc$ | 0 | $\llcorner$ | N | 0 | － | $\infty$ | 0 | － | 0 | N | 0 |  | m | $\infty$ | － | N | － | 0 | － | 0 |
| Hdヨy | － | $\sim$ | N | $\bigcirc$ | 0 | $\bigcirc$ | － | － | m | O | － | $\sim$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\checkmark$ | － | 0 | 0 | 0 | $\Omega$ | 0 | 0 | 0 | － | 0 | 0 | － | － | N | ， |  | － | － | $\bigcirc$ |
| HdNy | O | $-1$ | N | 0 | 0 | $\bigcirc$ | N | $\bigcirc$ | N | － | $\bigcirc$ | $\bigcirc$ | － | － | － | $\bigcirc$ | $\sim$ | － | の | － | $\bigcirc$ | － | N | － | － | － | － |  | － | － | － | － | v | － | － | － | － |
| 7 dg 9 | $\bigcirc$ | $\rightarrow$ | 10 | 0 | 0 | － | － | － | － | － | $\bigcirc$ | － | － | － | － | － | － | － | － | － | － | － | － |  | － | 0 | － | － |  | － |  | － | － | － | － | － | 0 |
| 7Nก0 | $\bigcirc$ | $\bigcirc$ | ハ্ল | 18 | $\rightarrow$ | $\underset{\sim}{\sim}$ | $\bigcirc$ | $\stackrel{\text { N }}{ }$ | 0 | － | － | N | , | $\bigcirc$ | 0 | 0 | $\bigcirc$ | m | $\bigcirc$ | N | 0 | m | $\infty$ | ， | 9 | N | 0 | － | 0 | 0 | 0 | N |  |  | － | N | 0 |
| VSヨS | 7 | $\stackrel{\sim}{\sim}$ | $\stackrel{7}{0}$ | $\underset{N}{N}$ | $\underset{\sim}{\infty}$ | $0$ | $\bigcirc$ | $\stackrel{\infty}{-1}$ | $\underset{1}{4}$ | ¢ | － |  | $+\begin{gathered} n \\ 0 \\ \hline \end{gathered}$ | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ | －1 | m | － | $\bigcirc$ | $\Omega$ | 万 | ¢ | － | 0 | － | － | － | N | 0 |  | － | － | $-1$ |
| 1e10」 | 7 | 앙 | $\stackrel{\rightharpoonup}{\mathrm{m}}$ | $\mathfrak{c}$ | $\underset{\substack{\infty \\ \infty \\ \hline}}{ }$ | － | $\sim$ | \％ | 7 | L゙ | $\bigcirc$ | $\cdots$ |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | N | $\infty$ | $\stackrel{1}{\square}$ | － | $\infty$ | ${ }_{-}$ | ก | ， | ） | ก | v | － | $\bigcirc$ | $\bigcirc$ | 0 | N |  |  | － | $\bigcirc$ | $\rightarrow$ |
| นоృnеәя | m | $\checkmark$ |  | $-$ | N | ल | $\checkmark$ | $\checkmark$ | $\checkmark$ | － | － | － |  | m | $m$ | $m$ | $\cdots$ | m | $\cdots$ | $m$ | m | $m$ |  | t | ＊ | ナ | m | 0 | ＋ | ＊ | の | F |  | $N$ | N | N | $\sim$ |
| \！Qpu！M | $\bigcirc$ | $\stackrel{\text { ¢ }}{ }$ |  | － | $\bigcirc$ | N | ¢ | $\stackrel{1}{7}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\text { ¢ }}{7}$ | $\bigcirc$ |  | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\circ}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\circ}{N}$ | $\stackrel{O}{N}$ | $\stackrel{\perp}{N}$ | $\sim_{\sim}$ | $\underset{N}{ }$ | $\stackrel{\sim}{N}$ |  | ¢ | ¢ | ¢ | ¢ | ¢ | ¢ | ¢ | ${ }^{\circ}$ | $\stackrel{N}{2}$ |  |  | ¢ | $\stackrel{\square}{\square}$ | $\stackrel{\sim}{n}$ |
|  | $\infty$ | $\bigcirc$ |  | $\rightarrow$ | N | $\cdots$ | － | $\Omega$ | $\bigcirc$ |  | $\infty$ | $\bigcirc$ |  | －1 | N | $\cdots$ | $\checkmark$ | ค | $\bigcirc$ | － | $\infty$ | －1 |  | － | $\cdots$ | m | ナ | $\bigcirc$ | － | － | $\infty$ | － |  |  | $N$ | $m$ | － |
|  | $\underset{N}{\mathrm{~N}} \mid$ | $\stackrel{m}{N}$ |  | $\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{2} \end{aligned}$ | $\stackrel{\ominus}{\mathrm{N}}$ | $\stackrel{0}{n}$ | $\stackrel{N}{N}$ | $\underset{N}{N}$ | $\underset{N}{n}$ | $\underset{\sim}{n}$ | $\underset{N}{N}$ | $\hat{N}$ |  | N | $\stackrel{\sim}{N}$ | $\underset{N}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{N}$ | ㅇN | N | N | N |  | $\underset{N}{N}$ |  |  | $\stackrel{N}{N}$ | $\stackrel{\sim}{N}$ |  | $\underset{N}{N}$ |  | N |  | $\underset{N}{N}$ | $\underset{N}{N}$ | $\stackrel{\sim}{\mathrm{N}}$ | $\stackrel{\sim}{N}$ |
| әтеа | － | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ i \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & c \\ & \frac{1}{4} \\ & \stackrel{0}{1} \\ & 1 \end{aligned}\right.$ | $\mathfrak{c}$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \dot{j} \end{gathered}\right.$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \dot{1} \end{array}\right\|$ |  | $0$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \stackrel{1}{1} \\ \dot{\omega} \end{array}\right\|$ |  |  |  | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \frac{1}{1} \\ & \infty \\ & \infty \end{aligned}\right.$ |  |  | $\begin{gathered} 0 \\ 0 \\ 0 \\ \frac{1}{1} \\ \infty \end{gathered}$ | el | $\begin{gathered} 0 \\ 0 \\ i \\ \frac{1}{4} \\ 0 \\ 0 \end{gathered}$ | 容 | － | － | － | － | $$ | O | － | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | － | － |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \end{aligned}$ |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$ | － |
| рdイəлuns | － | － | － | $\llcorner$ | $\bigcirc$ | ค | ค | ค | L | ๑ | ค | ค | ก | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | 0 | － | － | － | － | － | － | － | ， | － | － | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| ле入 | － | － | $\left\|\begin{array}{c} 0 \\ \hline \\ \text { N} \end{array}\right\|$ | So | $\left\|\begin{array}{l} 0 \\ \hline 0 \\ N \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \circ \\ & \hline \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{O} \\ \hline \mathbf{N} \end{array}\right\|$ |  | Bo | OO |  | － |  | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ |  | Bo |  | － | － | N | N | － | － | ＋ | － | － | ＋ |  |  | － |  | N | － | － |  | － | － |



|  | $7 \mathrm{~d} \exists \mathrm{~S}$ | $\bigcirc$ | － | 0 | $\bigcirc$ | 0 | 0 | － | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | $\bigcirc$ | － | － | 0 | － | － | 0 | ๑ | ค | $\cdots$ |
|  | dЭW＊ | － | － | m | mo | － | － | 0 | － | m | $\stackrel{\square}{\square}$ |
|  | VS98 | － | － | $\bigcirc$ | O | － | － | O | $\bigcirc$ | $\bigcirc$ | ， |
|  | $\forall$ SVG | $\bigcirc$ | － | $\bigcirc$ | O | － | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | － |
|  | กคก | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\stackrel{\square}{\square}$ |
|  | aNVS | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | O | $\bigcirc$ | － | 0 |
|  | $\forall S \exists M$ | － | － | $\bigcirc$ | － | － | $\bigcirc$ | O | $\bigcirc$ | $\bigcirc$ | へ |
|  | $\forall S \exists d$ | 0 | $\bigcirc$ | 0 | － | － | － | 0 | $\checkmark$ | $\rightarrow$ | $\stackrel{\circ}{\circ}$ |
|  | $\forall S \perp S$ | － | － | － | O | － | $\bigcirc$ | O | $\bigcirc$ | － | $\checkmark$ |
|  | Hdヨy | － | － | $\bigcirc$ | － | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | N |
|  | HdNY | 0 | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | O | m | m | $\stackrel{\sim}{7}$ |
|  | 7 dag | O | － | $\bigcirc$ | $\bigcirc$ | － | $\checkmark$ | － | $\checkmark$ | の | $\stackrel{\square}{-}$ |
|  | 7NกО | $\underset{\sim}{\infty}$ | $\bigcirc$ | m | ¢ | $\bigcirc$ | $\checkmark$ | $-{ }_{\sim}^{\infty}$ | $\bigcirc$ | \％ |  |
|  | $\forall S \exists \mathrm{~S}$ | O | － | － | O | － | － | O | － | 0 |  |
|  | ¢ヤ⿺O1 | $\underset{\sim}{\infty}$ | $\bigcirc$ | $\bigcirc$ | －¢ | $\checkmark$ | $\sim$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\stackrel{1}{N}$ |  |
| $\begin{aligned} & \overline{0} \\ & 0 \end{aligned}$ | นолnеәя | m | m | $\sim$ | $N-$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\sim$ |  |  |
| $\begin{aligned} & \text { 亿 } \\ & \text { శ్ర } \end{aligned}$ | ג！Qpu！M | $\bigcirc$ | $\bigcirc$ | $\stackrel{\stackrel{n}{9}}{\stackrel{1}{2}}$ | $\stackrel{n}{\mathrm{~m}}$ | $\stackrel{\Omega}{\mathrm{m}}$ |  | $\stackrel{\stackrel{1}{2}}{\sim}$ | 0 |  |  |
| $\begin{array}{\|c} 0 \\ 0 \\ \hline \end{array}$ | ฉวəsue＾」 | N | m | － | ค | $\bigcirc$ | N | $\infty$ | $\bigcirc$ |  |  |
|  | ә䒑еด｜n¢ | $\stackrel{\llcorner }{\sim}$ | $\stackrel{i n}{\sim}$ | $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim}$ | $\underset{\sim}{\underset{\sim}{*}} \underset{\sim}{\sim}$ |  | $\underset{\sim}{\text { y }} \underset{\sim}{\sim}$ | $\underset{\sim}{\underset{\sim}{*}} \underset{\sim}{\sim}$ | $\underset{\sim}{\sim}$ |  | ¢ |
| $\begin{aligned} & 0 \\ & \underset{N}{0} \\ & \stackrel{0}{\lambda} \\ & \underset{0}{0} \end{aligned}$ | әпеб |  |  |  |  |  |  |  |  | $\xrightarrow{c}$ | － |
| $\begin{aligned} & 0 \\ & \underline{x} \\ & \underline{x} \end{aligned}$ | pdイəл．uns | $\underset{\sim}{\sim}$ | $\cdots$ | $\cdots$ | － | $\cdots$ | $\cdots$ | $\underset{\sim}{*}$ | $\cdots$ | $\cdots$ |  |
| $\begin{aligned} & \overline{0} \\ & \frac{0}{2} \\ & \hline \mathbf{4} \end{aligned}$ | јə入 |  | \|o |  |  |  |  |  | Be | No | － |

Appendix 7a．Sagavanirktok 2005 transect data by habitat．

| $\stackrel{\text { 厄̄ }}{\text { 厄 }}$ | 0 $\stackrel{\square}{\lambda}$ $\stackrel{2}{3}$ $\vdots$ | $\stackrel{\text { ®}}{\stackrel{\pi}{0}}$ | $\begin{aligned} & \stackrel{y}{\tilde{\sigma}} \\ & \stackrel{0}{亏} \\ & \hline \end{aligned}$ | $\stackrel{U}{0}$ $\stackrel{0}{0}$ $\stackrel{0}{0}$ $\stackrel{\rightharpoonup}{*}$ | $\begin{aligned} & \text { 믈 } \\ & \text { 들 } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { ᄃ } \\ & \text { © } \\ & \text { © } \end{aligned}$ |  | $\frac{\sqrt[\pi]{0}}{\frac{1}{\beth}}$ | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | O |  | $\begin{aligned} & \text { ్ָ } \\ & \stackrel{0}{0} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 1 | 2－Aug－05 | 214 | 1 | 135 | 2 | 19 | 0 | 0 | 2 | 0 | 0 | 17 | 0 | 0 |
| 2005 | 1 | 2－Aug－05 | 214 | 2 | 135 | 1 | 33 | 0 | 0 | 21 | 0 | 2 | 10 | 0 | 0 |
| 2005 | 1 | 2－Aug－05 | 214 | 3 | 135 | 1 | 5 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 2－Aug－05 | 214 | 4 | 90 | 1 | 15 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 2－Aug－05 | 214 | 5 | 90 | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 2－Aug－05 | 214 | 6 | 90 | 1 | 0 | n／a |
| 2005 | 1 | 2－Aug－05 | 214 | 7 | 90 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 2－Aug－05 | 214 | 8 | 90 | 1 | 0 | n／a |
| 2005 | 1 | 2－Aug－05 | 214 | 9 | 90 | 1 | 18 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 |
| 2005 | 1 | TOTALS |  |  |  |  | 96 | 3 | 18 | 28 | 0 | 20 | 27 | 0 | 0 |
| 2005 | 2 | 5－Aug－05 | 217 | 1 | 45 | 1 | 13 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 6－Aug－05 | 218 | 2 | 45 | 1 | 13 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 6－Aug－05 | 218 | 3 | 45 | 1 | 52 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 5－Aug－05 | 217 | 4 | 90 | 1 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 5－Aug－05 | 217 | 5 | 45 | 1 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 5－Aug－05 | 217 | 6 | 45 | 1 | 0 | n／a |
| 2005 | 2 | 5－Aug－05 | 217 | 7 | n／a | 1 | 0 | n／a |
| 2005 | 2 | 5－Aug－05 | 217 | 8 | 45 | 0 | 0 | n／a |
| 2005 | 2 | 5－Aug－05 | 217 | 9 | 45 | 1 | 0 | n／a |
| 2005 | 2 | TOTALS |  |  |  |  | 89 | 0 | 11 | 26 | 52 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 8－Aug－05 | 220 | 1 | 225 | 1 | 8 | 0 | 0 | 7 | 0 | 1 | 0 | 0 | 0 |
| 2005 | 3 | 8－Aug－05 | 220 | 2 | 225 | 1 | 41 | 0 | 0 | 0 | 38 | 0 | 3 | 0 | 0 |
| 2005 | 3 | 8－Aug－05 | 220 | 3 | 225 | 2 | 36 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 8－Aug－05 | 220 | 4 | 225 | 3 | 0 | n／a |
| 2005 | 3 | 8－Aug－05 | 220 | 5 | 225 | 3 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 8－Aug－05 | 220 | 6 | 225 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 8－Aug－05 | 220 | 7 | 225 | 1 | 0 | n／a |
| 2005 | 3 | 8－Aug－05 | 220 | 8 | 225 | 1 | 0 | n／a |
| 2005 | 3 | 8－Aug－05 | 220 | 9 | 225 | 1 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | TOTALS |  |  |  |  | 112 | 18 | 9 | 7 | 74 | 1 | 3 | 0 | 0 |
| 2005 | 4 | 11－Aug－05 | 223 | 1 | 270 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 11－Aug－05 | 223 | 2 | 270 | 2 | 11 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 11－Aug－05 | 223 | 3 | 270 | 2 | 40 | 0 | 0 | 0 | 35 | 4 | 1 | 0 | 0 |
| 2005 | 4 | 11－Aug－05 | 223 | 4 | 270 | 3 | 0 | n／a |
| 2005 | 4 | 11－Aug－05 | 223 | 5 | 270 | 3 | 0 | n／a |
| 2005 | 4 | 11－Aug－05 | 223 | 6 | 270 | 3 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2005 | 4 | 11－Aug－05 | 223 | 7 | 270 | 1 | 0 | n／a |
| 2005 | 4 | 11－Aug－05 | 223 | 8 | 270 | 1 | 0 | n／a |
| 2005 | 4 | 11－Aug－05 | 223 | 9 | 270 | 1 | 0 | n／a |
| 2005 | 4 | TOTALS |  |  |  |  | 54 | 0 | 0 | 2 | 46 | 5 | 1 | 0 | 0 |
| 2005 | 5 | 14－Aug－05 | 226 | 1 | 90 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 14－Aug－05 | 226 | 2 | 135 | 5 | 10 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 14－Aug－05 | 226 | 3 | 135 | 5 | 7 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 14－Aug－05 | 226 | 4 | 45 | 5 | 0 | n／a |
| 2005 | 5 | 14－Aug－05 | 226 | 5 | 45 | 5 | 0 | n／a |

Appendix 7a. Sagavanirktok 2005 transect data by habitat.

| $\stackrel{\text { ָ̄ }}{\underset{\sim}{\sim}}$ |  | $\begin{aligned} & \stackrel{y}{\tilde{\sigma}} \end{aligned}$ | $\begin{aligned} & \frac{0}{\pi} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \text { 气 } \\ & \text { 믈 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\square} \\ & \frac{\square}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { 듬 } \\ & \text { D } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | 믕 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 5 | 14-Aug-05 | 226 | 6 | 45 | 5 | 0 | n/a |
| 2005 | 5 | 14-Aug-05 | 226 | 7 | 90 | 4 | 0 | n/a |
| 2005 | 5 | 14-Aug-05 | 226 | 8 | 90 | 4 | 0 | n/a |
| 2005 | 5 | 14-Aug-05 | 226 | 9 | 90 | 4 | 0 | n/a |
| 2005 | 5 | TOTALS |  |  |  |  | 21 | 0 | 0 | 4 | 17 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 17-Aug-05 | 229 | 1 | 23 | 1 | 3 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 |
| 2005 | 6 | 17-Aug-05 | 229 | 2 | 90 | 1 | 3 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
| 2005 | 6 | 17-Aug-05 | 229 | 3 | 90 | 1 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 17-Aug-05 | 229 | 4 | 90 | 1 | 0 | n/a |
| 2005 | 6 | 17-Aug-05 | 229 | 5 | 90 | 1 | 0 | n/a |
| 2005 | 6 | 17-Aug-05 | 229 | 6 | 90 | 1 | 0 | n/a |
| 2005 | 6 | 17-Aug-05 | 229 | 7 | 23 | 1 | 0 | n/a |
| 2005 | 6 | 17-Aug-05 | 229 | 8 | 0 | 1 | 0 | n/a |
| 2005 | 6 | 17-Aug-05 | 229 | 9 | 23 | 1 | 0 | n/a |
| 2005 | 6 | TOTALS |  |  |  |  | 10 | 0 | 0 | 2 | 6 | 1 | 1 | 0 | 0 |
| 2005 | 7 | 19-Aug-05 | 231 | 1 | 23 | 1 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 19-Aug-05 | 231 | 2 | 90 | 1 | 7 | 0 | 0 | 0 | 4 | 3 | 0 | 0 | 0 |
| 2005 | 7 | 19-Aug-05 | 231 | 3 | 90 | 1 | 0 | n/a |
| 2005 | 7 | 19-Aug-05 | 231 | 4 | 90 | 2 | 0 | n/a |
| 2005 | 7 | 19-Aug-05 | 231 | 5 | 90 | 2 | 0 | n/a |
| 2005 | 7 | 19-Aug-05 | 231 | 6 | 90 | 2 | 0 | n/a |
| 2005 | 7 | 19-Aug-05 | 231 | 7 | 23 | 1 | 0 | n/a |
| 2005 | 7 | 19-Aug-05 | 231 | 8 | 23 | 1 | 0 | n/a |
| 2005 | 7 | 19-Aug-05 | 231 | 9 | 23 | 1 | 0 | n/a |
| 2005 | 7 | TOTALS |  |  |  |  | 11 | 0 | 0 | 4 | 4 | 3 | 0 | 0 | 0 |
| 2005 | 8 | 22-Aug-05 | 234 | 1 | 90 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 2005 | 8 | 22-Aug-05 | 234 | 2 | 90 | 1 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 22-Aug-05 | 234 | 3 | 90 | 1 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
| 2005 | 8 | 22-Aug-05 | 234 | 4 | 90 | 2 | 0 | n/a |
| 2005 | 8 | 22-Aug-05 | 234 | 5 | 90 | 1 | 0 | n/a |
| 2005 | 8 | 22-Aug-05 | 234 | 6 | 90 | 2 | 0 | n/a |
| 2005 | 8 | 22-Aug-05 | 234 | 7 | 90 | 1 | 0 | n/a |
| 2005 | 8 | 22-Aug-05 | 234 | 8 | 90 | 2 | 0 | n/a |
| 2005 | 8 | 22-Aug-05 | 234 | 9 | 90 | 2 | 0 | n/a |
| 2005 | 8 | TOTALS |  |  |  |  | 8 | 0 | 0 | 0 | 7 | 0 | 1 | 0 | 0 |
| 2005 |  | TOTAL FOR | SPEC |  |  |  |  |  |  |  |  |  |  |  |  |

Appendix 7b. Sagavanirktok 2006 transect data by habitat.

|  | $\begin{aligned} & 0 \\ & \stackrel{\circ}{\lambda} \\ & \stackrel{\rightharpoonup}{0} \\ & \vdots \end{aligned}$ | $\stackrel{y}{\stackrel{y}{\sigma}}$ | $\begin{aligned} & \cong \\ & \stackrel{y}{\pi} \\ & \stackrel{O}{亏} \end{aligned}$ | $\begin{aligned} & \overleftarrow{U} \\ & \mathbb{U} \\ & \stackrel{N}{\overleftarrow{W}} \end{aligned}$ | $\begin{aligned} & \overline{\bar{O}} \\ & \text { 믈 } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\sim}{\infty} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \frac{0}{\Sigma} \end{aligned}$ |  |  | $\begin{aligned} & \frac{\mathfrak{\sigma}}{0} \\ & \vdots \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | 믕 | ¢ | ¢్ర్ర |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 1 | 27-Jul-06 | 208 | 1 | 0 | 3 | 73 | 71 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 26-Jul-06 | 207 | 2 | 248 | 3 | 44 | 8 | 0 | 36 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 26-Jul-06 | 207 | 3 | 270 | 3 | 15 | 0 | 0 | 4 | 11 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 27-Jul-06 | 208 | 4 | 315 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 26-Jul-06 | 207 | 5 | 248 | 3 | 41 | 41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 27-Jul-06 | 208 | 6 | 315 | 3 | 150 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 27-Jul-06 | 208 | 7 | n/a |
| 2006 | 1 | 27-Jul-06 | 208 | 8 | n/a |
| 2006 | 1 | 27-Jul-06 | 208 | 9 | n/a |
| 2006 | 1 | TOTALS |  |  |  |  | 324 | 270 | 0 | 43 | 11 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 30-Jul-06 | 211 | 1 | 0 | 2 | 20 | 2 | 0 | 5 | 0 | 13 | 0 | 0 | 0 |
| 2006 | 2 | 29-Jul-06 | 210 | 2 | 45 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 29-Jul-06 | 210 | 3 | 45 | 1 | 15 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 30-Jul-06 | 211 | 4 | 45 | 2 | 3 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 29-Jul-06 | 210 | 5 | 45 | 1 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 30-Jul-06 | 211 | 6 | 0 | 2 | 65 | 12 | 0 | 16 | 0 | 37 | 0 | 0 | 0 |
| 2006 | 2 | 29-Jul-06 | 210 | 7 | 45 | 1 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 29-Jul-06 | 210 | 8 | 45 | 2 | 17 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 29-Jul-06 | 210 | 9 | 45 | 1 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | TOTALS |  |  |  |  | 143 | 51 | 0 | 25 | 17 | 50 | 0 | 0 | 0 |
| 2006 | 3 | 2-Aug-06 | 214 | 1 | 45 | 1 | 18 | 0 | 0 | 11 | 0 | 7 | 0 | 0 | 0 |
| 2006 | 3 | 1-Aug-06 | 213 | 2 | 45 | 2 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 1-Aug-06 | 213 | 3 | 225 | 1 | 0 | n/a |
| 2006 | 3 | 2-Aug-06 | 214 | 4 | 23 | 1 | 11 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 1-Aug-06 | 213 | 5 | 45 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 2-Aug-06 | 214 | 6 | 0 | 1 | 190 | 0 | 0 | 30 | 0 | 138 | 22 | 0 | 0 |
| 2006 | 3 | 31-Jul-06 | 212 | 7 | 0 | 4 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 8 | 0 | 4 | 0 | n/a |
| 2006 | 3 | 31-Jul-06 | 212 | 9 | 0 | 4 | 0 | n/a |
| 2006 | 3 | TOTALS |  |  |  |  | 226 | 12 | 0 | 45 | 0 | 145 | 22 | 0 | 0 |
| 2006 | 4 | 5-Aug-06 | 217 | 1 | 45 | 5 | 0 | n/a |
| 2006 | 4 | 4-Aug-06 | 216 | 2 | 0 | 3 | 500 | 0 | 0 | 10 | 0 | 485 | 5 | 0 | 0 |
| 2006 | 4 | 4-Aug-06 | 216 | 3 | 45 | 4 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 4-Aug-06 | 216 | 4 | n/a |
| 2006 | 4 | 5-Aug-06 | 217 | 5 | 0 | 0 | 0 | n/a |
| 2006 | 4 | 5-Aug-06 | 217 | 6 | 0 | 5 | 49 | 3 | 0 | 12 | 0 | 34 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 7 | 315 | 1 | 36 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 8 | 45 | 1 | 32 | 7 | 0 | 0 | 18 | 7 | 0 | 0 | 0 |
| 2006 | 4 | 3-Aug-06 | 215 | 9 | 0 | 1 | 88 | 88 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | TOTALS |  |  |  |  | 708 | 134 | 0 | 25 | 18 | 526 | 5 | 0 | 0 |
| 2006 | 5 | 8-Aug-06 | 220 | 1 | 180 | 4 | 211 | 0 | 0 | 1 | 0 | 210 | 0 | 0 | 0 |
| 2006 | 5 | 7-Aug-06 | 219 | 2 | 180 | 2 | 283 | 0 | 0 | 35 | 0 | 248 | 0 | 0 | 0 |

Appendix 7b．Sagavanirktok 2006 transect data by habitat．

|  | $\begin{aligned} & 0 \\ & \stackrel{0}{㐅} \\ & \stackrel{y}{1} \\ & \omega \end{aligned}$ | $\begin{aligned} & \text { \#̃ } \\ & \stackrel{\pi}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\sim}{\Xi} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{O}} \\ & \overline{0} \\ & \overline{3} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{3} \\ & \widetilde{\otimes} \\ & \infty \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\square} \\ & \sum \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { た } \\ & \text { © } \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\omega}{\omega} \\ & \tilde{\omega} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | O | ¢ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 5 | 7－Aug－06 | 219 | 3 | 203 | 2 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 8－Aug－06 | 220 | 4 | 225 | 4 | 7 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 7－Aug－06 | 219 | 5 | 180 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 8－Aug－06 | 220 | 6 | 225 | 4 | 27 | 5 | 0 | 1 | 0 | 21 | 0 | 0 | 0 |
| 2006 | 5 | 6－Aug－06 | 218 | 7 | 180 | 3 | 15 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6－Aug－06 | 218 | 8 | 203 | 4 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 6－Aug－06 | 218 | 9 | 180 | 3 | 33 | 14 | 0 | 0 | 0 | 19 | 0 | 0 | 0 |
| 2006 | 5 | TOTALS |  |  |  |  | 588 | 40 | 0 | 50 | 0 | 498 | 0 | 0 | 0 |
| 2006 | 6 | 11－Aug－06 | 223 | 1 | 45 | 3 | 0 | n／a |
| 2006 | 6 | 10－Aug－06 | 222 | 2 | 45 | 2 | 119 | 0 | 0 | 2 | 0 | 117 | 0 | 0 | 0 |
| 2006 | 6 | 10－Aug－06 | 222 | 3 | 45 | 1 | 8 | 0 | 0 | 6 | 2 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 11－Aug－06 | 223 | 4 | 45 | 2 | 0 | n／a |
| 2006 | 6 | 10－Aug－06 | 222 | 5 | 45 | 2 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 11－Aug－06 | 223 | 6 | 45 | 3 | 17 | 12 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9－Aug－06 | 221 | 7 | 45 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 9－Aug－06 | 221 | 8 | 180 | 1 | 0 | n／a |
| 2006 | 6 | 9－Aug－06 | 221 | 9 | 180 | 1 | 0 | n／a |
| 2006 | 6 | TOTALS |  |  |  |  | 163 | 31 | 0 | 13 | 2 | 117 | 0 | 0 | 0 |
| 2006 | 7 | 14－Aug－06 | 226 | 1 | 45 | 4 | 0 | n／a |
| 2006 | 7 | 13－Aug－06 | 225 | 2 | 0 | 5 | 0 | n／a |
| 2006 | 7 | 13－Aug－06 | 225 | 3 | 45 | 4 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 14－Aug－06 | 226 | 4 | 45 | 3 | 0 | n／a |
| 2006 | 7 | 13－Aug－06 | 225 | 5 | 45 | 5 | 0 | n／a |
| 2006 | 7 | 14－Aug－06 | 226 | 6 | 45 | 3 | 0 | n／a |
| 2006 | 7 | 12－Aug－06 | 224 | 7 | 0 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12－Aug－06 | 224 | 8 | 45 | 4 | 6 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 12－Aug－06 | 224 | 9 | 0 | 4 | 200 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | TOTALS |  |  |  |  | 210 | 206 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 17－Aug－06 | 229 | 1 | 0 | 2 | 0 | n／a |
| 2006 | 8 | 16－Aug－06 | 228 | 2 | 315 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| 2006 | 8 | 16－Aug－06 | 228 | 3 | 315 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 17－Aug－06 | 229 | 4 | 45 | 2 | 0 | n／a |
| 2006 | 8 | 16－Aug－06 | 228 | 5 | 225 | 2 | 0 | n／a |
| 2006 | 8 | 17－Aug－06 | 229 | 6 | 0 | 3 | 20 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15－Aug－06 | 227 | 7 | 180 | 1 | 49 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15－Aug－06 | 227 | 8 | 270 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 15－Aug－06 | 227 | 9 | 225 | 1 | 0 | n／a |
| 2006 | 8 | TOTALS |  |  |  |  | 75 | 51 | 0 | 20 | 1 | 4 | 0 | 0 | 0 |
| 2006 | 9 | 20－Aug－06 | 232 | 1 | 45 | 1 | 0 | n／a |
| 2006 | 9 | 19－Aug－06 | 231 | 2 | 45 | 4 | 0 | n／a |  |
| 2006 | 9 | 19－Aug－06 | 231 | 3 | 45 | 4 | 0 | n／a |  |
| 2006 | 9 | 20－Aug－06 | 232 | 4 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |

Appendix 7b. Sagavanirktok 2006 transect data by habitat.

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| $7 \mathrm{~d} \exists \mathrm{~S}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | － | 0 | 0 | － | $-1$ | 0 | 0 |  | 0 |  | － | － |  | 0 | 0 | － |  | － | 0 | 0 | 0 |  |  | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0087 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | － | － | － | － | $\bigcirc$ | － | － | 0 | 0 | 0 | 0 | － | 0 | 0 |  | － | 0 | 0 | $\checkmark$ | － | 0 | － | － | $\bigcirc$ | $\bigcirc$ | $\checkmark$ |  | － | m | 0 |
| dכW＊ | － | $\bigcirc$ | 0 | 0 | － | － | $\bigcirc$ | 0 | 0 | 0 | － | － | 0 | 0 | 0 | － | 0 | 0 |  | － | 0 | 0 | $\bigcirc$ | － | 0 | － | 0 | 0 | 0 | 0 |  | － | － | 0 |
| VS99 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | － | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 |  | 0 | － | － | 0 | $\bigcirc$ | 0 | － | － | 0 | 0 | $\bigcirc$ |  | － | $\bigcirc$ | 0 |
| VSVG | 0 | 0 | 0 | 0 | 0 | － | 0 | 0 | 0 | － | － | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | － | － | 0 | － | － | － | 4 | 0 | 0 | 0 | $\checkmark$ |  | － | $\bigcirc$ | 0 |
| nıกy | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | 0 | 0 | $\Omega$ | $\Omega$ | － | － | 0 | － | 0 | 0 | － | － | － | 0 | － | － | 0 | $\bigcirc$ | $\bigcirc$ |  | － | － | － |
| ONVS | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | － | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |  | － | $\bigcirc$ | $\bigcirc$ |
| $\forall \mathrm{S} \exists \mathrm{M}$ | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | $\bigcirc$ | 0 | $\bigcirc$ | － | 0 | － | 0 | － | 0 | 0 | － | 0 | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | － | $\bigcirc$ | $\bigcirc$ | 0 | 0 |  | － | 0 | 0 |
| $\forall$ Sヨd | $\checkmark$ | m | ค | $\bigcirc$ | － | － | 0 | 0 | $\bigcirc$ | の | $\sim$ | の | ¢ | $\bigcirc$ | 0 | 0 | － | 0 |  | 8 | $\bigcirc$ | $\stackrel{m}{m}$ | ¢ | $\bigcirc$ | $\checkmark$ | － | 0 | 0 | － | $\stackrel{\sim}{\sim}$ |  | $\bigcirc$ | ¢ | $\bigcirc$ |
| $\forall S \perp$ S | 0 | $\sim$ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | N | 0 | $\rightarrow$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-1$ | 0 | － | 0 | 0 | － | － | 0 | 0 | － | $\bigcirc$ |  | － | 0 | 0 |
| Hdヨy | 0 | $\checkmark$ | 0 | $\bigcirc$ | － | － | － | 0 | $\bigcirc$ | ナ | 0 | － | $\cdots$ | 0 | 0 | 0 | － | 0 | 0 | $-1$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |  | － | $\bigcirc$ | $\bigcirc$ |
| HdNy | ज | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | 0 | $\bigcirc$ | ¢ | の | $\cdots$ | 0 | 0 | 0 | 0 | － | 0 | － | บ | $\infty$ | ＊ | $\checkmark$ | 0 | 0 | 0 | 0 | 0 | 7 | N |  | － | $\sim$ | 0 |
| 7d98 | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | － | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | － | 0 | － | － | － | － | 0 | $\bigcirc$ | － | － | 0 | － | $\bigcirc$ | $\bigcirc$ |  | － | 0 | 0 |
| 7NกG | 0 | $\bigcirc$ | 0 | 0 | － | － | 0 | 0 | 0 | － | 0 | 0 | $\sim$ | 0 | 0 | 0 | － | 0 | 0 | N | 0 | － | 0 | 0 | $\sim$ | － | 0 | 0 | － | $\bigcirc$ |  | $\bigcirc$ | 0 | 0 |
| $\forall$ SヨS | － | － | 0 | $\stackrel{\square}{\square}$ | m | $\bigcirc$ | $\cdots$ | 0 | $\stackrel{\sim}{\sim}$ | － | $\sim$ | － | 0 | 0 | 0 | 0 | － | 0 | 0 | N | 0 | － | － | 0 | $\checkmark$ | 4 | － | － | $\cdots$ | $\bigcirc$ |  | － | $\bigcirc$ | 0 |
| 『セO¢ | $9$ | m | $\bigcirc$ | $\stackrel{\sim}{\square}$ | m | $\bigcirc$ | $\cdots$ | $\bigcirc$ | $\stackrel{\infty}{\sim}$ | $\bigcirc$ | $\underset{\sim}{n}$ | $\underset{\sim}{n}$ | N | $\bigcirc$ | $\Omega$ | 0 | 0 | 0 |  | $\bigcirc$ | $\infty$ | 7 | M | － | N | $\sim$ | 0 | 0 | $\stackrel{\infty}{\sim}$ | ন̇ | $\sim$ | 1 | O | 0 |
| みоృnеәg | $\sim$ | $\rightarrow$ | $-1$ | $\rightarrow$ | $\square$ | $\checkmark$ | $\bigcirc$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\rightarrow$ | $\rightarrow$ | $\neg$ | 3 | $\checkmark$ | $\rightarrow$ | 0 |  |  | $\checkmark$ | $\rightarrow$ | $\sim$ | $m$ | $m$ | $m$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |  |  | ， | $\sim$ | m |
| ג！वри！M | $$ | $\stackrel{\sim}{\sim}$ | $\left\|\begin{array}{c} \stackrel{n}{0} \\ \underset{\sim}{2} \end{array}\right\|$ | 8 | 8 | 8 | 8 | 8 | 8 |  | $\stackrel{\circ}{\square}$ | ¢ | $\bigcirc$ | 8 | ก | $\bigcirc$ | $\stackrel{\text { a }}{ }$ | $\bigcirc$ | \％ |  | $\stackrel{\llcorner }{\sim}$ | $\stackrel{N}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{N}{N}$ | $\mathbb{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\llcorner }{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\stackrel{N}{N}}{N}$ |  | $\bar{v}$ |  | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\bigcirc}{\mathrm{N}}$ |
|  | $\cdots$ | $\sim$ | $m$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\wedge$ | $\infty$ | の |  | $\checkmark$ | $\sim$ | $m$ | $\checkmark$ | $\Omega$ | $\bullet$ | － | $\infty$ |  |  | $\checkmark$ | N | m | － | $\bigcirc$ | $\bigcirc$ | $\wedge$ | $\infty$ | の |  |  | N | m | $\checkmark$ |
| әъе๐｜n¢ | $\|\underset{N}{\underset{N}{2}}\|$ | $\stackrel{\underset{N}{N}}{ }$ | $\underset{N}{\underset{N}{2}}$ | $\stackrel{\rightharpoonup}{N}$ | $\underset{N}{\underset{N}{2}}$ | $\stackrel{\rightharpoonup}{\mathrm{N}}$ | $\stackrel{\rightharpoonup}{N}$ | $\underset{\sim}{N}$ | $\underset{N}{\underset{N}{2}}$ |  | $\stackrel{\mathrm{N}}{\mathrm{~N}}$ | $\stackrel{\infty}{\mathrm{N}}$ | $\stackrel{\sim}{N}$ | $\stackrel{N}{N}$ | $\underset{\sim}{\lambda}$ | $\stackrel{\sim}{N}$ | $\underset{N}{\mathrm{~N}}$ | $\stackrel{N}{N}$ |  |  | N | $\stackrel{\sim}{N}$ | $\stackrel{\circ}{\mathrm{N}}$ | N | N | N | N | $\stackrel{\sim}{\mathrm{N}}$ | 슬 |  | $\mathcal{N}$ | $\underset{\sim}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{N}$ |
| әъе】 | L | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{2} \end{aligned}$ | $\left\|\begin{array}{c} n \\ 0 \\ \vdots \\ \vdots \\ \stackrel{4}{4} \\ \grave{N} \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & i \\ & 0 \\ & \vdots \\ & \stackrel{1}{1} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \lambda \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{2} \end{aligned}$ |  | $\left\|\begin{array}{c} n \\ 0 \\ \vdots \\ 0 \\ \vdots \\ \lambda \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \stackrel{1}{1} \end{aligned}$ | － | $\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{6} \\ & \stackrel{4}{4} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$ | ¢ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{1}{4} \\ & \dot{n} \end{aligned}$ | n | ¢ | ？ | 隼 | 号 | $\stackrel{0}{0}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{1}{4} \\ & 0 \\ & 0 \end{aligned}$ | n | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \hline 1 \\ \infty \end{gathered}$ | ¢ | ¢ | 家 | 1 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> 1 <br> 0 <br> 0 | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \hline 1 \\ \infty \end{gathered}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ 0 \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \stackrel{y}{6} \\ & \stackrel{1}{f} \end{aligned}$ | ， | 年 |  |  |
| Pdイəлıns | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1 | $\cdots$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ | N | $\sim$ | N | $N$ | ， | $N$ | $m$ | m | $\cdots$ | $m$ | $\cdots$ | $m$ | $m$ | m | $m$ | $\cdots$ |  | ＋ | † | － |
| леә入 | $\stackrel{\sim}{0}$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & \mathbf{N} \end{aligned} \right\rvert\,$ | $\left\|\begin{array}{c} n \\ 0 \\ \underset{N}{2} \end{array}\right\|$ | $\stackrel{\bullet}{\circ}$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \stackrel{N}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \underset{N}{2} \end{aligned}$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\stackrel{\sim}{0}$ | N | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ | $\left.\begin{gathered} n \\ 0 \\ \end{gathered} \right\rvert\,$ | $\stackrel{0}{0}$ | $\begin{gathered} 0 \\ 0 \\ \sim \end{gathered}$ | N | N | N | $\stackrel{\sim}{0} \mathbf{N}$ | － | N | － | N | $\stackrel{\sim}{O}$ | － | $\stackrel{\sim}{\mathrm{O}}$ | － | $\stackrel{\sim}{0}$ | $\stackrel{\sim}{\circ}$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & N \end{aligned} \right\rvert\,$ | $\stackrel{\bullet}{\circ}$ |  | $\stackrel{\sim}{\mathrm{N}}$ | $\stackrel{\sim}{\circ}$ | $\stackrel{1}{\circ}$ |


|  | $7 \mathrm{~d} \exists$ S | 0 | 0 | 0 | － | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | － | 0 | － | 0 | 0 | 0 | 0 | － | 0 | 0 | － | － | － | 0 | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ | m | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | － | 0 | － | 0 | － | 0 | 0 | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | － | － | 0 |
|  | dOW＊ | 0 | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ | 0 | － | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | 0 | 0 | 0 | 0 | 0 | － | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | 0 |
|  | VSag | 0 | 0 | 0 | － | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | 0 | 0 | － | － | 0 | 0 | 0 | 0 | 0 | － | 0 | － | － | － | 0 | 0 | － | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | 0 |
|  | $\forall S \forall G$ | $\bigcirc$ | $\rightarrow$ | － | － | $\bigcirc$ | $\rightarrow$ | $\bigcirc$ | － | － | $\bigcirc$ | 0 | 0 | － | 0 | 0 | 0 | 0 | 0 | 0 | 0 | － | － | － | 0 | － | － | － | $\bigcirc$ | － | $\bigcirc$ | － | － | 0 |
|  | กıņ | 0 | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | － | 0 |
|  | QNVS | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | － | 0 | 0 | 0 | 0 | 0 | 0 | － | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | － | － | 0 |
|  | $\forall S \exists M$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | 0 | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | － | 0 | 0 | － | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | 0 |
|  | $\forall \mathrm{S} \mathrm{\exists}$ d | O | － | － | $\bigcirc$ | $\bigcirc$ | $\overrightarrow{7}$ | $\rightarrow$ | の | － | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\stackrel{\sim}{7}$ | $\checkmark$ | $\sim$ | － | 0 | － | 0 | － | 0 | $\bigcirc$ | $\wedge$ | $\bigcirc$ | 入 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 |
|  | $\forall S \perp$ S | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | － | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | － | $\bigcirc$ | － | － | － | 0 | 0 | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | 0 |
|  | Hdヨy | － | $\bigcirc$ | － | － | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\checkmark$ | 0 | 0 | 0 | － | － | 0 | $\bigcirc$ | $\checkmark$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | 0 |
|  | HdNY | － | 0 | 0 | － | $\bigcirc$ | ＋ | $m$ | $\checkmark$ | － | 0 | $\bigcirc$ | 0 | － | $\bigcirc$ | 0 | － | $\sim$ | 0 | － | 0 | 0 | 0 | － | 0 | 0 | $\sim$ | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | 0 |
|  | 7 dg | $\bigcirc$ | $\bigcirc$ | － | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | － | 0 | 0 | 0 | $\bigcirc$ | 0 | － | $\bigcirc$ | － | 0 | － | 0 | 0 | － | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | － | － |
|  | 7Nก0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | 0 | 上 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | － | 0 | 0 | 0 | － | 0 | 0 | － | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | 0 |
|  | $\forall S \exists \mathrm{~S}$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | O | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | － | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | － | 0 | $\bigcirc$ | － | － | 0 |
| $\begin{aligned} & \overline{0} \\ & 0 \end{aligned}$ | ¢！¢」 | 0 | $-1$ | 0 | $\bigcirc$ | $\bigcirc$ | U | $\checkmark$ | $\bigcirc$ | N | 0 | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 각 | m | m | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 | 0 | 0 | $\bigcirc$ | $\checkmark$ | 入 | 0 | $\bigcirc$ | － | 0 | 0 |
| Z | みоృneәg | $\cdots$ | $m$ | $\checkmark$ | $-1$ | $\checkmark$ |  | － | 15 | $\sim$ | － | ค | 15 | － | － | － |  | $\rightarrow$ | $\rightarrow$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $-$ | $\checkmark$ | $\cdots$ |  | $\checkmark$ | $\rightarrow$ | － | $\sim$ | N | N | － |
|  | য！口ри！M | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\circ}{\mathrm{N}}$ |  | 8 | $\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$ | $\left\|\begin{array}{c} \stackrel{N}{\mathrm{~N}} \end{array}\right\|$ | $\stackrel{\square}{\square}$ | $\stackrel{\text { ¢ }}{\text {－}}$ | $\stackrel{\text { ¢ }}{ }$ | 8 | 8 | 8 |  | $\stackrel{\sim}{\sim}$ | 8 | 8 | 8 | 8 | 8 | N | － | $\stackrel{\sim}{\sim}$ |  | N | 8 | 8 | 8 | 8 | 8 | $\stackrel{\sim}{\sim}$ |
| $\stackrel{\widetilde{T}}{\leftrightarrows}$ | ŋəəsu®』」 | ம | $\bigcirc$ | $\wedge$ | $\infty$ | a |  | $\checkmark$ | $\sim$ | $m$ | － | ค | $\bullet$ | N | $\infty$ | の |  | $\rightarrow$ | $\sim$ | $m$ | $\checkmark$ | $\llcorner$ | $\bigcirc$ | N | $\infty$ | a |  | $\rightarrow$ | $\sim$ | $\cdots$ | － | ๑ | $\bullet$ | N |
| $\underset{\underset{v}{\mathrm{~N}}}{\substack{\text { n }}}$ |  | $\stackrel{N}{N}$ | $\stackrel{N}{N}$ | $\underset{\sim}{N}$ | $\stackrel{N}{N}$ | $\underset{N}{N}$ |  | $\stackrel{\bullet}{N}$ | $\stackrel{\bullet}{N}$ | $\stackrel{\ominus}{\mathrm{N}}$ | $\stackrel{\bullet}{N}$ | $\stackrel{0}{N}$ | $\stackrel{0}{N}$ | $\stackrel{O}{N}$ | $\stackrel{\bullet}{N}$ | $\stackrel{\bullet}{N}$ |  | $\stackrel{\sim}{N}$ | $\underset{N}{N}$ | $\stackrel{\sim}{\mathrm{N}}$ | $\stackrel{\sim}{N}$ | $\underset{N}{N}$ | $\underset{\sim}{N}$ | $\underset{N}{N}$ | $\underset{N}{N}$ | $\stackrel{\sim}{N}$ |  | $\stackrel{\rightharpoonup}{N}$ | $\underset{\sim}{N}$ | $\underset{N}{N}$ | $\stackrel{\sim}{\sim}$ | $\underset{\sim}{\sim}$ | N | $\stackrel{\sim}{N}$ |
|  | әџе | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \frac{0}{4} \\ \vdots \\ \vec{~} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vec{c} \\ \vdots \\ \vec{~} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & -1 \\ & -1 \end{aligned}\right.$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ \overrightarrow{1} \\ \vec{~} \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ \vdots \\ \overrightarrow{1} \\ \vdots \\ 7 \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \stackrel{\leftrightarrow}{6} \\ & \stackrel{0}{\bullet} \\ & \vdash \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ \vec{c} \\ \dot{j} \\ \underset{7}{2} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & -1 \end{aligned}\right.$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \underset{\sim}{1} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \underset{7}{1} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ \vec{j} \\ \underset{~}{1} \end{array}\right\|$ |  | $\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \dot{d} \end{array}$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ -1 \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \infty \\ & \frac{1}{4} \\ & \stackrel{1}{2} \\ & 1 \end{aligned}\right.$ | $\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ -1 \end{array} \right\rvert\,$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \stackrel{1}{\lambda} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ i \\ \vdots \end{array}\right\|$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ i \\ \vdots \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & \frac{1}{5} \\ & 1 \\ & 1 \\ & 1 \end{aligned}\right.$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \vdots \\ & 1 \\ & \hline-1 \end{aligned}$ | $\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \end{array} \right\rvert\,$ | ¢ |  | ¢ | 1 <br> 0 <br> 1 <br> 0 <br> 1 <br> 1 <br> 1 |
| $\times$ | Pdイəлuns | － | － | ＋ | － | － | － | $\llcorner$ | $\llcorner$ | $\bigcirc$ | $\llcorner$ | ம | $\sim$ | م | 15 | ம | ద | $\bigcirc$ | $\bullet$ | N | N | $\wedge$ | N | $\wedge$ | N | N |
| $\begin{aligned} & \overline{0} \\ & \frac{0}{\mathbf{c}} \end{aligned}$ | геә入 | $\left\|\begin{array}{l} \stackrel{n}{0} \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ 0 \\ \sim \end{array}\right\|$ | $\left\|\begin{array}{l} \mathrm{N} \\ \mathbf{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathbf{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} \stackrel{n}{0} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ 0 \\ \sim \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{n} \\ \mathbf{O} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} \stackrel{n}{0} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & N \end{aligned}$ | $\left\lvert\, \begin{aligned} & n \\ & \hline \\ & 0 \end{aligned}\right.$ | $\left.\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & N \end{aligned} \right\rvert\,$ | $\left.\begin{array}{\|c} 1 \\ 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\underset{\sim}{n}$ | $\left\|\begin{array}{l} 10 \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \mathrm{~N} \end{array}\right\|$ | On | $\stackrel{\sim}{0}$ | $\left\|\begin{array}{l} n \\ 0 \\ \sim \end{array}\right\|$ | $\begin{aligned} & \mathrm{N} \\ & \hline \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ | － | $\left\|\begin{array}{c} \circ \\ \hline 0 \\ 0 \\ N \end{array}\right\|$ | N | － | － | － |


|  | $7 \mathrm{l} \exists \mathrm{S}$ | 0 | 0 | － | 0 | 0 | － | － | 0 | 0 | 0 | $\bigcirc$ | － | 0 | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | $\bigcirc$ | － | 0 | $\bigcirc$ | $\sim$ | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | $\bigcirc$ | $\sim$ | $\bigcirc$ |
|  | dכW＊ | 0 | － | 0 | 0 | 0 | － | － | － | － | 0 | $\bigcirc$ | － | $\bigcirc$ | 0 |
|  | VS98 | 0 | － | 0 | 0 | 0 | － | － | － | 0 | 0 | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ |
|  | $\forall S \forall 8$ | 0 | － | － | 0 | $\bigcirc$ | － | 0 | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\sim$ |
|  | nıny | 0 | － | － | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | ONVS | 0 | － | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\forall \mathrm{S} \exists \mathrm{M}$ | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | － | 0 | － | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 |
|  | $\forall S \exists d$ | 0 | $\bigcirc$ | $\wedge$ | $\bigcirc$ | $\rightarrow$ | ＊ | － | － | － | 0 | $\bigcirc$ | $\bigcirc$ | ค | N |
|  | $\forall S \perp$ S | 0 | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $m$ |
|  | Hdヨy | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | HdNY | 0 | － | － | $\rightarrow$ | 0 | － | $\bigcirc$ | － | － | 0 | $\bigcirc$ | $\bigcirc$ | $\rightarrow$ | ন |
|  | 7 dg 9 | 0 | $\bigcirc$ | － | － | 0 | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | 7Nกด | 0 | － | 0 | 0 | － | － | － | － | － | － | 0 | 0 | $\bigcirc$ | $\stackrel{\square}{7}$ |
|  | $\forall \mathrm{S} \exists \mathrm{S}$ | 0 | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\circ}{\square}$ |
| $\begin{aligned} & \overline{0} \\ & 0 \end{aligned}$ | ¢¢10」 | $\bigcirc$ | $\bigcirc$ | 7 | $\cdots$ | $m$ | ＋ | $\bigcirc$ | － | 0 | 0 | 0 | $\bigcirc$ | $\infty$ |  |
| 入े | みоృneәg | $\checkmark$ | $\checkmark$ |  | $\sim$ | $r$ | $\checkmark$ | N | $\checkmark$ | $\sim$ | $-1$ | $\sim$ | $\sim$ |  |  |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | ג！ори！M | N | $\sim$ |  | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |  |  |
| $\underset{\substack{\tilde{N}}}{ }$ | ฉวəsue»」 | $\infty$ | 9 |  | $\rightarrow$ | N | n | $\checkmark$ | $\llcorner$ | $\bigcirc$ | － | $\infty$ | の |  |  |
| ㅇN | әъедın¢ | $\underset{\sim}{\sim}$ | $\underset{\sim}{N}$ |  | $\stackrel{\underset{N}{N}}{ }$ | $\underset{\sim}{N}$ | $\underset{N}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{N}$ | $\underset{\sim}{N}$ | $\stackrel{\sim}{N}$ | $\underset{\sim}{\text { N}}$ | $\underset{N}{N}$ |  | － |
|  | әцеб | 1 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> 1 <br> 1 <br> 1 <br> 1 | $\left\|\begin{array}{c} 1 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \infty \\ & \frac{1}{1} \\ & \stackrel{0}{2} \\ & 1 \end{aligned}\right.$ | $n$ 0 $\vdots$ $\vdots$ $\vdots$ $\vdots$ |  |  |  |  |  | $\stackrel{\text { N }}{\substack{\text { N }}}$ | $\begin{aligned} & \text { n } \\ & 0 \\ & 1 \\ & \frac{0}{1} \\ & \underset{\lambda}{N} \\ & \underset{N}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & N \\ & N \end{aligned}$ | $\begin{aligned} & \stackrel{\sim}{\mathbb{1}} \\ & \stackrel{-}{\circ} \end{aligned}$ | － |
| $\begin{aligned} & \text { N } \\ & \underline{x} \end{aligned}$ | pdイəлuns | N | $\wedge$ | $\wedge$ | $\infty$ |  |
| $\begin{aligned} & \bar{d} \\ & \frac{0}{2} \\ & \hline \mathbf{4} \end{aligned}$ | леә人 | O | $\left\|\begin{array}{l} \stackrel{n}{0} \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} 2 \\ \hline 0 \\ \mathbf{N} \end{array}\right\|$ | $\left.\begin{array}{\|c} n \\ 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & \mathbf{O} \\ & \mathrm{~N} \end{aligned} \right\rvert\,$ | $\stackrel{\circ}{\mathrm{O}}$ | 응 | $\left\|\begin{array}{l} 2 \\ \hline 0 \\ \mathbf{N} \end{array}\right\|$ | O-O | $\stackrel{\sim}{\mathrm{N}}$ | $\stackrel{2}{\circ}$ | － | 응 | － |












 7Nกロ $\forall$ S $\exists \mathrm{S}$


## ，



| $\left\|\begin{array}{l} 0 \\ 7 \end{array}\right\|$ | $\cdots$ | $\checkmark$ | 0 | の | m | 8 | － | － | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\stackrel{\circ}{\sim}$

Appendix 7d．Sagavanirktok 2006 transect data by species．



ŋəəsue»」

| $\rightarrow$ | N | m | $\checkmark$ | $\llcorner$ | $\bullet$ | $\wedge$ | $\infty$ | の | $\checkmark$ | $\sim$ | m | － | $\Omega$ | $\bigcirc$ | － | $\infty$ | の | $\rightarrow$ | $\sim$ | m | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | － | $\infty$ | の | $\checkmark$ | $\sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| － | 스N | N | $\stackrel{\sim}{\sim}$ | N | $\stackrel{\sim}{\sim}$ | $\stackrel{\infty}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\infty}{\sim}$ | $\stackrel{\rightharpoonup}{\mathrm{N}}$ | 읏 | $\stackrel{-}{\mathrm{N}}$ | $\underset{\sim}{\mathrm{N}}$ | $\stackrel{-1}{N}$ | $\underset{\sim}{N}$ | 잇 | － | $\stackrel{O}{N}$ | $\underset{\sim}{\sim}$ | $\stackrel{m}{N}$ | $\stackrel{m}{\mathrm{~N}}$ | $\underset{N}{\underset{N}{2}}$ | $\stackrel{m}{N}$ |  | N |  | $\underset{N}{N}$ | $\stackrel{\sim}{\lambda}$ | $\stackrel{\square}{\text { ה }}$ |

 ㅇN 그N
－

| $\left\|\begin{array}{c} 0 \\ \frac{1}{1} \\ \stackrel{1}{2} \\ \stackrel{N}{N} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \frac{1}{7} \\ \stackrel{1}{\hat{N}} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \frac{1}{2} \\ \dot{\hat{N}} \end{array}\right\|$ | $\begin{aligned} & \varphi \\ & \frac{1}{5} \\ & \stackrel{1}{\lambda} \\ & \end{aligned}$ | $\left\|\begin{array}{l} \circ \\ \frac{1}{⿳ 亠 口} \\ \stackrel{\rightharpoonup}{\hat{N}} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 8 \\ & \frac{1}{2} \\ & \stackrel{\lambda}{\lambda} \\ & \underset{N}{2} \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & \frac{0}{1} \\ & \vdots \\ & \stackrel{1}{N} \end{aligned}$ | $\left\|\begin{array}{l} 8 \\ \frac{1}{2} \\ \stackrel{1}{2} \\ \stackrel{1}{N} \end{array}\right\|$ | $\begin{aligned} & \circ \\ & \stackrel{i}{3} \\ & \stackrel{1}{\lambda} \\ & \stackrel{1}{n} \end{aligned}$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \\ \vdots \\ \hline 1 \end{array}\right\|$ | $\circ$ <br> $\stackrel{1}{3}$ <br> $\stackrel{1}{2}$ <br> Nे <br>  |  | pip | $\stackrel{\circ}{\sim}$ |  |  |  | $\begin{aligned} & 0 \\ & \hline \frac{1}{7} \\ & \stackrel{1}{2} \\ & \dot{N} \end{aligned}$ | $\begin{gathered} 0 \\ \frac{1}{5} \\ \stackrel{1}{2} \\ \underset{N}{2} \end{gathered}$ | $\begin{aligned} & 0 \\ & \stackrel{y}{\hat{1}} \\ & \stackrel{1}{1} \end{aligned}$ |  |  | $\stackrel{\circ}{9}$ | － | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | N |  | $\begin{gathered} \stackrel{8}{1} \\ \frac{1}{3} \\ \stackrel{\rightharpoonup}{m} \end{gathered}$ | $\begin{gathered} 0 \\ \frac{0}{1} \\ \frac{1}{2} \\ \stackrel{1}{m} \end{gathered}$ | $\begin{aligned} & 0 \\ & \stackrel{\leftrightarrow}{6} \\ & \stackrel{O}{\bullet} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & 0 \\ & \stackrel{1}{4} \\ & \dot{n} \end{aligned}$ | 0 <br>  <br> 1 <br>  <br>  <br> 1 <br> 1 <br> 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\checkmark$ | － | － | － | － | $\cdots$ | $\checkmark$ | － | $\checkmark$ | $\checkmark$ | $\sim$ | $\sim$ | $\sim$ | N | $\sim$ |  | N | $\sim$ | $\sim$ | $\sim$ | $\sim$ | $m$ | $m$ | m | m | m | m | m | m | m | m | $\checkmark$ | ナ |
| $\mid$ | $\mid$ | $\left\|\begin{array}{l} 0 \\ \hline 0 \\ \hline \end{array}\right\|$ | O | $\left\|\begin{array}{l} 0 \\ \hline 0 \\ \hline \end{array}\right\|$ | O | $\begin{aligned} & 0 \\ & \hline 0 \\ & \sim \end{aligned}$ | O | O | O- | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | OO | O융 | － |  |  |  | 이 | $$ | O잉 | $\begin{aligned} & 0 \\ & \hline \\ & N \end{aligned}$ | O-O | $\stackrel{\rightharpoonup}{\circ}$ | N | N |  | N | $\begin{aligned} & 0 \\ & \hline 0 \\ & N \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & N \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$ | $$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \sim \end{aligned}$ | － |




Appendix 8a. Okpilak 2005 transect data by habitat.

|  | $\begin{aligned} & 0 \\ & \stackrel{0}{\lambda} \\ & \stackrel{2}{y} \\ & 0 \end{aligned}$ | $\begin{aligned} & \cong \\ & \stackrel{\pi}{\pi} \end{aligned}$ | $\begin{aligned} & \stackrel{0}{\tilde{N}} \\ & \stackrel{0}{亏} \\ & \end{aligned}$ |  |  |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \bar{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { ত} \\ & \text { © } \\ & \text { O} \end{aligned}$ |  | $\frac{\stackrel{\pi}{0}}{\stackrel{1}{5}}$ | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { D్ర } \\ & \text { Q } \end{aligned}$ | ¢ | ¢్ర్ర |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 1 | 3-Aug-05 | 215 | 1 | ne | 3 | 51 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 3-Aug-05 | 215 | 2 | ne | 4 | 63 | 63 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 3-Aug-05 | 215 | 3 | ne | 4 | 80 | n/a |
| 2005 | 1 | 4-Aug-05 | 216 | 4 | ne | 2 | 15 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 |
| 2005 | 1 | 4-Aug-05 | 216 | 5 |  |  | 18 | 0 | 0 | 1 | 0 | 17 | 0 | 0 | 0 |
| 2005 | 1 | 3-Aug-05 | 215 | 6 | ne | 3 | 54 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 4-Aug-05 | 216 | 7 | ne | 3 | 600 | n/a |
| 2005 | 1 | 4-Aug-05 | 216 | 8 | ne | 3 | 2 | n/a |
| 2005 | 1 | 4-Aug-05 | 216 | 9 | ne | 2 | 718 | n/a |
| 2005 | 1 | 4-Aug-05 | 216 | 10 | ne | 2 | 53 | 53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 1 | TOTALS |  |  |  |  | - | 221 | 0 | 1 | 0 | 32 | 0 | 0 | 0 |
| 2005 | 2 | 6-Aug-05 | 218 | 1 | ne | 2 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 6-Aug-05 | 218 | 2 | ne | 2 | 52 | 52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 6-Aug-05 | 218 | 3 | ne | 2 | 0 | n/a |
| 2005 | 2 | 6-Aug-05 | 218 | 4 | ne | 3 | 2 | n/a |
| 2005 | 2 | 6-Aug-05 | 218 | 5 | ne | 3 | 16 | n/a |
| 2005 | 2 | 6-Aug-05 | 218 | 6 | ne | 2 | 0 | n/a |
| 2005 | 2 | 6-Aug-05 | 218 | 7 | ne | 2 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 2 | 6-Aug-05 | 218 | 8 | ne | 2 | 3 | n/a |
| 2005 | 2 | 6-Aug-05 | 218 | 9 | ne | 2 | 0 | n/a |
| 2005 | 2 | 6-Aug-05 | 218 | 10 | ne | 3 | 0 | n/a |
| 2005 | 2 | TOTALS |  |  |  |  | 89 | 60 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 10-Aug-05 | 222 | 1 | n/a |
| 2005 | 3 | 10-Aug-05 | 222 | 2 | n/a |
| 2005 | 3 | 10-Aug-05 | 222 | 3 | ne | 2 | 0 | n/a |
| 2005 | 3 | 10-Aug-05 | 222 | 4 | ne | 2 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 10-Aug-05 | 222 | 5 | e | 3 | 5 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 |
| 2005 | 3 | 10-Aug-05 | 222 | 6 | n/a |
| 2005 | 3 | 10-Aug-05 | 222 | 7 | ne | 4 | 0 | n/a |
| 2005 | 3 | 10-Aug-05 | 222 | 8 | ne | 4 | 0 | n/a |
| 2005 | 3 | 10-Aug-05 | 222 | 9 | ne | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | 10-Aug-05 | 222 | 10 | ne | 2 | 28 | 20 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 3 | TOTALS |  |  |  |  | 38 | 20 | 1 | 16 | 0 | 1 | 0 | 0 | 0 |
| 2005 | 4 | 13-Aug-05 | 225 | 1 | ne | 3 | 0 | n/a |
| 2005 | 4 | 13-Aug-05 | 225 | 2 | ne | 3 | 5 | n/a |
| 2005 | 4 | 13-Aug-05 | 225 | 3 | ne | 3 | 16 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 13-Aug-05 | 225 | 4 | ne | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 13-Aug-05 | 225 | 5 | ne | 2 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 13-Aug-05 | 225 | 6 | n/a |
| 2005 | 4 | 13-Aug-05 | 225 | 7 | e | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 4 | 13-Aug-05 | 225 | 8 | e | 2 | 0 | n/a |
| 2005 | 4 | 13-Aug-05 | 225 | 9 | e | 2 | 0 | n/a |
| 2005 | 4 | 13-Aug-05 | 225 | 10 | ne | 2 | 35 | 0 | 0 | 35 | 0 | 0 | 0 | 0 | 0 |

Appendix 8a. Okpilak 2005 transect data by habitat.

|  | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$ | $\begin{aligned} & \underset{\widetilde{0}}{0} \end{aligned}$ | $\begin{aligned} & \cong \\ & \stackrel{y}{\sigma} \\ & \stackrel{O}{亏} \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{\prime}} \\ & \text { 믈 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\frac{\pi}{2}} \\ & \frac{0}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { Ø} \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \frac{\widetilde{\omega}}{\omega} \\ & \dot{\omega} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\mathbb{T}}{0} \\ & \stackrel{C}{〕} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | O | ¢ | ஞ্ত |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 4 | TOTALS |  |  |  |  | 61 | 16 | 1 | 39 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 1 | n | 2 | 0 | n/a |
| 2005 | 5 | 18-Aug-05 | 230 | 2 | ne | 3 | 0 | n/a |
| 2005 | 5 | 18-Aug-05 | 230 | 3 | ne | 3 | 25 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 4 | ne | 3 | 28 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 5 | ne | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 6 | ne | 2 | 0 | n/a |
| 2005 | 5 | 18-Aug-05 | 230 | 7 | nw | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 8 | ne | 2 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 9 | n | 2 | 12 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | 18-Aug-05 | 230 | 10 | ne | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 5 | TOTALS |  |  |  |  | 76 | 27 | 20 | 29 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 1 | n | 1 | 113 | 113 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 2 | n | 1 | 177 | 177 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 3 |  | 0 | 0 | n/a |
| 2005 | 6 | 21-Aug-05 | 233 | 4 |  | 0 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 5 |  | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 6 | n | 0 | 0 | n/a |
| 2005 | 6 | 21-Aug-05 | 233 | 7 | w | 1 | 0 | n/a |
| 2005 | 6 | 21-Aug-05 | 233 | 8 | w | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 9 | n | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | 21-Aug-05 | 233 | 10 | . | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 6 | TOTALS |  |  |  |  | 305 | 295 | 2 | 8 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 24-Aug-05 | 236 | 1 | w | 1 | 0 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 2 | w | 1 | 49 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | 7 | 24-Aug-05 | 236 | 3 | w | 1 | 0 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 4 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 5 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 6 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 7 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 8 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 9 | n/a |
| 2005 | 7 | 24-Aug-05 | 236 | 10 | n/a |
| 2005 | 7 | TOTALS |  |  |  |  | 49 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 |  | TOTAL FOR SPECIES |  |  |  |  |  |  |  |  |  |  |  |  |  |

Appendix 8b. Okpilak 2006 transect data by habitat.

| $\stackrel{\text { 厄̈ }}{\stackrel{\text { ® }}{\prime}}$ | $\begin{aligned} & \text { D} \\ & \stackrel{0}{\lambda} \\ & \vdots \\ & \vdots \end{aligned}$ | $\stackrel{\text { پ̃ }}{\stackrel{\pi}{0}}$ | $\begin{aligned} & \stackrel{y}{\tilde{N}} \\ & \stackrel{0}{亏} \\ & \end{aligned}$ | $\begin{aligned} & \overleftarrow{U} \\ & \mathbb{U} \\ & \stackrel{N}{\widetilde{N}} \end{aligned}$ | $\begin{aligned} & \overline{\bar{\circ}} \\ & \stackrel{\rightharpoonup}{\overline{3}} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\otimes}{\otimes} \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{\hbar} \\ & \sum \sum \end{aligned}$ | $\begin{aligned} & \text { ত} \\ & \text { © } \\ & \stackrel{Q}{0} \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\sim}{\sigma} \\ & \dot{\omega} \end{aligned}$ |  | $\begin{aligned} & \frac{8}{0} \\ & 0 \\ & \hline \alpha \end{aligned}$ | 믕 | $$ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 1 | 20-Jul-06 | 201 | 1 |  | 0 | 4 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 |
| 2006 | 1 | 20-Jul-06 | 201 | 2 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 3 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 4 |  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 20-Jul-06 | 201 | 5 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 6 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 7 | n/a | n/a | 0 | n/a |
| 2006 | 1 | 20-Jul-06 | 201 | 8 | 45 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 20-Jul-06 | 201 | 9 | 45 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 20-Jul-06 | 201 | 10 | n/a | n/a | 0 | n/a |
| 2006 | 1 | TOTALS |  |  |  |  | 8 | 0 | 0 | 1 | 1 | 1 | 2 | 0 | 0 |
| 2006 | 2 | 23-Jul-06 | 204 | 1 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 2 | 90 | 2 | 55 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 23-Jul-06 | 204 | 3 | 90 | 2 | 43 | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | 23-Jul-06 | 204 | 4 | 90 | 2 | 0 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 5 | 90 | 2 | 0 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 6 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 7 | 90 | 2 | 0 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 8 | 90 | 2 | 0 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 9 | 90 | 2 | 0 | n/a |
| 2006 | 2 | 23-Jul-06 | 204 | 10 | 90 | 2 | 6 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 2 | TOTALS |  |  |  |  | 104 | 100 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 1 | 45 | 1 | 0 | n/a |
| 2006 | 3 | 26-Jul-06 | 207 | 2 |  | 0 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 3 | 45 | 1 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 4 |  | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 5 |  | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 6 | n/a |
| 2006 | 3 | 26-Jul-06 | 207 | 7 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 8 |  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 9 |  | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 3 | 26-Jul-06 | 207 | 10 |  | 0 | 14 | 6 | 0 | 0 | 0 | 7 | 1 | 0 | 0 |
| 2006 | 3 | TOTALS |  |  |  |  | 62 | 48 | 3 | 1 | 0 | 7 | 1 | 3 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 1 | 45 | 2 | 24 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 2 | 45 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 3 | 45 | 2 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 4 | 90 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 5 | 90 | 2 | 0 | n/a |
| 2006 | 4 | 29-Jul-06 | 210 | 6 | n/a |
| 2006 | 4 | 29-Jul-06 | 210 | 7 | 45 | 2 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 8 | 45 | 2 | 0 | n/a |
| 2006 | 4 | 29-Jul-06 | 210 | 9 | 45 | 2 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 4 | 29-Jul-06 | 210 | 10 | 45 | 2 | 31 | 0 | 0 | 0 | 16 | 0 | 15 | 0 | 0 |
| 2006 | 4 | TOTALS |  |  |  |  | 78 | 32 | 13 | 0 | 16 | 0 | 15 | 0 | 0 |
| 2006 | 5 | 1-Aug-06 | 213 | 1 | 315 | 4 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 1-Aug-06 | 213 | 2 | 315 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 1-Aug-06 | 213 | 3 | 315 | 4 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 5 | 1-Aug-06 | 213 | 4 | n/a |

Appendix 8b．Okpilak 2006 transect data by habitat．

|  |  | $\stackrel{y}{\tilde{\sigma}}$ | $\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{\sim}{0} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{O}} \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\frac{\pi}{7}} \\ & \frac{⿳ 亠 二 口}{2} \\ & \frac{0}{2} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { © } \\ & \text { OU } \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\omega}{\sigma} \\ & \underset{\omega}{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \text { D } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 믕 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { O} \\ & \text { O} \end{aligned}$ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 5 | 1－Aug－06 | 213 | 5 | n／a |
| 2006 | 5 | 1－Aug－06 | 213 | 6 | n／a |
| 2006 | 5 | 1－Aug－06 | 213 | 7 | 315 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 2006 | 5 | 1－Aug－06 | 213 | 8 | 315 | 2 | 0 | n／a |
| 2006 | 5 | 1－Aug－06 | 213 | 9 | 315 | 2 | 0 | n／a |
| 2006 | 5 | 1－Aug－06 | 213 | 10 | 315 | 3 | 5 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 0 |
| 2006 | 5 | TOTALS |  |  |  |  | 19 | 12 | 0 | 5 | 0 | 2 | 0 | 1 | 1 |
| 2006 | 6 | 4－Aug－06 | 216 | 1 | 90 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 4－Aug－06 | 216 | 2 | 90 | 3 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 4－Aug－06 | 216 | 3 | 90 | 3 | 27 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2006 | 6 | 4－Aug－06 | 216 | 4 | 90 | 3 | 63 | 26 | 0 | 24 | 0 | 12 | 1 | 0 | 0 |
| 2006 | 6 | 4－Aug－06 | 216 | 5 | 45 | 3 | 35 | 28 | 0 | 1 | 0 | 6 | 0 | 0 | 0 |
| 2006 | 6 | 4－Aug－06 | 216 | 6 | 90 | 4 | 0 | n／a |
| 2006 | 6 | 4－Aug－06 | 216 | 7 | 45 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2006 | 6 | 4－Aug－06 | 216 | 8 | 45 | 3 | 21 | 0 | 9 | 0 | 0 | 0 | 0 | 12 | 0 |
| 2006 | 6 | 4－Aug－06 | 216 | 9 | 45 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 6 | 4－Aug－06 | 216 | 10 | 45 | 3 | 36 | 20 | 0 | 6 | 0 | 6 | 4 | 0 | 0 |
| 2006 | 6 | TOTALS |  |  |  |  | 192 | 106 | 10 | 31 | 0 | 24 | 5 | 12 | 4 |
| 2006 | 7 | 7－Aug－06 | 219 | 1 | 45 | 1 | 214 | 13 | 31 | 0 | 0 | 0 | 0 | 0 | 170 |
| 2006 | 7 | 7－Aug－06 | 219 | 2 | 45 | 3 | 17 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 7－Aug－06 | 219 | 3 | 45 | 4 | 37 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 7－Aug－06 | 219 | 4 | 45 | 3 | 24 | 0 | 0 | 3 | 0 | 20 | 1 | 0 | 0 |
| 2006 | 7 | 7－Aug－06 | 219 | 5 | 270 | 2 | 49 | 0 | 0 | 23 | 9 | 17 | 0 | 0 | 0 |
| 2006 | 7 | 7－Aug－06 | 219 | 6 | n／a |
| 2006 | 7 | 7－Aug－06 | 219 | 7 | 45 | 2 | 106 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 40 |
| 2006 | 7 | 7－Aug－06 | 219 | 8 | 45 | 2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | 7－Aug－06 | 219 | 9 | 45 | 1 | 196 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 165 |
| 2006 | 7 | 7－Aug－06 | 219 | 10 | 315 | 3 | 20 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 7 | TOTALS |  |  |  |  | 666 | 89 | 129 | 26 | 9 | 37 | 1 | 0 | 375 |
| 2006 | 8 | 10－Aug－06 | 222 | 1 | 270 | 0 | 20 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 10－Aug－06 | 222 | 2 |  | 0 | 83 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 10－Aug－06 | 222 | 3 |  | 0 | 68 | 68 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | 10－Aug－06 | 222 | 4 | 315 | 0 | 0 | n／a |
| 2006 | 8 | 10－Aug－06 | 222 | 5 | 315 | 1 | 19 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 |
| 2006 | 8 | 10－Aug－06 | 222 | 6 |  | 0 | 0 | n／a |
| 2006 | 8 | 10－Aug－06 | 222 | 7 | 270 | 0 | 23 | 0 | 14 | 0 | 0 | 0 | 0 | 18 | 0 |
| 2006 | 8 | 10－Aug－06 | 222 | 8 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 2006 | 8 | 10－Aug－06 | 222 | 9 | 45 | 1 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 |
| 2006 | 8 | 10－Aug－06 | 222 | 10 | 270 | 0 | 63 | 63 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 8 | TOTALS |  |  |  |  | 299 | 234 | 14 | 0 | 0 | 19 | 0 | 22 | 19 |
| 2006 | 9 | 13－Aug－06 | 225 | 1 | 45 | 4 | 32 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 2 | 45 | 3 | 66 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 3 | 45 | 4 | 28 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 4 | 90 | 1 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 5 | 90 | 3 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 6 | 45 | 3 | 138 | 138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 7 | 45 | 5 | 18 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 9 | 13－Aug－06 | 225 | 8 | 45 | 5 | 9 | 0 | 5 | 0 | 0 | 0 | 0 | 4 | 0 |

Appendix 8b．Okpilak 2006 transect data by habitat．

|  |  | $\stackrel{y}{\tilde{\sigma}}$ | $\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{\sim}{0} \\ & \stackrel{0}{亏} \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{O}} \\ & \text { 들 } \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{\frac{\pi}{7}} \\ & \frac{⿳ 亠 二 口}{2} \\ & \frac{0}{2} \end{aligned}$ | $\begin{aligned} & \text { ᄃ } \\ & \text { © } \\ & \text { OU } \end{aligned}$ | $\begin{aligned} & \frac{్}{\omega} \\ & \stackrel{\omega}{\sigma} \\ & \underset{\omega}{\omega} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \vdots \end{aligned}$ | $\begin{aligned} & \text { D } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 믕 } \\ & \hline \end{aligned}$ | ¢ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 9 | 13－Aug－06 | 225 | 9 | 45 | 5 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
| 2006 | 9 | 13－Aug－06 | 225 | 10 | 45 | 5 | 0 | n／a |
| 2006 | 9 | TOTALS |  |  |  |  | 306 | 264 | 23 | 0 | 4 | 0 | 1 | 4 | 10 |
| 2006 | 10 | 16－Aug－06 | 228 | 1 | 315 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 16－Aug－06 | 228 | 2 | 315 | 3 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 16－Aug－06 | 228 | 3 | 315 | 4 | 0 | n／a |
| 2006 | 10 | 16－Aug－06 | 228 | 4 | 315 | 3 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | 16－Aug－06 | 228 | 5 | 315 | 2 | 7 | 0 | 0 | 2 | 0 | 3 | 2 | 0 | 0 |
| 2006 | 10 | 16－Aug－06 | 228 | 6 | n／a |
| 2006 | 10 | 16－Aug－06 | 228 | 7 | 315 | 4 | 0 | n／a |
| 2006 | 10 | 16－Aug－06 | 228 | 8 | 315 | 4 | 22 | 0 | 7 | 0 | 0 | 0 | 0 | 15 | 0 |
| 2006 | 10 | 16－Aug－06 | 228 | 9 | 315 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 2006 | 10 | 16－Aug－06 | 228 | 10 | 315 | 4 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 10 | TOTALS |  |  |  |  | 57 | 12 | 7 | 2 | 0 | 3 | 2 | 19 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 1 | 45 | 4 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 2 | 45 | 4 | 39 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 3 | 45 | 4 | 37 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 4 | 45 | 4 | 6 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 5 | 45 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 6 | n／a |
| 2006 | 11 | 19－Aug－06 | 231 | 7 | 90 | 4 | 0 | n／a |
| 2006 | 11 | 19－Aug－06 | 231 | 8 | 90 | 4 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| 2006 | 11 | 19－Aug－06 | 231 | 9 | 90 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 5 |
| 2006 | 11 | 19－Aug－06 | 231 | 10 | 90 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 11 | TOTALS |  |  |  |  | 98 | 79 | 0 | 0 | 0 | 9 | 5 | 0 | 5 |
| 2006 | 12 | 22－Aug－06 | 234 | 1 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 2 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 3 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 4 | 270 | 4 | 0 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 5 | 270 | 4 | 0 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 6 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 7 | 315 | 4 | 0 | n／a |
| 2006 | 12 | 22－Aug－06 | 234 | 8 | 315 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 12 | 22－Aug－06 | 234 | 9 | 315 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
| 2006 | 12 | 22－Aug－06 | 234 | 10 | 270 | 5 | 0 | n／a |
| 2006 | 12 | TOTALS |  |  |  |  | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 5 | 0 |
| 2006 | 13 | 25－Aug－06 | 237 | 1 | 45 | 2 | 0 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 2 | 45 | 2 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 13 | 25－Aug－06 | 237 | 3 | 45 | 2 | 0 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 4 | 45 | 2 | 0 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 5 | 45 | 2 | 0 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 6 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 7 | 45 | 2 | 0 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 8 | 45 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 2006 | 13 | 25－Aug－06 | 237 | 9 | 45 | 2 | 0 | n／a |
| 2006 | 13 | 25－Aug－06 | 237 | 10 | n／a |
| 2006 | 13 | TOTALS |  |  |  |  | 7 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 2006 | 14 | 28－Aug－06 | 240 | 1 | 270 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| App |  | kpi | 6 tra | 促 | ata |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 $\stackrel{D}{\lambda}$ $\vdots$ $\vdots$ $\vdots$ |  | $\begin{aligned} & \stackrel{y}{\pi} \\ & \stackrel{\sim}{\sigma} \\ & 亏 \end{aligned}$ |  | $\begin{aligned} & \overline{\bar{\prime}} \\ & \stackrel{c}{\bar{c}} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\widetilde{0}} \\ & \mathbb{\sim} \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{ \pm} \\ & \frac{0}{\Sigma} \end{aligned}$ |  | $\begin{aligned} & \overline{\tilde{N}} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \tilde{\omega} \end{aligned}$ |  | $\begin{aligned} & \text { O} \\ & \text { O} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O } \end{aligned}$ | ¢ <br> O <br> ¢ | ¢ |
| 2006 | 14 | 28-Aug-06 | 240 | 2 | 270 | 3 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 3 | 270 | 3 | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 4 | 270 | 3 | 6 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 5 | 270 | 3 | 6 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 6 | n/a |
| 2006 | 14 | 28-Aug-06 | 240 | 7 | 270 | 3 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 8 | 270 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 9 | 270 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
| 2006 | 14 | 28-Aug-06 | 240 | 10 | 270 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 14 | TOTALS |  |  |  |  | 52 | 26 | 8 | 3 | 8 | 1 | 0 | 6 | 0 |
| 2006 | 15 | 31-Aug-06 | 243 | 1 | 45 | 2 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 15 | 31-Aug-06 | 243 | 2 | 45 | 2 | 110 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 15 | 31-Aug-06 | 243 | 3 | 45 | 2 | 0 | n/a |
| 2006 | 15 | 31-Aug-06 | 243 | 4 | 45 | 2 | 0 | n/a |
| 2006 | 15 | 31-Aug-06 | 243 | 5 | 45 | 2 | 0 | n/a |
| 2006 | 15 | 31-Aug-06 | 243 | 6 | 45 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 15 | 31-Aug-06 | 243 | 7 | 45 | 2 | 0 | n/a |
| 2006 | 15 | 31-Aug-06 | 243 | 8 | 45 | 2 | 0 | n/a |
| 2006 | 15 | 31-Aug-06 | 243 | 9 | 45 | 2 | 0 | n/a |
| 2006 | 15 | 31-Aug-06 | 243 | 10 | 90 | 2 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 15 | TOTALS |  |  |  |  | 123 | 123 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 16 | 4-Sep-06 | 247 | 1 | 270 | 1 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 16 | 4-Sep-06 | 247 | 2 | 270 | 1 | 51 | 48 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
| 2006 | 16 | 4-Sep-06 | 247 | 3 |  | 0 | 15 | 13 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
| 2006 | 16 | 4-Sep-06 | 247 | 4 | 270 | 1 | 9 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
| 2006 | 16 | 4-Sep-06 | 247 | 5 | 270 | 1 | 0 | n/a |
| 2006 | 16 | 4-Sep-06 | 247 | 6 | n/a |
| 2006 | 16 | 4-Sep-06 | 247 | 7 |  | 0 | 0 | n/a |
| 2006 | 16 | 4-Sep-06 | 247 | 8 |  | 0 | 0 | n/a |
| 2006 | 16 | 4-Sep-06 | 247 | 9 |  | 0 | 0 | n/a |
| 2006 | 16 | 4-Sep-06 | 247 | 10 |  | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 16 | TOTALS |  |  |  |  | 86 | 72 | 0 | 0 | 0 | 9 | 0 | 5 | 0 |
| 2006 |  | TOTAL FOR SPECIES |  |  |  |  |  |  |  |  |  |  |  |  |  |

$00910000000000000000000000000000 \frac{0}{\frac{\pi}{2}} \frac{\pi}{5} 0000 \frac{\pi}{2} 0000000$



 INVS $00000000000000000000000000 \frac{\pi}{2} \frac{\pi}{2} 000 \frac{\pi}{2} 000000$ $\forall S \exists M 00000000000000000000000000 \frac{\pi}{2} \frac{\pi}{2} 000 \frac{\pi}{2} 000000$






 リモロー Appendix 8c．Okpilak 2005 transect data by species．

| 䒑oıneәg | $\cdots$ | $\checkmark$ | $\checkmark$ | $\sim$ |  | m | $\cdots$ | m | $\sim$ | $\sim$ |  | $\sim$ | $\sim$ | $\sim$ | $m$ | m | N | $\sim$ | N | N |  |  | $\stackrel{\widetilde{ }}{\text { c }}$ | $\stackrel{\widetilde{\sigma}}{\beth}$ | $\sim$ | $\sim$ | m | $\stackrel{\widetilde{T}}{2}$ | ＋ | ＋ | － | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ג！Qpu！M | $\stackrel{0}{=}$ | $\pm$ | $\stackrel{8}{8}$ | $\stackrel{\otimes}{\triangle}$ |  | $\stackrel{\otimes}{\triangle}$ | $\stackrel{\otimes}{\triangle}$ | $\stackrel{\otimes}{\triangle}$ | $\stackrel{\otimes}{\square}$ | $\stackrel{8}{¢}$ |  | $\stackrel{\otimes}{\triangle}$ | $\stackrel{\square}{\triangle}$ | $\stackrel{\otimes}{\triangle}$ | $\stackrel{\text { ® }}{\sim}$ | $\stackrel{\text { ® }}{ }$ | $\stackrel{8}{8}$ | $\stackrel{8}{¢}$ | $\stackrel{\square}{=}$ | $\stackrel{\square}{\triangle}$ | $\stackrel{\text { ¢ }}{ }$ |  | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\pi}{工}$ | $\stackrel{\otimes}{\triangle}$ | $\stackrel{\otimes}{\sim}$ | © | $\frac{\mathfrak{x}}{\mathrm{d}}$ | $\stackrel{8}{¢}$ | $\stackrel{\otimes}{\sim}$ | $\stackrel{\square}{\square}$ | $\stackrel{\otimes}{\square}$ |  |
| ๒əsu®ı」 | $\checkmark$ | N | $m$ | － | $\bigcirc$ | $\bigcirc$ | $\wedge$ | $\infty$ | の | $\bigcirc$ |  | $\checkmark$ | $\sim$ | m | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | N | $\infty$ | の | －1 |  | $\checkmark$ | $\sim$ | m | － | $\llcorner$ | $\bigcirc$ | $\wedge$ | $\infty$ | $\bigcirc$ | $\bigcirc$ |  |
| әъеб｜n¢ | $\|\stackrel{\Omega}{\mathrm{N}}\|$ | $\stackrel{\stackrel{n}{\mathrm{~N}}}{ }$ | $\stackrel{\stackrel{n}{N}}{\stackrel{1}{2}}$ | $\left\|\begin{array}{c} 0 \\ \stackrel{1}{N} \end{array}\right\|$ | $\stackrel{O}{\mathrm{~N}}$ | $\stackrel{\square}{\mathrm{N}}$ | $\stackrel{0}{N}$ | $\stackrel{0}{\mathrm{~N}}$ | $\stackrel{0}{\mathrm{~N}}$ | $\stackrel{0}{\mathrm{~N}}$ |  | $\stackrel{\infty}{N}$ | $\stackrel{\infty}{\stackrel{\sim}{N}}$ | $\stackrel{\infty}{\mathrm{N}}$ | $\stackrel{\infty}{\mathrm{N}}$ |  | $\stackrel{\infty}{\mathrm{N}}$ | $\stackrel{\infty}{\mathrm{N}}$ |  | $\stackrel{\infty}{\mathrm{N}}$ |  |  | $\underset{N}{N}$ | N |  |
| әџед | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ \vdots \\ \dot{c} \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \circ \\ 0 \\ \vdots \\ \vdots \\ \stackrel{1}{c} \\ \dot{m} \end{gathered}\right.$ | $\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \dot{c} \\ & \dot{m} \end{aligned}$ | $\left\|\begin{array}{c} n \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \dot{j} \end{array}\right\|$ | $\left.\begin{aligned} & \circ \\ & 0 \\ & \vdots \\ & \stackrel{\rightharpoonup}{4} \\ & \dot{t} \end{aligned} \right\rvert\,$ |  | $\begin{aligned} & \stackrel{L}{0} \\ & 0 \\ & \substack{4 \\ \dot{f} \\ \hline} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline \\ & \vdots \\ & \frac{1}{4} \\ & i \end{aligned}$ | $\begin{aligned} & \stackrel{L}{0} \\ & 0 \\ & 0 \\ & \substack{f \\ f} \end{aligned}$ | $\begin{aligned} & \circ \\ & 0 \\ & \vdots \\ & \stackrel{\rightharpoonup}{4} \\ & \dot{f} \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{4}{5} \\ & \stackrel{1}{\wedge} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \substack{1 \\ 0 \\ \hline} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & \hline 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \vdots \\ & \dot{1} \\ & \hline \end{aligned}$ | فَ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{4} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \dot{0} \end{aligned}$ | ¢े | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \frac{1}{4} \\ & \dot{0} \end{aligned}$ | ¢ |  | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \frac{1}{1} \\ & 0 \\ & -1 \end{aligned}$ | 0 <br> 0 <br> 0 <br> 0 <br> $\vdots$ <br> 1 <br> $\vdots$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ -1 \end{array}\right\|$ |  | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$ | $\left.\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{array} \right\rvert\,$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$ | $\left.\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{array} \right\rvert\,$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$ | $\xrightarrow{0}$ |
| Kə＾ıns | － | $\checkmark$ | $\sim$ | N | N | $\sim$ | N | $\sim$ | $\sim$ | N | $\sim$ | N | $\checkmark$ | $m$ | $\cdots$ | $\cdots$ | m | m | m | $\cdots$ | $\cdots$ | m | m | $\bigcirc$ |
| »еә人 | $\left\|\begin{array}{l} \mathrm{L} \\ \mathbf{O} \\ \mathrm{~N} \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \mathrm{~N} \end{aligned}$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\stackrel{N}{\mathrm{O}}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline N \end{aligned}$ | $\begin{gathered} \stackrel{\sim}{0} \\ \stackrel{N}{2} \end{gathered}$ | $\stackrel{N}{\mathrm{O}}$ | $\begin{aligned} & \stackrel{\sim}{O} \\ & \underset{N}{2} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{N}{2} \end{aligned}$ | N | $\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \mathrm{~N} \end{aligned}$ | $\stackrel{\bullet}{\circ}$ | N | － | $$ | N | On |  |  | $\begin{aligned} & 0 \\ & \hline 0 \\ & \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\sim} \end{aligned}$ | $\left\|\begin{array}{c} n \\ 0 \\ 0 \\ N \end{array}\right\|$ | $\stackrel{\sim}{0}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{N}{2} \end{aligned}$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned} \right\rvert\,$ | $\begin{aligned} & \stackrel{N}{O} \\ & \underset{N}{n} \end{aligned}$ | $\stackrel{\sim}{0}$ | $\stackrel{\sim}{\circ}$ | $\stackrel{\sim}{\circ}$ |



 UNVS O O O O O


 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\forall S I S$ | 0 | 0 | 0 | 0 | 0 | $\frac{\pi}{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



 INNO O O O O O

 Appendix 8c. Okpilak 2005 transect data by species.

> | นołneəg | $m$ | $m$ | $m$ | $N$ | $N$ | $\stackrel{\pi}{\Sigma}$ | $N$ | $N$ | $N$ | $N$ | $N$ | $m$ | $m$ | $m$ | $m$ | $N$ | $N$ | $N$ | $N$ | + | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |







әег

pdイəлuns


ләл


|  | 0097 | $\bigcirc$ | $\bigcirc$ | － |  | $\stackrel{\widetilde{5}}{5}$ | $\underset{〔}{\mathfrak{c}}$ | $\stackrel{\Im}{\text { ® }}$ | $\stackrel{\text { ® }}{ }$ | โ | $\stackrel{\text { ¹ }}{ }$ | $\bigcirc$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dЭW＊ | 0 | $\bigcirc$ | 0 | $\stackrel{\widetilde{1}}{\sim}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\boldsymbol{c}}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\widetilde{5}}{\sim}$ | $\frac{\pi}{c}$ | $\stackrel{\text { c }}{ }$ | 0 | へ |
|  | ＊S89 | 0 | $\bigcirc$ | － | ¢ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{2}$ | โ | $\frac{\pi}{d}$ | $\frac{\text { º }}{}$ | 0 | $\llcorner$ |
|  | ＊SVG | 0 | $\bigcirc$ | $\bigcirc$ | $\stackrel{\widetilde{5}}{ }$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\pi}{\beth}$ | $\frac{\mathfrak{x}}{\boldsymbol{c}}$ | $\frac{\widetilde{1}}{}$ | $\bigcirc$ | $\rightarrow$ |
|  | กıก¢ | 0 | $\bigcirc$ | $\bigcirc$ | E | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\approx}{2}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\text { ® }}{ }$ | $\bigcirc$ | 인 |
|  | QNVS | 0 | 7 | $\bigcirc$ | $\stackrel{0}{2}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\widetilde{x}}{\square}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\text { ® }}{\text { ¢ }}$ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\text { ¢ }}{ }$ | 7 | N |
|  | $\forall S \exists M$ | 0 | $\bigcirc$ | $\bigcirc$ | $\stackrel{1}{2}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\widetilde{x}}{\square}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\widetilde{5}}{\sim}$ | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\text { ¹ }}{ }$ | 0 | 0 |
|  | $\forall \mathrm{S} \mathrm{\exists}$ d | 0 | 0 | 0 | ¢์ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\underset{工}{\mathfrak{c}}$ | ¢ | ฐ | $\frac{\mathfrak{x}}{\boldsymbol{c}}$ | $\stackrel{\text { ¢ }}{ }$ | $\bigcirc$ | ¢ |
|  | $\forall S \perp S$ | 0 | $\bigcirc$ | 0 | ¢ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\underset{工}{\mathfrak{c}}$ | ¢ | ฐ | โ | $\stackrel{\text { ¢ }}{ }$ | 0 | 7 |
|  | Hdヨy | 0 | $\bigcirc$ | 0 | ๔ | $\stackrel{\pi}{c}$ | ¢ | ก | $\stackrel{\widetilde{5}}{\text { ¢ }}$ | ¢ | $\stackrel{\text { ® }}{ }$ | 0 | $\sim$ |
|  | HdNy | 0 | 0 | 0 | ๔ | $\stackrel{\pi}{c}$ | โ | ก | $\stackrel{\widetilde{5}}{\text { ¢ }}$ | ๔ | $\stackrel{\text { ® }}{ }$ | $\bigcirc$ |  |
|  | 7 dag | 0 | $\bigcirc$ | 0 | ก | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\approx}{2}$ | $\stackrel{\mathfrak{x}}{\boldsymbol{c}}$ | $\frac{\mathfrak{x}}{\boldsymbol{c}}$ | $\stackrel{\text { ® }}{ }$ | $\bigcirc$ | ก |
|  | 7Nก0 | 0 | m | $\bigcirc$ | $\frac{\widetilde{5}}{}$ | $\stackrel{\pi}{\square}$ | $\frac{\mathfrak{x}}{\square}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{c}}{巳}$ | $\frac{\pi}{c}$ | $\frac{\pi}{c}$ | m | N |
|  | $\forall \mathrm{S} \exists \mathrm{S}$ | 0 | ค | 0 | ก็ | $\frac{\mathfrak{x}}{己}$ | $\stackrel{\widetilde{x}}{\square}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\square}$ | $\frac{\pi}{\Sigma}$ | $\frac{\pi}{2}$ | ค | $\stackrel{\sim}{7}$ |
|  | lelol | $\bigcirc$ | ¢ | 0 | ก | $\stackrel{\pi}{c}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\mathfrak{T}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\square}$ | $\frac{\mathfrak{x}}{\mathfrak{L}}$ | $\stackrel{\text { ® }}{ }$ | ¢ |  |
| Co | นоıneәg | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | ¢ | $\stackrel{\pi}{己}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{2}$ | $\stackrel{\mathfrak{x}}{巳}$ | $\frac{\pi}{2}$ | $\stackrel{\text { ® }}{ }$ |  |  |
| $\stackrel{\infty}{\lambda}$ | য！Qpu！M | 3 | 3 | 3 | 주 | $\stackrel{\pi}{c} \mid$ | $\frac{\mathfrak{x}}{\mathrm{c}}$ | 둘 | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\pi}{2}$ | $\stackrel{\text { c }}{ }$ |  |  |
| $\frac{\pi}{0}$ | ¡כəSue»」 | $\rightarrow$ | $\sim$ | $m$ | $\checkmark$ | $\llcorner$ | $\bigcirc$ | N | $\infty$ | の | 9 |  |  |
| $\begin{aligned} & \mathbb{0} \\ & \underset{\sim}{\widetilde{\sigma}} \end{aligned}$ | әъеаın¢ | $\stackrel{0}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{0}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\circ}{\sim}$ | $\stackrel{\circ}{\sim}$ | $\stackrel{0}{N}$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\circ}{\sim}$ |  | ¢ |
| $\begin{aligned} & \mathrm{N} \\ & \frac{\mathrm{v}}{2} \\ & \frac{0}{\bar{n}} \\ & \frac{\mathrm{y}}{} \end{aligned}$ | әџеб |  |  | － | $\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \stackrel{1}{4} \\ & \stackrel{+}{4} \end{aligned}$ | $\left\|\begin{array}{c} n \\ 0 \\ \vdots \\ \vdots \\ \dot{1} \\ \underset{\sim}{2} \end{array}\right\|$ |  | $n$ 0 $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\sim$ | $\begin{aligned} & \stackrel{n}{0} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \dot{d} \end{aligned}$ |  |  | $\begin{aligned} & \text { n } \\ & \stackrel{1}{5} \\ & \stackrel{\circ}{1} \end{aligned}$ |  |
| $\begin{aligned} & \infty \\ & \underline{x} \end{aligned}$ | pdイəл．ns | $\wedge$ | $\wedge$ | － | $\wedge$ |  |
| $\begin{aligned} & \overline{0} \\ & \stackrel{0}{\mathrm{Q}} \end{aligned}$ | щә人 | $\stackrel{\circ}{0}$ | $\stackrel{n}{\circ}$ | N | － | $\left\|\begin{array}{l} \stackrel{\circ}{0} \\ \hline 0 \end{array}\right\|$ | $\stackrel{\circ}{0}$ | $\left\lvert\, \begin{gathered} \circ \\ \underset{N}{\circ} \\ \hline \end{gathered}\right.$ | $\stackrel{n}{0}$ | $\stackrel{\substack{0 \\ \hline \\ \hline}}{ }$ | ® in | $\stackrel{n}{\circ}$ | － |


|  | 7dヨs | $\bigcirc$ | $\stackrel{\cong}{¢}$ | $\stackrel{\Im}{\square}$ |  | ¢ |  | $\bigcirc$ | － | － | － | － | ๔ | $\bigcirc$ | 0 | 0 | － | $\stackrel{\text { ¢ }}{ }$ | 0 | － | － | － | － | 0 | 0 |  |  | 0 | － | E |  |  | － |  | ， | － | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0087 | $\bigcirc$ | $\stackrel{\mathfrak{T}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{c}}{ }$ | $\bigcirc$ | $\stackrel{\Im}{2}$ | $\stackrel{\mathfrak{c}}{ }$ | － | 0 | － | － | 0 | ก | － | 0 | 0 | － | $\stackrel{\text { ® }}{\text { ¢ }}$ | $\bigcirc$ |  | － | － |  | 0 | － |  |  | － | － | $\stackrel{\mathfrak{c}}{\text { c }}$ | － |  | 0 | － | － | 0 | － | 0 |
|  | dЭWV | $\bigcirc$ | $\stackrel{\text { ¹ }}{\text { ¢ }}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | － | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\pi}{\Omega}$ | $\bigcirc$ |  | － | － | 0 | ก | － | 0 | － | － | $\stackrel{\text { ® }}{ }$ | － |  | － | 0 |  | 0 | － |  | － | － | － | E | 0 | － | － | － | 0 | － | － | 0 |
|  | ＊S98 | $\bigcirc$ | ก | ส | $\bigcirc$ | ๔ | ส | $\bigcirc$ | － | － | － | 0 | ก | $\bigcirc$ | 0 | 0 | － | ¢ | $\bigcirc$ |  | － | $\bigcirc$ |  | 0 | － |  |  | 0 | 0 | E |  |  | 0 | 0 | － | 0 | － | 0 |
|  | VSVG | $\bigcirc$ | $\stackrel{\text { ¹ }}{\text { ¢ }}$ | $\stackrel{\widetilde{2}}{ }$ | $\bigcirc$ | $\stackrel{\text { ¢ }}{ }$ | ก | $\bigcirc$ | 0 | － |  | － | $\stackrel{\text { T }}{ }$ | － | 0 | 0 | － | $\stackrel{\text { º }}{ }$ | $\bigcirc$ |  | － | － |  | 0 | － |  | － | 0 | － | $\stackrel{\widetilde{2}}{\text { ¢ }}$ | － |  | － | － | － | － | － | $\bigcirc$ |
|  | O＾ก¢ | $\bigcirc$ | $\stackrel{\text { ² }}{ }$ | $\stackrel{\pi}{2}$ | $\bigcirc$ | $\stackrel{\pi}{c}$ | $\frac{\pi}{\beth}$ | － | 0 | － |  | － | $\stackrel{\widetilde{1}}{ }$ |  | 0 | 0 | － | $\frac{\widetilde{1}}{}$ | $\bigcirc$ |  | － | － |  | 0 | － |  | － | － | － | $\stackrel{\mathfrak{c}}{\sim}$ | － | － | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ |
|  | QNVS | － | $\stackrel{\sim}{\square}$ | $\stackrel{\square}{\square}$ | － | $\stackrel{\Im}{2}$ |  | 0 | － | 0 |  | $\bigcirc$ | ๘ | $\bigcirc$ | － | 0 | － | ¢ | $\bigcirc$ | － | － | － |  | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 㻊 | － |  | 0 | － | 0 | － | － | 0 |
|  | $\forall S \exists M$ | $\bigcirc$ | ก | $\stackrel{\pi}{c}$ | $\bigcirc$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\mathfrak{\pi}}{2}$ | $\bigcirc$ | － | 0 | 0 | 0 | ก | $\bigcirc$ | 0 | 0 | － | ก็ | － |  | 0 | － |  | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | E | 0 | － | 0 | 0 | 0 | － | 0 | $\bigcirc$ |
|  | $\forall \mathrm{S} \exists \mathrm{d}$ | $\bigcirc$ | ก | ๙ | $\rightarrow$ | ๔ | $\stackrel{\pi}{2}$ | $\bigcirc$ | － | 0 |  | － | ก |  |  | 0 | － | ๙ | 0 | － | 0 | $\bigcirc$ |  |  | － | － | － | 0 | － | ๕์ | $\rightarrow$ | － | 0 | 0 | － | － | － | － |
|  | $\forall S \perp S$ | $\bigcirc$ | ก | ¢ | $\bigcirc$ | $\stackrel{\widetilde{1}}{ }$ | ¢ | $\bigcirc$ |  | 0 | 0 | 0 | ก | 0 | － | 0 | － | ¢ | $\bigcirc$ |  | 0 | － |  | 0 | － | － | 0 | － | － | ＝ | 0 | － | 0 | 0 | 0 | － | － | $\bigcirc$ |
|  | Hdヨy | $\bigcirc$ | ¢ | $\stackrel{\pi}{\Sigma}$ | － | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\frac{\pi}{\Omega}$ | － |  | 0 |  | 0 | ๘ |  |  | 0 | － | ๘ | $\bigcirc$ |  | 0 | － |  | 0 | － | － | 0 | 0 | $\bigcirc$ | ช | 0 | 0 | － | 0 | 0 | － | － | $\bigcirc$ |
|  | HdNC | m | $\stackrel{\pi}{\square}$ | $\stackrel{\pi}{8}$ | － | $\stackrel{\text { ® }}{ }$ | $\stackrel{\pi}{c}$ | $\bigcirc$ | － | $\sim$ |  | $\bigcirc$ | $\frac{\widetilde{1}}{}$ | － | － | － | － | $\frac{\sqrt{2}}{}$ | － |  | 0 | － |  | 10 | － | － | － | 0 | $\bigcirc$ | $\stackrel{\widetilde{2}}{\square}$ | 0 | 0 | － | 0 | 0 | － | － | 0 |
|  | 7d98 | $\bigcirc$ | ส | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | － | ๔ | Ex | － | － | 0 | － | 0 | ¢ | $\bigcirc$ | 0 | － | － | 先 | $\bigcirc$ |  | 0 | 0 |  | 0 | － | 0 | － | 0 | $\bigcirc$ | $\stackrel{\sim}{6}$ | $\bigcirc$ | － | － | $\rightarrow$ | － | － | － | $\bigcirc$ |
|  | 7Nก0 | $\bigcirc$ | $\stackrel{\widetilde{ } \text { ¢ }}{ }$ | $\stackrel{\Im}{\square}$ | － | $\stackrel{\Im}{2}$ | $\stackrel{\mathfrak{x}}{2}$ | $\bigcirc$ | － | 0 |  | 0 | ¢ | － |  | － | 0 | ๔ | － |  | 0 | － |  |  |  | 0 | － | 0 | $\bigcirc$ | ® | － | 0 | － | 0 | － | － | － | 0 |
|  | $\forall$ S $\ddagger$ S | $\rightarrow$ | $\stackrel{\pi}{\square}$ | $\frac{\pi}{\Sigma}$ | － | $\stackrel{\pi}{c}$ | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\bigcirc$ | － | 0 | － | $\bigcirc$ | $\stackrel{\widetilde{5}}{ }$ | L | ¢ | $\bigcirc$ | － | $\stackrel{\widetilde{5}}{ }$ | － |  | 0 | ค | V | N | － | N | $\infty$ | $\bigcirc$ | $\rightarrow$ | $\mathfrak{T}$ | － | $\bigcirc$ | $\sim$ | $\pm$ | $\stackrel{\square}{0}$ | $\sim$ | $m$ | $\bigcirc$ |
|  | ¡ıO」 | － | $\stackrel{\text { ¢ }}{ }$ | $\stackrel{\widetilde{1}}{\square}$ | $\rightarrow$ | $\frac{\widetilde{1}}{}$ | ¢ | $\bigcirc$ | － | $\cdots$ | 0 | －$\infty$ | ¢ | ำ | \％ | \％ | － | ¢ | － | － | 0 | $\bullet$ |  | O | － | $\stackrel{\sim}{\sim}$ | － | － | $\rightarrow$ | 尔 | $\checkmark$ | － | － | $\pm$ | \％ | N | m | $\bigcirc$ |
| $\stackrel{\otimes}{0}$ | щолneәg | $\bigcirc$ | $\stackrel{\pi}{\square}$ | $\frac{\pi}{2}$ | － | $\frac{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\mathfrak{c}}$ | $\stackrel{\mathfrak{x}}{\underset{\Sigma}{2}}$ | － | $\rightarrow-$ | ¢ | ® | $\frac{\mathfrak{x}}{2}$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ | $\sim$ |  | $\sim$ | $\sim$ |  |  |  | 0 | $\square$ | 0 | － | ๘ | $\rightarrow$ | － | － | 0 |  | $\sim$ | m | N |
| శ | ג！Ори！м |  | $\left.\frac{\pi}{2} \right\rvert\,$ | $\stackrel{\leftarrow}{\square}$ |  | $\stackrel{\text { ¢ }}{\text { c }}$ | $\stackrel{\text { ® }}{ }$ | $\stackrel{\Im}{\square}$ | ษ | ）\＆ | \％ | ® | $\stackrel{\widetilde{1}}{ }$ | 8 | 88 | 8 | 8 | $\stackrel{\widetilde{1}}{ }$ | 8 | 8 | 8 | 8 |  | ษ |  |  | f |  |  | $\stackrel{\mathfrak{c}}{\text { c }}$ | $\bigcirc$ |  |  |  |  | ¢ | \＆ | $\stackrel{8}{8}$ |
| تٌ | ЏכวSUイ」 | $\rightarrow$ | $\sim$ | m | ＊ | $\llcorner$ | $\bigcirc$ | $\wedge$ | $\infty$ | $\infty$ | O | O | $\checkmark$ | $\sim$ | $\wedge \mathrm{m}$ | m | L | 0 | N |  | $\infty$ | 악 |  |  |  | $N$ | m | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\wedge$ | $\infty$ | の | 9 |  | － | N | m |
| 준 | әıедın¢ | $\underset{N}{\mid c}$ | $\stackrel{\sim}{N}$ | N | $\stackrel{i}{\text { N }}$ | $\stackrel{\text { c }}{ }$ | － | $\stackrel{\sim}{\sim}$ | － | $\stackrel{\sim}{N}$ | － | $\xrightarrow{-1}$ | － | ¢ | $\stackrel{\text { d }}{\sim}$ | － | $\stackrel{\text { ¢ }}{ }$ | ＋ | $\stackrel{\text { d }}{ }$ | $\stackrel{\text { ¢ }}{\sim}$ | － | $\stackrel{\sim}{\sim}$ |  | へ | $\stackrel{\rightharpoonup}{\sim}$ | ${ }^{\text {N－}}$ | － | $\stackrel{\sim}{N}$ | － | N | － | N | N | $\stackrel{\sim}{\sim}$ |  | $\stackrel{ }{N}$ |  | 근 |
|  | әъе๐ |  | － | － | － | $\left\|\begin{array}{l} 0 \\ \frac{1}{訁} \\ \hat{\imath} \\ \hat{N} \end{array}\right\|$ |  | $\left\|\begin{array}{l} 0 \\ \frac{1}{訁} \\ \hat{\imath} \\ \hat{N} \end{array}\right\|$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \circ \\ & \hline \stackrel{1}{亏} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$ |  |  |  |  | $\begin{aligned} & 0 \\ & \frac{1}{5} \\ & \stackrel{0}{6} \\ & \end{aligned}$ |  |  | ＋ | － | － |  |  | － |  | － | － |  | － |
| $\begin{aligned} & \text { סo } \\ & \underline{x} \end{aligned}$ | pdイəлıns | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $\rightarrow$ | $\rightarrow$ | － | $\checkmark$ |  | － |  | － | $\sim$ |  | $\sim$ | $\sim$ | $\sim$ | $\sim$ | N |  | $\sim$ | N |  | $\cdots \mathrm{m}$ | $\bigcirc$ | m | $m$ | $m$ | $\cdots$ | м | $\cdots$ | m | m | m | $m$ | － | － | － |
| $\frac{0}{2}$ | ле入 | － | $\left\|\begin{array}{l} 0 \\ \hline 0 \\ \hline \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \circ \\ \hline \end{gathered}\right.$ | \|on | $\left\lvert\, \begin{array}{\|c\|} \hline \stackrel{\circ}{\mathrm{N}} \\ \hline \end{array}\right.$ | $\left\|\begin{array}{l} \circ \\ \hline 0 \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{\|c} \stackrel{\circ}{\circ} \\ \hline \sim \end{array}\right\|$ |  |  |  |  | Bo |  |  |  |  |  | Bion | $8$ |  |  |  |  |  | $\stackrel{0}{0}$ | $\stackrel{0}{0}$ | $\begin{array}{\|c\|c\|} \hline 0 \\ \hline \end{array}$ | $$ | － | － | － | N | $\stackrel{\otimes}{\circ}$ | － | － | － | － |



## $\forall$ SVG

 $0000000000000000000000000000000000000000 \frac{0}{2} 0000$

 VSヨd 0 －


 Id9日 $\infty$ m 0 N
 $\forall \mathrm{SG} \mathrm{S} \underset{\sim}{\circ} N \infty$ N



 әғедй


әұе๐

| $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { B } \\ & \end{aligned}\right.$ |  | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \stackrel{1}{c} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \stackrel{y}{4} \\ \stackrel{y}{6} \\ 1 \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$ | $\stackrel{\rightharpoonup}{\stackrel{1}{⿺}}$ |  |  | $\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & \stackrel{1}{4} \\ & \underset{\sim}{1} \end{aligned}$ |  |  |  |  | $\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{4} \\ & \dot{\omega} \\ & \hline \end{aligned}$ |  | － | $\begin{aligned} & 0 \\ & 0 \\ & i \\ & \vdots \\ & \dot{c} \\ & \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline \\ & \hline \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \dot{1} \\ & \hline 1 \end{aligned}$ |  | $\underset{1}{P}$ |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ |  | － | － | － | $\infty$ | 0 | の | の | の | の | 0 |  | の | の | の | の | の | の | O－1 | －1 |  | O－1 | － |  | －1 | O | O－1 |
| $18$ | O | $\left\|\begin{array}{l} \circ \\ \hline 0 \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} \circ \\ \hline 0 \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{l} \hline 0 \\ \hline 0 \\ \text { N } \end{array}\right\|$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ \end{array} \right\rvert\,$ | $\begin{array}{\|c\|} \hline 0 \\ \hline 0 \\ \hline \end{array}$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \end{array}\right\|$ | $\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \end{array} \right\rvert\,$ | $\begin{array}{\|c\|} \hline 0 \\ \hline \end{array}$ | \|oi |  | $\stackrel{\sim}{N}$ | $\begin{aligned} & 0 \\ & 0 \\ & N \end{aligned}$ | － |  |  |  | $\begin{aligned} & 0 \\ & \stackrel{i}{2} \end{aligned}$ | N | $$ | $$ | O | $\begin{aligned} & 0 \\ & \hline \end{aligned}$ | $$ | $$ | $$ | O | ৪ | N |  | $$ | － |








$\forall S \exists d$
$\forall S \perp S$


Hdヨy


HANY 0 N


$\forall$ SヨS


みолneәg $\square$ ค


ƏコəડUモ』」

| $\bigcirc$ | $\checkmark$ | $\sim$ | m | $\checkmark$ | $1 \sim$ | $\bullet$ | N | $\infty$ | の | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

әе๐！n؟

| $\stackrel{\infty}{\sim}$ | $\stackrel{-1}{N}$ | $\stackrel{-1}{N}$ |  | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{-1}{N}$ | $\stackrel{-1}{N}$ | $\stackrel{\rightharpoonup}{N}$ | $\stackrel{\rightharpoonup}{N}$ | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

N゙

OTALS
 0
0
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$














コеə入

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & \hline \mathbf{N} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline-\mathrm{N} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ \hline 8 \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ \hline 0 \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ 8 \\ 0 \\ N \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ \hline- \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ \hline 0 \\ \hline \end{array}\right\|$ | $\begin{array}{\|c} \hline 0 \\ \hline \stackrel{\rightharpoonup}{N} \end{array}$ | $\begin{array}{\|c} \hline 0 \\ \hline \mathrm{~N} \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline N \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \text { N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{ } \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline \stackrel{\rightharpoonup}{N} \end{aligned}$ | $\begin{array}{\|c} \hline 0 \\ \hline \mathrm{~N} \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline N \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & \text { N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{ } \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline \stackrel{\rightharpoonup}{N} \end{aligned}$ | $\stackrel{+}{\circ}$ | － |  |


|  | 7dヨS | $\bigcirc$ | 0 | $\bigcirc$ | － | $\stackrel{\text { ¢ }}{ }$ | － | $\bigcirc$ | － | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 |  | 0 |  | － |  |  | － |  | － | 0 |  |  | $\bigcirc$ | $\stackrel{\text { ¢ }}{ }$ | － | $\bigcirc$ | 0 | $\bigcirc$ | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0097 | $\bigcirc$ | － | － | $\bigcirc$ | $\stackrel{\square}{5}$ | － | $\bigcirc$ | $\bigcirc$ | － | 0 | － | － | － | － | 0 | － | － | － | － | － | － | － | － |  | － | $\bigcirc$ | $\stackrel{\square}{8}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | － |
|  | d〇WV | $\bigcirc$ | $\checkmark$ | m | $\bigcirc$ | $\stackrel{\text { ¢ }}{ }$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | － | － | － | － | － | － | － | － | － | － | － | － | 0 | n | $\bigcirc$ | ¢ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | m | m |
|  | VS89 | $\bigcirc$ | 0 | － | － | $\frac{\mathfrak{x}}{2}$ | － | － | － | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | － | － | － | － | － | － | － | － | － | － | － | － | ก | $\bigcirc$ | － | － | 0 | $\bigcirc$ | － |
|  | $\forall S \forall G$ | $\bigcirc$ | 0 | 0 | $\bigcirc$ | $\stackrel{\pi}{8}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | － | 0 | － | － | － | － | － | － | － | － | － | － | － | － | $\bigcirc$ | $\stackrel{\text { º }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 |
|  | กคก¢ | $\bigcirc$ | 0 | － | － | $\stackrel{\text { ¢ }}{\square}$ | 0 | － | － | 0 | － | 0 | $\bigcirc$ | － | － | － | － | － | － | － | － | － | － | － | － | － | $\bigcirc$ | $\stackrel{\widetilde{8}}{ }$ | $\bigcirc$ | － | － | 0 | $\bigcirc$ | ल |
|  | QNVS | $\rightarrow$ | － | 0 | $\bigcirc$ | $\stackrel{\text { ¹ }}{ }$ | $\sim$ | $\bigcirc$ | $\bigcirc$ | 0 | の | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | － | 0 | 0 | ， | － | － | － | － | N | － | $\bigcirc$ | － | － | $\bigcirc$ | $\stackrel{\text { º }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ค | ก |
|  | $\forall S \exists M$ | － | 0 | $\bigcirc$ | － | $\stackrel{\text { T }}{ }$ | $\bigcirc$ | － | － | $\bigcirc$ | $\checkmark$ | O | － | － | － | － | 0 | 0 | － | － | 0 | － | － | 0 | － | － | $\bigcirc$ | $\stackrel{\widetilde{1}}{ }$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ |  |
|  | $\forall \mathrm{S} \mathrm{\exists}$ d | $\bigcirc$ | $m$ | $\cdots$ | ค | $\stackrel{\pi}{8}$ | － | $\bigcirc$ | $\bigcirc$ | 0 | 7 | $\bigcirc$ | $\sim$ | － | － | － | － | 0 | － | － | 0 | $\sim$ | － |  |  | － | － | $\stackrel{\text { º }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | フ | $\stackrel{\circ}{\circ}$ |
|  | $\forall S \perp S$ | 0 | 0 | $\bigcirc$ | － | $\stackrel{\square}{8}$ | － | － | － | － | $\bigcirc$ | 0 | － | $\bigcirc$ | － | － | 0 | － | 0 | 0 |  | － |  |  |  | － | $\bigcirc$ | ¢ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Hdヨy | $\bigcirc$ | 0 | $\bigcirc$ | － | $\stackrel{\text { ² }}{ }$ | － | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | － | － | － | － | － | － | － | － | 0 | － | － | － | － | － | $\stackrel{\text { ® }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － |
|  | HdNy | 7 | － | － | $\bigcirc$ | $\stackrel{\pi}{8}$ | － | $\bigcirc$ | $\sim$ | $\bigcirc$ | $\stackrel{m}{7}$ | $\bigcirc$ | $\sim$ | － | － | 0 | － | － | － | － | － | $N$ | $N$ | 广 | $N$ | － | $\bigcirc$ | $\stackrel{\text { ² }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\infty$ | N |
|  | 7 dag | $\bigcirc$ | $\sim$ | $\bigcirc$ | － | $\stackrel{\square}{8}$ | 0 | － | $\bigcirc$ | － | m | $\bigcirc$ | － | － | － | － | － | － | － | － | － | － | － | － | $\infty$ |  | $\bigcirc$ | $\stackrel{\text { ® }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\sim$ | $\underset{\sim}{7}$ | $\pm$ |
|  | 7Nก0 | $\bigcirc$ | 0 | 0 | 0 | $\stackrel{\text { ® }}{\text { ¢ }}$ | － | 0 | $\bigcirc$ | 0 | 0 | － | ¢ | $\bigcirc$ | 0 | 0 | － | － | － | － | － | ¢ | m | 子 | 0 |  | $\bigcirc$ | $\stackrel{\widetilde{5}}{ }$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | J | $\stackrel{\sim}{\sim}$ |
|  | $\forall \mathrm{S} \exists \mathrm{S}$ | $\bigcirc$ | $\rightarrow$ | － | － | $\stackrel{\mathfrak{x}}{\mathrm{x}}$ | 0 | － | － | 0 | $\cdots$ | － | N | $\bigcirc$ | － | 0 | － | － | 0 | 0 | － | N | － | 0 | 0 | － | $\bigcirc$ | $\stackrel{\text { ® }}{ }$ | $\bigcirc$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ |  |
|  | ¢ı○」 | $\underset{\sim}{1}$ | 7 | $\bigcirc$ | － | $\stackrel{\pi}{8}$ | $\infty$ | － | N | － | ก | $\bigcirc$ | 악 | $\bigcirc$ | 0 | 0 | － | － | － | － | － | N | O | ก | －1 | O | $\bigcirc$ | $\stackrel{\widetilde{0}}{ }$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\sim$ | ¢ |  |
| $\stackrel{0}{0}$ | みoıneәg | $\cdots$ | m | $\cdots$ | m | $\stackrel{\pi}{\beth}$ | $\cdots$ | m | m | m |  | $\sim$ | N | $\sim$ | N | $N$ | $\sim$ | $\sim$ | N | N | N |  | $\rightarrow$ | － | － | $\rightarrow$ |  | $\stackrel{\widetilde{5}}{\square}$ | － | $\bigcirc$ | － | $\bigcirc$ |  |  |
| $\frac{\lambda}{0}$ | л！ロpu！M | $\stackrel{\stackrel{\rightharpoonup}{N}}{ }$ | $\stackrel{\circ}{\mathrm{N}}$ | $\stackrel{\stackrel{O}{N}}{ }$ | $\stackrel{\circ}{N}$ | $\frac{\pi}{2}$ | $\stackrel{\circ}{\mathrm{N}}$ | $\stackrel{0}{\mathrm{~N}}$ | $\stackrel{\circ}{\mathrm{N}}$ | $j \stackrel{ }{N}$ |  | ¢ை | ¢ | ¢ | f | ） | ） | f | f | f | 8 |  | － | － |  | － |  | $\stackrel{\text { c }}{\text { c }}$ |  |  |  |  |  |  |
| U | ŋכวsuセ』」 | $\sim$ | m | － | L | $\bigcirc$ | － | $\infty$ | の | $\bigcirc$ |  | － | N | m | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | ， | $\infty$ | の | －1 |  | － | $\sim$ | m | ＊ | $\bigcirc$ | $\bigcirc$ | － | $\infty$ | O | $\bigcirc$ |  |  |
|  | әґеனın¢ | $\mid \underset{\sim}{\sim}$ | $\stackrel{\substack{\sim}}{ }$ | $\stackrel{\circ}{\mathrm{N}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\circ}{\mathrm{o}}$ | $\underset{\sim}{f} \underset{\sim}{\sim}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\underset{\sim}{\circ}$ |  | $\stackrel{M}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\substack{\sim \\ \sim}}{ }$ | $\stackrel{\sim}{\sim}$ | $\underset{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ |  | 矢 | N | 寺 | 矢 | $\hat{\sim}$ | $\mid \underset{\sim}{\sim}$ | $\underset{\sim}{\underset{N}{2}}$ | $\underset{\sim}{N}$ | N | N |  | 岂 |
|  | әъеО | $\stackrel{\circ}{\circ}$ | $0$ | $\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \dot{6} \\ \underset{\sim}{n} \end{array}\right\|$ | $\begin{array}{ll} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \dot{c} \\ \\ \end{array}$ |  |  | $0$ |  | $0$ | $\left\|\begin{array}{l} 0 \\ \frac{1}{5} \\ \stackrel{0}{1} \\ 1 \end{array}\right\|$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \hline \end{gathered}\right.$ | $\begin{gathered} 0 \\ \vdots \\ \vdots \\ \vdots \\ i \\ ~ \\ \hline \end{gathered}$ | $\begin{array}{\|c} 0 \\ 0 \\ \vdots \\ \vdots \\ i \\ i \\ \hline \end{array}$ | － | － | － | － | － | － | － | 近 | ＋ | ＋ | ＋ | ＋ |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{\sim} \end{aligned}$ |  |  |  | $\begin{aligned} & 0 \\ & \stackrel{y}{6} \\ & \stackrel{1}{\circ} \end{aligned}$ | ¢ |
| $\begin{aligned} & \infty \\ & \underline{x} \\ & \underline{x} \end{aligned}$ | pdイəлıns | $\pm$ | $\stackrel{7}{7}$ | $\underset{\sim}{7}$ | $\underset{\sim}{7}$ | $\pm$ | $\underset{\sim}{7}$ | $\underset{\sim}{7}$ | $\underset{\sim}{7}$ | $\underset{\sim}{7}$ | $\underset{\sim}{7}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\sim$ | $\bigcirc$ | 9 | 0 | $\stackrel{\square}{-1}$ | 0 | $\stackrel{1}{1}$ | $\stackrel{1}{1}$ | $\stackrel{1}{1}$ | 9 | $\stackrel{\square}{-}$ |  |
| $\frac{0}{2}$ | лә人 | － | － | $\left\|\begin{array}{l} \circ \\ \hline 0 \\ \hline \end{array}\right\|$ | － | Bu | O | \|on | $\underset{~ B}{\substack{~}}$ | \|oin | \|o | $\underset{~ B}{\substack{~}}$ | $\begin{aligned} & 0 \\ & \hline \end{aligned}$ | － | － | － | － | － | － | － | － | ${ }^{\circ}$ | － | － | － | N |  | $\left\lvert\, \begin{gathered} 0 \\ \hline \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} 0 \\ \hline \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & N \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & \hline 0 \\ & N \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline \end{aligned}$ | － |

## The Department of the Interior Mission



As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

