U.S. Arctic Ocean Oil Spill Response Gap Analysis Nuka Research BSEE Project #1022

Other studies

- Prince William Sound (2006-2008)
- Canadian Beaufort and Davis Strait (2011)
- Northern British Columbia (2012)
- Aleutian Islands (2014)
- Barents Sea (2014)
- Greenland (2015)
- Circumpolar Arctic (2017)

Gulf of Mexico (in process – BSEE project)

Terminology

Response GAP Analysis

 How often could you expect environmental conditions to preclude response to an oil spill at a given location?

Response VIABILITY Analysis

 How often could you expect environmental conditions to favor response to an oil spill at a given location?

Simple Methodology

- Hindcast technique
- Assemble dataset of met-ocean conditions
- Establish environmental limits for technique, tactic, equipment
- Compare limits to dataset
- Report results as %
 - Viable
 - Marginal
 - Not Favorable

Categories

G	Generally favourable conditions in which the tactic could be expected to be deployed safely and operate as intended.
Y	Conditions are marginal, such that the tactic could be deployed but operations may be challenged or compromised.
R	Conditions are not favourable, so the tactic would typically not be used due to the impact of metocean conditions on safety or equipment function.

Met-ocean Conditions

Wind speed, chill, vessel icing

Visibility, horizontal, ceiling, daylight/darkness

Air temperature, water temperature, dew point

Wave height, steepness

Sea ice coverage

Inputs: Response Systems

System Limits

SYSTEM COMPONENTS	BASELINE SPECIFICATIONS
Vessel platform	1 ea. 75 m offshore response vessel
	1 ea. 20 m vessel of opportunity to tow boom
Containment system	Boom suited for > 2 m rough seas
Skimming system	High volume oleophilic skimmer suited
	for > 2 m rough seas
Primary storage	Onboard response vessel
Other components	Detection technology (such as aerial observation or FLIR) to detect and track oil

SYSTEM LIMITS – METRIC	FAVOURABLE	MARGINAL		NOT FAVOURABLE
	Upper Boundary	Lower Boundary	Upper Boundary	Lower Boundary
Wind m/s	≤ 11	11	18	≥ 18
Wind wave height m	≤ 1.8	1.8	3.0	≥ 3.0
Sea ice coverage %	≤ 10	10	30	≥ 30
Air temperature °C	≥ -5	-5	-18	≤ -18
Wind chill temp. °C	≥ -31.7	-31.7	-37.2	≤ -37.2
Structural icing cm/hr	< 0.7	0.7	2.0	> 2.0
Light conditions (day/dark)	Daylight	Darkness		
Horizontal visibility km	≥ 0.9	0.9	0.2	≤ 0.2
Vertical visibility m	≥ 152	152	10	≤10

Methodology

 Response Favorable Response Marginal Response Not Favorable 	OVERALL Year-round	Winter November-June	Summer July-October	
Open-water Mechanical Recovery	8 20% 73% 7 15% 77%	5 94% 98%	21% 48% 32% Chi 22% 43% 35% Bei	ukchi Sea aufort Sea
Dispersants - AERIAL Application	15% 7 79% 11 5 84%	95% 99%	37% 14% 49% Chi 32% 14% 55% Be	ukchi Sea aufort Sea
Dispersants - VESSEL Application	20% 16% 65% 17% 14% 70%	<mark>9 89%</mark> <mark>4 95%</mark>	51% 34% 15% Chi 48% 35% 17% Be	ukchi Sea aufort Sea
In-situ Burning - AERIAL Application	17% 19% 65% 15% 16% 69%	10 11 79% 9 11 80%	22% 25% 53% Chi 20% 21% 59% Bei	ukchi Sea aufort Sea
In-situ Burning - VESSEL Application	23% 40% 36% 23% 35% 42%	15% 44% 41% 14% 37% 49%	30% 44% 26% Ch 29% 41% 30% Be	ukchi Sea aufort Sea

Open-water Mechanical Recovery

Chukchi Sea Location

Time-window sensitivity

Modeled vs buoy waves – results comparable

Applying results

- Test planning assumptions
- Consider tactic selection
- Explore seasonal variations
- Identify best "bang for the buck" improvements

Limitations

- Predict likelihood of an oil spill
- Predict outcome of a response
- Consider consequences of a spill to the environment or people
- Predict the *effectiveness* of a response
- Assess oil type
- Assess logistics needs or equipment availability

Conclusion

- Mid-range ice concentration was not as common as expected (observations concentrated above 80% or below 20%).
 - Implications to "broken ice" system planning
- Different plans needed for different seasons
- Ability to sustain a response is much different than ability to mount a response (based on weather alone)
- Different inputs would influence results

Recommendations

- Better documentation of response limits
 - Protocol
 - Sea trials
- Better data on environmental conditions
 - Observational vs. modeled
- Incorporate additional tactics and support functions
 - SMART, storage and transfer, tracking and surveillance
 - Logistics, supply chain
- Look at operational time periods

Thank you

OCTOBER

