

Deepwater Gulf of Mexico December 31, 2019

ON THE COVER—BOEM's high-resolution bathymetry map of the deepwater Gulf of Mexico (Kramer and Shedd, 2017). From the 3D seismic inventory available to BOEM, seismic surveys that were either old enough for public release or for which BOEM sought and obtained permission from owners were used. The bathymetry map is a mosaic of more than 100 of the best 3D time-domain surveys in water depths from 40 to 3,379 m (131 to 11,086 ft). The prominent water bottom reflector is typically well imaged in deep water. The original acquisition resolution of the 3D data (as fine as 149 m²; 1,600 ft²) produced approximately 1.4 billion datapoints (pixels). BOEM uses high-resolution bathymetric data during evaluations of shallow drilling hazards and to identify areas of biologic sensitivity. BOEM's map is available for academic, industry, and other Federal agency applications on BOEM's website (USDOI, BOEM, 2017a).

Deepwater Gulf of Mexico December 31, 2019

Author

Bureau of Ocean Energy Management Gulf of Mexico Office

Published by

U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico Office

New Orleans January 2021

A MESSAGE FROM THE REGIONAL DIRECTOR

The Gulf of Mexico is one of the world's prolific hydrocarbon basins, with decades of production history. It is the primary offshore source of hydrocarbons for the United States, generating approximately 98 percent of all offshore oil and natural gas production, with deep water representing most of that total. The year 2019 was a record year for American offshore oil production, at 596.9 million barrels, or 15 percent of domestic oil production, and \$5.7 billion in direct revenues to the government, and nearly all of that production came from deep water.

Revenues received from Outer Continental Shelf (OCS) leases are directed to the newly created National Parks and Public Land Legacy Restoration Fund, as well as the U.S. Treasury, the Land and Water Conservation Fund, the Historic Preservation Fund, and individual Gulf Coast States (i.e., Texas, Louisiana, Mississippi, and Alabama). The states use these funds to support coastal conservation and restoration projects, hurricane protection programs, and activities to implement marine, coastal, or conservation management plans.

This publication's release marks BOEM's Gulf of Mexico Office's 11th report and highlights oil and gas in the deepwater Gulf of Mexico, the last being published in 2016. We have expanded the report to focus on resource potential and include environmental and study information as well. The report also details activities related to leasing, seismic, well data, geology, reserves, and production.

The Gulf of Mexico is the cornerstone of the OCS, and the development of its resources is essential to our national security. The continuation of safe and reliable oil and gas from the Gulf of Mexico is crucial for America's economy and energy portfolio. As I look forward to the Gulf of Mexico's future, I am very pleased to present this report.

Michael A. Celata Director, Gulf of Mexico Office, Bureau of Ocean Energy Management

TABLE OF CONTENTS

A MESSAGE FROM THE REGIONAL DIRECTOR	ii
FIGURES	. vi
TABLES	. ix
ABBREVIATIONS AND ACRONYMS	x
ABOUT THIS REPORT	1
The Office of Resource Evaluation	1
The Office of Leasing and Plans	2
The Office of Environment	2
ABOUT THE GULF OF MEXICO BASIN	4
DEEPWATER HISTORY	6
LEASING	10
National OCS Oil and Gas Leasing Program	10
Leasing Activity	12
Individual Lease Sale Statistics	12
WPA Lease Sale 248	12
CPA Lease Sale 247	13
GOM Region-wide Lease Sale 249	14
GOM Region-wide Lease Sale 250	15
GOM Region-wide Lease Sale 251	16
GOM Region-wide Lease Sale 252	17
GOM Region-wide Lease Sale 253	18
GOM Region-wide Lease Sale 254	19
Leasing Trends	20
Active Leases	23
Company Bidding Activity	26
Fair Market Value	32
Leasing Activity	35
Plans Introduction	35
Plan Review Process	36

and Development and Production Plans 36 Initial, Revised, and Supplemental Plans 41 Drilling Activities 44 Lease Relinquishment Activity 47 Lease Ownership 49 Business Landscape 51 SEISMIC DATA 52 Introduction 52 Influences on GOM Seismic Activity 52 Technology Deployments 53 Level of Gulf of Mexico Seismic Activity 57 Gulf of Mexico Seismic Activity vs Oil Price 58 Vessel Contract Rates 59 Conclusions 60 WELL DATA 62 Drilling and Water Depths 62 GEOLOGIC TRENDS 66 Overview 66 Pleistocene-Pliocene-Miocene Trend 67 Lower Tertiary Trend 69 Upper Jurassic Norphlet Trend 73 Deepwater Wilcox and Norphlet Comparisons 80 RESERVES AND RESOURCES 86 Resource Assessment 91 PRODUCTION 93 Facilities 93 Volumes 93	Exploration Plans, Development Operations Coordination Documents, I	•
Drilling Activities44Lease Relinquishment Activity47Lease Ownership49Business Landscape51SEISMIC DATA52Introduction52Influences on GOM Seismic Activity52Technology Deployments53Level of Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates59Conclusions60WELL DATA62Drilling and Water Depths62GeDLOGIC TRENDS66Overview66Pleistocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93	and Development and Production Plans	
Lease Relinquishment Activity47Lease Ownership49Business Landscape51SEISMIC DATA52Introduction52Influences on GOM Seismic Activity52Technology Deployments53Level of Gulf of Mexico Seismic Activity vs57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates59Conclusions60WELL DATA62Drilling and Water Depths62GeOLOGIC TRENDS66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93	Initial, Revised, and Supplemental Plans	
Lease Ownership49Business Landscape51SEISMIC DATA52Introduction52Influences on GOM Seismic Activity52Technology Deployments53Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates59Conclusions60WELL DATA62Drilling and Water Depths66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Resource Assessment91PRODUCTION93Facilities93	Drilling Activities	
Business Landscape51SEISMIC DATA52Introduction52Influences on GOM Seismic Activity52Technology Deployments53Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates59Conclusions60WELL DATA62Drilling and Water Depths62GEOLOGIC TRENDS66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93Facilities93	Lease Relinquishment Activity	
SEISMIC DATA52Introduction52Influences on GOM Seismic Activity52Technology Deployments.53Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates.59Conclusions60WELL DATA62Drilling and Water Depths.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES.86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93Facilities.93	Lease Ownership	
Introduction52Influences on GOM Seismic Activity52Technology Deployments.53Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates.59Conclusions60WELL DATA62Drilling and Water Depths62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES.86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93Facilities.93	Business Landscape	51
Influences on GOM Seismic Activity52Technology Deployments53Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates59Conclusions60WELL DATA.62Drilling and Water Depths62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Resource Assessment.91PRODUCTION93Facilities.93Facilities.93	SEISMIC DATA	
Technology Deployments.53Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates.59Conclusions60WELL DATA62Drilling and Water Depths.62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93	Introduction	
Level of Gulf of Mexico Seismic Activity57Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates.59Conclusions60WELL DATA.62Drilling and Water Depths.62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Resource Assessment.91PRODUCTION93Facilities.93	Influences on GOM Seismic Activity	52
Gulf of Mexico Seismic Activity vs Oil Price58Vessel Contract Rates59Conclusions60WELL DATA62Drilling and Water Depths62GEOLOGIC TRENDS66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93	Technology Deployments	53
Vessel Contract Rates.59Conclusions60WELL DATA.62Drilling and Water Depths.62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES.86Classification86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93	Level of Gulf of Mexico Seismic Activity	57
Conclusions60WELL DATA62Drilling and Water Depths62GEOLOGIC TRENDS66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Reserves Inventory.86Resource Assessment91PRODUCTION93Facilities93	Gulf of Mexico Seismic Activity vs Oil Price	58
WELL DATA.62Drilling and Water Depths.62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES.86Classification86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93	Vessel Contract Rates	59
Drilling and Water Depths.62GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES.86Classification86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93	Conclusions	60
GEOLOGIC TRENDS.66Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Reserves Inventory.86Resource Assessment91PRODUCTION93Facilities.93	WELL DATA	62
Overview66Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93	Drilling and Water Depths	62
Pleistocene-Pliocene-Miocene Trend67Lower Tertiary Trend69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93	GEOLOGIC TRENDS	66
Lower Tertiary Trend.69Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93	Overview	66
Upper Jurassic Norphlet Trend73Deepwater Wilcox and Norphlet Comparisons80RESERVES AND RESOURCES86Classification86Reserves Inventory86Resource Assessment91PRODUCTION93Facilities93	Pleistocene-Pliocene-Miocene Trend	67
Deepwater Wilcox and Norphlet Comparisons	Lower Tertiary Trend	69
RESERVES AND RESOURCES 86 Classification 86 Reserves Inventory 86 Resource Assessment 91 PRODUCTION 93 Facilities 93	Upper Jurassic Norphlet Trend	73
Classification	Deepwater Wilcox and Norphlet Comparisons	
Reserves Inventory.86Resource Assessment.91PRODUCTION93Facilities.93	RESERVES AND RESOURCES	
Resource Assessment	Classification	
PRODUCTION	Reserves Inventory	
Facilities	Resource Assessment	
	PRODUCTION	
	Facilities	
	Volumes	

ENVIRONMENTAL STEWARDSHIP	. 102
Environmental Resources	. 102
Air Quality	. 103
Water Quality	. 104
Biological Resources and Habitats	. 105
Environmental Stipulations and Mitigations	. 112
Environmental Studies	. 114
Risk Analysis Studies	. 114
Biological Studies	. 115
Physical Sciences Studies	. 117
REFERENCES	. 118
CONTRIBUTING PERSONNEL	. 124

<u>FIGURES</u>

Figure 1. Base map illustrating planning areas, protraction areas, and water-depth categories	2
referred to in this report	
Figure 2. Features of the Gulf of Mexico Basin	
Figure 3. BOEM's OCS oil and gas leasing, exploration, and development process	
Figure 4. WPA Lease Sale 248 geographic bid distribution	
Figure 5. CPA Lease Sale 247 geographic bid distribution.	
Figure 6. GOM Region-wide Lease Sale 249 geographic bid distribution	
Figure 7. GOM Region-wide Lease Sale 250 geographic bid distribution	16
Figure 8. GOM Region-wide Lease Sale 251 geographic bid distribution	17
Figure 9. GOM Region-wide Lease Sale 252 geographic bid distribution	18
Figure 10. GOM Region-wide Lease Sale 253 geographic bid distribution	19
Figure 11. GOM Region-wide Lease Sale 254 geographic bid distribution	20
Figure 12. Total number of bids by year, with oil prices in dollars per barrel, 2000–March 18, 2020, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration.	21
Figure 13. Blocks receiving bids by water depth by lease sale, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration	22
Figure 14. Blocks receiving bids by water depth by year, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration	22
Figure 15. Sum of high bids by year showing individual lease sales, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration	23
Figure 16. Number of active leases for each deepwater interval at the end of each year	24
Figure 17. Number of deepwater and shallow-water active leases at the end of each year	24
Figure 18. Active leases at the end of 2019 by water-depth categories	25
Figure 19. Geographic distribution of active leases by water depth	25
Figure 20. Number of companies participating, bids received, and tracts receiving bids in each lease sale from 2000 (CPA Lease Sale 175) to 2020 (GOM Region-wide Lease Sale 254)	26
Figure 21. Number of companies participating in lease sales	27
Figure 22. Pie chart showing major and non-major companies bidding activity for GOM Region-wide Lease Sales 247, 248, 249, 250, 251, 252, 253, and 254	
Figure 23. Bidding activity per lease sale with bids by major companies and non-major companies	29
Figure 24. Bidding activity per lease sale in deep water with bids by major companies and non-major companies.	
Figure 25. Successful single and joint bidding activity in deep water.	30
Figure 26. Leases not issued in shallow water and deep water.	
Figure 27. Map showing leases not issued from 2016 through March 18, 2020, in shallow water	
and deep water	. 32
Figure 28. FMV (fair market value) increase on underbid tracts from 1996-2020	33
Figure 29. Number of rejected bids in shallow water and deep water.	34

Figure 30. Map showing rejected bids from 2016 to 2020 in shallow water and deep water	35
Figure 31. Plans submitted by calendar year	. 37
Figure 32. Historic deepwater plans received by year	. 38
Figure 33. Total number of DOCDs and EPs (includes initial, revised and supplemental)	
received by year in water depths greater than 1,000 ft.	
Figure 34. EPs received by water depth	
Figure 35. DOCDs received by water depth	
Figure 36. Historic types of EPs received by year.	.41
Figure 37. Historic types of DOCDs received by year	. 42
Figure 38. Types of EPs received by year.	. 43
Figure 39. Types of DOCDs received by year.	. 43
Figure 40. EPs referenced in approved APDs and EPs not referenced in approved APDs	45
Figure 41. DOCDs referenced in approved APDs and DOCDs not referenced in approved APDs	45
Figure 42. Leases with initial exploration plan with and without approved APDs.	. 46
Figure 43. Average time to APD (days)	. 47
Figure 44. Map showing relinquishments from 2016 to March 18, 2020, in shallow water	
and deep water	. 48
Figure 45. Relinquishments by year from 2016 to 2020 in shallow water and deep water	. 49
Figure 46. Assignments of record title interest by year from 2016 through March 18, 2020, in shallow water and deep water.	50
Figure 47. Assignments of operating rights interest by year from 2016 through March 18, 2020,	
in shallow water and deep water.	. 50
Figure 48. Bankruptcies of lessees/operators in the Gulf of Mexico, 2009-2020	51
Figure 49. Schematic comparison of narrow-azimuth, multi-azimuth, and wide-azimuth streamer	
acquisition	. 52
Figure 50. Seismic data types permitted by BOEM from 2015 through 2019; 2a = 2015, 2b = 2016,	
2c = 2017, 2d = 2018, 2e = 2019.	
Figure 51. WesternGeco developed the coil acquisition technique	. 56
Figure 52. Flags for 91 seismic vessels that operated in the Gulf of Mexico between 2006	гo
and 2019 and their age in 2020.	. 58
Figure 53. Age range of the 91 seismic vessels operating in the Gulf of Mexico between 2006 and 2019), and the year they entered service	58
Figure 54. Graph showing the relationship between oil price and total vessel activity	. 50
in the Gulf of Mexico between 2006 and 2019.	. 59
Figure 55. BOEM assessment of seismic vessel contract rates applicable to the worldwide seismic	
fleet for 2D and 3D seismic capability in relation to total seismic vessel activity in the Gulf of Mexico,	
both averaged by quarter	. 60
Figure 56. Day rates (KUSD), oil price (USD), and vessel specification classes from the worldwide fleet	
for 2006 to 2016, with estimates provided for 2015 and 2016	
Figure 57. Number of deepwater wells drilled by water depth	
Figure 58. Well-depth drilling records by year.	. 63

Figure 59. Water-depth drilling records by year	63
Figure 60. Total proved field volumes classified by dominant reservoir age	68
Figure 61. Deepwater Lower Tertiary Trend	72
Figure 62. Number of deepwater Lower Tertiary well tests	73
Figure 63. Deepwater Norphlet Trend	75
Figure 64. Aeolian dune type change from shallow-water to deepwater Norphlet	77
Figure 65. Norphlet well log response in the Appomattox discovery in Mississippi Canyon Block 392	78
Figure 66. Porosity and permeability crossplot by Norphlet facies	79
Figure 67. Net sand to gross interval crossplot by Norphlet facies.	79
Figure 68. Depth to top of the Wilcox and Norphlet Formations	81
Figure 69. Geographic distribution of formation pressures at the top of the Wilcox and Norphlet Formations.	82
Figure 70. Formation pressures by depth at the top of the Wilcox and Norphlet Formations	
Figure 71. Geographic distribution of formation temperatures at the top of the Wilcox and Norphlet Formations	
Figure 72. Formation temperatures by depth at the top of the Wilcox and Norphlet Formations	
Figure 73. BOEM original reserves by water depth and contingent resources.	
Figure 74. Number of BOEM-designated fields in deep water by discovery year through 2019	
Figure 75. Field reserves by discovery year for each deepwater category.	
Figure 76. Estimated reserves of deepwater fields.	
Figure 77. Deepwater fields discovered in the years 2014-2019.	
Figure 78. Discovered and undiscovered resources by water depth	
Figure 79. Types of deepwater production facilities.	
Figure 80. Installation dates and water depths for the various types of production facilities utilized in the GOM.	
Figure 81. Geographic distribution of deepwater production facilities through 2019	
Figure 82. Deepwater fields starting production in the years 2014-2019.	98
Figure 83. Estimated U.S. oil and natural gas production in 2019	
Figure 84. Comparison of average annual shallow-water and deepwater oil and natural gas	
production	101
Figure 85. Interaction between studies and assessment activities.	. 102
Figure 86. Benthic habitat distribution in the Gulf of Mexico.	. 106
Figure 87. Oceanic province habitat zones and light zones of the Gulf of Mexico with corresponding depth levels.	. 107
Figure 88. North American migratory birds follow migratory routes, or "flyways"	. 109
Figure 89. (A) Approximate hearing ranges of marine species and (B) frequency ranges of various	
anthropogenic sources.	. 111
Figure 90. IASNFS reanalysis current at surface and NOGAPS 10-m wind superimposed over satellite altimeter.	. 115
Figure 91. Rotary camera "Louie" deployed in seep community of tube worms and mussels	. 116

TABLES

Table 1. Companies participating in lease sales from 2016 through March 2020	28
Table 2. Seismic activity in the GOM from 2015 through 2019	54
Table 3. Well-depth drilling records by year	64
Table 4. Water-depth drilling records by year.	65
Table 5. Geologic timescale of the northern GOM Basin	66
Table 6. Deepwater Lower Tertiary publicly released well information.	71
Table 7. Deepwater Norphlet lease sale information	74
Table 8. Deepwater Norphlet publicly released well information	75
Table 9. BOEM resource classification.	
Table 10. 2014-2019 deepwater field discoveries.	91
Table 11. Production facilities utilized in the GOM.	96
Table 12. 2014-2019 deepwater field production startups	
Table 13. Top 20 producing fields in 2019.	100

ABBREVIATIONS AND ACRONYMS

\$	United States dollars	FPSO	floating production, storage, and
>	greater than		offloading facility
≥	greater than or equal to	FPU	floating production unit
<	less than	FWI	full-waveform inversion
°F	degrees Fahrenheit	FWS	Fish and Wildlife Service
2D	2-dimensional	G&G	geological and geophysical
3D	3-dimensional	GB	Garden Banks
4D	4-dimensional (time lapse)	GC	Green Canyon
AC	Alaminos Canyon	GOM	Gulf of Mexico
APD	application for permit to drill	HYCOM	Hybrid Coordinate Ocean Model
ASV	autonomous surface vessel	IPF	impact-producing factor
AT	Atwater Valley	ITR	incidental take regulation
Av	average	К	thousand
BBOE	billion barrels of oil equivalent	КС	Keathley Canyon
BiOp	Biological Opinion	LOA	Letters of Authorization
BOE	barrels of oil equivalent	LL	Lloyd Ridge
BOEM	Bureau of Ocean Energy	LP	Office of Leasing and Plans
	Management	m	meters
BOPD	barrels of oil per day	Ma	millions of years
BSEE	Bureau of Safety and Environmental	Max	maximum
	Enforcement	MAZ	multi azimuth
CAA	Clean Air Act	MC	Mississippi Canyon
CFR	Code of Federal Regulations	mD	millidarcy
СРА	Central Planning Area	mi	miles
CR	contingent resources	Mid	middle
СТР	compliant tower platform	Min	minimum
DC	De Soto Canyon	MMBOE	million barrels of oil equivalent
DNA	Determination of NEPA Adequacy	MMCFD	million cubic feet of gas per day
DOCD	Development Operations	MMPA	Marine Mammal Protection Act
	Coordination Document	mTLP	mini-tension leg platform
DOI	Department of the Interior	Ν	north or number
DPP	development and production plan	NAAQS	National Ambient Air Quality
EA	environmental assessment		Standards
E&D	exploration and development	NAZ	narrow azimuth
EB	East Breaks	NEPA	National Environmental Policy Ac
EIA	Energy Information Agency	NIS	Norwegian International Ship
EIS	environmental impact statement	NMFS	National Marine Fisheries Service
EP	exploration plan	NOAA	National Oceanic and Atmospheric
EPA	Eastern Planning Area		Administration
ESA	Endangered Species Act	NPDES	National Pollutant Discharge
EW	Ewing Bank		Elimination System
Expon.	exponential	OBC	ocean-bottom cable
FAZ	full azimuth	OBN	ocean-bottom node
ft	feet	OCS	Outer Continental Shelf
FP	fixed platform	OCSLA	Outer Continental Shelf Lands Act

OSRA	Oil Spill Risk Analysis
PGS	Petroleum Geo-Services
PDP	developed producing
POE	plan of exploration
PSBF	potentially sensitive biological
	features
psi	pounds per square inch
psia	pounds per square inch absolute
RAM4D	rapid autonomous marine 4D
RE	Office of Resource Evaluation
RJD	reserves justified for development
ROD	Record of Decision
ROV	remotely operated vehicle
SE	Sigsbee Escarpment
Secretary	Secretary of the Interior
semi	semisubmersible platform
spar	single point anchor reservoir
	platform
spec	specification
Std. Dev.	standard deviation
TLP	tension leg platform
TPS	tuned pulse source
TVDSS	true vertical depth subsea
TVDT	true vertical depth thickness
U.K.	United Kingdom
U.S.	United States
USD	United States dollars
USDOC	United States Department of
	Commerce
USDOE	United States Department of
	Energy
USDOI	United States Department of the
	Interior
USEPA	United States Environmental
	Protection Agency
UTRR	undiscovered technically
	recoverable resources
VK	Viosca Knoll
WAZ	wide azimuth
WPA	Western Planning Area
WR	Walker Ridge

ABOUT THIS REPORT

The Bureau of Ocean Energy Management (BOEM) is a bureau in the United States Department of the Interior (DOI) that manages the offshore energy resources of the Outer Continental Shelf (OCS). BOEM's functions are carried out by personnel located at the Bureau's Headquarters and regional Alaska, Gulf of Mexico, and Pacific OCS Offices. BOEM's New Orleans Office (Gulf of Mexico OCS region) is responsible for the United States' (U.S.) portion of Gulf of Mexico (GOM) waters; therefore, the acronym GOM used throughout this report refers only to U.S. Federal waters. The OCS is divided into several types of administrative geographical units, including three planning areas—the Western, Central, and Eastern Planning Areas (WPA, CPA, and EPA, respectively)—and numerous protraction areas (Figure 1). Each protraction area is further divided into blocks approximately 9 square miles in area.

A variety of criteria can be used to define deep water. The threshold separating shallow water and deep water can range from 656 to 1,500 feet (ft), or 200 to 457 meters (m). For purposes of this report, deep water is defined as water depths greater than or equal to 1,000 ft (305 m). Ultra-deepwater also is difficult to define precisely; for this report, it is defined as water depths greater than or equal to 5,000 ft (1,524 m). Many of the data presented herein are subdivided according to the water-depth categories of 1,000, 2,500, 5,000, and 7,500 ft (305, 762, 1,524, and 2,286 m). The bathymetric contour lines presented on several maps in this report are for reference only; they are not to be used for absolute depth measurements.

Most information in this report is gleaned from data as of the end of December 2019, except where noted. Crude oil and condensate are reported jointly as oil; associated and non-associated gas are reported jointly as gas. Oil volumes are reported as stock tank barrels and gas as standard cubic feet. Oil-equivalent gas is a volume of gas (associated and/or non-associated) expressed in terms of its energy equivalence to oil (i.e., 5,620 cubic feet of gas per barrel of oil) and is reported in barrels. The combined volume of oil and oil-equivalent gas is referred to as barrels of oil equivalent (BOE) and is reported in barrels.

It is important to note that the total number of fields, as defined by BOEM criteria, and the total number of operator-designated projects may not be the same. A field name is assigned to a lease or a group of leases by BOEM so that oil and natural gas resources, reserves, and production can be allocated on the basis of the unique geologic feature that contains the hydrocarbon accumulation(s). The field's identifying block number corresponds to the first lease qualified by BOEM as capable of production or the block where the primary structure is located. Therefore, more than one operator-designated project may be included in a single BOEM-designated field. Additionally, because BOEM-qualified leases can be placed in either new or preexisting fields as defined in the OCS Operations Field Directory, discoveries on newer leases can be placed into much older fields.

THE OFFICE OF RESOURCE EVALUATION

The Office of Resource Evaluation (RE) in BOEM's New Orleans Office contributed the Seismic Data, Well Data, Geologic Trends, Reserves and Resources, and Production sections for this report. RE provides independent geologic analysis both pre-lease with fair market value determination, and post-lease with reserves inventory, resource assessment, and conservation of resources. RE also, working with the Office of Leasing and Plans, provides worst-case discharge verification for proposed wells. The RE program office also coordinates geological and geophysical (G&G) data acquisition and analysis, and G&G regulatory reviews of plans and permits, as well as providing development and support for the National Program.

THE OFFICE OF LEASING AND PLANS

The Office of Leasing and Plans (LP) contributed to the Leasing section of this report. The work of LP is highly specialized, national in scope with international implications, and unique to BOEM in its regulation of OCS offshore oil, gas, and sulfur leasing. The work of LP is accomplished through pre-sale, sale, and post-sale activities associated with the offshore mineral leasing program in the Gulf of Mexico and Atlantic OCS planning areas, including development of the National Program for leasing. The LP program office plans and executes Gulf of Mexico and Atlantic OCS lease sales according to the National Program for leasing. As part of the leasing activities, LP issues new company qualifications and leases, maintains official lease records, and approves changes in lease and company ownership and operatorship. In order to ensure that lessees and operators comply with all financial and performance obligations arising from a lease, grant, or permit and applicable regulations, LP administers the financial assurance program. The financial assurance program includes bonding to cover the level of activity on property and facility abandonment and site clearance, as well as the Oil Spill Financial Responsibility Program, which is designed to ensure that designated applicants for covered offshore facilities have the financial resources necessary to pay for cleanup and damages that could be caused by oil discharges. Post-sale activities include in-depth technical reviews and approvals of OCS exploration and development plans submitted by operators and the granting of rights-of-use and easement. Creation and maintenance of data related to lease ownership/operatorship, financial assurance, and exploration and development is conducted in LP, as well as creation and maintenance of maps and visuals supporting pre-sale, sale, and post-sale activities and environmental assessments.

THE OFFICE OF ENVIRONMENT

The Office of Environment (OE) contributed to the environmental resources and environmental studies sections of this report. OE carries out the environmental policies of DOI in accordance with the National Environmental Policy Act (NEPA) and the Outer Continental Shelf Lands Act (OCSLA; 43 U.S.C. §§ 1301-1356), as amended, with regard to oil and gas in the Gulf of Mexico and Atlantic OCS and other mineral (salt and sulfur) extraction operations, as well as renewable energy activities and alternate use of existing oil and gas structures in the Gulf of Mexico OCS. As a part of its leasing responsibilities, OE develops or evaluates post-lease, operation-specific NEPA documents and reviews environmental documents required by the lease; performs environmental investigations to assess the effects of OCS oil- and gas-related activities and/or compliance by operators with environmental requirements; and applies unique measures to mitigate potential environmental impacts of proposed activities. OE also consults with other Federal agencies regarding issues related to the following:

- Endangered Species Act (16 U.S.C. §§ 1531 et seq.);
- Magnuson-Stevens Fishery Conservation and Management Act (essential fish habitat; 16 U.S.C §§ 1801 et seq.);
- National Historic Preservation Act (16 U.S.C. §§ 1531 et seq.);
- Oil Pollution Act (33 U.S.C. § 2701); and
- Marine Mammal Protection Act (16 U.S.C. §§ 1361-1423).

The OE coordinates with coastal states to assure both pre-lease and post-lease compliance under the Coastal Zone Management Act (16 U.S.C. §§ 1451 §§ *et seq.*) and develops, negotiates, and supervises all environmental studies in the Gulf of Mexico and oil- and gas-related studies in the Atlantic OCS planning areas. As a part of the National Historic Preservation Act, OE reviews all permitted seafloor-disturbing actions for compliance with Section 106 of the Act.

Figure 1. Base map illustrating planning areas, protraction areas, and water-depth categories referred to in this report.

ABOUT THE GULF OF MEXICO BASIN

The Gulf of Mexico (GOM) is a small ocean basin with a water-surface area of more than 1.5 million square kilometers (371 million acres) (Figure 2). The greatest water depth is approximately 3,700 m (roughly 12,000 ft). It is almost completely surrounded by land, opening to the Atlantic Ocean through the Straits of Florida and to the Caribbean Sea through the Yucatan Channel. The physical oceanography of GOM waters deeper than 3,281 ft (1,000 m) can be approximated as a 2-layer system, with an upper layer that is dominated by the Loop Current and associated anticyclonic eddies (Welsh et al., 2009; Inoue et al., 2008) and a lower layer that has near uniform currents (Welsh et al., 2009; Inoue et al., 2008). Sea-surface temperatures are determined by the interaction of the atmosphere and ocean over seasonal cycles through the mixing of Loop Current water and associated eddies and by the upwelling and mixing of waters along the shelf (Muller Karger et al., 2015). Salinity is strongly influenced by freshwater inputs from rivers, especially the Mississippi and Atchafalaya Rivers, and by the Loop Current that transports warm, high salinity water in from the Caribbean Sea.

In the GOM, the continental shelf extends seaward from the shoreline to about the 200-m (656-ft) water depth and is characterized by a gentle slope of a few meters per kilometer (less than 1 degree). The shelf is wide off Florida and Texas, but it is narrower where the Mississippi River delta has extended seawards to near the shelf edge. The continental slope extends from the shelf edge to the Sigsbee and Florida Escarpments in about 2,000- to 3,000-m (6,562- to 9,843-ft) water depth. The topography of the slope is irregular and characterized by canyons, troughs, and salt structures. The gradient on the slope is normally 1-2 degrees, while the gradient of the Florida Escarpment may reach 45 degrees in some places. The Mississippi Fan has a gentle incline, with slopes of 4 m (13 ft) or less per kilometer (21 ft or less per mile), with the lower Mississippi Fan having an even flatter slope at 1 m (3 ft) or less per kilometer (5 ft or less per mile). The Sigsbee and Florida abyssal plains (ocean floor) are basically horizontal physiographic subprovinces and are surrounded by features with higher topography. Approximately 41 percent of the GOM is continental slope (200-3,000 m [656-9,843 ft]), and 24 percent is abyssal plain (3,000+ m [9,843 ft]). The deepest area is located within the Sigsbee Deep abyssal plain (3,800 m [12,467 ft]) (Darnell, 2015). BOEM currently has a mature and active OCS oil and gas program in the GOM and has analyzed the potential environmental impacts from OCS oil- and gas-related activity for over 40 years.

Figure 2. Features of the Gulf of Mexico Basin.

DEEPWATER HISTORY

Following is a summary of notable oil- and gas-related events that have occurred in the northern U.S. GOM, with emphasis on emphasizing deepwater activities.

1947	 The first well out of sight of land was drilled in Ship Shoal Block 32 about 12 miles off the Louisiana coast in approximately 19 feet of water, marking the birth of the true "offshore" oil and gas industry.
1953	 The Submerged Lands Act was passed, giving states the right to lease blocks for offshore drilling up to 3 to 9 nautical miles from the coast. The Outer Continental Shelf Lands Act was passed, giving the Department of the Interior the authority to issue leases beyond State jurisdiction.
1960s	 A series of turbidite probe studies by a number of universities and industrial companies confirmed an exploration play in deep water.
1975	 The first deepwater well was drilled in Mississippi Canyon Block 194 in 1,022 feet of water, resulting in the Cognac discovery.
1978	 The first production facility in deep water was installed at the Cognac Field utilizing a fixed platform.
1979	• The first production from deep water began from the Cognac Field.

1983	 The first compliant tower in deep water was installed in Mississippi Canyon Block 280 at the Lena Field in 1,000 feet of water. Areawide leasing was implemented, based on a 5-year leasing plan for Federal waters, which expanded the area available for leasing and quickened the pace of lease sales.
1988	 The first subsea completion in deep water occurred in Ewing Bank Block 999 at the Green Canyon 29 Field in 1,462 feet of water.
1989	 The first tension leg platform was installed in Green Canyon Block 184 at the Jolliet Field in 1,760 feet of water.
1990	 The first subsalt discovery in deep water was drilled in Mississippi Canyon Block 211 at the Mica Field in 4,356 feet of water.
1995	• The Deep Water Royalty Relief Act was passed, eliminating royalty payments (up to specified volumes) on new deepwater leases issued from 1996 to 2000 and allowed different levels of relief for leases issued before and after these dates.
1996	 The first deepwater well to encounter Wilcox-equivalent, Lower Tertiary sediments was drilled in Alaminos Canyon Block 600 at the BAHA prospect in 7,620 feet of water, proving a new exploration play in the ultra-deepwater.
1999	• Deepwater oil production overtook that of shallow water.

2002	 The first Spar platform was installed in Viosca Knoll Block 826 at the Neptune Field in 1,930 feet of water.
2003	 The first semisubmersible platform was installed in Mississippi Canyon Block 474 in 6,340 feet of water. Named the Na Kika Hub, the production platform collects gas from six fields.
2005	 Hurricanes Katrina and Rita left destructive paths, curtailing almost all oil and gas production from the Gulf of Mexico.
2006	 The first commercial, wide-azimuth seismic survey was acquired in deep water.
2007	 The Independence Hub was installed in Mississippi Canyon Block 920 in 7,920 feet of water, claiming the world water-depth record for a semisubmersible platform. The Hub hosted production from 11 fields. The last producing well went offline in 2015.
	The first Mobile Offshore Production Unit was installed in Green
2009	 The first Mobile Onshore Production Onit was installed in Green Canyon Block 237 in 2,200 feet of water. The ship-shaped floater acts as a hub for the Boris and Phoenix Fields. The Perdido Hub was installed in Alaminos Canyon Block 857 in 7,817 feet of water, claiming the world water-depth record for a Spar platform. The Hub hosts production from three discoveries.

2010	 The first production from the deepwater Lower Tertiary (Wilcox) Play began from the Great White Field (Alaminos Canyon 857). Production is collected at the Perdido Hub Spar platform. The Macondo discovery blowout and explosion aboard the <i>Deepwater Horizon</i> drilling rig caused oil to flow into the Gulf of Mexico for 87 days before the well was sealed. A 6-month moratorium on all deepwater drilling on the Outer Continental Shelf was declared shortly thereafter.
2011	 The first floating production, storage, and offloading (FPSO) facility was utilized in Walker Ridge Block 249 in 8,300 feet of water. The FPSO acts as a hub for the Cascade and Chinook Fields. The Bureau of Ocean Energy Management was created when the Minerals Management Service was divided into three independent entities.
2014	 The largest (based on displacement) semisubmersible platform was installed at Walker Ridge Block 718 in approximately 6,950 feet of water. The platform hosts production from the Jack and St. Malo Fields.
2016	• The Turritella FPSO was installed in Walker Ridge Block 551 in 9,560 feet of water, claiming the world water-depth record for an FPSO. The hub hosts production from the Stones Field.
2018	• The first production facilty to collect oil from the deepwater Upper Jurassic Norphlet Formation Play was installed in Mississippi Canyon Block 437. It holds the current water-depth record for a semisubmersible platform in 7,400 feet of water.
2019	 The first production from the deepwater Upper Jurassic Norphlet Formation Play began from the Appomattox and Vicksburg "A" Fields, marking the first high-temperature development in deep water. Chevron sanctioned the first deepwater high-pressure development for the Lower Tertiary Anchor Field (Green Canyon 807) in approximately 5,180 feet of water. High-pressure technologies capable of handling 20,000 pound per square inch will be used for the project. Production will be collected by a semisubmersible platform.

LEASING

NATIONAL OCS OIL AND GAS LEASING PROGRAM

Section 18 of the OCSLA (43 U.S.C. § 1344) requires the Secretary of the Interior (Secretary) to prepare, maintain, and periodically revise a new nationwide OCS oil and gas leasing program (referred to as the National OCS Program). The National OCS Program must address, as precisely as possible, the size, timing, and location of leasing activity for the 5-year period following its approval (43 U.S.C. § 1344(a)). Additionally, Section 18(a) of the OCSLA requires the Secretary to consider economic, social, and environmental values and the potential impact of activities on the marine, coastal, and human environments. The Secretary must identify a schedule of lease sales that balances the potentials for environmental damage, the discovery of oil and gas, and adverse impact on the coastal zone (43 U.S.C. § 1344(a)(3)). The National OCS Program also must provide for the receipt of fair market value by the Federal Government for land leased and rights conveyed.

When approved, the leasing program consists of scheduled lease sales for a 5-year period, along with policies pertaining to the size and location of lease sales and the receipt of fair market value. The purpose of a schedule is to increase the predictability of lease sales in order to facilitate planning by industry, Federal agencies, the affected states, and the general public. The schedule indicates the timing and location of lease sales and shows the presale steps in the process that lead to a competitive sealed bid auction for a specific OCS area. To facilitate the scheduling of and preparation for lease sales in the National OCS Program, the OCS is divided into 26 administrative geographical units called planning areas. The Gulf of Mexico region contains the Western, Central, and Eastern Planning Areas (Figure 1). The 2017-2022 National OCS Program approved the region-wide lease sale approach combining the WPA, CPA, and EPA's unleased acreage not subject to moratorium or otherwise unavailable.

In preparing a new National OCS Program, the Secretary (through BOEM) solicits comments from coastal State governors and localities, tribal governments, the public, the oil and natural gas industry, environmental groups, and affected Federal agencies. BOEM requests comments at the start of the process of developing a new National OCS Program and following the issuance of each of the first two program proposals: (1) the draft proposed program with a 60-day comment period; and (2) the proposed program with a 90-day comment period. The third and last version, the proposed final program, is prepared with a 60-day notification period following submission to the President and Congress. After 60 days, if Congress does not object, the Secretary may approve the program.

In addition to the steps required by Section 18 of the OCSLA, the Secretary must comply with the requirements of NEPA. In the context of BOEM's multiple-stage oil and gas leasing program, the obligation to fully comply with NEPA does not mature until the lease sale stage (*Center for Biological Diversity v. Department of the Interior*, 563 F.3d 466 [D.C. Cir. 2009]; *Center for Sustainable Economy v. Jewell*, 779 F.3d 588 [D.C. Cir. 2015]). However, exercising its discretion, BOEM has typically prepared a Programmatic Environmental Impact Statement (EIS) concurrently with the development of each National OCS Program. The analyses in this Programmatic EIS focus on high-level impacts at the national and regional scale (rather than impacts of individual lease sales or project-specific actions). To determine the size, timing, and location of lease sales to be included in a National OCS Program, the Secretary will consider the analyses in the Proposed Program as well as the Programmatic EIS. BOEM also completes environmental reviews at subsequent stages of the OCSLA process as outlined in **Figure 3**. Prior to holding an individual oil and gas lease sale, BOEM must ensure that all necessary reviews and/or opportunities for public input have taken place under the OCSLA, Coastal Zone Management Act, and NEPA.

Figure 3. BOEM's OCS oil and gas leasing, exploration, and development process.

For the GOM region, a Multisale EIS is typically prepared, which tiers from the National OCS Program EIS. This Multisale EIS analyzes the potential impacts of a "typical" region-wide lease sale (e.g., GOM Region-wide Lease Sale 256) on the marine, coastal, and human environments. Once published, this Multisale EIS serves as the programmatic NEPA analysis for each of the proposed GOM region-wide lease sales in the National OCS Program. Following the 30-day review period for the Final Multisale EIS, BOEM issues a Record of Decision (ROD) for the first proposed GOM lease sale of the National OCS Program. The ROD must be published at least 30 days prior to holding the actual lease sale.

For subsequent lease sales in a program, a Determination of NEPA Adequacy (DNA) specific to each individual lease sale is usually prepared. The DNA for each lease sale identifies and determines whether new information or circumstances bearing on a proposed lease sale or its impacts triggers BOEM's obligation to supplement the Multisale EIS. If additional NEPA review is warranted based on the DNA, BOEM prepares an environmental assessment or EIS prior to issuing a Record of Decision or holding the lease sale. If additional supplementation is not triggered, the Multisale EIS and the DNA, which summarizes the Multisale EIS conclusions and any pertinent new information, are used to support a ROD for that proposed lease sale. This NEPA review process (i.e., DNA) is repeated for each subsequent GOM lease sale in the National OCS Program. This process, however, would not apply to any proposed lease sales in the area of the EPA currently under congressional moratoria or for any other GOM lease sales that would consider areas outside of those that have been historically offered for leasing in previous programs (e.g., blocks within transboundary areas). Consultation is conducted with the states during this process, and consistency with each affected State's Coastal Zone Management program is determined before the lease sale is held.

The entire National OCS Program development process usually takes approximately 2½ to 3+ years to complete. **Figure 3** above shows the major OCSLA and NEPA steps in the process for approving a National OCS Program and for subsequent activities following approval of a National OCS Program. BOEM is currently operating under the OCS Oil and Gas Leasing Program for 2017-2022. This National OCS Program proposes 10 oil and gas region-wide lease sales in the GOM. As directed in Executive Order 13795 (April 28, 2017) and Secretarial Order 3350 (May 1, 2017), BOEM is initiating a process to develop the next National OCS Oil and Gas Program. Detailed schedule information is available at https://www.boem.gov/oil-gas-energy/leasing/2017-2022-lease-sale-schedule. More information on the National OCS Oil and Gas Program can be found on BOEM's website at https://www.boem.gov/national-ocs-oil-and-gas-leasing-program.

LEASING ACTIVITY

Since publication of the last deepwater report, which contained leasing activity through March 2016, there have been eight lease sales held in the Gulf of Mexico between August 2016 and March 2020. In March 2017, CPA Lease Sale 247 was the last planning area-specific lease sale held. Beginning with Lease Sale 249, in accordance with the National OCS Program, the lease sales became region-wide in scope containing available blocks in the WPA, CPA and EPA. The eight lease sales discussed in this report received bids totaling \$1,379,459,256 with \$1,213,610,054 in high bids. BOEM received 1,148 bids from 49 companies on 1,018 blocks comprising 5,669,998 acres offshore Alabama, Louisiana, Mississippi, and Texas. The total of blocks receiving bids statistics includes each time a bid was received on a block during this time period; therefore, some blocks are counted multiple times.

These eight lease sales ultimately resulted in the award of 954 leases. BOEM rejected high bids totaling \$55,829,474 on 56 blocks as insufficient for fair market value. Eight additional blocks were forfeited when the company(s) failed to execute the leases. The accepted high bids for all lease sales totaled \$1,156,187,358 with \$1,119,949,233 in water depths 1,000 ft or deeper, accounting for approximately 97 percent of the accepted high bids. (This figure includes the 1/5 bonus forfeited on the 8 blocks resulting in no lease.)

Approximately 82 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 18 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Alaminos Canyon Block 600 at 10,978 ft. The highest bid received on a block was \$25,919,784, which was submitted by Hess Corporation for Mississippi Canyon Block 338.

INDIVIDUAL LEASE SALE STATISTICS

WPA Lease Sale 248

Held on August 24, 2016, in New Orleans, bids for WPA Lease Sale 248 totaled \$18,067,020. This was the 12th lease sale scheduled in the 2012-2017 National OCS Program. BOEM received 24 bids from three companies on 24 blocks comprising 138,240 acres offshore Texas (Figure 4).

All of the blocks (100%) receiving bids were in water depths 1,000 ft or deeper. The block in the deepest water that received a bid was East Breaks Block 785 at 5,171 ft. The highest bid received on a block was \$1,124,000, which was submitted by Exxon Mobil Corporation for East Breaks Block 590.

WPA Lease Sale 248 ultimately resulted in the award of 24 leases. BOEM did not reject any high bids. The accepted high bids for the lease sale totaled \$18,067,020.

Figure 4. WPA Lease Sale 248 geographic bid distribution.

CPA Lease Sale 247

Held on March 22, 2017, in New Orleans, bids for CPA Lease Sale 247 totaled \$315,303,884 with \$274,797,434 in high bids. This was the 14th lease sale scheduled in the 2012-2017 National Program. BOEM received 189 bids from 28 companies on 163 blocks comprising 913,542 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 5).

Approximately 84 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 16 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Walker Ridge Block 595 at 9,895 ft. The highest bid received on a block was \$24,056,719, which was submitted by Shell Offshore Inc. for Atwater Valley Block 64.

CPA Lease Sale 247 ultimately resulted in the award of 148 leases. BOEM rejected high bids totaling \$10,848,507 on 10 blocks as insufficient for fair market value. Five additional blocks resulted in no lease when the company failed to execute the lease. The accepted high bids for the lease sale totaled \$263,398,527 with \$259,424,958 in water depths 1,000 ft or deeper, accounting for approximately 98 percent of the accepted high bids

Figure 5. CPA Lease Sale 247 geographic bid distribution.

Held on August 16, 2017, in New Orleans, bids for GOM Region-wide Lease Sale 249 totaled \$137,006,181 with \$121,143,055 in high bids. This was the first region-wide lease sale scheduled in the 2017-2022 National OCS Program. BOEM received 99 bids from 27 companies on 90 blocks comprising 508,096 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 6).

Approximately 86 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 14 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Alaminos Canyon Block 858 at 9,767 ft. The highest bid received on a block was \$12,100,717, which was submitted by TOTAL E&P USA, INC. for Garden Banks Block 1003.

GOM Region-wide Lease Sale 249 ultimately resulted in the award of 81 leases. BOEM rejected high bids totaling \$9,294,188 on seven blocks as insufficient for fair market value. Two additional blocks resulted in no lease when the company failed to execute the lease. The accepted high bids for the lease sale totaled \$110,878,164 with \$108,157,341.60 in water depths 1,000 ft or deeper, accounting for approximately 98 percent of the accepted high bids.

Figure 6. GOM Region-wide Lease Sale 249 geographic bid distribution.

Held on March 21, 2018, in New Orleans, bids for GOM Region-wide Lease Sale 250 totaled \$139,122,383 with \$124,763,581 in high bids. This was the second region-wide lease sale scheduled in the 2017-2022 National OCS Program. BOEM received 159 bids from 33 companies on 148 blocks comprising 815,404 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 7).

Approximately 70 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 30 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Lloyd Ridge Block 628 at 9,613 ft. The highest bid received on a block was \$7,000,728, which was submitted by TOTAL E&P USA, INC. for Mississippi Canyon Block 697.

GOM Region-wide Lease Sale 250 ultimately resulted in the award of 139 leases. BOEM rejected high bids totaling \$9,434,442 on nine blocks as insufficient for fair market value. The accepted high bids for the lease sale totaled \$115,329,139 with \$106,429,055 in water depths 1,000 ft or deeper, accounting for approximately 92 percent of the accepted high bids.

Figure 7. GOM Region-wide Lease Sale 250 geographic bid distribution.

Held on August 15, 2018, in New Orleans, bids for GOM Region-wide Lease Sale 251 totaled \$202,667,923 with \$178,069,406 in high bids. This was the third region-wide lease sale scheduled in the 2017-2022 National OCS Program. BOEM received 171 bids from 29 companies on 144 blocks comprising 801,289 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 8).

Approximately 77 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 23 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Lloyd Ridge Block 239 at 9,921 ft. The highest bid received on a block was \$25,919,784, which was submitted by Hess Corporation for Mississippi Canyon Block 338.

GOM Region-wide Lease Sale 251 ultimately resulted in the award of 141 leases. BOEM rejected high bids totaling \$2,579,942 on three blocks as insufficient for fair market value. The accepted high bids for the lease sale totaled \$175,489,464 with \$165,592,814 in water depths 1,000 ft or deeper, accounting for approximately 94 percent of the accepted high bids.

Figure 8. GOM Region-wide Lease Sale 251 geographic bid distribution.

Held on March 20, 2019, in New Orleans, bids for GOM Region-wide Lease Sale 252 totaled \$283,782,480 with \$244,299,344 in high bids. This was the fourth region-wide lease sale scheduled in the 2017-2022 National OCS Program. BOEM received 257 bids from 30 companies on 227 blocks comprising 1,261,134 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 9).

Approximately 84 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 16 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Lloyd Ridge Block 456 at 10,020 ft. The highest bid received on a block was \$24,495,776, which was submitted by Equinor Gulf of Mexico LLC for Mississippi Canyon Block 801.

GOM Region-wide Lease Sale 252 ultimately resulted in the award of 211 leases. BOEM rejected high bids totaling \$12,437,161 on 15 blocks as insufficient for fair market value. One additional block resulted in no lease when the company failed to execute the lease. The accepted high bids for the lease sale totaled \$231,790,063 with \$225,202,228 in water depths 1,000 ft or deeper, accounting for approximately 97 percent of the accepted high bids.

Figure 9. GOM Region-wide Lease Sale 252 geographic bid distribution.

Held on August 21, 2019, in New Orleans, bids for GOM Region-wide Lease Sale 253 totaled \$174,922,200 with \$159,386,761 in high bids. This was the fifth region-wide lease sale scheduled in the 2017-2022 National OCS Program. BOEM received 165 bids from 27 companies on 151 blocks comprising 835,007 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 10).

Approximately 85 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 15 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Lloyd Ridge Block 149 at 9,774 ft. The highest bid received on a block was \$22,510,319, which was submitted by BHP Billiton Petroleum (Deepwater) Inc. for Green Canyon Block 124.

GOM Region-wide Lease Sale 253 ultimately resulted in the award of 147 leases. BOEM rejected high bids totaling \$4,392,234 on four blocks as insufficient for fair market value. The accepted high bids for the lease sale totaled \$154,994,527 with \$151,736,702 in water depths 1,000 ft or deeper, accounting for approximately 98 percent of the accepted high bids.

Figure 10. GOM Region-wide Lease Sale 253 geographic bid distribution.

Held on March 18, 2020, in New Orleans, bids for GOM Region-wide Lease Sale 254 totaled \$108,587,185 with \$93,083,453 in high bids. This was the sixth region-wide lease sale scheduled in the 2017-2022 National OCS Program. BOEM received 84 bids from 22 companies on 71 blocks comprising 397,286 acres offshore Alabama, Louisiana, Mississippi, and Texas (Figure 11).

Approximately 92 percent of the blocks receiving bids were in water depths 1,000 ft or deeper, and approximately 8 percent of the blocks receiving bids were in water depths less than 1,000 ft. The block in the deepest water that received a bid was Alaminos Canyon Block 600 at 10,978 ft. The highest bid received on a block was \$11,114,050, which was submitted by BHP Billiton Petroleum (Deepwater) Inc. for Green Canyon Block 80.

GOM Region-wide Lease Sale 254 ultimately resulted in the award of 63 leases. BOEM rejected high bids totaling \$6,843,000 on eight blocks as insufficient for fair market value. The accepted high bids for the lease sale totaled \$86,240,453 with \$85,339,114 in water depths 1,000 ft or deeper, accounting for approximately 99 percent of the accepted high bids.

Figure 11. GOM Region-wide Lease Sale 254 geographic bid distribution.

LEASING TRENDS

This section presents a series of graphs showing leasing data and Cushing, OK WTI Spot prices of oil in dollars per barrel from the U.S. Energy Information Administration (EIA). Analysis of leasing trends data shows a relationship between oil prices and the number of bids received in a given year, a relationship between oil prices and blocks receiving bids in a lease sale, and a relationship between oil prices and the sum of high bids received in a lease sale.

Figure 12 shows the relationship between the commodity price for oil and the number of bids that BOEM received by year. In the 7 years prior to 2008 bidding activity follows the steady increase in the price of oil. The recession of 2008 resulted in the sharp decline in the price of oil. The drop in the price of oil correlates to a decrease in the number of bids received; however, price alone cannot fully explain the decrease. Contributing factors include the transition from offshore to onshore unconventional exploration (i.e., fracking), the maturation some major fields located in the GOM shallow water, and a reduction in competition among companies placing bids. While the price of oil trends upward between 2009 and 2014, the number of bids received does not. This is a departure from the 2000 to 2008 trend where the number of bids increases with the price of oil. This variability is likely due in part to the Macondo oil spill. The

number of bids received decreases in 2014 following the steep decline in the price of oil. This is likely a result of industry economic decisions based on the threshold for a play to be profitable. The price of oil increases each year from 2016 to 2019; the number of bids again increases. The following figures show the contribution of leasing on the shelf from 2000 to 2008 and the emergence of deepwater leasing.

Figure 12. Total number of bids by year, with oil prices in dollars per barrel, 2000–March 18, 2020, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration.

The same general relationship can be seen between blocks receiving bids and the price of oil in the Gulf of Mexico (Figure 13). Significantly more blocks received bids in both shallow and deep water between 2000 (CPA Lease Sale 175) and 2008 (EPA Lease Sale 224) as the price of oil increased. Also in 2017, just as with total bids by year, there appears to be an uptick in the number of blocks receiving bids following CPA Lease Sale 247 (Figure 13).

Interest in shallow-water blocks has decreased over time. CPA Lease Sale 247 and the GOM regionwide lease sales show a high interest in deepwater blocks (Figures 13 and 14). Nearly all blocks receiving bids in GOM Region-wide Lease Sale 254 were found in deep water (Figures 13 and 14). The sum of high bids by lease sale shows a general relationship with oil prices (Figure 15) similar to what is seen in Figures 12-14.

Figure 13. Blocks receiving bids by water depth by lease sale, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration.

Figure 14. Blocks receiving bids by water depth by year, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration.

Figure 15. Sum of high bids by year showing individual lease sales, with Cushing, OK WTI Spot Price in dollars per barrel (daily) from the U.S. Energy Information Administration.

ACTIVE LEASES

Figures 16-19 depict all active leases in the GOM by water-depth ranges at the end of calendar year 2019. **Figure 15** shows the approximate number of active leases for each water-depth interval in deep water from 2016 to 2019. **Figure 17** compares the number of active leases in shallow water and deep water over the same time period. Active leases in shallow water have been in continuous decline since 2004 (not shown on **Figure 17**), while the number of active leases in deep water has only slightly decreased over the last 5 years. The number of active leases in deep water continue to greatly exceed the number of active leases in shallow water. For 2019, the total number of active leases in water depths of 1,000 ft or greater was 1,681, a slight increase over 2018, constituting 65 percent of all active leases in that year (**Figure 18**). The greatest number of active leases in deep water are located in water depths of 2,500 to 4,999 ft (**Figure 16**).

Figure 19 displays the geographic distribution of active leases following the two region-wide lease sales held in 2019. The limited number of active leases in the EPA is related to leasing restrictions. Note that some active leases are associated with more than one block; therefore, the map contains more highlighted blocks than the number of active leases. Additionally, lease status (i.e., active, expired, terminated, or relinquished) can change daily, so the active leases depicted in **Figure 19** is an approximation.

Figure 16. Number of active leases for each deepwater interval at the end of each year.

Figure 17. Number of deepwater and shallow-water active leases at the end of each year.

Figure 18. Active leases at the end of 2019 by water-depth categories.

Figure 19. Geographic distribution of active leases by water depth.

COMPANY BIDDING ACTIVITY

The number of companies bidding in the the last 20 years tracks closely with the number of bids received and the number of tracts receiving bids. Figure 20 shows the trend and numbers of companies bidding, the number of bids received, and the tracts receiving bids. Generally, as the number of companies participating in a given lease sale increases, so do the number of tracts receiving bids and the number of bids received. Since 2016, it is notable that the majority of companies are generally bidding in deep water, which is depicted in Figure 21. A list of companies that participated in the lease sales covered in this report are listed in Table 1.

Figure 20. Number of companies participating, bids received, and tracts receiving bids in each lease sale from 2000 (CPA Lease Sale 175) to 2020 (GOM Region-wide Lease Sale 254).

Figure 21. Number of companies participating in lease sales.

Companies Participating in Lease Sales from 2016 through March 2020						
Anadarko Petroleum Corporation	GulfSlope Energy, Inc.					
Anadarko US Offshore LLC	Hess Corporation					
Apache Deepwater LLC	Houston Energy, L.P.					
Apache Shelf Exploration LLC	Juneau Oil & Gas, LLC					
Arena Energy, LLC	Kosmos Energy Gulf of Mexico Operations, LLC					
Beacon Offshore Energy Exploration LLC	LLOG Bluewater Holdings, L.L.C.					
BHP Billiton Petroleum (Deepwater) Inc.	LLOG Exploration Offshore, L.L.C.					
BP Exploration & Production Inc.	Montecito Offshore L.L.C.					
Byron Energy Inc.	Murphy Exploration & Production Company - USA					
Cantium, LLC	Noble Energy, Inc.					
Castex Offshore, Inc.	Peregrine Oil & Gas II, LLC					
Chevron U.S.A. Inc.	Red Willow Offshore, LLC					
CL&F Offshore LLC	Renaissance Offshore, LLC					
Cobalt International Energy, L.P.	Repsol E&P USA Inc.					
Cretaceous LLC	Reserves Management, L.C.					
CSL Exploration, LP	Ridgewood Energy Corporation					
Dorado Deep GP, LLC	SDB Offshore Energy, LLC					
Ecopetrol America LLC	Shell Offshore Inc.					
EnVen Energy Ventures, LLC	Talos Energy Offshore LLC					
Equinor Gulf of Mexico LLC	Talos Resources LLC					
Exxon Mobil Corporation	TOPCO OFFSHORE, LLC					
Fieldwood Energy LLC	TOTAL E&P USA, INC.					
Fieldwood Energy Offshore LLC	Venari Offshore LLC					
Focus Exploration, LLC	W & T Energy VI, LLC					
Freeport-McMoRan Exploration & Production LLC	W & T Offshore, Inc.					
GOME 1271 LLC	Walter Oil & Gas Corporation					

|--|

Major vs Non-Major bidders and Joint bidding trends in can be seen in **Figures 22 and 23** for GOM lease sales. For the purposes of this report, a "Major," is defined by the Herold Financial Dictionary as the six to eight companies that oil analysts use to talk about the world's biggest publicly owned gas and oil corporations. These companies are also known as Big Oil Super Majors, super-majors, oil majors, or big oil. The Major companies in this section of the report are BP Exploration & Production Inc., Chevron U.S.A. Inc., Union Oil Company of California, ConocoPhillips Company, Exxon Mobil Corporation, Shell Offshore Inc., and TOTAL E&P USA, INC. All bidding activity includes successful, unsuccessful, joint, and single bidding, unless otherwise specified.

Figure 22. Pie chart showing major and non-major companies bidding activity for GOM Region-wide Lease Sales 247, 248, 249, 250, 251, 252, 253, and 254.

Figure 23. Bidding activity per lease sale with bids by major companies and non-major companies.

Deepwater bids for **Figures 24 and 25** are determined by block water depths less than 1,000 ft and water depths greater than 1,000 ft, respectively. Since 2016, the major companies have only bid in deep water.

Figure 24. Bidding activity per lease sale in deep water with bids by major companies and non-major companies.

Figure 25. Successful single and joint bidding activity in deep water.

Figure 26. Leases not issued in shallow water and deep water.

Figure 27. Map showing leases not issued from 2016 through March 18, 2020, in shallow water and deep water.

FAIR MARKET VALUE

The OCSLA grants the Secretary the authority to issue leases in the OCS. Section 18(a)(4) of the OCSLA states that "Leasing activities shall be conducted to assure receipt of fair market value for the lands leased and the rights conveyed by the Federal Government." Lessees pay bonuses, rentals, and royalties reflecting the value of the rights to explore and potentially develop and produce OCS oil and gas resources. BOEM sets minimum bid levels, rental rates, and royalty rates for individual lease sales based on its assessment of market and resource conditions as the lease sale approaches.

Since 1983, BOEM has used a two-phase, post-lease sale bid evaluation process to meet the fair market value requirement. Under its bid adequacy procedures, BOEM reviews all high bids received and evaluates all blocks using either tract-specific bidding factors or detailed tract-specific analytical factors to ensure that fair market value is received for each OCS lease issued. This bid adequacy process relies on both evidence of market competition and in-house estimates of tract value. In addition to the lease fiscal terms and bid adequacy process, BOEM establishes terms and conditions to assure diligent development of leases and environmentally compliant and safe operations. Any bid that does not represent fair market value is rejected. As shown in **Figure 28**, BOEM rejected a total of \$400,126,888 in high bids from 1996, the first year that leases were issued under the Royality Relief Act, through March 2020. The rejected blocks subsequently received \$1,345,710,170 in high bids, with an overall gain of \$945,583,283. The \$945,583,283 gain in rejects highlight the importance of the fair market value process in OCS resource

management. Of this total, BOEM rejected \$344,155,130 in high bids on deepwater blocks as shown in **Figure 28**. The rejected blocks subsequently received \$1,193,083,621 from deepwater blocks, with an overall gain of \$848,928,491 in deep water. Since 2016, 54 of the 56 bids rejected were in deep water (**Figures 29 and 30**).

Figure 28. FMV (fair market value) increase on underbid tracts from 1996-2020.

Values adjusted for inflation to 2020. Rejected Bids are bids that were rejected during the lease sales. Accepted Bids are rejected bids that were rejected and subsequently rebid on and accepted. Gains is the difference from the rejected bid amount and accepted bid amount. Not Yet Accepted is the rejected bids that have yet to be leased after being rejected.

Figure 29. Number of rejected bids in shallow water and deep water.

Figure 30. Map showing rejected bids from 2016 to 2020 in shallow water and deep water.

LEASING ACTIVITY

All leasing activity (exploration and development drilling, installation of platforms and pipelines, etc.) must be included in an approved plan. Although the order of plan submission and drilling activities can vary with projects, operators generally proceed as shown below.

- File an EP
- Drill exploratory wells
- File a Conceptual Plan
- File a DOCD
- Install production facilities
- Drill development wells
- Begin first production

Plans Introduction

Before a lessee or their designated operator may begin exploration or development activities on a lease, they must submit a plan to BOEM's Office of Leasing and Plans. There are three types of BOEM plans: exploration plans; development operations and coordination documents; and development and

production plans. Lessees and operators may submit plans in the form of initial, revised, and supplemental plans. Plans may cover multiple leases and may include multiple platforms and wells.

Plan Review Process

The BOEM New Orleans Office's Plans Section receives and coordinates the reviews of plans. During the plan review process, many Subject Matter Experts within BOEM and the Bureau of Safety and Environmental Enforcement (BSEE) conduct reviews of proposed activities to ensure operators will not:

- violate applicable Federal laws and regulations,
- unreasonably interfere with other uses of the area or interfere with or endanger operations on other leases,
- result in pollution,
- create hazardous or unsafe conditions, or
- disturb any site, structure, or object of historical or archaeological significance.

In addition to reviews conducted by BOEM and BSEE, the plan may be reviewed by other Federal agencies, State governments, and the general public. For example, the Plans Section may send copies of a plan to State Coastal Zone Management offices and place the plan on the regulations.gov website for public comment. The Plans Section is responsible for coordinating these reviews and ensuring that they are completed within regulatory timeframes.

Exploration Plans, Development Operations Coordination Documents, Plans of Exploration, and Development and Production Plans

An exploration plan (EP) must be submitted prior to conducting exploration activities. An EP may cover activities such as exploratory drilling, installing temporary caissons and well protectors, and certain geological and geophysical exploration or development activities. The EPs have taken the place of Plans of Exploration (POE), which are no longer used.

Prior to conducting development and production activities in the western GOM, the lessee or designated operator must submit a development operations coordination document (DOCD). A DOCD may cover activities such as development drilling, installing platforms and subsea production infrastructure, and installing lease term pipelines.

If the lessee or designated operator plans to conduct development and production activities in any OCS area other than the western GOM, they must first submit a development and production plan (DPP).

This report covers EPs and DOCDs for activities to be performed in the WPA and CPA. It excludes DPPs as well as EPs submitted for exploration activities in the Alaska, Atlantic, and Pacific regions. The data for this report were compiled by querying BOEM's internal corporate database of plan sites. It includes both well and platform sites. Only plans with at least one site in a water depth of 1,000 ft or more were included in the dataset. Because plans may cover multiple wells and platforms across multiple blocks at varying water depths, the query filtered for the deepest site associated with each plan. The plans included in the dataset were received between January 1, 2000, and March 18, 2020 (GOM Region-wide Lease Sale 254). All data are presented by calendar year. Figure 31 shows the location of plans submitted by year.

Figure 31. Plans submitted by calendar year.

Figure 32 shows the number of deepwater EPs, DOCDs, and POEs that have been received in the past.

Figure 32. Historic deepwater plans received by year.

The plan review process was revised after the *Deepwater Horizon* oil spill. Guidance published in December 2010 regarding required NEPA review and worst-case discharge calculations necessitated the revision of nearly all deepwater plans that had been previously approved. Generally, deepwater plans that were approved prior to 2011 are no longer valid and may not be used for drilling activities without first submitting revisions.

Figure 33 shows the total number of DOCDs and EPs received each year for activities proposed in water depths greater than 1,000 ft in the last 5 years. Note that the data for 2020 includes only plans that were received through March 18, 2020 (GOM Region-wide Lease Sale 254).

Figure 33. Total number of DOCDs and EPs (includes initial, revised and supplemental) received by year in water depths greater than 1,000 ft.

Figures 34 and 35 provides a breakdown of the plans received by water depth in feet. Note that the data for 2020 includes only plans that were received through March 18, 2020 (GOM Region-wide Lease Sale 254).

Figure 34. EPs received by water depth.

Figure 35. DOCDs received by water depth.

Initial, Revised, and Supplemental Plans

The first plan submitted for proposed operations on a new lease is an initial plan. Initial EPs and DOCDs must contain all the items required by regulations at 30 CFR §§ 550.211 (EPs) and 550.241 (DOCDs).

Once the Initial plan has been approved by BOEM, lessees and operators may alter the proposed operations by revising or supplementing the approved plan. For example, an operator may submit a revised plan to alter the proposed drilling schedule or change the target location of an approved well. An operator may submit a supplemental plan to conduct other activities not proposed in their initial plan, such as drilling additional wells.

Figures 36 and 37 provide breakdowns of plans received historically by type, i.e., Initial (N), Revised (R), and Supplemental (S). Note that POEs were phased out and the Plans Section began receiving EPs in 2000.

Figure 36. Historic types of EPs received by year.

Figure 37. Historic types of DOCDs received by year.

As noted above, guidance published in December 2010 regarding required NEPA review and worst-case discharge calculations necessitated the revision of nearly all deepwater plans that had previously been approved. For that reason, there was a significant increase in the number of revised EPs and DOCDs received and reviewed in the following 3 years.

Figures 38 and 39 provide a breakdown of plans received in the last 5 years by type, Initial (N), Revised (R), and Supplemental (S). Note that the data for fiscal year 2020 includes only plans that were received through March 18, 2020 (GOM Region-wide Lease Sale 254).

Figure 38. Types of EPs received by year.

Figure 39. Types of DOCDs received by year.

Deepwater EP submittal trended downwards in the years 2015 through 2018 and rose slightly in 2019. By second quarter 2020, the Plans Section had received roughly one-quarter the number of EPs received in 2019. This general downward trend in deepwater EP submittal may continue.

Although DOCDs were down in 2019, generally there is a consistent submittal of initial DOCDs. Overall, DOCD submittal increased from 2016 through 2018. By second quarter 2020, the Plans Section had received roughly one fifth the number of DOCDs received in 2019. The Plans Section is predicted to receive a similar number of DOCDs in 2020 as it did in 2019. Revised DOCDs make up the bulk of submissions each year. Revised DOCDs are commonly submitted to update air emissions information to account for schedule changes of future operations.

Drilling Activities

Once a plan has been approved by BOEM's Office of Leasing and Plans, the operator may apply to drill proposed wells. Applications for Permits to Drill (APDs) are reviewed and approved by BSEE's District Offices. The APD must include the control number of the plan in which the proposed well was reviewed by BOEM.

New wells may be proposed in both EPs and DOCDs. Information regarding a proposed well that was reviewed under an initial EP or DOCD may be revised or supplemented in subsequent plans. Therefore, an APD may reference any type of plan. If additional information is needed by BSEE's District Office, it will require the operator to submit a revised or supplemental EP or DOCD. Once that revised or supplemental EP or DOCD is approved, BSEE's District Office will update the APD to reference the new plan, even if the APD has already been approved.

For example, a deepwater well may be proposed in an initial EP. Sometime later, but before applying for an APD to drill the well, the operator may submit a supplemental EP to update details about the proposed well and propose additional wells. The operator may then reference this supplemental EP in its APD to drill the well. As a condition of approval, BSEE's District Office may require the operator to submit a revised EP to provide additional information about the well. The APD will then be updated to reference the revised EP, even if the well has already been drilled.

Figures 40 and 41 compare the number of deepwater plans received in the last 5 years with the number of those plans that are referenced in approved APDs. Note that the data for year 2020 includes only plans that were received through March 18, 2020 (GOM Region-wide Lease Sale 254).

Figure 40. EPs referenced in approved APDs and EPs not referenced in approved APDs.

Figure 41. DOCDs referenced in approved APDs and DOCDs not referenced in approved APDs.

Due to the nature of the plan review process, BOEM's Office of Leasing and Plans receives, reviews, and approves many plans that may never be referenced in future drilling permits. Another way to examine drilling activity is to compare the leases that were included in Initial EPs to leases with approved APDs. **Figure 42** provides a comparison of the number of leases that have appeared in Initial EPs in the last 5 years to the number of those leases that have approved APDs. Note that the data for year 2020 include only plans that were received through March 18, 2020 (GOM Region-wide Lease Sale 254).

Figure 42. Leases with initial exploration plan with and without approved APDs.

As shown in **Figure 42**, the number of leases that appeared in new exploration plans declined from 2015 to 2017 and increased from 2017 to 2019. The Plans Section is predicted to approve a similar number of plans in 2020 as were approved in 2019. Compared to the decline in new exploration plans, the number of leases with new drilling permits has remained relatively steady over the same time period, declining slightly between 2015 and 2017 before rising again in 2019. The share of leases with approved exploration plans that later receive approved drilling permits has also increased since 2015. This may indicate that operators have altered their expectations regarding how many new wells will be drilled in upcoming years.

In any given year of the leases that appear in Initial EPs, less than half may ultimately be drilled. Often, wells are included in plans as potential relief wells to be drilled only in the event of a blowout. Additionally, wells proposed in approved Initial EPs may be drilled months or years after the Initial EP has been approved. The time between plan approval and APD approval ranges from 1 day to several years. **Figure 43** provides the average time from Initial EP approval to APD approval each fiscal year. Note that the data for 2020 include only plans that were received through March 18, 2020 (GOM Region-wide Lease Sale 254).

Figure 43. Average time to APD (days).

The average time between approving an Initial EP to approving an APD to drill the first well on the lease was reduced drastically in recent years. This may be explained by changes in BOEM's financial assurance policy. BOEM NTL No. 2015-N04, "General Financial Assurance," requires operators to provide general financial assurance before activities approved in a plan could commence. After the NTL was published, some operators hesitated to submit APDs while BOEM determined how wells that had been proposed, but not yet drilled, would be assessed for required financial assurance. By 2018, BOEM's policy of assessing wells at the time an APD was submitted had been established, and several operators submitted APDs for plans that had been approved more than a year previously.

LEASE RELINQUISHMENT ACTIVITY

Lease relinquishments are a component of newly available blocks, i.e., any block that was either relinquished, terminated, or expired in the time period between lease sales, and is one tool used by BOEM to predict potential bidding activity. Figures 44 and 45 show leases that were relinquished prior to their expiration date from 2016 to March 18, 2020. Note that lease terms vary according to water depth. The large number of relinquishments in 2016 can be partially attributed to Conoco Phillips Company relinquishing 232 leases and BP Exploration & Production Inc. relinquishing 143 leases. Conoco Phillips Company publicly stated in 2016 that it would not be continuing deepwater drilling in Gulf of Mexico as part of a money-saving strategy to reduce deepwater exploration (Offshore Energy, 2016). The factors that play a role in the variability of bids received also contributes to the number of leases being relinquished. These factors include the price of oil, the transition from offshore to onshore unconventional exploration, and the price thresholds at which an individual play is economic to pursue. There is a decline in the relinquishments following the record number in 2016. This is in part due to less active leases available to be relinquished as so many were relinquished in 2016.

Figure 44. Map showing relinquishments from 2016 to March 18, 2020, in shallow water and deep water.

Figure 45. Relinquishments by year from 2016 to 2020 in shallow water and deep water.

LEASE OWNERSHIP

Lease ownership can be acquired through a lease sale or via assignment of Record Title Interest or Operating Rights Interest. Figure 46 shows assignments of record title interest for 2016 through March 18, 2020, in shallow water and deep water. In 2016, Conoco Phillips Company transferred all interest in 70 assignments of record title interest, which is an indicator of the company's money-saving strategy to reduce deepwater exploration as noted above. Figure 47 shows assignments of operating rights interest for 2016 through March 18, 2020, in shallow water and deep water.

Figure 46. Assignments of record title interest by year from 2016 through March 18, 2020, in shallow water and deep water.

Figure 47. Assignments of operating rights interest by year from 2016 through March 18, 2020, in shallow water and deep water.

BUSINESS LANDSCAPE

Characteristics of the companies doing business on the OCS have changed over the years, with large/major companies transferring sunset properties to small companies while pursuing new discoveries in the deepwater Gulf of Mexico. As a steward of OCS resources, BOEM manages a variety of financial and physical risks associated with OCS oil- and gas-related activities. Some of these risks are intrinsically related to financial assurance and loss prevention to the U.S. Government and the American taxpayer; for example, a company becomes financially insolvent and the U.S. Government and the American taxpayer are forced to pay for decommissioning a facility. Since 2009, there have been 35 bankruptcies of corporations with OCS oil- and gas-related activities of approximately \$7.5 billion in total decommissioning liability. This \$7.5 billion includes properties with co-lessees and predecessors, and properties held by companies that successfully emerged from a Chapter 11 reorganization bankruptcy. Figure 48 shows the bankruptcies of lease owners and operators and the associated properties in which they have record title interest. It is clear from that figure that most of the lessees and operators who filed for bankruptcy are in shallow water.

Figure 48. Bankruptcies of lessees/operators in the Gulf of Mexico, 2009-2020.

SEISMIC DATA

INTRODUCTION

The Office of Resource Evaluation in BOEM's New Orleans Office has a statutory responsibility for issuing geophysical permits for seismic surveying and geological permits for shallow drilling or coring. This responsibility is defined in Section 11 of the Outer Continental Shelf Lands Act and supporting regulations (30 CFR part 551).

The GOM has been a crucible for 3-dimensional (3D) seismic acquisition advancements, spurred on by the need for better subsalt imaging capability and larger ships equipped to tow many airgun and streamer arrays. Array lengths have doubled in length during the last decade from 3 to more than 7 miles (mi) to achieve greater subsurface visualization. Legacy 3D surveys in the GOM tend to be narrow azimuth (NAZ) (1 vessel towing airgun(s) and 1-3 streamers) (Figure 49). Over the last decade NAZ has been slowly displaced by wide -azimuth (WAZ) acquisition (a survey acquired with 2 or more source vessels) and multi- and full azimuth (MAZ, FAZ) (a survey acquired in 2 or more directions by a single vessel) (Figure 49).

INFLUENCES ON GOM SEISMIC ACTIVITY

As the farthest upstream aspect of the oil and gas industry, seismic acquisition is a leading indicator for planned exploration and development (E&D) activity. Seismic acquisition typically involves multi-year lead times ahead of E&D drilling. Oil price is dependent on the actions of all countries producing oil. Imbalance between supply and demand tracks to the production decisions of the countries possessing the resource (Slav, 2020). There have been two periods of contraction and two periods of expansion since 2006. The first contraction occurred after the Great Recession in 2009. Another period of contraction occurred 2015-2017 when Saudi Arabia first attempted to surge oil production and apply downward price pressure to reacquire market share from higher cost U.S. shale oil production. The expansions occurred 2007-2008 during the speculative real estate bubble before the Great Recession, and 2010-2014 following the *Deepwater Horizon* oil spill.

In the first quarter of 2020 the twin stressors of COVID-19 and yet another attempt to surge oil production by Saudi Arabia and Russia (OPEC+) to recapture market share from U.S. oil shale induced a demand collapse of approximately 30 percent (French and Moise, 2020). The daily price of West Texas intermediate crude reached historic lows of less than \$20 per barrel in April 2020, and a startling flash

crash on April 20, 2020, to -\$37.63 caused by future oil contract trading for May that ran up against inventory buildup (Bloomberg News, 2020). In July, oil prices had rebounded above \$40 per barrel (USDOE, EIA, 2020). Oil prices may gain support from an OPEC+ production agreement reached in April 2020 (Krauss, 2020); however, all indications are that 2020-2021 will be a very uncertain time for the seismic acquisition business. Analysts forecast a 50 percent drop in revenue for the seismic business in 2020 (Offshore, 2020), an environment that could lead seismic companies that are heavily leveraged toward bankruptcy or distressed asset sales, such as CGG's June 2017 Chapters 11 and 15 restructuring.

There has been substantial merger and acquisition activity in the seismic business over the last 5 years that has resulted in a more consolidated industry with reduced acquisition capacity. Seismic data are delivered to E&D operators through either a proprietary or multi-client business model. For proprietary business, the E&D company contracts a seismic service company to acquire and process data on its behalf. For multi-client business the seismic operator retains ownership and control of the data and can license it to multiple parties. The E&D operators often prefer multi-client over proprietary because the cost is substantially lower. Typically, one or more clients will commit to licensing the data before acquisition begins, a practice called "pre-funding". "Late sales" refer to licenses sold after data acquisition is underway or complete.

The 2018 exit of WesternGeco/Schlumberger from seismic acquisition indicated a market that was bifurcating (Duey, 2018), a trend that has accelerated in recent years. CGG exited marine seismic acquisition in early 2020 (Pai, 2020). Operators are now distinguishing themselves either as vessel providers or software/services and data processing companies. TGS, for example, subcontracts their seismic acquisition and owns no vessels. The business model of the integrated seismic operator that acquires and processes data for purpose-contracted or speculative multi-client licensing has been mostly abandoned (Beaubouef, 2020). The vessel providers bear the brunt of financial pain in contracting markets because they own the hard assets and the fixed costs that accompany them. In comparison, the overhead for software services and data processing companies is substantially lower.

The seismic data collected in the GOM over the last 5 years is shown by year in **Table 2** and **Figure 50**. This period coincided with a significant contraction from 2015 through 2017 that resulted from Saudi Arabia's supply surge against U.S. shale oil production. The contraction led to retrenchment from 2018 through 2019 as E&D operators sought to adjust their development plans while excess hydrocarbon supply was slowly wrung from the market.

TECHNOLOGY DEPLOYMENTS

As operator consolidation and uncertainty pervade the seismic market, there have been changes in seismic hardware, acquisition technique, and data processing that are greatly improving the quality of seismic imaging. Marine seismic acquisition can be separated into towed-streamer and stationary receiver acquisition. Stationary receiver acquisition is performed with ocean-bottom cable (OBC) or node (OBN) systems. Since BP permanently installed the first 4-component OBC system in the Valhall Field, Norway (Moldovenau, 2006), 4-dimensional (4D, time lapse) seismic acquisition has become an important field management tool for optimizing reservoir depletion. The technique is based on repetitive 3D surveys over a reservoir's productive life using the same OBC or OBN locations.

A paradigm shift has taken place over the last 10 years in the 4D seismic arena with acquisition technologies that decouple source and receiver equipment and allow repeat positioning of both shot and receivers to within meters. New instrumentation will soon be available to OBN seismic operators. A current downside of OBN deployment is that remotely operated vehicles (ROVs) are needed to place nodes on the seafloor. To carry out a repeat survey, ROVs relocate each node to swap in a new node with fresh batteries. Node relocation can be a problem because of low visibility, turbidity caused by the ROV's thrusters, or if nodes settled into a muddy seafloor. Robotic nodes are under development by a

consortium of Saudi Aramco, CGG, and Seabed GeoSolutions (Jacobs, 2014). The goal of RoboNode[™] is to eliminate the need for ROV intervention for placing and relocating nodes by equipping each node with a launch and recovery system for each node to self-deploy and self-recover. Removing the operational down time caused by ROV breakdown or maintenance delays should lower costs.

Year	Permit #	Permittee	Contractor	Survey Type	Data Type	Exclusive or Speculative	
2015	L15-007	BP	FairfieldNodal	4D-OBN	FAZ	Exclusive	
	L15-007 L15-037	Shell	FairfieldNodal	4D-OBN 4D-OBN	FAZ	Exclusive	
	L15-037 L15-039	FairfieldNodal	FairfieldNodal	3D-OBN	FAZ	Speculative	
	L15-059	WesternGeco	WesternGeco	COIL	FAZ	Speculative	
	T15-055	Shell	FairfieldNodal	4D-OBN	FAZ	Exclusive	
	L16-011	WesternGeco		COIL	FAZ		
	T16-001	Shell	WesternGeco NCS Subsea	3D Hi-Res	NAZ	Speculative Exclusive	
	L17-011	BP	FairfieldNodal	4D-OBN	FAZ	Exclusive	
	L17-011 L17-022	WesternGeco	WesternGeco	3D-OBN	FAZ	Exclusive	
	L17-022 L17-029		FairfieldNodal		FAZ		
		Hess		3D-OBN		Exclusive	
	L17-032	TGS	Polarcus	3D	NAZ	Speculative	
	T17-003	Shell	Sound Oceanics	3D-Hi-Res	NAZ	Exclusive	
	T17-004	CGG	CGG	3D	WAZ	Speculative	
	L18-009	Shell	Seabed GeoSolutions	4D-OBN	FAZ	Exclusive	
	T18-008	Shell	Seabed GeoSolutions	4D-OBN	FAZ	Exclusive	
	T18-010	BHP	FairfieldNodal	3D-OBN	FAZ	Exclusive	
	L18-013	Shell	Seabed GeoSolutions	4D-OBN	FAZ	Exclusive	
	L18-017	TGS	Fairfield Geotechnologies	3D-OBN	FAZ	Speculative	
	L18-018	Anadarko	Fairfield Geotechnologies	3D-OBN	FAZ	Exclusive	
	L18-019	BP	Fairfield Geotechnologies	4D-OBN	FAZ	Exclusive	
	L19-007	Total	Oceaneering	3D-Hi-Res	NAZ	Exclusive	
	L19-008	CGG	Seabed GeoSolutions	3D-OBN	FAZ	Speculative	
	L19-012	Chevron	Seabed GeoSolutions	4D-OBN	FAZ	Exclusive	
	L19-014	BHP	MagSeis Fairfield	3D-OBN	FAZ	Exclusive	
	L19-020	Shell	NCS Subsea	3D-Hi-Res	NAZ	Exclusive	
	L19-026	WesternGeco	Shearwater	3D-OBN	FAZ	Speculative	
	L19-034	Anadarko	MagSeis Fairfield	3D-OBN	FAZ	Exclusive	
2019	L19-039	BP	MagSeis Fairfield	4D-OBN	FAZ	Exclusive	
2019	L19-045	Chevron	Seabed GeoSolutions	4D-OBN	FAZ	Exclusive	
2019	T19-008	Shell	NCS Subsea	3D-Hi-Res	NAZ	Exclusive	
NAZ - Narrow Azimuth							
WAZ - Wide Azimuth							
FAZ - Full Azimuth							

Table 2. Seismic activity in the GOM from 2015 through 2019.

Figure 50. Seismic data types permitted by BOEM from 2015 through 2019; 2a = 2015, 2b = 2016, 2c = 2017, 2d = 2018, 2e = 2019. Exclusive and speculative surveys are identified.

The trend over the past decade in towed streamer acquisition has been to increase the streamer length and the number of streamers towed. Prior to 2000, most surveys were acquired with streamers shorter than 5,000 m (3.1 mi). In the last 5 years, an increasing number of surveys have used streamer lengths between 6,000 m (3.7 mi) and 12,000 m (7.4 mi) (Moldovenau, 2006). Additions to the worldwide seismic fleet since 2,000 were stimulated in parallel with increased deployments of WAZ seismic surveys. So-called "complex azimuth" surveys like WAZ improve signal-to-noise ratio and definition of subsalt geology. The WAZ surveys have a larger footprint that requires larger vessels capable of towing longer streamer lines and airgun arrays.

Increased streamer length paralleled improvements in managing long arrays when WesternGeco's deployed their Q-Marine[™] seismic acquisition, a system since adopted by most operators. Q-Marine uses gel-filled streamers and can deliver seismic data with improved signal-to-noise ratio, greater bandwidth, reliable amplitudes due to calibrated sources and sensors, accurate positioning of the receivers along the streamers, and steerable and repeatable positioning (Moldovenau, 2006). Steerable streamers are

necessary to keep them parallel while surveying and provide more accurate positioning for 4D reservoir management.

Fluid-filled (obsolete, but still in use), gel-filled, and solid streamers are used for marine seismic acquisition. A streamer system containing a liquid that gels into a solid was introduced in 1997 (Moldovenau, 2006). This system was designed to reduce the signal-to-noise ratio that is aggravated in rough sea states (Rekdal and Long, 2006); however, the service life of this system is short. Solid streamers filled with a flexible polymer foam that is even less sensitive to sea noise are now used by most seismic operators. Systems known generically as "broadband seismic" augment solid streamers with extra sensors ("multisensory") and are designed to further improve seismic resolution and signal to noise ratios. PGS introduced multisensory technology as GeoStreamer™ in 2007. Other seismic operators subsequently introduced their own proprietary systems: Sentinel MS™ (Sercel) and IsoMetrix™ (WesternGeco/Schlumberger) (Dondurur, 2018).

Coil 3D surveys are a technique developed by WesternGeco as a type of WAZ providing full-azimuth coverage. Coil surveys are acquired by one or more vessels sailing in a circular path while towing selfsteering streamers and an airgun array (Figure 51). When transit of one circle is complete, the vessel moves to a second circle separated by a fixed distance from the first. This pattern is repeated until the survey area is covered (Buia et al., 2008). The first feasibility test of the "coil shooting" technique in the GOM was carried out in Green Canyon in 2007. Comparison was made with another WAZ dataset shot with parallel sail lines over the same area with the same velocity model. With their Q-Marine[™] streamer configuration, WesternGeco was able to show coil shooting to image as well or better than the WAZ survey obtained with parallel sail lines.

One of the drivers for the development of marine vibroseis is that seismic airguns can harm or disturb some marine mammals when operating in proximity to them. In recent years seismic operators have pursued technologies to reduce the higher frequencies from the source while retaining the ability to image the subsurface. Tuned pulse source is a pneumatic signal designed to operate using low-pressure air. Compared to airguns, a tuned pulse source has a much stronger low-frequency and reduced high-frequency content (Ronen and Chelminski, 2017).

A marine vibroseis source generates significantly lower sound pressure levels than seismic airguns and omits the higher frequencies that may disturb cetaceans. In February 2015, the Geokinetics AquaVib[™] was tested in South Timbalier during the acquisition of a production 3D OBC survey (Pramik et al., 2015). Initial processing of the AquaVib field tests showed that this marine vibrator system can achieve comparable data quality to traditional airgun sources.

Figure 51. WesternGeco developed the coil acquisition technique. Colors

correspond to the number of traces recorded for each offset-azimuth combination. Cooler colors indicate a lower number of traces, whereas warmer colors indicate a higher number of traces. (Image courtesy of WesternGeco.)

Beginning in 2007 and continuing into 2015, BP designed, built, and field tested Wolfspar[™], a full-scale, ultra-low-frequency seismic source optimized for full-waveform inversion (FWI). Unlike airguns or marine vibrators, Wolfspar can tailor its output precisely to the needs of the geoprocessing algorithm preferred for velocity model building (Dellinger et al., 2016). In late 2017, BP acquired 1,000 kilometers of source lines over the deepwater, subsalt Mad Dog (Green Canyon 826) Field using Wolfspar (Dellinger et al., 2019). This OBN survey (permit L17-011) used the low-frequency Wolfspar source and two airguns, simultaneously, and was the first industry test designed primarily for building velocity models in areas of

complex geology. In 2019, BP used Wolfspar to add 1 billion barrels of oil at the Thunder Horse (Mississippi Canyon 778) Field (permit L19-039) and 400 million barrels at the Atlantis Field (Green Canyon 743) (permit L18-019) (Research and Markets, 2020).

The FWI is considered the most promising data-driven tool to automatically build velocity models by iteratively minimizing the difference between recorded data and modeled synthetic data (Wang et al., 2019). Other variants of FWI seek to use diving and reflected wave paths, so-called Joint FWI (Zhou et al., 2015).

For decades the standard practice for salt-model building has been to use tomography, imaging by cross sections, combined with shallow diving waves (from source downward into sediments) to first build the best possible sediment velocity model. Next, a sediment-flood migration applies the sediment velocity model to the entire thickness of geologic section to define a top-of-salt interpretation, followed by a salt-flood migration that applies salt velocity to define a base-of-salt interpretation. This procedure is not only labor intensive and time consuming but also prone to misinterpretation because an interpreter must pick the base-of-salt, which is often ambiguous. The final velocity model is only as good as the base-of-salt interpretation.

A breakthrough success of FWI salt velocity updating came from Shen et al. (2017) and Michell et al. (2017) in which FWI corrected misinterpretations of salt structures to greatly improve subsalt imaging at BP's Atlantis Field in Green Canyon. There is great interest in time-lapse FWI, an iterative 4D reservoir management approach that minimizes seismic artifacts introduced by inaccurate starting velocity models and data having poor signal-to-noise ratio. Time-lapse FWI is proving successful for salt and near-salt velocity updates for the challenging geological environments typical of the GOM (Hicks, 2016) with both towed streamer and fixed bottom (OBN) datasets.

LS3 Harris is a U.K.-based company specializing in the development of autonomous surface vessels (ASV). Together with Shell, LS3 Harris seeks to further develop their C-Worker class of ASV to include an unmanned seismic source vessel as part of its rapid autonomous marine 4D (RAM4D) concept. RAM4D anticipates a single, small, surface vessel towing a small seismic source (250-500 in³) for 4D surveys. The unmanned vessel operates for up to 10 days without escort and following pre-charted shot points (Chalenski et al., 2017). The use of ASVs for small-footprint, repetitive 3D surveys anticipates significant cost savings by eliminating large manned vessels. C-Worker class vessels are about 20 ft long and suitable for containerized storage onshore. By down-scaling survey footprint, airgun size, and personnel, the operational costs of 4D surveys may be reduced by a factor of 10 (Chalenski et al., 2017). Upcoming trials for RAM4D are taking place in the GOM and include an extended sea endurance test, followed by full operational testing in Broussard, Louisiana, to culminate in an offshore seismic survey on the OCS.

LEVEL OF GULF OF MEXICO SEISMIC ACTIVITY

Twelve seismic operators have carried out surveys in the GOM between 2015 through 2019 (Table 2). Upon inspection the prevalence of 4D and OBN is shown. The OBN surveys are the dominant seismic output in the GOM with 10 3D OBN and 11 4D OBN surveys among the 30 surveys conducted from 2015 through 2019. Table 2 also shows that NAZ seismic data type is largely becoming a legacy technology displaced by different types of FAZ data types. OBN surveying is dominated by Fairfield (FairfieldNodal and MagSeis Fairfield), with WesternGeco and Seabed GeoSolutions as minor players.

BOEM examined IHS Markit's SeismicBase database (a proprietary database to which BOEM subscribes), from 2006 to 2019 for activity trends in the GOM, and within the worldwide seismic fleet. IHS Markit's SeismicBase relies on operator self-reporting of their vessel locations and activities. Ninetyone seismic vessels operated in the GOM between 2006 and 2019 under the flags of several countries (Figure 52). Most seismic vessels were Bahama- or Panama-flagged (42%), with vessels flagged NIS,

Norway, Cyprus, and United States collectively representing 38 percent of the GOM fleet. Figure 52 also shows Norwegian vessels operating in the GOM have the greatest range in age from 12 to 55 years old.

Figure 52. Flags for 91 seismic vessels that operated in the Gulf of Mexico between 2006 and 2019 (left), and their age in 2020 (right) (from IHS Markit's SeismicBase database).

Figure 53 shows an average age of approximately 25 years for seismic vessels operating in the GOM between 2006 and 2019. Ages for seismic vessels taken from IHS Markit's SeismicBase skew older because SeismicBase reports original construction dates, but the dates for the common practice of refitting, rebuilding, and conversions is not unless individual vessels are researched. A 2015 analysis of the worldwide seismic fleet by Carnegie Investment Bank (Westgaard, 2015) reported that vessels built after 2005 constitute approximately 70 percent of currently active vessels and that approximately 23 percent of the worldwide fleet were older than 15 years.

Figure 53. Age range of the 91 seismic vessels operating in the Gulf of Mexico between 2006 and 2019 (left), and the year they entered service (right) (from IHS Markit's SeismicBase database).

GULF OF MEXICO SEISMIC ACTIVITY VS OIL PRICE

The price of oil affects the level of seismic acquisition in the GOM. Figure 54 shows the relationship between oil price and total vessel activity in the GOM between 2006 and 2019 from IHS Markit's SeismicBase. There are nine survey types and vessel activities reported in IHS Markit's SeismicBase that describe what vessels are doing in the GOM, for example, "inshore" (tripping in or out of a GOM shore

base). Total vessel activity in Figure 54 is a roll up of the nine survey types or vessel activity. The effect of steep changes in oil price as a stimulus or suppressant of vessel activity in GOM appears to have a lag time of approximately 1-1.5 years.

Figure 54. Graph showing the relationship between oil price and total vessel activity in the Gulf of Mexico between 2006 and 2019 (vessel activity from IHS Markit's SeismicBase). Oil price and vessel activity are averaged by quarter. Oil price data average by month is from the Energy Information Agency (USDOE, EIA, 2020).

VESSEL CONTRACT RATES

The contracted rates for seismic vessels are an important part of the business, but hard data are elusive for competitive reasons. Rates would be expected to show variation based on contracting or expanding oil price environments. Each quarter IHS Markit's SeismicBase analysts include a roll up of contract vessel rates in United States dollars (USD) for the worldwide fleet. A low-end and a high-end rate range is based on vessel specification (spec) level. Lower spec vessels are those with low tool deployment capability or flexibility. Higher spec vessels tend to be larger and have high tool deployment capability or flexibility. The age of the vessel also factors into contract rate variability, with newer or rebuilt vessels commanding higher rates. The vessel types reported in IHS Markit's SeismicBase are 2-dimensional (2D) and 3D, which is a coarse generalization for vessel types supporting seismic acquisition. IHS Markit's SeismicBase assesses 2D survey vessels at low and high spec levels and 3D survey vessels at low, medium, high, and very high spec levels.

BOEM modified and averaged IHS Markit's SeismicBase's reporting categories and retained their low-end and high-end contract rate range to compile Figure 55. For 2D vessels BOEM averaged the low- and high-spec ranges for the low-end and high-end rate ranges. For 3D vessels BOEM averaged low, medium, high, and very high spec ranges for the low-end and high-end rate ranges. Figure 56 shows another contract rate compilation (Westgaard, 2015) for the period 2006-2016 based on the worldwide fleet. Figures 55 and 56 identify the run up to the Great Recession from 2008 to 2009, the expansive/stable oil price environment between 2010 and 2014, and the contracting price environment after Saudi Arabia first surged oil production in 2015 to suppress U.S. oil shale production.

Figure 55. BOEM assessment of seismic vessel contract rates applicable to the worldwide seismic fleet for 2D and 3D seismic capability in relation to total seismic vessel activity in the Gulf of Mexico, both averaged by quarter (prepared from data in IHS Markit's SeismicBase).

Figure 56. Day rates (KUSD), oil price (USD), and vessel specification classes from the worldwide fleet for 2006 to 2016, with estimates provided for 2015 and 2016 (prepared from data in Westgaard, 2015).

CONCLUSIONS

The GOM is considered a super basin (Addison, 2020; Brown, 2020). Deployment of 4D OBN and FAZ/WAZ will continue to drive innovation for seismic acquisition in this vibrant and mature hydrocarbon province. The use of OBN and 4D shown in **Table 2** indicates how these survey data types reflect the trends one would expect in a mature super basin; that being a growing emphasis on seismic used for the management of producing fields. The imaging challenges of subsalt plays has effectively displaced 3D NAZ

data type by coil, FAZ, and WAZ data types. All are seismic data types designed to deliver more subsurface datapoints for any subsurface location.

The supply and demand imbalances that have been introduced by COVID-19 lockdowns, behavior modifications, and oil demand collapse in the first quarter of 2020 are intertwined, yet distinct. It will take time to rebalance supply and demand in the global market. While the depth and duration of the pandemic shock is uncertain, some analysts expect it to be short-lived (Arezki and Nguyen, 2020).

Contract vessel rates for different seismic vessel classes show variation based on collapsing/contracting and expanding/stable oil price environments. Oil price drops can be sudden in response to economic cycles and geopolitical events that upset the balance of supply and demand. Recovery from a stressed oil price environment and transitioning to a stable or expansive environment tends to be more gradual in comparison. There is a lag time of 1-1.5 years between a price-induced stimulus, up or down, and a vessel deployment response.

The canvass of seismic vessel contract rates shows a looser relationship. During the expansive-to-stable oil price period between 2011 and 2014, the response of seismic vessel contract rates and total vessels deployed in the GOM involved an approximately 2-year lead period between contracts for vessels and realized vessel deployments. During the contracting oil price period following Saudi Arabia's first attempt to surge oil production in 2015, the response of seismic vessel day rate and total vessels deployed in the GOM involved an approximate 1-year lag period between contracts expiring and ramp down of vessel deployments. The lead and lag times show that it is easier for seismic operators to react to a contracting price environment by cold-stacking their vessels than to anticipate when and for how long an expanding or stable price environment may lie before them.

WELL DATA

The first well drilled in the GOM in water depths of 1,000 ft or greater reached total depth in 1975 as part of the Cognac (Mississippi Canyon 194) Field. Through 2014, more than 4,100 wells have been drilled in the deepwater GOM. This number includes original wellbores, sidetracks, and bypasses. Figure 57 shows the year these wells reached total depth, categorized by water-depth intervals. The depressed drilling numbers in 2010 and 2011 are caused by the repercussions of the BP Macondo blowout in 2009. From 2012 on, the number of wells drilled has remained strong at between 100 and 140 wells per year.

Figure 57. Number of deepwater wells drilled by water depth.

DRILLING AND WATER DEPTHS

The maximum drilling depth in deep water has continually increased over time, reaching true vertical subsea depths (TVDSS) of more than 35,000 ft in 2009 (Figure 58). In August 2013, a well operated by Cobalt at the Ardennes prospect in Green Canyon Block 896 was drilled to a record depth of 35,935 ft TVDSS. The well targeted Miocene and Lower Tertiary objectives but found no commercial hydrocarbons. The increase in drilling depths with time may be attributed to several factors, including enhanced rig capabilities, deeper exploration targets, and the general trend toward greater water depths, as can be seen in Figure 59. In August 2008, a well operated by Murphy at the unsuccessful Manhattan prospect in Lloyd Ridge Block 511 set a GOM water-depth drilling record of 10,141 ft. More information about each well drilled can be found in Tables 3 and 4. Due to the proprietary nature of the well data, total well depths cannot be shown for the year 2019.

Figure 58. Well-depth drilling records by year.

Figure 59. Water-depth drilling records by year.

	Total Well Depth		Bottom Hole	Bottom Hole	BOEM Field
Year	-				
1075	(TVDSS, ft)	(TVDSS, m)	Area	Block	Nickname
1975	11,033	3,363		194	Cognac
1976	13,846	4,220		194	Cognac
1977	11,783	3,591		112	
1978	11,587	3,532		906	
1979	15,358	4,681		282	
1980	14,929	4,550		863	_
1981	14,544	4,433	MC		Pompano
1982	11,419	3,481		184	Jolliet
1983	13,562	4,134		136	Shasta
1984	17,108	5,215	GC		Bullwinkle
1985	18,774	5,722		152	Marathon
1986	21,116	6,436		301	
1987	20,228	6,165	GB	470	Auger
1988	19,848	6,050	GB	426	Auger
1989	19,150	5,837	MC	522	Fourier
1990	19,705	6,006	GB	426	Auger
1991	21,504	6,554	КС	255	
1992	19,374	5,905	GB	470	Auger
1993	19,881	6,060	MC	809	Mars-Ursa
1994	20,413	6,222	MC	935	Europa
1995	22,403	6,828	MC	718	Pluto
1996	24,565	7,487	GB	602	Macaroni
1997	25,360	7,730	GC	142	
1998	26,906	8,201	GB	386	Llano
1999	25,719	7,839	MC	778	Thunder Horse
2000	29,153	8,886	WR	456	
2001	29,595	9,021	MC	727	Tubular Bells
2002	30,123	9,181	GC	640	Tahiti/Caesar/Tonga
2003	31,732	9,672	GC	727	Tahiti/Caesar/Tonga
2004	29,757	9,070	WR	724	Das Bump
2005	34,067	10,384	GC	512	Stampede
2006	32,400	9,876	КС	292	Kaskida
2007	31,713	9,666	WR	627	Julia
2008	32,796	9,996	GC	468	Stampede
2009	35,501	10,821	GC	945	
2010	33,297	10,149	GC	817	
2011	30,287	9,231	КС	736	Moccasin
2012	34,412	10,489	GB	959	North Platte
2013	35,935	10,953	GC	896	
2014	33,667	10,262	GC	807	Anchor
2015	34,335	10,465	WR	225	
2016	34,337	10,466	GB	998	
2017	35,034	10,678		959	North Platte
		-			
2016	34,337	10,466	GB GB	998	North Plat

Table 3. Well-depth drilling records by year.

			Bottom Hole	Bottom Hole	BOEM Field
Year	Water Depth (ft)	Water Depth (m)	Area	Block	Nickname
1975	1,121	342	MC		Mekhame
1976	1,986	605		113	
1977		578		112	
	1,895				
1978	1,363	415		906	
1979	1,747	532		282	
1980	2,211	674		198	
1981	1,775	541	MC		Pompano
1982	1,835	559		184	Jolliet
1983	1,657	505		184	Jolliet
1984	3,534	1,077		852	
1985	3,135	956		254	Allegheny
1986	5,400	1,646		731	Mensa
1987	6,794	2,071		471	
1988	7,520	2,292	MC	657	Coulomb
1989	6,950	2,118	MC	522	Fourier
1990	6,660	2,030	MC	952	
1991	5,834	1,778	КС	255	
1992	5,195	1,583	MC	84	King/Horn Mt.
1993	6,530	1,990	DC	133	King's Peak
1994	6,420	1,957	МС	217	King's Peak
1995	6,220	1,896	AT	575	Neptune
1996	7,620	2,323	AC	600	BAHA
1997	6,740	2,054	DC	177	King's Peak
1998	7,716	2,352	AT	118	-
1999	7,209	2,197	MC	348	Camden Hills
2000	8,845	2,696	WR	425	Chinook
2001	9,727	2,965	AC	903	Trident
2002	9,672	2,948		947	Trident
2003	10,011	3,051	AC	951	
2004	9,627	2,934		859	Tobago
2005	9,576	2,919		508	Stones
2006	9,586	2,922		508	Stones
2007	8,694	2,650		731	
2008	10,141	3,091		511	
2009	8,850	2,697		469	Chinook
2010	8,850	2,697		469	Chinook
2011	9,627	2,934		859	Tobago
2011	9,553	2,912		507	Stones
2012	8,843	2,695		425	Chinook
2013	9,819	2,893		411	CHINOUR
2014	9,585	2,993		508	Stones
2015				508	
2016	9,552	2,911		464	Stones
	9,587	2,922			Stones
2018	9,681	2,951		595	C +
2019	9,565	2,915	WR	508	Stones

rubic - ruter depth drining records by years	Table 4.	Water-depth	drilling	records	by year.
--	----------	-------------	----------	---------	----------

GEOLOGIC TRENDS

OVERVIEW

Rocks in the northern U.S. Gulf of Mexico OCS Basin range in age from Triassic to Pleistocene and cover a wide range of depositional environments, including subaerial red beds and aeolian dunes, marine carbonate platforms and reefs, and deltaic and deep-sea fan deposits. Generalized to the Series level, **Table 5** depicts the ages of rock formations discussed herein. The discovered resource base (reserves plus contingent resources) in the northern GOM totals over 67 billion barrels of oil equivalent (BBOE). The geologic plays located in shallow water (<1,000 ft) have been thoroughly explored and exploited for over 70 years. These shallow-water plays account for discovered resources of nearly 45 BBOE. The first discovery in deep water (>1,000 ft) occurred in 1975 with Shell's Cognac (Mississippi Canyon 194) Field in Pliocene rocks. Together, the Pleistocene, Pliocene, and Miocene Trends in deep water contribute nearly 19 BBOE to the discovered resources in the northern GOM.

Age (Ma)	Erathem	System	Series	Formation
0.0117		Quaternary	Pleistocene	
2.588			Pliocene	
5.333	zoic	Neogene	Miocene	
2.303	o u			
33.9	C e		Oligocene	Frio
33.9		Lower Tertiary	Eocene	
56.0		(Paleogene)		Wilcox
			Paleocene	
66.0				
100.5			Upper	Tuscaloosa
		Cretaceous	Lower	
145.0	0 i c			Smackover
163.5	0 Z (Upper	Norphlet
	Mes	Jurassic	Middle	Louann Salt
174.1	2		Lower	
201.3				
252.17		Trias	sic	

Table 5. Geologic timescale of the northern GOM Basin.

With time, discoveries progressed farther into deeper waters and older sediments. The oldest Cenozoic rocks in the deepwater GOM, referred to collectively as the Lower Tertiary Trend (Wilcox and Frio rocks, **Table 5**), have been an active exploration target for around 20 years. Located from the East Breaks/Alaminos Canyon to Green Canyon/Walker Ridge Areas, many of the trend's oil discoveries are trapped in large compressional folds, some of which lie in water depths of more than 9,000 ft. This trend has contributed nearly 3 BBOE to the GOM's discovered resource base.

Mesozoic rocks in the deepwater GOM have been an active exploration target in the Upper Jurassic Norphlet Formation (Table 5) Trend for 17 years. Current discoveries in this trend are located in the eastern Mississippi Canyon and western De Soto Canyon Areas in over 7,000 ft of water. Characterized by oil trapped in aeolian dunes within tectonic detachment rafts, these discoveries account for nearly 1 BBOE so far.

Along with the deepwater Lower Tertiary and Norphlet Trends, other conceptual plays in the northern GOM that may be future exploration targets include (1) the Upper Cretaceous Tuscaloosa Formation (**Table 5**) Slope Play, primarily located in the Mississippi Canyon Area; (2) the Expanded Middle to early Upper Jurassic Play, primarily located in the extreme southwest De Soto Canyon and north Lloyd Ridge Areas; and (3) the Triassic to Middle Jurassic Pre-Salt or Equivalent Play, identified in the northeastern GOM extending from the De Soto Canyon/Lloyd Ridge Areas east across the Florida Platform. These are among 30 total plays to be assessed for undiscovered resources in BOEM's 2021 GOM Resource Assessment (in progress).

PLEISTOCENE-PLIOCENE-MIOCENE TREND

In the deepwater GOM, hydrocarbons are often trapped on the flanks of minibasins situated above and below tabular salt bodies. These minibasins formed as a result of ongoing salt withdrawal and migration, as depositional depressions on top of salt canopies filled with Miocene, Pliocene, and Pleistocene sediments (Table 5). Notably, some deepwater discoveries associated with minibasins are found in what is known as a "turtle" structure, which forms when salt entirely evacuates from its source due to sediment loading and the synclinal flanks of the minibasin collapse leaving an inverted sediment pile anticline. Numerous other discoveries are found beneath extensive salt canopies associated with compressional fold belts.

Many of these deepwater discoveries have a range of hydrocarbon-bearing pool ages. The following discussion classifies each BOEM-designated oil and gas field according to the sediment age that most of the hydrocarbons are trapped in by volume. In the deepwater GOM, there are a total of 249 fields that are Pleistocene, Pliocene, and Miocene in age. Of these, 54 contain hydrocarbons that are trapped predominantly in Pleistocene pools. These fields have discovery dates ranging from 1975 through 2009, and nearly two-thirds of the fields are now expired. With a production history beginning in 1988, a total of 34 fields have produced, and approximately half are still online. Large (>50 million barrels of oil equivalent [MMBOE]) Pleistocene discoveries that are not depleted include Hoover (Alaminos Canyon 25), Gunnison (Garden Banks 668), Jolliet (Green Canyon 184), and Magnolia (Garden Banks 783).

Of the 249 deepwater fields, 70 contain hydrocarbons trapped predominantly in Pliocene pools. These fields have discovery dates ranging from 1975 through 2014, and just over half of the fields are now expired. With a production history beginning in 1979, a total of 52 fields have produced, and nearly two-thirds are still online. Large (>250 MMBOE) Pliocene discoveries that are not depleted include Auger (Garden Banks 426), Cognac (Mississippi Canyon 194), Troika (Green Canyon 244), and Lucius (Keathley Canyon 875). Other Pliocene fields, such as Hopkins (Green Canyon 627) was discovered in December 2014, while Hadrian South (Keathley Canyon 964) produced from 2015 into 2018. Lucius, the large subsalt Pliocene discovery, began production in January 2015.

The remaining 125 fields are predominantly Miocene. These fields have discovery dates ranging from 1981 through 2018, and just under half of those fields are now expired. With a production history beginning in 1994, a total of 90 fields have produced, and nearly two-thirds are still online. Large (>250 MMBOE) Miocene discoveries that are not depleted include the Mars-Ursa (Mississippi Canyon 807) geologic complex, which is trapped along the flanks of a large minibasin; Atlantis (Green Canyon 743) and Mad Dog (Green Canyon 826), which are associated with compressional fold belts; and Thunder Horse (Mississippi Canyon 778), which is a turtle structure. Nearly three-fourths of all deepwater fields with discovery dates from 2015 through 2018 are Miocene.

Estimated volumes and the spatial distribution of the 34 Pleistocene-dominant fields, 52 Pliocenedominant fields, and 92 Miocene-dominant fields in deep water that are classified as proved reserves or reserves justified for development are shown in **Figure 60**. The sizes are for the whole field, but each field is classified by the dominant sediment age in which the hydrocarbons are trapped by volume. The map implies nothing about production or remaining reserves. Except for Hoover, all Pleistocene-dominant fields are less than 100 MMBOE. Volumetric estimates put 21 Pliocene-dominant fields greater than 50 MMBOE, with 4 of those topping 250 MMBOE. Of the Miocene-dominant fields, 39 contain greater than 50 MMBOE, with 12 of those greater than 250 MMBOE.

Figure 60. Total proved field volumes classified by dominant reservoir age.

LOWER TERTIARY TREND

The Lower Tertiary Trend in the deepwater GOM has emerged as one of the world's leading exploration plays due to significant discoveries from the Alaminos Canyon to Walker Ridge Areas. However, long before the 1996 BAHA well in Alaminos Canyon confirmed the presence of Wilcox-equivalent, Lower Tertiary rocks in the deepwater GOM, the Lower Tertiary play was explored onshore. Lower Tertiary rocks can be found exposed in onshore outcrops across all the Gulf Coast States. Onshore, the Oligocene Frio Formation and Paleocene to Eocene members of the Wilcox Group have a long history of drilling and production. These onshore reservoirs are situated in areas containing predominantly deltaic to shallowmarine sediments, with the paleo-shelf margins located onshore across the northern GOM. Large Lower Tertiary paleocanyons, which could have channeled sediments from the shelf to the deep water, occur from onshore Texas to Louisiana. A northward-thinning Lower Tertiary wedge across the modern abyssal plain in the Walker Ridge, Atwater Valley, and Lund Areas also suggests a southern source, possibly from the Yucatan or Cuba.

The aforementioned first well to penetrate Wilcox-equivalent, Lower Tertiary rocks in the deepwater GOM occurred in 1996 in Alaminos Canyon Block 600. Four of the world's largest companies at the time— Texaco, Amoco, Shell, and Mobil—proceeded to drill a giant anticlinal structure they dubbed BAHA (an acronym representing the first letter of each company's name for the prospect). In a then record-setting 7,620 ft of water, the well logged 15 ft of oil in the Eocene and was dubbed a dry hole. Even though technical difficulties forced drilling to stop before the target depth (Mesozoic fractured carbonates), the value of the well lies in the fact that it encountered thick sands in an area where none were expected. It took 5 years for the companies to integrate the well data with seismic data before the BAHA #2 well reached total depth in Alaminos Canyon Block 557. It too was commercially unsuccessful, but the well confirmed the extensive and continual nature of the thick Lower Tertiary sands, referred to as the "Whopper Sand." The well also demonstrated that, because of the very deep waters, deep reservoirs, and unexpected pressure regimes, the cost of drilling a well in this environment was enormous. Therefore, to be economic in these conditions, true discoveries would have to be large.

Over the past 20 years, the majority of wells in this deepwater trend have targeted Wilcox-equivalent (Upper Paleocene to Lower Eocene, **Table 5**) basinal turbidite systems. However, a few exploration wells in the Alaminos Canyon Area have encountered discoveries in onshore Frio-equivalent (Oligocene, **Table 5**) rocks also (e.g., Great White–Alaminos Canyon Block 857 and Silvertip–Alaminos Canyon Block 815). Significant portions of the trend are beneath salt canopies and are associated with large compressional fold belts at the basinward limit of a balanced and linked, complex system in which updip sedimentary loading and gravity-driven collapse associated with extension are accommodated by the extrusion of salt canopies and downdip contraction (Rowan et al., 2000). The timing of fold development varies across the trend, generally becoming younger to the east. Structural styles/exploration targets include 4-way closures, 3-way closures against salt, and turtle structures. Primary exploration risks include the timing of hydrocarbon expulsion and migration, reservoir quality, and an effective seal mechanism.

A total of 72 exploratory Lower Tertiary prospects have been drilled in the deepwater GOM, 53 in the WPA and 19 in the CPA. In **Table 6**, these prospects are classified solely by the Lower Tertiary section that the well tested, not any other aged section the well encountered. The classifications are defined as listed below.

- Oil Discovery (Producing) the prospect is currently producing from the Lower Tertiary.
- Oil Discovery the prospect has a well that penetrates the Lower Tertiary section and would meet the requirements defined by 30 CFR § 550.116 to qualify as producible, and the lease is still active.

- Non-Commercial Oil the prospect has a well that penetrates the Lower Tertiary section and would qualify as producible under the guidelines defined by 30 CFR § 550.116, but the lease in which the well was drilled has been either relinquished, terminated, or expired.
- Dry Hole the prospect does not have a well in which the Lower Tertiary section penetrated would meet the requirements defined by 30 CFR § 550.116 to qualify as producible.
- Announced Oil Discovery the only information that BOEM can disclose about the prospect is from a publicly released industry statement.

Figure 61 shows the spatial distribution and results of the exploratory Lower Tertiary prospects as defined above. Lower Tertiary discoveries estimated to contain greater than 100 MMBOE of recoverable resources include Buckskin (Keathley Canyon Block 872), Anchor (Green Canyon Block 807), Great White (Alaminos Canyon Block 857), St. Malo (Walker Ridge Block 678), Jack (Walker Ridge Block 759), Tiber (Keathley Canyon Block 102), Shenandoah (Walker Ridge Block 52), Whale (Alaminos Canyon Block 772), and North Platte (Garden Banks Block 959). The 2014 Leon oil discovery in Keathley Canyon Block 642 has an announced net oil thickness of 500 ft, and an agreement has been reached to drill a delineation well.

Of the 72 prospects drilled to date, 21 are classified as oil discoveries, resulting in a 29 percent success rate of Lower Tertiary prospects drilled (Figure 62). The years 2019 and 2020 only represent operatorannounced discoveries, not all Lower Tertiary prospects drilled, due to the proprietary nature of the well data. Recent Lower Tertiary operator-announced discoveries include Monument (Walker Ridge Block 272), in which Equinor announced approximately 200 ft of net oil pay, with a total well depth of 33,348 ft. Shell also announced the Blacktip discovery (Alaminos Canyon Block 380), which encountered more than 400 ft of net oil pay, with good reservoir and fluid characteristics.

The production history of the Lower Tertiary Trend began in 2009 with the installation of the Perdido Regional Host spar in Alaminos Canyon Block 857 in 7,835 ft of water, a world water-depth record for a spar. The spar hosts production from the Great White (Alaminos Canyon 857) and Tobago/Silvertip (Alaminos Canyon 859) Fields. First production at the facility occurred in 2010. The installation of the northern GOM's first floating production, storage, and offloading (FPSO) facility occurred in 2011 at Walker Ridge Block 249 in approximately 8,300 ft of water. The FPSO began collecting production from the Cascade (Walker Ridge 206) and Chinook (Walker Ridge 469) Fields in 2012. The largest (based on displacement) semisubmersible production platform in the GOM was installed in early 2014 at Walker Ridge Block 718 in approximately 6,950 ft of water. The semisubmersible hosts production from the Jack (Walker Ridge 759) and St. Malo (Walker Ridge 678) Fields. Production from these fields began in late 2014. In September 2016, the Stones (Walker Ridge 508) Field started production in Walker Ridge Block 551 featuring the use of the northern GOM's second FPSO. This FPSO was installed in approximately 9,560 ft of water, setting the world water-depth record for a production facility. Other production startups from deepwater GOM Lower Tertiary rocks include the Julia (Walker Ridge 627) Field in March of 2016 as a subsea tieback to the Jack/St. Malo semisubmersible, as well as the Buckskin (Keathley Canyon 827) Field in June 2019 as a subsea tieback to the Lucius Spar located in Keathley Canyon Block 875.

Table 6.	Deepwater	Lower	Tertiary	publicly	released	well information	on.

		1	able 6. D	Deepv	vater Lower 1	Tertiary publicly released well information.	
Planning Area	Year	Prospect Name	Location	Lease	Operator	Partner(s)	Lower Tertiary Section Result
WPA	1996	ВАНА	AC Block 600	G08580	Shell	Chevron, Amoco, Mobil, Texaco	Dry Hole
WPA	2001	BAHA-2	AC Block 557	G08272	Shell	Chevron, Amoco, Mobil, Texaco	Dry Hole
СРА		Ponza	KC Block 774	G21441		Devon, Statoil	Dry Hole
WPA		Trident	AC Block 903	G20876		Devon, Chevron, Eni Petroleum, StatoilHydro	Non-Commercial Oil
СРА		Cascade	WR Block 206	G16965		No Partner	Oil Discovery (Producing, 2012)
WPA CPA	_	Great White	AC Block 857	G17565	Shell	BP, Chevron	Oil Discovery (Producing, 2010)
СРА СРА		Chinook	WR Block 469 GC Block 727	G16997	Murphy	No Partner Equinor, Chevron	Oil Discovery (Producing, 2012) Dry Hole
WPA	_	Tahiti Toledo	AC Block 951	G16783 G20885	Anadarko Chevron	Devon, Nippon, Maxus	Non-Commercial Oil
CPA		St. Malo	WR Block 678	G21245	Union	Equinor, Chevron, Exxon, Eni Petroleum	Oil Discovery (Producing, 2014)
WPA		Silvertip	AC Block 815	G19409		Chevron	Oil Discovery (Producing, 2010)
СРА		Hadrian	KC Block 919	G21447	Exxon, Anadarko	MP Gulf of Mexico LLC, Eni Petroleum	Non-Commercial Oil
WPA	2004	Tiger	AC Block 818	G20863	Chevron	Statoil, Repsol, Nippon	Non-Commercial Oil
СРА		Jack	WR Block 759	G17016	Chevron	Equinor, TEP Jack	Oil Discovery (Producing, 2014)
WPA	2004	Tobago	AC Block 859	G20871	Shell	Union. Chevron, CNOOC Petroleum	Oil Discovery (Producing, 2011)
СРА	2004	Das Bump	WR Block 724	G17011	BP	Petrobras	Non-Commercial Oil
СРА	2004	Sardinia	KC Block 681	G20949	StatoilHydro	No Partner	Dry Hole
WPA		Diamondback	AC Block 739	G19390	BP	Shell, Amerada Hess	Non-Commercial Oil
СРА		Mad Dog South	GC Block 826	G09982	ВР	BHP Billiton, Union Oil	Non-Commercial Oil
СРА		Shenzi	GC Block 653		BHP Billinton	Hess, Repsol	Dry Hole
СРА		Stones	WR Block 508	G17001	Shell	No Partner	Oil Discovery (Producing, 2016)
СРА		Big Foot	WR Block 29	G16942		Equinor, Marubeni	Non-Commercial Oil
СРА		Mission Deep	GC Block 955		Anadarko	Kerr-McGee, Devon	Dry Hole
CPA		Kaskida	KC Block 292	G25792		No Partner	Oil Discovery
CPA		Tucker	WR Block 544	G17003		Statoil	Non-Commercial Oil
WPA		North Brontosaurus	AC Block 731 WR Block 627	G19386		Exxon, Statoil, Nippon, Repsol	Dry Hole
CPA		Julia Cortez Bank		G20361		Statoil	Oil Discovery (Producing, 2016)
CPA CPA	_	Cortez Bank Hal	KC Block 244 WR Block 848	G19530 G20403		Devon No Partner	Non-Commercial Oil Non-Commercial Oil
СРА		Atlas	WR Block 155	G18649		Repsol E&P	Non-Commercial Oil
СРА		Damascus	WR Block 581	G25257	Chevron	Devon, Maersk	Dry Hole
СРА		Chuck	WR Block 278	G18675	Devon	Conoco Philips, Exxon, Maersk	Non-Commercial Oil
СРА		Green Bay	WR Block 372	G18701	Anadarko	Statoil, Devon, Conoco Philips, Nippon	Dry Hole
СРА		Buckskin	KC Block 872	G25823		Buckstone Development, Repsol E&P, Beacon Offshore, Navitas Buckskin	Oil Discovery (Producing, 2019)
СРА	2009	Shenandoah	WR Block 52	G25232	LLOG	ShenHai, Beacon Offshore	Oil Discovery
СРА	2009	Lewis	WR Block 316	G25246	Chevron	Exxon, Maersk, Hess	Dry Hole
СРА	2009	Salida	GB Block 988	G25696	Freeport-MacMoRan	Plains	Dry Hole
СРА	2009	Rickenbacker	KC Block 470	G22360	Anadarko	Conoco Philips, Plains, StatoilHydro, Woodside Energy	Dry Hole
СРА	2009	Turtle Lake	GC Block 847	G23000	Chevron	Hess, Anadarko, Maersk	Dry Hole
СРА	2009	Bass	KC Block 596	G19600	Devon	Conoco Philips	Dry Hole
СРА	2009	Northwood	GC Block 945	G32547	Freeport-MacMoRan	Plains, Maersk, Maxus	Dry Hole
WPA	2009	Tiber	KC Block 102	G25782	BP	No Partner	Oil Discovery
СРА		Logan	WR Block 969	G26419		Ecopetrol, Perobras, OOGC	Non-Commercial Oil
WPA		Cobra	AC Block 810	G31199		Ecopetrol, OOGC	Dry Hole
СРА		Moccasin	KC Block 736	G22367	Chevron	Samson Offshore	Non-Commercial Oil
CPA	-	Bioko	KC Block 698	G33343		Shell, Conoco Philips	Dry Hole
CPA		North Platte	GB Block 959	G30876			Oil Discovery
CPA WPA		Coronado	WR Block 98 KC Block 93	G21841 G25780	Anadarko Chevron	Conoco Philips, Venari	Oil Discovery
CPA		Gila Ardennes	GC Block 896	G25780 G31765		BP, Conoco Philips Total E&P	Non-Commercial Oil Dry Hole
СРА		Aegean	KC Block 163	G32606		Total E&P	Dry Hole
СРА		Phobos	SE Block 39	G27779		No Partner	Non-Commercial Oil
СРА		Yucatan North	WR Block 95		Anadarko	Shell, Nexen, INPEX, Cobalt	Non-Commercial Oil
WPA		Nansen Deep	EB Block 645		Anadarko	Kerr-McGee, Marubeni	Non-Commercial Oil
WPA	_	Oceanographer	GB Block 973	G32911		Maersk. Samson	Dry Hole
СРА	2014		KC Block 642	G33335		Repsol, Beacon Offshore	Oil Discovery
СРА	2014	Anchor	GC Block 807	G31752	Cheveron	Total E&P, TEP Anchor	Oil Discovery
СРА	2014	К2	GC Block 562	G11075	Anadarko	Ecopetrol, Eni Petroleum, Conoco Philips, JX Nippon	Dry Hole
СРА		Guadalupe	KC Block 10	G27698		No Partner	Oil Discovery
СРА		Key Largo	WR Block 578		Marathon	Repsol	Dry Hole
СРА		Sweetwater	KC Block 414	G26748		BP, Nexen, Venari	Non-Commercial Oil
СРА		Solomon	WR Block 225	G32668		Venari	Dry Hole
		Sicily	KC Block 814	G25810		Hess, Nexen	Non-Commercial Oil
СРА		Melmar	AC Block 475	G35137		No Partner	Non-Commercial Oil
WPA			GB Block 998	G31688		Shell	Dry Hole
WPA CPA	2016	Dawn Marie			Cobalt	Total E&P	Dry Hole
WPA CPA CPA	2016 2016	Goodfellow	KC Block 129	G30924			
WPA CPA CPA WPA	2016 2016 2016	Goodfellow Gibson	KC Block 96	G33531	Chevron	BP	Non-Commercial Oil
WPA CPA CPA WPA WPA	2016 2016 2016 2017	Goodfellow Gibson Whale	KC Block 96 AC Block 772	G33531 G35153	Chevron Shell	Chevron	Oil Discovery
WPA CPA CPA WPA WPA CPA	2016 2016 2016 2017 2017	Goodfellow Gibson Whale Ipanema	KC Block 96 AC Block 772 WR Block 376	G33531 G35153 G33375	Chevron Shell Shell	Chevron No Partner	Oil Discovery Non-Commercial Oil
WPA CPA CPA WPA WPA CPA CPA	2016 2016 2017 2017 2017 2018	Goodfellow Gibson Whale Ipanema Stones SW	KC Block 96 AC Block 772 WR Block 376 WR Block 595	G33531 G35153 G33375 G36088	Chevron Shell Shell Shell	Chevron No Partner No Partner	Oil Discovery Non-Commercial Oil Dry Hole
WPA CPA CPA WPA WPA CPA	2016 2016 2017 2017 2017 2018 2019	Goodfellow Gibson Whale Ipanema	KC Block 96 AC Block 772 WR Block 376	G33531 G35153 G33375 G36088 G32954	Chevron Shell Shell Shell	Chevron No Partner	Oil Discovery Non-Commercial Oil

Figure 61. Deepwater Lower Tertiary Trend.

Figure 62. Number of deepwater Lower Tertiary well tests.

UPPER JURASSIC NORPHLET TREND

An active exploration trend for 17 years in the deepwater Mesozoic has been the Upper Jurassic Norphlet Aeolian Dune Play (Table 5). The onset of the deepwater portion of the Norphlet Play was initiated in 2003 by Shell Offshore and Nexen Petroleum with the drilling of their Shiloh prospect in De Soto Canyon Block 269 (Lease Sale 181). The well encountered approximately 100 ft of oil column within the aeolian Norphlet section of the Upper Jurassic. The drilling of this single well was a proof-of-concept for this play by proving the presence of hydrocarbon source rock (Smackover, Table 5), reservoir rock (Norphlet), and vertical and horizontal seals (also Smackover). A working petroleum system had been established. The operator has since reclassified Shiloh as a "non-commercial" discovery.

Shiloh, along with the Vicksburg "B" well (De Soto Canyon Block 353) drilled in 2007, extended the Norphlet Play from the natural gas producing shallow-water play in the Mobile Bay/Destin Dome areas, southward into the oil prone, deepwater (>7,200 ft) protractions of Mississippi Canyon and De Soto Canyon.

Oil industry majors and larger independents have been the most active participants in acquiring available lease blocks in the eastern part of the CPA and western portion of the EPA. Primary protractions of interest include De Soto Canyon, Lloyd Ridge, and Mississippi Canyon, where the primary reservoir is aeolian dune sands. Nineteen CPA, EPA, and GOM areawide lease sales have been held since the drilling of the Shiloh well in 2003, with 451 blocks (2,597,760 acres) leased. Bonus bids accepted for the blocks have totaled \$1,134,357,166 (Table 7).

			-		sale information.
Lease Sale	Date	Planning Area	Number of Blocks Receiving Bids	Total of High Bids	Participating Companies
Sale 197	March 2005	EPA	12	\$6,974,531	Anadarko Petroleum, Devon Energy, Dominion Exploration and Production, Helis Oil and Gas, Houston Energy, Newfield Exploration, Petrobras America, Red Willow Offshore, Spinnaker Exploration
Sale 205	October 2007	СРА	96	\$418,728,078	Anadarko Exploration and Production, Eni Petroleum US, Hess Corporation, KNOC USA, LLOG Exploration Offshore, Marathon Oil, Mariner Energy, Murphy Exploration and Production, Nexen Petroleum Offshore, Petrobras America, Shell Offshore, Stephens Production, Stone Energy
Sale 224	March 2008	EPA	36	\$64,713,213	BHP Billiton, Eni Petroleum US, BP Exploration and Production
Sale 208	March 2009	СРА	13	\$6,476,545	Anadarko Petroleum, Shell Offshore
Sale 213	March 2010	СРА	8	\$9,662,605	BHP Billiton, Murphy Exploration and Production, Shell Offshore, Statoil Gulf Properties
Sale 216/222	June 2012	СРА	54	\$85,101,084	Anadarko US Offshore, BHP Billiton, BP Exploration and Production, Chevron USA, Ecopetrol America, LLOG Exploration Offshore, Murphy Exploration and Production, Nexen Petroleum, Nobel Energy, Shell Offshore, Statoil Gulf of Mexico, Stone Energy
Sale 227	March 2013	СРА	59	\$179,459,461	Anadarko US Offshore, Apache Deepwater, BHP Billiton, Chevron USA, Ecopetrol America, Eni Petroleum, LLOG Bluewater Holding, Murphy Exploration and Production, Repsol Exploration, Shell Offshore, Stone Energy, Venari Offshore
Sale 225	March 2014	EPA	0	\$0	
Sale 231	March 2014	СРА	66	\$161,113,401	BP Exploration & Production, BHP Billiton, Chevron USA, Cobalt International, Ecopetrol America, Murphy Exploration & Production, Noble Energy, Ridgewood Energy, Shell Offshore, Statoil Gulf of Mexico, Total Exploration & Production USA, Venari Offshore
Sale 235	March 2015	СРА	6	\$4,884,029	Cobalt Int'I Energy, Shell Offshore, Total Exploration and Production USA
Sale 226	March 2016	EPA	0	\$0	
Sale 241	March 2016	СРА	6	\$28,807,716	Chevron USA, Exxon/Mobil, Shell Offshore
Sale 247	March 2017	СРА	10	\$12,761,540	Shell Offshore, Total Exploration & Production, Exxon/Mobil, Chevron USA
Sale 249	August 2017	СРА	3	\$2,728,058	Anadarko US Offshore, Shell Offshore
Sale 250	March 2018	СРА	11	\$23,292,534	BP Exploration & Production, Total Exploration & Production USA, Chevron USA, Deep Gulf Energy
Sale 251	August 2018	СРА	40	\$88,794,510	Exxon/Mobil, Anadarko US Offshore, BP Exploration & Production, Total Exploration & Production USA, Chevron USA, Talos Energy, Kosmos Energy
Sale 252	March 2019	СРА	15	\$29,120,148	BP Exploration & Production, Total Exploration & Production USA, Anadarko US Offshore, Shell Offshore
Sale 253	August 2019	СРА	13	\$10,009,823	Shell Offshore, BP Exploration & Production, Chevron USA
Sale 254	March 2020	СРА	3	\$1,729,890	BP Exploration & Production

Table 7. Deepwater Norphlet lease sale information.

A total of 31 exploratory/delineation wells have been drilled to test/evaluate the Norphlet section of the Upper Jurassic in deep water through mid-2018, resulting in potentially seven commercial discoveries (Figure 63 and Table 8).

166	167	168	169	170	171	172	173		134 an 👝	135	136	137	138	139	140	141	142	143	144	145	146	147	148	1	Jura Norphi	et Wel	anno S		Tes	<u>is</u>
	211	212	213	214	215	216	217	and and	178	179		181		183	184	185	186	187	188	189	190	191	192	15	•	Explor	atory, C	Dil Disco	overy	
254		258	257	258	259	260	261	221	222		224	225	226	227	228	229	230	•Pe	232	233	234	235	236	23	•			lon-con		II Oil
						304	305	265		Antie	tam	269	Shiloh	271	272		274	275	276	277	278				•			bry Hole	5	
	298				303	504	aua	-		sburg		Soa	210	211	212	210	214	210	210			218	200	20	0		ation, C	Dil Dry Hole		
342	343	344	345	346	3.47	348	349	11	Vicks	burg	"B"		314		318		318			321	322		324	32			ng Area	100		
	387	388 ^A	ppon	attox	399	2 2	293	653	354	355 ottys	356 burg \	357 Nest	358	359	360	361	362	383	364		366	367	368	36		Protrac		2		
430	431	432 Leesb		434	Corint	h/	437	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	41			et DOC	D		
474	475	476	477	478	479	480	481	441	442	443 Frede	444 ericks	445	446	447	448	449	450	451	452	453	454	455	456	45		Blocks		Miles		_
518	519		521	522	523 Dud	524 berg	525	485 Pot	486 ersbu	487	488	489	490	491	492	493	494	495	496	497	498	499		50	N	0	3	6	9	12
562	563	564		0	567	568	569	529	530	531	532	533	534	•Ra	536	537	538		540	541	542	543	544	545	040	041	1:77	5,000	330	333
606	607	Fort 608	Sum 609	610	Ca 611	ostle V	Valley 613	573	574		576	577	578	579		581		583	584		586	587	588	589	590	591	502		594	
	651	652	653	654	655	656	657	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	837	638	639
694		698	697	698	699	700	701	681	682	663	664	665		667	868	669	670	671	872	673	874	675	676	877	678	679	680	881	682 Sak	683
738	739	740	741	742	743	744	745	705	706	707	708	709		711	712	713	714	715	716	717	718	719		721	722	723	724		728	727
		784		788	787		789	749	750	751	752	753	754	Mada 755	gasca 758	ar ©57	758	759	760	761	762		764	765	766	767	C IT IT	769	770	771
826	827	828	829	830	831	832	833	793	794		796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	ntral Pla	P813	814	815
	871	872	873	874	875	876	877	837	838	839	840	841	842	•Sv 843	vordfi 844	sh 845	846	847	848	849	850	851	852	853	854	855	planning Area	atem Planning An	858	859
914	915	916	917	918	919		921	881	882		884	885	888	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903
	959	980	961	962	Missi	ssip	pies.	925 D	e So	ter	928	929			932		934		936		938	939	940	941	942	943	944	945	946	947
	1003	1004		1006	1007	anyo			anyc		972		974		976	977	978	979		981			984	985		987	988	589	990	

Figure 63. Deepwater Norphlet Trend.

Planning Area	Year	Prospect	Location	Lease	Type of Well	Number of Wells	Operator	Partner(s)	Norphlet Section Result
СРА	2003	Shiloh	DC Block 269	G23502	Exploratory	1	Shell	Nexen	Non-Commercial Oil
СРА	2007	Vicksburg "B"	DC Block 353	G25852	Exploratory	1	Shell	Nexen	Oil Discovery
СРА	2008	Fredericksburg	DC Block 486	G25855	Exploratory	1	Shell	Nexen, Plains	Dry Hole
СРА	2009	Appomattox	MC Block 392	G26253	Exploratory	1	Shell	Nexen	Oil Discovery
СРА	2009	Appomattox	MC Block 392	G26253	Delineation	3/1 lost	Shell	Nexen	2 Wells Oil
СРА	2009	Antietam	DC Block 268	G23501	Exploratory	3/2 lost	Shell	Nexen	Non-Commercial Oil
СРА	2011	Appomattox	MC Block 348	G19939	Delineation	2	Shell	Nexen	1 Well Oil/1 Well Dry
СРА	2012	Appomattox	MC Block 391	G26252	Delineation	2	Shell	Nexen	1 Well Oil/1 Well Dry
СРА	2013	Raptor	DC Block 535	G23520	Exploratory	1	Anadarko	внр	Dry Hole*
СРА	2013	Madagascar	DC Block 757	G31570	Exploratory	1	Marathon	Murphy, Ecopetrol	Dry Hole
СРА	2013	Swordfish	DC Block 843	G23540	Exploratory	1	Shell	Nexen, Eni	Dry Hole
СРА	2013	Petersburg	DC Block 529	G23517	Exploratory	1	Shell	Nexen	Dry Hole
СРА	2013	Vicksburg "A"	MC Block 393	G26254	Exploratory	1	Shell	Nexen	Oil Discovery
СРА	2013	Corinth	MC Block 393	G26254	Exploratory	2/1 lost	Shell	Nexen	Dry Hole
EPA	2013	Sake	DC Block 726	G32014	Exploratory	2/1 lost	внр	Statoil	Dry Hole
СРА	2014	Rydberg	MC Block 525	G31507	Exploratory	2/1 lost	Shell	Nexen, Ecopetrol	Oil Discovery
СРА	2014	Titan	DC Block 178	G25850	Exploratory	3/1 lost	Murphy	Ecopetrol, Venari	Non-Commercial Oil
СРА	2014	Perseus	DC Block 231	G33780	Exploratory	1	Statoil	BHP, Marathon	Dry Hole
СРА	2014	Gettysburg West	DC Block 398	G25854	Exploratory	1	Shell	Nexen	Non-Commercial Oil
СРА	2016	Leesburg	MC Block 475	G35335	Exploratory	1	Shell	Chevron, Venari	Dry Hole
СРА	2016	Fort Sumter	MC Block 566	G08831	Exploratory	1	Shell	No Partner	Oil Discovery
СРА	2016	Fort Sumter	MC Block 566	G08831	Delineation	3	Shell	No Partner	2 Wells Oil/1 Well Dry
СРА	2017	Castle Valley	MC Block 567	G33744	Exploratory	2/1 lost	Shell	No Partner	Dry Hole**
СРА	2018	Ballymore	MC Block 607	G34451	Exploratory	3/2 lost	Chevron	Total	Oil Discovery
СРА	2018	Dover	MC Block 612	G33166	Exploratory	2/1 lost	Shell	No Partner	Oil Discovery
•		d penetrate 150 ft of well, programmed t			•	•		ell above the Norphlet obj	ective.

Table 8. Deenwater Nornhlet nublicly released well information

In the CPA through mid-2018, 41 wellbores have been drilled, of which 22 are classified as exploratory, 9 are categorized as delineation, and the remaining 10 were lost due to mechanical problems or shallow-water flow. All of these wells are located in northwest De Soto Canyon and northeast Mississippi Canyon. Water depths in this area are in excess of 7,000 feet. Average drilling footage for the wellbores reaching total depth is approximately 25,000 ft, with overall drilling times of 100 to 150 days per well. In the EPA, two wells have been drilled, with one classified as exploratory and the other lost due to shallow-water flow problems. The borehole is located on the Florida Escarpment in block 726 of south-central De Soto Canyon. The wellbore is located in 3,575 ft of water and was drilled to 18,365 ft. Drilling time was 44 days.

There are two companies who have announced significant Norphlet oil discoveries. Shell Offshore, via press releases, has announced several significant deepwater discoveries associated with the Jurassic Norphlet play as follows: Appomattox (Mississippi Canyon Block 392), Vicksburg "A" (Mississippi Canyon Block 393), Rydberg (Mississippi Canyon Block 525), Fort Sumter (Mississippi Canyon Block 566), and Dover (Mississippi Canyon Block 612). Chevron released a press release for their discovery at Ballymore (Mississippi Canyon Block 607). All are located in northeast Mississippi Canyon (Figure 64). These wells penetrated significant oil-bearing Norphlet sand intervals at depths in excess of 24,000 ft. Through mid-2018, Shell, as operator, along with its partner, has drilled delineation wells at Appomattox and Fort Sumter.

Shell has estimated the discovered resources associated with Appomattox/Vicksburg "A" to be approximately 650 MMBOE. Their development operations coordination document (DOCD) indicates a subsea production system featuring 6 drill centers, 15 producing wells, and 5 water injection wells tied back to a semisubmersible platform located on Mississippi Canyon Block 437. The date of first production for the project was May 2019.

Shell has assessed the Norphlet aeolian reservoir and its associated oil characteristics. Whole core examination, along with the analysis of associated well logs, established a dune type change in the aeolian deposits from the individual seif (longitudinal) and star dune setting in the north to an area with barchan (horned) dunes in a coalesced erg environment in the south (Figure 64) (Godo et al., 2011). In addition to two sequences of barchanoid dunes (both sinuous and straight-crested forms), these core and log analyses also identified three additional large-scale depositional intervals: (1) interbedded lacustrine mudrocks; (2) stacked aeolian sheets and/or sheetflood facies; and (3) mixed coastal sand sheets with some waterlain sabkha facies (Godo et al., 2011).

The structure of each Norphlet prospect is contained within and controlled by tectonic rafts that detached along the Florida Escarpment and translated basinward by gravity gliding on the autochthonous Louann Salt in the late Jurassic to early Cretaceous (Pilcher et al., 2014). A common Norphlet well log response is illustrated in Figure 65 with the Appomattox discovery in Mississippi Canyon Block 392. The Norphlet section, deposited on the Louann Salt, consists of clean, blocky, medium- to fine-grained aeolian dune deposits. Some wells drilled to date also contain a Norphlet fluvial section consisting of alternating shale and channel sand beds. Porosities, permeabilities, and net-to-gross intervals all decrease toward the east as fluvial interaction increases away from the well-developed dune field to the west (Figures 66 and 67). The Norphlet section is overlain by the Smackover Formation, which is a carbonate-rich section that acts as both the seal and hydrocarbon source for Norphlet reservoirs. In the contacts between the Smackover and the top of the Norphlet, both abrupt and gradational have been observed.

Primary play risks identified to date within the deepwater area include the presence of a reservoir, reservoir quality, and hydrocarbon properties, including the presence of asphaltenes, which can restrict hydrocarbon flow. Additional risks include timing (trap creation relative to hydrocarbon generation and expulsion) and trap seal (vertical and horizontal) for hydrocarbon preservation.

Figure 64. Aeolian dune type change from shallow-water to deepwater Norphlet.

Figure 65. Norphlet well log response in the Appomattox discovery in Mississippi Canyon Block 392.

Figure 66. Porosity and permeability crossplot by Norphlet facies.

Figure 67. Net sand to gross interval crossplot by Norphlet facies.

DEEPWATER WILCOX AND NORPHLET COMPARISONS

Some Wilcox (Lower Eocene-Upper Paleocene) and Norphlet (Upper Jurassic) reservoirs in the deepwater GOM are characterized by either high pressure or high temperature. When comparing the Wilcox and Norphlet, three distinct pressure and temperature trends are observed.

- 1) Wilcox reservoirs located within Alaminos Canyon are associated with lower temperatures and pressures.
- 2) Wilcox reservoirs located outside Alaminos Canyon are associated with higher pressures.
- 3) Deepwater Norphlet reservoirs are associated with higher temperatures.

Figure 68 illustrates the depth to the top of the Wilcox Formation (Lower Eocene) and the depth to the top of the Norphlet Formation, within each respective trend. The top of the Wilcox Formation in the WPA's Alaminos Canyon associated with the Perdido Fold Belt is generally encountered at a depth much shallower than the rest of the deepwater Wilcox Trend. Depths are less than 20,000 ft, with an average depth of approximately 14,000 ft. The top of the Wilcox Formation located in the WPA and CPA outside of Alaminos Canyon is generally much deeper (25,000 to 35,000 ft). Both water depth up to 10,000 ft as well as the presence of a thick (5,000 to 20,000 ft) complicated salt canopy system overlying much of the targeted sediments contribute to the deeper target depths. The depth to the top of the deepwater Norphlet Formation ranges from 21,000 to 28,000 ft, with an average depth of 25,000 ft.

Pressure and temperature generally increase with depth. **Figure 69** shows the distribution of pressures associated with the top of the Wilcox and Norphlet Formations. These pressures are estimated reservoir pressures at depth. They were calculated based on formation depth and an adjusted drill mud weight to compensate for drilling slightly overbalanced. The Bureau of Safety and Environmental Enforcement (BSEE) identifies a high-pressure environment within a well when at least one of the following conditions is met:

- 1) the well completion equipment or well control equipment is assigned a pressure rating greater than 15,000 pounds per square inch absolute (psia) and
- 2) the maximum anticipated surface pressure or shut-in tubing pressure is greater than 15,000 psia on the seafloor for a well with a subsea wellhead or at the surface for a well with a surface wellhead (USDOI, BSEE, 2019).

While **Figure 69** does not depict the pressure at the wellhead, it does identify that the deeper Wilcox Formation outside of the Perdido Fold Belt area has higher reservoir pressures associated with it. The result of its much shallower depth, the Wilcox Formation in the Alaminos Canyon Area exhibits the lowest of the pressures. The pressure versus depth crossplot in **Figure 70** also illustrates the differences in pressure between the Wilcox Formation located within Alaminos Canyon, the Wilcox Formation outside of Alaminos Canyon, and the deepwater Norphlet Formation. Because many of the Wilcox reservoirs are typically 20,000+ psi and 30,000+ ft deep, advancements and continuing improvements in high-pressure drilling technology have had to occur in order to explore and develop this geologic trend economically. In December 2019, Chevron Corporation announced the sanctioning of its Anchor (Green Canyon Block 807) project. It marks industry's first deepwater, high-pressure (20,000 psi) development to achieve a final investment decision.

Figure 68. Depth to top of the Wilcox and Norphlet Formations.

Figure 69. Geographic distribution of formation pressures at the top of the Wilcox and Norphlet Formations.

Figure 70. Formation pressures by depth at the top of the Wilcox and Norphlet Formations.

Figure 71 shows the distribution of temperatures associated with the top of the Wilcox and Norphlet Formations. These estimated top of formation temperatures are derived from wireline log bottom-hole temperatures where available. BSEE identifies a high-temperature environment within a well when at least one of the following conditions is met:

- 1) the well completion equipment or well control equipment is assigned a temperature rating greater than 350 degrees Fahrenheit and
- the flowing temperature is equal to or greater than 350 degrees Fahrenheit on the seafloor for a well with a subsea wellhead or at the surface for a well with a surface wellhead (USDOI, BSEE, 2019).

While Figure 71 does not depict the temperature at the wellhead; it does demonstrate the higher reservoir temperatures associated with the deepwater Norphlet Formation. The temperature versus depth crossplot in Figure 72 illustrates the differences in temperature between the Wilcox Formation located within Alaminos Canyon, the Wilcox Formation outside of Alaminos Canyon, and the deepwater Norphlet Formation. Even though many of the non-Alaminos Canyon Wilcox reservoirs are deeper than the Norphlet reservoirs, they are lower in temperature due to thick overlying salt canopies. Shell's deepwater Norphlet Appomattox (Mississippi Canyon Block 392) project was the first high-temperature project to gain BSEE's approval and to begin production in May 2019.

Figure 71. Geographic distribution of formation temperatures at the top of the Wilcox and Norphlet Formations.

Figure 72. Formation temperatures by depth at the top of the Wilcox and Norphlet Formations.

RESERVES AND RESOURCES

CLASSIFICATION

Table 9 shows the system of resource classification used by BOEM. Once a successful exploratory well is drilled, the process that BOEM uses to move its resource estimates to reserves generally proceeds as stated below.

- At the point in time a discovery is made, the identified accumulation of hydrocarbons is classified as Contingent Resources, since a development project has not yet been identified.
- When the lessee makes a formal commitment to develop and produce the accumulation, it is classified as Reserves Justified for Development.
- During the period when infrastructure is being constructed and installed, the accumulation is classified as Undeveloped Reserves.
- After the equipment is in place and production of the accumulation has begun, the status becomes Developed Producing Reserves.
- Fields that are depleted or have expired, relinquished, or terminated without production are classified as Developed Non-Producing.

BOEM Resour	ce Classification	
Classes	Sub-Classes	
	Developed Producing	
Reserves	Developed Non-Producing	
Reserves	Undeveloped	₹.
	Reserves Justified for Development	ciali
Contingent Resources		sing Chance of Commerciality
Undiscovered Resources		Increasing
Unrecoverable		

Table 9. BOEM resource classification. Modified from Burgess et al. (2020a).

RESERVES INVENTORY

Volumes of original reserves and cumulative production for the Gulf of Mexico OCS are published annually by BOEM. As of the end of 2019, BOEM's reserves inventory contains volumetric estimates of 61,825 MMBOE (Burgess et al., 2020b), with 18,048 MMBOE coming from deepwater fields (Figure 73). Reportable contingent resources increase BOEM volumes by 5,450 MMBOE (Figure 73), with 79 percent of those resources in resources in deep water. Contingent resources can be found in oil and gas fields where the lessee has not made a formal commitment to develop the project; in leases that have not yet qualified and have not been placed in a field; and in fields that expired, relinquished, or terminated without production. The 5,450 MMBOE contingent-resource value does not represent all of the

contingent resources in the GOM, as newer discoveries, and other discoveries that never reached a development commitment, may not have a BOEM-volume estimate. As new drilling and development occur, additional hydrocarbon volumes may become reportable.

Figure 73. BOEM original reserves by water depth (left) and contingent resources (right).

The number of BOEM-designated fields in deep water by discovery year is shown in Figure 74. There were 293 deepwater fields classified as reserves or contingent resources at the end of 2019.

Figure 74 displays BOEM estimates of the reserves portion of **Table 9** assigned by field discovery year and delineated by water-depth categories. Over the past 45 years, reserves inventory contributions from discoveries in shallow water (<1,000 ft) have generally become less significant, as the modern-day shelf plays are very mature and heavily explored. Deepwater contributions to the reserves inventory began in 1975 with the discovery of the Cognac (Mississippi Canyon 194) Field in 1,022 ft of water. In 1989, the discovery of the Mars-Ursa (Mississippi Canyon 807 and Mississippi Canyon 809) geologic complex in an average water depth of 3,340 ft added substantial volumes. Lower Tertiary discoveries in ultra-deepwater (>5,000 ft) began contributing to the reserves inventory in 2002, with the discovery of the Great White (Alaminos Canyon 857) and Cascade (Walker Ridge 206) Fields. Additionally, **Figure 75** does not include volumetric estimates from the contingent resources portion of **Table 9**. The volumetric estimates for a discovery remain as contingent resources until an operator commits to a development project. For example, development options are being evaluated for the 2017 Lower Tertiary Whale discovery (Alaminos Canyon Block 772) in approximately 8,626 ft of water. Therefore, until a final investment decision is reached, the discovery remains a BOEM contingent resource.

Figure 76 illustrates the locations and estimated sizes of 189 fields in deep water with proved reserves or reserves justified for development. The fields have a wide geographic distribution and range in geologic age from Pleistocene through Jurassic. Over the last 6 years, BOEM has recognized 28 new deepwater fields (**Figure 77**). Most of these fields are classified as contingent resources, as there has not yet been a development commitment by the operator (**Table 10**).

Figure 74. Number of BOEM-designated fields in deep water by discovery year through 2019.

Figure 75. Field reserves by discovery year for each deepwater category.

Figure 76. Estimated reserves of deepwater fields.

Figure 77. Deepwater fields discovered in the years 2014-2019.

Field or Block	Nickname	Water Depth (average in ft)	Water Depth (average in m)	Reservoir Age	Discovery Date	First Production Date	Expiration Date	BOEM Resource Classification
MC525	Rydberg	7,421		Upper Jurassic	03-Jun-14			CR
MC079	Otis	3,861		Miocene	28-Jul-14	01-Apr-16		PDP
KC010	Guadalupe	3,910		Lower Tertiary	14-Aug-14	01 Apr 10		CR
MC768	Kaikias	4,479	,	Miocene	23-Aug-14	01-May-18		PDP
KC642	Leon	6,154		Lower Tertiary	30-Sep-14	01 may 20		CR
GC807	Anchor	5.037		Lower Tertiary	01-Nov-14			CR
DC398	Gettysburg West	7,579	,	Upper Jurassic	28-Nov-14		01-Jun-15	-
GC627	Hopkins (Constitution)	4,385		Pliocene	01-Dec-14	01-Jan-19		PDP
MC Block 943	Power Nap	4,208		Miocene	14-Dec-14			CR
VK959	Crown & Anchor	4,254	1,297	Miocene	20-May-15	01-Jun-18		PDP
MC794	Claiborne	1,433	437	Miocene	08-Dec-15	01-Dec-18		PDP
MC560	Mudbug	6,237	1,901	Miocene	27-Apr-16			CR
MC895	Ourse	3,743	1,141	Miocene	04-May-16			CR
кс096	Gibson	4,835	1,474	Lower Tertiary	16-May-16		01-Nov-19	CR
MC257	Red Zinger	5,848	1,782	Miocene	28-Aug-16	01-Dec-18		PDP
VK999	Stonefly	4,116	1,255	Miocene	22-Sep-16	01-Dec-19		PDP
MC609	Calliope	6,822	2,079	Miocene	23-Oct-16			RJD
GC389	Khaleesi	3,552	1,083	Miocene	21-Jan-17			CR
AC Block 772	Whale	8,626	2,629	Lower Tertiary	23-Feb-17			CR
GC478	Mormont	3,774	1,150	Miocene	31-Mar-17			CR
MC074	Praline	2,644	806	Miocene	14-May-17			CR
MC116	Rampart	2,667	813	Miocene	15-Aug-17		01-Sep-18	CR
MC651	Ballymore	6,540	1,993	Upper Jurassic	16-Dec-17			CR
MC Block 767	Circius	4,070	1,241	Miocene	17-Mar-18			CR
MC612	Dover	7,372	2,247	Upper Jurassic	30-Apr-18			CR
MC387	Nearly Headless Nick	6,592	2,009	Miocene	30-Aug-18			CR
AC Block 380	Blacktip	6,210	1,893	Lower Tertiary	22-Apr-19			CR
CR - Contingen PDP - Develope RID - Reserves								

Table 10. 2014-2019 deepwater field discoveries.

RESOURCE ASSESSMENT

BOEM provides estimates of the undiscovered resources (**Table 9**) approximately every 5 years. In each assessment, the undiscovered resources located outside of known oil and gas fields are modeled using discovered resources from each GOM field. Discovered resources are original reserves (remaining reserves plus cumulative production) and contingent resources. The latest assessment (in progress) is performed primarily using discovered resources as of the end of 2019.

The undiscovered resources resulting from the assessment are categorized as undiscovered technically recoverable resources (UTRR) that may be produced as a consequence of natural pressure, artificial lift, pressure maintenance, or other secondary recovery methods. The assessment does not include (1) quantities of hydrocarbon resources that could be recovered by enhanced recovery techniques, (2) gas in geopressured brines, (3) natural gas hydrates, or (4) oil and natural gas that may be present in insufficient quantities or quality to be produced by conventional recovery techniques. Herein, UTRR is reported at the mean percentile level—the average or expected value.

Figure 78 presents discovered resources and preliminary results for UTRR values in water depths less than and greater than the approximate modern-day continental shelf-slope break (656 ft or 200 m). The highly-explored plays on the shelf generally contain most of the discovered resources (~66%). The entire Gulf of Mexico OCS is assessed to contain a total UTRR value of nearly 40 BBOE. Of this total, with nearly 34 BBOE, plays beyond the shelf-slope break are assessed to contain by far the most undiscovered resources (~86%). For example, the Lower Tertiary (Wilcox) Play contains numerous discoveries in deepwater that are associated with large compressional folds, while discoveries in the deepwater Upper Jurassic Norphlet Aeolian Dune Play are contained within tectonic detachment rafts.

Figure 78. Discovered and undiscovered resources by water depth.

PRODUCTION

FACILITIES

Just as leasing, drilling, and discoveries progressed into deeper waters with time, so did production. Development strategies vary for deep water, depending on reserve size, proximity to infrastructure, operating considerations (such as well interventions), economic considerations, water depth, and an operator's interest in establishing a production hub for the area. An operator has a choice of numerous platform types (Figure 79).

- Fixed Platform (FP) a fixed, not floating, structure.
- Compliant Tower Platform (CTP) –a fixed, not floating, structure with mooring guidewires to constrain motion.
- Tension Leg Platform (TLP) a 4-column, tendon-founded, floating structure.
- Mini Tension Leg Platform (mTLP) a 3-column, tendon-founded, floating structure.
- Single Point Anchor Reservoir Platform (Spar) a can-shaped hull, mooring/pile-founded, floating structure.
- Semisubmersible Platform (Semi) a mooring/pile-founded, 4-column, floating structure.
- Floating Production Unit (FPU) a ship-shaped, buoy-connected, mobile offshore production unit.
- Floating Production, Storage, and Offloading Facility (FPSO) a ship-shaped, buoy-connected, mooring-founded, floating structure.

Figure 79. Types of deepwater production facilities (1, 2 – fixed platforms; 3 – compliant tower platform; 4, 5 – tension leg and mini tension leg platforms; 6 – spar; 7, 8 – semisubmersible platforms; 9 – floating production, storage, and offloading facility; and 10 – subsea completion and tieback to a host facility). (Image courtesy of the National Oceanic and Atmospheric Administration.)

The type of facility that an operator chooses depends on numerous factors, including payload, drilling/intervention capabilities, dry tree and/or wet tree capability, water depth rating, motion characteristics, seafloor topography, constructability, and fabrication time, among others. The challenge is to select the platform type and capabilities that fit the reservoir depletion plan and site characteristics while satisfying commercial and strategic objectives.

Some discoveries in the deepwater GOM are too small to be economically developed as stand-alone projects. In these instances, an operator may decide to use subsea technology to control and produce the wells, "tying back" to existing production facilities. These facilities may be located many miles away from the actual wells. Subsea systems are capable of producing hydrocarbons from reservoirs covering the entire range of water depths that industry is exploring. They range in complexity from a single subsea well producing to a nearby fixed platform, tension leg platform (TLP), or floating production facility (e.g., semisubmersible) to multiple wells producing through a manifold and pipeline system to a distant production facility. Subsea systems have been, and will continue to be, a key component in the development of deepwater discoveries. Subsea systems generally consist of multiple pieces of equipment located on the seafloor; this equipment allows the production of hydrocarbons in water depths that would normally preclude installing conventional fixed or bottom-founded platforms. The economics of deepwater development have improved by connecting multiple subsea projects to a single production facility.

Figure 80 shows water-depth applications for the production facilities by installation year in the deepwater GOM through 2019. Fixed and compliant tower platforms have been utilized in water depths less than 2,000 ft, as they are extensions of shallow-water technology. Tension leg platforms have been historically utilized in water depths of less than 5,000 ft in the GOM. However, in early 2019, the Big Foot development in Walker Ridge Block 29 utilized an extended-TLP design in 5,185 ft of water to become the deepest installed TLP.

Semisubmersibles and spars can be utilized in a wide range of water depths, including ultra-deepwater (>5,000 ft). Installed in mid-2018, the deepest GOM application of a semisubmersible platform is in 7,400 ft of water in Mississippi Canyon Block 437. This semisubmersible acts as a hub for Shell's Upper Jurassic Norphlet discoveries in the area. The Perdido Hub in Alaminos Canyon Block 857 operates in the deepest water for a spar in the GOM. At 7,835 ft, the spar collects production from the Lower Tertiary Trend in the area.

Ship-shaped production platforms are utilized where no permanent production infrastructure exists and are advantageous in inclement weather as they can be temporarily disconnected from the production streams and sailed to safe harbor. The FPSO utilized for the Lower Tertiary Stones development is the deepest water-depth application of any production platform in the GOM at 9,560 ft in Walker Ridge Block 551.

Table 11 provides details for the 58 deepwater production facilities in the GOM. Seventeen of the facilities have the capacity to collect more than 100,000 barrels of oil per day (BOPD). Five of those are rated for more than 200,000 BOPD, including the Mississippi Canyon Block 437 semisubmersible (**Figure 81**). Installed in 2018, the semisubmersible is the most-recent installed platform, and of all nine semisubmersibles, it operates in the deepest water at 7,400 ft. This platform was installed to collect production from the Upper Jurassic Norphlet Formation Trend, marking the first high-temperature development in the deepwater GOM.

In the last 6 years, there have been production startups from 32 deepwater fields (Figure 82). Five of those fields produce from the Lower Tertiary Trend, and two represent first production from the aforementioned Norphlet Formation (Table 12).

Figure 80. Installation dates and water depths for the various types of production facilities utilized in the GOM.
Wei 19.0 1.1.2 1.2.2 1.						on facilities util			
Ket B20 J.000 J305 T/T D1-lam-83 D0.000 J306 Bulkwinke Sci 84 J.700 J356 FLP D1-lam-89 D0.000 J306 Bulkwinke Sci 184 J.700 J336 FP D1-lam-91 D0.000 J30 Amberrysk Sci 22 Z.260 B72 TLP D4-have4 L0.000 J30 Amberrysk VK 897 J.229 B33 FP 18-have4 L0.000 J30 Meyra VK 895 J.228 J.230 TS September J34.000 J30 Meyra J34.000 J30 Meyra J44.000 J40 Meyra J44.000 J40 Meyra J44.000 J40 J47.000 J41.000 J41.000 J41.000 J40 J41.000 J4	Area	Block	Water Depth (ft)			Installation Date	Capacity (BOPD)	Capacity (MMCFD)	Project
Sci 3 342 PP 01-an-88 200,000 366 Bulewinke V6 107 1.100 335 PP 01-an-91 20,000 30 Ambergak V6 107 1.100 335 PP 01-an-91 20,000 30 Ambergak V6 892 1.229 332 PP 19-Auge34 60,000 30 Auger V6 897 1.239 384 Fue 18-Auge34 60,000 31 Mara V7 826 1.329 984 Fue 18-Auge34 34,000 150 Bulgate V8 250 1.648 592 (TP 10-Auge38 38,500 420 Mara V8 15 3.2326 986 TUP 12-Auge39 13,000 400 Urg V8 23 1.333 344 FP 12-Auge39 15,000 120 Urg V7 28 3.250 1.033	мс	194	1,023	312	FP	01-Jan-78	28,000	357	Cognac
Ed. 14.8 1.7.26 33.6 [LP 01-Jane 89 20,000 50 Amberigk B1 24.2 2.860 87.2 [LP 05-feb 34 105,000 250 Amberigk VK 897 2.933 894 [LF 18-Jul 96 100,000 110 Marri A VK 825 1.230 984 [LF 18-Jul 96 100,000 120 Marri A VK 826 1.2326 980 [LF 121.Jul 97 14.000 120 Marri A VK 826 1.246 50.000 120 Marri A 120 Marri A 120 120 121.Jul 97 12.1 120 123.4000 400 Marri A VK 121 1.700 533 MTP 10.40295 23.000 42 Marri A VK 121 1.200 Marri A 120 Virga 124 Virga 124 Virga 124 Virga 124 Virga 125 124 Virga 126 <td>мс</td> <td>280</td> <td>1,000</td> <td>305</td> <td>СТР</td> <td>01-Jan-83</td> <td>20,000</td> <td>50</td> <td>Lena*</td>	мс	280	1,000	305	СТР	01-Jan-83	20,000	50	Lena*
Mc 100 1.100 335 P 01-am 91 20.000 30 Amberiak 88 12.260 B72 ILP 05-Feb94 160,000 190 Perapara WK 889 1.230 3834 IP 19.Aug44 60,000 100 Marx A WK 825 1.232 1938 Spart 19.4uy49 13.4uy90 13.4uy90 10.4uy90 10.4uy90 <t< td=""><td>GC</td><td>65</td><td>1,353</td><td>412</td><td>FP</td><td>01-Jan-88</td><td>200,000</td><td>306</td><td>Bullwinkle</td></t<>	GC	65	1,353	412	FP	01-Jan-88	200,000	306	Bullwinkle
B 42 2.660 B72 ILP 05-feb.94 105,000 225 Auge_r VK 897 2.293 B84 ILP 18-Jul-96 100,000 110 Marx A VK 825 3.216 980 ILP 21-July-95 334,000 120 Barya VK 825 3.216 980 ILP 21-July-95 344,000 120 Barya VK 825 3.2216 980 ILP 21-July-95 344,000 130 Barya VK 815 3.238 986 ILP 21-July-92 40,000 400 Ura VK 815 3.238 986 ILP 27-Jul-92 40,000 400 Ura VK 84 1.754 535 GTP 28-Apr-00 6.000 425 Horer VK 1.00 4.34 1.01 18-Julo-1 5.000 400 Narea VK 1.310 947	GC	184	1,760	536	TLP	01-Jan-89	20,000	50	Jolliet
VK B99 1.2.20 1.9.31 PP 1.9.Aug.94 60.000 90 Pompana VK 826 1.9.301 588 Spart 1.9.Aug.95 1.8.Aug.97 1.9.Aug.94 1.9.Aug.	мс	109	1,100	335	FP	01-Jan-91	20,000	30	Amberjack
Wei B07 2.933 B94 LP 18-ub/96 100,000 110 Mars A KK B25 3.930 S88 Spart 1.940.957 314,000 70 Ram Powell B2 6.00 1.648 1.02 CP 2.1.May 92 314,000 70 Ram Powell B2 6.00 1.648 1.02 CP 2.1.May 92 314,000 40 Game Powell C 2.51 1.700 S18 mTLP 10-Aug 98 38,500 44 Morpeth KK 815 3.226 S88 TLP 1.7.Aug 99 40,000 40 Marin KK 816 1.7.34 F335 CTP 2.5.Apr.00 65,000 2.25 Moover KK 826 1.4.73 S335 CTP 2.8.Apr.00 65,000 2.25 Moover KK 826 1.4.73 S335 CTP 2.8.Apr.01 50,000 30 Prince KK <td>GB</td> <td>426</td> <td>2,860</td> <td>872</td> <td>TLP</td> <td>05-Feb-94</td> <td>105,000</td> <td>250</td> <td>Auger</td>	GB	426	2,860	872	TLP	05-Feb-94	105,000	250	Auger
VK 12-8 13-900 13-900 13-900 13-900 13-900 13-900 13-900 13-900 14-900 15-9000 16-900 16-900	νк	989	1,290	393	FP	19-Aug-94	60,000	90	Pompano
K 956 3.2.16 998 ILP 2.1.4May 29 314,000 70 Bam Powell C 205 2.559 7.78 Spar 21,1.1700 511 mTLP 10.4.May 28 30,000 40 Greesis NV 921 1.700 511 mTLP 12.4.May 28 30,000 40 Mora XX 315 3.2.24 3086 TLP 2.7.July 39 40,000 40 Marin XX 315 3.2.24 1.0.04 mTLP 1.0.4.May 39 1.5.000 45 Malegheny XX 323 1.1.31 3.4.4 P 1.7.5.6.p.39 1.5.00 1.50 Fitroshitz XX 58 4.3.550 1.1.20 Spar 10.4.No.11 50.000 48 Pitroshitz XX 1.500 4.57 TLP 18.4.May 28 50.000 20 Namen XX 1.3.23 Spar 1.0.4.No.11 50.000 20 Namen 10.	мс	807	2,933	894	TLP	18-Jul-96	100,000	110	Mars A
B 260 1.1.48 502 CFP 31.May98 50,000 150 lepiste C2 255 2.59 789 21.Jul 98 30.000 60 deresis W 921 1.700 518 mTP 10.Aug 98 36.500 40 Morpeth KC 809 3.2,70 1.210 TP 22.Aug 99 25.000 40 Marin SC 254 3.2,94 1.004 mTP 13.Aug 99 25.000 43 Allegheny KC 25 4.425 1.471 Spar 25.Apr.00 60.000 43 Pertonius KC 158 2.300 643 TP 20.4ur.01 120.000 100 100 KC 127 5.400 1.646 Spar 10.4ur.01 40.000 20 Borrwang KC 127 5.400 1.645 Spar 02.Aug 31 10.00 425 Na Kika Hub KC 1.423 <	νк	826	1,930	588	Spar	19-Nov-96	26,000	35	Neptune (VK)
C 205 2.9.90 7.9.9 Spar 21.1.9.99 33.0.000 60 eneresis NN 921 1.7.00 518 mTP 10.Aug.98 38.500 42 Morpeth K 15 3.2.36 996 TP 27.4.199 40.000 400 Marin KK 15 3.2.36 996 TP 27.4.199 40.000 40 Marin KK 86 1.7.54 5.9.2 1.5.0.00 1.2.1 Virg.0 22.8 More 4.0.000 48 Pertonius KK 86 1.7.54 5.5.3 CTP 28.Apr.00 66.000 48 Pertonius KK 86 1.3.00 4.47 TP 18.401 50.000 20 Boower KK 86 1.43 3.5.00 1.13 Spar 28.Apr.02 40.000 20 Boomvang KK 74 4.6.40 1.92 Spar 0.9.4.023 35.000 <t< td=""><td>VK</td><td>956</td><td>3,216</td><td>980</td><td>TLP</td><td>21-May-97</td><td>314,000</td><td>70</td><td>Ram Powell</td></t<>	VK	956	3,216	980	TLP	21-May-97	314,000	70	Ram Powell
NM 921 1.700 518 mTLP 10.Aug98 38.500 42 Morpeth KK 859 3.970 1.210 TLP 28.Dac.98 150.000 40 Marin SC 254 3.244 1.004 mTLP 13-Aug9 25.000 44 Allegheny SC 254 3.244 1.004 mTLP 13-Aug9 25.000 45 Allegheny SC 254 4.825 1.471 Spar 25.Apr-00 65.000 225 Hoover SC 158 2.900 884 TP 20-Jun-01 120,000 150 Brutus SC 158 2.900 1.131 Spar 29.Apr-02 40,000 200 Bomman SC 158 3.450 1.143 Spar 29.Apr-02 40,000 200 Narke hub MC 474 6.340 1.121 Spar 03-Aug03 3.000 51 Matterhorn MC	GB	260	1,648	502	СТР	31-May-98	50,000	150	Balpate
vic. 809 3.970 1.210 TP 24-0c-98 150,000 400 Irrs vic. 915 3.236 986 TP 27-Jul-99 40,000 40 Marin vic. 224 1.230 344 FP 17-5ep-99 15,000 120 Virgo vic. 284 4.221 1.713 587 25-5Apr-00 65,000 228 Hoover vic. 286 1.754 533 CTP 28-Apr-00 65,000 208 Partus vic. 158 1.500 4457 TP 18-Ju-01 50,000 200 Partus vic. 127 5,400 1.143 Spar 28-Japr-02 40,000 420 Partus vic. 474 6,440 1,922 Sem 0-2-Aug-03 35,000 150 Matterhorn vic. 474 6,450 1,710 Sem 0-2-Aug-03 40,000 100 Medus vic. <td>GC</td> <td>205</td> <td>2,590</td> <td>789</td> <td>Spar</td> <td>21-Jul-98</td> <td>30,000</td> <td>60</td> <td>Genesis</td>	GC	205	2,590	789	Spar	21-Jul-98	30,000	60	Genesis
vic 915 3.236 966 T.P 27-04-99 40,000 40 Marrin SC 254 3.294 1,004 mTLP 13-Aug.99 25,000 45 Allegheny X 23 1,130 344 FP 17-56-99 15,000 125 Hoover X 786 1,734 535 CTP 28-Apr-00 66,000 48 Petronlus X 786 1,734 535 CTP 28-Apr-00 66,000 80 Prince X 103 3,675 1,120 Spar 10-Hov-01 40,000 200 Namen 28 643 3,650 1,133 Spar 29-Aug.02 40,000 200 Namen 29 42,400 1,342 Spar 09-Aug.03 35,000 55 Matterhorn 404 43,32 Spar 09-Aug.03 35,000 130 Med.33 40 1,333 Spar 09-Aug.03	EW	921	1,700	518	mTLP	10-Aug-98	38,500	42	Morpeth
E 24 3.294 1.004 mTLP 19.489.99 25.000 145 Allegheny KK 823 1.130 344 PP 17.569.99 15,000 120 Virgo KK 766 1.774 535 CTP 28.Apr.00 66,000 458 Petronius KK 786 1.774 535 CTP 28.Apr.00 60,000 450 Prince Sta 502 3.675 1.120 Spar 10.400-01 200 Nasten Sta 502 3.675 1.120 Spar 23.4.07.02 46,000 200 Nasten KK 744 6.340 1.932 Spar 03.4.09.03 35,000 155 Matterhorn KK 743 2.23 678 Spar 09-Dec-03 40,000 100 Matus 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 10.4.09.04 <	мс	809	3,970	1,210	TLP	28-Dec-98	150,000	400	Ursa
VK 823 1,130 344 FP 17-5ep-99 15,000 120 Vrgn AC 25 4,825 1,471 Spar 25-Apr-00 65,000 48 Petronius SC 158 2,900 884 TP 22-Apr-00 60,000 48 Petronius SC 158 2,900 884 TP 22-Apr-01 120,000 150 Brutus SC 158 2,900 884 TP 18-Mi-10 50,000 80 Prince B 643 3,650 1,113 Spar 10-Nov-01 40,000 200 Namen MC 127 5,400 1,646 Spar 29-Jun-02 65,000 60 Horn Mountain MC 23 2,850 853 TD 35,000 150 Matterhorn MC 243 2,820 0.3,131 TD 24-Apr-0 60,000 200 Gannison Sc 645 4,340	VK	915	3,236	986	TLP	27-Jul-99	40,000	40	Marlin
Ac. 25 4,825 1,741 Spar 25-Apr-00 65,000 225 Hoover X7 26 1,754 333 CTP 28-Apr-00 60,000 48 Pertonlus X8 1003 1,500 457 TLP 18-Jul-01 120,000 120 Novol 40,000 200 Novaen 85 602 3,675 1,123 Spar 28-Apr-02 40,000 200 Novaen WC 127 5,400 1,646 Spar 29-Jun-02 65,000 60 Horn Mountain WC 243 2,850 869 mT.P 03-Aug-03 35,000 101 Medua 88 668 3,150 960 Spar 09-Dec-03 40,000 200 Gummison 82 668 3,330 1,311 TLP 24-Jan-04 100,000 250 Merco Polo MC 773 5,610 1,710 Spar 19-reb-04 60,000 <td< td=""><td>GC</td><td>254</td><td>3,294</td><td>1,004</td><td>mTLP</td><td>19-Aug-99</td><td>25,000</td><td>45</td><td>Allegheny</td></td<>	GC	254	3,294	1,004	mTLP	19-Aug-99	25,000	45	Allegheny
K 766 1,754 535 CTP 28-Apr-00 60,000 48 Petronius SC 158 2,900 884 TLP 20-Jun-01 120,000 150 Brutus SK 1003 1,500 457 TLP 18-Jul-01 50,000 80 Prince SK 602 3,675 1,120 Spar 19-Nov-01 40,000 20 Boorwang WC 127 5,400 1,646 Spar 29-Jun-02 65,000 60 Horn Mountain WC 243 2,850 869 m10 03-Aug-03 35,000 55 Matterhorn WC 243 2,820 869 TLP 03-Aug-03 40,000 100 Medusa S68 3,150 960 Spar 19-Feb40 60,000 100 Gauterhorn S62 64,240 1,323 Spar 30-Juh-04 18,300 40 Madog S64 4,340 1,323<	VK	823	1,130	344	FP	17-Sep-99	15,000	120	Virgo
EC 158 2,900 884 1LP 20-jun-01 120,000 150 Brutus W 1003 1,500 457 1LP 18-Jul-01 50,000 80 Prince 85 662 3,675 1,120 Spar 10-Nov-01 40,000 200 Namsen 86 643 3,650 1,131 Spar 28-Jun-02 65,000 60 Horn Mountain WC 147 6,340 1,932 Berni 02-Aug-03 35,000 55 Matterhorn WC 243 2,850 860 mTP 02-Aug-03 40,000 100 Medusa 58 668 3,150 5610 1,710 Spar 03-Jun-04 10,000 220 Marco Polo C 73 5,610 1,232 Spar 03-Jun-04 80,000 40 Madog G 74 4,240 1,347 Spar 30-Jul-04 80,000 100 Font Runner	AC	25	4,825	1,471	Spar	25-Apr-00	65,000	225	Hoover
EW 103 1,500 457 T.P. 18-Jul-01 50,000 80 Prince B 662 3,675 1,120 Spar 10-Nov-01 40,000 20 Boomwang KC 127 5,400 1,646 Spar 29-Jun-02 65,000 60 Horn Mountain VKC 127 5,400 1,646 Spar 29-Jun-02 65,000 60 Horn Mountain VKC 243 2,850 869 mT.P 03-Aug-03 35,000 55 Matterhorn VKC 522 2,223 678 Spar 09-Dec-03 40,000 200 Gumisson SG 688 3,150 9.60 Spar 03-Jun-44 100,000 250 Marce Pelo KC 773 5,610 1,717 Spar 13-feb-46 60,000 110 Front Runer SG 782 4,420 1,423 Spar 20-Jul-96 50,000 100 Mod Dog 200	νк	786	1,754	535	СТР	28-Apr-00	60,000	48	Petronius
EW 103 1,500 457 IP 18-Ju-01 50,000 80 Prince B 662 3,675 1,120 Spar 10-Nov-01 40,000 200 Name m B 643 3,650 1,113 Spar 22-Jun-02 65,000 60 Horn Mountain WC 127 5,400 1,646 Spar 02-Aug-03 135,000 55 Matterhorn WC 243 2,255 869 mTLP 03-Aug-03 35,000 100 Medua S6 68 3,150 950 Spar 09-Dec-03 40,000 200 Gumisson S6 68 3,130 1,713 Spar 03-Jun-04 113,000 142 Holstein S6 4,340 1,323 Spar 03-Jun-04 13,000 100 Mad Dog S6 83 3,330 1.015 Spar 22-Aug-04 60,000 110 Front Runer S6 643	GC	158	2,900	884	TLP	20-Jun-01	120,000	150	Brutus
B 602 3,675 1,120 Spar 10-Nov-01 40,000 200 Nansen B 643 3,650 1,113 Spar 28-Apr-02 40,000 200 Bornwang WC 127 5,400 1,646 Spar 29-Jun-2 65,000 425 Na Kike Hub WC 243 2,850 869 mTLP 03-Aug-03 35,000 101 Medusa VC 243 2,820 869 mTLP 24-Jan-4 100,000 200 Gunnison SE 668 3,150 960 Spar 19-Feb-04 60,000 600 Deul's Tower C6 645 4,440 1,232 Spar 03-Jun-04 113,000 140 Mad Dog C7 73 5,610 1,710 Spar 03-Jun-04 113,000 140 Mad Dog C6 483 3,330 1,015 Spar 27-Uec-05 84,000 100 Magnolia	EW	1003		457	TLP	18-Jul-01		80	Prince
B 643 3,650 1,113 Spar 28.Apr-02 40,000 C0 Boonwang VC 127 5,400 1,646 Spar 29-Jun-02 65,000 66 Horn Mountain VK 243 2,850 869 mTLP 03-Aug-03 35,000 425 Nat Kike Hub VK 582 2,223 678 Spar 09-Dec-03 40,000 200 Gumison S6 688 3,150 960 Spar 09-Dec-03 40,000 250 Marco Polo VKC 773 5,610 1,710 Spar 19-Feb-04 60,000 100 Deul's Tower S6 643 4,440 1,323 Spar 03-Jun-04 18,000 40 Mad Dog S6 782 4,420 1,423 Spar 03-Jun-04 50,000 100 Font Runner S6 787 7,705 1,515 Spar 25,000 200 Donunder Horse S6<	EB	602		1,120	Spar	10-Nov-01	40,000	200	Nansen
MC 127 5,400 1,646 Spar 29-Jun-02 65,000 66 Horn Mountain MC 474 6,340 1,932 Semi 02-Aug-03 110,000 425 Na Kika Hub WC 243 2,850 B69 MTLP 03-Aug-03 40,000 100 Medusa B8 668 3,150 960 Spar 09-Dec-03 40,000 200 Gumison G5 668 4,300 1,311 TLP 24-Jan-44 1000,000 250 Marco Polo MC 773 5,610 1,710 Spar 30-Jul-04 113,000 142 Holstein G5 645 4,340 1,323 Spar 30-Jul-04 B0,000 100 Magnolia G6 782 4,420 1,443 TP 05-Aug-04 60,000 110 Magnolia G6 783 3,330 10.15 Spar 250,000 200 Thunder Horse G2	EB		-						
VMC 274 6,340 1,932 Semil 02-Aug-03 110,000 425 Na Kika Hub VMC 243 2,850 869 mTLP 03-Aug-03 35,000 55 Matterhorn VMC 582 2,223 678 Spar 09-Aug-03 40,000 100 Medusa SB 668 3,150 960 Spar 09-Dec-03 40,000 200 Gunnison C 668 4,300 1,311 TLP 24-Jan-04 100,000 60 DeVi''s Tower SC 645 4,340 1,323 Spar 03-Jun-04 113,900 142 Holstein SC 782 4,420 1,347 Spar 30-Jul-04 80,000 110 Mad Dog SC 783 4,670 1,423 TLP 05-Aug-04 50,000 200 Tunder Horse SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution	мс				-				-
Vic 243 2,850 869 mTLP 03-Aug-03 35,000 55 Matterhorn Vic 582 2,223 678 Spar 08-Aug-03 40,000 110 Medusa 68 68 3,150 960 Spar 09-Dec-03 40,000 200 Gunnison 3C 608 4,300 1,311 TLP 24-Jan-04 100,000 250 Marco Polo MC 773 5,610 1,710 Spar 03-Jun-04 80,000 40 Mad Dog 3C 782 4,420 1,337 Spar 03-Jun-04 80,000 40 Mad Dog 3C 782 4,420 1,437 Spar 03-Aug-04 50,000 110 Fort Runner 3S 783 3,330 1,015 Spar 27-Dec-05 84,000 200 Thunder Horse 3C 680 4,970 1,515 Spar 16-Aug-05 120,000 180 Atantis	мс				-				
MC 582 2,223 678 Spar 08-Aug-03 40,000 110 Medusa SB 668 3,150 960 Spar 09-Dec-03 40,000 200 Gumison SC 608 4,300 1,311 TP 24-Jan-04 100,000 250 Marco Polo SC 645 4,340 1,323 Spar 03-Jun-04 113,000 142 Holstein SC 645 4,340 1,323 Spar 03-Jun-04 80,000 400 Mad Opg SC 782 4,420 1,347 Spar 02-Aug-04 60,000 110 Front Runner SB 783 4,670 1,423 TP 05-Aug-04 50,000 200 Constitution SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution SC 680 4,970 1,215 TP 16-Oct-07 50,000 160 Atlantis	мс								
BB 668 3,150 960 Spar 09-Dec-03 40,000 200 Gunnison GC 608 4,300 1,311 TLP 24-Jan-04 100,000 250 Marco Polo SC 645 4,340 1,323 Spar 103-Jun-04 60,000 60 Devil's Tower SC 645 4,440 1,343 Spar 30-Jun-04 80,000 40 Mad Dog SC 782 4,420 1,443 TLP 05-Aug-04 60,000 110 Front Runner SR 783 4,670 1,423 TLP 05-Aug-04 50,000 200 Thunder Horse SC 78 7,050 2,149 Semi 16-Jan-07 200,000 180 Attintis SC 613 4,250 1,259 mTLP 16-Ot-07 50,000 40 Blind Faith SC 613 4,250 1,219 Spar 08-Aug-08 105,000 30 Seni 1									
SC 608 4,300 1,311 T.P 24-Jan-04 100,000 250 Marco Polo MC 773 5,510 1,710 Spar 19-Feb-04 60,000 60 Dewil's Tower SC 645 4,340 1,323 Spar 03-Jun-04 113,000 142 Holstein SC 782 4,420 1,347 Spar 03-Jun-04 80,000 40 Mad Dog SC 338 3,330 1,015 Spar 02-Aug-04 60,000 110 Front Runner SB 783 4,670 1,423 TLP 05-Aug-04 50,000 200 Tomder Horse SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution SC 613 4,250 1,295 mTLP 16-Oct-07 50,000 50 Neptune (AT) MC 650 6,480 1,975 Semi 18-Apr-08 60,000 70 Tuhute(AT)					-				
MC 773 5,610 1,710 Spar 19-Feb-04 60,000 60 Devil's Tower CC 645 4,340 1,323 Spar 03-Jun-04 113,000 142 Holstein SC 782 4,420 1,347 Spar 30-Jul-04 80,000 40 Mad Dog SC 782 4,670 1,423 TP 05-Aug-04 60,000 150 Magnolia WC 778 6,200 1,890 Semi 01-Apr-05 250,000 200 Thunder Horse SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution SC 613 4,250 1,295 Semi 1 16-An-07 200,000 40 Bind Faith SC 613 4,250 1,295 Semi 1 18-Apr-08 60,000 40 Bind Faith SC 641 4,000 1,219 Spar 08-Aug-08 105,000 80 Phoenix					-		-		
SC 645 4,340 1,323 Spar 0.3-Jun-04 113,000 142 Holstein SC 782 4,420 1,347 Spar 30-Jul-04 80,000 40 Mad Dog SC 338 3,330 1,015 Spar 02-Aug-04 60,000 110 Front Runner SC 338 3,330 1,015 Spar 02-Aug-04 50,000 150 Magnolia WC 778 6,200 1,489 Semi 01-Apr-05 250,000 200 Thunder Horse SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution SC 613 4,250 1,295 mTLP 16-Dect-07 50,000 44 Bind Faith SC 641 4,000 1,213 Spar 08-Aug-08 105,000 46 Taiti SC 653 4,375 1,334 TLP 25-Aug-08 100,000 200 Proeink <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
SC 782 4,420 1,347 Spar 30-Jul-04 80,000 40 Mad Dog SC 338 3,330 1,015 Spar 02-Aug-04 60,000 110 Front Runner S8 783 4,670 1,423 TLP 05-Aug-04 50,000 150 Magnolia VC 778 6,200 1,890 Semi 10-Apr-05 250,000 200 Thunder Horse SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution SC 613 4,250 1,295 mTLP 16-Oct-07 50,000 40 Bind Faith SC 641 4,000 1,219 Spar 08-Aug-08 155,000 146 Tahti SC 633 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi SC 237 2,200 671 FPU** 11-Jun-09 45,000 80 Phoenix <t< td=""><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>			-		-				
SC 338 3,330 1,015 Spar 02-Aug-04 60,000 110 Front Runner SB 783 4,670 1,423 TLP 05-Aug-04 50,000 150 Magnolia WC 778 6,200 1,890 Semi 01-Apr-05 250,000 200 Thunder Horse SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution SC 787 7,050 2,149 Semi 16-Jan-07 200,000 180 Attantis SC 613 4,250 1,295 mTLP 16-Ot-07 50,000 44 Bind Faith SC 641 4,000 1,219 Spar 08-Aug-08 155,000 146 Tahti SC 653 4,375 1,334 TP 25-Aug-08 100,000 50 Shenrai SC 237 2,200 671 FPU** 12-Nu-09 60,000 70 Thunder Hawk									
B 783 4,670 1,423 TLP 05-Aug-04 50,000 150 Magnolia WC 778 6,200 1,890 Semi 01-Apr-05 250,000 200 Thunder Horse GC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution GC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution GC 613 4,250 1,295 Semi 16-Jan-07 200,000 44 Binder Faith GC 650 6,480 1,975 Semi 18-Apr-08 60,000 44 Binder Faith GC 653 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi GC 533 4,375 1,334 TLP 25-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Peridio Hub <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td>			-	-	-				-
MC 778 6,200 1,890 Semi 01-Apr-05 250,000 200 Thunder Horse GC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution GC 787 7,050 2,149 Semi 16-Jan-07 200,000 180 Atlantis GC 650 6,480 1,975 Semi 18-Apr-08 60,000 44 Blind Faith GC 653 4,375 1,334 TLP 25-Aug-08 150,000 50 Sherui (AT) GC 653 4,375 1,344 TLP 25-Aug-08 100,000 50 Sherui (AT) GC 653 4,375 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-No-09 100,000 160 Feso Feso 30 12-Su00 50 Telemark/Mirage/Morgus Mr 249 8,300 2,530 FFSO					-				
SC 680 4,970 1,515 Spar 27-Dec-05 84,000 200 Constitution GC 787 7,050 2,149 Semi 16-Jan-07 200,000 180 Atlantis GC 613 4,250 1,295 mTLP 16-Oct-07 50,000 50 Neptune (AT) WC 650 6,480 1,975 Semi 18-Apr-08 60,000 44 Blind Faith GC 641 4,000 1,219 Spar 08-Aug-08 155,000 146 Tahiti GC 653 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi GC 653 4,375 1,344 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-No-09 100,000 200 Pertidio Hub WC 941 4,050 1,234 minDOC 06-Mar-10 25,000 16 Cascade/Chinook									
SC 787 7,050 2,149 Semi 16-Jan-07 200,000 180 Atlantis SC 613 4,250 1,295 mTLP 16-Oct-07 50,000 44 Blind Faith SC 650 6,480 1,975 Semi 18-Apr-08 60,000 44 Blind Faith SC 641 4,000 1,219 Spar 08-Aug-08 155,000 146 Tahiti SC 653 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi SC 237 2,200 671 FPU** 11-Jun-09 45,000 80 Phoenix MC 736 6,050 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 160 Casde/Chinook WC 941 4,050 1,234 miDC 06-Mar-10 25,000 150 Mho Dat							-		
SC 613 4,250 1,295 mTLP 16-Oct-07 50,000 50 Neptune (AT) WC 650 6,480 1,975 Semi 18-Apr-08 60,000 44 Blind Faith GC 641 4,000 1,219 Spar 08-Aug.08 155,000 146 Tahtit GC 653 4,375 1,334 TLP 25-Aug.08 100,000 50 Shenzi GC 653 4,375 1,334 TLP 25-Aug.08 100,000 50 Shenzi GC 653 4,375 1,344 Semi 07-Aug.09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub VIC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus VIC 941 4,050 1,234 minDOC 06-Mar-11 80,000 150 Mars B <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>				-	-				
MC 650 6,480 1,975 Semi 18-Apr-08 60,000 44 Blind Faith GC 641 4,000 1,219 Spar 08-Aug-08 155,000 146 Tahiti GC 653 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi GC 237 2,200 671 FPU** 11-Jun-09 45,000 80 Phoenix MC 736 6,050 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub MC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus MC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Mars B MC 547 3,280 1,100 Semi 05-Jan-14 170,000 150 Mars B </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Sc 641 4,000 1,219 Spar 08-Aug-08 155,000 146 Tahiti SC 653 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi SC 237 2,200 671 FPU** 11-Jun-09 45,000 80 Phoenix WC 736 6,050 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub WC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus WR 249 8,300 2,530 FPSO 30-Jun-11 80,000 150 Mars B WR 249 8,300 2,130 Semi 12-Jul-13 100,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 135 Lucius									
GC 653 4,375 1,334 TLP 25-Aug-08 100,000 50 Shenzi GC 237 2,200 671 FPU** 11-Jun-09 45,000 80 Phoenix MC 736 6,050 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub MC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus MR 249 8,300 2,536 FPSO 30-Jul-11 80,000 150 Who Dat MC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,442 Spar 09-Mar-14 60,000 135 Tubular Bells <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
GC 237 2,200 671 FPU** 11-Jun-09 45,000 80 Phoenix MC 736 6,050 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub MC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus MR 249 8,300 2,530 FPSO 30-Jun-11 80,000 16 Cascade/Chinook MC 547 3,280 1,000 Semi 12-Jul-13 100,000 150 Who Dat MC 807 3,028 923 TLP 30-Jul-33 100,000 150 Mars B MR 718 6,950 2,118 Semi 05-Jan-14 170,000 135 Tubular Bells KC 875 7,000 2,414 Spar 17-Mar-14 80,000 200 Delta H									
MC 736 6,050 1,844 Semi 07-Aug-09 60,000 70 Thunder Hawk AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub MC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus WR 249 8,300 2,530 FPSO 30-Jun-11 80,000 16 Cascade/Chinook WC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Mho Dat MC 807 3,028 923 TLP 30-Jul-13 100,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 200 D									
AC 857 7,835 2,388 Spar 12-Nov-09 100,000 200 Perdido Hub MC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus WR 249 8,300 2,530 FPSO 30-Jun-11 80,000 16 Cascade/Chinook WC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Who Dat MC 807 3,028 923 TLP 30-Jul-31 100,000 79 Jack/St. Malo MR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60									
MC 941 4,050 1,234 minDOC 06-Mar-10 25,000 50 Telemark/Mirage/Morgus WR 249 8,300 2,530 FPSO 30-Jun-11 80,000 16 Cascade/Chinook MC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Who Dat MC 807 3,028 923 TLP 30-Jul-31 100,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stone									
WR 249 8,300 2,530 FPSO 30-Jun-11 80,000 16 Cascade/Chinook MC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Who Dat MC 807 3,028 923 TLP 30-Jul-13 100,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 100 Lucius MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth MR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones			,	,					
MC 547 3,280 1,000 Semi 12-Jul-11 60,000 150 Who Dat MC 807 3,028 923 TLP 30-Jul-13 100,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells MC 724 4,600 1,341 Spar 09-Mar-14 80,000 150 Lucius MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 60 Stampede <tr< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr<>				-					
MC 807 3,028 923 TLP 30-Jul-13 100,000 150 Mars B WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 150 Lucius MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-						
WR 718 6,950 2,118 Semi 05-Jan-14 170,000 79 Jack/St. Malo MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 150 Lucius MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot <									
MC 724 4,600 1,402 Spar 09-Mar-14 60,000 135 Tubular Bells KC 875 7,000 2,134 Spar 17-Mar-14 80,000 150 Lucius MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A"									
KC 875 7,000 2,134 Spar 17-Mar-14 80,000 150 Lucius MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A"									
MC 254 4,400 1,341 Semi 08-Oct-14 80,000 200 Delta House Hub EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A"			-		-				
EW 834 1,186 361 FP 25-Nov-15 30,000 60 Coelacanth WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 115 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A"							-		
WR 551 9,560 2,914 FPSO 01-Jan-16 60,000 15 Stones GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A" *The Lena Compliant Tower Platform is in the process of being decommisioned. 500,000 140 Appomattox/Vicksburg "A"									
GC 860 5,300 1,615 Spar 07-Jan-16 80,000 80 Heidelberg GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A" *The Lena Compliant Tower Platform is in the process of being decommisioned.	EW								
GC 468 3,360 1,024 TLP 29-May-17 80,000 60 Stampede WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A" *The Lena Compliant Tower Platform is in the process of being decommisioned. Find Action and the process of being decommisioned. 500,000 140 500,000 140 500,000 140 500,000	WR			-					
WR 29 5,185 1,580 TLP 19-Feb-18 75,000 26 Big Foot MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A" *The Lena Compliant Tower Platform is in the process of being decommisioned.	GC					07-Jan-16			
MC 437 7,400 2,256 Semi 07-Jun-18 200,000 140 Appomattox/Vicksburg "A" *The Lena Compliant Tower Platform is in the process of being decommisioned.	GC								
*The Lena Compliant Tower Platform is in the process of being decommisioned.	WR								
	мс						200,000	140	Appomattox/Vicksburg "A"
**Ship-Shaped Mobile Offshore Production Unit	*The L	ena Co	mpliant Tower Platfo	orm is in the process	of being d	ecommisioned.			
	**Ship	-Shape	d Mobile Offshore Pr						

Table 11. Production facilities utilized in the GOM.

Figure 81. Geographic distribution of deepwater production facilities through 2019.

Figure 82. Deepwater fields starting production in the years 2014-2019.

-								
Field	Nickname	Water Depth	Water Depth	Reservoir Age	Discovery	First Production	Expiration	Production Host
		(average in ft)	(average in m)	neser ton Age	Date	Date	Date	
DC048	Dalmatian	5,876	1,791	Miocene	29-Sep-08	01-Apr-14	01-Jan-17	VK Block 786 Petronius CTP
DC004	Dalmatian North	5,823	1,775	Miocene	30-Apr-10	01-Jun-14		VK Block 786 Petronius CTP
MC682	Tubular Bells	4,490	1,369	Miocene	17-Oct-03	01-Nov-14		MC Block 724 Gulfstar 1 Spar
WR678	Saint Malo	6,953	2,119	Lower Tertiary	13-Oct-03	01-Dec-14		WR Block 718 Jack/St. Malo Semi
WR759	Jack	6,967	2,124	Lower Tertiary	09-Jul-04	01-Dec-14		WR Block 718 Jack/St. Malo Semi
KC875	Lucius	7,106	2,166	Pliocene, Miocene	23-Jan-10	01-Jan-15		KC Block 875 Lucius Spar
КС964	Hadrian South	7,623	2,323	Pliocene	21-Sep-08	01-Mar-15	01-Oct-18	KC Block 875 Lucius Spar
MC300	Marmalard	5,978	1,822	Miocene	03-May-12	01-Apr-15		MC Block 254 Delta House Hub Semi
MC431	Son of Bluto 2	6,426	1,959	Miocene	14-Mar-12	01-Aug-15		MC Block 254 Delta House Hub Semi
MC698	Big Bend	7,221	2,201	Miocene	15-Nov-12	01-Oct-15		MC Block 736 Thunder Hawk Semi
MC782	Dantzler	6,575	2,004	Miocene	20-Nov-13	01-Nov-15		MC Block 736 Thunder Hawk Semi
DC134	Dalmatian South	6,318	1,926	Miocene	27-Sep-12	01-Dec-15		VK Block 786 Petronius CTP
MC026	Supertramp (Amethyst)	1,193	364	Pliocene	27-May-94	01-Jan-16	01-May-17	VK Block 989 Pompano FP
GC859	Heidelberg	5,327	1,624	Miocene	23-Jan-09	01-Jan-16		GC Block 860 Spar
GC599	Friesian (Holstein Deep)	3,857	1,176	Miocene	08-Oct-06	01-Apr-16		GC Block 645 Spar
WR627	Julia	7,135	2,175	Lower Tertiary	07-Apr-07	01-Apr-16		WR Block 718 Jack/St. Malo Semi
MC079	Otis	3,861	1,177	Miocene	28-Jul-14	01-Apr-16		MC Block 254 Delta House Hub Semi
MC948	Gunflint	6,083	1,854	Miocene	15-Aug-08	01-Jul-16		MC Block 724 Gulfstar 1 Spar
WR508	Stones	9,252	2,820	Lower Tertiary	10-Mar-05	01-Sep-16		WR Block 551 FPSO
MC214	Odd Job	5,892	1,796	Miocene	17-Sep-13	01-Oct-16		MC Block 254 Delta House Hub Semi
GC468	Stampede	3,527	1,075	Miocene	24-Jun-06	01-Jan-18		GC Block 468 TLP
MC768	Kaikias	4,479	1,365	Miocene	23-Aug-14	01-May-18		MC Block 809 Ursa TLP
VK959	Crown & Anchor	4,254	1,297	Miocene	20-May-15	01-Jun-18		VK Block 915 Marlin TLP
MC427	La Femme/Blue Wing Olive	5,778	1,761	Miocene	02-Dec-04	01-Nov-18		MC Block 254 Delta House Hub Semi
WR029	Big Foot	5,436	1,657	Miocene	02-Dec-05	01-Nov-18		WR Block 29 TLP
MC794	Claiborne	1,433	437	Miocene	08-Dec-15	01-Dec-18		EW Block 834 Coelacanth FP
MC257	Red Zinger	5,848	1,782	Miocene	28-Aug-16	01-Dec-18		MC Block 254 Delta House Hub Semi
GC627	Hopkins (Constitution)	4,385	1,337	Pliocene	01-Dec-14	01-Jan-19		GC Block 680 Spar
MC392	Appomattox	7,221	2,201	Upper Jurassic	21-Dec-09	01-May-19		MC Block 437 Semi
MC393	Vicksburg "A"	7,411	2,259	Upper Jurassic	17-May-13	01-May-19		MC Block 437 Semi
KC872	Buckskin	6,608	2,014	Lower Tertiary	25-Nov-08	01-Jun-19		KC Block 875 Lucius Spar
VK999	Stonefly	4,116	1,255	Miocene	22-Sep-16	01-Dec-19		VK Block 956 Ram Powell TLP

Table 12. 2014-2019 deepwater field production startups.

VOLUMES

Figure 83 illustrates the relevance of the GOM to the Nation's energy supply. The GOM supplied 15.5 percent of the Nation's domestic oil and 3.0 percent of the Nation's domestic natural gas production in 2019. For the GOM specifically, 91 percent of the oil production and 70 percent of the natural gas production in 2019 were from wells in deep water.

Table 13 shows the 20 most prolific producing fields in the GOM for the year 2019. The top three producers averaged over 100,000 BOE per day. Half of the fields produce from ultra-deepwater (\geq 5,000 ft), with production from four of those fields—St. Malo, Great White, Jack, and Stones—coming from the Lower Tertiary Trend.

Figure 84 compares shallow-water and deepwater oil and gas production, respectively, since production from the GOM began. Oil production from shallow water dominated until production from numerous, large deepwater discoveries ramped up beginning in the mid-1990s. Beginning in the year 1999, more oil has been produced from the deepwater areas of the GOM than from shallow waters. Current oil production volumes from the deep water are at historic high levels. Beginning in 2014, oil volumes have increased by an average of almost 45 million barrels per year. Natural gas production from the GOM has always been dominantly from shallow waters. This production has steeply declined, however, beginning in the late-1990s. In fact, natural gas production has declined so much that for the first time ever, natural gas production from deep water is higher than that from shallow water beginning in 2014.

Figure 83. Estimated U.S. oil and natural gas production in 2019.

Field	Project Name	Water Depth (ft)	Water Depth (m)	2019 Production (BOE)	2019 Average Daily Production (BOE/Day)	Production Facility
MC807	Mars-Ursa	3,340	1,018	93,213,489	255,379	MC Blocks 807 and 809 TLPs
GC640	Tahiti/Caesar/Tonga	4,337	1,322	64,296,741	176,155	GC Block 641 Spar/Subsea
GC743	Atlantis	6,331	1,930	39,568,964	108,408	GC Block 787 Semi
WR678	St. Malo	6,953	2,119	34,745,139	95,192	WR Block 718 Semi
MC778	Thunder Horse	6,095	1,858	31,785,602	87,084	MC Block 778 Semi
AC857	Great White	7,921	2,414	27,714,438	75,930	AC Block 857 Perdido Hub Spar
GC826	Mad Dog	4,864	1,483	24,179,297	66,245	GC Block 782 Spar
MC776	North Thunder Horse	5,672	1,729	24,137,613	66,130	Subsea to Thunder Horse Semi
MC084	Horn Mountain/King	5,315	1,620	19,853,198	54,392	MC Block 127 Spar/Subsea
GC654	Shenzi	4,303	1,312	18,104,356	49,601	GC Block 653 TLP
WR759	Jack	6,967	2,124	17,766,183	48,674	WR Block 718 Semi
MC768	Kaikias	4,479	1,365	16,987,323	46,541	Subsea to Ursa TLP
GB426	Auger	2,845	867	16,267,923	44,570	GB Block 426 TLP
GB171	Salsa	1,206	368	13,625,868	37,331	GB Block 172 FP
GB387	Llano	2,338	713	13,303,736	36,449	Subsea to Auger TLP
KC875	Lucius	7,106	2,166	13,132,107	35,978	KC Block 875 Spar
MC300	Marmalard	5,978	1,822	12,713,649	34,832	MC Block 254 Delta House Hub Semi
MC546	Longhorn	2,542	775	11,833,933	32,422	Subsea to MC Block 365 FP (Corral)
WR508	Stones	9,252	2,820	11,705,589	32,070	WR Block 551 FPSO
GC468	Stampede	3,527	1,075	11,425,281	31,302	GC Block 468 TLP

Table 13. Top 20 producing fields in 2019.

Figure 84. Comparison of average annual shallow-water and deepwater oil and natural gas production.

ENVIRONMENTAL STEWARDSHIP

To ensure that environmental protection is a primary consideration in our decisions, BOEM focuses on two core components that constantly engage with and inform each other: environmental assessment and environmental science. Environmental assessment includes identifying the environmental resources and evaluating the impacts of BOEM's proposed actions and activities. The involvement of the public and Federal, State, and Tribal governments during the assessment process aids in the identification policy, regulatory, and cultural practices that may be affected by OCS oil- and gas-related and non-OCS oil- and gas-related activities. Gulf of Mexico scientists research and prepare extensive environmental documents that describe and characterize the environmental setting

Figure 85. Interaction between studies and assessment activities.

for the GOM region. This information is used in the preparation of environmental impact assessments and in conducting consultations with other agencies charged with protecting various resources (Figure 85).

Environmental science includes developing, conducting, and overseeing world-class scientific research to inform policy decisions. BOEM manages pioneering and ongoing research studies in the Atlantic and Pacific Oceans, Gulf of Mexico, and offshore Alaska. Gulf of Mexico scientists are managing critical research projects and publish environmental studies on topics including marine biology, archaeology, physical oceanography, air quality, socioeconomics, and fates and effects. The following sections provide an overview of the environmental setting and resources in the deepwater areas of the GOM, commonly applied lease stipulations and mitigations to reduce potential impacts, and describes current and relevant environmental studies.

ENVIRONMENTAL RESOURCES

By evaluating past environmental impact analyses, public input, studies, and other peer-reviewed literature, BOEM's subject-matter experts identified impact-producing factors (IPFs) associated with oil and gas-related activities in deep water. These IPFs can be grouped into the following generalized "issue" categories:

An impact-producing factor (IPF) is the outcome or result of any proposed activities with the potential to positively or negatively affect physical, biological, cultural, and/or socioeconomic resources.

- air emissions and pollution associated with offshore and onshore activity. The activities associated with OCS oil and gas leasing that could potentially affect air quality include (1) use of G&G survey vessels, (2) use of drilling and production and associated vessels, (3) use of support helicopters, (4) pipelaying operations, (5) flaring and venting, and (6) decommissioning of facilities and pipelines. Routine emission of air pollutants occur during exploration, development, production, installation, and decommissioning activities.
- discharges and wastes associated with offshore activity (i.e., drilling muds, produced waters, well treatment fluids, bilge, ballast, etc.). Routine wastes and discharges are permitted or regulated by BOEM, BSEE, and/or other Federal and State agencies. Water pollution associated

with OCS oil- and gas-related activities in the GOM is permitted by the U.S. Environmental Protection Agency (USEPA) through the National Pollutant Discharge Elimination System (NPDES) general permits in support of the Clean Water Act.

- bottom disturbance associated with drilling, infrastructure emplacement, removal, and G&G data collection activities;
- noise from G&G surveys, ship and aircraft traffic, drilling and production operations, trenching, construction, and decommissioning;
- lighting and visual impacts of the physical presence of infrastructure and vessel and aircraft traffic;
- offshore habitat modification/space use associated with infrastructure emplacement and removal and multiple-use areas on the seabed, in the water column, at the sea surface, or in the airspace; and
- accidental events that include oil spills, chemical spills, pipeline failures, losses of well control, accidental air emissions, hydrogen sulfide and sulfurous petroleum releases, trash and debris, spill response associated with unintended releases, and collisions and strikes.

Environmental resources potentially affected by deepwater OCS oil- and gas-related activities include air quality, water quality, benthic and pelagic communities, fish and invertebrates, birds, sea turtles, and marine mammals. Thought not reasonably foreseeable, should there be a catastrophic discharge event, numerous coastal resources could also be affected by the spill-response activities. BOEM has analyzed the potential effects of a lowprobability catastrophic event, as requested by the Council on Environmental Quality pursuant to its regulation at 40 CFR § 1502.22.

Air Quality

Responsibility for air quality in the GOM is shared between BOEM and the USEPA. In 1990, Section 328 of the Clean Air Act (CAA) Amendments directed the USEPA to regulate air pollution along the U.S. Gulf Coast off the State of Florida, eastward of 87°30' W. longitude. The CAA Amendments of 1990 also require the USEPA to set the National Ambient Air Quality Standards (NAAQS) for six common air pollutants of concern called criteria air pollutants.

Air quality is the degree to which the ambient air is free of pollution.

Meanwhile under the OCSLA, the U.S. Department of the Interior (USDOI) (delegated to BOEM) has air quality responsibility for the Gulf of Mexico OCS westward of 87°30' W. longitude, where OCS oil- and gas-related activities are well established. On May 14, 2020, the USDOI and BOEM announced a final rule to update air quality regulations for applicable BOEM activities in the CPA and WPA. The final rule ensures that BOEM's Air Quality Regulatory Program remains in compliance with the OCSLA requirements, ensuring BOEM uses up-to-date air quality standards (i.e., NAAQS) and benchmarks consistent with those already established by the USEPA.

Air pollution occurs when pollutants (e.g., gases and particles) are emitted into the atmosphere. Deepwater OCS oil- and gas-related activities that could potentially affect air quality include (1) G&G survey vessels; (2) drilling, production, and pipelaying operations; (3) support vessels and helicopters; (4) pipelaying operations; (5) flaring and venting; and (6) and accidental releases. Emissions from these activities occur during exploration, development, production, installation, and decommissioning activities. The potential impacts of these factors are analyzed in BOEM's environmental reviews for both pre-lease and post-lease activities.

Circulation patterns, geography, time of day, season, and other variables influence the transport and/or chemical transformation of pollutants and overall air quality of a region. Given these challenges and uncertainties inherent with delineating what effects are directly correlated to specific sources, air quality is generally assessed cumulatively (i.e., all OCS sources including those not associated with oil and gas development). BOEM conducts and incorporates regional-scale studies into its oil and gas leasing environmental impact assessments to broadly estimate the potential incremental and cumulative air quality effects associated with oil and gas leasing, including those from deepwater activities. BOEM also uses this information to assess site-specific impacts of deepwater activities during post-lease reviews by using emission exemption threshold formula screening methods to determine whether a proposed source would cause or contribute to a violation of the NAAQS.

In accordance with the CAA Amendments, only areas within State boundaries are designated as either unclassifiable/attainment or nonattainment status. Gulf of Mexico OCS waters are not designated areas for the NAAQS since there are no regulatory provisions under the CAA or OCSLA; however, OCS oil and gas exploration, development, and production sources are analyzed to ensure they do not significantly affect the air quality of any state. Most criteria air pollutants along the Gulf Coast are below the NAAQS; however, ozone and sulfur dioxide are still a concern in nonattainment areas.

Water Quality

Water quality relates to the condition or environmental health of a waterbody, reflecting its chemical, physical, and biological integrity, as well as its interrelationship with human health and ecosystem functions. Primary indicators of water quality in coastal and offshore environments include temperature, salinity, dissolved oxygen, chlorophyll content, nutrients and other trace constituents (e.g., metals), potential of hydrogen (pH), oxidation reduction potential (Eh), pathogens, optical properties (i.e., clarity, turbidity, and dissolved and suspended matter), and

Water quality can be defined as a measure of the suitability of water for a particular use based on selected physical, chemical, and biological characteristics.

contaminant concentrations (i.e., heavy metals and hydrocarbons). These indicators, and water quality in general, are influenced primarily by (1) the configuration of the basin, including influx of water from the Caribbean Sea and the output of water through the Straits of Florida; and (2) runoff from the land masses, which controls the quantity and quality of freshwater input. With increasing distance from shore, oceanic circulation patterns play an increasingly large role in dispersing and diluting anthropogenic contaminants and thus determining water quality.

In deep water, the primary oil- and gas-related IPF to water quality is discharges and wastes. Discharges can transport trace metals, hydrocarbons, and other suspended materials within several acres around the drilling location; however, they are regulated by the USEPA and must comply with NPDES permit requirements. BOEM's *Gulf of Mexico OCS Regulatory Framework* technical report discusses the Clean Water Act and NPDES permitting in greater detail (USDOI, BOEM, 2020).

Other potential IPFs that can occur in deep water are air emissions, bottom disturbances, and unintended spills. The potential impacts of these factors are analyzed in BOEM's environmental reviews. Water quality of the deep GOM may also be closely tied to sediment quality, and the two can affect each other, though research is limited. Discharges from ongoing and future OCS oil- and gas-related activities will likely continue and remain an influence on water quality. Other factors not connected to deepwater oil and gas development—such as urbanization, mining, ocean acidification, eutrophication (excess nutrients in the water), and hypoxia—are expected to continue to degrade water quality within all GOM planning areas.

Biological Resources and Habitats

For biological communities and habitat, the definition of shallow water versus deep water is dependent upon local hydrography, sediment load, light penetration, organisms present, and community structure. In general, deepwater is defined as greater than 300 m (980 ft) water depth.

Phytoplankton, photosynthetic, and typically unicellular organisms produce the bulk of organic matter in the GOM large marine ecosystem. Primary productivity varies in the GOM, from eutrophic coastal and estuarine waters to the oligotrophic deep ocean. Production is much lower in the surface waters over the deep GOM basin.

The increasing concentration of greenhouse gases in the atmosphere is advancing planet-wide physical, chemical, and biological changes and substantially impacting the GOM and elsewhere. Broadly, possible impacts include temperature and rainfall changes, rising sea levels, and changes to ocean conditions, such as ocean circulation patterns and storm frequency (IPCC, 2014). These changes may affect marine GOM ecosystems by increasing the vertical stratification of the water column, shifting prey distribution, impacting competition, and generally impacting species' ranges (Learmonth et al., 2006). Such modifications could result in ecosystem regime shifts as the productivity of the regional ecosystem undergoes various downstream changes related to nutrient inputs and coastal ocean processes (Doney et al., 2012).

Benthic Communities and Habitats

Benthic fauna inhabit the seafloor throughout the GOM at all water depths (Figure 86). Documented benthic ecosystems in the GOM include muddy softbottom; oyster reefs; coral and sponge dominant banks (e.g., the Flower Garden Banks); hydrocarbon seeps along the continental margin; and marine canyons, escarpments, and seamounts on the abyssal plain (Briones, 2004). Most GOM hardbottom benthic communities are diverse and characterized by high species richness and low abundance, while softbottom communities are characterized by low species richness and high abundance. Within the photic zone, naturally occurring geological (e.g., exposed bedrock) or biogenic (e.g., authigenic carbonate relict reef) seafloor with measurable vertical relief serves as important habitat for a wide variety of sessile and mobile marine organisms in the GOM.

Topographic features or banks are hardbottom habitats with high biomass, diversity, and abundance. These include the mid-shelf and shelf-edge banks (e.g., the East and West Flower Garden Banks), South Texas banks, the Alabama Pinnacle Trend, and Florida Middle Grounds. Encrusting algae and sessile invertebrates such as corals, sponges, sea fans, sea whips, hydroids, anemones, ascidians, and bryozoans may recruit to and colonize these hard substrates, creating "live bottom" (Cummings et al., 1962). Corals and large sponges function as structural architects by adding complexity to the benthic habitat. These complex structures provide shelter to small fish and invertebrates, which in turn provide food for larger fishes, including many that form important commercial fisheries (Fraser and Sedberry, 2008; SzedImayer and Lee, 2004; Gallaway et al., 2009; Johnston et al., 2015; Nash et al., 2013).

Hardbottom substrate is found throughout the deep waters of the GOM and is comprised of either exposed bedrock or relict authigenic carbonate coral reef (Brooks et al., 2016). Both hard- and soft-bodied corals colonize deepwater substrate. Associated sessile and mobile benthic megafauna include sponges, anemones, echinoderms, crustaceans, and demersal fishes. Field data suggest that the extent of deepwater, hardbottom habitat is large and that diversity of corals and sponges is high (Boland et al., 2017).

Cold seeps are areas of the ocean floor where high concentrations of oil or reduced chemicals are expelled, forming hydrocarbon or gas plumes. Hydrocarbon seep ecosystems support over 330 chemosynthetic communities in the GOM, typically at water depths greater than 300 m (984 ft) (Roberts et al., 1990 and 2010). Chemosynthetic fauna in the GOM include chemoautotrophic bacteria, vestimentiferan tubeworms, mussels, epibenthic clams, and burrowing clams (MacDonald et al., 1990).

The IPF categories potentially affecting benthic communities in deep water are noise, discharges and wastes, bottom disturbance, lighting and visual impacts, offshore habitat modification/space use, and accidental events. The potential impacts of these factors are analyzed in BOEM's environmental reviews.

Figure 86. Benthic habitat distribution in the Gulf of Mexico (Rowe, 2017 [modified from Gulf of Mexico Fishery Management Council, 2004 and 2005]). This figure is licensed under the terms of the Creative Commons Attribution-Noncommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/).

Pelagic Communities and Habitats

Pelagic communities include all swimming and floating organisms that reside in the water column. Pelagic habitats encompass the entire water column from the water's surface to the greatest depths (excluding the seafloor). The relationships of pelagic communities to pelagic habitat are complex and frequently tied to physical and chemical attributes that can vary seasonally and annually. Some pelagic habitats are more static and less susceptible to large-scale variations, such as the deep-sea meso-, bathy, and abyssopelagic zones. The pelagic zone is divided into two provinces: neritic and oceanic (Figure 87). There is a lack of natural structural habitat due to the oceanic province's depths and distance from shore. However, *Sargassum (S. natans* and *S. fluitans*) is a unique floating habitat comprised of brown macroalgae that free-float in generally large mats.

The uppermost habitat zone in the oceanic province is the epipelagic zone. This zone is entirely within the photic zone, allowing for photosynthesis by phytoplankton (e.g., diatoms) and other primary producers (e.g., autotrophic dinoflagellates). Oceanic epipelagic waters are generally nutrient poor (Webb, 2019). Consequently, primary producers in this oceanic province rely heavily on atmospheric deposition of nutrients, such as soil dust from deserts and other terrestrial habitats (Jickells and Moore, 2015).

Figure 87. Oceanic province habitat zones and light zones of the Gulf of Mexico with corresponding depth levels.

Deep-sea pelagic habitat zones are defined here as those deeper than 200 m (656 ft). Deep-sea zones are some of the most stable environments in the ocean because of their vast depths, which may contribute to increased susceptibility to anthropogenic disturbances (Food and Agriculture Organization of the United Nations, 2009 and 2020; Ashford et al., 2019). The deep-sea pelagic realm represents approximately 91 percent of the GOM's total volume and contains enormous taxonomical and functional diversity (Sutton et al., 2020).

The IPF categories potentially affecting pelagic communities in deep water are air emissions and pollution, discharges and wastes, bottom disturbance, noise, lighting and visual impacts, offshore habitat modification/space use, and accidental events. The potential impacts of these factors are analyzed in BOEM's environmental reviews. Fish and invertebrates, diving seabirds, marine mammals, and sea turtles, fish occupying pelagic habitats are discussed in their respective sections below.

Fish and Invertebrates and Commercial and Recreational Fisheries

The GOM has a taxonomically and ecologically diverse assemblage of fish and invertebrates, including 1,541 fish species in 736 genera, 237 families, and 45 orders and 13,000 invertebrate species in 46 phyla (Felder and Camp, 2009). There were \$927 million in finfish and shellfish landings in the GOM in 2016, which comprised 17.1 percent of total U.S. landings revenues (USDOC, NMFS, 2016). Some of the most economically important commercial fisheries are white shrimp, brown shrimp, eastern oysters, Gulf

menhaden, blue crab, red grouper, red snapper, and tunas. Recreational fishing in the GOM is also an important industry, including red snapper, king mackerel, spotted seatrout, red drum, Atlantic croaker, sand seatrout, Spanish mackerel, and black drum. The number of described species for both GOM fish and invertebrates continues to increase over time due to ongoing exploration of deep-sea ecosystems. Many of these tropical fishes and invertebrates, along with other endemic species, are year-round residents in the northern GOM. Other large, pelagic species found in the northern GOM (e.g., whale sharks, giant manta ray, and bluefin tuna) occur seasonally and are highly migratory. Several fish and invertebrate species occurring in the coastal and marine habitats of the GOM are listed as threatened or endangered under the Endangered Species Act (ESA). Threatened species include the Gulf sturgeon, Nassau grouper, oceanic whitetip shark, giant manta ray, and several species of coral.

Fish and invertebrates in the GOM can vary spatiotemporally due to ontogenetic (i.e., development from egg to adult) shifts in habitat use. For others, habitat shifts are predominantly food-driven, resulting in vertical migrations through the water column in search of prey — a behavior commonly observed in deep-sea fish and invertebrates (Hopkins and Baird, 1985; Flock and Hopkins, 1992; Salvanes and Kristofferson, 2001). For highly migratory species, seasonal shifts in habitat use are correlated to reproduction and food availability. Less mobile species can include those attached to or primarily living in the benthos as adults and juveniles (e.g., sponges, corals, oysters, and tilefish), and their larval stages are the only time when these animals are highly mobile.

The GOM also includes deep-sea meso-, bathy-, and abyssopelagic habitats and their associated species of fishes and invertebrates. Many organisms living within the meso- and bathypelagic zone exhibit diel vertical migration behaviors. Conversely, species like swordfish and oceanic marine mammals (i.e., dolphins and toothed whales) dive to these habitats during the day to feed on deep-sea cephalopods (e.g., squids and octopus) and fish (e.g., lanternfish). Knowledge of abyssopelagic assemblages and community structure in the GOM is very limited.

The IPF categories potentially affecting fish and invertebrates in deep water are noise, discharges and wastes, bottom disturbance, lighting and visual impacts, offshore habitat modification/space use, and accidental events. The potential impacts of these factors are analyzed in BOEM's environmental reviews.

Birds

Birds from six distinct taxonomic and ecological groups are represented within the marine and coastal habitats in the GOM region (USDOI, FWS, 2013). Seven ESA-listed bird species (i.e., Cape Sable seaside sparrow, Mississippi sandhill crane, piping plover, rufa red knot, roseate tern, whooping crane, and wood stork) are distributed across the GOM region, either year-round or migratory, with a strong seasonal component. These species are considered and analyzed in consultations with the U.S. Fish and Wildlife Service (FWS). Other listed species also occur in the coastal GOM but rely more on terrestrial habitats or are not commonly documented in the deepwater northern GOM.

Both residential and migratory bird species are found in the GOM. Migratory birds are any species that migrate and live or reproduce in multiple, separate places at least once during their annual life cycle. Many passerines, or songbirds, breed and winter within the Gulf Coast States and can be found in the coastal area and offshore during the trans-Gulf migration in the fall and spring. Other bird species live primarily offshore, except during their breeding season (Duncan and Harvard, 1980), relying on offshore waters for food and rest at stop-over sites.

Figure 88. North American migratory birds follow migratory routes, or "flyways" (USDOI, FWS, 2013).

The GOM is an essential area for migratory birds, as three of the four major flyways (Figure 88) occur within the GOM. Hundreds of millions of migratory birds use these flyways, many of whom converge within the northern GOM (Russell, 2005). Roughly 40 percent of all North American migrating birds use the Mississippi Flyway (USDOI, FWS, 2013). During this highly energetic period, stop-over sites are critical to migratory birds. These areas provide resting and feeding opportunities (Brown et al., 2001, McWilliams and Karasov, 2005). Adequate stop over sites allow migratory birds to arrive in good health (Helmers, 1992).

Species abundance in the GOM varies seasonally due to migration and breeding timings. Abundance can also be driven by mesoscale features (Ribic et al.,

1997; Bost et al., 2009; Scales et al., 2014). Seabirds produce few offspring but invest high amounts of parental care. As such, seabird population levels can be impacted by natural climate cycles (Paleczny, 2012) and anthropogenic activities. Nutritional conditions of prey are essential to seabird reproductive success and population dynamics as well (Lamb, 2016).

The IPF categories potentially affecting birds in deep water are noise, discharges and wastes, lighting and visual impacts, OCS habitat modification/ space use, and accidental events. The potential impacts of these factors are analyzed in BOEM's environmental reviews.

Marine Mammals

The GOM marine mammal community is diverse and distributed throughout the northern GOM waters, including members of the taxonomic order Cetacea and suborders Mysticeti (i.e., baleen whales) and Odontoceti (i.e., toothed whales), as well as the order Sirenia (i.e., manatee). Twenty-one species of cetaceans and one species of Sirenia regularly occur in the GOM and are identified in the NMFS Stock Assessment Reports (Hayes et al., 2018 and 2019). Habitat-based cetacean density models are found in Roberts et al. (2016). Two cetacean species, the sperm whale, and the GOM Bryde's whale, regularly occur in the GOM and are listed as endangered under the ESA. The West Indian manatee is listed as threatened under the ESA and has designated critical habitat in northeastern Florida (*Federal Register*, 1976). Further, 19 of the 20 toothed cetaceans (including beaked whales and dolphins) that regularly occur in the GOM are not ESA-listed. The Marine Mammal Protection Act (MMPA) protects all marine mammals, ESA-listed or not.

Most marine mammal distributions vary across the northern GOM with little known about each species' breeding and calving grounds or general patterns of movement. Several species (e.g., the GOM Bryde's whale, sperm whale, and bottlenose dolphin) have presumed year-round resident populations in the GOM (Van Parijs, 2015). The distribution and abundance of cetaceans within the northern GOM is strongly influenced by various mesoscale oceanographic circulation patterns. These patterns are primarily driven by river discharge (primarily the Mississippi River), wind stress, and the Loop Current and its derived circulation phenomena. Marine mammals may focus their foraging efforts on these abundant nutrientrich prey locations to improve overall feeding efficiency and reduce overall energy costs (Bailey and Thompson, 2010). In addition, marine mammals may forage under *Sargassum* mats due to the abundance of small fishes that typically assemble there (Casazza and Ross, 2008; Dooley, 1972). Other than factors influencing feeding behaviors, very little is known generally about other factors that may influence marine mammal distribution in the northern GOM.

Marine mammals can detect acoustic pressure, and different mammalian families have distinct hearing capabilities (Figure 89). Marine mammals produce sounds for a variety of natural behaviors over a range of acoustic frequencies (Richardson et al., 1995). Some cetaceans have sophisticated mechanisms for beamforming and sound localization, which they utilize for hunting prey. Fully aquatic mammals (e.g., cetaceans and sirenians) have additional adaptations. Toothed whales use higher frequency echolocation clicks to navigate and track prey, as well as a variety of whistle types during social interactions (Richardson et al., 1995). Baleen whales produce low-frequency reproductive and social calls that can travel great distances, even across ocean basins (Clark and Gagnon, 2004).

The IPF categories potentially affecting marine mammals in deep water are noise and accidental events (which includes vessel strikes). The potential impacts of these factors are analyzed in BOEM's environmental reviews.

Section 7(a)(2) of the ESA requires Federal agencies to ensure their actions are not likely to jeopardize the continued existence of endangered or threatened species or adversely modify or destroy their designated critical habitat. In GOM deep water, all ESA-listed species are under NMFS' jurisdiction, and BOEM must consult with NMFS when authorizing oil- and gas-related activities. This includes all listed marine mammals, sea turtles, fish, corals, and other invertebrates. On March 13, 2020, NMFS released the *Programmatic Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico* (USDOC, NOAA, 2020). The Biological Opinion (BiOp) covers all activities associated with the oil and gas program in the WPA, CPA and a small portion of the EPA that is not under moratorium. The BiOp outlines the terms and conditions and reasonable and prudent measures that are applied to prelease and post-lease plan and permit applications. The BiOp also includes a Reasonable and Prudent Alternative to avoid jeopardizing the continued existence of the GOM Bryde's whale, which has very low population numbers and is particularly vulnerable to vessel strikes.

Figure 89. (A) Approximate hearing ranges of marine species and (B) frequency ranges of various anthropogenic sources. These ranges represent approximately 90% of the acoustic energy, and color shading roughly corresponds to the dominant energy band of each source. Dashed lines represent broadband sonars to depict the multi-frequency nature of these sounds. The frequency axis of both plots shows kHz in a logarithmic scale. Sources: Popper et al., 2014; Richardson et al., 1995; and USDOC, NMFS, 2016a.

Sea Turtles

Five ESA-listed sea turtles occur in the GOM, including the loggerhead turtle, green turtle, hawksbill turtle, Kemp's ridley turtle, and leatherback turtle. The Northwest Atlantic Ocean Distinct Population Segment of loggerhead turtle and the North Atlantic Distinct Population Segment of green turtle are ESAlisted as threatened (*Federal Register*, 2014). Hawksbill turtles, Kemp's ridley turtles, leatherback turtles (proposed threatened as Northwest Atlantic Distinct Population Segment), and breeding populations of green sea turtles in Florida are ESA-listed as endangered. Floating *Sargassum* patches in the CPA and WPA are federally designated under the ESA as critical habitat for loggerhead turtles. The FWS and NMFS share jurisdiction for sea turtles. The FWS has responsibility for monitoring and managing sea turtles on beaches, and NMFS has jurisdiction for sea turtles in the marine environment.

All five sea turtle species are all highly migratory. Important marine habitats for sea turtles in the Gulf of Mexico OCS include nesting beaches, barrier islands, estuaries and embayments, nearshore hard substrate areas, and the Gulf Stream (Valverde and Holzwart, 2017). These species rely on coastal and pelagic waters for foraging needs (Bjorndal, 1997; Collard, 1990; Fritts et al., 1983a and 1983b; Godley et al., 2008; USDOC, NMFS and USDOI, FWS, 2015). *Sargassum* mats provide food and protection from predation for juvenile sea turtles (Casazza and Ross, 2008; Dooley, 1972). Loggerhead, green, Kemp's ridley, and hawksbill hatchling sea turtles are thought to find *Sargassum* rafts when seeking frontal zones,

then utilizing the habitat as foraging grounds and protection during their pelagic "lost years" (Carr, 1987; Coston-Clements et al., 1991; Witherington et al., 2012; Putman and Mansfield, 2015). Most sea turtle species move geographically, either seasonally or between nesting activities.

The IPF categories potentially affecting sea turtles in deep water are noise, lighting and visual impacts, OCS habitat modification/space use, and accidental events (which includes vessel strikes). The potential impacts of these factors are analyzed in BOEM's environmental reviews.

Environmental Stipulations and Mitigations

Measures to minimize potential impacts are an integral part of the OCS Program. Post-lease mitigating measures have been implemented for over 40 years in the Gulf of Mexico region, as they relate to OCS plans, as well as pipelines (installation and decommissioning), structure removal, and G&G applications. These mitigating measures have been amended over time to address changes in regulations, new technology, and new methods of operation. Many of these mitigating measures have been adopted as lease stipulations and incorporated into regulations and/or guidelines governing OCS oil- and gas-related exploration, development, and production activities. These measures are implemented through lease stipulations, operating regulations, and project-specific requirements or approval conditions. Mitigating measures address concerns such as endangered and threatened species, geologic and manmade hazards, military warning and ordnance disposal areas, archaeological sites, air quality, oil-spill response planning, chemosynthetic communities, artificial reefs, operations in hydrogen sulfide-prone areas, and shunting drill effluents in the vicinity of biologically sensitive features.

Mitigations are commonly applied at the lease sale stage as lease stipulations to OCS oil and gas leases as a result of any given lease sale. For each proposed lease sale in the GOM, BOEM considers potential lease stipulations developed from numerous scoping efforts for the ongoing National OCS Oil and Gas Program, as well as from lease stipulations applied in previous lease sales. Stipulations are attached to OCS oil and gas leases and are legally binding.

Frequently applied lease stipulations for Gulf of Mexico OCS oil and gas lease sales are listed below.

Stipulation No. 1 – Military Areas

Stipulation No. 2 – Evacuation

Stipulation No. 3 – Coordination

Stipulation No. 4 – Protected Species

Stipulation No. 5 – Topographic Features

Stipulation No. 6 – United Nations Convention on the Law of the Sea Royalty Payment

Stipulation No. 7 – Agreement between the United States of America and the United Mexican States Concerning Transboundary Hydrocarbon Reservoirs in the Gulf of Mexico

Stipulation No. 8 – Live Bottom

Stipulation No. 9 - Blocks South of Baldwin County, Alabama

Stipulation No. 10 – Restrictions due to Rights-of-Use and Easements for Floating Production Facilities Any stipulations or mitigation requirements to be included in a lease sale are described in the Record of Decision for that lease sale. More information on stipulations applied to past lease sales are available by navigating to BOEM's website at https://www.boem.gov/oil-gas-energy/leasing/2017-2022-lease-sale-schedule and selecting the Final Notice of Sale Package for any given lease sale.

Mitigating measures are an integral part of BOEM's program to ensure that post-lease operations are always conducted in an environmentally sound manner (with an emphasis on minimizing any adverse impact of routine operations on the environment). For example, post-activity surveys are carried out to ensure that a site has been cleared of potential snags to commercial fishing gear, and pre-activity surveys seek to avoid archaeological sites and biologically sensitive areas such as pinnacles, topographic features, and chemosynthetic communities. All plans for OCS oil- and gas-related activities (e.g., exploration and development plans, pipeline applications, geological and geophysical activities, and structure-removal applications) go through rigorous BOEM review and approval to ensure compliance with established laws and regulations. Existing mitigating measures (i.e., measures already established or agreed to by earlier authorization[s], such as through lease stipulations) must be incorporated and documented in plans submitted to BOEM. Operational compliance with the mitigating measures is enforced by BSEE.

Additionally, some BOEM-identified mitigating measures are incorporated into OCS operations through cooperative agreements or efforts with industry and State and Federal agencies. These mitigating measures include NMFS' Observer Program to protect marine mammals and sea turtles during explosive structure removals, labeling operational supplies to track possible sources of debris or equipment loss, and development of methods of pipeline landfall to eliminate impacts to beaches or wetlands.

Since many of site-specific mitigations are recurring, BOEM has developed a list of "standard" or commonly applied mitigations. Standard mitigation text is revised as often as is necessary (e.g., to reflect changes in regulatory citations, agency/personnel contact numbers, and internal policy). Site-specific mitigation "categories" include the following: air quality; archaeological resources; marine minerals; artificial reef material; chemosynthetic communities; Flower Garden Banks; topographic features; hard bottoms/pinnacles; military warning areas and Eglin Water Test Areas; hydrogen sulfide; drilling hazards; remotely operated vehicle surveys; geophysical survey reviews; and general safety concerns. Site-specific mitigation "types" include the following: advisories; conditions of approval; hazard survey reviews; inspection requirements; notifications; post-approval submittals; and safety precautions. In addition to standard mitigations, BOEM may also apply nonrecurring mitigating measures that are developed on a case-by-case basis for a site-specific activity proposal.

Following a lease sale, an applicant seeks approvals to develop its lease by preparing and submitting OCS plans. The OCS plans are reviewed by BOEM and, if required based on site-specific environmental reviews, BOEM may assign conditions of approval. The conditions of approval become part of the approved post-lease authorization and include environmental protections, requirements that maintain conformance with law, the requirements of other agencies having jurisdiction, and/or safety precautions.

Some examples of BOEM's conditions of approval include the following:

- other approvals prerequisite to BOEM's approval (e.g., the Coastal Zone Management Act);
- safety precautions (e.g., hydrogen sulfide present);
- post-approval submittals (e.g., surveys and interpretive reports, post-activity anchor plats);
- inspection requirements (e.g., pipeline pressure testing);
- pre-deployment notifications (e.g., U.S. Department of Defense use restrictions and Military Warning Areas); and
- reduce or avoid environmental impacts on resources identified in NEPA or other laws (e.g., the National Historic Preservation Act and National Marine Sanctuaries).

BOEM revises applicable mitigations as needed to adaptively manage the evaluation of mitigation compliance and effectiveness. A primary focus of this effort is requirements for postapproval submittal of information within a specified timeframe or after a triggering event (e.g., end of operations reports for plans, construction reports for pipelines, and removal reports for structure removals).

ENVIRONMENTAL STUDIES

Section 20 of the OCSLA directs BOEM to study and consider potential impacts to the coastal, marine, and human environments when making decisions on how to effectively promote energy independence, environmental protection, and economic development. As such, the Environmental Studies Program (ESP) was initiated in 1973 and has since provided more than \$1.2 billion to date for research. The Environmental Studies Section, in BOEM's New Orleans Office, plans, implements, and manages the Environmental Studies Program for the Gulf of Mexico region. The studies program helps BOEM obtain the best available data and information about environmental resources, including those in deepwater environments, ensuring that coastal, marine, and human environmental impacts are adequately considered in the decision-making process. BOEM incorporates findings from the ESP into its environmental reviews and NEPA documents. Study results also inform the development and application of mitigation measures, which are used to avoid, minimize, and monitor the impacts of energy and mineral resource development on the OCS.

Ongoing interaction between studies and assessment activities helps BOEM prioritize and target specific information needs, fill knowledge gaps in time for future decisions, and maintain our high level of commitment to environmental stewardship. Information regarding BOEM's past and ongoing studies can be found in BOEM's Environmental Studies Program Information System (ESPIS), an online searchable database available at https://marinecadastre.gov/espis/#/. The following selection of Gulf-wide or deepwater studies were published between 2014 and 2019, informing decisions that affect GOM deepwater activities.

Risk Analysis Studies

A Study to Improve Oil-Spill Risk Analysis in the Gulf of Mexico: A Multi-Model Approach

Prior to holding a lease sale, BOEM analyzes the environmental impact of potential spills resulting from oil and gas operations in the Gulf of Mexico OCS. High-resolution gridded surface current and wind products in the GOM are needed to drive the oil-spill trajectory model, which estimates the probability of potential oil-spill contact with various environmental resources. Currently, BOEM's Oil Spill Risk Analysis (OSRA) model relies on the surface currents generated by one of the GOM's circulation models. This deterministic approach can be improved by incorporating multiple datasets to account for the uncertainty associated with surface winds models.

The study conducted ensembled OSRA model runs that include different sets of surface currents simulated by two well-validated Gulf of Mexico ocean circulation models and their corresponding wind forces (Figure 90). Model solutions were statistically analyzed to better understand the uncertainty of the probablility of oil-spill contact with environmental resources in order to increase the accuracy of the oil-spill risk analysis in projected areas of OCS operations. The method developed for this study could be employed in other OCS regions.

Remote Sensing Assessment of Surface Oil Transport and Fate During Spills in the Gulf of Mexico

Figure 90. IASNFS reanalysis current at surface (black vectors) and NOGAPS 10-m wind (white vectors) superimposed over satellite altimeter SSH (in colors).

Remote-sensing products, as well as ocean circulation models, provide important information about the oceanographic processes that influence the trajectory and spread of surface oil during a spill. Hydrodynamic models and imagery are used by government agencies during a spill response to map the spill's extent and describe how oceanographic processes determine spill movement. BOEM also needs this information to inform our oil-spill risk analyses and assessments of potential environmental impacts. Satellite imagery and other overflight data inform on spill extent while remote-sensing data can be used to estimate oil location and thickness.

BOEM funded this study to fill gaps in our understanding of the mechanisms controlling surface oil movement during spills, particularly at small spatial scales. The impact of the various physical and chemical processes on spill transport depends on the type of oil involved or released, as well as current oceanographic conditions. The Loop Current and its eddies play a significant role in the movement of surface oil in the eastern GOM. During the past spill events in the GOM, substantial remote sensing, overflight, and in-situ measurements were collected. The study analyzed these previous observations in greater detail along with the current state of knowledge on oceanographic processes to better quantify wind and ocean current influence on spill movement.

One of the objectives of this study was to characterize surface oil distributions through remote-sensing techniques. After identifying sensing functional techniques, the study developed an oil transport and weathering model and physical forcing fields for analyzing surface oil distributions. Applying the sensing techniques to the model, this study described the effects of oceanographic and wind forcing on the transport and character of oil, and identified different mixing processes that influence surface oil transport.

Biological Studies

Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico

Over the last 25 years, cold-seep and hydrothermal vent communities have been studied at moderate depths in the GOM, along with the geology, geochemistry, and microbiology that supports their survival.

The most intensively studied and most understood of any deep-sea, cold-seep communities in the world are in water depths less than 1,000 m on the upper Louisiana slope of the GOM. Pervious studies have obtained a better understanding of the basic biology of the dominant animals and their life histories, as well as the processes that lead to the development of coral communities on carbonates created during periods of active hydrocarbon seepage. In addition, new organisms have been discovered, such as the ice worms associated with methane ice and the mussels that live near brine pools.

Although several GOM hydrocarbon seep sites located below 1,000 m have been visited by scientists, only a single site has been more intensively investigated. Located in Alaminos Canyon, the site lies at a depth of 2,200 m and has lush communities of biota, including tubeworms and mussels similar to the more well-known shallower sites (Figure 91). However, the underlying geology and almost all of the species present at Alaminos Canyon are different in part due to higher levels of methane and lower levels of oxygen in the deeper water sites as compared to shallower sites. Preliminary studies indicate that the structure of the communities associated with the tubeworms and mussels is also quite different, with higher tubeworm diversity found in

Figure 91. Rotary camera "Louie" deployed in seep community of tube worms and mussels.

shallower sites while higher mussel diversity was observed in deeper sites.

The primary objective of the study was to discover and characterize seafloor communities associated with hydrocarbon seeps and on hard ground in the deep GOM. Information about these communities informed BOEM's development and delineation of appropriate avoidance zones to ensure that they are not impacted or damaged by conventional energy-related, seafloor-disturbing activities conducted in their vicinity.

Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographic Banks in the Northern Gulf of Mexico

Potentially sensitive biological features (PSBFs) are hardbottom habitats supporting diverse biological communities at or near the continental shelf edge. The PSBFs enhance habitat complexity by providing hard substrate that supports larval settlement of floral and faunal species, as well as food and refuge. These habitats, in turn, attract other benthic and demersal fauna, which increases biodiversity. The relationship between habitat complexity and species diversity of deeper communities is not well known nor are the geographic patterns between diversity and relief. One hypothesis suggested that the relationship between species diversity and hardbottom relief could serve as a proxy for community species diversity. BOEM funded this study to determine if this was the case and if predictions of the locations of areas with high biodiversity could be improved. The physical relief, geographic patterns in relief, and possible processes explaining PSBF formation were examined. Fourteen banks in the GOM were surveyed (maximum depth 247 m) over a west to east range of 215 km (28.338° N, -93.688° W to 27.821° N, 92.004° W). The biodiversity and geographic patterns of sessile, epibenthic communities on the PSBFs were also examined and found that communities vary in their environments and are potentially exposed to disturbance from OCS oil- and gas-related activities and fishing. Study results are used by BOEM to inform analyses of the potential impacts of conventional energy development on PSBFs and their benthic communities, as well as to develop mitigation measures to reduce those impacts.

Physical Sciences Studies

Lagrangian Study of the Deep Circulation in the Gulf of Mexico

Instabilities of the Loop Current, which enters the GOM through the Yucatan Channel and exits through the Straits of Florida, influences deep circulation. When the northward extension of the Loop Current towards the Mississippi Delta becomes unstable and separates, a large warm anticyclone known as a Loop Current eddy (diameter ~200-400 km) forms. The eddy translates across the western basin until it interacts with the Mexican slope and the mesoscale upperlayer eddy field. Large amounts of kinetic energy are transferred to the lower layer (below ~1,000 m) by baroclinic instabilities. Deepwater currents can influence the dispersion of water mass properties as well as pollutants such as oil spills.

BOEM funded the study to increase knowledge and understanding of the deep circulations in the GOM. A Lagrangian approach incorporated a deep Ranging and Fixing of Sound (RAFOS) and seven autonomous profiling (APEX) floats, which were deployed to collect observation data through the deep GOM without regard to national boundaries. The study also investigated the connections between upper- and lower-layer circulation processes. Information from the study is used by BOEM to better understand deepwater currents in the GOM; in environmental analyses and an understanding of the trajectory, fates, and effects of spill events; and in planning for potential future spill-response efforts.

REFERENCES

- Addison, V., 2020, Gulf of Mexico: super basin that keeps on giving: Hart Energy, Internet website, Posted February 21, 2020, Accessed August 11, 2020. https://www.hartenergy.com/exclusives/gulf-mexico-super-basin-keeps-giving-186029.
- Arezki, R. and H. Nguyen, 2020, Coping with a dual shock: COVID-19 and oil prices: The World Bank, Internet website, Posted April 14, 2020, Accessed July 30, 2010. https://www.worldbank.org/en/region/mena/brief/coping-with-a-dual-shock-coronavirus-covid-19and-oil-prices.
- Bailey H. and P. Thompson, 2010, Effect of oceanographic features on fine-scale foraging movements of bottlenose dolphins: Marine Ecology Progress Series 418:223-233.
- Beaubouef, B., 2020, Seismic vessel and data market update: Offshore Magazine, March 1, 2020. https://www.offshore-mag.com/geosciences/article/14172714/restructured-seismic-industrycautiously-optimistic.
- Bjorndal, K.A., 1997, Foraging ecology and nutrition of sea turtles, In Lutz P. and J.A. Musick, eds., The biology of sea turtles (Vol 1), Boca Raton (FL): CRC Press, Inc.; p. 199-231.
- Bloomberg News, 2020, An analysis of the 20-minute span that changed the oil market forever: World Oil, Internet website, Posted April 26, 2020, Accessed August 17, 2020. https://www.worldoil.com/news/2020/4/24/an-analysis-of-the-20-minute-span-that-changed-theoil-market-forever.
- Boland, G.S., P.J. Etnoyer, C.R. Fisher, and E.L. Hickerson, 2017, State of deep-sea coral and sponge ecosystems of the Gulf of Mexico region, Silver Spring (MD): Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Technical Memorandum NMFS-OHC-4, 58 p.
- Bost, C, C. Cotté, F. Bailleul, Y. Cherel, J. Charrassin, C. Guinet, D.G. Ainley, and H. Weimerskirch, 2009, The importance of oceanographic fronts to marine birds and mammals of the southern oceans: Journal of Marine Systems 78(3):363-376.
- Briones, E.E., 2004, Current knowledge of benthic communities in the Gulf of Mexico, In Withers, K. and M. Nipper, eds: Environmental Analysis of the Gulf of Mexico, Corpus Christi (TX): Harte Research Institute, p. 108-136.
- Brooks, J.M., C. Fisher, H. Roberts, E. Cordes, I. Baums, B. Bernard, R. Church, P. Etnoyer, C. German,
 E. Goehring, et al, 2016, Exploration and research of northern Gulf of Mexico deepwater natural and artificial hard bottom habitats with emphasis on coral communities: Reefs, rigs, and wrecks "Lophelia II": Final Report: New Orleans (LA): U.S. Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, OCS Study BOEM 2016-021.
- Brown, D., 2020, Gulf of Mexico still a standout for super basin exploration: American Association of Petroleum Geologists, Explorer, July 2020. https://explorer.aapg.org/story/articleid/57464/gulf-of-mexico-still-a-standout-for-super-basin-exploration.
- Buia, M., P.E. Flores, D. Hill, E. Palmer, R. Ross, R. Walker, M. Houbiers, M. Thompson, S. Laura, C. Menlikli,
 N. Moldoveanu, and E. Snyder, 2008, Shooting seismic surveys in circles: Oilfield Review, Autumn,
 v. 20, p. 18-31.

- Burgess, G.L., K.K. Cross, and E.G. Kazanis, 2020a, Estimated oil and gas reserves, Gulf of Mexico OCS
 Region, December 31, 2018: U.S. Department of the Interior, Bureau of Ocean Energy Management,
 Gulf of Mexico OCS Region, New Orleans, OCS Report BOEM 2020-028, 30 p.
- Burgess, G.L., K.K. Cross, and E.G. Kazanis, 2020b, Estimated oil and gas reserves, Gulf of Mexico OCS Region, December 31, 2019: U.S. Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, 30 p.
- Carr, A, 1987, New perspectives on the pelagic stage of sea turtle development: Conservation Biology 1(2):103-121.
- Casazza, T.L. and S.W. Ross, 2008, Fishes associated with pelagic Sargassum and open water lacking Sargassum in the Gulf Stream off North Carolina: Fishery Bulletin 106(4):348-363.
- Chalenski, D., P. Hatchell, J. Lopez, M. Ross, H. Potters, and K. Broker, 2017, Rapid Autonomous Marine
 4D (RAM4D): Unmanned time-lapse seismic acquisition: Society of Exploration Geophysicists,
 Technical Program, Extended Abstracts, 5968-5973. https://doi.org/10.1190/segam2017 17739013.1.
- Clark, C.W. and G.J. Gagnon, 2004, Low-frequency vocal behaviors of baleen whales in the North Atlantic: Insights from integrated undersea surveillance system detections, locations, and tracking from 1992 to 1996: Journal of Underwater Acoustics (USN) 52(3):48.
- Collard, S.B, 1990, Leatherback turtles feeding near a watermass boundary in the eastern Gulf of Mexico: Marine Turtle Newsletter 50:12-14.
- Coston-Clements, L, L.R. Settle, D.E. Hoss, and F.A. Cross, 1991, Utilization of the Sargassum habitat by marine invertebrates and vertebrates, a review: Beaufort (NC): U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center, Beaufort Laboratory, NOAA Technical Memorandum NMFS-SEFSC-296.
- Cummins Jr., R., J.B. Rivers, and P.J. Struhsaker, 1962, Exploratory fishing off the coast of North Carolina, September 1959-July 1960: Commercial Fish Review 24(1):1-9.
- Dellinger, J., A. Ross, D. Meaux, A. Brenders, G. Gesoff, J. Etgen, J. Naranjo, G. Openshaw, and M. Harper, 2016, Wolfspar[®], an "FWI-friendly" ultralow-frequency marine seismic source: SEG Technical Program Expanded Abstracts, p. 4891-4895. <u>https://doi.org/10.1190/segam2016-13762702.1</u>.
- Dellinger, J., A. Brenders, R. Pool, C. Kanu, Q. Li, S. Michell, H. Jin, M. Gherasim, S. LaDart, J.R. Sandschaper, E. Díaz, K. Fu, T. Yang, D. Ni, and T. Manning, 2019, The Wolfspar® Field Trial: Testing a new paradigm for low-frequency 3-D velocity surveys: European Association of Geoscientists & Engineers (EAGE), Conference Proceedings, 81st EAGE Conference and Exhibition, Volume 2019, p. 1-5. https://doi.org/10.3997/2214-4609.201901273.
- Dondurur, D., 2018, Marine seismic data acquisition. Chapter 2: In Dondurur, D., Acquisition and processing of marine seismic data, Elsevier, p. 37-169. https://doi.org/10.1016/C2016-0-01591-7.
- Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, et al, 2012, Climate change impacts on marine ecosystems: Annual Review of Marine Science 4:11-37.
- Duey, R., 2018, Seismic shift: Hartenergy, Internet website, Posted March 1, 2018, Accessed August 13, 2020. https://www.hartenergy.com/exclusives/seismic-shift-176888.
- Duncan, C.D. and R.W. Harvard, 1980, Pelagic birds of the northern Gulf of Mexico: American Birds 34(2):122-132.

- *Federal Register*, 1976, Determination of critical habitat for American crocodile, California condor, Indiana bat, and Florida manatee: U.S. Department of the Interior, Fish and Wildlife Service, 41 FR 187, p. 41914-41916.
- *Federal Register*, 2014, Endangered and threatened species; critical habitat for the northwest Atlantic Ocean loggerhead sea turtle distinct population segment (DPS) and determination regarding critical habitat for the North Pacific Ocean loggerhead DPS: Final rule (50 CFR 226), July 10, 2014, 79 FR 132, p. 39855-39912.
- Felder, D.L. and D.K. Camp, 2009, An introduction to Gulf of Mexico biodiversity assessment: In Felder, D.L. and D.K. Camp, eds., Gulf of Mexico: Origin, waters, and biota, Volume 1, Biodiversity: College Station (TX): Texas A&M University Press, p. 1-13.
- Flock, F.E. and T.L. Hopkins, 1992, Species composition, vertical distribution, and food habits of the sergestid shrimp assemblage in the eastern Gulf of Mexico: Journal of Crustacean Biology 12(2):210-223.
- Fraser, S.B. and G.R. Sedberry, 2008, Reef morphology and invertebrate distribution at continental shelf edge reefs in the South Atlantic Bight: Southeastern Naturalist 7(2):191-206.
- French, D. and I. Moise, 2020, Exclusive: U.S. banks prepare to seize energy assets as shale boom goes bust: Reuters agency, Internet website, Posted April 9, 2020. https://www.reuters.com/article/ususa-banks-energy-assets-exclusive/exclusive-us-banks-prepare-to-seize-energy-assets-as-shaleboom-goes-bust-idUSKCN21R3JI.
- Fritts, T.H., W. Hoffman, and M.A. McGehee, 1983a, The distribution and abundance of marine turtles in the Gulf of Mexico and nearby Atlantic waters: Journal of Herpetology 17(4):327-344.
- Fritts, T.H., A.B. Irvine, R.D. Jennings, L.A. Collum, W. Hoffman, and M.A. McGehee, 1983b, Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters: An overview based on aerial surveys of OCS areas, with emphasis on oil and gas effects: Albuquerque (NM): Fish and Wildlife Service and Minerals Management Service, FWS/OBS-82/65, 454 p.
- Gallaway, B., S. Szedlmayer, and W. Gazey, 2009, A life history review for red snapper in the Gulf of Mexico with an evaluation of the importance of offshore petroleum platforms and other artificial reefs: Reviews in Fisheries Science 17(1):48-67.
- Godley, B.J., J.M. Blumenthal A.C. Broderick, M.S. Coyne, M.H. Godfrey, L.A. Hawkes, and M.J. Witt, 2008, Satellite tracking of sea turtles: Where have we been and where do we go next?: Endangered Species Research 4(1-2):3-22.
- Godo, T.J., E. Chuparova, and D.E. McKinney, 2011, Norphlet aeolian sand fairway established in the deep water Gulf of Mexico: AAPG Annual Conference Abstract.
- Hayes, S.A., E. Josephson, K. Maze-Foley, P.E. Rosel, B. Byrd, S. Chavez-Rosales, T.V.N. Cole, L. Engleby, L.P. Garrison, J. Hatch, et al., 2018, U.S. Atlantic and Gulf of Mexico marine mammal stock assessments 2017 (second edition): Woods Hole (MA): U.S. Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Technical Memorandum NMFS-NE-245, 378 p.
- Hayes, S.A., E. Josephson, K. Maze-Foley, P.E. Rosel, B. Byrd, S. Chavez-Rosales, T.V.N. Cole, L.P. Garrison, J. Hatch, A. Henry, et al., 2019, U.S. Atlantic and Gulf of Mexico marine mammal stock assessments 2018: Woods Hole (MA): U.S. Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Technical Memorandum NMFS-ME-258, 306 p.

Helmers, D.L, 1992, Shorebird management manual: Manoment (MA): Wetlands for the Americas, 58 pp.

- Hicks, E., H. Hoeber, M. Houbiers, S.P. Lescoffit, A. Ratcliffe, and V. Vinje, 2016, Time-lapse full-waveform inversion as a reservoir-monitoring tool—A North Sea case study: The Leading Edge, 35(10), p. 850-858. https://library.seg.org/doi/full/10.1190/tle35100850.1.
- Hopkins, T.L. and R.C. Baird, 1985, Aspects of the trophic ecology of the mesopelagic fish *Lampanyctus alatus* (family myctophidae) in the eastern Gulf of Mexico: Biological Oceanography 3(3):285-313.
- IPCC, 2014, Climate change 2014: Synthesis report, contribution of working groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland: Intergovernmental Panel on Climate Change.
- Jacobs, T., 2014, RoboNodes: Autonomous seismic receivers: Journal of Petroleum Technology, 66(9). https://pubs.spe.org/en/jpt/jpt-article-detail/?art=1691.
- Jickells, T. and C.M. Moore, 2015, The importance of atmospheric deposition for ocean productivity: Annual Review of Ecology, Evolution, and Systematics 46(1):481-501.
- Johnston, M.A., M.F. Nuttall, R.J. Eckert, J.A. Embesi, N.C. Slowey, E.L. Hickerson, and G.P. Schmahl, 2015, Long-term monitoring at East and West Flower Garden Banks National Marine Sanctuary, 2011-2012, New Orleans (LA): U.S. Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, OCS Study BOEM 2015-027, 194 p.
- Kramer, K.V. and W.W. Shedd, 2017, A 1.4-billion-pixel map of the Gulf of Mexico seafloor: Eos, 98, https://doi.org/10.1029/2017E0073557, Published May 24, 2017.
- Krauss, C., 2020, Oil nations, prodded by Trump, reach deal to slash production: New York Times, Internet website, Posted April 12, 2020. https://www.nytimes.com/2020/04/12/business/energyenvironment/opec-russia-saudi-arabia-oil-coronavirus.html.
- Lamb, J.S, 2016, Ecological drivers of brown pelican movement patterns and reproductive success in the Gulf of Mexico [dissertation]. [Clemson (SC)]: Clemson University.
- Learmonth, J.A., C.D. MacLeod, M.B. Santos, G.J. Pierce, H.Q.P. Crick, and R.A. Robinson, 2006, Potential effects of climate change on marine mammals: Oceanography and Marine Biology 44:431.
- MacDonald, I.R., N.L. Guinasso, J.F. Reilly, J.M. Brooks, W.R. Callender, and S. G. Gabrielle, 1990, Gulf of Mexico hydrocarbon seep communities: VI, Patterns in Community Structure and Habitat: Geo-Marine Letters 10(4):244-252.
- Michell, S., X. Shen, A. Brenders, J. Dellinger, I. Ahmed, and K. Fu, 2017, Automatic velocity model building with complex salt: Can computers finally do an interpreter's job?: 87th Annual International Meeting, SEG, Expanded Abstracts, 5250-5254. https://library.seg.org/doi/abs/10.1190/segam2017-17778443.1.
- Moldovenau, N., 2006, Recent and future developments in marine acquisition technology: Recorder, vol. 31, special issue, p. 10-17, Canadian Society of Exploration Geophysicists. https://csegrecorder.com/assets/pdfs/full/RECORDER-2006-Special.pdf.
- Nash, H.L., S.J. Furiness, and J.W. Tunnell, 2013, What is known about species richness and distribution on the outer-shelf South Texas banks?: Gulf and Caribbean Research 25(1):9-18.
- Offshore Energy, 2016, Conoco Phillips pulls brakes on Gulf of Mexico drilling, Internet website, Posted April 29, 2016, Accessed November 17, 2020. https://www.offshore-energy.biz/conocophillips-pulls-brakes-on-gulf-of-mexico-drilling/.

- Offshore Magazine, 2020, Seismic market likely to suffer the most in current environment: Offshore Magazine, Internet website, Posted April 20, 2020, Accessed August 18, 2020. https://www.offshore-mag.com/geosciences/article/14174434/seismic-market-likely-to-suffer-the-most-in-current-low-oil-price-environment.
- Pai, L., 2020, CGG officially exits seismic data biz: Offshore Engineer, Internet website, Posted February 18, 2020, Internet website, Accessed August 17, 2010. https://www.oedigital.com/news/475781-cgg-officially-exits-seismic-data-biz.
- Pilcher, R.S., R.T. Murphy, and J.M. Ciosek, 2014, Jurassic raft tectonics in the northeastern Gulf of Mexico: Interpretation, v. 2, no. 4 (November), p. SM39-SM55.
- Pramik, B., M.L. Bell, A. Grier, and A. Lindsay, 2015, Field testing the AquaVib: An alternate marine seismic source: Society of Economic Geophysicist, SEG Technical Program Expanded Abstracts, 2015, p. 181-185. https://library.seg.org/doi/epdfplus/10.1190/segam2015-5925758.1.
- Rekdal, T. and A. Long, 2006, Recent advances in marine seismic acquisition and processing technology: Recorder, vol. 31, special issue, p. 19-23, Canadian Society of Exploration Geophysicists. https://csegrecorder.com/assets/pdfs/full/RECORDER-2006-Special.pdf.
- Research and Markets, 2020, Seismic services market growth, trends, and forecasts (2020-2025), Internet website, Accessed August 13, 2020, 218 p. https://www.researchandmarkets.com/reports/4775061/seismic-services-market-growth-trendsand#pos-3.
- Ronen, S. and S. Chelminski, 2017, Tuned pulse source--a new low frequency seismic source: In Society of Economic Geophysics, Technical Program Expanded Abstracts 2017, p. 6085-6088. https://library.seg.org/doi/abs/10.1190/segam2017-w16-04.1.
- Rowan, M.G., B.D. Trudgill, and J.C. Fiduk, 2000, Deep water, salt-cored foldbelts: Lessons from the Mississippi Fan and the Perdido Foldbelts, northern Gulf of Mexico: In Moriak, W. and M. Talwani, eds., Atlantic rifts and continental margins: American Geophysical Union Geophysical Monograph, v. 115, p. 173-191.
- Shen, X., I. Ahmed, A. Brenders, J. Dellinger, J. Etgen, and S. Michell, 2017, Salt model building at Atlantis with full-waveform inversion: 87th Annual International Meeting, SEG, Expanded Abstracts, p. 1507-1511. https://library.seg.org/doi/abs/10.1190/segam2017-17738630.1.
- Slav, I., 2020, The dream of U.S. energy independence is dying along with the shale revolution: Oil Price.com, Internet website, Posted April 7, 2020. https://oilprice.com/Energy/Energy-General/The-Dream-Of-US-Energy-Independence-Is-Dying-Along-With-The-Shale-Revolution.html.
- U.S. Department of Commerce, National Marine Fisheries Service and U.S. Department of the Interior, Fish and Wildlife Service, 2015, Kemp's ridley sea turtle (*Lepidochelys kempii*) 5-year review: Summary and evaluation, Silver Spring (MD) and Albuquerque (NM): National Marine Fisheries Service, Office of Protected Resources and U.S. Fish and Wildlife Service, Southwest Region, 63 p.
- U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 2020, Biological opinion on the federally regulated oil and gas program activities in the Gulf of Mexico. https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico.

- U.S. Department of Energy, Energy Information Agency, 2020, Cushing, OK WTI spot price: Internet website, Last Updated August 12, 2020, Accessed August 17, 2020. https://www.eia.gov/dnav/pet/hist/RWTCD.htm.
- U.S. Department of the Interior, Bureau of Ocean Energy Management, 2017a, BOEM northern Gulf of Mexico deepwater bathymetry grid from 3D seismic: Internet website, Accessed August 10, 2020. https://www.boem.gov/oil-gas-energy/mapping-and-data/map-gallery/boem-northern-gulf-mexico-deepwater-bathymetry-grid-3d.
- U.S. Department of the Interior, Bureau of Ocean Energy Management, 2017b, Gulf of Mexico OCS proposed geological and geophysical activities; Western, Central, and Eastern Planning Areas; final programmatic environmental impact statement, OCS EIS/EA BOEM 2017-051. https://www.boem.gov/regions/gulf-mexico-ocs-region/resource-evaluation/gulf-mexico-geological-and-geophysical-gg.
- U.S. Department of the Interior, Bureau of Ocean Energy Management, 2020, Gulf of Mexico OCS regulatory framework, OCS Report BOEM 2020-059, ix + 54 pp.
- U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement, 2019, Guidance for information submissions regarding proposed high pressure and/or high temperature (HPHT) well design, completion, and intervention operations. https://www.bsee.gov/sites/bsee.gov/files/notices-to-lessees-ntl/ntl-2019-g02.pdf.
- Wang, P., Z. Zhang, J. Mei, F. Lin, and R. Huang, 2019, Full-waveform inversion for salt: A coming of age: The Leading Edge, 38(3), p. 204-213. https://library.seg.org/doi/full/10.1190/tle38030204.1.
- Westgaard. O.M., 2015, Seismic roadmap to recovery: International Association of Geophysical Contractors, 44th Annual Meeting, Carnegie Investment Bank, February 12, 2015. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjLjIfe04HrAh VFKawKHXBWAcoQFjADegQIAhAB&url=http%3A%2F%2Fweb.iagc.org%2FExternal%2FWCPages%2F WCWebContent%2FWebContentPage.aspx%3FContentID%3D2165&usg=AOvVaw0VigIfxF6-3iFMl6rJsE0Y.
- Zhou, W., R. Brossier, S. Operto, and J. Virieux, 2015, Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation: Geophysical Journal International, 202(3), p. 1535-1554. https://academic.oup.com/gji/article/202/3/1535/607490.

CONTRIBUTING PERSONNEL

This report includes contributions from the following individuals:

Carlos Alonso Shawn Alonso Kim Altobelli **Debbie Armond** Larry Boudreau Blake Bergerud Tom Bjerdstedt **Grant Burgess Teree Campbell** Laura Christensen **Kellie Cross** Michele Daigle **Thierry De Cort** Doug Dillon Stacey Domingue Anna Ebert Angela Guidry Matt Hebbard Eric Kazanis Elizabeth Klocek Don Maclay Deborah Miller Lesley Nixon Leah O'Donnell Sean O'Donnell Chris Oos **Kimberly Price Dirk Smith** Shane Stradley

Jennifer Rollman

Brent Vu

Matt Wilson

Toby Wraye

The Department of the Interior Mission

The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors the Nation's trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated Island Communities.

The Bureau of Ocean Energy Management Mission

The Bureau of Ocean Energy Management (BOEM) is responsible for managing development of U.S. Outer Continental Shelf energy and mineral resources in an environmentally and economically responsible way.