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2. The probability densities on the number
of spills and size of a spill

Following the above approach, within each category for a
particular hypothetical offshore development we will be

dealing with two variables:

1. The number of spills, n, of this category, which
will occur in a given time period from this

development.

2.- The amount of oil which will be spilled, x, from
an individual spill of this category emanating
from this development.
One thing is immédiately obvious. There is no\way we
can be sure of what values these two variables will take on.

When one is faced with a variable which one cannot predict

. with certainty, such as n or x, one characterizes this

variable by a probability density. A probability density

is an assignment of likelihoods to each of the possible values
bf the variable. A sample assignment to the variable n is

shown in Figure2.l,which indicates that n can take on ény:of

tﬁe values 0, 1, 2, 3 etc. with probability p(0), p(l), p(2),

etc. The height of each arrow is proportional to the likeli-
/. - .

hood assigned to that value. When likelihoods are represented

bj probabilities, 0.00 represents the probability of an event
which we are sure will not occur and 1.00 repfesents the proba-
bility of an event which is certain to.occur. Since we are
certain that n will take on at least one of its possible values,

the probabilities p(0), p(1l), p(2),... must sum-to 1.00.
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If one multiplies each probability p(n) with. the number
of spllls to which it has been assigned and sums these prod-
ucts, one obtains a measure of the central value of the density
of the number of spills. This measure is called the mean of

the density, MEAN(n). In symbols:

MEAN (n) = p(0)+0 + p(1l)-1 + p(2);2 + p(3)53 + ...
The mean. corresponds roughly to the aﬁerage ofvall the possible
values of n. '

Another useful measure of a probebility densiﬁy is the
variance. The variance is the sum of the squared difference
between each possible number of spills and the mean where

each difference is weighted by the probablllty of that value

in the sum. 1In symbols'
VAR(n) = p(0)+(0 - MEAN(n))2 + pfij'(l - MEAN(n)f2
'+~p(2)-(2'— MEAN (n))2 + ...

The variance is a measure of how spread out the density is.

- The larger the variance, the less likely the actual value

of ' n will be close to the mean. A baseball team made up of

50% .200 hitters and 50% .400 hitters-will have a much larger

variance than a baseball team composed entlrely of .300 hitters.

Both teams would have the same mean.

Sometimes it is useful to represent-tﬁe density of the
number of spills in a slightly éifferent form, the cumﬁlative.
The cumulatlve of the number of spills is simply a graph whlch

lndlcates the likelihood that the number of spills will be

less than n for all possible n. It is obtained by successively

summing up the arrows as one moves to the ‘right, increasing n

Py T |

o

R
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'

as indicated by Figure 2.2, resulting in a staircase-like
figure. The cumulative is convenient in that it is possible
to read off the pfdbability that the actual number of spills
w111 be between any two spec1f1ed values-by simply subtractlng
the cumulatlve associated w1th the hlgher value from the

- cumulative associated w1th the lower. For example, in the
cumulative indicated in Figure 2.2, the probability that n
will be between 2 and 4 is .B0 - .40 = .40. Often in drawing
cumulatives we will simply fair'a curve thréugh the high pointé»
in the steps, a lazy practlce whlch will cause no dlfflculty
as long as we remewber that the number of spills must be an
1nteger. ,

Our other random variable, tha amouht af oil which will
be.spilled in an individual spill, 'x, like n is inherently uncer?
tain. However, the descrlptlon of our uncertalnty about X is
-somewhat complicated by the fact that x can at least concep-

" tually take on any value betWeen 0 and some very large number.
We are no longer limited to integers. In this case, it 1s
meanlngless to ask what the probablllty of a Splll of exactly
~ 42,032. 39567... gallons is, for one can always make this
probability zero by using enough decimal places_ln asking

the question. waever, it is ?st meaningless to ask what is
the prabability of a spill being larger than, say} 42,060.00...
_galions and smaller than 42,100.00... gallons.. Therefore,

when we are dealing with continuous.variables such as spill

size, we assign a probability density such as the two shown in

Figure 2.3. 1In these densities, the probability of a spill
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being larger than Xy and smaller than.x2 is represented by

the area under the density between Xy and X, Thus, in inter-

- vals where the curve is high, there is more chance of the

corresponding spill sizes than where it's low. If it is

quite likely that the spill will be within a narrow range of
sizes, then one obtainsla sharply_peéked, narrow density such
as the solid density; If one is quité unsure of how large a
spill will be,_éne will obtain a low, broad distribution, such

as the dotted curve.

By summing the area above each small spill size interval -

‘multiplied by the corieSponding spillisize over all possible

spill sizes, one obtains the mean of thé spill size densiﬁx,

. which once again is a measure of the average spill size. By

summing the mean area about each interval multiplied by the

square difference between the corresponding spill size and

* the mean, over all possible spill sizes, one obtains the variance
.of the density, which is a méasure of the dispersion of the

density. Both the densities shown in Figure 2.3 have the same

mean, but the dotted density has a larger variance, imp;ying

- that for this density the probability that a spill will be

close to the mean in volume is much lower.

-Our assignment of likelihoods to X can be represented by

the cumulative of the density of x as well as by the density

itself. Like the case of n, the cumulative is simply a graph
indicating the probability that the actual spill size x will
be less than x for all possible x. The cumulative of x is

obtained by simply summing up the areas under the density
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as one moves to the right increasing x. Figure 2.4 shows
the cumulatives for the densities shown in Figure 2.3.
Notice how a.tight density leads to a cumulafive which
rises sharply over a relatively narrow'rangevwhile a widely
dispersed density leads to a cumulative which rises more
gradually over a much wider range. As in the case of n,
one caﬁ obtain the probability that the spill size will
be between any two given spill sizes by subtracting the
‘value of the cumulétive at the lower spill size from the
value of the cumulative at the hiéher siie. o
Given that we are going to characterize inherently

uncertain variables such as number of future 5pills_of a

particular category emanating from a particular hypothetic

devglopment and the amount spilled in such a future spill
by probability densities, the key question becomes:- how
‘are we to assign these probabiiities?’lAt 1ea§t concep-
tually, there are any number of ways one might go about
assigning these likelihoods; Wﬁ;beiiexe_it—is—éégéghfful

‘to-assign_these probabilities in a manner which is con-

sistent with the following ground rules:.

AN

1. The assignment will depend only on the available N

‘statistics. That is, we will not let our judgments

about future improvements, changes in tanker size,
and any non-quantitative experience we may have
had relevant to spillage affect our assignment

of likelihoods.
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For each spill category, there is an underlyiﬁg
process generating spill occurrences and another

generating spill size. These underlying processes

have been constant over the period over which we

have spill data and the same processes will govern

_future spillage.'

These processes generate spillé independently,

that is, the fact -that a spill occurs does not

change the chances of the next spill occurring.

With respect to spill incidence, we will assume that

——

' the probability of a spill's occurring in a parti-

" the amount of exposure in this interval. Together

with (3), this implies that spill occurrence is .

~governed by a Poisson process.

>

- With respect to spill size, we will assume that

The Gamma process is a rather general set of

processes which has some attractive analytical.

properties. . .o ST e

— .
Consistent with (1), we will assume that before

looking at the spill data, we have no idea which
Poisson process is generating spill occurrence
or which Gamma process is generating spill sizes.

We are, in effect, tabulas rasas. We therefore
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assign densities to the unknown parameters govern-

ing these processes, beginning with completely

blank densities in which any of the possible values

e

of these parameters is, for all practical purposes,

.equally likely.

7. As samples of spill occurrence and spill size

become known, we change our feelings about these

unknown parameters according to the laws g£ proba-

bility theory.

Now this is a rather long list of assumptions, and all of them,
except, perhaps, the last, are open to question. For example, (3) can

be challenged on the grounds that when a large spill occurs, there is

generally an intensification of vigilance and care Wthh

-will decrease the probablllty of a spill's ‘occurring in the

future from what 1t would have been. And it is certalnly
questionable whether the processes generatihg spills in the
recent past are the same as those which'will be_gehereting
spills_ih-the'futuret It is even doubtful thet the processes

generating spills in the recent past were completely unchanged -

over the period during which the data was collected.—

' Nonetheless,  let's accept -these assumptions for the
moment as working hypotheses and see where they lead us.
We believe the results will be pf"@reat use even if they are

regarded only as baselines from which modifications should

"begin. The listof assumptions underlying classical statistical

analysis is at least as long and for at least certain of our

spill categories involves such presumptions as: the next
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"large" spill has a significant probébility of being negative
in size. The above set 0of assumptions will at_ieast-avoid

building on such imaginative foundations.*

*Classical statistical analysis also involves making assump-
tions'1l, 2, 3 and 7. Assumptions 4 and 5 are usually replaced
by assuming that the random variables in question are governed
by Normal processes. Most classical statisticians would be
unwilling to assign probability densities to the parameters
governing the-unknown random processes, assumption 6, even densi-
ties which give no weight to whatever feelings we ‘had about
these processes before looking at the data. Strictly speaking,
this unwillingness prohibits one from making probabilistic
statements about the variables under analysis. In practice,
such statements are often made anyway. When they are made
anyway, from a logical point of view, the analyst is acting as
if he accepts assumption 6.
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3.  Quantitative implementation of ‘the assumptions'

3.1 sSpill incidence
As indicated in Section 2, our prbcedurefis to assume
that spill inqidence for a particular category is governed
bj a Poisson process. Under this assumption, if we know the
_ intensity of the Poisson ﬁrocess,_k, the density of the number

of spills is given by

_ e~At(At)n
- n!

p(n|a,t)
:where‘t is the amount of exposure contemplated in the hypo—l
thetical development currently under analysis and A is the
.mean'spillmrate'in épills pér unit exposure.
This assumption leads to two problems: what should

“we use for t, the exposure variablé, and what should we use

for A, the mean spill rate? With respect to t, we will "assume

that the exposure variable in the Poisson process governing

————

spill incidence is volume EE 0il handled. Some'empirical
ﬁéupport for this presumption is offered in the neit section
for tanker spillage. Similar support in the other categbriés
- has not yef been developed - at present it-is simply a ﬁbrking
Lhypotﬂesis, albeit gn obvious and natural  starting point for
séill analysis. - It is also.a hypoﬁhesis which underlies,
uéualiy tacitly, almost all spiilagé analysis which has taken
place to date. Nonetheless, other hypothéses, such as "the
‘exposure variable is number of landings" or “number of plat-
forms" or "number of wells" or "number of pipeline miies" |

certainly deserve attention and should be examined.

-
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When we turn to the choice of A, the mean spill rate,
things become still more complicated. . Under our basic ground
rules, the only information we allow ourselves on A is the

spill data. This implies two things:

1. Evenvafoer observing, say, v spills in T volume
‘handled, we cannot be certein’about the value of
X« Such data does not necessarjly imply that
‘A = v/1T for other A could eesily~ have‘resulted
in the same experimental outcome. Of course, the
howe data we have, the larger v and T, the more

likely it is that X is “close" ﬁo v/1. In short,
A is an"uncertaio'quantity and, . therefore, we muet‘
‘describe our knowledge about this quantity by a

probability density.

. 2. Before having observed any ebiil date under our’
ground rules we have esseﬁtially no feelings
about A other than that it's somewhere between 0
and «®. This implies that however we descrlbe
our feellngs about X before observ1ng any-data, -
these prior feelings must'be completely overwhelmed
by whatever data we then.observe.. |
N o

We can meet requirements 1 and 2 and at the same time

" save ourselves some computational travail by assuming that

our density on A before observing any data is a Gamma in which
the parameters are both zero.
Assumption 8 and some elementary probability analysis

then reveals that, after having observed v.spills in T volume
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handled, our density on.X is:
EV,T) =Aef1T(AT)vflr/(Q - 1)
The density on. A thus is the inlet'throuéh which ouxr past_spill
expéfience enters the analysis. | ' s
Once one has the denéity on A -given the spillage we have
observea, it is a simple matter to obtaiﬁ the deﬁsity on the
number of future spills which will occur in a particular
period given that we are going to handle t units of 0il in
that period. For each n, it is the probability that we will
have n spills given each possible A times'that_k_summed'over , :

all possible A:

i . . i

. - |
pnlt,v,7) = [ pa|A,B)E(A|v,T)aA
0 4

After some algebra, the resulting density 6n n~épill§lin a
. contemplatéd exposure of t unitéiof oil.handléd given fhat'
T we h;ve_alreaay observeé!v_spills inlou;_past éxppsure.of T
units cah be shown to pe o

m+ v - 112

ni{(v - 1)i(t + 1)

P(n‘tlvlT) = n+v

-

" which is known as the negative binomial density.
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3.2 Spill size

We have adopted the same basic philésophy in obtaining

densities of the size of an individual spill of given category.

First we must hypothesize a fandom process which governs the
size of’a spill given that it occurs. A priori, we know only
that a spill will not be hegati&e in size. Thus, such commonly
used procésses as the Normal are out. We have chosen to‘\
assume that.spill sizes are samples of a Gamma density.

)p—;w . ’

-

-wx,
e (wx
(p - 1)!

£(xlp,0) =

The Gamma family of densities has two parameters, p and w,
and by varying these two parameters a complete range of means

and variances can be obtained. In fact, for a given p and w,

berd Jard

[l MEAN (x|p,0) = p/u FlalCerns ; @ = .0000f o= 049

VAR(x|p,w) =.p/w2

Thus, by making p small, a high fétio‘df ﬁariange to:square
of the mean can be obtained - a widely.spread out density.
By making p large, a relatively small ratio of variance to
mean sguares--a tight densify—-één be obtained. -All thé Gamma
densiﬁies have only one peak and apply-only to xvl_o. In fact,
by varying p and w it is possible to obtain a reésonable approxi—

N

mation 6f any single-peaked density over the interval 0 to =,

Thus, if one believes that the density of spill sizes is single-

peaked, one loses very little_generality by assuming that this

. density is a Gamma.¥*

. *There is no a priori reason for believinQ that the spill
size density is single-peaked. Spills occasioned by different
causes almost certainly have different most likely sizes. 1In
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Having assumed that the density of spill size is a Gamma,
the next question is what are the values of the parameters p
and w. The obvious answer is.we don't know so we must specify
a density over these two random variables. In so doing, we
desire a density which
a. fits well with the Gamma in an anélytical sense in
order to keep our computational £ravail within

reason;

b. depends only on the sample of spill sizes of the

category in question.

Stewarxt [6] has shown that having observed on spillé of volumes
(xl, Xo4 x3,...im) respectively a density which fits these
requirements is the so-called Gamma-hyperpoisson:

- | e e pl
£(w,p|m,s,p) = e W™/ (r (o)™ (m,s,p)) % P

where S(m s,p) is a normalizing constant and

- m = number of SplllS observed

i
Il

X,

s Xy

total amount spilled

: 'p = IIx; = product of all the individual spill sizes. -

i
One can then obtain the density on x by multiplying the density
on x given w and p times the density on w and p and then

running over all.possible values of w and p. The result is

h ofo ) ) spldp
b I,(p)m+1 (m+1) *p

S(m,s,p) (x + s)

our actual analysis, we take a first step toward multiple
peaks by dividing all spills into spills less than 42,000
gallons and spills greater than 42,000 gallons.
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This is the density whose cumulative is shown in the spill

size probability figures. Its mean is

o e o=l :
_ __s/m p~ " T(mp) P
MEAN(#) "~ S{(m,s,p) é I.(p)msmp {p - (l/m)} de

which for large m tends quickly to the sample mean, s/m. For

small m, the mean is higher than the sample mean. -





