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TABLE B.1
y U.S.-FLAG TANKER SPILLS ASSOCIATED WITH FAULTY OPERATIONA
PROCEDURES AND EQUIPMENT
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TABLE B.Z
U.S.-FLAG TANKER SPILLS ASSOCIATED
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TABLE B.3

OFFSHORE PETROLEUM PRODUCTION SPILLS ASSOCIATED WITH
WELL BLOWOUTS

Volume Posterior CDF
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B.4

E B.4 ‘ N
SFPSHORE PETROLEUM PRODUCTION SPILLS NOT ASSOCIATED WITH

WELL BLOWOUTS

Posterior CDF

Volume
(10 1,44037 E-3
42 1.8%9041 E-2
100 0.283014
420 0.883106
1000 0,975429
4200 0.9983511
100C0 0.959973
42000 0.999934

106000 0.9993297
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TABLE B.5
PIPELINE-ASSOCIATED OIL SPILLS

Posterior CDF

Volume
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APPENDIX C

A SUMMARY OF THE STATUS OF THE BAYESIAN HYPOTHESIS TEST TECHNIQUE
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The test developed for this report for the selection of
the sampling function family underlying the observed volume
distribution is an heuristic extension of the classical
Bayesian hypothesis test (Zellner, 1971, page 297). 1In its

classical form, this test assumes the form:

_ P(Hj)jf(zi_!ﬁj, H]>f(‘9—]§HJ> dg_]
f(x)

P (H; | x) (1)

where
P(Hjlg) is the posterior probability that hypothesis
Hj is correct;
P(Hj) is the prior probébility on Hj;

F(x!s.

50 Hj) is the likelihood of sample x conditional

on hypothesis Hj and parameter values gj;
f(glej) is the prior distribution on Qj conditional on
H.; and,
J
£(x) is the posterior probability on the sample x.
It is equal to:

£(x) = T p(Hi) | £(x|21, Hi)f(8i|Hi)dsi (2)
i 91

In the present study, we assumed the £f(81i|Hi) were given
by improper priors of the forms dgi or 9%3 for the infinite
and semi-infinite parameter range cases respectively. This
leads to nothing more than philosophical problems when the

object is to calculate a posterior on 8i given x and Hi.
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However, in the problem at hand, (1), these improper priors
result in a fundamental indeterminancy.
To resolve this difficulty, the hypothesis test used here

inserts the posterior distribution on gj, f(gjlg Hj), for

'f(gjlﬂj) in equation (1). Since the posterior pdf on gj

is a proper density function, the indeterminancy disappears,
but now we are using the sample, x, twice in our equations.
Further, this form of the hypothesis test is not derivable
from any set of probability axioms that we are familiar with.
Thus our substitution is an ad hoc measure, and posterior
hypothesis probabilities based on using f(gjlg, Hj) in (1)
should be regarded as statistics subject to interpretationm,
rather than as probabilities in the strict sense.

In order to test the inferential power of this statistic,
we subjected our ad hoc posterior probabilities to extensive
numerical tests. These tests were reported in eariier drafts
of Appendix C. We found that it behaved properly for samples
drawn from the two parameter Gamma, Lognormal and Inverse
Gamma families provided the distributions were not taken from
that part of the family's parameter space where the function
became assymptotically Normal. This was a qualification of
little interest to us because we knew the oil spili data would
rarely exhibit Normal volume distributions. In short, we
found the statistic to have good inferential powers in iden-
tifying underlying distributions like those found in oil spill

records. The use of the statistic as a probability, however,
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Temains speculative since it is not theoretically based. Thus
posterior cumulative volume distributions composed of weighted
sums.bf ﬁﬁe family types, like the blowout CDF, are somewhat
speculative. We are unaware of any other options, however,

for treating small data sets like that found in the blowout
problem. On this basis, we decided to adopt the test for use
in this report.

Because of the ad hoc nature of the preccedure, we have
continued to work on the concept in hopes of finding a more
elegant and theoretically justifiable approach. This has
led us to several very promising ideas, and we are actively
pursuing the problem (MBK and JWD at MIT and RJS at PMEL) .
Since the method is novel, its presentation must necessarily
incorporate both the results underlying this report and our
most recent thoughts, which have yet to be proven numerically.
We do not, therefore, include a more complete description here,

although we hope to have the material published soon.







APPENDIX D

A PRELIMINARY EXTREME VALUE ANALYSIS OF PLATFORM AND PLATFORM
SPILLS (1964-1975)







An alternative approach for characterizing oil spill
volumes to the Bayesian technique adopted here is the extreme
~value methodology. This methodology is concerned with the
analytical properties of the distribution of the largest
random variate observed in a sample of fixed and/or very
large size. TFor example, if y is the largest of n exponentially
distributed random variates, x, then y may be sﬁown to have
the following probability density function:

n-1
£, =n(l-e7) 7Y - - (DY)

where y = max(xl, Koy o oo Xn)
and fy(x) = ™% (D2)
(Gumbel, 1958, chapter 4)

When n becomes large, the fgrm of fY(y) is most strongly
influenced by the behavior of the upper tail of the distribution
on x since the x's will usually come from this region. There
are three assymptotic forms of fY(y) that are associated
with exponential, geometrical, and maximum value limited
tail distributions on x respectively.

Corresponding to the probability density function fY(y),

shown above, is the cumulative distribution function

o |
Fy() = [1-e7V] (D3)

We may expand this distribution about the modal value of (D1),




D.2

. Ym
y,=in n, by multiplying e in (P3) by en

(which equals
unity), or

o (Y=¥m) n

= , and (D4&)

o “FY@) =1 -

- then noticing that in the limit, n-»=, this becomes

-(y-ym)]

lim F_(y) = expl[-e (D5)

nseo L

This is a Type I extreme value distribution and it is the
characteristic form for all extreme value distributions based
on populations with an exponential tail (e.g., Gamma, Normal,
and Lognormal families all have tails of the form e"g(x).)
In the same fashion, assymptotic distributions may also be
derived for the gecmetrical and maximum value limited tails.

The important thing to notice in (D3) and (D5) is that
the distribution is dependent on n, even in the limit n-w,
although in this limit all n does is locate the distribution
about some modal value. That is, the shape of FY(y) assymptotically
converges on the form (DS). Even for an n like 50, (D5) is
a reasonable.approximation to (D3)(e.g., (D3) yields .36714
and (B5) yields .36788 for n = 50 and y = 2n50.)

Since extreme value distributions deal oﬁly with the largest
of 'n' samples, they fit naturally into an analysis of low-
end censored data (data which disregards observdtions smaller
than a lower cutoff). One need only specify a large enough

n to achieve a high degree of certainty that y will be greater
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than the censoring threshold. As such, the extreme value
technique offers some hope of improving the spill volume
distributions for platforms and Pipelines. As pointed out
in the report these spill sources were not well modeled by
‘the Bayesian method. We suggested that this might be due to
the known censoring. There is one drawback, however, and that
is that the maximum values must come from samples that are
of approximately equal size. 1In earthquake magnitude cal-
culations, this is achieved by using the largest observation
in a period of time under the hypothesis that a large and
approximately equal number of tremors will occur in that time.
For maximum waveheight calculﬁtions, the maximum value is
again picked out of a fixed time period, usually of order two
hours, under the assumption that about 1000 wave crests should
be observed in that time.

If we had a year by year record of how many small oil spills
occufred but were not recorded, then it would be possible
to find periods of time in which similar or equal numbers of
0il spills occurred. It would then be a simple matter to find
the largest spill in the Event file for that period and proceed,
Unfortunately, this information is not available over any sig-
nificant period. The only alternative is, therefore,’to estimate
these periods of time from the data at hand, mainly the Platform
File construction records, and our knowledge of the spill
ngneration process, which holds platform years to be a useful

exposure parameter. On this basis, it is possible to estimate
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that the;e were about 18,500 cumulative platform-years in the
period January 1964 through December 1975 on U.S. leases

in the Gulf of Mexico. 1If we break this into ten, 1850 platform-
year segments, we find the following maximum spill sizes for
‘each of these periods, Table D1l. Also shown in this table

are the maximum pipeline spills, although we have no way of
supporting an assertion that a similar number of pipeline

. spills occurred in each period.

The simplest way to test this data for its extreme value
properties is to plot it on extreme value probability paper
(Gumbel, pgs. 177 and 263, 1958). Figures Dl and D2 show |
this data on such paper. If thé data was generated by a process
with an exponential tail, then the curve in Figure D1 would
be a straight line. Since it isn't we can rule out Type I
processes. Figure D2 is slightly better and shows that the
process might be modeled with a Type II process, one of which
is the Inverse Gamma. Unfoftunately the fit is still not
very good, mainly due to the absence of extreme values in the
range 500 to 5000 barrels. This gap may be real or it might
be due to inaccuracies in the reporting of the volume spilled*
or it might be due to the particular selection of time

intervals on which the data is based. Such speculations,

* We might hypothesize, for example, that the larger spill
will be more carefully researched and thus more accurately
reported while the small spills are more likely to be estimated
by guess. Further, it might well be in the estimators interest
to report 100 or 200 BBLS wversus 1000 or 2000 BBLS.
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TABLE D1

Period , Max., Platform Max. Pipeline
from to g Spill (BBL) Spill (BBL)
1/64  9/65 5,180 (5)% <50
10/65  3/67 <50 65 (8)
4/67  6/68 85 (10) 160,639 (9)
7/68  10/69 250 (15) ' 7,532 (L&)
11/69  12/70 53,000 (26) 50 (24)
1/71 3/72 200 (27) ’ 80 [o]
4172 3773 9,935 (40) 100 (39)
4/73  12/73 240 (43) 5,000 (42)
1/74 12774 130 (46) 17,883 (44)
1/75 12775 100 (54) 414 (55)

*Incident number in ( ) fable D
(] Table C

Accidents connected with Federal 0il and Gas Cperations
on the Outer Continental Shelf. USGS Conservation Division,

July 1976,
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however,_will not resolve the ambigﬁity, and Figure D2 in
its present form would not seem to warrant fur&her analysis.
We conclude, theréfore, that an extreme value analysis
of the 1964-1975 spill data does not offer much hope of
significantly improving the platform and pipeline spill
volume cumulative distributions. In our opinion, significant
improvement can only come from an analysis of the data that
specifically incorporates the censoring in its formulation,
or through use of the existing methodology on uncensored
data. With regard to the latter point, we should point out
that the Bayesian methodology used in the body of the report
only requires two or three "sufficient' statistics for each
hypothesized distribution, and these statistics can be
sequentially modified and do not require the retention of
complete data on the incident. For example, if we simply had
the number, the sum and the:product of all spills less than 1
BBL from platforms, we could use the uncensored Gamma;
inclusion of the sum of the reciprocals of the volume spilled
in this set of statistics would allow inclusion of the un-
censored Inverse Gamma; and so on. Records for these small
spills could therefore be kept in tabular form, with a running

total for each spill classification of interest.
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