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DISTRIBUTION THEORY OF SPILL INCIDENCE

1. The derivation of the predicted probability distribu-
tion
This appendix describes rigorously the derivation of
the predicted probability distribution on spill occur-
rence given as equation 4, in subsection ‘“‘Predicted
Probability Distributions for a Fixed Class of Spills.”
The development is a Bayesian one; a good general de-
scription of these Bayesian inference techniques may
be found in Box and Tiao, {1973, p. 1-73). The applica-
tion of these methods to oilspill occurrence forecasting
was proposed and described in Devanney and Stewart,
(1974).
We will use the following terminology:
n=number of future spills,
t = future exposure, :
A=true rate of spill cccurrence per unit ex-
posure,
v =number of spills observed in past,
7= past exposure,
ffn)=a marginal probability density on », and
fin|y)=the conditional probability density of n
given that the random variable y =y.

Assume that spills occur at random with some intensi-
ty, pfn):

—A
Pfn spills over exposure t] =(i't_:£’e Eoa-
n!

Suppose that, in the absence of information about 1, we
choose to represent our uncertainty about this
parameter in the form of an “‘improper” prior density
on A:

f(A| no data) =11 {A-2)

This says, in effect, that with no spills ever having
been observed, we place a good deal of faith on A being
equal to 0, although we allow a priori the possibility
that it may be any positive number. This may seem ar-
tificial {as is often the case with Bayesian ignorance
priors), but note that in any case all it takes is one ob-
servation of a spill to refute the notion that A =0. Our
previous feelings in the absence of any data will be
overwhelmed by minimal experimental evidence.
Suppose we then observe v spills in T exposure and
wish to update our estimate of A, The Bayesian ap-
proach is to represent our new estimate by a posterior
density on A derived from our ignorance prior density
on 1 combined with experimental evidence. This is ac-
complished through use of Bayes theorem:
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This is the density on A in Devanney and Stewart
{1974, p. 28) “through which our past spill experience
enters the analysis.”’ It ig, in Bayesian terms, the pos-
terior density on A.

If we were to gather more evidence, this posterior
would now become the prior, and the same reasoning
would apply:
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Note that this is exactly the same density on A we
would have obtained by adding the two exposures, T,,
and 7., and the two numbers of spills, v, and v,, and
treating it all as one piece of data.

Having done all this, if we desire the density of the
phenomenon (oilspill occurrence) given our current un-
certainty about A, we take the average of the Poisson
densities weighted according to the posterior on A:

fin|t,v,1)=[f§ flrn|A }f(k|v,T)dd
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This is the negative binomial distribution given as
equation 4, in the subsection ‘‘Predicted Probability
Distributions for a Fixed Class of Spills.”
2. Moment-generating functions

Results in the remainder of this appendix depend on
the use of generating functions. Some standard results
from probability theory will be reviewed.

If X is a discrete random variable with P(X=n)=
P,,, the generating function of X (Feller, 1957, p. 249)
is

=]
bx(s)= x Pps™
n=0

(A-6)

Moment generating functions for some common dis-
tributions used in this analysis are as follows:
Bernoulli random variable with probability p of *“suc-
cess’”:

bx{s)=1-p-+ps (A-7)

Poisson random variable with mean Aé:
®y(s) =exp(ir{s —1))
Negative binomial random variable with mean vt/r and

variance vt/t(1+t/7)

= .__T__._ v (A-S)
ON (&)=t
If X}, is a sequence of random variables with P(Xp =
n) Py, and X is a random variable such that P(X=n)
=pp. in order that pg, =p for any fixed z, it is neces-
sary and sufficient that

¥, (s} =0xs) (A-9)

for all s in [0, 1] (Feller, 1957, p. 262).
If Z=X+Y, and X and Y are independent, then
ez(s)=0x{s)Py(s) {A-10}

(Feller, 1957, p. 250}. If X;, =1, 2, 3,. .. ., are inde-
pendent. and identically distributed,

z=3

i=

X;, and N is indepe_ndent of the Xj, then

bz(s)=0p(Px(sh (A-11)

(Feller, 1957, p. 268).

3. Convergence of the negative binomial to the
Poisson

Let N be the number of spills in an exposure ¢, and
assume (following the first part of this appendix) that
N is a Poisson random variable with generating func-
tion

bpis)=exp(Ar(s — 1)),

and that the predicted number of spills N'is a negative
binomial random variable with generating function

_T .y (A-13)
t+t—ts’’

(A-12)

e is)={

where v is the number of spills observed in the past in
the course of exposure 1. If the Poisson model holds,
then the Law of Large Numbers guarantees that as
T+ then v/t—=A Suppose we had adopted the nega-
tive binemial model. Then

v

— T
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=( vii )v

(A-14)
t+vik—ts

and, as T grows larger,

1 v
Q)Nu(s): [ SO
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_ . —-v
(1+%(1—s)) (A-15)

which approaches
¢Nl(3) =exp (lt(s— 1))

as 7 (and hence v) grows larger.

Thus, if the Poisson model is correct, the analyst will
be led to the Poisson model as enough data accumu-
lates even while formally adopting the negative bino-
mial model. Spill incidence could be modeled quite
simply and directly using the Poisson distribution
with A set equal to v/r. This convergence to the true
model is an example of “Bayesian consistency.” The
advantage of the negative binomial model, as derived
through the Bayesian methodology of this appendix, is
that it incorporates the uncertainty about 4 for a finite
exposure 7, since v/t will never equal A exactly. The un-
certainty is reflected in a broader distribution on spill
incidence due to the larger variance of the negative bi-
nomial distribution—a wider range of spill incident to-
tals has non-neglible probability. The variance of N'is
ve (142

T T

(A-18)

, the variance of Nis 3}, and the difference

is v{—f_-)z. Thus the increase in uncertainty (as measured

by the difference in variances) is proportional to the
squared ratio of estimated future exposure, z, to
observed past exposure, T.
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This is only one measure of the closeness of the two
models, of course. Of more interest is a direct compari-
son of the summary features presented in the Oilspill

. Risk Analysis Model of the U.S. Geological Survey,

particularly in calculating the probability that no
spills will occur. The expectations of N and N' are the
same under the two models, vi/t. Let

Py, = P[0 spills|Poisson model]=e ~VE/T (A-17)
P,,;, == P|0 spills|Negative binomial model) =

(—1 (A-18)

1+tit

Consequently, dividing the two equations and apply-
ing a Taylor’s expansion yields

P H
1nPL;=—(—"7*)+(-—-"T—*+lfzvan

= +Ysve?, (A-19)

where

o<o<{t/ty (A-20)

or

14%9_4 elfgv(th')’. (A-21)

p

Thus the difference in the probability of no spills occur-
ring under {wo models (and hence the difference in the
probabilities of one or more spills) is again directly re-
lated to the size of (¢/1)
4. Distribution of the total number of spills from mul-
tiple sources

Let N, and N, be negative binomial distributed ran-
dom variables with generating functions

= T 0h {A-22)
d)Nl (S) tl +T|"'t18 ’

= T Y (A-23)
N, () t,+1,— s )

Then, if N=N,+N,,

Sprls) =Op{s) Py, (s), (A-24)
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following eguation A-10. In general, this will not be a
simple distribution. However, if ¢, =t,=tand r,=1,=
T, then

T Y1 +u!v

T {A-25)
t+Tt—ts

¢y (s)=

so N is distributed as a negative binomial random vari-
able with mean

A=y, +v,) % (A-26)

and variance

ot ={v, +v,){41 +_:_). (A-27)

5. Distribution of the number of hits

Let N, the total number of spills, be distributed as
above, that is, negative binomial with parameters v, ¢,
1. For each spill that occurs, associate a random vari:
able X which takes the value 1 if a specified event oc-

curs {such as the spill hitting land and 0 otherwise. Let
X be a Bernoulli random variable.

P(X=1)=P (A-28)

Let T be the total number of events that occur when
spills originate from a single source,

N
T=_Z X;

i=1

(A-29)

From section 2 of this appendix, the generating func-
tion of T is

dp{s)=bp{dx(s)) (A-30)
From equations A-6 and A-8
e (5)= * Y
t+1t—t(l—p+ps)
= T Vv (A-31}

pt+1—pts

Thus, the distribution of T, the number of events, is in
turn negative binomial, but with parameters v, pt, and
T.




