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1. INTRODUCTION

'Thgré is a growing body of opinion that tankers are, in
genéral, a less desirable transport mode for crude oil than are
subsea pipelines. Opinions to this effect have played a role
in legal controversies relating to the Department of the Interior's
lease schedule. Policy makers are considering measures that
would force developers to use pipelines in bringing oil to
shore. And even the National Academy df Sciences has opined
that pipelines are the preferred transpoft mode.

It is difficult to identify any one paper or report as
the foundation for thi; belief, but one of the earlier papers
- that states this conclusion explicitiy is the Milz and
-aroussard OTC paper of 1972. This paper has been referenced
several times in recent years. A review of the paper reveals
that the basis for their statement was a rather superficial |
examination of some U.S. Geological Survey and Department of
Transportation statistics coupled with an unsubstantiated and
probably incorrect assertion that there was a total of."13,000
miies of trunk lines in the marine environment' in 1972. No-
'where did they address the issue of the quality and degree of
completeness of the data used to generate the statistics. Nor
did they address the subtle analytical problems that accompany
- such comparisons. Their whole argument required one small

paragraph.*

.- In fairness to these authors, it should be noted that the
relative merits of tankers and pipelines was an issue very much
tangential to their central theme.
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In' the interim, a number of related papers have drawn the
same cqnﬁlusion. It is not our contention that all of these
papers were equally glib, because we have by no means examined
all of the literatufe. However, of the rather substantial num-
ber we have feviewed, none does a significantly better job of
addressing the probiems associated with using the existing
statistics to compare tankers with pipelines. As a general
rule, the papers fail to state whether the sample population
used to generate the statistics was in fact the entire popu-
lation or whether it was a subset of the population. Further,
if the latter is the case and if the paper mentions this, then
it fails to tell how the sampling process might bias the con-
clusions.

. Within this body of literature, as if these omissions
weren't enough, there is also a rather distressing reliance
upon the ratio of volume spilled per Qolume handled (historically)

as a parameter characterizing alternative transportation modes.

‘Such approaches might have considerable usefulness in cases

where the number of incidents is large and where the volume
spilled per incident is a random variable with a standard devi-
ation that is small compared to the mean. However, for the
highly skewed and squashed out diétributién we find in the oil
spill business, and for applications where the sample size is
small (in Milz and Broussard's paper only 4 pipeline spills

were identified), the use of average volume statistics is likely

to be very misleading, as we show in the following section.



Thus the purpose of this study is to examine both the
data that has become available in recént years and the analyti-
cai te;ﬁniques applied to the data to see if there is indeed a
reasonable basis within the .data for the preference given pipe-
lines over tankers. Despite the author's predilection to dis-
count the previous literature on the subject, no preference was
established initially in support of either the pipeline case or
the tanker case. We simply wanted to look at the data to see

what could, or could not, be said.



2.  AVERAGE VOLUME COMPARISON TECHNIQUES

As we mentioned in the introduction, a substanfial pqrtion
of the existing literature (e.g., impact statements and the
like) make use of comparisons between modes based in some
fashion dpon an average spill volume statistic. This may be
hidden iﬁ the analysis, but whenever one sees statements like
''. 0006 peréent of the 6i1 handled by system 'R' will be
spilled," or "X will spill Q percent less than Y," then one has
entered the world of the average‘statistic. This author and
Professor J. W. Devanné& III of M.I.T. have frequently argued
" ~gainst the use of such a statistic in the ‘evaluation of oil
- spill risk, but apparently this hasn't fallen upon the right
ears. It is still possible to find statements like "Pipelines
will spill (on the average) 40% less o0il in the life of the
field than will the alternative, tankeés."

We would have no argument if this statement were indeed
supported by the data. 1In fact, we would be very interested
in such conclusions. However, such statements are nweually
‘based upon small samples and superficial estimation techniques,
and as a result, the validity of the 40% value is questionable.
In the event that such analyses lead té the.adoption of a policy
that discriminates against tankers, then we may be imposing
economic and perhaps environmental penalties that are not at

1 consistent with the data or in the interest of the public

or the developer.



| The primary cause of the difficulty in conceptually
handling ‘an average spillage statistic éprings from the
possible variability in the value of the sum of several
random numbers. Most peoplé, professionals as well as
laymen, expect such sums to exhibit nice statistical
properti;s. This may be due to a popular misconception
regarding the universality of the Law of Large Numbers
which méy lead to a belief in the general normality of
sums of random variables (of random variables that have a
second moment, that is). However, the asymptotié character
of the proof of the Law of Large Numbers requires very
"argé numbers of summands and there is no basis for a
belief in the general applicability of the law to small
samples.

Furthermofe, there are classes of random variables
that do not have first and second'momgnts and that are:
yet of value in looking at o0il spill statisties.* ° Such
distributions would completely fail to comply with the
M aw" af Targe numhers. Marenver, one needn't lnrnk at
.obscure distribution (like the ''Stable Laws') before one
uncovers random phenomena that exhibit highly irregular
sums.

" An example éan best illustrate this point. Assume that

the distribution on the volume, v, of oil spilled in any one

* See Paulson, for example, for an application of Stable Law
distributions to some oil spill data.
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incident is given by the Gamma distribution:

2.1) .

.f(ﬁ) - 20wl
F'(R)

where R and A are the parameters determining
the character of the distribution on v.

Assume .that the volume spilled in any one incident is inde-
pendent of the volume spilled in any other incident. 1If our

sample comprises 'N' incidents, then the distribution on

the sum, y, of these 'N' values of v, (y = ? v-)’ is given
. j=1 1
by the related Gamma function:
NR-1 ;Ay
= Ay e -
f * 2.2
&) T ONR) ( ‘)

If we now take the average of these spills, z = %, we find that

the average is distributed like:
NR-1_-Bz ' - :
£(z) = 8(Bz) _ "e (2.3)

I'(NR) "

where B = NA.

following moments:

This distributiecn hng the

1. Mean = 7 = Jx = R | (2.4a)
— _ NR(NR + 1) . -

) gt = (2.4b)

* This relationship between the distribution of the sum and
g distribution is a property of the Gamma distri-

the underlyin
generalizable to other probability density

- bution and is not
functions (PDFs).



3¢ 23 . NRQWR + J‘;Z(NR +2) (240
' 4, Variance = ozz= E% = ﬁ%f | ‘ (2.44)
5, Skewness = Y12 2 (2.4e)

T o= (NR)1/2

If we write these in terms of the mean, ¥V, variance, oy?, and

. 2 .
skewness, Y Vo= » of the underlying distribution on v,
1 ET72 ying

we find:

_ zZ=v (2.5a)

EAES N (2.5b)
z _ 1 v

Yl’ i\]—U—i— Yl ‘ (Z.SC)

Thus, increasing éﬂe number of samples causes the variance to
decrease like % , which is the same behavior fouﬁd in normal
distributions, and what we'expect based on the law of large
numbers. However, unlike the normal distribution, the distri-
bution of the mean, z, can be highly skewed.* This suggests
that a substantial portion of the distribution of z may lie in
regions very much removed from z, and this means that the pro-
bability of determining Zz to good accuracy may be correspond-

ingly small with a small sample.

* If Y1V has a skewness of 16, then we required an enormous num-
ber of samples (eg., 250) to bring the skewness of the mean, le
down to a value of order 1. :



More exactly, the probability of finding az ﬁore than

three times larger than 7 is given by the integral

=}

-Bz NR-1 '
Plz533] = e B(Bz) dz = LR, 3NR) () 6y
35 - T@WR) T (NR)

Similarly, the probability of finding a z that is less than
one-third the value of z is given by
1z
1- . e BZp (g5 MR-1 I (NR %NR)
Plz £ =z] =j dz= 1- 2", 9°°7)
4 T (NR) T (NR)

2.7)

w

o

Making a few substitiitions and combining the results above, we
can readily show the probability that the value of z (the sam-

plée mean) will fa%l within a factor of 3 of the desired value,

z, is:
1

r ™R, 3NR) _ r(NR,3NR)

I' (NR)

P[%-55zs321 = (2.8)

where I'(a,x) is the incomplete Gamma function
(See Abramowitz, pp 260-263)

We can see that this probability is solely a function of
NR. That is, the probability that the estimated mean value
will fall in the range (%E, 3z) will be a.function of the skew-
ness of the underlying distribution (ie., R = 4/(Y1v)2) and
the number of samples. To provide a more concrete understanding
of the problem we have evaluated (approximately) the probability

for various values of (NR) using Figure 6.3'of Abramowitz for
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small vhlues of NR and the Table of the CDF of X2 in Benjamin

and quﬁell for larger values. The results are tabulated

below.
TABLE 2.1

PROBABILITY THAT THE SAMPLE MEAN WILL FALL
WITHIN A FACTOR OF 3 OF THE REAL MEAN

NR P (%2 <z < 3%)
.5 bk
1.0 64
2.0 85
3.0 91

-

Thus, for example, (NR) must fall in the range of .5 to 1.0
if we are to have a 50% chance (P = .5) of estimating z within
a factor of three.

We can use this result to estimate the desired sample
'size. If we assume that the population from which the sample
is drawn has a skewness of twenty, tpen we need about 100
samples (i.e., R = 4/20%> = .01, N = 1/.01 = 100) to have a
50% chance at estimating z within a factor of three. Obviously
as the eomnln gets lavger, (NR) inc#eases and we have a corres-
pondingly greater chance of estimating the mean value to any
specified degree of accuracy. Unfortunately, we cannot arbi-
trarily draw more samples in the o0il spill problem and so our
estimate of the mean is restricted in its accﬁracy by phenome-
na beyond our control. It seems clear that if we cannot be
ery confident of estimating the average spill size within a

facFor of three, with ten or even one hundred samples, then
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we must be suspicious of the reliability of the comparison
of two'such means. In the tanker/pipeline controversy the
data .employed in such comparisons are usually drawn from
records of major spill events involving either loss of 1life
or large spill volumes. These records are then usually
culled furtﬁer to iﬁclude only spills over some arbitrary
threshold like 1000 BBLS. The assumption here is that large

spill 111 generally be reported in the literature and so

we can assume\that these large spill records are exhaustive
compilations. '

In a typicdl application, average spill sizes, Zi, are
calculated based on éhe samples available for the alternative
modes (i = 1,2), and an average number of spills, n, is
estimated for the life of the development based on some
eéxposure parameter suitable for the alternatives being
considered (é;g. total production in barrels from an offshore
petroleum development). The avéragg spillage per mode, Zi,
is then calculated based on the product of the average
number of spills in the life of the development times the
average vnlume spilled per eveant (Xi = nizi ; 1= 1,2)..

The average number of spills, n.

i is a randomly varying

parameter, and so the variability in Zi will be a complex

function of the n; and Zi PDFs.* 1If we attempt to incorporate

* Generally,

50 = [ 5 g0 o .

"where both f_ and f., are continuous functions (if either fn-

or £, are digcontinuous, the formula is qualitatively
different),
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the ad@itional variability due to the ni's, we find that the
mathematics become more and more cumbersome and the number
of assumptions required to pose the problem increases. Neither
of these consequences is desirable in view of the qualitative
nature of this discussion. VWe shall assume, therefore, that
the ny s are deterministic and that the distribution on Z is
given by

£5 (o) = nilfz.[il} (2.9)

i i .

A comparlson of alternatives based on the Projected average
spillage parameters devolves in thlS case to a comparison

of the sort

?

My 21 s known 2.10
my z, >z, wherg-ﬁg.ls nown (2.10)

The number of spill events in the large spill pipeline
daté base is in the tens or twenties and the number of tanker
spills is in the hundreds. Both populations exhibit large
skewness, and so one problem that muét be addressed is what
is the effect of the different sample sizes on the comparison
shown in (2.10). That is, for the skewed distributions we
find in.the oil spill business, does the sample size play a
role in the comparison, and if so, does 1t bear upon the
validity of any conclusions we might draw from such comparisons?

- In terms of the classical statistical literature, we can
phrase thls concern in terms of the probability that we will

rongly accept the hypothesis that nlzl is less than n222

~when in fact N,Z, is equal to (or less than) n Stated
272 1 1
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- in this form we have a Type II error. Since n; and n, are

free vari;bles, it is useful to consider some particular set
of values of these parameters to make the analysis less
abstract. A reasonable selgction is Ny = ny, although the
reader is cautioned to remember this specification. In any
particular applicationm, ny will not equal Ny, and a
speéialiged analysis would necessarily follow.

We can make the analysis specific by now asking what is
the probability that. the mean of a sample drawn from one
populétion will be greater than the mean drawn from another
population given the parameters characterizing each population.
To simplify the calculations, we will assume each population

s distributed like a Gamma variable. We will also assume
‘that both populations have the same A factor, although we will
allow R to vary. This problem may sound somewhat'peculiar,
even trivial, because both estimates of the.mean are unbiased
and thus we might expect that'popuiatipns having equal means
will always have a probability of .5 of one sample mean
exceeding the other. On reflection, however, this is obviously
fallacious, as counterexamples can be ve~2491v constructed.

Letting Z, and Zy be the observed sample means, we find

the following distributions for Zl and 22: '

= (N2 (gazp)NIR1-1,-N3aZy

£(Zq
1 I'(NjR1)

(2.11)

(N2)) (N2azp)N2R2-1,-N2azp
I (N2R2)

£(Z3) = (2.12)
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Here Ni is the number of samples drawn from population

e

i,

The probability that Z2 will be greater than or equal
to Z1 is given by the integral:

o ©

% ' -N2AZp RoNy-1
P[Z9 2 Zq l Nl,Nz’R]_,RZ',)\J -—«j dzj szZ e (NZA)-(NZ)‘ZZ) 2082
T'(RpN2)
o 2]
‘ | 1N -1 _-N7AZ
. (le)(NlAzl)RlNl.le N1AZ1 2.1%)

I (R1N1)

This can be evaluated in terms of Gauss' Hypergeometric func-

tion, 2F1(a,b;c;d), with the result* -

‘ S ‘N RIN1. . N RoNo
PiZp221|...1 = -1 (1, (—2) L(R1NL*RoNp)
R1N1 Nj+Np Nj+N2 T (RN1)T(R2Np)
! Nl
2 F 1 (1, RINI+RyN2;1+R1N7; ) (2.14)

N1+Ny

This can he evaluated for gbnefal values of the arguments
Ri1Nj, R2Np and.§%¥%§ » but the formula involves an infinite
series which is rather difficult to work with. It serves our
purpose just as well to consider a special casé, the case of

R1N15 1. This corresponds to drawing 10 samples from a reason-

ably skewed population (R = .1,#&? = V40 = 6.32). We might,

- * See Gradshteyn, equation 6.455(1).
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for example, consider this to be a model of the pipeline data
base in view of both the small number of samples and the value

of the skewness.

-

In this case the probability that the value Z7 will ex-

ceed or equal Z1 is given by:

N RoNsp N2 /Ny R_2 N2
Plzg 2z | mjRy=11 = 1 - I =1 - 2LLR M 2.5)
N1+N, 1+Np /Ny

-

But RZ/Rl is the ratio of the population means, so let
Ro/R] = B, and note.that when B is less than 1, then population
2 -has a smaller mean than population 1, and so on.

Notice that in the case B = 1,

No |
Plzp>z11 = 1 - (2/M1 3§y (2.16)

1+N3 /Ny

Only in the event that N2 equals Nf does this equation show
that we have a 50/50 chance of finding Z2>21. In fact; we

find that as we draw more and more samplgqurpm.nnpulation 2,

we improve our chances that Z7 will equal or exceed Z1. Worse

yet, if we draw a very large number of samples from population
2, our chances are asymptotically .632, (i-% ), that 22 will
be greater than or equal to Zl.* This despite the fact that

————

Z1=7; .

~- % The probability that Z7 will equél Zq is vanishingly’small
and so we can interpret Zs 221 as 22 >Zy for any practical
purpose. : :
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If we specialize the problem by assuming

N
2
>>1
Ny

then (2.16) shows that this Type II error will occur with
probability .632 when 72 = Zl. We can specialize (2.15) for
the general case of B less than or equal to 1 and N2/N1 >> 1,
with the result

Ny

Pizp>Zy [RyNy=1; g2>>1; 0<g<1} =1-e P=P{Type II error} (2.18)

This is shown on Figure 2.1. Notice that for small Bs the
probability of observing a Type II error is nearly proportional
to the ratio of the population méan values. That is, if
sopulation 2 had an average that was one-tenth that of
population 1, we would.still have a probability of about
one-tenth of finding Z,>Z; due solely to the differences in
sample éizes. : |
Many comﬁarisons require Z, to BF some substantial
fraction greater than Z; in order to avoid this type of error.
This can still lead to erroneous conclusions. For example,
if we set the value of the lower limit of integration wirhiﬁ
the bracket in (2.13) to 2;1.then we have the probability that
22 will be twice Z1 given the distribution .,and sample size
parameters Rl, R2, Nl’ NZ' and 2. {(Note that this is the
technique to be used in determining the probability of L,2Eq
when nl=2n2.) If we again specialize the problem for R1N1=l,

.hen
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Test criterion: Zzzzl

Prdbability of a Type II error

B(Z;/ZI, the ratio of the means)

Figure 2.1--Probability of erroneously cbncluding that the
vean of Population 2 is larger than that of Population 1
#dhen Ry 1~1, NZ/N1>>1’ and the test requires-zzzzl.
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o
[ N y L
' 2 2
Ny o
P{Z,>2Z; |R;N,;=1} = 1 - J'TP (2.17)
’ 1+2N-g
y 1]

Specializing this further for the case NZ/N1>>1’ we may
readily determine that the probability of erroneously concluding
that Z, was greater than Z; based on a Z,>2Z, test is:
B
N

P(Z,>2Z, |R\N,=1; 2>>1; 0<B<l}=l-e 2=P{Type II error} (2.18)
22221 IR Ny =15 g>>1s 0<p

This function is shown in Figure 2.2. As we can see, little
has been gained by this rather severe criterion. Imposing
such conditions on Z, also increases the probability of
comnitting a Type I error (rejecting the correct hypothesis):
Thus, averagelvolume comparisons lead to greater.and greater
difficulties as we try to accommodate processes with
substantial skewness. ' '

Since these results are not intuitive, it behooves us to
state when such comparisons ought to be acceptable, as they
are used frequently and with much success. One ready
example is the case where both populations are normally
distributed. 1In this-event,vthe sample mean is also
normally distributed with an ever-decreasing variance and
zero skewness. If we visualize the joint distribution of
Z? and Zg under these circumstances, we see that a contour
-~ map of thg joint PDF would consist of a numbér of ellipses

constructed about the locus of the means (Z?,Zg). As the



1.0 ' .

Test criterion: ZZZZZ1

Probability of a Type II error

0  — ) | T T "1 —
-0 ' 0.5 1.
B(Z,/Z;, the ratio of the means) .

0

Figure 2.2--Probability of erroneously concluding that the
mean of Population 2 is larger than that of Population 1
when R;N,=1, N,/N;>>1, and the test requires 29222, .



19

number of samples used to calculate Z, is incrgasgd, thg
axis of the ellipse in the Z, direction simply becomes
smaller. |

I1f we consider the'cagg'zgégg, then the probability that
Zg is greater than Z? would be .5 irrespective of the sample
size since thé line Zl=Z2 would be a line of symmetry in the
(Zl,Zz) plane. Conversely, the skewed Gamma distributions do

not have such lines of symmetry (except as NlRl and N,R,

become much greater than unity or when N1R1=N2R2), and so

the portion of the distribution lying on one side or the other
of the line Zl=22 varies with Nzu

If the reader is still disconcerted at this point, and

perhaps skeptical of the generality of the results, which we

rea&ily admit are outlined only for the case RlNl equal to
unity and n;=n,, we apologize. The extension of these results
to the more general case can beAdone based on the equations
presented here, but it is well beyond the scope of the present
study .to attempt such an exhaustive survey. Our main hope is

that in the absence of such a conclusive investigation, the

_ reader will at least apply some small fraction of his present

skepticism to average volume comparisons. Particularly when
these comparisons are made without sufficient consideration

of the treacherous properties of these joint statistics.



