

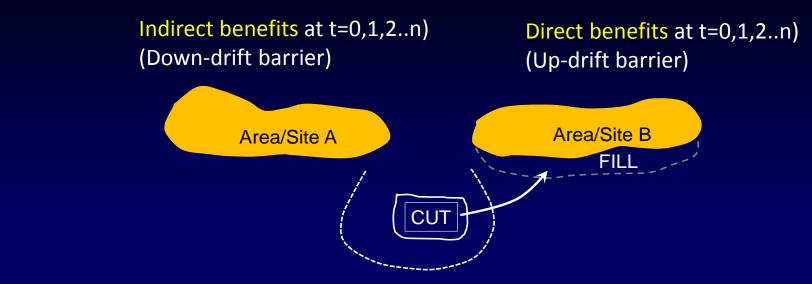
DEPARTMENT OF AGRICULTURAL ECONOMICS

Benefit-Cost Analysis of Using OCS vs. Nearshore Sand for Coastal Restoration

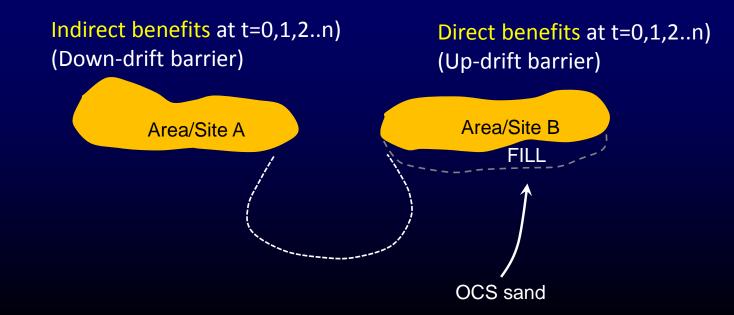
Dan Petrolia Rex Caffey & Hua Wang (LSU) Ioannis Georgiou & Brittany Kime (UNO) Michael Miner (BOEM) Gulf of Mexico Offshore Sand Management Working Group New Orleans, Dec. 7, 2017

Motivation

~80% of restoration budget is exploration, dredging, and emplacement of sediment (Khalil et al. 2010, Wang 2011)


Projects are typically evaluated based on:
– cost effectiveness
– subaerial land only
– direct benefits at project site only

Summary of Key Tradeoffs


- Nearshore Sand
 - Cheaper per unit
 - Lower Quality
 - Dredging potentially impacts project area dynamics
 - Constrained by sand availability
- OCS Sand
 - More expensive per unit
 - Higher Quality
 - Less mud (less sand required per unit area built)
 - Larger grains (erodes slower)
 - Dredging does not impact local project area
 - Augments nearshore sand budget
 - No quantity constraint

Scenario 1 – NS sediment excavated from within the system

Scenario 2 – OCS sand from outside the system

BCA Components

- Universal Standing
- Alternatives:
 - Nearshore vs. OCS @ site
- Assumptions
 - Costs @ t=0, Benefits @ t=1-50
 - Benefit attached to acre of sand
 - Subaqueous benefits some fraction of subaerial benefits
 - Mud has zero value

- Sand benefits below depth threshold
- Non-sand benefits
- Env/habitat costs associated with dredging

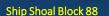
Pelican Island, Louisiana Dune and Marsh Restoration

Costs (based on historical project data)

727.520.8181 www.aerophoto.com

Scofield Island

Image #130801 6301 Date 08.01.13



Scofield Island

Image # 120702 6240 Date 07.02.12

Borrow Sites and Projects

OCS-Sourced Projects and Borrow Sites

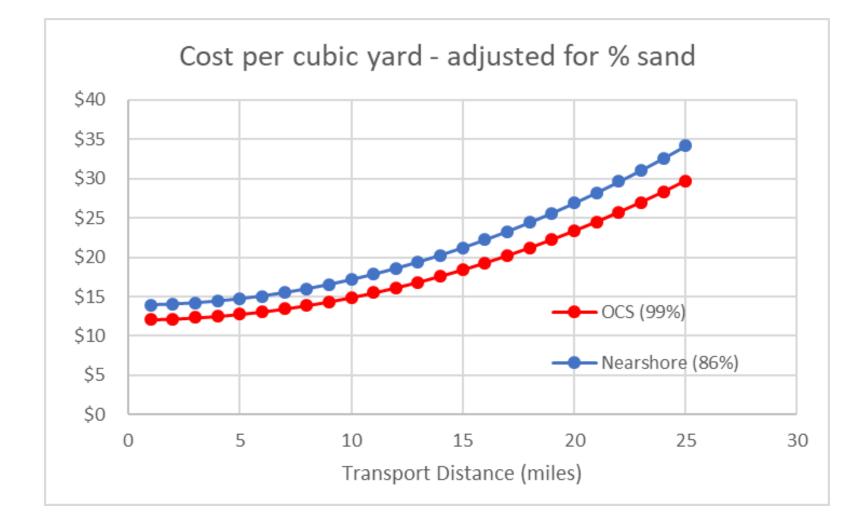
400

Miles

Legend

NS-Sourced Projects and Borrow Sites

Estimated Cost Model


. reg cc16_1000 cy_1000 dist_sq river cutter calc_sabine year, vce(robust)

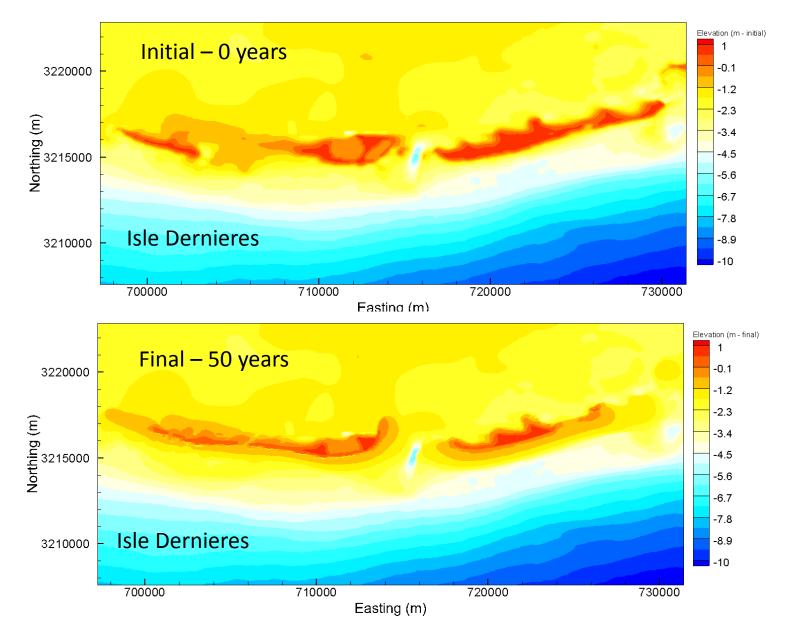
Linear regression

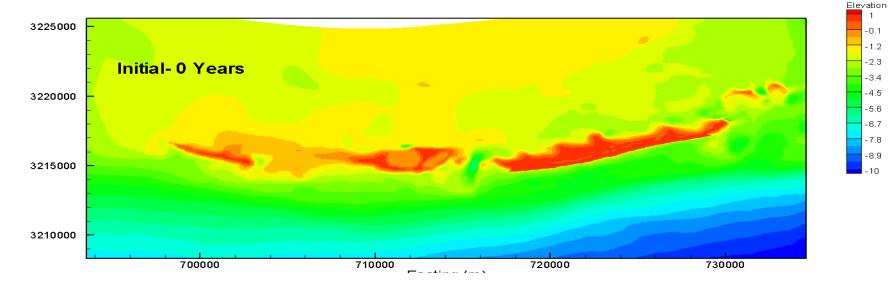
Number of obs	=	71
F(6, 64)	=	156.13
Prob > F	=	0.0000
R-squared	=	0.9207
Root MSE	=	9946.2

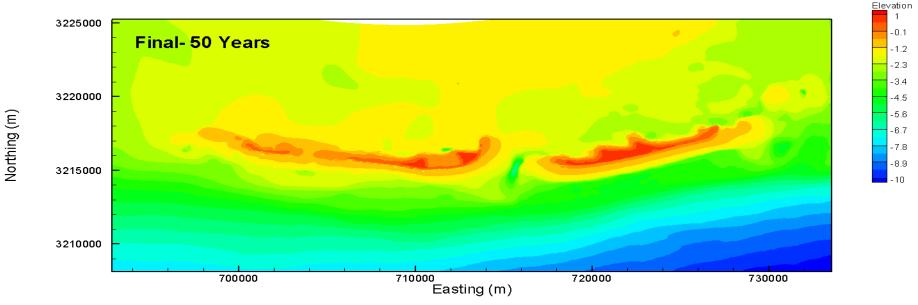
cc16_1000	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cy_1000	8.162706	.4912622	16.62	0.000	7.181297	9.144115
dist_sq	102.7833	18.91829	5.43	0.000	64.98967	140.5769
river	-14482.89	4753.367	-3.05	0.003	-23978.83	-4986.944
cutter	46380.43	17462.67	2.66	0.010	11494.73	81266.13
calc_sabine	18070.81	7438.343	2.43	0.018	3211.012	32930.61
year	1454.14	133.0298	10.93	0.000	1188.382	1719.897
_cons	-2965469	265195	-11.18	0.000	-3495257	-2435681

Estimated Cost Model

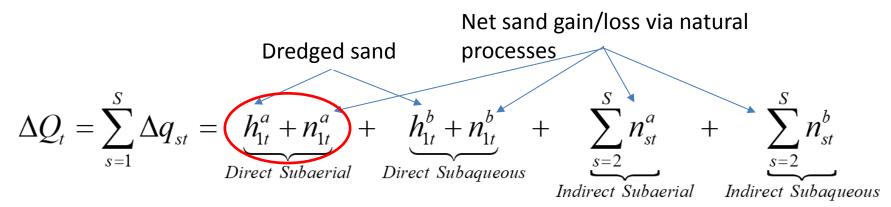
Benefits (based on simulation data)


Curlew Island Shoal 2007

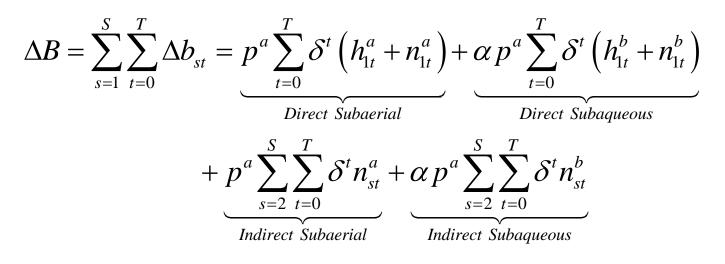

Curlew Island 2009



Control Experiments


Nourished OCS Experiments

Conceptual Benefits Model: "Direct" vs. "Indirect" Benefits & Subaerial vs. Subaqueous Benefits


- "Direct": @ project site
- "Indirect": @ updrift & downdrift sites
- "System" = Direct + Indirect

- q: quantity (area)
- s: site
- t: time period
- "a": subaerial sand (as seen from helicopter)
- "b": subaqueous sand (underwater, down to arbitrary threshold depth)

Conceptual Benefits Model

- Assume value of subaqueous sand benefits is some fraction of value of subaerial sand benefits: $p^b = \alpha p^a$ ($0 \le \alpha \le 1$)
- Summing over all sites & periods, NPV(Benefits) =

Candidate benefit values per unit

Table 8. Comparison of WTP Estimates of Wetland Restoration

etrolia, Interis, & Hwang Aarine Resource Economics 2		Reported (nominal) Mean WTP per		Present Value of Mean WTP per Household, Inflation Adjusted (2011\$)*							
	Study Area	Survey Year	Project Scale (acres)	One- time (\$)	Annually (\$)	Per Project (\$)	Per Project Acre (\$)				
Present Study Landry et al. (2011) [†]	LA LA	2011 2007	234,000 N/A	973 103 552		973 112 599	0.004		*LA I	HHs =	1,656,053
Petrolia and Kim (2011) Farber (1996) Bergstrom et al. (1990) Farber and Costanza (1987)	LA LA LA LA	2009 1990 1986 1985	448,000 N/A 1,600,000 N/A	332	111 66 360 103	1,025 997 6,492 1,901	0.002 0.004				
Petrolia and Kim (2009) Bauer, Cyr, and Swallow (2004) Udziela and Bennett (1997) Bateman et al. (1995) Loomis et al. (1991) Whitehead and Blomquist			2,338 mated Mea ed on Bina		oice Resu	llts		(in brackets)			
(1991)	Consequential Respondents Only All Respondents										
	Resource Users*					(125) $(4,825]$ $(1,618, 4,181]$ \rightarrow \$11,45			-		
	Resou	Resource Non-Users				1,637 \$1,184 1, 2,242] [894, 1,592]			\$29,590 / ac		
Petrolia &	Kim	<u>ו</u>						Pre	-Camil	le Opti	on
(Marine R	lesou	-	L	nics	2009)	Tu e	rnbull <u>\$152</u> 5 ~ \$1		RE P \$14 \$65 ~	44	→ \$96,331- \$118,290 /a

Moving Forward

- Simulations will be run for NS and OCS
 - without and without nourishing
 - under alternative weather scenarios
 - (possibly) under alternative grain size and % mud assumptions
- These will yield (simulated) time-series data on subaerial and subaqueous acreage (w/ bounds)
 Robustness checks:
 - alternative costs
 - alternative prices (benefit values)
 - alternative α's
 - alternative discount rates
 alternative time frames

In the Meantime: A Thought Experiment

- Suppose:
 - 221 ac project
 - 9235 cy/ac
 - OCS 99% sand, nearshore 86% sand
 - 20-mi offshore site, 1-mi nearshore site
 - 3% discount rate
 - 50 year time-frame (2017 proj year)
 - Ignore subaqueous and indirect benefits
 - Nearshore/offshore performance differential captured in relative annual acreage loss rate (offshore fixed at 0)
 - Benefit per ac: \$11,451 <u>or</u> \$96,331
- Under <u>Low</u> Benefit: Nearshore must perform 2% worse in terms of annual acreage loss relative to offshore to justify offshore project
- Under <u>High</u> Benefit: Nearshore must perform only 0.2% worse
- And relative performance even lower if offshore sand leads to more indirect benefits
 - Ongoing work will better inform this question

Questions / Suggestions?

d.petrolia@msstate.edu