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ABSTRACT

Apatite fission-track (AFT) data trends suggest
that episodic late Mesozoic and Cenozoic cooling
events recorded in the central Brooks Range were a
consequence of accelerated uplift and erosion. For
AFT studies, cooling from >120 °C to <50 °C over
times of 1-10 Ma results in predictable AFT data
trends. This paper summarizes AFT results from six
areas forming a north-to-south transect through the
central Brooks Range: the Endicott Mountains
allochthon near Atigun Pass (n=16), Killik River
(n=8), Doonerak (n=6), and three orthogneiss bodies
--Chandalar (n=14), Arrigetch (n=6), and Igikpak
(n=12).

The AFT data from the Atigun Pass and Killik
River areas show two cooling events, at ~100+5 Ma
(Albian) and at ~60+4 Ma (Paleocene). The youngest
AFT data, from the Doonerak antiform, suggest
cooling there at ~24+4 Ma (late Oligocene). Data from
the Chandalar orthogneiss bodies suggest two phases
of cooling, at ~65 Ma (Paleocene) and between ~40-20
Ma (late Eocene to late Oligocene). The western tip
of Arrigetch pluton and the main (western) Igikpak
pluton cooled at ~39+2 Ma (late Eocene). In contrast,
the eastern part of Igikpak pluton and the main
(eastern) part of Arrigetch pluton cooled later at ~23+4
Ma (late Oligocene). :

In summary, the AFT data from the central
Brooks Range show evidence of cooling episodes at
~100, ~60, ~40, and ~25 Ma. Uplift, erosion, and
subsequent cooling were consequences of changing
tectonic regimes; however, speculation on such
regimes is beyond the scope of this paper.

INTRODUCTION AND METHODOLOGY

This paper presents preliminary results of a
regional AFT thermochronology study aimed at
interpreting the Cenozoic thermal history of the
Brooks Range (Fig.1). Sixty-two samples were
processed and analyzed using standard mineral-
extraction, mounting, irradiation, and fission-track-
counting methods (e.g., Naeser, 1979; Gleadow, 1984).
Our principal aim here is to outline the fission-track
evidence supporting the recurrence of Cenozoic uplift
in an area that historically has been interpreted to
have been tectonically inactive since latest Cretaceous-
early Tertiary time (e.g., Mull, 1982).

Direct evidence of Tertiary deformation is missing

from the Brooks Range because Upper Cretaceous

and Tertiary strata largely have been eroded away and
redeposited such that critical map relations are not
preserved. In this paper, cooling events detected with
fission-track data are inferred to have coincided with
periods of uplift, accelerated erosion, and subsequent
cooling. Because erosion mechanically has removed
evidence of cooling events prior to ~100 Ma, this paper
emphasizes times after ~100 Ma.

The estimated temperature range of apatite
annealing used here, 50-120 °C and referred to as the
partial annealing zone (PAZ), is a conservative
estimate inferred from natural and laboratory
annealing studies and thermal modeling (e.g., Naeser,
1979; Gleadow et al., 1983, 1986; Laslett et al., 1987;
Green et al., 1989). The PAZ normally occurs at
depths of 2-5 km in the earth’s crust (assuming
geothermal gradients of 20-30 °C). If cooling through
the PAZ was rapid, the mean-age fission-track age of
a profile of samples will approximate the time of
cooling; otherwise, modeling is necessary to determine
the meaning of the apparent age.

GEOLOGIC SETTING

Many geological summaries of the Brooks Range
region exist in the literature (see Moore et al., 1992,
and references therein), so only a brief outline is given
here. From south to north, northern Alaska has three
basic components: (1) the Yukon-Koyukuk province,
consisting largely of mid-Cretaceous clastic rocks,
which are underlain by obducted Devonian to Jurassic
oceanic rocks along the basin margins, and by a
Jurassic-Early Cretaceous island arc in the basin
(Fig.1; Angayucham and Koyukuk terranes;
terminology of Jones et al., 1987); (2) the Brooks
Range, which consists of complexly faulted Paleozoic
to upper Mesozoic continental margin assemblages
and polymetamorphosed Precambrian to lower
Paleozoic basement rocks (Arctic Alaska terrane); and
(3) the North Slope subsurface, which consists of
unmetamorphosed equivalents of the Paleozoic to
upper Mesozoic strata exposed at the surface in the
Brooks Range (also Arctic Alaska terrane).

The Brooks Range has long been considered to be
a consequence of the Late Jurassic-Early Cretaceous
Brookian orogeny (e.g., Mull, 1982). During this
orogeny, the Arctic Alaska terrane was subducted
beneath the already imbricated Angayucham and
Koyukuk terranes (e.g., Patton and Box, 1989, and
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Fig.1. Generalized terrane map of northern Alaska showing the distribution of fission-track data collected during
our regional study (stars) and areas discussed in this paper (labeled and outlined). The numbers beneath each
label are the approximate times of cooling episodes (Ma). Evidence of older cooling episodes has been overprinted
or eroded from areas where only young ages are preserved (i.e., Doonerak). For clarity, the vertical scale is slightly
exaggerated.

references therein). The change of sediment-source related to uplift (Turner et al., 1979; Dillon et al.,
area from the north (Franklinian and Ellesmerian 1987) but yield limited evidence of younger events.
sequences; Lerand, 1973) to the south (Brookian In Late Cretaceous and early Cenozoic time,
sequence) was a consequence of the Brookian orogeny northward thrusting of the Brookian thrust front is
(e.g., Mull, 1982; Molenaar, 1983; Bird, 1987). suggested by folded strata of that age (Reiser et al.,
Various radiometric ages in the metamorphic core of 1971; Kelley and Foland, 1987; Hubbard et al., 1987).
the Brooks Range reflect Early Cretaceous cooling Coeval detritus in basins of northeastern Alaska attest
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to reactivation of the Brooks Range source through
time (Molenaar, 1983); however, most deformation
episodes cannot be directly identified in the Brooks
Range itself because Cenozoic strata largely have been
eroded away. Where Cenozoic strata exist, there is
abundant evidence of recurrent deformation, some of
which is continuing today (Grantz et al., 1983; Carter
et al.,, 1986). In northern Alaska, where suitable
cross-cutting relations are missing, AFT studies
routinely can identify cooling episodes that indirectly
relate to deformation, uplift, and erosion episodes
(e.g., O’Sullivan, 1993; O’Sullivan et al., 1993a,b;
O’Sullivan and Murphy, 1992; Murphy et al., 1991,
1992).

RESULTS

Six areas in the central Brooks Range with
suitable lithologies and significant vertical relief were
selected for studying the timing of cooling events
recorded by AFT data: (1) Doonerak antiform, (2)
Atigun Pass to Atigun Gorge, (3) Killik River, (4)
Chandalar orthogneiss bodies, (5) Arrigetch
orthogneiss body, and (6) Igikpak orthogneiss body
(Fig.1).

All sample locations, stratigraphic information,
analytical results, discriminant plots, and interpretative
details of samples are presented in O’Sullivan et al.
(1993b). All ages reported herein are from AFT
analyses, and all errors are +2¢0.

Doonerak Antiform

Five samples of Devonian and Triassic sandstone
and pre-Mississippian volcanic rock were analyzed
from the Doonerak antiform (Figs.1,2). Fission-track
ages range between 33.9£16.0 and 22.0+4.0 Ma, mean
track lengths between 14.6+0.2 and 13.1+0.5 um, and
standard deviations between 1.46 and 0.46 um. All
samples have long mean track lengths with narrow
distributions indicating the tracks formed at low
temperatures (<50 °C). Their weighted mean age of
~24+4 Ma is interpreted as the time of rapid cooling
(Fig.2; O’Sullivan et al., in press).

Atigun Pass to Atigun Gorge

Twenty-four samples of Devonian conglomerate
and sandstone of the Endicott Mountains allochthon
were analyzed from Atigun Pass to Atigun Gorge
(Fig.1). The AFT ages range between 102.3+11.4 and
63.9+14.2 Ma, mean track lengths between 14.7£0.4
and 12.1+0.6 um, and standard deviations between
2.37 and 0.54 pm. In the samples from high
elevations near Atigun Pass (~1,830 m), ages are ~100
Ma (weighted mean of 100.2+5.0 Ma), whereas at
lower elevations and to the north (~850m), ages
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Fig.2. Summary of thermal histories for the areas
discussed herein based on age data from 62 AFT
samples (see O’Sullivan et al., 1993b). All AFT ages
were reset to zero during the Brookian orogeny, when
the temperature in all areas exceeded 120 °C

(Harris et al., 1987; Dusel-Bacon et al.,

1989). Dashed parts of curves represent

times without temperature control (e.g.,

>120 °C and <50 °C).

decrease to <65 Ma. For samples near Atigun Pass,
mean lengths exceed 13.9 um, length
distributions are narrow, and standard
deviations are small (<1.2 um); all attest to
rapid cooling (<50 °C). Samples from lower
elevations have shorter mean lengths (<13.0
pm), broader length distributions, and
larger standard deviations (>1.8 ym); all
attest to longer residence in the PAZ.

There were two definite episodes of
cooling (Figs.2,3). Samples near Atigun Pass
cooled from >120 °C to <50 °C at about ~100%5
Ma. Lower elevation samples remained in the
PAZ until after ~65 Ma. Based on zircon ages
in the Atigun Pass area (Blythe et al., in press) and
apatite ages from Atigun syncline, located just north
of Atigun Gorge, the second cooling event occurred at
~60+4 Ma (O’Sullivan, 1993). A third cooling event
after 40 Ma is suggested by bimodal age distributions
for a young, low-elevation sample (interpreted by
Murphy from data of Blythe et al., in press; i.c.,
Trevor Ck.). Data from Atigun syncline indicate that
this event was at ~25%4 Ma (O’Sullivan, 1993).

Killik River

Eight samples of Devonian sandstone were
analyzed from the Killik River area (Fig.1). The AFT
ages from this area range between 75.6£8.8 and
63.6+6.6 Ma, mean track lengths between
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Fig.3. Summary plot of the approximate times of
cooling episodes by area. The shaded field is eroded
section. Trends are discussed in the text. The AFT
age of cooling of ~25 Ma near Atigun Pass and the
zircon fission track (ZFT) age from the Doonerak
area are from Blythe et al. (in press). Ages are
weighted means with +2s errors. Only data from the
main parts of Arrigetch and Igikpak plutons were
used in calculating the reported times of cooling for
those areas.

14.1+0.2 and 13.620.3 um, and standard deviations
between 1.43 and 1.07 um. Many samples contain
multiple single-grain age populations. Most single-
grain ages range between ~55 and 65 Ma, but some
exceed 90 Ma, suggesting only partial annealing.

Two episodes of cooling are interpreted for the
Killik River area (Figs.2,3). After the apatite ages
were totally reset at >120 °C, they cooled to ~80-90 °C
before ~90 Ma (partially annealed older single grains
represent the minimum time of cooling). Based on
similar trends from Atigun Pass data, it is suggested
that this cooling episode was at ~100x5 Ma. A second
episode of rapid cooling in this area occurred between
~55 and 65 Ma (youngest, strongly annealed, single
grains are maximum cooling ages). Similar data
trends from Cobblestone Creek, located just to the
north of the Killik River area, suggest that the second
cooling event occurred at ~60x4 Ma (O’Sullivan, 1993).

Chandalar

Thirteen samples of Devonian orthogneiss were
analyzed from the Chandalar orthogneiss bodies
(hereafter pluton; Fig.1). Fission-track ages decrease
downward over 1,000 m from 68.4£7.0 to 43+7.0 Ma,
mean track lengths decrease from 14.7+0.5 to 12.6£0.3
um, and standard deviations increase from 1.12 to 2.15
pm. These data indicate rapid initial cooling of
samples from higher elevations at <65 Ma and later
cooling of lower samples after ~45 Ma (Figs.2,3).
Bimodal-age distributions in samples from
intermediate elevations indicate their longer residence
in a PAZ. Final cooling of samples from the lowest

elevations was some time between ~40-20 Ma and is
indicated by young single-grain ages, shorter mean
track lengths, large standard deviations, and low
numbers of long tracks (>15 pm).

Arrigetch-Igikpak

Fourteen samples of Devonian orthogneiss were
analyzed from the Arrigetch and Igikpak orthogneiss
bodies (Fig.1). Different results from the eastern and
western parts of both bodies suggest that a high-angle
fault crosscuts them. In the Arrigetch pluton, six
fission-track ages decrease downward over 2,000 m
from 45.4+16 to 21.3+3.4 Ma, mean lengths decrease
from 13.00. to 12.3+0.7 pm, and standard deviations
increase from 1.45 to 3.35 um. Data from five
samples from the main (eastern) body suggest rapid
initial cooling at high elevations (23.1+1.1 Ma,
weighted mean) and slower cooling below. A sixth
sample, taken from the western tip of Arrigetch
pluton, has an age of 45.4+16 Ma, a mean length of
13.29+3.0 um, and a standard deviation of 3.35 um,
which is similar to the main (western) part of Igikpak
pluton (below).

In the Igikpak pluton, three samples from the
eastern end have fission-track ages that range from
27.1211.6 to 24.3+2.4 Ma, mean lengths from
14.05£0.3 to 9.9+4.6 pm, and standard deviations from
0.97-3.24 um. Their average age is 24.7+2.2 Ma
(weighted mean), which is similar to the main part of
Arrigetch pluton. Downward over 2,400 m of relief,
eight samples from the main (western) part of Igikpak
pluton have fission-track ages that decrease from
39.8+5.6 to 33.0£6.2 Ma, mean lengths that range from
14.14%0.6 to 12.24+0.8 um, and standard deviations
that range from 1.40 to 2.68 um. Although the data
are diffuse, the elevation-age distribution of the data
suggests that cooling began by about 39.2£2.0 Ma
(weighted mean, Figs.2,3).

These data suggest that either a fault or an abrupt
thermal gradient separates the western and eastern
parts of both orthogneiss bodies. A previously
mapped fault occurs in the approximate position
proposed here (Nelson and Grybeck, 1979), but the
magnitude of offset has not been verified in the field.

SUMMARY

Beginning in the north, the data from the Atigun
Pass, Killik River, and Doonerak antiform areas
suggest that three episodes of regional cooling
occurred along the north side of the central Brooks
Range, during the Albian at ~100+5 Ma, during the
Paleocene at ~60t4 Ma, and during the late Oligocene
at ~24+4 Ma (Figs.2,3,4).

Data from the southcentral Brooks Range also
show evidence of three cooling episodes (Figs.2,3,4).
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Samples from higher elevations of the Chandalar
pluton cooled initially during Paleocene times at ~60
Ma. Lower elevation samples either remained in the
PAZ until ~40-20 Ma, or were mildly reheated (<95
°C) and then cooled again at ~25 Ma.

In the Arrigetch and Igikpak plutons, sample
elevations overlap but fission-track ages do not,
indicating that the eastern and western areas had
different thermal histories. The main (western) part
of the Igikpak body cooled during the late Eocene-
early Oligocene at ~40 Ma, but its eastern part and the
main (eastern) part of Arrigetch body cooled during
the late Oligocene at ~25 Ma.

CONCLUSIONS

At least four cooling episodes, associated with
uplift and erosion events on the order of 2-5 km, have
occurred in the central Brooks Range since Early
Cretaceous times (~100, ~60,
Mechanisms for uplift, and of the tectonic regime in
which they operated, are difficult to constrain and
have not been considered here. Much work remains
to be done toward resolving tectonic driving
mechanisms in the Brooks Range, and fission-track
thermochronology is contributing valuable new
constraints.
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