Experimental Investigation and Performance Evaluation of Models Applied to Worst-Case-Discharge Calculations

New Orleans, LA – Workshop #1 - Jan 29, 2016

LSU Team – Principal Investigators

Paulo Waltrich, PhD. Assistant Professor

PhD in Petroleum Engineering

Richard Hughes, PhD.

Professional in Residence

PhD in Petroleum Engineering

Mayank Tyagi, PhD.

Associate Professor

PhD in Mechanical Eng.

LSU Team – Principal Investigators

Wesley Williams, PhD.

Professional in Residence

PhD in Nuclear Engineering

Seung Kam, PhD.

Associate Professor

LSU Team – Post-Doc and Graduate Students

Muhammad Zulqarnain, PhD. Post-Doc

PhD in Petroleum Engineering

Woochan Lee, MSc. PhD Graduate Student

MSc. in Petroleum Engineering

Renato Coutinho, MSc.

PhD Graduate Student

MSc. in Chemical Engineering

Outline

- ✓ Overview of project Objectives and Deliverables
- ✓ Literature Review Findings and Conclusions
- ✓ Description of Base Cases for comparison study (Dr. Muhammad Zulqarnain)
- ✓ CFD model description (Dr. Mayank Tyagi)
- Methodology for Comparison of Wellbore Flow models Applied for WCD Calculation
- ✓ Results for WCD Rates for Different Wellbore Flow Models
- ✓ Experimental work progress
- ✓ Conclusions
- ✓ Next Steps

Project Motivation

Blowouts Happen!

- □ For effective contingency plans, we need accurate oil spill predictions!
- For accurate predictions, we need reliable models!

range

after SPE Technical Report (2015)

□ WCD predictions are directly dependent to flowing bottomhole pressure of the well:

q is calculated using reservoir and fluid properties, and p_{wf} :

 $\square p_{wf}$ is obtained from wellbore flow correlations and wellhead conditions:

$$p_{wf} = p_{wh} + \int_{0}^{L} \frac{dp}{dL} dL$$

generic pressure gradient equation

$$\frac{dp}{dz} = \frac{g}{g_c}\overline{\rho} + \frac{2f\overline{\rho}u_m^2}{g_cD} + \overline{\rho}\frac{\Delta(u_m^2/2g_c)}{\Delta z}$$
(• Flow regimes
• Superficial velocities
• Pressure & temperature
• Fluid properties

Well configuration for typical WCD scenario

Main Objective of the Project

"The goal of this project is to examine the validity of current industry standard flow correlations used in WCD scenarios..."

Scope of Work/Deliverables:

- Task 1 A complete literature review of flow correlations used in standard WCD software packages.
- Task 2 A comparison between the different flow correlations for different base fluid properties at different "level" in a wellbore.
- □ Task 3&4 Build experimental apparatus to investigate the effect of large pipe diameters (2, 4, 7, and 12 inches ID) on WCD analysis.
- Task 5&6 Compare experimental data and simulation results to evaluate the performance of the correlations for large pipe diameter correlations.

Literature Review (Task 1)

Review of Conditions Used to Develop Flow Models

Correlation	Fluid	Pipe ID (in)	Pipe length (ft)	liquid rate (bbl/d)	Gas rate (Mscf/d)	Fluid properties	Degree From horizon
Poetmann and Carpenter (1952)	Oil/gas, gas/oil/water	2, 2 1 ⁄2, 3	1,100-11,000	5 - 1,400 (oil)	18 -1,630	30°-54° API; 0.6-1.15 Gas SG 0.2 <gor<41 bbl<="" mscf="" th=""><th>90</th></gor<41>	90
Baxendell and Thomas (1961)	Gas/oil	2 7/8 , 3 1⁄2	6,250	200-5,100 (oil)	N/A	Oil: 34° API, 2.58 cp at 160° F 120 <gor< 160="" th="" vol="" vol<=""><th>90</th></gor<>	90
		1 5 /0 2 1/				O'l- 208 408 A.D. 1 200	

Duns and Ros (1963)	1, 5/8, 3 1/2, 6 in ID Vertical Pipe
Achaim (1086) (Mana)	Tested with Forties field, Ekofisk field,
	and Prudhoe Bay flow line data
Ansari (1994)	Developed with data from TUFFP Databank
Gomez et al. (2000)	Validated against TUFFP Databank
	Used over 10000 data from SINTEF
OLGA-3 2000 3.3.	multiphase flow loop

	All/Oll	1, 1 /2	2 X JU	0-2,300	0-95	100 <glr<1320 bbl<="" scf="" th=""><th>any anyie</th></glr<1320>	any anyie
Asheim (1986) (Mona)		Tes	sted with Forties fie	ld, Ekofisk field, an	id Prudhoe Bay	flow line data points	0 to 90
Yao and Sylvester (1987)	Gas/water, oil/gas	compa	red with field data	from Camacho (19	970) and Reinick	e and et al. (1984), Govier and Fogarasi (1975)	90
Ansarı (1994)			Devel	oped with data fro	om TUFFP Datab	ank	90
Petalas and Aziz (1996)			Verified again	st Stanford Multip	hase Flow Data	base (SMFD)	any angle
Chalichi and at al (1006)	Air/water	3 1/2	1333	79-4250	42-2800	16 <glr<12685< th=""><th>90</th></glr<12685<>	90
Chokshi and et al.(1996)				Evaluated wi	th TUFFP		
Gomez et al. (2000)				Validated aga	inst TUFFP		any angle
OLGA-S 2000 S.S.			Used over 10	0000 data from SI	NTEF multiphas	e flow loop	N/A
LedaFlow			Used over 10	0000 data from SI	NTEF multiphas	e flow loop	N/A

Review of Databases Used to Develop Flow Models

Database		Fluid	Pipe ID (in)	Pipe length (ft)	Liquid rate (bbl/d)	Gas rate (Mscf/d)	te Fluid properties f d)	
SINTEF flo (OLGA	- mult bw loc -S 200	iphase op 00 S.S.)		Nitrogen, N diesel, lu	a/	8 in ID		
TUFF	TUFFP databank			Oil/gas/	water		1-8 in ID	
Forties field				Oil/ga	as		3.958, 6.185	in ID
Stanford multiphase flow database Oil/gas/water Consisted of 20,000 laboratory and 1,800 field measurements with variations in fluid properties, pipe diameters, and pipe inclination							pe inclinations.	

Table 1

AUTHOR	Publ.	Group	Data	Pipe		No	ominal F	Pipe Dia	meters,	in		Water	# of
	Year			Length	1	1 1/4	1 1/2	2 3/8	2 7/8	3 1/2	Ann.	Cut, %	Data
P. – CARPENTER	1952	Ι	field	various								0 - 98	49
GILBERT	1954		field									0	
BAXENDELL	1958	Ι	field										50
BAX THOMAS	1961	Ι	field	6000'								0	25
DUNS - ROS	1963	III	lab	33'	ID	= 3.2 cm	, 8.02 cm	, and 14.	23 cm pi	pes		0 & 100	4000
FANCH BROWN	1963	Ι	test	8000'								95	106
GAITHER ET AL.	1963	Ι	test	1000'								100	139
HAG BROWN I	1964	Ι	test	1500'								0 & 100	175
HAG BROWN II	1965	II	test	1500'								0 & 100	581
ORKISZEWSKI	1967	III	field	various								0 & 100	148
BEGGS - BRILL	1973	III	test	45'								100	584
MUKH BRILL	1985	III	test	32'								0	1000

Summary of experimental data sets used by the authors of empirical multiphase pressure drop correlations.

Takacs (2001)

Review of Flow Rates Used to Develop Flow Models

Takacs (2001)

Review of Performance of Flow Models

				Acc	curacie	s of ve ac	rtical n cordin	nultiph g to va	ase pre rious li	essure teratur	drop c e sour	alculat ces.	ion mo	dels					
			References																
		2	23	14	24	25,26	27	9	22	13	28	29	30	17	17	18	31	19	20
Poettmann- Carpenter	2 0 ² 0 2				-0.0 9.6 77	197.5 195.7 726						28.9 28.2 323							
Baxendell- Thomas	d da o N				-1.7 6.4 77	108.3 195.1 726		-5.1 5.1 2.9 10				19.0 27.2 31.7 323							
Fancher- Brown	d, o					5.5 36.1 725						25.3 30.9 32.5 323							
Hagedorn- Brown II	d da o N	0.7 24.2 148	-17.8 25.9 44	-16.2 26.6 38	-3.6 17.6 77	1.3 26.1 726		-8.9 8.8 5.8 10	-4.3 25.9 104	3.6 9.7 130	8.8 19.1 90	14.4 25.4 30.0 323	-4.0 7.6 8.9 212	3.3 10.9 15.2 1026	3.8 12.3 17.1 728	1.0 14.7 20.5 1710	7.5 414	-11.7 14.5 12.1 21	-0.1 11.4 15.7 1380
Ros	0 0 0 2	2.4 27.0 148	0.6 21.7 44	-2.1 19.9 38		15.4 50.2 427		0.2 4.4 6.9 10	22.9 104		36.4 90	-25.7 34.6 49.8 323	2.1 8.6 14.2 212	6.6 14.7 21.9 1050	8.0 15.0 22.8 734	12.9 21.6 31.3 1712	7.6 414		
Orkiszewski	ZoPp	-0.8 10.8 148	2.6 21.1 44	2.1 19.8 47	0.0 9.7 65	8.6 35.7 726	2.4 16.2 35	1.9 3.7 4.4 10	-0.4 18.3 104	-5.2 30.5 130	27.0 56.4 90	7.8 23.0 29.1 323	0.1 11.9 19.4 212	11.2 21.1 39.5 892	16.5 27.3 46.7 596	11.9 27.2 42.6 1478	8.2 414		
HZIZ ƏLƏL	α da o Z			4.4 19.6 48		-0.2 34.7 726	9.9 13.9 35		1.5 19.4 104		-11.0 32.7 90	21.6 26.7 323	8.1 13.3 212			23.8 32.7 1710	15.5 414		14.0 20.0 140
Chierici et al.	2 0 ² 0 2					42.8 43.9 726													
Beggs- Brill	z a <mark>9</mark> a					17.8 27.6 726	3.5 7.4 35		14.4 27.4 104	-10.5 18.2 130		-5.4 21.9 29.4 323	11.7 13.5 18.2 212	8.2 16.7 23.0 1008	13.6 18.1 23.3 685	13.9 23.4 32.4 1711	6.7 414		
Cornish	d da o z							1.3 1.4 0.9 10											
Mukherjee- Brill	d d o N									-3.3 15.3 130		-19.2 30.5 38.1 323		17.1 20.9 22.0 837	16.3 20.5 22.6 637	28.7 32.9 36.4 1710			
Hasan- Kabir	d de o N												-3.7 13.6 20.4 212	-0.1 15.0 21.0 920	-3.9 13.6 18.1 686	29.2 38.0 53.8 1703	9.6 414		0.8 15.9 21.6 1249
Ansari et al.	d 4 0 2												2.5 7.6 11.8 212	-7.3 14.3 18.6	-1.2 10.1 14.5 750	-2.9 19.8 27.5		-16.1 17.5 14.0	-8.8 14.7 18.2

Takacs (2001)

Why Flow Regime Predictions are Important for WCD calculations?

Correlations	Flow patterns
Duns and Ros (1963)	bubble, slug, and froth
Hagedorn and Brown (1964)	no flow pattern consideration
Hagedorn and Brown Modified (1965)	bubble, slug
Orkiszewski (1967)	bubble, slug, annular slug transition, annular mist
Beggs and Brill Revised (1973)	(horizontal pipe) segregated, intermitted, distributed, froth
Gray (1974)	no flow pattern consideration
Govier and Foragasi (1975)	slug, annular mist, froth
Mukherjee and Brill (1985)	no flow pattern consideration
Ansari (1994)	bubble, slug, and annular

Flow Regime Maps for Large Diameter Pipe

Ali ((2009)	- Experimental	conditions	tested
-------	--------	----------------	------------	--------

Study	Qo,	QI,	ID,		Rs,	Qg,	Qg,	Ug,
Study	BBL/D	GPM	in	01, 11/5	SCF/STB	MMSCF/D	SCFM	m/s
Ali	<mark>30,300</mark>	883	10	1.11	41	<mark>0.350</mark>	243	2.26

Evaluation of "Common" Flow Correlations

Evaluation of Uncommon Flow Correlations

Ali (2009) – pipe ID = 10 in

Evaluation of Using CFD models for Multiphase flow in Large Pipe Diameters

Zabaras (2013) - Experimental conditions tested

Study	Qo, BBL/ D	QI, GPM	ID, in	vsl, m/s	Rs, SCF/STB	Qg, MMSCF/D	Qg, SCFM	Ug, m/s
Zabaras	<mark>5140</mark>	150	11	0.15	2640	<mark>2.97</mark>	2063	15.9

Gaps in Experimental Data for Large Pipe Diameters (ID > 10") modified after Ali (2009)

Researcher	Year	Fluid System	Diameter (mm)	L/D	j _{g max} (m/s)	j _{l max} (m/s)	Pressure (MPa)
Hills	1976	air-water	150	70	0.62 - 3.5	0.5 - 2.6	0.1
Shipley	1984	air-water	457	12.34	5	2	0.1
Clark and Flemmer	1986	air-water	100	10	-	-	0.1
Hashemi et al.	1986	air-water	305	9.41	1.16	0.06	0.1
Hirao et al.	1986	steam-water	120	-	1	4	0.5; 1.0 and 1.5
Ohnuki and Akimoto	1996	air-water	480	4.2	0.02 - 0.87	0.01 - 0.2	0.1
Cheng et al.	1998	air-water	150	70	1.113	1.25	0.1
Ohnuki and Akimoto	2000	air-water	200	61.5	0.03 - 4.7	0.06 - 1.06	0.1
Shoukri et al.	2000	air-water	100 & 200	43	0.02 - 15.5	0 - 1.8	0.1
Hibiki and Ishii	2002	nitrogen-water	102	53.9	0.286	0.387	0.1
Yoneda et al	2002	steam-water	155	23.9	0.25	0.6	0.2 to 0.5
Prasser et al.	2002	air-water	200	-	0.037 - 1.30	1	0.1
Sun et al.	2002	air-water	123	106.7	0.122	0.011 & 0.15	0.1
Hibiki and Ishii	2003	nitrogen-water	102	53.9	0.146	0.198	0.1
Oddie et al.	2003	nitrogen-water	150	73.33	1.57	1.57	-
Sun et al.	2003	air-water	102	40	0.502	0.058 - 1.03	0.1
Shen et al	2005	air-water	200	120	0.031- 0.372	0.035-1.06	0.1
Shen et al	2006	air-water	200	60.5	0.032 - 0.218	0.144 - 1.12	0.1
Omebere et al.	2007	nitrogen-naphtha	189	264.5	4.0	15.0	2.0 & 9.0
Ali	2009	air-water	254	46	4.44	3	0.1
Schlegel et al	2012	air-water	152 & 203	34 & 26	3	1	0.18 to 0.28
Smith et al	2012	air-water	102 & 152	30 & 18	10 to 20	4 to 10	0.5
Meulen	2012	air-water	127	86	3 to 20	0.004 - 0.7	0.3
Zabaras et al	2013	air-water	280	43.6	0.025 - 0.154	0.5663	0.69

Gaps in Experimental for Large Pipe Diameters

Operational Enveloped for PERTT Lab Flow Loop

	Ali (2009)	Zab	aras et al (2013)	LSU PERTT Lab	
Pipe length (ft)	40		40	100 (Max)	
Pipe diameter (in)	10		11		12
Fluid	air, water	;	air, water	air, water	
Max Liquid rate (BBL/D)	31,000		5,100		
Liquid velocity (m/s)	1.11		0.15		
Max Gas rate (MMSCF/D)	0.35		2.7		To be determined
Gas velocity (m/s)	2.21	_	16		
Max GLR (SCF/STB)	40		2600		
Comparison	BBO, HBR, DR, OLGA, OP	OLC	GA, In-House	ANS, BBO, BBR, DR, GAF, GRAYO, GRAYM, HBR, HBRDR, MB, NOSLIP, ORK, OLGA	

Worst-Case-Discharge Vastly Under Studied

Wellbore and Near-Surface Hydraulics of a Blown-Out Oil Well

A.R. Clark, ARCO Oil and Gas Co. T.K. Perkins, SPE, ARCO Oil and Gas Co.

SPE 69530

A Study on Blowouts in Ultra Deep Waters O.L.A. Santos, SPE, Petrobras

Copyright 2001, Society of Petroleum Engineers Inc.

This paper was prepared for presentation at the SPE Latin American and Caribbean Petroleum Engineering Conference held in Buenos Aires, Argentina, 25–28 March 2001.

This paper was selected for presentation by an SPE Program Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to ~~~~ction by the author(s). The material, as presented, does not necessarily reflect any tion of the Society of Petroleum Engineers, its officers, or members. Papers presented at meetings are subject to publication review by Editorial Committees of the Society of elsum Engineers. Electronic reproduction, distribution, or storage of any part of this paper ommercial purposes without the written consent of the Society of Petroleum Engineers is lotted. Permission to reproduce in print is restricted to an abstract or not more than 300 is; illustrations may not be copied. The abstract must contain conspicuous lowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.

Journal of Natural Gas Science and Engineering 83836, Flichardson, TX 75083-3836, U.S.A., tax 01-072-052-0435.

flow velocity, p a blown-out oil wellbore geom wellbore and ELSEVIER Journal of Natural Gas Science a

journal homepage: www.elsevier.com/locate/jngse

Journal of Natural Gas Science and Engineering 26 (2015) 438-445

Contents lists available at ScienceDirect

knowledge or e = (PI) and gas/o given for estima the two-phase 1

Summary

A method is p

above the well Flow rate and total discharge estimations in gas-well blowouts

Ruochen Liu^a, A. Rashid Hasan^b, M. Sam Mannan^{a,*}

^a Mary Kay O'Connor Process Safety Center, Department of Chemical Engineering, Texas A&M University, TX, USA
^b Department of Petroleum Engineering, Texas A&M University, TX, USA

ARTICLE INFO

Article history: Received 13 March 2015 Received in revised form 29 May 2015 Accepted 1 June 2015 Available online 1 July 2015

Keywords: Total discharge in blowouts

ABSTRACT

Despite multitier safeguards in any drilling operation, blowouts do occur. place, the total discharge of hydrocarbons becomes the focal point for a operator, the service provider, and the regulatory body. Rate estimation be scant information about the formation and fluids at the time of the acciden guidelines require such estimates for any offshore drilling, systematic invest

This study presents an analytical model coupling the flow in a reservoir/w The model considers flow in the tubing, annulus and riser, and the atte formulation/wellbore system. To gauge safety concerns, a commercially

stract

is paper presents the preliminary results of a research oject on ultra deepwater blowouts. This research is a part of comprehensive study currently conducted by Petrobras, the azilian oil company, aiming at drilling and producing safely, terms of well control, in water depths as deep as 10000 feet proximately 3000 meters). Firstly, the paper presents a thematical procedure that predicts wellbore pressures and w properties during a gas blowout using an unsteady state added that considers the multiphase nature of the flow.

Conclusions from Literature Review

- Flow correlations were originally developed and still only verified for small pipe dimeters (ID < 8 inches)</p>
- Experimental setup needs to preferably achieve high liquid and gas flow rates (Q_I > 30,000 bbl/d and Q_q > 1 MMSCF/D)
- Unpopular flow correlations should be evaluated to be used in WCD models
- Recent developments show CFD tool as a potential solution to generate simulations results to compete with one-dimensional flow correlations for large pipe diameters
- □ WCD models vastly under studied

Initial WCD Models Comparison (Task 2)

Description of Base Cases for Comparison Study

Dr. Muhammad Zulqarnain

CFD Model Description

Dr. Mayank Tyagi

Methodology for Comparison of Wellbore Flow Models

One-dimensional models

Wellbore flow model	Abbreviation	
Ansari (1994)	ANS	
Beggs and Brill (1973)	BBO	
Beggs and Brill Revised	BBR	
Duns and Ross (1963)	DR	
Govier, Aziz, and Fogarasi (1972)	GAF	
Gray Original (1974)	GRAYO	-
Gray modified	GRAYM	
Hagedorn and Brown (1964)	HBR	
Hagedorn and Brown with Duns and Ross map	HBRDR	
Mukherjee and Brill (1985)	MB	
No Slip	NOSLIP	
Orkiszewski (1967)	ORK	
OLGA 7.2	OLGA	

- Common models available in commercial packages
- Models available in PIPESIM at LSU
- Include different model approaches (empirical, mechanistic, ...)

Results for WCD Calculations for Different Wellbore Flow Models

Base Case WCD calculation

Effect of Reservoir Fluid Properties

Black Oil Reservoir

Base fluid	Reservoir measured depth (ft)	Reservoir pressure (psi)	Reservoir Temperature (°F)	GOR (scf/stb)	Bubble point Pressure (psi)	Oil gravity (API)	Oil viscosity (cp)
Basecase	16726	11305	210	1700	6306	28	0.8
BO1	19426	10391	166	1340	7693	25.3	1.49
BO2	19553	12523	251	1721	5192	34.5	0.12

Effect of Reservoir Fluid Properties

Volatile Oil Reservoir

Base fluid	Reservoir measured depth (ft)	Reservoir pressure (psi)	Reservoir Temperature (°F)	GOR (scf/stb)	
V01	14631	11499	264	2123	
VO2	14532	11055	263	1834	
V03	14374	11009	261	3451	

Methodology for the Verification of Validity of Flow Models

TYPE=HBRDR Flowrate=115699.6 sbbl/day ----- TYPE=MB Flowrate=113530.1 sbbl/day TYPE=NOSLIP Flowrate=115276.2 sbbl/day ------ TYPE=ORK Flowrate=119005.3 sbbl/day

Methodology on the Verification of Validity of Flow Models

□ Validity of using water and air rather than hydrocarbon liquid and gas:

- ✓ Understand hydraulics issue and PVT issue separately!
- ✓ A perfect **PVT model is useless** if the **hydraulic model is wrong**!

Results for Wellbore Flow model Verification with Laboratorial Data

Results for Flow Regime Prediction for Base Case

Results for Flow Regime Prediction for Base Case

Results for CFD Validation for Large Diameter

			Experimental Data Set	Pipe Dia (inches)	QL (STBD)	Qg (MM SCFD)	Exp. dp/dx (psi/ft)	CFD dp/dx (psi/ft)	Grid Points (K)	to Experimenta pressure gradient
	5	(Zabaras et al.		5143	0.276	0.21	0.19	355	-7.1
	N I		(2013)		5143	2.786	0.051	0.04	355	-13.1
			Ali (2000)	10	29804	0.221	0.26	0.32	382	
Water			All (2009)	10	29804	0.221	0.26	0.29	610	11.1
0.960 0.900 0.840 0.720 0.660 0.600 0.540 0.480 0.420 0.360 0.300 0.240 0.180 0.120 0.060 0.000 Air		Slug or	Plug Chur	n Flow					ANSYS R16.2 Academic	
		Slug or Flov	Plug Chur v	n Flow					<u>ل</u> بر	

% doviation

Results for CFD Validation for Small Diameter

Progress on Experimental Work

Small and Intermediate Pipe IDs

Base Structure and Visualization for 12" ID

Monitoring and Control System

Experimental Data Quality Check

Can the Current Models be Improved?

□ We believe its is possible!!!

Can the Current Models be Improved?

Even for large pipe diameters!

LSU model Pressure Gradient, Pa/m LSU model Churn Annular Pressure Gradient, Pa/m Churn Flow Experiment Experiment OLGA Superficial gas velocity, m/s Superficial gas velocity, m/s $U_{LS} = 0.02 \text{ m/s}$ $U_{LS} = 0.03 \text{ m/s}$

d = 5-in

d = 11-in

(Zabaras et al., 2013)

Final Remarks

- ✓ We have done a significant amount of work in 4 months. We are on schedule!!!
- ✓ It is still extremely challenging to point out a single method for a wide variety of WCD conditions
- Different methods may be suggested for different fluid and flow conditions, making the recommended practice field specific depending on reservoir and fluid properties.
- Further investigations of benchmarking and calibration of exiting WCD models against representative field and fluid WCD conditions is needed!
- Experimental Setup Design and construction is following the schedule

Final Remarks

 Based on preliminary comparisons, significant improvement can be achieved on wellbore flow models for WCD calculations

Next Steps

- Try to get field data for large diameter pipe and large flow rates, to assess validity of wellbore flow models
- Compare WCD calculations between different commercial packages (PETEX and HIS), but using the same wellbore flow models
- Finish installation of 12 in test section for experimental set up
- □ CFD upscaling model results
- Generate experimental data at PERTT Lab for large pipe diameter and large flow rates
- Compare wellbore flow models to experimental data

