Experimental Investigation of Flow Models Applied to Worst-Case-Discharge Calculations

New Orleans, LA – Workshop #2 - Sept 28, 2016

LSU Team – Principal Investigators

Paulo Waltrich, PhD. (PI Team Lead)

Assistant Professor

PhD in Petroleum Engineering

Richard Hughes, PhD.

Professional in Residence

Mayank Tyagi, PhD.

PhD in Petroleum Engineering

PhD in Mechanical Eng.

LSU Team – Principal Investigators

Wesley Williams, PhD.

Professional in Residence

PhD in Nuclear Engineering

Seung Kam, PhD. Associate Professor

PhD in Petroleum Engineering

LSU Team – Post-Doc and Graduate Students

Muhammad Zulqarnain, PhD. Post-Doc

PhD in Petroleum Engineering

Woochan Lee, MSc. PhD Graduate Student

MSc. in Petroleum Engineering

Matheus Capovila, BS PhD Graduate Student

BS in Mechanical Engineering

JNIVERSIDADE FEDERAL DE SANTA CATARINA

Outline

- ✓ Overview of Project Objectives and Deliverables
- ✓ Literature Review Findings and Conclusions
- ✓ Experimental Investigation
- ✓ Evaluation of Flow Models to Predict Experimental Data
- ✓ Comparison of Flow Models Applied to WCD Calculations
- ✓ Conclusions
- ✓ Future Projects

Project Motivation [1]

Blowouts Happen!

- For effective contingency plans, we need accurate oil spill predictions!
- For accurate predictions, we need reliable models!
- Industry and regulatory agencies need guidance from unbiased experts (universities and research institutions)
- Improvement is needed to avoid future large environmental and economical impacts

Project Motivation [2]

This report represents the consensus viewpoints of subject matter experts and is intended to provide useful information to SPE members, the public, and the industry, it is not intended to take the place of advice on the application of technology to specific circumstances. Readers of this Technical Report are responsible for assessing its relevance and verifying its accuracy and their own choices, actions, and results. SPE and contributors to the Technical Report are not responsible for actions taken as a result of reading this document, nor the results of those actions.

Statement of the Problem [1]

range

after SPE Technical Report (2015)

Statement of the Problem [2]

□ WCD predictions are directly dependent to flowing bottomhole pressure of the well:

Statement of the Problem [3]

q is calculated using reservoir and fluid properties, and p_{wf} :

 \square p_{wf} is obtained from wellbore flow correlations and wellhead conditions:

$$\boldsymbol{p_{wf}} = p_{wh} + \int_0^L \frac{d\boldsymbol{p}}{d\boldsymbol{z}} d\boldsymbol{z}$$

- $\frac{dp}{dz} = \frac{g}{g_c}\overline{\rho} + \frac{2f\overline{\rho}u_m^2}{g_cD} + \overline{\rho}\frac{\Delta(u_m^2/2g_c)}{\Delta z}$ Flow regimes Superficial velocities Pressure & temperature Fluid properties

Statement of the Problem [4]

□ The use of flow correlations for large diameter pipes is NOT well understood:

Well configuration for typical

WCD calculation scenario

Objective

The goal of this project is to examine the validity of current industry standard flow correlations used in WCD calculations

Scope of Work:

- □ Task 1 A complete literature review
- Task 2 A comparison between the different flow models applied to WCD
- Task 3&4 Build apparatus & Generate data for large-diameters pipes and high-velocity flows
- Task 5&6 Analyze experimental data & Compare with flow models results

Literature Review (Task 1)

Worst-Case-Discharge Vastly Under Studied

Wellbore and Near-Surface Hydraulics of a Blown-Out Oil Well

A.R. Clark, ARCO Oil and Gas Co. T.K. Perkins, SPE, ARCO Oil and Gas Co.

SPE 69530

A Study on Blowouts in Ultra Deep Waters O.L.A. Santos, SPE, Petrobras

Copyright 2001, Society of Petroleum Engineers Inc.

This paper was prepared for presentation at the SPE Latin American and Caribbean Petroleum Engineering Conference held in Buenos Aires, Argentina, 25–28 March 2001.

This paper was selected for presentation by an SPE Program Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to ~~~~ction by the author(s). The material, as presented, does not necessarily reflect any tion of the Society of Petroleum Engineers, its officers, or members. Papers presented at meetings are subject to publication review by Editorial Committees of the Society of elsum Engineers. Electronic reproduction, distribution, or storage of any part of this paper ommercial purposes without the written consent of the Society of Petroleum Engineers is lotted. Permission to reproduce in print is restricted to an abstract or not more than 300 is; illustrations may not be copied. The abstract must contain conspicuous lowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.

Journal of Natural Gas Science and Engineering 83836, Flichardson, TX 75083-3836, U.S.A., tax 01-072-052-0435.

flow velocity, p a blown-out oil wellbore geom wellbore and ELSEVIER Journal of Natural Gas Science a

journal homepage: www.elsevier.com/locate/jngse

Journal of Natural Gas Science and Engineering 26 (2015) 438-445

Contents lists available at ScienceDirect

knowledge or e = (PI) and gas/o given for estima the two-phase 1

Summary

A method is p

above the well Flow rate and total discharge estimations in gas-well blowouts

Ruochen Liu^a, A. Rashid Hasan^b, M. Sam Mannan^{a,*}

^a Mary Kay O'Connor Process Safety Center, Department of Chemical Engineering, Texas A&M University, TX, USA
^b Department of Petroleum Engineering, Texas A&M University, TX, USA

ARTICLE INFO

Article history: Received 13 March 2015 Received in revised form 29 May 2015 Accepted 1 June 2015 Available online 1 July 2015

Keywords: Total discharge in blowouts

ABSTRACT

Despite multitier safeguards in any drilling operation, blowouts do occur. place, the total discharge of hydrocarbons becomes the focal point for a operator, the service provider, and the regulatory body. Rate estimation be scant information about the formation and fluids at the time of the acciden guidelines require such estimates for any offshore drilling, systematic invest

This study presents an analytical model coupling the flow in a reservoir/w The model considers flow in the tubing, annulus and riser, and the atte formulation/wellbore system. To gauge safety concerns, a commercially

stract

is paper presents the preliminary results of a research oject on ultra deepwater blowouts. This research is a part of comprehensive study currently conducted by Petrobras, the azilian oil company, aiming at drilling and producing safely, terms of well control, in water depths as deep as 10000 feet proximately 3000 meters). Firstly, the paper presents a thematical procedure that predicts wellbore pressures and w properties during a gas blowout using an unsteady state added that considers the multiphase nature of the flow.

BOEM'S ENGINEERING WORKFLOW

PRESSURE DROP (ΔP) PREDICTION MODELS

Empirical Correlations (strongly based on data)

Drift-Flux models (additional physics but still based on data)

Mechanistic Models (1D solution of conservation equations but also uses empirical correlations)

CFD Models (3D-transient solution of conservation equations but needs calibration and computationally expensive)

SOURCES OF ERRORS ON FLOW MODELS [1]

□ ERRORS IN FLUID PROPERTIES & CALCULATION DIRECTION

SOURCES OF ERRORS ON FLOW MODELS [2]

Review of Conditions Used to Develop Flow Models

Correlation	Fluid	Pipe ID (in)	Pipe length (ft)	liquid rate (bbl/d)	Gas rate (Mscf/d)	Fluid properties	Degree From horizon
Poetmann and Carpenter (1952)	Oil/gas, gas/oil/water	2, 2 ½, 3	1,100-11,000	5 - 1,400 (oil)	18 -1,630	30°-54° API; 0.6-1.15 Gas SG 0.2 <gor<41 bbl<="" mscf="" th=""><th>90</th></gor<41>	90
Baxendell and Thomas (1961)	Gas/oil	2 7/8 , 3 ½	6,250	200-5,100 (oil)	N/A	Oil: 34° API, 2.58 cp at 160° F 120 <gor< 160="" th="" vol="" vol<=""><th>90</th></gor<>	90
		1 5/8 3 1/2				Ωil· 20°-40° ΔΡΙ 1 − 300 cp	

Duns and Ros (1963)	1, 5/8, 3 ½, 6 in ID Vertical Pipe		
Achaim (1096) (Mana)	Tested with Forties field, Ekofisk field,		
Asheim (1960) (Iviona)	and Prudhoe Bay flow line data		
Ansari (1994)	Developed with data from TUFFP Databank		
Gomez et al. (2000)	Validated against TUFFP Databank		
	Used over 10000 data from SINTEF		
ULGA-3 2000 3.3.	multiphase flow loop		

Wakierjee and Drift (1903)	Air/oir	1, 1 /2	2 A JU	0-2,300	0-33		100 <glr<1320 bbl<="" scf="" th=""><th>any any c</th></glr<1320>	any any c
Asheim (1986) (Mona)		Tested with Forties field, Ekofisk field, and Prudhoe Bay flow line data points						
Yao and Sylvester (1987)	Gas/water, oil/gas	compa	compared with field data from Camacho (1970) and Reinicke and et al. (1984), Govier and Fogarasi (1975)					90
Ansarı (1994)		Developed with data from TUFFP Databank					90	
Petalas and Aziz (1996)		-	Verified agair	nst Stanford Multi	phase Flow Data	base (SMFD)		any angle
Chalishi and at al (1006)	Air/water	3 1/2	1333	79-4250	42-2800		16 <glr<12685< th=""><th>90</th></glr<12685<>	90
Chokshi and et al.(1996)		Evaluated with TUFFP						
Gomez et al. (2000)		Validated against TUFFP						any angle
OLGA-S 2000 S.S.		Used over 10000 data from SINTEF multiphase flow loop						N/A
LedaFlow			Used over 1	0000 data from SI	NTEF multiphas	e flow loop		N/A

SOURCES OF ERRORS ON FLOW MODELS [3]

Review of Databases Used to Develop Flow Models

SINTEF multiphase flow loop (OLGA-S 2000 S.S.)	Nitrogen, Naphtha/ diesel, lube oil	8 in ID	
TUFFP databank	Oil/gas/water	1-8 in ID	
Forties field	Oil/gas	3.958, 6.185 in ID	

SOURCES OF ERRORS ON FLOW MODELS [4]

Review of Flow Rates Used to Develop Flow Models

Q_I < 2,500 STB/D

Takacs (2001)

SOURCES OF ERRORS ON FLOW MODELS [5]

Why Flow Regime Predictions are Important for WCD calculations?

Correlations	Flow patterns
Duns and Ros (1963)	bubble, slug, and froth
Hagedorn and Brown (1964)	no flow pattern consideration
Hagedorn and Brown Modified (1965)	bubble, slug
Orkiszewski (1967)	bubble, slug, annular slug transition, annular mist
Beggs and Brill Revised (1973)	(horizontal pipe) segregated, intermitted, distributed, froth
Gray (1974)	no flow pattern consideration
Govier and Foragasi (1975)	slug, annular mist, froth
Mukherjee and Brill (1985)	no flow pattern consideration
Ansari (1994)	bubble, slug, and annular
Beggs and Brill Revised (1973) Gray (1974) Govier and Foragasi (1975) Mukherjee and Brill (1985) Ansari (1994)	(horizontal pipe) segregated, intermitted, distributed, froth no flow pattern consideration slug, annular mist, froth no flow pattern consideration bubble, slug, and annular

Flow Regime Maps for Large-Diameter Pipes

Ali (2009) - Experimental conditions tested

Study	Qo,	QI,	ID,	Usl,	GLR,	Qg,	Qg,	Usg,
BBL/D		GPM	in	m/s	SCF/STB	MMSCF/D	SCFM	m/s
Ali	<mark>30,300</mark>	883	10	1.1	41	<mark>0.350</mark>	243	2.3

Evaluation of Using CFD models for Multiphase flow in Large Pipe Diameters

Zabaras (2013) - Experimental conditions tested

Study	Qo,	QI,	ID,	Usl,	GLR,	Qg,	Qg,	Usg,
Study	BBL/D	GPM	in	m/s	n/s SCF/STB MMSCF/D		SCFM	m/s
Zabaras	<mark>5140</mark>	150	11	0.15	2640	<mark>2.97</mark>	2063	15.9

Gaps in Studies for Large-Diameter Pipes [1]

Review of Studies on Two-Phase Flows for ID > 6 in

Gap in Studies for Large-Diameter Pipes [2]

Conclusions from Literature Review

- Flow correlations were originally developed and are still NOT verified for LARGE-diameters (ID < 8 in)</p>
- Lack of studies on Two-Phase Flows in large-diameters (ID > 6) and high liquid/gas flow rates (Q_I > 30,000 bbl/d)
- "Non-standard" flow correlations should be evaluated to be used in WCD models
- WCD models vastly under studied
- □ Models specifically developed for WCD scenarios ARE NEEDED!

Experimental Investigation (Task 3-5)

Experimental Apparatus

E

Pressure Gauges TOPIC

Flow Regime Observations [2]

Liquid Holdup Measurements [1]

Liquid Holdup Measurements [2]

Liquid Holdup Measurements [3]

$\bar{\rho} = H_l \rho_l + (1 - H_l) \rho_g$

$\Delta p / \Delta z$ Measurements [1]

$\bar{\rho} = H_l \rho_l + (1 - H_l) \rho_g$

Δp/Δz Measurements [2]

Δp/Δz Measurements [3]

Conclusions from Experimental Investigation

- As previously observed by other investigators, slug flow was not observed for pipe diameter larger than 4 inches
- □ Good match between the <u>flow regimes, H₁ and dp/dz</u> measured in this study and reported by other authors
- Surprisingly, the pipe diameter has negligible effect on the dp/dz for pipe diameters over 4 inches
- Liquid flow rate has small effects on dp/dz for ID > 4 in, particularly for high-liquid velocities
- Axial flow development does not seem to impact significantly the <u>dp/dz</u> in large-diameter pipes (ID > 4 in)

Evaluation of Flow Models with Experimental Data (Task 6)

Methodology for Comparison of Flow Models

Wellbore flow model	Nomenclature
Ansari (1994)	ANS
Beggs and Brill (1973)	BB
Beggs and Brill Revised (1979)	BBR
Duns and Ross (1963)	DR
Govier, Aziz, and Fogarasi (1972)	GA
Gray Original (1974)	GO
Gray modified (PipeSim 2011)	GM
Hagedorn and Brown (1964)	HB
Hagedorn and Brown with Duns and Ross map (PipeSim 2011)	HBDR
Mukherjee and Brill (1985)	MB
No Slip (PipeSim 2011)	NS
Orkiszewski (1967)	OR
OLGA-S 2000 V.6.7.2	OLGA
Computational Fluid Dynamics (Fluent)	CFD

- Common models available in commercial packages
- Models available in PIPESIM at LSU
- Include different model approaches (empirical, mechanistic, CFD)

p. Data and Flow Model Results

12 in (usl=2.4 ft/s) •••• 10 in (usl=2.4 ft/s)

- 4 in (usl=2.9 ft/s)

8 in (usl=2.4 ft/s)

Data points from: LSU (2016), Ali (2009), Zabaras et al. (2013)

 $< \frac{u_{sg}}{u_{sl}} < 5$

 $5 < \frac{u_{sg}}{u_{sl}} < 50$

 $50 < \frac{u_{sg}}{u_{sl}} < 500$

0

Comparison of Flow Models Applied to WCD (Task 2)

Results for WCD Calculations for Different Wellbore Flow Models

Fluid Sample	Reservoir depth (ft)	Reservoir pressure (psi)	Reservoir Temp. (°F)	GOR (scf/stb)	p _{bp} (psi)	ρ _ο (API)	μ _ο (cp)	Pl (STB/D/psi)
Base Case	16,726	11,305	210	1,700	6,306	28	0.8	19.05
BO1	19,426	10,391	166	1,190	7,693	25.3	1.49	19.05
BO2	19,553	12,523	251	1,562	5,192	34.5	0.173	19.05

O Base Case □ BO1 △ BO2

Effect of Fluid Type

Fluid Sample	Reservoir measured depth (ft)	Reservoir pressure (psi)	Reservoir Temperature (°F)	GOR (scf/stb)	Oil gravity (API)	Pl (STB/D/psi)
Base Case	16,726	11,305	210	1,700	28	19.05
VO3	14,374	11,009	261	3,803	42.1	19.05

Effect of Roughness [1]

Effect of Roughness [2]

Results for Flow Regime Prediction for Base Case

Final Remarks

- ✓ We have done a significant amount of work in 12 months.
- Pipe diameter has a significantly smaller effect on the pressure gradient for ID over 4 inches than in pipe diameter smaller than 4 inches.
- Most flow models show better results for the 4-inch diameter pipe than for larger diameters.
- Flow models and laboratory experiments discrepancy is likely caused by the use of the slug flow regime, instead of churn flow (which is observed experimentally)

Final Remarks

- Different methods may be suggested for different fluid and flow conditions, making the recommended practice field specific depending on reservoir and fluid properties
- Variation of reservoir fluid properties (p_{bp}, GOR, ρ_o, μ_o) has a relatively small effect (up to 10%) on WCD rate estimates for black oil and volatile oil reservoirs, for the well conditions examined
- Further investigations of benchmarking and calibration of exiting WCD models against representative field and fluid WCD conditions is needed!
- Based on preliminary comparisons, significant improvement can be achieved on wellbore flow models for WCD calculations

Suggestion for Future Projects

□ Five-year Research Plan (LSU WCD Group)

"To foster safety on the development of new oil and gas reserves in the Gulf-of-Mexico"

- ✓ Establish a WCD Research Center at LSU
- ✓ Organize a Industry Advisory Committee (IAC) for the WCD group
- ✓ Create a Priority List for topics to address challenges on WCD
- Organize a Joint-Industry-Project (JIP) on the validation and development of a Open-Source model for WCD calculations
- Create a Handbook/Manual/Standard and Training Courses for WCD calculations (standardization)
- Disseminate information from LSU WCD group among industry and regulatory agencies

LSU WCD Research Center

Preliminary Priority List of Topics [1]

Experimental work for large pipe diameters and inclined pipe! (No well is truly vertical!!!)

New design under development (Investment of ~\$150,000)

Old Inclinable flow loop

Preliminary Priority List of Topics [2]

Flow tests for different pressures and fluid types (fluids other than water and air)

- ✓ Industry investment already made of about ~\$ 2,000,000
- ✓ Closed-loop that allow use of different fluid types (oil, gas, water, nitrogen...)
- ✓ Allow use of pressures up to 1,200 psi
- ✓ Allow tests with high-liquid rates (15,000 BBL/D) and high-gas rates (4 MMSCFD)

Preliminary Priority List of Topics [3]

- Development of a Flow Models dedicated to WCD calculations
- Development of a web tool to provide unbiased and accurate WCD calculations
- Validation with 24 wells Reinicke et al. (1987)

Validation with 12 wells – Facher and Brown (1963)

