Virginia Offshore Wind Developer Update: Research Lease (OCS-A 0497)

BOEM North Carolina & Virginia Intergovernmental Renewable Energy Task Force Webinar, 23 July 2019

George Hagerman, Senior Project Scientist Old Dominion University, Center for Coastal Physical Oceanography

Center for Coastal Physical Oceanography

Research Lease Status

Major Research Funding Opportunity

National Offshore Wind Research and Development Consortium Notice of Upcoming Technical Challenges

First Research Pillar: Offshore Wind Plant Technology Assessment | Initial Release Version 1.0 | November 2018

The Consortium will competitively award **~\$32 million** in research funding through open solicitations over the **next four years**

NYSERDA solicitation addresses the three research pillars of the US National Offshore Wind Strategy:

Pillar #1: Offshore Wind Plant Technology Advancement

Pillar #2: Offshore Wind Power Resource and Physical Site Characterization

Pillar #3: Installation, Operations and Maintenance, and Supply Chain

First proposals target priority Challenge Areas identified for Pillar #1: (1) Array Performance and Control Optimization

(2) Cost-Reducing Turbine Support Structures

Pillar #1 – Priority Challenge Area 1 (P1-CA1): **Array Performance and Control Optimization**

Existing commercial lease project pipeline within a day's sail from Hampton Roads depends on the assumed turbine capacity density:

- Commercial leases off NJ, DE, MD, VA, and Kitty Hawk, NC have a total combined area of 3,056 square kilometers
- The US National Offshore Wind Strategy assumes a potential installed turbine density of 3 megawatts per square kilometer, or 3.0 MW/km², which yields a southern Mid-Atlantic 9.17 GW pipeline
- European resource studies assume 5.4 MW/km², which yields a southern Mid-Atlantic 16.5 GW pipeline
- National Renewable Energy Laboratory (NREL) models find that when optimal turbine positioning is combined with wake steering by active yaw control, baseline of 5.4 MW/km² can be increased to <u>8.8 MW/km²</u>, which yields a southern Mid-Atlantic **26.9 GW pipeline**

Virginia and North Carolina have unique assets that can physically validate NREL findings

NREL combined optimization for hypothetical project yields 70% more energy per unit area over baseline

		Baseline	YawOpt	PosOpt	Combined
	Mean power (MW)	78.86	84.91	78.86	78.84
	Area (km²)	14.53	14.53	12.45	8.96
	Power density (W/m ²⁾	5.43	5.84	6.33	8.80
1.6 GWh oer km²	AEP(GWh) (annual energy production)	1040.3	1094 (+5.2%)	1055.8 (+1.5%)	1095 (+5.3%)

71

Baseline: Turbines positioned in regular grid, all yawed to have zero error for mean wind direction

YawOpt: Turbines positioned in regular grid, individually vawed to steer wakes for optimal AEP

PosOpt: Positions optimized, turbines all vawed to have zero error for mean wind direction

Combined: Positions optimized and turbines individually yawed to steer wakes for optimal AEP

122 GWh per km²

Source: Katherine Dykes, National Renewable Energy Laboratory, 11 Oct 2017 See http://onlinelibrary.wiley.com/doi/10.1002/we.1993/abstract for peer-reviewed paper

Amazon US East project being considered as a possible site to verify remote wake measurements

Discussions with Avangrid Renewables have been initiated and are ongoing

Research instrumentation would be qualified at Chesapeake Bay Bridge Tunnel (CBBT) islands

Instrumentation must meet data availability standards before allowed offshore

Integrating research leases into Ocean Test Bed

Research Pillar #1 – Challenge Area 2 (P1-CA2) Cost-Reducing Turbine Support Structures

Fixed platforms are required to support Doppler lidar or radar units in RL1, to enable real-time wind mapping of commercial lease area, while simultaneously demonstrating suction-bucket jacket foundations that can be fabricated and assembled in Hampton Roads for entire US East Coast market

- Suction-caisson jackets eliminate pile driving, which greatly expands offshore installation season from summer-only, daytime-only to **year-round**, **day-and-night**
- Validate jacket transparency to impact of breaking storm waves

First prototype suction-bucket jacket at Borkum Riffgrund I, pioneered by Orsted

Breaking wave at FINO-1 platform in 28m water depth when significant wave height is only 6 m

Suction-bucket jacket ready for European Offshore Wind Deployment Center

Progressive program of research proposals

DOE Office of Energy Efficiency and Renewable Energy

- DOE FOA-2071: Project Development for OSW Technology Demonstrations
 - Characterization of extreme wave profiles, forces, and structural response of CVOW monopile foundations (*subject to Dominion CVOW site access terms & conditions*)

National Offshore Wind R&D Consortium

- NYSERDA P1-CA1: Array Performance and Control Optimization
 - LiDAR measurement of CVOW turbine wakes to physically validate NREL numerical models (*subject to Dominion CVOW site access terms & conditions*)

NYSERDA P1-CA2: Cost-Reducing Turbine Support Structures

- LCOE study of suction-bucket jacket foundation needing least-cost heavy-lift vessel

NYSERDA P3-CA1: Heavy Lift Vessel Alternatives

- LCOE study of "float and flood" suction-bucket jacket foundation embarking tower and turbine, fully assembled at quayside, **eliminating heavy-lift vessel**
- NYSERDA P2-CA2: Development of a Metocean Reference Site
 - Newbuild platforms in RL1 aliquots, demonstrating optimal suction-bucket jacket design

• NYSERDA P3-CA2: Offshore Wind Digitization Through Advanced Analytics

- Combine validated NREL models and real-time Doppler wind mapping from RL1 platforms to simulate buildout of hypothetical, utility-scale "virtual project" in commercial lease area