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ABSTRACT 

Interest in development of offshore renewable energy facilities has led to a need for high-quality, 
statistically robust information on marine wildlife distributions. A practical approach is described 
to estimate the amount of sampling effort required to have sufficient statistical power to identify 
species-specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an 
offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and 
“coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence 
probability for each species of interest. For example, a location with average abundance or 
occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” 
and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The 
choice of the effect size used to define hot and coldspots will generally depend on a combination 
of ecological and regulatory considerations. A method is also developed for testing the statistical 
significance of possible hotspots and coldspots. Both methods are illustrated with historical 
seabird survey data from the USGS Avian Compendium Database.  

Our approach consists of five main components: 

1. A review of the primary scientific literature on statistical modeling of animal group size and 
avian count data to develop a candidate set of statistical distributions that have been used or may 
be useful to model seabird counts. 

2. Statistical power curves for one-sample, one-tailed Monte Carlo significance tests of 
differences of observed small-sample means from a specified reference distribution. These 
curves show the power to detect "hotspots" or "coldspots" of occurrence and abundance at a 
range of effect sizes, given assumptions which we discuss. 

3. A model selection procedure, based on maximum likelihood fits of models in the candidate 
set, to determine an appropriate statistical distribution to describe counts of a given species in a 
particular region and season. 

4. Using a large database of historical at-sea seabird survey data, we applied this technique to 
identify appropriate statistical distributions for modeling a variety of species, allowing the 
distribution to vary by season. For each species and season, we used the selected distribution to 
calculate and map retrospective statistical power to detect hotspots and coldspots, and map p-
values from Monte Carlo significance tests of hotspots and coldspots, in discrete lease blocks 
designated by the U.S. Department of Interior, Bureau of Ocean Energy Management (BOEM). 

5. Because our definition of hotspots and coldspots does not explicitly include variability over 
time, we examine the relationship between the temporal scale of sampling and the proportion of 
variance captured in time series of key environmental correlates of marine bird abundance, as 
well as available marine bird abundance time series, and use these analyses to develop 
recommendations for the temporal distribution of sampling to adequately represent both short-
term and long-term variability.  

We conclude by presenting a schematic “decision tree” showing how this power analysis 
approach would fit in a general framework for avian survey design, and discuss implications of 
model assumptions and results. We discuss avenues for future development of this work, and 
recommendations for practical implementation in the context of siting and wildlife assessment 
for offshore renewable energy development projects.  
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1.0 INTRODUCTION 

1.1 Motivation 
We begin with an illustration of the characteristic statistical noisiness of seabird count data and 
the challenges this presents for identification of “hotspots” and “coldspots”. First, we define a 
“hotspot” of seabird abundance as a discrete spatial unit where the long-term mean abundance of 
a given bird species is substantially larger than some reference value (e.g., the regional average 
abundance), where “substantially” is determined by some pre-specified effect size that has 
biological or regulatory meaning. Figure 1 shows maps of the mean counts of three species of 
seabirds in standardized visual transect surveys (data are from the USGS Avian Compendium 
Database and are described in greater detail in section 2.6). Means are reported on a spatial grid 
defined by the U.S. Department of Interior (DOI) Bureau of Ocean Energy Management 
(BOEM) lease blocks. Note that certain grid cells stand out as apparent “hotspots” (or 
“coldspots”), that is, the mean values in those cells are much larger (or smaller) than the regional 
mean. However, because we expect random variation in the number of birds observed at a given 
location on any given sampling occasion, it is impossible to tell whether any of these cells are 
truly hotspots or coldspots without also considering the number of independent repeat surveys 
that occurred at each location. The purpose of this study is to develop a simple approach for 
identifying which cells on maps like the ones shown in Figure 1 have been sampled adequately 
to draw conclusions about their status as a “hotspot” or “coldspot” relative to some reference 
mean. In addition to enabling retrospective analysis of maps of previous surveys like those 
shown in Figure 1, such a method will also enable prospective planning of sampling to ensure 
adequate ability to discriminate hotspots and coldspots for a given species, based on knowledge 
about the statistical properties of that species’ statistical variation in abundance.  

In a manner directly analogous to our definition of abundance hotspots and coldspots, we can 
also define hotspots and coldspots of species occurrence probability. Indeed, if one considers 
observations in which the species of interest is absent, then it is critical to consider a species’ 
occurrence probability along with its abundance when present in order to design surveys to 
detect hotspots and coldspots. We therefore consider methods of survey design that consider both 
occurrence probability and abundance, separately and jointly. 

Detailed spatio-temporal models of the occurrence and abundance of birds and other highly 
mobile species in the offshore marine environment can be extremely complex. Our purpose here 
is not to create such a complex model, but instead to develop a simple, general framework that 
can be applied with a minimum of input data to provide a first-order estimate of statistical power. 
Therefore, we will make a number of simplifying assumptions to arrive at a pragmatic approach 
to power estimation for hotspot and coldspot surveys in marine birds. Section 4 of this document 
discusses the implications and limitations of some of these assumptions and addresses how 
additional complexity can be incorporated into this power analysis framework. 

Finally, it is important to point out that many different definitions of hotspots and coldspots have 
been proposed and different definitions may be useful in different contexts. In this study, we are 
focused on single-species abundance and occurrence probability. We do not consider diversity, 
species richness, total abundance across all species, multi-species occurrence probabilities, or 
any other multi-species aggregation metrics, although these can be important in some contexts, 
for  example  biodiversity  conservation  and  ecosystem  function.  We  also  do  not  explicitly  



2 
 

 

 
Figure 1.  Maps depicting sample means, by BOEM lease block (grid cells), of all 

non-zero counts of marine bird species listed in Table 3 from 
standardized 15-minute-ship-survey-equivalent visual transects. 
Based on data from multiple surveys compiled in the USGS Avian 
Compendium database (1978-2010; see Table 2). Blank cells 
indicate BOEM lease blocks that were either not surveyed or where 
the species was not observed. 

 
a. Herring Gull (Spring). 3,828 surveys with non-zero counts (41,959 total individuals). 

2,791 BOEM Atlantic OCS lease blocks with at least one non-zero observation.  
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Figure 1. 
b. Northern Gannet (Spring). 2,749 surveys with non-zero counts (21,114 total individuals). 

2,014 BOEM Atlantic OCS lease blocks with at least one non-zero  
observation. 
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Figure 1. 
c. Wilson’s Storm-Petrel (Spring). 1,476 surveys with non-zero counts (12,092 total 

individuals). 1,244 BOEM Atlantic OCS lease blocks with at least one non-zero 
observation. 
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consider the length of time for which a hotspot or coldspot must be detectable in order to 
consider it “persistent”. Our method does require multiple surveys to identify a statistically 
robust hotspot or coldspot, but those surveys could in theory occur within a single year if many 
independent surveys were conducted in a discrete spatial unit over a short period of time. If long-
term persistence of hotspots or coldspots is of interest, then one could apply the method 
developed here in temporal strata to evaluate whether statistically robust hotspots or coldspots 
recur in the same location over long periods of time.  In sections 2.10, 2.11, 3.7 and 3.8, we 
describe analyses of temporal variability in relevant characteristics of the ocean environment and 
in marine bird abundance, and examine implications of these analyses for allocating sampling 
effort over time. 

1.2 Basic Model and Assumptions 
Consider an offshore coastal region divided into a grid of discrete spatial units (“grid cells”) for 
purposes of regulation, leasing, and biological monitoring. We first assume that there is a 
standardized survey protocol available with which to sample bird abundance, in which birds are 
counted along fixed-width, fixed-time transects, and that the standardized transect length is 
appropriate to characterize discrete spatial units of the chosen grid size. For simplicity, the 
location of a transect is taken as its centroid, and the transect is assumed to sample the grid cell 
in which this centroid falls.  

We then assume that number of birds of a given species that would be counted by a standardized 
survey conducted in a given grid cell at any instant is the outcome of a type of two-component 
random process known as a hurdle model (Mullahy 1986), in which the abundance is 0 with 
probability 1-∅, or non-zero with probability ∅, according to a Bernoulli(∅) distribution, and 
non-zero abundances are distributed according to a discrete probability mass function with 
positive integer support, such as a zero-truncated Poisson. We further assume that this model 
directly reflects the underlying variation in bird abundance; in other words, we ignore any effects 
of the observation process such as detection errors (i.e., detectability), incorrect counts, lumping, 
misidentification of species, and approximation of group sizes. The non-zero count component of 
the hurdle model is assumed to follow a discrete probability distribution with positive integer 
support that can be determined by a model selection process (see sections 2.1 and 2.2). The 
random processes are assumed independent from grid cell to grid cell (no spatial correlation), 
and successive samples from a given grid cell are assumed independent (no temporal 
correlation). Finally, we assume that the distribution of a given grid cell is stationary, meaning 
that the parameters do not change over time.  

Given these assumptions, for a given bird species in a given grid cell, we want to determine how 
many surveys are required to: 

Case (1) Have sufficient statistical power to detect whether the long-term mean of the non-
zero counts in the grid cell is larger or smaller than some a priori reference mean by 
a meaningful amount.  

Case (2) Have sufficient statistical power to detect whether the probability of occurrence in 
the grid cell is larger or smaller than some a priori reference probability of 
occurrence by a meaningful amount. 
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Case (3) Have sufficient statistical power to detect whether the long-term mean of the 
unconditional counts (i.e., the mean including zero and non-zero counts) in the grid 
cell is larger or smaller than some a priori reference mean by a meaningful amount.  

For simplicity, we treat each of these three cases separately in this document. We will first 
develop methods to address cases (1) and (2). We will then show how results from (1) and (2) 
can be combined, using the hurdle model concept described above, to address case (3). These 
methods are described in detail in the next section of this document (section 2).  Section 3 and 
the Digital Supplements (described in Appendix A) present the results of an application of the 
methodology developed in section 2. In section 4, we discuss assumptions, limitations, caveats, 
and recommendations for application of the proposed methodology. 

Statistical power is defined as the probability of rejecting the null hypothesis of a statistical test 
when it is false; that is, when some alternative hypothesis holds. Calculation of statistical power 
requires specification of: 

i. the test statistic and test procedure on which hypothesis testing will be based 
ii. the Type I error rate (the significance threshold, or desired probability of rejecting the 

null hypothesis when it is true) 
iii. the distribution of the test statistic under the null hypothesis  
iv. the distribution of the test statistic under the alternative hypothesis (which involves 

specifying the effect size: the difference in the test statistic between the null and 
alternative hypotheses) 

v. sample size 

We will first describe how power is calculated for case (1) described above—power to detect 
differences in mean non-zero counts. For the test statistic (i), we use the sample mean, and for 
the test procedure, a one-sample Monte Carlo significance test (Hope 1968; see section 2.3) 
based on simulating a sample from a known reference distribution (the null hypothesis). We use 
one-tailed tests whose direction depends on whether we are testing for a hotspot or a coldspot.  
Unless otherwise specified, we use a Type I error rate (ii) of 0.05, from which we can calculate 
the upper (for hotspot tests) or lower (for coldspot tests) critical value of the null distribution. For 
the null hypothesis distribution (iii), we assume the hurdle model as described above, with mean 
of the non-zero distribution equal to some reference mean specified a priori, and any additional 
parameters of the reference distribution also specified a priori (we will refer to these additional 
parameters as nuisance parameters). For the alternative hypothesis distribution (iv), we assume 
the same distributional form as the null hypothesis, and the same nuisance parameters, but with 
the location parameter adjusted to give the desired effect size. We specify effect sizes 
multiplicatively in terms of the reference distribution mean; if the reference mean is denoted by 
µ, then a “3x” effect size indicates an alternative hypothesis with a mean of 3µ, and would 
correspond to a power calculation for the scenario in which the grid cell in question is a hotspot 
whose mean is at least three times larger than the a priori reference mean. Similarly, a “ x” 
effect size would indicate a power calculation for a coldspot whose mean is at least three tim

1

es 
smaller than the a priori reference mean. Finally, the sample size (v) is provided as an input

3

 to 
the power calculation, allowing for example, the calculation of prospective power vs. sample size 
curves (see section 2.5), or calculation of retrospective power given actual sample sizes (see 
section 2.7).  
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Given all of this information and access to appropriate random number generators, it is 
straightforward to estimate power by direct simulation of the test procedure (see sections 2.3 and 
2.4). Hotspot (or coldspot) detection power can be estimated as the frequency of simulated 
values under the alternative hypothesis that are greater than or equal to the upper critical value 
(or less than or equal to the lower critical value) of the null hypothesis distribution given the 
Type I error rate. We choose a direct simulation method for calculating power to allow for 
maximum flexibility in choice of a distribution for the second component of the hurdle model 
and accurate calculations for small sample sizes. The distribution of the sample mean is not 
available in closed form for all distributions and a normal approximation based on the central 
limit theorem cannot be relied upon for small sample sizes.   

An important question that arises is the specification of the reference distribution, which 
determines both the distributional form and the parameters of the null and alternative hypotheses. 
In practice this reference distribution may be derived from the literature, from prior knowledge 
of the species’ distribution, from previously collected data, and/or by averaging data over some 
reference region that is much larger than the grid cells being evaluated. We will illustrate the 
latter approach: selecting and fitting the reference distribution based on available data from a 
region of interest, and then taking it as known for purposes of the subsequent power analysis. 
Although this violates the underlying one-sample assumption that the null hypothesis distribution 
is known a priori without sampling error, the error in resulting power calculations is negligible 
as long as the reference dataset is sufficiently large relative to the sample (data falling in a single 
grid cell).  

In case (2), we are interested in power to detect hotspots and coldspots defined on the basis of 
occurrence probability. This is a much more straightforward problem, because the appropriate 
statistical test to use is the one-sample Fisher’s Exact Test, a well-studied and classical statistical 
test. This test can be applied as long as we are willing to assume that the occurrence probability 
at a given location does not vary over time and is not temporally autocorrelated. Under these 
conditions, the null hypothesis is a binomial(p,k) distribution with probability p equal to the 
reference probability of occurrence, and the number of samples k equal to the sample size. The 
alternative hypothesis is a binomial distribution where p is multiplied by the desired effect size. 
If we then specify the type I error rate and sample size, the power of this test can be well-
approximated by an analytical formula (Bennett and Hsu 1960).  

Case (3), the power to detect differences in the unconditional mean (mean including zero and 
non-zero counts), can be addressed by simply combining the two approaches described above for 
case (1) and case (2) using the hurdle model. Case (1) represents the non-zero component of the 
hurdle model and case (2) represents the Bernoulli process that generates zeros. The only 
question that arises is whether we assume that differences in the unconditional mean arise 
through differences in the non-zero component, or in the occurrence probability component of 
the hurdle model. In this paper, we treat only the former case, where differences in the mean 
arise through a multiplicative effect on the non-zero component of the hurdle model. It would be 
trivial, however, to generalize this work to consider other cases in which differences arise as a 
consequence of changes in occurrence probability, or both occurrence and non-zero abundance 
processes change simultaneously.   
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2.0 METHODS 

2.1 Identification of Candidate Distributions 
To identify candidate distributions for the non-zero component of the hurdle model described in 
section 1.2 (case (1)), we searched the peer-reviewed scientific literature using Google Scholar 
and ISI Web of Science for a selection of recent papers that attempted to statistically describe or 
model bird group sizes or counts of birds observed in timed surveys in discrete spatial units. We 
also included papers that studied distributions of group sizes in other highly mobile species that 
form aggregations, such as fish.   

The most challenging problem we face is characterizing a count distribution with an extreme 
variance to mean ratio, as is often observed in seabird data (Zipkin et al. 2010, Zipkin et al. 
2012). Seabirds are often unevenly and unpredictably distributed (Caraco 1980, Certain et al. 
2007, Silverman et al. 2001); for example, counts often include many zeros (Hall 2000, Martin et 
al. 2005) and distributions of count data can be extremely right skewed (Bonabeau et al. 1999, 
Griesser et al. 2011). Identifying appropriate statistical distributions for analyzing count data of 
animal populations is an ongoing area of interest in ecology.  

For reasons based on first principles and for convenience, the Poisson distribution has frequently 
been used to model skewed count data (Caraco 1980) and is popular in modeling avian species 
(e.g., Fujisaki et al. 2008, Link and Sauer 2007). Yet the inherent assumption that the variance 
equals the mean often does not hold for many seabird species, which are known to form large 
flocks. The negative binomial distribution, which allows the variance to exceed the mean, is used 
as an alternative to the Poisson to characterize the count distributions for species where spatial 
aggregation is known to occur (e.g., Beauchamp 2011, Cohen 1972, Wood 1985). The negative 
binomial distribution is the result of a Poisson-Gamma mixture and converges to the Poisson 
distribution as the shape parameter, k, approaches infinity (Table 1). Okubo (1986) 
recommended the geometric distribution – a discrete analog to the exponential distribution and 
also a special case of the negative binomial where the shape parameter equals one – to handle 
extremely large group sizes and demonstrated its applicability for a number of taxa including 
birds. Empirical evidence suggests, however, that the negative binomial and geometric models 
do not adequately capture observed distributions of counts for some populations, especially those 
that are found in very large group sizes, such as some fish and bird species. Ma et al. (2011) 
derived a logarithmic distribution from first principles based on rules for when individuals 
should join and leave groups; this model has outperformed the Poisson and negative binomial 
distributions in studies of house sparrows (Griesser et al. 2011) and seabirds (Jovani et al. 2008). 
Ma et al. (2011) additionally pointed out that the logarithmic distribution can be derived as a 
limiting case of the negative binomial distribution as the shape parameter (k, Table 1) approaches 
zero (see also Quenouille 1949), placing it in the context of other distributions used to model 
ecological count data. 

More recently, the power law distribution (also known as the zeta distribution in its discrete 
form) has been proposed for modeling group sizes when the variance to mean ratio is much 
larger than can be accommodated by the aforementioned models (Bonabeau and Dagorn 1995, 
Bonabeau et al. 1999). Several studies have demonstrated that the power law distribution fits 
well to a number of empirical examples including populations of fish,  seabirds,  and  mammals 
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Table 1 

 
Parameters and probability mass functions for the eight candidate distributions.   

In all cases, the support is 𝑥 ∈ {1,2,3, … } (that is, the distributions are defined for positive 
integers).  Specifications of all distributions are as in the VGAM package in R (Yee 2010) except 
for the discretized lognormal and zeta with exponential cutoff which are specified as in Clauset 
et al. (2009). Symbols used in probability mass functions are explained in the Notes column. 

 

Distribution Parameters Probability mass function Notes 

Positive 
Poisson λ > 0 

λx

𝑥! 𝑒−λ

1 − 𝑒−λ 

λ is both the mean and the variance  

Positive 
negative 
binomial 

𝜇 > 0 
𝑘 > 0 

�𝛤(𝑥 + 𝑘)
𝑥! 𝛤(𝑘) � � 𝜇

𝜇 + 𝑘�
𝑥

� 𝑘
𝜇 + 𝑘�

𝑘

1 − � 𝑘
𝜇 + 𝑘�

𝑘  

𝜇 is the mean and 1/k is the 
dispersion of the corresponding 
untruncated negative binomial 
distribution. 𝛤() denotes the gamma 
function. 

Geometric 0 < 𝑝 ≤ 1 𝑝(1 − 𝑝)𝑥−1 
1/p is the mean 

Logarithmic 0 < 𝑝 < 1 
−1

𝑙𝑛(1 − 𝑝)
𝑝𝑥

𝑥
 

−1
𝑙𝑛(1−𝑝)

𝑝
1−𝑝

 is the mean 

Discretized             
lognormal 

(truncated such 
that 𝑥 ∈

{1,2,3, … }) 

𝜇 
𝜎 > 0 

𝑒𝑥𝑝�−(𝑙𝑛 (𝑥−0.5)−𝜇)2

2𝜎2 �

(𝑥−0.5)�2𝜋𝜎2
  −  

𝑒𝑥𝑝�−(𝑙𝑛 (𝑥+0.5)−𝜇)2

2𝜎2 �

(𝑥+0.5)�2𝜋𝜎2

� 2
𝜋𝜎2  𝑒𝑥𝑝 �− (𝑙𝑛 (0.5) − 𝜇)2

2𝜎2 �
 

𝜇 is the mean and 𝜎 is the standard 
deviation of the corresponding 
continuous, untruncated lognormal 
distribution.  Note that 𝜇 and 𝜎 are 
expressed in natural log-transformed 
units from the original scale. exp() 
denotes the exponential function, 
ln() denotes the natural logarithm 
function. 

Zeta 
(Discrete 

Power Law) 
𝑎 > 0 

1
𝑥𝑎+1 �

1
𝑛𝑎+1

∞

𝑛=1

�  

                   

𝑎 is the exponent of the distribution. 
𝑛 is a variable used in the 
summation.  The infinite series 
summation in the denominator is 
Riemann’s zeta function. 

Zeta with 
exponential 

cutoff 

𝑎 > 0 
λ ≥ 0 

�
1

𝑥𝑎+1exp (𝜆𝑥)
� �

1
𝑛𝑎+1exp (𝜆𝑛)

∞

𝑛=1

�  

 

𝑎 is the exponent of the distribution, 
and λ is the exponential rate of 
decay of the power law tail.  𝑛 is a 
variable used in the summation. The 
infinite series summation in the 
denominator must be approximated 
numerically.  

Yule 𝑎 > 0 𝑎 𝛤(𝑥)𝛤(𝑎+1)
𝛤(𝑥+𝑎+1)

                                         

𝑎 is the shape parameter of the 
distribution, and behaves similarly 
to the 𝑎 parameter of zeta and zeta 
with exponential cutoff distributions. 
𝛤() denotes the gamma function. 
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 (Clauset et al. 2009, Beauchamp 2011, Jovani et al. 2008, Keitt and Stanley 1998, Sjoberg et al. 
2000). However, the power law distribution (using ecologically relevant parameter ranges) is 
capable of producing extremely large counts (e.g., in the millions; Clauset et al. 2009), which are 
not realistic for most seabird species. The power law can be combined with an exponentially 
decaying function (Niwa 2003) to address this problem; such distributions are referred to as 
power law with exponential cutoff, power law with exponential decay, or simply power law 
exponential distributions. Ma et al. (2011) pointed out that the logarithmic distribution itself is a 
discrete form of a power law distribution with an exponential cutoff, where the power law 
exponent is -1 and the upper tail decays exponentially above a cutoff that is directly related to the 
average group size experienced by an individual. Bonabeau et al. (1999) also presents 
mechanistic models of group size that lead to power law distributions with exponential decay.  

Other heavy-tailed distributions exist and should be considered in a model selection context 
before concluding that “power law-like” behavior observed in empirical data necessarily 
indicates a power law distribution (Clauset et al. 2009).  These include the Yule and the 
discretized lognormal distributions, which themselves can be viewed, respectively, as limiting 
distributions of stochastic preferential attachment or multiplicative growth processes (Clauset et 
al. 2009, Mitzenmacher 2004). The lognormal distribution has a long history in ecology (e.g., 
Preston 1948) and a diversity of other fields (Limpert et al. 2001) where it often arises as a 
plausible alternative to other heavy-tailed distributions like power laws (e.g., in birds; Allen et al. 
2001). One classical generative process for a lognormal distribution is the multiplicative 
stochastic growth process first proposed by Gibrat (1931), in which the size of an entity changes 
by successive multiplicative random effects; if the multiplicative random effects are independent 
and lognormally distributed, then the size distribution will be lognormal. The lognormal 
distribution arises even more generally as a direct consequence of the Central Limit Theorem for 
products of random variables; any process that involves the product of a sufficiently large 
number of independent and identically distributed random variables having any distribution with 
finite mean and variance has a limiting lognormal distribution. Thus, a discretized lognormal 
distribution of counts could arise from a variety of plausible ecological mechanisms.  

Based on this literature survey, a set of eight candidate distributions were identified to describe 
the distribution of non-zero counts of seabird data, i.e. the non-zero component of the hurdle 
model described in section 1.2, case (1). These candidate distributions, their parameters, and 
probability mass functions are listed in Table 1. Some of these distributions naturally have 
positive integer support (geometric, logarithmic, zeta, zeta with exponential cutoff, and Yule), 
whereas others include 0 in their natural support set and must be truncated to positive integer 
support for use in the non-zero component of any hurdle model (Poisson, negative binomial, 
discretized lognormal). We refer to the discrete power law distribution as the zeta distribution 
and the discrete power law with exponential cutoff as the zeta exponential.  

2.2 Model Fitting and Selection 
To derive the reference distribution for non-zero counts to be used in power-analysis for a 
particular species, we fit each of the eight candidate distributions (Table 1) to available reference 
data using maximum likelihood estimation (MLE) in the program R (version 2.13.2; R 
development Core 2011). We used the VGAM package (Yee 2010) to estimate parameters for 
the positive Poisson, positive negative binomial, geometric, and logarithmic distributions. We 
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used the methods and code provided in Clauset et al. (2009) to estimate the parameters for the 
truncated discretized lognormal, the zeta, zeta exponential, and the Yule distributions. Together, 
these packages define probability mass functions, cumulative probability functions, and 
maximum likelihood fitting methods for each candidate distribution, and account for zero-
truncation when required.  

For model selection purposes, we calculated the log-likelihood of each model using the Yee 
(2010) and Clauset et al. (2009) methods and R code. We used the likelihoods to calculate 
Akaike’s Information Criterion corrected for finite (i.e., small) sample sizes (AICc), which we 
then used to rank the models (Burnham and Anderson 2002). The model with the lowest AICc 
was selected for use as a reference distribution and we compared the fit of the top distribution to 
the fits of the distributions that were ranked 2nd and 3rd using the Vuong closeness test (Vuong 
1989). For the models with the lowest AICc values we additionally conducted one-sample 
Kolmogorov-Smirnov tests to evaluate the null hypothesis that the data could have been drawn 
from the specified distribution (Sokal and Rohlf 2012). This allowed us to evaluate whether the 
top-ranked distributions by AICc adequately described the observed data.  

The maximum likelihood parameter estimates for the top model were used to define the null 
hypothesis distribution for subsequent significance tests and power analysis. Most distributions 
used only one parameter, which we altered to give the specified effect sizes for the alternative 
hypothesis tests in the power analyses. In cases where the best-fitting distribution had two 
parameters (e.g., the negative binomial, discretized lognormal, and zeta exponential 
distributions), one parameter (the second parameter listed in Table 1) was held constant at its 
estimated value, while the other was adjusted to give the desired effect size, measured as the 
ratio of the mean under the alternative hypothesis to the mean under the null hypothesis. This 
approach requires an assumption that the mean of the distribution changes only as a function of 
the first parameter, while the second parameter is a shape parameter that remains unchanged for 
a given species, perhaps for a given region or season.  Implications of this assumption are 
discussed further in section 4. 

2.3 Monte Carlo Significance Testing Procedure 
As discussed in section 1.2, power analysis requires specification of the test statistic, the 
significance testing procedure, and the significance level (Type I error rate) for which power is to 
be evaluated. We have chosen to focus on the mean as our test statistic for abundance data, 
because the long-term mean count of birds of a particular species in a discrete spatial unit is 
often a desired quantity for environmental impact assessment. However, it should be noted that 
other test statistics focusing on other aspects of the distribution could be relevant for specific 
questions (e.g. median, quantile, or extreme value statistics), and would likely have different 
power characteristics.  

For case (1) described in section 1.2, we use the sample mean, m, as the test statistic to evaluate 
the one-sample null hypothesis Ho: µ=m, where µ denotes the mean of the reference distribution. 
We consider two possible one-tailed alternative hypotheses, corresponding to the hotspot case 
(Ha: µ<m) and the coldspot case (Ha: µ>m).  Unless otherwise specified, we use a Type I error 
rate of α=0.05. Because the test statistic is the mean of a possibly small sample, the distribution 
of the null hypothesis is not readily available in closed form for many of the candidate 
distributions. Therefore, we derive the critical value for the chosen significance level by a Monte 
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Carlo method (Hope 1968). Given the sample size, M, the upper critical value is estimated by 
drawing N samples of M random variates from the reference distribution using an appropriate 
random number generator, calculating the sample mean for each of the N samples, and finding 
the 1-α quantile of the simulated distribution of sample means. The lower critical value is 
estimated by finding the α quantile of the same distribution. The null hypothesis is rejected at the 
α significance level if the observed sample mean exceeds the upper critical value (hotspot case) 
or is less than the lower critical value (coldspot case).  

A similar procedure can be used to derive Monte Carlo p-values for the same one-tailed 
hypothesis tests. For the hotspot case, the p-value is equal to the proportion of simulated sample 
means that are greater than or equal to the observed sample mean. For the coldspot case, the p-
value is equal to the proportion of simulated sample means that are less than or equal to the 
observed sample mean. 

In the case of occurrence probability (section 1.2, case (2)), we apply one-sample Fisher’s Exact 
Tests to test the significance of deviations of occurrence probability in a given grid cell from the 
reference probability (Sokal and Rohlf 2012). 

In the case of the full hurdle model (section 1.2, case (3)), we use the same procedure described 
above for case (1), but simulations use a binomial random number generator to implement the 
Bernoulli component of the hurdle model process. 

All critical value and p-value simulations used N=10000 or more Monte Carlo realizations. 
Random number generators were implemented in R as described in Yee (2010) and Clauset et al. 
(2009). 

2.4 Monte Carlo Power Estimation 
We follow a Monte Carlo, or direct simulation approach to estimate statistical power of the 
hotspot/coldspot significance tests described in section 2.3. In addition to the choice of test 
statistic, test procedure, and Type I error rate discussed above, power estimates require 
specification of the sample size (M), reference distribution, and effect size to be used to construct 
the alternative hypothesis. For case (1), we specify the alternative hypothesis such that it has the 
same form and nuisance parameters as the reference distribution, but has a mean that differs from 
the reference distribution mean by a multiplicative effect size. We then simulate N realizations of 
the sample mean under the alternative hypothesis: N samples of M random variates are drawn 
from the alternative hypothesis distribution and the mean of each sample is calculated. For the 
hotspot case, the Monte Carlo power estimate is equal to the proportion of simulated sample 
means that are greater than the upper critical value of the null hypothesis distribution (found as 
described in section 2.3). For the coldspot case, the Monte Carlo power estimate is equal to the 
proportion of simulated sample means that are less than the lower critical value of the null 
hypothesis distribution. 

For case (2), we use the power formula for the one-sample Fisher’s Exact Test, as implemented 
in the Matlab R2012b Statistics Toolbox (The Mathworks, Natick, MA) to calculate the power of 
this test for different effect sizes (Bennett and Hsu 1960). 

For case (3), the full hurdle model, power is calculated using the same procedure described for 
case (1), but adding a simulation of the Bernoulli process of the hurdle model using a binomial 
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random number generator. Effect sizes are introduced via the non-zero component of the hurdle 
model in the same manner described for case (1). 

2.5 Power Curves  
For six of the eight candidate distributions in Table 1 (positive Poisson, positive negative 
binomial, geometric, logarithmic, truncated discretized lognormal, and zeta exponential), we 
used the Monte Carlo procedures described in sections 2.3 and 2.4 to estimate power at a range 
of sample sizes, from 1 to 100 surveys, and a range of multiplicative effect sizes (coldspot effect 
sizes:1/3x, 1/2x, 2/3x; hotspot effect sizes: 1.5x, 2x, 3x) for a given reference mean. We repeated 
these simulations for a representative range of reference means. This resulted in a set of power 
vs. sample size curves for each of these six candidate distributions (Digital Supplement A). The 
purpose of these curves is to facilitate prospective power analysis; given an estimate of the 
reference mean and the effect size of interest, one can use these curves to determine the sample 
size needed to achieve a desired level of power to detect a hotspot or a coldspot.   

We also generated power curves for the one-sample Fisher’s Exact Test for differences in 
occurrence probability (Digital Supplement B), and for the full hurdle model (section 1.2, case 
(3); Digital Supplement C). In the latter case, we generated power curves for different 
combinations of both reference non-zero mean and reference prevalence. 

Preliminary experimentation with fits of the eight candidate distributions to real seabird data 
from the U.S. Atlantic indicated that the Yule and zeta distributions did not have finite means for 
the parameter values typical of observed seabird distributions (α<1). Thus, we did not calculate 
power curves for these distributions, but still include them in the model fitting process. When 
one of these two models is selected as the best-fitting model and the mean is not finite (because 
the parameter α<1), the implication is that sample-mean-based test statistics are not a reliable 
way to test for hotspots and coldspots, because the upper tail of the distribution is too “heavy”. 
Instead, non-parametric statistics such as median tests may be more appropriate. Alternatively, 
removal of trends by accounting for covariates will sometimes reduce the skew of such fat-tailed 
distributions enough to make the mean well-defined. Or, for simplicity, one could simply use the 
next best-fitting model and accept that the power estimate will be less accurate.  

2.6 Data 
To illustrate the power analysis and significance testing methods described in this document, we 
used at-sea seabird count data extracted from the USGS Avian Compendium Database 
(O’Connell et al. 2009; Table 2 and Digital Supplement D). The raw data consisted of ship-based 
and aerial visual observations along fixed-width survey transects, recording the species and 
number of birds seen in each discrete time transect segment, or at each location along continuous 
transects. We used a total of 32 datasets that were collected from 1978-2010, 28 of which were 
ship-based while the remaining four were conducted from fixed-wing aircraft. Most of the 
surveys (28 total) were conducted using the continuous transects method. The four discrete-time 
surveys were ship-based and were generally conducted for fixed 15-minute intervals on ships 
traveling at approximately 10 knots. We segmented all continuous transect survey data into 
transects of 4.63km, equivalent to the distance covered by a ship moving at 10 knots for 15 
minutes in an effort to standardize the data. We eliminated all transect segments shorter than 
60% of this  distance,  and  any  discrete time  surveys shorter  than  10 minutes,  such  that  209 
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Table 2 
 

Datasets used for analyses. Data from these surveys were extracted from the USGS Avian 
Compendium Database (O’Connell et al. 2009) and standardized to 15-minute ship survey 

equivalent transect segments as described in section 2.6. 
 

   Year Number of transect segments surveyedc 
(15-minute-ship-survey-equivalentsd) 

Source Dataset IDa Platform Methodb Start End Total Spring Summer Fall Winter 
BarHarborWW05 Boat cts 2005 2005 575 0 482 93 0 
BarHarborWW06 Boat cts 2006 2006 650 0 471 179 0 
CapeHatteras0405 Boat cts 2004 2005 275 0 154 0 121 
CapeWindAerial Aerial cts 2002 2004 2175 528 520 538 589 
CapeWindBoat Boat cts 2002 2003 119 67 45 7 0 
CDASMidAtlantic Aerial cts 2003 2003 66 66 0 0 0 
CSAP Boat dts 1980 1988 23753 7043 6587 655

6 
3567 

EcoMonAug08 Boat cts 2008 2008 370 0 370 0 0 
EcoMonAug09 Boat cts 2009 2009 350 0 350 0 0 
EcoMonAug10 Boat cts 2010 2010 307 0 302 5 0 
EcoMonFeb10 Boat cts 2010 2010 238 0 0 0 238 
EcoMonJan09 Boat cts 2009 2009 312 0 0 0 312 
EcoMonMay07 Boat cts 2007 2007 383 346 37 0 0 
EcoMonMay09 Boat cts 2009 2009 470 170 300 0 0 
EcoMonMay10 Boat cts 2010 2010 485 233 252 0 0 
EcoMonNov09 Boat cts 2009 2009 354 0 0 354 0 
EcoMonNov10 Boat cts 2010 2010 309 0 0 309 0 
GeorgiaPelagic Boat dts 1982 1985 2127 675 677 551 224 
HatterasEddyCruise2004 Boat cts 2004 2004 93 0 93 0 0 
HerringAcoustic06 Boat cts 2006 2006 195 0 0 195 0 
HerringAcoustic07 Boat cts 2007 2007 220 0 0 220 0 
HerringAcoustic08 Boat cts 2008 2008 623 0 0 623 0 
HerringAcoustic09Leg1 Boat cts 2009 2009 100 0 0 100 0 
HerringAcoustic09Leg2 Boat cts 2009 2009 196 0 0 196 0 
HerringAcoustic09Leg3 Boat cts 2009 2009 223 0 0 223 0 
MassAudNanAerial Aerial cts 2002 2006 2029 375 274 467 913 
NOAAMBO7880 Boat dts 1978 1979 6341 1396 2353 1868 724 
PlattsBankAerial Aerial cts 2005 2005 744 0 744 0 0 
SEFSC1992 Boat cts 1992 1992 30 0 0 0 30 
SEFSC1998 Boat cts 1998 1998 37 0 37 0 0 
SEFSC1999 Boat cts 1999 1999 27 0 0 27 0 
TOTALS ALL ALL 1978 2010 44176 10899 14048 12511 6718 
 

aThe Source Dataset ID can be used to look up datasets in Digital Supplement D, Table D1, which gives detailed 
additional background information about each survey. Table D1 lists several additional datasets; these additional 
datasets are available but did not contain any segments that fell within the BOEM lease block area. 
bSurvey method: cts, continuous-time strip transects; dts, discrete-time strip transects 
cCounts exclude segments whose midpoint falls outside BOEM lease blocks (i.e., segments inshore of 3nmi state 
waters boundary or outside U.S. Exclusive Economic Zone were excluded), and any partial segments that were less 
than 60% of standard transect segment length (i.e., only segments >2.778km in length were included).  
dA15-minute-ship-survey-equivalent is defined as the distance a ship would travel in 15 minutes at 10 knots.  
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transects were removed from our data. This allowed the remaining discrete time and continuous 
time transect segments to be compared on an approximately common basis, “15-minute-ship-
survey-equivalents.” This left us with a total of 44,176 transects that covered our reference 
region (the BOEM Atlantic Outer Continental Shelf [OCS] lease blocks) with approximately 
84% having approximate lengths of 4.63km (and the remainder having lengths no less than 
2.78km). Although it is likely that this standardization did not fully resolve all differences among 
survey platforms and protocols, we consider it acceptable for a first-order analysis of 
retrospective power based on historical survey effort. 

We extracted data for all species in the database and chose species with at least 200 observations 
in a given season to model (Table 3). We selected three species to use as examples in the main 
body of this report: (a) Herring Gull (HERG), (b) Northern Gannet (NOGA), (c) Wilson’s 
Storm-Petrel (WISP) (Figure 1). Full results for all species and seasons with sufficient data are 
given in the Digital Supplements (described in Appendix A). HERG, NOGA, and WISP were 
chosen because they are three of the most abundant species present in the study area in Spring, 
and so illustrate the best-case performance of the methods.  

Data were clipped based on standardized transect segment midpoints to the Atlantic OCS, as 
defined by BOEM lease block coverage. Each standardized transect segment was assigned to a 
BOEM lease block based on its centroid. We tabulated the number of samples and the mean of 
non-zero counts in each BOEM block in which a species was sighted. To reduce temporal 
dependence of samples, we analyzed data separately by season. Spring is defined as March 1 to 
May 31, Summer is defined as June 1 to August 31, Fall is defined as September 1 to November 
30, and Winter is defined as December 1 to February 28/29 of a calendar year. Within a season, 
we observed no obvious temporal autocorrelation in observations of the same species on 
repeated occasions (observations were usually separated by at least several days), and so 
neglected temporal autocorrelation in analyses. The effects of temporal autocorrelation, if 
present, are discussed further in section 4. We did not explicitly account for spatial 
autocorrelation, and instead assume that the spatial scale of the analysis (the size of the discrete 
spatial unit) has been chosen appropriately to match the scale of spatial autocorrelation. Other 
approaches are possible, but would add complexity to the method. We discuss the implications of 
assumptions on spatial scale and correlation in section 4, below. 

Table 4 gives the total number of transect segments surveyed and number of transects in which 
each species was observed in each season. The Herring Gull was observed on 3828 transects (at 
least one individual), while the Northern Gannet and Wilson’s Storm-Petrel were observed on 
2749 and 1476 transects, respectively. Herring Gulls were observed in 2791 unique BOEM lease 
blocks and when present, were observed between 1-25 times in a given lease block. Northern 
Gannets were observed in 2014 unique BOEM lease blocks and when present, were observed 
between 1-23 times in a given lease block. Wilson’s Storm Petrel were observed in 1244 unique 
BOEM lease blocks and when present, were observed between 1-5 times in a given lease block. 
Statistics for other species and seasons are given in Table 4. 
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Table 3 
 

List of species analyzed. Four-letter species codes in the first column are generally used in 
place of the full common or scientific name. The “Modeled?” column indicates whether there 
were sufficient data available to model the species in the indicated season. Only species with 

>200 sightings in a season were modeled. 
 

   
 

 Modeled? 

Species 
code 

Common name Scientific name Family 

Sp
rin

g 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

aush Audubon's Shearwater Puffinus lherminieri Procellariidae No Yes Yes No 
blki Black-Legged Kittiwake Rissa tridactyla Laridae Yes No Yes Yes 
blsc Black Scoter Melanitta americana Anatidae Yes No Yes Yes 
bogu Bonaparte's Gull Chroicocephalus philadelphia    Laridae No No No Yes 
coei Common Eider Somateria mollissima Anatidae Yes Yes Yes Yes 
colo Common Loon Gavia immer Gaviidae Yes Yes Yes Yes 
cosh Cory's Shearwater Calonectris diomedea Procellariidae No Yes Yes No 
cote Common Tern Sterna hirundo Sternidae Yes Yes Yes No 
dove Dovekie Alle alle Alcidae No No Yes Yes 
gbbg Great Black-Backed Gull Larus marinus Laridae Yes Yes Yes Yes 
grsh Great Shearwater Puffinus gravis Procellariidae Yes Yes Yes No 
herg Herring Gull Larus argentatus Laridae Yes Yes Yes Yes 
lagu Laughing Gull Leucophaeus atricilla Laridae Yes Yes Yes No 
lesp Leach's Storm-Petrel Oceanodroma leucorhoa Hydrobatidae No Yes Yes No 
ltdu Long-tailed Duck Clangula hyemalis Anatidae Yes Yes Yes Yes 
nofu Northern Fulmar Fulmarus glacialis Procellariidae Yes Yes Yes Yes 
noga Northern Gannet Morus bassanus Sulidae Yes Yes Yes Yes 
poja Pomarine Jaeger Stercorarius pomarinus Stercorariidae No No Yes No 
razo Razorbill Alca torda Alcidae Yes Yes Yes Yes 
reph Red Phalarope Phalaropus fulicarius Scolopacidae Yes No No No 
rtlo Red-Throated Loon Gavia stellata Gaviidae Yes No Yes Yes 
sosh Sooty Shearwater Puffinus griseus Procellariidae Yes Yes No No 
susc Surf Scoter Melanitta perspicillata Anatidae Yes Yes Yes Yes 
wisp Wilson's Storm-Petrel Oceanites oceanicus Hydrobatidae Yes Yes Yes No 
wwsc White-Winged Scoter Melanitta fusca Anatidae Yes Yes Yes Yes 
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Table 4a 
 

Summary of species data and best-fitting model of non-zero counts for the  
Spring season. Species codes are as in Table 3. Footnotes are given below Table 4d. 

10,899 standardized transect segments were used to calculate prevalence. 
 

Species 
code 

Season Maps 
created?a 

Number of 
Observationsb 

Total 
Number 

Observedc 

Preval-
enced 

Refer-
ence 

meand 

Best Fitting 
Model 

 (by AICce) 

K-S 
statisticf 

K-S 
statistic 
p-valueg 

herg Spring Yes 3828 41959 0.351 9.514 Discretized 
lognormal 

0.014 0.465 

noga Spring Yes 2749 21114 0.252 6.877 Discretized 
lognormal 

0.017 0.431 

gbbg Spring No 2422 22527 0.222 9.301 Yule 0.044 0.000* 

nofu Spring Yes 1700 22149 0.156 10.839 Discretized 
lognormal 

0.008 1.000 

wisp Spring Yes 1476 12092 0.135 6.222 Discretized 
lognormal 

0.019 0.669 

colo Spring Yes 976 2449 0.090 2.508 Discretized 
lognormal 

0.011 1.000 

ltdu Spring Yes 770 66676 0.071 40.517 Discretized 
lognormal 

0.027 0.647 

sosh Spring No 691 5375 0.063 8.114 Discretized 
lognormal 

0.013 1.000 

susc Spring No 652 15303 0.060 26.731 Discretized 
lognormal 

0.042 0.206 

blki Spring No 568 2223 0.052 4.041 Discretized 
lognormal 

0.024 0.905 

coei Spring Yes 541 82582 0.050 166.5 Discretized 
lognormal 

0.039 0.378 

grsh Spring Yes 510 3934 0.047 7.335 Discretized 
lognormal 

0.027 0.857 

wwsc Spring Yes 469 4358 0.043 9.212 Discretized 
lognormal 

0.026 0.903 

razo Spring No 457 2962 0.042 6.474 Negative 
binomial 

0.031 0.787 

lagu Spring No 394 852 0.036 2.151 Discretized 
lognormal 

0.011 1.000 

cote Spring Yes 362 1729 0.033 4.652 Discretized 
lognormal 

0.015 1.000 

reph Spring Yes 361 84170 0.033 213.77 Discretized 
lognormal 

0.067 0.081 

rtlo Spring No 312 742 0.029 2.212 Zeta 
exponential 

0.056 0.283 

blsc Spring No 243 2950 0.022 13.303 Discretized 
lognormal 

0.035 0.934 
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Table 4b 
 

Summary of species data and best-fitting model of non-zero counts for the  
Summer season. Species codes are as in Table 3. Footnotes are given below Table 4d. 

14,048 standardized transect segments were used to calculate prevalence. 
 

Species 
code 

Season Maps 
created?a 

Number of 
Obser-
vationsb 

Total 
Number 

Observedc 

Preval-
enced 

Refer-
ence 

meand 

Best Fitting 
Model 

 (by AICce) 

K-S 
statisticf 

K-S 
statistic 
p-valueg 

wisp Summer Yes 5529 72611 0.394 11.120 Discretized 
lognormal 

0.021 0.012 

grsh Summer Yes 3926 104432 0.279 12.332 Discretized 
lognormal 

0.016 0.260 

gbbg Summer Yes 2255 8721 0.161 3.284 Discretized 
lognormal 

0.015 0.684 

herg Summer No 1943 7934 0.138 4.083 Yule 0.043 0.001 

cosh Summer No 1561 8382 0.111 4.736 Discretized 
lognormal 

0.020 0.555 

sosh Summer No 1151 26077 0.082 22.656 Yule 0.015 0.962 

lesp Summer No 860 3853 0.061 3.829 Discretized 
lognormal 

0.013 0.999 

cote Summer Yes 715 3872 0.051 4.995 Discretized 
lognormal 

0.034 0.384 

noga Summer No 651 1339 0.046 2.057 Yule 0.009 1.000 

lagu Summer Yes 558 1871 0.040 3.274 Discretized 
lognormal 

0.014 1.000 

nofu Summer No 492 3031 0.035 4.973 Discretized 
lognormal 

0.034 0.637 

ltdu Summer Yes 486 9400 0.035 20.524 Discretized 
lognormal 

0.020 0.990 

susc Summer No 437 7024 0.031 16.097 Negative 
binomial 

0.030 0.829 

coei Summer No 348 30984 0.025 152.61 Discretized 
lognormal 

0.037 0.719 

colo Summer No 343 552 0.024 1.610 Geometric 0.016 1.000 

aush Summer No 316 915 0.022 2.896 Yule 0.030 0.935 

wwsc Summer No 279 2250 0.020 8.069 Logarithmic 0.061 0.245 

razo Summer Yes 253 1842 0.018 7.422 Discretized 
lognormal 

0.037 0.886 
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Table 4c 
 

Summary of species data and best-fitting model of non-zero counts for the  
Fall season. Species codes are as in Table 3. Footnotes are given below Table 4d. 

12,511 standardized transect segments were used to calculate prevalence. 
 

Species 
code 

Season Maps 
created?a 

Number 
of Obser-
vationsb 

Total 
Number 

Observedc 

Preva-
lenced 

Refer-
ence 

meand 

Best Fitting 
Model 

 (by AICce) 

K-S 
statisticf 

K-S 
statistic 
p-valueg 

herg Fall Yes 5088 42441 0.407 7.243 Discretized 
lognormal 

0.019 0.049 

grsh Fall Yes 4101 61596 0.328 13.689 Discretized 
lognormal 

0.009 0.914 

gbbg Fall Yes 3640 27240 0.291 6.473 Discretized 
lognormal 

0.023 0.039 

noga Fall Yes 2635 11044 0.211 3.960 Discretized 
lognormal 

0.009 0.984 

blki Fall Yes 1675 9972 0.134 5.297 Discretized 
lognormal 

0.017 0.731 

cosh Fall Yes 1210 6421 0.097 5.001 Discretized 
lognormal 

0.017 0.868 

nofu Fall Yes 1151 6634 0.092 4.700 Discretized 
lognormal 

0.013 0.986 

wisp Fall No 820 4663 0.066 5.687 Yule 0.047 0.051 

colo Fall No 759 1587 0.061 2.094 Discretized 
lognormal 

0.008 1.000 

ltdu Fall No 755 17456 0.060 26.381 Discretized 
lognormal 

0.557 0.000* 

lagu Fall Yes 690 2706 0.055 3.907 Discretized 
lognormal 

0.747 0.228 

susc Fall Yes 688 23414 0.055 34.036 Negative 
binomial 

0.027 0.677 

coei Fall No 554 48067 0.044 83.989 Zeta 
exponential 

0.042 0.292 

wwsc Fall No 534 7547 0.043 15.236 Discretized 
lognormal 

0.031 0.682 

poja Fall No 533 742 0.043 1.392 Logarithmic 0.006 1.000 

cote Fall No 431 3637 0.034 9.080 Discretized 
lognormal 

0.032 0.754 

razo Fall Yes 329 2709 0.026 8.254 Discretized 
lognormal 

0.031 0.919 

blsc Fall Yes 315 5032 0.025 16.699 Discretized 
lognormal 

0.040 0.707 

rtlo Fall Yes 282 899 0.023 2.946 Zeta 
exponential 

0.047 0.554 

dove Fall No 229 2502 0.018 11.438 Discretized 
lognormal 

0.023 1.000 

lesp Fall No 221 521 0.018 2.361 Discretized 
lognormal 

0.023 1.000 

aush Fall No 206 773 0.016 3.752 Yule 0.041 0.888 



20 
 

Table 4d 
 

Summary of species data and best-fitting model of non-zero counts for the  
Winter season.  Species codes are as in Table 3.  Footnotes are given below. 6,718 

standardized transect segments were used to calculate prevalence. 
 

Species 
code 

Season Maps 
created?a 

Number 
of Obser-
vationsb 

Total 
Number 

Observedc 

Preval-
enced 

Refer-
ence 

meand 

Best Fitting 
Model 

 (by AICce) 

K-S 
statisticf 

K-S 
statistic 
p-valueg 

herg Winter Yes 2817 22978 0.419 6.581 Discretized 
lognormal 

0.017 0.362 

blki Winter Yes 2745 26918 0.409 8.094 Discretized 
lognormal 

0.029 0.022 

gbbg Winter No 2450 27719 0.365 11.314 Yule 0.044 0.000* 
noga Winter Yes 1904 13503 0.283 5.226 Discretized 

lognormal 
0.021 0.371 

nofu Winter Yes 1281 17241 0.191 11.219 Discretized 
lognormal 

0.027 0.304 

ltdu Winter Yes 1277 60860 0.190 39.860 Discretized 
lognormal 

0.015 0.949 

susc Winter Yes 1008 40571 0.150 43.806 Discretized 
lognormal 

0.023 0.634 

coei Winter Yes 862 152448 0.128 253.856 Discretized 
lognormal 

0.034 0.264 

razo Winter No 848 6983 0.126 8.607 Discretized 
lognormal 

0.028 0.511 

wwsc Winter Yes 822 13398 0.122 15.957 Discretized 
lognormal 

0.020 0.887 

colo Winter Yes 803 1706 0.120 2.094 Discretized 
lognormal 

0.009 1.000 

dove Winter Yes 423 2759 0.063 6.450 Discretized 
lognormal 

0.022 0.989 

blsc Winter No 403 5753 0.060 13.971 Zeta 
exponential 

0.037 0.640 

bogu Winter No 351 2972 0.052 8.467 Yule 0.017 1.000 
rtlo Winter No 341 667 0.051 1.956 Yule 0.013 1.000 

 
aPower analysis and related maps were only produced when Vuong closeness tests indicated that the leading model 
was clearly better than the runner-up model (as ranked by AICc). See Digital Supplements F and G for maps.    
bNumber of 15-minute-ship-survey-equivalent transect segments in which at least one individual of the species was 
observed.  
cTotal number of individuals observed summed over all transect segments surveyed this season.   
dPrevalence is the proportion of all standardized transect segments this season in which this species was observed.  
Reference mean is the mean of the best-fitting distribution to all count data for this species. Since fitted count 
distributions are all >0, the reference mean refers to the mean conditional on presence (i.e., the average of non-zero 
counts).  The unconditional mean (accounting for zeros when a species is absent) can be found by multiplying the 
prevalence by the reference mean. 
eAICc, Akaike’s Information Criterion corrected for small sample size. 
fNonparametric one-sample Kolmogorov-Smirnov test statistic for discrete distributions, measuring the maximum 
difference between the empirical cumulative distribution of the data and the theoretical cumulative distribution of the 
selected model.   
gP-value for the K-S statistic.  The null hypothesis is that the data could have been a sample from the selected 
distribution.  Therefore, non-significant p-values suggest that the selected model is a good fit. Significant p-values are 
starred (*) (using α=0.05 and Bonferroni-corrected significance threshold for 74 tests=0.05/74=0.000676).  In these 
cases the data suggest significant departures from the selected model. 
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2.7 Species-specific Power Maps and Curves 
For each modeled species/season combination (Table 3), we fit and selected the best candidate 
distribution as described in section 2.2 using the data from Atlantic OCS as the reference region 
(example fits are shown in Figure 2 and full fit information is given in Digital Supplement E). 
Taking this best-fitting model as the reference distribution, we then calculated the power to 
detect a hotspot of effect size 3x and a coldspot of effect size 1/3x in each BOEM lease block on 
the Atlantic OCS, given the number of surveys that had occurred in that lease block. The 
reference mean was calculated by averaging 1,000,000 random draws from the reference 
distribution, except in the case of the Yule and zeta distributions, which generally did not have a 
finite mean; in these cases, the sample mean of all non-zero data was used as the reference mean. 
Power was not calculated for lease blocks that had not been surveyed and we did not include data 
where no individuals from that species were observed. Thus a hotspot (coldspot) is defined as a 
lease block where the mean, given that the species is present, is >3x (<1/3x) the reference mean, 
which is also conditional on presence. The resulting power estimates were mapped for an 
example region in the Mid-Atlantic, and are presented in Figures 3-5 and in Digital Supplement 
F. We then generated power curves for each example species showing power for each of the 
actual sample sizes that were encountered in the historical dataset (Figure 6 and Digital 
Supplement F). Digital Supplement F also contains summary maps showing the number of 
occurrences and the mean of non-zero counts for each mapped species, and for all species 
combined in each season and over all seasons in which the species occurred (see Appendix A for 
details). 

We repeated these procedures for the full hurdle model (section 1.2, case (3)), which jointly 
considers both zero and non-zero counts, and report the results of these power analyses in Digital 
Supplement G.  Digital Supplement G also contains summary maps showing the number of times 
each lease block was surveyed (by season and overall) and the mean of all counts (including 
zeros) for each mapped species, and for all species combined in each season and over all seasons 
(see Appendix A for details). 

2.8 Species-specific Significance Maps 
Using the same best-fitting reference distribution for each example species to specify the null 
hypothesis, we followed the procedure in section 2.3 to estimate the p-value for independent 
Monte Carlo significance tests of the sample mean of each surveyed BOEM lease block against 
one-tailed hotspot and coldspot alternative hypotheses. We then produced combined maps of p-
values for potential hotspots and coldspots (Figures 7-9 and Digital Supplements F and G).  In 
these combined maps, blocks that were not identified as a potential hot or coldspot are shaded to 
indicate how confident we can be in that result, based on the average of power to detect a 3x 
hotspot or a 1/3x coldspot.  The symbology of these maps is described in detail in the associated 
figure captions.  P-value maps for the non-zero conditional model for the three example species 
are presented in Figures 7-9. Digital Supplement F presents non-zero conditional model (section 
1.2, case (1)) results for the rest of the species/seasons, and Digital Supplement G presents p-
value maps for the full hurdle model (section 1.2, case (3)). 

The purpose of these maps is to allow spatial planning blocks (e.g., BOEM lease blocks) to be 
separated into several qualitative categories based on power analysis and significance testing 
using  available datasets.   The darkest blue lease blocks can be regarded as the most significant 
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Figure 2. Maximum likelihood model fits (lines) and observed probabilities 
(black dots) for non-zero count data for the three example species. 
Fits are shown for the top four models, ranked from lowest to 
highest AICc. 
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coldspots, the darkest red lease blocks as the most significant hotspots, and the darkest grey 
blocks as places most likely to be neither hotspots nor coldspots. Light grey shading indicates 
lease blocks not identified as significant hotspots or coldspots, but for which there was little or 
no power to detect a hotspot or coldspot, had it existed.  Finally, blank (white) polygons indicate 
lease blocks that were not surveyed.   

Several caveats apply to these maps.  First, they reflect only the available datasets that were used 
in this study (Table 2, Digital Supplement D). Second, hotspot (coldspot) significance does not 
consider whether high (low) abundances persisted across years or occurred in the same year. If  
interannual persistence is of concern, the temporal distribution of the data should be examined. 
Finally, a very high p-value threshold (p<0.2) has been chosen to flag lease blocks as possible 
hot or coldspots.  Thus the shaded blocks in Figures 7-9 (especially those with the lightest red or 
blue shading) represent only potential hot or coldspots, many of which are likely to be false 
positives. This issue is compounded by the fact that p-values have not been corrected for the 
large number of simultaneous tests performed (two tests for each lease block that was surveyed 
in this season). This is particularly true of p-value maps for the full hurdle model (Digital 
Supplement G), where many more simultaneous statistical tests were performed per map because 
of the larger number of lease blocks considered. The number of false-positives will be 
correspondingly higher in the full model p-value maps.  The most significant values (darkest red 
and blue) are more reliable, but will still contain some false positives.  Similarly, the lightest 
grey cells have the highest chance of being false negatives, whereas the darkest grey cells have 
the lowest chance of being false negatives.   

Using the underlying data in a geographic information system, the p-value threshold for flagging 
lease blocks as potential hotspots or coldspots could be adjusted to balance the risk of false 
positives and false negatives for a particular application.  

2.9 Summaries of Species-specific Power Curves and Maps 
To examine and display the general patterns evident in species-specific power analyses, we 
generated statistical summaries of species-specific power curves and species-specific power 
maps. 

Each species’ power curve was first approximated by fitting a regression model.  In agreement 
with theory (Murphy et al. 2008), power curves were found to be approximately linear when 
power was transformed with a Probit transformation (inverse normal cumulative distribution 
function, Φ−1(𝑝)) and sample size with a square root transformation.  We thus used ordinary 
linear regression to estimate the following model for each simulated power curve for which 
sufficient non-zero points were available:  

Probit(𝑝) = Φ−1(𝑝) = 𝑎 + 𝑏 × √𝑛 

Power curves fitted to simulation results were then evaluated at sample sizes ranging from 1 to 
200 and back-transformed to the original units of power vs. number of samples. This was done 
for 3x hotspot and 1/3x coldspot power for both the conditional (non-zero) and full (zero and 
non-zero) models. For each of these cases, we then plotted the median power as a function of 
sample size by season (Figure 10), where the median was calculated using all available species 
power curves for that season.  The median power curves (solid lines in Figure 10) were plotted 
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with the 2.5th and 97.5th percentiles (dashed lines) to show the variability in power curves among 
species (Figure 10). 

We also computed summary statistic maps (average, minimum, and maximum) of 3x hotspot and 
1/3x coldspot power for both conditional and full models, for all species in each season, and for 
all species combined over all seasons.   

For the conditional model case, which depends on a species being present, an 
average/minimum/maximum power value was calculated for each BOEM lease block that was 
sampled in the season and for which at least one of the analyzed species occurred. Species which 
were analyzed in a season but did not occur in a particular block contributed a power value of 0 
to the average/minimum/maximum calculation.  In these conditional model summary maps 
(Figures 11a, 11b and Digital Supplement F), lease blocks that did not have at least one 
occurrence of one of the analyzed species in a given season are shown as “no data” (blank grid 
cells). The all-species/all-season summary maps were created by averaging (or taking minimum, 
maximum) of the four seasonal power summary maps.  In this case, blocks for which at least one 
occurrence of an analyzed species happened in more than zero but  less than four seasons are 
counted as 0 power for seasons in which there were no occurrences. “No data” or blank grid cells 
represent lease blocks in which none of the analyzed species occurred in any season.  

For the full model case, an average/minimum/maximum power value was calculated for every 
block sampled in a season (Figures 12a, 12b and Digital Supplement G).  The all-species/all-
season summary maps were created by averaging (or taking minimum, maximum) of the four 
seasonal power summary maps.  In this case, blocks surveyed in more than than zero but  less 
than four seasons are counted as 0 power for seasons in which they were not surveyed. “No data” 
or blank grid cells represent lease which were never surveyed in any season. 

In addition to these statistical summaries, the logical process flow of the power analysis 
methodology was summarized in a flowchart-style “decision-tree,” indicated how the various 
components of the process fit together, decisions that must be made at each step, and external 
information that is needed (Figure 13). 

2.10 Analyses of Environmental Time Series 
Changes in the ocean environment can exert a strong influence on marine bird occurrence and 
abundance (Tremblay et al. 2009), and environmental variables such as sea surface temperature 
(SST) and surface chlorophyll-a concentration (chl) have been found to be important predictors 
of seabird occurrence and abundance in the U.S. Atlantic (Kinlan et al. 2012).  Since our 
definition of hotspots and coldspots does not explicitly account for the possibility of 
environmental variability, we analyzed time series of known correlates (SST, chl) of marine bird 
abundance to determine the temporal extent and resolution of sampling necessary to capture 
observed variance. 

To characterize the proportion of total variance in a time series as a function of temporal scale, 
we use a statistical plot known as a semivariogram (or variogram, for short), which plots the 
average variance between pairs of observations separated by a given amount of time (the time 
lag) (Deutsch & Journel 1998).  At longer time lags, the variance observed tends to approach that 
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of the overall sample variance. At shorter time lags, the variance is lower due to temporal 
autocorrelation of observations. The empirical variogram, γ (h) , is calculated as: 

1 N

∑
(h)

γ (h) = ⋅ (z(t 2

2N (h) i ) − z(ti + h))  
i=1

where h is the time lag, N(h) is the number of pairs of observations available at that lag, and z(t) 
are sample data at time t. In practice, we use lag intervals and h is the midpoint of the time 
interval.  To aid interpretation, we plot the relative semivariance r(h), which is the semivariance 
expressed as a fraction of the total sample variance; a reference line plotted at r(h)=1 indicates 
100% of the sample variance.  Because we are only able to estimate the variance at each time 
lag, the value of r(h) will not be precisely equal to 1 at long time lags, but it will tend to 
approach and fluctuate around 1 (Deutsch & Journel 1998). 

Daily time series of 3-day composite night-and-day SST and 3-day composite sea surface 
chlorophyll-a concentration were obtained from the NOAA CoastWatch U.S. East Coast dataset, 
derived from the MODIS instrument on board the Aqua satellite, available on the internet at the 
following locations (Foley 2012): 

SST: http://coastwatch.pfeg.noaa.gov/erddap/info/erdMEssta3day/index.html  
Chl: http://coastwatch.pfeg.noaa.gov/erddap/info/erdMEchla3day/index.html  

The time series covered the period from July 5, 2002 to September 11, 2011 (approximately 9 
years) at a horizontal pixel resolution of approximately 1.1km. Time series were extracted in four 
regions of interest chosen based on the approximate location of BOEM’s Wind Energy Areas as 
of October, 201 (Figures 14a, 15a).  Within each region, relative semivariograms were calculated 
in the time direction using Matlab R2011b (The Mathworks, Natick, MA).  Chl was log10(x+1) 
transformed for approximate normality and homoscedasticity prior to analysis. The seasonal 
cycle was removed prior to variogram analysis by subtracting the monthly climatology for each 
region. Observations were binned in one day intervals with midpoints ranging from 0.5 to 1677.5 
± 0.5days (approximately 4.5 years). The resulting variograms reflect the average pattern of 
temporal variance in each region of interest (Figures 14b-d, 15b-d). 

Because of the length of the satellite data series, the maximum time scale that could be resolved 
in the SST and chl analyses was 4.5 years. To examine longer time scales of variation, we 
considered 65-year time series (1948-2012) of two well-characterized regional ocean/atmosphere 
climate indices known to correlate with changes in spatio-temporal patterns of marine bird 
occurrence and abundance, the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal 
Oscillation (AMO) (Veit and Montevecchi 2006, Tremblay et al 2009).  Monthly time series of 
both indices were obtained from NOAA’s Earth System Research Laboratory, and are available 
on the internet at the following locations: 
 NAO: http://www.esrl.noaa.gov/psd/data/correlation/nao.data 
 AMO: http://www.esrl.noaa.gov/psd/data/correlation/amon.us.data 
The North Atlantic Oscillation was low-pass filtered with a simple rectangular 5 month running 
mean filter to remove high-frequency variability.  Semivariograms were calculated for both time 
series, allowing assessment of timescales of long-term regional climate variability to a maximum 
time lag of 20 years. Observations were binned in one month intervals with midpoints ranging 
from 0.5 to 240.5 ± 0.5 months (approximately 20 years). 

http://coastwatch.pfeg.noaa.gov/erddap/info/erdMEssta3day/index.html
http://coastwatch.pfeg.noaa.gov/erddap/info/erdMEchla3day/index.html
http://www.esrl.noaa.gov/psd/data/correlation/nao.data
http://www.esrl.noaa.gov/psd/data/correlation/amon.us.data
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2.11 Analyses of Marine Bird Abundance Time Series 
It is also of interest to directly analyze patterns of temporal variance in marine bird abundance, 
rather than indirect environmental correlates.  Analyses of long-term temporal autocorrelation in 
species-specific marine bird abundances are needed to inform the allocation of sampling effort 
over time, and analyses of short-term temporal autocorrelation (day-to-day within a season) are 
needed to inform the selection of sampling intervals to maximize statistical independence of 
surveys.   However, repeated surveys of the same discrete area at our scale of interest (BOEM 
lease blocks) are relatively rare, and the skewed and zero-inflated nature of marine bird count 
distributions further complicates temporal correlation analyses.  It is for this reason that the 
analyses of environmental correlates of bird occurrence and abundance previously described 
(section 2.10) are important.  

Nevertheless, by integrating many datasets, the USGS Avian Compendium database contains 
some repeat survey information for a subset of BOEM lease blocks, which enables temporal 
autocorrelation analyses for some species, albeit with less precision in the resulting 
semivariograms than for the much more densely sampled environmental time series. 

Count data for repeat surveys of the same species in the same BOEM block in standardized 
transect segments (section 2.6) were extracted from the USGS Avian Compendium Database, 
counts were log10(x+1) transformed to improve normality and homoscedasticity, and temporal 
semivariogram analysis was conducted as described in section 2.10 for each species with 
sufficient data in each season. 

We conducted two separate variogram analyses of the repeat survey avian count data, one to 
address long-term variability among years (time scales 1-10 years), and the other to address 
short-term variability within seasons (time scales of 1-60 days).  The long-term variability 
analysis binned observations in 30-day intervals with midpoints ranging from 1 to 3631 ± 15days 
(approximately 10 years). The short-term variability analysis binned observations in 1-day 
intervals with midpoints ranging from 1 to 60 ± 2 days.   

3.0 RESULTS 

3.1 Power Curves 
Digital Supplement A shows power vs. sample size curves for six of the eight candidate 
distributions (the six distributions with finite means at reasonable parameter values) for the non-
zero conditional model (section 1.2, case (1)). For each distribution, curves were generated for a 
range of reference means, and for each reference mean, curves are shown for a range of 
multiplicative effect sizes relative to that reference mean. Curves show that the required sample 
size to achieve a given level of power to detect a given effect size depends on a species’ average 
abundance and the type of distribution. These types of curves are intended to serve as useful 
guides for prospective power analysis and survey design. 

Several general features of the power curves are notable. Power to detect a hotspot of a given 
multiplicative magnitude (e.g., 3x) is not necessarily the same as power to detect a coldspot of 
the same multiplicative magnitude (e.g., 1/3x). Moreover, the relationship between power and 
the reference mean is dependent on the type of distribution: for the Poisson and negative 
binomial, power increases for larger reference means, all else being equal, whereas for the 
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geometric and logarithmic power to detect differences in the non-zero mean decreases for more 
abundant species. However, it is important to note that these features of the power curves are 
dependent in part on our assumption that the second (shape or dispersion) parameter of two-
parameter distributions remains constant and changes in the mean occur only through the first 
parameter. If the parameters change jointly with the mean, then the relative shapes of the power 
curves could change. Future work should carefully explore observed parameter correlations in 
multi-parameter distributions fitted to a variety of real datasets. 

Digital Supplement B shows power vs. sample size curves for tests of occurrence probability 
hotspots and coldspots (section 1.2, case (2)), for a range of values of the reference prevalence 
(Figure B1). Figure B2 illustrates how the expected number of non-zero observations relates to 
occurrence probability, and can serve as a guide to the number of surveys required to achieve a 
certain number of detections of a species. This may be useful in the case of planning studies of 
rare species, in particular. 

Digital Supplement C shows power vs. sample size curves for six of the eight candidate 
distributions (the six distributions with finite means at reasonable parameter values) for the full 
hurdle model (section 1.2, case (3)). Curves are shown for various combinations of both the non-
zero reference mean and the reference prevalence. Note that the allowance for zero observations 
in the full hurdle model reduces the power achieved for a given sample size. This effect is 
particularly pronounced for rare (i.e., low prevalence) species. 

3.2 Model fitting and selection 
Table 4 shows the top-ranked distribution and goodness-of-fit Kolmogorov-Smirnov (K-S) 
statistic for each species. Table 5 shows maximum likelihood parameter estimates for each of the 
eight candidate distributions, for each of the three example species data sets. Digital Supplement 
E (Table E1, Figures E1-74) shows model fits and fit statistics for the remaining species/season 
combinations. For each species, the distributions are ranked from lowest to highest AICc. For all 
three example species (Table 5) and the majority of all species/seasons combinations (Table 4, 
Digital Supplement E), the best-fitting model selected by the AICc method was the discretized 
lognormal distribution. K-S tests generally indicated the data were consistent with the best-fitting 
distributions (null hypotheses that data were a sample from the fitted distribution were not 
rejected), with a few exceptions noted in Table 4. A significant K-S test statistic indicates that 
the data deviate from what would be expected if they were drawn from the fitted distribution, 
and suggest that an alternative model (not in the candidate model set) might be more appropriate. 
In some cases, this may indicate non-stationarity (trends in space and/or time). Addition of 
covariates to remove trends may improve the fit of the candidate distributions to residuals. For 
the three example species (Table 5) and the vast majority of all species/season combinations 
(Digital Supplement E), the negative binomial, geometric, and Poisson did not fit as well as the 
discretized lognormal (based on AICc), which is interesting given that Poisson and negative 
binomial are two of the most commonly used distributions for modeling avian count data.  

Figure 2 shows the top four model fits for each of the three example species overlaid on data 
frequencies, on log-frequency vs. log-count axes. Similar plots for other species/seasons are 
shown in Digital Supplement E. For the three examples, after the discretized lognormal, the 
closest alternative models were the zeta exponential, the Yule, and the zeta in all cases, although  
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Table 5 
 

Model fitting and selection example: maximum likelihood estimates of best-fitting parameters of 
each candidate distribution to non-zero counts for three example species, with AICc and log-

likelihood values.  For each species, the models are ranked from lowest to highest AICc. 
 

 
 

 Parameter estimates AICc 
Rank  

AICc Log-
Likelihood 

Herring Gull (Spring)      
 Discretized lognormal µ=0.138 σ=1.857 1 20473.03 -10234.51 
 Zeta exponential a=0.422 λ=0.006 2 20644.87 -10320.43 
 Yule a=0.711  3 20699.00 -10348.50 
 Zeta a=0.599  4 20884.84 -10441.42 
 Logarithmic p=0.976  5 21214.38 -10606.19 
 Negative binomial µ=0.206 k=0.005 6 21231.33 -10613.67 
 Geometric p=0.091  7 25628.78 -12813.39 
 Poisson λ=10.961  8 157322.40 -78660.20 
Northern Gannet (Spring)      
 Discretized lognormal µ=0.367 σ=1.870 1 13042.51 -6519.253 
 Yule a=0.835  2 13114.06 -6556.027 
 Zeta exponential a=0.526 λ=0.008 3 13116.56 -6556.278 
 Zeta a=0.684  4 13230.19 -6614.093 
 Logarithmic p=0.962  5 13605.86 -6801.929 
 Negative binomial µ=0.281 k=0.012 6 13632.13 -6814.064 
 Geometric p=0.130  7 16334.22 -8166.111 
 Poisson λ=7.677  8 70701.25 -35349.62 
Wilson’s Storm-Petrel (Spring)     
 Discretized lognormal µ=0.009 σ=1.683 1 7004.017 -3500.005 
 Yule a=0.836  2 7067.586 -3532.792 
 Zeta exponential a=0.539 λ=0.006 3 7090.827 -3543.409 
 Zeta a=0.680  4 7144.087 -3571.042 
 Logarithmic p=0.965  5 7386.321 -3692.159 
 Negative binomial µ=0.259 k=0.010 6 7400.027 -3698.010 
 Geometric p=0.122  7 8974.693 -4486.345 
 Poisson λ=8.190  8 48571.69 -24284.84 
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the ranking differed from species to species. Pairwise Vuong tests indicated that the discretized 
lognormal was significantly closer to the true model than any of these alternative distributions 
for all species (p<0.05). It is notable that these alternative distributions are all of the power law 
type with exponents α < 1. In our parameterization of the power law distributions (Table 1), 
these distributions have infinite variance when α < 2 and infinite mean when α < 1. Thus, sample 
mean-based power analysis would not be appropriate for fitted parameter ranges. The discretized 
lognormal has comparatively less probability in the upper tail, and more probability for moderate 
counts. We use the discretized lognormal with parameter estimates in Table 5 as the reference 
distribution for all subsequent power analyses and significance tests for the three example 
species. For other species/season combinations, we used the best-fitting distribution identified in 
Table 4 and detailed in Digital Supplement E.  The discretized lognormal distribution 
consistently arose as the best-fitting distribution, with some exceptions (Table 4).   

To focus on the most robust results, power analyses and significance tests were only carried out 
when pairwise Vuong tests indicated that the top-ranked model was significantly closer to the 
true model than its closest competitor. The third column of Table 4 indicates the species/season 
combinations that passed this test (“Maps created? = “Yes” if the Vuong test was passed). Note 
that species maps in Digital Supplements F and G follow the same ordering as in Table 4, but 
with species that did not pass the Vuong test omitted.  Note also that the statistical power of the 
Vuong test decreases as the number of non-zero observations for a species decreases, so that 
species with low prevalence are less likely to have one clear “winner” among the candidate 
models. Of species with reference prevalences <10%, only 40% passed the Vuong test and were 
mapped, whereas 80% of species with reference prevalences >10% were mapped.  There are 
other options to handle cases where no clear winner is identified by the Vuong test.  For 
example, one could run the power analysis using all plausible models, and calculate a weighted 
multi-model average the results, using Akaike model weights derived from AICc values 
(Burnham and Anderson 2002).  Multi-model p-values for significance tests of hotspots and 
coldspots could be calculated for these species in a similar way.   

3.3 Species-specific Power Maps 
Using the selected best maximum likelihood fit for each species as the reference distribution 
(Table 4, Digital Supplement E), we calculated species-specific power maps on the BOEM lease 
block grid (Figures 3-5, Digital Supplements F and G). Under the conditional model (section 1.2, 
case (1)), figures 3, 4, and 5 show the estimated power to detect a hotspot at least 3x the 
reference mean (Figures 3a, 4a, 5a) or coldspot 1/3x the reference mean (Figures 3b, 4b, 5b) in 
BOEM lease blocks in the Mid-Atlantic region. These maps are based on available historical 
survey effort from the USGS Avian Compendium database for the three example species. 
Similar conditional model power maps for the remaining modeled species/seasons are given in 
Digital Supplement F, with species ordered as in Table 4. Power maps for the full hurdle model 
(section 1.2, case (3)) are given in Digital Supplement G.  

For Herring Gull in Spring (Figure 3), conditional power to detect a 3x hotspot ranges from 17% 
to 55%, and conditional power to detect a 1/3x coldspot ranges from 0% to 80%.  For Northern 
Gannet in spring (Figure 4), conditional power to detect a 3x hotspot ranges from 16% to 45%, 
and conditional power to detect a 1/3x coldspot ranges from 0% to 80%.  For Wilson’s Storm-
Petrel in spring (Figure 5), conditional power to detect a 3x hotspot ranges from 18% to 28%, 
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and conditional power to detect a 1/3x coldspot ranges from 0% to 26%. In general, the region of 
highest power is concentrated in Nantucket Sound where intensive survey efforts have been 
conducted. 

The same general features are evident in the all-species/all-seasons summary maps of average 
hot and coldspot power under the conditional (Figure 11, Digital Supplement F) and full hurdle 
(Figure 12, Digital Supplement G) models. Average power to detect 3x hotspots and 1/3x 
hotspots is generally <10% for most lease blocks, and coldspot power is lower than hotspot 
power for these blocks. Coldspot power was close to zero in many more lease blocks than for 
hotspot power (light gray shading, Figures 11b and 12b). However, there are several regions of 
moderate to high power (20 to 65%), including Nantucket Sound. In these better-sampled areas 
average coldspot power was similar to or greater than average hotspot power.    

Differences between the conditional model (Figure 11) and full model (Figure 12) are controlled 
by two competing factors: for a given sample size, full model power is always less than 
conditional model power, but the species is unlikely to be observed in all samples. However, 
because the full model considers all surveys, rather than only those in which the species of 
interest is present, the actual power estimate may be higher for the full model. 

3.4 Species-specific Power Curves 
Species-specific power curves from the conditional model (Figures 3-5, Digital Supplement F) 
show that power to detect a 1/3x coldspot starts lower than power to detect a 3x hotspot for very 
small sample sizes, but increases more rapidly with the number of samples. 50% (80%) power to 
detect 1/3x coldspots is attained with approximately 10 (25) repeat surveys for Herring Gulls 
under the conditional model, whereas these power levels would require many more samples for 
the 3x hotspot case: 23 surveys to reach 50% power, and >50 surveys to reach 80% power. 
Patterns for Northern Gannet and Wilson’s Storm-Petrel are similar. Given its lower frequency 
of occurrence in this season (relatively few non-zero abundances), very low conditional power 
was achieved for Wilson’s Storm-Petrel (<30%; but note that x-axis only ranges up to 5 surveys 
because no lease block contained more than 5 WISP presences in the historical dataset). 

The summary power curves (Figure 10) confirm the general finding that power to detect 1/3x 
coldspots is lower than power to detect 3x hotspots for small sample sizes, but then rapidly 
increases to become higher than hotspot power for larger sample sizes.  There is substantial 
variability among species power curves within a season, with the widest range in power curves 
generally occurring in spring and winter. There were some differences in seasonal median power 
curves; for example, power tended to be lower in spring and higher in fall. However, these 
differences in median power curves were much smaller than the species-to-species variation.  
Seasonal differences in median power curves are most likely driven by differences in the 
composition of modeled species, although they may also be related to behavioral differences 
associated with different seasons (migration, breeding, foraging) and to seasonal differences in 
the spatio-temporal distribution of ocean habitat.     

3.5 Species-specific Significance Maps 
Using the selected best maximum likelihood fit for each species as the reference distribution 
(Table 4, Digital Supplement E), we calculated species-specific p-values for one-sample Monte 
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Carlo significance tests for both conditional model (Figures 7-9, Digital Supplement F) and full 
model (Digital Supplement G) cases.  These are presented in combined hotspot/coldspot p-value 
maps, in which lease blocks with p-values<0.2 are displayed in blue (coldspot) or red (hotspot) 
shading, with darker shading corresponding to higher statistical significance.  All such lease 
blocks should be regarded as potential rather than certain hotspot/coldspots, as discussed in 
section 2.8.  It is highly likely that some of the potential hot/coldspots are false positives.  

Consistent with the generally low power across the region for all species, the number of p-values 
that would be deemed significant at the 0.05 level is relatively small for all species. The number 
of significant grid cells would be even lower if adjustments to significance thresholds were made 
for multiple testing. However, for all species, there were at least some lease blocks for which 
historical survey data could be used to identify a hotspot or coldspot with reasonable confidence 
(darkest blue and red shading in Figures 7-9). Other grid cells could be positively identified as 
“neither hot nor cold spots,” because no hot or coldspot was detected and power was adequate 
(darkest grey shading in Figures 7-9). Although the vast majority of lease blocks could not 
confidently be labeled as a hotspot, coldspot, or neither at the 3x (1/3x) effect size level, certain 
well-sampled areas (e.g., Natucket Sound) illustrate that it is possible to achieve reasonable 
power to detect and identify hotspots and coldspots with realistic sampling programs. 

The example significance maps for Herring Gull (Figure 7) and Northern Gannet (Figure 8) also 
illustrate a potential pitfall of this method when strong onshore-offshore or regional gradients in 
abundance are present.  For these two species, abundances are consistently higher offshore than 
they are onshore.  Because the reference distribution has been defined using the entire mid-
Atlantic outer continental shelf as the reference region, the offshore areas are much more likely 
to be identified as hotspots.  The solution to this problem lies in defining reference regions 
appropriately to the question one wishes to ask.  For some purposes, the identification of 
offshore areas as “hotspots” may be appropriate.  However, for other purposes, one may wish to 
define separate “nearshore” and “offshore” reference regions and identify hot/coldspots relative 
to those reference regions. This issue is discussed further in section 4.5.   

3.6 Decision Tree 
It is useful to consider how the procedures described in section 2 of this document would fit into 
a more general framework for power analysis. To do this, we developed a schematic “decision 
tree” (Figure 13), organized around the question “How many independent surveys are needed to 
have adequate power to detect a hot/coldspot of a given species in a given grid cell?” We have so 
far described the implementation of Components A, B, C, D, E, F, G, and H of the decision tree 
(lettering of components follows Figure 13). Component A, the question to be answered, is 
described in sections 1.1 and 1.2.  In our example for the U.S. Mid-Atlantic, the answer to the 
question posed in Component B is “yes,” because the region has been sampled before.  We 
proceed to develop a model selection method to address Component C by identifying a candidate 
distribution that adequately describes the data. If the answer to C had been “no,” the same model 
selection technique could be applied to data from a nearby or similar region, as stated in 
Component D.  Component E states the required inputs for power analysis; we have described 
these in detail in section 1.2 and explained how we derived them for our example species in 
section 2 and associated tables and figures.  The 4th input listed under Component E, effect sizes,  
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Figure 3a. Herring Gull (Spring): Map of estimated power to detect a 3x hotspot of 
non-zero abundance as defined in section 1.2, case (1), based on the 
number of surveys conducted in each BOEM lease block extracted from 
the USGS Avian Compendium Database as described in section 2.6. 
Blank cells indicate BOEM lease blocks that were either not surveyed or 
where the species was never observed Power analysis used the top-
ranked reference distribution (Tables 4, 5), with a reference mean of 9.58 
individuals per 15-minute-ship-survey-equivalent transect. 
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Figure 3b.  Herring Gull (Spring): Map of estimated power to detect a 1/3x coldspot of 
non-zero abundance as defined in section 1.2, case (1), based on the 
number of surveys conducted in each BOEM lease block extracted from 
the USGS Avian Compendium Database as described in section 2.6.  
Blank cells indicate BOEM lease blocks that were either not surveyed or 
where the species was never observed Power analysis used the top-
ranked reference distribution (Tables 4, 5), with a reference mean of 9.58 
individuals per 15-minute-ship-survey-equivalent transect. 
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Figure 4a. Northern Gannet (Spring): Map of estimated power to detect a 3x hotspot 
of non-zero abundance as defined in section 1.2, case (1), based on the 
number of surveys conducted in each BOEM lease block extracted from 
the USGS Avian Compendium Database as described in section 2.6. 
Blank cells indicate BOEM lease blocks that were either not surveyed or 
where the species was never observed. Power analysis used the top-
ranked reference distribution (Tables 4, 5), with a reference mean of 11.6 
individuals per 15-minute-ship-survey-equivalent transect. 
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Figure 4b. Northern Gannet (Spring): Map of estimated power to detect a 1/3x 
coldspot of non-zero abundance as defined in section 1.2, case (1), 
based on the number of surveys conducted in each BOEM lease block 
extracted from the USGS Avian Compendium Database as described in 
section 2.6. Blank cells indicate BOEM lease blocks that were either not 
surveyed or where the species was never observed. Power analysis 
used the top-ranked reference distribution (Tables 4, 5), with a reference 
mean of 11.6 individuals per 15-minute-ship-survey-equivalent transect. 
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Figure 5a. Wilson’s Storm-Petrel (Spring): Map of estimated power to detect a 3x 
hotspot of non-zero abundance as defined in section 1.2, case (1), 
based on the number of surveys conducted in each BOEM lease block 
extracted from the USGS Avian Compendium Database as described in 
section 2.6. Blank cells indicate BOEM lease blocks that were either not 
surveyed or where the species was never observed. Power analysis 
used the top-ranked reference distribution (Tables 4, 5), with a reference 
mean of 6.24 individuals per 15-minute-ship-survey-equivalent transect. 
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Figure 5b. Wilson’s Storm-Petrel (Spring): Map of estimated power to detect a 1/3x 
coldspot of non-zero abundance as defined in section 1.2, case (1), 
based on the number of surveys conducted in each BOEM lease block 
extracted from the USGS Avian Compendium Database as described in 
section 2.6. Blank cells indicate BOEM lease blocks that were either not 
surveyed or where the species was never observed. Power analysis used 
the top-ranked reference distribution (Tables 4, 5), with a reference mean 
of 6.24 individuals per 15-minute-ship-survey-equivalent transect. 
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a) 

b) 

c) 

Figure 6. Power vs. sample size curves for a) Herring Gull, b) Northern Gannet, and c) 
Wilson’s Storm-Petrel based on the number of surveys conducted in BOEM 
lease blocks in the USGS Avian Compendium database in Spring. Power curves 
assumed the top-ranked reference distribution (Tables 4, 5), and show power to 
detect a 3x hotspot (red lines) or a 1/3x coldspot (blue lines) of non-zero 
abundance as defined in section 1.2, case (1). 
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Figure 7. Herring Gull (Spring): Combined map of hotspot (red) and coldspot (blue) 

significance test p-values, based on one-sample, one-tailed (hotspot) 
Monte Carlo significance tests of the mean non-zero count in each lease 
block compared to the reference mean.  Darker shading indicates greater 
statistical significance. Lease blocks that did not approach statistical 
significance (p>0.2) are shown in grey, with the intensity of the shading 
proportional to the average of 3x hotspot and 1/3x coldspot power values 
for that cell.  That is, the darkest grey shading indicates lease blocks not 
identified as significant hotspots or coldspots, and for which we can be 
confident in that result because there was relatively high power to detect a 
hotspot or coldspot, had it existed.  In contrast, light grey shading indicates 
lease blocks not identified as significant hotspots or coldspots, but for 
which there was little or no power to detect a hotspot or coldspot, had it 
existed.  The darkest blue lease blocks can therefore be regarded as the 
most significant coldspots, the darkest red lease blocks as the most 
significant hotspots, and the darkest grey blocks as places most likely to 
be neither hotspots nor coldspots. Blank (white) polygons indicate lease 
blocks in which no presences of this species were observed.   
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Figure 8. Northern Gannet (Spring): Combined map of hotspot (red) and coldspot 

(blue) significance test p-values, based on one-sample, one-tailed 
(hotspot) Monte Carlo significance tests of the mean non-zero count in 
each lease block compared to the reference mean.  Darker shading 
indicates greater statistical significance. Lease blocks that did not 
approach statistical significance (p>0.2) are shown in grey, with the 
intensity of the shading proportional to the average of 3x hotspot and 1/3x 
coldspot power values for that cell.  That is, the darkest grey shading 
indicates lease blocks not identified as significant hotspots or coldspots, 
and for which we can be confident in that result because there was 
relatively high power to detect a hotspot or coldspot, had it existed.  In 
contrast, light grey shading indicates lease blocks not identified as 
significant hotspots or coldspots, but for which there was little or no power 
to detect a hotspot or coldspot, had it existed.  The darkest blue lease 
blocks can therefore be regarded as the most significant coldspots, the 
darkest red lease blocks as the most significant hotspots, and the darkest 
grey blocks as places most likely to be neither hotspots nor coldspots. 
Blank (white) polygons indicate lease blocks in which no presences of this 
species were observed.   
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Figure 9. Wilson’s Storm-Petrel (Spring): Combined map of hotspot (red) and coldspot 

(blue) significance test p-values, based on one-sample, one-tailed 
(hotspot) Monte Carlo significance tests of the mean non-zero count in 
each lease block compared to the reference mean.  Darker shading 
indicates greater statistical significance. Lease blocks that did not 
approach statistical significance (p>0.2) are shown in grey, with the 
intensity of the shading proportional to the average of 3x hotspot and 1/3x 
coldspot power values for that cell.  That is, the darkest grey shading 
indicates lease blocks not identified as significant hotspots or coldspots, 
and for which we can be confident in that result because there was 
relatively high power to detect a hotspot or coldspot, had it existed.  In 
contrast, light grey shading indicates lease blocks not identified as 
significant hotspots or coldspots, but for which there was little or no power 
to detect a hotspot or coldspot, had it existed.  The darkest blue lease 
blocks can therefore be regarded as the most significant coldspots, the 
darkest red lease blocks as the most significant hotspots, and the darkest 
grey blocks as places most likely to be neither hotspots nor coldspots. 
Blank (white) polygons indicate lease blocks in which no presences of this 
species were observed. 
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a) b) 

c) d) 

Figure 10. Summary of species-specific power curves. Simulated power vs. sample 
size curves (Figure 6, Digital Supplements F and G) were approximated by 
regression for each species in each season (colors, see legend in panel a) 
and the resulting curves are summarized here by plotting the median value 
of power (solid lines) and the 95% range (97.5th and 2.5th percentiles, 
dashed lines) versus sample size. 
a) Conditional model, 3x hotspot power. Some species power curves had too 
few non-zero points to be included (spring: grsh, nofu, reph, wisp; summer: 
none; fall: cosh, nofu; winter: dove, nofu). 
b) Conditional model, 1/3x coldspot power. Some species power curves had too 
few non-zero points to be included (spring: cote, grsh, nofu, reph, wisp; summer: 
none; fall: cosh, nofu; winter: dove, nofu). 
c) Full model, 3x hotspot power. 
d) Full model, 1/3x coldspot power. Some species power curves had too few 
non-zero points to be included (spring: coei, cote, grsh, reph, wwsc; summer: 
cote, lagu, ltdu, razo; fall: blsc, lagu, razo, rtlo, susc; winter: none). 
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Figure 11a. Conditional (non-zero count) model: average power to detect a 3x 
hotspot, averaged over all modeled species in all modeled seasons as 
described in section 2.9. Based on data extracted from the USGS Avian 
Compendium Database, as described in section 2.6. Blank cells indicate 
BOEM lease blocks that were either not surveyed or where the species 
was never observed.  
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Figure 11b. Conditional (non-zero count) model: average power to detect a 1/3x 
coldspot, averaged over all modeled species in all modeled seasons as 
described in section 2.9. Based on data extracted from the USGS Avian 
Compendium Database, as described in section 2.6. Blank cells indicate 
BOEM lease blocks that were either not surveyed or where the species 
was never observed. 
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Figure 12a. Full hurdle (zero and non-zero count) model: average power to detect a 
3x hotspot, averaged over all modeled species in all modeled seasons, 
as described in section 2.9. Based on data extracted from the USGS 
Avian Compendium Database, as described in section 2.6. Blank cells 
indicate BOEM lease blocks that were not surveyed in any season. 
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Figure 12b. Full hurdle (zero and non-zero count) model: Average power to detect a 
1/3x coldspot, averaged over all modeled species in all modeled 
seasons as described in section 2.9. Based on data extracted from the 
USGS Avian Compendium Database, as described in section 2.6. Blank 
cells indicate BOEM lease blocks that were not surveyed in any season.  
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depends in part on user specification of the problem to be addressed (how big of an effect size 
matters for the ecological or regulatory question of interest?). 

Component F describes alternative choices when an adequate candidate distribution or suitable 
data for fitting a candidate distribution cannot be identified.  The first two choices listed under 
Component F (try another distribution not listed here or implement a more complex model) are 
beyond the scope of this study, but would be fairly straightforward to implement; they would 
simply require additional time and investment for the species of interest. These represent 
challenges for future work. What should we do when no data are available to select and fit a 
reference distribution, none of the candidate distributions produce an adequate fit, or issues like 
spatial and temporal correlation and environmental variability demand a more complex model to 
assess power?  The 3rd and 4th choices listed under Component F (select default 
distribution/parameters, or use best-fitting of the candidates with some precautionary adjustment 
to power estimates) provide reasonable options by which one could proceed with an approximate 
power analysis using the best available information.  Indeed, the frequency with which the 
discretized lognormal distribution was identified as the best-fitting model provides a strong basis 
for choosing this model in the absence of other information, or when model selection criteria 
(AICc, Vuong tests) yield ambiguous results (Zipkin et al. 2012).   

Components G and H correspond to the power analysis simulation method described in sections 
1.2 and 2.4 (Component G relates to section 1.2, case(1); Component H relates to section 1.2, 
case(2); together Components G and H relate to section 1.2, case (3)).  This modular 
representation of the process illustrates how the candidate set of distributions and associated 
power simulation modules (G1 through G8) could easily be expanded to accommodate additional 
distributions.  

A useful final step might be to produce maps of the number of additional surveys, beyond the 
historical survey effort, that are needed to achieve a certain level of power in each grid cell.  This 
is stated in Component I of the decision tree, and corresponds to the “output” of the decision tree 
process. (Of course, there are many other useful outputs produced along the way, including the 
power maps, power curves, and significance maps described in detail in sections 3.3, 3.4 and 
3.5). Such maps can easily be produced with the information provided in this report: one would 
simply look up the required number of surveys to achieve the desired power to detect the desired 
effect size on power curves like those shown in Figure 6 (and given for each modeled species in 
Digital Supplements F and G), and then display the difference between this number and the 
actual numbers of non-zero presences (case (1), Digital Supplement F) or the actual number of 
surveys conducted for each species (case (3), Digital Supplement G).  

Lastly, it is important to note that the red boxes in the decision tree (Components (i), (ii), and 
(iii)) indicate external information that depends on the end-user’s goals and specifications.  With 
regard to Component (i), the appropriate reference region in relation to which hotspots and 
coldspots are defined will depend on the nature and scope of the ecological and regulatory 
questions to be answered (see section 4.5).  With regard to Component (ii), it is unlikely than any 
model will be a perfect representation of reality, and therefore the question of how good of a fit 
is adequate arises (see section 4.3); although statistics can help answer this question, ultimately 
the tradeoff between level of investment in model development and improved decision-making 
must be evaluated by the user.  With regard to Component (iii), the definition of adequate 
statistical power depends on the relative costs of requiring additional surveys vs. making type II 
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errors (failing to detect hotspots or coldspots when they are in fact present). This will often 
depend on issues such as the ecology, regulatory status, or vulnerability of the species of interest, 
sensitivity of the area being studied, the type of impact being evaluated, and the type of 
regulatory question being addressed.  It is important to consider these externalities early in the 
sampling design process so that the power analysis can be properly parameterized to address 
relevant ecological and regulatory questions.  

3.7 Sampling to Capture Temporal Variance: Environmental Time Series 
Variogram analysis of daily time series of satellite sea surface temperature (SST, Figure 14) and 
sea surface chlorophyll-a concentration (chl, Figure 15), both previously shown to be important 
correlates of marine bird occurrence and abundance in this region (Kinlan et al. 2012), reveals 
that nearly all of the variance that would be observed in any ~5 year period between 2002 and 
2011 accumulates within 1 year of observation. 70-80% of variance in de-seasoned SST 
accumulates within 7-10 days for all four regions (Figure 14). Similarly, 40-85% of variance in 
de-seasoned, log10(x+1)-transformed chl accumulates within 7-10 days (Figure 15).  To the 
extent that these environmental variables correlate with a particular species’ occurrence and 
abundance, time scales of short-term autocorrelation are expected to be short (less than 7-10 
days) and the majority of interannual variance observed in any given ~5 year period is expected 
to be well-characterized by 1 year of sampling.      

Because these satellite records are relatively short, we also analyzed longer monthly time series 
(1948-2012) of regional oceanic/atmospheric climate indices known to correlate with long-term 
variation in marine bird abundance and occurrence, the North Atlantic Oscillation (NAO; Figure 
16a) and Atlantic Multidecadal Oscillation (AMO; Figure 16b).  Both climate time series showed 
similar patterns of accumulation of temporal variance (Figure 16).  These patterns were 
consistent with what was observed in the shorter SST and chl time series, in that a large 
proportion of the variance (about 50-70%) accumulates in the first 1-2 years, followed by little 
increase in variance out to 8-9 years. However, the longer time series allowed resolution of 
variance patterns at larger time lags than the SST and chl analyses, and these reveal substantial 
additional variability (20-40% of the total) accumulating at time scales from 9 to 15 years and 
longer.  This is indicative of the decadal-scale ocean climate variability that is well-documented 
for this region of the Northwest Atlantic (e.g., Enfield et al. 2001, Veit and Montevecchi 2006).  
It is interesting to note, however, the distinct gap in time scales of variance accumulation: 1-2 
years for the first plateau in variance vs. 13-15 years for the second plateau.  If this time period is 
indicative of future conditions, the implication is that little additional variance in ocean climate 
will be observed if a 1-2 year sampling program is extended for an additional 6-7 years, but 
decadal variability could be captured by repeating annual sampling every 10-15 years or so.    

3.8 Sampling to Capture Temporal Variance: Abundance Time Series 
Variogram analysis of time series of repeat marine bird counts on standardized transects with 
midpoints in the same BOEM lease block reveal patterns that are generally consistent with those 
observed in the environmental time series (Figures 17, 18).  The variograms of marine bird 
counts are, of course, much noisier due to lower sample sizes, the irregular and scattered nature 
of the time series, and the skewed and zero-inflated data.  However, consistent with the SST, chl, 
NAO, and AMO analyses, long-term (interannual) patterns of variability for time scales of <10    
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Figure 13. Schematic of decision tree for determining number of surveys required in a 

discrete spatial unit according to the methods described in this study. Red boxes 
indicate external information, defined by the end-user. Black boxes indicate 
inputs and outputs. Blue diamonds represent decisions based on the data and 
model results. Green boxes represent modules of the power analysis process. 
Labels (A-I  and i-iii) are used to indicate each component of the decision tree 
for easy reference.  See section 3.6 in text.  



50 
 

years (the maximum possible with the length of available time series) indicate that >50% of 
variance is captured within the first season of sampling for nearly all species analyzed, and the 
100% reference line (all variance captured) is generally crossed within 1-3 years (Figure 17). 
Fall abundance exhibited the least interannual variability (1 year of sampling generally 
sufficient), winter abundance exhibited the most interannual variability (2-3 years of sampling 
required for some species), and summer and spring were in between (1-3 years). 

Short-term patterns of temporal variability in marine bird count data were also consistent with 
analyses of environmental time series (Figure 18). For most species, variance in abundance 
accumulated rapidly within less than 3-5 days, reaching 25-100% of the long-term total 
(typically, 50-60%), similar to the pattern observed for SST and chl variability.  Little additional 
accumulation of variance was observed beyond 3-15 days, a pattern that is also strikingly similar 
to that observed in the environmental data. These results suggest marine bird abundance 
decorrelates rapidly with time in this region, supporting our assumption that repeat surveys are 
approximately independent as long as they are separated by a few days or longer.  They also 
suggest that a season could be well-characterized by repeat surveys conducted ~3 days or more 
apart and spread over a 10-30 day period.  

4.0 DISCUSSION 

The approach outlined and demonstrated in this document is designed to facilitate estimates of 
statistical power as a function of survey intensity without requiring complex species-, region- or 
survey-specific models. Given this goal, we have necessarily made assumptions that ignore some 
known sources of real-world complexity. In this section we briefly discuss some of the issues 
involved in judging the appropriateness of our approach for a particular situation and how 
violations of assumptions may affect our results. We also provide recommendations for and 
notes on possible applications of results, and draw conclusions from our example power analyses 
and analyses of temporal variability. 

It is important to note that application of this method to generate products or guidelines that will 
be used for management or decision-making purposes will involve assumptions that need to be 
clearly stated, and each application should evaluate the extent to which assumptions may be 
violated and the likely impact on conclusions.  

4.1. Choosing Between the Non-Zero Conditional Model and the Full Hurdle Model 
We have presented two types of models that can be used to derive power curves and maps for 
avian count data: the conditional model (section 1.2, case (1); Figures 3, 4, 5, 6, 7, 8, 9, 10a, 10b, 
11 and Digital Supplements A and F), applicable to non-zero count data, and the full hurdle 
model (section 1.2, case (3); Figures 10c, 10d, 12 and Digital Supplements C and G), applicable 
to count data in which zeros are recorded when species are not seen in a standardized survey 
time/area.  Which model one chooses to use depends in part on the type of data available, and in 
part on the question being asked.  In general, the full hurdle model should be applied to any 
dataset that includes zeros. In situations where zeros are not reliably recorded and cannot be 
inferred based on survey protocols, the conditional model may be the only option for power 
analysis.  Certain types of sampling, survey design, and data management schemes might give 
rise to  such a  situation.   Perhaps more importantly,  the  conditional model may be useful in the 
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a) 

b) c) 

d) e) 

Figure 14. Temporal extent of sampling needed to capture intraannual to interannual 
environmental variability, as inferred from sea surface temperature (SST) time 
series in indicated regions (panel a), from NOAA Coastwatch MODIS Aqua 1km 
daily 3-day composite night and day SST (Foley 2012). The seasonal cycle was 
removed by subtracting the monthly climatology. See section 2.10 for details;  
b) SST variogram for region 1. The relative semivariance (i.e., fraction of total 
variance) is plotted for increasing time lag distances (temporal scales, measured 
in years). The red horizontal reference line indicates the sample variance. Little 
additional variance is encountered at increasing temporal scales once the relative 
semivariance crosses this line; c) SST variogram for region 2; d) SST variogram 
for region 3; e) SST variogram for region 4.  
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a) 

b) c) 

d) e) 

Figure 15. Temporal extent of sampling needed to capture intraannual to interannual 
environmental variability, as inferred from sea surface chlorophyll-a 
concentration (chl) time series in indicated regions (panel a), from NOAA 
Coastwatch MODIS Aqua 1km daily 3-day composite chl-a (Foley 2012). The 
seasonal cycle was removed by subtracting the monthly climatology. Chl data 
were log10(x+1) transformed prior to analysis. See section 2.10 for details; 
b) Chl variogram for region 1. Variogram interpretation is as described in Figure 
14 caption; c) Chl variogram for region 2; d) Chl variogram for region 3; e) Chl 
variogram for region 4. 
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a) 

b) 

Figure 16. Temporal extent of sampling needed to capture interannual to decadal 
environmental variability, as inferred from monthly time series of indices of 
regional climate variability (1948-2012). See section 2.10 for details. The 
relative semivariance (i.e., fraction of total variance) is plotted for 
increasing time lag distances (temporal scales, measured in years). The 
black horizontal reference lines indicate the sample variance. Little 
additional variance is encountered at increasing temporal scales once the 
relative semivariance crosses these lines. Note that for both panels the 
semivariance reaches a sill (plateaus) after time lags of 1-3 years and 
does not undergo another large increase until 9-10 years, plateauing again 
beyond 13-15 years.   
a) Variogram of the North Atlantic Oscillation (NAO) index. The raw NAO index 
was low-pass filtered with a simple rectangular 5 month running mean to 
remove short-term variability); NAO index data are available at: 
http://www.esrl.noaa.gov/psd/data/correlation/nao.data 
b) Variogram of the Atlantic Multidecadal Oscillation (AMO) index;  
AMO index data are available at: 
http://www.esrl.noaa.gov/psd/data/correlation/amon.us.data 

http://www.esrl.noaa.gov/psd/data/correlation/nao.data
http://www.esrl.noaa.gov/psd/data/correlation/amon.us.data
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Figure 17. Long-term (interannual) variance in observed relative abundance of marine birds 
in BOEM lease blocks on the Atlantic OCS. Relative semivariance of log10(x)-
transformed species-specific marine bird counts on standardized transects 
conducted within the same BOEM lease block versus time lag (in years) 
between surveys. Points are only shown if at least 20 pairs of observations were 
available to estimate semivariance at the given time lag.  See section 2.11 for 
details. Colors indicate species, as shown in the legends to the right of each 
panel (the same color is used for a given species in all panels in which it 
occurs).  Four-letter species codes are as in Table 3. The relative semivariance 
(i.e., fraction of total variance) is plotted for increasing time lag distances 
(temporal scales, measured in years). The black horizontal reference lines 
indicate the sample variance. Little additional variance in bird counts is 
encountered at increasing temporal scales once the relative semivariance 
crosses these reference lines. Note that for the majority of species, the 
reference line is crossed within 1-3 years, with >50% of variance captured within 
1 year for nearly all analyzed species.  This is consistent with the time series 
analysis of environmental correlates in Figures 15-16. However, on the basis of 
Figure 16, additional variance might be expected for some species at longer 
times scales (9-15 years) not resolved by this analysis.     
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Figure 18.  Short-term (intra-seasonal) variance in observed relative abundance of marine 
birds in BOEM lease blocks on the Atlantic OCS. Relative semivariance of 
log10(x)-transformed species-specific marine bird counts on standardized 
transects conducted within the same BOEM lease block versus time lag (in 
days) between surveys. Points are only shown if at least 20 pairs of 
observations were available to estimate semivariance at the given time lag.  See 
section 2.11 for details. Colors indicate species, as shown in the legends to the 
right of each panel (the same color is used for a given species in all panels in 
which it occurs).  Four-letter species codes are as in Table 3. The relative 
semivariance (i.e., fraction of total variance) is plotted for increasing time lag 
distances (temporal scales, measured in days). The black horizontal reference 
lines indicate the sample variance.  Because this analysis focuses on short time 
scales, the semivariance may not rise above the reference line within the short 
(60 day) maximum time scale studied.  However, note that for the majority of 
species, variance is already more than 25% of the reference variance (which is 
based on 5-15 years of data) within less than 3-5 days (the lower limit of 
resolution of the analysis). Variance approaches a stable range of values (i.e., 
values remain similar for the rest of the 60-day period) within 5 days for most 
species, and within 10-15 days for nearly all species. This suggests that short-
term repeat samples spaced by at least 3-5 days will often be effective as 
independent or nearly-independent surveys within a season.   
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case of less common species for which non-zero observations occur so infrequently that the full 
model power curves rise very slowly with sample size.  In these instances, the conditional model 
represents an upper bound on the power that could be achieved if surveys were properly 
stratified or targeted such that the species of interest was observed nearly 100% of the time.  For 
example, the precise environmental conditions associated with habitat occupancy by a particular 
species could be determined and surveys conducted only in times/places where those conditions 
existed, or a survey protocol could be initiated in which timed transects only started when a 
species was sighted.  The conditional model results could serve as a useful tool for planning such 
surveys.  Finally, the conditional model may also be the best choice when analyzing statistical 
power and hotspot/coldspot significance for management questions in which the number of birds 
that occur when they are seen, not how often they are seen, is the relevant question.  

In some cases, the relative abundance (count) of birds is not as relevant as the probability of 
occurrence.  In these cases, neither the conditional nor the full hurdle model is necessary, and the 
occurrence-probability-based power analysis and tests of hotspot/coldspot significance can be 
applied (section 1.2, case (2); Digital Supplement B).  We have not included occurrence-
probability-based hotspot/coldspot power maps in this report, but note that these could be 
particularly useful for less common species for which count data are insufficient to identify 
hotspots or coldspots, and/or when the management question of interest focuses on the 
presence/absence of a species rather than the number of individuals affected.  

4.2. Appropriateness of Mean-based Test Procedures 
It is clear from our results and a large body of previous work (e.g., Bonabeau et al. 1999, 
Griesser et al. 2011) that avian count data is highly right skewed and in many cases “heavy-
tailed” compared to commonly-used distributions such as the Poisson and Negative Binomial (in 
other words, there is a higher probability of very large counts than would be expected under 
these distributions). This raises the question of whether the sample mean is the most relevant 
statistic on which to base analyses of ecological impacts. Although the mean is attractive in 
terms of its ease of interpretation, it clearly does not completely characterize the entire 
distribution and in particular is very sensitive to the upper tails of the distribution, which are hard 
to measure with small sample sizes. In the extreme case of power-law-type distributions with 
α<1, the mean is not even well-defined. Thus for some purposes, tests based on the median, 
quantiles, or extreme value statistics of the distribution might be more relevant and also have 
more attractive statistical properties. We recommend exploring other types of test statistics in 
future work.  

In the case of two-parameter distributions, we made the simplifying assumption that the second 
(shape or dispersion) parameter remained constant for a given species in a given season as the 
mean of the distribution changed. In other words, the alternative hypotheses for power analysis 
were formed by adjusting only the first parameter to achieve the desired effect size. Where 
possible, the validity of this assumption should be evaluated. One way to do this is by checking 
for correlations in the first and second parameter of each distribution type in our example 
datasets (Table 4). No significant correlations are detected (p>0.05, regressions not shown), 
supporting our assumption. However, a stronger test of this assumption would be possible for 
some species by analyzing many different spatial and/or temporal subsets of the domain: does 
the maximum likelihood estimate of the second parameter remain relatively constant as the mean 
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abundance varies, or do the first and second parameters change jointly? In the latter case, the 
relationship between the first and second parameters and the mean could be explicitly 
parameterized based on these additional analyses. This approach is worth exploring in future 
work, but is beyond the scope of the current study.  

4.3. Model Selection 
Power estimates presented in this study are based on the assumption that the chosen 
distributional model holds, where the chosen model is the model with the lowest AICc from a set 
of candidates. In reality, it is unlikely that the selected distribution model fits perfectly, and the 
resulting uncertainty in power estimates should be borne in mind. Where several models appear 
to fit equally well (as may often occur when limited data are available for fitting a reference 
distribution) it may be appropriate to conduct power analyses under each alternative distribution 
and examine the range of power estimates and sample sizes that would be indicated under the 
different distributional assumptions. We used pairwise Vuong closeness tests to identify cases 
where the top-ranked model (in terms of AICc) is not significantly better than competitors. In the 
case of a statistical “tie” between distributions, power analyses could be repeated with multiple 
alternative distributions and the average or most conservative estimate of power could be used. 

Since our model selection method is based on relative ranking by AICc, rather than an absolute 
measure of model performance, it is possible that even the best-fitting model will not be a 
particularly good representation of the data. We used one-sample Kolmogorov-Smirnov tests to 
help identify situations where this occurs, but for low sample sizes these tests have little power to 
distinguish whether or not a model is appropriate. This highlights the value of meta-analyses of 
large datasets, which might reveal patterns in the types of distributions most appropriate for 
particular types of species and environments, and allow a priori model selection in data-poor 
cases. Such studies might also reveal additional candidate distributions that would expand the 
range of distribution shapes that could be accommodated. 

4.4. Observation Process  
As formulated here, our model assumes that survey counts directly reflect true underlying 
abundances, ignoring any features of the observation process (e.g., detectability or process error) 
that could influence count distributions. In reality, observed count distributions are a reflection of 
both the underlying biological state and the observation process. For example, in aerial bird 
surveys at sea, singles and pairs have a higher probability of being undetected (Pollock and 
Kendall 1987), whereas flocks with more birds are typically undercounted (Pearse et al. 2008). 
Beauchamp (2011) noted that rough conditions at sea could bias counts and possibly alter which 
statistical distribution fits best to observed flock sizes. Further exploration of the counting 
process and the relationship of the observed counts to actual group sizes could lend insight into 
how the observed distributions might differ from the true underlying distributions of the 
biological process. Explicitly accounting for the effects of the observation process, such as by 
including covariates, detection functions, and upper limits imposed by the size of the observation 
unit, may lead to more accurate estimates of survey power. However, these gains would come at 
the cost of increased model complexity and decreased generality. Simulation studies might help 
lend insight into how severely detectability and observer bias problems could be expected to 
influence our results.  
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How sensitive are our results to the critical issue of detectability? Formal sensitivity analysis is 
beyond the scope of this study, but we can consider the problem of detectability in a 
straightforward way by observing the effect of changes in reference prevalence on the power 
curves shown in Digital Supplement C. Power to detect a given effect size obviously decreases 
for a given sample size when prevalence decreases. However, the effect of changing prevalence 
on the shape of the curves is fairly subtle over a wide range of prevalence values. Imperfect 
detectability would have an effect on these power curves similar to that of reducing prevalence. 
For example, the difference between curves with reference prevalence of 0.01 can be compared 
to those with reference prevalence of 0.02 to get a sense of the effect of 50% detectability. While 
imperfect detectability reduces power, it does not fundamentally change the nature of our results. 

4.5. Spatial Scale and Structure 
Seabird distributions are commonly characterized by spatial structure, ranging from small-scale 
spatial autocorrelation (patchiness), to large-scale gradients and trends. The methods described 
here do not explicitly incorporate either of these features. The first issue, spatial autocorrelation, 
is relevant to choosing the appropriate grid scale on which to conduct a power analysis for 
hotspot or coldspot detection. If the grid cell size is much smaller than the scale of 
autocorrelation (hotspots or coldspots are bigger than the grid cells), then power estimates from 
our method may be too low, as the number of surveys will be considered grid-cell-by-grid-cell 
rather than summed over the entire hot/coldspot. If the grid cell size is much larger than the scale 
of autocorrelation, then power estimates may be biased low, because data from the hot/coldspot 
will be contaminated with data from adjacent areas that are not hot/coldspots, reducing the effect 
magnitude. As an alternative to changing grid size, models that explicitly include spatial 
autocorrelation could be used—but these are much more complex to formulate, fit, analyze, and 
generalize. 

The second issue, large-scale gradients and trends, is primarily an issue for choice of the 
reference distribution. If one chooses a reference distribution based on data collected over a 
strong spatial gradient, then the choice and parameters of the distribution could be biased. 
Moreover, results of hot/coldspot significance tests will be trivial as grid cells located at the low 
end of the spatial gradient will predictably be identified as coldspots and those at the high end of 
the gradient as hotspots. One solution to this problem is to carefully stratify the regions for which 
reference distributions are specified and power analyses are conducted to reduce the impact of 
trends and gradients. For example, regions could be stratified based on biogeographic breaks and 
onshore-offshore zones. This would involve more analytical effort to fit models and conduct 
power analyses for each regional stratum, but would be substantially easier than the alternative, 
which is to fit a trend model for each species prior to analysis and incorporate this trend model 
into the power analysis. 

In the context of siting an offshore wind facility, there are several implications of the scale issues 
discussed above. First, the lease block scale used in the example applications presented here may 
not be the most appropriate scale. Choice of scale should involve consideration of the size of the 
project, and the scale of spatial autocorrelation (“patch size”) of the long-term average seabird 
abundance surface. Typical offshore wind project size might be 5x5 or 6x6 nmi, and it will often 
be desirable for analyses of impacts to include a “buffer zone” around the project. Moreover, 
predictive modeling of long-term average seabird distributions in this region have found typical 
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spatial autocorrelation scales of 10-15km (5.4-8.1 nmi) (Kinlan et al. 2012).  Both of these pieces 
of information suggest that power analyses conducted on aggregations of 2x2 or 3x3 BOEM 
lease blocks (i.e., 6x6 or 9x9 nmi rectangles) might be more appropriate. Analysis at this scale 
would likely improve statistical power to detect a given effect size, provided the spatial 
autocorrelation estimates of 10-15km are appropriate. The issue of large-scale trends and 
gradients must also be considered. Practically speaking, this means that it will be very important 
to specify the geographic region and habitat that is to be used as a context (reference region) for 
each species of interest for determining whether the observed abundance at a given location 
represents a relative hotspot or coldspot. The most important gradients to account for will be 
onshore-offshore gradients and regional biogeographic differences (e.g., north vs. south of Cape 
Hatteras and Cape Cod).  

To answer power questions about particular aggregations of blocks (e.g. a wind energy area 
[WEA]) simulations could be specifically tailored to answer the questions of interest. For 
example, if the question is “what is the power to detect a single hotspot at some unknown 
location in the WEA?”, one could design a simulation to estimate a power curve for this 
problem. Alternatively one might ask “what is power to detect a hotspot given that there are, on 
average, a certain number of hotspots in the WEA?”. Answering this question would require a 
different simulation. Although insight into these questions can be gained from the power curves 
and power maps at the lease block scale, simulations specific to a given WEA or lease block 
aggregation pattern are necessary for precise estimates of power for any given scenario. 

4.6. Temporal Scale and Structure 
The method described in this study assumes that samples at a given location are independent in 
time. This assumption could be violated in three primary ways: (1) if surveys are conducted very 
close to one another in time and are autocorrelated, (2) if data from different seasons are pooled 
together for species’ whose abundances or group size distributions change seasonally, or (3) if 
data are pooled over strong interannual to interdecadal trends. 

Short-term non-independence, (1), can be dealt with relatively easily by ensuring that surveys are 
conducted a sufficient amount of time apart.  Our analyses of marine bird count time series in 
BOEM lease blocks that were repeatedly surveyed over short time scales (Figure 18), although 
limited, suggest that 5-15 days is nearly always sufficient to ensure that successive surveys of the 
same lease block will not be highly autocorrelated, and 3-5 days, or even less, is probably 
acceptable for most species. Of course, where a particular species is of interest and detailed 
repeat survey studies are available, the pattern of temporal autocorrelation should be studied in 
more detail.  If repeat surveys are found to be autocorrelated, the results of this study can still be 
applied but the effective number of independent surveys will need to be adjusted to account for 
autocorrelation (Cressie 1993). Finally, biases can also be introduced by the time of day at which 
observations conducted for species with strong diel variation in behavior, a factor that should be 
considered in survey design for a particular species.  We have not considered within-day 
variation in this study. 

Predictable seasonal fluctuations, (2), are usually the dominant source of temporal variability in 
seabird time series for a particular region. It would be inappropriate to pool data across seasonal 
fluctuations for identification of reference distributions or for power analysis. We have 
accounted for seasonal effects in this study by conducting power analyses separately on a 
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seasonal basis, using definitions of seasons appropriate to the species and region of interest. The 
temporal analysis of variation in marine bird abundance (Figures 17, 18) suggests that our 
definition of seasons was effective in isolating seasonal variability, but this should be evaluated 
carefully for each new region to which this method is applied.  

It is also inappropriate to pool data in the presence of strong long-term trends (3). Such trends 
may arise from long-term changes in population status or climate variability. Recommendations 
for dealing with temporal trends are similar to those for spatial trends. In some cases, one may be 
able to remove the effects of trends by stratifying by climate regime (e.g. phases of climate 
cycles like the North Atlantic Oscillation). Otherwise, trends could be fit and incorporated 
directly into the power analysis.  Our analyses of long-term variation in marine bird abundance 
(for periods of 1-10 years) suggested trends were not a major issue (Figure 17), but the analysis 
of longer time series of climate indices (allowing resolution of time scales from 10 to 20 years) 
suggests more care should be taken to account for possible trends in data separated by more than 
10 years.   

These considerations lead to some straightforward recommendations for temporal design of 
surveys to assist in offshore wind siting and environmental assessment. First, in general, surveys 
should be conducted in all seasons in which the species of interest is present, and be spread 
across one to three years. Repeat surveys of the same location within the same season should be 
conducted at least a day or two and ideally three or more days apart if they are to count as 
independent surveys; more if there is evidence of longer-term correlation. Surveys should 
adequately cover both breeding and non-breeding seasons and locations, and analyses should be 
stratified or conducted separately on qualitatively different seasons, locations, or populations. 
The same holds true for adequately sampling other key life history phases such as migration. 
Finally, surveys may need to be repeated periodically if there is evidence for a major shift in 
ocean climate and/or a change in the large-scale distribution of the species of interest at longer 
time scales.  However, assuming the patterns of the previous ~65 years continue to hold (an 
assumption that admittedly might need to be re-evaluated in light of global climate change), 
repeating 1-2 years of survey work at 10-15 year intervals would be adequate to characterize 
variability due to ocean/atmosphere climate fluctuations. 

4.7. Selecting Species for Which this Method Will Apply 
Obviously, this approach may not be appropriate for all species. For example, a candidate 
species would need to satisfy some minimum biological requirements (e.g., it aggregates, timing 
of those aggregations, persistence). Even if a species satisfies the biological requirement, there 
are minimum data requirements, too (number of transects, number of non-zero transects, number 
of unique transects, etc.). It would be useful to list the candidate species and to identify those that 
satisfy the data requirements. Third, even if a species satisfies the biological and information 
requirements, it still may not be tractable to conduct enough surveys for that species. 

A particular challenge arises in the case of species for which we have little prior knowledge of 
the overall pattern of spatial distribution, and so have little ability to establish reliable reference 
regions or account for regional and onshore-offshore trends. The types of statistical techniques 
described here are no substitute for a detailed knowledge of the natural history of each species, 
including its overall regional and global pattern of distribution. Telemetry studies will be a 
particularly valuable complement to hotspot analyses, as they provide detailed insights into 
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individual behavior and habitat usage, and can reveal variation among individuals, habitat areas 
outside of the focal area, fine-scale timing of movements, and other important information not 
captured by ship-based and aerial at-sea surveys. 

In general, the technique presented here performs best for more common species for which some 
observational data is already available. For very rare species and/or data-poor species, there will 
always be challenges. A combination of approaches will likely be necessary. In developing 
guidelines, regulators may want to consider categorizing birds by commonness/rarity and data 
availability and making different recommendations on those bases. 

5.0 SUMMARY 

We have developed and illustrated a simple, general method for defining species-specific 
hotspots and coldspots of occurrence and abundance for marine birds, and for assessing the 
significance and statistical power to detect these hot and coldspots. Given information about a 
species’ regional occurrence and abundance patterns, this method can serve as the basis for 
general guidelines for the design of robust surveys to detect departures from regional average 
patterns of abundance and occurrence.  

It should be emphasized that the power maps, power curves, and significance tests shown in this 
report and the Digital Supplements (listed in Appendix A) are intended only as examples of the 
application of this method, rather than as a definitive power analysis intended for operational 
use. The user should bear in mind that the spatial distribution of information in maps is 
dependent on the input data used.  There are a variety of reasons that some datasets may not be 
reflected in these maps: some datasets existed but were not available to us, others were excluded 
because they were not of a consistent high scientific quality, and others may not yet been 
collected or made available at the time of this analysis.   

The end-user will also need to decide the appropriate effect sizes to define biologically 
meaningful hot and coldspots (3x and 1/3x effect sizes chosen here are only illustrative), spatial 
and temporal scale and extent appropriate to management and regulatory decisions, and 
appropriate definitions of the data from which reference means and distributions are defined.  
Results of the power analysis and subsequent guidelines for the appropriate number of surveys to 
conduct in any given instance will depend on both scientific and regulatory decisions that 
influence these parameters. 

Analyses of temporal variability, using environmental and seabird data from the U.S. Mid-
Atlantic continental shelf, suggest that most of the interannual variance in relevant 
environmental correlates of seabird occurrence and abundance (sea surface temperature [SST] 
and surface chlorophyll concentration [chl] from satellite remote sensing) and in relative 
abundance of birds BOEM lease blocks, will be captured by surveys spread over 1 to 3 years.  
Some species in certain seasons may require longer periods to establish a baseline, but for most 
of the species analyzed this period appears sufficient to capture a large percentage of the 
variance at sub-decadal scales.  Relatively little additional variance would be expected if 1-3 
year surveys were extended to 4, 5, or even 10 years for most species. Analysis of regional ocean 
and atmosphere climate indices (North Atlantic Oscillation, Atlantic Multidecadal Oscillation) 
for the period from 1948 to 2012 support this conclusion, but also reveal that 20-40% additional 
variance in ocean climate variability occurs at decadal or greater time scales.  To the extent that 
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it translates into variance in seabird occurrence and abundance, capturing this variability would 
require long-term sampling programs (20-40 years). 

At short time scales, within a season, temporal autocorrelation drops off quickly for both 
environmental variables (SST, chl) and relative abundance of birds observed in repeated surveys 
on the same BOEM lease block.  For most species/season combinations studied, surveys spaced 
3-5 days or more apart will exhibit sufficient variance to be considered approximately 
independent. 

Taken together, the results of this study represent a methodology for: a) using existing marine 
bird survey data to assess the state of knowledge about relative hotspots and coldspots of marine 
bird abundance and occurrence in offshore areas; b) planning future marine bird surveys in 
offshore areas to leverage existing data, and maximize probability of detecting any 
hotspots/coldspots of abundance/occurrence probability that may exist in discrete spatial 
planning blocks; and c) distributing sampling effort in time to ensure adequate representation of 
environmental and ecological variance. 
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS 

Additional figures and tables are provided in seven Digital Supplements to this report, lettered 
from Digital Supplement A through Digital Supplement G.  Each Digital Supplement is provided 
as an Adobe PDF file, and is available on request.  Requests for Digital Supplements may be 
directed to: 
 

Chris Caldow 
Chief, Biogeography Branch 
Center for Coastal Monitoring and Assessment 
National Centers for Coastal Ocean Science 
1305 East-West Hwy, SSMC-4, N/SCI-1 
Silver Spring, MD 20910 
Chris.Caldow@noaa.gov 

 

Digital Supplement A (7 pages). Power vs. sample size curves for hotspot/coldspot tests of non-
zero mean counts. 

Figures A1-A6. Power vs. sample size curves for hotspot/coldspot tests of non-zero mean counts 
(i.e., case (1) described in section 1.2). Curves are presented for the six distributions in Table 1 
for which a finite mean exists for realistic parameter values (Poisson, Negative Binomial, 
Geometric, Logarithmic, Discretized Lognormal, and Zeta with exponential cutoff). For each 
distribution, six panels show curves for different values of the reference mean, and within each 
panel lines of different colors show curves for different effect sizes, represented as multiples of 
the reference mean (e.g., an effect size of 0.33 for a reference mean of 10 corresponds to power 
to detect a coldspot with a mean of 3.3 or smaller). Note that the number of curves per panel 
varies, because some combinations of the reference mean and effect size do not make sense (for 
example, with a reference mean of 2, a 0.33 effect size would correspond to a mean of 0.66, 
which is not possible given that non-zero counts must be greater than or equal to 1). For 
distributions with more than one parameter, the first parameter is adjusted to produce the desired 
reference mean, and additional (“nuisance”) parameters are held constant. Curves shown are 
examples for the value(s) of the nuisance parameter(s) given in the figure heading. 
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS (cont’d) 

Digital Supplement B (3 pages). Power vs. sample size curves for hotspot/coldspot tests of 
occurrence probability. 

Figure B1. Power vs. sample size curves for hotspot/coldspot tests of occurrence probability 
(i.e., case (2) described in section 1.2). Curves are presented based on the binomial distribution, 
assuming that the probability of occurrence remains constant for a given species in a given place 
over the study period, and that the statistical test used is Fisher’s Two-Proportion Exact Test 
(one-tailed, α=0.05). Points show where tests were evaluated; curves are linearly interpolated in 
between points.  Each panel shows curves for a different value of the reference (e.g., regional) 
prevalence.  Each color represents a different multiplicative effect size.  For example, the red 
curve in the lower left panel is for the test of the alternative hypothesis (Ha): probability of 
occurrence = 0.6 versus the null hypothesis (Ho): probability of occurrence = 0.2, i.e. a 300% 
higher prevalence than the reference value. 

Figure B2. Relationship of sampling effort to expected number of presences observed for 
different prevalence values. Curves show number of surveys (y axis) need to have a specified 
probability (color), of observing at least k presences (x axis) under a binomial distribution 
Binomial(N,p), where N is the total number of surveys and p is the species’ prevalence 
(probability of occurrence). For example, the red curve in the lower left panel shows that when a 
species’ prevalence is 33%, one would have to conduct 44 surveys to have a 95% chance of 
observing 10 presences. Analysis assumes surveys are independent and prevalences do not 
change over the time period studied. Each panel shows curves for a different value of prevalence. 
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS (cont’d) 

Digital Supplement C (7 pages). Power vs. sample size curves for hotspot/coldspot tests of 
unconditional mean counts (full hurdle model, including zero and non-zero components). 

Figures C1-C6. Power vs. sample size curves for hotspot/coldspot tests of unconditional mean 
counts (i.e., case (3) described in section 1.2). Curves are presented for the six distributions in 
Table 1 for which a finite mean exists for realistic parameter values (Poisson, Negative 
Binomial, Geometric, Logarithmic, Discretized Lognormal, and Zeta with exponential cutoff). 
For each distribution, nine panels show curves for different combinations of the reference mean 
value and the prevalence value.  Within each panel lines of different colors show curves for 
different effect sizes, represented as multiples of the non-zero reference mean (e.g., an effect size 
of 0.33 for a reference mean of 10 corresponds to power to detect a coldspot with a non-zero 
mean of 3.3 or smaller). Note that the number of curves per panel varies, because some 
combinations of the reference mean and effect size do not make sense (for example, with a 
reference mean of 2, a 0.33 effect size would correspond to a mean of 0.66, which is not possible 
given that non-zero counts must be greater than or equal to 1). For distributions with more than 
one parameter, the first parameter is adjusted to produce the desired reference mean, and 
additional (“nuisance”) parameters are held constant. Curves shown are examples for the 
value(s) of the nuisance parameter(s) given in the figure heading.  The prevalence is assumed to 
remain unchanged regardless of effect size (that is, changes in the mean abundance are assumed 
to occur through changes in the non-zero counts, rather than through changes in prevalence).   
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS (cont’d) 

Digital Supplement D (9 pages). Additional information about datasets extracted from the 
USGS Avian Compendium Database. 

Table D1. List of science-quality datasets in the USGS Avian Compendium Database as of 
August 2012.  
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS (cont’d) 

Digital Supplement E (88 pages). Model fit and model selection information. 

Table E1. Model fit and selection statistics for non-zero count data in (a) Spring, (b) Summer, 
(c) Fall, (d) Winter.  Maximum likelihood estimates of the best-fitting parameters for each of the 
top three candidate distributions are shown for each species.  Model selection statistics (AICc 
and log-likelihood values) are also given.  For each species, the top three models are shown 
ranked from lowest to highest AICc.  The top-ranked model (lowest AIC) was used for 
subsequent analyses (see Tables 4 and 5 in main document).  Species appear in the same order 
within each season as in Table 4 of the main document. 

Figures E1-E74. Model fit plots. Maximum likelihood model fits (lines) and observed 
probabilities (black dots) for non-zero count data for all modeled species. Fits are shown for the 
top four models, ranked in the legend from lowest to highest AICc.  Plots are presented grouped 
by season, with species appearing in the same order within each season as in Table 4 of the main 
document:  

Figures E1-E19. Spring 

Figures E20-E37. Summer 

Figures E38-E59. Fall 

Figures E60-E74. Winter 
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS (cont’d) 

Digital Supplement F (286 pages). Maps and figures for conditional (non-zero count) power 
analyses and significance tests.   
 
Maps depict results in BOEM Atlantic OCS lease blocks. 
 
The user should keep in mind that the spatial distribution of information in maps is dependent on 
the input data used.  There are a variety of reasons that some datasets may not be reflected in 
these maps: some datasets existed but were not available to us, others were excluded because 
they were not of a consistent high scientific quality, and others may not yet been collected or 
made available at the time of this analysis.  These maps are intended as a demonstration of the 
methods described in OCS Study BOEM 2012-101. 
 
 
SECTION I. Summary Statistic Maps Calculated for All Species 
Summary statistics (number of occurrences and average, maximum, and minimum hotspot and 
coldspot power) were calculated across all species in all seasons combined and for each season. 
 
Figures F1-F7. All Seasons Combined 

Number of occurrences summed over all species in all seasons  
Average, maximum, and minimum power to detect 3x hotspots of non-zero abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of non-zero abundance 

Figures F8-F14. Spring 
Number of occurrences summed over all species in spring 
Average, maximum, and minimum power to detect 3x hotspots of non-zero abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of non-zero abundance 

Figures F15-F21. Summer 
Number of occurrences summed over all species in summer 
Average, maximum, and minimum power to detect 3x hotspots of non-zero abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of non-zero abundance 

Figures F22-F28. Fall 
Number of occurrences summed over all species in fall 
Average, maximum, and minimum power to detect 3x hotspots of non-zero abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of non-zero abundance 

Figures F29-F35. Winter 
Number of occurrences summed over all species in winter 
Average, maximum, and minimum power to detect 3x hotspots of non-zero abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of non-zero abundance 
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SECTION II. Species-specific Power Analysis Maps and Figures  
Results of the non-zero conditional model are presented as a set of 6 figures for each included 
species in each season. Within each season, species are presented in the same order as in Table 4 
of the main document, except that only species for which maps were created (“Maps created?” = 
“Yes” in 3rd column of Table 4) are included.   
 
Figures F36-F101. Spring power analysis maps and figures (11 species x 6 figures per species). 
Figures F102-F143. Summer power analysis maps and figures (7 species x 6 figs. per species). 
Figures F144-F215. Fall power analysis maps and figures (12 species x 6 figs. per species). 
Figures F216-F275. Winter power analysis maps and figures (10 species x 6 figs. per species). 
 
1st Figure for each Species: Map of number of occurrences of this species in this season in 
BOEM Atlantic OCS lease blocks. 
 
2nd Figure for each Species: Map of the mean non-zero count in for this species in this season 
in BOEM Atlantic OCS lease blocks. 
 
3rd Figure for each Species: Power vs. sample size curves for 3x hotspot and 1/3x coldspot 
detection for this species, given the selected model fit and reference mean. 
 
4th Figure for each Species: Map of power to detect 3x hotspots of non-zero abundance.  
 
5th Figure for each Species: Map of power to detect 1/3x coldspots of non-zero abundance. 
 
6th Figure for each Species: Combined map of hotspot (red) and coldspot (blue) significance 
test p-values, based on one-sample, one-tailed (hotspot) Monte Carlo significance tests of the 
mean non-zero count in each lease block compared to the reference mean.  Darker shading 
indicates greater statistical significance.  Lease blocks that did not approach statistical 
significance (p>0.2) are shown in grey, with the intensity of the shading proportional to the 
average of 3x hotspot and 1/3x coldspot power values for that cell.  That is, the darkest grey 
shading indicates lease blocks not identified as significant hotspots or coldspots, and for which 
we can be confident in that result because there was relatively high power to detect a hotspot or 
coldspot, had it existed.  In contrast, light grey shading indicates lease blocks not identified as 
significant hotspots or coldspots, but for which there was little or no power to detect a hotspot or 
coldspot, had it existed.  The darkest blue lease blocks can therefore be regarded as the most 
significant coldspots, the darkest red lease blocks as the most significant hotspots, and the 
darkest grey blocks as places most likely to be neither hotspots nor coldspots. Blank (white) 
polygons indicate lease blocks in which no presences of this species were observed.  Hotspot 
(coldspot) significance does not consider whether high (low) abundances persisted across years 
or occurred in the same year; if interannual persistence is of concern, the temporal distribution of 
the data should be examined.  P-values are not corrected for the large number of simultaneous 
tests performed (two tests per lease block in which the species occurred), so many of the lighter 
red and blue lease blocks are likely false positives.  The most significant values (darkest red and 
blue) are more reliable, but will still contain some false positives.  Similarly, the lightest grey 
cells have the highest chance of being false negatives, whereas the darkest grey cells have the 
lowest chance of being false negatives.   
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APPENDIX A. LIST OF DIGITAL SUPPLEMENTS (cont’d) 

Digital Supplement G (246 pages). Maps and figures for full hurdle model (zero and non-
zero count) power analyses and significance tests.   
 
Maps depict results in BOEM Atlantic OCS lease blocks. 
 
The user should keep in mind that the spatial distribution of information in maps is dependent on 
the input data used.  There are a variety of reasons that some datasets may not be reflected in 
these maps: some datasets existed but were not available to us, others were excluded because 
they were not of a consistent high scientific quality, and others may not yet been collected or 
made available at the time of this analysis.  These maps are intended as a demonstration of the 
methods described in OCS Study BOEM 2012-101. 
 
SECTION I. Summary Statistic Maps Calculated for All Species 
Summary statistics (number of times each lease block was surveyed and average, maximum, and 
minimum hotspot and coldspot power) were calculated across all species in all seasons combined 
and for each season individually. 
 
Figures G1-G7. All Seasons Combined 

Number of times each lease block was surveyed, summed over all seasons 
Average, maximum, and minimum power to detect 3x hotspots of abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of abundance 

Figures G8-G14. Spring 
Number of times each lease block was surveyed in spring 
Average, maximum, and minimum power to detect 3x hotspots of abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of abundance 

Figures G15-G21. Summer 
Number of times each lease block was surveyed in summer 
Average, maximum, and minimum power to detect 3x hotspots of abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of abundance 

Figures G22-G28. Fall 
Number of times each lease block was surveyed in fall 
Average, maximum, and minimum power to detect 3x hotspots of abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of abundance 

Figures G29-G35. Winter 
Number of times each lease block was surveyed in winter 
Average, maximum, and minimum power to detect 3x hotspots of abundance 
Average, maximum, and minimum power to detect 1/3x coldspots of abundance 
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SECTION II. Species-specific Power Analysis Maps and Figures  
Results of the full hurdle model (for zero and non-zero counts) are presented as a set of 5 figures 
for each included species in each season. Within each season, species are presented in the same 
order as in Table 4 of the main document, except that only species for which maps were created 
(“Maps created?” = “Yes” in 3rd column of Table 4) are included.   
 
Figures G36-G90. Spring power analysis maps and figures (11 species x 5 figures per species). 
Figures G91-G125. Summer power analysis maps and figures (7 species x 5 figs. per species). 
Figures G126-G185. Fall power analysis maps and figures (12 species x 5 figs. per species). 
Figures G186-G235. Winter power analysis maps and figures (10 species x 5 figs. per species). 
 
1st Figure for each Species: Map of the mean count (including any zeros) for this species in this 
season in BOEM Atlantic OCS lease blocks. 
 
2nd Figure for each Species: Power vs. sample size curves for 3x hotspot and 1/3x coldspot 
detection for this species, given the selected model fit, reference mean, and reference prevalence. 
 
3rd Figure for each Species: Map of power to detect 3x hotspots of abundance.  
 
4th Figure for each Species: Map of power to detect 1/3x coldspots of abundance. 
 
5th Figure for each Species: Combined map of hotspot (red) and coldspot (blue) significance 
test p-values, based on one-sample, one-tailed (hotspot) Monte Carlo significance tests of the 
mean count in each lease block compared to the expectation from the reference mean/prevalence.  
Darker shading indicates greater statistical significance. Lease blocks that did not approach 
statistical significance (p>0.2) are shown in grey, with the intensity of the shading proportional 
to the average of 3x hotspot and 1/3x coldspot power values for that cell.  That is, the darkest 
grey shading indicates lease blocks not identified as significant hotspots or coldspots, and for 
which we can be confident in that result because there was relatively high power to detect a 
hotspot or coldspot, had it existed.  In contrast, light grey shading indicates lease blocks not 
identified as significant hotspots or coldspots, but for which there was little or no power to detect 
a hotspot or coldspot, had it existed.  The darkest blue lease blocks can therefore be regarded as 
the most significant coldspots, the darkest red lease blocks as the most significant hotspots, and 
the darkest grey blocks as places most likely to be neither hotspots nor coldspots. Blank (white) 
polygons indicate lease blocks that were not surveyed in this season.  Hotspot (coldspot) 
significance does not consider whether high (low) abundances persisted across years or occurred 
in the same year; if interannual persistence is of concern, the temporal distribution of the data 
should be examined.  P-values are not corrected for the large number of simultaneous tests 
performed (two tests for each lease block that was surveyed in this season), so many of the 
lighter red and blue lease blocks are likely false positives.  Note that there are many more tests 
performed in these maps than in the corresponding maps presented in Digital Supplement F, 
because of the larger number of lease blocks considered; the number of false-positives will be 
correspondingly higher.  The most significant values (darkest red and blue) are more reliable, but 
will still contain some false positives.  Similarly, the lightest grey cells have the highest chance 
of being false negatives, whereas the darkest grey cells have the lowest chance of being false 
negatives. 



 
 

 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

The Department of the Interior Mission 
 
As the Nation’s principal conservation agency, the Department of the Interior has 
responsibility for most of our nationally owned public lands and natural resources.  
This includes fostering the sound use of our land and water resources, protecting 
our fish, wildlife and biological diversity; preserving the environmental and cultural 
values of our national parks and historical places; and providing for the enjoyment 
of life through outdoor recreation.  The Department assesses our energy and 
mineral resources and works to ensure that their development is in the best 
interests of all our people by encouraging stewardship and citizen participation in 
their care.  The Department also has a major responsibility for American Indian 
reservation communities and for people who live in island communities. 
 
 
The Bureau of Ocean Energy Management 
 
The Bureau of Ocean Energy Management (BOEM) works to manage the 
exploration and development of the nation's offshore resources in a way that 
appropriately balances economic development, energy independence, and 
environmental protection through oil and gas leases, renewable energy 
development and environmental reviews and studies. 
 

www.boem.gov 
 
 
 
 

 
 

U.S. Department of Commerce 
Dr. Rebecca M. Blank, Acting Secretary  
 
National Oceanic and Atmospheric Administration 
Dr. Jane Lubchenco, Under Secretary for Oceans and Atmosphere 
 
National Ocean Service 
David M. Kennedy, Assistant Administrator for Ocean Service and Coastal Zone 
Management 
 
The National Centers for Coastal Ocean Science 
Dr. W. Russell Callender, Director 
 
The National Centers for Coastal Ocean Science provides research, scientific 
information and tools to help balance the nation’s ecological, social and economic 
goals. Our partnerships with local and national coastal managers are essential in 
providing science and services to benefit communities around the nation.  
 

      coastalscience.noaa.gov 
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