ANALYSIS OF UNCERTAINTY IN SIMULATIONS OF SURFACE OIL DRIFT IN THE GULF OF MEXICO

Dmitry Dukhovskoy, Ian MacDonald, Steve Morey, Oscar Garcia-Pineda, Samira Daneshgar Asl

SINTEF

Mark Reed and Jørgen Skancke

This research was made possible by a contract M12PC00003 from the U.S. Department of Interior Bureau of Ocean Energy Management (BOEM). SAR images were provided by the NOAA. Surface drifter study is funded by the NOAA/CIMAS (award NA15OAR4320064 subaward S17-09).

USF Surface Oil Forecasts forced by Different Hydrodynamic Models, May 25, 2010

USF West Florida Shelf Model

GoM HYCOM

Global HYCOM

South Atlantic Bight-GOM model

Liu et al., 2011

FSU Surface Oil Drift Model Surface Oil Forecast, May 25, 2010

NOAA Operational Modeling Environment (GNOME) Surface Oil Forecast, May 21, 2010

SAR/TCNNA Surface Oil Volume (m³/km²)

Uncertainties in Predictions of Surface Oil Trajectories

- Inconsistency between simulated and observed oil characteristics
 - Surface/subsurface oil
 - Type of oil
 - Concentration/volume/coverage Time integrated/average vs instantaneous
- Biases/errors in the forcing fields
 - Winds
 - Ocean currents
 - Air-sea interaction
 - Waves
- Uncertainties in model parameters
 - Oil weathering
 - Wind effects
 - Ocean currents
 - Waves

FSU Surface Oil Drift Model

The oil particle trajectories are computed as a superposition of advective processes and turbulent diffusion

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}_a(\mathbf{x}, t) + \mathbf{u}_d(\mathbf{x}, t)$$

- Half-life: Oil particles are removed randomly based on a prescribed half-life
- Surface currents: 1/25° Gulf of Mexico HYbrid Coordinate Ocean Model (HYCOM) Analysis/Reanalysis (hycom.org/dataserver/goml0pt04):
 - **20.1** (Analysis: 2003/01 2010/07, obsolete)
 - **31.0** (Analysis: 2009/04/01 2014/07/31)
 - **51.0** (Reanalysis: 1993/01/01 2012/12/31)
- Winds: NCEP CFSR

Gulf of Mexico HYCOM Domain

Uncertainties in the Forcing Fields

Ocean Currents

$$\mathbf{u}_a = \mathbf{u}_c + C_w \| \mathbf{u}_{10} \| \Theta + C_s \mathbf{u}_s$$

- The "Tiger tail" developed during May 8 – May 9, 2010
- Oil filament formed in the southeastern direction advecting oil towards the Loop Current
- Then oil propagated along the Loop Current front. The tip of the tail formed in a "saddle point" between two cyclones.

SSH fields (m) 9 May, 2010

0.08° GoM HYCOM Analysis (20.1)

0.08° GoM HYCOM Reanalysis (50.1)

0.08° GoM HYCOM Analysis (31.0)

The Near-Surface Circulation from HYCOM Analysis/Reanalysis 8 May, 2010

HYCOM 20.1

HYCOM 31.0

HYCOM 50.1

Oil Forecasts from the Oil Drift Simulations Forced by Different HYCOM Analyses

Model Parameters

- Half-life: 7 days
- Wind forcing: CFSR
- Wind deflection angle: Speed-dependent
- No Wave Effect

Uncertainties in the Model Parameters

Half-Life and Wind Coefficients

$$\mathbf{u}_a = \mathbf{u}_c + C_w |\mathbf{u}_{10}| \Theta + C_s \mathbf{u}_s$$

Requirements for an Objective Validation Metric

Similar dispersion, shape, and center location Different shape orientation (rotation) Similar dispersion and center location Different shape

Attributes that are considered significant to the shape of the oil slicks:

- Scale
- Translation
- Rotation

A skill metric should also be resistant to noise

Validation Metrics: Topological Approach

Hausdorff Distance (HD)

Definition. Let (M, d) be a metric space and $A, B \subset M$. We define the **Hausdorff** distance, d_H , by

$$d_H(A,B) = \max\left\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\right\},\,$$

where $d(a, B) = \inf_{b \in B} d(a, b)$ and similarly for d(A, b).

Modified Hausdorff Distance (MHD)

$$d_{MH}(A,B) = \max\left\{\frac{1}{|A|} \sum_{a \in A} d(a,B), \frac{1}{|B|} \sum_{b \in B} d(A,b)\right\}$$

Dukhovskoy et al., JGR, 2015

Oil Volume Contours Compared to the Contour on 9 May, 2010

Estimation of Half-Life (T_h) from SAR Observations and Oil Drift Model

Oil Forecasts from the Oil Drift Simulations with Varying Half-Life

Model Parameters

- Half-life:
- Wind forcing:
- Wind deflection angle:
- Wind coefficient:

Varying CFSR Speed-dependent 2%

MHD Scores

84W

90W

88W

86W

84W

90W

88W

86W

84W

86W

90W

88W

50-40-

30-

20-

10-

0

88W

88W

86W

86W

84W

84W

Uncertainties in the Forcing Fields

Surface Ocean Currents vs Layer-Averaged Currents

$$\mathbf{u}_a = \left(\mathbf{u}_c\right) + C_w \left\|\mathbf{u}_{10}\right\| \Theta + C_s \mathbf{u}_s$$

Impact of Representation of the Ocean Surface Currents on Simulated Oil Drift Trajectories

Ekman current generated by a 10 m/s wind

Velocity profiles from ship observations in the Pacific off California (April, 1980)

Introduction to Physical Oceanography, http://oceanworld.tamu.edu/resources/ocng_textbook/chapter09/chapter09_02.htm

Research Questions:

(1) How sensitive is simulated surface oil drift trajectories to the representation of the ocean surface currents?

(2) How different is the depth-averaged velocity relative to the surface current?

(3) How do parameters approximating the surface current in a typical surface oil drift model change for different layer-averaged velocities?

Strong vertical shear of the wind-driven velocity appears when temperature stratification develops in the upper ocean during the day

Vertical Coordinate Layers in HYCOM

HYCOM Native Vertical Grid

NCOM Configuration for the Sensitivity Experiments

- The Navy Coastal Ocean Model (NCOM) is configured for the northern Gulf of Mexico with super-fine vertical discretization of the near-surface ocean layer
- The model is used to perform sensitivity experiments with the oil drift model

Vertical NCOM Layers in a Shallow Water

NCOM Domain

Thicknesses of the depth-averaged layers in the sensitivity experiments

Experiment	1	2	3	4	5	6	7	8	9	10
N layers	1	3	5	7	9	11	13	15	17	19
Thickness (m)	0.2	0.7	1.3	2.1	3.1	4.5	6.2	8.3	11.2	14.8

Surface oil volume derived from the sensitivity oil drift model experiments on May 5, 2010

Differences between the surface current vector and depth-averaged ocean current derived from the NCOM simulation

Estimation of Surface Current from the Depth-Averaged Currents and Wind

Wind vector

U

θ

$$u_c + iv_c = C_D e^{i\varphi} (u_D + iv_D) + C_w e^{i\theta} (u_w + iv_w)$$

 $C_D = 1$ and $\varphi = 0$: Case when the near-surface (layeraveraged) ocean currents from a hydrodynamic model is considered to represent the true surface current

Parameter Estimates from the Sensitivity Experiments

Wind Scaling Coefficient (C_w)

Wind Rotation Angle (θ)

 $\boldsymbol{\mathcal{U}}_{D}$ Depth-averaged Ocean current

 \mathcal{U}_{c}

Surface current

Summary

- Two groups of uncertainty sources in surface oil drift models have been discussed
 - * Uncertainties in the forcing fields (ocean currents): Nothing can be done to overcome the problem.
 - * Uncertainties in the model parameters: Parameters can be adjusted to provide the most accurate fit to the observations.
- Accurate representation of the ocean dynamics in hydrodynamic models advecting the oil particles is crucial for forecasting of the oil trajectories
 - * Offshore, location of mesoscale features largely determines surface oil spreading.
 - * Onshore, winds, waves, and river runoff play a bigger role.
- Depth-averaged near-surface currents from hydrodynamic models: The numerical experiments demonstrate sensitivity of the surface oil trajectories to the representation of the ocean surface currents.
 - * The solutions for surface layers thicker than 1 m notably diverge from the control run simulation (20-cm surface layer).
- The estimates of the wind coefficient and wind deflection angle in the formula approximating surface oil drift show
 - * The wind effect is small for the surface layers < 1m (<0.2%) and increases up to 2.8% as the layer thickness.
 - * The wind rotation angle is clockwise. The median is 15°–25°. The estimate has a large uncertainty range.