Quantifying the residence time and accumulation of PAHs in coastal Louisiana using natural radioisotope tracers

> Kanchan Maiti Department of Oceanography and Coastal Sciences Louisiana State University

Total PAH distribution in NGOM

To understand this distribution we need to understand the processes

Biogeochemical Cycling of PAHs in Marine Systems

Sources of PAHs in the northern Gulf of Mexico

- Mississippi River, coastal erosion, atmospheric deposition, oil seeps, gas hydrates and oil spills.
- Estimated 21,000 tons of PAHs was released during DWH
- 4-31% deposited on the seafloor within 50 km of wellhead.
- Ideal location to study long term fate and transport of PAHs with or without an oil spill.

Radiotracers for Sedimentation rates and particle dynamics

• ²²⁶Ra is conservative and remains in dissolved phase.

²¹⁰Pb and ²¹⁰Po are both are highly particle reactive

- ²¹⁰Pb analogous to lithogenic element
- ²¹⁰Po bio-accumulative; more like biogenic element

Sediment Accumulation Rates

Assuming negligible mixing

²¹⁰Pb-based PAHs Accumulation Rates

PAHs accumulation rates (ng cm⁻² y⁻¹) = $C_i \times S_i$

 C_i = concentration of ∑PAH₄₃ in each section of sediment core (ng/g). S_i = ²¹⁰Pb-based sediment accumulation rate (g cm⁻² y⁻¹).

Water column processes

Scavenging Residence Time Calculation

Assumptions:

²¹⁰Pb scavenging is irreversible.

²¹⁰Pb is removed first by suspended particles and then via sinking particles.

The assumption of steady state may not hold true in all cases

$$\partial A_{Pb}^{d} / \partial t = \lambda A_{Ra}^{d} - \lambda A_{Pb}^{d} - J_{Pb}^{d}$$

$$\partial A_{Pb}^{p}/\partial t = J_{Pb} - \lambda A_{Pb}^{d} - P_{Pb}$$

Residence Time :-

$$\tau = A_{Pb}^{P}/P_{Pb}$$

Suspended Particulate Sample Collection (100-350m)

Large volume in situ pumps

- ~800 L of water pumped and filtered at the rate of 4-6 L min⁻¹.
- Subsampled for particulate lead and rest for PAHs.

Sample Collection

Sediment cores: Multi-corer

- Top 6 cm of first core, sliced and stored at -20° C for PAHs.
- Whole second core, sliced and stored in a glass vial of known volume for ²¹⁰Pb dating.

Lab Analysis

PAHs Extraction and Analysis

- Extracted, analyzed using GC/MS and QC/QA following EPA SW-846 method 3540C.
- Forty-three individual PAHs were identified and quantified.
- Concentrations are represented as ∑PAH₄₃.

Lab Analysis

Sediment ²¹⁰Pb and ²²⁶Ra activities

- Ground dry sediments were gamma counted for ²¹⁰Pb, ²²⁶Ra and ²¹⁴Pb activities.
- High purity germanium well detectors (Maiti et al., 2010).
- ${}^{210}Pb_{excess} = {}^{210}Pb_{total} {}^{214}Pb_{suported}$.
- The excess ²¹⁰Pb is used for sedimentation and accumulation rate estimation.

Lab Analysis

Dissolved and particulate ²¹⁰Pb activities

- Electroplating and column chemistry with stable Pb recovery via ICP-OES
- Alpha counting

²¹⁰Pb-based Sediment Accumulation Rates

	CRS	CF:CS
Stations		
	(g cm ⁻² y ⁻¹)	(g cm ⁻² y ⁻¹)
C1	0.09 - 0.17	0.13±0.03
C2	0.23 - 0.32	0.21±0.04
С3	0.19 - 0.58	NA
C4	0.20 - 0.30	0.53±0.14
C5	0.50 - 0.56	0.50±0.14
C6	0.26 - 0.32	0.20±0.03
C7	0.10 - 0.12	0.11±0.01
C8	0.05 - 0.21	0.09±0.01
С9	0.06 - 0.35	0.56±0.06
C10	0.06 - 0.42	0.33±0.03
C11	0.09 - 0.32	0.13±0.02
C12	0.10 - 0.34	0.12±0.03
C13	0.09 - 0.31	NA
C14	0.06 - 0.18	0.16±0.03
C15	0.07 - 0.11	0.12±0.01
C16	0.06 - 0.08	0.08±0.005
C17	0.04 - 0.25	0.09±0.01

- Similar results from two different models
- CRS model used to calculate PAHs accumulation rates.

PAHs Concentration and Accumulation Rate in coastal sediments

 \sum PAH₄₃ Accumulation Rates (ng cm⁻² y⁻¹) – *filled diamond*

<u>PAH</u>₄₃ Concentrations (ng g^{-1}) – open circles

Comparison with deep ocean sediments

Adhikari & Maiti 2016

Principal Component Analysis

- PC1 and PC2 explain ~77% of the variability in PAHs composition.
- Coastal and deep-sea stations clearly separated.
- Coastal sediments have higher percentages of LMW-PAHs (83 ± 4%) than the deep-sea sediments (53 ± 15%).
- Deep-sea sediments have higher MMW-PAHs (41 ± 14%) than the coastal sediments(12 ± 3%).

Suspended particulate PAH concentration in coastal waters

Suspended particles versus sediments

Particulate samples were dominated by LMW-PAHs ($89\pm1.7\%$) while MMW-PAHs contributed ~10 ± 1.4% which is similar to seafloor sediment distribution.

88% of particulate PAHs and 74% of sediment PAHS comprised of alkylated homologs.

Particulate PAH to other parameters

Well correlated with salinity and POC indicating river plume as a possible important source.

Cannot rule out atmospheric deposition.

²¹⁰Pb based Particulate Residence Time

Removed from the water column within a week for shallow coastal ocean; about a month for deep ocean.

How to translate calculated residence time of particulate ²¹⁰Pb (τ_{Pb}) to particulate PAH ???

 $K_d = [A_{part}/A_{diss}] \times TSM$

Fractionation Factor (FF) = $[K_d]_{210Pb} / [K_d]_{PAH}$

 \approx 2.1 ± 0.8 for this study

Residence Time of particulate PAH (τ_{PAH}) = τ_{Pb} x FF

- Assumes negligible loss of particulate PAH due to other processes like photo degradation.
- Individual PAH compound has different K_d which means different FF.

Residence time of particulate PAHs (preliminary estimates)

Adhikari & Maiti in prep.

Conclusions

- Low to moderate levels of PAHs pollution in the northern GOM sediments below <u>ERL</u> (effective range-low) toxic levels.
- PAH accumulation rates in coastal Louisiana sediments range between 25 -65 ng cm⁻² y⁻¹.
- LMW-PAHs more dominant in coastal sediments.
- Residence time of particle reactive contaminants in coastal Louisiana are about two weeks before they are removed from the water column via scavenging.
- Water column particulate PAHs are found to be significantly correlated with POC concentration.

Acknowledgement

- The captain and crew of the *R/V Endeavor*, *R/V Walton Smith* and the *R/V Pelican* for their help in sample collection.
- Thanks to Chris DuFore for project oversee and helpful discussions.
- Funding provided by Bureau of Ocean Energy Management

