Attachment D – Air Emission and Traffic Data

	<u>Page</u>
Summary of Emissions by Platform and Activity	D-1
Drilling Emission Estimates – Turbines	D-2
Drilling Emission Estimates – Other Equipment	D-3
Drilling Emission Estimates – ROC Emissions from Mud System	D-4
Process Flow Diagram for Typical Mud Handling System	D-5
Supply Boat Emission Estimates	D-6
Fugitive Emission Estimates	D-9
Offsite Truck Emission Estimates	D-10
Development Schedule for Western Half of OCS-P 0450	D-11
Traffic Impacts for Western Half of OCS-P 0450	D-12

Western Half of OCS-P 0450 Development Project Summary of Emissions by Platform and Activity, tons/year

Platform/Emission Category	NO _X	ROC	CO	SO _X	PM	PM_{10}	CH ₄	N ₂ O	CO_2	CO ₂ e
	Platforn	n Hidalgo	Drilling 1	Emissions	(All in SI	BC)				
Turbine Emissions	7.68	2.41	9.51	0.16	1.89	1.89	0.32	0.06	8775	7920
Other Drilling Equipment	2.01	0.27	0.73	0.00	0.24	0.24	0.00	0.00	125	113
Mud Emissions	0.00	0.01999	0.00	0.00	0.00	0.00	0.10	0.00	0	2
		Drillin	g: Offsite	e Emission	ns					
Supply Boats - Total (all counties)	19.56	1.04	4.25	0.01	1.72	1.65	0.05	0.01	1136	1025
Supply Boats - SBC Only	15.04	0.81	3.27	0.01	1.32	1.26	0.04	0.01	869	785
Supply Boats - Ventura County Only	4.53	0.24	0.98	0.00	0.40	0.38	0.01	0.00	267	241
Trucks, Ventura County Only	1.66	0.08	0.38	0.00	0.06	0.06	0.00	0.00	245	221
	Pla	tform Hid	algo Opei	ational E	missions					
Fugitive Emissions (SBC Only)	0.00	0.68	0.00	0.00	0.00	0.00	3.34	0.00	0	63
		7	Total Emi	ssions						
Total Emissions SBC	24.73	4.19	13.51	0.17	3.44	3.39	3.79	0.07	9769	8883
Total Emissions	29.26	4.43	14.49	0.18	3.85	3.78	3.80	0.07	10036	9123
Excess Emissions, SBC Permit	128.06	32.27	47.19	20.02	12.48	12.13	32.96	0.03	29281	26985

Notes: CO2e emissions in metric tonnes per year. GHG not included in permit at this time

Permitted Emissions

	NO _x	ROC	CO	SO_x	PM	PM_{10}	CH ₄	N ₂ O	CO ₂	CO ₂ e
Platform Harvest	367.58	85.26	204.18	43.61	26.11	25.71	88.54	0.42	215424	195672
Platform Hermosa	198.8	76.25	114.48	36.87	17.64	17.16	61.78	0.17	77498	70963
Platform Hidalgo	204.15	61.36	94.54	26.49	17.77	17.34	37.36	0.17	76821	69892
Supply Boats	76.25	3.99	16.67	0.04	6.79	6.51	0.13	0.03	3,280	2962

Notes

Criteria pollutants from PXP, Glenn Oliver, May 4, 2012 email (to Chittick on 5/8)

GHG Platform emissions from PXP email calculated, not part of permit

GHG Supply boat emissions calculated

 $Emissions\ for\ Platforms\ from\ PTOs\ include\ supply\ boats$

2011 Emissions

Location	NOx	ROC	CO	SOx	PM	PM10	CH ₄	N ₂ O	CO_2	CO ₂ e
Platform Harvest	87.06	45.73	63.27	9.73	9.35	9.32	1.63	0.18	101225	91184
Platform Hermosa	51.15	40.98	36.39	5.3	1.72	1.66	0.58	0.07	32923	29661
Platform Hidalgo	51.36	24.9	33.84	6.3	1.85	1.82	0.61	0.07	37771	34025
Total	189.57	111.61	133.5	21.33	12.92	12.8	2.82	0.32	171919	154870

The excess permitted emissions = total permitted emissions minus the 2011 actual emissions minus the estimated peak emissions from the project with SBC

 CO_2e emissions= $(CH_4$ emissions* $21 + N_20$ emissions* $310 + CO_2$ emissions)*0.9

Western Half of OCS-P 0450 Development Project **Drilling Emission Estimates - Turbines**

Estimated Quantity, Size and Load Factors for Electrical Driven Drilling Equipment

Rocky Point Drill Rig Data	Quantity	Load (hp)	Load (kW)	Load Factor
Draw Works	2	1,000	1,492	0.25
Mud Pumps	2	1,000	1,492	0.6
Rotary Table	1	1,000	746	0.6
Top Drive	1	1,000	746	0.5

Estimated data. Actual data for rig will not be known until a contract has been issued.

Platform Turbine Emission Factors, assumes all produced gas operations

Tiatroi ili Turbille Ellissioli Factors	s, assumes an pro	1 latter in 1 th time Editission Factors, assumes an produced gas operations										
Turbine Emission Factors				lbs/l	ır							
	NO_X	ROC	CO	SO_X	PM	PM_{10}	CH_4	N ₂ O	CO ₂	Size, kW		
Hidalgo Emission Factors - G91g	6.89	0.72	4.54	0.28	0.10	0.10	0.10	0.01	5250.33	2800.00		
Hidalgo Emission Factors - G92g	6.89	0.72	4.54	0.28	0.10	0.10	0.10	0.01	5250.33	2800.00		
Hidalgo Emission Factors - G93g	6.89	0.72	4.54	0.28	0.10	0.10	0.10	0.01	5250.33	2800.00		
Hidalgo Emission Factors - G94g	3.70	0.36	3.72	0.31	0.11	0.11	0.11	0.01	5729.14	3100.00		
Hidalgo Emission Factors - G91d	6.90	2.46	8.86	0.06	1.99	1.99	0.30	0.06	7323.92	2800.00		
Hidalgo Emission Factors - G92d	6.90	2.46	8.86	0.06	1.99	1.99	0.30	0.06	7323.92	2800.00		
Hidalgo Emission Factors - G93d	6.90	2.46	8.86	0.06	1.99	1.99	0.30	0.06	7323.92	2800.00		

Platform Turbine Emission Factors, weighted composite

Turbine Emission Factors		lbs/kW-hr										
	NO _X	NO_X ROC CO SO_X PM PM_{10} CH_4 N_2O							CO_2			
Hidalgo Emission Factors-g	2.10E-03	2.17E-04	1.50E-03	1.00E-04	3.57E-05	3.57E-05	3.57E-05	3.48E-06	1.87E+00			
Hidalgo Emission Factors-d	2.10E-03	6.59E-04	2.60E-03	4.49E-05	5.16E-04	5.16E-04	8.65E-05	1.62E-05	2.40E+00			

Notes:

A composite emission factor was used for turbines in estimating the turbine emissions. Turbine G91 has hisotrically not been used, but was included

Emission factors taken from PTO 9105 for Hidalgo (October 2008)

PTO turbine emission factors are in lbs/hr. These were converted to lbs/kW-hr by dividing by the rating on each turbine.

GHG emission factors based on PXP part 70 permit

Peak Turbine Emissions from Drilling on the Western Half of OCS-P 0450

Turbine Drilling Emissions	NO_X	ROC	CO	SO _X	PM	PM_{10}	CH ₄	N ₂ O	CO_2
			Platform .	Hidalgo					Î
lbs./hr	4.39	1.38	5.43	0.09	1.08	1.08	0.18	0.03	5009
lbs./day	105.27	33.02	130.33	2.25	25.86	25.86	4.34	0.81	120211
tons/qr	3.80	1.51	5.95	0.10	1.18	1.18	0.20	0.04	5485
tons/yr ^B	7.68	2.41	9.51	0.16	1.89	1.89	0.32	0.06	8775
Total Drilling Emissions (tons)									
Western Half of OCS-P 0450 ^{C,D,E}	7.68	2.41	9.51	0.16	1.89	1.89	0.32	0.06	8775

- Notes:

 A. Tons/yr assumes drilling occurs for 100 days per well on Platform Hidalgo (2 wells).

 C. Assumes 2 wells at Hidalgo, 70 days drilling, 30 days completion

 D. Assumes completion is 10% the load of well drilling

 E. Assumes emissions from diesel turbines

 F. Assumes 91.25 days per quarter

Western Half of OCS-P 0450 Development Project Drilling Emission Estimates - Other Equipment

Rocky Point Drill Rig Data	Quantity	Load (hp)	Fuel	Note
Well Logging Unit	1	100	Diesel	1
Acidizing Pump	1	100	Diesel	2
Emergency Generator	1	1,350	Diesel	3
Cement Pump	1	200	Diesel	4
Slurry Pump	1	1,000	Diesel	5

Notes:

Estimated data. Actual data for rig will not be known until a contract has been issued.

- 1. Well logging unit operates 10 days per month
- 2. Each acidizing pump is operated 5 days per well, 8 hours per day.
- 3. Each emergency generator tested 2 hours per month.
- 4. Cement pump operates 2 days per month, 8 hours per day.
- 5. Slurry Pump operates for 8 hrs per day, 70 days per well. This pump would only be needed if oil/synthetic based muds are injected offshore.

Emission Factors		g/hp-hr										
	NO _X	NO_X ROC CO SO_X PM PM_{10} CH ₄ N_2O CO ₂										
Well Logging Unit	8.4	1.14	3.03	0.0063	1	1	0.020	0.004	521.6			
Acidizing Pump	8.4	1.14	3.03	0.0063	1	1	0.020	0.004	521.6			
Emergency Generator	8.4	1.14	3.03	0.0063	1	1	0.020	0.004	521.6			
Cement Pump	8.4	1.14	3.03	0.0063	1	1	0.020	0.004	521.6			
Slurry Pump	8.4	1.14	3.03	0.0063	1	1	0.020	0.004	521.6			

Notes:

Diesel I.C. Engines raw factors from AP-42, Table 3.3-1. NO_x reduced by 40% to reflect optimum injection timing retard.

SO₂ adjusted for 0.0015% sulfur in fuel. HC assumed to be 100% ROC. PM assumed to be 100% PM₁₀.

CO2 EF based on AP-42 Table 3.3-1. CH4 and N2O based on CARB Mandatory reporting requirements

Support Equipment Drilling												
Emissions	NO_X	ROC	CO	SO_X	PM	PM_{10}	CH_4	N_2O	CO_2			
			i	bs/hr								
Well Logging Unit	1.85	0.25	0.67	0.00	0.22	0.22	0.00	0.00	115.00			
Acidizing Pump	1.85	0.25	0.67	0.00	0.22	0.22	0.00	0.00	115.00			
Emergency Generator	25.00	3.39	9.02	0.02	2.98	2.98	0.06	0.01	1552.50			
Cement Pump	3.70	0.50	1.34	0.00	0.44	0.44	0.01	0.00	230.00			
Total Hourly Emissions	32.41	4.40	11.69	0.02	3.86	3.86	0.08	0.02	2012.50			
lbs/day												
Well Logging Unit	44.45	6.03	16.03	0.03	5.29	5.29	0.11	0.02	2760.00			
Acidizing Pump	14.82	2.01	5.34	0.01	1.76	1.76	0.04	0.01	920.00			
Emergency Generator	50.00	6.79	18.04	0.04	5.95	5.95	0.12	0.02	3105.00			
Cement Pump	29.63	4.02	10.69	0.02	3.53	3.53	0.07	0.01	1840.00			
Total Daily Emissions	138.89	18.85	50.10	0.10	16.53	16.53	0.33	0.07	8625.00			
	tons/gr											
Well Logging Unit	0.67	0.09	0.24	0.00	0.08	0.08	0.00	0.00	41.40			
Acidizing Pump	0.07	0.01	0.03	0.00	0.01	0.01	0.00	0.00	4.60			
Emergency Generator	0.08	0.01	0.03	0.00	0.01	0.01	0.00	0.00	4.66			
Cement Pump	0.09	0.01	0.03	0.00	0.01	0.01	0.00	0.00	5.52			
Total Quarterly Emissions	0.90	0.12	0.33	0.00	0.11	0.11	0.00	0.00	56.18			
			te	ons/yr								
Well Logging Unit	1.48	0.20	0.53	0.00	0.18	0.18	0.00	0.00	92.00			
Acidizing Pump	0.16	0.02	0.06	0.00	0.02	0.02	0.00	0.00	10.22			
Emergency Generator	0.17	0.02	0.06	0.00	0.02	0.02	0.00	0.00	10.35			
Cement Pump	0.20	0.03	0.07	0.00	0.02	0.02	0.00	0.00	12.27			
Total Annual Emissions	2.01	0.27	0.73	0.00	0.24	0.24	0.00	0.00	124.84			
			Total Drilling	g Emissions ((tons)							
Western Half of OCS-P 0450 ^{B,C}	2.01	0.27	0.73	0.00	0.24	0.24	0.00	0.00	124.84			

Notes:

A. The slurry pump would only be needed if the oil/synthetic based muds are injected at the platforms.

B. Assumes 2 wells at Hidalgo

2 wells

C. Assumes each well takes months to finish -->

3.33 months

Western Half of OCS-P 0450 Development Project Drilling Emission Estimates - ROC Emissions from Mud System

Assumptions

Volume of gas in drilling mud from one well = 85,000 scf

Density of gas =0.0056 lbs/scf

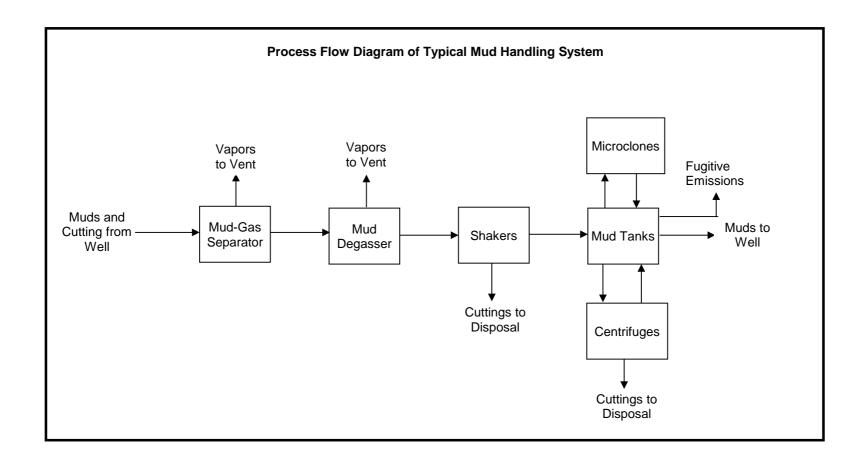
Fraction of gas that is reactive organic compounds=20.5%

Density of reactive organic compound gas = 0.00115 lbs/scf

Time required to drill one well = 100 days

Time when gas may be present in mud per well =20 days

The mud-gas separator and mud degasser removal efficiency = 98%


Mud-gas separator and mud degasser are vented at the top of the derrick

Emissions Estimates per Well

						ROC Em	issions	
								Total ^A
Source	SCF/hr	SCF/day	% ROC	lbs/hr	lbs/day	lbs/well	lbs/yr	(lbs)
Mud-gas Separator/Mud Degasser Vent	174	4165	20.5%	0.041	0.980	19.590	39.180	39.180
Fugitives from Mud Tanks	<u>4</u>	<u>85</u>	20.5%	0.001	0.020	0.400	0.800	0.800
Total	177	4250		0.042	0.999	19.990	39.980	39.980

Note:

A. Assumes 2 wells at Hidalgo

Western Half of OCS-P 0450 Development Project Supply Boat Emission Estimates

Supply Boat Engine Data

				Fuel Usage	Load	
Engine	Fuel	%S	Size (bhp)	(gals/bhp-hr)	Factor	gals/hr
Main Engines-Controlled	D	0.0015	4,000	0.049	0.65	127.4
Main Engines-Uncontrolled	D	0.0015	4,000	0.049	0.65	127.4
Generator Engines	D	0.0015	490	0.055	0.5	13.5
Bow Thruster	D	0.0015	515	0.055	1.0	28.3

Notes:

 $Data\ taken\ from\ PTO\ 9104\ for\ Hermosa,\ PTO\ 9105\ for\ Hidalgo,\ and\ PTO\ 9103\ for\ Harvest\ and\ PXP\ infomatioin/permits$

Supply Boat Emission Factors

				lbs	/1,000 gals				
Emission Source	NO _X	ROC	CO	SO_X	PM	PM_{10}	CH_4	N ₂ O	CO_2
Main Engines-Controlled	337	16.80	78.30	0.21	33.00	31.68	0.910	0.180	22538
Main Engines-Uncontrolled	561	16.80	78.30	0.21	33.00	31.68	0.910	0.180	22538
Generator Engines	600	48.98	129.26	0.21	42.18	40.49	0.910	0.180	22538
Bow Thruster	600	48.98	129.26	0.21	42.18	40.49	0.910	0.180	22538

Notes:

 $Emission\ factors\ taken\ from\ PTO\ 9104\ for\ Hermosa,\ PTO\ 9105\ for\ Hidalgo,\ and\ PTO\ 9103\ for\ Harvest\ (October\ 2008)$ $GHG\ EF\ based\ on\ CARB\ Mandatory\ Reporting$

		Port Hu	eneme to	
Supply Boat Fuel Usage, gallons		Platfor	ms/trip	Platform Offload
Fuel Usage	gals/hr	Total	SBC	(gals/round trip)
Main Engines-Controlled	127.4	1,847.30	1,401.40	0.00
Main Engines-UnControlled	127.4	1,847.30	1,401.40	0.00
Generator Engines	13.5	195.39	148.23	26.95
Bow Thruster	28.3	56.65	56.65	113.30

- A. Total is from Port Hueneme to the platforms (round trip assumes 14.5-hrs main engines and generator engines, 2-hrs bow thrusters).
- $B. SBC is from SB \ County \ line \ to \ the \ platforms \ (round \ trip \ assumes \ 11-hrs \ main \ engines \ and \ generator \ engines, \ 2-hrs \ bow \ thrusters).$
- $C.\ PTO\ is\ within\ 25\ miles\ of\ the\ platforms\ (round\ trip\ assumes\ 4-hrs\ main\ engines\ and\ generator\ engines,\ 2-hrs\ bow\ thrusters).$
- $D.\ Platform\ offload\ at\ Platform\ Hidalgo\ (round\ trip\ assumes\ 2-hrs\ generator\ engines,\ 4-hrs\ bow\ thrusters).$
- E. Total qtr fuel use
- 54,583 all areas
- 41,763 SBC only

Western Half of OCS-P 0450 Development Project

Supply Boat Emission Estimates

Total Supply Boat Emissions (Port Hueneme to the Platforms)

Estimated Supply Boat Emissions	NO _X	ROC	CO	SO_X	PM	PM_{10}	CH ₄	N ₂ O	CO ₂			
	Dril	l Rig Transp	ort from Por	t Hueneme to ti	he Platforms							
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	1,187.57	43.38	177.22	0.44	71.59	68.73	1.91	0.38	47,315			
tons/qr	5.71	0.30	1.24	0.00	0.50	0.48	0.01	0.00	331			
tons/yr	11.41	0.61	2.48	0.01	1.00	0.96	0.03	0.01	662			
Additional Supply Boat Useage During Drilling												
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	1,187.57	43.38	177.22	0.44	71.59	68.73	1.91	0.38	47,315			
tons/qr	3.67	0.20	0.80	0.00	0.32	0.31	0.01	0.00	473			
tons/yr	8.15	0.43	1.77	0.00	0.72	0.69	0.02	0.00	473			
	1	Drilling Trai	nsport and Si	apply Boat Dail	y Useage							
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	1,187.57	43.38	177.22	0.44	71.59	68.73	1.91	0.38	47,315			
tons/qr	9.37	0.50	2.04	0.01	0.82	0.79	0.02	0.01	804			
tons/yr	19.56	1.04	4.25	0.01	1.72	1.65	0.05	0.01	1,136			

Notes:

- A. lbs/hr maximum based on all engines running simultaneously, and assumes uncontrolled main engines.
- B. Assumes one round trip per day, and assumes uncontrolled main engines.
- C. Drill rig transport based on 20 round trips over a 30-day period.
- D. Annual emissions assume 20 trips to deliver drill rig and 20 trips to remove drill rig
- E. Supply boat trips for drilling assume 1 additional round trip per week over current operations for 16 weeks per year (2 wells).
- $F.\ Assumes\ that\ uncontrolled\ main\ engines\ are\ used\ 10\%\ of\ the\ time.\ (Same\ assumption\ as\ PTOs\ 9103,\ 9104,\ and\ 9105.)$
- G. Total length of drilling project, weeks

20 weeks, drilling only (not completions)

H. Time to transport drill rig, days

14 days, one way

Santa Barbara County Supply Boat Emissions (SB County Line to the Platforms)

Estimated Supply Boat Emissions	NO_X	ROC	CO	SO_X	PM	PM_{10}	CH_4	N ₂ O	CO_2			
	Dril	Rig Transp	ort from Por	t Hueneme to t	he Platforms	5						
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	909.12	33.58	136.21	0.34	54.89	52.69	1.46	0.29	36,202			
tons/qr	4.39	0.24	0.95	0.00	0.38	0.37	0.01	0.00	253			
tons/yr	8.77	0.47	1.91	0.00	0.77	0.74	0.02	0.00	507			
Additional Supply Boat Useage During Drilling												
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	909.12	33.58	136.21	0.34	54.89	52.69	1.46	0.29	36,202			
tons/qr	6.27	0.34	1.36	0.00	0.55	0.53	0.01	0.00	362			
tons/yr	6.27	0.34	1.36	0.00	0.55	0.53	0.01	0.00	362			
			Drilling O	perations								
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	909.12	33.58	136.21	0.34	54.89	52.69	1.46	0.29	36,202			
tons/qr	10.65	0.57	2.32	0.01	0.93	0.90	0.02	0.00	615			
tons/yr	15.04	0.81	3.27	0.01	1.32	1.26	0.04	0.01	869			

Ventura County Supply Boat Emissions (Port Hueneme to SB County Line)

Ventura County Supply Boat Emissi	ons (Port Hu	eneme to SB	County Line	e)								
Estimated Supply Boat Emissions	NO _X	ROC	CO	SO_X	PM	PM_{10}	CH ₄	N ₂ O	CO ₂			
	Dril	l Rig Transp	ort from Por	t Hueneme to t	he Platforms	i .						
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	278.45	9.80	41.01	0.10	16.70	16.04	0.45	0.09	11,113			
tons/qr	1.32	0.07	0.29	0.00	0.12	0.11	0.00	0.00	78			
tons/yr	2.64	0.14	0.57	0.00	0.23	0.22	0.01	0.00	156			
Additional Supply Boat Useage During Drilling												
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	278.45	9.80	41.01	0.10	16.70	16.04	0.45	0.09	11,113			
tons/qr	-2.60	-0.14	-0.56	0.00	-0.23	-0.22	-0.01	0.00	111			
tons/yr	1.89	0.10	0.41	0.00	0.17	0.16	0.00	0.00	111			
			Drilling O	perations								
lbs/hr (max.)	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813			
lbs/day	278.45	9.80	41.01	0.10	16.70	16.04	0.45	0.09	11,113			
tons/qr	-1.28	-0.07	-0.28	0.00	-0.11	-0.11	0.00	0.00	189			
tons/yr	4.53	0.24	0.98	0.00	0.40	0.38	0.01	0.00	267			

Western Half of OCS-P 0450 Development Project Supply Boat Emission Estimates - Permitted Emissions

Supply Boat Engine Data

				Fuel Usage	Load	
Engine	Fuel	%S	Size (bhp)	(gals/bhp-hr)	Factor	gals/hr
Main Engines-Controlled	D	0.0015	4,000	0.049	0.65	127.4
Main Engines-Uncontrolled	D	0.0015	4,000	0.049	0.65	127.4
Generator Engines	D	0.0015	490	0.055	0.5	13.475
Bow Thruster	D	0.0015	515	0.055	1.0	28.325

Notes:

Data taken from PTO 9104 for Hermosa, PTO 9105 for Hidalgo, and PTO 9103 for Harvest

Supply Boat Emission Factors

		lbs/1,000 gals										
Emission Source	NO _X	ROC	CO	SO_X	PM	PM_{10}	CH ₄	N ₂ O	CO_2			
Main Engines-Controlled	337	16.80	78.30	0.21	33.00	31.68	0.910	0.180	22537.9			
Main Engines-Uncontrolled	561	16.80	78.30	0.21	33.00	31.68	0.910	0.180	22537.9			
Generator Engines	600	48.98	129.26	0.21	42.18	40.49	0.910	0.180	22537.9			
Bow Thruster	600	48.98	129.26	0.21	42.18	40.49	0.910	0.180	22537.9			

Notes:

 $Emission\ factors\ taken\ from\ PTO\ 9104\ for\ Hermosa,\ PTO\ 9105\ for\ Hidalgo,\ and\ PTO\ 9103\ for\ Harvest\ (October\ 2008)$ $GHG\ EF\ based\ on\ CARB\ Mandatory\ Reporting$

Supply Boat Usage, hours

Fuel Usage	Hrs	day	qtr	yr
Main Engines-Controlled	1	11	459	1,837
Main Engines-Uncontrolled	1	11	46	184
Generator Engines	1	11	459	1,837
Bow Thruster	1	2	78	312

Supply Boat Usage, hours

Fuel Usage	gals/hr
Main Engines-Controlled	127.4
Main Engines-Controlled	127.4
Generator Engines	13.5
Bow Thruster	28.3

Notes:

- A. Total is from Port Hueneme to the platforms (round trip assumes 14.5-hrs main engines and generator engines, 2-hrs bow thrusters).
- B. SBC is from SB County line to the platforms (round trip assumes 11-hrs main engines and generator engines, 2-hrs bow thrusters).
- C. PTO is within 25 miles of the platforms (round trip assumes 4-hrs main engines and generator engines, 2-hrs bow thrusters).
- D. Platform transfer at Platform Hidalgo (round trip assumes 2-hrs generator engines, 4-hrs bow thrusters).

Total Supply Boat Emissions (Port Hueneme to the Platforms)

Estimated Supply Boat Emissions	NO _X	ROC	CO	SO _X	PM	PM_{10}	CH ₄	N ₂ O	CO ₂		
Drill Rig Transport from Port Hueneme to the Platforms ^C											
lbs/hr (max.) ^A	96.55	4.19	15.38	0.04	5.97	5.73	0.15	0.03	3,813		
lbs/day ^B	909.12	33.58	136.21	0.34	54.89	52.69	1.46	0.29	36,202		
tons/qr ^F	14.02	0.75	3.06	0.01	1.24	1.19	0.03	0.01	820		
tons/yr ^F	56.09	2.99	12.25	0.03	4.96	4.76	0.13	0.03	3,280		

- $A.\ lbs/hr\ maximum\ based\ on\ all\ engines\ running\ simultaneously,\ and\ assumes\ uncontrolled\ main\ engines.$
- B. Assumes one round trip per day, and assumes uncontrolled main engines.
- C. Drill rig transport based on 20 round trips over a 30-day period.
- D. Annual emissions assume 20 trips to deliver drill rig and 20 trips to remove drill rig
- $E. \ Supply \ boat \ trips \ for \ drilling \ assume \ 1 \ additional \ round \ trip \ per \ week \ over \ current \ operations \ for \ 16 \ weeks \ per \ year \ (2 \ wells).$
- F. Assumes that uncontrolled main engines are used 10% of the time. (Same assumption as PTOs 9103, 9104, and 9105.)

Western Half of OCS-P 0450 Development Project Fugitive Emission Estimates

Component Type	Quantity ^A	Emission Factor ^B (lbs/day-clp)	ROC Emissions				
			lbs/hr	lbs/day	tons/qr	tons/yr	
Oil - 2 wells controlled ^C	216	0.0009	0.008	0.194	0.009	0.035	
Oil - unsafe	0	0.0044	0.000	0.000	0.000	0.000	
Gas - 2 wells controlled ^D	242	0.0147	0.148	3.557	0.162	0.649	
Gas - unsafe	0	0.0736	0.000	0.000	0.000	0.000	
Total	458		0.156	3.752	0.171	0.685	

- A. Well component counts are estimates only and are based upon existing well data. Actual counts will be developed when wells are installed.
- B. Emission Factors from SBCAPCD PTOs 9103, 9104, and 9105.
- C. Include 108 oil leak paths and 121 gas leak paths per well

Western Half of OCS-P 0450 Development Project Offsite Truck Emissions

Truck Equipment List and Parameters

	meters					
Source		Number of Round	Number	Number	Distance	Total
	Vehicle	Trips per	of Trips	of Weeks	Round	Round
	Type	Day	per Week	per Year	Trip (mi)	Trips
	HHT					
Truck Trips for Drill Rig Delivery/Removal	Diesel	1	5	20	300	100
	HHT					
Truck Trips for Drilling Supplies	Diesel	1	4	80	300	320
	HHT					
Truck Trips for Misc Wastes	Diesel	1	1	20	300	20
	HHT					
	Diesel	0	0	0	0	0

Notes:

A. Assumes all wells use water based muds, but some transported by truck.

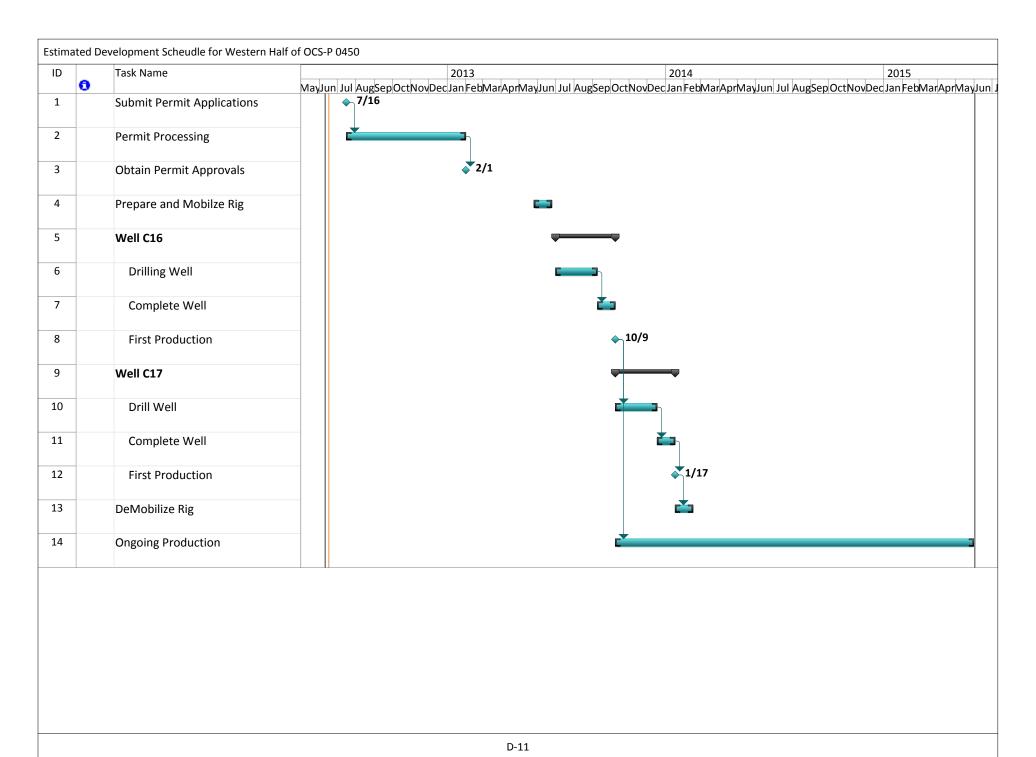
B. These truck trips would not be needed if the cutting are injected at the platform.

Truck Emission Factors

	NO_x	ROC	CO	SO_x	PM	PM_{10}	CH_4	N ₂ O	CO_2	
Exhaust Emission Factor (g/mile)	11.44	0.53	2.64	0.02	0.43	0.43	0.0051	0.0048	1686.50	

Notes:

Emissions calculations based on EMFAC2011 for Ventura County, year 2013, T7 Tractor GHG emissions based on CARB Mandatory reporting for diesel heavy duty trucks


Truck Emissions

Source	lbs/day ^C								
	NO _x	ROC	CO	SO _x	PM	PM_{10}			
Truck Trips for Drill Rig Delivery/Removal	7.57	0.35	1.74	0.01	0.28	0.29			
Truck Trips for Drilling Supplies	7.57	0.35	1.74	0.01	0.28	0.29			
Truck Trips for Misc Wastes	7.57	0.35	1.74	0.01	0.28	0.29			
Total ^C	22.70	1.06	5.23	0.03	0.85	0.86			
	tons								
	NO_x	ROC	CO	SO_x	PM	PM_{10}	CH_4	N ₂ O	CO_2
Truck Trips for Drill Rig Delivery/Removal	0.38	0.02	0.09	0.00	0.01	0.01	0.00	0.00	56
Truck Trips for Drilling Supplies	1.21	0.06	0.28	0.00	0.05	0.05	0.00	0.00	178
Truck Trips for Misc Wastes	0.08	0.00	0.02	0.00	0.00	0.00	0.00	0.00	11
Total ^C	1.66	0.08	0.38	0.00	0.06	0.06	0.00	0.00	245

Notes

A. Daily emission total based upon one round trip for drill drig delivery, drilling supplies and misc waste removal.

B. Assumes 2 wells at Hidalgo

Traffic Impacts for Western Half of OCS-P 0450 Truck Trips in Ventura County

Roadway and Intersection Classification

Circulation conditions are often described in terms of levels of service (LOS). Level of service is a means of describing the amount of traffic on a roadway versus the design capacity of the roadways. The design capacity of a roadway is defined as the maximum rate of vehicle travel that can reasonably be expected along a section of roadway. Capacity is dependent on a number of variables including road classification and number of lanes, weather and driver characteristics. The LOS rating reflects qualitative measures that characterize operational conditions within a traffic stream and their perception by motorists. These measures include freedom of movement, speed and travel time, traffic interruptions, types of vehicle, comfort, and convenience. Ideal conditions for a roadway would include good lane widths and roadside clearances, the absence of trucks or other heavy vehicles and level terrain. LOS is generally computed as function of the ratio of traffic volume (V) to the capacity (C) of the roadway or intersection, which provides the V/C ratio (see the table below).

Trucks impact the LOS by occupying more roadway space and by having poorer operating qualities than passenger cars. Because heavy vehicles accelerate slower than passenger cars, gaps form in traffic flow that affect the efficiency of the roadway. Also, intersections present a number of variables that can influence LOS including curb parking, transit buses, turn lanes, signal spacing, pedestrians, and signal timing.

The Transportation Research Board has developed the Highway Capacity Manual, which details the procedures to be used in predicting LOS for a range of roadways and intersections. The LOS of a roadway is defined with scales ranging from A to F, with A indicating excellent traffic flow quality and F indicating stop-and-go traffic. Level E is normally associated with the maximum design capacity that a roadway can accommodate. The highest quality of traffic service occurs on roadways when motorists are able to drive their desired speed without strict enforcement and are not delayed by slow-moving vehicles more than 30 percent of the time. This condition is representative of LOS A. The classifications of LOS B and C are characterized when average drivers are delayed up to 45 and 60 percent of the time, respectively, by slow moving vehicles. The LOS of A, B, and C are generally considered satisfactory.

When an area drops to a LOS of E, the speed of traffic is restricted 71 to 100 percent of the time; and intersection signal cycles have one or more vehicles waiting through more than one signal cycle during peak traffic periods. The LOS of D is considered tolerable in urban areas, since during peak hours 31 to 70 percent of the signal cycles have one or more vehicles which wait through at least one signal cycle. Current design practices indicate that a LOS of D during peak hours is acceptable due to the cost of improving roadways up to a LOS of C.

Western Half of OCS-P 0450 Truck Traffic

Truck traffic in Ventura County for the Western Half of OCS-P 0450 project will originate in Port Hueneme. Trucks will exit the port at Hueneme Rd., heading east for several miles. They will turn left at Las Posas Rd. and enter the ramp of southbound Highway 101. The trucks will then take Highway 101 south to Los Angeles County.

The project will involve 10 truck trips per work week, or approximately 2 truck trips per week day. The project will result in traffic increases of 0.03%, 0.04%, 0.003%, and 0.0025% at Hueneme Rd., Las Posas Rd., Highway 101 at Las Posas Rd., and Highway 101 at Kanan Rd, respectively. These small increases will not affect the LOS of any of these roadways.

Road/ Route	Class	Current ADT	ADT LOS	Design Cap	V/C Ratio	Ref.			
Port Hueneme to Ventura/L.A. County Border									
Hueneme Rd.	Major - 2 Lanes	11,900	С	16,000	0.74	1			
Las Posas Rd.	Major - 2 Lanes	9,200	Α	16,000	0.58	1			
101 Southbound at Las Posas Rd.	Freeway 6 - Lanes	140,000	В	195,000	0.72	2			
101 Southbound at Kanan Rd.	Freeway - 8 to 10 Lanes	163,000	В	292,500	0.56	2			

References

- 1. Traffic counts from Ventura County Department of Public Works 2011 Traffic Volumes
- 2. Traffic counts and average design capacity of 32,500 vehicles per lane per day from CalTrans.