Evaluating Connectivity among Hawaiian Fisheries and Potential Socio-economic Impacts of Offshore Wind Energy Installations

Administered by: Pacific OCS Region

BOEM Contact(s): Donna Schroeder, donna.schroeder@boem.gov

Procurement Type(s): Contract or Cooperative Agreement

Approx. Cost: $180 (in thousands)

Performance Period: FY 2019–2021

Date Revised: May 17, 2018

PICOC Summary

Problem
Given the ubiquity of fishing activities in virtually every part of the ocean, offshore renewable energy proposals often face strong opposition from some commercial fishing sectors.

Intervention
Guided discussions

Comparison
Social and economic characteristics of different fishing sectors unique to Hawaii

Outcome
Social and economic data, both qualitative and quantitative, on Hawaiian fisheries in an exportable database format, and an analysis of fisheries vulnerabilities and stakeholders’ attitudes towards offshore wind projects.

Context
Hawaii OCS

BOEM Information Need(s): The potential effects of wind energy installations to these fisheries may vary widely and include both positive and negative consequences. Local and popular understanding of these effects varies. Existing biases are likely to be largely negative and based on an incomplete understanding of potential renewable energy scenarios. Given the importance and the lack of up-to-date, general knowledge of the human dimensions of Hawaiian fisheries, BOEM needs to support a study to collect social, economic and logistical fisheries data, assess current attitudes towards offshore wind development in Hawaiian waters and evaluate the potential impacts to social and economic attributes of local fisheries. The timing of this effort is critical: Collecting these data substantially (five years) before any project is established enables BOEM and project proponents the best opportunity to understand the human environment in Hawaii and respond appropriately.

Background: Hawaiian fisheries are uniquely integrated into the local traditions, culture and economy of the state. These include subsistence fishermen operating strictly from shore as well as long-range, commercial-scale fisheries, and their participants’ motivation includes, in many cases, a complex blend of cultural, subsistence and economic drivers. Some of these fisheries take place in waters far from the main Hawaiian Islands (Kauai, Oahu, Molokai, Lanai, Maui, Hawaii), but most depend on access to areas within a few tens of miles from their home port, including areas under
consideration for installation of offshore wind turbines. Critically, there is often no clear distinction between subsistence, cultural, recreational and commercial fisheries.

Objectives: The purpose of this study is to collect information on Hawaii’s fisheries to enable early and effective outreach, and to inform impact analyses.

Methods: Several alternative approaches to evaluating similar fisheries attributes have been used in comparable circumstances: Fuller et al. (2017) quantified social-ecological connectivity amongst California-Oregon-Washington fisheries using the infoMap community detection algorithm (Rosvall and Bergstrom 2008) to construct “participation networks”. They used the strength of these networks to assess fisheries’ sensitivity to social and economic disturbance. Fuller et al.’s (2017) approach relies on generally available fisheries data (landings time series, accessed from PacFIN); but these data may be limited to fisheries with a more substantial commercial role, excluding those that are primarily recreational or subsistence, and the metadata (particularly home port information) may not accurately reflect the location of capture. Pitcher (1999, see also Pitcher et al. 1998) developed a rapid assessment tool called RAPFISH based on a multivariate approach for comparing the sustainability of multiple fisheries. RAPFISH has been adapted for use in comparing alternative offshore marine renewable energy technologies (Kramer et al. 2010). The flexibility of this method and the option to include qualitative, as well as quantitative, data on social, economic and ecological aspects of diverse fisheries made it the technique of choice for prioritizing management options for Hawaiian fisheries (Nelson and Kramer 2017). A combination of these methods will be used for this study.

Studies of the potential social and economic effects of the installation and operation of offshore renewable energy technologies in the main Hawaiian Islands will be useful to BOEM. Such studies might involve gathering and synthesizing existing economic and infrastructure data for potentially affected fisheries, conducting structured discussions with key participants in Hawaiian fisheries and with resource agency representatives, and analyzing these data to identify opportunities for public outreach, compare alternative scenarios for offshore wind lease plans, comply with the National Environmental Policy Act (NEPA), and, ultimately, improve the likelihood of public support and the successful development of offshore wind energy resources in Hawaii.

The costs and complexity of collecting human dimensions data will be minimized by engaging knowledgeable and respected local fisheries representatives, and limiting formal surveys to community leaders and resource managers (Nelson and Kramer 2017, Kittinger et al. 2012). Some measure of community engagement is also expected to improve cooperation and data quality (Crane et al. 2017).

Specific Research Question(s):

1) What socio-economic indicators are important in understanding changes to Hawaiian fisheries?

2) What are the potential beneficial and negative impacts of offshore wind farms to Hawaiian fishing communities?
References:

