018 Sunset Beach Late Afternoon

018 Sunset Beach Late AfternoonSiemens SWT-3.6-107
10 nm

018 Sunset Beach

Late Afternoon

Siemens SWT-3.6-107 10 nm

GENERAL INFORMATION

Base Photograph

Photo Name: SBA_0065 - UV2 levels

Date: April 12, 2012 Time: 4:31 PM

GPS Coordinates¹: lat 33.866868°, long -78.506473°

Viewpoint Elevation: 3'

Sun and Weather

Sun Angle/Azimuth: 263° Sun Elevation: 27° Lighting Angle: Side lit Weather Conditions: Sunny

Visibility²: 10 mi Wave Height: 1' Period: 5 sec.

Camera

Camera Make/Model: Nikon D7000 Sensor Dimensions: 23.6 mm X 15.6 mm Lens Make/Model: Nikkor DX AF-S 35 mm

Lens Focal Length: 35 mm

35 mm Equivalent Focal Length: 52.5 mm Horizontal and Vertical Angles of View: 37.3° wide and 25.3° high

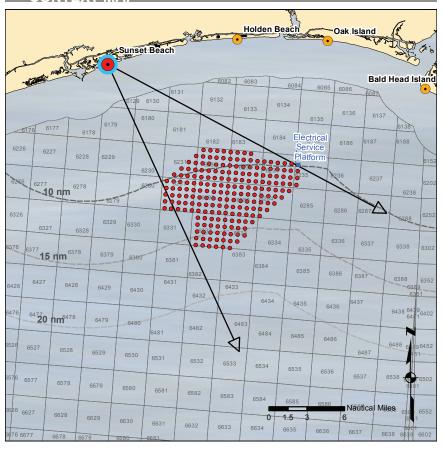
Camera Height: 1.5 m (5') Camera Azimuth³: 183°

Wind Turbine Information

Number: 200

Make and Model: Siemens SWT-3.6-107

Height/Dimensions:

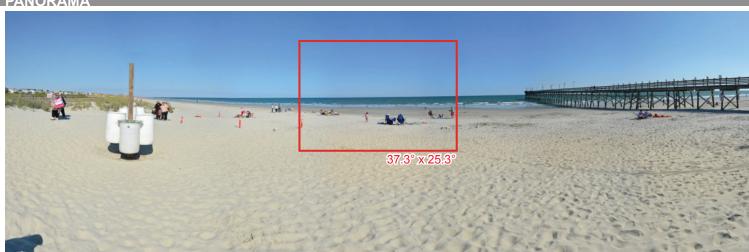

Support Structure/Monopile Ht.: 13 m (43') Hub Ht. (above Monopile): 80 m (262')

Rotor Diameter: 107 m (351')

Total Height to Tip of Blade: 147 m (481') Service Platform: A bldg. 50'H X 100'W X 200' L

elevated 50' above the water

CONTEXT MAP



VIEWING INSTRUCTIONS

The simulation is properly printed on an 11" X 17" sheet at actual size. If viewed on a computer monitor, use the highest screen resolution. The simulated image is at the proper perspective when viewed at 23.5" from the eye, or at a distance of approximately twice the image height.

NOTES

- Turbine heights were adjusted to the image's horizon line, which was slightly curved due to camera lens distortion.
- · The image was taken with a UV filter.
- · Image RGB levels were adjusted in Photoshop.
- Refraction Coefficient4 (k) = .075

018 Sunset Beach Late AfternoonSiemens SWT-3.6-107
15 nm

018 Sunset Beach

Late Afternoon

Siemens SWT-3.6-107 15 nm

GENERAL INFORMATION

Base Photograph

Photo Name: SBA_0065 - UV2 levels

Date: April 12, 2012 Time: 4:31 PM

GPS Coordinates¹: lat 33.866868°, long -78.506473°

Viewpoint Elevation: 3'

Sun and Weather

Sun Angle/Azimuth: 263° Sun Elevation: 27° Lighting Angle: Side lit Weather Conditions: Sunny

Visibility²: 10 mi Wave Height: 1' Period: 5 sec.

Camera

Camera Make/Model: Nikon D7000 Sensor Dimensions: 23.6 mm X 15.6 mm Lens Make/Model: Nikkor DX AF-S 35 mm

Lens Focal Length: 35 mm

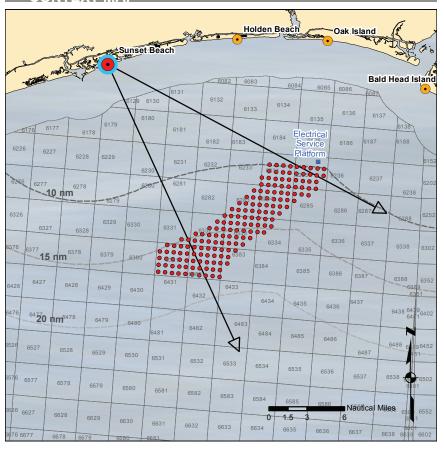
35 mm Equivalent Focal Length: 52.5 mm Horizontal and Vertical Angles of View: 37.3° wide and 25.3° high

Camera Height: 1.5 m (5') Camera Azimuth³: 183°

Wind Turbine Information

Number: 200

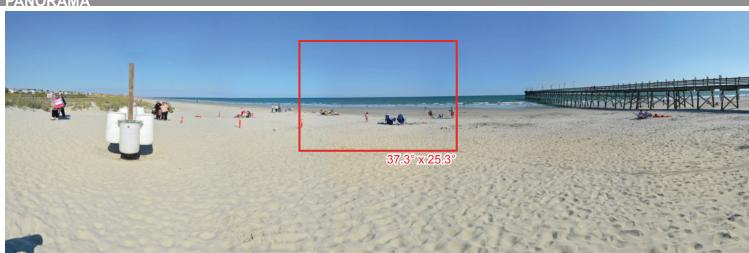
Make and Model: Siemens SWT-3.6-107


Height/Dimensions:

Support Structure/Monopile Ht.: 13 m (43') Hub Ht. (above Monopile): 80 m (262')

Rotor Diameter: 107 m (351')

Total Height to Tip of Blade: 147 m (481') Service Platform: A bldg. 50'H X 100'W X 200' L


elevated 50' above the water

The simulation is properly printed on an 11" X 17" sheet at actual size. If viewed on a computer monitor, use the highest screen resolution. The simulated image is at the proper perspective when viewed at 23.5" from the eye, or at a distance of approximately twice the image height.

NOTES

- · Turbine heights were adjusted to the image's horizon line, which was slightly curved due to camera lens distortion.
- · The image was taken with a UV filter.
- · Image RGB levels were adjusted in Photoshop.
- Refraction Coefficient4 (k) = .075

018 Sunset Beach Late AfternoonSiemens SWT-3.6-107
20 nm

018 Sunset Beach

Late Afternoon

Siemens SWT-3.6-107 20 nm

GENERAL INFORMATION

Base Photograph

Photo Name: SBA_0065 - UV2 levels

Date: April 12, 2012 Time: 4:31 PM

GPS Coordinates¹: lat 33.866868°, long -78.506473°

Viewpoint Elevation: 3'

Sun and Weather

Sun Angle/Azimuth: 263° Sun Elevation: 27° Lighting Angle: Side lit Weather Conditions: Sunny

Visibility²: 10 mi Wave Height: 1' Period: 5 sec.

Camera

Camera Make/Model: Nikon D7000 Sensor Dimensions: 23.6 mm X 15.6 mm Lens Make/Model: Nikkor DX AF-S 35 mm

Lens Focal Length: 35 mm

35 mm Equivalent Focal Length: 52.5 mm Horizontal and Vertical Angles of View: 37.3° wide and 25.3° high

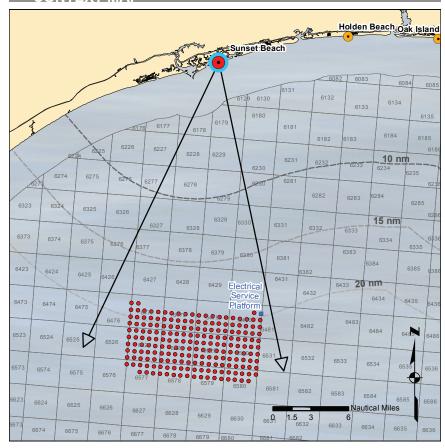
Camera Height: 1.5 m (5') Camera Azimuth³: 183°

Wind Turbine Information

Number: 200

Make and Model: Siemens SWT-3.6-107

Height/Dimensions:


Support Structure/Monopile Ht.: 13 m (43') Hub Ht. (above Monopile): 80 m (262')

Rotor Diameter: 107 m (351')

Total Height to Tip of Blade: 147 m (481') Service Platform: A bldg. 50'H X 100'W X 200' L

elevated 50' above the water

CONTEXT MAP

VIEWING INSTRUCTIONS

The simulation is properly printed on an 11" X 17" sheet at actual size. If viewed on a computer monitor, use the highest screen resolution. The simulated image is at the proper perspective when viewed at 23.5" from the eye, or at a distance of approximately twice the image height.

NOTES

- Turbine heights were adjusted to the image's horizon line, which was slightly curved due to camera lens distortion.
- · The image was taken with a UV filter.
- · Image RGB levels were adjusted in Photoshop.
- Refraction Coefficient4 (k) = .075

018 Sunset Beach Late AfternoonVestas V164-7.0 MW 10 nm

018 Sunset Beach

Late Afternoon

Vestas V164-7.0 MW 10 nm

GENERAL INFORMATION

Base Photograph

Photo Name: SBA_0065 - UV2 levels

Date: April 12, 2012 Time: 4:31 PM

GPS Coordinates¹: lat 33.866868°, long -78.506473°

Viewpoint Elevation: 3'

Sun and Weather

Sun Angle/Azimuth: 263° Sun Elevation: 27° Lighting Angle: Side lit Weather Conditions: Sunny

Visibility²: 10 mi Wave Height: 1' Period: 5 sec.

Camera

Camera Make/Model: Nikon D7000 Sensor Dimensions: 23.6 mm X 15.6 mm Lens Make/Model: Nikkor DX AF-S 35 mm

Lens Focal Length: 35 mm

35 mm Equivalent Focal Length: 52.5 mm Horizontal and Vertical Angles of View: 37.3° wide and 25.3° high

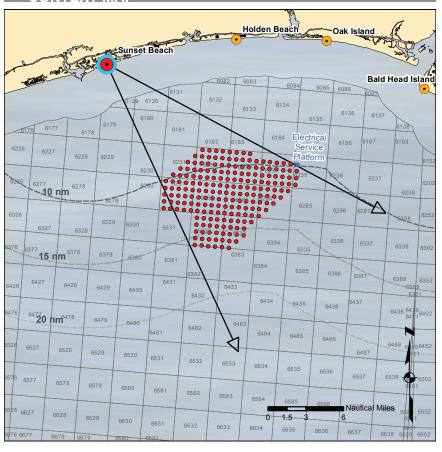
Camera Height: 1.5 m (5') Camera Azimuth³: 183°

Wind Turbine Information

Number: 200

Make and Model: Vestas V164-7.0 MW

Height/Dimensions:

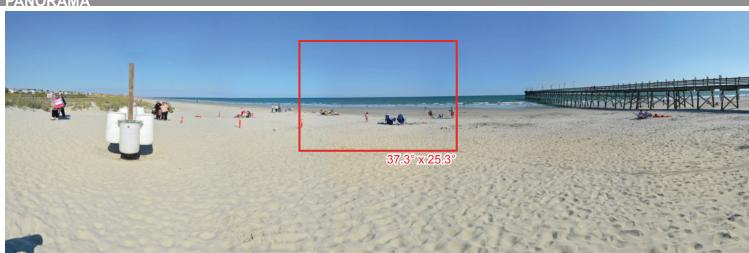

Support Structure/Monopile Ht.: 13 m (43') Hub Ht. (above Monopile): 105 m (345')

Rotor Diameter: 164 m (538')

Total Height to Tip of Blade: 200 m (656') Service Platform: A bldg. 50'H X 100'W X 200' L

elevated 50' above the water

CONTEXT MAP



VIEWING INSTRUCTIONS

The simulation is properly printed on an 11" X 17" sheet at actual size. If viewed on a computer monitor, use the highest screen resolution. The simulated image is at the proper perspective when viewed at 23.5" from the eye, or at a distance of approximately twice the image height.

NOTES

- Turbine heights were adjusted to the image's horizon line, which was slightly curved due to camera lens distortion.
- · The image was taken with a UV filter.
- · Image RGB levels were adjusted in Photoshop.
- Refraction Coefficient4 (k) = .075

018 Sunset Beach Late AfternoonVestas V164-7.0 MW 15 nm

018 Sunset Beach

Late Afternoon

Vestas V164-7.0 MW 15 nm

GENERAL INFORMATION

Base Photograph

Photo Name: SBA_0065 - UV2 levels

Date: April 12, 2012 Time: 4:31 PM

GPS Coordinates¹: lat 33.866868°, long -78.506473°

Viewpoint Elevation: 3'

Sun and Weather

Sun Angle/Azimuth: 263° Sun Elevation: 27° Lighting Angle: Side lit Weather Conditions: Sunny

Visibility²: 10 mi Wave Height: 1' Period: 5 sec.

Camera

Camera Make/Model: Nikon D7000 Sensor Dimensions: 23.6 mm X 15.6 mm Lens Make/Model: Nikkor DX AF-S 35 mm

Lens Focal Length: 35 mm

35 mm Equivalent Focal Length: 52.5 mm Horizontal and Vertical Angles of View: 37.3° wide and 25.3° high

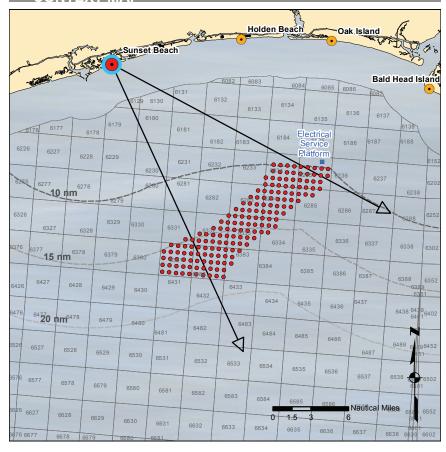
Camera Height: 1.5 m (5') Camera Azimuth³: 183°

Wind Turbine Information

Number: 200

Make and Model: Vestas V164-7.0 MW

Height/Dimensions:

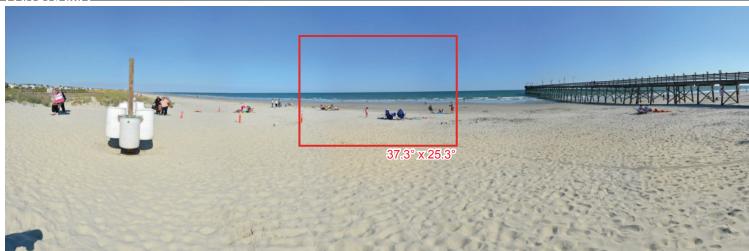

Support Structure/Monopile Ht.: 13 m (43') Hub Ht. (above Monopile): 105 m (345')

Rotor Diameter: 164 m (538')

Total Height to Tip of Blade: 200 m (656') Service Platform: A bldg. 50'H X 100'W X 200' L

elevated 50' above the water

CONTEXT MAP



VIEWING INSTRUCTIONS

The simulation is properly printed on an 11" X 17" sheet at actual size. If viewed on a computer monitor, use the highest screen resolution. The simulated image is at the proper perspective when viewed at 23.5" from the eye, or at a distance of approximately twice the image height.

NOTES

- Turbine heights were adjusted to the image's horizon line, which was slightly curved due to camera lens distortion.
- · The image was taken with a UV filter.
- · Image RGB levels were adjusted in Photoshop.
- Refraction Coefficient4 (k) = .075

018 Sunset Beach Late Afternoon Vestas V164-7.0 MW 20 nm

018 Sunset Beach

Late Afternoon

Vestas V164-7.0 MW 20 nm

GENERAL INFORMATION

Base Photograph

Photo Name: SBA_0065 - UV2 levels

Date: April 12, 2012 Time: 4:31 PM

GPS Coordinates¹: lat 33.866868°, long -78.506473°

Viewpoint Elevation: 3'

Sun and Weather

Sun Angle/Azimuth: 263° Sun Elevation: 27° Lighting Angle: Side lit Weather Conditions: Sunny

Visibility²: 10 mi Wave Height: 1' Period: 5 sec.

Camera

Camera Make/Model: Nikon D7000 Sensor Dimensions: 23.6 mm X 15.6 mm Lens Make/Model: Nikkor DX AF-S 35 mm

Lens Focal Length: 35 mm

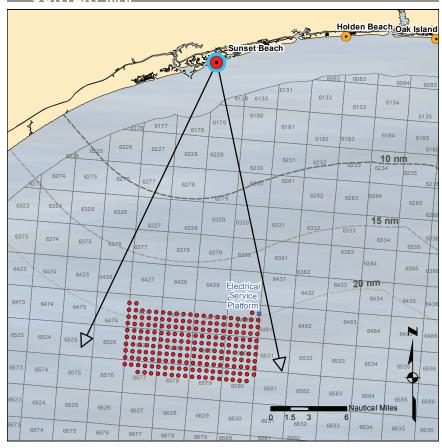
35 mm Equivalent Focal Length: 52.5 mm Horizontal and Vertical Angles of View: 37.3° wide and 25.3° high

Camera Height: 1.5 m (5') Camera Azimuth³: 183°

Wind Turbine Information

Number: 200

Make and Model: Vestas V164-7.0 MW


Height/Dimensions:

Support Structure/Monopile Ht.: 13 m (43') Hub Ht. (above Monopile): 105 m (345')

Rotor Diameter: 164 m (538')

Total Height to Tip of Blade: 200 m (656') Service Platform: A bldg. 50'H X 100'W X 200' L

elevated 50' above the water

The simulation is properly printed on an 11" X 17" sheet at actual size. If viewed on a computer monitor, use the highest screen resolution. The simulated image is at the proper perspective when viewed at 23.5" from the eye, or at a distance of approximately twice the image height.

NOTES

- · Turbine heights were adjusted to the image's horizon line, which was slightly curved due to camera lens distortion.
- · The image was taken with a UV filter.
- · Image RGB levels were adjusted in Photoshop.
- Refraction Coefficient4 (k) = .075

VISUALIZATION STUDY FOR OFFSHORE NORTH CAROLINA

INFORMATION PAGE FOOTNOTES

¹GPS Coordinates

Location coordinates as used in WindPRO to register the wireframe diagram to the photograph. Due to slight errors and lens distortion, these values may differ at the fourth significant digit as obtained from a handheld GPS device at the time the photographs were taken and as shown on the Project Location Map.

²Visibility

Visibility is obtained from the closest airport weather station (see chart at right). The chart shows which weather station was used for each site. Visibility is measured up to ten statute miles.

³Camera Azimuth

Camera azimuth was obtained using a magnetic compass at the time of photography. However magnetic anomalies in the study area make some of these measurements unreliable. The camera azimuth reported here is for true north and reflects the bearing used to register the wind turbines to the photograph in WindPRO.

⁴Refraction Coefficient

The correction for refraction comes from Technical Appendix F Earth Curvature and Refraction of Light, in the report *Visual Representation of Windfarms Good Practice Guidance*, prepared for Scottish Natural Heritage (h+m 2006). The coefficient of refraction k is commonly defined as the ratio between the radius of the earth and the radius of the light in the line of sight between an object and the observer (Hirt 2010). The value reported here is half this value, but it is multiplied by two in the Technical Appendix's equation.

ABBREVIATIONS

nautical miles statute miles mi mm millimeters meters m seconds sec. feet inches degrees latitude lat long Iongitude

Closest Airport Weather Station to Sites

Site	Weather Station Location NC
001 Corolla Lighthouse	Kill Devil Hills
002 Beach at Duck	Kill Devil Hills
003 Kitty Hawk	Kill Devil Hills
004 Coquina Beach	Kill Devil Hills
005 Bodie Island Lighthouse	Hatteras
006 Cape Hatteras Lighthouse	Hatteras
007 Lighthouse Beach	Hatteras
008 Ocracoke Beach	Hatteras
009 Portsmouth Life Saving Station Tower	Hatteras
010 Long Point Camps	Hatteras
011 Great Island Camps	Beaufort
012 Cape Lookout Lighthouse	Beaufort
013 Cape Point	Beaufort
014 Atlantic Beach	Beaufort
015 Bald Head Island	Southport
016 Oak Island	Southport
017 Holden Beach	Southport
018 Sunset Beach	Southport

REFERENCES

h+m and envision, 2006. Visual Representation of Windfarms Good Practice Guidance, Scottish Natural Heritage,

Hirt C., Guillaume S., Wisbar A., Bürki B. and Sternberg, H. 2010. Monitoring of the refraction coefficient of the lower atmosphere using a controlled set-up of simultaneous reciprocal vertical angle measurements. Journal of Geophysical Research, 115, D21102, doi:10.1029/2010JD014067