Welcome to the BOEM-Oregon Science Exchange

December 2, 2015 10:00 am Audio: call toll free 1-877-612-1641, passcode: 5729109 We will begin shortly!

BOEM-Oregon Science Exchange

Renewable Energy *in situ* **Power Cable Observations**

Ann Scarborough Bull, Ph.D.

Bureau of Ocean Energy Management, Pacific Region December 2, 2015

Power Cable Observations EMF and Marine Organisms

2 BOEM-Funded Pacific Field Studies Related to EMF

EMF Studies

#1 Spring 2016 Renewable Energy in situ Power Cable Observation www.boem.gov/pc-11-03/

#2 Summer 2017 Potential Impacts of Submarine Power Cables on Crab Harvest <u>www.boem.gov/pc-14-02/</u> Power Cable Observations EMF and Marine Organisms Study #1

Renewable Energy *in situ* Power Cable Observation

Does EMF from a power cable attract/repulse fish or invertebrates?

Objectives:

- Measure the strength, spatial extent, and variability of EMFs along both energized and unenergized cables.
- Determine attraction/repulsion of fish and macroinvertebrates to the EMF from the power cables.
- Determine the effectiveness of the commonly proposed mitigation of cable burial.

Identical 35 kV AC Power Cables

Methods:

11-13 m depth

Video Surveys using Sub

30-150 m depth

Methods:

Pipeline as Proxy for Unenergized Cable in Shallow Water Surveys

Some Findings from in situ Study

EMF Study #2

Mean EMF readings in μT

	SCUBA 11-13 m	Submersible 100-200 m
On Pipeline	0.5 μΤ	NA
On Cable	112 μΤ	109 µT
At ~0.5 m	2 μΤ	3 μΤ
At ~1 m	0.3 μΤ	0.2 μΤ
On Mud/Sand	0.0 μΤ	~0.05 μT

Some Findings from in situ Study – Shallow Water Depth

EMF Study #1

Average Number of Fishes Observed in Cable, Pipe, and Sand Habitats Per Survey Date from May through August 2012

Multidimensional Scaling All Fish Species – By Habitat May through August 2012

Some Findings from in situ Study – Deepwater Depth

Multidimensional Scaling All Fish Species – By Habitat

EMF Study #1

From 1-2 Years of Submersible Dives

Invertebrate Density 16 Species

EMF Study #1

Preliminary Findings from *in situ* Study

EMF Study #1

Unpublished Results from 1-2 Years of Surveys Final Analyses (from All Years) will Clarify Conclusions

Results suggest no response (attraction/repulsion) from fish or macroinvertebrates to EMF from a 35 kV AC *in situ* power transmission cable.

- Differences in invertebrate communities may be associated with sediment characteristics close to the cable and their patchy nature of distribution.
- Actual EMF measured on the cables and away from cable output closely fits the model results found in BOEM Normandeau study
- Apparent lack of response would indicate burial is not always essential for biological reasons.

The results will be published in scientific journals and issued as a 2015 BOEM report.

Power Cable Observations EMF and Marine Organisms Study #2

Potential Impacts of Submarine Power Cables on Crab Harvest

Will EMF from a power cable affect commercial crab harvest?

Objectives:

Determine if rock crab and dungeness crab will cross a power cable and be caught in commercial baited traps.

Determine likely impact on harvest for assessment documents and planning.

Potential Impacts of Submarine Power Cables on Crab Harvest

Will two crab species cross a power cable into a baited trap?

Methods:

- Use commercial crab fishermen and species.
- Determine the *in situ* EMF at AC and DC submarine cables.
- Expose rock crabs to 35 kV power cable with response choice in Santa Barbara Channel.
- Expose dungeness crabs to HVDC and/or AC power cables with response choice in Puget Sound.

Give Crabs a Choice to Decide if They will Cross a Power Cable in Response to a Baited Commercial Fishing Trap

Rock Crab Experimental Design for Santa Barbara Channel

EMF Study #2

Give Crabs a Choice to Decide if They will Cross a Power Cable in Response to a Baited Commercial Fishing Trap

Preliminary Findings from Potential Effects on Crab Harvest Study

EMF Study #2

Unpublished Results from 505 Rock Crab Experiments

Test ChiSquare DF Prob>Chisq Likelihood Ratio 2.4277 1 0.1192

Dungeness Crab Experimental Design for Puget Sound

Give Crabs a Choice to Decide if They will Cross a Power Cable in Response to a Baited Commercial Fishing Trap

Preliminary Findings from Potential Effects on Crab Harvest Study

EMF Study #2

Unpublished Results from 287 Dungeness Crab Experiments

Likelihood Ratio 2.1805 1 0.1398

Preliminary Findings from Potential Effects on Crab Harvest Study Unpublished Results from Rock and Dungeness Crab Experiments

EMF Study #2

- Results suggest rock crabs will cross an unburied 35 kV and dungeness crabs will cross an unburied 240 kV AC power cable to enter baited commercial traps.
- Results suggest rock and dungeness crabs will cross an unburied 35 kV and 240 kV AC power cable to enter baited commercial traps.
- The results will be published in scientific journals and issued as a 2017 BOEM report.

Contact Information

Ann Scarborough Bull, Ph.D.

Chief, Environmental Sciences Section Bureau of Ocean Energy Management Pacific OCS Region 805-384-6385 <u>ann.bull@boem.gov</u>

www.boem.gov/BOEM-Oregon-Science-Exchange-Calendar-2015/

www.boem.gov/Pacific-Studies/

Our thanks to Nikola Tesla

MINT