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sonic velocity flow limitations 
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Objectives
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University of Oklahoma Study Goals

• Prevailing WCD models lack an accurate pressure drop prediction at sonic 
and supersonic conditions.

‒ Models don’t account for flow regime development of two-phase flow 
that may attain sonic condition at the wellbore exist due to the 
dramatic pressure drop.

‒ Lack of theoretical models and experimental data of two-phase flow 
at high Mach number (Ma > 0.3) 

‒ Subsonic/supersonic conditions lead to the generation of shock waves 
in the system, which was not included in past studies.

• Goal is to develop a mechanistic model to predict two-phase flow 
characteristics for different WCD scenarios in the wellbore at high Mach 
number.

• Goal is to also provide a computational tool that predicts WCD rate under 
various operational conditions.



Slide 2

University of Oklahoma Team

Rida Elgaddafi
Post-Doc Associate

Olawale Taye
Post-Doc Associate

Raj Kiran
PhD Candidate

Jeff McCaskill
Technician and 
Equipment Specialist

Saeed Salehi, PI Ramadan Ahmed, Co-PI



Slide 2

Deliverable Milestone
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Progress

Deliverables Due

Literature Review and 

Theoretical Studies Report

January 5th, 2018

CFD Simulation/WCD 

Model Technical Reports

March 24th, 2018 

Technical Report for 

Laboratory Results

April 24th, 2018

Completion of WCD Model 

and Computational Tool

October 12, 2018

Final Report October 3, 2018

• Kick off meeting, October 24th , 2017



Methodology and Scope

WCD Computational Tool
Two-phase flow mechanistic model, PVT model and Nodal Analysis 

Experimental study 
Measuring two-phase characteristics under a wide range of fluid 

velocity

Computational Fluid Dynamics 
Develop a simulation model for predicting TP characteristics

Literature Review 
Review preceding experimental and theoretical studies



University of Oklahoma (OU) :
High Velocity Experimental Setup

• A new flow loop has been developed to perform high-velocity 
two-phase flow loop.



University of Oklahoma (OU) 
WCD Computational Tool

Interface
Input data

• Reservoir properties

• Wellbore properties

Output

 Programming Language:

o C++ (main program)

o VBA(interface)

 Computer requirements for execution:

o Excel 2013 Macro-Enabled Office

 Interface: 

o Handles up to 15 layers including open hole 

properties

o Users can validate the input data 

o Visualize the results using customized plots 
WCD rate displayed



University of Oklahoma (OU) :
WCD Computational Tool
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Experimental Setup and Procedure



 Introduction

 Flow Loop Components

 Problems and Challenges

 Measuring Techniques

 Test Type and Procedure
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Outline



 A new flow loop has been developed to perform high-velocity

two-phase flow loop.

 The loop has two 18-ft long test sections:

 3.25” Pipe section

 3.25” X 1.315” Annular section

 Ranges of test parameter

 Liquid rate: 5 to 240 gpm

 Gas rate: 8 to 320 lbm/min

Slide 2Introduction



Flow Loop 

Photo
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Schematic
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Flow Loop Components

 Test section

 Air supply system

 Water circulation system

 Data acquisition system
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Test Sections
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• Differential pressure

• Static Pressure

• Temperature
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• Holdup

• Safety

• Check

Others

• Visualization system

• Air accumulators

• Perforated disks



Inlet Section

• Holdup valve

• Mixing section

• Water injection

• Liquid-level measuring dp meter
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Air Supply System
Slide 6

Compressors

• Atlas Copco 1600 cfm

• Atlas Copco 1800 cfm (Rented)

• Sullair/Doosan 1600 cfm (Rented)

Valves

• Inlet

• Bypass (not used)

• Flow regulating

Sensors

• Flow meters (F1 and F2)

• Pressure

• Temperature
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FC1
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BPV2
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P0INV1

C03

Air

PG



Air Supply System - Photo
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Water Circulation System
Slide 6

Equipment

• Water tank

• Water pumps with VFD control

Valves

• Relief

• Bypass (not used)

Sensors

• Flow meter (F3)

• Pressure

• TemperatureP02

BPV1

P01
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RS4

V01

PG

Air

F3

Water

Water

Return



Equipment
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Water Tank

Primary Water Pump Secondary Water Pump



Problems and Challenges
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• Equipment failure: inner pipe support failure and view port leaks

• Water hammer and pressure surge causing leaks and pipe failure 

• Vibrations

• Instrument failure : flow meters and pressure sensors



Measuring Techniques
Slide 8

• Pressure drop: Two differential pressure sensors 

Accuracy 0.05%, Measuring Range ± 40 and 200 in H2O

• Flow Rate: Coriolis flow meters

Accuracy 0.35%

Accuracy 0.05%, Measuring Range 550 and 2564 lb/min

• Liquid Holdup: Differential pressure sensor

Accuracy 0.05%, Measuring Range ± 200 in H2O



Test Procedure – Holdup Experiment
Slide 9

1. Start the data acquisition program.

2. Drain liquid from the test section to prevent liquid hammers.

3. Inject air into the loop at low rate and increase it gradually to the desired rate.

4. Inject liquid at low rate and increase it gradually to the desired rate.

5. Record the flow pattern using a high-speed camera when steady state flow establishes.

6. Quickly close the holdup and inlet valves and stop the liquid circulation pump.

7. Record liquid holdup when the liquid level measurement establishes.

8. Slowly depressurize the test section using the backpressure valve.

9. Save all recorded measurements and close the data acquisition program



Holdup Experiment - Measurements
Slide 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

13:58 14:00 14:03 14:06 14:09 14:12

D
P

 (
in

 H
2

O
/ 
in

)

Time

DP1
DP2
L1

0

20

40

60

80

100

13:58 14:00 14:03 14:06 14:09 14:12

F
lo

w
 R

a
te

Time 

Qg (lbm/min)

QL (gpm)

Video Recording



Test Procedure – Variable Rate Experiment
Slide 9

1. Start the data acquisition program.

2. Drain liquid from the test section to prevent liquid hammers.

3. Inject air into the loop at low rate and increase it gradually to the desired rate.

4. Inject liquid at low rate and increase it gradually to the desired rate.

5. Maintain steady state flow condition for more than a minute.

6. Increase the gas rate.

7. Repeat Steps 5 and 6 until the gas rate reaches the maximum flow rate.

8. Save all recorded measurements and close the data acquisition program



Variable Rate Experiment - Measurements
Slide 9
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Modeling Two-Phase Flow and 

WCD Rate in Pipe
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Outlines
 Introduction

 Statement of problem

 Objectives

 Methodology and scope

 Literature review findings

 Two phase flow model (CFD)

 WCD Computational Tool (WCD-CT)

 Two-phase flow mechanistic models

 Comparative study

 Conclusions
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Introduction 

 WCD is the daily rate of an uncontrolled flow of hydrocarbons

from all producible reservoirs into open wellbore. (BOEM)

 WCD is a result of blowout, which has constantly been a

concern for oil and gas industry in the US.

 During the last 15 years, 58 blowout incidents in the US Gulf

of Mexico and 36 blowouts in the rest of the world were

occurred. (BSEE)

 Multiphase flow is a common occurrence during the blowout

incidents.

 Accurate prediction of WCD scenario is strongly related to

accuracy of two-phase flow model.

June 3, 1979 (GOM) Oil flows from the blown Ixtoc wellhead. 
(National Oceanic and Atmospheric Administration)
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Statement of problem

 Blowout incidents of oil and gas offshore wells can cause a environmental

hazard.

 Prevailing WCD models lack an accurate pressure drop prediction at sonic

and supersonic conditions.

 Development of the two-phase flow in the wellbore which may attain sonic

condition at the exist due to the dramatic pressure drop.

 Determining two-phase flow characteristics in the wellbore is more

challenging compared to that of the single phase.

 Lack of theoretical models and experimental data of two-phase flow at high

Mach number (Ma > 0.3)
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Objectives

 Better understanding of physical phenomena associated with WCD scenario,

particularly behavior of two-phase flow at high Mach number.

 Developing a simulation model using ANSYS to predict pressure profile in the

wellbore.

 Developing a mechanistic model to predict two-phase flow characteristics for

different WCD scenarios in the wellbore at high Mach number.

 Provide a computational tool that predicts WCD rate under various

operational conditions.
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Methodology and Scope

WCD Computational Tool
Two-phase flow mechanistic model and Nodal Analysis 

Experimental study 
Measuring two-phase characteristics under a wide range of fluid 

velocity

Computational Fluid Dynamics 
Develop a simulation model for predicting TP characteristics

Literature Review 
Review preceding experimental and theoretical studies
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Literature Review – Key Findings

 The experimental study reveals that the trend of pressure drop changes at a

higher velocity in comparison to the trend at lower velocities.

 In multiphase flow, the speed of sound is different from that of single-phase

flow.

 Subsonic/supersonic conditions lead to the generation of shock waves in the

system, which was not included in past studies.

 Though, the two-phase flow characteristics have been extensively studied for

low velocities (Mach number <0.3) in vertical pipes, it lacks significantly at the

subsonic and supersonic front.
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Literature Review – Key Findings

• Very limited theoretical and experimental studies were carried out to

investigate two-phase flow phenomena in annuli.

• Post CFD simulation model of two-phase flow in the wellbore are limited to

relatively low gas and liquid superficial velocities.

• Existing CFD simulations of sonic and supersonic conditions are merely

developed for single-phase converging-diverging nozzle flows.

• Various flow patterns can be developed in the wellbore, which significantly

effect pressure gradient and ultimately estimation of the WCD.
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Literature Review - Con. 
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• Experimental Study (Luo et al. 2016)
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• Test section ID = 2.5 in
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• Superficial Liquid velocity = 1.0 – 1.95 m/s
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Literature Review - Comparative Analysis 

• Luo et al. (2016)

• Perez (2008) 

• Waltrich et al. (2015)
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 Experimental Studies
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Literature Review - Comparative Analysis 
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Perez (2008) 38 - 67 0.2 – 0.7 0.16 – 3.83
Bubble, slug and 
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Waltrich et al. (2015) 50.8 – 305 0.12 – 0.73 0.31 – 31.0 
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Literature Review - Factors Affecting WCD

 Liquid and gas flow rates

 Pipe size & roughness

 Fluid properties 

 Flow patterns 

 Volumetric liquid Holdup

 Pressure gradient 

Wellbore 

conditions 

Reservoir 

Parameters

WCD 
rate  Reservoir pressure & temperature

 Absolute & relative Permeability 

 Productivity

 Bottom-hole flowing pressure

 Gas-oil ratio

 Height of pay zone 
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Computational Fluid Dynamic – CFD Model

 Fundamentals of CFD Model (ANSYS Fluent)

• Conservation of mass (continuity equation)

• Conservation of momentum

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌 Ԧ𝑣 = 𝑆𝑚

𝜕 𝜌𝑣

𝜕𝑡
+ 𝛻. 𝜌 Ԧ𝑣 Ԧ𝑣 = −𝛻𝑝 + 𝛻. Ӗ𝜏 + 𝜌 Ԧ𝑔 + Ԧ𝐹

Modelling Multiphase Flow

 Turbulence Model

 Mixture Model

 Volume of Fluid (VOF) Model

 Eulerian Models

 Hybrid model

 K – ε model 

 K – Omega model 
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CFD Model – Solver setup

Flow 
Geometry 

Mesh 
Generation 

Model 
setup

Solution

• ICEM software

• Mesh sensitivity 

analysis 

• Desired dimensions 

(2 m long)

• Pressure based solver 

• Transient or steady state

• Multiphase model 

• Turbulence model

• Material 

• Boundary conditions 

• Solution method 

• Solution control

• Initialization

• Run calculation 
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CFD Model – Validation

Case
Flow 

pattern

Pipe 

diameter

(in)

VSG

(m/s)

VSL

(m/s)

CFD 

(DP/DL) 

(KPa/m)

Exp. 

(DP/DL) 

(KPa/m)

Existing 

model

(DP/DL) 

(KPa/m)

Error 

(%)

1 bubble 8 0.03 0.18 9.50 9.05 9.43 5

2 bubble 8 0.03 1.06 9.65 9.7 9.5 0.5

3 bubble 8 0.26 1.06 8.05 8.5 8.9 -5

 Experimental Data [Ohnuki and Akimoto (2000)] 
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CFD Model – Results
 Pressure & 

Velocity Profile 
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CFD Model – Validation (OU Data)
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3.25 in

212 in

 CFD Model for OU Lab-Setup

Pressure based solver

 Specify fluid test (air compressibility)

 Active energy equation 

Multiphase model (hybrid model)

Turbulence model (SST k-ω model)

 Boundary condition (pressure inlet boundary)

 Solution method 

Solution control
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CFD Model – High Velocity
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CFD Model – Results
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WCD - Computational Tool

 Nodal Analysis Technique

 PVT Model

 Production Model

 Reservoir Model

 Hydrodynamic Flow Model

WCD Model 
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WCD CT- Nodal Analysis
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Fluid flow in the Wellbore

D
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th
 

0

 Single phase flow

• Liquid flow 

• Gas flow

Two-phase flow 

• Bubbly flow

• Dispersed bubble flow 

• Slug flow 

• Churn flow 

• Annular flow

• Mist flow  
Schematic of expected two-phase flow pattern in the 

wellbore (Modified after Hasan and Kabir 1988)
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Mechanistic Model for Two-Phase Flow in Pipe

(Shoham, 2005)          

Region I Region II
Region III

 Existing Two-Phase Flow Model 

REFERENCE FLOW PATTERN 

Hasan & Kabir (1984) Bubble, Slug & Annular

Pagan et al. (2017) Churn & Annular 

Ansari et al. (1994)
Dispersed, Bubble, Slug & 

Annular 

Tengesdal et al. (1999) Bubble, Slug, churn & Annular

Sylvester (1987) Slug 

Yao and Sylvester (1987) Annular – Mist 
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Modified Flow Pattern Map for WCD – Computational Tool
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Mechanistic Model for Two-Phase Flow in Pipe – Validation

 Low Flow Conditions (Exp. Data from Hernandez Perez 2008) 

 Superficial Liquid velocity = 0.73 m/s

 Pipe ID = 1.5 in

 Superficial gas velocity = 0.40 – 3.85 m/s.

 Slug flow pattern 

 Discrepancy between predicted & measured  < 7%
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Modified Model Exp. Data

 Superficial Liquid velocity = 0.1 m/s

 Pipe ID = 1.5 in

 Superficial gas velocity = 0.23 – 4.28 m/s.

 Slug flow pattern 

 Discrepancy between predicted & measured  < 7%
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Mechanistic Model for Two-Phase Flow in Pipe – Validation

 High Flow Conditions (OU – Lab Data) 

• Liquid flow rate = 200 gpm (Vsl = 2.41 m/s)

• Pipe ID = 3.25 in

• Superficial gas velocity = 9.21 – 78 m/s.

• Slug flow pattern

• Discrepancy between predicted & measured  < 20%

• Liquid flow rate = 240 gpm (Vsl = 2.86 m/s)

• Pipe ID = 3.25 in

• Superficial gas velocity = 9.22 – 68 m/s.

• Slug flow pattern 

• Discrepancy between predicted & measured  < 25%
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Mechanistic Model for Two-Phase Flow in Pipe – Validation

 High Flow Conditions (OU – Lab Data) 
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• Pipe ID = 3.25 in
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Mechanistic Model for Two-Phase Flow in Pipe – Validation

 Large Pipe Diameter (12 in) (Exp. Data from Waltrich et al. 2015)
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Comparison Between CFD and Mechanistic Model
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Comparison Between CFD and Mechanistic Model

Large pipe (22-in)
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Conclusions 

 Comparative analysis shows good agreement between LSU data and other available

measurements.

 WCD rate is not only reliant on conditions of the wellbore section but it is also influenced

by the fluid properties and reservoir characteristics.

 An acceptable agreement was obtained between simulation predictions of the pressure

drop and experimental data at various test conditions.

 An accurate WCD – computational tool is developed to predict the daily uncontrolled flow

of hydrocarbons from all producible reservoirs into open wellbore.

 The modified mechanistic model demonstrated good agreement between predicted and

measured pressure gradient in the wellbore which provides a strong confidence in WCD

rate predictions.
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Objectives

 To Improve understanding of the impact of high Mach number

(0.3 – 1+ Mach) flow on WCD calculation

 Identify and investigate flow patterns (churn, annular, and mist)

and flow geometry variation (tubing and annulus pipe).

 To Investigate two-phase flow behavior in vertical pipe and

annulus at high superficial gas velocities.

3
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Schematics of the Experimental Flow Loop

Figure 3.1 A schematics of the experimental flow loop



Preliminary Test
(Single Phase Liquid Flow Test)

5

Pressure loss (ΔP) in any circular duct is related to diameter (D), length (L), fluid

density (ρ) and mean fluid velocity (V). Thus:

∆𝑷 = 𝒇𝒇
𝟐𝑳

𝑫
𝝆𝑽𝟐

Chen (1979) Friction Factor equ

𝟏

𝒇𝑫
= −𝟐. 𝟎 𝒍𝒐𝒈

𝜺

𝟑.𝟕𝟎𝟔𝟓𝑫
− 𝒍𝒐𝒈

𝟏

𝟐.𝟖𝟐𝟓𝟕

𝜺

𝑫

𝟏.𝟏𝟎𝟗𝟖
+

𝟓.𝟖𝟓𝟎𝟔

𝑹𝒆
𝟎.𝟖𝟗𝟖𝟏

where fD is Darcy friction factor, which is defined as fourfold Fanning friction factor, 𝛆
is the pipe roughness, Re is a Reynold number



Preliminary Test
(Single Phase Liquid Flow Test)

AnnulusPipe

6



 DP cell sensor is utilized to measure residual liquid column in the test section using

hydrostatic pressure concept.

 DP liquid holdup measurement approach

𝑯𝑳 =
ൗ

𝑷𝒘𝒇
𝝆𝒍𝒈

(𝑯𝑻𝐀)
=

𝑷𝒘𝒇

𝝆𝒍𝐠𝑯𝑻

 𝑃𝑤𝑓 is the bottom-hole pressure, 𝐴 is the cross-section area of the test section, 𝜌𝑙

represents liquid density, g depicts the gravity, and 𝐻𝑇 is the total height of the test

section

Preliminary Test (Liquid Holdup Validation)

7



 Volumetric liquid holdup equation:

𝑯𝑳 =
𝑽𝑳

𝑽𝑻

 where 𝑯𝑳 is liquid holdup, 𝑽𝑳 is the

liquid volume, 𝑽𝑻 is the total

volume of the test

Preliminary Test (Liquid Holdup Validation) Cont.

8



Preliminary Test (Liquid Holdup Validation) Cont.

𝐐𝐋

(GPM)

𝐐𝐠

(lb/min)

HL

(DP Cell) %

(Volumetric HL) 

%

Error 

%

35 25 7 8.0 1.0

40 10 14 12.9 1.1

9



Flow Regime (Churn Flow) 

• The classification of flow regimes is an important part of two-phase flow analysis.

• It aids to develop or select an appropriate flow model to predict two-phase

behavior in vertical pipe and annulus

• Two-phase flow regimes depend on parameters such as liquid and gas velocities,

pipe geometries, and fluid properties

• Churn flow occurs at high gas flowrate with moderate liquid flowrate. It can be

described as a chaotic frothy mixture of gas-liquid moving upward and downward

in the entire pipe.

10



Flow Regime (Annular Flow) 

• The flow regime occurred at high gas and liquid velocities

• Liquid films flow around the wall of the pipe due to high

energetic gas-phase velocity and the gas flows at the core with

entrained droplets

11



Flow Regime Map for Pipe
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Flow Regime Map for Annulus
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Flow Regime Comparison for Pipe

14
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Flow Regime Comparison for Annulus
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Holdup Measurement in Pipe (OU)
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Holdup Measurement in Annulus (OU)
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Comparison of Liquid Holdup with LSU data
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Pressure Gradient in Two-Phase Flow

The total pressure drop for gas-liquid flow per unit length of a pipe consists

of three components:

1. Hydrostatic Component

2. Acceleration Component

3. Frictional component

∆𝑷

𝑳 𝒕
=

∆𝑷

𝑳 𝒉
+

∆𝑷

𝑳 𝒂
+

∆𝑷

𝑳 𝒇

19
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Pressure Gradient in Two-Phase Flow

• The existence of hydrostatic component of two-phase

pressure drop is due to differences in the density

between the gas and liquid phase and the influence of the

gravity.

• The acceleration component of pressure drop is usually

small and can be neglected



Schematic  Pressure Gradient Behavior in 
Vertical Two-Phase Flow (Shoham, 2005)
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Pressure Gradient at Sonic Boundary (Pipe)
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Indication of Sonic Condition

• Upstream Vs Gas Superficial Velocity

• Shock Wave

• Shock Wave Sound

• Pressure Reversal
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Upstream Pressure VS Gas Superficial Velocity (Pipe)
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Sample of Supersonic- Video ( Vsl =0.058 m/s, Vsg = 162.57 m/s, Pipe ID:0.083M )
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Pressure Gradient Without Sonic Boundary (Pipe)
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Pressure Gradient (Annulus)

0

5

10

15

20

25

30

35

40

0 50 100 150

P
re

ss
u

re
 G

ra
d

ie
n

t 
(k

P
a/

m
)

Gas Superficial Velocity (m/s)

Vsl 0.12 m/s

Vsl 0.29 m/s

Vsl 0.58 m/s

Vsl 1.17 m/s

Vsl 1.47 m/s

Vsl 0.88 m/s

Vsl 2.35 m/s

Vsl 1.76 m/s



28

Upstream Pressure VS Gas Superficial Velocity 
(Annulus)
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Conclusions

• Pressure gradient increases with gas superficial velocities. However, it

sharply decreases as the flow approaches sonic flow condition at low

superficial liquid velocities in pipe.

• Pressure gradient slightly increased with liquid superficial velocity at fixed

gas superficial velocity. The friction component of the total pressure

gradient dominated the two-phase flow in this research.

• Liquid holdup decreases with increase in gas superficial velocity.

• Two different flow regimes with transition (churn, annular and transition

between churn and annular) were encountered in this investigation.
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• Introduction

• CFD Modeling

• Sonic Modeling

• WCD Computational Tool

 Capability

 User interface

 Demonstration

 Comparative study with prosper

 Sensitivity analysis

• Conclusions
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Introduction
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Way Forward

Literature Review

Experiment

CFD Modeling

WCD Model
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Computational Tool



1. Goals

2. Domain

CFD Modeling
Slide 4

Identifying Problem 

3. Geometry

4. Mesh

5. Physics

6. Solver setting

Pre-processing

7. Computation

Solve

8. Results

Post-processing



Experimental data simulation
Slide 5

• Simulation results for air-water flow using VOF approach

Vsg (m/s) Vsl (m/s) Pattern
Simulated Pressure 

Gradient (Pa/m)

Experimental Pressure 

Gradient (Pa/m)
Error Slip ratio

0.069 1.545 DB 11231 11500 -3% 0.045

0.002 0.0375 BB 7741 7003 10.5% 0.053

0.040 0.090 BB 8340 8859 -5.85% 0.444

0.437 0.101 SL 5056 5086 -0.6% 4.327

1.972 1.959 SL 5783 8459 -32% 1.007

21.893 0.111 AN 1042.5 2254 -48.6% 197.234

16.61 0.523 AN 3574 4671 -23.5% 31.759

21.256 0.111 AN 1008 2125 -52.5% 191.495

16.68 0.548 AN 5115 7685 50.22% 30.438

• Simulation for air-water flow using Eulerian approach

Vsg (m/s) Vsl (m/s) Pattern
Simulated Pressure 

Gradient (Pa/m)

Experimental Pressure 

Gradient (Pa/m)
Error Slip ratio

0.44 0.10 SL 5056 5086 -0.6% 4.327

13.02 0.30 AN 2486 3176 -22.2% 43



CFD Modeling and its significance
Slide 6
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 Superimposed experimental 

data for 20 GPM liquid rate with 

the upstream pressure is 37 psi. 

 Similar trends for simulation and 

experiment.

 The liquid velocity in the 

simulation is much higher than 

that of experimental condition.

 The experimental conditions 

required to achieve the sonic 

condition 

 Several simulation data was 

used to validate the mechanistic 

models.



High Mach number flow
Slide 7

 Experimental data 

superimposed on the 

well-known chart for the 

speed of sound as a 

function of the void 

fraction of two-phase 

mixtures given by 

Kieffer (1977).

These shaded 
experimental data is 
the case of Mach 
number above 1

These shaded 

experimental data 

is the case of Mach 

number above 1



Sonic Modeling
Slide 8

•Sonic velocity prediction based on studies from Kieffer (1977) and 

Wilson and Roy (2008).

 Model uses Pressure and volumetric gas distribution.

 Comparison between fluid velocity and sonic velocity.

 In case of match, sonic condition is established.

 Flow is decoupled and limited by sonic condition.

 Well flow pressure calculated using the sonic velocity.



Sonic Condition Determination Model
Slide 9

If P<100 bar

𝑉𝑠𝑜𝑢𝑛𝑑 = 80.44𝑃0.6337 𝑥2 − −0.0607𝑃2 + 23.23𝑃 + 74.42 𝑥 + 30.52𝑃0.672 + 20
Otherwise

𝑉𝑠𝑜𝑢𝑛𝑑 = 1804𝑃−0.01989 𝑥2 − 0.0002878𝑃2 + 0.8032𝑃 + 1884 𝑥 + 220.4𝑃0.2486 + 20

where P is the pressure in Pa, x is volume fraction of gas given by the following 

formula:

𝑥 =
𝑉𝑠𝑔

𝑉𝑠𝑔 + 𝑉𝑠𝑙
where Vsg is the superficial gas velocity and Vsl is the superficial liquid velocity. The 

details of this model will be provided in the report for the WCD tool.



Sonic Velocity Comparison
Slide 10
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How the sonic model works?
Slide 11

Two conditions can prevail in wellbore

Subsonic conditions Sonic conditions

—Mach number less than 1

—Wellhead pressure as 

defined by user

—Fluid velocity governed by 

bottom-hole and wellhead 

pressure

—Mach number 1 at the exit

—Wellhead pressure 

controlled by sonic 

condition

—Fluid velocity governed by 

sonic velocity at the exit



How the sonic model works?
Slide 12

Start

Input reservoir and 

well properties

Do the calculation 

for nodal analysis

Is there any grid 

with fluid velocity 

greater than 

sonic velocity

Display 

the results

Start the sonic 
model

Consider the exit 
velocity as sonic velocity

Pwh = Pwh + ∆P, and perform the 
calculation for full wellbore

Is there any grid with 
fluid velocity greater 
than sonic velocity 

except at exit

Display the 
results

No

YesYes

No



WCD Tool
Slide 13

• Programming Language

 C++ (main program)

 VBA (interface)

• Computer requirements for execution

Macro-Enabled 2013 MS-Excel (For 2010 another version of program)

Interface
Input data

• Reservoir properties

• Wellbore properties

Output

Validation

Main Program

Feedback



Capability
Slide 14

• Handles up to 15 layers including open hole properties.

• Users can validate the input data.

• Visualization of the results using customized plots.

• Combined plot of velocities and flow pattern.

• Overall WCD, gas flow, and water flow rates

• WCD, gas flow and water flow rates, well flow pressure, GOR, productivity 

index for each layer.

• Sonic condition in the wellbore

• IPR Plots for each layer and corresponding discharge rate

• Flow properties in tabulated form for each layer

• Visualization of flow pattern from the bottommost of well.



How this tool is different?
Slide 15

Mixing zone

Layer 2

Layer 1

Flowing bottom 

hole is considered 

at this point

Mixing zone

Layer 2

Layer 1

Flowing bottom hole is considered at 

the bottom-most point of the wellbore

Traditional available software OU WCD Computational Tool



How this tool is different?
Slide 16
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Water is 
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Layer 1
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any position 
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Traditional available software OU WCD Computational Tool
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How this tool is different?
Slide 17
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How this tool is different?
Slide 18

 Only empirical correlations have 

been considered.

 Sonic modeling (if there) is based 

on single gas phase flow only.

 Never tested for high flow rates.

When the flow is friction dominated, 

the pressure gradients increases. 

Empirical models were never tested 

for experimental data in these 

conditions. 

Mechanistic model is used.

 Sonic modeling is based on two 

phase flow condition.

 Tested for high flow rates.

When the flow is friction dominated, 

the pressure gradients increases. 

The hydraulics model is tested for 

that. 

Traditional available software OU WCD Computational Tool



How this tool is different?
Slide 19

 To calculate WCD, the reservoir 

modeling and hydraulics modeling 

performed separately.

 Fluid properties input for hydraulics 

model is based on the reservoir 

models

 Average IPR and TPR curve for the 

system. 

Traditional available software OU WCD Computational Tool

 Integrated the reservoir modeling 

and hydraulics modeling.

 Fluid properties are updated based 

on the input parameters while 

running the calculation.

 Distinct IPR curves and discharge 

points for each layers of reservoir.
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 Radial and steady state reservoirs.

 All input layers are producing with minimum of 0 flow rate.

Geothermal temperature gradient is considered for the temperature 

profile.

 The bottom-most layer is always considered to be producing (if 

negative flow encountered, update the input with upper layer as 

bottom-most layer).

 Different reservoirs are not communicating to each other
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• Seven tabs 

in ribbon.

• Each tab is 

for distinct 

task.
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Input page 

for wellbore 

properties.



WCD Tool
Slide 23

Users can 

Visualize the 

number of 

layers, 

wellbore type 

and path.

Button to 

display the 

well profile
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Users can 

Visualize the 

number of 

layers, casing 

inner 

diameter, 

open hole 

diameter, liner 

diameter.

Button to 

display the 

wellbore 

schematic
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Updates the 

input file to 

run the main 

program.

Runs the 

main 

program

Reads the 

output file 

generated 

from the 

main 

program
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If the 

reservoir 

pressure is 

low, the 

software will 

point out this 

anomaly and 

will display 
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Reservoir 

properties for 

flow

15 layers 

overall 

Note for the 

way the layer 

properties 

should be 

entered
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User can 

select any of 

four reservoir 

fluid
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User can 

choose any of 

three formation 

types:

Unconsolidated 

sand

Consolidated 

sand

Limestone
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•User can 

validate the 

input data.

•It will provide 

feedback in 

case of any 

errors
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Display for 

WCD rate, 

Gas rate, and 

Water rate

Display for well 

flow pressure, 

oil flow rate, 

gas flow rate, 

water flow rate, 

productivity 

index, and 

GOR for each 

layer
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Normalized 

Superficial 

gas velocity

Normalized 

Superficial 

liquid velocity

Flow pattern
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Flow pattern 

zones

Zones 

description

Flow 

patterns 

along the 

measured 

depth
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User can 

choose and 

see any of 

these six 

plots in the 

window 

below
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Radius Vs Depth Pressure Gradient 

Vs Depth

Superficial liquid velocity 

Vs Depth
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Pressure vs. DepthSuperficial gas and sonic  

velocity vs. Depth
Flow Pattern vs. Depth
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• IPR Plots

• Shows Oil and 

Gas flow rate 

with respect to 

well flow 

pressure

• User can 

visualize the 

flow rate from 

different layers
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Oil flow rate Vs. 

Well flow pressure

Discharge flow 

rate with well flow 

pressure

Gas flow rate Vs. 

Well flow pressure
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Work flow

Defining 
the system

PVT Data IPR Data
Equipment 

Data
Analysis
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Methodology
• Inflow performance relation (IPR) and vertical lift performance (VLP) curves 

simulated

• IPR curves generated using the Darcy reservoir model

• Bubble point pressure: Glasø method 

• Viscosity: Beggs et al. method

• VLP Curves:

 (a) Hagedorn Brown (HB); (b) Beggs and Brill (BB); (c) Petroleum 

Experts (PE); (d) Mukherjee Brill (MB); (e) Fancher Brown (FB); (f) Duns 

and Ros (DR); and (g) Petroleum Experts 2 (PE 2)
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Parameters Value Unit

Oil Gravity 28 oAPI

Gas specific gravity 0.6

Bubble point pressure 1404 psi

Reservoir pressure 7500 psi

Gas oil ratio 235 scf/STB

Case study



Comparative study
Slide 42

VLP Curves
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• HB: Hagedorn Brown 

• BB: Beggs and Brill 

• PE: Petroleum Experts

• MB: Mukherjee Brill

• FB: Fancher Brown

• DR: Duns and Ros

• PE 2: Petroleum Experts 2

Each method 

gives distinct 

discharge rate
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Case study: under subsonic conditions

Case
Oil 

Gravity

Gas specific 

gravity

Bubble Point 

Pressure

Reservoir 

Pressure
GOR

oAPI (psi) (psi) scf/STB

1 28 0.6 1403.6 7500 235

2 35 0.8 2000 3000 650

3 45 0.8 2165 3000 865

4 55 0.82 2560 3000 1376
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Case study: under subsonic conditions

Case WCD Rate
WCD 

Rate
Diff.

OU Model Prosper %

STB/day STB/day

1 14796.5 14567 1.6

2 19886 20368.4 -2.4

3 46094 56980.4 -19.1

4 91598 81442 12.5
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Case study: under sonic conditions

Case
Oil 

Gravity

Gas specific 

gravity

Bubble Point 

Pressure

Reservoir 

Pressure
GOR WCD Rate

WCD 

Rate
Diff.

OU Model Prosper %
oAPI (psi) (psi) scf/STB STB/day STB/day

1 50 0.8 3250 7500 1600 99597.26 86376 15.3

2 55 0.8 5000 3000 2586 134563.8 114368 17.6
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Case study: GoM

Reservoir Properties Value Unit

Reservoir temperature 210 oF

Reservoir permeability 246 mD

Drainage area 5894 Acres

Dietz shape factor 31.6

Reservoir thickness 106 ft

Reservoir pressure 11305 psi

Well Properties Value Unit

Well type Vertical

Measured Depth 16726 ft

Casing inner diameter 13.375 in

Liner inner diameter 10.75 in

Open hole diameter 8.375 in

Casing shoe depth 8850 ft

Length of open hole section 5076 ft

Case Oil Gravity Bubble Point Pressure
oAPI (psi)

1 35 5500

2 45 6900



Comparative study
Slide 47

Case study: GoM

Case WCD Rate WCD Rate Diff.

OU Model Prosper %

STB/day STB/day

1 302783 284519 6.4

2 275248 264912 3.9

Conservative
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Change in Permeability
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Change in Payzone Bottom Depth
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Change in Reservoir Pressure
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Conclusion

•CFD Modeling:

 Used in setting-up experimental facility

 Predicting the experimental condition required for sonic flow

 Mechanistic model validation

•Calculated sonic velocity is in reasonable agreement with 

experimental data.

•WCD Computational Tool:
 New approach for sonic modeling for WCD calculation.
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Conclusion

•WCD Computational Tool:

 The tool integrates the reservoir and well model and works 

simultaneously.

 Fluid properties are updated based on the input parameters 

while running the calculation.

 Distinct IPR curves and discharge points for each layers of 

reservoir.

 Comparative study of the new tool with Prosper software 

shows good agreement.

 Sensitivity analysis shows the expected trends with respect to 

different well and reservoir properties.
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Future Recommendation

 Investigation of larger diameter with high velocity with experiments.

 Implementation of transient reservoir model.

 Including heat transfer model.

 Broadening the scope of WCD model to simulate the production 

scenarios.
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	WCD Computational Tool:
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	simultaneously.
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