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C.1 INTRODUCTION

In the wake of the 2010 Deepwater Horizon incident and pursuant to regulations (30 CFR
550.213(g), 550.219, 550.243(h), and 550.250), BOEM has since revised and the requirements
for Worst Case Discharge (WCD) Scenario calculations submitted by operators conducting oil
and gas exploration and production in the Outer Continental Shelf (OCS) of the Gulf of Mexico
(GOM). In response to the growing need for consistent WCD reporting, the Society of Petroleum
Engineers (SPE) published a Technical Report (March 2015) on the Calculation of Worst-Case
Discharge (WCD). The report represented the consensus viewpoints of subject matter experts
aimed at developing a consensus guideline for WCD analysis so that “operators and regulators
can have conﬁdence that the methods employed are boz‘h regsonable and consistent. ”(p.3). The

recommended area of research stems from the viewpoint that cr1t1cal (sonic) ﬂow limitations are
expected to have only a small effect on well discharge rates in WCD analyses.
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.28 "’; SPE Technical Report

Calculation of

Worst-Case Discharge (WCD)

March 2015

This raport the & ints of subject matter sxperts and f5 imtended to prowide usefil
information to SPE members, the public, and the industry. & & not intendsd to take the place of advice on
the application of technology to specific circumstances. Readsrs of this Technical Rsport are responsible for
asssssing its relsvance and verifving fits accwacy and their own choices, actions, and results. SPE and
contnibutors fo the Technical Report are not responsible for actions taken as

document, nov the results of those actions.

a result of reading this

@ Copyright 2015 Society of Petroleum Engineers

Mewboume School of Perroleum and Geological Engineering

Q| The UNIVERSITY of OKLAHOMA ﬁ

SOEM

Bureau or O'cenn Eneray Manacement



sonic velocity flow limitations
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2.5.9 Sonic Velocity Limitation
At very high gas discharge rates to alow-pressure environment, the well exit velocity may

approach sonic velocity and limit the gas flow rate by critical flow choking. This would
only apply to wells with a discharge point above sea level allowing flow to the
atmosphere. Most Nodal analysis software packages include a sonic velocity check at each

calculation node.

23

For most cases of practical interest, critical flow limitations are expected to have only a
small effect on well discharge rate. As a result, sonic velocity flow limitations should
generally be ignored for WCD calculations unless special conditions apply. However,
where applicable, it may be invoked by an operator with proper justification. However,
{until further research is conducted, BOEM will not be applying sonic velocity to the WCD |

calculation.
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C.2 OBIJECTIVE

The main objective of this project is to secure one contractor who can demonstrate the
applicability of current (or novel) analytical, numerical, or empirical methods for predicting
critical (sonic) discharge flow rate, pressure, and velocities of multiphase fluids exiting wellbores
in Gulf of Mexico OCS Worst-Case-Discharge scenarios. To accomplish this goal, several
milestones will be administered to encapsulate the body of work needed to investigate existing
and novel approaches to better understand multiphase critical flow in GOM Deepwater projects.

The study objectives are to complete the following:
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University of Oklahoma Study Goals

* Prevailing WCD models lack an accurate pressure drop prediction at sonic
and supersonic conditions.

— Models don’t account for flow regime development of two-phase flow
that may attain sonic condition at the wellbore exist due to the
dramatic pressure drop.

— Lack of theoretical models and experimental data of two-phase flow
at high Mach number (Ma > 0.3)

— Subsonic/supersonic conditions lead to the generation of shock waves
in the system, which was not included in past studies.

* Goalis to develop a mechanistic model to predict two-phase flow
characteristics for different WCD scenarios in the wellbore at high Mach
number.

* Goalis to also provide a computational tool that predicts WCD rate under
various operational conditions.
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Deliverable Milestone

Deliverable!s! / Milestone (s)

Completion of Technical Report for Literature Study
and Theoretical Studies
Completion of Technical Report for Models CFD
Simulations/ WCD Model
Completion of Technical Report for Laboratory
Results
Completion and Development of WCD Model and
Computational Tool
Completion of Draft Reports
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Progress

Literature Review and January 5%, 2018
Theoretical Studies Report
CFD Simulation/WCD March 24th 2018
Model Technical Reports
Technical Report for April 241, 2018
Laboratory Results
Compléetion of WCD Model J0lede] oI gy Aok k:
and Computational Tool
Final Report October 3, 2018

« Kick off meeting, October 24t |, 2017
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Methodology and Scope

Literature Review

Review preceding experimental and theoretical studies

Computational Fluid Dynamics
Develop a simulation model for predicting TP characteristics

Experimental study

Measuring two-phase characteristics under a wide range of fluic
velocity

Two-phase flow mechanistic model, PVT model and Nodal Analysis
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University of Oklahoma (OU) :
High Velocity Experimental Setup

> 2L Legend 1

'd BPC  Backpressure chock P9 Il;lerﬂce“d: Fipe 5:1? Ve Color
> BPV  Backpass valve BPCA 2
‘ : S Purple 6
> - ~ CAM  Video camera Green 3
[ cv Check valve Red 2
CO1  Air compressor # 1 Blue .
C02  Air compressor # 2 HV3 Broken lines  Hose lines

F1 2" Coriolis low-range flow meter Hv4
F2 2" Coriolis high-range flow meter

F3 2" Coriolis high-range flow meter RS2 L
HV  Hold-up valve

HT Inline water heater

N Return

- Line P Pressure transmitter
Y~ P01 Water pump # 1
P02 ‘Water pump # 2
RS Relief system [ Fe CAM
T Temperature transmitter

ATS  Annular test section
PTS  Pipe test section

V01 Water tank

AP Diff. pressure transmitter

ATS

co3 coz2 co1

I Hv1

A new flow loop has been developed to perform high-velocity
two-phase flow loop.

The UNIVERSITY of OKLAHOMA BOE M

Mewboume School of Peroloum and Geological Engineering Bureau o Ocean Enency ManacemenT




University of Oklahoma (OU)
WCD Computational Tool

Pk Atmosphere

U Programming Language:
o C++ (main program)
o VBA(interface) v 7
L Computer requirements for execution: ‘ |
o Excel 2013 Macro-Enabled Office Fotal Depth o~

U Interface:
o Handles up to 15 layers including open hole

properties
o Users can validate the input data —
ydrocarbon—— B
Y - Pus

o Visualize the results using customized plots -~ Pu Reservoir
WCD rate displayed ' o
CD rate display P

Simplified schematic of well production
system (Mach et al. 1979)

L& |

Input data
* Reservoir properties
« Wellbore properties

A 4

Interface Output
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University of Oklahoma (OU
WCD Computational Tool

WCD SOFTWARE

Open Hole Input l Output I Plots | Plots |

Casing Inner Diameter, Dc (inch) IG— (2-100)
Casing Roughness, epsilonc (inch) W (>0)

Hole Diameter, Dh (inch) [ b
Cased Hole Diameter, Dch (inch) )
Hole Roughness, epsilonh (inch) W (>0)
Measured Depth, MD (ft) EZE
Wellhead Pressure, Pw (psia) 100 (>Pr)
Surface temperature, Ts (deg. F) I40— (>0)
Length of Open Hole Section, Loh (ft) [ 0
Number of Producing Layers, Npl 137 (1-15)
Hole diameter behing liner, Dlh (inch) ﬁ (0>Dlh>DI)
Liner Inner Diameter, DI (inch) [ss—  (o<DI<Dq)
Liner Roughness, epsilonl (inch) W (>0)
Casing Shoe Depth, Lcs (ft) [2000 " (0
Kickoff Point, KOP (ft) 500 (>0)

Well Inclination from Vertical, theta (deg) [ 4 (049
Well Type ] Indined Well L]

Well Profile |

) Cased Hole

Update Input File Run Program

Read Output File
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OU WCD Computational Tool-Contributions **

OU WCD Computational Tool

Other Available Tools for WCD
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dL

~—=

Vse
Low Transient High i e '
velqcity region Ve'QC“y Srl]r;gslg LOIW " Transient \I;Ielr?gcit onic
region region Pha velociy region o region
region  region region
The UNIVERSITY nf OKLAHOMA % ( ):
% Mewboume School of Petrobeum and Ge ' sical Es nginceTing J-.L". Béo#OcznuEsz mmmmmmmm




- Acknowledgement

* Project Sponsor: US Department of the Interior, Bureau of Ocean
Energy Management (BOEM)

Q' The Ur~. IVEH&ITY ﬂf L:IKL;-.HI:J'».m % 30:

Mewbuame School of Petsoleun 2ad Geclogleal Eng m B o7 Octo Enns Manscin




Thank you !

[]

The UNIVERSITY of OKLAHOMA E\

Mewboume School of Perroleum and Geological Engineering |




Research and Development on Critical (Sonic) Flow of
Multiphase Fluids through Wellbores in Support of
Worst-Case-Discharge Analysis for Offshore Wells

Experimental Setup and Procedure

Ramadan Ahmed, Co-Principal Investigator
Oct, 12th 2018

The UNIVERSITY of OKLAHOMA
Q= ! i BOEM

Mewboumne School of Petroleum and Geological Engineering




Qutline

Slide 2

U O O O O

Introduction

Flow Loop Components
Problems and Challenges
Measuring Techniques

Test Type and Procedure
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IntrOdUCtion slide 2

d A new flow loop has been developed to perform high-velocity
two-phase flow loop.

d The loop has two 18-ft long test sections:

= 3.25” Pipe section
= 3.25” X 1.315” Annular section
J Ranges of test parameter

= Liquid rate: 5to 240 gpm
= (Gas rate: 8to 320 Ibm/min
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Schematic

Legend
BPC
BPV
CAM

co1
co2

F2
F3

HT

P01
P02
RS

ATS
PTS
Vi
AP

Backpressure chock

Backpass valve

Video camera

Check valve

Air compressor # 1

Air compressor # 2

2" Coriolis low-range flow meter
2" Coriclis high-range flow meter
2" Coriolis high-range flow meter
Hold-up valve

Inline water heater

Pressure transmitter

Water pump # 1

Water pump # 2

Relief system

Temperature transmitter

Annular test section

Pipe test section

Water tank

Diff. pressure transmitter

co3 coz2 CoO1

e BPV2 ID

PG

Legend: Pipe Size vs. Color
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Flow Loop Components

Test section
Air supply system

Water circulation system

U O O O

Data acquisition system



Test Sections
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01 HV1

RS3

*—> Drain

I‘-

Water

Sensors

* Differential pressure
e Static Pressure

* Temperature

Valves

* Holdup

e Safety

* Check

Others

Visualization system

Air accumulators

Perforated disks



Inlet Section

* Holdup valve
* Mixing section
* Water injection

* Liquid-level measuring dp meter

-‘1 ™~

Annulus

o Test Section

Pipe

- Test Section
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=X

Upstream
Holdup Valves .

it
% 9

DP Cell for
Holdup
Measurement

2 -
L) 7
Air Inlet ﬁ “‘b

Water Inlet
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Air Supply System

Compressors
* Atlas Copco 1600 cfm
cos coz Col I\ * Atlas Copco 1800 cfm (Rented)
y ' v * Sullair/Doosan 1600 cfm (Rented)
= Valves
N BPVe := * Inlet
NI T (PO * Bypass (not used)
T|2 1 . * Flow regulating
s E L“J Pl sennnnnnnnn > Sensors
. * Flow meters (F1 and F2)
el 5
. * Pressure
FC2

* Temperature
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Air Supply System - Photo




Water Circulation System
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Return

Air |

--------------

BPVl

*D RS4
Water = F3 *

P02

POl

Equipment

* Water tank

* Water pumps with VFD control
Valves

* Relief

* Bypass (not used)

Sensors

* Flow meter (F3)

* Pressure

* Temperature
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Equipment
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Primary Water Pump Secondary Water Pump

Water Tank
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Problems and Challenges

« Equipment failure: inner pipe support failure and view port leaks

« Water hammer and pressure surge causing leaks and pipe failure
 Vibrations
 Instrument failure : flow meters and pressure sensors
I % 'I!Iw UNIVERSITY of OKLAHOMA 1. 30:
Mewbourne School of Petroleum and Geological Engineering AL e o —
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Measuring Techniques

* Pressure drop: Two differential pressure sensors

Accuracy 0.05%, Measuring Range + 40 and 200 in H,O
* Flow Rate: Coriolis flow meters

Accuracy 0.35%

Accuracy 0.05%, Measuring Range 550 and 2564 Ib/min
e Liquid Holdup: Differential pressure sensor

Accuracy 0.05%, Measuring Range + 200 in H,O

The UNIVERSITY (]HL.-\HUN.I\;E. [
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Test Procedure — Holdup Experiment

Start the data acquisition program.

Drain liquid from the test section to prevent liquid hammers.

Inject air into the loop at low rate and increase it gradually to the desired rate.

Inject liquid at low rate and increase it gradually to the desired rate.

Record the flow pattern using a high-speed camera when steady state flow establishes.
Quickly close the holdup and inlet valves and stop the liquid circulation pump.

Record liquid holdup when the liquid level measurement establishes.

Slowly depressurize the test section using the backpressure valve.

O o N o U kA W DN oE

Save all recorded measurements and close the data acquisition program

The UNIVERSITY of OKLAHOMA 1. -
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Holdup Experiment - Measurements
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Test Procedure — Variable Rate Experiment

Start the data acquisition program.

Drain liquid from the test section to prevent liquid hammers.

Inject air into the loop at low rate and increase it gradually to the desired rate.
Inject liquid at low rate and increase it gradually to the desired rate.

Maintain steady state flow condition for more than a minute.

Increase the gas rate.

Repeat Steps 5 and 6 until the gas rate reaches the maximum flow rate.

© N o U0 kB W NhoRE

Save all recorded measurements and close the data acquisition program
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Variable Rate Experiment - Measurements
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350 +

300
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200
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Research and Development on Critical (Sonic) Flow of Multiphase Fluids through
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= [ntroduction

= Statement of problem

= Objectives

= Methodology and scope

= Literature review findings

= Two phase flow model (CFD)

= WCD Computational Tool (WCD-CT)
= Two-phase flow mechanistic models
= Comparative study

= Conclusions
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= WACD is the dalily rate of an uncontrolled flow of hydrocarbons
from all producible reservoirs into open wellbore. (BOEM)

= WCD is a result of blowout, which has constantly been a
concern for oil and gas industry in the US.

= During the last 15 years, 58 blowout incidents in the US Gulf
of Mexico and 36 blowouts in the rest of the world were
occurred. (BSEE)

= Multiphase flow is a common occurrence during the blowout  une3,1979 (Gom) Oil flows from the blown Ixtoc wellhead.
inCidentS (National Oceanic and Atmospheric Administration)

= Accurate prediction of WCD scenario is strongly related to
accuracy of two-phase flow model.
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MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING
) R R v Statement of problem

= Blowout incidents of oil and gas offshore wells can cause a environmental
hazard.

= Prevailing WCD models lack an accurate pressure drop prediction at sonic
and supersonic conditions.

= Development of the two-phase flow in the wellbore which may attain sonic
condition at the exist due to the dramatic pressure drop.

= Determining two-phase flow characteristics in the wellbore is more
challenging compared to that of the single phase.

= Lack of theoretical models and experimental data of two-phase flow at high
Mach number (Ma > 0.3)
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= Better understanding of physical phenomena associated with WCD scenatrio,

particularly behavior of two-phase flow at high Mach number.

= Developing a simulation model using ANSYS to predict pressure profile in the

wellbore.

= Developing a mechanistic model to predict two-phase flow characteristics for

different WCD scenarios in the wellbore at high Mach number.

= Provide a computational tool that predicts WCD rate under various

operational conditions.
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) PR R S e Methodology and Scope

Literature Review

Review preceding experimental and theoretical studies

. 4

Develop a simulation model for predicting TP characteristics

A 4

Measuring two-phase characteristics under a wide range of fluid
velocity

h 4

Two-phase flow mechanistic model and Nodal Analysis
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e et  Literature Review — Key Findings

= The experimental study reveals that the trend of pressure drop changes at a

higher velocity in comparison to the trend at lower velocities.

= In multiphase flow, the speed of sound is different from that of single-phase

flow.

= Subsonic/supersonic conditions lead to the generation of shock waves in the

system, which was not included in past studies.

= Though, the two-phase flow characteristics have been extensively studied for
low velocities (Mach number <0.3) in vertical pipes, it lacks significantly at the

subsonic and supersonic front.
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i e  Literature Review — Key Findings

 Very limited theoretical and experimental studies were carried out to

Investigate two-phase flow phenomena in annuli.

* Post CFD simulation model of two-phase flow in the wellbore are limited to

relatively low gas and liquid superficial velocities.

« Existing CFD simulations of sonic and supersonic conditions are merely

developed for single-phase converging-diverging nozzle flows.

« Various flow patterns can be developed in the wellbore, which significantly

effect pressure gradient and ultimately estimation of the WCD.

MEWBOURNE SCHOOL OF PETROLEUM AND GEQLOGICAL ENGINEERING

% WELL CONSTRUCTION TECHNOLOGY CENTER 30 8

e UNIVERSITY of OKLAHOMA Bureau oF Ocean Enercy M anasement




WELL CONSTRUCTION TECHNOLOGY CENTER

T UNIVERSITY f OKLAHOMA

% MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING

Literature Review - Con.

Experimental Study (Luo et al. 2016)

e UNIVERSITY of OKLAHOMA

« Distance between pressure transducer =8 m « Superficial gas velocity = 20 — 160 m/s
« TestsectionID =2.5In « Superficial Liquid velocity = 1.0 — 1.95 m/s
100 0.35
Koo ® Vsl =1.007 m/s
e o < 0.30 % #Vsl=1.235 m/s
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Literature Review - Comparative Analysis

RN " f 1.2
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Literature Review - Comparative Analysis

Reference Test section ID (mm) V,, (m/s) Vgq (M/s) Flow pattern
Biria (2013) 50.8 0.12-0.72 0.33-8.27 Bubbly and Slug
Perez (2008) 38- 67 0.2-0.7 0.16 — 3.83 Bubble, slug and
churn
Waltrich et al. (2015) 50.8 — 305 0.12-0.73 0.31-31.0 | BuPbW,slug, churn
and annular flow
10 —
¢ Biria (2013), ID = 50.8 mm (Vsl = 0.12 m/s) 1.0
. Biria (2013), ID = 50.8 mm (Vs = 0.24 m/s) ; +LSU (2015) ID = 50.8 mm
c A Biria (2013), ID = 50.8 mm (Vs = 0.48 m/s) ALSU (2015) ID = 101.6 mm
T 8 m Biria (2013), ID = 50.8 mm (Vsl = 0.72 m/s) . 08 mLSU (2015) ID = 203.2 mm
o X Perez (2008) ID = 38 mm (Vsl = 0.2 m/s) ! _
X @ Perez (2008) ID = 38 mm (Vsl = 0.7 m/s) : » LSU (2015) ID = 304.8 mm
e 6 + Perez (2008) ID = 67 mm (Vsl = 0.2 m/s) T X X Perez (2008) ID = 38 mm
o - X Perez (2008) ID = 67 mm (Vsl = 0.7 m/s) . 06 h X % Perez (2008) ID = 67 mm
e o % X LSU (2015), ID = 50.8 mm (Vsl = 0.12 - 0.30 m/s) =
= 4 q. @ LSU (2015), ID = 101.6 mm (Vsl = 0.15 - 0.85 m/s) =)
3 OLSU (2015), ID = 203 mm (Vs = 0.18 - 0.73 m/s) o 04
= o ALSU (2015) ID = 304.8 mm (Vs| = 0.18 - 0.73 m/s) - Py
N PR « | = . g u
@ 2 %‘jﬁdﬂ X X X x T 02 A,‘Atll_
~ HE g | m
(o >§ X ® . A A * A‘ PR , .‘ A A A A
0 0.0 T %erie
0 5 10 15 20 25 30 35 "o 5 10 15 20 o5 30 35
Superficial gas velocity (m/s) Superficial gas velocity (m/s)
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Liquid and gas flow rates
= Pipe size & roughness

* Fluid properties

= Flow patterns

= Volumetric liquid Holdup

= Pressure gradient

K Reservoir pressure & temperath
= Absolute & relative Permeability

= Productivity

Reservoir

= Bottom-hole flowin ressure
gp Parameters

=  Gas-oll ratio

{ Height of pay zone /




i Computational Fluid Dynamic — CFD Model

*» Fundamentals of CFD Model (ANSY'S Fluent) “* Modelling Multiphase Flow

« Conservation of mass (continuity equation) v Mixture Model

v" Volume of Fluid (VOF) Model
P v.(op) =5 -
5¢ T V- (ov) =S, v Eulerian Models

v" Hybrid model
« Conservation of momentum

. ¢ Turbulence Model
d(pv)
at

+V.(pPB) = —Vp+V.(5) +pd + F
v K — ¢ model

v K- 0mega model

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING —
WELL CONSTRUCTION TECHNOLOGY CENTER 13
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Mesh .
Generation » Solution

* Desired dimensions - |CEM software * Pressure based solver  « Solution method
(2 m long) * Mesh sensitivity - Transient or steady state < Solution control
analysis * Multiphase model * Initialization

*  Turbulence model Run calculation
+  Material

* Boundary conditions

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING
WELL CONSTRUCTION TECHNOLOGY CENTER 14
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MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING » »
e S e CFD Model — Validation

» Experimental Data [Ohnuki and Akimoto (2000)]

: Existing
Pipe CFD EXp.
Case Flow diameter | 'S¢ Vs (DP/DL) | (DP/DL) model | Error
pattern (in) (m/s) | (m/s) (KPa/m) | (KPa/m) (DP/DL) (%)
(KPa/m)
bubble 8 0.03 0.18 9.50 9.05 9.43 5
bubble 8 0.03 1.06 9.65 9.7 9.5 0.5
bubble 8 0.26 1.06 8.05 8.5 8.9 -5
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. 2.0E+04 1.4
% Pressure & — Vg =0.03m/s, VI = 1.06 m/s -
Velocity Profile = 15E+04 Vg =0.26 m/s, VI = 1.06 m/s E I/ TR
a \m/ ————— 0.2 m from the inlet
S = —— 1.8 m from the inlet
8 C
% 2
o = 04
o 5.0E+03 >
§ 'g 0.2
D 0.0E+00 E 0.0
0 0.5 1 15 2 -0.1 -0.05 0 0.05 0.1
Distance (m) Cross-section (m)
3.E-02 3.E+00

----- 0.2 m from the inlet

+* Turbulence Flow

----- 0.2 m from the inlet

-~
Ld

>
o L
S opo2 lf T 2E+00
f ot TR I —— 1.8 mfromtheinlet | i et .
Characteristics o ': E < —— 1.8 m from the inlet
2~ . S
S »2E-02 8 2.E+00
£ 3 a8
ZE 7k
& 1lE-02 8 E 1 e+00
> E (] [/
o] [<8) \ ]
= E \ ;
F SEO3 (0 \ 2 5.E-01 ||, !
------------ — ' '
= \ '
0.E+00 0.E+00 L= Z
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Cross-section (m) Cross-section (m)
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i et CFD Model — Validation (OU Data)
Single phase flow simulation

Two phase flow simulation

® Exp.Data Simulation ——Simulation Model ® Exp.Data
5 l 4
4
Q) g °
I 3 o
= X ®
o o 2
L 2 Q ® °
o
&)
1
1
0 0
20 30 40 50 60 70 80 90 100 0 20 40 60 80
Liquid flow rate (gal/min) Superficial gas velocity (m/s)
MlEWBOURNE SCHOOL OF PETROLEUM AND GEOQLOGICAL ENGINEERING
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“»» CFD Model for OU Lab-Setup
v Pressure based solver

v Specify fluid test (air compressibility)

v" Active energy equation

3.251In

v Multiphase model (hybrid model)
v Turbulence model (SST k-w model)

v" Boundary condition (pressure inlet boundary)

v" Solution method

v" Solution control

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING

% WELL CONSTRUCTION TECHNOLOGY CENTER
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\/ - .
% Pressure, Density & Mach number Profile
4.0
3.5
3.0 2 30
—— 15 psi (simulation data-Gas velocity 41.56 m/s) §_” 25
—_ —— 50 psi (simulation data - Gas velocity 90.2 m/s) Py
g 5 20
= --e--32 psi (Experimental data-141 m/s) S
— | 15
—
x
S 1.0
7 0 1 2 3 4 5 6
o Test section (m)
o
2
5 1.20
7y
1.00
6 2 0.80
_ £
Test section (m) 2 0.60
c o
S
s 040
0.20
0 1 2 3 4 5 6
MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING
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) PR R S e WCD - Computational Tool

©® Nodal Analysis Technique
O PVT Model

WCD Model © Production Model
O Reservoir Model

O Hydrodynamic Flow Model

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING C
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VETLCORRICTON TGO cov WCD CT- Nodal Analysis

Hydrocarbon
flow-out
Hydrocarbon _ Surface Level @ Pun
Nodal Analysis Sonic
(4] Surface or subsea level = Pressure based matching Condition
= Flow rate based matching
T
1. Reservoir
2. Bottom hole
T 3. Wellbore . Ti+1 Pi+1
4. Wellhead e I+1
z ||t 4_9 & T P,
© (&) > |
£ g | IAH
TVD IERA = =
Ti-l Pl-l
Cased-hole ID
_’ ‘_
Output a4
= WCD rate
= Gas and water flow rate | Open-hole D —
= Surface pressure Reservoir
= Nodal curve (IPR) for each Layer P Hydrocarbon
(IPR) y (] Qy & Q. fowin .
MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 3
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) PR R S e Fluid flow Iin the Wellbore

0 >
“ Single phase flow T
Annular

. Liquid flow

«  Gas flow Flow
‘*Two-phase flow qL

%_ Slug

. Bubbly flow :

- Dispersed bubble flow "

Slug flow Flos

*  Churn flow

- Annular flow singte onase |i.i-

. Mist flow | L e

Schematic of expected two-phase flow pattern in the
wellbore (Modified after Hasan and Kabir 1988)

e UNIVERSITY of OKLAHOMA
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NEmesaoyeeaead  Mechanistic Model for Two-Phase Flow in Pipe

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING
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“ Existing Two-Phase Flow Model

REFERENCE FLOW PATTERN

Hasan & Kabir (1984) Bubble, Slug & Annular

s =fconstant

Pagan et al. (2017) Churn & Annular Region Il Region I11

Dispersed, Bubble, Slug &

Ansari et al. (1994) Annular

Tengesdal et al. (1999) Bubble, Slug, churn & Annular

dp

)Gravitaliunal

Sylvester (1987) Slug [ e

Yao and Sylvester (1987) | Annular — Mist

4
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EosrismsEeEovate:s  Vodified Flow Pattern Map for WCD — Computational Tool

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING
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’ a
< WCD Model o i ;
1 | |
) — : : : High Velocity Slug
- Sigle Phase flow model | ! ! |
- |
= I I I
+ Bubble flow model g 15— : : . .
_ 2 . | (Hybrid) | | :
« Low velocity slug model |z - ! ! ! !
T : : Low : : !
. . = g 1 . i I
- High velocity slug model |5 | [ 1 Bubble 1 Velocity i o (vbrid Sonic
% e : : slug : High Velocity Slug : Annular : Boundary
* Annular flow model 2 . ! ' Annular
- ” p | Low ! : ' or I
¢ Hybrld mOdeI h :Velocity 1 High : : . . :
a ! Slug I Velocity | I High Velocity I
. | | Slug | : e
0.01 Fg-rm==m-- Fooos T~ "Single Phase 1T TTTTTrTTTTTTooToopoooooos )
0.01 2 6 15 25 100 V-sonic .

Superficial Gas Velocity (m/s)
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% Low Flow Conditions (Exp. Data from Hernandez Perez 2008)

e Exp. Data ——Modified Model ——Modified Model ® Exp. Data
10 8

DP/DL (Kpa/m)
(]
(
[ ]
DP/DL (Kpa/m)

0 1 2 3 4 5 0 1 2 3 4 5
Superficial gas velocity (m/s) Superficial gas velocity (m/s)
v Superficial Liquid velocity = 0.73 m/s v Superficial Liquid velocity = 0.1 m/s
v PipelD=15in v PipelD=15in
v’ Superficial gas velocity = 0.40 — 3.85 m/s. v' Superficial gas velocity = 0.23 — 4.28 m/s.
v’ Slug flow pattern v Slug flow pattern
v Discrepancy between predicted & measured < 7% v Discrepancy between predicted & measured < 7%

e UNIVERSITY of OKLAHOMA
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* High Flow Conditions (OU - Lab Data)

——Modified model ® Exp. Data ——Modified Model ® Exp.Data
20 24
16 20
E E 1
g = B
< L 12
— 8 —
a Q 3
al o
o 4 &)
4
0 0
0 20 40 60 80 0 20 40 60 80
Superficial gas velocity (m/s) Superficial gas velocity (m/s)
* Liquid flow rate = 200 gpm (Vy, = 2.41 m/s) « Liquid flow rate = 240 gpm (V,, = 2.86 m/s)
* Pipe ID_ = 3.251n |  PipeID =3.25in
* Superficial gas velocity = 9.21 — 78 m/s. - Superficial gas velocity = 9.22 — 68 m/s.
. Sl_ug flow pattern _ * Slug flow pattern
- Discrepancy between predicted & measured < 20% - Discrepancy between predicted & measured < 25%

e UNIVERSITY of OKLAHOMA
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nosiumosEeioneaw:l echanistic Model for Two-Phase Flow in Pipe — Validation
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* High Flow Conditions (OU - Lab Data)

——Modified Model ® Exp. Data ——Modified Model ® Exp. Data
20 20
16 —~ 16
E S
s 12 g 12
~ -
o 8 Q 3
> 3
&)
4 4
0 0
0 50 100 150 0 50 100 150
Superficial gas velocity (m/s) Superficial gas velocity (m/s)
* Liquid flow rate = 60 gpm (V= 0.72 m/s) «  Liquid flow rate = 80 gpm (V,, = 0.93 m/s)
° PipelD=325in « PipelD=3.25in
* Superficial gas velocity = 29 — 117 m/s. « Superficial gas velocity = 27 — 107 m/s.
* Annular flow pattern | « Annular flow pattern
- Discrepancy between predicted & measured < 20% - Discrepancy between predicted & measured < 25%
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* Large Pipe Diameter (12 in) (Exp. Data from Waltrich et al. 2015)

e LSU Data ——Present Model ® LSU Data —— Present Model
8 8
E s E o °
LS 3
o o
% %
= .
Q Q o
ol ol
) ’ s 2
0 0
0 2 4 6 38 0 2 4 6 8 10
Superficial gas velocity (m/s) Superficial gas velocity (m/s)
v" Superficial liquid velocity V= 0.73 m/s v" Superficial liquid velocity V = 0.46 m/s
v" PipeID=12in v' PipeID=12in
v Superficial gas velocity = 0.31 — 7.5 m/s. v" Superficial gas velocity = 1.18 — 7.7 m/s.
v" Discrepancy between predicted & measured < 25% v" Discrepancy between predicted & measured < 18%
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Two phase flow comparison

Single phase flow comparison

® Exp. Data ——Correlation ——Simulation ——Simulation Model =~ ——Mechanistic Model ® Exp. Data
5 l 4
4 3
Q 3 g
I \'d
£ i
a 2 o o °
< &
1 1
0 0
20 30 40 50 60 70 80 90 100 0 20 40 60 80
Liquid flow rate (gal/min) Superficial gas velocity (m/s)

Superficial liquid velocity V¢ = 0.23 m/s
Pipe ID =3.25in
Superficial gas velocity = 9.14 — 61 m/s.
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Comparison Between CFD and Mechanistic Model

Large pipe (22-in)

——— CFD Simulation

Mechanistic Model

5
4
E
8 3
<
a 2
a
Q
1
0
0 4 8 10
Superficial gas velocity (m/s)

Pipe DP/DI DP/DI :
Diameter| V59 e Sim) | (Modely |P'Screpancy
in (m/s) (m/s) Kpa/m Kpa/m %
22 1.12 0.46 2.985 4.24 30%
22 7.65 0.46 0.655 1.15 43%
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O Comparative analysis shows good agreement between LSU data and other available
measurements.

O WCD rate is not only reliant on conditions of the wellbore section but it is also influenced
by the fluid properties and reservoir characteristics.

 An acceptable agreement was obtained between simulation predictions of the pressure
drop and experimental data at various test conditions.

O An accurate WCD — computational tool is developed to predict the daily uncontrolled flow
of hydrocarbons from all producible reservoirs into open wellbore.

O The modified mechanistic model demonstrated good agreement between predicted and
measured pressure gradient in the wellbore which provides a strong confidence in WCD

rate predictions.
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Qutlines

* Objectives

* Preliminary Tests

* Flow Regimes

* Liquid Holdup

* Pressure Gradient in Two-Phase Flow
* Indication of Sonic Condition

e Conclusions
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Objectives

= To Improve understanding of the impact of high Mach number
(0.3 -1+ Mach) flow on WCD calculation

= |dentify and investigate flow patterns (churn, annular, and mist)
and flow geometry variation (tubing and annulus pipe).

= To Investigate two-phase flow behavior In vertical pipe and
annulus at high superficial gas velocities.
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Schematics of the Experimental Flow Loop

I —— —— — E——
Legerad e — —
BEC Backpressure chock ) IaegendEElE;;anFrl‘hngs
=Tl Backpass wvahsre BFC1 [ Cross 5
AR Video canmmera = Fla
S Check walwe - Rednﬂe
o Ajir compressor # 1 T Tee=
o2 Ajir compressor # 2 i
F1 2" Coriolis flow meter Hwa4 & = HW 3 oo Clomnecto
F2 2" Coriclis flow meter RS2 RS1
F= 3" Corolis flow meter . -
H' Haold-up walbhee IEF-EI.;End: Fipe 5::_& ws. Color
HT Infine wwater heater |:'Ill'l . ol
P Presswure transmitter ure 3=
Fio1 Water pump & 1 Sreen il
RS Ralicf bymiam 1] cam Biue e
T Temperature transmitter Broken lin=es Hoss linss
ATE Anmular test section
PTS= Fipe test secticon Air
W1 Water tamk
AP Diff. presswre transmitter
CozZ co i [ A [ [
B&-3
+
X
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Preliminary Test
(Single Phase Liquid Flow Test)

Pressure loss (AP) in any circular duct is related to diameter (D), length (L), fluid
density (p) and mean fluid velocity (V). Thus:

AP = f 2 - L V2
Chen (1979) Friction Factor equ
— = —2.01log

NIQ)) 3. 7065D 9 2.8257 \D R(e).8981

where fyis Darcy friction factor, which is defined as fourfold Fanning friction factor, €
IS the pipe roughness, R, is a Reynold number

1
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Preliminary Test

(Single Phase Liquid Flow Test)

Pipe Annulus
e Predicted D M d
——— Predicted O Measured redicte ( sasure
1.40 3.50
Q) 100 0
& 1.20 a E .
~1.00 X 2.50
: 5
o 0.80 8 2.00
go‘so 9 150
3
a 0.40 @ 1.00
2 0.20 L
o & o.50
0.00
20 40 60 80 100 120 0.00
. 20 40 60 80 100 120
QL (gal/min) QL (gal/min)
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Preliminary Test (Liquid Holdup Validation)

DP cell sensor is utilized to measure residual liquid column in the test section using

hydrostatic pressure concept.

DP liquid holdup measurement approach

P
H, = <Wf/”lg) _ Puy
L (HTA) pigHT

Pwf is the bottom-hole pressure, A is the cross-section area of the test section, pl
represents liquid density, g depicts the gravity, and HT is the total height of the test

section

The UNIVERSITY of OKLAHOMA .'l 30 -
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Preliminary Test (Liquid Holdup Validation) Cont.

Volumetric liquid holdup equation:

_n

H; = v,
where H; is liquid holdup, V; is the
liquid volume, Vy; Is the total

volume of the test

197 in

e
Holdup Valve 2

Air inlet

214 1n

i
Holdup Valve 1
Aar mctq

Water inlet Water inlet

[
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_Preliminary Test (Liquid Holdup Validation) Cont.

QL Q, H, (Volumetric H,) | Error
(GPM) (Ib/min) (DP Cell) % % %
35 25 7/ 3.0 1.0
40 10 14 12.9 1.1
[y SOE

it}
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Flow Regime (Churn Flow)

The classification of flow regimes is an important part of two-phase flow analysis.

It ailds to develop or select an appropriate flow model to predict two-phase

behavior in vertical pipe and annulus

Two-phase flow regimes depend on parameters such as liquid and gas velocities,

pipe geometries, and fluid properties

Churn flow occurs at high gas flowrate with moderate liquid flowrate. It can be
described as a chaotic frothy mixture of gas-liquid moving upward and downward

In the entire pipe.
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Flow Regime (Annular Flow)

* The flow regime occurred at high gas and liquid velocities

* Liquid films flow around the wall of the pipe due to high
energetic gas-phase velocity and the gas flows at the core with
entrained droplets
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Flow Regime Map for Pipe

10.00
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Flow Regime Map for Annulus

. 10.0
J ¢ Churn Flow A Annular Flow
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Flow Regime Comparison for Pipe

o

f
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Flow Regime Comparison for Annulus

Caetano's Annular Flow Caetano's Churn Flow < OU Churn Flow OU Annular Flow

10

0.1 -

Liquid Superficial Velocity (m/s)
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Holdup Measurement in Pipe (OU)

0.25
F
E 0015
:|°: M 0.70 m/s
- 0.10
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Holdup Measurement in Annulus (OU)

0.25
_0.20 - ¢ Vsl 0.12 m/s
F
S 0.15 -
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Comparison of Liquid Holdup with LSU data

0.23 m/s (OU Data)

M 0.70 m/s (OU Data)

< 1.4 m/s (OU Data)

A LSU 2015 4-inch Data (0.15 m/s)

O LSU 2015 4-inch Data (0.46 m/s)
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Pressure Gradient in Two-Phase Flow

The total pressure drop for gas-liquid flow per unit length of a pipe consists
of three components:

1. Hydrostatic Component
2. Acceleration Component

3. Frictional component

(0),= (0, + (D), + (),
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Pressure Gradient in Two-Phase Flow

 The existence of hydrostatic component of two-phase
pressure drop is due to differences in the density
between the gas and liguid phase and the influence of the
gravity.

 The acceleration component of pressure drop Is usually
small and can be neglected

Q' The UNIVERSITY of OKLAHOMA f{ SOE
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Schematic Pressure Gradient Behavior in
Vertical Two-Phase Flow (Shoham, 2005)

u, = constant

[
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Pressure Gradient at Sonic Boundary (Pipe)

10 \ M 0.058 m/s
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— X \\ Boundary
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Indication of Sonic Condition

« Upstream Vs Gas Superficial Velocity

Shock Wave

Shock Wave Sound

Pressure Reversal
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Upstream Pressure VS Gas Superficial Velocity (Pipe)
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Sample of Supersonic- Video ( vsi=0.058 mis, vsg = 162.57 m/s, Pipe ID:0.083M )
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Pressure Gradient Without Sonic Boundary (Pipe)
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Pressure Gradient (Annulus)
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Upstream Pressure VS Gas Superficial Velocity

(Annulus)
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Conclusions

 Pressure gradient increases with gas superficial velocities. However, it
sharply decreases as the flow approaches sonic flow condition at low
superficial liquid velocities in pipe.

 Pressure gradient slightly increased with liquid superficial velocity at fixed
gas superficial velocity. The friction component of the total pressure
gradient dominated the two-phase flow in this research.

« Liquid holdup decreases with increase in gas superficial velocity.

 Two different flow regimes with transition (churn, annular and transition
between churn and annular) were encountered in this investigation.
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Slide 2

Qutline

 Introduction
 CFD Modeling
* Sonic Modeling
« WCD Computational Tool
d Capability
J User interface
J Demonstration
J Comparative study with prosper
 Sensitivity analysis
* Conclusions
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I Introduction

Slide 3

Open Questions and Concerns about WCD

Influx Related Problems

* Multiphase flow properties
especially in supersonic and
subsonic conditions

« Effect of pressure and
temperature on flow
characteristics

« Effect of geometry on flow
properties

* Flow development in the
annulus and pipe

*k: Permeability; @: Porosity
J: Productivity Index

In-situ/Operational
Gaps

» Well characteristics
(k, P, J)

« Well depth

* Gas in place

* Reservoir thickness

» Gas solubility in oil

» Gas liquid ratio

Photograph Courtesy: Kiran and Salehi, 2017

Way Forward

Literature Review

Experiment

CFD Modeling

WCD

|
l
|
l
WCD Model :
|
l
|
Computational Tool |,

Q' The UNIVERSITY of OKLAHOMA

|
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CFD Modeling

Identifying Problem

1. Goals
2. Domain

Pre-processing

3. Geometry
4. Mesh

5. Physics
6. Solver setting

7. Computation

Post-processing

8. Results

The UNIVERSITY of OKLAHOMA
% Mewboumne School of Petroleum and Geological Engineering BOE M



Experimental data simulation

Slide 5

®

« Simulation results for air-water flow using VOF approach

Bureau of Olcearns Eneray Man,

Vg (M/s) | Vg (M/s) | Pattern Slgru;dafggtlzlgeas};u)re Exp(e;rrlgr;(ieerlr’:?l(PP;jerijure Error Slip ratio
0.069 1.545 DB 11231 11500 -3% 0.045
0.002 0.0375 BB 7741 7003 10.5% 0.053
0.040 0.090 BB 8340 8859 -5.85% | 0.444
0.437 0.101 SL 5056 5086 -0.6% 4.327
1.972 1.959 SL 5783 8459 -32% 1.007
21.893 0.111 AN 1042.5 2254 -48.6% | 197.234
16.61 0.523 AN 3574 4671 -23.5% | 31.759
21.256 0.111 AN 1008 2125 -52.5% | 191.495
16.68 0.548 AN 5115 7685 50.22% | 30.438

« Simulation for air-water flow using Eulerian approach
Vg (M/s) V,, (m/s) | Pattern Slg:;:it:gti;j;l;re Expgrr!l:“e:r':?l(:;je:sure Error Slip ratio
0.44 0.10 SL 5056 5086 -0.6% 4.327
13.02 0.30 AN 2486 3176 -22.2% 43
e e} SOEM

AGEMENT



CFD Modeling and its significance

Slide 6

Pressure x 10 (Pa)

70

60

50

40

30

e 100 psi

== =50 psi (Simulation data- Gas velocity 85.96 m/s)

o 15 psi (Simulation data- Gas velocity 41.276 m/s) D

Experimental data-36.64 psi (160 m/s)

Distance from inlet in vertical direction (m)

O Superimposed experimental

data for 20 GPM liquid rate with
the upstream pressure is 37 psi.

Similar trends for simulation and
experiment.

The liquid velocity in the
simulation is much higher than
that of experimental condition.

The experimental conditions
required to achieve the sonic
condition

Several simulation data was
used to validate the mechanistic
models.
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High Mach number flow

200 '
—— 1 bar 4
~=«= 10 bar ' I
3 m  OU Data for pressure less than 1 bar 4 J Exper_lmental data
i 4 OU data for pressure between 1 and 10 bar ! superlmposed on the
- well-known chart for the
E 125 These shaded : SpGEd of sound as a
E o _e><|oherimemc':llfdatah function of the void
o IS the case of Mach - : )
3 . number bhove'l ; fraction of two-phase
. I T [ me—" mixtures given by
o [EERRRGE .
& 50 Kieffer (1977).
25 = =
" & mE B I.: .
0.5 0.6 0.7 0.8 0.9 1

Void fraction of air
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Sonic Modeling

 Sonic velocity prediction based on studies from Kieffer (1977) and
Wilson and Roy (2008).
d Model uses Pressure and volumetric gas distribution.
d Comparison between fluid velocity and sonic velocity.
 In case of match, sonic condition is established.
d Flow is decoupled and limited by sonic condition.
d Well flow pressure calculated using the sonic velocity.

The UNIVERSITY of OKLAHOMA 1. [
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Sonic Co_nditig)n De_term_inatign I\/quel

If P<100 bar

Veoung = (80.44P%0337)x%2 — (—=0.0607P% + 23.23P + 74.42)x + 30.52P%672 4 20
Otherwise

Veoung = (1804P~001989)32 _ ((.0002878P2 + 0.8032P + 1884)x + 220.4P%2486 1 20

where P Is the pressure in Pa, x is volume fraction of gas given by the following

formula:
ng + Vsl
where Vsg is the superficial gas velocity and Vsl is the superficial liquid velocity. The

details of this model will be provided in the report for the WCD tool.
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- Sonic Velocity Comparison

200 Sonic Velocity-Model * Reasonable agreement
. . . between model and
Sonic Velocity-Experiment : I d

@150 experimental data
< + Model under predicts the
5 sonic speed
5 100 P
()
>
(&)
5
3 50

0

8 10 12 14 16 18 20

Upstream Pressure (psia)
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How the sonic model works?

Two conditions can prevail in wellbore

Subsonic conditions Sonic conditions
— Mach number less than 1 — Mach number 1 at the exit
— Wellhead pressure as — Wellhead pressure
defined by user controlled by sonic
— Fluid velocity governed by condition
bottom-hole and wellhead — Fluid velocity governed by
pressure sonic velocity at the exit

The UNIVERSITY of OKLAHOMA 1. —

ELk Bureau of Ocean Enerar Manaceme
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How the sonic model works?

@ Start the sonic
model

Input reservoir and |
well properties Consider the exit
; velocity as sonic velocity
Do the calculation 3
for nodal analysis Pwh = Pwh + AP, and perform the .

‘ calculation for full wellbore

|s there any grid
with fluid velocity
greater than
sonic velocity

Is there any grid with
fluid velocity greater
than sonic velocity
except at exit

Yes

Yes

NO

Display
the results

results
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WCD Tool e

* Programming Language
% C++ (main program)
“* VBA (interface)
« Computer requirements for execution
¢ Macro-Enabled 2013 MS-Excel (For 2010 another version of program)

Feedback [+------------1 Validation
i
Input data )
 Reservoir properties - Interface - Output
* Wellbore properties ol

Main Program

I.Eanhl‘!.f‘LH%[I‘m []hL\HD\h‘-.E -
() 2 UNIVERSITY of OKLAT BOE
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~ Capability

« Handles up to 15 layers including open hole properties.
« Users can validate the input data.

 Visualization of the results using customized plots.

« Combined plot of velocities and flow pattern.

e Overall WCD, gas flow, and water flow rates

« WCD, gas flow and water flow rates, well flow pressure, GOR, productivity
Index for each layer.

« Sonic condition in the wellbore

* IPR Plots for each layer and corresponding discharge rate
* Flow properties in tabulated form for each layer
 Visualization of flow pattern from the bottommost of well.

The UNIVERSITY of OKLAHOMA 1‘. [
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How this tool is different?

Slide 15

Traditional available software

OU WCD Computational Tool

Mixing zone

Layer 2

Layer 1

1C

Flowing bottom
hole is considered
at this point

* Reservoir model
only works in this

> zone

* No consideration
of flow patterns/
pressure drop

1C

Mixing zone

Layer 2 Reservoir model
Flow models \ and hydraulics
considered model, both works
Layer 1 simultaneously

Flowing bottom hole is considered at
the bottom-most point of the wellbore

Q| The UNIVERSITY of OKLAHOMA %\
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l How this tool is different?

Traditional available software

OU WCD Computational Tool

=

Can not be
simulated

Water is
coming from
this perforated
zone

Layer 1 P

=

Can simulate
any position
of layers

Water is
coming from
this perforated
zone

Layer 1 e

Q' The UNIVERSITY of OKLAHOMA %
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How this tool is different?

Slide 17

Traditional available software

OU WCD Computational Tool

ap
dL

dp
dL

S

_ _ Vse
Low velocity Transient Single  Low _ High _
- - . Transient . Sonic
region region phase m velocity : velocity .
) . region . region
region region region
The UNIVERSITY of OKLAHOMA % —
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How this tool is different?

Traditional available software

OU WCD Computational Tool

1 Only empirical correlations have
been considered.

1 Sonic modeling (if there) is based
on single gas phase flow only.

1 Never tested for high flow rates.

1 When the flow is friction dominated,
the pressure gradients increases.
Empirical models were never tested
for experimental data in these
conditions.

J Mechanistic model is used.

1 Sonic modeling is based on two
phase flow condition.

[ Tested for high flow rates.

1 When the flow is friction dominated,
the pressure gradients increases.
The hydraulics model is tested for
that.

Q' The UNIVERSITY f.rf tmumnm §
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How this tool is different?

Slide 19

Traditional available software

OU WCD Computational Tool

1 To calculate WCD, the reservoir
modeling and hydraulics modeling
performed separately.

Q Fluid properties input for hydraulics
model is based on the reservoir
models

1 Average IPR and TPR curve for the
system.

O Integrated the reservoir modeling
and hydraulics modeling.

 Fluid properties are updated based
on the input parameters while
running the calculation.

[ Distinct IPR curves and discharge
points for each layers of reservorr.

Q' The UNIVERSITY of OKLAHOMA %
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Assumptions

1 Radial and steady state reservoirs.
O All input layers are producing with minimum of O flow rate.

1 Geothermal temperature gradient is considered for the temperature
profile.

 The bottom-most layer is always considered to be producing (if
negative flow encountered, update the input with upper layer as
bottom-most layer).

O Different reservoirs are not communicating to each other

The UNIVERSITY (]l{l,.-‘l[l[}?r’l'lfii. —
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WCD Tool e
WCD SOFTWARE
Layers Input | Output | Combined Plot | Plots | Plats | IPR Plots |
— ) [
B | versalwel - | Well Profile Wellbore Schematic Seven tabs
Casing Inner Diameter, Dc {inch) W (2-30)

Casing Roughness, epsilonc (inch)
Open Hole Diameter, Dh (inch)
Cased Hole Diameter, Dch (inch)
Open Hole Roughness, epsilonh (inch)
Wellhead Pressure, Pw (psia)

Surface temperature, Ts (deg. F)
Length of Open Hole Section, Loh (ft) 1000
Number of Producing Layers, Npl
Hole diameter behind liner, DIh {inch)
Liner Inner Diameter, DI (inch) 9,25
Liner Roughness, epsilonl (inch)
Casing Shoe Depth, Lcs (ft)

Kickoff Point, KOP (ft)

Well Inclination frem Vertical, theta (deg.) | ¢

0 2000 4000 6000 2000 10000 12000
0

(>0)
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(0-45)
Update Input File

The bottom layer cannot produce under this con

Measured Depth (ft)

-4 -2 0 2 4

4000
&

SO0

In ribbon.

e Each tab is
for distinct
task.




WC_D Toql

WCD SOFTWARE X

Layers Input | Output | Combined Flot | Flots | Flots | IPR Plots |

Well T cal - '
ell Type | Vertical wel - Well Profile Wellbore Schematic

Casing Inner Diameter, Dc (inch) 10,75 (2-30)
0 2000 4000 6000 2000 10000 42000 -6 -4 -2 0 2 4 &

Casing Roughness, epsilonc (inch) W {=0) 0 8
Open Hole Diameter, Dh (inch) lﬁ (=Dc) I n p Ut pag e

Cased Hole Diameter, Dch (inch) [ Do) 200 = fOI’ We”bOre

Open Hole Roughness, epsilonh {inch) 0.04 (=0} - / p rO pe rti eS .

4000

\|

—
Wellhead Pressure, Pw (psia) 50 (=Pr) /
£
Surface temperature, Ts (deg. F) 40 {=0) —_ =
T 1)
m [} a0
‘— =l
Length of Open Hole Section, Loh (ft) 2000 {=0) £ 5
£
Number of Producing Layers, Npl 4 (1-15)
2000 S00G i
Hole diameter behind liner, Dlh (inch) 10,75 (0=Dlh=DI)
Liner Inner Diameter, DI (inch) 3,25 (0=Dl<Dc)
10000 HHHH v

Liner Roughness, epsilonl {inch) 0.0079 (=0)
Casing Shoe Depth, Lcs (ft >0

asing Shoe Depth, Les (ft) s000 >0) 12000 13000
Kickoff Point, KOP (ft} 0 (=0)
Well Inclination from Vertical, theta (deg.) [ o (0-43)

Update Input File Run Program Read Output File

‘ The bottom layer cannot produce under this condition, consider removing it.
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Layers Input | Output | Combined Plot | Plots | Plots | IPR Plots | B u tt O n to

Well Type | Vertical Well j Well Profile <= Hue"bﬂlﬁ schematic | .
Casing Inner Diameter, Dc (inch) W (2-30) d ISpIay th e

0 2000 4000 8000 B000 10000 12000 -5 -4 -2 0 2 4 [

Casing Roughness, epsilonc (inch) IW (=0) ’ We” prOfIIe

Open Hole Diameter, Dh (inch) 8.625 (=Dc)
Cased Hole Diameter, Dch (inch) 13.375 (=Dc)

2000 ligii

Open Hole Roughness, epsilonh (inch) 0.04 {=0) Use rS Can

4000 4886

Wellhead Pressure, Pw (psia) Ig.gi (=Pr) Visualize the
Surface temperature, Ts (deg. F) qui (=0)
number of

Length of Open Hole Section, Loh (ft) 2000 {=0)
Number of Producing Layers, Npl 4 (1-15) I a.ye rS y
&000 2006

Hole diameter behind liner, Dlh (inch) 10.75 {0=Dlh=DI We I I bo re type
Liner Inner Diameter, DI {inch) 9,25 {0<DI<Dc) 10000 16800 an d path .

6000 <

VD (ft)

MeasuregdDepth (ft)

Liner Roughness, epsilonl {inch) 0.0079 (>0)
Casing Shoe Depth, Lcs (ft >0

asing Shoe Depf cs (ft) 5000 (=0) 12000 12000
Kickoff Point, KOP (ft) 0 (>0)
Well Inclination from Vertical, theta (deg.) | o (0-45)

Update Input File Run Program Read Output File

‘ The bottom layer cannot produce under this condition, consider removing it.
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WCD SOFTWARE

fFile Y| Layers Input | Output | Combined Plot | Plots | Plots | IPR Flots |

Well Type

Casing Inner Diameter, Dc {inch)

Casing Roughness, epsilonc (inch)

Open Hole Diameter, Dh (inch)

Cased Hole Diameter, Dch (inch)

Open Hole Roughness, epsilonh {inch)

Wellhead Pressure, Pw (psia)

Surface temperature, Ts (deg. F)

Length of Open Hole Section, Loh (ft)

Number of Producing Layers, Npl

Hole diameter behind liner, DIh (inch)

Liner Inner Diameter, DI (inch)

Liner Roughness, epsilonl (inch)

Casing Shoe Depth, Lcs (ft)

Kickoff Point, KOP (ft)

| Vertical el -
[w7s  (230)

| ooos  (>0)
|ses  (>De)

| 3375 (>Deg)
looa  (>0)
EN
EE
[0 (>0)
EE)
[w75  (0=DIh=DI)
[s2s  (0<Di<Dq)
|oooe  20)
e
e

Well Inclination from Vertical, theta (deg.) | o (0-45)

Well Profile

Wellbore Schematic |\

X

TVD (f)

2000

4000

6000

a000

10000

12000

0 2000 4000 8000 2000 10000 12000

MMeasured Depth (ft)

Update Input File

4

-2 0
0

2

4

8

nnnnn

Run Program

Read Output File

‘ The bottom layer cannot produce under this condition, consider removing it.

Button to

—__|display the

wellbore
schematic

Users can
Visualize the
number of
layers, casing
Inner
diameter,
open hole
diameter, liner
diameter.
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Casing Roughness, epsilonc (inch)

| ooocs  (>0)
[ses (D)
(13375 (>Dg)
Open Hole Roughness, epsilonh (inch) 0.04 (>0)
EN il
EE
EZE
E R
[w75  (0>Dih=DI)
[e25  (0<Di<Dc)
EEC
EZEEE
R
Well Inclination from Vertical, theta (deg.) 107 (0-45)

Open Hole Diameter, Dh (inch)

Cased Hole Diameter, Dch (inch)

Wellhead Pressure, Pw (psia)

Surface temperature, Ts (deg. F)

Length of Open Hole Section, Loh (ft)

Number of Producing Layers, Npl

Hole diameter behind liner, Dlh (inch)

Liner Inner Diameter, DI (inch)

Liner Roughness, epsilonl (inch)

Casing Shoe Depth, Lcs (ft)

Kickoff Point, KOP (ft)

TVD (1)

0

2000

4000

8000

8000

10000

12000

/

4 2 0
a

'd

S000

/

\easur&d Depth (ft)

/

-—

L

Update Input File

Run Program

Read Output File

‘ The bottom layer cannot produce under this condition, consider removing it.

— — E— — — —
WCD SOFTWARE x
{File”!| Layers Input | Output | Combined Plot | Plots | Plots | PR Plots | U pd ates th e
s | vetcawiel ] Well Profile Wellbore Schematic ‘ |nput f||e 1{0)
Casing Inner Diameter, Dc (inch) ’? (2-30) .
0 2000 4000 6000 8000 10000 12000 ¥ 2 4 8 ru n th e mal n

program.

Runs the
main
program

Reads the
output file
generated
from the
main
program
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Layers Input | Output | Combined Plot | Plots | Plots | IPR Plats | If th e
Well Type | Vertcawal -] Well Profile Wellbore Schematic rese rvoi r

Casing Inner Diameter, Dc (inch) 10.75 (2-30)
0 2000 4000 6000 8000 10000 412000 5 -4 -2 0 2 4 [ :
Casing Roughness, epsilonc (inch) 0.0008 (=0) 0 ' pressu re IS

Open Hole Diameter, Dh (inch) 8.625 (=Dc) IOW, th e

2000 iy

Cased Hole Diameter, Dch (inch) ’T (=Dc) SOftware Wi I I

Open Hole Roughness, epsilonh (inch) 0.04 (=0) . -
point out this
Wellhead Pressure, Pw (psia) 50 {(=Pr)

*

mal d
Surface temperature, Ts (deg. F) 40 (=0) = = an O a y an
5]
§ 5000 % onnn [l I | d [ |
Length of Open Hole Section, Loh (ft) 2000 {=0) = % WI IS p ay
g
Number of Producing Layers, Npl 4 {1-15)
2000 3000
Hole diameter behind liner, DIh (inch) 10.75 {0=DIh=DI)
Liner Inner Diameter, DI (inch) 9,25 {0<DI<Dc)
10000 HHHH

Liner Roughness, epsilonl {inch) 0.0079 (>0)
Casing Shoe Depth, Lcs (ft =0

asing Shoe Dep cs (ft) 5000 (>0) 12000 12060
Kickoff Point, KOP {ft) 0 (>0)
Well Inclination from Vertical, theta (deg.) | o (0-45)

Update Input File Run Program Read Output File

‘ The bottom layer cannot produce under this condition, consider removing it.
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WCD SOFTWARE
File {L ] Output | Combined Plot | Plots | Plots | IPR Plots | R -
eservolr
TR R ST SRT R W R S .sh. Smo@ a2 v e anMl properties for
()  Depth @) (psia) (psia) Saturation Saturation (sthMMscf) %
tayert | o »| | consolidatedsand ~| | 100 | 10000 | 160 | 45 | 0.6 | 10000 | 250 | 1000 | 7000 | 0.5 | 0.2 | 015 oot o1 |05 | 10 | 3 , 'ﬂOW
Layer 2 | Gas ¥| | Unconsolidatedsand v| | 100 | soo0 | 150 | a5 | 0.6 | 1000 | 250 | soo0 | 800 | o5 | 0.2 | 015 o001 o1 |05 | 10 | 3
Laver 3 [ water v| | Unconsolidatedsand v| | 100 | sooo | 140 | a5 | 0.6 | 10000 | zs0 | 6ooo | soo0 | 0.3 | 0.5 |05 | ooot |01 |05 | 10 | 3
Layer 4 = | =l | | | | | | | | | | | | | | | 1 5 |
ayers
Layer 5 | = | £ | | | | | | | | | | | | | | |
Lavers | ] | o | | | | | | | | | | —T T [ | overall
tayer 7 | = | E | ! j I | | | | | | | | | |
Layers | = | £ | | | | | | | | | | | | | | |
tavers |f =] | =l | | | | | | | | | | | | | | |
Laver 10 = | =l | | | | | | | | | | | | | | |
taer 1 f = | £ | | | | | | | | | | | | | | |
Layer 12]] =l = | | | | | | | | | | | | | | N
ote for the

Layer 13 | | | E| | | | | | | | | | | | | | | | |
Lover 14 ] | S | | | | | | | | | | e — way the Iayer
Layer 15 =l =] | | | | | | | | | | | | | | |

Validation

MNote: Layer numbering is from bottom to top. First input the bottom most layer as first layer and then afterwards.

Payzone Bottom Depth should be in terms or measured depth

properties
should be
entered
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WCD SOFTWARE
{ output | Combined Plot | Plots | Plots | 1R Plots |
Reservoir Formation Payzone PayZone Reservoir APIGravity GasSpecfic Drainage Permeabiity Reservor BubblePoint — Gas Water  Ireducble Critcal Critical Ol Skin - Condensate  Salt
Type Type Height  Bottom Temperature ofOil (o) Gravity () Raduis ()  (mD)  Pressure  Pressure  Saturation Saturaton  Water Gas  Saturation Vield  Content
&) Depth [ {psia) {psia) Saturation Saturation (sth/MMscf) %
tayer 1 [ v ||| consolidatedsand ~|| 100 | 10000 | 160 | 45 | 0.6 | wooo | 2s0 | 11000 | 00 | 05 | 0.2 | 015 | ooot |01 o015 | 10
Layer 28 | Gas |} unconsolidatedsand »| | 100 | om0 | 1s0 | 45 | 0.6 | w000 | 250 | soo0 | sooo | o5 | 0.2 | 0.15 EER
Layer 30 | water |} unconsolidatedsand »| | w0 | sooo | 140 | a5 | 0.6 | woo0 | 250 | soo0 | sooo | 0.3 | 0.o0t |01 o015 | 10 | 3
Layer 4 | =~y = | | | | | | | | | | |
Layer 5] | | | | | | | | | | | | |
Layer 6 | = | | | | | | | | | | |
aver 7 | = | | | | | | | | | | |
Layers | | = | | | | | | | | | | | |
Layers | | | | | | | | | | | | | | | | | | | | | |
Layer 1f | =~y = | | | | | | | | | | | | | | | |
Layer 1 | | | | | | | | | | | | | | | | | | | | |
Layer 1 | k| | 5| | | | | | | | | | | | | | | | |
Laver 1 | k| | | | | | | | | | | | | | | | | | |
Layer 1 | k| | = | | | | | | | | | | | | | | | |
aver g | k| | =l | | | | | | | | | | | | | | | |
validation Note: Layer numbering is from bottom to top. First input the bottom most layer as first layer and then afterwards.
Payzone Bottom Depth should be in terms or measured depth

GasCondensate

WVater

User can
select any of
four reservoir
fluid
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WCD SOFTWARE *
Fie {la it | output | combined Plot | Plots | plots | 1PR Plots | ] L
ConsolidatedSa; -
Reservoir Formation Payzone PayZone Reservoir  API Gravity Gas Specific Drainage Permeability Reservoir Bubble Point Gas Water Irreducble  Critical Critical Qi Skin  Condensate  Salt m
Type Type Height Bottom Temperature of Oil (o) Gravity (-) Raduis (ft) (mD} Pressure Pressure  Saturation Saturation Water Gas Saturation Yield Content_L—=" 18
P Depth P o) et e e B L s B b
UnconsolidatedSar

Lavert | Qi | Consolidatedsand || 100 | 10000 | 160 | 45 | 06 | w000 | 250 | 1000 | 7000 | 0.5 | 0.2 [015 | o001 | | 3 Limestone
Layer2 | gas | Unconsolidatedsand ~ || 100 | sooo | 150 | a5 | 0.6 | 10000 | 250 | soo0 | sooo | 0.5 |01 | o015 | 1 | 3
Laver 3 | water | Unconsolidatedsand v 1| 100 | sooo | 140 | a5 | 0.8 | wooo | 250 | soo0 | sooo | o o015 oot o1 o015 | | 3

Layer 4 |

| b

Layer 5 |

| -

Layer & |

Layer 7 |

Layer 10 |

Layer 11 |

Layer 12 |

Layer 13 |

Layer 14 |

3
Lol Ll bl b bl e bl v bl e i el el el e

Layer 15 |

Validation

Note: Layer numbering is from bottom to top. First input the bottom most layer as first layer and then afterwards.
Payzone Bottom Depth should be in terms or measured depth

User can
choose any of
three formation
types:

v Unconsolidated
sand

v’ Consolidated
sand

v’ Limestone
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Payzone Bottom Depth should be in terms or measured depth

— — — — — — —
WCD SOFTWARE x
:ﬁ:é] Output | Combined Plot | Plots | Plots | IPR Plots |
*User can

Reservoir Formation Payzone PayZone Reservoir APIGravity GasSpedfic Drainage Permesbiity Reservoir BubblePoint  Gas Water  Ireducble Critical Critical Ol Skin Condensate  Salt

Type Type H?::gtrt E;;Eog Temp{tlezr}amre of Ol (o) Gravity () Raduis(ff)  (mD) Prés:i:}re Pr[eps::}re Sshrafn Serafon Water Gas Sshraton {sﬂaﬁﬁscﬂ Content V al I d at e th e
Levert | o | | consolidatedsand v || 100 | 10000 | 160 | 45 | 0.6 | w000 | 250 | 1000 | 7000 | 05 | 0.2 [015  [ooot |01 |05 | 1 | 3 . t d t
Layer 2 | Gas _»| | Unconsolidatedsand v| | 100 | @oo0 | 150 | a5 | 0.6 | woo0 | 250 | sooo | sooo | 0.5 | 0.2 [ 015 | o001 | o1 |05 | 10 | 3 Inpu a a'
Laver 3 | yiater | | unconsolidatedsand | | 100 | soon | 140 | 45 | 0.6 | w000 | 250 | soo0 | sooo | 0.3 | 0.5 |05 | o001 | o1 |05 | w0 | 3 1 o It II p d
Layer ¢ | =i =l | | | | | | | | | | | | | | | wi rOVI €
ovrs | =l | £ | s s Y v v Y v m— _— — || feedback In
T = — case of any
ayer 7| =i = | | |
overs | =l =l | errors
Layers | =i =i | |
Layer 10 | =i =l | |
Layer 11 | = =i | |
Layer 12 | =l | | |
Layer 13 | =i = | | |
Layer 14 | =i = | | |
Layer 15 | = = | |

validation Note: Layer numbering is from bottom to top. First input the bottom most layer as first layer and then afterwards.
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WCD SOFTWARE >
File | Layers Input (BBt | combined Plot | Plots | Plots | PR Plots | D I S p I ay for
WCD RATE ‘ 273067.80 STB/Day GAS RATE 866.42 MMscfday WATER RATE 8.75 Bbl/Day [~ WC D rate
— ]
Gas rate, and
Well Flow_ 0Oil Flow Rate Gas Flow Rate Water Flow Rate Productivity Infiex GOR
Pressure (psi) {stb/day) (MMscfiday) (Bbliday) (STBiday/psi) (scf/STB) Wate r rate
Layer 1 8458.5 273067.8 866.42 8.75 107.06 31729
Layer 2 [ [ [ [ [ [ )
wos —  — — — — Display for well
Layer 4 [ [ [ [ [ [
0 S S S flow pressure,
wes [ — — oll flow rate,
Layer 7 [ [ [ [ [ [
Layer 8 \ gaS fIOW rate,
wers [ [ [ [ water flow rate,
Layer 10 d t. .t
Layer 11 pro UC IVI y
i iIndex, and
Layer13 | | | l l |
Layer 14 GOR for eaCh
Layer1s | | | l l | I
ayer
Sonic Condition is achieved
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WCD SOFTWARE

Fie | Layers Input | Output Combined Plot |plots | Plots | 1PR Plots |

Combined Plot

Normalized
—r| Superficial
gas velocity

Normalized
—| Superficial

Flow Pattern Zone Description
Normalized Velocity
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
0 : —
// = Zone 0
E |
/ _E ”
: \ 3
2009 | S Zone 6
’ ®
_; N fen | =
3 5 gl & Zone 9
EusllRIS| & fF--------p--------- Zones
4000 - - 3 |— Zone 1
[ Zone 5
. € 200l
g [=%
£ \ @
=X 001 2 6 15 25 Vsonic
o §
g 6000 - " ‘ Superficial gas velocity, Vsg (m/s)
‘5
w
o
@O
= \

[
8000 - i \

10000 - 7

12000

0 1 2 3 4 5 6 7 8 9 10
Flow Pattern Zone

——\Vsln ——Vsgn ==—Flow Pattern Zone

—

ingle phase flow Zone 6: High velocity slug flow

Zone 2: Bubbly flow
Zone 3: Low velocity slug
Zone 4: Hybrid slug flow
Zone 5: Slug flow

Zone 7. Mybreasseaciagion

liquid velocity

Zone 8: Annular flow region
Zone 9: Sonic Zone

ﬂ| Flow pattern
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Fie | Layers Input | Output Combined Plot | Plots [ Plots | 1PR Plots | F I ow p atte n

Combined Plot Flow Pattern Zone Description / Zones

Normalized Velocity
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0

0 E
== S

/ = Zone 0
E
s ¥
2
2000 - g Zone 6
s |6kl 3
IR R —— Zones [ Zones Zones
4000 - 3 Zone 1 . .
Zone §
e \ description
;g- \ ’ 0.01 2 6 sonic
- 6000 - N \\\ Superficial ;is velocity, Vsg (m/s) ® veont
g \ R
g
8000 - \ Zone 0 and 1: Single p Zone 6: High velocity slug flow FIOW
= Zone 2: Bubbly flow : id annular region
7 Zone 3: Low velocity slug Zone 8: Annular flo d patterns
10000 - Zone 4: Hybrid slug flow Zone 9: Sonic Zone — N alon the
Zone 5: Slug flow g
measured
12000
0 1 2 3 4 5 6 7 8 9 10
Flow Pattern Zone depth

—\Vsln ——Vsgn e=——=Flow Pattern Zone
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File ] Layers Input] Oumut] Combined Plot P|Dtﬂ] Plots ] IPR. Plots ] Plot |
Plot | Plot | Plot |
Select a Chart] j
| Select a Chart j Select a Chart ﬂ wart = | o AR ==

dpdl(KPa/m) Vs, Depth{ft)
Vsl Vs, Depth

Vsg and Vsonic Vs, Depth
Pressure{psi) Vs, Depth{ft)
Flow Pattern Vs, Depth

User can
choose and
see any of
these six
plots in the
window
below
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— I I — — — I
| Pt | ‘ Plot | | Plot |
| Radius vs. Depth =] | dodiiPajm) vs. Depth(ft) | | vl Vs. Depth |
5 4 = 0 2 4 8 dpdL{KPa/mjs. Depthift) Vsl (m/s)vs. Depth(ft)
Pressure Gradient (KPa/m) Vsl (m's)
0 20 40 &0 30 100 120 0.00 500 1000 1500 20.00 2500 30.00 3500
2 /
1000
/ 2000
2000
_J,nnn /
£ 3000 4000
= —
§ 3 g
= &0 £ 4000 £
E g :
i E o 5000
L]
= @ 5000 5
z @
= L]
20 =
5000 8000
-‘ [ 7000
' 15660 B !
10000
2000
12000 5000 12000

| Radius Vs Depth | Pressure Gradient Superficial liquid velocit
Vs Depth Vs Depth
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|E Plot El ‘é Plat ﬂ

| Vsg and Vsonic Vs, Depth j | Pressure(psi) Vs, Depth(ft) j

Measured Depth (ft)

Wag and Veonic (mis) Pressure (psi)vs. Depth (ft)

0 200 400 800 200 1000 1200
. L L . . ) Pressure (psi)

0 1000 2000 3000 4000 000 6000

2000 1000 \
2000
4000 \
3000 \
4000 \
5000 \
2000 5000 \
Tooo
10000 \
2000

12000 s000

5000

Measured Depth (ft)

Superficial gas and sonic | Pressure vs. Depth |

velocity vs. Depth

F Plot 4

| Flow Pattern Vs, Depth j

2000

4000

G000

Measured Depth (ft)

a000

10000

12000

Flow Pattern vs. Depth(ft)

Flow Pattern Code
2 4 [ 8 10

—

’,_I_

‘ Flow Pattern vs. Depth
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WCD SOFTWARE
File | Layers Input] Output ] Combined Plot] Plots ] Plots IPR Plots ] Plot |
-
Plot | Plot | Layer 1| J
Layer 1 - Layer 1 -
P R

12000

10000 \

s000 \
§000

Welflow Pressure (psi)

4000 \

2000

\

0 100000 200000 300000 400000 500000 500000
Oil Rate (Stbiday)

e (] F lowy R ate

= Dischange Oil FlowRate

700000

200000

Wellflow Pressure (psi)

12000

10000

2000

8000

4000

2000

\

\

T

TN

0 500 1000 1500 2000
Gas Rate (MMscfiday)

— 335 Flow Fate = Discharge FlowRate

OIL FLOW RATE VS WELL FLOW PRESSURE

GAS FLOW RATE VS WELL FLOW PRESSURE

* IPR Plots

« Shows Oil and
Gas flow rate
with respect to
well flow
pressure

 User can
visualize the
flow rate from
different layers
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Oil Rate (Stbiday}

e (| Flowe Rate ®  Dizcharge Oil FlowRate

Gas Rate (MM

53z Flow Rate B Discharge FlowRate

OIL FLOW RATE VS WELL FLOW PRESSURE

GAS FLOWRATE VS WELL FLOW PRESSURE

WED SOFTWARE
File ] Layers Input] Output ] Combined Plot] Flots ] Flots IPRPlf’TS .
I — Oil flow rate Vs.
| Plot | Plot |
— — Well flow pressure
12000 12000
10000 — 10000 ;\\_’{-\ \
A I 7 % \
T N Gas flow rate Vs.
2 so00 1 2 so00 |
: . : ! N Well flow pressure
e T N
2000 1 2000 |
| \
" 100000 700000 300000 400000 500000 600000 700000 800000 ’ 2500

Discharge flow
rate with well flow
pressure
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Comparative study with Prosper

Work flow

Defining

PVT Data

PR Data [ 3 Sauipment

»

the system Data
Deviation Survey
PAT g‘moa Surface Eguipment
Equation Of State
Seperater e Stage
Water Tty Dos Defodt Colrelaton o GOR
Vescosity Hdel Newiorn S .
e i oy s
TG el R B Glaso Presare iﬁﬁ" Seothermal Gradent
e o RN a ﬁﬁf 5,000
None L Mo Lsaul:-:l
= i BB
mg Hverage Heat Capaotes
Date 05/21/2018

Gauge Detais

I Q| The UNIVERSITY of OKLAHOMA SOEM

Mewboumne School of Petroleum and Geological Engineering
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- Comparative study

Methodology

 Inflow performance relation (IPR) and vertical lift performance (VLP) curves
simulated

* |IPR curves generated using the Darcy reservoir model

« Bubble point pressure: Glasg method
 Viscosity: Beggs et al. method

e VLP Curves:

4 (a) Hagedorn Brown (HB); (b) Beggs and Brill (BB); (c) Petroleum
Experts (PE); (d) Mukherjee Brill (MB); (e) Fancher Brown (FB); (f) Duns
and Ros (DR); and (g) Petroleum Experts 2 (PE 2)

The UNIVERSITY of OKLAHOMA 1‘. [
% "jf, 1 School of Peo ,::t:.r{.il.._.u'u.,-._l:l ::_:-..'.:I.' A 30_

.E,;.,L Bureau or O'cenn Eneray Manacement
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Case study
Parameters Value Unit
Oil Gravity 28 °API
Gas specific gravity 0.6
Bubble point pressure 1404 pSI
Reservoir pressure 7500 psi
Gas oll ratio 235 scf/STB

!
% e boume

The UNIVERSITY uf []hl \H[l"r’.lf‘i F

"'-.\,| .1|.-' |.;!:-' cilim .,,l.

al En .
.i-;#.

SOE

Bureau or O'cenn Eneray Manacement
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Comparative study

VLP Curves
8000

« HB: Hagedorn Brown

- BB: Beggs and Brill
 PE: Petroleum Experts

« MB: Mukherjee Brill

« FB: Fancher Brown

« DR: Duns and Ros

« PE 2: Petroleum Experts 2

Bottom Hole Pressure

Each method

0 5000 10000 15000 20000 25000 gIVES distinct
Liquid Rate (STB/day) discharge rate

I % The Uhl\*’l:ﬂ“»[’[':’ uf []KL’&H[]\’I;\ % 30_ I\/I

Mewboume Schoolof Perolum and Geological Enginccring I\ o
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Case study: under subsonic conditions

Ol Gas specific Bubble Point Reservoir
Case : : GOR
Gravity gravity Pressure Pressure
°API (psi) (psi) scf/STB
1 28 0.6 1403.6 7500 235
2 35 0.8 2000 3000 650
3 45 0.8 2165 3000 865
4 55 0.82 2560 3000 1376

Q' The UNIVERSITY of OKLAHOMA i
Mewboume School of Perroleum and Geological Engineering i

chiood of Peonol

L

SOE

Bureau or O'cenn Eneray Manacement
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Case study: under subsonic conditions

100000

Discharge Rate (STB/day)

75000 F

50000 F

25000 F

Case | WCD Rate WED Diff.
Rate
OU Model | Prosper %
STB/day | STB/day
1 14796.5 14567 1.6
2 19886 20368.4 | -2.4
3 46094 56980.4 | -19.1
4 91598 81442 12.5
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- Comparative study

Case study: under sonic conditions

Oil Gas specific | Bubble Point | Reservoir WCD :

Case I. p_ & " ! Vol GOR WCD Rate Diff.
Gravity gravity Pressure Pressure Rate
OU Model | Prosper %
°API (psi) (psi) scf/STB STB/day STB/day

1 50 0.8 3250 7500 1600 99597.26 86376 15.3
2 55 0.8 5000 3000 2586 134563.8 114368 | 1/7.6
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Comparative study
Case study: GoM
Reservoir Properties | Value | Unit Well Properties Value | Unit
Reservoir temperature  |210 J= Well type Vertical
Reservoir permeability 246 mD Mea_sur.ed Dep.t h 16725 Tt
: Casing inner diameter 13.375 |In
Drainage area ©894 Acres Liner inner diameter 10.75 In
Dietz shape factor 31.6 Open hole diameter 8.375 |in
Reservoir thickness 106 ft Casing shoe depth 8850 ft
Reservoir pressure 11305 |psi Length of open hole section |5076 ft
Case | Oil Gravity | Bubble Point Pressure
°API (psi)
1 35 5500
2 45 6900
Q| The UNIVERSITY of OKLAHOMA i 30 —
Mewbourne Schoal of Petroleum and Geological Engineering AL e o —
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Case study: GoM

Case WCD Rate WCD Rate Diff.
OU Model Prosper %
STB/day STB/day | _ _ _ _ _
1 302783 284519 6.4
2 275248 264912 -89 -

Conservative
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Change in Permeability
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Sensitivity Analysis

Change in Payzone Bottom Depth Change in Payzone Height
400000 - 1000 400000 - 1200
¢ WCD Rate
. ~— —
= ® Gas Rate - 800 = = o 0 © : 1000 —_
3 300000 pY 8 g 300000 s : ¢ ¢ ® §
S = - - 800 =
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Ezooooo : < < 200000 - 600 =
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- 200
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Sensitivity Analysis

Change in Reservoir Pressure Change in Skin
500000 - 1400 400000 - 1000
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Conclusion

* CFD Modeling:
1 Used in setting-up experimental facility
 Predicting the experimental condition required for sonic flow
1 Mechanistic model validation

 Calculated sonic velocity is in reasonable agreement with
experimental data.

 WCD Computational Tool:
1 New approach for sonic modeling for WCD calculation.
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Conclusion

*WCD Computational Tool:

 The tool integrates the reservoir and well model and works
simultaneously.

 Fluid properties are updated based on the input parameters
while running the calculation.

 Distinct IPR curves and discharge points for each layers of
reservolr.

d Comparative study of the new tool with Prosper software
shows good agreement.

1 Sensitivity analysis shows the expected trends with respect to
different well and reservoir properties.
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Future Recommendation

 Investigation of larger diameter with high velocity with experiments.
d Implementation of transient reservoir model.
d Including heat transfer model.

 Broadening the scope of WCD model to simulate the production
scenarios.
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	Figure
	
	
	
	
	
	Comparative
	analysis
	shows
	good
	agreement
	between
	LSU
	data
	and
	other
	available
	measurements
	.


	
	
	
	WCD
	rate
	is
	not
	only
	reliant
	on
	conditions
	of
	the
	wellbore
	section
	but
	it
	is
	also
	influenced
	by
	the
	fluid
	properties
	and
	reservoir
	characteristics
	.


	
	
	
	An
	acceptable
	agreement
	was
	obtained
	between
	simulation
	predictions
	of
	the
	pressure
	drop
	and
	experimental
	data
	at
	various
	test
	conditions
	.


	
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	
	An
	accurate
	WCD
	–
	computational
	tool
	is
	developed
	to
	predict
	the
	daily
	uncontrolled
	flow
	of
	hydrocarbons
	from
	all
	producible
	reservoirs
	into
	open
	wellbore
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	The
	modified
	mechanistic
	model
	demonstrated
	good
	agreement
	between
	predicted
	and
	measured
	pressure
	gradient
	in
	the
	wellbore
	which
	provides
	a
	strong
	confidence
	in
	WCD
	rate
	predictions
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	To
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	the
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	(
	0
	.
	3
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	+
	Mach)
	flow
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	calculation
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	flow
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	Pressure
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	(ΔP)
	in
	any
	circular
	duct
	is
	related
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	(D),
	length
	(L),
	fluid
	density
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	and
	mean
	fluid
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	Thus
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	flow
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	flow
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	•
	•
	•
	•
	•
	CFD Modeling:


	
	
	
	
	
	Used in setting
	-
	up experimental facility


	
	
	
	Predicting the experimental condition required for sonic flow


	
	
	
	Mechanistic model validation




	•
	•
	•
	Calculated sonic velocity is in reasonable agreement with 
	experimental data.


	•
	•
	•
	WCD Computational Tool:


	
	
	
	
	
	New approach for sonic modeling for WCD calculation.
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	Figure
	•
	•
	•
	•
	•
	WCD Computational Tool:


	
	
	
	
	
	The tool integrates the reservoir and well model and works 
	simultaneously.


	
	
	
	Fluid properties are updated based on the input parameters 
	while running the calculation.


	
	
	
	Distinct IPR curves and discharge points for each layers of 
	reservoir.


	
	
	
	Comparative study of the new tool with Prosper software 
	shows good agreement.


	
	
	
	Sensitivity analysis shows the expected trends with respect to 
	different well and reservoir properties.
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	Figure
	
	
	
	
	
	Investigation of larger diameter with high velocity with experiments.


	
	
	
	Implementation of transient reservoir model.


	
	
	
	Including heat transfer model.


	
	
	
	Broadening the scope of WCD model to simulate the production 
	scenarios.




	Figure

	Slide
	Span
	Figure
	Figure
	Textbox
	H1
	Span
	Acknowledgement


	Figure
	•
	•
	•
	•
	•
	Project Sponsor: US Department of the Interior, Bureau of 
	Ocean Energy Management (BOEM)


	•
	•
	•
	Jeff McCaskill




	Figure

	Slide
	Span
	Figure
	Figure
	Figure
	Figure
	Textbox
	H1
	Span
	Thank you  !!!






