Research and Development on Critical (Sonic) Flow of Multiphase Fluids through Wellbores in Support of Worst-Case-Discharge Analysis for Offshore Wells

## **Project Overview and Deliverable Status**

Saeed Salehi, PhD Principal Investigator Friday, October 12<sup>th</sup> 2018





#### C.1 INTRODUCTION

In the wake of the 2010 *Deepwater Horizon* incident and pursuant to regulations (30 CFR 550.213(g), 550.219, 550.243(h), and 550.250), BOEM has since revised and the requirements for Worst Case Discharge (WCD) Scenario calculations submitted by operators conducting oil and gas exploration and production in the Outer Continental Shelf (OCS) of the Gulf of Mexico (GOM). In response to the growing need for consistent WCD reporting, the Society of Petroleum Engineers (SPE) published a Technical Report (March 2015) on the *Calculation of Worst-Case Discharge (WCD)*. The report represented the consensus viewpoints of subject matter experts aimed at developing a consensus guideline for WCD analysis so that "*operators and regulators can have confidence that the methods employed are both reasonable and consistent*."(p.3). The SPE report noted two areas for recommended research: (1) appropriate correlations for high-rate flow in large-diameter pipe; and (2) sonic velocity flow limitations on WCD calculations. The first area of research is currently studied under Contract Award: M15PC00007. The second recommended area of research stems from the viewpoint that critical (sonic) flow limitations are expected to have only a small effect on well discharge rates in WCD analyses.

SPE Technical Report

#### Calculation of Worst-Case Discharge (WCD)

March 2015

This report represents the consensus viewpoints of subject matter experts and is intended to provide useful information to SPE members, the public, and the industry. It is not intended to take the place of advice on the application of technology to specific circumstances. Readers of this Technical Report are responsible for assessing its relevance and verifying its accuracy and their own choices, actions, and results. SPE and contributors to the Technical Report are not responsible for actions taken as a result of reading this document, nor the results of those actions.

© Copyright 2015 Society of Petroleum Engineers





# sonic velocity flow limitations

#### 2.5.9 Sonic Velocity Limitation

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

At very high gas discharge rates to a low-pressure environment, the well exit velocity may approach sonic velocity and limit the gas flow rate by critical flow choking. This would only apply to wells with a discharge point above sea level allowing flow to the atmosphere. Most Nodal analysis software packages include a sonic velocity check at each calculation node.

23

For most cases of practical interest, critical flow limitations are expected to have only a small effect on well discharge rate. As a result, sonic velocity flow limitations should generally be ignored for WCD calculations unless special conditions apply. However, where applicable, it may be invoked by an operator with proper justification. However, until further research is conducted, BOEM will not be applying sonic velocity to the WCD calculation.

Calculation of Worst-Case Discharge (WCD)

March 2015

**SPE Technical Report** 

This report represents the consensus viewpoints of subject matter experts and is intended to provide useful information to SPE members, the public, and the industry. It is not intended to take the place of advice the application of technology to specific circumstances. Readers of this Technical Report are responsible for assessing its relevance and verifying its accuracy and their own choices, actions, and results. SPE and contributors to the Technical Report are not responsible for actions taken as a result of reading this document, nor the results of those actions.

© Copyright 2015 Society of Petroleum Engineers



#### C.2 OBJECTIVE

The main objective of this project is to secure one contractor who can demonstrate the applicability of current (or novel) analytical, numerical, or empirical methods for predicting critical (sonic) discharge flow rate, pressure, and velocities of multiphase fluids exiting wellbores in Gulf of Mexico OCS Worst-Case-Discharge scenarios. To accomplish this goal, several milestones will be administered to encapsulate the body of work needed to investigate existing and novel approaches to better understand multiphase critical flow in GOM Deepwater projects. The study objectives are to complete the following:





# **University of Oklahoma Study Goals**

- Prevailing WCD models lack an accurate pressure drop prediction at sonic and supersonic conditions.
  - Models don't account for flow regime development of two-phase flow that may attain sonic condition at the wellbore exist due to the dramatic pressure drop.
  - Lack of theoretical models and experimental data of two-phase flow at high Mach number (Ma > 0.3)
  - Subsonic/supersonic conditions lead to the generation of shock waves in the system, which was not included in past studies.
- Goal is to develop a mechanistic model to predict two-phase flow characteristics for different WCD scenarios in the wellbore at high Mach number.
- Goal is to also provide a computational tool that predicts WCD rate under various operational conditions.





# **University of Oklahoma Team**



Saeed Salehi, PI

**Rida Elgaddafi** Post-Doc Associate

Ramadan Ahmed, Co-PI

Olawale Taye Post-Doc Associate

**Raj Kiran** PhD Candidate Jeff McCaskill Technician and Equipment Specialist





Deliverable(s) / Milestone (s)

Completion of Technical Report for Literature Study and Theoretical Studies

Completion of Technical Report for Models CFD Simulations/WCD Model

Completion of Technical Report for Laboratory

Results

Completion and Development of WCD Model and Computational Tool

Completion of Draft Reports





| Deliverables                   | Due                            |
|--------------------------------|--------------------------------|
| Literature Review and          | January 5 <sup>th</sup> , 2018 |
| Theoretical Studies Report     |                                |
| CFD Simulation/WCD             | March 24 <sup>th</sup> , 2018  |
| Model Technical Reports        |                                |
| Technical Report for           | April 24 <sup>th</sup> , 2018  |
| Laboratory Results             |                                |
| <b>Completion of WCD Model</b> | October 12, 2018               |
| and Computational Tool         |                                |
| Final Report                   | October 3, 2018                |

• Kick off meeting, October 24<sup>th</sup>, 2017





# **Methodology and Scope**







### University of Oklahoma (OU) : High Velocity Experimental Setup



• A new flow loop has been developed to perform high-velocity two-phase flow loop.





## University of Oklahoma (OU) WCD Computational Tool

- Programming Language:
  - C++ (main program)
  - $\circ$  VBA (interface)
- □ Computer requirements for execution:
  - Excel 2013 Macro-Enabled Office

□ Interface:

- Handles up to 15 layers including open hole properties
- Users can validate the input data
- Visualize the results using customized plots WCD rate displayed



Simplified schematic of well production system (Mach et al. 1979)



### University of Oklahoma (OU) : WCD Computational Tool







# **OU WCD Computational Tool-Contributions** Slide 21



The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering



# Acknowledgement

 Project Sponsor: US Department of the Interior, Bureau of Ocean Energy Management (BOEM)





# Thank you !!!





Research and Development on Critical (Sonic) Flow of Multiphase Fluids through Wellbores in Support of Worst-Case-Discharge Analysis for Offshore Wells

### **Experimental Setup and Procedure**

Ramadan Ahmed, Co-Principal Investigator Oct, 12<sup>th</sup> 2018





### Introduction

- Flow Loop Components
- Problems and Challenges
- Measuring Techniques
- Test Type and Procedure





- A new flow loop has been developed to perform high-velocity two-phase flow loop.
- The loop has two 18-ft long test sections:
  - 3.25" Pipe section
  - 3.25" X 1.315" Annular section
- Ranges of test parameter
  - Liquid rate: 5 to 240 gpm
  - Gas rate: 8 to 320 lbm/min





# Flow Loop Photo





# **Schematic**

# **Flow Loop Components**

#### Test section

- Air supply system
- Water circulation system
- Data acquisition system

## **Test Sections**





#### Sensors

- Differential pressure
- Static Pressure
- Temperature

#### Valves

- Holdup
- Safety
- Check

#### Others

- Visualization system
- Air accumulators
- Perforated disks

# **Inlet Section**

- Holdup valve
- Mixing section
- Water injection
- Liquid-level measuring dp meter



# **Air Supply System**



#### Compressors

- Atlas Copco 1600 cfm
- Atlas Copco 1800 cfm (Rented)
- Sullair/Doosan 1600 cfm (Rented)

#### Valves

- Inlet
- Bypass (not used)
- Flow regulating

#### Sensors

- Flow meters (F1 and F2)
- Pressure
- Temperature

# **Air Supply System - Photo**



# **Water Circulation System**



#### Equipment

- Water tank
- Water pumps with VFD control

#### Valves

- Relief
- Bypass (not used)

#### Sensors

- Flow meter (F3)
- Pressure
- Temperature

# Equipment





**Primary Water Pump** 



**Secondary Water Pump** 

Water Tank

- Equipment failure: inner pipe support failure and view port leaks
- Water hammer and pressure surge causing leaks and pipe failure
- Vibrations
- Instrument failure : flow meters and pressure sensors





• Pressure drop: Two differential pressure sensors

Accuracy 0.05%, Measuring Range  $\pm$  40 and 200 in H<sub>2</sub>O

• Flow Rate: Coriolis flow meters

Accuracy 0.35%

Accuracy 0.05%, Measuring Range 550 and 2564 lb/min

• Liquid Holdup: Differential pressure sensor

Accuracy 0.05%, Measuring Range  $\pm$  200 in H<sub>2</sub>O





# **Test Procedure – Holdup Experiment**

- 1. Start the data acquisition program.
- 2. Drain liquid from the test section to prevent liquid hammers.
- 3. Inject air into the loop at low rate and increase it gradually to the desired rate.
- 4. Inject liquid at low rate and increase it gradually to the desired rate.
- 5. Record the flow pattern using a high-speed camera when steady state flow establishes.
- 6. Quickly close the holdup and inlet valves and stop the liquid circulation pump.
- 7. Record liquid holdup when the liquid level measurement establishes.
- 8. Slowly depressurize the test section using the backpressure valve.
- 9. Save all recorded measurements and close the data acquisition program





# **Holdup Experiment - Measurements**







Slide 9

# **Test Procedure – Variable Rate Experiment**

- 1. Start the data acquisition program.
- 2. Drain liquid from the test section to prevent liquid hammers.
- 3. Inject air into the loop at low rate and increase it gradually to the desired rate.
- 4. Inject liquid at low rate and increase it gradually to the desired rate.
- 5. Maintain steady state flow condition for more than a minute.
- 6. Increase the gas rate.
- 7. Repeat Steps 5 and 6 until the gas rate reaches the maximum flow rate.
- 8. Save all recorded measurements and close the data acquisition program





Slide 9

# Variable Rate Experiment - Measurements Side 9













Research and Development on Critical (Sonic) Flow of Multiphase Fluids through Wellbores in Support of Worst-Case-Discharge Analysis for Offshore Wells

# Modeling Two-Phase Flow and WCD Rate in Pipe

Rida Elgaddafi, Postdoctoral Research Associate

Oct 12<sup>th</sup>, 2018











iewbourne school of petroleum and geological engineering WELL CONSTRUCTION TECHNOLOGY CENTER \* university & oklahoma



### **Outlines**

- Introduction
- Statement of problem
- Objectives
- Methodology and scope
- Literature review findings
- Two phase flow model (CFD)
- WCD Computational Tool (WCD-CT)
- Two-phase flow mechanistic models
- Comparative study
- Conclusions




# Introduction

- WCD is the daily rate of an uncontrolled flow of hydrocarbons from all producible reservoirs into open wellbore. (BOEM)
- WCD is a result of blowout, which has constantly been a concern for oil and gas industry in the US.
- During the last 15 years, 58 blowout incidents in the US Gulf of Mexico and 36 blowouts in the rest of the world were occurred. (BSEE)
- Multiphase flow is a common occurrence during the blowout incidents.
- Accurate prediction of WCD scenario is strongly related to accuracy of two-phase flow model.



June 3, 1979 (GOM) Oil flows from the blown Ixtoc wellhead. (National Oceanic and Atmospheric Administration)







- Blowout incidents of oil and gas offshore wells can cause a environmental hazard.
- Prevailing WCD models lack an accurate pressure drop prediction at sonic and supersonic conditions.
- Development of the two-phase flow in the wellbore which may attain sonic condition at the exist due to the dramatic pressure drop.
- Determining two-phase flow characteristics in the wellbore is more challenging compared to that of the single phase.
- Lack of theoretical models and experimental data of two-phase flow at high Mach number (Ma > 0.3)





# **Objectives**

- Better understanding of physical phenomena associated with WCD scenario, particularly behavior of two-phase flow at high Mach number.
- Developing a simulation model using ANSYS to predict pressure profile in the wellbore.
- Developing a mechanistic model to predict two-phase flow characteristics for different WCD scenarios in the wellbore at high Mach number.
- Provide a computational tool that predicts WCD rate under various operational conditions.





# **Methodology and Scope**









# Literature Review – Key Findings

- The experimental study reveals that the trend of pressure drop changes at a higher velocity in comparison to the trend at lower velocities.
- In multiphase flow, the speed of sound is different from that of single-phase flow.
- Subsonic/supersonic conditions lead to the generation of shock waves in the system, which was not included in past studies.
- Though, the two-phase flow characteristics have been extensively studied for low velocities (Mach number <0.3) in vertical pipes, it lacks significantly at the subsonic and supersonic front.





# Literature Review – Key Findings

- Very limited theoretical and experimental studies were carried out to investigate two-phase flow phenomena in annuli.
- Post CFD simulation model of two-phase flow in the wellbore are limited to relatively low gas and liquid superficial velocities.
- Existing CFD simulations of sonic and supersonic conditions are merely developed for single-phase converging-diverging nozzle flows.
- Various flow patterns can be developed in the wellbore, which significantly effect pressure gradient and ultimately estimation of the WCD.





# Literature Review - Con.

#### • Experimental Study (Luo et al. 2016)

- Distance between pressure transducer = 8 m
- Test section ID = 2.5 in
- 100 80 Pressure drop (Kpa) 60 40 ◆ Vsl = 1.007 m/s Vsl = 1.235 m/s ▲ Vsl = 1.435 m/s 20 ○ Vsl = 1.646 m/s • Vsl = 1.954 m/s 0 80 40 120 160 200 0 Superficial gas velocity (m/s)
- Superficial gas velocity = 20 160 m/s
- Superficial Liquid velocity = 1.0 1.95 m/s







## **Literature Review - Comparative Analysis**

## Experimental Studies

- Luo et al. (2016)
- Perez (2008)
- Waltrich et al. (2015)









Pressure gradient (KPa/m)

## **Literature Review - Comparative Analysis**



#### MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING WELL CONSTRUCTION TECHNOLOGY CENTER 74 UNIVERSITY of OKLAHOMA

## **Literature Review - Factors Affecting WCD**

- Liquid and gas flow rates
- Pipe size & roughness
- Fluid properties
- Flow patterns
- Volumetric liquid Holdup
- Pressure gradient

- Reservoir pressure & temperature
- Absolute & relative Permeability
- Productivity
- Bottom-hole flowing pressure
- Gas-oil ratio
- Height of pay zone

Wellbore conditions

Reservoir

**Parameters** 

WCD rate



## **Computational Fluid Dynamic – CFD Model**

- Fundamentals of CFD Model (ANSYS Fluent)
  - Conservation of mass (continuity equation)

$$\frac{\partial \rho}{\partial t} + \nabla . \left( \rho \vec{v} \right) = S_m$$

Conservation of momentum

$$\frac{\partial(\rho\vec{v})}{\partial t} + \nabla . \left(\rho\vec{v}\vec{v}\right) = -\nabla p + \nabla . \left(\bar{\bar{\tau}}\right) + \rho\vec{g} + \vec{F}$$

- Modelling Multiphase Flow
  - ✓ Mixture Model
  - ✓ Volume of Fluid (VOF) Model
  - ✓ Eulerian Models
  - ✓ Hybrid model
  - Turbulence Model
    - K ε model
    - ✓ K Omega model







# **CFD Model – Solver setup**



- Desired dimensions
  - (2 m long)

- ICEM software
- Mesh sensitivity analysis
- Pressure based solver
- Transient or steady state
- Multiphase model
- Turbulence model
- Material
- Boundary conditions

- Solution method
- Solution control
- Initialization

•

Run calculation





## Experimental Data [Ohnuki and Akimoto (2000)]

| Case | Flow<br>pattern | Pipe<br>diameter<br>(in) | V <sub>sg</sub><br>(m/s) | V <sub>SL</sub><br>(m/s) | CFD<br>(DP/DL)<br>(KPa/m) | Exp.<br>(DP/DL)<br>(KPa/m) | Existing<br>model<br>(DP/DL)<br>(KPa/m) | Error<br>(%) |
|------|-----------------|--------------------------|--------------------------|--------------------------|---------------------------|----------------------------|-----------------------------------------|--------------|
| 1    | bubble          | 8                        | 0.03                     | 0.18                     | 9.50                      | 9.05                       | 9.43                                    | 5            |
| 2    | bubble          | 8                        | 0.03                     | 1.06                     | 9.65                      | 9.7                        | 9.5                                     | 0.5          |
| 3    | bubble          | 8                        | 0.26                     | 1.06                     | 8.05                      | 8.5                        | 8.9                                     | -5           |





# **CFD Model – Results**





# Turbulence Flow Characteristics



# **CFD Model – Validation (OU Data)**

#### Single phase flow simulation

#### Two phase flow simulation







# **CFD Model – High Velocity**

- CFD Model for OU Lab-Setup
- ✓ Pressure based solver
- Specify fluid test (air compressibility)
- Active energy equation
- Multiphase model (hybrid model)
- Turbulence model (SST k-ω model)
- Boundary condition (pressure inlet boundary)
- Solution method
- Solution control







# **CFD Model – Results**

#### Pressure, Density & Mach number Profile











# WCD - Computational Tool



Nodal Analysis Technique
PVT Model
Production Model

Reservoir Model

Hydrodynamic Flow Model







# WCD CT- Nodal Analysis



MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING WELL CONSTRUCTION TECHNOLOGY CENTER 7re UNIVERSITY of OKLAHOMA





# Fluid flow in the Wellbore

## Single phase flow

- Liquid flow
- Gas flow

## Two-phase flow

- Bubbly flow
- Dispersed bubble flow

**'RUCTION TECHNOLOGY CENTER** 

- Slug flow
- Churn flow
- Annular flow

RNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING

Mist flow

UNIVERSITY of OKLAHOMA



Schematic of expected two-phase flow pattern in the wellbore (Modified after Hasan and Kabir 1988)





## Existing Two-Phase Flow Model

| REFERENCE                | FLOW PATTERN                         |
|--------------------------|--------------------------------------|
| Hasan & Kabir (1984)     | Bubble, Slug & Annular               |
| Pagan et al. (2017)      | Churn & Annular                      |
| Ansari et al. (1994)     | Dispersed, Bubble, Slug &<br>Annular |
| Tengesdal et al. (1999)  | Bubble, Slug, churn & Annular        |
| Sylvester (1987)         | Slug                                 |
| Yao and Sylvester (1987) | Annular – Mist                       |









## **Modified Flow Pattern Map for WCD – Computational Tool**

## WCD Model

- Sigle Phase flow model
- Bubble flow model
- Low velocity slug model
- High velocity slug model
- Annular flow model
- Hybrid model

| 10<br>city (m/s)                                             |                                                | <br> <br> <br> <br> <br> <br>                      |                                                                       | High Velocity Slu  | lg                                                            |         |                   |  |
|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|--------------------|---------------------------------------------------------------|---------|-------------------|--|
| Superficial Liquid Velo                                      | S<br>i<br>n<br>g<br>l<br>e<br>P<br>h<br>a<br>s | Bubble<br>Bubble<br>Cor<br>Low<br>Velocity<br>Slug | (Hybrid)<br>Low<br>Velocity<br>Slug<br>or<br>High<br>Velocity<br>Slug | High Velocity Slug | (Hybrid)<br>Hybrid)<br>Annular<br>Or<br>High Velocity<br>Slug | Annular | Sonic<br>Boundary |  |
| 0.01                                                         | e                                              | · · · · · · · · · · · · · · · · · · ·              | ri                                                                    | Single Phase       | 1                                                             | I       | ·                 |  |
| 0.01 2 6 15 25 100 V-sonic<br>Superficial Gas Velocity (m/s) |                                                |                                                    |                                                                       |                    |                                                               |         |                   |  |







#### Low Flow Conditions (Exp. Data from Hernandez Perez 2008)



- ✓ Superficial Liquid velocity = 0.73 m/s
- ✓ Pipe ID = 1.5 in
- ✓ Superficial gas velocity = 0.40 3.85 m/s.
- ✓ Slug flow pattern
- Discrepancy between predicted & measured < 7%</li>



- ✓ Superficial Liquid velocity = 0.1 m/s
- ✓ Pipe ID = 1.5 in
- Superficial gas velocity = 0.23 4.28 m/s.
- ✓ Slug flow pattern
- Discrepancy between predicted & measured < 7%</p>





#### **Mechanistic Model for Two-Phase Flow in Pipe – Validation**

#### High Flow Conditions (OU – Lab Data)



- Liquid flow rate = **200 gpm (V**<sub>sl</sub> = **2.41 m/s)**
- Pipe ID = 3.25 in
- Superficial gas velocity = 9.21 78 m/s.
- Slug flow pattern

UNIVERSITY of OKLAHOMA

Discrepancy between predicted & measured < 20%</li>

TON TECHNOLOGY CENTER

OF PETROLEUM AND GEOLOGICAL ENGINEERING



- Liquid flow rate = 240 gpm ( $V_{sl}$  = 2.86 m/s)
- Pipe ID = 3.25 in
- Superficial gas velocity = 9.22 68 m/s.
- Slug flow pattern
- Discrepancy between predicted & measured < 25%





#### **Mechanistic Model for Two-Phase Flow in Pipe – Validation**

#### High Flow Conditions (OU – Lab Data)



- Liquid flow rate = 60 gpm ( $V_{sl} = 0.72 \text{ m/s}$ )
- Pipe ID = 3.25 in

UNIVERSITY of OKLAHOMA

- Superficial gas velocity = 29 117 m/s.
- Annular flow pattern
- Discrepancy between predicted & measured < 20%</li>



- Liquid flow rate = 80 gpm ( $V_{sl} = 0.93$  m/s)
- Pipe ID = 3.25 in
- Superficial gas velocity = 27 107 m/s.
- Annular flow pattern
- Discrepancy between predicted & measured < 25%



MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING WELL CONSTRUCTION TECHNOLOGY CENTER 7# UNIVERSITY & OKLAHOMA

### **Mechanistic Model for Two-Phase Flow in Pipe – Validation**

#### Large Pipe Diameter (12 in) (Exp. Data from Waltrich et al. 2015)



- ✓ Superficial liquid velocity  $V_{sl} = 0.73$  m/s
- ✓ Pipe ID = 12 in

UNIVERSITY of OKLAHOMA

- ✓ Superficial gas velocity = 0.31 7.5 m/s.
- ✓ Discrepancy between predicted & measured < 25%

ON TECHNOLOGY CENTER

PETROLEUM AND GEOLOGICAL ENGINEERING



- ✓ Superficial liquid velocity  $V_{sl} = 0.46$  m/s
- ✓ Pipe ID = 12 in
- ✓ Superficial gas velocity = 1.18 7.7 m/s.
- ✓ Discrepancy between predicted & measured < 18%





## **Comparison Between CFD and Mechanistic Model**

#### Single phase flow comparison

#### Two phase flow comparison



- Superficial liquid velocity  $V_{sl} = 0.23$  m/s
- Pipe ID = 3.25 in
- Superficial gas velocity = 9.14 61 m/s.







Large pipe (22-in)

## **Comparison Between CFD and Mechanistic Model**









## Conclusions

- Comparative analysis shows good agreement between LSU data and other available measurements.
- WCD rate is not only reliant on conditions of the wellbore section but it is also influenced by the fluid properties and reservoir characteristics.
- An acceptable agreement was obtained between simulation predictions of the pressure drop and experimental data at various test conditions.
- An accurate WCD computational tool is developed to predict the daily uncontrolled flow of hydrocarbons from all producible reservoirs into open wellbore.
- The modified mechanistic model demonstrated good agreement between predicted and measured pressure gradient in the wellbore which provides a strong confidence in WCD rate predictions.



# Acknowledgement

Project Sponsor: US Department of the Interior, Bureau of Ocean Energy Management (BOEM)





# Thank you !!!

#### Research and Development on Critical (Sonic) Flow of Multiphase Fluids through Wellbores in Support of Worst-Case-Discharge Analysis for Offshore Wells

# EXPERIMENTAL STUDY OF TWO-PHASE FLOW IN PIPE AND ANNULUS

Fajemidupe, Olawale, Ph.D.

**Postdoctoral Research Associate** 

October, 12th 2018





# **Outlines**

- Objectives
- Preliminary Tests
- Flow Regimes
- Liquid Holdup
- Pressure Gradient in Two-Phase Flow
- Indication of Sonic Condition
- Conclusions





# **Objectives**

 To Improve understanding of the impact of high Mach number (0.3 – 1+ Mach) flow on WCD calculation

 Identify and investigate flow patterns (churn, annular, and mist) and flow geometry variation (tubing and annulus pipe).

To Investigate two-phase flow behavior in vertical pipe and annulus at high superficial gas velocities.





# **Schematics of the Experimental Flow Loop**







## **Preliminary Test** (Single Phase Liquid Flow Test)

Pressure loss ( $\Delta P$ ) in any circular duct is related to diameter (D), length (L), fluid density ( $\rho$ ) and mean fluid velocity (V). Thus:

$$\Delta P = f_f \frac{2L}{D} \rho V^2$$

Chen (1979) Friction Factor equ

$$\frac{1}{\sqrt{f_D}} = -2.0 \log \left[ \frac{\varepsilon}{3.7065D} - \log \left( \frac{1}{2.8257} \left( \frac{\varepsilon}{D} \right)^{1.1098} + \frac{5.8506}{R_e^{0.8981}} \right) \right]$$

where  $f_D$  is Darcy friction factor, which is defined as fourfold Fanning friction factor,  $\epsilon$  is the pipe roughness,  $R_e$  is a Reynold number




### **Preliminary Test** (Single Phase Liquid Flow Test)

#### Pipe

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

#### Annulus



BOEM BUREAU OF OCEAN ENERGY MANAGEMENT

## **Preliminary Test** (Liquid Holdup Validation)

- DP cell sensor is utilized to measure residual liquid column in the test section using hydrostatic pressure concept.
- DP liquid holdup measurement approach

$$H_L = \frac{\binom{P_{wf}}{\rho_l g}}{(H_T A)} = \frac{P_{wf}}{\rho_l g H_T}$$

• *Pwf* is the bottom-hole pressure, *A* is the cross-section area of the test section,  $\rho l$  represents liquid density, g depicts the gravity, and *HT* is the total height of the test section





## **Preliminary Test (Liquid Holdup Validation) Cont.**

• Volumetric liquid holdup equation:

 $H_L = \frac{V_L}{V_T}$ 

 where H<sub>L</sub> is liquid holdup, V<sub>L</sub> is the liquid volume, V<sub>T</sub> is the total volume of the test







## **Preliminary Test (Liquid Holdup Validation) Cont.**

| Q <sub>L</sub><br>(GPM) | Q <sub>g</sub><br>(lb/min) | H <sub>L</sub><br>(DP Cell) % | (Volumetric H <sub>L</sub> )<br>% | Error<br>% |
|-------------------------|----------------------------|-------------------------------|-----------------------------------|------------|
| 35                      | 25                         | 7                             | 8.0                               | 1.0        |
| 40                      | 10                         | 14                            | 12.9                              | 1.1        |





## Flow Regime (Churn Flow)

- The classification of flow regimes is an important part of two-phase flow analysis.
- It aids to develop or select an appropriate flow model to predict two-phase behavior in vertical pipe and annulus
- Two-phase flow regimes depend on parameters such as liquid and gas velocities, pipe geometries, and fluid properties
- Churn flow occurs at high gas flowrate with moderate liquid flowrate. It can be described as a chaotic frothy mixture of gas-liquid moving upward and downward in the entire pipe.





## Flow Regime (Annular Flow)

• The flow regime occurred at high gas and liquid velocities

 Liquid films flow around the wall of the pipe due to high energetic gas-phase velocity and the gas flows at the core with entrained droplets





# **Flow Regime Map for Pipe**





# **Flow Regime Map for Annulus**







# **Flow Regime Comparison for Pipe**







# **Flow Regime Comparison for Annulus**



Mewbourne School of Petroleum and Geological Engineering

BUREAU OF OCEAN ENERGY MANAGEMENT

## Holdup Measurement in Pipe (OU)







# Holdup Measurement in Annulus (OU)



The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering



## **Comparison of Liquid Holdup with LSU data**







## **Pressure Gradient in Two-Phase Flow**

The total pressure drop for gas-liquid flow per unit length of a pipe consists of three components:

- **1. Hydrostatic Component**
- **2.** Acceleration Component
- **3.** Frictional component

$$\left(\frac{\Delta P}{L}\right)_{t} = \left(\frac{\Delta P}{L}\right)_{h} + \left(\frac{\Delta P}{L}\right)_{a} + \left(\frac{\Delta P}{L}\right)_{f}$$





## **Pressure Gradient in Two-Phase Flow**

• The existence of hydrostatic component of two-phase pressure drop is due to differences in the density between the gas and liquid phase and the influence of the gravity.

• The acceleration component of pressure drop is usually small and can be neglected





## Schematic Pressure Gradient Behavior in Vertical Two-Phase Flow (Shoham, 2005)









## **Pressure Gradient at Sonic Boundary (Pipe)**







## **Indication of Sonic Condition**

- Upstream Vs Gas Superficial Velocity
- Shock Wave
- Shock Wave Sound
- Pressure Reversal





## **Upstream Pressure VS Gas Superficial Velocity (Pipe)**







#### Sample of Supersonic- Video (VsI =0.058 m/s, Vsg = 162.57 m/s, Pipe ID:0.083M)







## **Pressure Gradient Without Sonic Boundary (Pipe)**







## **Pressure Gradient (Annulus)**







## Upstream Pressure VS Gas Superficial Velocity (Annulus)







## Conclusions

- Pressure gradient increases with gas superficial velocities. However, it sharply decreases as the flow approaches sonic flow condition at low superficial liquid velocities in pipe.
- Pressure gradient slightly increased with liquid superficial velocity at fixed gas superficial velocity. The friction component of the total pressure gradient dominated the two-phase flow in this research.
- Liquid holdup decreases with increase in gas superficial velocity.
- Two different flow regimes with transition (churn, annular and transition between churn and annular) were encountered in this investigation.





# Thank You





Research and Development on Critical (Sonic) Flow of Multiphase Fluids through Wellbores in Support of Worst-Case-Discharge Analysis for Offshore Wells

## WCD Tool Demonstration, Comparative Study and Review of Questions from Workshop #2

**Raj Kiran, Research Assistant** 

October, 12<sup>th</sup> 2018





## Outline

- Introduction
- CFD Modeling
- Sonic Modeling
- WCD Computational Tool
  - Capability
  - User interface
  - Demonstration
  - Comparative study with prosper
  - Sensitivity analysis
- Conclusions





## Introduction

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering





# **CFD Modeling**

Mewbourne School of Petroleum and Geological Engineering





# **Experimental data simulation**

• Simulation results for air-water flow using VOF approach

| V <sub>sg</sub> (m/s) | V <sub>si</sub> (m/s) | Pattern | Simulated Pressure<br>Gradient (Pa/m) | Experimental Pressure<br>Gradient (Pa/m) | Error  | Slip ratio |
|-----------------------|-----------------------|---------|---------------------------------------|------------------------------------------|--------|------------|
| 0.069                 | 1.545                 | DB      | 11231                                 | 11500                                    | -3%    | 0.045      |
| 0.002                 | 0.0375                | BB      | 7741                                  | 7003                                     | 10.5%  | 0.053      |
| 0.040                 | 0.090                 | BB      | 8340                                  | 8859                                     | -5.85% | 0.444      |
| 0.437                 | 0.101                 | SL      | 5056                                  | 5086                                     | -0.6%  | 4.327      |
| 1.972                 | 1.959                 | SL      | 5783                                  | 8459                                     | -32%   | 1.007      |
| 21.893                | 0.111                 | AN      | 1042.5                                | 2254                                     | -48.6% | 197.234    |
| 16.61                 | 0.523                 | AN      | 3574                                  | 4671                                     | -23.5% | 31.759     |
| 21.256                | 0.111                 | AN      | 1008                                  | 2125                                     | -52.5% | 191.495    |
| 16.68                 | 0.548                 | AN      | 5115                                  | 7685                                     | 50.22% | 30.438     |

#### Simulation for air-water flow using Eulerian approach

| V <sub>sg</sub> (m/s) | V <sub>sl</sub> (m/s) | Pattern | Simulated Pressure<br>Gradient (Pa/m) | Experimental Pressure<br>Gradient (Pa/m) | Error  | Slip ratio |
|-----------------------|-----------------------|---------|---------------------------------------|------------------------------------------|--------|------------|
| 0.44                  | 0.10                  | SL      | 5056                                  | 5086                                     | -0.6%  | 4.327      |
| 13.02                 | 0.30                  | AN      | 2486                                  | 3176                                     | -22.2% | 43         |



# **CFD Modeling and its significance**



*The* UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

- Superimposed experimental data for 20 GPM liquid rate with the upstream pressure is 37 psi.
- Similar trends for simulation and experiment.
- The liquid velocity in the simulation is much higher than that of experimental condition.
- The experimental conditions required to achieve the sonic condition
- Several simulation data was used to validate the mechanistic models.



Slide 6

# **High Mach number flow**



Experimental data superimposed on the well-known chart for the speed of sound as a function of the void fraction of two-phase mixtures given by Kieffer (1977).





# **Sonic Modeling**

- Sonic velocity prediction based on studies from Kieffer (1977) and Wilson and Roy (2008).
  - □ Model uses Pressure and volumetric gas distribution.
  - Comparison between fluid velocity and sonic velocity.
  - In case of match, sonic condition is established.
  - □ Flow is decoupled and limited by sonic condition.
  - □ Well flow pressure calculated using the sonic velocity.





# **Sonic Condition Determination Model**

If P<100 bar

 $V_{sound} = (80.44P^{0.6337})x^2 - (-0.0607P^2 + 23.23P + 74.42)x + 30.52P^{0.672} + 20$ Otherwise

 $V_{sound} = (1804P^{-0.01989})x^2 - (0.0002878P^2 + 0.8032P + 1884)x + 220.4P^{0.2486} + 20$ 

where P is the pressure in Pa, x is volume fraction of gas given by the following formula:

$$x = \frac{V_{sg}}{V_{sg} + V_{sl}}$$

where Vsg is the superficial gas velocity and VsI is the superficial liquid velocity. The details of this model will be provided in the report for the WCD tool.





# **Sonic Velocity Comparison**



The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

- Reasonable agreement between model and experimental data
- Model under predicts the sonic speed



# How the sonic model works?

The UNIVERSITY of OKLAHOMA

arne School of Petroleum and Geological Engineering





Slide 11
#### How the sonic model works?



Mewbourne School of Petroleum and Geological Engineering

BUREAU OF OCEAN ENERGY MANAGEMENT

Programming Language

ewbourne School of Petroleum and Geological Engineering

- ✤ C++ (main program)
- ✤ VBA (interface)
- Computer requirements for execution

Macro-Enabled 2013 MS-Excel (For 2010 another version of program)





# Capability

- Handles up to 15 layers including open hole properties.
- Users can validate the input data.
- Visualization of the results using customized plots.
- Combined plot of velocities and flow pattern.
- Overall WCD, gas flow, and water flow rates
- WCD, gas flow and water flow rates, well flow pressure, GOR, productivity index for each layer.
- Sonic condition in the wellbore

Y of OKLAHOMA

- IPR Plots for each layer and corresponding discharge rate
- Flow properties in tabulated form for each layer
- Visualization of flow pattern from the bottommost of well.





The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering





The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering





Slide 17

#### Traditional available software

- Only empirical correlations have been considered.
- Sonic modeling (if there) is based on single gas phase flow only.
- □ Never tested for high flow rates.
- When the flow is friction dominated, the pressure gradients increases.
  Empirical models were never tested for experimental data in these conditions.

#### **OU WCD Computational Tool**

- □ Mechanistic model is used.
- Sonic modeling is based on two phase flow condition.
- □ Tested for high flow rates.
- When the flow is friction dominated, the pressure gradients increases.
  The hydraulics model is tested for that.



Г

Qı

system.

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

| Traditional available software                                                                      | <b>OU WCD Computational Tool</b>                                                                |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| To calculate WCD, the reservoir modeling and hydraulics modeling                                    | Integrated the reservoir modeling<br>and hydraulics modeling.                                   |
| performed separately.<br>I Fluid properties input for hydraulics<br>model is based on the reservoir | Fluid properties are updated based<br>on the input parameters while<br>running the calculation. |
| models<br>Average IPR and TPR curve for the                                                         | Distinct IPR curves and discharge points for each layers of reservoir.                          |



Slide 19

## Assumptions

□ Radial and steady state reservoirs.

□ All input layers are producing with minimum of 0 flow rate.

- Geothermal temperature gradient is considered for the temperature profile.
- The bottom-most layer is always considered to be producing (if negative flow encountered, update the input with upper layer as bottom-most layer).
- Different reservoirs are not communicating to each other

















| WCD SOF   | TWARE             |            |                              |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          | × | _           |                    |     |
|-----------|-------------------|------------|------------------------------|---------------------------|-----------------------------|---------------------------------|---------------------------|-----------------------------|-------------------------|-----------------------|---------------------------------|------------------------------------|----------------------|------------------------|------------------------------------|-------------------------------|----------------------------|-------|----------------------------------|--------------------------|---|-------------|--------------------|-----|
| File Laye | rs Input 0        | Output 🛛 🤇 | Combined Plot   Plots   Plot | s   IPR Pla               | ots                         |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   | F           | Pasarvoir          |     |
|           | Reservoir<br>Type |            | Formation I<br>Type          | Payzone<br>Height<br>(ft) | Pay Zone<br>Bottom<br>Depth | Reservoir<br>Temperature<br>(F) | API Gravity<br>of Oil (o) | Gas Specific<br>Gravity (-) | Drainage<br>Raduis (ft) | Permeability<br>(mD)  | Reservoir<br>Pressure<br>(psia) | Bubble Point<br>Pressure<br>(psia) | Gas<br>Saturation    | Water<br>Saturation    | Irreducible<br>Water<br>Saturation | Critical<br>Gas<br>Saturation | Critical Oil<br>Saturation | Skin  | Condensat<br>Yield<br>(stb/MMscf | e Salt<br>Conten<br>?) % | t | p           | properties f       | or  |
| Layer 1   | Oil               | -          | ConsolidatedSand 💌           | 100                       | 10000                       | 160                             | 45                        | 0.6                         | 10000                   | 250                   | 11000                           | 7000                               | 0.5                  | 0.2                    | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                               | 3                        |   | f           | WO                 |     |
| Layer 2   | Gas               | -          | UnconsolidatedSand 💌         | 100                       | 9000                        | 150                             | 45                        | 0.6                         | 10000                   | 250                   | 6000                            | 8000                               | 0.5                  | 0.2                    | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                               | 3                        |   |             |                    |     |
| Layer 3   | Water             | •          | UnconsolidatedSand 💌         | 100                       | 8000                        | 140                             | 45                        | 0.6                         | 10000                   | 250                   | 6000                            | 8000                               | 0.3                  | 0.5                    | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                               | 3                        |   |             |                    |     |
| Layer 4   |                   | -          | •                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             | 15 lavers          |     |
| Layer 5   |                   | -          | •                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             |                    |     |
| Layer 6   |                   | -          | -                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             | overall            |     |
| Layer 7   |                   | •          | <b>•</b>                     |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             |                    |     |
| Layer 8   |                   | •          | <b>•</b>                     |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             |                    |     |
| Layer 9   |                   | -          | -                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             |                    |     |
| Layer 10  |                   | -          | -                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             |                    |     |
| Layer 11  |                   | •          | -                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          | ] |             |                    |     |
| Layer 12  |                   | •          | -                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   | Ν           | loto for the       |     |
| Layer 13  |                   | -          | <b>_</b>                     |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   | I I         |                    | , I |
| Layer 14  |                   | -          | <b>_</b>                     |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   | Ν           | av the lav         | er  |
| Layer 15  |                   | -          | -                            |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                      |                        |                                    |                               |                            |       |                                  |                          |   |             |                    |     |
|           | [                 |            | Validation                   | ]                         | Note:                       | Layer nu                        | mbering                   | is from I<br>Payzoi         | pottom te<br>ne Botto   | o top. Fir<br>m Depth | st input<br>should              | the botto<br>be in tern            | m most l<br>1s or me | layer as t<br>asured o | first layer<br>depth               | r and th                      | en after                   | wards | s.                               |                          |   | p<br>s<br>e | hould be<br>ntered |     |

| WCD SC   | FTWARE            |          |                             |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    | ×                    | ٦. |            |       |
|----------|-------------------|----------|-----------------------------|---------------------------|-----------------------------|---------------------------------|---------------------------|-----------------------------|-------------------------|------------------------|---------------------------------|------------------------------------|----------------------|-----------------------|------------------------------------|-------------------------------|----------------------------|-------|------------------------------------|----------------------|----|------------|-------|
| File La  | yers Input        | Output 🛛 | Combined Plot   Plots   Plo | ts   IPR Pl               | ots                         |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
|          | Reservoir<br>Type |          | Formation<br>Type           | Payzone<br>Height<br>(ft) | Pay Zone<br>Bottom<br>Depth | Reservoir<br>Temperature<br>(F) | API Gravity<br>of Oil (o) | Gas Specific<br>Gravity (-) | Drainage<br>Raduis (ft) | Permeability<br>(mD)   | Reservoir<br>Pressure<br>(psia) | Bubble Point<br>Pressure<br>(psia) | Gas<br>Saturation    | Water<br>Saturation   | Irreducible<br>Water<br>Saturation | Critical<br>Gas<br>Saturation | Critical Oil<br>Saturation | Skin  | Condensate<br>Yield<br>(stb/MMscf) | Salt<br>Content<br>% |    | Oil Oil    |       |
| Layer 1  | Oil               | -        | ConsolidatedSand 💌          | 100                       | 10000                       | 160                             | 45                        | 0.6                         | 10000                   | 250                    | 11000                           | 7000                               | 0.5                  | 0.2                   | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                                 | 7                    | T  | Gas        |       |
| Layer 2  | Gas               | •        | UnconsolidatedSand 💌        | 100                       | 9000                        | 150                             | 45                        | 0.6                         | 10000                   | 250                    | 6000                            | 8000                               | 0.5                  | 0.2                   | 0.15                               | 0.001                         | <b>V.1</b>                 | 0.15  | 10                                 | 3                    |    | GasConder  | isate |
| Layer 3  | Water             | •        | UnconsolidatedSand 💌        | 100                       | 8000                        | 140                             | 45                        | 0.6                         | 10000                   | 250                    | 6000                            | 8000                               | 0.3                  | 0.5                   | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                                 | 3                    |    | Water      |       |
| Layer 4  |                   | -        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      | Ľ  |            |       |
| Layer 5  |                   | -        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
| Layer 6  |                   | -        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    | User can   |       |
| Layer 7  |                   | -        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            | f     |
| Layer 8  |                   | •        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    | select any |       |
| Layer 9  |                   | -        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    | four reser | voir  |
| Layer 10 |                   | -        | -                           |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    | fluid      |       |
| Layer 11 |                   | •        | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    | ΠΠΙΟ       |       |
| Layer 1  |                   | •        | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      | Ľ  |            |       |
| Layer 1  |                   | -        | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
| Layer 1  |                   | -        | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
| Layer 1  |                   | -        | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
|          |                   |          |                             |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
|          |                   |          |                             | _                         |                             |                                 |                           |                             |                         |                        |                                 |                                    |                      |                       |                                    |                               |                            |       |                                    |                      |    |            |       |
|          |                   |          | Validation                  |                           | Note:                       | Layer nu                        | mbering                   | is from b<br>Payzor         | oottom te<br>ne Botto   | o top. Firs<br>m Depth | st input<br>should              | the botto<br>be in tern            | m most l<br>ns or me | ayer as f<br>asured d | irst layer<br>lepth                | and th                        | en after                   | wards | •                                  |                      |    |            |       |

| WCD SOF   | TWARE            |        |                             |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    | ×               |                    | ٦ |
|-----------|------------------|--------|-----------------------------|---------------------------|-----------------------------|---------------------------------|---------------------------|-----------------------------|-------------------------|------------------------|---------------------------------|------------------------------------|------------------------|-----------------------|------------------------------------|-------------------------------|----------------------------|-------|------------------------------------|-----------------|--------------------|---|
| File Laye | ers Input        | Output | Combined Plot   Plots   Plo | ots   IPR Pl              | ots                         |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | ConsolidatedSat    | ł |
|           | Reservoi<br>Type | ir     | Formation<br>Type           | Payzone<br>Height<br>(ft) | Pay Zone<br>Bottom<br>Depth | Reservoir<br>Temperature<br>(F) | API Gravity<br>of Oil (o) | Gas Specific<br>Gravity (-) | Drainage<br>Raduis (ft) | Permeability<br>(mD)   | Reservoir<br>Pressure<br>(psia) | Bubble Point<br>Pressure<br>(psia) | Gas<br>Saturation      | Water<br>Saturation   | Irreducible<br>Water<br>Saturation | Critical<br>Gas<br>Saturation | Critical Oil<br>Saturation | Skin  | Condensate<br>Yield<br>(stb/MMscf) | Salt<br>Content |                    |   |
| Layer 1   | Oil              | •      | ConsolidatedSand 💌          | 100                       | 10000                       | 160                             | 45                        | 0.6                         | 10000                   | 250                    | 11000                           | 7000                               | 0.5                    | 0.2                   | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                                 | 3               | Limestone          | ł |
| Layer 2   | Gas              | •      | UnconsolidatedSand -        | 100                       | 9000                        | 150                             | 45                        | 0.6                         | 10000                   | 250                    | 6000                            | 8000                               | 0.5                    | 0.2                   | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                                 | 3               |                    | J |
| Layer 3   | Water            | •      | UnconsolidatedSand -        | 100                       | 8000                        | 140                             | 45                        | 0.6                         | 10000                   | 250                    | 6000                            | 8000                               | 0.3                    | 0.5                   | 0.15                               | 0.001                         | 0.1                        | 0.15  | 10                                 | 3               |                    |   |
| Layer 4   |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | llser can          |   |
| Layer 5   |                  | •      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 |                    |   |
| Layer 6   |                  | •      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | choose any of      |   |
| Layer 7   |                  | •      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | three formation    |   |
| Layer 8   |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 |                    | 1 |
| Layer 9   |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | types:             |   |
| Layer 10  |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 |                    |   |
| Layer 11  |                  | -      | <b>•</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | ↓ ✓ Unconsolidated | 1 |
| Layer 12  |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | sand               |   |
| Layer 13  |                  | -      | <b>•</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 |                    |   |
| Layer 14  |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 |                    |   |
| Layer 15  |                  | -      | <b>_</b>                    |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | sand               |   |
|           |                  |        |                             |                           |                             |                                 |                           |                             |                         |                        |                                 |                                    |                        |                       |                                    |                               |                            |       |                                    |                 | ✓ Limestone        |   |
|           |                  |        | Validation                  |                           | Note:                       | Layer nu                        | mbering                   | is from t<br>Payzoi         | oottom to<br>ne Botto   | o top. Firs<br>m Depth | st input i<br>should l          | the botto<br>be in tern            | m most la<br>ns or mea | ayer as f<br>asured d | irst layer<br>lepth                | and the                       | en after                   | wards | L.                                 |                 |                    |   |

| WCD SOF   | TWARE             |       |                          |                           |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    | ×                    |                        |
|-----------|-------------------|-------|--------------------------|---------------------------|-----------------------------|---------------------------------|---------------------------|-----------------------------|-------------------------|-----------------------|---------------------------------|------------------------------------|-----------------------|-----------------------|------------------------------------|-------------------------------|----------------------------|--------|------------------------------------|----------------------|------------------------|
| File Laye | rs Input Outp     | put C | ombined Plot   Plots   P | lots   IPR P              | lots                        |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
|           | Reservoir<br>Type |       | Formation<br>Type        | Payzone<br>Height<br>(ft) | Pay Zone<br>Bottom<br>Depth | Reservoir<br>Temperature<br>(F) | API Gravity<br>of Oil (o) | Gas Specific<br>Gravity (-) | Drainage<br>Raduis (ft) | Permeability<br>(mD)  | Reservoir<br>Pressure<br>(psia) | Bubble Point<br>Pressure<br>(psia) | Gas<br>Saturation     | Water<br>Saturation   | Irreducible<br>Water<br>Saturation | Critical<br>Gas<br>Saturation | Critical Oil<br>Saturation | Skin ( | Condensate<br>Yield<br>(stb/MMscf) | Salt<br>Content<br>% | •User can validate the |
| Layer 1   | Oil               | •     | ConsolidatedSand         | 100                       | 10000                       | 160                             | 45                        | 0.6                         | 10000                   | 250                   | 11000                           | 7000                               | 0.5                   | 0.2                   | 0.15                               | 0.001                         | 0.1                        | 0.15   | 10                                 | 3                    | input data             |
| Layer 2   | Gas               | •     | UnconsolidatedSand       | 100                       | 9000                        | 150                             | 45                        | 0.6                         | 10000                   | 250                   | 6000                            | 8000                               | 0.5                   | 0.2                   | 0.15                               | 0.001                         | 0.1                        | 0.15   | 10                                 | 3                    | input data.            |
| Layer 3   | Water             | •     | UnconsolidatedSand       | 100                       | 8000                        | 140                             | 45                        | 0.6                         | 10000                   | 250                   | 6000                            | 8000                               | 0.3                   | 0.5                   | 0.15                               | 0.001                         | 0.1                        | 0.15   | 10                                 | 3                    | •It will provide       |
| Layer 4   |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      | faadbaakin             |
| Layer 5   |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      | Teedback in            |
| Layer 6   |                   | •     |                          | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      | case of any            |
| Layer 7   |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 8   |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      | errors                 |
| Layer 9   |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 10  |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 11  |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 12  |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 13  |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 14  |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
| Layer 15  |                   | •     | •                        | •                         |                             |                                 |                           |                             |                         |                       |                                 |                                    |                       |                       |                                    |                               |                            |        |                                    |                      |                        |
|           |                   |       | Validation               | ]~                        | Note:                       | Layer nu                        | umbering                  | is from I<br>Payzoi         | oottom te<br>ne Botto   | o top. Fir<br>m Depth | st input<br>should              | the botto<br>be in tern            | m most l<br>ns or mea | ayer as f<br>asured d | irst layer<br>lepth                | and th                        | en after                   | wards. |                                    |                      |                        |

| WCD | SOFTWARE<br>Layers Input Output | Combined Plot Plots Plots   | IPR Plots<br>STB/Day       | GAS RATE                     | 866.42                       | MMscf/day                           | WATER RATE       | 8.75 Bbl/Day | ×<br>]• | Display for<br>WCD rate,<br>Gas rate, and |
|-----|---------------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|-------------------------------------|------------------|--------------|---------|-------------------------------------------|
|     |                                 | Well Flow<br>Pressure (psi) | Oil Flow Rate<br>(stb/day) | Gas Flow Rate<br>(MMscf/day) | Water Flow Rate<br>(Bbl/day) | Productivity Index<br>(STB/day/psi) | GOR<br>(scf/STB) |              |         | Water rate                                |
|     | Layer 1                         | 8458.5                      | 2/3067.8                   | 866.42                       | 8.75                         | 107.06                              | 31/2.9           |              |         |                                           |
|     | Layer 2                         |                             |                            |                              |                              |                                     |                  |              |         | Display for well                          |
|     | Layer 3                         |                             |                            |                              |                              |                                     |                  |              |         |                                           |
|     | Layer 4                         |                             |                            |                              |                              |                                     |                  |              |         | flow pressure.                            |
|     | Layer 5                         |                             |                            |                              |                              |                                     |                  |              |         |                                           |
|     | Layer 6                         |                             |                            |                              |                              |                                     |                  |              |         | oil flow rate,                            |
|     | Layer 7                         |                             |                            |                              |                              |                                     |                  |              |         | aas flow rate                             |
|     | Layer 8                         |                             |                            |                              |                              |                                     |                  |              |         | gas now rate,                             |
|     | Layer 9                         |                             |                            |                              |                              |                                     |                  |              |         | water flow rate.                          |
|     | Layer 1                         | 0                           |                            |                              |                              |                                     |                  |              |         |                                           |
|     | Layer 1                         | 1                           |                            |                              |                              |                                     |                  |              |         | productivity                              |
|     | Layer 1                         | 2                           |                            |                              |                              |                                     |                  |              |         | index and                                 |
|     | Layer 1                         | 3                           |                            |                              |                              |                                     |                  |              |         |                                           |
|     | Layer 1                         | 4                           |                            |                              |                              |                                     |                  |              |         | GOR for each                              |
|     | Layer 1                         | 5                           |                            |                              |                              |                                     |                  |              |         | layer                                     |
|     |                                 |                             |                            | Sonic                        | Condition i                  | s achieved                          |                  |              |         | -                                         |







•

8

10







## **Comparative study with Prosper**

#### Work flow







#### Methodology

- Inflow performance relation (IPR) and vertical lift performance (VLP) curves simulated
- IPR curves generated using the Darcy reservoir model
- Bubble point pressure: Glasø method
- Viscosity: Beggs et al. method
- VLP Curves:

 (a) Hagedorn Brown (HB); (b) Beggs and Brill (BB); (c) Petroleum Experts (PE); (d) Mukherjee Brill (MB); (e) Fancher Brown (FB); (f) Duns and Ros (DR); and (g) Petroleum Experts 2 (PE 2)





#### **Case study**

| Parameters            | Value | Unit    |
|-----------------------|-------|---------|
| Oil Gravity           | 28    | °API    |
| Gas specific gravity  | 0.6   |         |
| Bubble point pressure | 1404  | psi     |
| Reservoir pressure    | 7500  | psi     |
| Gas oil ratio         | 235   | scf/STB |





#### **VLP Curves**

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering



- HB: Hagedorn Brown
- BB: Beggs and Brill
- PE: Petroleum Experts
- MB: Mukherjee Brill
- FB: Fancher Brown
- DR: Duns and Ros
- PE 2: Petroleum Experts 2

Each method gives distinct discharge rate



#### **Case study: under subsonic conditions**

| Case | Oil<br>Gravity | Gas specific<br>gravity | Bubble Point<br>Pressure | Reservoir<br>Pressure | GOR     |
|------|----------------|-------------------------|--------------------------|-----------------------|---------|
|      | °API           |                         | (psi)                    | (psi)                 | scf/STB |
| 1    | 28             | 0.6                     | 1403.6                   | 7500                  | 235     |
| 2    | 35             | 0.8                     | 2000                     | 3000                  | 650     |
| 3    | 45             | 0.8                     | 2165                     | 3000                  | 865     |
| 4    | 55             | 0.82                    | 2560                     | 3000                  | 1376    |





#### **Case study: under subsonic conditions**







#### **Case study: under sonic conditions**

| Case | Oil<br>Gravity | Gas specific<br>gravity | Bubble Point<br>Pressure | Reservoir<br>Pressure | GOR     | WCD Rate | WCD<br>Rate | Diff. |
|------|----------------|-------------------------|--------------------------|-----------------------|---------|----------|-------------|-------|
|      |                |                         |                          |                       |         | OU Model | Prosper     | %     |
|      | °API           |                         | (psi)                    | (psi)                 | scf/STB | STB/day  | STB/day     |       |
| 1    | 50             | 0.8                     | 3250                     | 7500                  | 1600    | 99597.26 | 86376       | 15.3  |
| 2    | 55             | 0.8                     | 5000                     | 3000                  | 2586    | 134563.8 | 114368      | 17.6  |



#### **Case study: GoM**

| Reservoir Properties   | Value | Unit  |
|------------------------|-------|-------|
| Reservoir temperature  | 210   | ٥F    |
| Reservoir permeability | 246   | mD    |
| Drainage area          | 5894  | Acres |
| Dietz shape factor     | 31.6  |       |
| Reservoir thickness    | 106   | ft    |
| Reservoir pressure     | 11305 | psi   |

| Well Properties             | Value    | Unit |
|-----------------------------|----------|------|
| Well type                   | Vertical |      |
| Measured Depth              | 16726    | ft   |
| Casing inner diameter       | 13.375   | in   |
| Liner inner diameter        | 10.75    | in   |
| Open hole diameter          | 8.375    | in   |
| Casing shoe depth           | 8850     | ft   |
| Length of open hole section | 5076     | ft   |

| Case | <b>Oil Gravity</b> | <b>Bubble Point Pressure</b> |  |
|------|--------------------|------------------------------|--|
|      | °API               | (psi)                        |  |
| 1    | 35                 | 5500                         |  |
| 2    | 45                 | 6900                         |  |





#### **Case study: GoM**

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

| Case | WCD Rate | WCD Rate | Diff. |
|------|----------|----------|-------|
|      | OU Model | Prosper  | %     |
|      | STB/day  | STB/day  |       |
| 1    | 302783   | 284519   | 6.4   |
| 2    | 275248   | 264912   | 3.9   |
|      |          |          |       |
|      |          |          |       |

Conservative


# **Sensitivity Analysis**

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

### Change in Permeability





Slide 48

# **Sensitivity Analysis**

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

Change in Payzone Bottom Depth

Change in Payzone Height





# **Sensitivity Analysis**

#### Change in Reservoir Pressure

Change in Skin







# Conclusion

## • CFD Modeling:

- □ Used in setting-up experimental facility
- □ Predicting the experimental condition required for sonic flow
- Mechanistic model validation
- Calculated sonic velocity is in reasonable agreement with experimental data.
- WCD Computational Tool:
  - □ New approach for sonic modeling for WCD calculation.





# Conclusion

- WCD Computational Tool:
  - The tool integrates the reservoir and well model and works simultaneously.
  - Fluid properties are updated based on the input parameters while running the calculation.
  - Distinct IPR curves and discharge points for each layers of reservoir.
  - Comparative study of the new tool with Prosper software shows good agreement.
  - Sensitivity analysis shows the expected trends with respect to different well and reservoir properties.





# **Future Recommendation**

- □ Investigation of larger diameter with high velocity with experiments.
- □ Implementation of transient reservoir model.
- □ Including heat transfer model.
- Broadening the scope of WCD model to simulate the production scenarios.





# Acknowledgement

- Project Sponsor: US Department of the Interior, Bureau of Ocean Energy Management (BOEM)
- Jeff McCaskill





# Thank you !!!



