Coral Reef Ocean Acidification Sentinel Site at the Flower Garden Banks National Marine Sanctuary: Data Collection and Analysis

Speaker: Niall C. Slowey Department of Oceanography Texas A&M University

Recognition

• Vance Nygard, graduate student researcher at Texas A&M

- Research Partners, Assistance, and Helpful Discussions
 - Rebecca Green at BOEM
 - Ruth Perry at Shell
 - GP Schmahl, Emma Hickerson, John Embesi & others at FGBNMS
 - John Walpert, Andrea Kealoha, Katie Shamberger, Shari Yvon-Lewis & others at Texas A&M
- Sponsors
 - o BOEM
 - o Shell
 - o Texas A&M

Rising levels of atmospheric CO₂

Data from: Keeling SIO & ESRL NOAA

Rising levels of atmospheric CO₂

Vostok & Mauna Loa

Data from: Petit et al. & Keeling SIO & ESRL NOAA

Effects on ocean chemistry

CO₂ gas released into the atmosphere by human activities is taken up in dissolved form by seawater

$$CO_2(aq) + H_2O \leftrightarrows H_2CO_3 \leftrightarrows H^+ + HCO_3^- \leftrightarrows 2H^+ + CO_3^{-2}$$

Total amount of dissolved inorganic carbon (C_T) equals the sum of the concentrations of the carbon species

$$C_{T} = [HCO_{3}^{-1}] + [CO_{3}^{-2}] + [CO_{3}^{*}]$$

 $pH_T = -log[H^{+z}]$

pH falls as dissolved CO₂ is added to seawater

Equilibrium among these relationships depends on

T, S, P, [HCO₃⁻], [CO₃⁻²], [CO₃(aq)], [H₂CO₃], [H⁺], *f* CO₂

Effects on ocean chemistry

Seawater has major cations

and major anions

Ca⁺², K⁺, Mg⁺², Na⁺², etc Br⁻, Cl⁻, SO4⁻², etc

Seawater must remain electrically neutral, but the sum cation posiitve charges is a little more than the sum of anion charges

Ca⁺², K⁺, Mg⁺², Na⁺², etc Br⁻, Cl⁻, SO4⁻², etc [total Alk] = $[HCO_3^{-1}] + 2[CO_3^{-2}] + [B(OH)_4^{-1}] + ...$

 $[carbonate Alk] = [HCO_3^{-1}] + 2[CO_3^{-2}]$

Importantly, positive charge resulting from H⁺ addition (as would occur with the influx of atmospheric CO_2) would be compensated for in this fashion.

How do we keep track of all of this?

Considering the relationships among both the relation between C_T , [Alk], and the carbon species

$$[HCO_3^{-}] = 2C_T - [Alk]$$

Four parameters of the carbonate system in seawater can be determined

pH, C_T, Alk, pCO₂

With any pair of these can be used to describe the entire system

(note: also need to know temperature, salinity, pressure, and nutrient concentrations)

What impact do changes have?

Affects the saturation state of seawater with respect to aragonite (Ω_{arag})

$$\Omega_{\text{arag}} = ([Ca^{+2}] [CO_3^{-2}]) / ([Ca^{+2}] [CO_3^{-2}])$$
seawater seawater saturated w/ aragonite

What impact could changes have?

Body parts of living organisms

Framework and other aspects of coral reef structure

Photo source: Picture Guide to Stony Corals of the Flower Garden Banks National Marine Sanctuary

Coral reefs are stressed!

- Coral reefs worldwide are under stress because of human activities and climate change
- Reefs in the Gulf of Mexico and Caribbean Sea region have declined markedly during the past several decades

Study site: Flower Garden Banks National Marine Sanctuary

- 180 km off Louisiana/Texas Border
- Northern most U.S. Reef complex along continental shelf
- One of the healthiest reefs in the world
- Ideal location for ocean acidification, climate, and biological studies

Evidence that atmospheric CO₂ enters the ocean

What impact do changes have?

What exactly is happening? What will be the effects?

Must understand carbonate chemistry and physical / biological forcing!

Objectives of our ongoing study

We seek **baseline information** about pH and other key parameters plus a better **understanding of relevant environmental processes** because they are essential for establishing marine resource management policies and for evaluating environmental change

We seek to **test specific hypotheses** about **types of variations** of these parameters (magnitude, period, when occur, etc) and to determine the relative **importance of physical and biological forcing** processes

Must measure pH and the other key environmental parameters

Approach: integrated seafloor sensors obtain highresolution time-series measurements at reef crest

- Descriptions of sensors
- Interesting elements of design
- Images of system

Initial / test deployment May to July 2017

Reef crest of East Flower Garden Bank

Image from: NOAA FGBNMS

Test deployment May – July 2017

- Description of preliminary data
- Examples of aspects of data and implications

Approach: integrated buoy sensors to obtain high-resolution time-series measurements at ocean surface

- Descriptions of sensors
- Interesting elements of design
- Images of system

Next steps for this ongoing research project

- Logistical considerations
- Scientific objectives
- Plans for continuing investigation