D4. Lease Area and Offshore Export Cable Corridors Benthic Report

Lease Area and Offshore Export Cable Corridors Benthic Report, 2021

Maryland Offshore Wind Project Lease Area and Offshore Export Cable Corridors Offshore of MD and DE

PREPARED FOR:

US Wind, Inc. 401 East Pratt Street Baltimore, Maryland 21202

PREPARED BY:

ESS Group, LLC, A TRC Company 10 Hemingway Drive, 2nd Floor East Providence, Rhode Island 02915

Project No. U167-080/ 016310

August 2022

TABLE OF CONTENTS

SECTION

EXECUTIVE SUMMARY	
1.0 INTRODUCTION	. 1
 2.0 APPROACH 2.1 Benthic Imagery 2.1.1 Benthic Transect Imagery 2.1.2 Benthic Grab Imagery 2.1.3 Imagery Analysis 2.2 Benthic Macrofaunal Grab Sampling 2.2.1 Sample Collection 2.2.2 Laboratory Analysis 2.2.3 Data Analysis 	3 4 4 6 8
3.0 RESULTS. 3.1 Benthic Imagery. 3.1.1 Lease Area. 3.1.1 Lease Area. 3.1.2 Common Export Cable Corridor. 3.1.3 Offshore Export Cable Corridor 1 3.1.3 Offshore Export Cable Corridor 2 3.1.4 Offshore Export Cable Corridor 2 3.1.5 Offshore Export Cable Corridor 2 3.1.5 Offshore Export Cable Corridor 2a 3.2 Benthic Grab Sampling. 3.2.1 Lease Area. 3.2.2 Common Export Cable Corridor 1 3.2.3 Offshore Export Cable Corridor 2 3.2.3 Offshore Export Cable Corridor 2 3.2.4 Offshore Export Cable Corridor 2 3.2.5 Offshore Export Cable Corridor 2a 3.2.6 Statistical Comparisons 4	10 24 25 25 26 27 28 28 39 42 45 48
4.0 SUMMARY AND CONCLUSIONS	54
5.0 REFERENCES	56

TABLES

Table 1. Benthic Imagery Transect Substrate Group Classifications1	10
Table 2. Benthic Grab Sample Substrate Classifications2	24
Table 3. Lease Area Benthic Imagery Transect Substrate Group Classifications	24
Table 4. Lease Area Benthic Grab Sample Substrate Classifications2	24
Table 5. Common Export Cable Corridor Benthic Imagery Transect Substrate Group Classifications2	25
Table 6. Common Export Cable Corridor Benthic Grab Sample Substrate Classifications	25
Table 7. Offshore Export Cable Corridor 1 Benthic Imagery Transect Substrate Group Classifications 2	26
Table 8. Offshore Export Cable Corridor 1 Benthic Grab Sample Substrate Classifications	26
Table 9. Offshore Export Cable Corridor 2 Benthic Imagery Transect Substrate Group Classifications 2	26
Table 10. Offshore Export Cable Corridor 2 Benthic Grab Sample Substrate Classifications	27
Table 11. Offshore Export Cable Corridor 2a Benthic Imagery Transect Substrate Group Classifications2	27
Table 12. Offshore Export Cable Corridor 2a Benthic Grab Sample Substrate Classifications	28
Table 13. Summary of Key Statistics from the Lease Area Benthic Sample Analysis2	28
Table 14. Relative Abundance of Taxa Encountered in Lease Area Samples	37
Table 15. Most Widespread Taxa Encountered in Lease Area Samples	38
Table 16. Summary of Key Statistics from the Common Export Cable Corridor Benthic Sample Analysis3	39
Table 17. Relative Abundance of Taxa Encountered in Common Export Cable Corridor Area Samples 4	10
Table 18. Most Widespread Taxa Encountered Common Export Cable Corridor Area Samples	11

Table 19. Summary of Key Statistics from the Offshore Export Cable Corridor 1 Benthic Sample Analysis
Table 20. Relative Abundance of Taxa Encountered in Offshore Export Cable Corridor 1 Samples 43 Table 21. Most Widespread Taxa Encountered in Offshore Export Cable Corridor 1 Samples 44 Table 22. Summary of Key Statistics from the Offshore Export Cable Corridor 2 Benthic Sample Analysis 45
Table 23. Relative Abundance of Taxa Encountered in Offshore Export Cable Corridor 2 Samples47Table 24. Most Widespread Taxa Encountered in Offshore Export Cable Corridor 2 Samples47Table 25. Summary of Key Statistics from Offshore Export Cable Corridor 2a Benthic Sample Analysis48Table 26. Relative Abundance of Taxa Encountered in Offshore Export Cable Corridor 2a Samples50Table 27. Most Widespread Taxa Encountered in Offshore Export Cable Corridor 2a Samples50

FIGURES

Figure 1. Benthic Sampling Location Selection Process Example	2
Figure 2. Benthic Sampling Locations and Project Component Areas	
Figure 3. Benthic Imagery and Grab Sample CMECS Groups	11
Figure 4. Representative Benthic Transect Imagery	22
Figure 5. Additional Representative Benthic Transect Imagery	23
Figure 6. Benthic Taxa Richness by Project Component Area	
Figure 7. Benthic Taxa Total Density by Project Component Area	3333
Figure 8. Average Organism Density of Benthic Samples by Project Component Area	51
Figure 9. Average Taxa Richness of Benthic Samples by Project Component Area	
Figure 10. NMDS Ordination of Benthic Community Composition by Project Component Area	53
Figure 11. NMDS Ordination of Benthic Community Composition by Gravel Percentage	54

ATTACHMENTS

- Attachment A Characterizations for Benthic Imagery Transects
- Benthic Sample Taxonomy and Enumeration Results Benthic Macrofaunal Grab Logs Attachment B
- Attachment C

EXECUTIVE SUMMARY

ESS Group, LLC., a TRC Company (ESS), conducted a benthic community and habitat assessment survey in July and August of 2021 to characterize seafloor habitats and biological communities associated with the Maryland Offshore Wind Project (the Project), leased by US Wind, Inc. (US Wind). The results of these surveys have been used to support the development of a Construction and Operations Plan (COP) for the Project.

Approach – Data Collection

The 2021 benthic community and habitat assessment survey included the collection of oblique underwater video imagery along transects, planview (downward-facing) imagery, and benthic macrofaunal grabs from both the US Wind Lease area and the Offshore Export Cable Corridors (which includes the Common Export Cable Corridor and Offshore Export Cable Corridors 1, 2, and 2a). Offshore Export Cable Corridor 2a is a formerly planned cable corridor that was included in the 2021 benthic survey but is no longer located within the Project Design Envelope (PDE).

A total of 110 benthic imagery transects were collected as part of this survey to obtain oblique imagery of seafloor habitats. Of these, 70 were collected within the Lease area and 40 were collected within the Offshore Export Cable Corridors. Within the Lease area, 60 of the 70 imagery transects were selected to target potential complex habitat, as identified using existing information from prior studies as well as preliminary seafloor interpretation derived from US Wind's 2021 acoustic surveys. The other 10 imagery transects were selected to provide geographic representation in portions of the Lease area, 68 were successfully processed. Within the Offshore Export Cable Corridors, all benthic imagery transects were planned at discrete intervals of approximately 1 km to provide geographic coverage for characterization of benthic habitats. Due to unfavorable environmental conditions, particularly in the shallowest portions of the Offshore Export Cable Corridors, some of the planned transects could not be processed. Additionally, some of the benthic imagery transects successfully collected during field operations are located to the north of the PDE and therefore no longer fall within the Offshore Export Cable Corridors. Of the 40 collected benthic imagery transects in the Offshore Export Cable Corridors. 30 were successfully processed.

Furthermore, planview imagery of seafloor habitats was collected at 198 locations. Of these, 120 were collected within the Lease area and 78 were collected within the Offshore Export Cable Corridors.

In addition to seafloor imagery, benthic grab samples were obtained at 198 locations (co-located with planview imagery locations). Within the Lease area, 120 benthic grab samples were collected. Sixty of these were selected to target potential complex habitat. The other 60 grab samples were selected to provide geographic representation in portions of the Lease area that were not anticipated to contain potentially complex habitat. Within the Offshore Export Cable Corridors, 78 benthic grab samples were collected. These were targeted for intervals of approximately 0.5 km to provide geographic coverage for characterization of benthic habitats in the Offshore Export Cable Corridors.

Approach – Imagery and Data Analysis

For oblique imagery transect analysis, benthic mapping was completed using video time stamps and associated ROV/UTV USBL positional data provided by the survey contractor. The imagery analyst noted the position each time a difference in habitat was observed. These breaks in habitat were associated with timestamped points on each transect.

Each of these positions was annotated with information on NMFS-modified CMECS simplified substrate classes and groups present. Fine-scale habitat characteristics were also noted using substrate subgroups. Associated biological assemblages (e.g., sand dollar fields, tunicate mats) were also noted along with benthic features such as ripples, burrows, tubes, and shell deposits.

Planview grab imagery was used to validate the physical description of each macrofaunal grab sample made in the field as well as to provide context for the community composition identified through the taxonomic identification and enumeration conducted in the laboratory.

Benthic grain size laboratory results were used to confirm the NMFS-modified CMECS substrate subclass, group, and subgroup classifications for each grab sample location and inform the final CMECS classifications for each benthic imagery transect.

Benthic macrofaunal grab samples were sorted in their entirety and identified by qualified taxonomists to the lowest practicable taxonomic level.

Univariate statistics, including taxa richness and macrofaunal density were calculated for each sample and used to compare diversity and abundance of benthic macrofauna between samples and component areas of the Project, including the Lease area, the Common Export Cable Corridor, Offshore Export Cable Corridor 1, Offshore Export Cable Corridor 2, and Offshore Export Cable Corridor 2a. Additionally, multivariate statistics were used to assess similarities in community composition between CMECS substrate subclasses and Project component areas.

Key Findings

The NMFS-modified CMECS substrate groups predominantly observed in the benthic imagery transects were sand, gravelly, and gravel mixes. Sand substrates often hosted sand dollars (*Echinarachnius parma*) at the sediment water interface. Hermit crabs (*Pagurus* spp.) and sea robins (*Prionotus carolinus*) were frequently observed in all of these substrate groups.

However, patches of shell hash and gravel (including pebble/granule, cobble, and boulder clasts) were also documented in some of the transects. Larger solitary boulders and mounds of smaller boulders and cobbles were rare but sometimes harbored stony corals (*Astrangia poculata*), sea whips (*Leptogorgia virgulata*), and other sessile epifauna, as well as megafauna, such as black sea bass (*Centropristis striata*) and American lobster (*Homarus americanus*).

Based on the benthic grab sample data, the benthic macrofaunal community was similar across most of the sampled locations in the Survey Area and there were few discernable geographic trends in multivariate community composition at a larger scale. However, macrofaunal density tended to be higher in Offshore Export Cable Corridor 1 than in certain other Project component areas included in the 2021 benthic survey.

Differences in the macrofaunal community between grab samples collected in coarse unconsolidated substrates (i.e., containing more than 5% gravel by weight) and fine unconsolidated substrates were statistically significant, but potentially not biologically relevant. However, benthic transect imagery confirmed that areas of gravel substrate (particularly those dominated by cobble or boulder) appear to host different macrofaunal communities than sand, gravelly substrates, and gravel mixes.

1.0 INTRODUCTION

ESS Group, LLC., a TRC Company (ESS), conducted a benthic community and habitat assessment survey to support the Construction and Operations Plan (COP) for the Maryland Offshore Wind Project leased by US Wind, Inc. (US Wind). This survey included the collection of underwater video transects, still imagery, and benthic grabs from both the US Wind Lease area and the Offshore Export Cable Corridor (which includes Offshore Export Cable Corridors 1, 2, and 2a¹) in July and August of 2021. These were collected as part of a larger survey effort that also included the collection of high resolution geophysical and geotechnical data by others. The results of those surveys are presented in their respective reports under separate cover (COP Volume II, Appendices A1 and A2).

The Lease Area and Offshore Export Cable Corridors Benthic Report, 2021 documents the approach and methodology used to collect the benthic imagery and macrofaunal grab samples. Additionally, it compiles the benthic imagery and macrofaunal grab sampling results for the purpose of characterizing the benthic macrofaunal community and habitat in the sampled locations.

The results of this report are integrated with the fully processed acoustic seafloor mapping to produce final map products that include characterization and delineation of benthic habitat for the surveyed extent of the Lease area and Offshore Export Cable Corridors. These have been developed according to the NOAA Fisheries (NMFS)-modified Coastal and Marine Ecological Classification System (CMECS) taxonomic framework identified in the Greater Atlantic Regional Fisheries Office's March 29, 2021 "Updated Recommendations for Mapping Fish Habitat" and presented under separate cover as part of the Essential Fish Habitat Assessment report (COP Volume II, Appendix E1).

2.0 APPROACH

US Wind and ESS initially relied on guidance from the BOEM June 2019 "Guidelines for Providing Benthic Habitat Survey Information for Renewable Energy Development on the Atlantic Outer Continental Shelf Pursuant to 30 CFR Part 585" (BOEM 2019) in developing the benthic habitat assessment and mapping approach for the Maryland Offshore Wind Project. However, following issuance of the Greater Atlantic Regional Fisheries Office's (GARFO) May 27, 2020 "Updated Recommendations of Mapping Fish Habitat" and subsequent consultations with BOEM and GARFO on June 15, 2020, US Wind revised its benthic habitat assessment and mapping approach. US Wind provided a preliminary outline of the revised approach for GARFO's review on July 15, 2020, and received comments from GARFO on August 12, 2020. GARFO later released new guidance ("Updated Recommendations for Mapping Fish Habitat") on March 29, 2021. US Wind subsequently refined its benthic habitat assessment and mapping approach to incorporate these comments and the updated guidance from GARFO.

This approach commenced with the review of earlier Lease area geophysical and seafloor sampling surveys by US Wind (Alpine 2015) and others (CB&I 2014; Guida et al. 2017), which were used to provide initial context for coarse-scale identification of potentially complex seafloor habitat locations (Figure 1a). Following this, US Wind initiated acoustic surveys, the preliminary results of which were then used in tandem with previously existing data to select locations for targeted seafloor sampling in the Lease area (Figures 1b through 1d).

¹Offshore Export Cable Corridor 2a is a formerly planned cable corridor that was included in the 2021 benthic survey but is no longer located within the Project Design Envelope (PDE) due, in part, to proximity to Indian River Inlet and sand resources in the area.

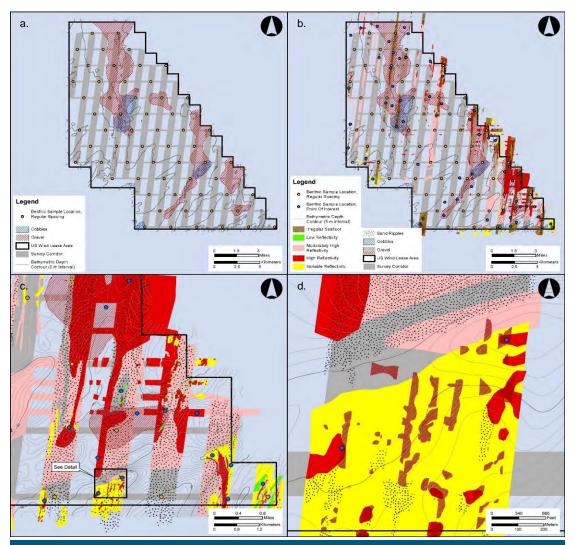


Figure 1. Benthic Sampling Location Selection Process Example

Blue points represent locations selected for sampling based on habitat. **Panel a**: Coarse-scale identification of areas with higher frequency of cobble and gravel based on existing data sources. **Panel b**: Preliminary 2021 acoustic data overlaid on existing data. **Panel c**: Same as top right map but scale and extent adjusted to show additional detail in southeastern portion of Lease area, including sand ripples (stippled areas) and more detailed bathymetry. **Panel d**: Detail of inset from bottom left map, showing locations of two benthic grab sample locations (blue points) selected to characterize potentially complex benthic habitats. Benthic imagery transects (not shown) were also targeted to obtain oblique imagery for these two locations.

Benthic field surveys of the Lease area and Offshore Export Cable Corridors (collectively, the Survey Area) were conducted from the *RV Brooks McCall* in July and August of 2021. To obtain site-specific information on the benthic community, the survey was composed of two primary elements: 1) collection of benthic imagery, and 2) collection of benthic grab samples. Benthic transect imagery was analyzed for habitat complexity and substrate type. Benthic grab samples were processed for bulk physical and macrofaunal analysis at each sampling location.

2.1 Benthic Imagery

Seventy benthic imagery transects were completed within the Lease area (Figure 2). Ten of these were fixed locations co-located with proposed WTG or OSS locations. The remaining 60 imagery transects were selected to characterize areas of potential complex habitat, based on preliminary interpretation of the 2021 acoustic data and supplemented by other existing sources of data (CB&I 2014; Alpine 2015; Guida et al. 2017). The axes of these transects were generally aligned west to east, except where alignment was altered to capture potential features of interest (e.g., high-relief objects, areas of higher reflectivity or rugosity) noted in the preliminary interpretation of the 2021 acoustic data.

Within the Offshore Export Cable Corridors, 50 benthic imagery transects were planned for collection. Preliminary acoustic survey results were not available prior to initiating selection of the benthic imagery transects in the Offshore Export Cable Corridors. Therefore, benthic imagery transects were selected at discrete intervals of approximately 1 km to provide geographic coverage for characterization of benthic habitats. Each video transect was aligned to be perpendicular to the Offshore Export Cable Corridors axis.

2.1.1 Benthic Transect Imagery

Underwater video transects were collected at 70 locations within the Lease area, and at 40 locations within the Offshore Export Cable Corridors. Due to unfavorable environmental conditions, particularly in the shallowest portions of the Offshore Export Cable Corridors, some of the planned transects could not be completed. Additionally, some of the benthic imagery transects successfully collected during field operations no longer fall within the Offshore Export Cable Corridors. Of the 70 benthic imagery transects collected in the Lease area, 68 were successfully processed. Of the 40 benthic imagery transects collected within the Offshore Export Cable Corridors, 30 were successfully processed, including an unplanned transect (VT-AC-79_R) that was the result of a successful transect rerun (Figure 2).

Video transects were planned to be 180 m in length but actual transect length ranged from approximately 120 m to 700 m in length. Longer transects were typically associated with difficult environmental conditions, complexity of the seafloor features encountered, and vessel survey operations. The associated video lengths ranged from 7 to 47 minutes. Navigation and positioning systems from the boat and ROV USBL provided locational data for each transect.

Benthic video imagery was initially collected using a BlueROV2 equipped with a built-in 1080p digital camera and an attached GoPro series camera. The oblique imagery captured footage of the seabed along planned transects. The ROV was piloted using a hover and drift technique that allowed the device to move progressively along the seafloor as the vessel traversed the length of the transect. Footage from the ROV onboard camera was viewed in real time via an umbilical to allow for navigation, maintenance of appropriate distance from the substrate, and response to features of interest (e.g., hard bottom habitat). Higher quality video suitable for analysis was obtained using a GoPro camera mounted to the front

Improvised setup for collection of video transect data following ROV malfunction.

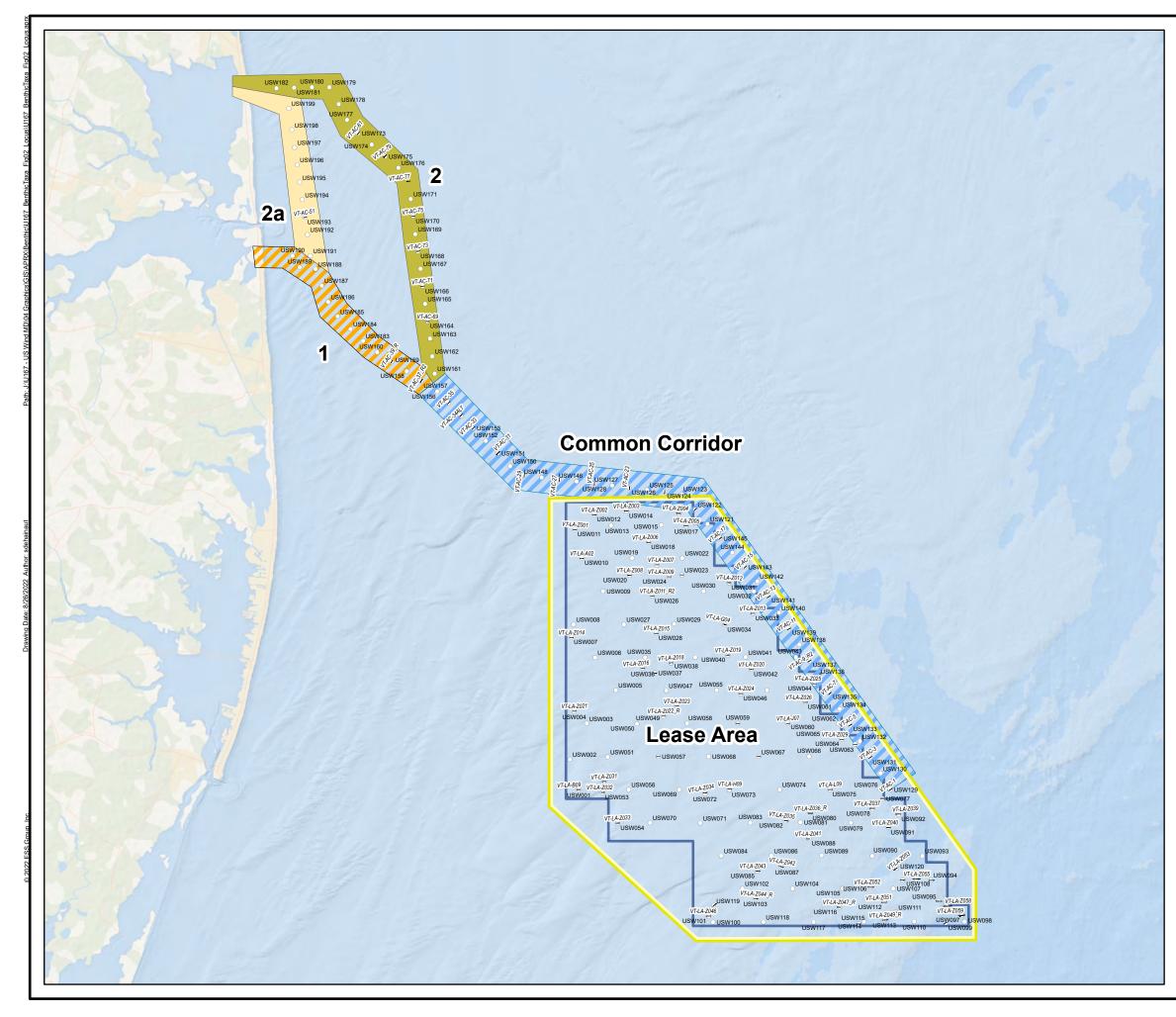
of the ROV. Adjustable intensity high pressure dive lights were affixed to the ROV frame to provide adequate lighting for video collection. This system was used to collect the first 50 video transects.

ROV equipment malfunctions resulted in switching to an improvised UTV (underwater towed vehicle) system to collect the remaining imagery transects. The UTV consisted of an ROV mounted to a static system and suspended from a side A-frame on the ship. Depth of the UTV was controlled via the A-frame winch to maintain appropriate distance from the seabed.

2.1.2 Benthic Grab Imagery

Planview imagery of the seafloor at benthic grab locations was primarily collected using a Williamson & Associates Solo III camera and LED lighting mounted to the frame of the double Salish grab sampler. Video collected at each site included lowering the sampler through the water column, contact with the bottom and sample collection, and retrieval of the grab.

Due to malfunction of the original camera system and lighting, some of the Lease area benthic grab imagery was collected separately from the benthic grab sample collection itself. For these locations, a GoPro camera was mounted to the sampler frame and redeployed within 5m of the original grab sample location, solely for the purpose of obtaining planview benthic imagery. All benthic grab imagery from Offshore Export Cable Corridor sites was collected at the time of grab sample collection.


2.1.3 Imagery Analysis

For oblique imagery transect analysis, benthic mapping was completed using video time stamps and associated ROV/UTV USBL positional data provided by the survey contractor. The imagery analyst noted the position each time a difference in habitat was observed. These breaks in habitat were associated with timestamped points on each transect.

Each of these positions was annotated with information on NMFS-modified CMECS simplified substrate classes and groups present. Fine-scale habitat characteristics were also noted using substrate subgroups. Associated biological assemblages (e.g., sand dollar fields, tunicate mats) were also noted along with benthic features such as ripples, burrows, tubes, and shell deposits.

Planview grab imagery was used to validate the physical description of each macrofaunal grab sample made in the field as well as to provide context for the community composition identified through the taxonomic identification and enumeration conducted in the laboratory.

To obtain the most uniform and consistent results, the imagery analysis was performed by a single analyst.

Legend

- ----- ROV Track
- Benthic Sample Location

Offshore Project Component Area

- Offshore Export Cable Corridor 1
- Offshore Export Cable Corridor 2
- Offshore Export Cable Corridor 2a
- Common Corridor
- 📃 Lease Area

Source: 1) ESRI, World Ocean Base

Benthic Sampling Locations and Project Component Areas

Maryland Offshore Wind Project Offshore Maryland and Delaware

Figure 2

2.2 Benthic Grab Sampling

One-hundred twenty benthic grab samples were collected within the Lease area (Figure 2), 60 of which were fixed locations co-located with proposed WTG or OSS locations. These locations were selected to ensure broad geographic characterization of portions of the Lease area that may be directly impacted by Project construction. An additional 60 locations were selected to characterize potential complex habitat, as identified by preliminary interpretation of the 2021 acoustic data and supplemented by other existing sources of data (CB&I 2014; Alpine 2015; Guida et al. 2017). Areas targeted as potential complex habitat were mapped by one or more of these sources as more likely to contain unconsolidated hard bottom, such as gravel, gravel mixes, and gravelly substrates.

Seventy-eight benthic grabs were collected within the Offshore Export Cable Corridors, located at intervals of approximately every 0.5 km (Figure 2).

2.2.1 Sample Collection

Surface benthic grab samples were collected using a 0.04 m² double Salish grab sampler at 120 locations within the Lease area between July 21 and August 31, 2021, and 78 locations within the Offshore Export Cable Corridors between August 3, and August 17, 2021. After retrieval, each sample was examined for quality and a decision was made to accept or reject the sample based on representativeness of the grab. Sample grabs that did not retain at least 8 cm of material or showed evidence of uneven penetration (i.e. angled sample) were rejected as unrepresentative and the grab was redeployed until an acceptable sample was retained.

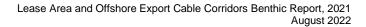
Double Salish Grab Sampler on the RV Brooks McCall

Once an acceptable sample was retrieved,

descriptions of sample recovery and sediment type (i.e. grain size) were recorded in a custom form using the FastField application on a tablet computer. The top 10 cm of sediment in one side of the grab was then removed from the sampler using a stainless-steel spoon and sieved in the field. Sieving consisted of gently rinsing the sample material through a bucket sieve with 500- μ m mesh to remove fine sediments. Sieved samples were preserved in a solution containing 10% buffered formalin in seawater, which is consistent with prior benthic surveys conducted in the area (Volume II, Appendices D1 – D3). Preserved samples were stored in HDPE quart-size sample jars and labeled with the project name, sample identification code, sampling date, preservative, and the initials of the collector.

Sampled material from the other side of the grab was extracted separately by the survey contractor (TDI Brooks International, Inc.) for bulk physical analysis, including grain size. The bulk physical data analysis is provided by others under separate cover and is not part of this report.

Preserved samples were returned to ESS offices for storage and laboratory analysis of benthic infauna.


Date Submitted: 07-22-2021 08:49 PM Submitted By: sdehainaut@essgroup.com

U167-080 US Wind Lease Area Survey

Project Information

Project Number:	U167-080
Date for This Entry	07-22-2021
Time for This Entry	03:17 PM (0 GMT)
Sample ID	BG-LA-H05
	9 38.387347, -74.746048
General Note	2 bottles
Survey Information	
Number of Attempts (Select One)	1
Equipment Used (Select All That Apply)	Double Salish Grab
Sediment Info	
	BG-LA-HOS 10th Formalia 1-22-21
Sediment Description	3.5inch from top, dark brown coarse sand, some shell and fine sand
Sediment Description Benthic Info	

Representative screenshot of benthic macrofaunal grab sample field report form.

2.2.2 Laboratory Analysis

Upon receipt at the laboratory, each sample was logged in and decanted through a 500-µm sieve. Samples were gently rinsed in the sieve to remove the formalin fixative and any additional fine sediment that remained after the initial field sieving process. Once thoroughly rinsed, each sample was returned to a labeled jar and preserved with 70% ethanol for storage.

For sorting, the contents of each sample were examined using a high-power dissecting microscope (7X to 45X magnification) and high-intensity gooseneck fiber optic lamp. All samples were sorted in their entirety. Organisms found during the sorting process were removed with forceps and placed in 70% ethanol. Each vial was labeled with the project name, collection date and sample identification number. All residue (sediment and organic matter) from the sorted and unsorted portion of each sample was placed in a separate labeled container and re-preserved in 70% ethanol, which is consistent with prior benthic surveys conducted in the area (Volume II, Appendices D1 – D3).

Sorted organisms were subsequently identified by a qualified taxonomist to the lowest taxonomic level possible using a dissecting microscope and readily available taxonomic keys and references (e.g., Bartholomew, 2001; Martinez, 1999; Pollock, 1998; Abbott and Morris, 1995; Weiss, 1995; Gosner, 1978; Bousfield, 1973; Gosner, 1971; Smith, 1964; Pettibone, 1963). Temporary slide mounts were prepared for oligochaete worms, capitellid polychaetes, and certain amphipod taxa as necessary to improve the taxonomic precision of identification for these groups. Slide-mounted organisms were identified under a compound microscope capable of 64X to 1600X magnification.

For quality assurance and control (QA/QC) purposes, a second qualified staff member (quality assurance officer) resorted 10% of the samples (or one, whichever was greater) analyzed by each sorter to ensure organisms were being adequately removed from the samples. The quality assurance officer checked the sorted sample material for remaining organisms and calculated an efficiency rating (*E*) using the following formula:

$$E = 100 \times \frac{n_a}{n_a + n_b}$$

Where n_a is the number of individuals originally sorted and verified as identifiable organisms by the QC checker and n_b is the number of organisms recovered by the QC checker. If the original sorter achieved E < 90% (i.e., less than 90% of the organisms in the sample removed), corrective action was taken to ensure greater sorting efficiency for other samples sorted by the same individual. Corrective action includes but is not necessarily limited to, additional training on organism recognition and re-sorting of sample material.

2.2.3 Data Analysis

Univariate Analyses

Measures of benthic abundance, diversity, and community structure were selected to describe the affected environment. The rationale behind selection of each measure is as follows:

Taxa richness is the number of different taxa that are found within a given area or community and is widely accepted as a good assessment measure of diversity (Magurran 2003). Determination of taxa

richness from macroinvertebrate data is complicated by the presence of immature or damaged specimens, which often prevent the identification of all organisms to the same taxonomic level (Cuffney et al. 2007, Meredith et al., 2019). These conditions result in datasets that contain abundances associated with multiple levels within the taxonomic hierarchy (e.g. abundances associated with the amphipod genus *Ampelisca* sp. as well as the parent family of that genus, Ampeliscidae). To resolve these ambiguous parent-child pairs while preserving taxa richness and abundance to the extent possible, we employed the RPMC-G (Remove Parent or Merge Children – Group) method described in Cuffney et al. (2007). This method involves the removal of an ambiguous parent taxon if its abundance is less than the sum of abundance(s) reported from its taxonomic children. If abundance of a parent taxon exceeds that of its taxonomic children, then the children are merged with the parent. As the derivation of abundance and richness metrics should not be decoupled (Cuffney et al. 2007), the RPMC-G resolved dataset was used for calculation of all metrics presented below.

Macrofaunal density is a measure of abundance expressed as an estimate of the number of individuals per unit area. Although macrofaunal density can reflect the productivity of marine habitats (Taylor 1998), it may also serve as an indication of stress or disturbance at a location (Dean 2008). Consequently, the density of benthic organisms may increase or decrease in response to different types of stress (e.g., thermal or chemical pollution, sediment deposition, physical abrasion or displacement).

The density of benthic organisms responds to disturbance as mitigated by the tolerance (or preference) of a given organism to the particular source of disturbance. However, density may vary substantially over small areas or short periods of time and should therefore be interpreted cautiously. For this study, macrofaunal density is expressed as the number of organisms per square meter.

Analysis of variance (ANOVA) was used to compare average taxa richness and organism density between Project component areas. Density data were log transformed prior to analysis to better meet the assumptions of parametric statistical tests.

Multivariate Analyses

Community composition describes the identity and relative abundance of each taxon within a community. Benthic community composition is dependent upon a variety of factors, including sediment grain size and disturbance regime, substrate type, above-sediment structure, and exposure to predation (Byers and Grabowski 2014).

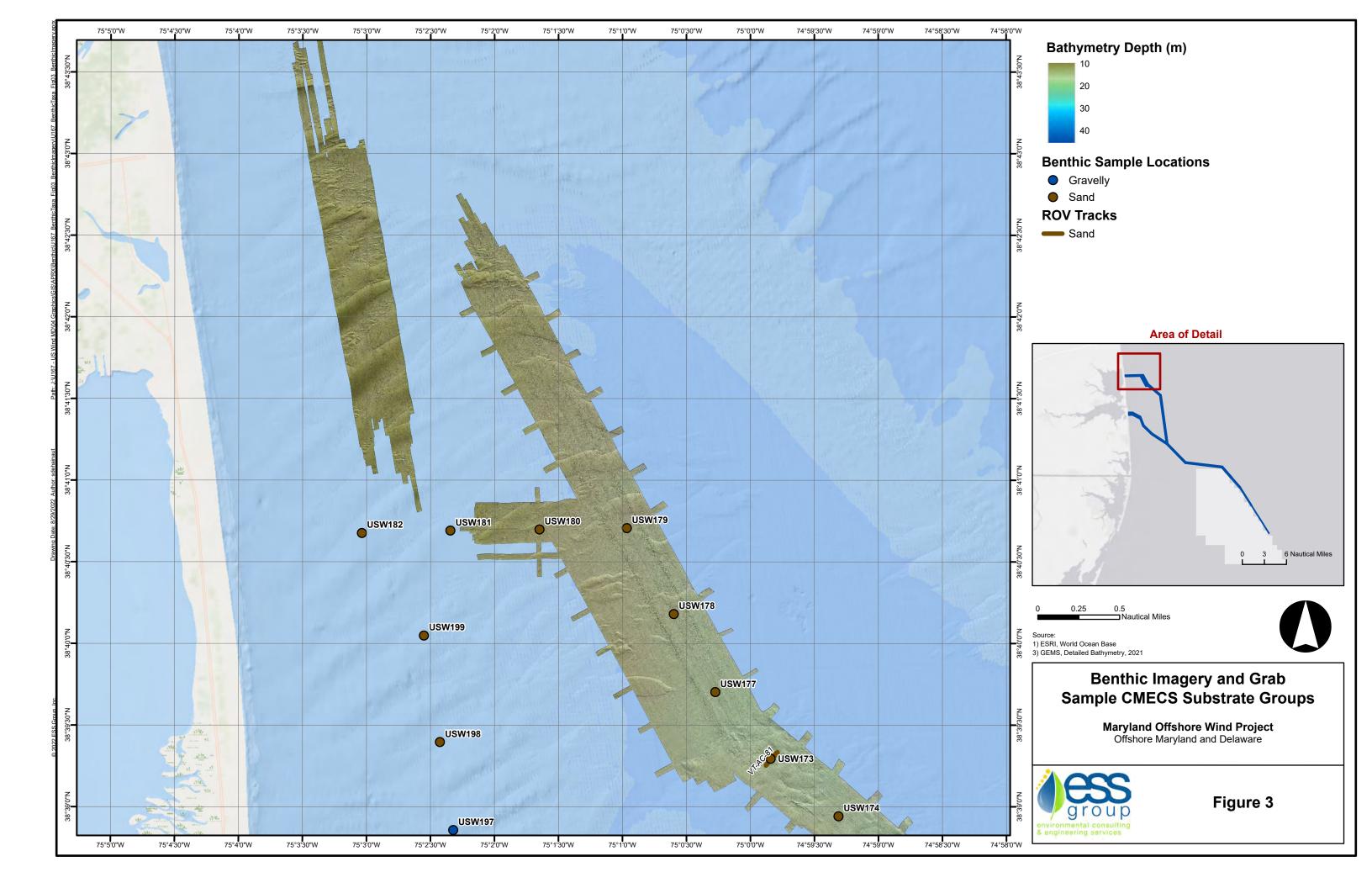
Non-metric Multidimensional Scaling (NMDS) ordination was used to visualize divergence in community composition between samples. Samples were then grouped by Project component areas and NMFS-modified CMECS substrate subclass. NMDS is a non-parametric distance-preserving ordination approach that reduces the complexity of multivariate data and is well suited for use on sparse data sets (Kruskal 1964). NMDS results in the generation of a plot, which represents the community composition of each sample by its relative position in unitless ordination space. The relative distance between points is indicative of the similarity of sample communities; points that are closer together in ordination space indicate more similar communities, those that are farther apart indicate less similar communities. To decrease the influence of rare species, all taxa present in less than 5% of samples were excluded from analysis. Densities were then fourth root transformed to down-weight the influence of highly abundant species. All multivariate analyses were conducted in PRIMER version 6.1.18 (Clarke and Gorley 2006) using Bray-Curtis (Sorensen) distance measures (Bray and Curtis 1957)

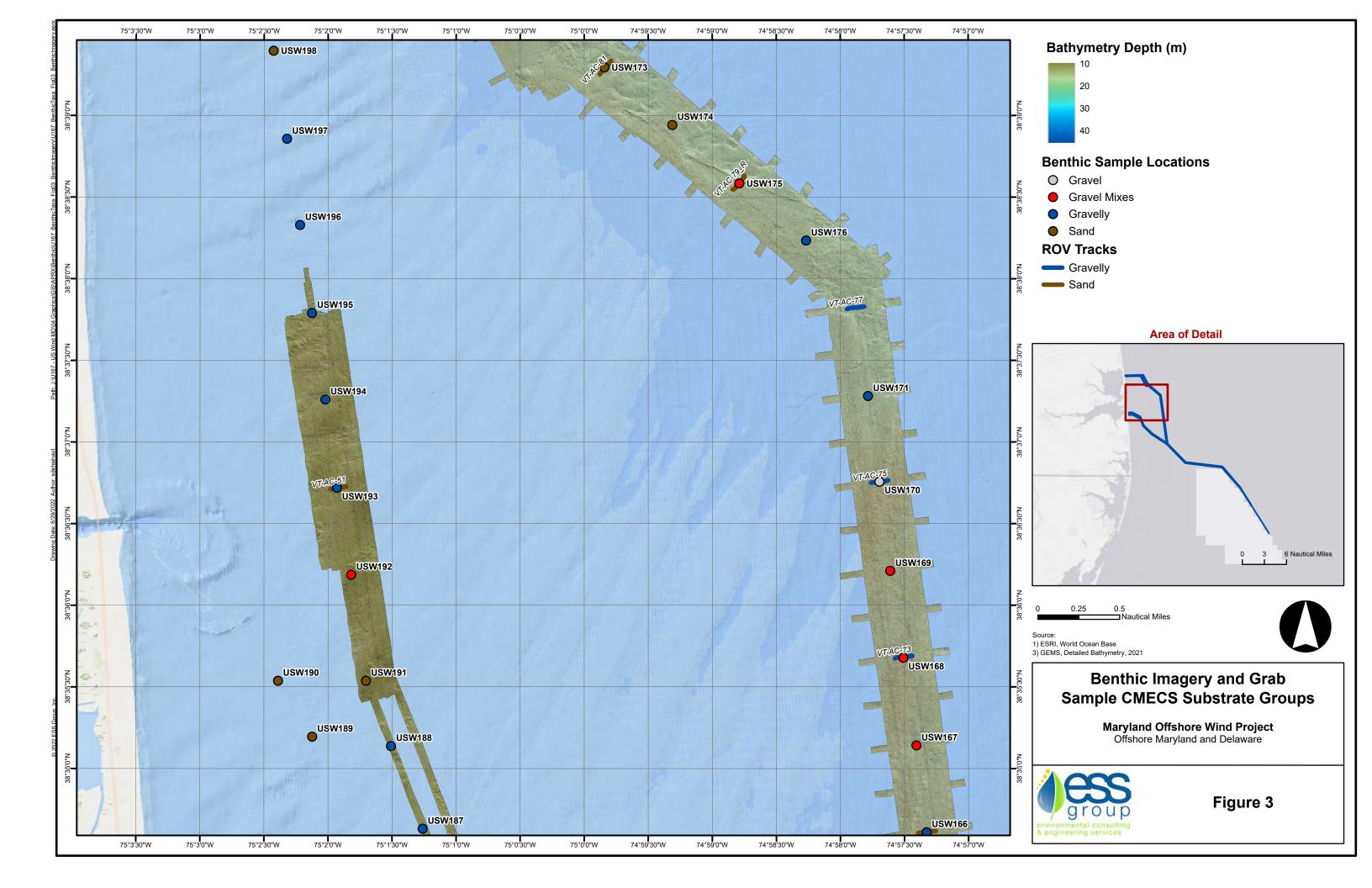
Analysis of Similarity (ANOSIM), another non-parametric statistical approach, was used to test for differences in community composition between areas of CMECS-classified fine and coarse unconsolidated substrates as well as between samples collected from different Project component areas. ANOSIM tests for significant differences between specified groups of samples through permutation-based hypothesis testing. ANOSIM generates R statistics that represents the ratio between within-group and between-group dissimilarities; values close to 0 indicate a lack of separation of groups, and values close to 1 indicate complete segregation of groups. ANOSIM was run using default settings and included 999 permutations for each analysis. When ANOSIM revealed significant differences in community composition between groups, similarity percentages analysis (SIMPER) was performed to determine the contribution of individual species to observed differences in community composition between groups.

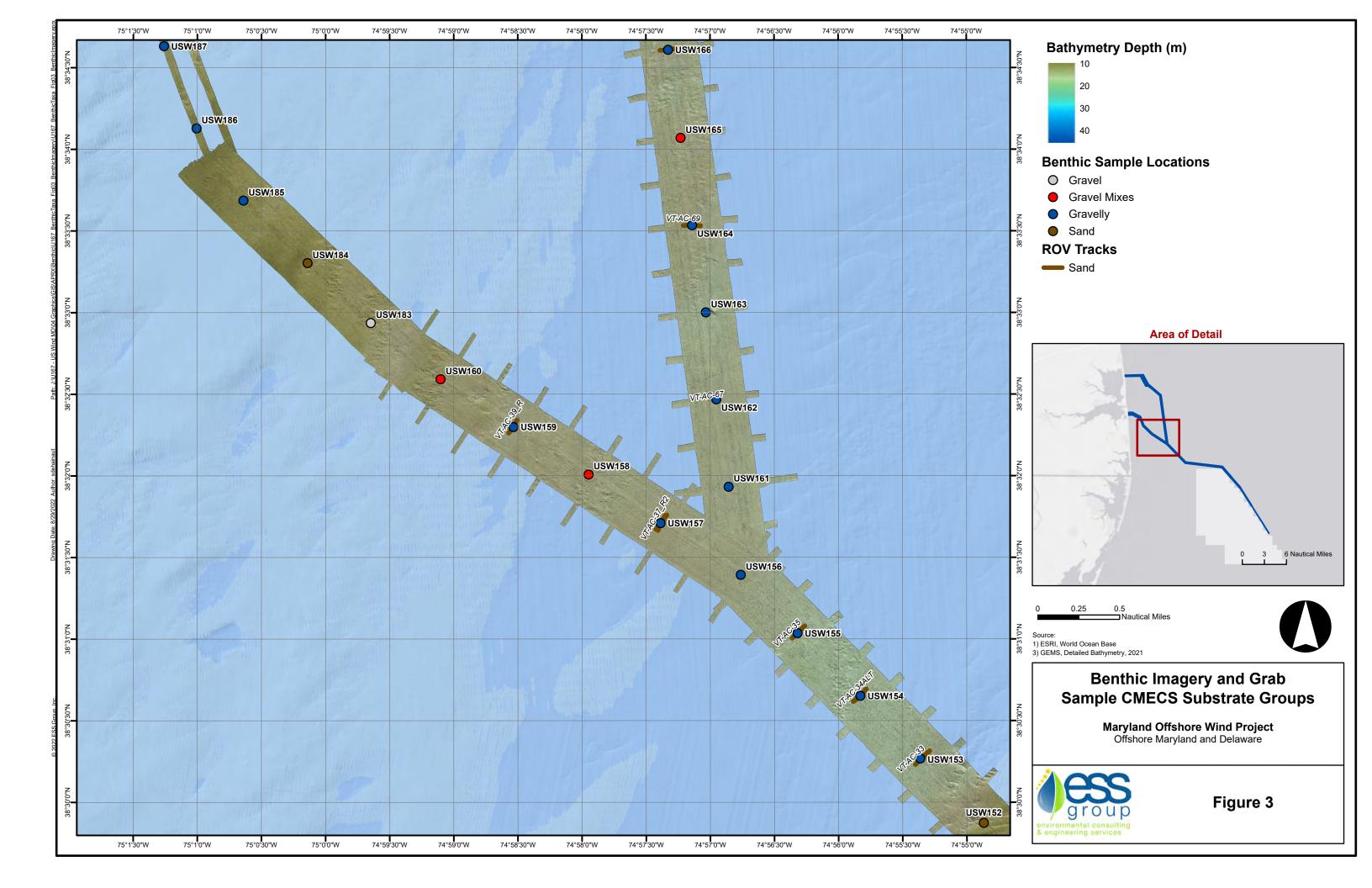
3.0 RESULTS

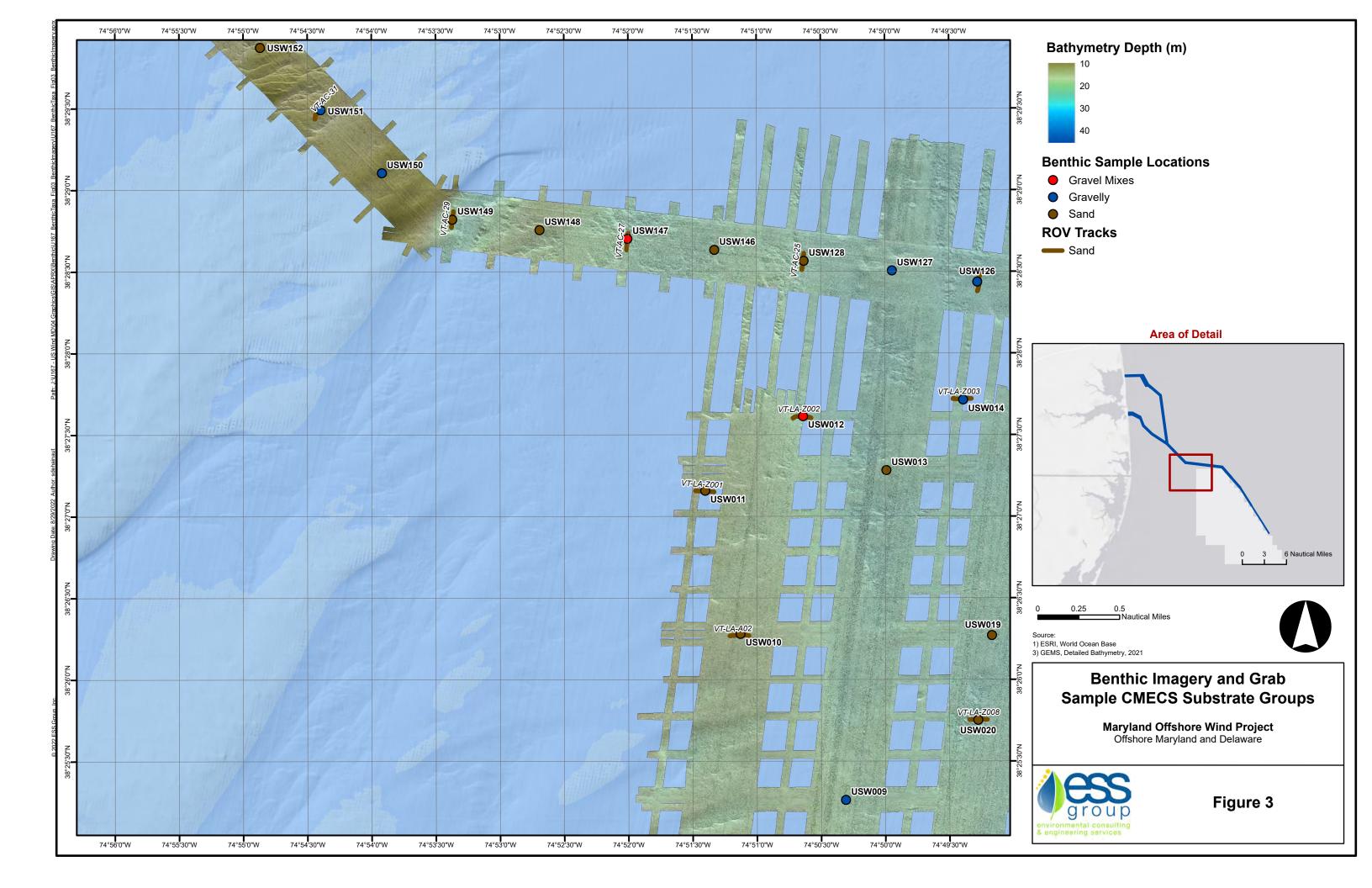
3.1 Benthic Imagery

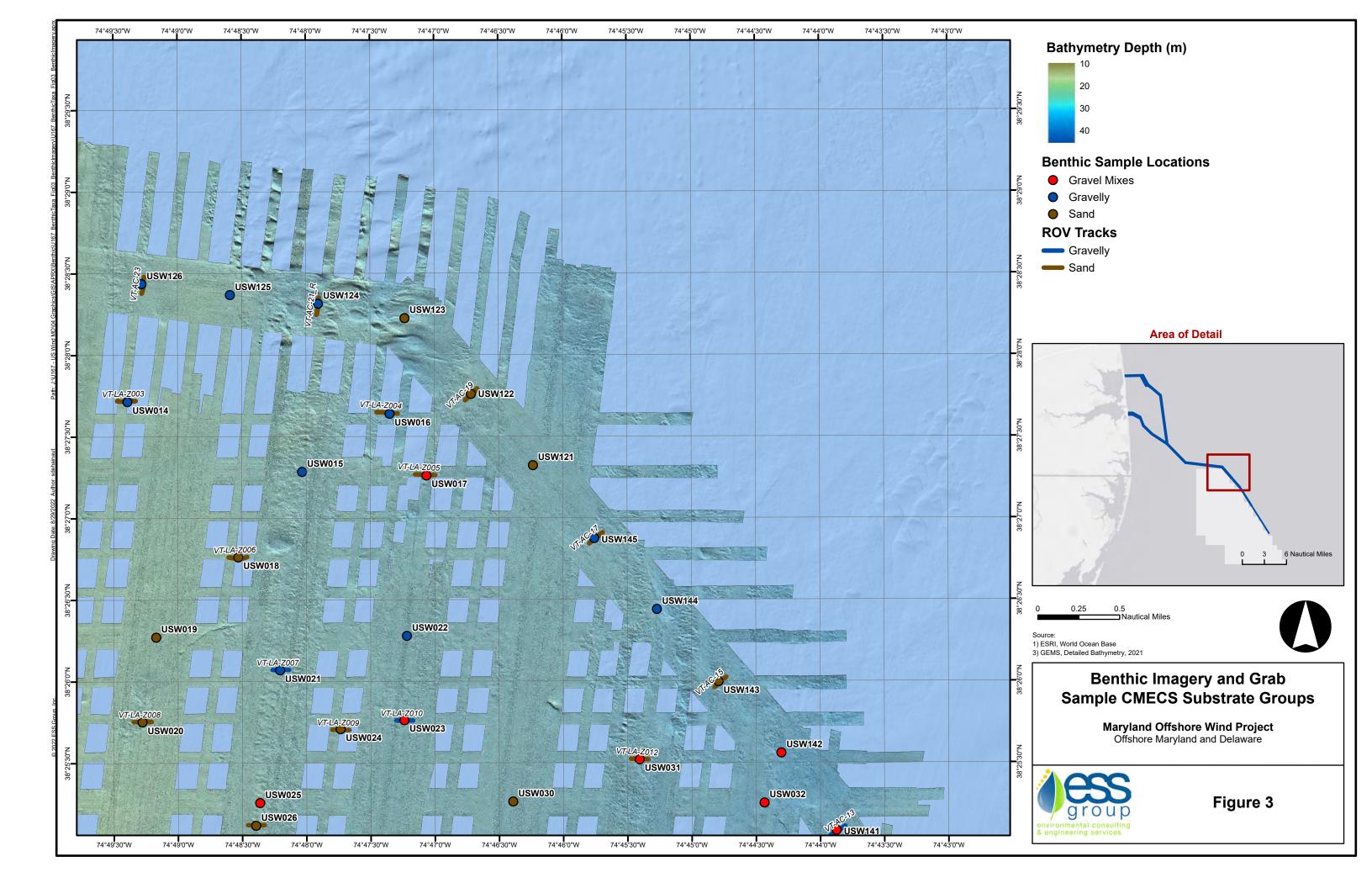
Ninety-eight benthic imagery transects were successfully classified by dominant substrate (Figure 3). Of these, 68 were obtained from the Lease area and 30 from the Offshore Export Cable Corridors. The resulting substrate classifications are summarized below and presented in greater detail in Attachment A.

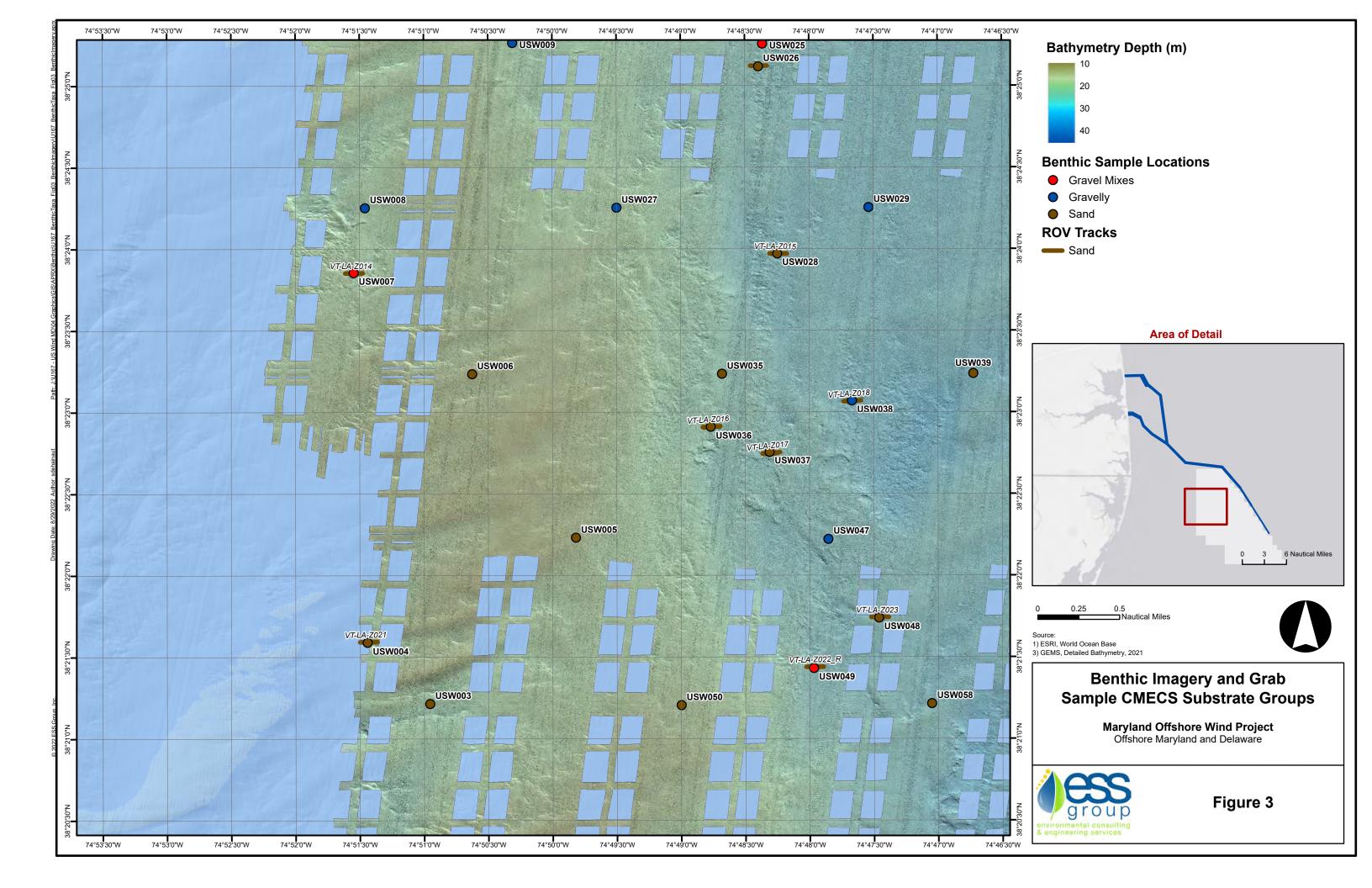

The three NMFS-modified CMECS substrate groups observed to dominate the length of the benthic imagery transects were sand, gravelly, and gravel mixes (Table 1). Substrate subgroups are typically more challenging to identify from underwater imagery footage, particularly those that are dominated by sand. However, based on the bulk grain size analysis results for associated benthic grabs, the primary NMFS-modified CMECS substrate subgroups sampled in the Survey Area were very coarse/coarse sand and gravelly sand (Table 2 and Attachment C).

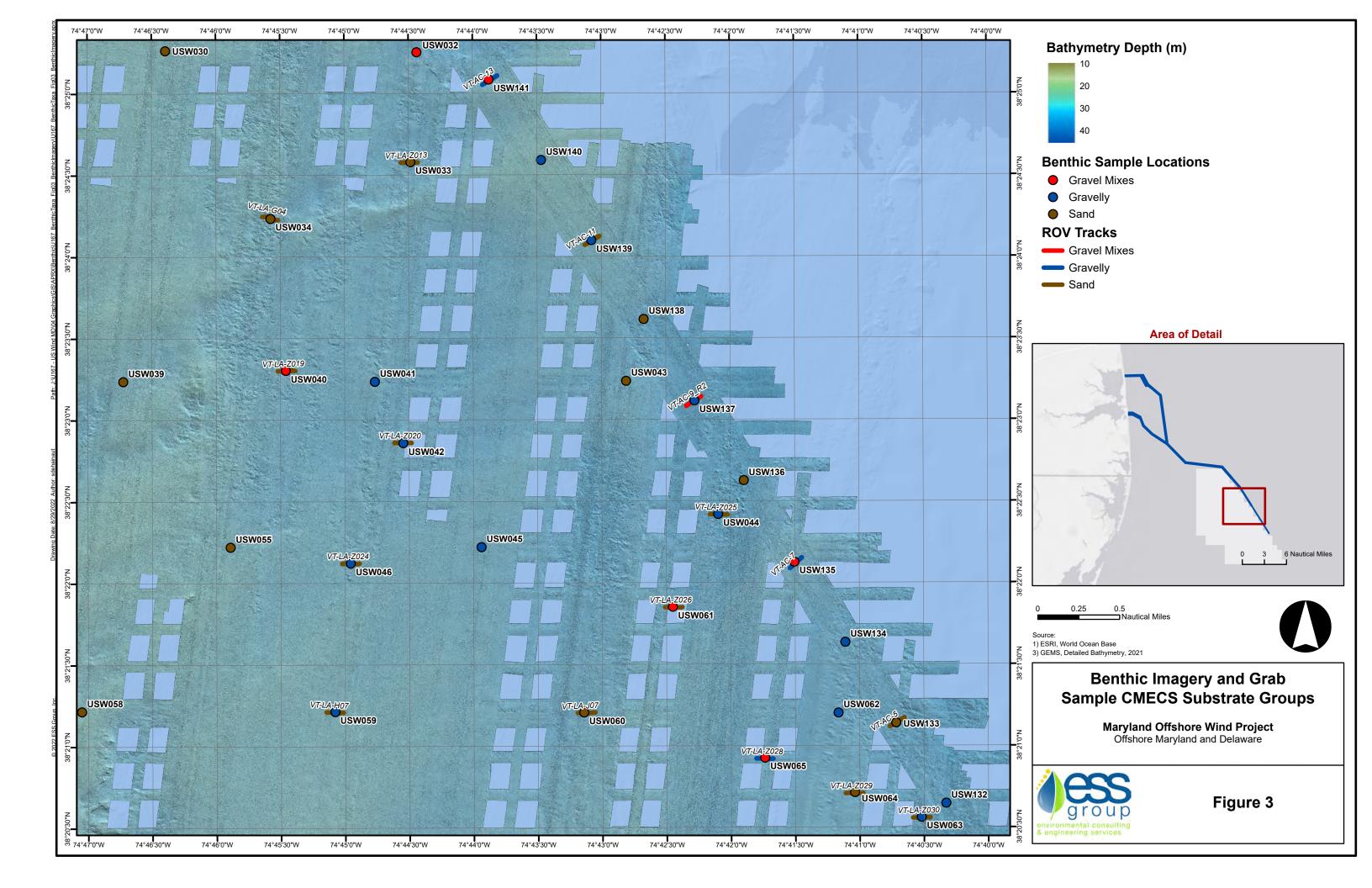

The majority of transects (81%) were dominated by sand substrate (Table 1), although patches of secondary substrate types, such as granules/pebbles or shell hash, were also sometimes observed on these transects. Similarly, transects dominated by gravelly substrates, which constituted approximately 18% of all benthic imagery transects, were frequently observed to contain patches of bare sand interspersed along the seafloor surface. Lone standing or scattered boulder- and cobble-sized clasts were also occasionally observed on transects dominated by sand, gravelly substrates, or gravel mixes. Boulders were observed on seven of the benthic imagery transects and cobbles were observed on an additional two transects.

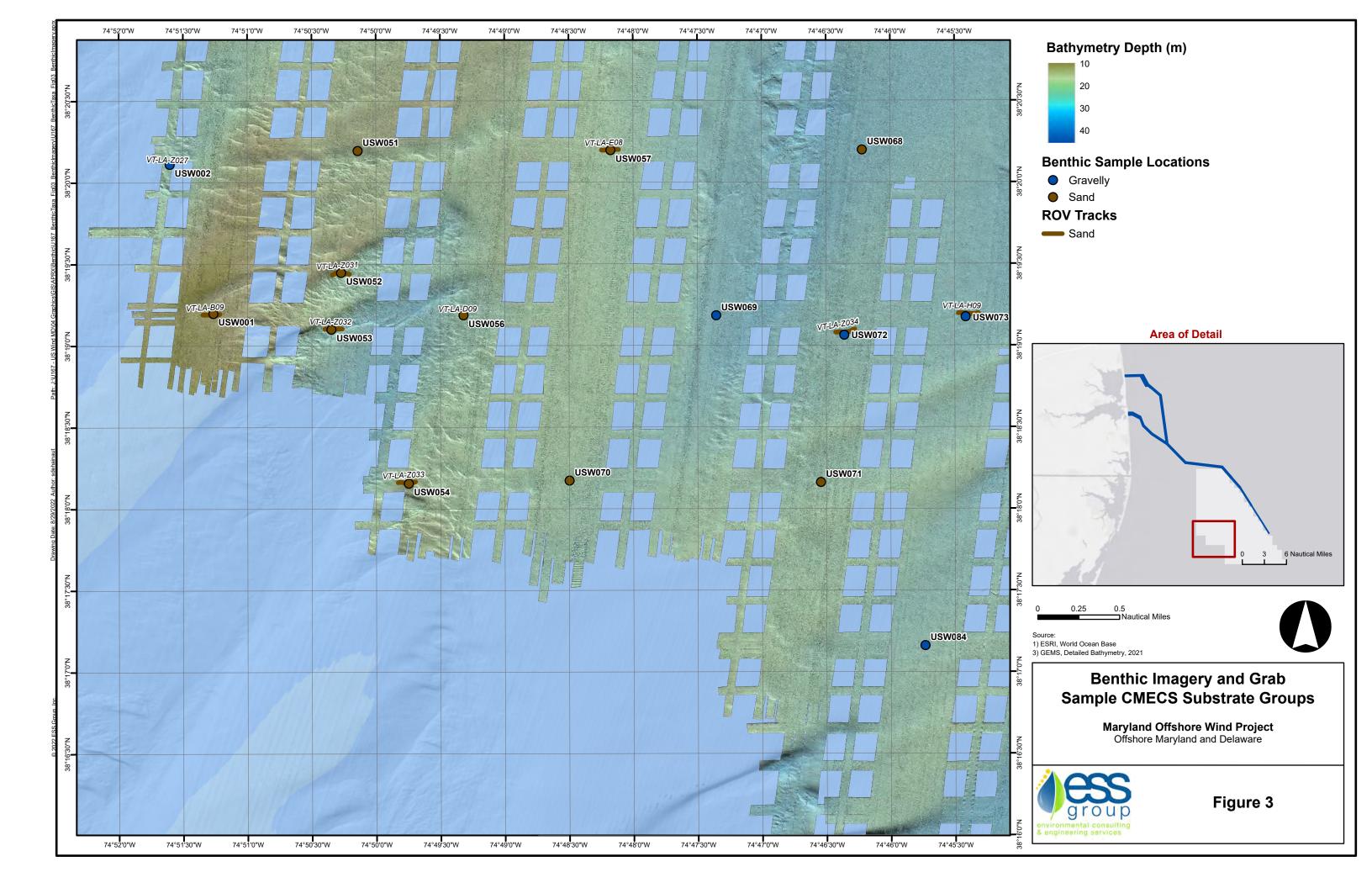

Dominant CMECS Substrate Group	Dominant CMECS Substrate Subgroup(s)	No. of Transects	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	79	81%
Gravelly	Gravelly Sand	18	18%
Gravel Mixes	Sandy Gravel	1	1%
Gravel	Pebble/Granule	0	0
Total		98*	100%

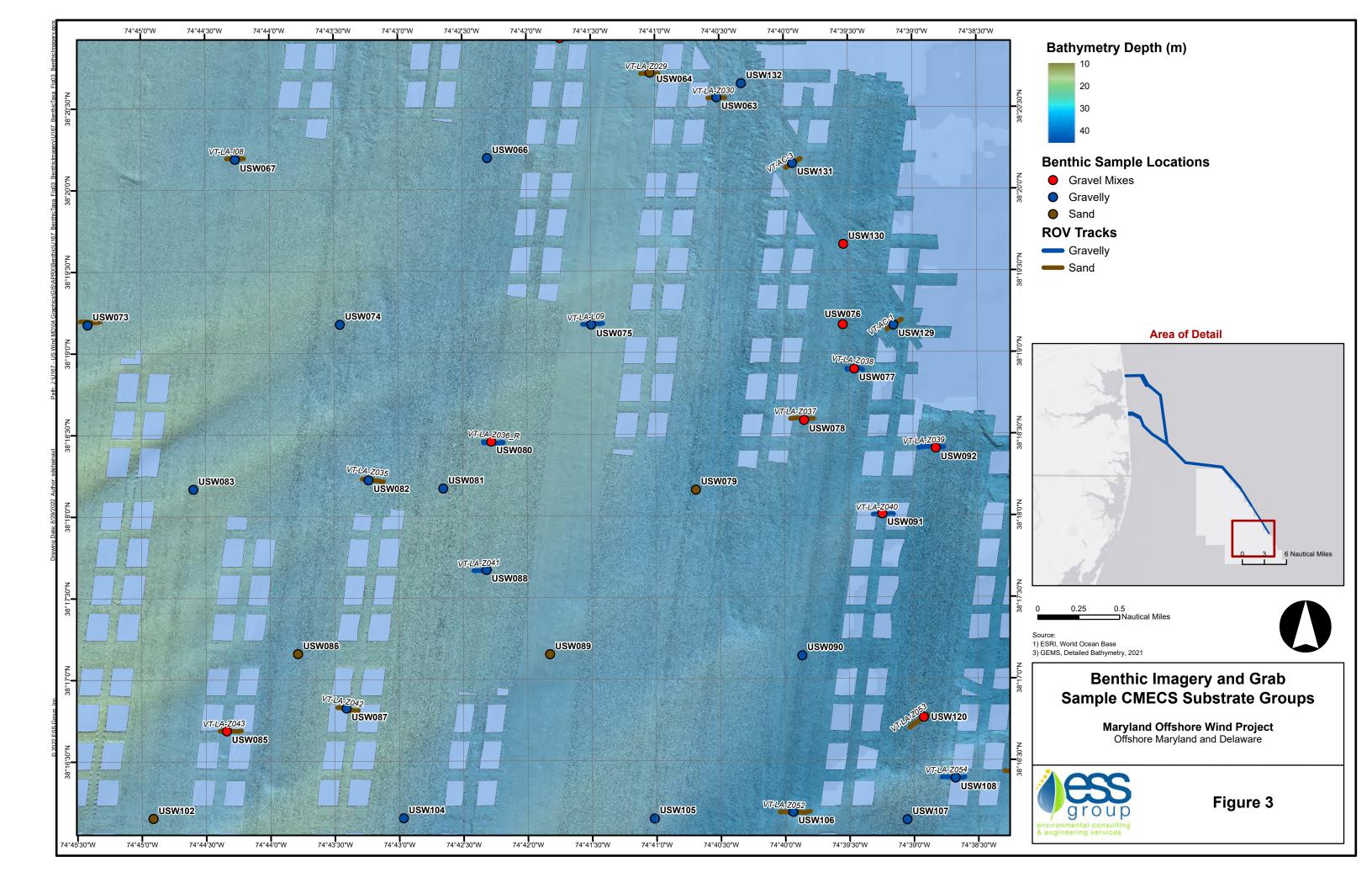

 Table 1. Benthic Imagery Transect Substrate Group Classifications

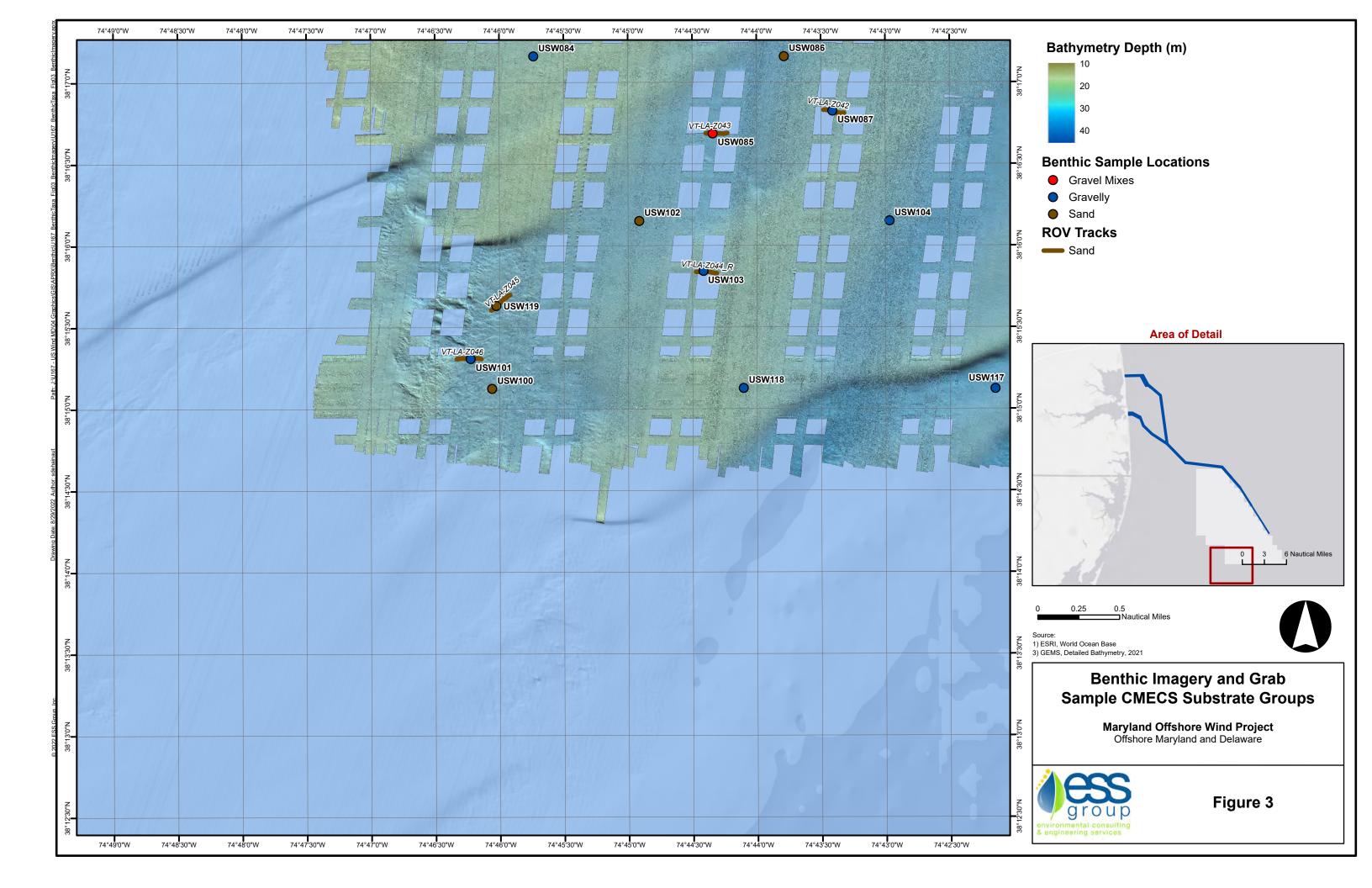

* Total is for all Project component areas (i.e., Lease area and Offshore Export Cable Corridors) but does not include transects that could not be classified due to environmental conditions (e.g., poor visibility).

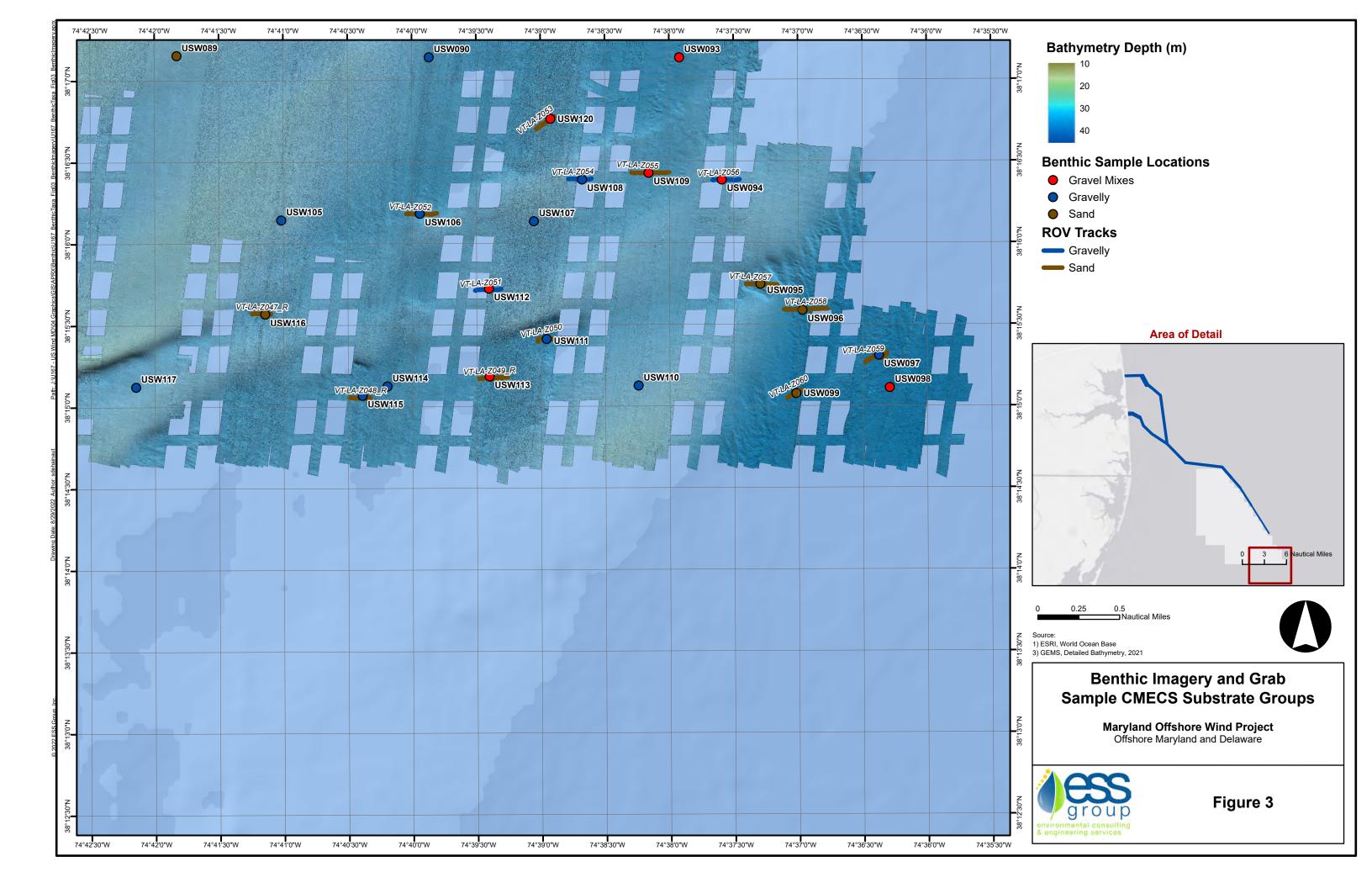


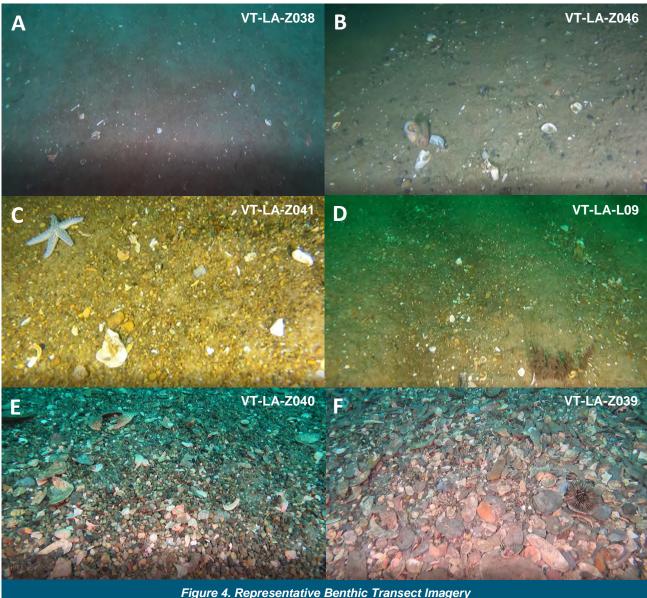




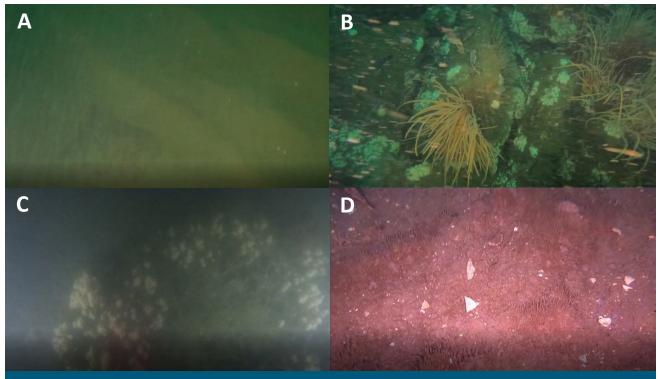








Lease Area and Offshore Export Cable Corridors Benthic Report, 2021 August 2022


Figure 4. Representative Benthic Transect Imagery NMFS-modified CMECS substrate groups [subgroups] shown here include sand (A and B), gravelly [gravelly sand] (C and D) and gravel mixes [sandy gravel] (E and F).

Other observations of note include the following:

- A cobble pile of suspected anthropogenic origin (rock reef) was identified along one transect, VT-LA-Z053, in the southwest portion of the Lease area.
- A reattempt of one transect, VT-AC-79, within the Offshore Export Cable Corridors revealed two very different substrate classifications upon review of the footage, due to differing positions on the rerun.
- Footage from one Lease area transect, VT-LA-Z017, revealed the presence of a worm reef. These
 may have been formed by spionid polychaetes, which were identified in nearby benthic grab
 samples.

Benthic grab locations were also classified using the NMFS-modified CMECS taxonomic system, based upon review of grain size analysis results and video and still imagery. Full substrate group and subgroup classifications for each of the 120 benthic grab locations are presented in Attachment C, along with in situ and ex situ photographs.

Figure 5. Additional Representative Benthic Transect Imagery

A variety of substrates were encountered during the 2021 survey although many were highly localized. Sand (A) and hard bottom habitat with stony coral growth (Astrangia poculata) (C) observed during separate runs of VT-AC-79 in the Offshore Export Cable Corridors. Although much of the Lease area was dominated by sand, other habitats were also present. For example, cobble piles formed a small rock reef (B) at VT-LA-Z053 in the southwest portion of the Lease area, which has been colonized by epifaunal growth, including sea whips (Leptogorgia virgulata). Biogenic reefs were also present but highly localized, such as this worm reef (D) at VT-LA-Z017 in the north central portion of the Lease area.

Benthic grab locations were also classified using the NMFS-modified CMECS taxonomic system, based upon review of grain size analysis results and video and still imagery. The results for the Survey Area are summarized in Table 2. Substrate group and subgroup classifications for each of the 198 benthic grab locations are presented in Attachment C, along with in situ and ex situ photographs.

The most frequently observed substrate group classification in benthic grab samples was gravelly (43%), although sand (37%) and gravel mixes (19%) were also observed at a number of locations (Table 2). Gravel was the least frequently observed substrate group in the benthic grab samples. Finer substrates (muddy sands, sandy muds, and muds) were not observed in any samples.

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Locations	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	73	37%
Gravelly	Gravelly Sand	85	43%
Gravel Mixes	Sandy Gravel	38	19%
Gravel	Pebble/Granule	2	1%
Total		198*	100%

Table 2. Benthic Grab Sample Substrate Classifications

* Total is for all Project component areas (i.e., Lease area and Offshore Export Cable Corridors)

Benthic imagery results broken out by Project component area are presented in the following sections.

3.1.1 Lease Area

Results of the benthic transect imagery analysis from within the Lease area are presented in Table 3. The resulting substrate classifications are summarized below but presented in greater detail in Attachment A.

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Transects	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	56	82%
Gravelly	Gravelly Sand	12	18%
Gravel Mixes	Sandy Gravel	0	0%
Gravel	Pebble/Granule	0	0%
Total		68*	100%

Table 3. Lease Area Benthic Imagery Transect Substrate Group Classifications

* Total does not include those that could not be fully classified due to environmental conditions (e.g., poor visibility).

Results of the benthic grab NMFS-modified CMECS classifications within the Lease area are presented in Table 4. The resulting substrate classifications are summarized below but presented in greater detail in Attachment C.

Table 4. Lease Area Benthic Grab Sample Substrate Classifications

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Locations	% of Locations
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	47	39%
Gravelly	Gravelly Sand	48	40%
Gravel Mixes	Sandy Gravel	25	21%
Gravel	Pebble/Granule	0	0%
Total		120	100%

3.1.2 Common Export Cable Corridor

Results of the benthic transect imagery analysis from within the Common Export Cable Corridor are presented in Table 5. The resulting substrate classifications are summarized below but presented in greater detail in Attachment A.

Table 5. Common Export Cable Corridor Benthic Imagery Transect Substrate Group Classifications

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Transects	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	16	84%
Gravelly	Gravelly Sand	2	11%
Gravel Mixes	Sandy Gravel	1	5%
Gravel	Pebble/Granule	0	0%
Total		19*	100%

* Total does not include those that could not be classified due to environmental conditions (e.g., poor visibility).

Results of the benthic grab NMFS-modified CMECS classifications within the Common Export Cable Corridor are presented in Table 6. The resulting substrate classifications are summarized below but presented in greater detail in Attachment C.

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Locations	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	12	33%
Gravelly	Gravelly Sand/ Gravelly Muddy Sand	19	53%
Gravel Mixes	Sandy Gravel	5	14%
Gravel	Pebble/Granule	0	0%
Total		36	100%

3.1.3 Offshore Export Cable Corridor 1

Results of the benthic transect imagery analysis from within Offshore Export Cable Corridor 1 are presented in Table 7. The resulting substrate classifications are summarized below but presented in greater detail in Attachment A.

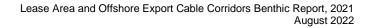
Table 7. Offshore Export Cable Corridor 1 Benthic Imagery Transect Substrate Group Classifications

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Transects	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	2	100%
Gravelly	Gravelly Sand	0	0%
Gravel Mixes	Sandy Gravel	0	0%
Gravel	Pebble/Granule	0	0%
Total		2*	100%

* Total does not include those that could not be classified due to environmental conditions (e.g., poor visibility).

Results of the benthic grab NMFS-modified CMECS classifications within the Offshore Export Cable Corridor 1 are presented in Table 8. The resulting substrate classifications are summarized below but presented in greater detail in Attachment C.

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Locations	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	3	25%
Gravelly	Gravelly Sand	6	50%
Gravel Mixes	Sandy Gravel	2	17%
Gravel	Pebble/Granule	1	8%
Total		12	100%


Table 8. Offshore Export Cable Corridor 1 Benthic Grab Sample Substrate Classifications

3.1.4 Offshore Export Cable Corridor 2

Results of the benthic transect imagery analysis from within Offshore Export Cable Corridor 2 are presented in Table 9. The resulting substrate classifications are summarized below but presented in greater detail in Attachment A.

Table 9. Offshore Export Cable Corridor 2 Benthic Imagery Transect Substrate Group Classifications

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Transects	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	4	50%
Gravelly	Gravelly Sand	4	50%
Gravel Mixes	Sandy Gravel	0	0%
Gravel	Pebble/Granule	0	0%
Total		8*	100%

* Includes both original and rerun of VT-AC-79. Total does not include those transects that could not be classified due to environmental conditions (e.g., poor visibility).

Results of the benthic grab NMFS-modified CMECS classifications within the Offshore Export Cable Corridor 2 are presented in Table 10. The resulting substrate classifications are summarized below but presented in greater detail in Attachment C.

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Locations	% of Locations
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	8	38%
Gravelly	Gravelly Sand	7	33%
Gravel Mixes	Sandy Gravel	5	24%
Gravel	Pebble/Granule	1	5%
Total		21	100%

Table 10. Offshore Export Cable Corridor 2 Benthic Grab Sample Substrate Classifications

3.1.5 Offshore Export Cable Corridor 2a

Offshore Export Cable Corridor 2a is a formerly planned cable corridor that was included in the 2021 benthic survey but is no longer located within the PDE. Results of the benthic transect imagery analysis from within Offshore Export Cable Corridor 2a are presented in Table 11. The resulting substrate classifications are summarized below but presented in greater detail in Attachment A.

Table 11. Offshore Export Cable Corridor 2a Benthic Imagery Transect Substrate Group Classifications

CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Transects	%. of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	1	100%
Gravelly	Gravelly Sand	0	0%
Gravel Mixes	Sandy Gravel	0	0%
Gravel	Pebble/Granule	0	0%
Total		1*	100%

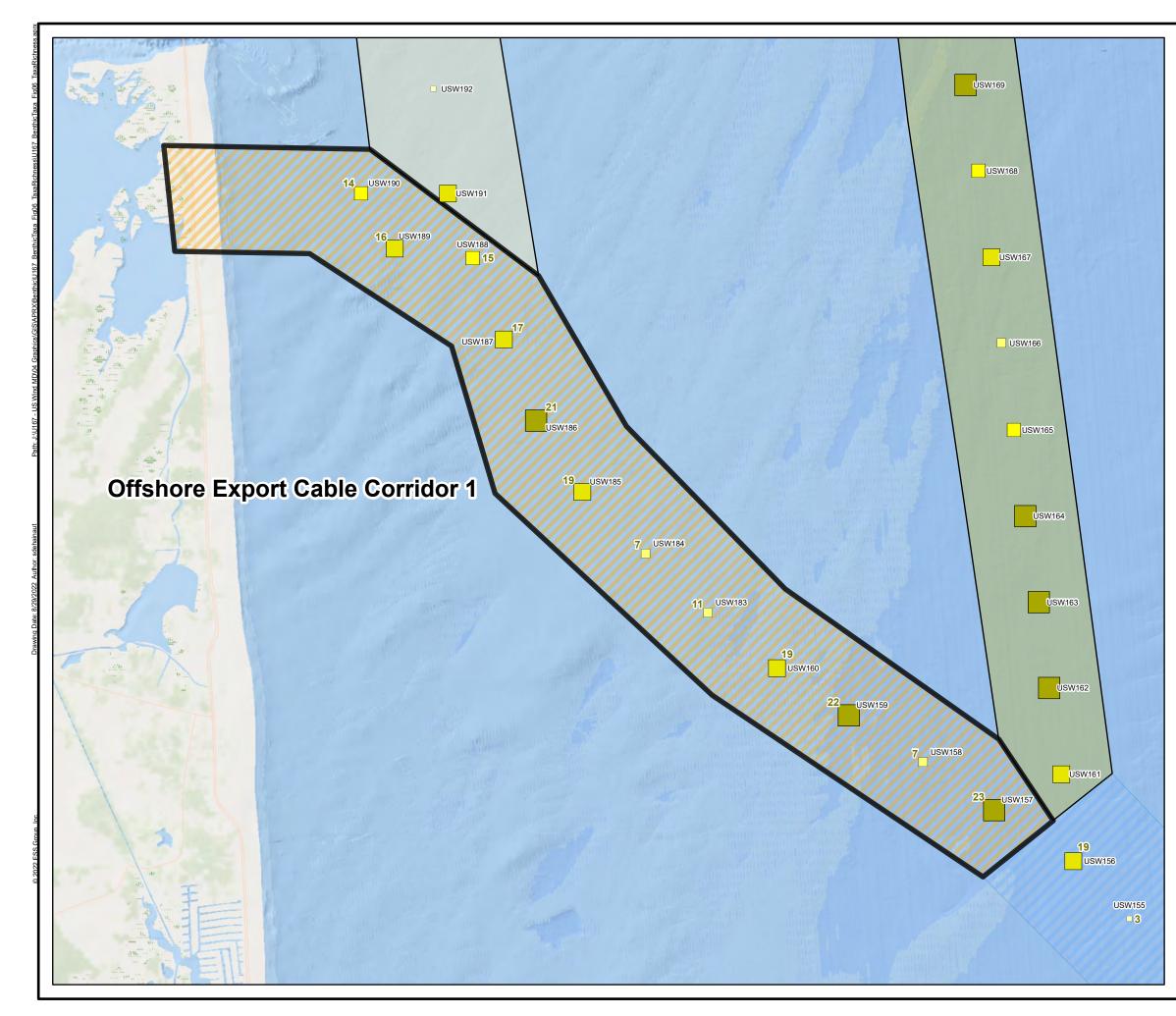
* Total does not include those that could not be classified due to environmental conditions (e.g., poor visibility).

Results of the benthic grab NMFS-modified CMECS classifications within the Offshore Export Cable Corridor 2a are presented in Table 12. The resulting substrate classifications are summarized below but presented in greater detail in Attachment C.

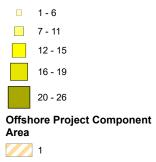
CMECS Substrate Group	CMECS Substrate Subgroup(s)	No. of Locations	% of Transects
Sand	Fine/Very Fine Sand to Very Coarse/Coarse Sand	3	33%
Gravelly	Gravelly Sand	5	56%
Gravel Mixes	Sandy Gravel	1	11%
Gravel	Pebble/Granule	0	0%
Total		9	100%

Table 12. Offshore Export Cable Corridor 2a Benthic Grab Sample Substrate Classifications

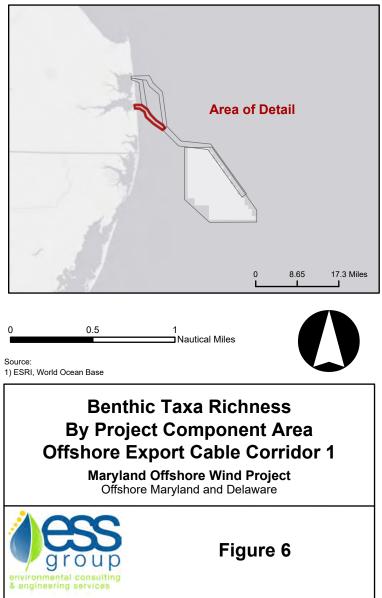
3.2 Benthic Grab Sampling

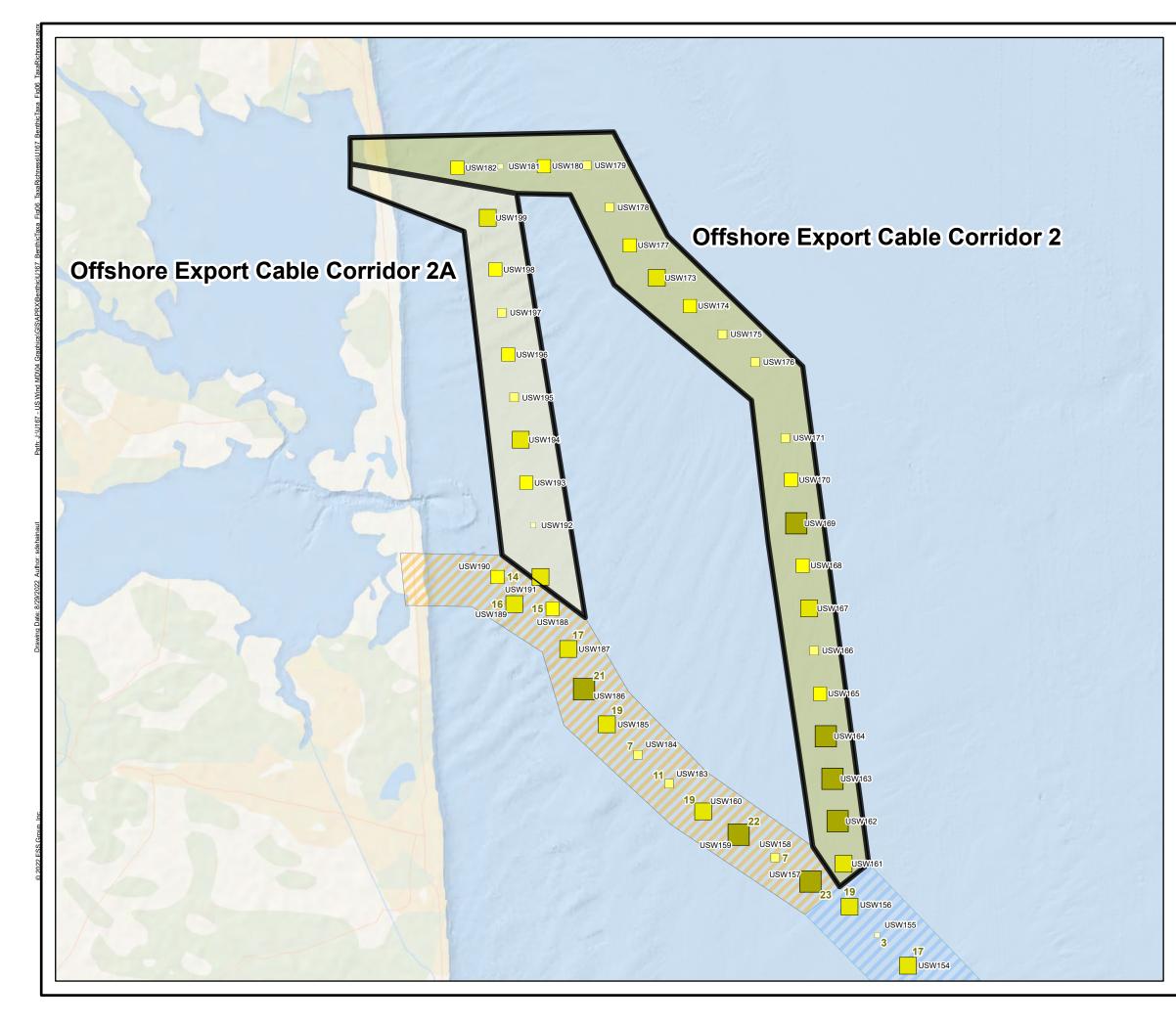

3.2.1 Lease Area

Results of the analysis of macrofaunal benthic grab samples collected from within the Lease area in 2021 are presented below (Table 13) and in Attachment B. Additionally, charts and tables describing the macrofaunal community composition and basic statistics for each sample are presented in Attachment C.

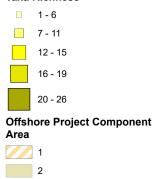

Table 13. Summary of Key Statistics from the Lease Area Benthic Sample Analysis

Statistic	Value
Number of Samples	120
Mean Density per Square Meter (±1 SD)	788 ± 738
Mean Taxa Richness (±1 SD)	11 ± 5.7
Total Number of Taxa	99
Number of Taxa Observed by Taxonom	ic Group
Polychaete worms	37
Crustaceans	26
Mollusks	25
Oligochaete worms	3
Other	8
Percent of Total Abundance by Taxono	mic Group
Polychaete worms	56.7%
Crustaceans	11.9%
Mollusks	9.8%
Oligochaete worms	19.3%
Other	2.3%

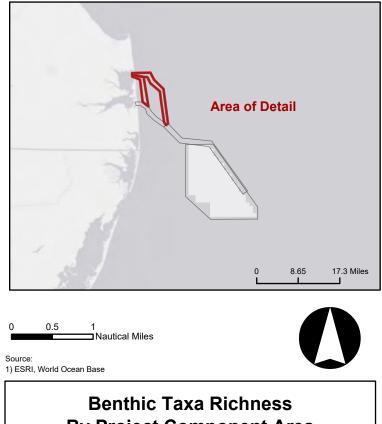

*All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007)



Legend Benthic Sample Location Taxa Richness

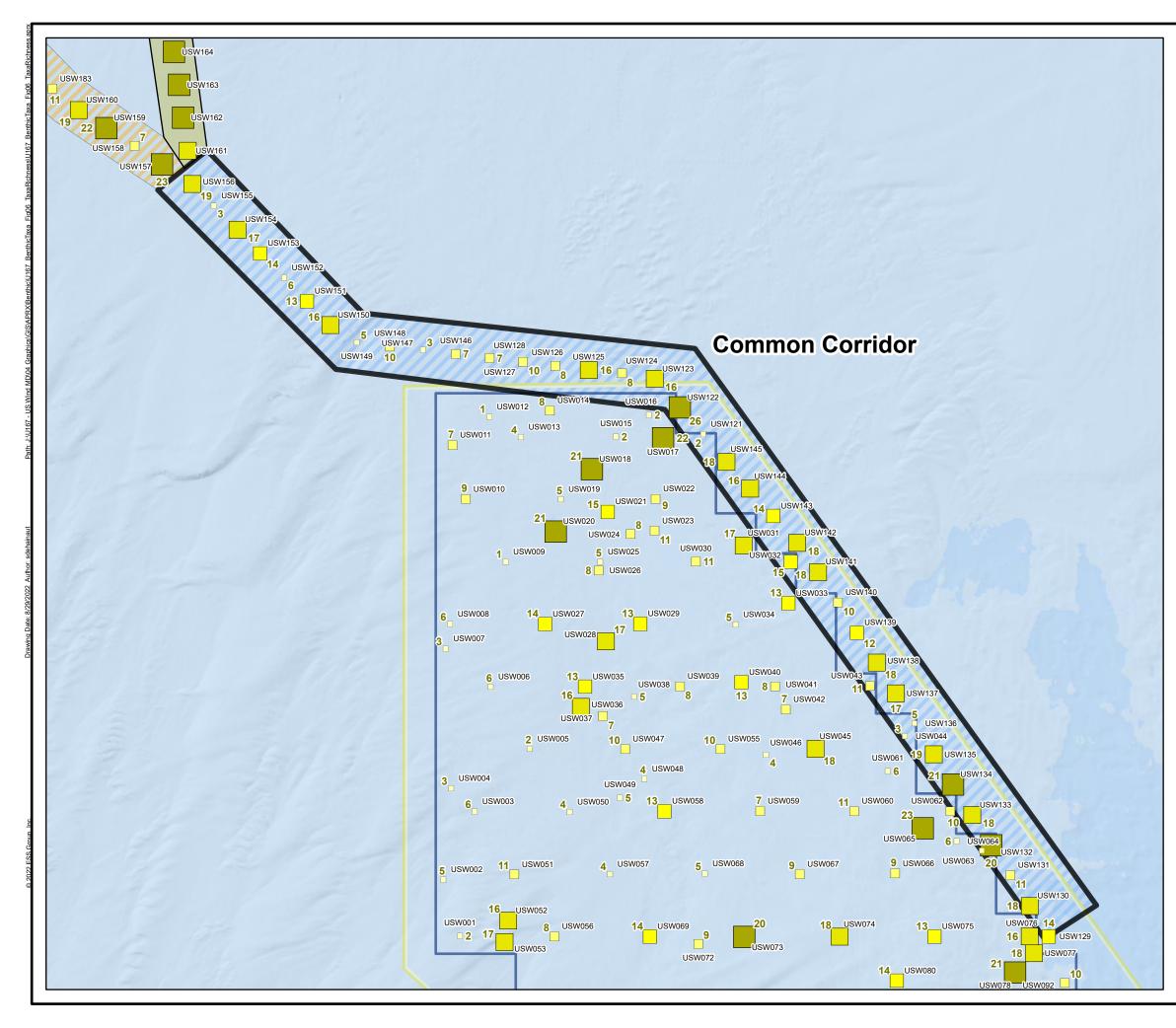


1
2
2A
Common Corrido



Legend Benthic Sample Location Taxa Richness

2
2A
Common Corrido



Benthic Taxa Richness By Project Component Area Offshore Export Cable Corridor 2 and 2A

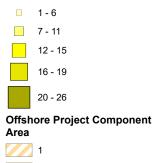
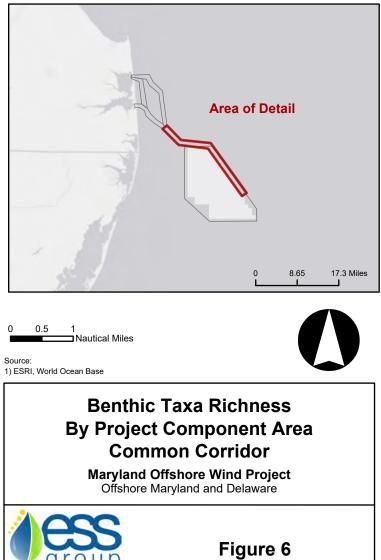
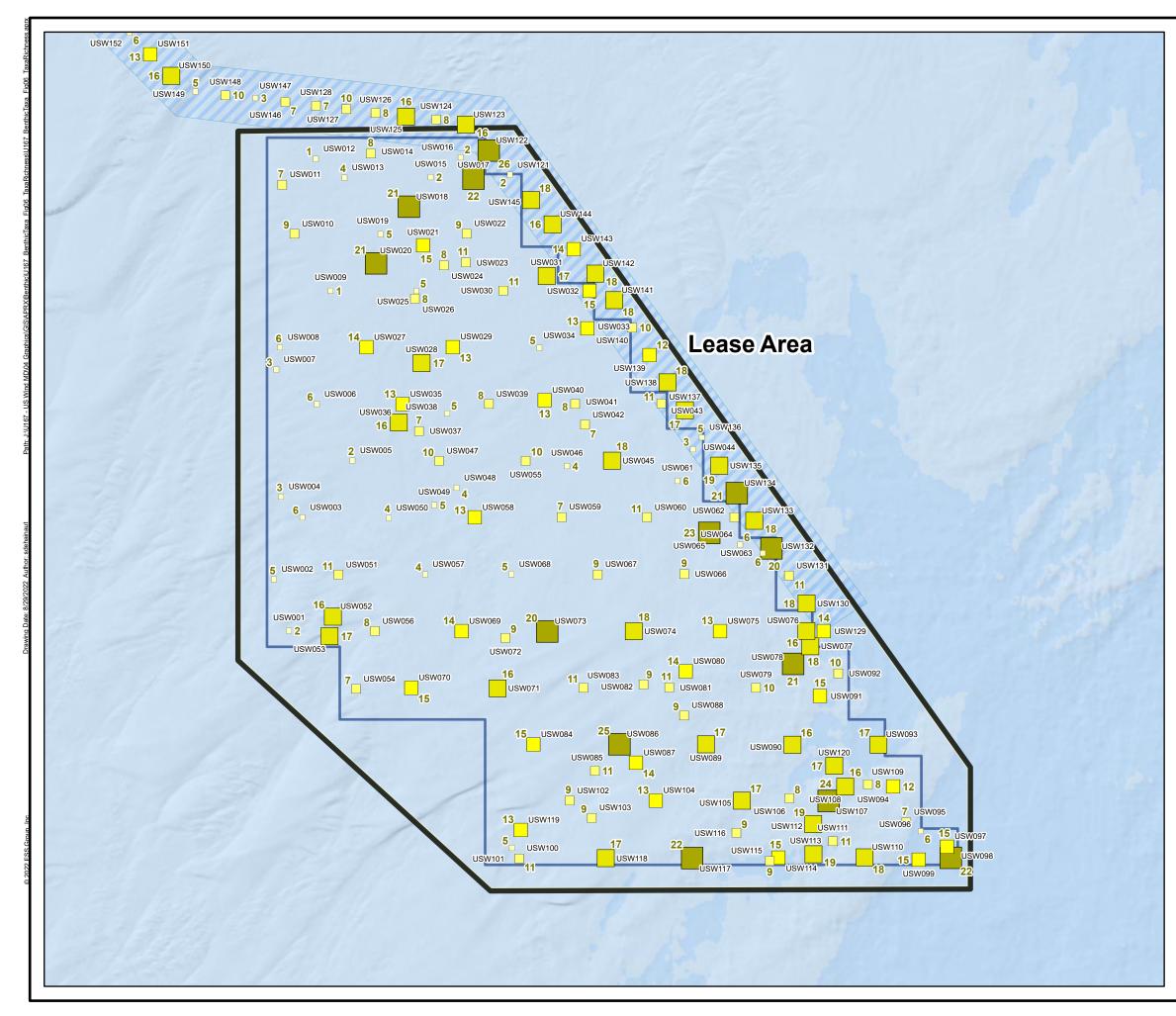
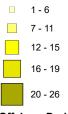

Maryland Offshore Wind Project Offshore Maryland and Delaware

Figure 6

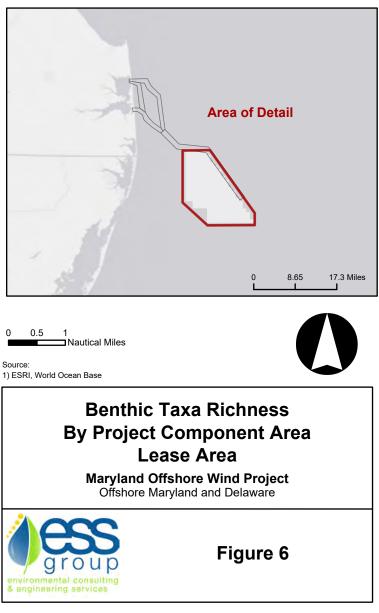


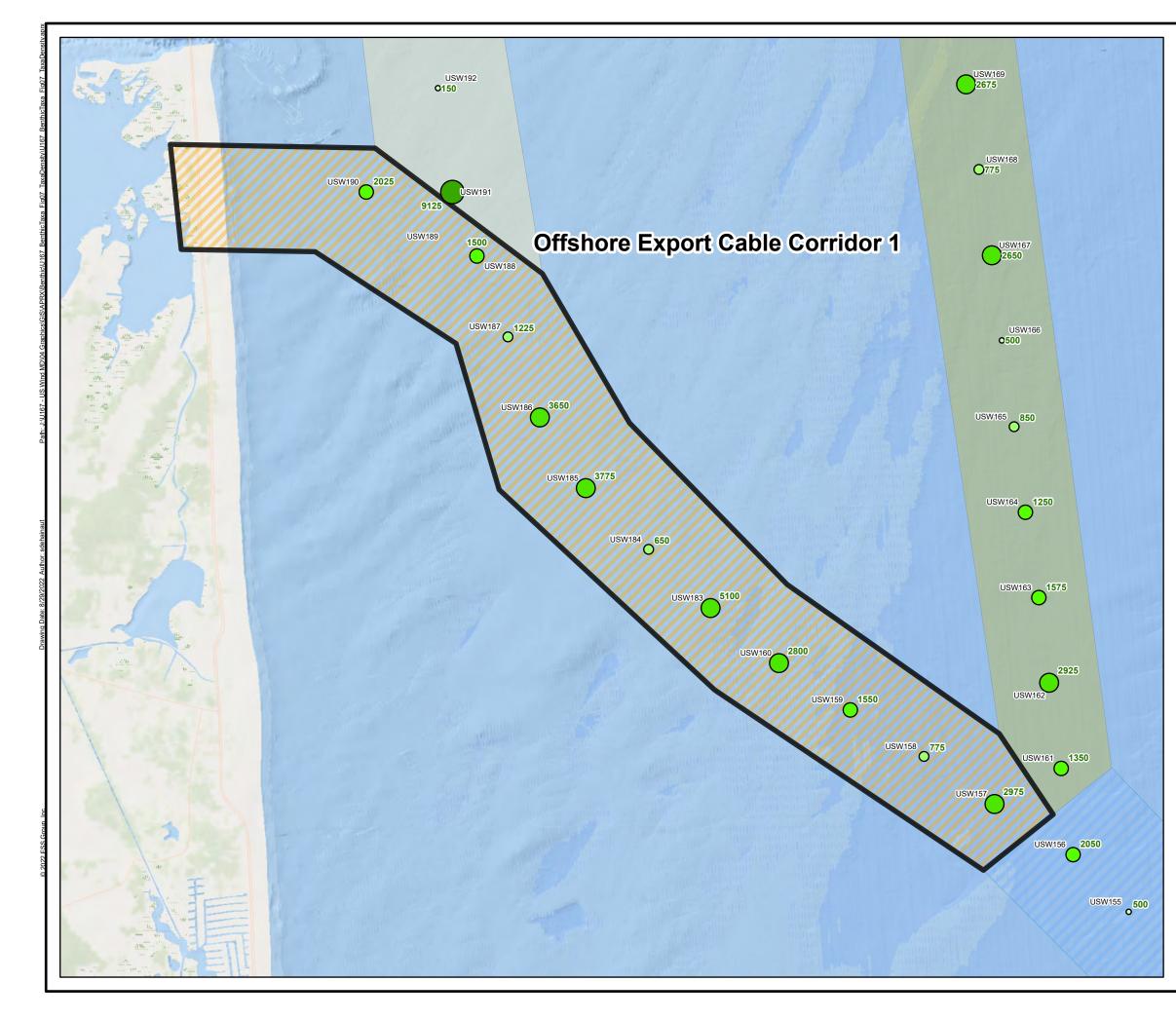


Legend Benthic Sample Location Taxa Richness



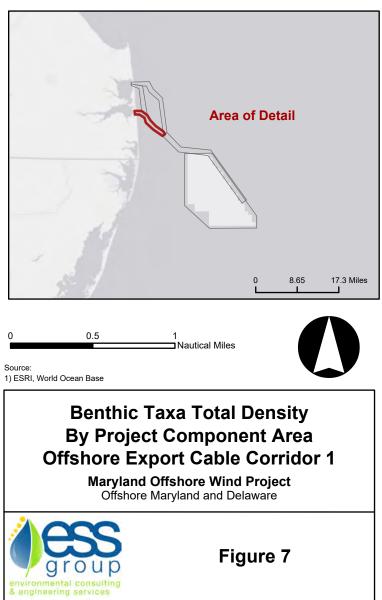
•
2
Common Corridor
Lease Area

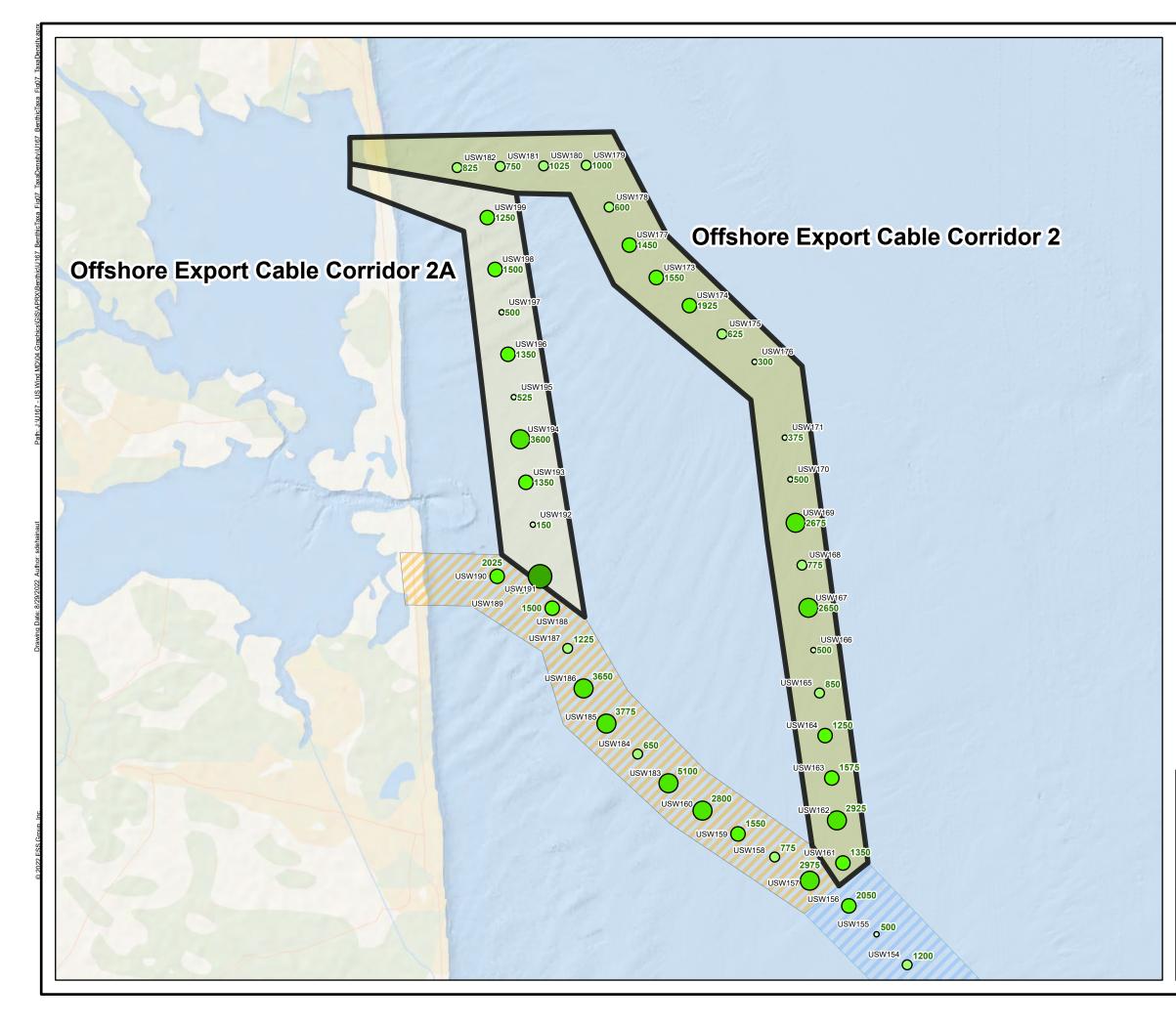



Legend Benthic Sample Location Taxa Richness

Offshore Project Component Area

Common Corridor

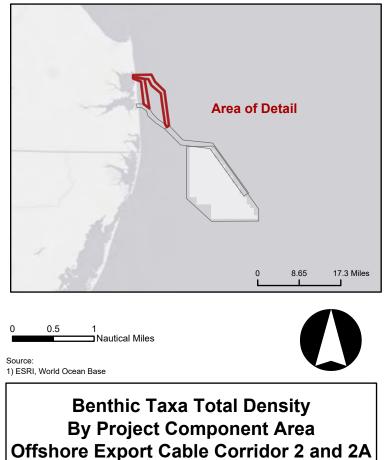




Total Density

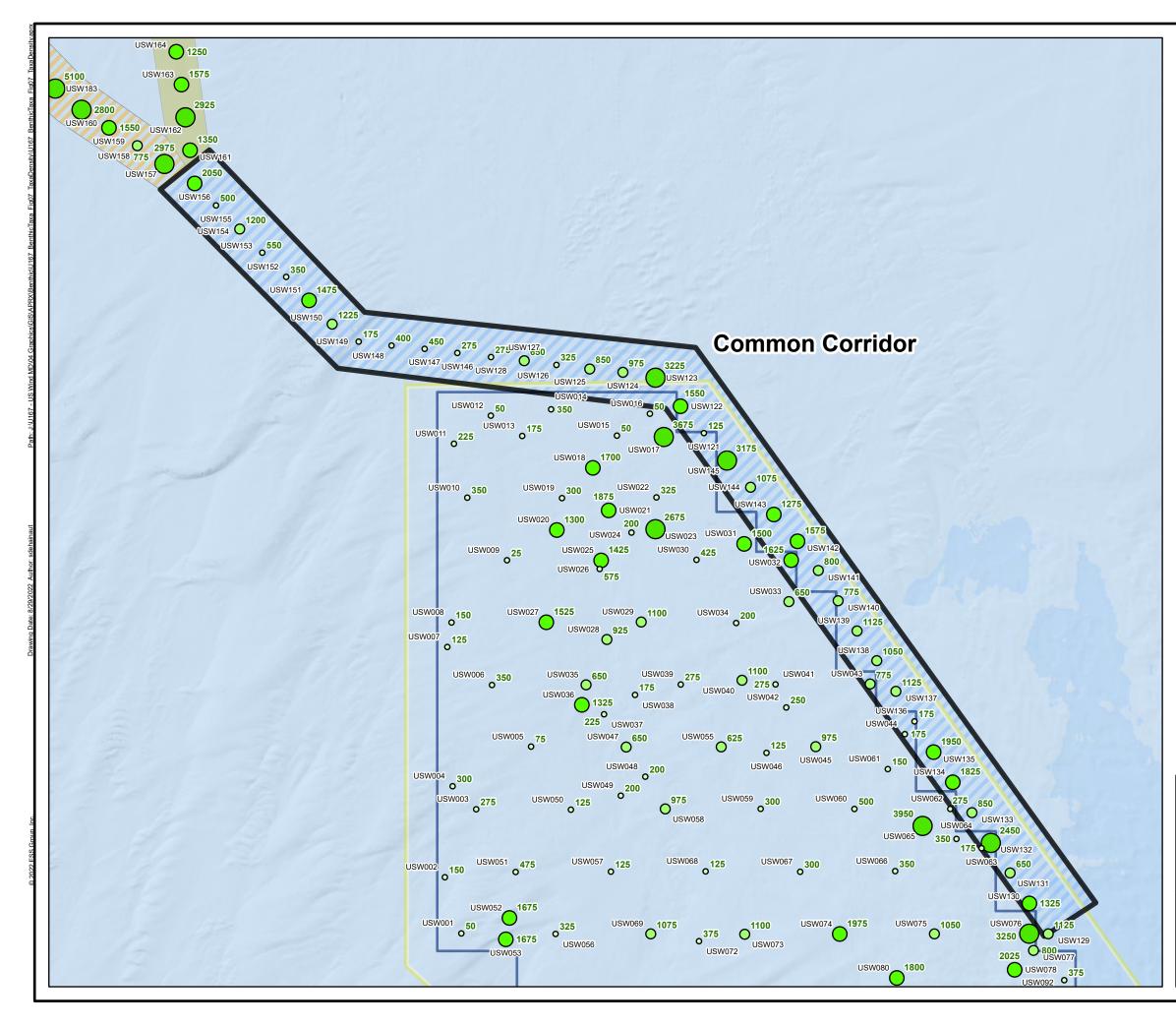
Offshore Project Component

Area	
	1
	2
	2A
	Common Corridor



Total Density

Offshore Project Component


Агеа	
	1
	2
	2A
	Common Corridor

Maryland Offshore Wind Project Offshore Maryland and Delaware

Figure 7

Total Density

 25 - 575
 576 - 1225
 1226 - 2050
 2051 - 5100
 5101 - 9125
 Offshore Project Component Area

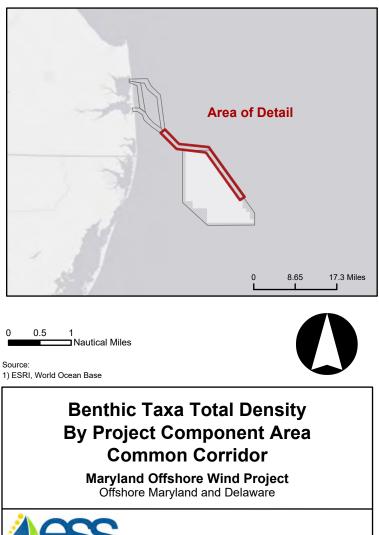
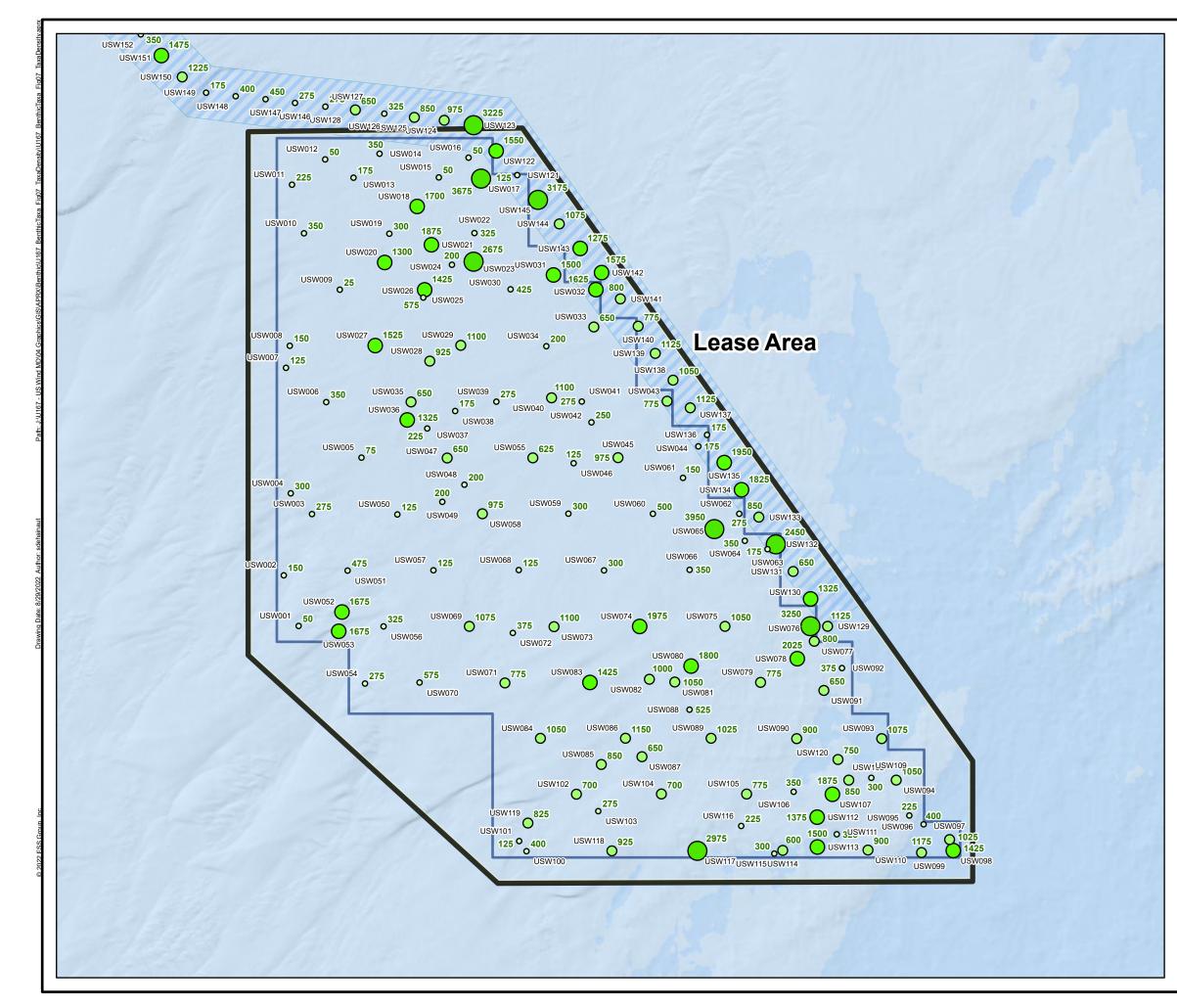
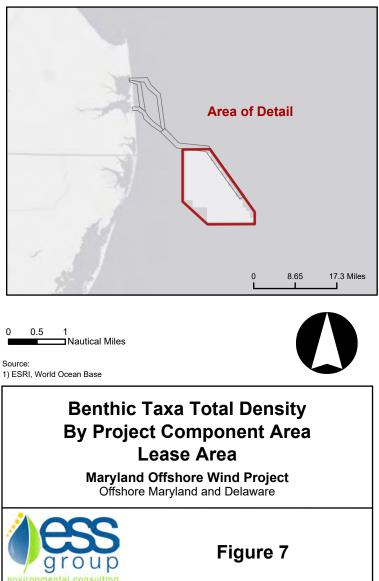



Figure 7

Total Density **o** 25 - 575

576 - 1225
1226 - 2050

2051 - 5100


5101 - 9125

Offshore Project Component

Area

Common Corridor

📃 Lease Area

Taxa Richness

Overall, 99 taxa of benthic fauna were observed in the 120 grab samples collected from the Lease area in 2021 (Table 13). Taxa richness per sample ranged from 1 to 25, and mean taxa richness was 11 ± 5.7 (mean \pm SD) per site (Table 13 and Attachment B). Taxa richness per sample appeared to be greatest in the southeastern and northeastern portions of the Lease area (Figure 6)

Macrofaunal Density

The mean macrofaunal density for samples collected from the Lease area was 788 ± 738 (mean \pm SD) individuals/m² (Table 13). The highest macrofaunal density (3,950 individuals/m²) was found at BG-LA-Z028/USW065, while macrofaunal density was lowest (25 individuals/m²) at BG-LA-B03/USW009 (Attachment B). Of the 120 samples analyzed, 36 were characterized by densities of 1000 individuals/m² or more (30% of samples). Benthic organism density appeared to be greatest in the northeastern portion of the Lease area, and on sections of the eastern and southern borders of the Lease area (Figure 7).

Community Composition

The benthic macrofaunal assemblage documented in the analyzed samples consisted of polychaete worms, crustaceans, mollusks, oligochaete worms, nemertean ribbon worms, sand dollars, ascidians, lancelets, sea anemones, flatworms, and sipunculids (Attachments B and C).

The most speciose taxonomic group was polychaete worms, which contributed over 37% of the taxa documented in the analyzed samples. Crustaceans and mollusks each accounted for approximately 25-26% of taxa in the Lease area samples. Polychaetes accounted for the greatest percentage of total organism abundance of any taxa group (over 56%), followed by oligochaete worms and crustaceans (over 19% and over 11%) (Table 13).

The most abundant taxon in Lease area samples was naidid oligochaete worms without hair chaetae, which accounted for over 10% of all individuals identified. Cirratulid polychaetes, enchytraeid oligochaete worms, polygordiid polychaetes, and phyllodocid polychaetes were the next most abundant taxa, each accounting for more than 5% of all organisms (Table 14).

Soft-shell clams (*Mya arenaria*), a shellfish species of potential commercial importance, were observed in low densities at 12 sites. No taxa indicative of sensitive habitats (hard bottom areas, cold water coral reefs, seagrass beds, etc.) were observed in benthic grab samples collected within the Lease area.

Scientific Name	Common Name	Relative Abundance (%)
Naididae w/out hair chaetae	Oligochaete Worm	10.7
Cirratulidae	Cirratulid Polychaete	8.3
Enchytraeidae	Oligochaete Worm	8.3
Polygordius sp.	Polygordiid Polychaete	6.7
Phyllodocidae	Phyllodocid Polychaete	5.5
Spio sp.	Spionid Polychaete	4.6

Table 14. Relative Abundance of Taxa Encountered in Lease Area Samples

Scientific Name	Common Name	Relative Abundance (%)
Scoletoma sp.	Lumbrinerid Polychaete	3.3
Goniadella gracilis	Goniadid Polychaete	3.1
Exogone sp.	Syllid Polychaete	3.1
Tanaidacea	Tanaid Crustacean	2.7
Scalibregma inflatum	Scalibregmatid Polychaete	2.7
Glycera sp.	Bloodworm (Glycerid Polychaete)	2.5
Scalibregma inflatum	Scalibregmatid Polychaete Bloodworm (Glycerid Polychaete)	2.7

*Includes taxa accounting for ≥ 2.5% of total abundance

The most widespread taxa (i.e., observed in the most samples) was naidid oligochaete worms without hair chaetae, which were present in over 65% of samples collected within the Lease area (79 samples). Polygordiid polychaetes (*Polygordius* sp), cirratulid polychaetes, and the lumbrinerid polychaete *Scoletoma* sp. were each observed in at least 46% of samples (56 or more samples) (Table 15). Other relatively widely distributed taxa included Enchytraeid oligochaete worms, tellin clams, the syllid polychaete *Exogone* sp., the paranoid polychaete *Aricidea* sp., and tanaid crustaceans (all found in at least 35 percent of samples).

Scientific Name	Common Name	Number of Samples Containing this Taxon
Naididae w/out hair chaetae	Oligochaete Worm	79
Polygordius sp.	Polygordiid Polychaete	59
Cirratulidae	Cirratulid Polychaete	58
Scoletoma sp.	Lumbrinerid Polychaete	56
Enchytraeidae	Oligochaete Worm	52
Tellininae	Tellin Clam	48
Exogone sp.	Syllid Polychaete	47
Aricidea sp.	Paraonid Polychaete	47
Tanaidacea	Tanaid Crustacean	42

Table 15. Most Widespread Taxa Encountered in Lease Area Samples

*Includes taxa observed in > 41 samples (≥35% of samples)

Most of the taxa observed in grab samples collected from the Lease area are typical of soft-sediment habitats. *Polygordius* polychaetes are often dominant members of macrofaunal communities on inner continental shelf waters along the east coast of the United States and are associated with coarse sandy sediments (Ramey et al. 2006, Ramey 2008). Cirratulid worms are deposit feeders that reside in soft sediment habitats, and *Scoletoma* sp. are predatory worms which burrow in mud and mixed-bottom debris (Gosner 1978). Other common taxa like *Spio* sp. worms build tubes from sediment and are associated with sandy substrates (Gosner 1978). *Exogone* sp. worms can be found in a variety of habitats ranging from muddy sand to coarse gravel (Pettibone 1963). Similarly, tellin clams occur in a variety of soft sediment habitats (Mikkelsen and Bieler 2021), and *Scalibregma* sp. are associated with muddy sand (Gosner 1978).

The benthic community present in samples collected from within the Lease area aligns with expectations, given the mobile sand wave features known to comprise much of the region. The infaunal

sampling results also align with the CMECS habitat classifications for the area; of the 120 samples collected in the Lease area, 39% (47 samples) were classified as fine unconsolidated substrates under the CMECS framework, and 61% (73 samples) were classified as coarse unconsolidated substrates.

3.2.2 Common Export Cable Corridor

Results of the analysis of benthic grab samples collected from within the Common Export Cable Corridor in 2021 are presented below (Table 16) and Attachment B. Additionally, charts and tables describing the macrofaunal community composition and basic statistics for each sample are presented in Attachment C.

Table 16. Summary of Key Statistics from the Common Export Cable Corridor Benthic Sample Analysis

Statistic	Value		
Number of Samples	36		
Mean Density per Square Meter (±1 SD)	1,082 ± 774		
Mean Taxa Richness (±1 SD)	13 ± 5.9		
Total Number of Taxa	75		
Number of Taxa Observed by Taxonomic Group			
Polychaete worms	35		
Crustaceans	18		
Mollusks	14		
Oligochaete worms	3		
Other	5		
Percent of Total Abundance by Taxon	omic Group		
Polychaete worms	50.5%		
Crustaceans	19.5%		
Mollusks	5.6%		
Oligochaete worms	21.2%		
Other	3.1%		

*All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007)

Taxa Richness

Overall, 75 taxa of benthic fauna were observed in the 36 grab samples collected from the Common Export Cable Corridor in 2021 (Table 16). Taxa richness per sample ranged from 2 to 26, and mean taxa richness was 13 ± 5.9 (mean \pm SD) per site (Table 16 and Attachment B). Taxa richness per sample was generally highest in the portion of the Common Export Cable Corridor located along the eastern border of the Lease area (Figure 6).

Macrofaunal Density

The mean macrofaunal density for samples collected from the Common Export Cable Corridor was $1,082 \pm 774$ (mean \pm SD) individuals/m² (Table 16). The highest macrofaunal density (3,225)

individuals/m²) was found at BG-AC-20/USW123, while macrofaunal density was lowest (125 individuals/m²) at BG-AC-18/USW121 (Attachment B). Of the 36 samples analyzed, 18 were characterized by densities of 1000 individuals/m² or more (50% of samples). Similar to taxa richness, total organism density was greatest in the portion of the Common Export Cable Corridor located along the eastern border of the Lease area (Figure 7).

Community Composition

The benthic macrofaunal assemblage documented in the analyzed samples consisted of polychaete worms, crustaceans, oligochaete worms, mollusks, nemertean ribbon worms, lancelets, ascidians, and sand dollars (Attachment B).

The most speciose taxonomic group was polychaete worms, which contributed over 46% of the taxa documented in the analyzed samples. Crustaceans and mollusks accounted for approximately 24% and 19% of taxa in the Common Export Cable Corridor samples, respectively. Polychaetes accounted for the greatest percentage of total organism abundance of any taxa group (over 50%), followed by mollusks and oligochaete worms (approximately 20% and 21%, respectively) (Table 16).

The most abundant taxon in Lease area samples was naidid oligochaete worms without hair chaetae, which accounted for over 12% of all individuals identified. The ampeliscid amphipod *Byblis serrata*, enchytraeid oligochaete worms, and phyllodocid polychaetes, were the next most abundant taxa, each accounting for more than 8% of all organisms (Table 17).

Soft-shell clams, a shellfish species of potential commercial importance, were observed in low densities at two sites. Common Atlantic slippersnails, which are potentially indicative of hard bottom habitat, were observed in two benthic grab samples. However, no other taxa indicative of sensitive habitats (hard bottom areas, cold water coral reefs, seagrass beds, etc.) were observed in the benthic grab samples.

Scientific Name	Common Name	Relative Abundance (%)
Naididae w/out hair chaetae	Oligochaete Worm	12.4
Byblis serrata	Ampeliscid Amphipod	10.4
Enchytraeidae	Oligochaete Worm	8.5
Phyllodocidae	Phyllodocid Polychaete	8.4
Polygordius sp.	Polygordiid Polychaete	6.2
Dorvilleidae	Dorvilleid Polychaete	4.0
Exogone sp.	Syllid Polychaete	3.1
Cirratulidae	Cirratulid Polychaete	3.0
Syllidae	Syllid Polychaete	2.7
Tellininae	Tellin Clam	2.6

Table 17. Relative Abundance of Taxa Encountered in Common Export Cable Corridor Area Samples

*Includes taxa accounting for ≥ 2.5% of total abundance

The most widespread taxa (i.e., observed in the most samples) was naidid oligochaete worms without hair chaetae, which were present in over 75% of samples collected within the Common Export Cable Corridor (27 samples). Polygordiid polychaetes (*Polygordius* sp.), cirratulid polychaetes, nemertean ribbon worms, enchytraeid oligochaete worms, and the syllid polychaete *Exogone sp.* were present in at least 50% of samples (18 or more samples) (Table 18). Other relatively widely distributed taxa included the ampeliscid amphipod *Byblis serrata*, dorvilleid polychaetes, phyllodocid polychaetes, the paranoid polychaete *Aricidea* sp., and the lumbrinerid polychaete *Scoletoma* sp. (all found in at least 42 percent of samples).

Scientific Name	Common Name	Number of Samples Containing this Taxon
Naididae w/out hair chaetae	Oligochaete Worm	27
Polygordius sp.	Polygordiid Polychaete	25
Cirratulidae	Cirratulid Polychaete	22
Nemertea	Ribbon Worm	19
Enchytraeidae	Oligochaete Worm	18
Exogone sp.	Syllid Polychaete	18
Byblis serrata	Ampeliscid Amphipod	16
Dorvilleidae	Dorvilleid Polychaete	16
Phyllodocidae	Phyllodocid Polychaete	16
Aricidea sp.	Paraonid Polychaete	16
Scoletoma sp.	Lumbrinerid Polychaete	15

Table 18. Most Widespread Taxa Encountered Common Export Cable Corridor Area Samples

*Includes taxa observed in ≥ 15 samples (≥42% of samples)

Most of the taxa observed in the grab samples collected from the Common Export Cable Corridor were similar to those found in samples collected from the Lease area and are typical of soft-sediment habitats. In addition to the taxa described in Section 3.2.1 above, other soft sediment fauna present in Common Export Cable Corridor samples included *Byblis serrata* amphipods, which build tubes in medium to coarse sand (Bousfield 1973). Dorvilleidae polychaete worms, which create temporary mucus tubes, are also typical of unconsolidated substrates (Pettibone 1963).

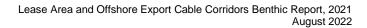
The infaunal sampling results align with expectations, given the CMECS habitat classifications for samples collected within the Common Export Cable Corridor; of the 36 samples collected in the Common Export Cable Corridor, 33% (12 samples) were classified as fine unconsolidated substrates under the CMECS framework, and 67% (24 samples) were classified as coarse unconsolidated substrates. This breakdown of fine and coarse substrates is similar to that observed in samples collected from the Lease area and from Offshore Export Cable Corridors 2 and 2a (see section 3.2.4 below).

3.2.3 Offshore Export Cable Corridor 1

Results of the analysis of benthic grab samples collected from within the Offshore Export Cable Corridor 1 in 2021 are presented below (Table 19) and Attachment B. Charts and tables describing the macrofaunal community composition and basic statistics for each sample are presented in Attachment C.

Statistic	Value		
Number of Samples	12		
Mean Density per Square Meter (±1 SD)	2,314 ± 1,359		
Mean Taxa Richness (±1 SD)	16 ± 5.4		
Total Number of Taxa	64		
Number of Taxa Observed by Taxonor	nic Group		
Polychaete worms	29		
Crustaceans	15		
Mollusks	14		
Oligochaete worms	3		
Other	3		
Percent of Total Abundance by Taxonomic Group			
Polychaete worms	23.9%		
Crustaceans	11.1%		
Mollusks	36.9%		
Oligochaete worms	21.9%		
Other	6.3%		

Table 19. Summary of Key Statistics from the Offshore Export Cable Corridor 1 Benthic Sample Analysis


*All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007)

Taxa Richness

Overall, 64 taxa of benthic fauna were observed in the 12 grab samples collected from within Offshore Export Cable Corridor 1 in 2021 (Table 19). Taxa richness per sample ranged from 7 to 23, and mean taxa richness was 16 ± 5.4 (mean \pm SD) per site (Table 19 and Attachment B). No consistent spatial patterns in taxa richness per sample were observed along Offshore Export Cable Corridor 1 (Figure 6).

Macrofaunal Density

The mean macrofaunal density for samples collected from Offshore Export Cable Corridor 1 was 2,314 \pm 1,359 (mean \pm SD) individuals/m² (Table 19). The highest macrofaunal density (5,100 individuals/m²) was found at BG-AC-41/USW183, while macrofaunal density was lowest (650 individuals/m²) at BG-AC-42/USW184 (Attachment B). Of the 12 samples analyzed, 10 were characterized by densities of 1000 individuals/m² or more (83% of samples). No consistent spatial patterns in total organism density were observed in samples collected along Offshore Export Cable Corridor 1 (Figure 7).

Community Composition

The benthic macrofaunal assemblage documented in the analyzed samples consisted of mollusks, polychaete worms, oligochaete worms, crustaceans, lancelets, nemertean ribbon worms, and ascidians (Attachment B).

The most speciose taxonomic group was polychaete worms, which contributed over 45% of the taxa documented in the analyzed samples. Crustaceans and mollusks each accounted for approximately 23% and 22% of taxa in the Offshore Export Cable Corridor 1 samples, respectively. Mollusks accounted for the greatest percentage of total organism abundance of any taxa group (over 36%), followed by polychaete worms (approximately 24%) and oligochaete worms (approximately 22%) (Table 19).

The most abundant taxon in the Offshore Export Cable Corridor 1 samples was the common Atlantic slippersnail (*Crepidula fornicata*), which accounted for nearly 25% of all individuals identified. Oligochaete worms (enchytraeid worms and naidid worms without hair chaetae), syllid polychaetes, and tellin clams were the next most abundant taxa, each accounting for more than 4% of all organisms (Table 20).

Soft-shell clams, a shellfish species of potential commercial importance, were not present in any of the Offshore Export Cable Corridor 1 samples. However, surf clams (*Spisula solidissima*), which are another shellfish species of potential commercial importance, were found in five samples. Common Atlantic slippersnails and eastern white slippersnails are potentially indicative of hard bottom habitat. However, these species may also be found in soft sediment habitats including mud and sand (CIESM 2000, SERC 2022). No other taxa indicative of sensitive habitats (hard bottom areas, cold water coral reefs, seagrass beds, etc.) were observed in the benthic grab samples.

Scientific Name	Common Name	Relative Abundance (%)
Crepidula fornicata	Common Atlantic Slippersnail	24.9
Enchytraeidae	Oligochaete Worm	11.1
Naididae w/out hair chaetae	Oligochaete Worm	10.7
Syllidae	Syllid Polychaete	8.0
Tellininae	Tellin Clam	4.6
Branchiostoma caribaeum	Lancelet	3.7
Crepidula plana	Eastern White Slippersnail	3.2
Rhepoxynius epistomus	Phoxocephalid Amphipod	2.9
Tanaidacea	Tanaid Crustacean	2.9
Cirratulidae	Cirratulid Polychaete	2.3
Nemertea	Ribbon Worm	1.9

Table 20. Relative Abundance of Taxa Encountered in Offshore Export Cable Corridor 1 Samples

*Includes taxa accounting for \geq 1.6% of total abundance

The most widespread taxa (i.e., observed in the most samples) were naidid oligochaete worms without hair chaetae which were each present in 75% of samples collected within Offshore Export Cable Corridor 1 (9 samples). Nemertean ribbon worms, enchytraeid oligochaete worms, syllid polychaetes, tellin clams, and cirratulid polychaetes were each observed in at least 58% of samples (7 or more samples) (Table 21). Other relatively widely distributed taxa included the phoxocephalid amphipod *Rhepoxynius epistomus*, the unciolid amphipod *Unciola* sp., the common Atlantic slippersnail, and paranoid polychaetes (all found in at least 50 percent of samples).

Scientific Name	Common Name	Number of Samples Containing this Taxon
Naididae w/out hair chaetae	Oligochaete Worm	9
Nemertea	Ribbon Worm	8
Enchytraeidae	Oligochaete Worm	8
Syllidae	Syllid Polychaete	8
Tellininae	Tellin Clam	7
Cirratulidae	Cirratulid Polychaete	7
Rhepoxynius epistomus	Phoxocephalid Amphipod	6
Unciola sp.	Unciolid Amphipod	6
Crepidula fornicata	Common Atlantic Slippersnail	6
Paraonidae	Paraonid Polychaete	6
Branchiostoma caribaeum	Lancelet	5
Spisula solidissima	Atlantic Surf Clam	5
Polygordius sp.	Polygordiid Polychaete	5

Table 21. Most Widespread Taxa Encountered in Offshore Export Cable Corridor 1 Samples

*Includes taxa observed in \ge 5 samples (\ge 35% of samples)

Most of the taxa observed in the grab samples collected from Offshore Export Cable Corridor 1 were typical of soft-sediment habitats. Common Atlantic slippersnails, which were more abundant and widespread in Offshore Export Cable Corridor 1 samples compared to Lease area and Common Offshore Export Cable Corridor samples, are often found on low energy sand or gravel sediments where biogenic substrates (shell substrates) are present (CIESM 2003). Common and widespread taxa in Offshore Export Cable Corridor 1 samples include tellin clams and cirratulid polychaetes, which were also observed in previously described Project component areas (see Sections 3.2.1 and 3.2.2) Additional soft sediment organisms found in Offshore Export Cable Corridor 1 samples included Unciola sp. amphipods, which inhabit tubes in sandy mud to coarse sand (Bousfield 1973).

The infaunal sampling results for Offshore Export Cable Corridor 1 align with expectations based on the CMECS habitat classifications for the area; of the 12 samples collected in Offshore Export Cable Corridor 1, only 25% (3 samples) were classified as fine unconsolidated substrates under the CMECS framework, whereas 75% (9 samples) were classified as coarse unconsolidated substrates. Compared to samples collected from within the Lease area, Common Export Cable Corridor, and Offshore Export Cable Corridors 2 and 2a (see sections 3.2.4 and 3.2.5 below) the percentage of coarse unconsolidated substrate habitats in Offshore Export Cable Corridor 1 samples was greater. This difference in habitat was most notably reflected by the greater abundance and more frequent occurrence of common Atlantic

slippersnails and Eastern white slippersnails in Offshore Export Cable Corridor 1 samples. These species can occur on a variety of substrates, including coarse substrates. However, these species also prefer shallower waters; therefore, water depth, which is deeper in the Common Export Cable Corridor and Lease area, may also influence their distribution in the Survey Area.

3.2.4 Offshore Export Cable Corridor 2

Results of the analysis of benthic grab samples collected from within Offshore Export Cable Corridor 2 in 2021 are presented below (Table 22) and Attachment B. Additionally, charts and tables describing the macrofaunal community composition and basic statistics for each sample are presented in Attachment C.

Table 22. Summary of Key Statistics from the Offshore Export Cable Corridor 2 Benthic Sample Analysis

Statistic	Value				
Number of Samples	21				
Mean Density per Square Meter (±1 SD)	1,213 ± 775				
Mean Taxa Richness (±1 SD)	13 ± 5.0				
Total Number of Taxa	75				
Number of Taxa Observed by Taxonon	nic Group				
Polychaete worms	34				
Crustaceans	13				
Mollusks	20				
Oligochaete worms	3				
Other	5				
Percent of Total Abundance by Taxonomic Group					
Polychaete worms	33.7%				
Crustaceans	7.3%				
Mollusks	19.2%				
Oligochaete worms	34.0%				
Other	5.9%				

*All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007)

Taxa Richness

Overall, 75 taxa of benthic fauna were observed in the 21 grab samples collected from Offshore Export Cable Corridor 2 in 2021 (Table 22). Taxa richness per sample ranged from 6 to 23, and mean taxa richness was 13 ± 5.0 (mean \pm SD) per site (Table 22 and Attachment B). Taxa richness per sample was generally greatest at sites located in the southern portion of Offshore Export Cable Corridor 2 (Figure 6).

Macrofaunal Density

The mean macrofaunal density for samples collected from the Offshore Export Cable Corridor 2 was $1,213 \pm 775$ (mean \pm SD) individuals/m² (Table 22). The highest macrofaunal density (2,925 individuals/m²) was found at BG-AC-67/USW162, while macrofaunal density was lowest (300 individuals/m²) at BG-AC-78/USW176 (Attachment B). Of the 21 samples analyzed, 10 were characterized by densities of 1000 individuals/m² or more (48% of samples). Similar to taxa richness per sample, total organism density was generally lower at sites located in the northern portion of Offshore Export Cable Corridor 2 (Figure 7).

Community Composition

The benthic macrofaunal assemblage documented in the analyzed samples consisted of oligochaete worms, polychaete worms, mollusks, crustaceans, nemertean ribbon worms, lancelets, sea anemones ascidians, and sipunculids (Attachment B).

The most speciose taxonomic group was polychaete worms, which contributed over 45% of the taxa documented in the analyzed samples. Mollusks and crustaceans each accounted for approximately 27% and 17% of taxa in the Offshore Export Cable Corridor 2 samples, respectively. Oligochaete worms and polychaete worms accounted for the greatest percentages of total organism abundance (approximately 34% each), followed by mollusks (approximately 19%) (Table 22).

The most abundant taxa in Offshore Export Cable Corridor 2 samples were enchytraeid oligochaete worms and naidid oligochaete worms without hair chaetae, which accounted for nearly 18% and over 13% of all individuals identified, respectively. Tellin clams, the common Atlantic slippersnail, and syllid polychaetes, were the next most abundant taxa, each accounting for more than 4% of all organisms (Table 23).

Soft-shell clams, a shellfish species of potential commercial importance, were observed at low densities at three sites along Offshore Export Cable Corridor 2. Common Atlantic slippersnails, which are potentially indicative of hard bottom habitat, were observed in the benthic grab samples. However, these species may also be found in soft sediment habitats including mud and sand (CIESM 2000, SERC 2022). No other taxa indicative of sensitive habitats (hard bottom areas, cold water coral reefs, seagrass beds, etc.) were observed.

Table 23. Relative Abundance of Taxa Encountered in Offshore Export Cable Corridor 2Samples

Scientific Name	Common Name	Relative Abundance (%)	
Enchytraeidae	Oligochaete Worm	17.8	
Naididae w/out hair chaetae	Oligochaete Worm	13.4	
Tellininae	Tellin Clam	9.3	
Crepidula fornicata	Common Atlantic Slippersnail	4.3	
Syllidae	Syllid Polychaete	4.0	
Nemertea	Ribbon Worm	3.8	
Mediomastus sp.	Capitellid Polychaete	3.7	
Aricidea sp.	Paraonid Polychaete	3.3	
Naididae w/ hair chaetae	Oligochaete Worm	2.7	
Polygordius sp.	Polygordiid Polychaete	2.6	
Clymenella zonalis	Maldanid Polychaete	2.5	
Phyllodocidae	Phyllodocidae Phyllodocid Polychaete		

*Includes taxa accounting for $\geq 2\%$ of total abundance

The most widespread taxa (i.e., observed in the most samples) in Offshore Export Cable Corridor 2 samples were nemertean ribbon worms and naidid oligochaete worms without hair chaetae, which were each present in 81% of samples (17 samples). Enchytraeid oligochaete worms and syllid polychaetes were both observed in at least 50% of samples (14 or more samples) (Table 24). Other relatively widely distributed taxa included tellin clams, dorvilleid polychaetes, the capitellid polychaete *Mediomastus* sp., and the paranoid polychaete *Aricidea* sp. (all found in at least 48 percent of samples).

Scientific Name	Common Name	Number of Samples Containing this Taxon
Nemertea	Ribbon Worm	17
Naididae w/out hair chaetae	Oligochaete Worm	17
Enchytraeidae	Oligochaete Worm	14
Syllidae	Syllid Polychaete	14
Tellininae	Tellin Clam	10
Dorvilleidae	Dorvilleid Polychaete	10
Mediomastus sp.	Capitellid Polychaete	10
Aricidea sp.	Paraonid Polychaete	10
Glycera sp.	Bloodworm (Glycerid Polychaete)	9
Unciola sp.	Unciolid Amphipod	8
Polygordius sp.	Polygordiid Polychaete	8

Table 24. Most Widespread Taxa Encountered in Offshore Ex	port Cable Corridor 2 Samples

*Includes taxa observed in ≥ 8 samples ($\ge 35\%$ of samples)

Most of the taxa observed in the grab samples collected from Offshore Export Cable Corridor 2 are typical of soft-sediment habitats. Widespread and abundant taxa including tellin clams, common Atlantic slippersnails, *Polygordius* sp. and dorvilleid polychaetes, and *Unciola* sp. amphipods were similarly common in previously described areas (Sections 3.2.1, 3.2.2, 3.2.3).

The infaunal sampling results for Offshore Export Cable Corridor 2 align with expectations, given the CMECS habitat classifications for these samples; of the 21 samples collected in Offshore Export Cable Corridor 2, 38% (8 samples) were classified as fine unconsolidated substrates under the CMECS framework, and 62% (13 samples) were classified as coarse unconsolidated substrates. This breakdown of fine and coarse substrates is similar to that observed in samples collected from the Lease area and indicates a lower abundance of coarse substrate habitats than were observed in Offshore Export Cable Corridor 1. Consequently, certain species potentially indicative of coarse substrates (e.g. common Atlantic slippersnail) were less abundant and widespread in Offshore Export Cable Corridor 2 samples than in Offshore Export Cable Corridor 1 samples.

3.2.5 Offshore Export Cable Corridor 2a

Offshore Export Cable Corridor 2a is a formerly planned cable corridor that was included in the 2021 benthic survey but is no longer located within the PDE. Results of the analysis of benthic grab samples collected from within Offshore Export Cable Corridor 2a in 2021 are presented below (Table 25) and Attachment B. Additionally, charts and tables describing macrofaunal community composition and statistics for each sample are presented in Attachment C.

Statistic	Value				
Number of Samples	9				
Mean Density per Square Meter (±1 SD)	2,150 ± 2,798				
Mean Taxa Richness (±1 SD)	13 ± 4.6				
Total Number of Taxa	53				
Number of Taxa Observed by Taxonon	nic Group				
Polychaete worms	24				
Crustaceans	14				
Mollusks	11				
Oligochaete worms	3				
Other	1				
Percent of Total Abundance by Taxonomic Group					
Polychaete worms	16.0%				
Crustaceans	10.5%				
Mollusks	47.2%				
Oligochaete worms	24.5%				
Other	1.8%				

Table 25. Summary of Key Statistics from Offshore Export Cable Corridor 2a Benthic Sample Analysis

*All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007)

Taxa Richness

Overall, 53 taxa of benthic fauna were observed in the 9 grab samples collected from Offshore Export Cable Corridor 2a in 2021 (Table 25). Taxa richness per sample ranged from 4 to 18, and mean taxa richness was 13 ± 4.6 (mean \pm SD) per site (Table 25 and Attachment B). No consistent spatial patterns in taxa richness per sample were observed along Offshore Export Cable Corridor 2a (Figure 6).

Macrofaunal Density

The mean macrofaunal density for samples collected from Offshore Export Cable Corridor 2a was 2,150 \pm 2,798 (mean \pm SD) individuals/m² (Table 25). The highest macrofaunal density (9,125 individuals/m²) was found at BG-AC-48/USW191, while macrofaunal density was lowest (150 individuals/m²) at BG-AC-50/USW192 (Attachment B). Of the 9 samples analyzed, 6 were characterized by densities of 1000 individuals/m² or more (67% of samples). Consistent spatial patterns in total organism density were not observed in samples collected along Offshore Export Cable Corridor 2a (Figure 7).

Community Composition

The benthic macrofaunal assemblage documented in the analyzed samples consisted of mollusks, oligochaete worms, polychaete worms, crustaceans, and nemertean ribbon worms (Attachment B).

The most speciose taxonomic group was polychaete worms, which contributed over 45% of the taxa documented in the analyzed samples. Crustaceans and mollusks each accounted for approximately 26% and 21% of taxa in Offshore Export Cable Corridor 2a samples, respectively. Mollusks accounted for the greatest percentage of total organism abundance of any taxa group (over 47%), followed by oligochaete worms (approximately 25%), and polychaete worms (approximately 16%) (Table 25).

The most abundant taxon in Offshore Export Cable Corridor 2a samples was the common Atlantic slippersnail, which accounted for over 40% of all individuals identified (though this species was found in only one of the nine samples collected from within Offshore Export Cable Corridor 2a). Oligochaete worms (naidid worms without hair chaetae and enchytraeid worms), the phoxocephalid amphipod *Rhepoxynius epistomus*, syllid polychaetes, the eastern white slippersnail, and the capitellid polychaete *Mediomastus* sp. were the next most abundant taxa, each accounting for more than 3% of all organisms (Table 26).

Soft-shell clams, a shellfish species of potential commercial importance, were observed in low densities at one site. Common Atlantic slippersnails and eastern white slippersnails, which are potentially indicative of hard bottom habitat, were observed in one benthic grab sample. Common Atlantic slippersnails and eastern white slippersnails are potentially indicative of hard bottom habitat. However, these species may also be found in soft sediment habitats including mud and sand (CIESM 2000, SERC 2022). No other taxa indicative of sensitive habitats (hard bottom areas, cold water coral reefs, seagrass beds, etc.) were observed.

Table 26.	Relative	Abundance	of	Таха	Encountered	in	Offshore	Export	Cable	Corridor	2a
Samples											

Scientific Name	Common Name	Relative Abundance (%)
Crepidula fornicata	Common Atlantic Slippersnail	40.2
Naididae w/out hair chaetae	Oligochaete Worm	12.7
Enchytraeidae	Oligochaete Worm	9.4
Rhepoxynius epistomus	Phoxocephalid Amphipod	4.5
Syllidae	Syllid Polychaete	4.4
Crepidula plana	Eastern White Slippersnail	3.2
Mediomastus sp.	Capitellid Polychaete	3.2
Tellininae	Tellin Clam	2.5
Naididae w/ hair chaetae	Oligochaete Worm	2.5
Tanaidacea	Tanaid Crustacean	1.8
Nemertea	Ribbon Worm	1.8

*Includes taxa accounting for \geq 1.6% of total abundance

The most widespread taxon (i.e., observed in the most samples) was syllid polychaetes, which were both present in nearly 89% of samples collected within Offshore Export Cable Corridor 2a (8 samples). Enchytraeid oligochaete worms, naidid oligochaete worms without hair chaetae, and the capitellid polychaete *Mediomastus* sp. were each observed in at least 50% of samples (6 or more samples) (Table 27). Other relatively widely distributed taxa included the phoxocephalid amphipod *Rhepoxynius epistomus,* tanaid crustaceans, nemertean ribbon worms, naidid oligochaete worms with hair chaetae, and cirratulid polychaetes (all found in at least 44 percent of samples).

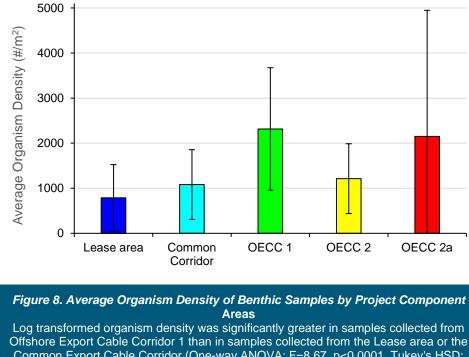
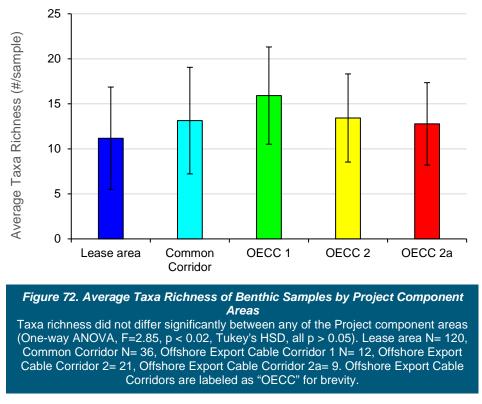

Scientific Name	Common Name	Number of Samples Containing this Taxon		
Syllidae	Syllid Polychaete	8		
Enchytraeidae	Oligochaete Worm	7		
Naididae w/out hair chaetae	dae w/out hair chaetae Oligochaete Worm			
Mediomastus sp.	Capitellid Polychaete	6		
Rhepoxynius epistomus	Phoxocephalid Amphipod	4		
Tanaidacea	Tanaid Crustacean	4		
Nemertea Ribbon Worm		4		
Naididae w/ hair chaetae	Oligochaete Worm	4		
Cirratulidae	Cirratulid Polychaete	4		

Table 27. Most Widespread Taxa Encountered in Offshore Export Cable Corridor 2a Samples

*Includes taxa observed in \geq 4 samples (\geq 44% of samples)

Most of the taxa observed in the grab samples collected from Offshore Export Cable Corridor 2a are typical of soft-sediment habitats. Abundant or widespread taxa including common Atlantic slippersnails, cirratulid worms, and tellin clams, were similarly common in previously described Project component

Common Export Cable Corridor (One-way ANOVA: F=8.67, p<0.0001, Tukey's HSD: p<0.05). Lease area N= 120, Common Corridor N= 36, Offshore Export Cable Corridor 1 N= 12, Offshore Export Cable Corridor 2= 21, Offshore Export Cable Corridor 2= 9. Offshore Export Cable Corridors are labeled as "OECC" for brevity


areas (Sections 3.2.1, 3.2.2, 3.2.3, 3.2.4). Other common taxa found in Offshore Export Cable Corridor 2a samples included the phoxocephalid amphipod *Rhepoxynius epistomus*, which inhabits medium to fine unstable sands (Bousfield 1973).

The infaunal sampling results for Offshore Export Cable Corridor 2a align with expectations based on the CMECS habitat classifications for the area; of the 9 samples collected in Offshore Export Cable Corridor 2a, 33% (3 samples) were classified as fine unconsolidated substrates under the CMECS framework, whereas 67% (6 samples) were classified as coarse unconsolidated substrates. This is similar to samples collected from the Common Export Cable Corridor, (see section 3.2.2 above) and indicates a lower percentage of coarse unconsolidated substrates than were present in samples collected from Offshore Export Cable Corridor 1. One sample composed of sandy gravel substrate (BG-AC-48/USW191) accounted for the entirety of common Atlantic slippersnail and eastern white slippersnail observations from Offshore Export Cable Corridor 2a.

3.2.6 Statistical Comparisons

Univariate comparison of Project component areas revealed some significant differences in average organism density. Log transformed average organism density was significantly greater in samples collected from Offshore Export Cable Corridor 1 than in samples collected from the Lease area or the Common Export Cable Corridor (Figure 8, one-way ANOVA, F=10.39, P<0.0001, Tukey's HSD, P<0.05).

However, average taxa richness per sample did not differ significantly between samples collected from any of the five Project component areas (Figure 9, one-way ANOVA, F=2.85, p<0.008, Tukey's HSD, P<0.05).

Though univariate analyses indicated some differences between Offshore Export Cable Corridor 1 and certain other Project component areas, these patterns did not extend to overall community composition. ANOSIM indicated that significant differences in community composition did exist between certain Project component areas (p=0.017), though the R value for this analysis was near zero (global R = 0.091), indicating low levels of separation between communities. Pairwise comparisons determined that the only significant differences in community composition existed between Offshore Export Cable Corridor 2 and Common Export Cable Corridor sites (p=0.001, R=0.216) and between Offshore Export Cable Corridor 2 and Lease Area sites (p=0.001, R=0.301). These findings are illustrated by the NMDS ordination, which demonstrates a general lack of consistent clustering of sample points by Project component areas in ordination space (Figure 10).

SIMPER analysis identified naidid oligochaete worms without hair chaetae, tellin clams, the polygordiid polychaete *Polygordius* sp., and enchytraeid oligochaete worms as the taxa most responsible for differences between Offshore Export Cable Corridor 2 sites and both Common Export Cable Corridor and Lease area sites (the contribution of each taxon to total dissimilarity between the benthic communities was at least 3.8%). Oligochaete worms (naidid worms without hair chaetae, and enchytraeid worms) and polygordiid polychaetes were generally present at lower densities, and tellin clams were generally present at higher densities, in Offshore Export Cable Corridor 2 samples than in Common Export Cable Corridor or Lease area samples.

Additionally, as illustrated by NMDS ordination (Figure 11) and confirmed by ANOSIM (global R = 0.154, P=0.001) differences in community composition between samples composed of greater than 5% gravel and less than 5% gravel were significant, but potentially not biologically relevant (P value >0.05, but R value near zero).

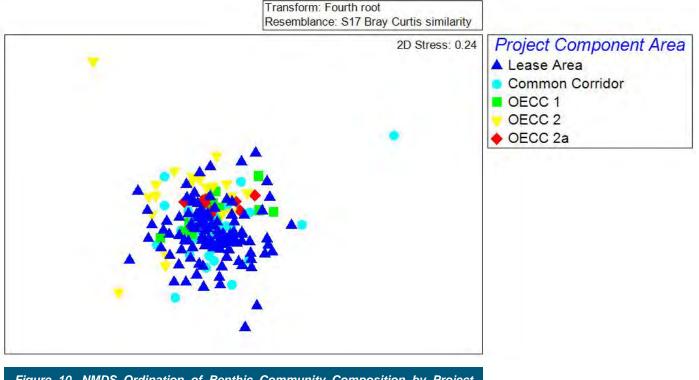
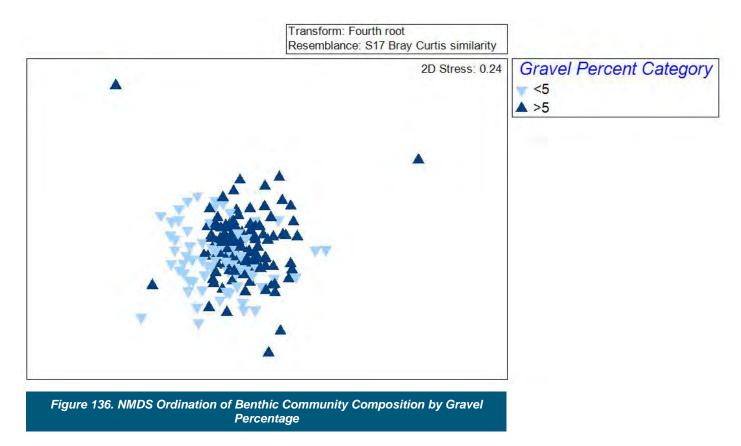



Figure 10. NMDS Ordination of Benthic Community Composition by Project Component Area

Lease Area and Offshore Export Cable Corridors Benthic Report, 2021 August 2022

4.0 SUMMARY AND CONCLUSIONS

Approach

A benthic field survey was completed in July and August 2021 to collect site-specific benthic community and habitat data within the US Wind Lease area and Offshore Export Cable Corridors.

Benthic imagery transects were collected using an ROV or UTV at a total of 110 locations, of which environmental conditions severely limited the utility of 12 transects. Therefore, the benthic imagery transect results presented here are based on data from 98 transects. Additionally, 198 locations were sampled using collection of benthic grabs and video of the seafloor.

These data were used to characterize the benthic macrofaunal community and generate taxonomic classifications of benthic habitats in sampled portions of the US Wind Lease area, the Common Export Cable Corridor, and Offshore Export Cable Corridors 1, 2, and 2a under the NMFS-modified CMECS taxonomic classification system.

Overall Conditions

The benthic imagery transect results indicated seafloor habitats mostly dominated by sand substrates, although patches of secondary substrate types, such as granules/pebbles or shell hash, were also sometimes observed on these transects. A smaller number of benthic imagery transects were dominated by gravelly sand; these transects were often punctuated by patches of bare sand. Only one transect was dominated by a gravel mix substrate. Other notable but uncommon and highly localized benthic habitat

features included structure-forming polychaetes and larger gravel clasts, such as cobbles and boulders. No submerged aquatic vegetation (SAV) or other biogenic substrates were observed.

Based on the benthic imagery collected, sand substrates often hosted sand dollars (*Echinarachnius parma*) at the sediment water interface while hermit crabs (*Pagurus* spp.) and sea robins (*Prionotus carolinus*) were observed on a variety of fine and coarse unconsolidated substrate types. Larger gravel clasts (cobble and boulder) sometimes harbored stony corals (*Astrangia poculata*), sea whips (*Leptogorgia virgulata*), and other sessile epifauna. These localized cobble and boulder features were also observed to attract motile megafauna, such as black sea bass (*Centropristis striata*) and American lobster (*Homarus americanus*).

Benthic grab samples were primarily classified as gravelly or sand substrates. However, gravel mixes were observed at higher frequency in these samples than in the benthic imagery transects. Gravel was the least frequently observed substrate group in the benthic grab samples. Finer substrates (muddy sands, sandy muds, and muds) were not observed in any of the benthic imagery transects or grab samples. Therefore, these types of soft bottom habitats are anticipated to be very rare in the Survey Area.

A total of 131 marine invertebrate taxa, including polychaete worms, crustaceans, mollusks, oligochaete worms, nemertean ribbon worms, sand dollars, ascidians, lancelets, sea anemones, flatworms, and sipunculids were found in the 198 macrofaunal grab samples collected during the 2021 benthic survey program. Taxa identified in grab samples collected from both areas were typical of soft-sediment coastal shelf habitats of the mid-Atlantic U.S. coast. Widespread or abundant organisms included polychaete worms (e.g., *Polygordius* sp., Cirratulidae, *Scoletoma* sp., Syllidae), oligochaete worms, amphipods (e.g., *Unciola* sp., *Byblis serrata*), common Atlantic slippershells, and nemertean ribbon worms.

No biologically significant dissimilarity in the macrofaunal community was found between grab samples collected in coarse unconsolidated substrates (i.e., containing more than 5% gravel by weight) and fine unconsolidated substrates.

Comparisons between Project Component Areas

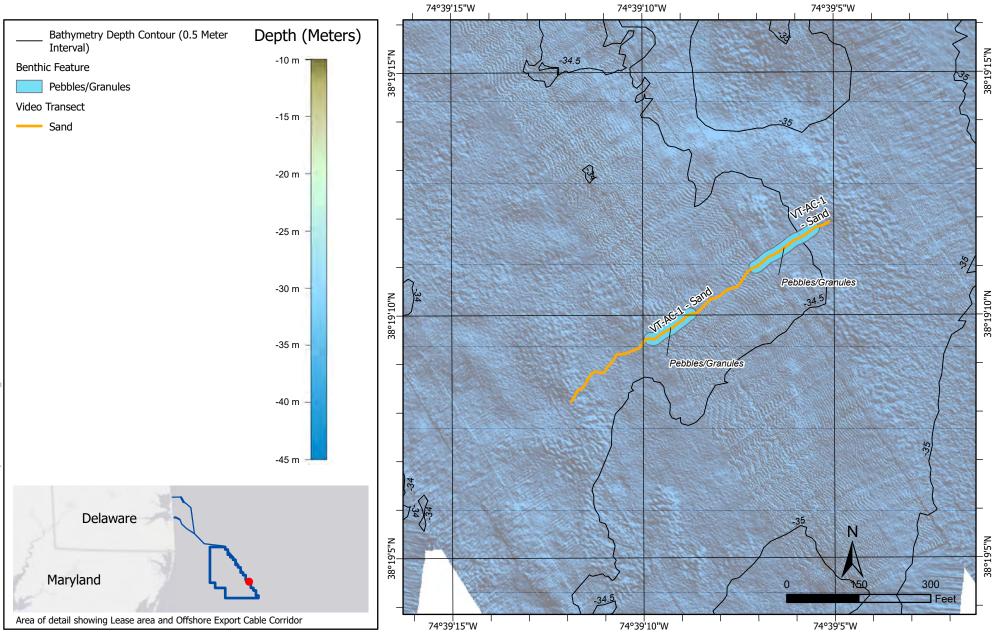
The percentage of benthic grab samples classified as coarse unconsolidated substrate (i.e., gravel, gravel mixes, or gravelly substrates) was nominally greater in Offshore Export Cable Corridor 1 (75%) than in the Lease area, Common Export Cable Corridor, Offshore Export Cable Corridor 2, and Offshore Export Cable Corridor 2a (61%, 67%, 62%, and 67%, respectively). These habitat differences are potentially reflected to some degree in the infaunal data, with certain species indicative of coarse substrates (e.g. common Atlantic slippersnail and eastern white slippersnail) found in greater abundance in Offshore Export Cable Corridor 2 samples than in Lease area, Common Export Cable Corridor, and Offshore Export Cable Corridor 2 samples. Average organism density (log transformed) was also significantly greater in Offshore Export Cable Corridor.

However, multivariate analyses (NMDS ordination and ANOSIM) indicated that benthic community composition only differed significantly between Offshore Export Cable Corridor 2 and Common Export Cable Corridor sites, and between Offshore Export Cable Corridor 2 and Lease Area sites. The taxa most responsible for differences between these communities were identified as oligochaete worms (naidid worms without hair chaetae, and enchytraeid worms) and polygordiid polychaetes, which were generally more abundant in Common Export Cable Corridor and Lease area sites than Offshore Export Cable Corridor 2 sites, and tellin clams, which were generally more abundant in Offshore Export Cable Corridor 2 sites.

In sum, despite the higher percentage of samples classified as coarse unconsolidated substrate in Offshore Export Cable Corridor 1, the benthic macrofaunal community appeared to be largely similar across most of the Project component areas in the Survey Area and there were few discernable geographic trends in multivariate community composition at a larger scale.

5.0 REFERENCES

- Abbott, R.T. and P.A. Morris. 1995. Shells of the Atlantic and Gulf Coasts and the West Indies. Boston, MA: Houghton Mifflin Company.
- Alpine Ocean Seismic Survey (Alpine). 2015. Marine G&G Survey Report. Prepared for U.S. Wind.
- Bartholomew, A. 2001. Polychaete Key for Chesapeake Bay and Coastal Virginia.
- Bousfield, E.L. 1973. Shallow-water Gammaridean Amphipoda of New England. Ithaca, NY: Cornell University Press.
- Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. *Ecological monographs*, 27(4), 325-349.
- Byers, J. E. and J.H. Grabowski. 2014. Soft-sediment communities. In: Marine Community Ecology. Eds.:M. D. Bertness, J. F. Bruno, B. R. Silliman & J. J. Stachowicz. Sinauer, p.227-249.
- CB&I. 2014. Maryland Energy Administration High Resolution Geophysical Resource Survey (Project Number DEXR240005). Coastal Planning & Engineering, Inc. (Boca Raton, FL).
- Clarke, K. R. and R. N. Gorley. 2006. PRIMER v6: User Manual/Tutorial. Plymouth, United Kingdom: PRIMER-E, Ltd.
- Cuffney, T. F., M.D. Bilger, and A. M. Haigler. 2007. Ambiguous taxa: effects on the characterization and interpretation of invertebrate assemblages. Journal of the North American Benthological Society 26, no. 2: 286-307.
- Dean, H. K. 2008. The use of polychaetes (Annelida) as indicator species of marine pollution: a review. International Journal of Tropical Biology, 56(Supplement 4): 11-38.
- Gosner, K.L. 1971. Guide to Identification of Marine and Estuarine Invertebrates: Cape Hatteras to the Bay of Fundy. New York: John Wiley and Sons, Inc.
- Gosner, K.L. 1978. The Peterson Field Guide Series. A Field Guide to the Atlantic Seashore from the Bay of Fundy to Cape Hatteras. Boston, MA: Houghton Mifflin Company.
- Guida, V., A. Drohan, H. Welch, J. McHenry, D. Johnson, V. Kentner, J. Brink, D. Timmons, J. Pessutti, S. Fromm, and E. Estela-Gomez. 2017. Habitat Mapping and Assessment of Northeast Wind Energy Areas. In OCS Study BOEM 2017-088. Sterling, VA: US Department of the Interior, Bureau of Ocean Energy Management.
- International Commission for the Scientific Exploration of the Mediterranean Sea (CIESM). 2003. *Crepidula fornicata* (Linnaeus, 1758). CIESM: Atlas of Exotic Species in the Mediterranean Sea. <u>https://www.ciesm.org/atlas/CrepidulForni.html</u>



- Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, *29*(1), 1-27.
- Magurran, A.E. 2003. Measuring Biological Diversity. Malden, MA: Blackwell Publishing Ltd.
- Martinez, A.J. 1999. Marine Life of the North Atlantic, Canada to New England. Rockport, ME: Down East Books.
- Meredith, C.S., A.S Trebitz, and J.C. Hoffman. 2019. Resolving taxonomic ambiguities: effects on rarity, projected richness, and indices in macroinvertebrate datasets. Ecological indicators, 98: 137-148.
- Mikkelsen, P. M., & Bieler, R. (2021). Seashells of southern Florida: living marine mollusks of the Florida Keys and adjacent regions: bivalves. Princeton University Press.
- Pettibone, M.H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bulletin of the U.S. National Museum, 227: 1-356.
- Pollock, L.W. 1998. A Practical Guide to the Marine Animals of Northeastern North America. New Brunswick, NJ: Rutgers University Press.
- Ramey P.A. 2008. Life history and population dynamics of a dominant polychaete, *Polygordius jouinae*, in inner continental shelf sands of the Mid-Atlantic Bight, USA. Marine Biology, 154: 443–452.
- Ramey, P. A., Fiege, D., and B.S. Leander. 2006. A new species of *Polygordius* (Polychaeta: Polygordiidae): from the inner continental shelf and in bays and harbours of the north-eastern United States. Journal of the Marine Biological Association of the United Kingdom, *86*(5), 1025-1034.
- Smith. R.I. 1964. Keys to the Marine Invertebrates of the Woods Hole Region: a manual for the identification of the more common marine invertebrates. Woods Hole, MA: Marine Biological Laboratory.
- [SERC] Smithsonian Environmental Research Center. 2022 Crepidula fornicata. National Estuarine and Marine Exotic Species Information System (NEMESIS). https://invasions.si.edu/nemesis/species_summary/72623
- Taylor, R.B. 1998. Density, biomass and productivity of animals on four subtidal rocky reef habitats: the importance of small mobile invertebrates. Marine Ecology Progress Series, 172(37): 37-51.
- Weiss, H.M. 1995. Marine Animals of Southern New England and New York. Identification Keys to Common Nearshore and Shallow Water Macrofauna. Bulletin 115 of the State Geological and Natural History Survey of Connecticut. Connecticut Department of Environmental Protection.

Attachment A

Characterizations for Benthic Imagery Transects

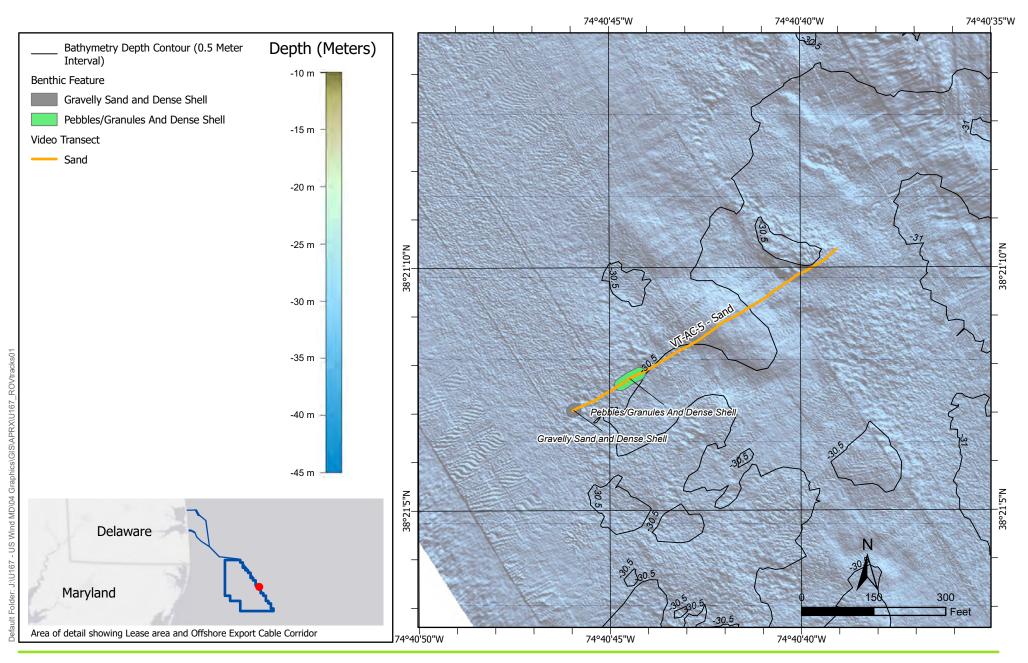
group Mar

environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

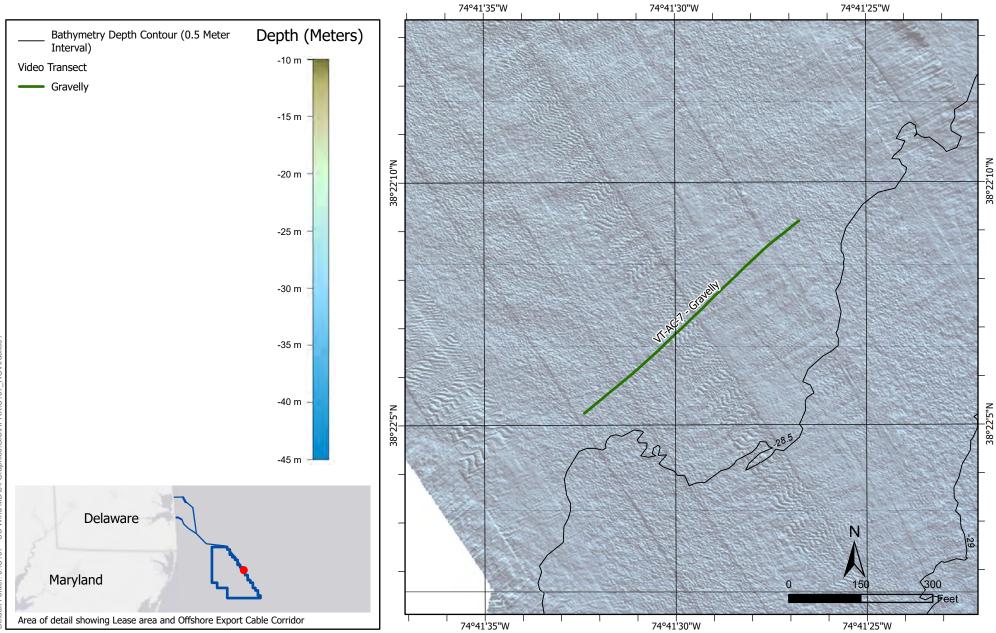


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

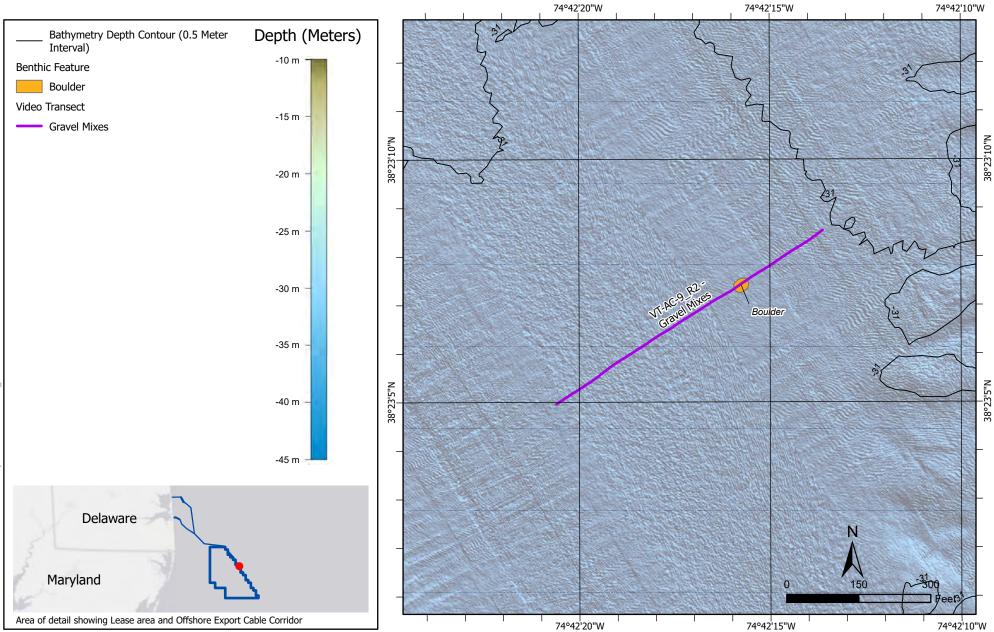


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

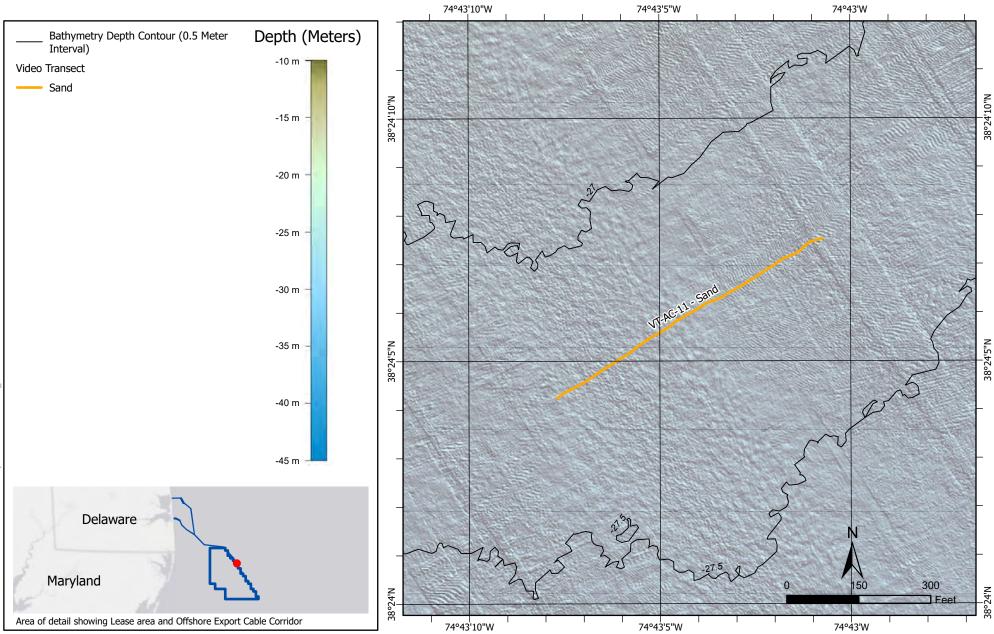
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

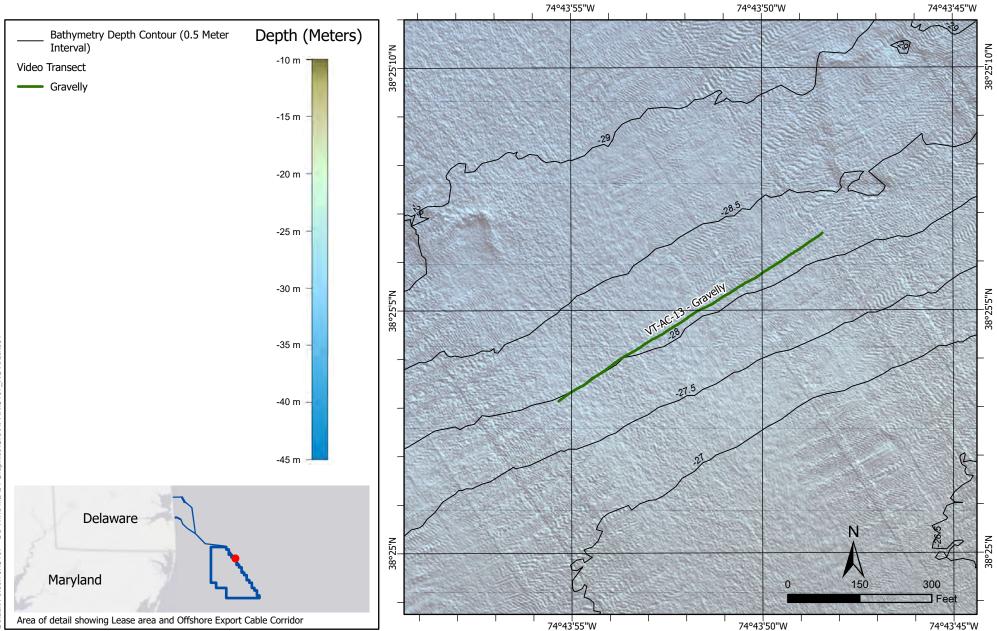

Benthic Characterization for ROV Track VT-AC-9_R2

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

environmental consulting & engineering services

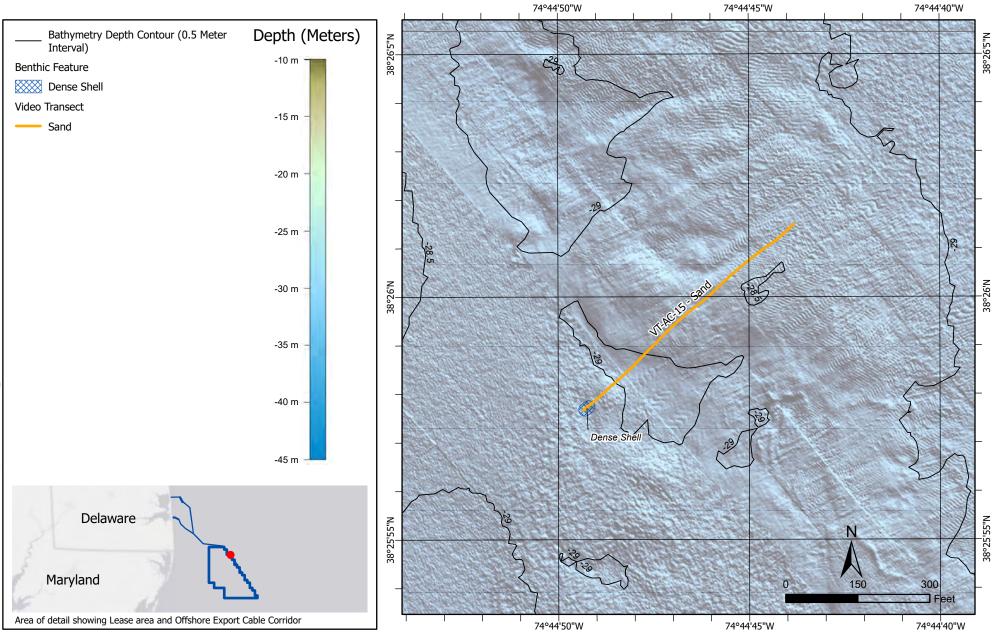


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

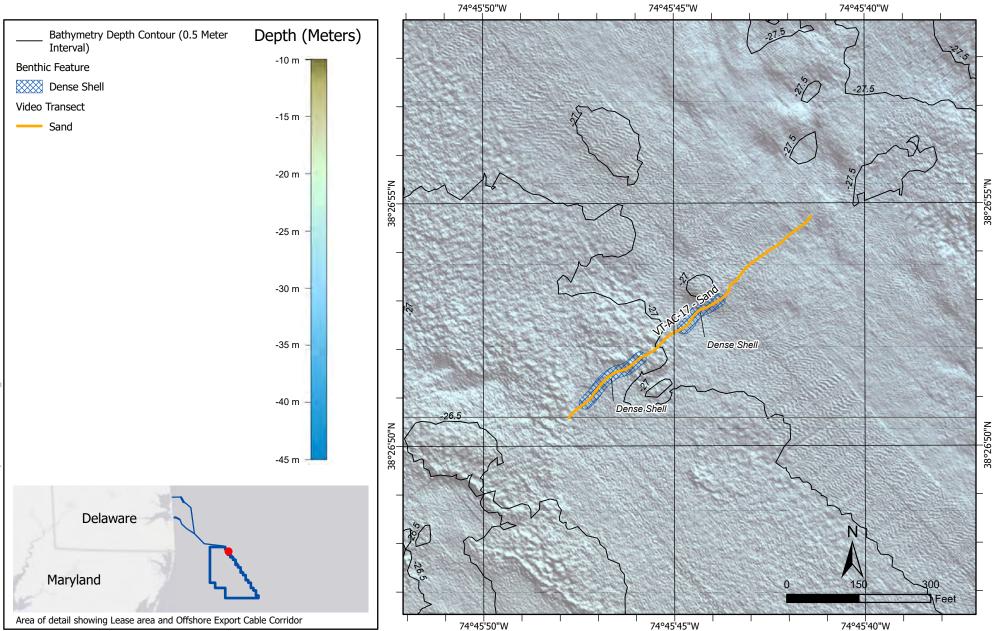


Benthic Characterization for ROV Track VT-AC-13

Maryland Offshore Wind Project Offshore Maryland and Delaware

group Offsho

environmental consulting & engineering services Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

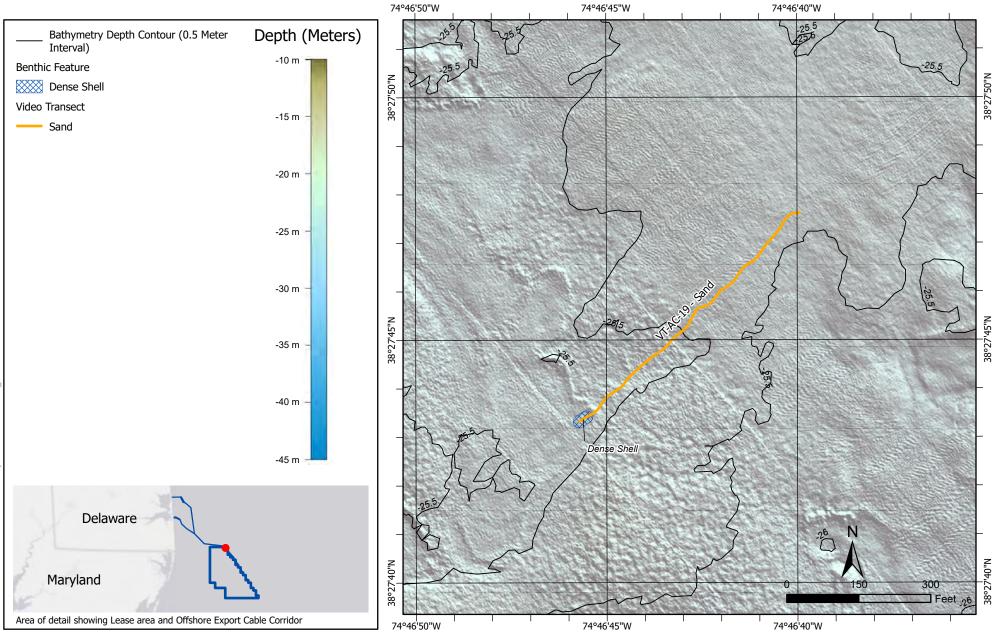


Benthic Characterization for ROV Track VT-AC-15

Maryland Offshore Wind Project Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

environmental consulting & engineering services

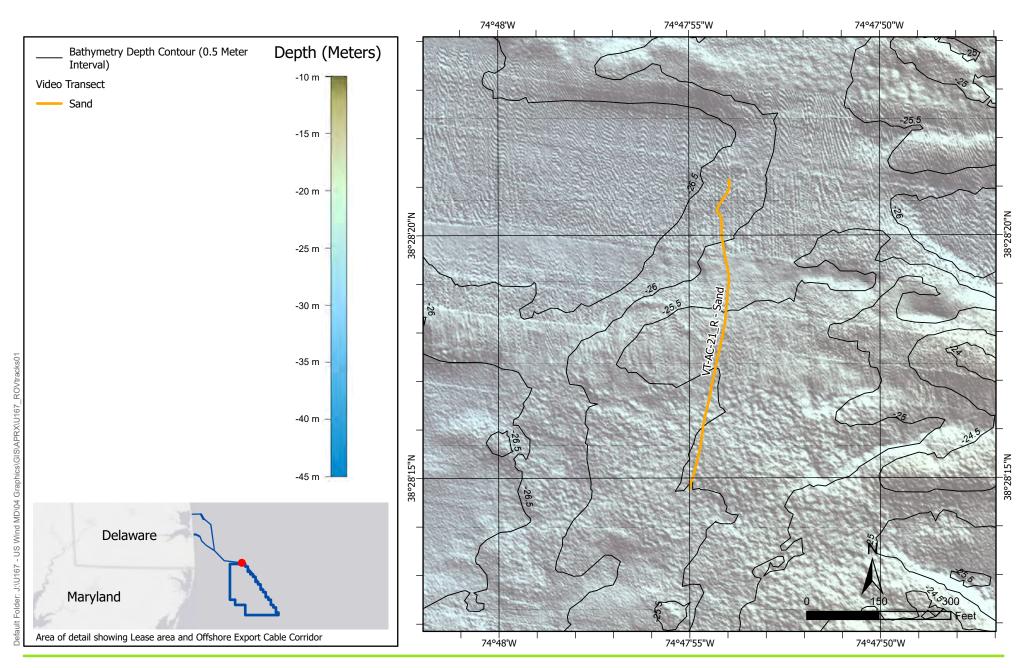


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

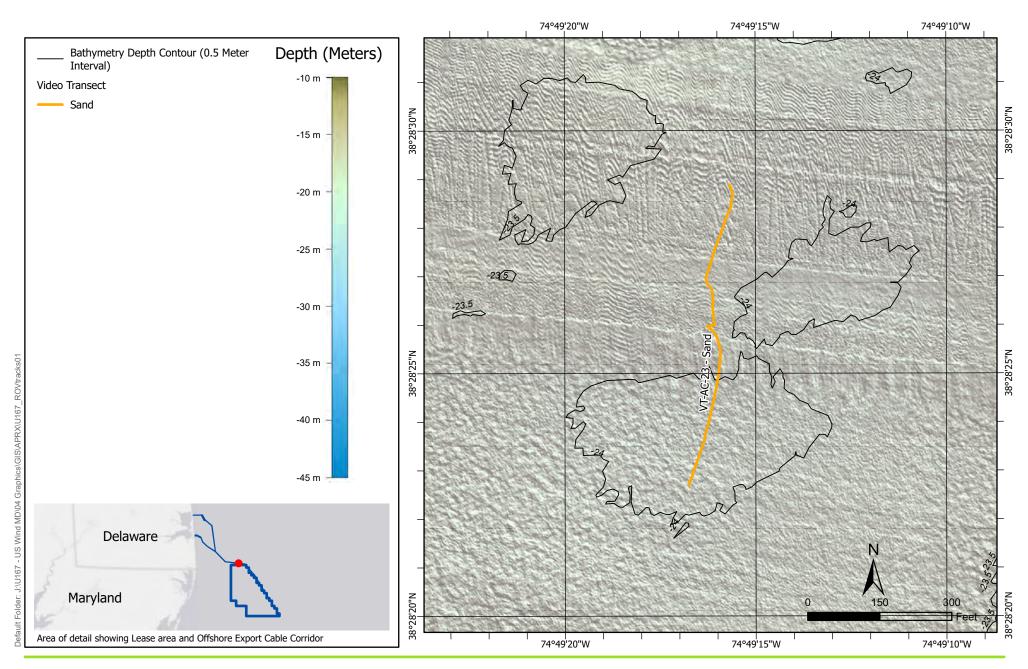
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

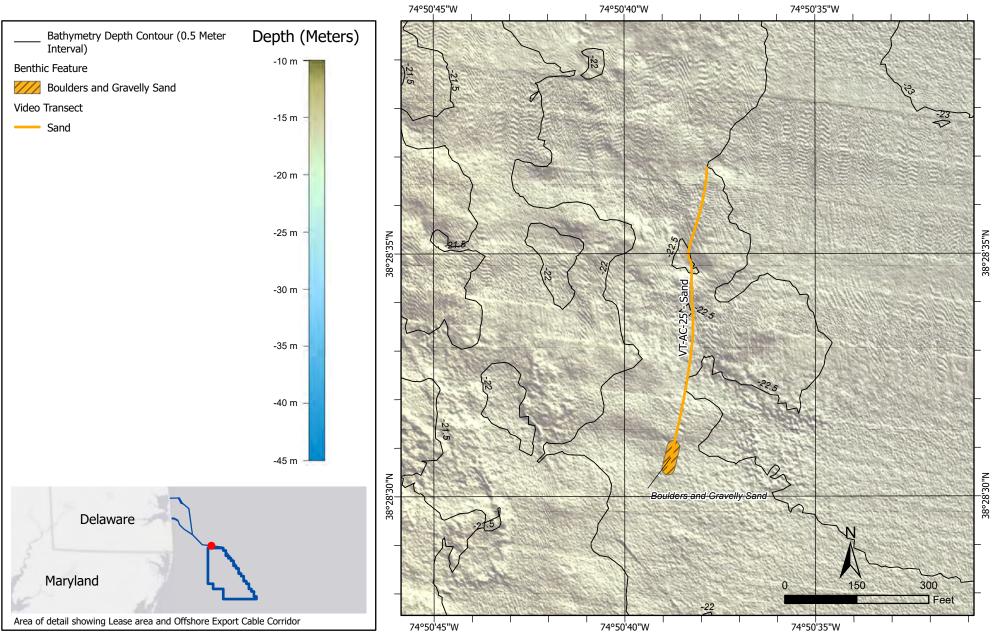


environmental consulting environmental consulting engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

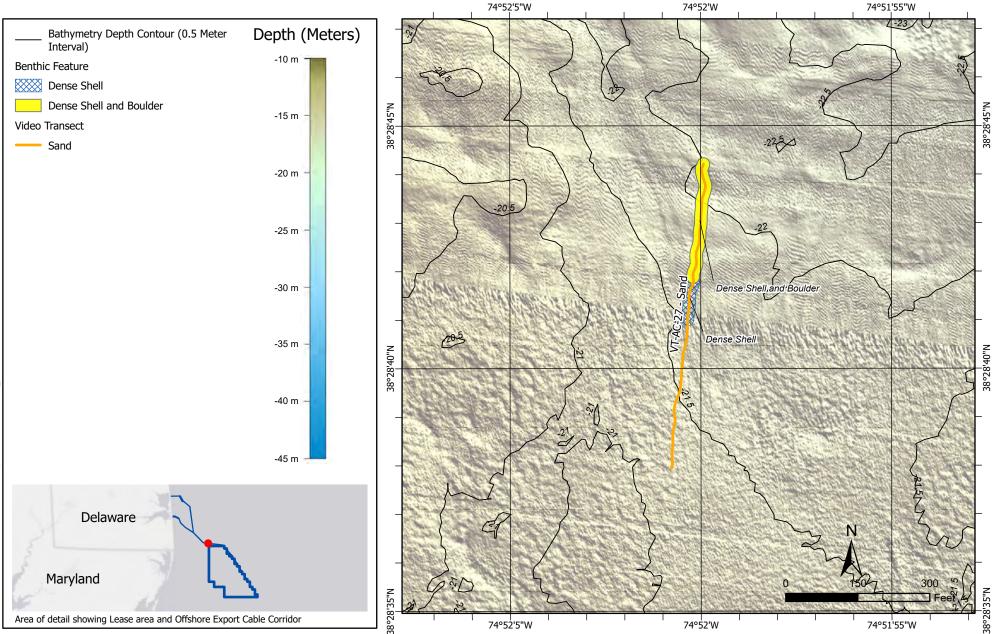


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

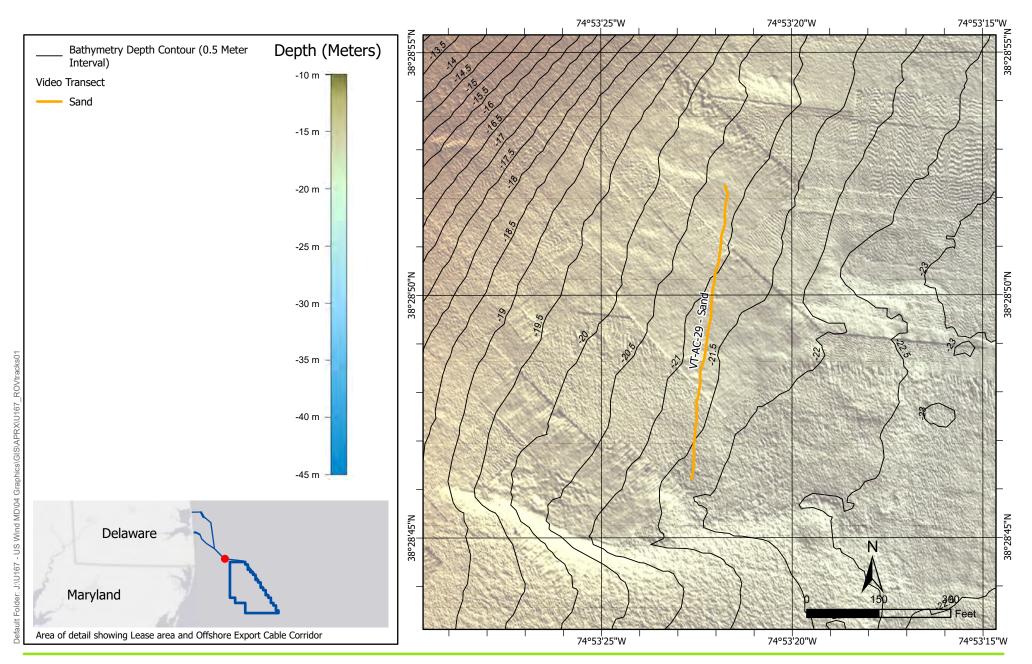


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

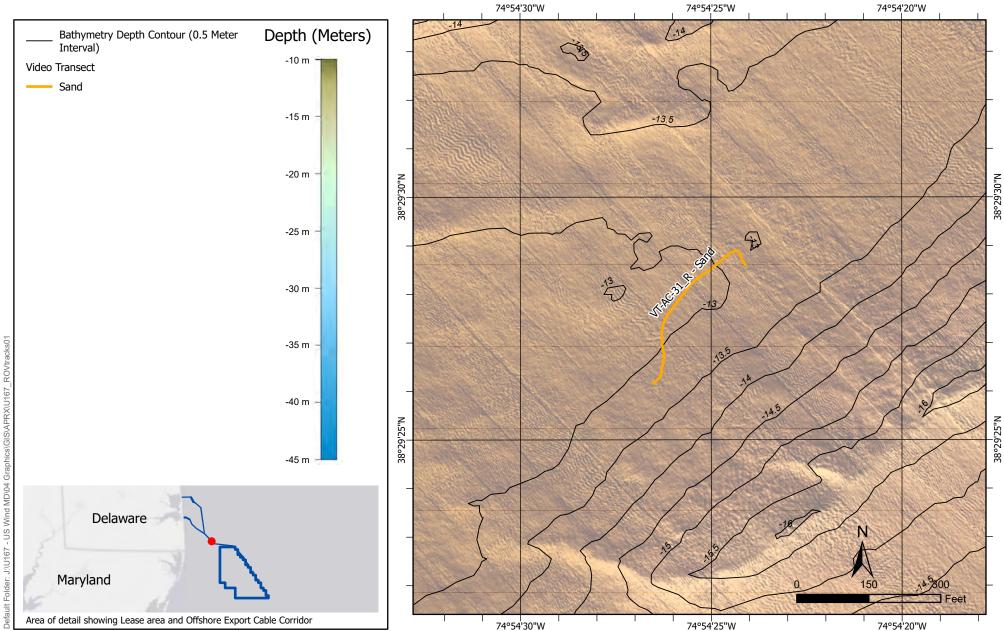


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



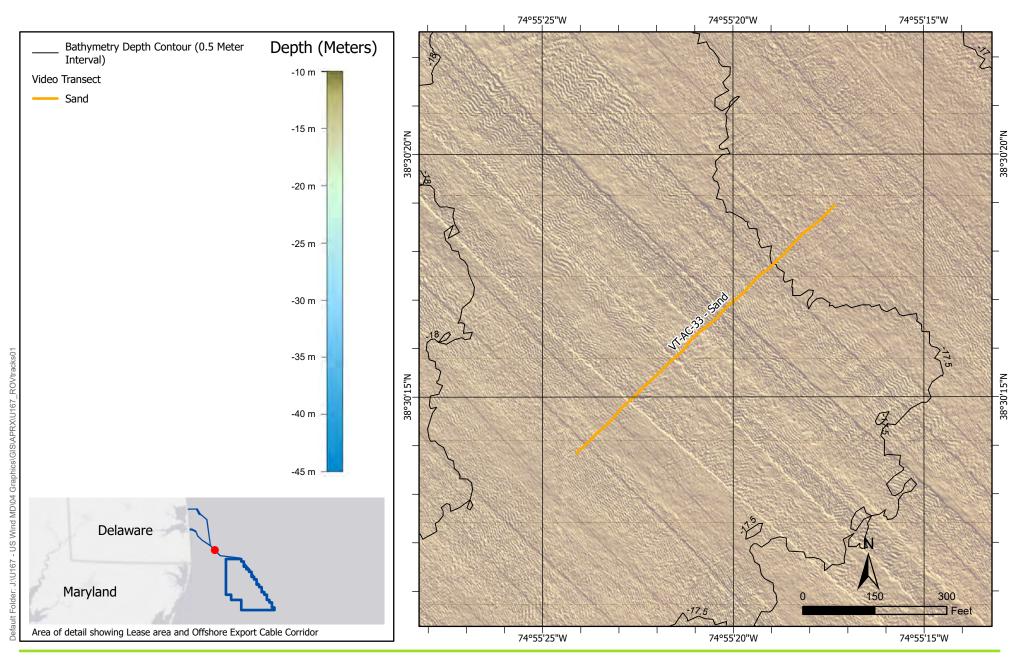
environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

g environmental consulting & engineering services

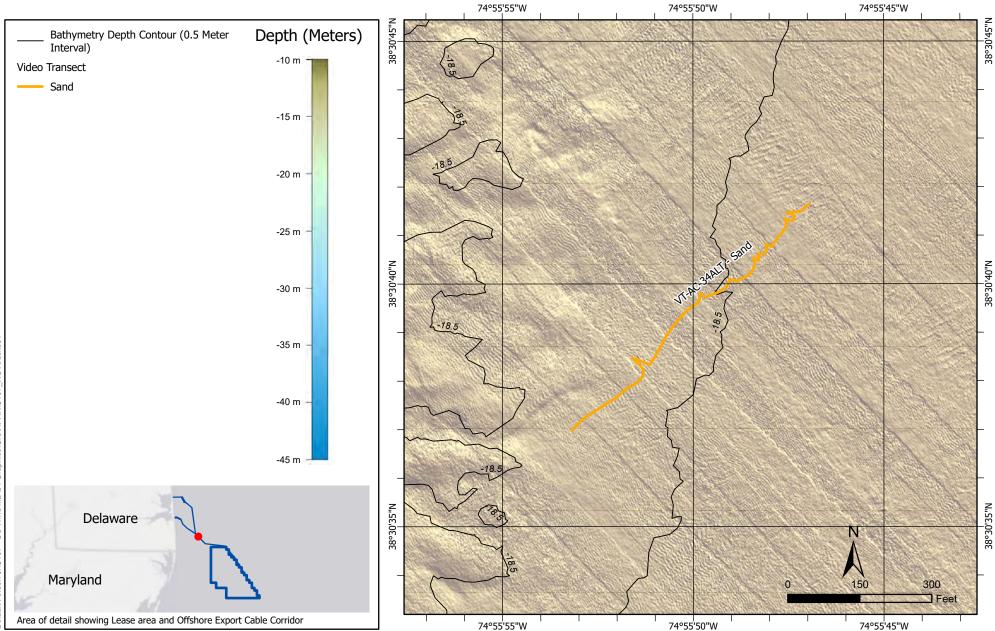

The second second

Ē

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

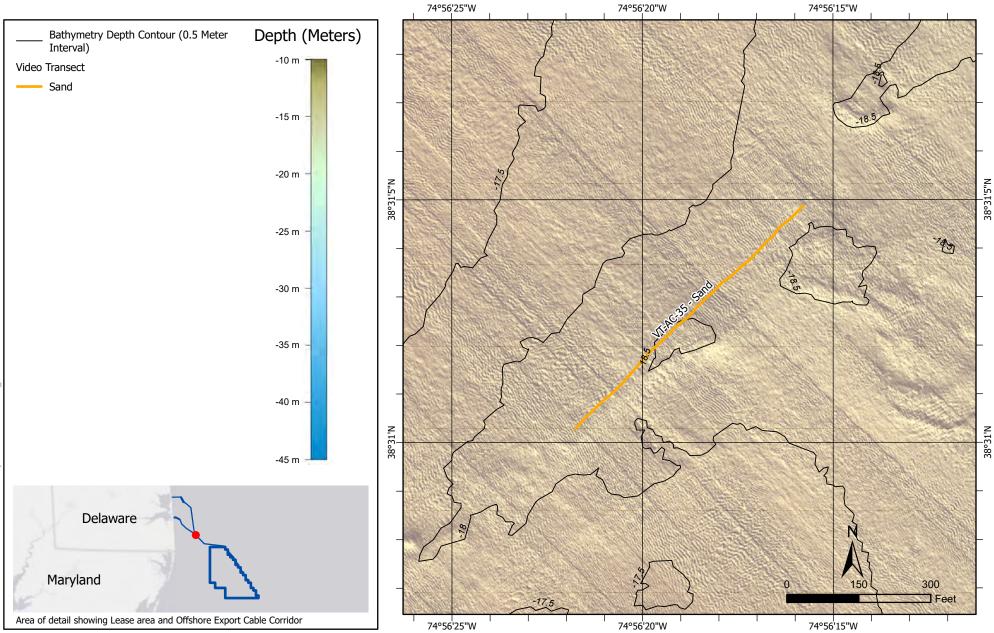


descriptions group environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

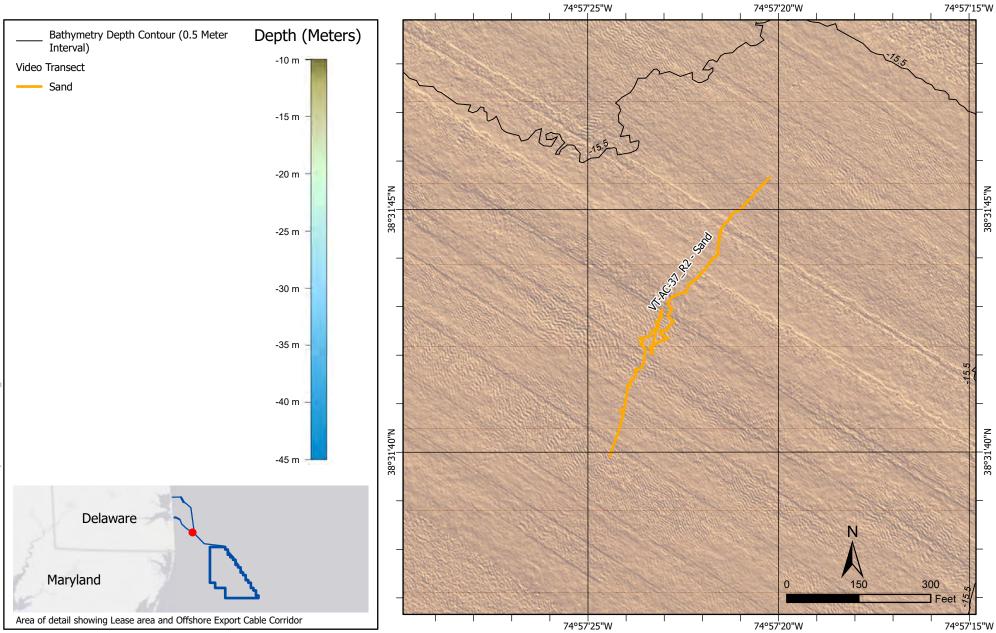


environmental consulting environmental consulting engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

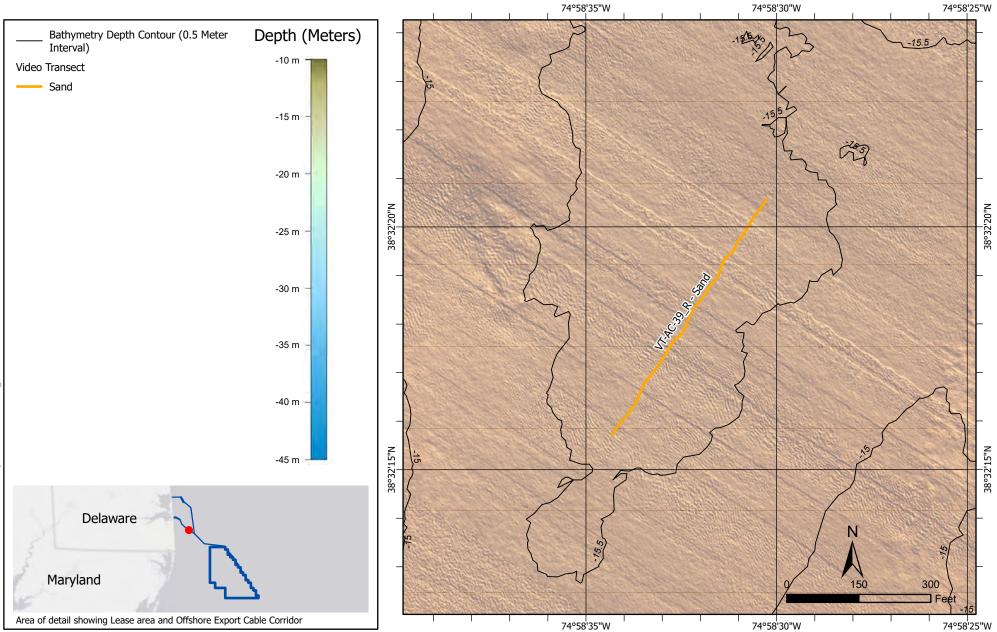


Maryland Offshore Wind Project

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

D

g environmental consulting & engineering services Offshore Maryland and Delaware

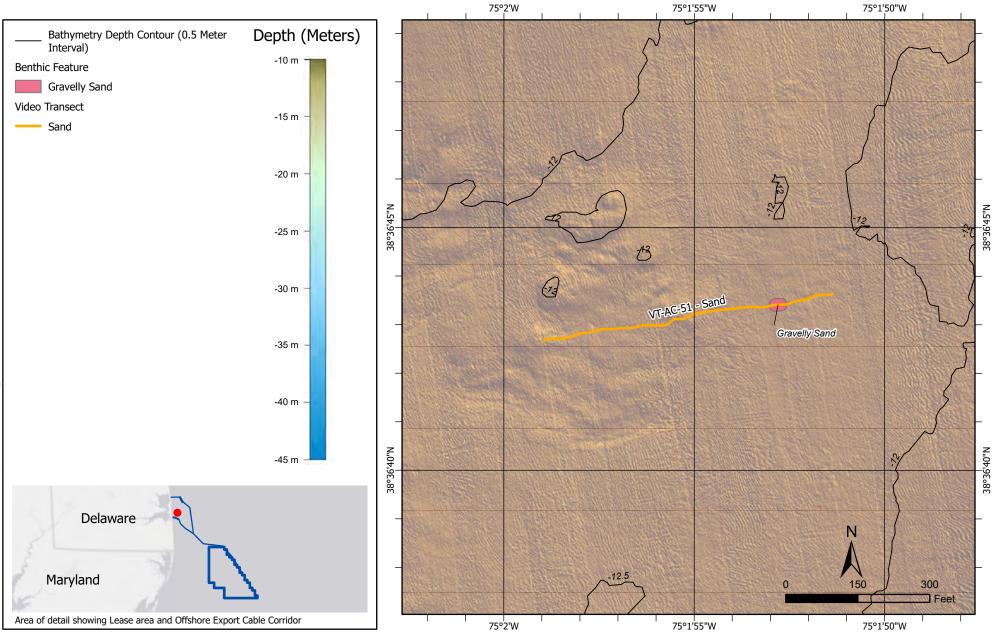

Benthic Characterization for ROV Track VT-AC-37_R2

Maryland Offshore Wind Project

group Offsho

environmental consulting & engineering services Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

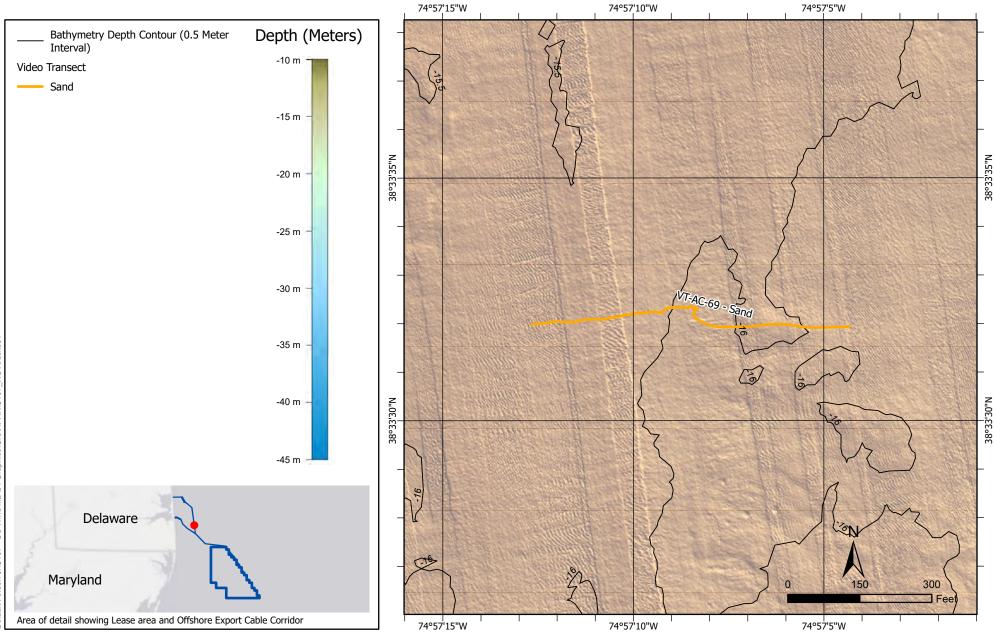

Benthic Characterization for ROV Track VT-AC-39_R

Maryland Offshore Wind Project Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

p

g environmental consulting & engineering services

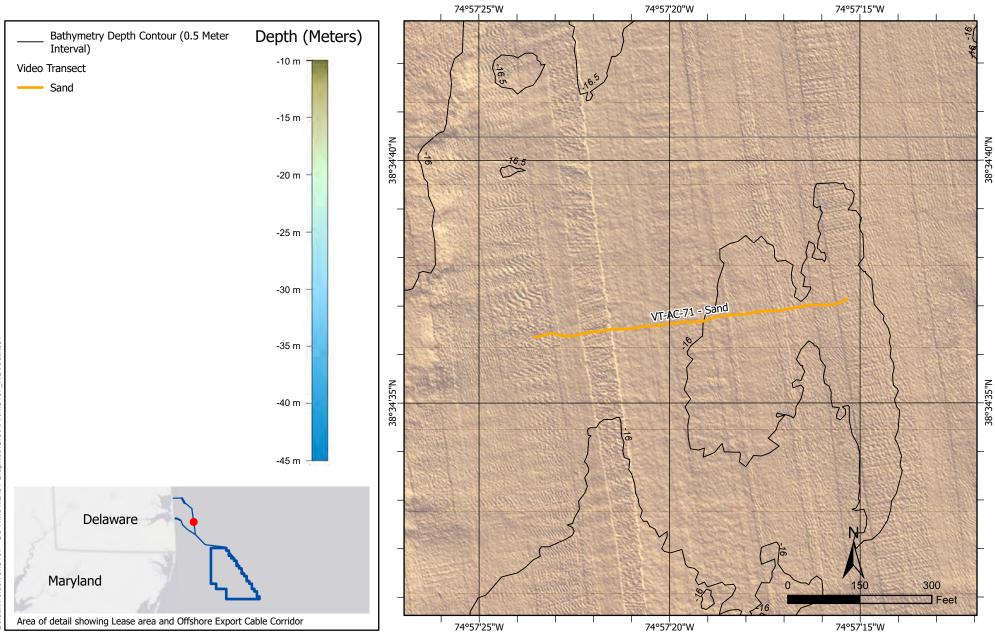


Benthic Characterization for ROV Track VT-AC-51

Maryland Offshore Wind Project Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

environmental consulting & engineering services

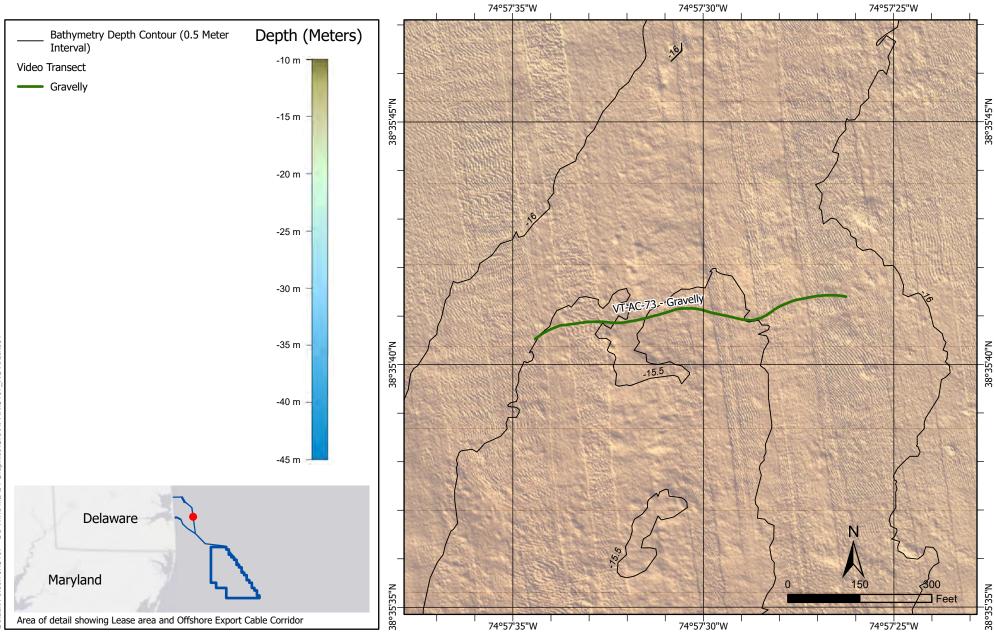


environmental consulting & engineering services

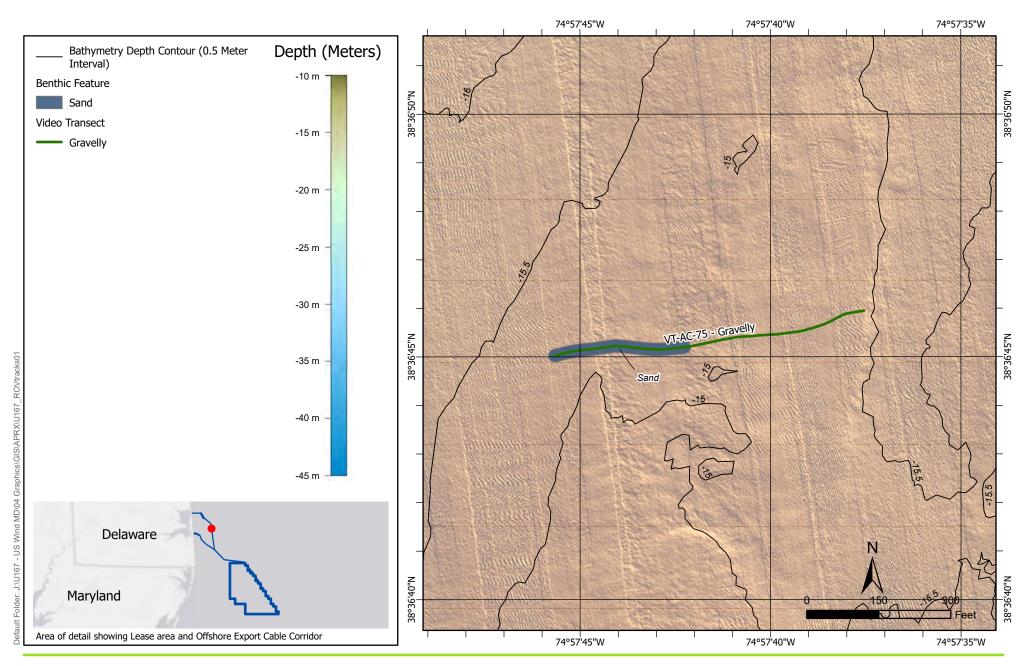
Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



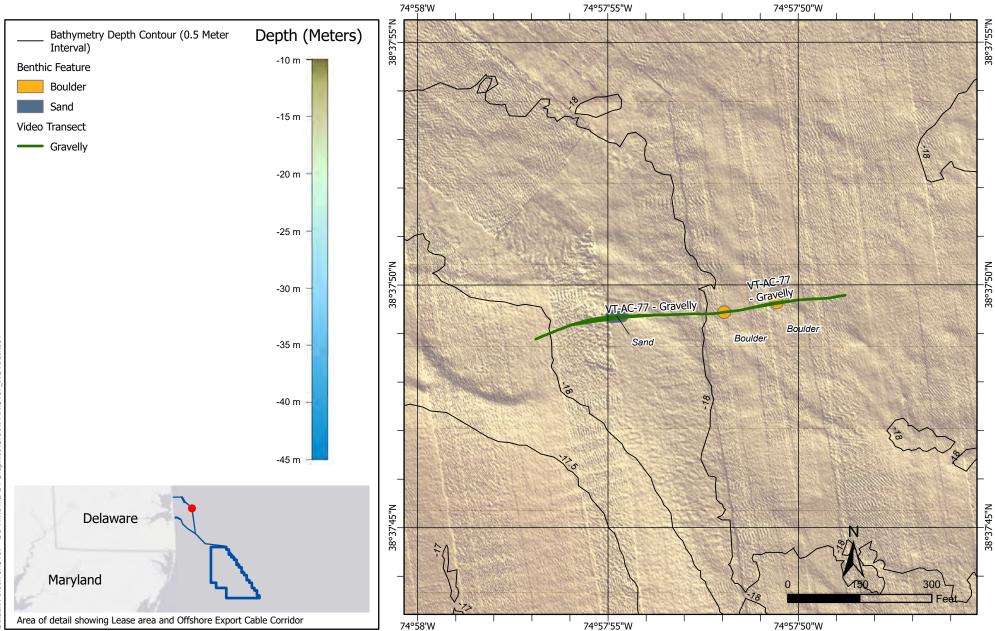
Maryland Offshore Wind Project


Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Maryland Offshore Wind Project Offshore Maryland and Delaware

environmental consulting & engineering services Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

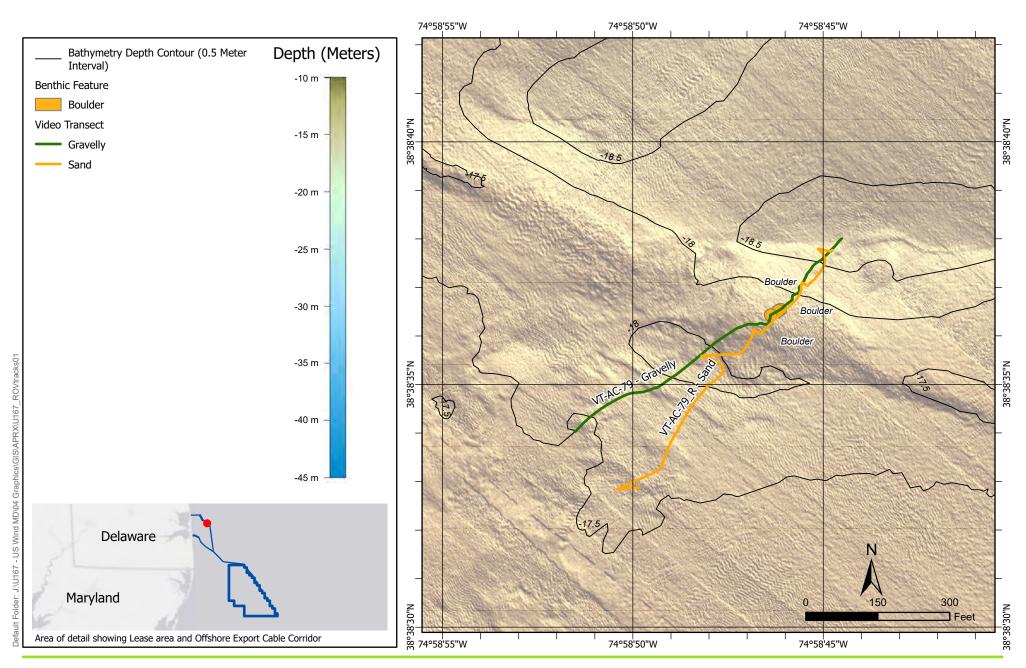


environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

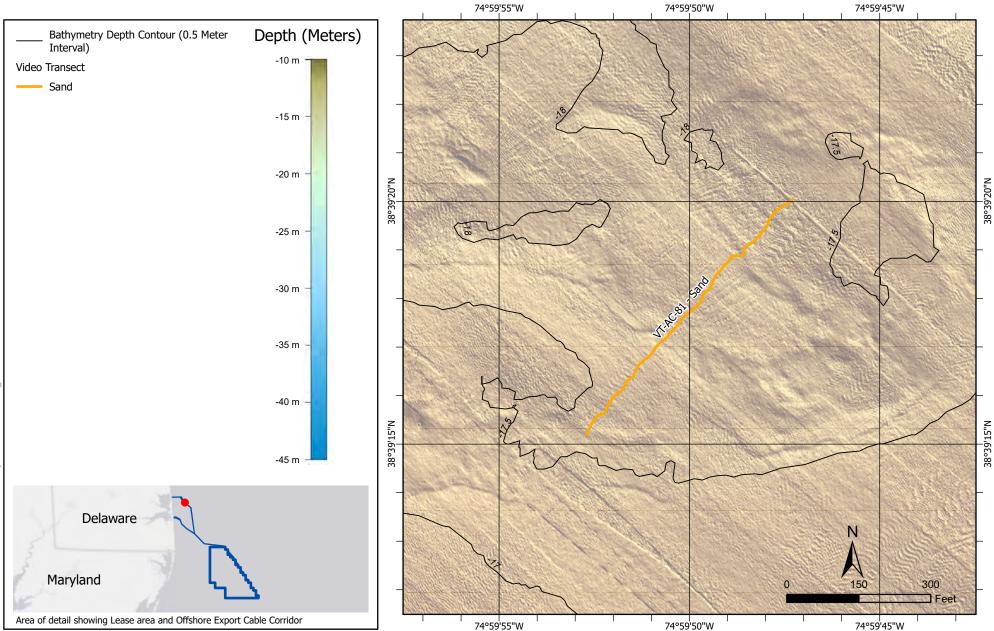


group environmental consulting environmental consulting

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

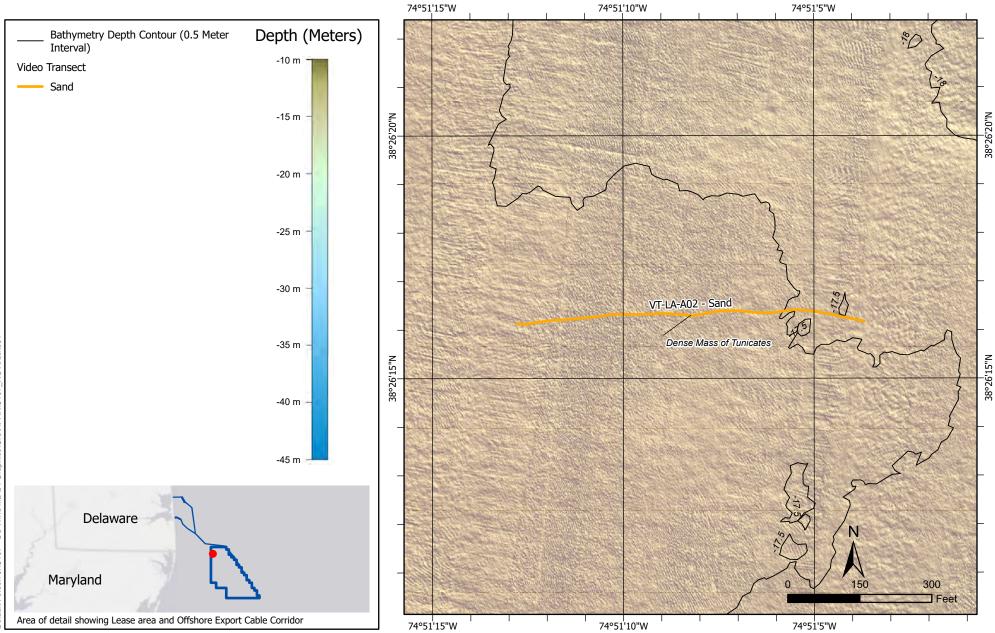


d environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

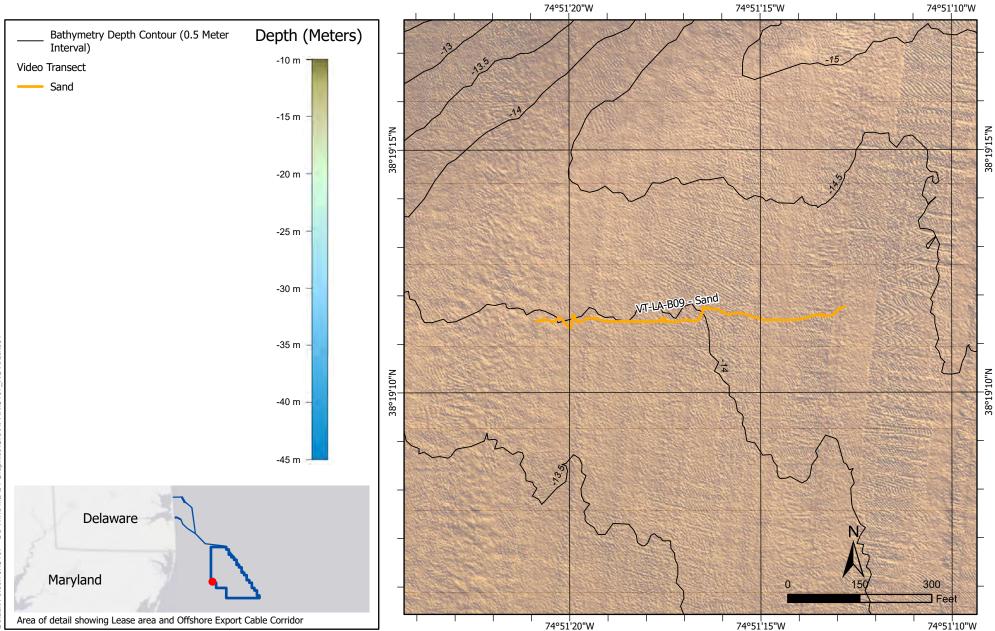


environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

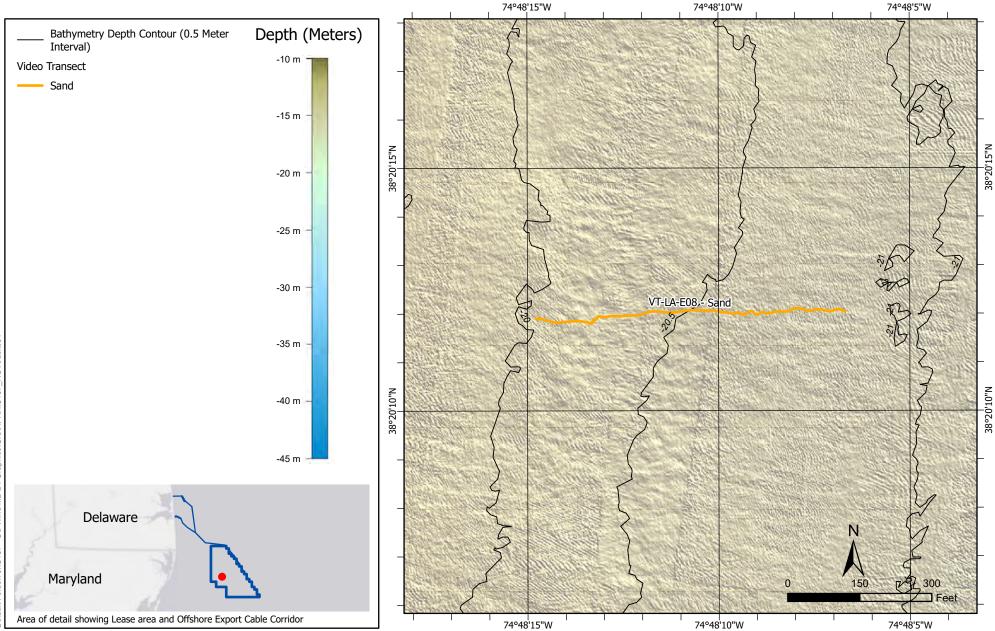


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

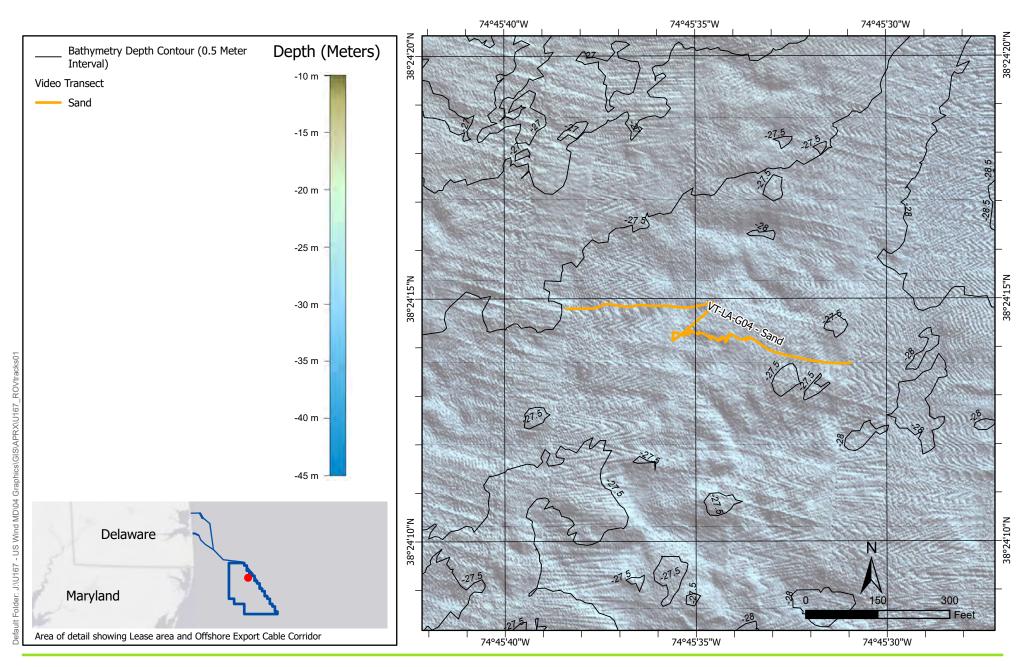


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

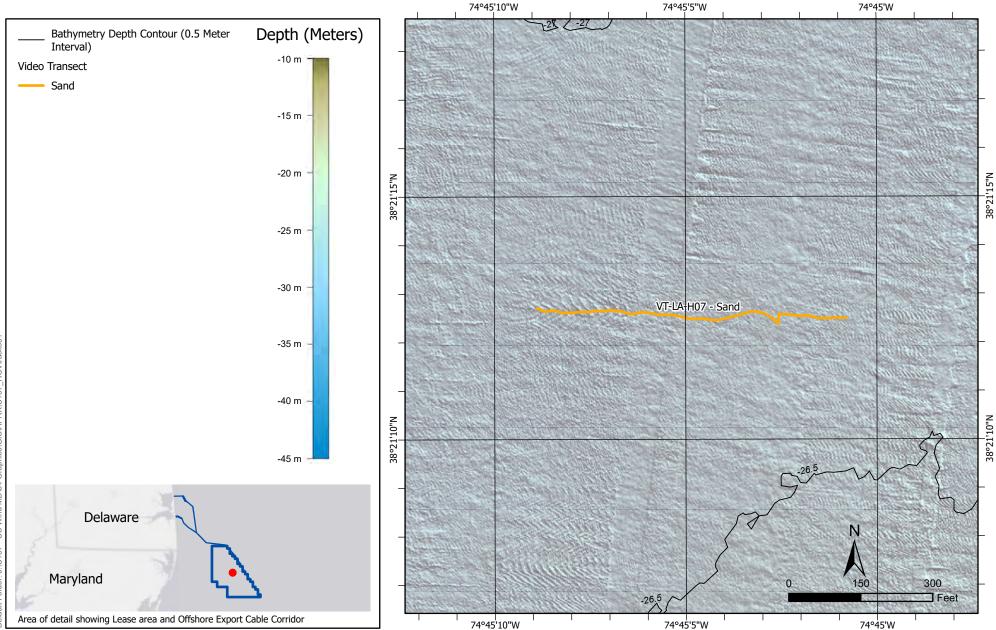


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

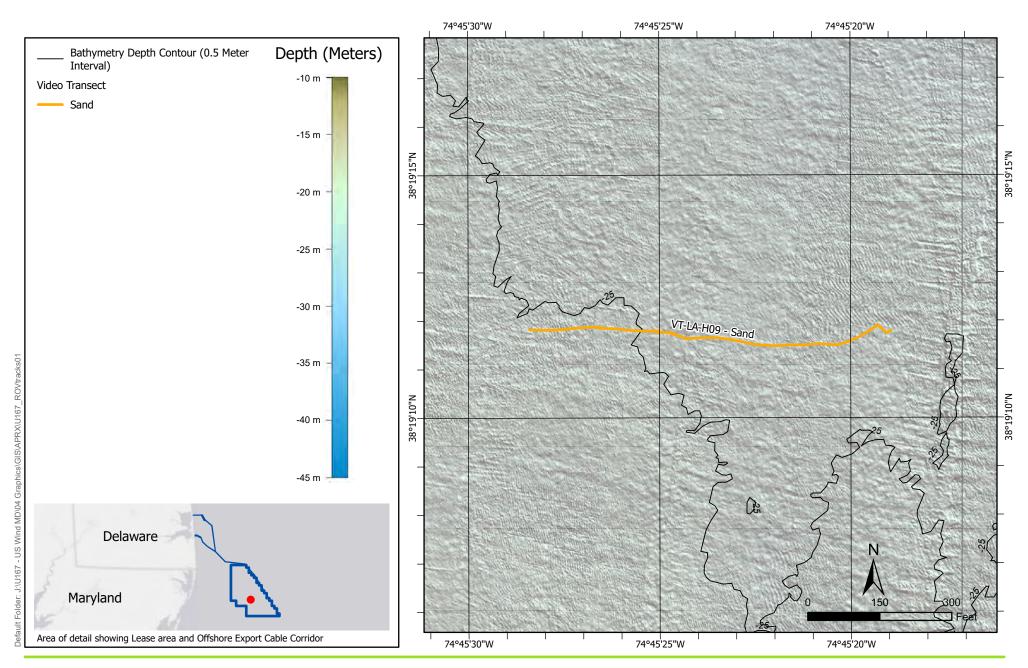


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

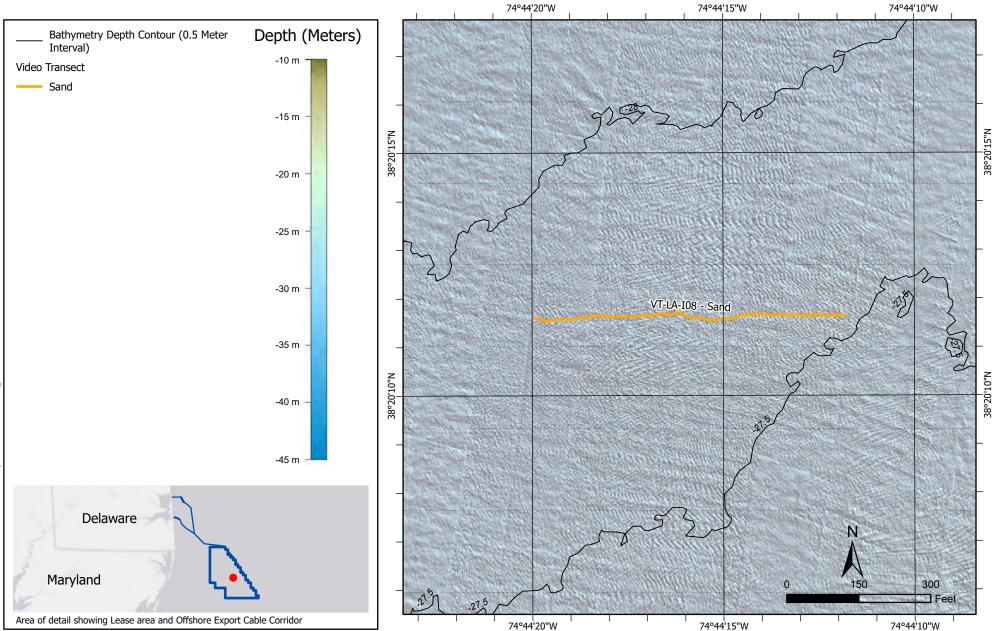


environmental consulting 8 engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

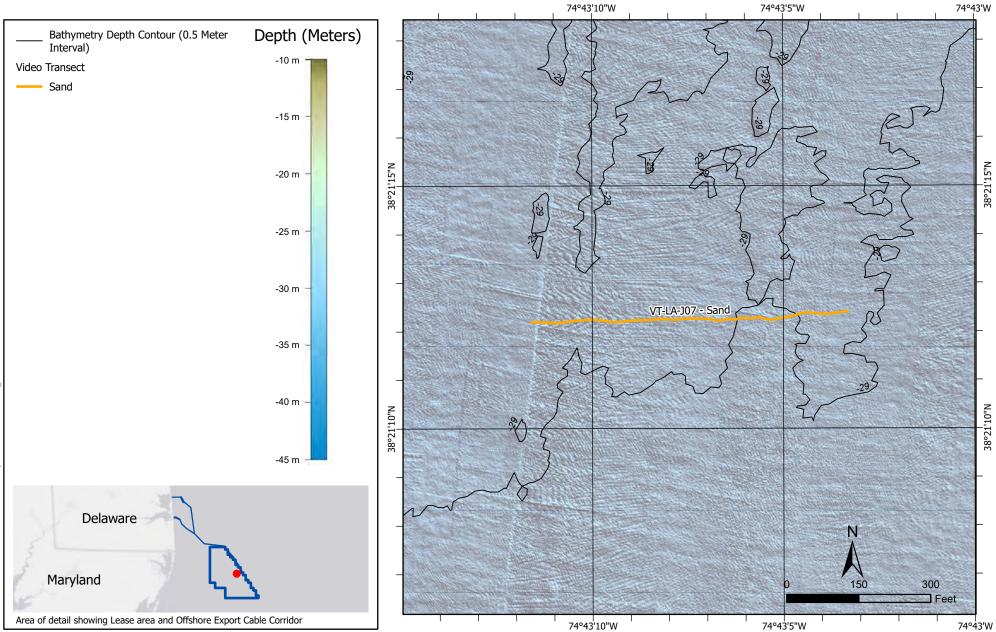

group environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Benthic Characterization for ROV Track VT-LA-H09

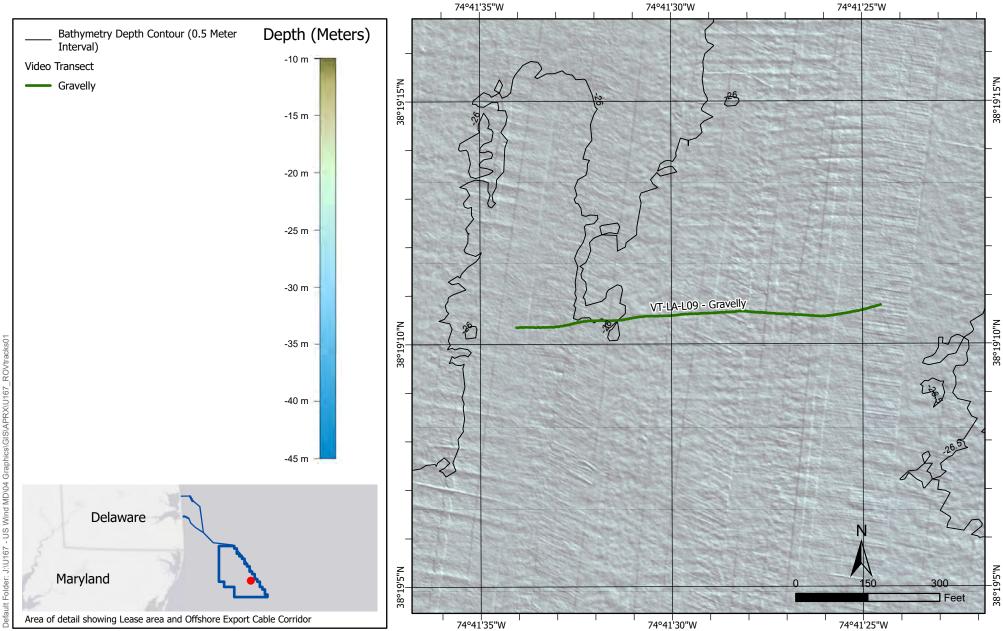


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

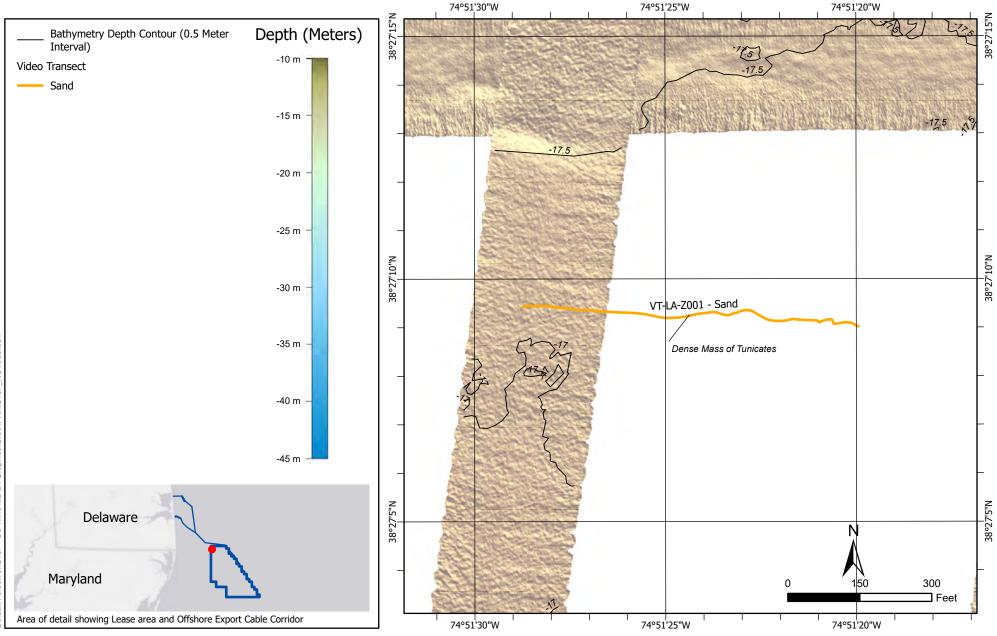

Benthic Characterization for ROV Track VT-LA-J07

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

environmental consulting & engineering services

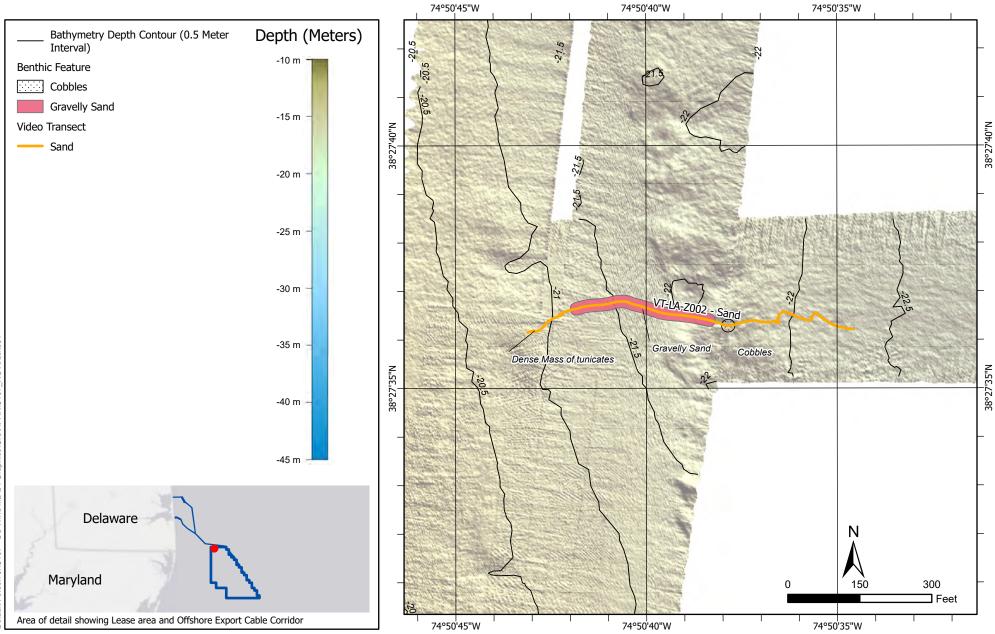


g environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

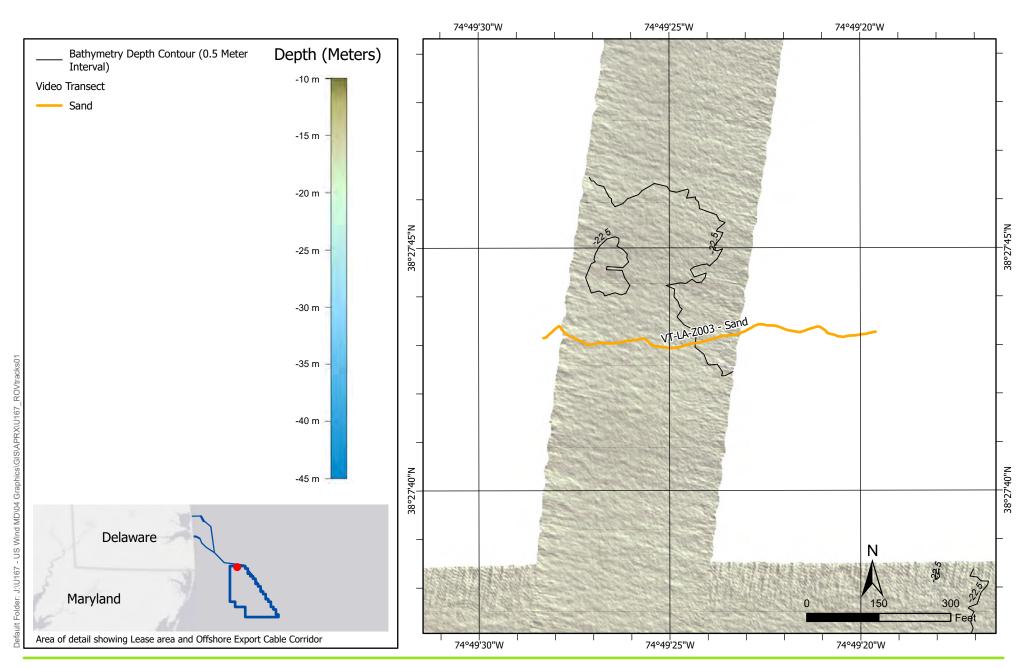


environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

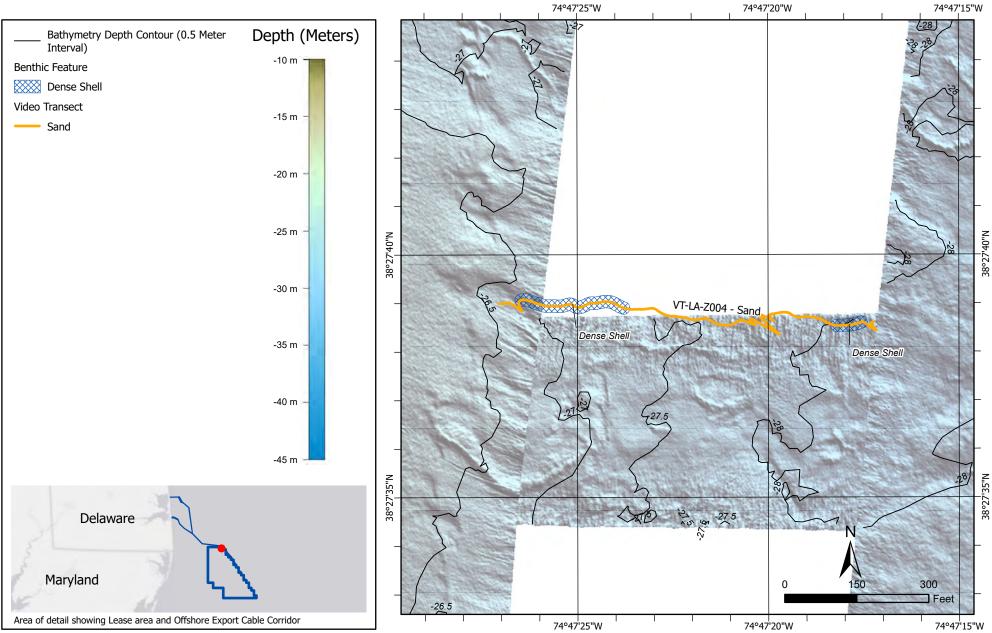


Maryland Offshore Wind Project Offshore Maryland and Delaware

D

g environmental consulting & engineering services

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

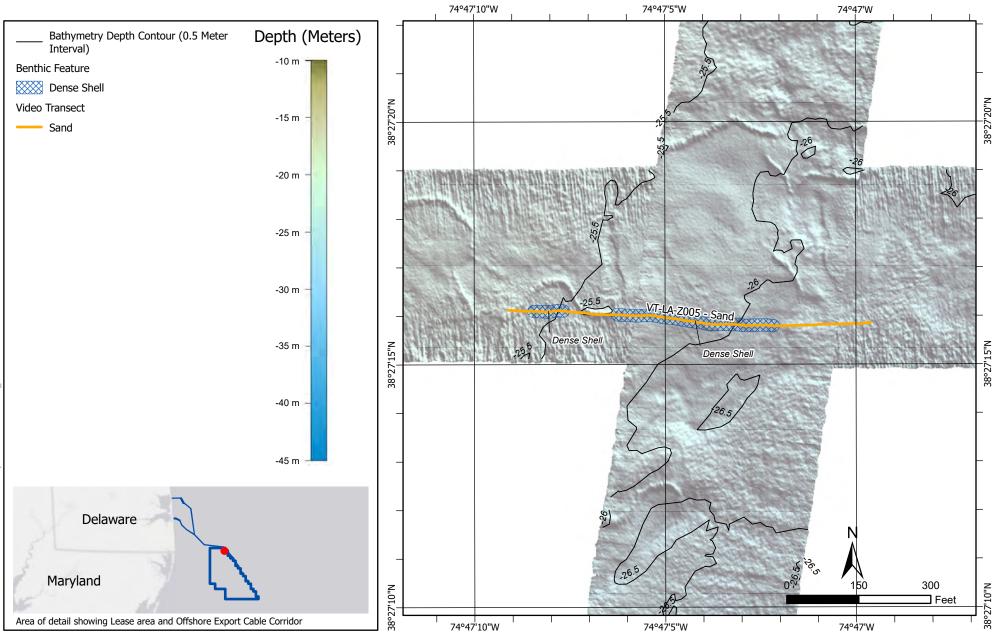


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

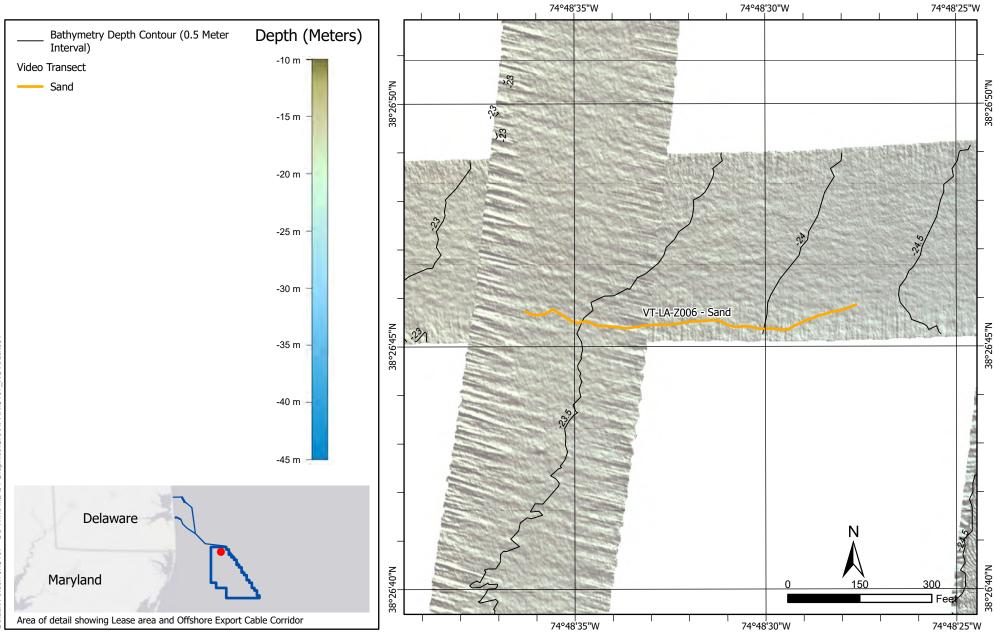
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

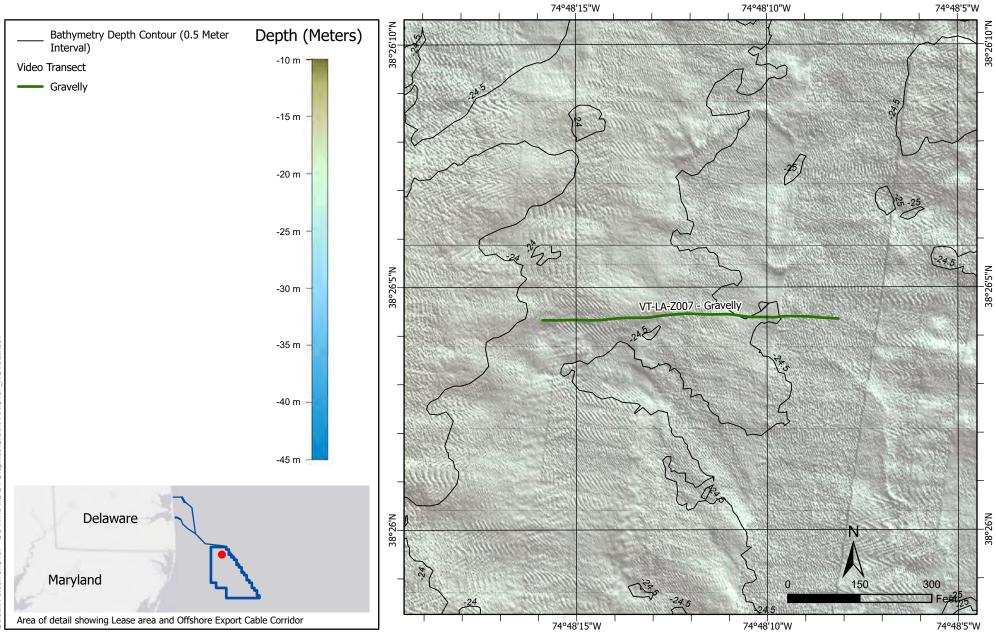


Maryland Offshore Wind Project Offshore Maryland and Delaware

> Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Benthic Characterization for ROV Track VT-LA-Z005

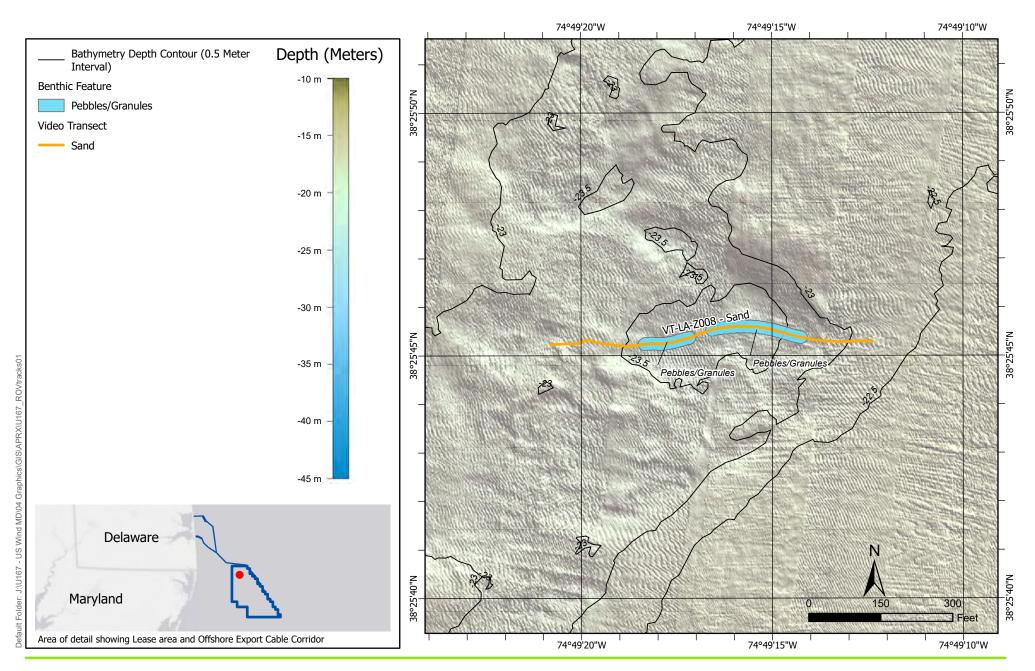
environmental consulting & engineering services


Benthic Characterization for ROV Track VT-LA-Z006

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

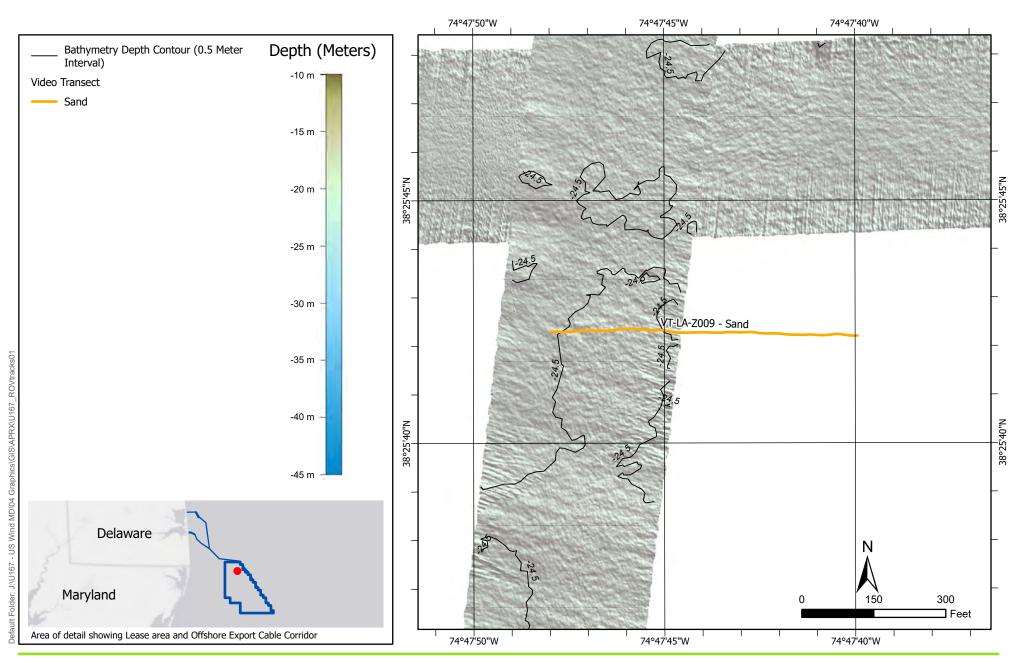


environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

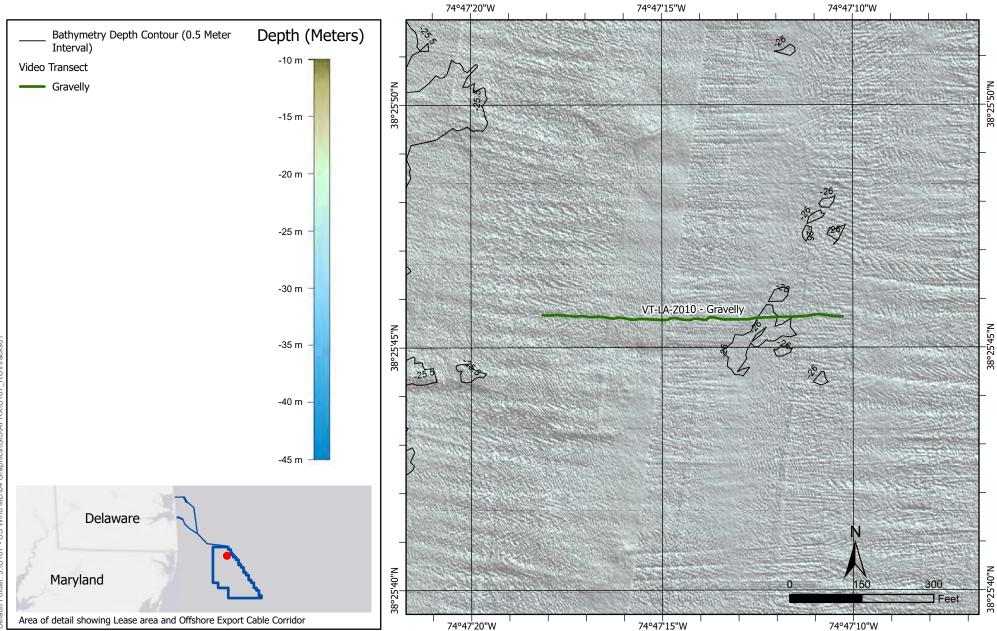

Benthic Characterization for ROV Track VT-LA-Z008

Maryland Offshore Wind Project

g environmental consulting & engineering services

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

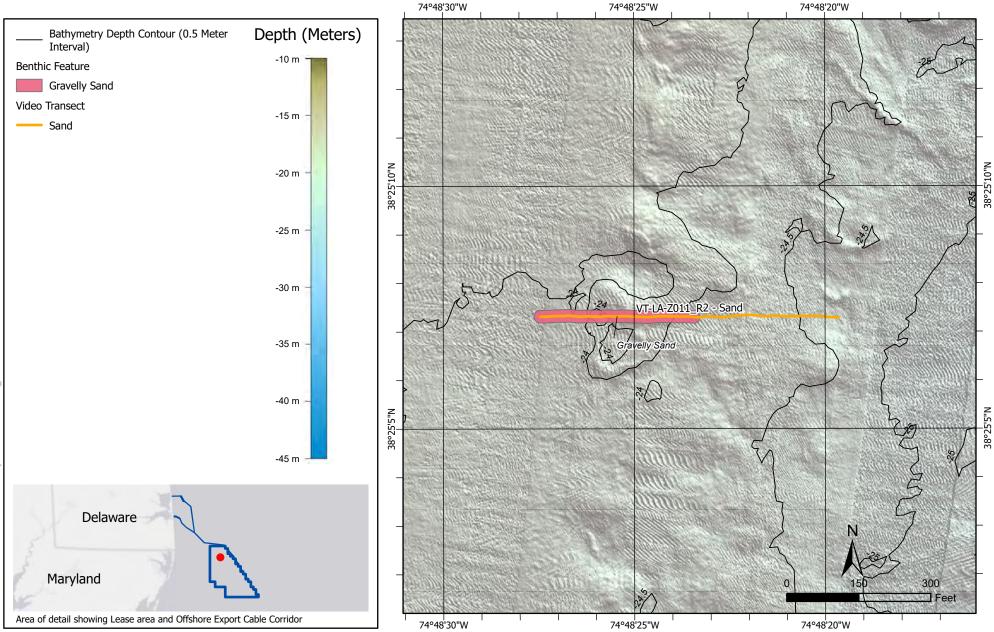


d environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

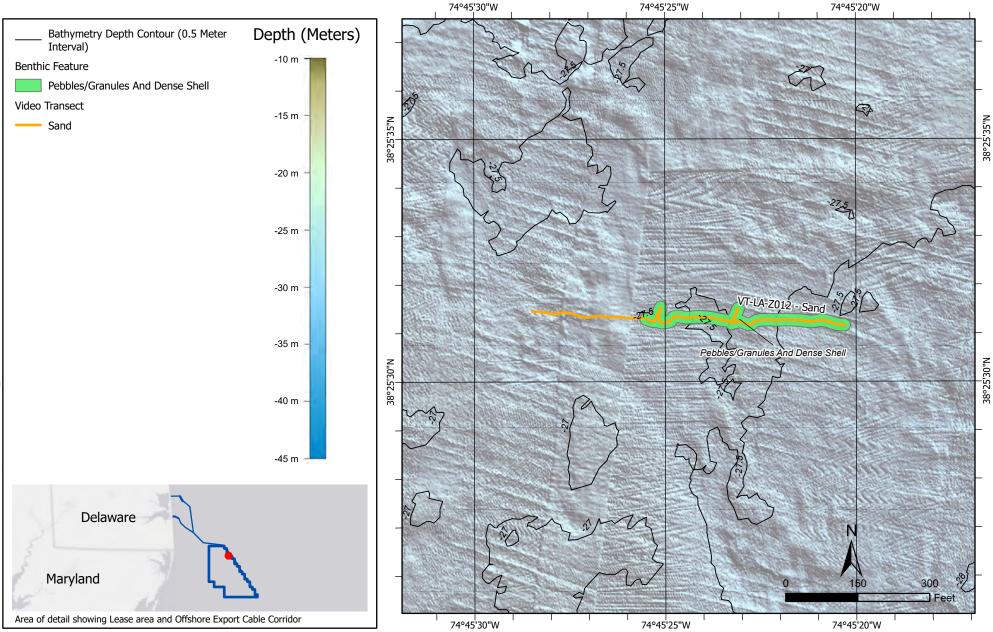


Maryland Offshore Wind Project Offshore Maryland and Delaware

> Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Benthic Characterization for ROV Track VT-LA-Z010

environmental consulting & engineering services

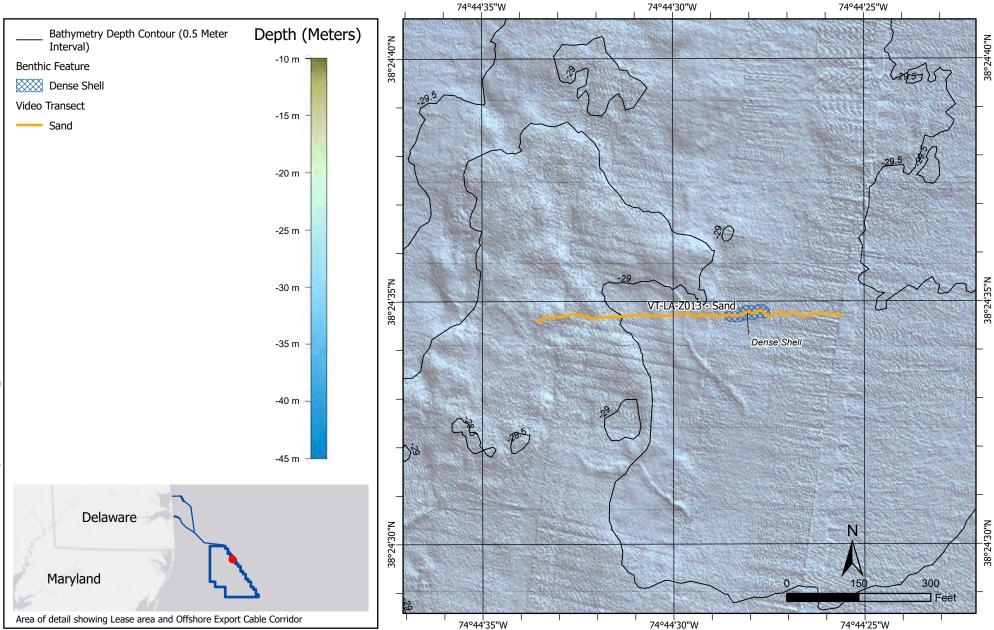

group Mai

environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

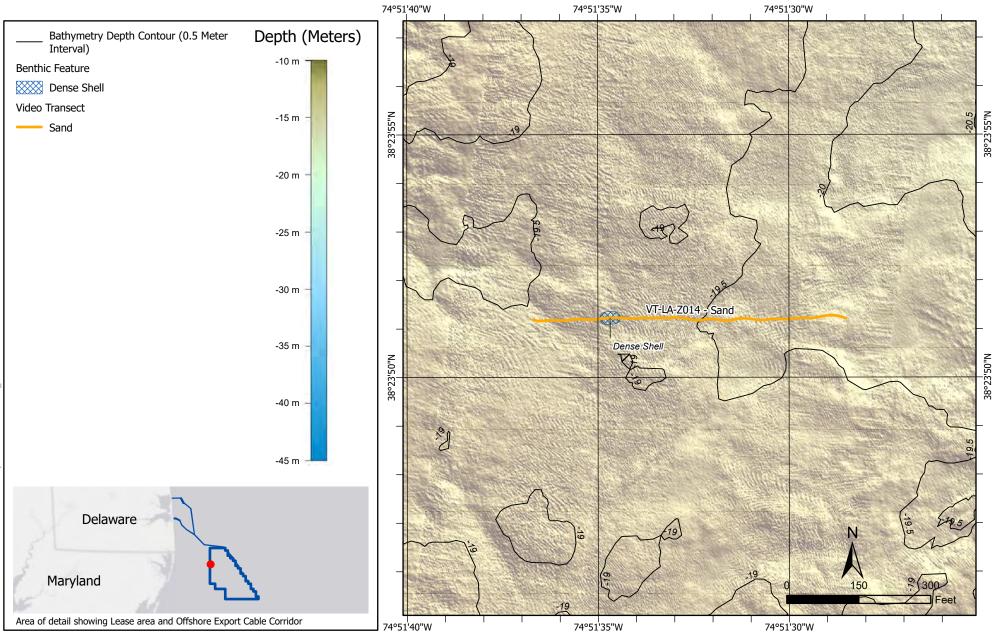
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

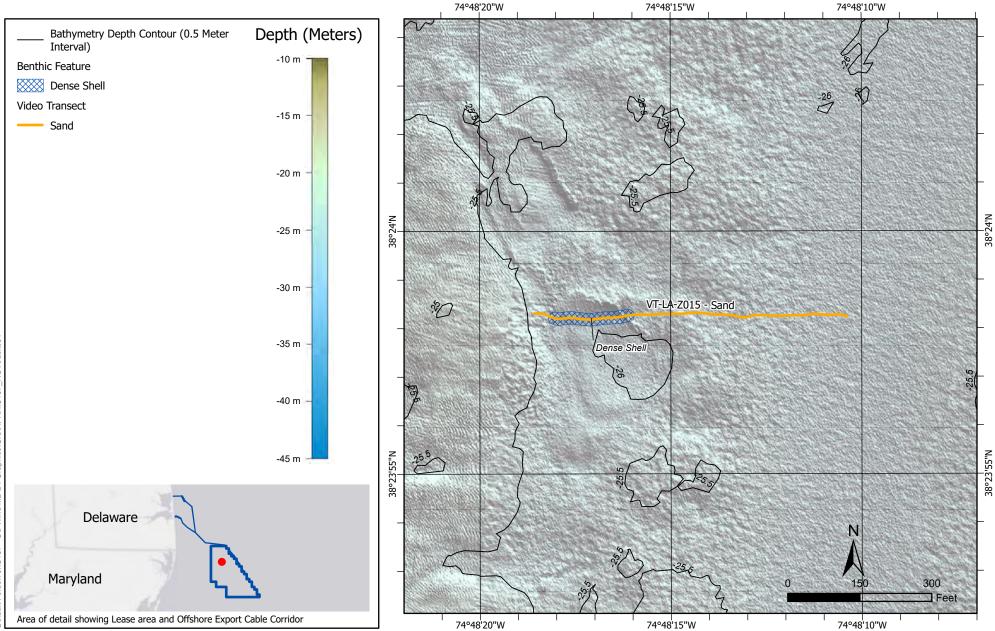
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



g environmental consulting & engineering services

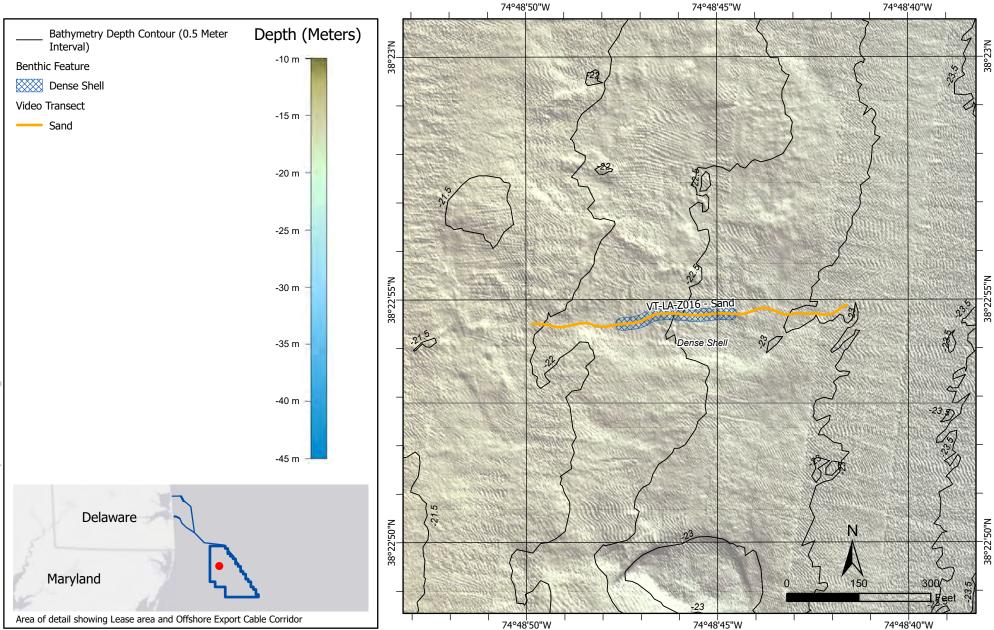
Maryland Offshore Wind Project

Offshore Maryland and Delaware


Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Maryland Offshore Wind Project Offshore Maryland and Delaware

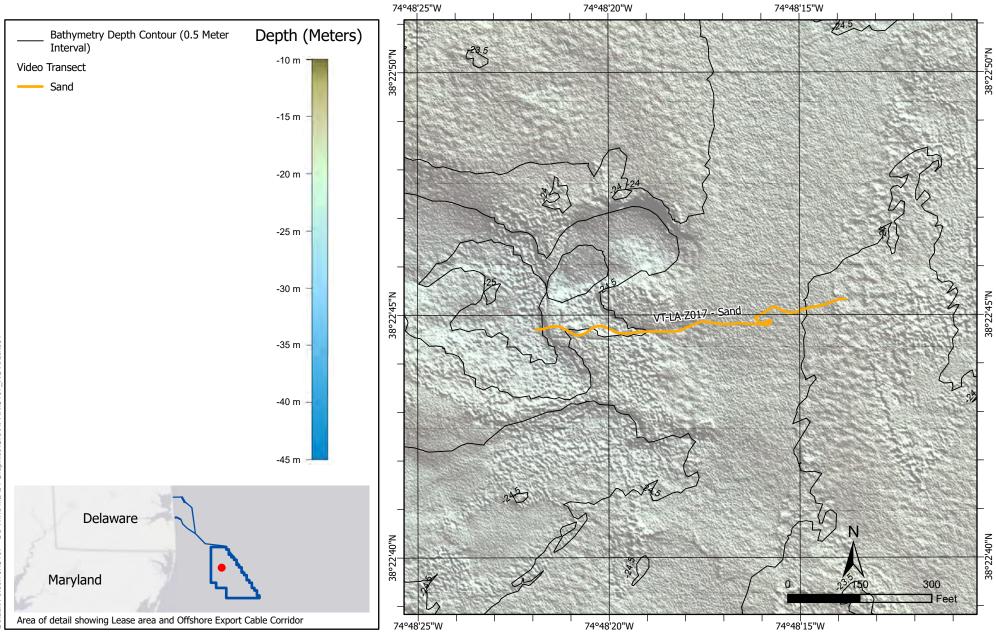
> Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021


environmental consulting & engineering services

environmental consulling engineering services Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

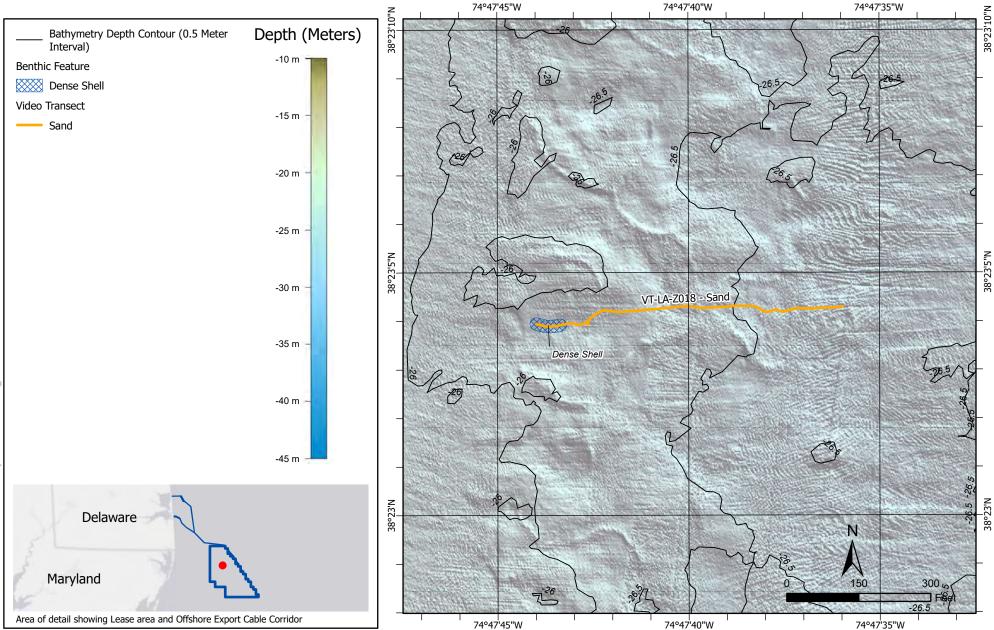


group environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

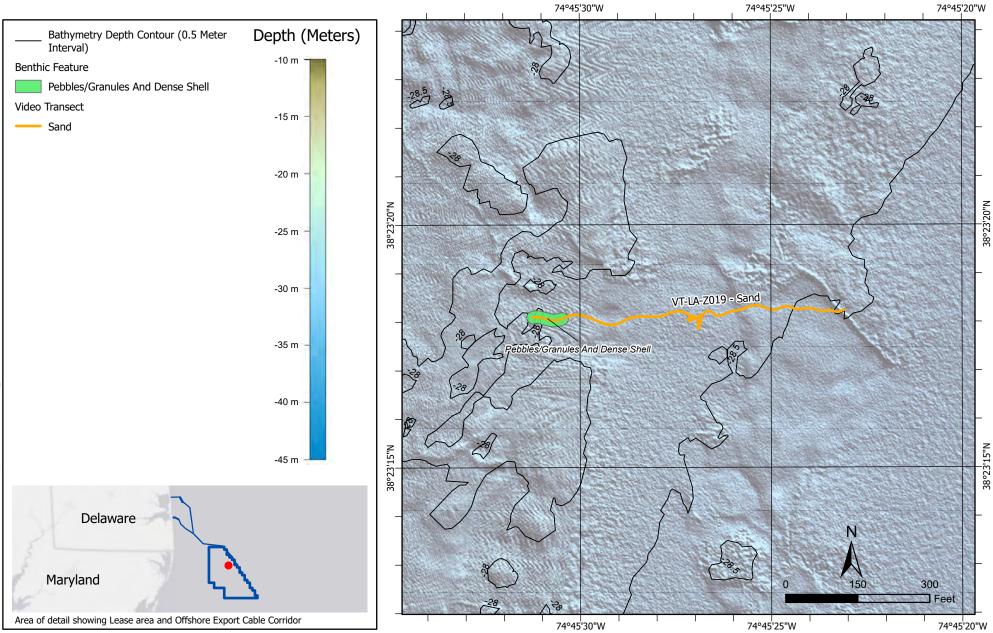


Maryland Offshore Wind Project

g environmental consulting & engineering services

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

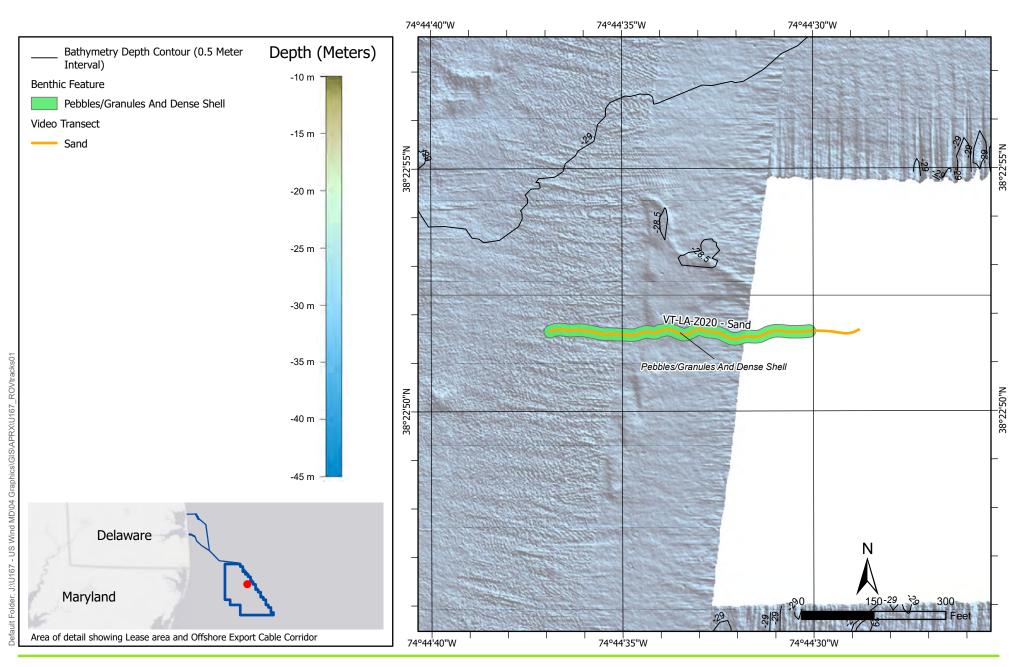


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

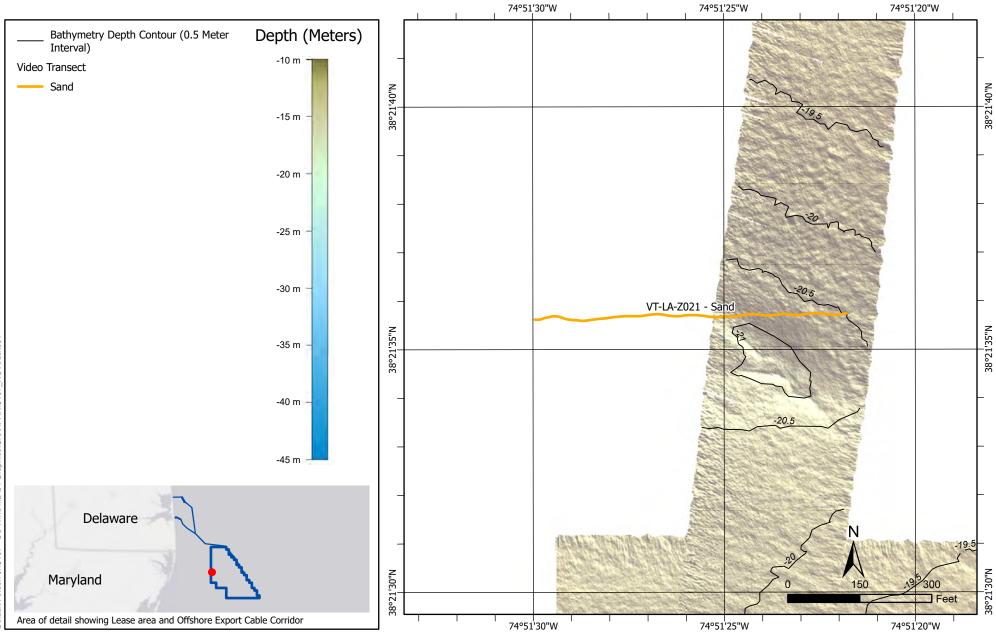


environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

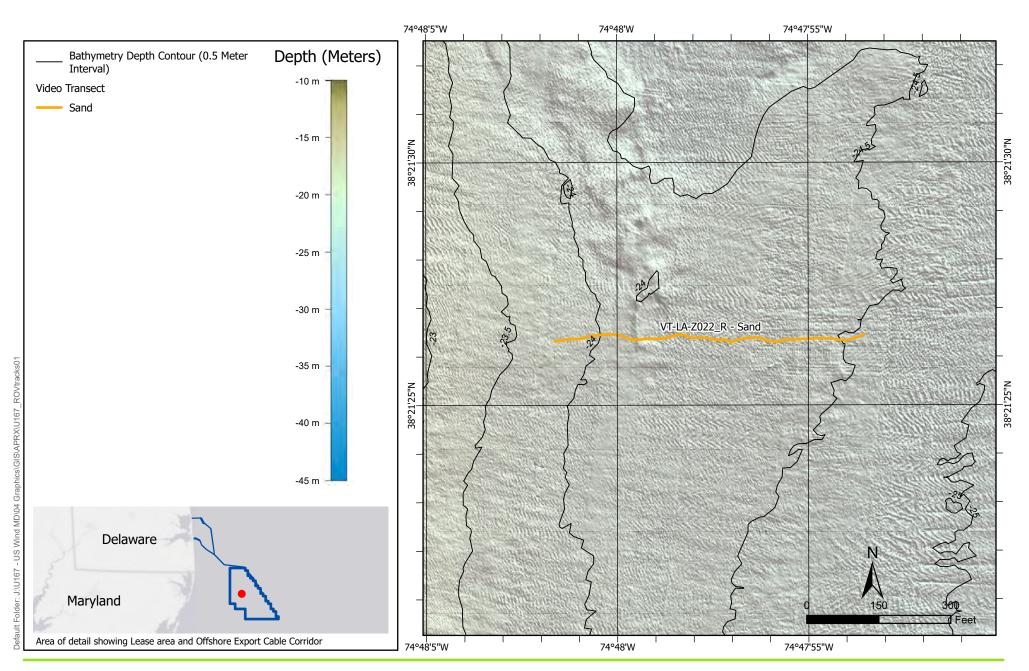


descriptions group environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

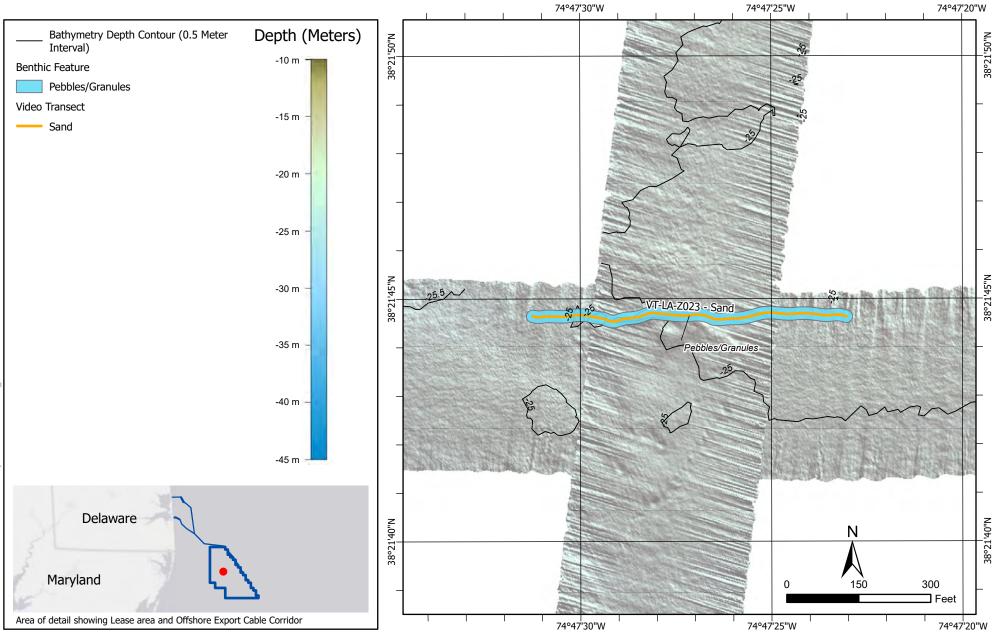
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

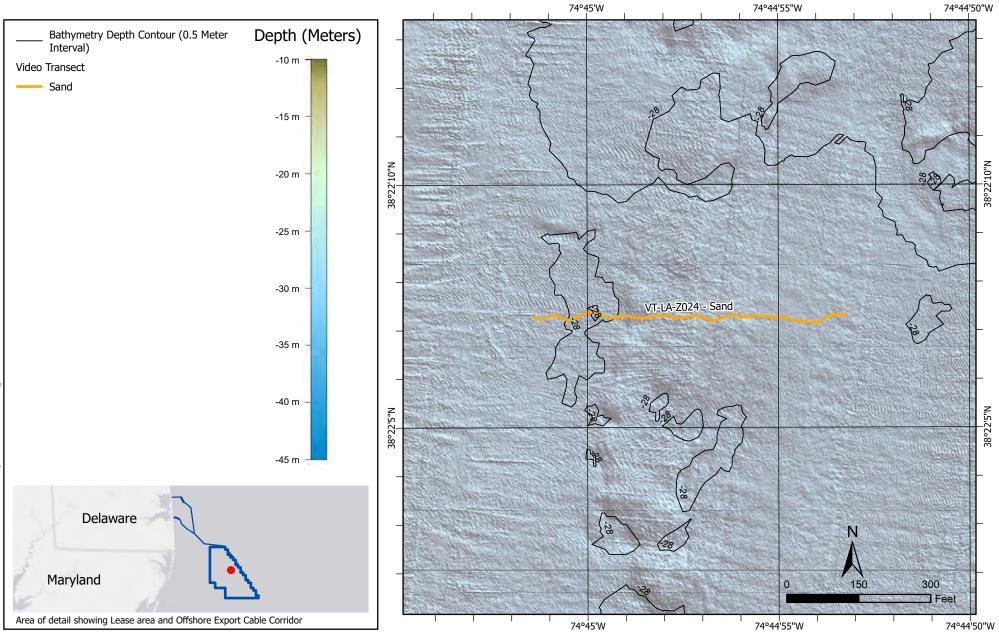


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

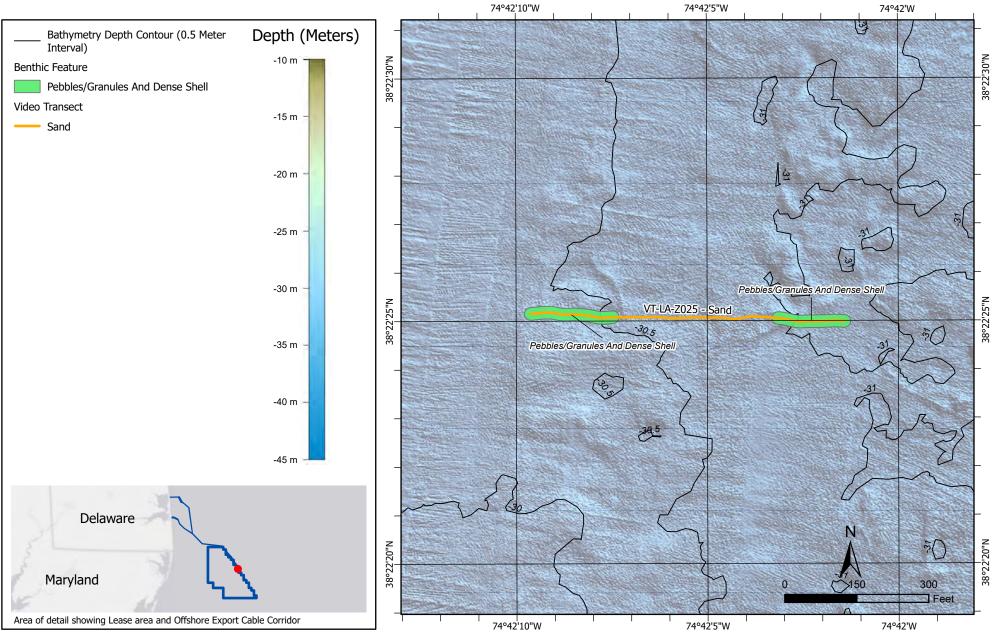
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

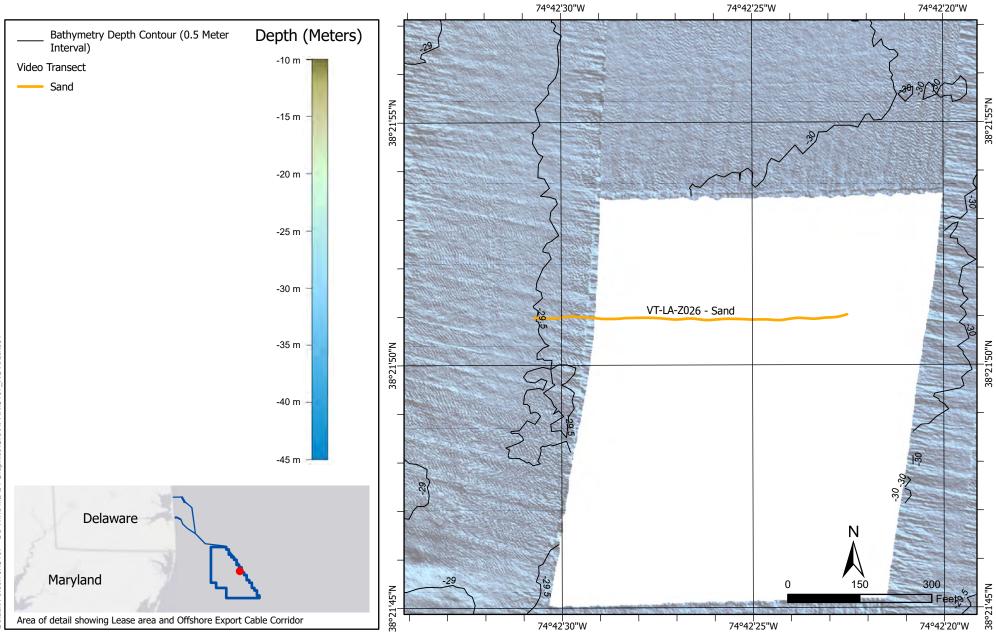


Benthic Characterization for ROV Track VT-LA-Z024

Maryland Offshore Wind Project Offshore Maryland and Delaware

environmental consulting & engineering services

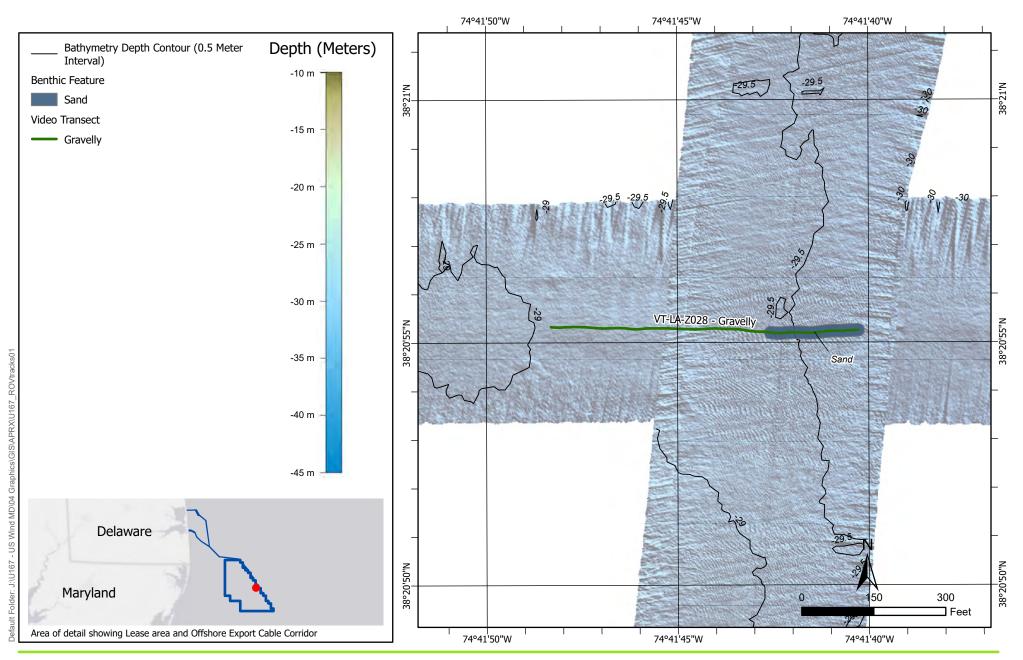
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

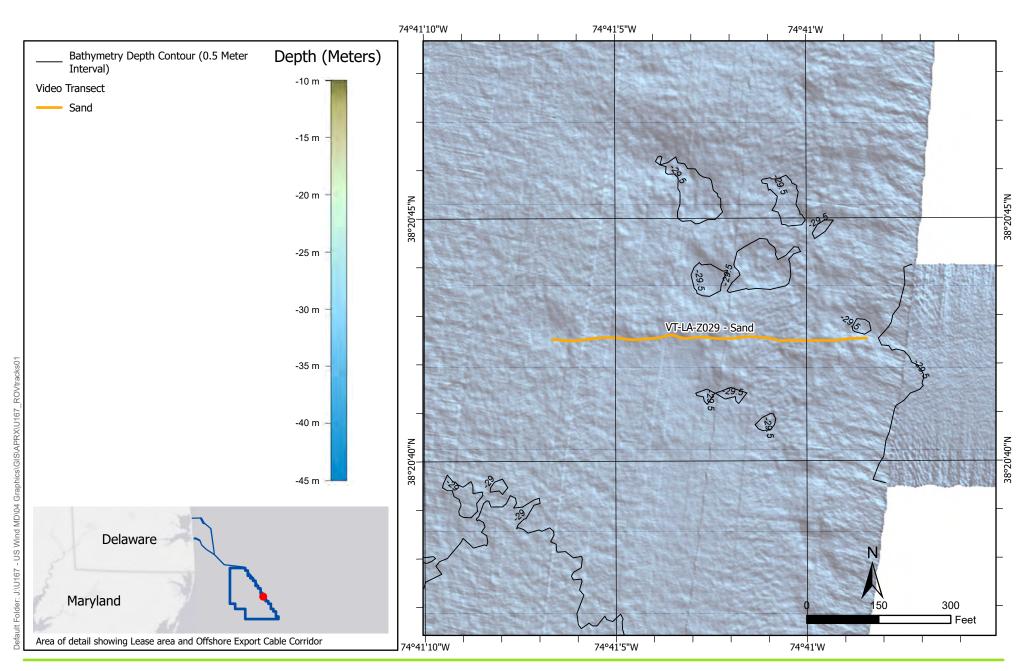


Offshore Maryland and Delaware g

environmental consulting & engineering services

Maryland Offshore Wind Project

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

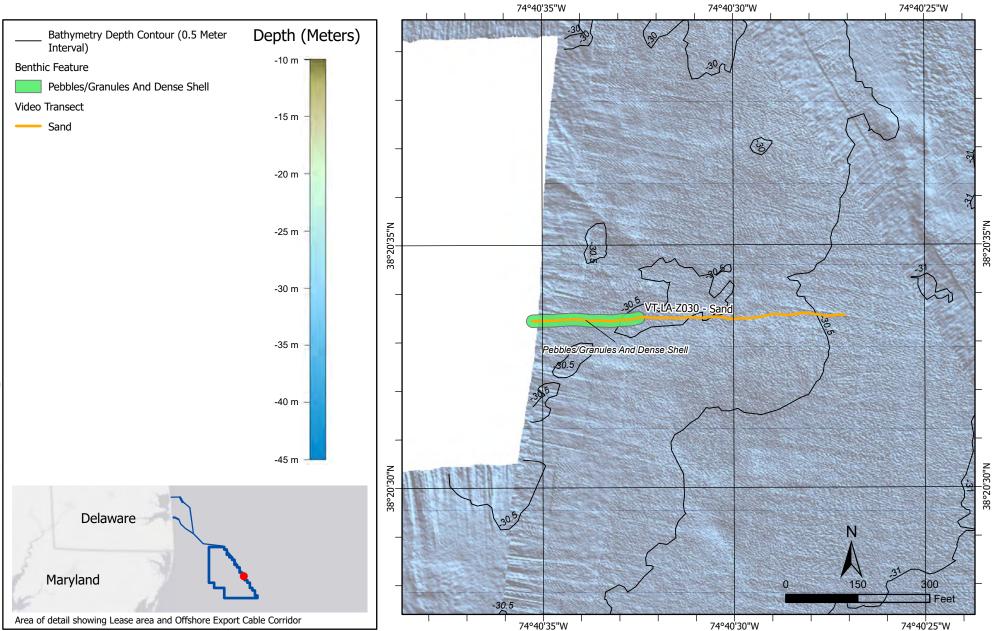


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

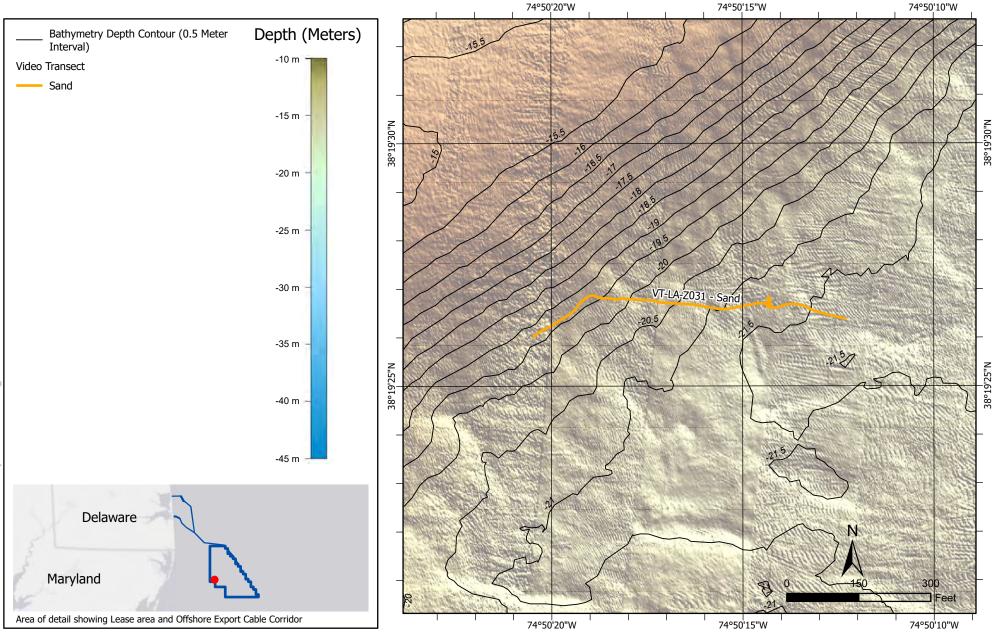


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

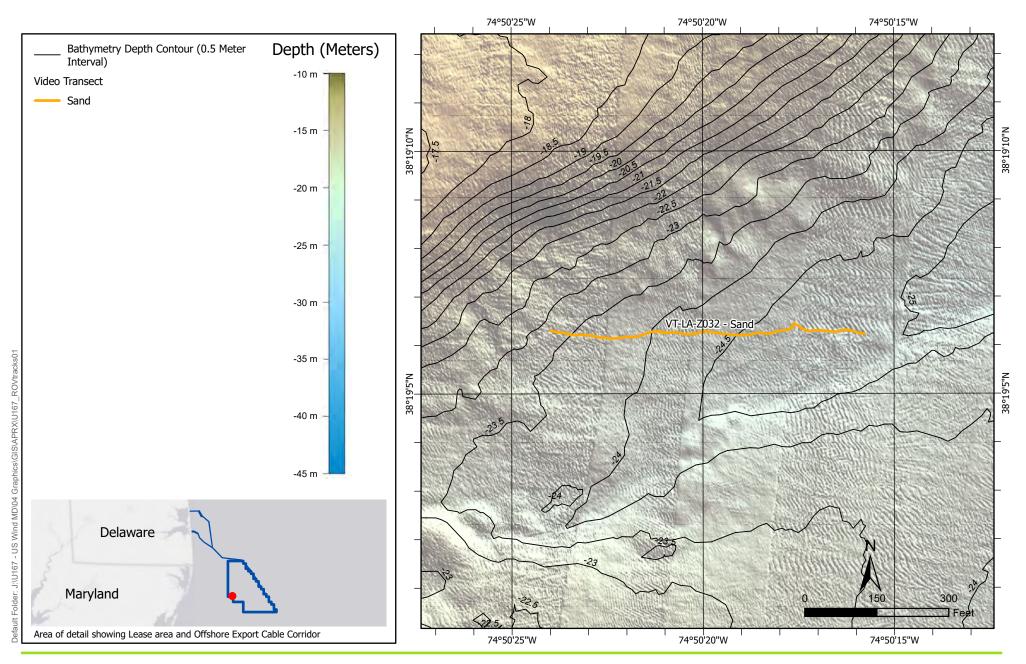
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Benthic Characterization for ROV Track VT-LA-Z030

Maryland Offshore Wind Project Offshore Maryland and Delaware

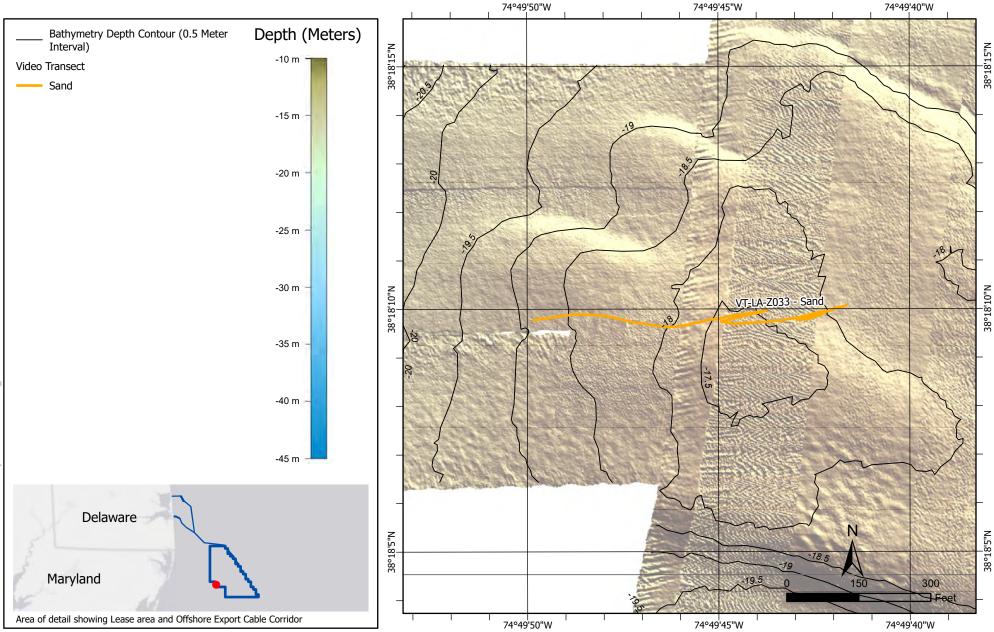
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021


environmental consulting & engineering services

Maryland Offshore Wind Project Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

environmental consulting & engineering services

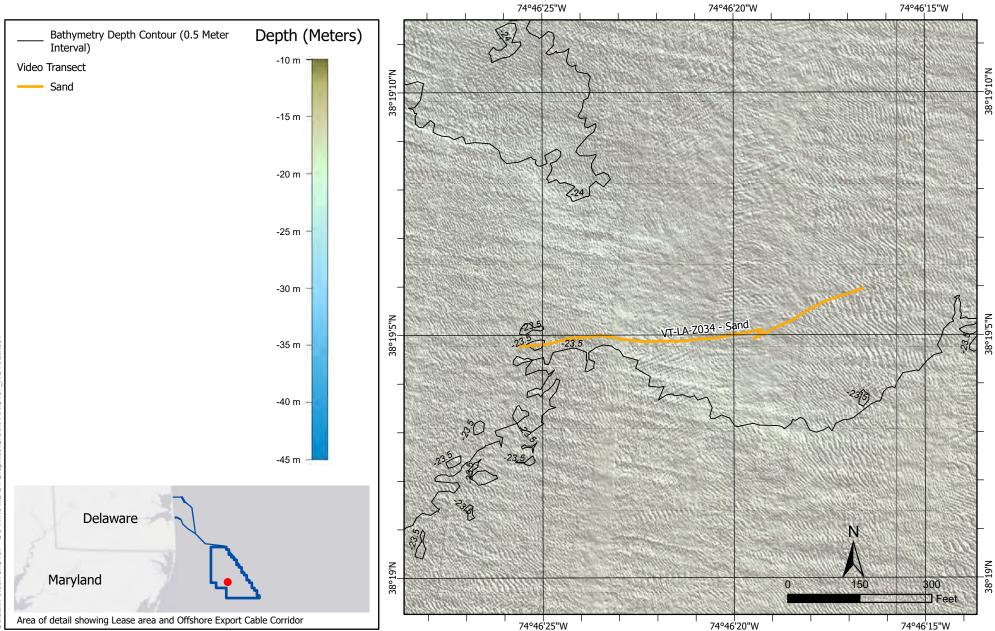


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

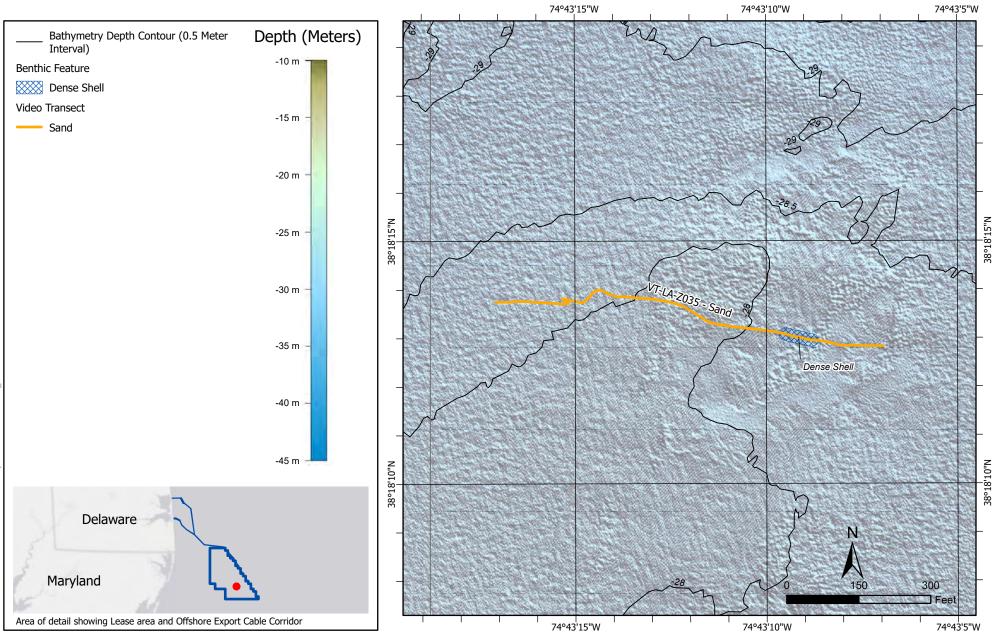
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

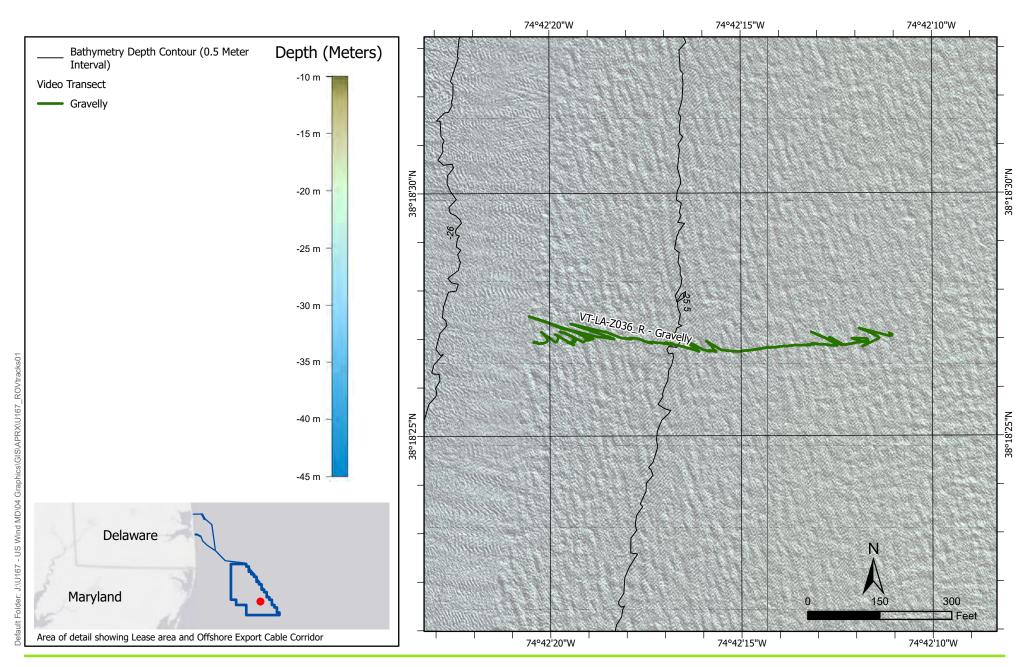


environmental consulting environmental consulting engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

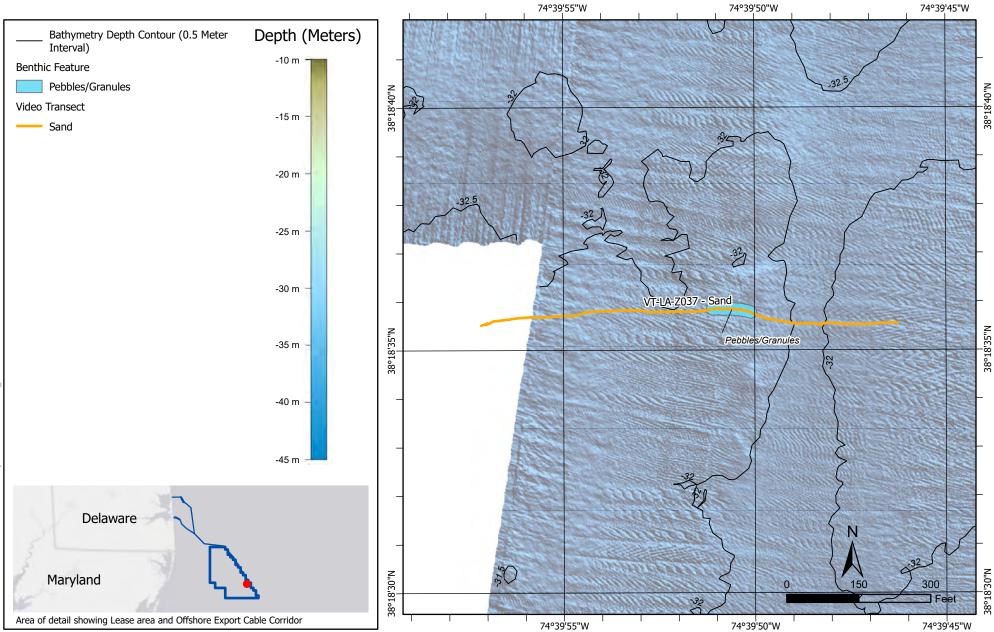

Benthic Characterization for ROV Track VT-LA-Z035

Maryland Offshore Wind Project Offshore Maryland and Delaware

environmental consulting & engineering services

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021

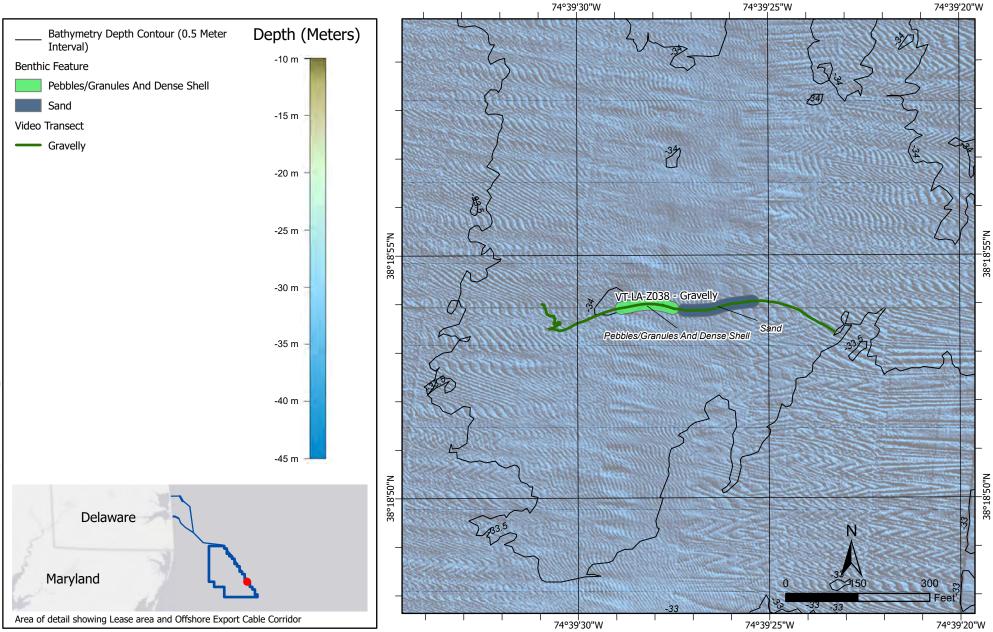
2) TDI, Video Transect Position Data, 202
 3) ESS, Track Characterization, 2021



Maryland Offshore Wind Project

Offshore Maryland and Delaware

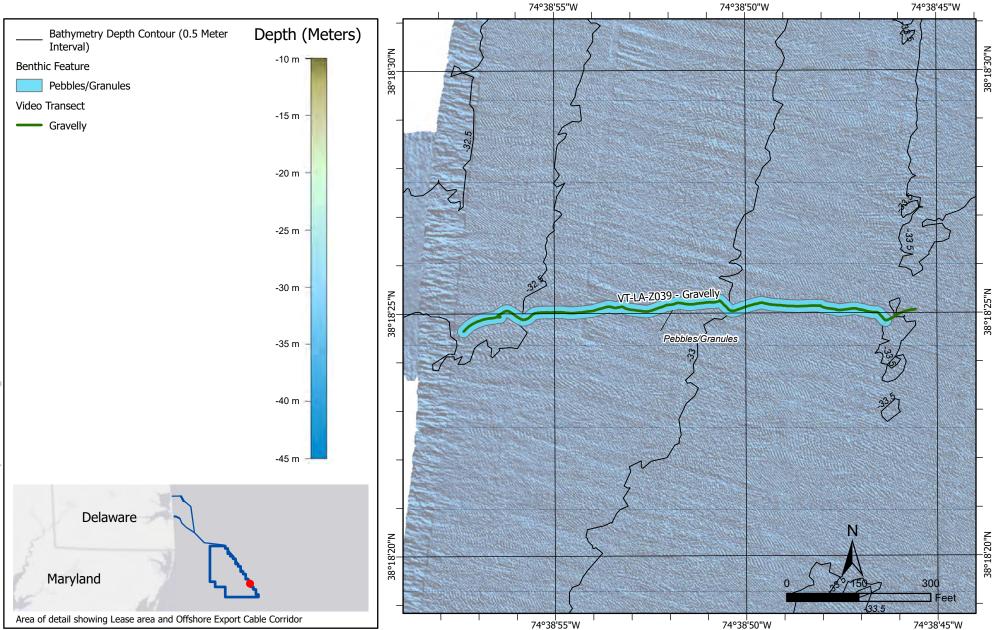
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021


Benthic Characterization for ROV Track VT-LA-Z037

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

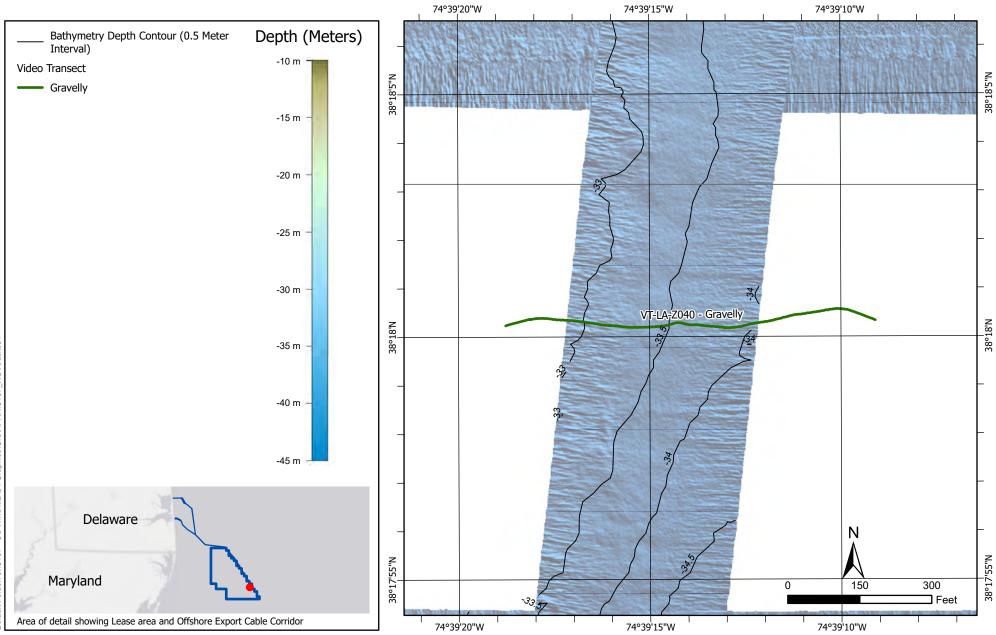

Benthic Characterization for ROV Track VT-LA-Z038

Maryland Offshore Wind Project Offshore Maryland and Delaware

environmental consulting engineering services

Source: 1) GEMS, Bathymetry 2022

a) GEMS, Bathymetry, 2022
b) TDI, Video Transect Position Data, 2021
c) ESS, Track Characterization, 2021

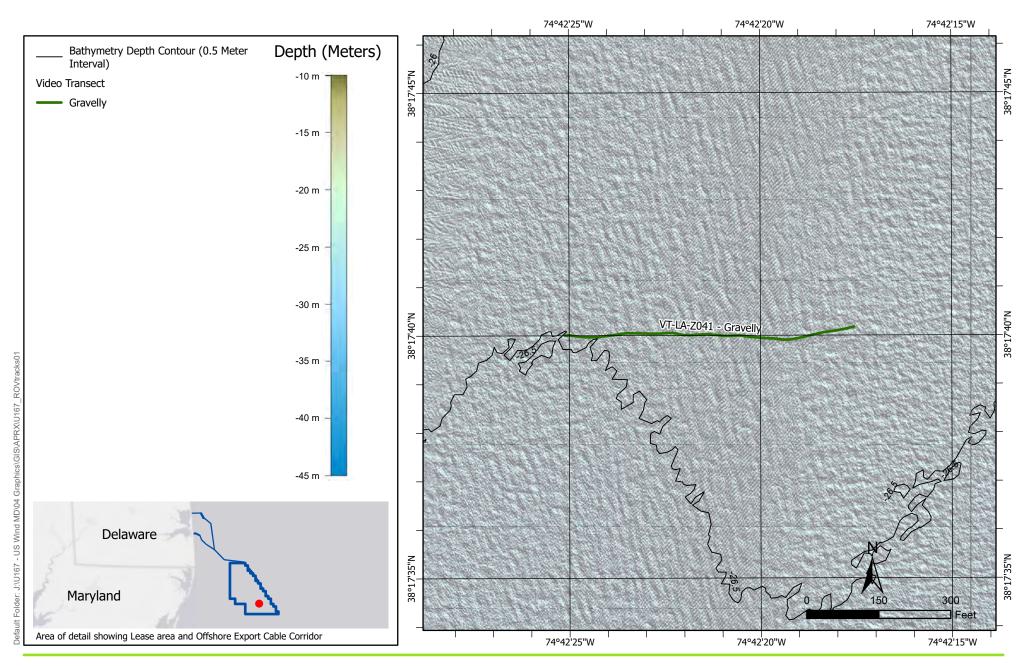


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

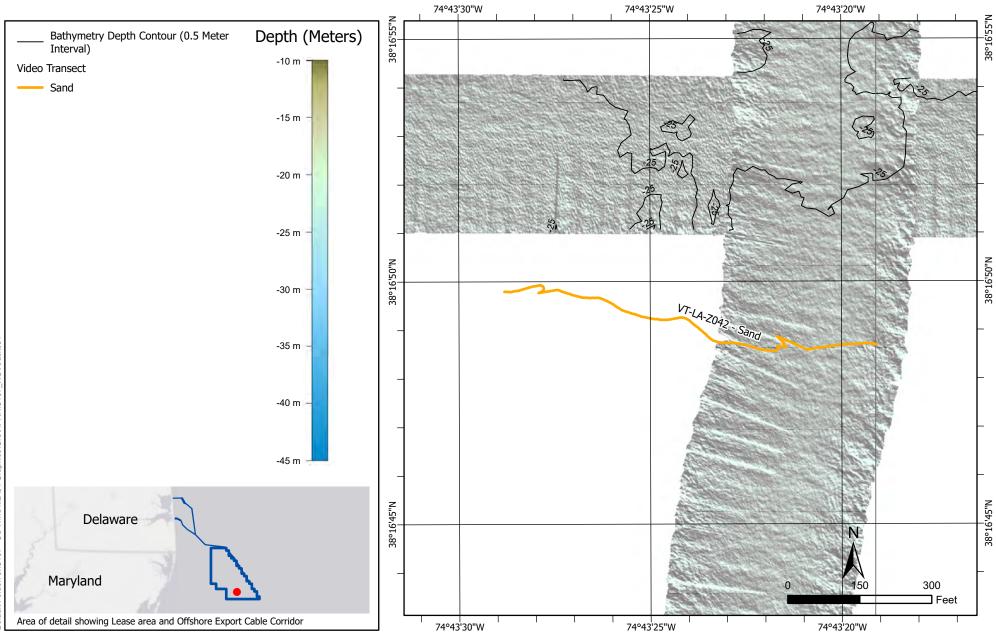


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

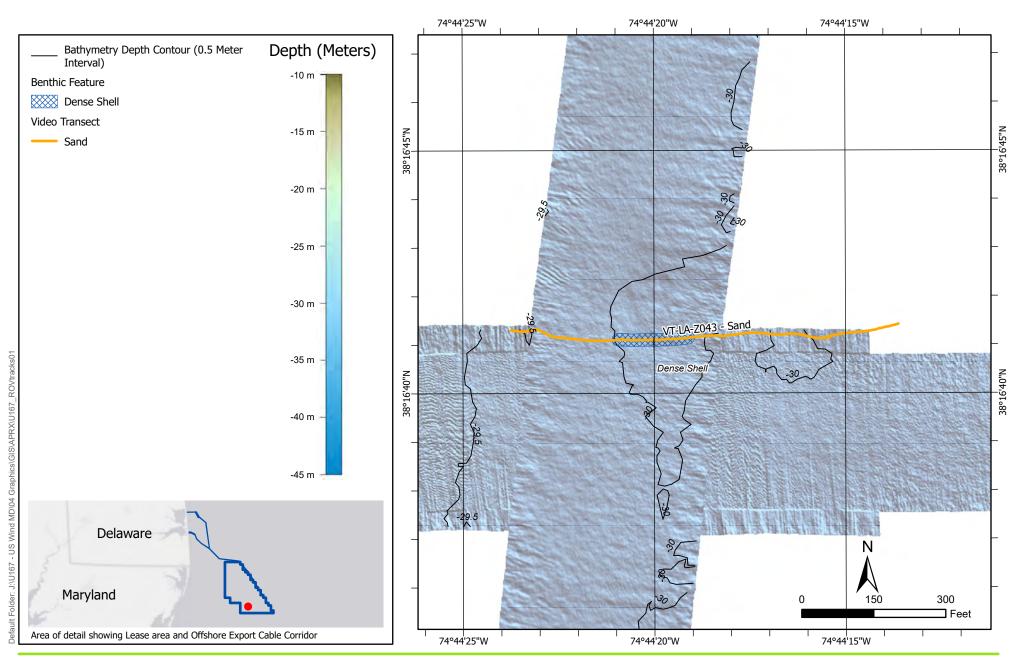


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

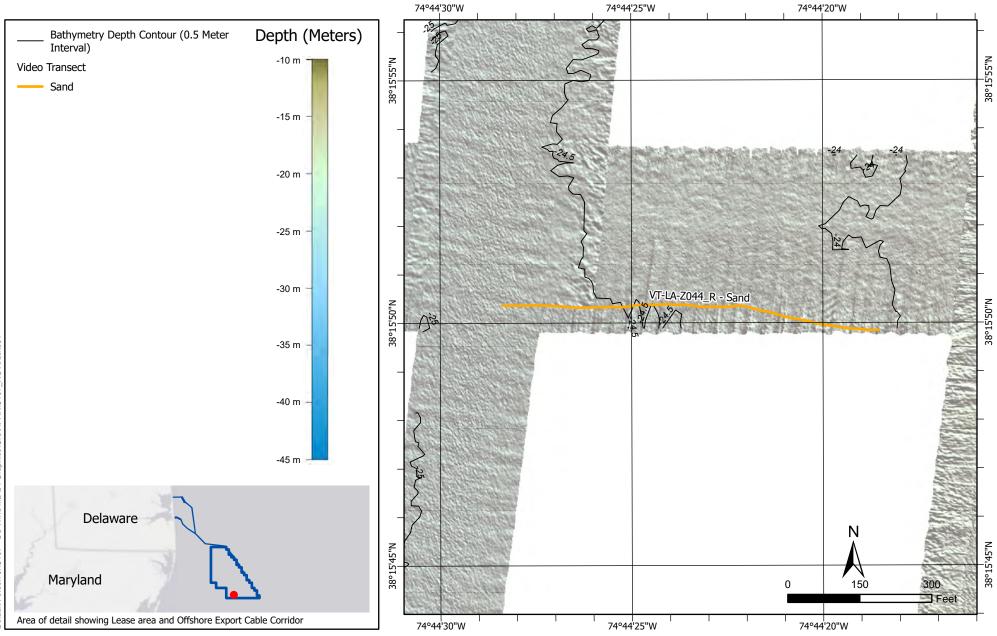


g environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



group environmental consulting engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

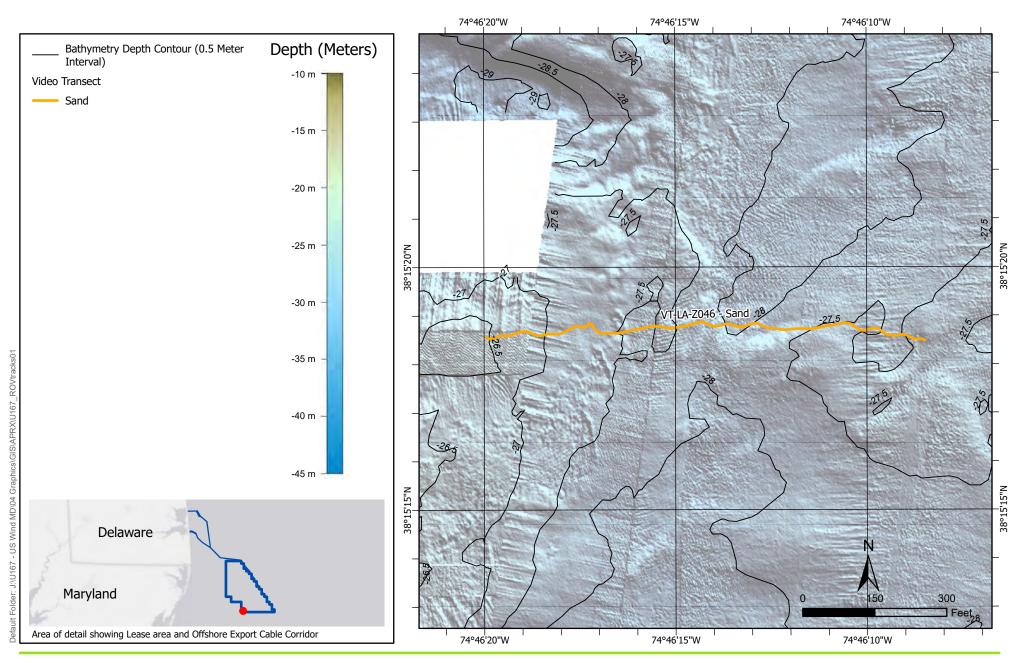
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

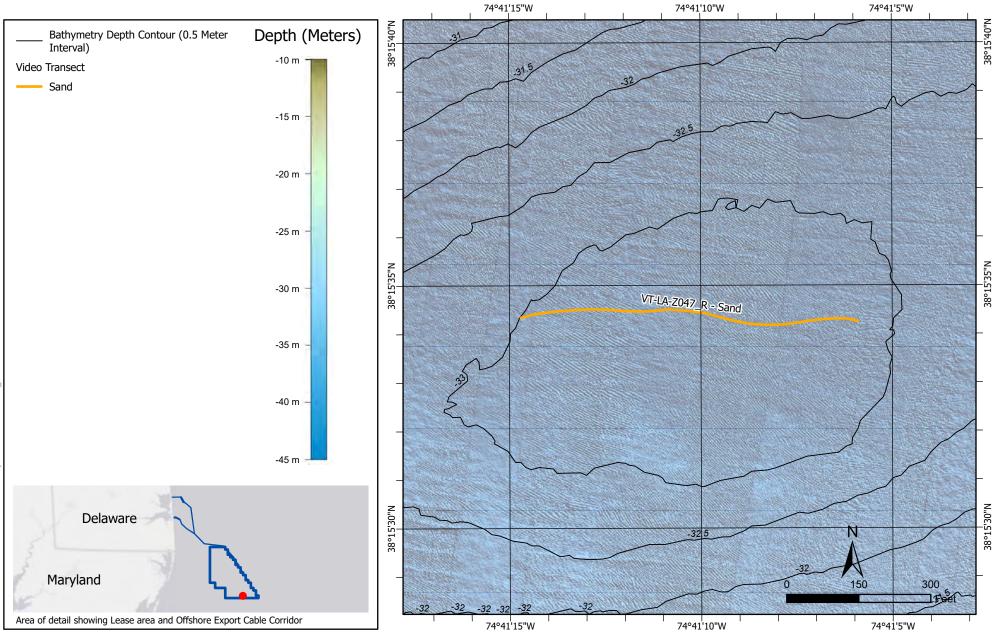


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

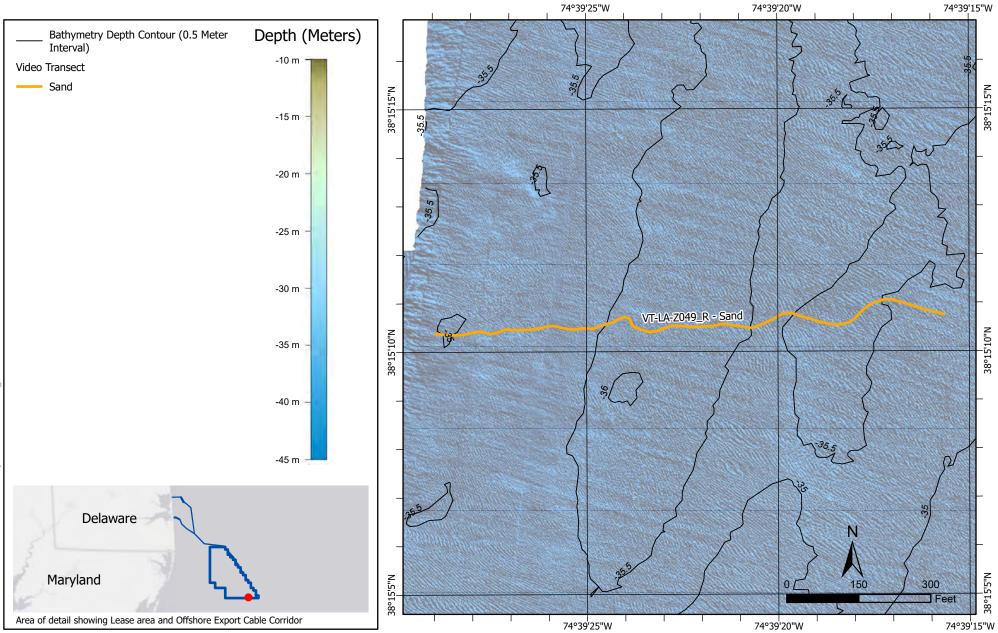
Offshore Maryland and Delaware

Maryland Offshore Wind Project

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Benthic Characterization for ROV Track VT-LA-Z047_R

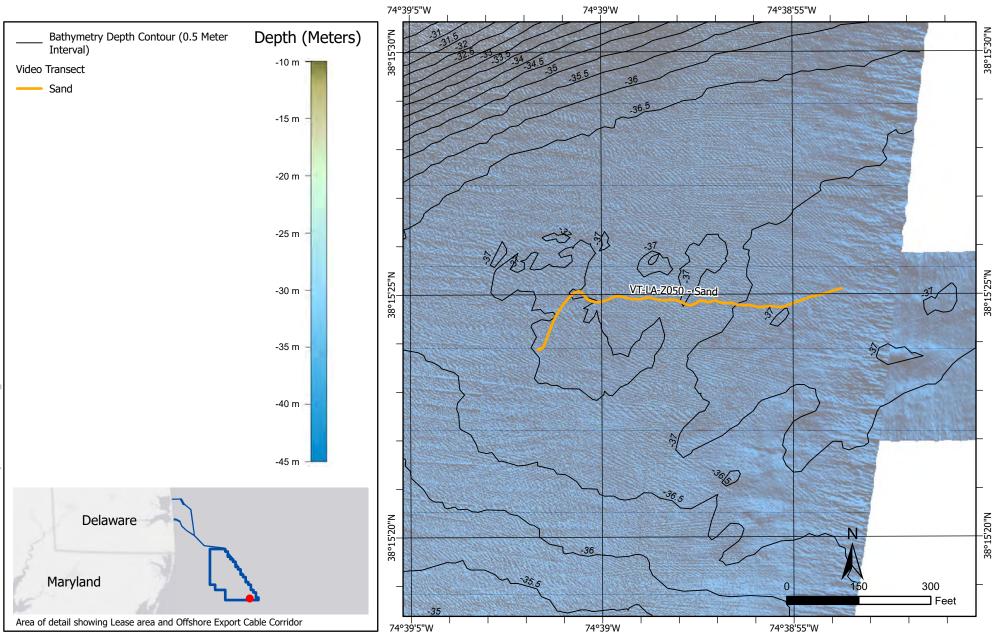
g environmental consulting & engineering services



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

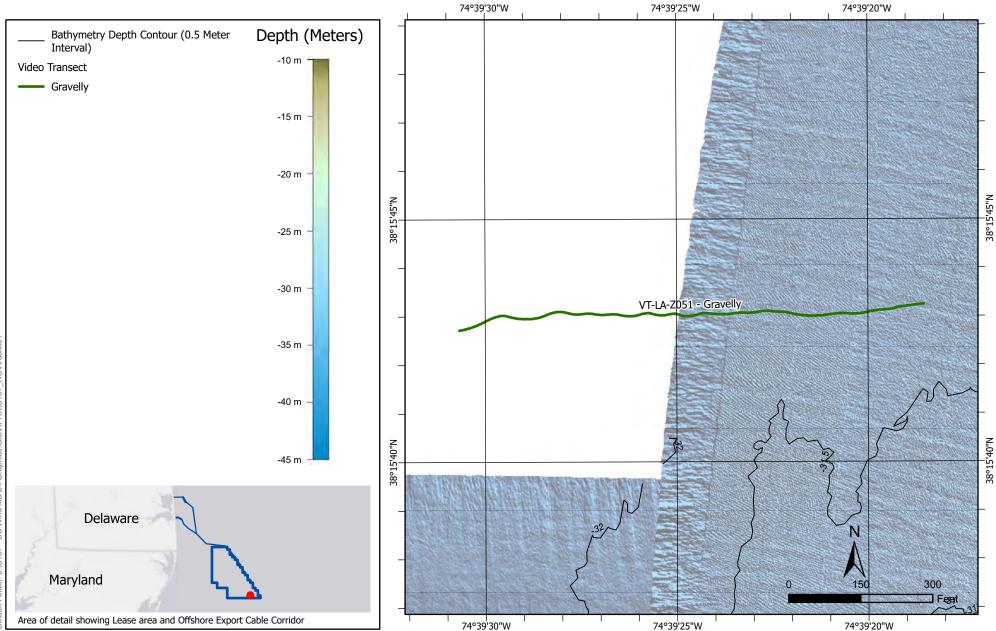

Benthic Characterization for ROV Track VT-LA-Z049_R

Maryland Offshore Wind Project

environmental consulting & engineering services

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

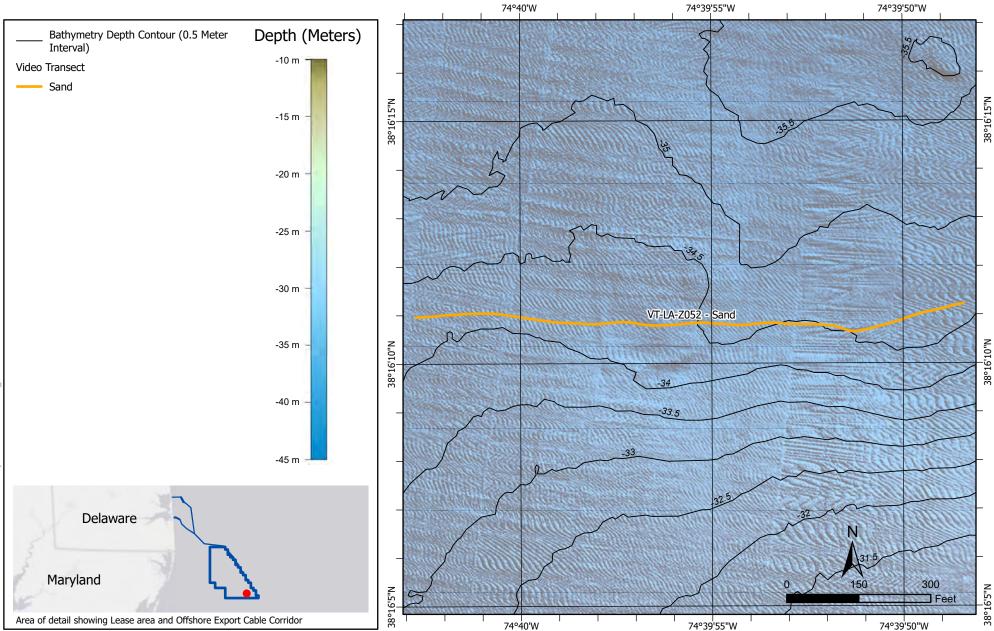


group environmental consulting & engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

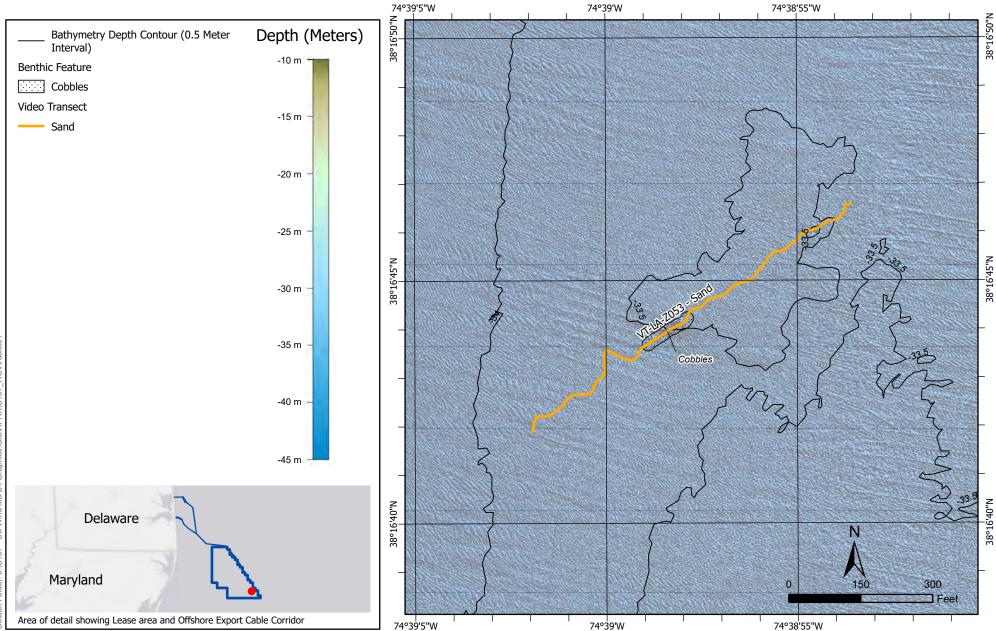
Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021



group environmental consulting 8 engineering services

Maryland Offshore Wind Project

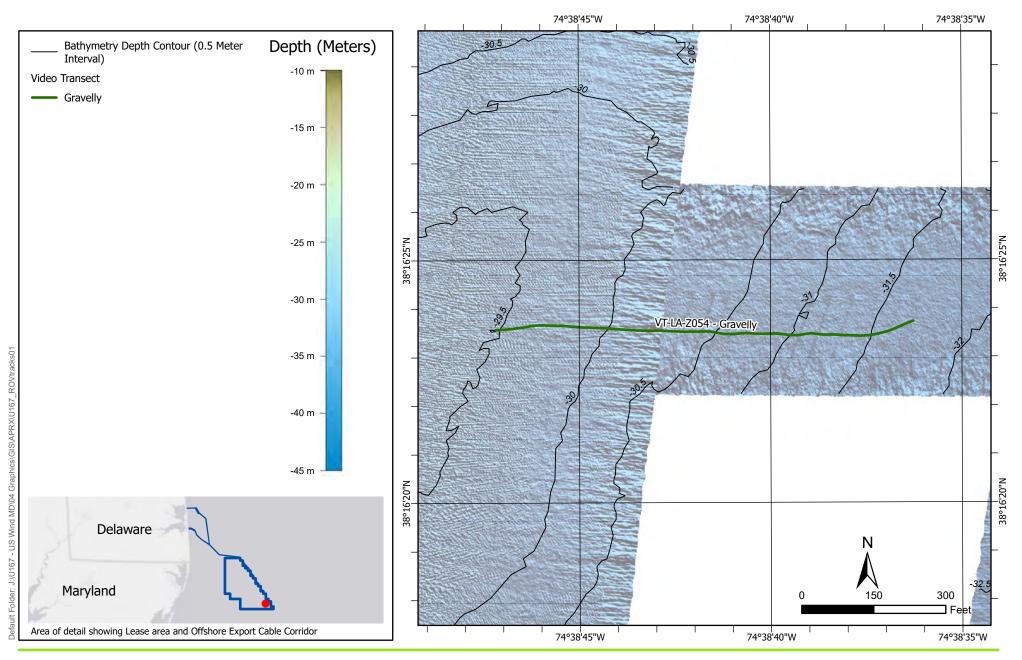
Offshore Maryland and Delaware


Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Maryland Offshore Wind Project Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021 Benthic Characterization for ROV Track VT-LA-Z052

environmental consulting & engineering services

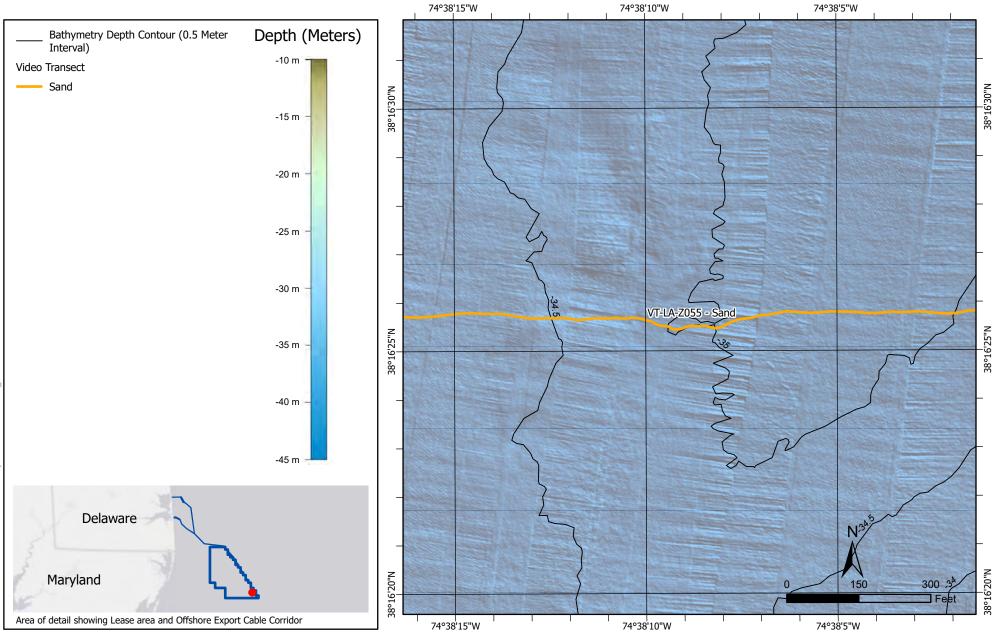


Maryland Offshore Wind Project Offshore Maryland and Delaware

D

g environmental consulting & engineering services

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

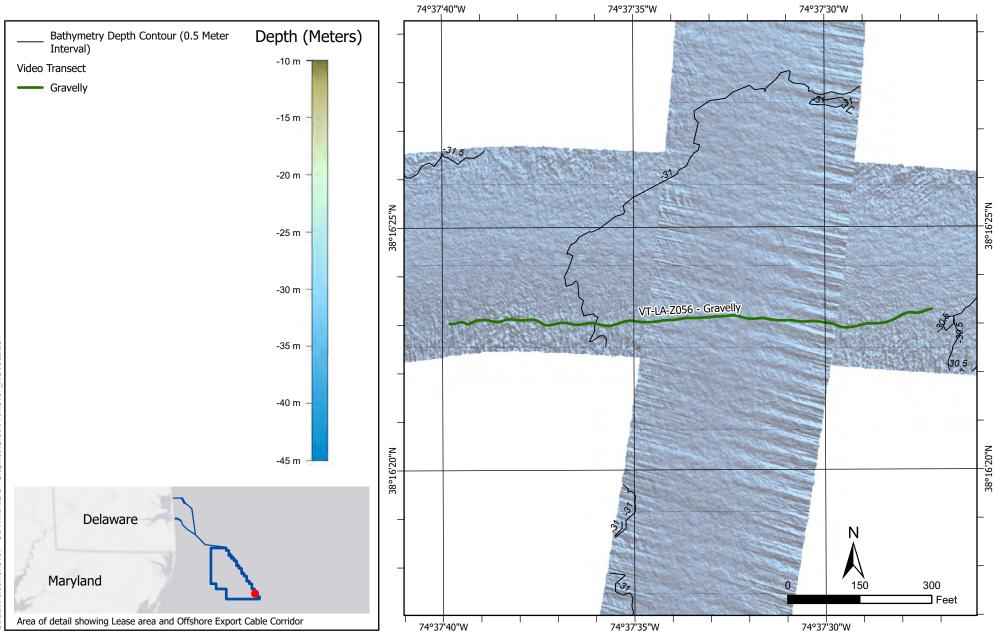


group environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

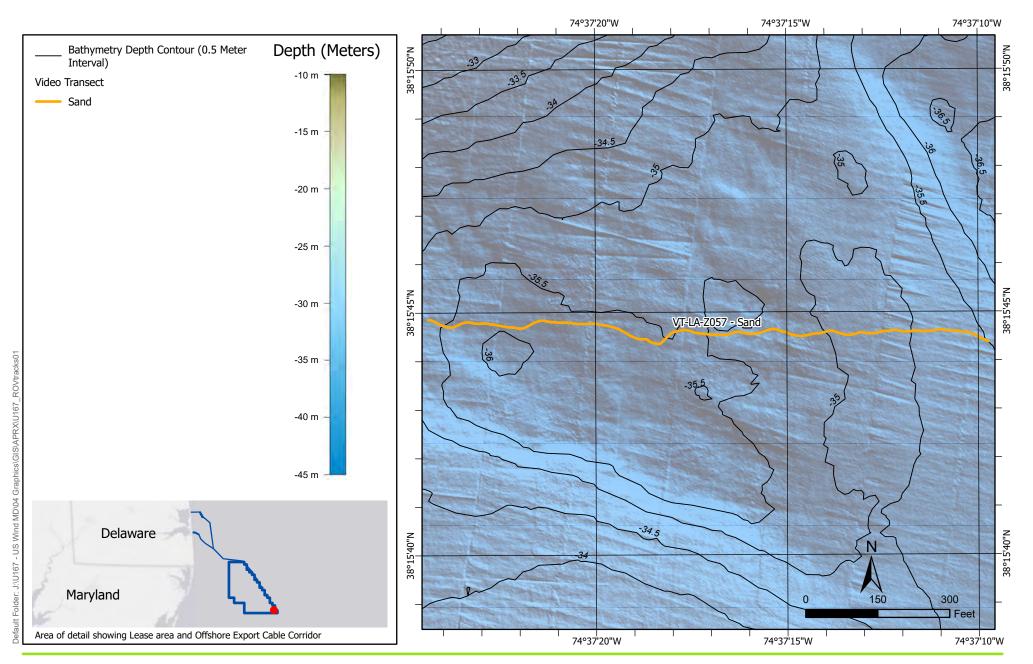


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

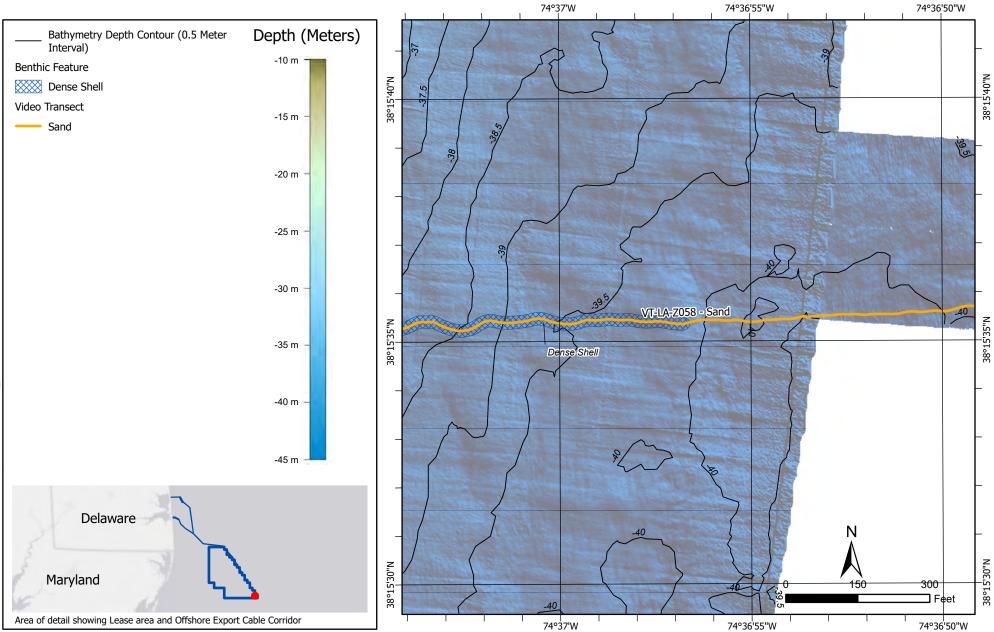


group environmental consulling a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

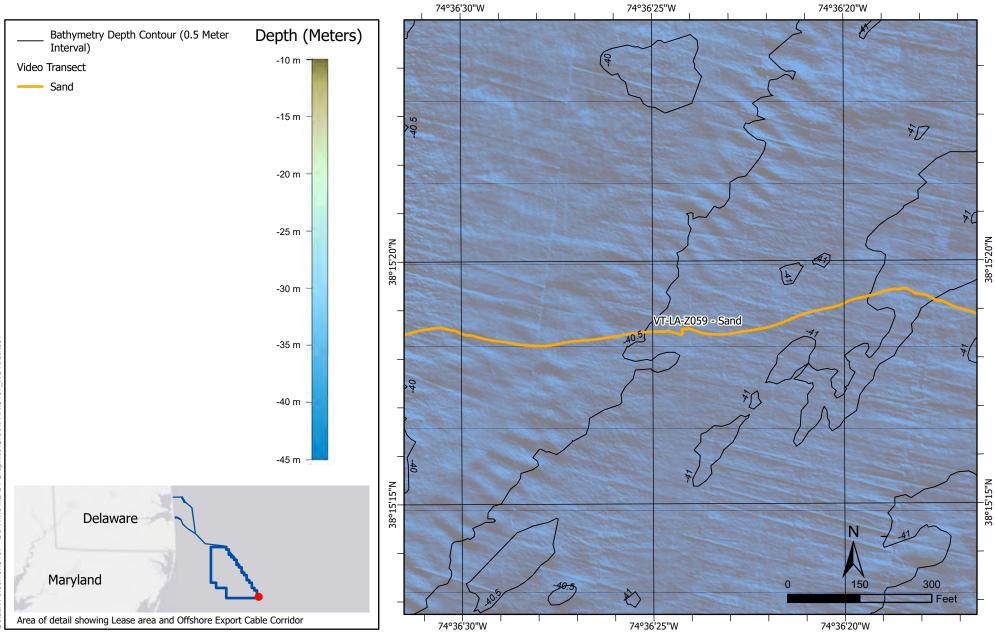


environmental consulling environmental consulling engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

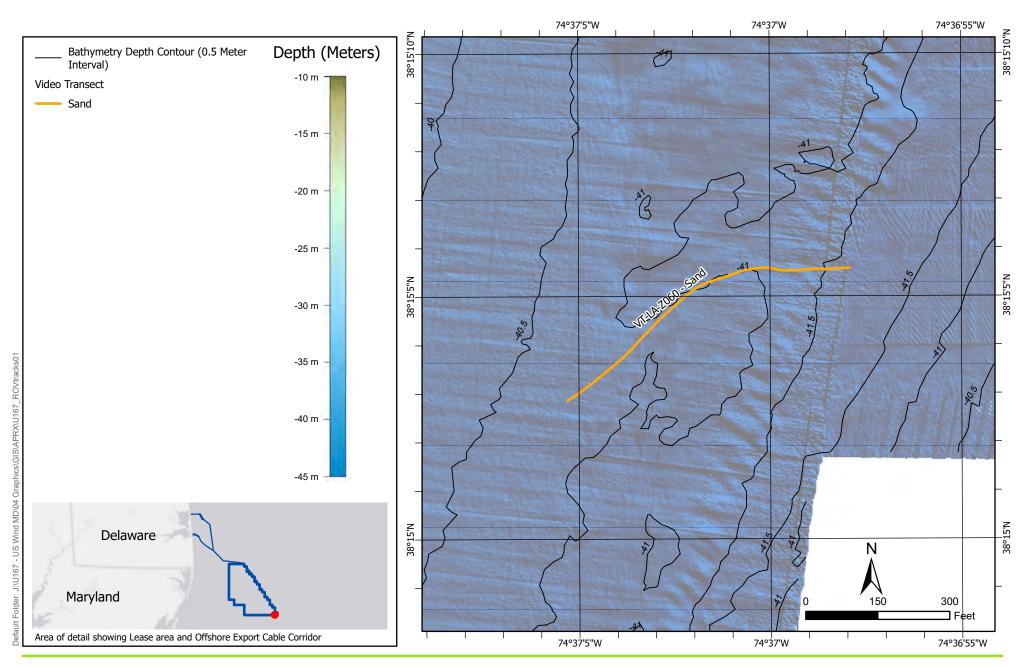

Benthic Characterization for ROV Track VT-LA-Z058

Maryland Offshore Wind Project Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

D

g environmental consulting & engineering services



Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

d environmental consulting a engineering services

Maryland Offshore Wind Project

Offshore Maryland and Delaware

Source: 1) GEMS, Bathymetry, 2022 2) TDI, Video Transect Position Data, 2021 3) ESS, Track Characterization, 2021

Attachment B

Benthic Sample Taxonomy and Enumeration Results

ESS ID	BG-LA-B09	BG-LA-2027	86-LA-2021	BG-LA-C06	BG-LA-B05	BG-LA-Z014	BG-LA-A04 BG-LA-B03	BG-LA-A02	BG-LA-Z001	BG-LA-Z002	BG-LA-B01 BG-LA-2003	BG-LA-D01	BG-LA-2004	BG-LA-2005	86-LA-2005 BG-LA-CO2	BG-LA-Z008	BG-LA-2007	BG-LA-E02	BG-LA-Z010 BG-LA-Z009	BG-LA-D03	BG-LA-Z011	BG-LA-C04	BG-LA-Z015	BG-LA-E04 BG-LA-F03	BG-LA-Z012	BG-LA-H03	BG-LA-2013 BG-LA-604	BG-LA-D05	BG-LA-Z016	BG-LA-2017	BG-LA-Z018 BG-LA-F05	8G-LA-Z019	8G-LA-H05	BG-LA-JOS	BG-LA-Z025	BG-LA-106	BG-LA-2024	BG-LA-2023	BG-LA-Z022	BG-LA-D07	BG-LA-C08	86-LA-2031 86-LA-2032	BG-LA-2033	BG-LA-Met	BG-LA-D09	BG-LA-E08 BG-LA-F07	вс-га-но7	BG-LA-J07	BG-LA-L07	BG-LA-2030	86-LA-2029 86-LA-2028
USW ID	100WSU	USW002	USW004	100W005	900 <i>N</i> SU	USW007	900WSU	OLOWSU	TTOWSU	210WSU	USW013	USW015	USW016	10W017	GTOWSD	0Z0/VS/	1Z0/NSU	USW022	USW023 USW024	USW025	USW026	120WSU	N5W028	0E0MSN 6Z0MSN	1E0WSU	USW032	150W2U	SEOWSU	9EOWS U	1£0WSU	6E0/NS/N	05W040	USW041	USW043	USW044	U SW045	USW046	15W048	USW049	050WSU	150 <i>W</i> SU	USW052 USW053	USW054	USW055	05W056	850WSU	650MS N	090 <i>M</i> SU	290/VSU	USW063	U SW064
Location Category	Lese Area	Lease Arrea	Le ace Area	Lease Area	le are Area	Le ace Arre a	leare Arrea Leare Arrea	Lesse Arrea	Leate Area	Le ace Area	Lease Area Lease Area	Le ace Area	Lease Area	leate Area	Lease Area Lease Area	leæe Area	Lease Area	Le ace Area	Lease Arrea Lease Arrea	le are Area	Lease Arrea	le se Area	leze Area	Lease Arrea Lease Arrea	le are Area	Lease Area	e a e e e e e e e e e e e e e e e e e e	leare Arrea	Lease Area	lease Area	leate Arrea Leate Arrea	lease Area	Lease Area	coor neca Le are Area	Le are Arre a	leæe Area	Lease Area	ceae Area Lease Area	le a e Area	leate Area	Le ace Arre a	leare Arra Leare Arra	Le ace Arre a	leate Area	le ace Area	Lesse Anga Lesse Anga	le are Area	Lease Area	Lease Area	Lease Area	leite Allea Leite Allea
Ascidiacea Perophora viridis Molguildae Cephalochordata Branchiostoma caribaeum					225			25	75													125																													
Cnidaria Actiniaria Crustacea																50																																			
Ampelisca sp. Byblis serrata Aoridae												25				50				25			75				25 25			50	25											50			25	50				25	
Bateidae Bathyporeia sp. Caprellidae																												25								25							50								
Corophium sp. Leptocheirus plumulosus Gammarus sp.																							75						25																			2	5		
Acanthohaustorius sp. Parahaustorius sp. Protohaustorius sp.	25 25							25	25	2	25					225			25	5	150		50	25		25		25	25											25 50	100	25	100		100	25	25			50	25
Ischyroceridae Idunella sp. Synchelidium sp.																																			25	25						50									
Phoxocephalus sp. Rhepoxynius epistomus				25										25		75	25		25			25	50		25										25	23					:	25								25	
Hippomedon serratus Pseudunciola obliquua Unciola sp.		7	5 125				25		25					50		75					100		125 75		125	50		25	50 50	;	25		50 25			25	25					25 50			25	50					75
Pseudoleptocuma minus Oxyurostylis smithi Cancer irroratus						25		25						25		25									50			25													25			25				25			
Pagurus sp. Hexapanopeus angustifron Panopeus herbstii		50	75			75											25															75							25		:	25 50						2	5		
Pinnotheridae Euceramus praelongus Xanthidae																																																			
Decapoda Ancinus sp.																																																			
Amakusanthura magnifica Cyathura sp. Ptilanthura tenuis																																																			
Chiridotea sp. Politolana sp. Edotia montosa								25								25																																			
Tanaidacea Echinodermata Echinarachnius parma								25 50	25					1	75 25	50					50	25	25	100 25				50	50		50		75	100		275	50				50		25	175		50 75		175	50	1	175
Mollusca Epitonium multistriatum																50													30												25										
Ensis leei Solenidae Anadara transversa																			25																							25									
Lunarca ovalis Parvicardium pinnulatum Macoma sp.																																25																			
Tellininae Astarte castanea Cyclocardia borealis		5	0	50	25		25	100		1	100 25				!5 !5 50	25		25				75		75 25 25			25	25 25			25		25			25					50	25	25	25	50			25 2	5		25
Acteocina canaliculata Cephalaspidea Chaetopleura apiculata																																																			
Caecum sp. Crepidula fornicata							25						:	175			700		1025						50			25		:	25		2	5																	
Crepidula plana Naticidae Mya arenaria		5	0				25																					25								50						25									25
Crenella sp. Mytilus edulis Astyris lunata		25					25	5						25 5	10		25		50						25									5			2	5													
Columbellidae Ilyanassa trivittata		25 5	0		25	25				2	25			25		100	25		125				25	75 25	50				250	25 2	25 25		2	5					50		25	75									75
Yoldia limatula Nucula sp. Corambe obscura																25																																			
Anomia sp. Pectinidae Pleurobranchaea tarda																																																			
Arctica islandica Spisula solidissima Agriopoma morrhuanum		2	5		25					2	25 25	25												25					25																25	25			25		
Mercenaria mercenaria Lyonsia sp. Pandora sp.													25						25	5		25		50								25																			
Pyramidellidae Nemertea Nemertea																			2:					30			25							50								25	25	25					5 25		25
Oligochaeta Enchytraeidae									25		25			1	00		25	50		100		150	100	50		50		100		25	25	50			75	75						25	25	125		150	100		25		1300
Naididae w/ hair chaetae Naididae w/out hair chaeta Platyhelminthes	e										25			25 1	00	200		25				225	100	225 50	25		150 10	0 125		25	25			100		75	2	0	25	25	50	25 50	25	75		75	25		25		25 625
Platyhelminthes Polychaeta Dorvilleidae							25							25 7	'5		25						25	125			25	150						50		75	23	25			25			25	50	50			25		25 25
Paucibranchia bellii Lumbrinerides acuta Scoletoma sp.											25		25 :	2	!5		75		150 25	5 125				25 50	76			25	25	25		25		5 75		25						50				25	25	25 25			25 50
Arabella iricolor Drilonereis sp.													25	150 1	00	25	/5		50 25					25 50	/5	25			25	25		25	2	5 /5		25	25					50				23		25			Uc
Diopatra cuprea Glycera sp. Goniadella gracilis		25									25								25				25									25		50	75		10	00 25								25		2	5 25		175 275
Nephtys sp. Nereididae Eteone sp.										50				25 25									25			75	25		25			25	25					25				75 125	5						25		
Phyllodoce arenae Phyllodocidae Pilargidae											175			25 1	DO				25			475			50			0						50		25	2	5		25						200	75	100			25
Polynoidae Pisioninae																	25		75						25				25																						
Sigalion arenicola Sigalionidae Exogone sp.					25 25		25	25						2	15 25 15 25								25	50 75	25	25	25				25			125		50 25	7	5			25 1	.00		25		25 50		25	25		25 550
Syllidae Pseudopotamilla reniformi	s							50						2	15							50			25																										

ESS ID	BG-LA-B09	BG-LA-Z027	BG-LA-B07	BG-LA-2021	BG-LA-C06	BG-LA-B05	BG-LA-Z014	BG-LA-A04	BG-LA-B03	BG-LA-A02	BG-LA-2001	BG-LA-2002	BG-LA-B01	ВG-LA-2003 ВG-LA-D01	BG-LA-2004	BG-LA-Z005	BG-LA-Z006	BG-LA-C02	BG-LA-2008	BG-LA-2007	BG-LA-2010	BG-LA-2009	BG-LA-D03	BG-LA-2011	BG-LA-C04	BG-LA-E04	BG-LA-F03	BG-LA-Z012	BG-LA-H03	BG-LA-Z013	BG-LA-G04	BG-LA-D05	BG-LA-2016 BG-LA-2017	BG-LA-2018	BG-LA-F05	BG-LA-2019	BG-LA-H05	BG-LA-2020 BG-LA-J05	BG-LA-2025	BG-LA-106	BG-LA-2024	BG-LA-E06	BG-LA-2023	BG-LA-2022 BG-LA-D07	BG-LA-CO8	BG-LA-Z031	BG-LA-2032	BG-LA-2033	BG-LA-Met	BG-LA-D09	BG-LA-E08	BG-LA-H07	8G-LA-J07	BG-LA-2026	BG-LA-L07	BG-LA-2030	BG-LA-Z029
USW ID	toowsn	USW002	USW003	100WSU	00WSU	00WSU	100MSU	N5W008	600MS/N	OLOWRU	TTOMSO	10W012	ELOWOU	410W014 USW015	9TOWSU	110MSU	0 SW018	GTOMSI	020W0Z0	IZOWSU	USW023	USW024	USW025	USW026	220WSU	6Z0/MS/N	0EO/NS/N	TEOMSI	USW032	EEO/VS/N	USW034	USW035	1EOWSU 3EOWSU	8EOWSU	6EO/VS/N	080W040	USW041	USW042 USW043	USW044	U SW045	U SW046	USW047	U SW048	640WSU	ISOWSU	USW052	USW053	USW054	USW055	02W056	250MSU	650WSU	090WSN	190MSN	U SW062	U SW063	USW064
Location Category	le se Area	leæe Area	Lease Area	Lease Arrea	lesse Area	leæe Aæa	Lesse Area	Lease Area	Lease Area	Lease Area	le a e Area	Le ace Area	Lease Arrea	lease Area Lease Area	Lease Area	lease Area	Le ac e Are a	Lesse Arrea	Lease Area	lease Area	Le 36 e Are a	lease Area	lease Area	Lesse Area	leac Area	Lesse Area	lease Area	Le X e Are a	Lease Area	lease Area	Lease Area	Lease Area	lease Arrea Lease Arrea	Le ist e Arre a	lease Area	Le axe Are a	Lease Area	Lease Arrea Lease Arrea	Lesse Area	Le as e Are a	lease Area	lease Area	Lease Area	lesse Area Lesse Area	lese Area	Le 36 A Me 3	Lease Area	Lease Area	lexe Area	Lease Area	Lease Arrea	lease Area Lease Area	Lease Area	Le as e Are a	lease Area	Lease Arrea	leæe Aæa
Polychaeta (continued) Sabellidae																													0	ganisms/m²																	1										
Sabellidae																25																																									
Paraprionospio pinnata																																																									
Polydora sp.																				25										50		2	200														50										
Prionospio sp. Scolelepis sp.																			25																												200										
Spio sp.		25														375	25			50 2		25	1025	75					825	25			150	75		500		50					100	75		100											
Spio sp. Spiophanes bombyx		2.5														3/3	2.5		25			13	1015	,,,	2	5			25	2.5			75	13		500		50					100			975											
Streblospio benedicti																																																									
Ampharetidae			25	100												75	25												75		25		50													75	25									25	
Cirratulidae																2075	50		150 6	125	1075	25			50 5)		800	125	25			25	;		25	25	25		75	25	25			50	75	500		25	25		25			25	25	
Pherusa sp. Terebellidae																																																									
Terebellidae																										25	25	50												50																	
Amastigos caperatus Mediomastus sp.																																																									
Notomastus sp.																																																									
Spiochaetopterus sp.																																																									
Magelona rosea																			25																																						
Clymenella torquata																																																									
Clymenella zonalis																100	25											25	25							25		25		25							50										
Opheliidae Orbiniidae											35					35			35																											25											35
Aricidea sp.										25	25			75		25	75		25	7				75	76 6	50		26	50	75					75	50		75		75		75				25		75		75				75			25
Paraonidae										23			4	25			25		50		,			/3	2.5 5	, 50		25	50	25					25	50		25		25		/5						25		23				25			/5
Polygordius sp.																125	650	175	25 1	25				25	225	250	50		25	25		1	175			25		75		25					50	50	275		100		2	!5	25				
Sabellaria vulgaris																																																									
Scalibregma inflatum																225	25		25	75 5	50		150	50		25		50	175	25		1	125 50)	75	225	25	75					50				25					25	25				
Travisia carnea																				2	5																																				
Polychaeta											25					25	25			25 2	5				25						25											25									2	!5				25	
Sipuncula Sipuncula																																																									
Organism Density*		_		_	_	_					225	50	47F 2											_							_								_	_	_				_	_											

Test Comparison Density Test C

*All metrics were calculated using the corrected dataset presented above. Taxonomic ambiguity in the raw dataset asset resolved using the RPMC-G method sescribed in Cuffney et al. (2007). The RPMC-G method was applied to the raw dataset as detailed below. Parent taxa with lower abundances than their taxonomic. children were removed from the dataset. The following taxa were removed: Ampleticidae, Complicidae, Mastonidae, Fransidae. Child taxa with lower abundances than their taxonomic ambiguity in the raw dataset may be above the following taxa were removed. Ampleticidae, Complicidae, Mastonidae, Fransidae. Child taxa with lower abundances than their taxonomic ambiguity in the raw dataset. Taylo house, Cancer or, Anthruide, Biologicae, Support Detailogicae, Splonidae, Capitelliae, Matandae, Travisidae. Child taxa with lower abundances than their taxonomic ambiguity in the raw dataset. Taylo house, Cancer or, Anthruide, Biologicae, Support Detailogicae, Splonidae, Capitelliae, Matandae, Travisidae. Child taxa with lower abundance than their taxonomic hidren present in the dataset taylo house and capitele to her analyses. The following taxa were retained for analyses. Decapada, Capitelliae, Phylodocidae, Syllidae, Sabellidae, Phylodocidae, Syllidae, Sabellidae, Phylodocidae, Syllidae, Sabellidae, and Paraonidae.

ESS ID	A-K08	A-108	A-F09	4-E10	A-G10	-2034	60H-V	A-109 A-L09	A-N09	8602-1	-2037	OTW-1	-2036	-2035	A-110	-H11	-2043	4.11	-Z042	111-V	11N-V	Z040	6602-1	114-V	-2056	-2057 	-2059	A-R13	A-H13	-Z046	A-112	Z044 A-K12	-M12	-2052	A-012	-2054 -2055	A-P13	-2050	1-2051	6¥0Z-1	A-N13 1-2048	-2047	A-L13	A.J13	-Z045	-Z053	.C-18 .C-19	C-20	(C-21	.c-22	(C-23 (C-24	.c-25	AC-1
	1-58 99	167 BG-L	90 BG-L	120 BG-L)71 BG-L	172 BG-U	73 86-1	174 BG-L	176 B.G-L	17 BG-L	178 8G-L	1-98 BG-L	80 80-17	86-L	83 86-1	184 BG-L	182 BG-L/	196 B.G-L	180	1-09 68 88: 68	1-58 06i	166-L/	192 BG-L/	93 BG-L	198 199	7-58 56 96	1-58 -17	1-1-2 198 BG-L	86-L	101 101	102 8G-1	1-58 BG-L7 101 BG-L7	BG-L	71-58	107 BG-L	71-58 80 80	1-58 OF	11 86-L/	12 BG-L	13 86-L/	1.14 BG-L 1.15 BG-L	91	1-58 6-1	18 864	1-DB BG-L/	77-58 07:	21 BG-4	B6.4	124 BG-J	5864	26 BG4		-98 RC-
	nswc		nswc	nswc	nswo	nswo	nswo	nswc	nswo	nswo	nswo	nswo	DWSU	nswc	nswo	nswo	nswo	nswo	nswo		nswo	nswc	nswo	nswa	nswo	DWSU	nswo	DMSI	[MS]	rws n	rwsu		rws n	rws n	IWSU		[MSU	LWSU	rwsu	rwsu		rwsn	rwsu	rwsn	rwsu	rwsu		nsw	rwsn ,	rwsn	rwsu -	rwsu -	IMSD
Location Category	Lease Arrea	leate Area Ieate Area	Lease Area	lease Ama	le ze Area	Lease Area	leate Area	lease Area Lease Area	lease Area	Lease Area	Lease Area	leate Area	lease Arrea	leare Area	lease Area Lease Area	le ate Area	Lease Arrea	leæe Aæa	Lease Area	Lease Area	lease Area Lease Area	Lease Area		Lease Arrea	lease Area	lease Area	lease Area lease Area	le ate Area	Lease Area	lease Area	lease Area Lease Area	lease Area	Le ace Area	leate Area	Lease Area	lease Area Lease Area	Lease Arrea	lease Area	leæe Aæa	Lease Arrea	lease Area	Comm on Corrido Comm on Corrido	Common Corrido	Common Corrido	Common Corrido	Common Corrido Common Corrido	Common Corrido	Common Corrido					
Ascidiacea Perophora viridis Molgulidae																			25	25	25						Criganian					25			25 2	25	25 75						50							50			
Cephalochordata Branchiostoma caribaeum	1												75																			25			25																		
Cnidaria Actiniaria																																	25																				
Crustacea Ampelisca sp. Byblis serrata			25							75	125					50		50						25		75 250			25				25 25							75	75 25	5 25	75	25		50	200	50 10 1950		50 25	25	50	575
Aoridae Bateidae			25							/5	125							50								75 250		4.	.5 50				25		:	25				/5	/5 25	5 25	/5	25		50	200	1950	5	25		50	5/5
Bathyporeia sp. Caprellidae																						25		25								25	25			50				25				25			25	5					
Corophium sp. Leptocheirus plumulosus																						23		2.5												50				2.5													
Gammarus sp. Acanthohaustorius sp.																													25																			150					
Parahaustorius sp. Protohaustorius sp.					75		25			25						25		50	25										25			25															25	5 525		25	75 75		25
Ischyroceridae Idunella sp.																																																					
Synchelidium sp. Phoxocephalus sp.											25							25						:	25										50 5	50								25		25							
Rhepoxynius epistomus Hippomedon serratus					50					50	25							75		25 25						25		5													25	25					50					25	
Pseudunciola obliguua Unciola sp.					25		25					50						200	25	25	50						25	25	50						25					75				25	25		25 25		25				50
Pseudoleptocuma minus Oxyurostylis smithi																		25															25				25	25				25					25						
Cancer irroratus Pagurus sp.			25	25		25	25				25					25	25 225	25		25		25						25																		50			25		25		
Hexapanopeus angustifro Panopeus herbstii	ns																																																				
Pinnotheridae Euceramus praelongus																																																					
Xanthidae Decapoda																																																					
Ancinus sp. Amakusanthura magnifica																																																					
Cyathura sp. Ptilanthura tenuis																									:	25																											
Chiridotea sp. Politolana sp. Edotia montosa							50					35			25																				:	25		25					25				25	25					
Tanaidacea Echinodermata	25	2	25	75	50	25	25 1	.00				25 25				25		25			25								25				50	25			25	25			25		50			25	125				50		
Echinarachnius parma Mollusca				25												25										50			25																								
Epitonium multistriatum Ensis leei																																																					
Solenidae Anadara transversa																																																					
Lunarca ovalis Parvicardium pinnulatum																												25																									
Macoma sp. Tellininae	25 2	25	25	50	150	25	25 2	25 100			25			50	75			50	100	50	50											25 25	50		50				25		25	25	25	25			25	5					
Astarte castanea Cyclocardia borealis				25	25			50 75					100 7	5		25		25	50 1	.00 25				25								50		75	25		25							25			25	5					
Acteocina canaliculata Cephalaspidea	2	25																																																			
Chaetopleura apiculata Caecum sp.																																																					
Crepidula fornicata Crepidula plana																																																					
Naticidae Mya arenaria							25						2								25	25																	25			25	25										
Crenella sp. Mytilus edulis				25		25	5	50					75 12	5					100 2	00 50	1											25												25									
Astyris lunata Columbellidae																	50					25	25																														
Ilyanassa trivittata Yoldia limatula							50				25										25					25		2	5													25						25					
Nucula sp. Corambe obscura										25							25								:	25																											
Anomia sp. Pectinidae																								25																			25										
Pleurobranchaea tarda Arctica islandica				25	25						50		25					25		25				100	25										25			25	25			25					25		50				
Spisula solidissima Agriopoma morrhuanum Mercenaria mercenaria				25					25	25								25		25				25									25		25		25		25								25	,	50				
Mercenaria mercenaria Lyonsia sp. Pandora sp.																										25															25												
Pandora sp. Pyramidellidae Nemertea																							25																														
Nemertea Oligochaeta							25 5	50					50					25	25		50			1	00		25	50 12	5			50		25			25	25	50		25 25	5				25	25	5		25	50 25		
Enchytraeidae Naididae w/ hair chaetae			75				75 1		1900 100				25 2					25		17		50		50							100		5 100	25			25			25	25 25	5		25				0 50					
Naididae w/out hair chae Platyhelminthes		25 2	175	25	25	25	125 7	450		50	175	225	175 57	5 25	300	100		25	75	25 250				25 2	75	25 25	50	125 12	5	25	200	25 175	5 175		550 2	275	300	50			50)	75	225	75	50	200	10 25		300	75 125	-	75
Platyhelminthes Polychaeta																					25																								25								
Dorvilleidae Paucibranchia bellii	2	25	25		25	25		.25 50		50					75			50						:	25					25		50			100				125								75	5			50		
Lumbrinerides acuta Scoletoma sp.	25 5	50			25	25		25 25 25 25	25	50	75	25	2	5 50			50	100	50				75	75 5	50	25		325		25		25	75		75 2	25 50	25				50 50 75		25 50		75		25	5 25	50	50	25	25	25
Arabella iricolor Drilonereis sp.									25	25																	25																										
Diopatra cuprea Glycera sp.	25			25		50	25 2	25 75	50		25		25 5	225	75				25	75 75	100	150		25 2	75		25					25 75	25		50	75	25													25			
Goniadella gracilis Nephtys sp.	25	2	i 75				7	75 100	375 50	75	50	25	5	0		25		50		50	75	25	25		00		50	25 100 7	5			25	25		150 1	25	25	50	50	75 100	125 50		275	100	50	50		25	75		25	25	
Nereididae Eteone sp.										25													25	25				25																									
Phyllodoce arenae Phyllodocidae			25				100 2	00 50					575 5	0	325	275			25	25	50			1	75			25			125	25 75	50		175 2	25	25		200	25			1050	225			225	15		25			
Pilargidae Polynoidae Bisiopiano													175				25						25												75	25				25													
Pisioninae Sigalion arenicola		2		25	~		35		25				1/5									25 25													75 25		25		25											25	25 25		
Sigalionidae Exogone sp.	2	25 25		25	25		200 5	50	200			125	2	5	50	50		50	25	26	125				:	25		5	D	25	50				25	25			100		25		50	50		50	25				200	D	25
Syllidae Pseudopotamilla reniform			50		50								Б	175		25				25																			25								25	5					

Benthic Macroinvertebrate Sample Analysis Report - US Wind Attachment B. Benthic Sample Taxonomy and Enumeration Results, Processed to Resolve Taxonomic Ambiguity, 2021

ESS ID	BG-LA-K08	BG-LA-108	BG-LA-G08	BG-LA-F09	DT3-FT-50	BG-LA-Z034	BG-LA-H09	BG-LA-J09	BG-LA-L09	BG-LA-N09	BG-LA-Z038	BG-LA-Z037	BG-LA-M10 BG-LA-2036	BG-LA-K10	BG-LA-Z035	BG-LA-I10	BG-LA-H11 BG-LA-Z043	BG-LA-J11	BG-LA-Z042	BG-LA-2041 BG-LA-L11	BG-LA-N11	BG-LA-Z040	8G-LA-2039	BG-LA-P11	BG-LA-2056 BG-LA-2057	BG-LA-2058	BG-LA-2059	BG-LA-R13	BG-LA-2060 BG-LA-H13	BG-LA-Z046	BG-LA-I12	BG-LA-Z044	BG-LA-K12 BG-LA-M12	BG-LA-Z052	BG-LA-012	BG-LA-2054 BG-LA-2055	BG-LA-P13	BG-LA-2050	8G-LA-2051 RG-LA-2051	BG-LA-N13	BG-LA-Z048	BG-LA-2047	BG-LA-L13 BG-LA-J13	BG-LA-Z045	BG-LA-2053	BG-AC-18	02-04-08	BG-AC-21	BG-AC-22	BG-AC-23	BG-AC-24	BG-AC-25 BG-AC-1
USW ID	990MS N	USW067	NSW068	USW069	0/0MSU	USW072	EZOWSU	USW074	USW075	USW076	USW077	USW078	USW079 USW080	180/NSU	USW082	USW083	USW085	USW086	USW087	USW088 USW089	060 <i>W</i> SU	160MSN	USW092	£60MSN	USW094 USW095	960 <i>M</i> S N	<i>1</i> 60 <i>W</i> SU	860WSN	USW099 USW100	101 MSU	USW102	101WSU	USW104 USW105	USW106	101WSU	USW108	OLIWSU	111MSU	USW112	10SW114	USW115	911WSU	USW117 USW118	6TTWSU	USW120	USW121	771MSD	NSW124	USW125	USW126	USW127	6ZTWSU
Location Category	Lease Area	leæe Aæa	Lesse Area	Lease Area	le se fue a le se fue a	Lease Area	Le as e Anna	le ste Are a	Lease Area	lease Area	le ze Are a	Lease Area	leare Area Leare Area	Lease Area	le ace Area	leæe Aæa	Lease Area Lease Area Lease Area	le are Are a	leze Area	Lease Arrea Lease Arrea	le are Are a	Le ace Are a	leate Area	le Xe Area	leae Area Icae Area	le xe Ama	Lease Area	leare Area	Lease Area Lease Area	le are Are a	le ac Are a	Lease Area	leate Area Leate Area	leae Area	le ac Are a	leze Area Leze Area	leæe Area	le ace Area	Lease Anna I e an e Anna	leæe Ama	le ze Az a	leae Ama	lexe Area lexe Area	leae Area	le ace Area							
	-!!																					-					Organi:	sms/m²										• •														
Polychaeta (continued) Sabellidae																												25																								
Paraprionospio pinnata																																																				
Polydora sp.							25					25					25	25									150	50						25	25	25 25	5		25 5)			75		25							
Prionospio sp.												25																																								
Scolelepis sp. Spio sp.					7	150					75				50		27	50					75					75								21								25				500				
Spiophanes bombyx						130					50	100			30		27.	30					25				125	25			50					2.	5							25				500				25
Streblospio benedicti																																																				
Ampharetidae	25	75					50			25	50							50		50)				25		75	50	25						25			25	7	5	25			50								100
Cirratulidae	25			150	!5			50	25	175		175 1	150	25		125	25	25					100	25				75	25 25		25		25	25	75	50	75	25	2	5 25		25	125 25	25	25		50	75	25	25		
Pherusa sp.																												25																								
Terebellidae Amastigos caperatus									25									25			50			200			25	25	25				25		25		25		50 2	5			25		25		25					
Mediomastus sp.																																																				
Notomastus sp.																																												50		25						
Spiochaetopterus sp.																																																				
Magelona rosea																																										25					2	5	25		7	25
Clymenella torquata																																															50					
Clymenella zonalis Opheliidae								25			25	/5	50	U						7	25	75		/5	50		50	225	25				25		25	2	5		25		25											
Orbiniidae											25	25							25						25				50												25								25			25
Aricidea sp.					2			50	25	75	25	~ 3				100 3	15	50	25	50	2	25			~~		250	25	50 100		25		25 25		75	25	100	25	25 2		25		25 25	75			5	0	50			25
Paraonidae								50			75				225			50				25					250										100						25	,,,			75	-	50			50
Polygordius sp.	75		25	300 1	50 10	D	100	75	25	150			25 35	0	175	150 5	0 100		75	25	5	50	25	150			75	50	25		25			75	150	25 7	5 25	25	125 42	5 25			125 25	75	175	100	50		75	25	50	25
Sabellaria vulgaris																																																				
Scalibregma inflatum				50	2	i				25		125					25				25	25	25	75		25		25	75 25	25									2	5 25	25			250	25	1	50	175			5	<i>i</i> 0
Travisia carnea					15							35															35	75	25				25			50							25		25		2	5			7	/5
Polychaeta Sipuncula												20															25	/5								30							2.5									
Sipuncula																				25																																
I Organism Density*	350	300	125	1075 5	75 77	5 375	1100	1975	1050	3250	800	2025 7	75 180	00 1050	1000	1425 10	50 850	1150	650	525 102	25 900	650	375	1075 1	1050 22	5 400	1025	1425	175 400	125	700	275 7	700 775	350	1875	850 30	0 900	325	1375 15	600	300	225 2	975 925	825	750	125 1	50 32	25 975	850	325	650 2	275 1125
a Richness*		9	-		-									4 11	9						7 16	15	10	17																											10 7	

Benthic Macroinvertebrate Sample Analysis Report - US Wind Attachment B. Benthic Sample Taxonomy and Enumeration Results, Processed to Resolve Taxonomic Ambiguity, 2021

	2	z z	2 3	9 5	ę	<u>ور</u> ا	i i	13	1 1	21. A	-12	5 5	28	62	-30 -31	32	33	-34 -35	36	37	39	40	41	43	44	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	103	-66 -66	-19	69	70	12	-73	-74	.75 .76	8	98 51	78	°2 83	-84 -85	86	-87	-48	51	5 Ş	ş	55 56	57
ESS ID	BG-AC	BG-AC	BG-AC	BG-AC	BG-AC	BG-AC BG-AC	BGAC	BG-AC BG-AC	BGAC	BG-AC	BGAC	BG.AC	BG.AC	BG-AC	BG-AC BG-AC	BG-AC	BG.AC	BG.AC BG.AC	BGAC	BG-AC	BG-AC BG-AC	BG-AC	BG-AC BG-AC	BG-AC	BG.AC	BG-AC BG-AC	BG-AC-	BG-AC BG-AC	BG-AC	BG-AC BG-AC	BG.AC	BG-AC BG-AC	BG-AC	BG-AC	86.AC 86.AC	BGAC	BG-AC	BG-AC	B6.AC	BG.AC BG.AC	BG-AC	BG-AC	BG-AC BG-AC	BG.AC BG.AC	BG-AC	BG-AC	BG-AC	BG-AC
USW ID	08M130	ZETMSN	ETW21	SETWSU	05W136	121WSU	6ETMSN	USW140 USW141	USW142	USW143	0SW145	USW146	USW148	05W149	USW150	251WSU	NSW153	USW155	951 MSN	USW157	651WSU	09TMSN	USW183 USW184	\$81WSU	98TMSN	781W2U	681WSU	USW190 USW161	USW162	USW163	USW165	USW166	02W168	69 1MSN	121MSU 071WSU	£21MSN	STIWSU USW175	92TMSN	821MSN	081WSU	18TMSN	USW182	USW192	16TMSN 86TMSN	561WSU	261743.1 96174SN	861/MS/N	USW199
Location Category	Common Corridor	Comm on Corridor Common Corridor	Common Corridor	Common Corridor Common Corridor	Common Corridor	Comm on Corridor Comman Corridor	Comm on Corridor	Common Carridor Common Carridor	Common Corridor	Common Corridor Common Corridor	Common Corridor	Common Corridor Common Corridor	Comm on Corridor	Comm on Corridor	Common Corridor Common Corridor	Comm on Corridor	Common Corridor	Comm on Corridor Comm on Corridor	Comm on Corridor	OECC 1	00001	OECC 1	0fcc1 0fcc1	06001	06001	00001	OECC 1	00001	0ECC 2	0ECC 2 0ECC 2	OECC 2	0ECC 2 0ECC 2	0100.2	06002	0fcc 2 0fcc 2	01002	0600.2	00002	0602	0ffc2 0ffc2	0600.2	OECC 2	0ECC 2a 0ECC 2a	0ECC 2a 0ECC 2a	0100.28	0600.2a	0 EUL 48 0 EUC 28	OECC 2a
Ascidiacea Perophora viridis Molgulidae								25	5						25	25				125	25			25	25																	75						
Cephalochordata Branchiostoma caribaeur Cnidaria Actiniaria	1					25						25			25	5 50	25		50	25	100			700	150 5	50		25	100	75 75 50 25					25	25												
Crustacea Ampelisca sp. Byblis serrata	25 25	50	75 75		25	15	50 25		25	775 5	D	25							25	25	50			50	,	75		25		25 25		10)	25		75	25	25		25	5	25						25
Aoridae Bateidae Bathyporeia sp. Caprellidae																									75			75								125							25	25 25	ŝ			
Corophium sp. Leptocheirus plumulosus Gammarus sp.																																												50				
Acanthohaustorius sp. Parahaustorius sp. Protohaustorius sp. Ischyroceridae			50							25 2	5	25									25					25	25	50													150							25
Idunella sp. Synchelidium sp. Phoxocephalus sp.										51	D																	50																		25		
Rhepoxynius epistomus Hippomedon serratus Pseudunciola obliquua Unciola sp.			25							25	5	75	25		25	i	25		200	25 400	125			25			50 5	50 75 25		225		50			50			1	5		75			150 25			200	
Unciola sp. Pseudoleptocuma minus Oxyurostylis smithi Cancer irroratus		25	25 2	125		25	5	25	5				50				25	25	50	50	25	25			25 1	00 25			50	25 25		25		25		25			50	100			100	150 /5				
Pagurus sp. Hexapanopeus angustifro Panopeus herbstii	ins		2	15					50										25	25																							100					
Pinnotheridae Euceramus praelongus Xanthidae Decapoda																	25					25	25				25					50		25											25			25
Ancinus sp. Amakusanthura magnific Cyathura sp.	3																																75	75												2	25	
Ptilanthura tenuis Chiridotea sp. Politolana sp. Edotia montosa						25	5			25			25		25					25		25			1	25		75		25 25		25											25	25	15	25	25	
Tanaidacea Echinodermata Echinarachnius parma		100			25	25	5						25		50 50)		25					450)	50	275																25	75	125			125	25
Mollusca Epitonium multistriatum Ensis leei Solenidae													25															25		25	25								25									
Anadara transversa Lunarca ovalis Parvicardium pinnulatum													25									25	25																25				25					
Macoma sp. Tellininae Astarte castanea				125		50 50					25			25	300 27	5 200			25	25					50 2		125 9	00 275	200	200 25		25			25			2	25 50	325 57	5 450	50		125	100		250	
Cyclocardia borealis Acteocina canaliculata Cephalaspidea Chaetopleura apiculata																							25	75	275	25	:	25						50						50			25					
Caecum sp. Crepidula fornicata Crepidula plana												32 10	5 D				25			5	75 25 50	1800 125	3975 700	325 25	225			25			50	62	5 75 25	325									775 625					
Naticidae Mya arenaria Crenella sp. Mytilus edulis								25			25		25		25			25	25						50				25 25	25		25						2	5	25						2	<i>!</i> 5	
Astyris lunata Columbellidae Ilyanassa trivittata						25						2		50					25				75 25		30		25 1	25						50						50 25	5 25		50					
Yoldia limatula Nucula sp. Corambe obscura			25																																			2	00	50 25	5		25					
Anomia sp. Pectinidae Pleurobranchaea tarda Arctica islandica	25							25	5					50																																		
Spisula solidissima Agriopoma morrhuanum Mercenaria mercenaria			2	15				25	5						25					25	25		25	50	75	25		25		50 100					25													25
Lyonsia sp. Pandora sp. Pyramidellidae Nemertea																													25									5						25				
Nemertea Oligochaeta Enchytraeidae			75 2			100 25	5 125			50 21 75 17						25		450			25 25 175	100	25		75 7 900 1	75 50 50	150 475	100		25 225 100	325		100	1000	125	525 1		100 5	75 75 0					50 87	75 25	125 175 7	75 525	75
Naididae w/ hair chaetae Naididae w/out hair chae Platyhelminthes Platyhelminthes	tae 100	475	25 40	00 250	75	125 7	5 325	250 100	25	37	5 450	25		25	100 50)		75 50	650	625	25 25 400	75		650	375 1	00 100	625	100	725	25 75	75 75	150 77	5 150	275 75	75				75 75	100		200	25	35	50 75	475 7	25	450
Polychaeta Dorvilleidae			75 17			25				25 5							100				75				25	25				175 75						25	25						75					
Lumbrinerides acuta Scoletoma sp. Arabella iricolor Drilonereis sp.	25	50 25											25		275 25	5 25			50	25	25	50	75	50	25			75	25			75		25									25	25				
Diopatra cuprea Glycera sp. Goniadella gracilis	75 300	25	2			25	5 100	50 25	5 50 25		75 50				50		25	25	25 25			25 25		50	,	75				75 50									5 50									
Nephtys sp. Nereididae Eteone sp. Phyllodoce arenae	25						25			5	0 25				50)	25						25			325				25					50		25		5	25	5			25			75 25 25	
Phyllodocidae Pilargidae Polynoidae	75			75				50	0 50		5	75			75 77	5		75	50	125	50	25	100	25	75	25		125	275	25	25	25 25		25						25	5		25			25		50
Pisioninae Sigalion arenicola Sigalionidae	25			125 25				25	5		25													25					100	50																		
Exogone sp. Syllidae Pseudopotamilla reniforr	100 nis	/5 50 50	25 7 22	'5 125 25		15 25 50	0 25	50 25	0 50 5 25	100 2	25				25 75		50	50	375	25 300	175	25		300 275	1050 2	25 325	25 50	25 125	175 25	25 275 25	50	25 100 75	75	75	25 75	25	25	50 2	5			25	25	75 35	0 75	150 5	<i>i</i> 0 25	50 100

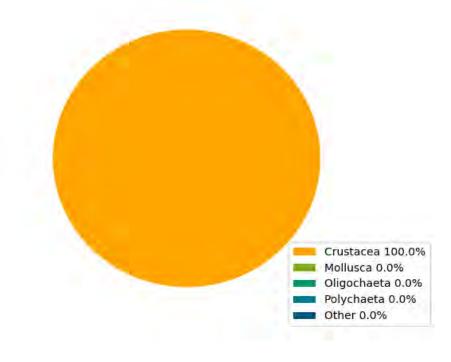
Benthic Macroinvertebrate Sample Analysis Report - US Wind Attachment B. Benthic Sample Taxonomy and Enumeration Results, Processed to Resolve Taxonomic Ambiguity, 2021

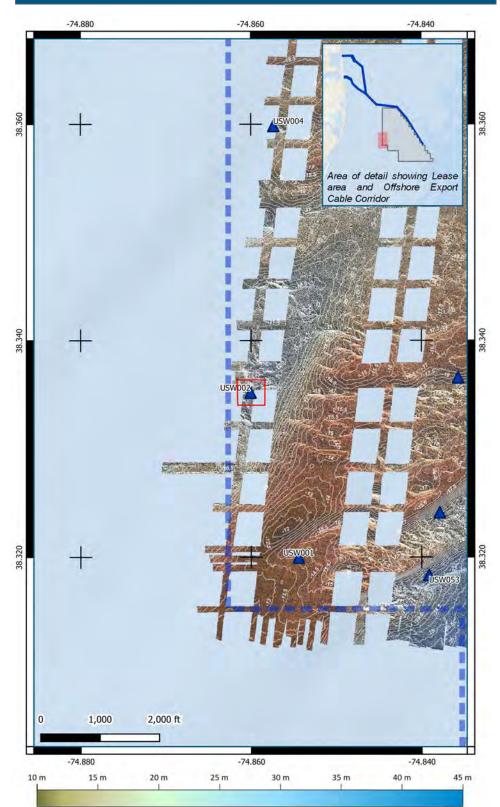
ESS ID	6-AC-2 6-AC-3	G-AC-4	G-AC-5	6-AC-6	G-AC-8	G-AC-9	i.AC-10	i-AC-11	i.AC-12	: AC-13	i.AC-14	i.AC-16	i.AC-17	i.AC-26	1.AC-27	i.AC-29	i.AC-30	1-VC-31	i.AC-32 i.AC-33	i.AC-34	i.AC-35	i.AC-36	i.AC-38	i.AC-39	i.AC-40	i.AC-41	i.AC-43	i-AC-44 i-AC-45	i.AC-46	-AC-103	1.AC-66	1.AC-67	i.AC-69	1.AC-70	1.AC-71	i.AC-73	1.AC-74	i-AC-75	1.AC-76	i.AC-80	i.AC-79	1.AC-78	i.AC-83	i.AC-84	:.AC-85	1-AC-85	1.AC-48	i.AC-50	1.AC-51	i.AC-53	1.AC-54	i.AC-55	i.AC-56
	• •	8	8	۵	8 8	-	×	ğ	×	8	8 8	8	8	ä	8 8	8	8	ä	8 8	ä	8	8 8	2	ä	8	2 2	8	8 8	2	8 8	8	8 8	ä	8	8 8	8	BG	8 8		8	8 8	8 8	× ×	ä	8	2 2	8	×	8 8	ä	ä	80	× ×
USW ID	USW130	DSW132	USW133	USW134	SETWOU	1ET/MS/N	USW138	USW139	USW140	USW141	USW142 USW143	USW144	USW145	USW146	USW147 USW148	USW149	USW150	USW151	USW152 USW153	USW154	USW155	25LWSI	USW158	05W159	USW160	USW185 USW184	USW185	USW186 USW187	USW188	05W189	191.MSU	USW162 USW163	USW164	USW165	731WSU	USW168	USW169	0/1/MSU	£ZIMSN	NSW174	USW175	921WSU	821WSU	621.MSN	USW180	USW181 USW182	161 MSU	USW192	USW193 USW194	USW195	96TMSN	<i>16</i> T/MS/N	USW198
Location Category	Common Corridor Common Corridor	Common Corridor	Common Corridor	Common Corridor	Common Corrisor Common Corrisor	Common Corridor	Common Corridor Common Corridor	Common Corridor	Common Corridor	Common Corridor	Common Corridor Common Corridor	Common Corridor	Common Corridor	Common Corridor	Common Corridor Common Corridor	Common Corridor	Common Corridor	Common Corridor DECC 1	01001	OECC 1	06001	01001	05001	0fcc 1 0fcc 1	06001	0ECC 1 0ECC 1	0100 2	OECC 2 OECC 2	OFCC 2	0100 2	0ECC 2 0ECC 2	01002	0502 2	0600.2	0502	OECC 2	0600 2	01CC 2 0ECC 2	0500.2	06CC 2	0100 2	0ECC 2	0800.2a	0ECC 28	0ECC 2a 0ECC 2a	0ECC 2a	0ECC 2a	0500 2a	0500 28				
																											Orgar	isms/m²																									
lychaeta Sabellidae																																																					
Paraprionospio pinnata																																										75	5										
Polydora sp.							25																																												25		
Prionospio sp.																																								25					50								25
Scolelepis sp. Spio sp.						25					200	50											50		35									100																			
Spiophanes bombyx			25			25				50 3	300	50		25			25						50	25	25				100					100		50			75	25	25								50	25			25
Streblospio benedicti			2.5											2.5			2.5							2.5					100							50			,,,	2.5	2.5								50	23			
Ampharetidae	25			25	25	25					25 25				12	5			25	25	450	25			50					50		50	25						25						75	25			50)			
Cirratulidae	25	100	25	100	60	25	50	125	50	25	75 50	50	25				50		75	75		25 40	0	50		25		50 25	50	25	25	75			25	50	50											25	25				75
Pherusa sp.																																																					
Terebellidae	25		25	75			25				25						25															50	25																				
Amastigos caperatus																													2	25																							
Mediomastus sp.	25		25																	25					300			25			25				100		175	25	225	25	25		100	200	50		75		25 22	5 50	125		125
Notomastus sp. Spiochaetopterus sp.													25								35				35										-			50			35												
Magelona rosea			75																		25				25										/5			50			25												
Clymenella torquata			23																																		25						175				100		50	,			
Clymenella zonalis					25						25										25	2!	;			50								25	100		150	25	25		300						50		25				
Opheliidae				25		25																						50	1	25		25														25						25	
Orbiniidae																							25	25	25			25							75																		
Aricidea sp.	25 25	150	75	50	50	75		25		75		25							50	25		25 7	5 25	25				25			150	15	D 25	25	175			2	150	25		50				75							
Paraonidae	100	50		25	25 25			25		25			50				100					51)	50		25		25 50	1	25	100	17	5				25	2	!5							125							
Polygordius sp.	175 75	275		25	50 25	325	50		25	75 2	275 25	25	450		50	25	25	25		75		51)			25		75	100 5	50		125 25			250	50	100			75					25	25					125		50
Sabellaria vulgaris																									25														25								25		50)			
Scalibregma inflatum		25		25		25	150				25	50	25							25				25										25		25						25											
Travisia carnea Polychaeta		25		75			75																					100										25						25		IC .			35		25		
ncula		50		25			25																																					40					2.5		20		
Sipuncula																																						25				25											
						-			_						_	_		_					_			_			_		_	_	_		_	_	_			_	_		_			_	_	_	_	_			(Income of the local data

Attachment C

Benthic Macrofaunal Grab Logs

	Benthic Grab U	ISW001
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
	Organism Density lividuals/m ²) ¹ :	50
Tax	ka Richness ¹ :	2

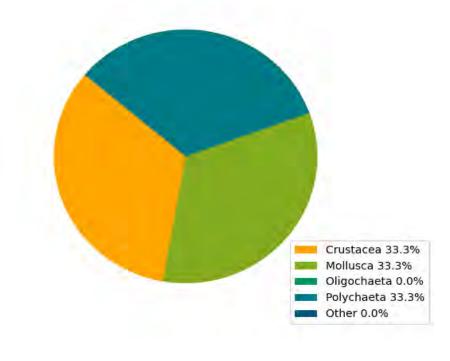

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

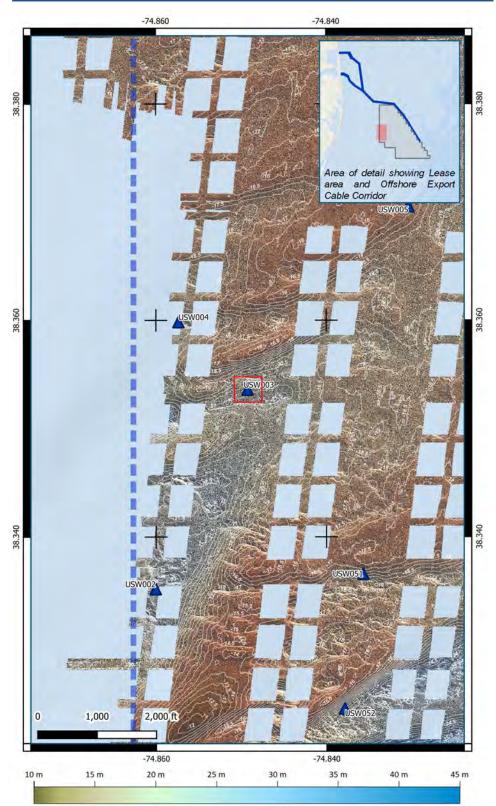

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW001 (BG-LA-B09) Lease Area

	Benthic Grab	USW002
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
	Organism Density ividuals/m ²) ¹ :	150
Тах	a Richness ¹ :	5

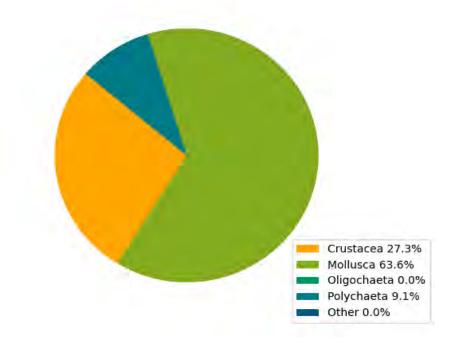

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

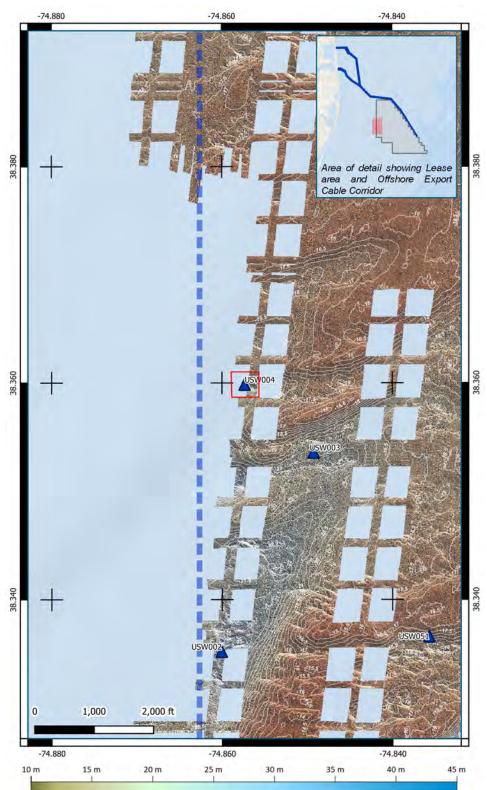

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW002 (BG-LA-Z027) Lease Area

	Benthic Grab U	SW003
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
	Organism Density lividuals/m ²) ¹ :	275
Tax	a Richness ¹ :	6

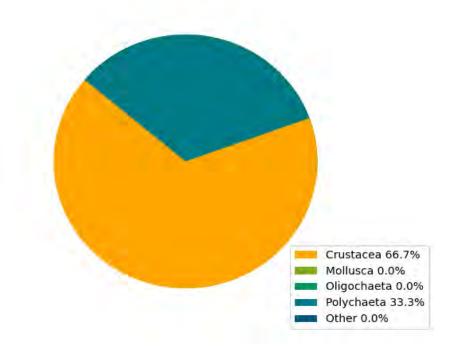

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

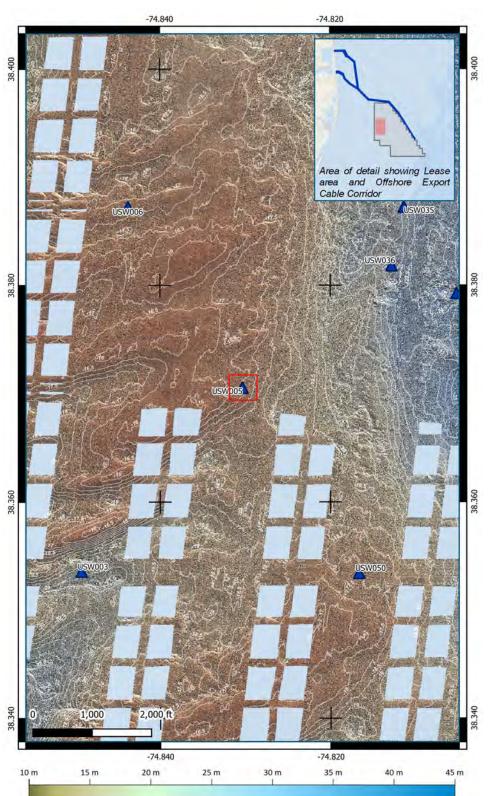

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW003 (BG-LA-B07) Lease Area

	Benthic Grab U	SW004
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
	Organism Density lividuals/m ²) ¹ :	300
Tax	a Richness ¹ :	3


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

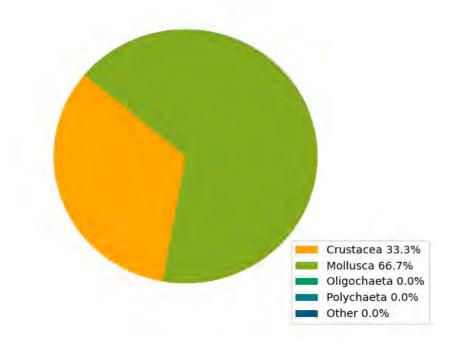


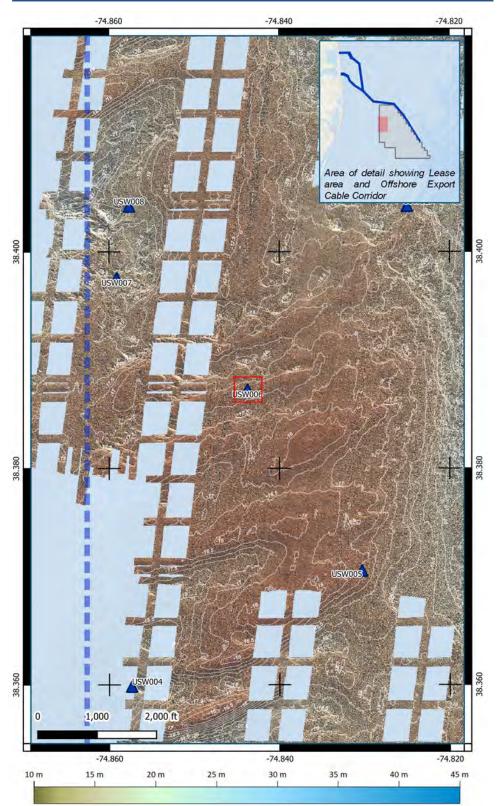
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW004 (BG-LA-Z021) Lease Area

	Benthic Grab U	ISW005
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
	Organism Density lividuals/m ²) ¹ :	75
Tax	a Richness ¹ :	2


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

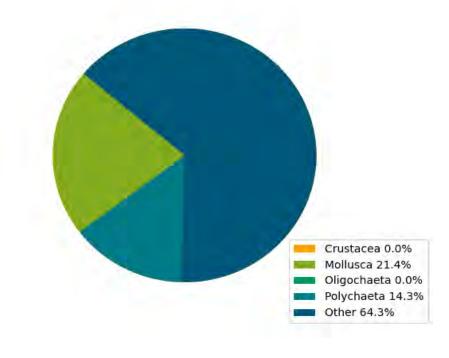

Maryland Offshore Wind Project Offshore Maryland and Delaware

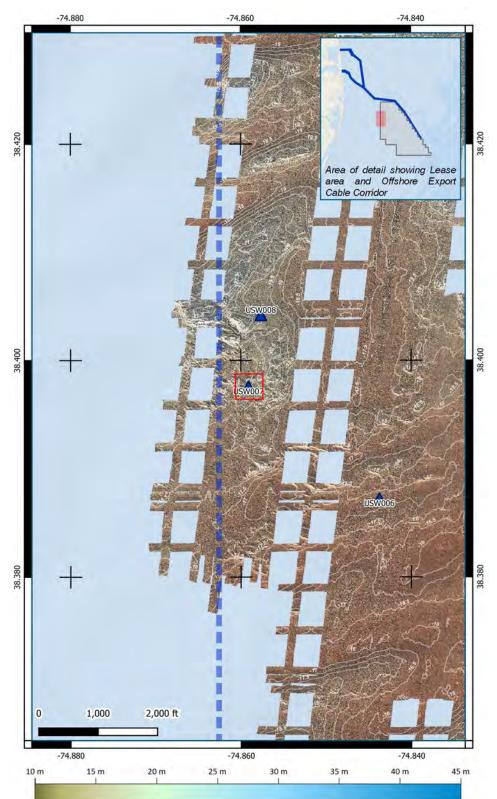
Benthic Organism Density by Taxa Group

<image>

Benthic Sample Site USW005 (BG-LA-C06) Lease Area

	Benthic Grab U	SW006
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
	Organism Density lividuals/m ²) ¹ :	350
Tax	a Richness ¹ :	6

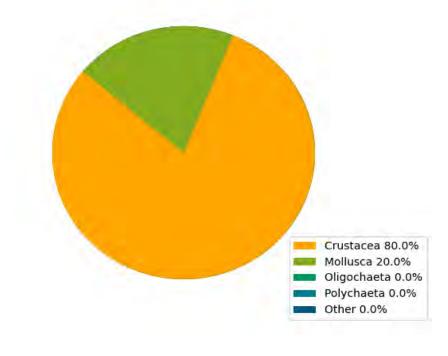

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

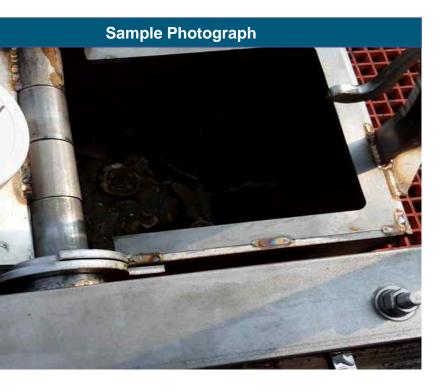

Maryland Offshore Wind Project Offshore Maryland and Delaware

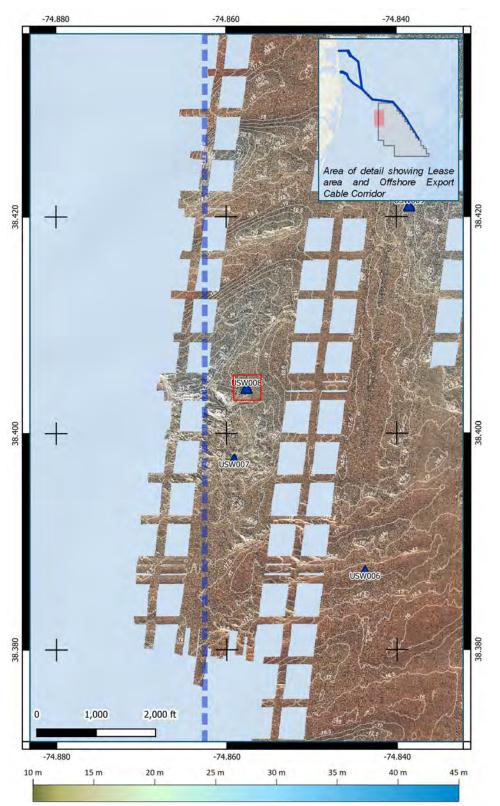
Benthic Organism Density by Taxa Group

Benthic Sample Site USW006 (BG-LA-B05) Lease Area

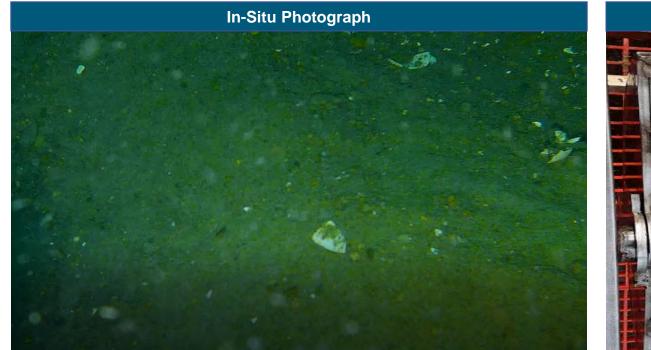
Benthic Grab USW007			
CMECS Habitat Classification	Substrate Subclass:	Coarse Unconsolidated Substrate	
	Substrate Group:	Gravel Mixes	
	Substrate Subgroup:	Sandy Gravel	
Benthic Organism Density (individuals/m ²) ¹ :		125	
Taxa Richness ¹ :		3	


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



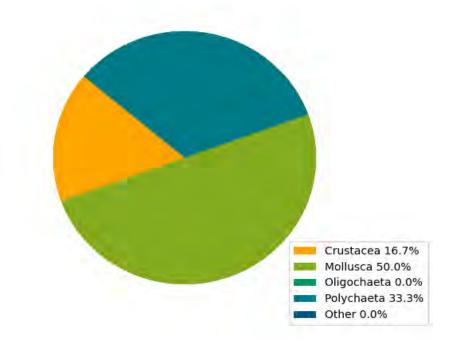

Maryland Offshore Wind Project Offshore Maryland and Delaware

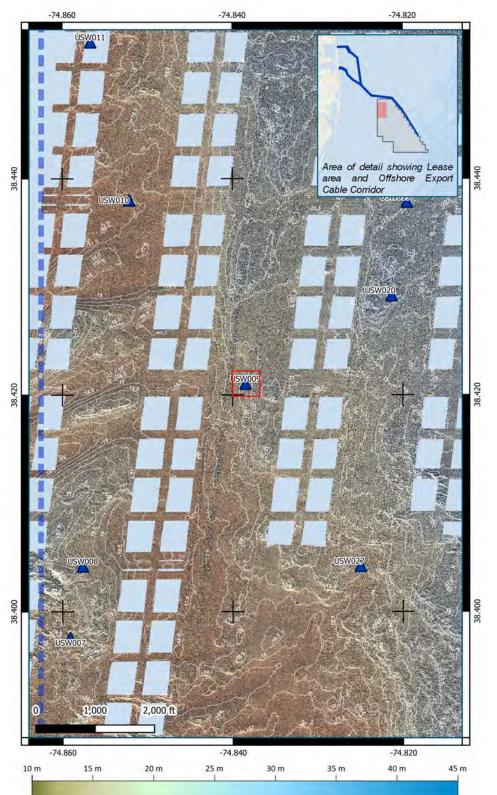
Benthic Organism Density by Taxa Group



Benthic Sample Site USW007 (BG-LA-Z014) Lease Area

Benthic Grab USW008			
CMECS Habitat Classification	Substrate Subclass:	Coarse Unconsolidated Substrate	
	Substrate Group:	Gravelly	
	Substrate Subgroup:	Gravelly Sand	
Benthic Organism Density (individuals/m ²) ¹ :		150	
Taxa Richness ¹ :		6	

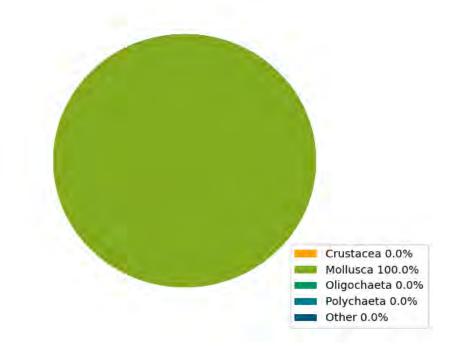

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW008 (BG-LA-A04) Lease Area

Benthic Grab USW009			
CMECS Habitat Classification	Substrate Subclass:	Coarse Unconsolidated Substrate	
	Substrate Group:	Gravelly	
	Substrate Subgroup:	Gravelly Sand	
Benthic Organism Density		25	
(individuals/m ²) ¹ :			
Taxa Richness ¹ :		1	

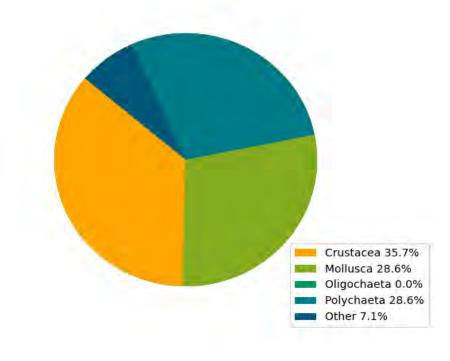

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW009 (BG-LA-B03) Lease Area

Benthic Grab USW010			
CMECS Habitat Classification	Substrate Subclass:	Fine Unconsolidated Substrate	
	Substrate Group:	Sand	
	Substrate Subgroup:	Medium Sand	
Benthic Organism Density (individuals/m ²) ¹ :		350	
Taxa Richness ¹ :		9	

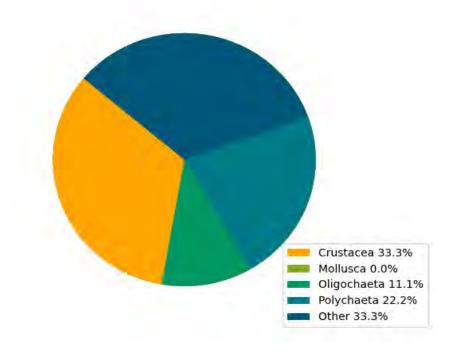

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

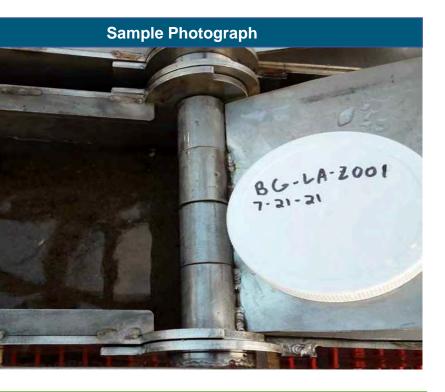

Maryland Offshore Wind Project Offshore Maryland and Delaware

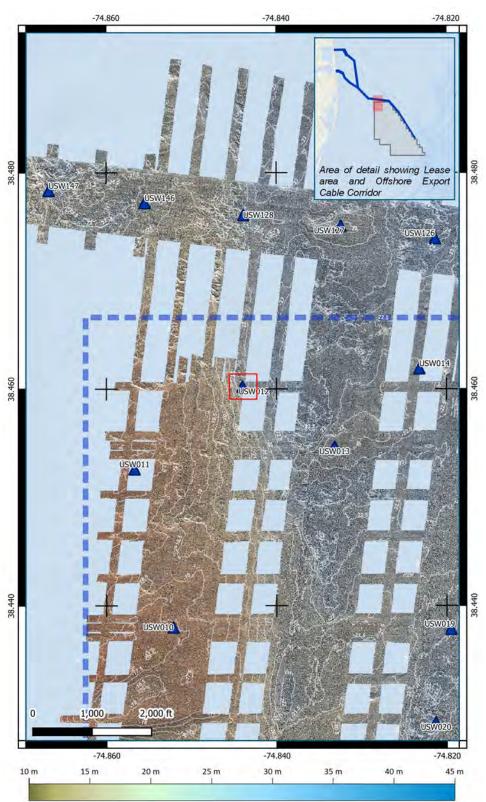
Benthic Organism Density by Taxa Group

Benthic Sample Site USW010 (BG-LA-A02) Lease Area

Benthic Grab USW011				
CMECS Habitat Classification	Substrate Subclass:	Fine Unconsolidated Substrate		
	Substrate Group:	Sand		
	Substrate Subgroup:	Medium Sand		
Benthic Organism Density (individuals/m ²) ¹ :		225		
Taxa Richness ¹ :		7		


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

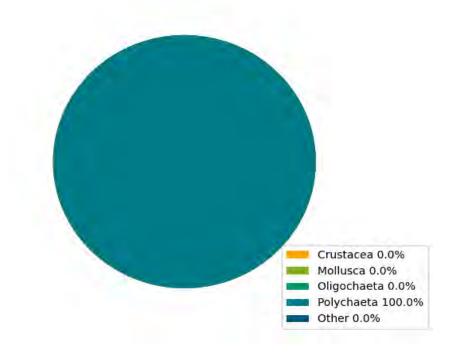


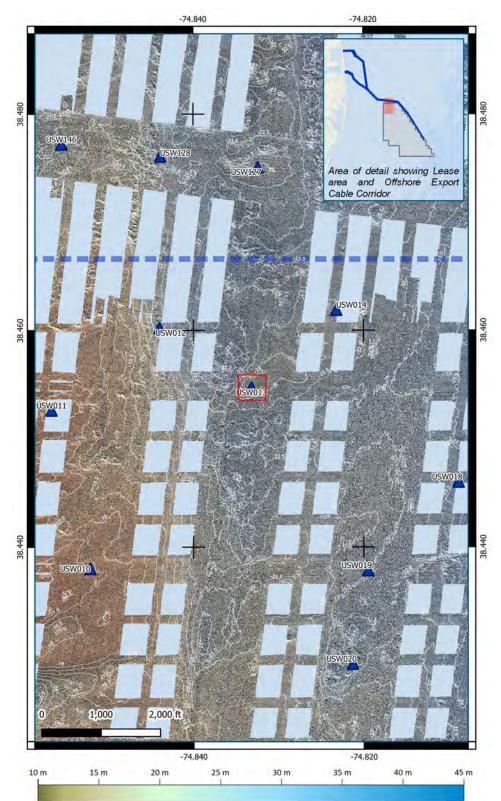

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW011 (BG-LA-Z001) Lease Area

Benthic Grab USW012		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density		50
(individuals/m ²) ¹ :		50
Taxa Richness ¹ :		1

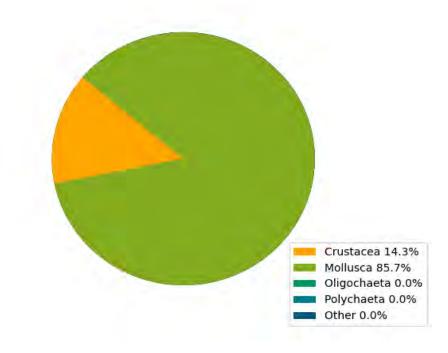

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

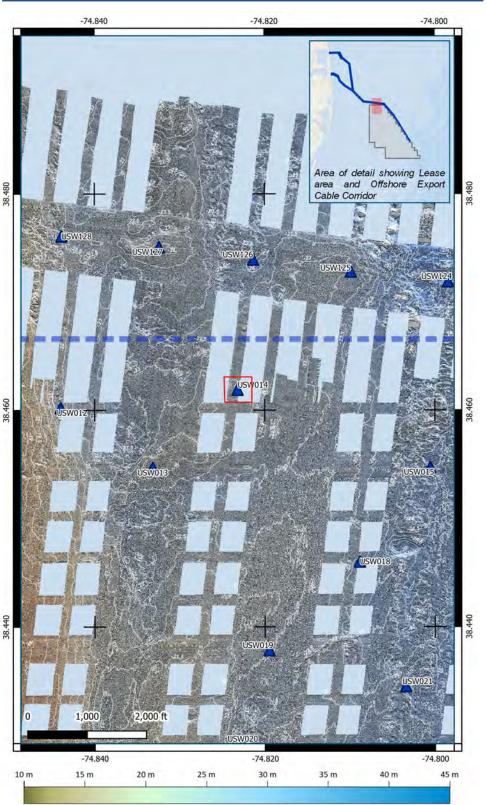
Benthic Organism Density by Taxa Group

Benthic Sample Site USW012 (BG-LA-Z002) Lease Area

Benthic Grab USW013		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		175
Taxa Richness ¹ :		4


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

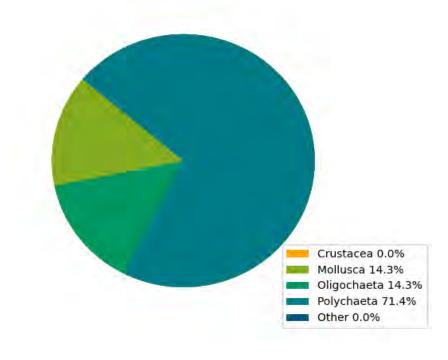
Maryland Offshore Wind Project Offshore Maryland and Delaware

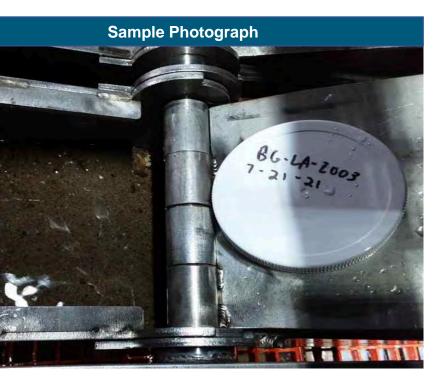

Benthic Organism Density by Taxa Group


Benthic Sample Site USW013 (BG-LA-B01) Lease Area

Map of Benthic Grab Location

Benthic Grab USW014		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		350
Taxa Richness ¹ :		8


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

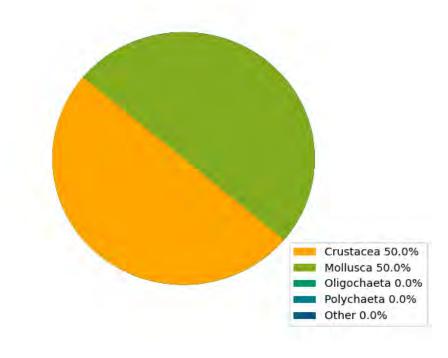


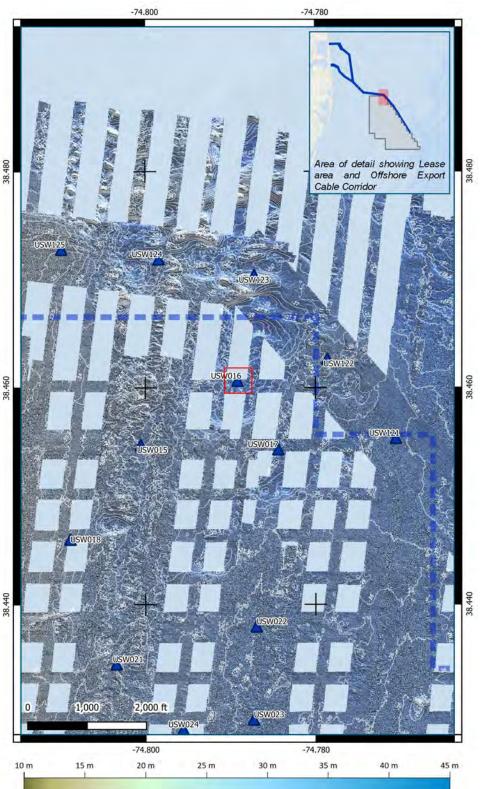
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW014 (BG-LA-Z003) Lease Area

Benthic Grab USW015		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		50
Taxa Richness ¹ :		2

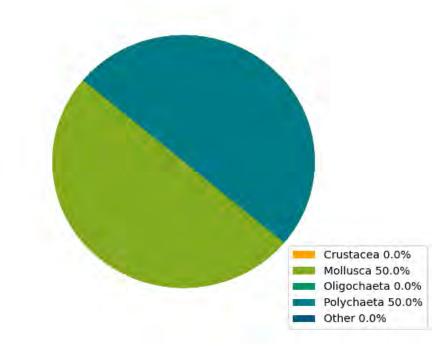

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW015 (BG-LA-D01) Lease Area

Benthic Grab USW016		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		50
Taxa Richness ¹ :		2

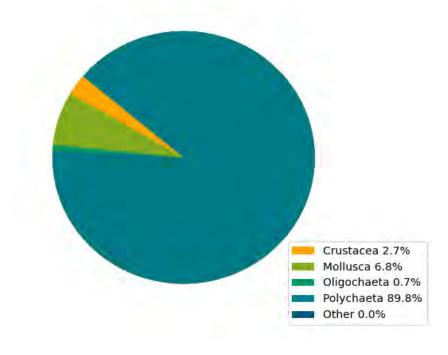

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

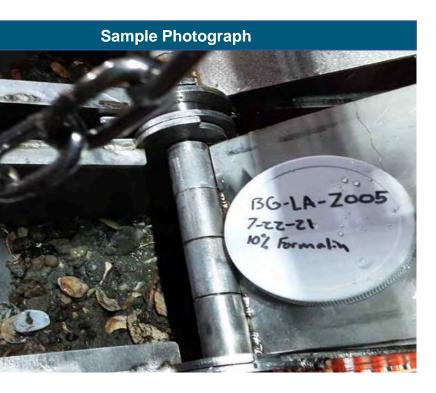
Maryland Offshore Wind Project Offshore Maryland and Delaware

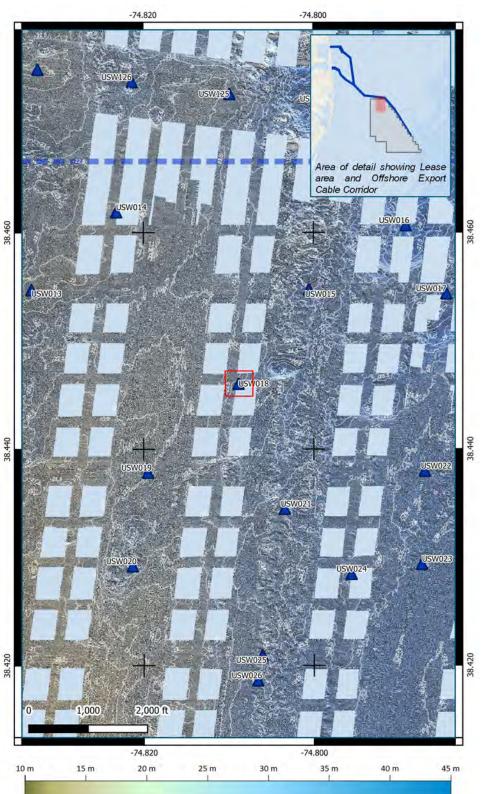
Benthic Organism Density by Taxa Group

Benthic Sample Site USW016 (BG-LA-Z004) Lease Area

Benthic Grab USW017		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		3675
Taxa Richness ¹ :		22


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

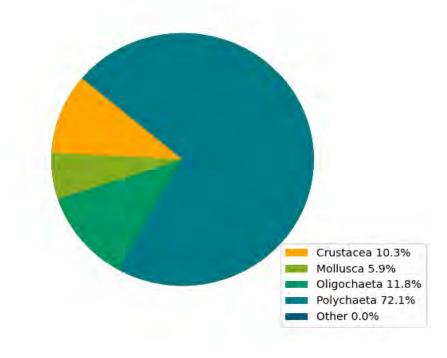


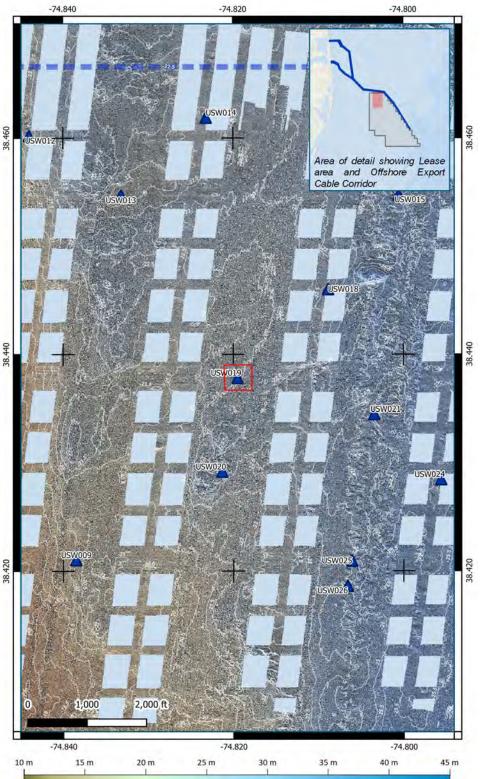

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW017 (BG-LA-Z005) Lease Area

Benthic Grab USW018		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		1700
Taxa Richness ¹ :		21


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

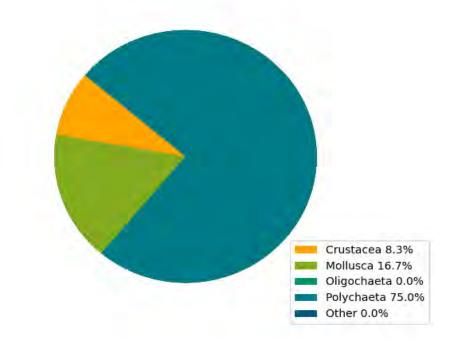


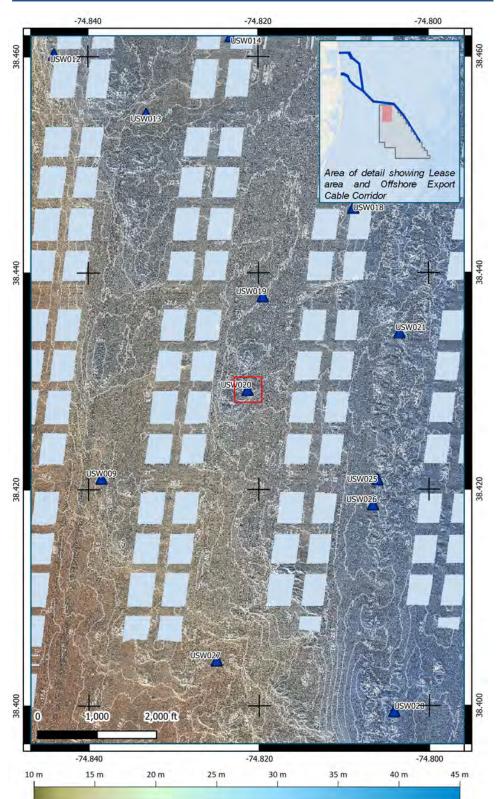
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW018 (BG-LA-Z006) Lease Area

Benthic Grab USW019		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		300
Taxa Richness ¹ :		5


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

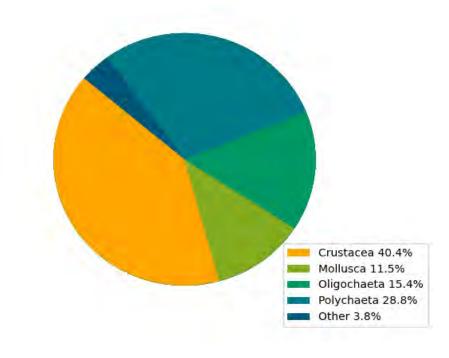


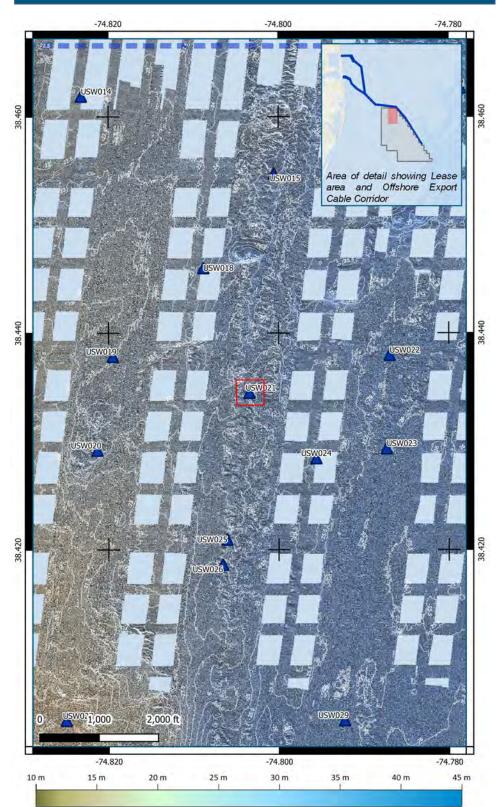
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW019 (BG-LA-C02) Lease Area

Benthic Grab USW020		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		1300
Taxa Richness ¹ :		21

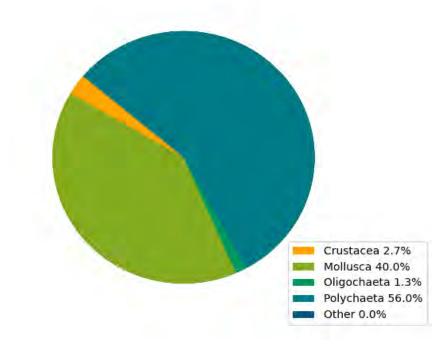

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

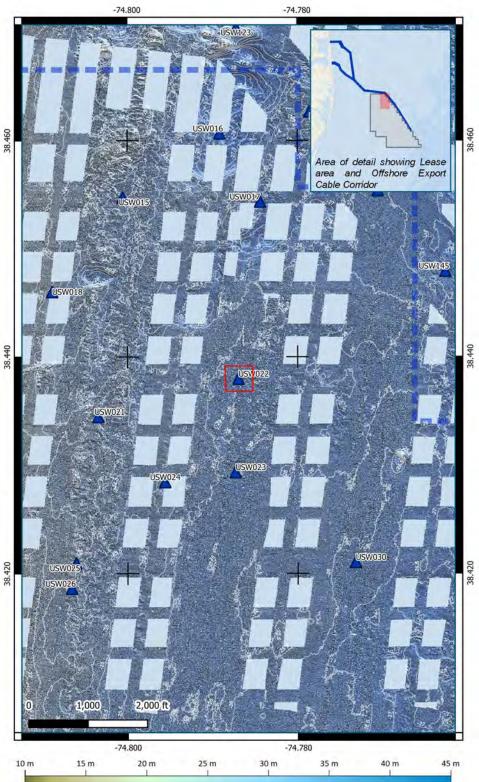

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW020 (BG-LA-Z008) Lease Area

Benthic Grab USW021			
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate	
Habitat	Substrate Group:	Gravelly	
Classification	Substrate Subgroup:	Gravelly Sand	
Benthic Organism Density (individuals/m ²) ¹ :		1875	
Taxa Richness ¹ :		15	

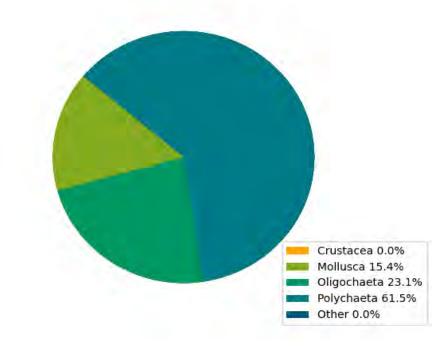

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

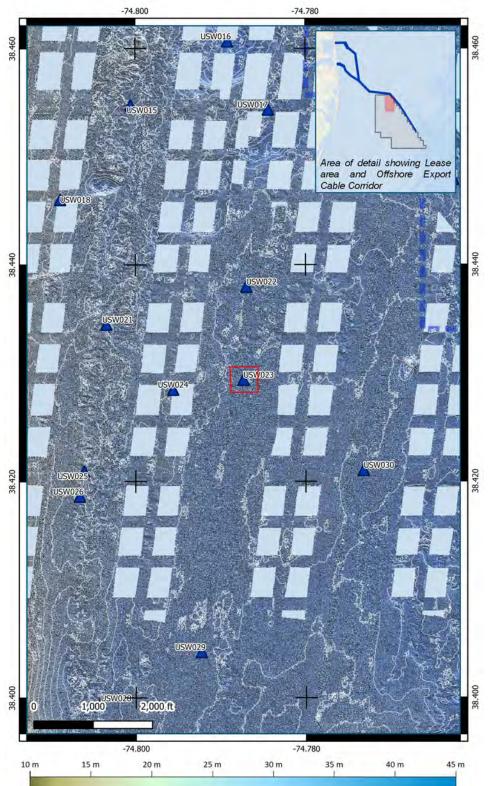

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW021 (BG-LA-Z007) Lease Area

Benthic Grab USW022		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		325
Taxa Richness ¹ :		9

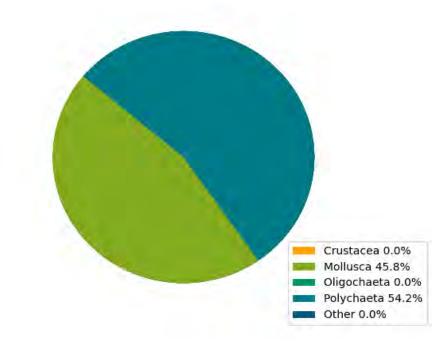

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

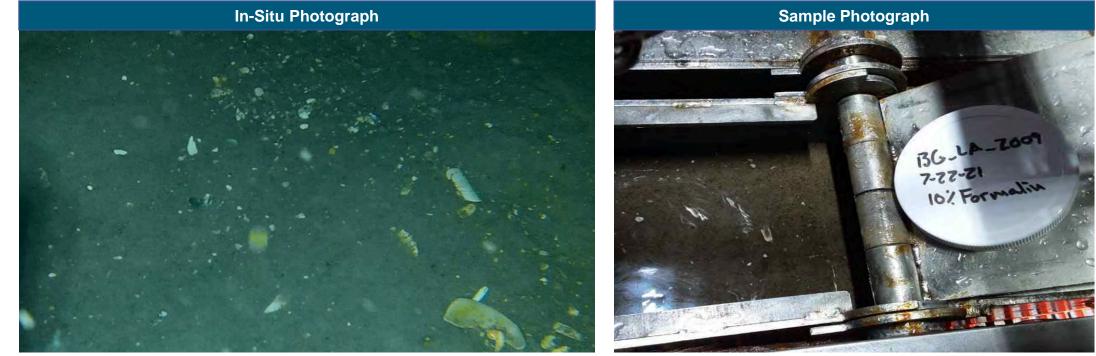
Benthic Sample Site USW022 (BG-LA-E02) Lease Area

Benthic Grab USW023		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		2675
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

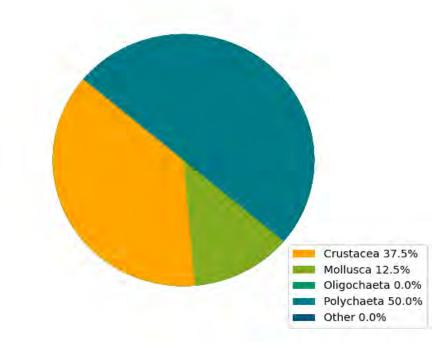
Benthic Organism Density by Taxa Group

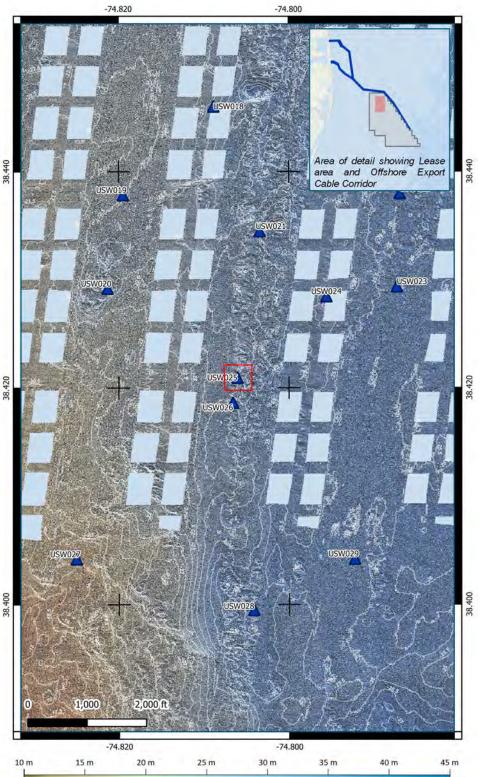


Benthic Sample Site USW023 (BG-LA-Z010) Lease Area

Map of Benthic Grab Location -74.820 -74.800 -74.780 Area of detail showing Lease area and Offshore Export Cable Corridor USW023 Cot ser ,000 f -74.820 -74.800 -74.780 10 m 25 m 35 m 40 m 45 m 15 m 20 m 30 m

Benthic Grab USW024		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		200
Taxa Richness ¹ :		8


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

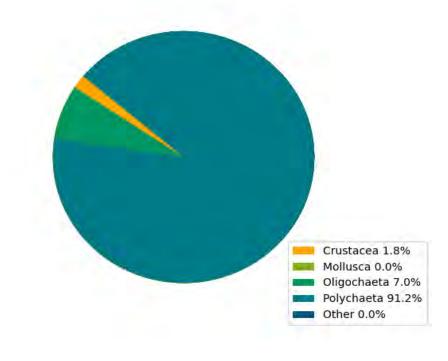


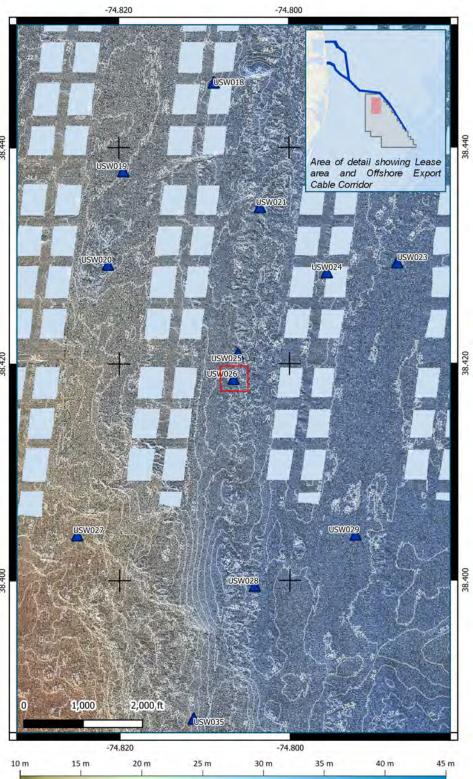
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW024 (BG-LA-Z009) Lease Area

Benthic Grab USW025		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1425
Taxa Richness ¹ :		5


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

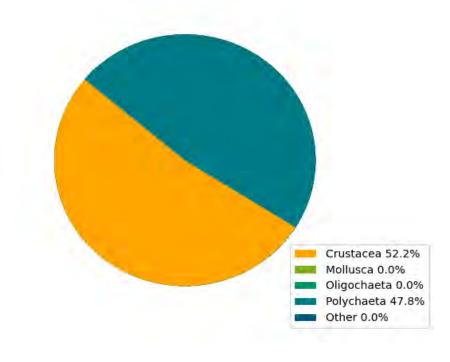


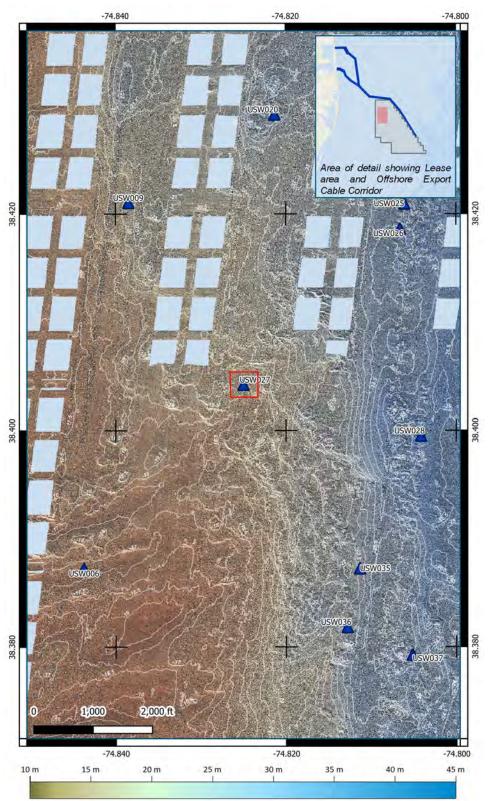
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

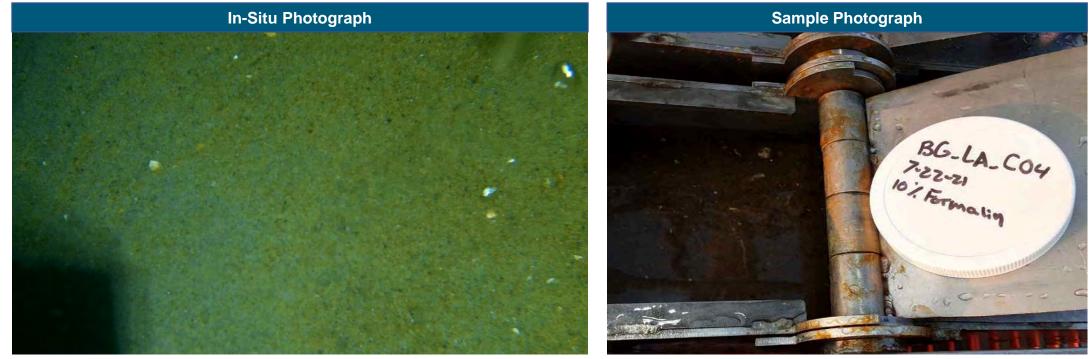
Benthic Sample Site USW025 (BG-LA-D03) Lease Area

Benthic Grab USW026		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		575
Taxa Richness ¹ :		8


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

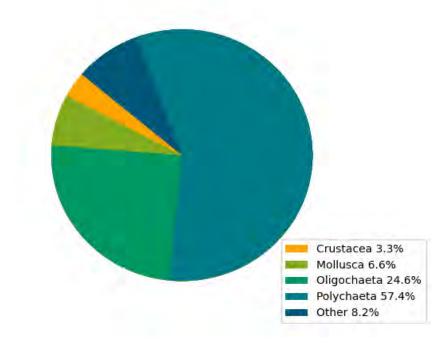

Maryland Offshore Wind Project Offshore Maryland and Delaware

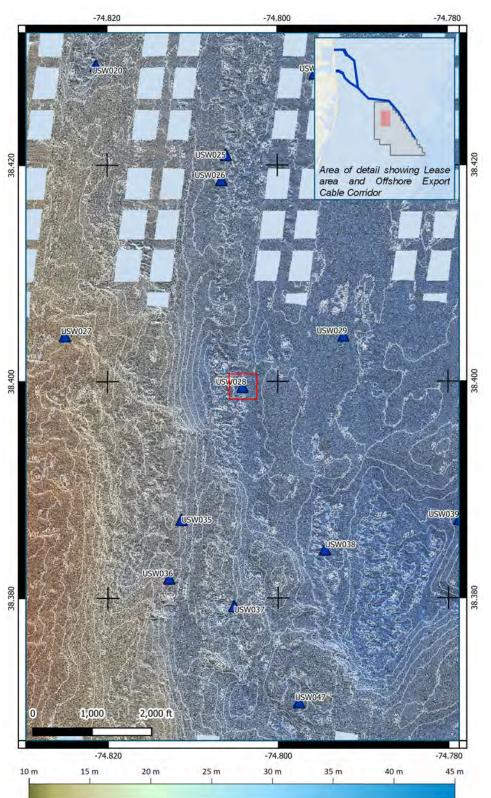
Benthic Organism Density by Taxa Group



Benthic Sample Site USW026 (BG-LA-Z011) Lease Area

Benthic Grab USW027		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1525
Taxa Richness ¹ :		14


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

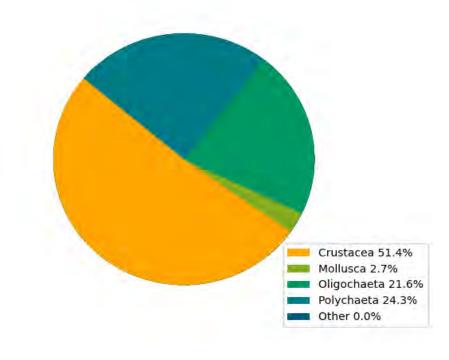


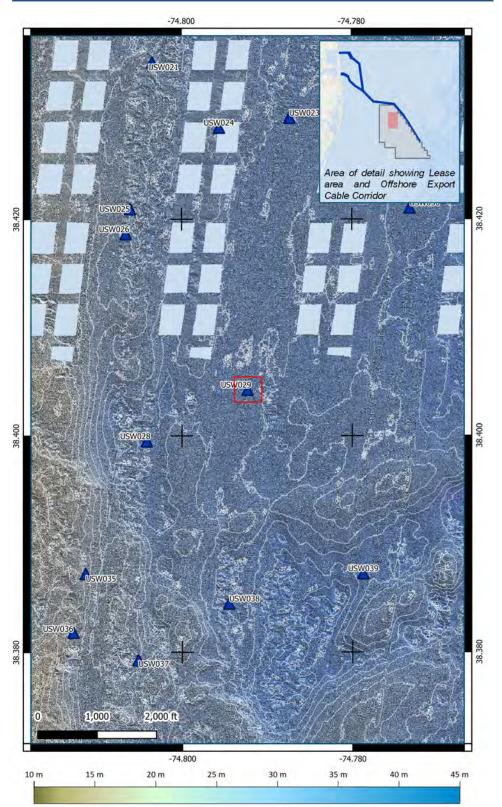
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

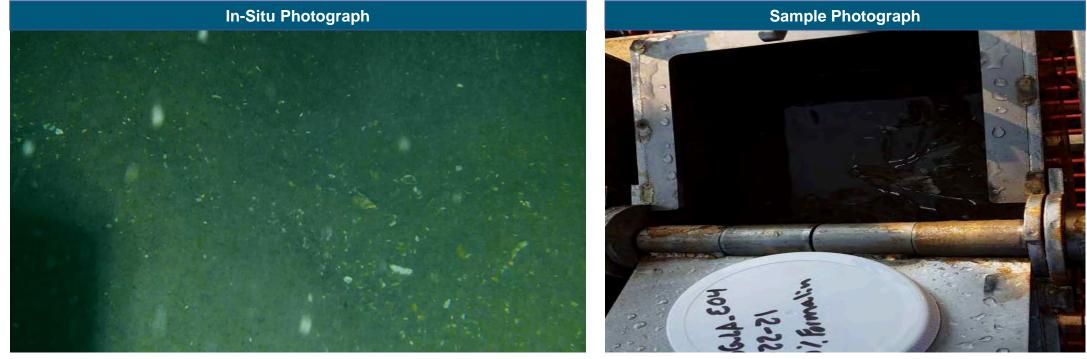
Benthic Sample Site USW027 (BG-LA-C04) Lease Area

Benthic Grab USW028		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density		925
(individuals/m ²) ¹ :		520
Taxa Richness ¹ :		17


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

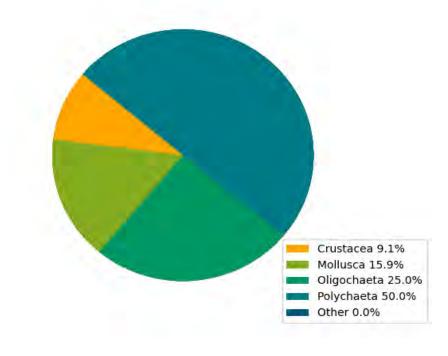

Maryland Offshore Wind Project Offshore Maryland and Delaware

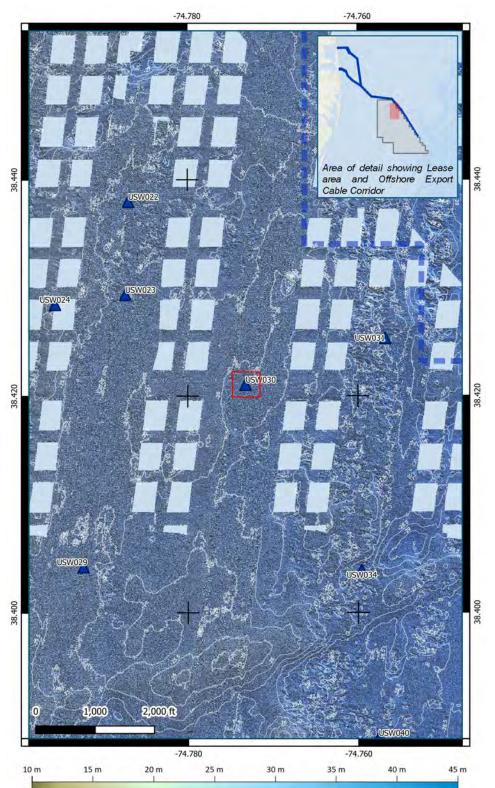
Benthic Organism Density by Taxa Group



Benthic Sample Site USW028 (BG-LA-Z015) Lease Area

Benthic Grab USW029		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1100
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

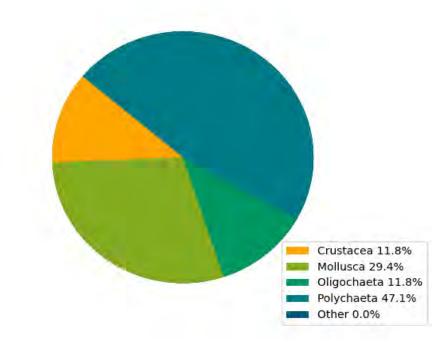


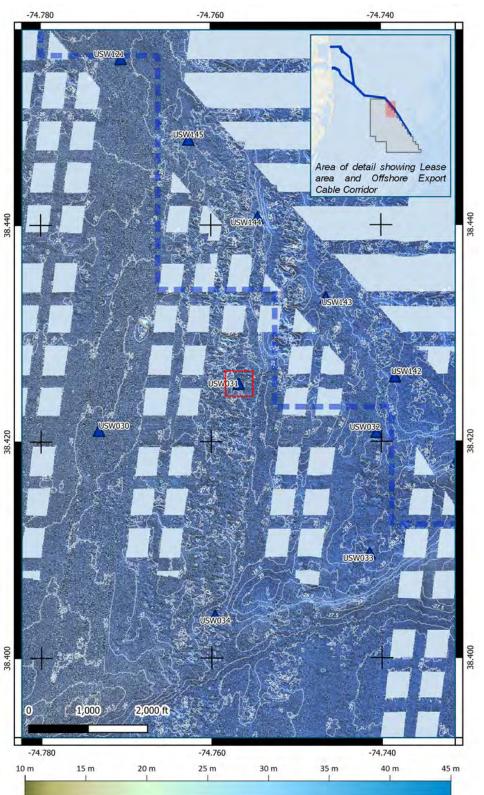
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW029 (BG-LA-E04) Lease Area

Benthic Grab USW030		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		425
Taxa Richness ¹ :		11

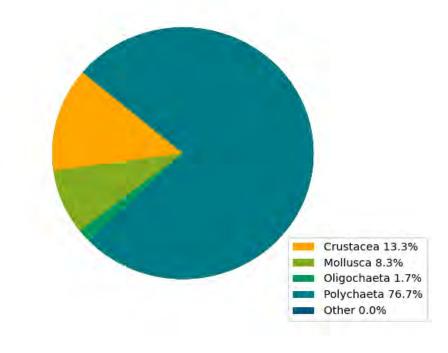

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

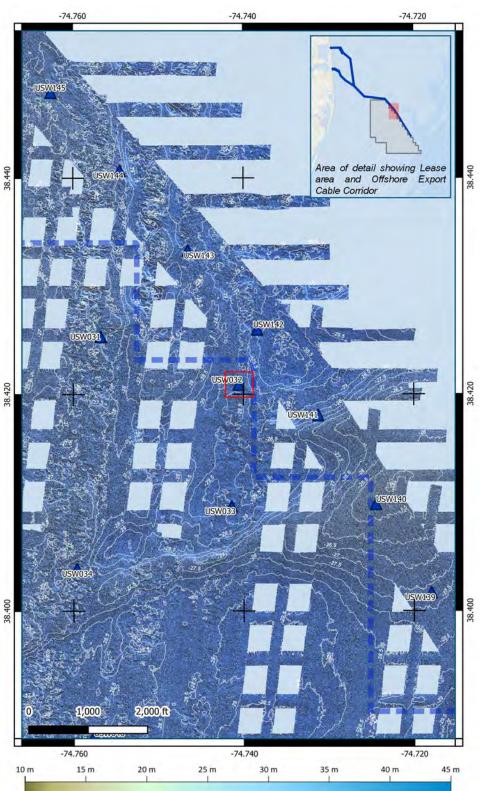

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW030 (BG-LA-F03) Lease Area

Benthic Grab USW031		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1500
Taxa Richness ¹ :		17

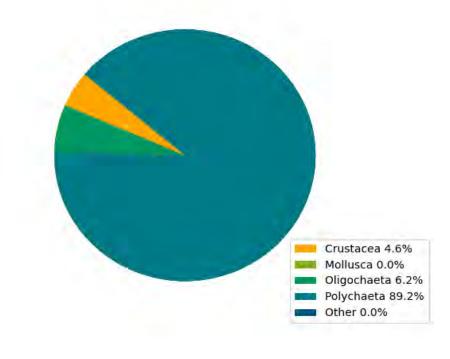

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

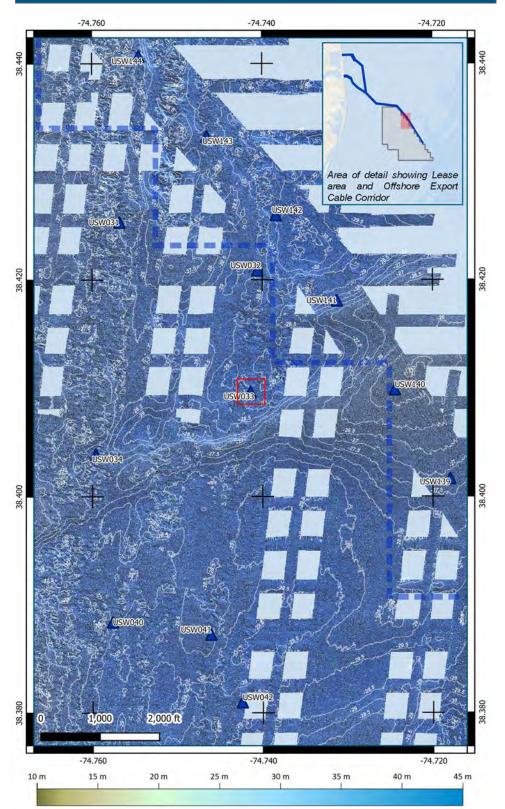
Benthic Organism Density by Taxa Group

Benthic Sample Site USW031 (BG-LA-Z012) Lease Area

Benthic Grab USW032		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1625
Taxa Richness ¹ :		15


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

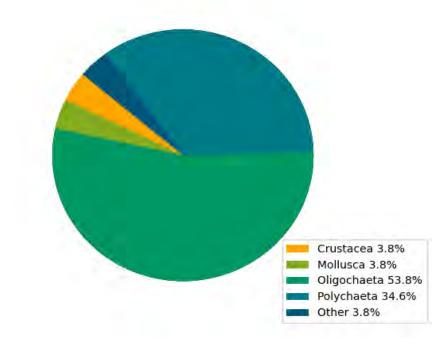


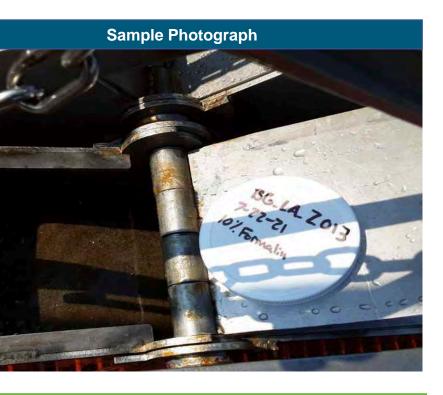

Maryland Offshore Wind Project Offshore Maryland and Delaware

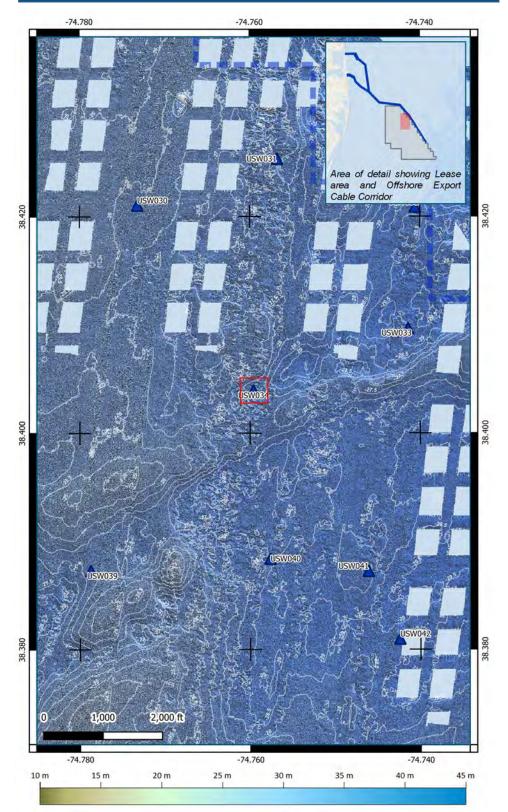
Benthic Organism Density by Taxa Group

Benthic Sample Site USW032 (BG-LA-H03) Lease Area

Benthic Grab USW033		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

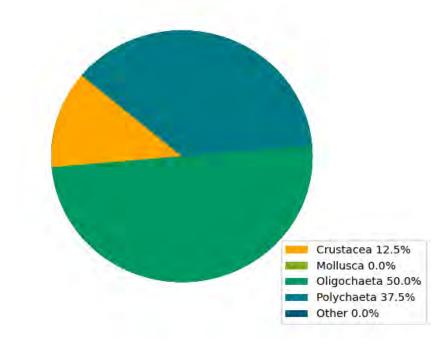


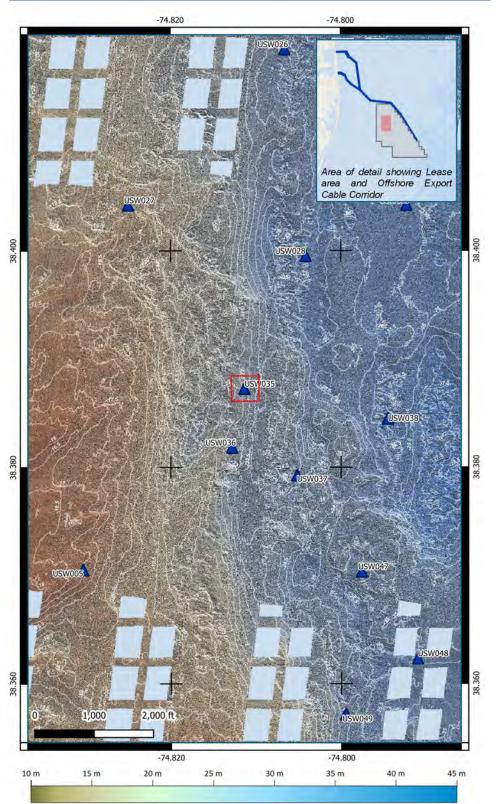

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW033 (BG-LA-Z013) Lease Area

Benthic Grab USW034		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		200
Taxa Richness ¹ :		5

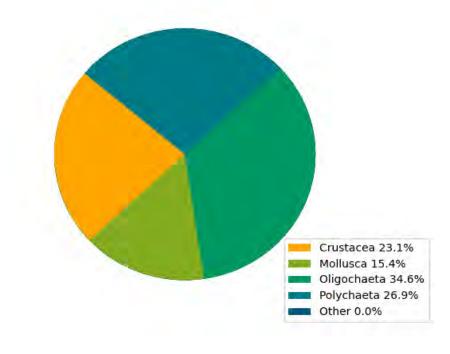

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

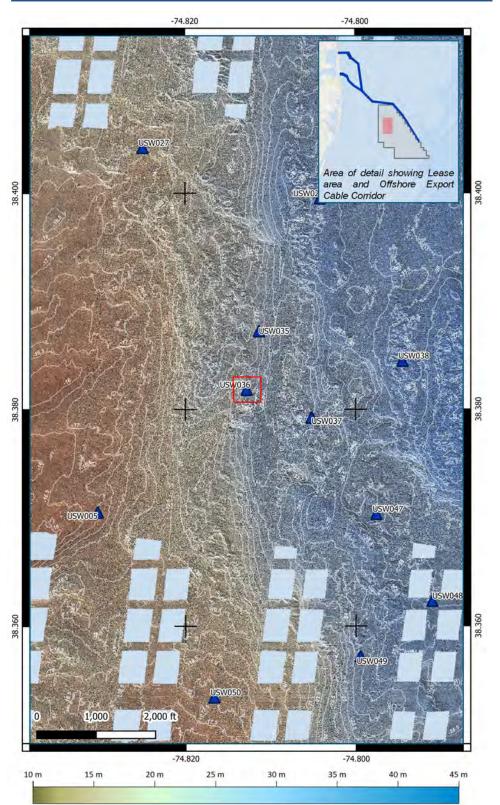

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW034 (BG-LA-G04) Lease Area

Benthic Grab USW035		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

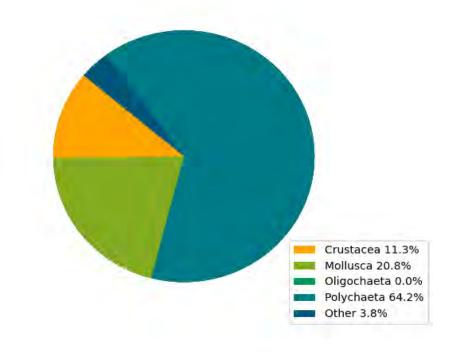


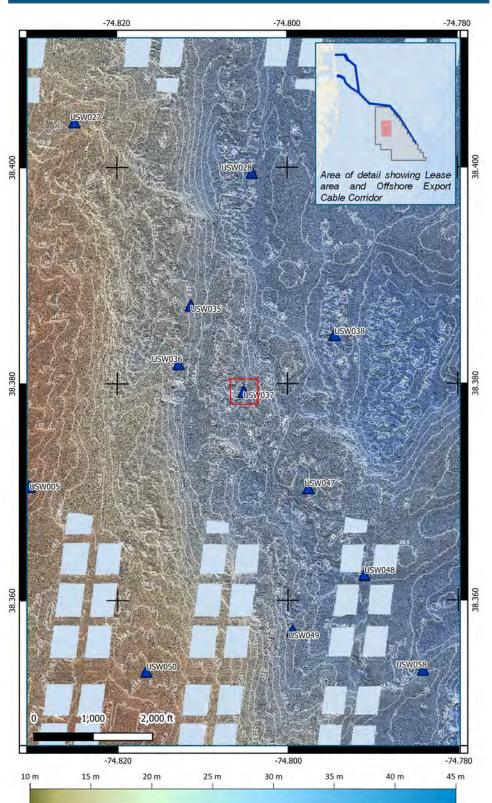
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW035 (BG-LA-D05) Lease Area

Benthic Grab USW036		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1325
Taxa Richness ¹ :		16

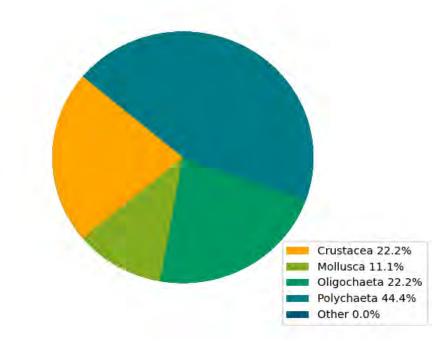

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

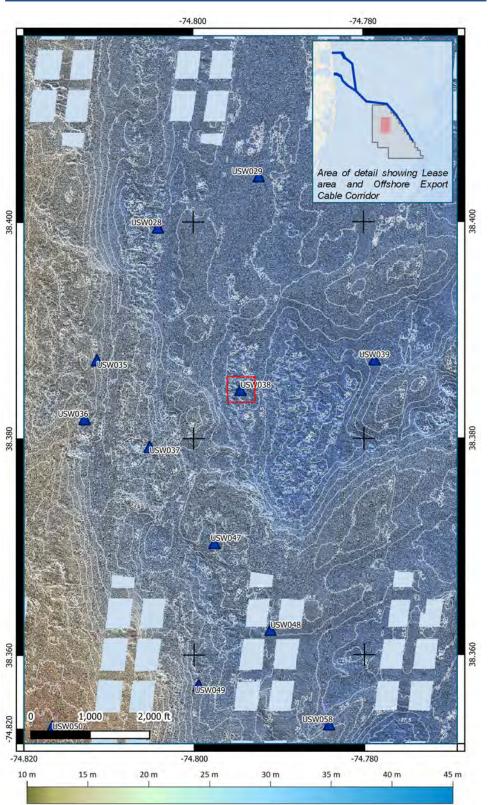

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW036 (BG-LA-Z016) Lease Area

Benthic Grab USW037		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		225
Taxa Richness ¹ :		7


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

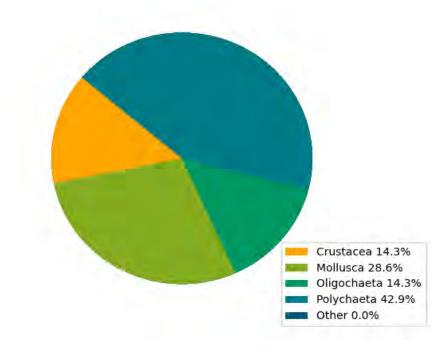

Maryland Offshore Wind Project Offshore Maryland and Delaware

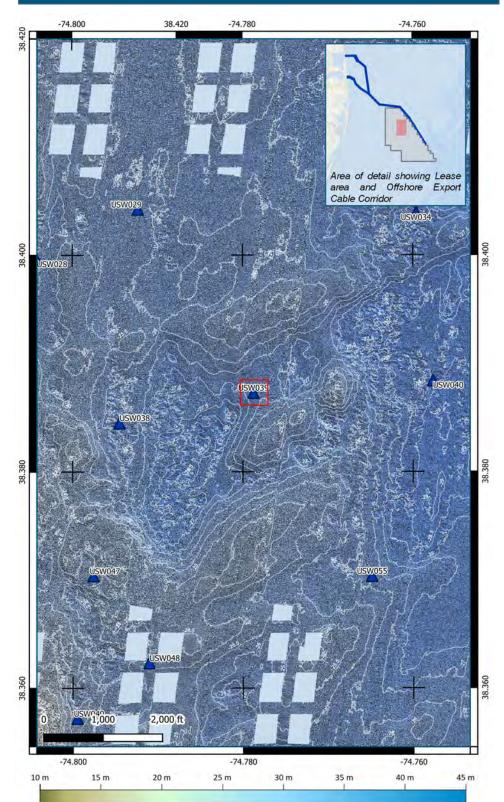
Benthic Organism Density by Taxa Group



Benthic Sample Site USW037 (BG-LA-Z017) Lease Area

Benthic Grab USW038		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		175
Taxa Richness ¹ :		5


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

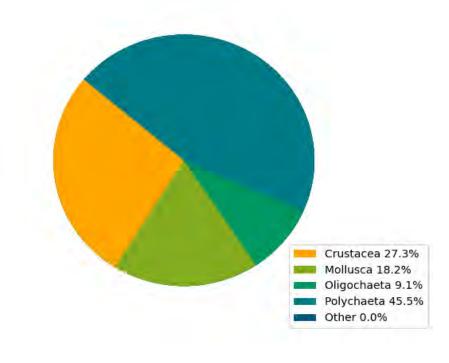


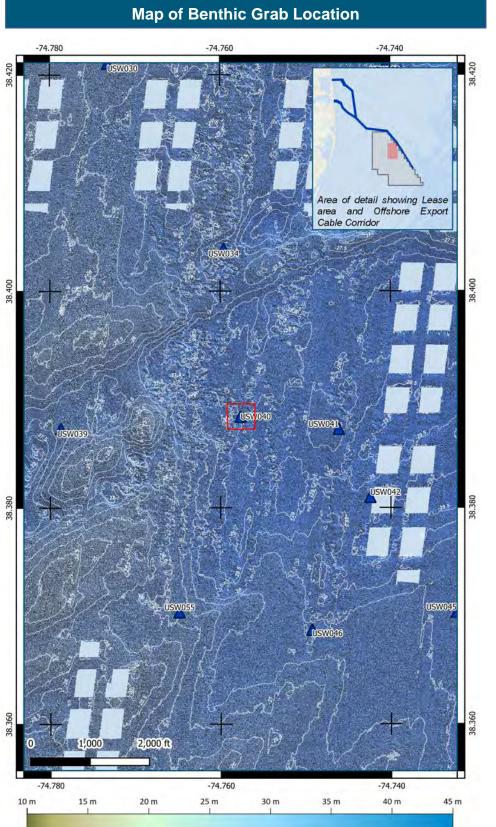
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW038 (BG-LA-Z018) Lease Area

Benthic Grab USW039		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		8

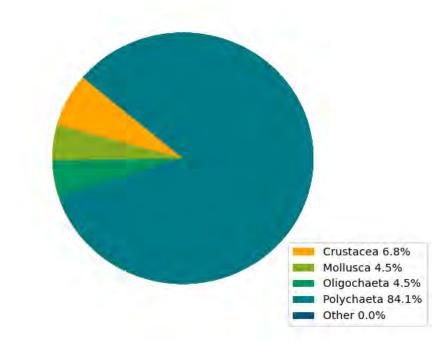

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

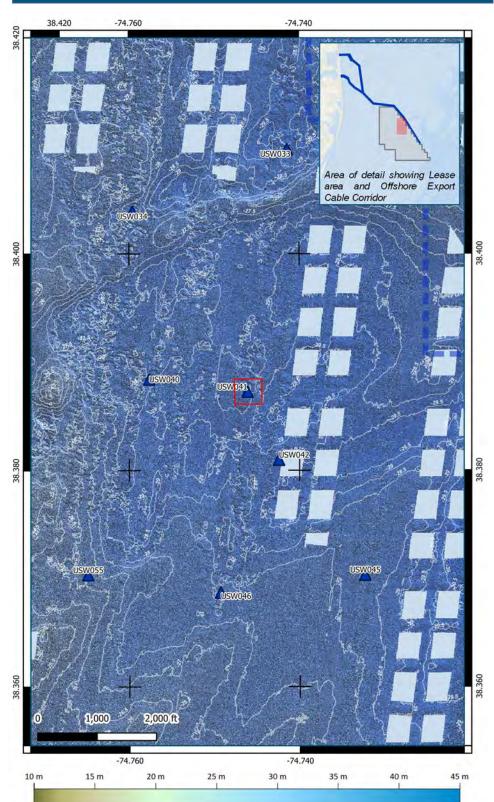
Benthic Organism Density by Taxa Group

Benthic Sample Site USW039 (BG-LA-F05) Lease Area

Benthic Grab USW040		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravel Mixes
	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1100
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

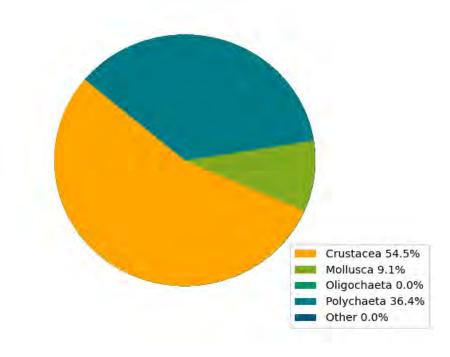
Maryland Offshore Wind Project Offshore Maryland and Delaware

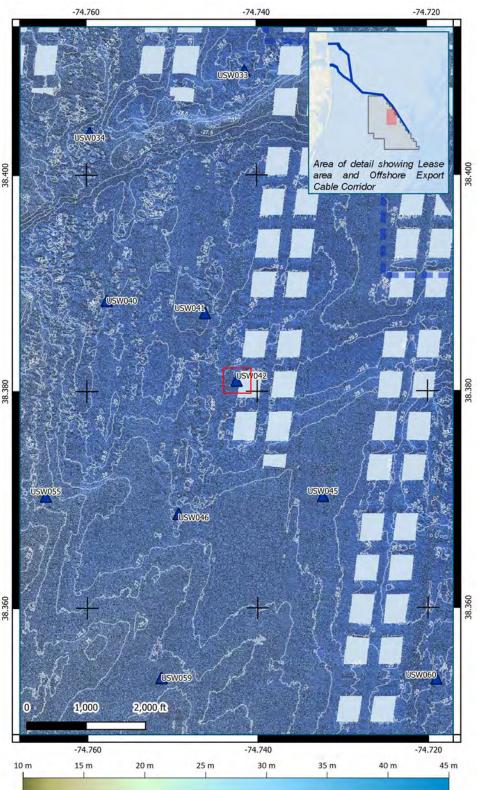

Benthic Organism Density by Taxa Group

. 1

Benthic Sample Site USW040 (BG-LA-Z019) Lease Area

Benthic Grab USW041		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		8

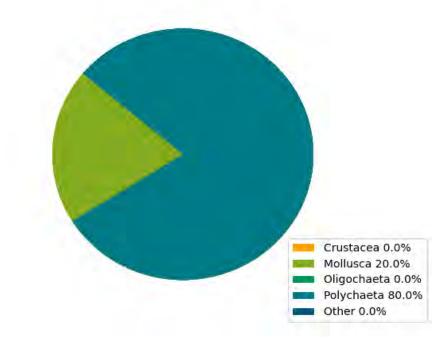

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW041 (BG-LA-H05) Lease Area

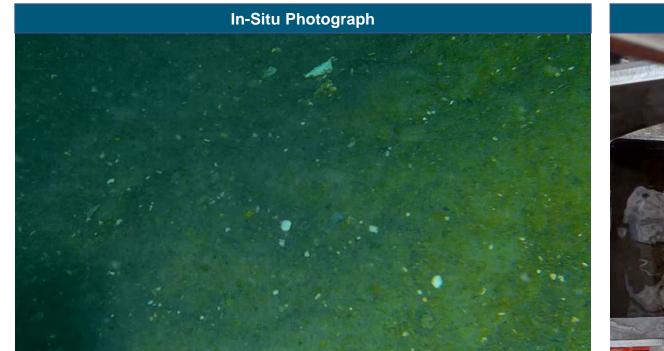
Benthic Grab USW042		
CMECS Habitat Classification	Substrate Subclass:	Coarse Unconsolidated Substrate
	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		250
Taxa Richness ¹ :		7


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

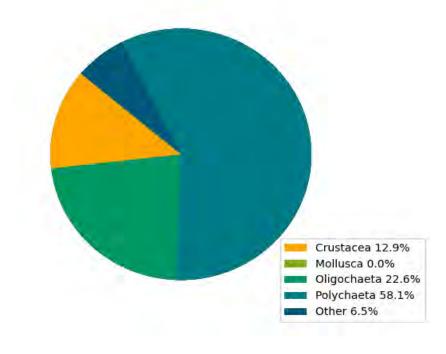
Benthic Organism Density by Taxa Group

Sample Photograph

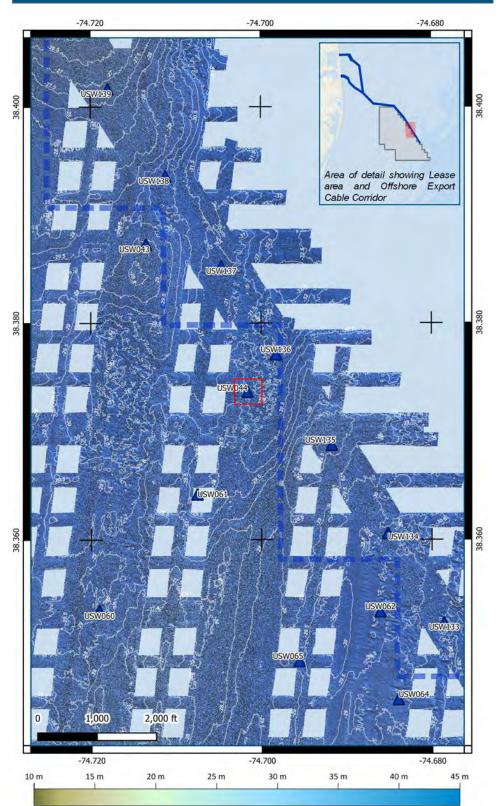


Benthic Sample Site USW042 (BG-LA-Z020) Lease Area

Benthic Grab USW043		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

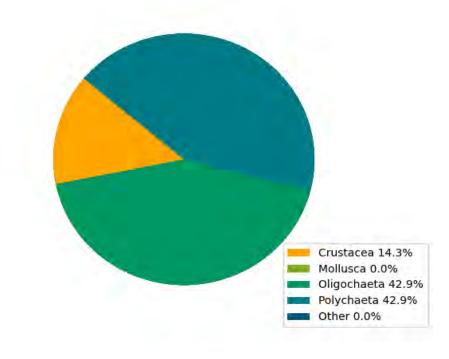
Maryland Offshore Wind Project Offshore Maryland and Delaware

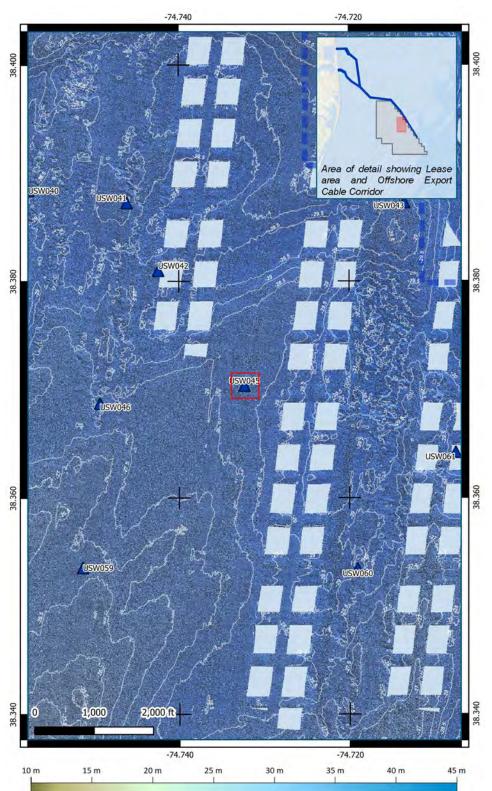

Benthic Organism Density by Taxa Group

Sample Photograph

Benthic Sample Site USW043 (BG-LA-J05) Lease Area

Benthic Grab USW044		
CMECS Habitat Classification	Substrate Subclass:	Coarse Unconsolidated Substrate
	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		175
Taxa Richness ¹ :		3

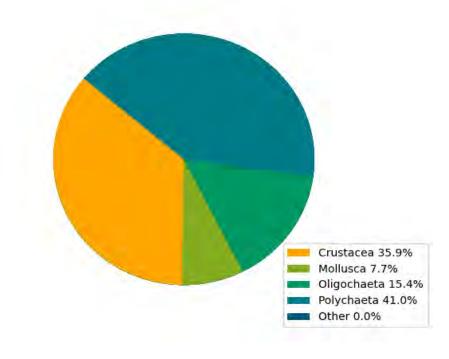

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

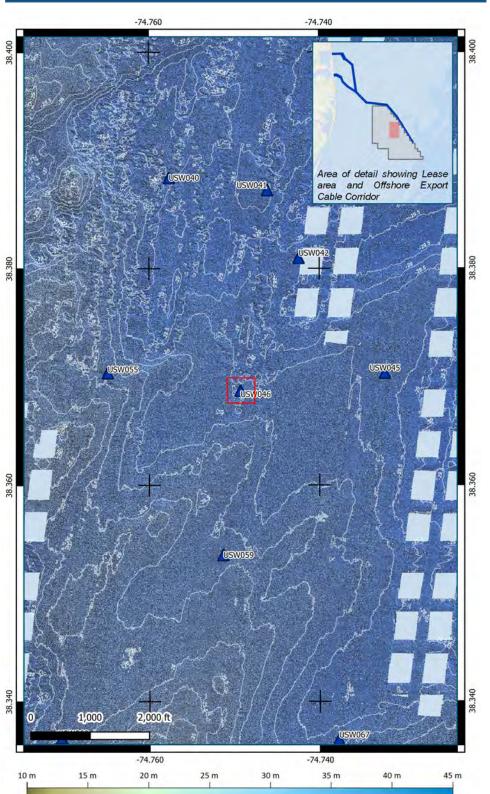

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW044 (BG-LA-Z025) Lease Area

Benthic Grab USW045		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		975
Taxa Richness ¹ :		18


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

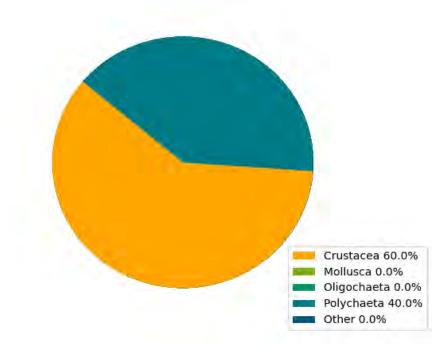


Maryland Offshore Wind Project Offshore Maryland and Delaware

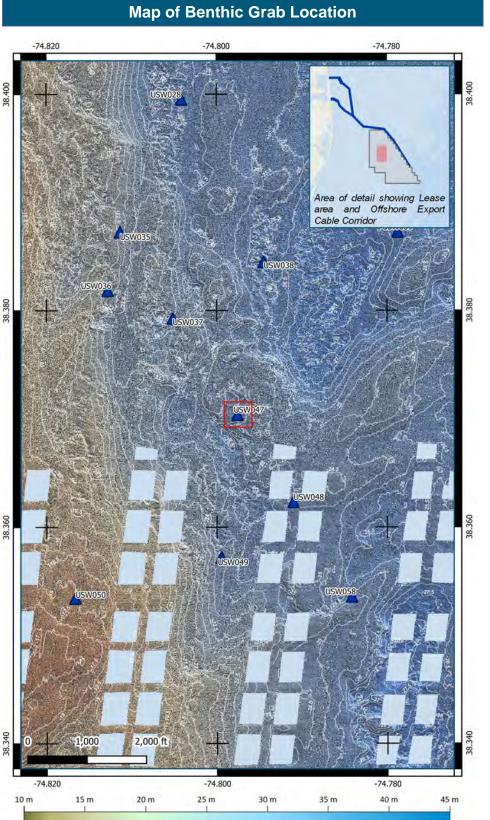
Benthic Organism Density by Taxa Group

Benthic Sample Site USW045 (BG-LA-I06) Lease Area

Benthic Grab USW046		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density		125
(individuals/m ²) ¹ :		120
Taxa Richness ¹ :		4


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

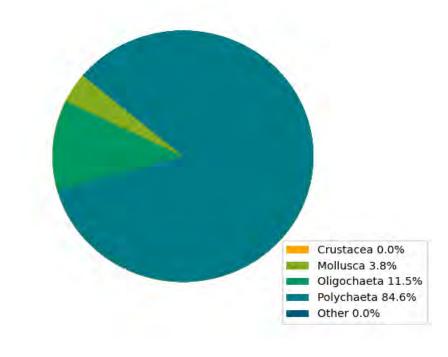
Maryland Offshore Wind Project Offshore Maryland and Delaware

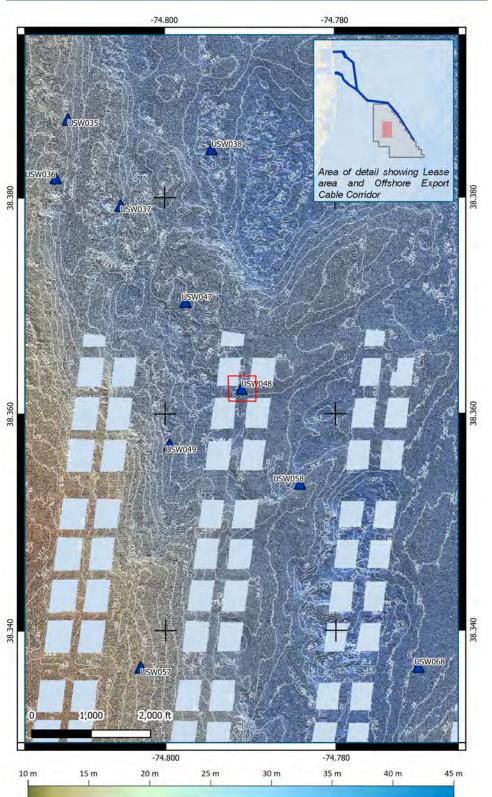

Benthic Organism Density by Taxa Group

Sample Photograph

Benthic Sample Site USW046 (BG-LA-Z024) Lease Area

Benthic Grab USW047		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		10


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

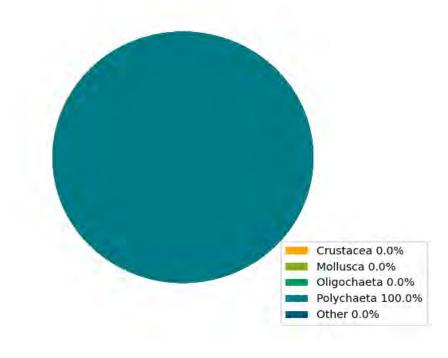


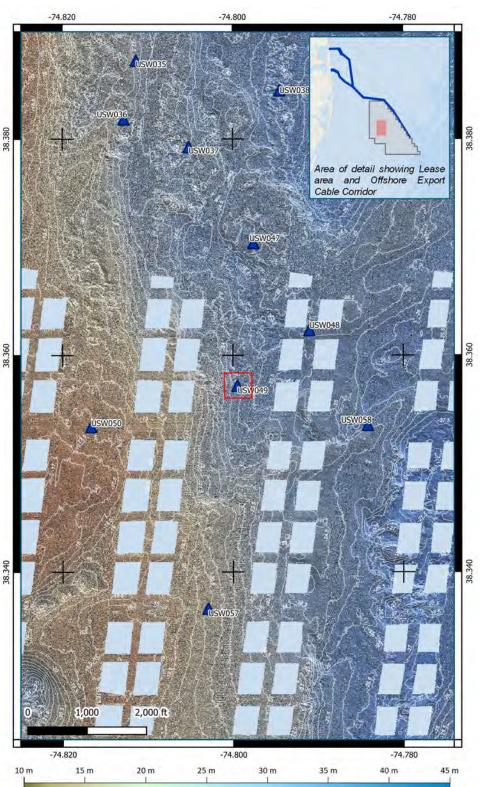
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW047 (BG-LA-E06) Lease Area

Benthic Grab USW048		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		200
Taxa Richness ¹ :		4

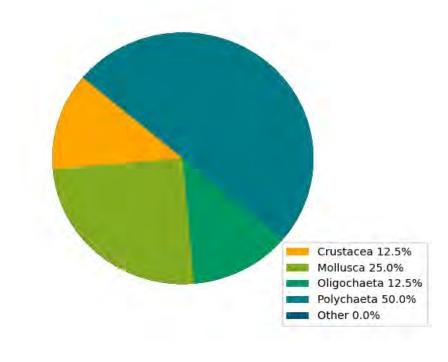

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

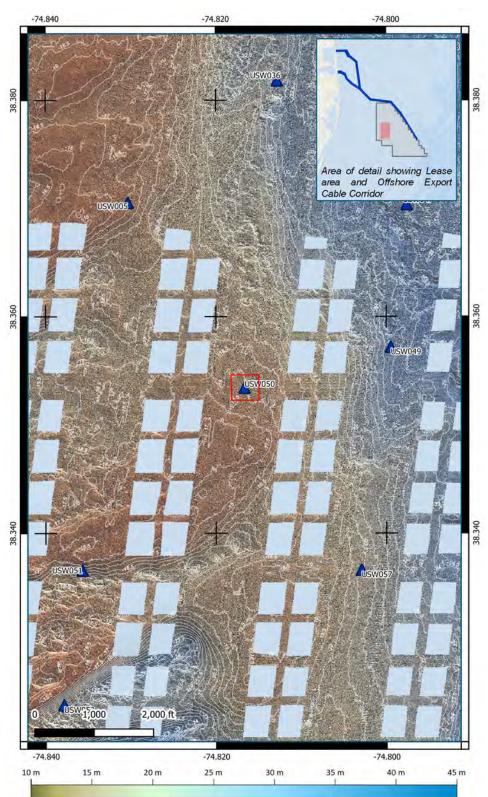

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW048 (BG-LA-Z023) Lease Area

Benthic Grab USW049		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		200
Taxa Richness ¹ :		5


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

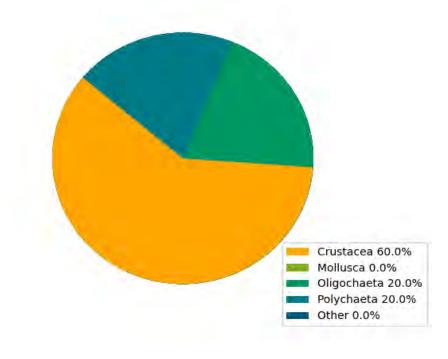


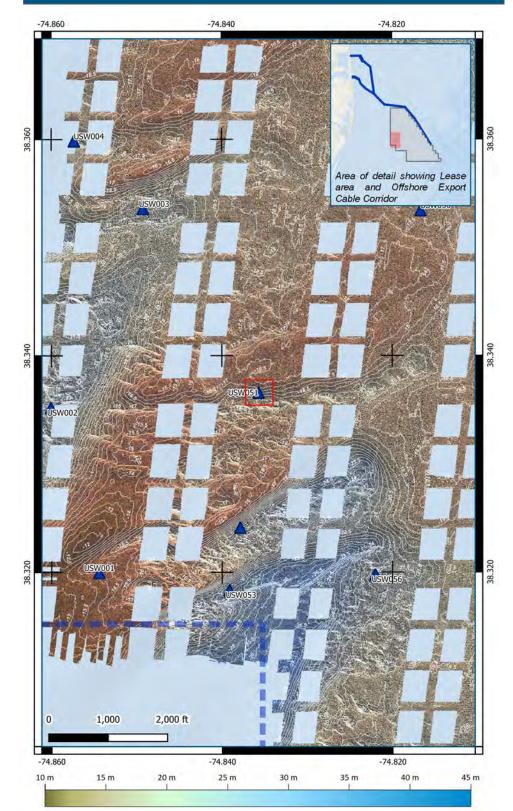
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW049 (BG-LA-Z022) Lease Area

Benthic Grab USW050		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		125
Taxa Richness ¹ :		4

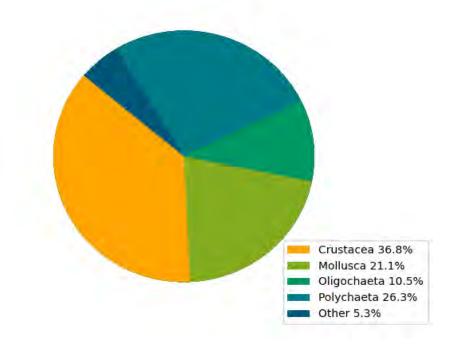

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW050 (BG-LA-D07) Lease Area

Benthic Grab USW051		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		475
Taxa Richness ¹ :		11

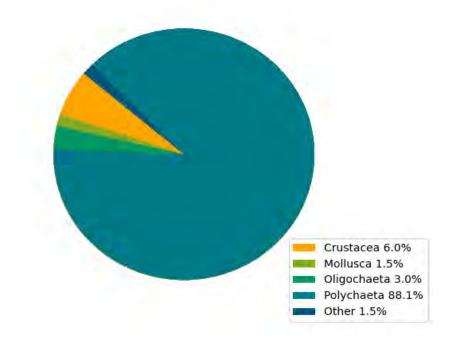

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

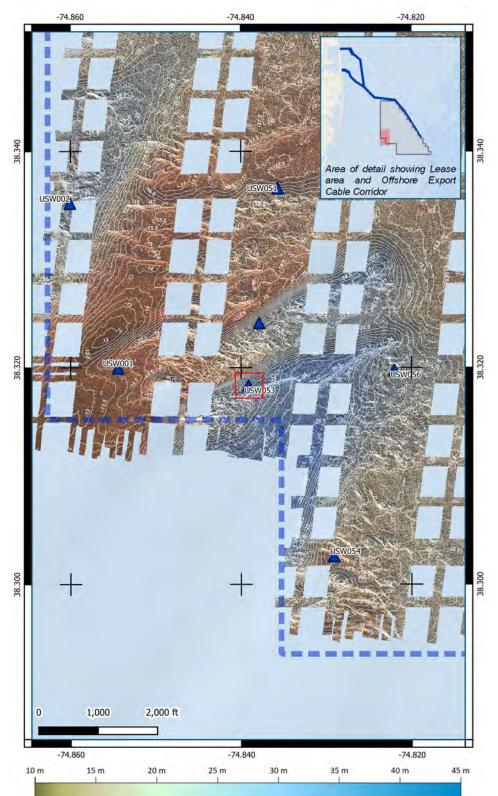
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW051 (BG-LA-C08) Lease Area

Benthic Grab USW052		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1675
Taxa Richness ¹ :		16


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

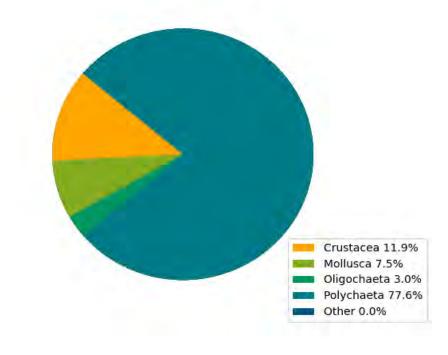


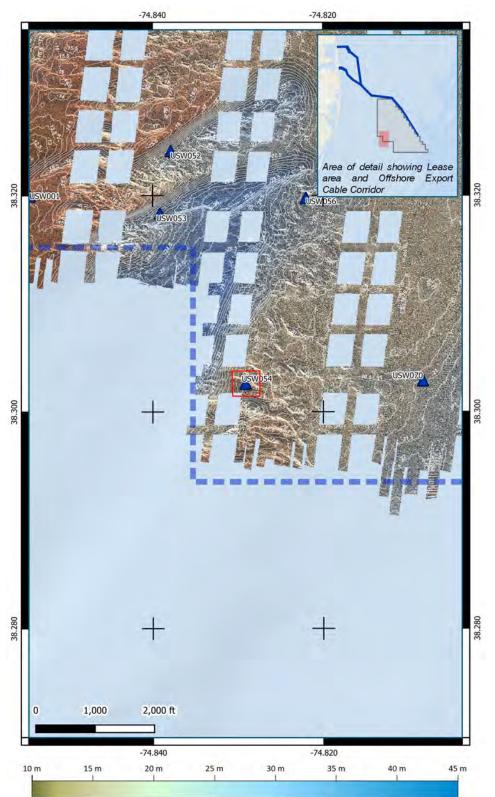
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

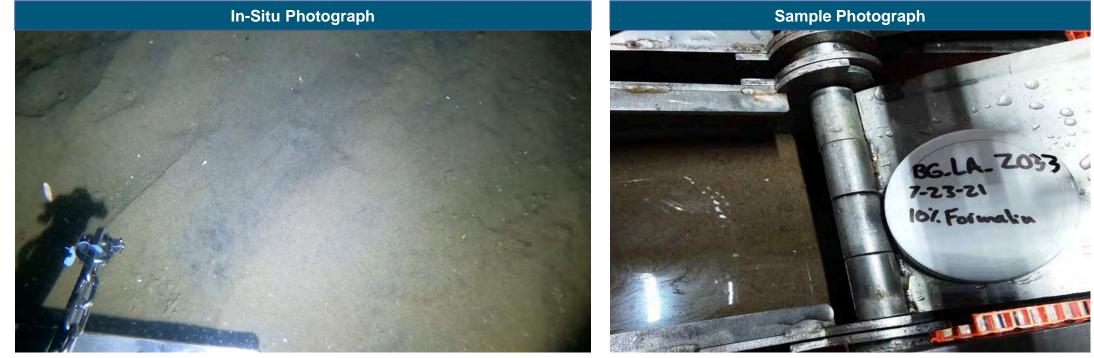
Benthic Sample Site USW052 (BG-LA-Z031) Lease Area

Benthic Grab USW053		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		1675
Taxa Richness ¹ :		17


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

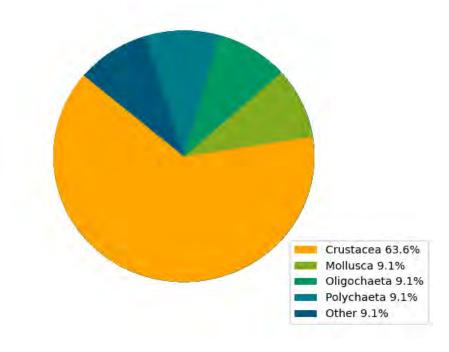

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW053 (BG-LA-Z032) Lease Area

Benthic Grab USW054		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		7


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

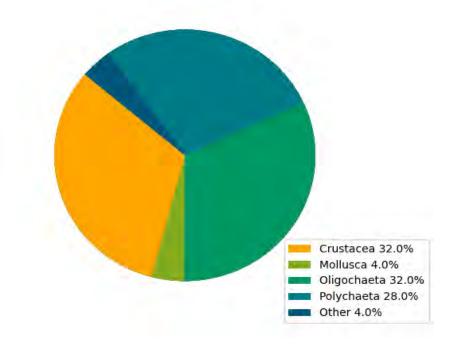
Maryland Offshore Wind Project Offshore Maryland and Delaware

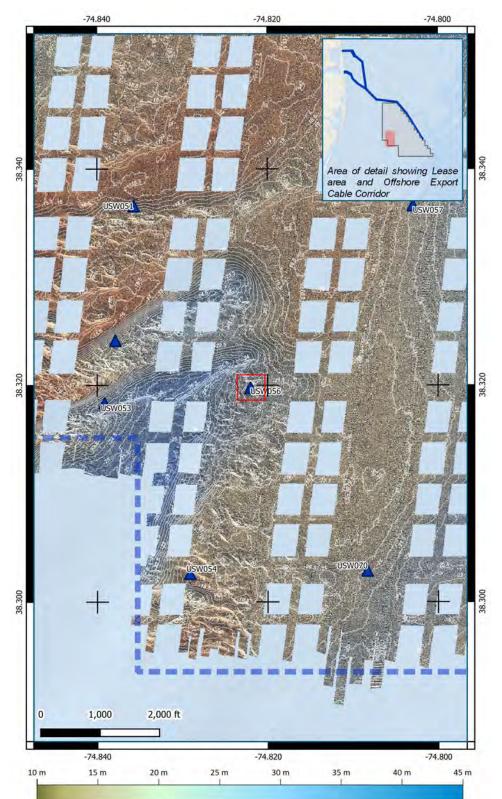
Benthic Organism Density by Taxa Group

Benthic Sample Site USW054 (BG-LA-Z033) Lease Area

Map of Benthic Grab Location -74.780 -74.740 -74.760 Area of detail showing Lease area and Offshore Export Cable Corridor ,000 2,000 ft -74.780 -74.760 -74.740 10 m 15 m 30 m 35 m 45 m 20 m 25 m 40 m

Benthic Grab USW055		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat Classification	Substrate Group:	Sand
	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		625
Taxa Richness ¹ :		10

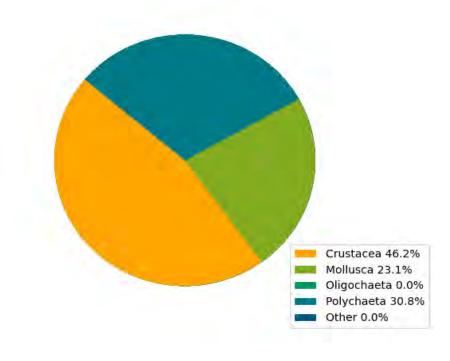

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

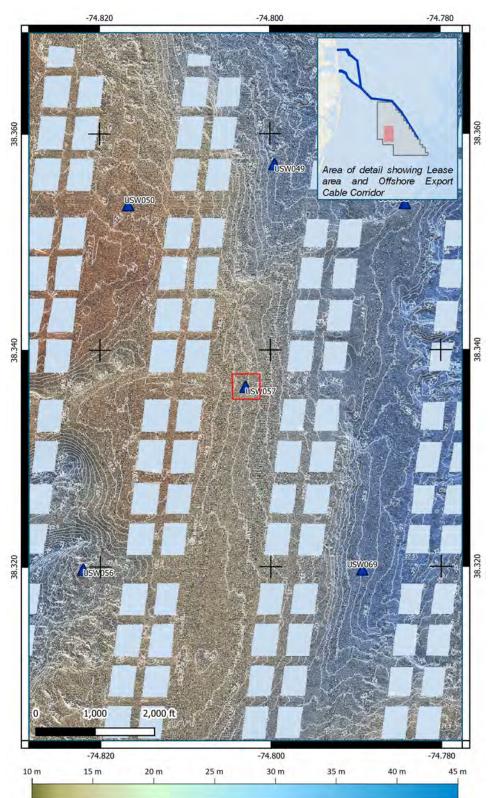

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW055 (BG-LA-Met) Lease Area

Benthic Grab USW056		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		325
Taxa Richness ¹ :		8

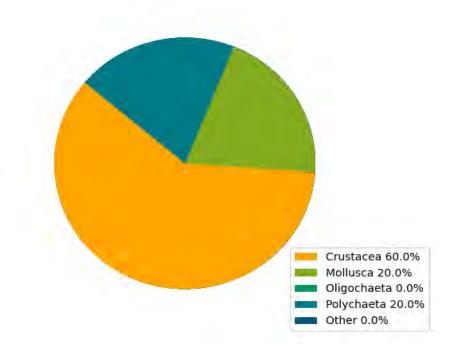

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

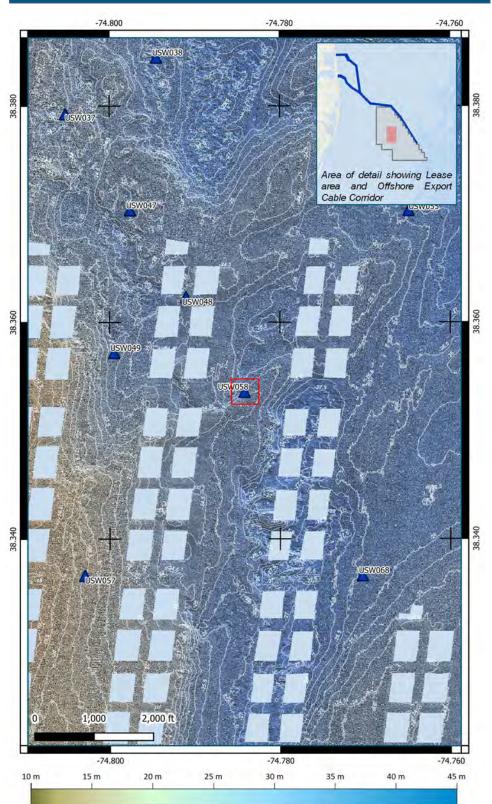

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW056 (BG-LA-D09) Lease Area

Benthic Grab USW057		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		125
Taxa Richness ¹ :		4

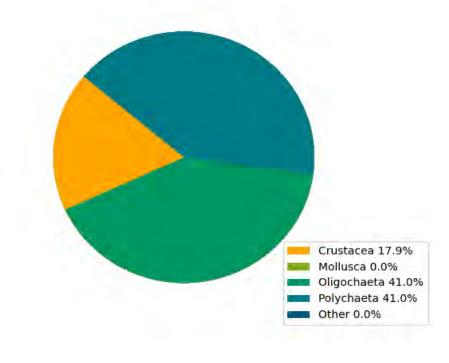

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

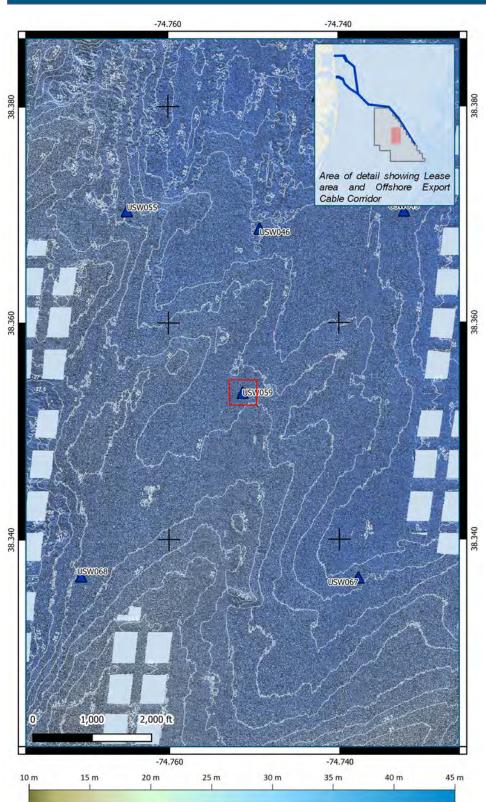

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW057 (BG-LA-E08) Lease Area

Benthic Grab USW058		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		975
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

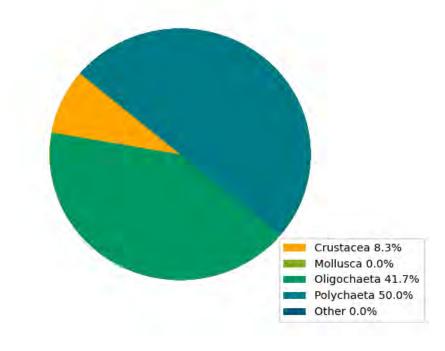


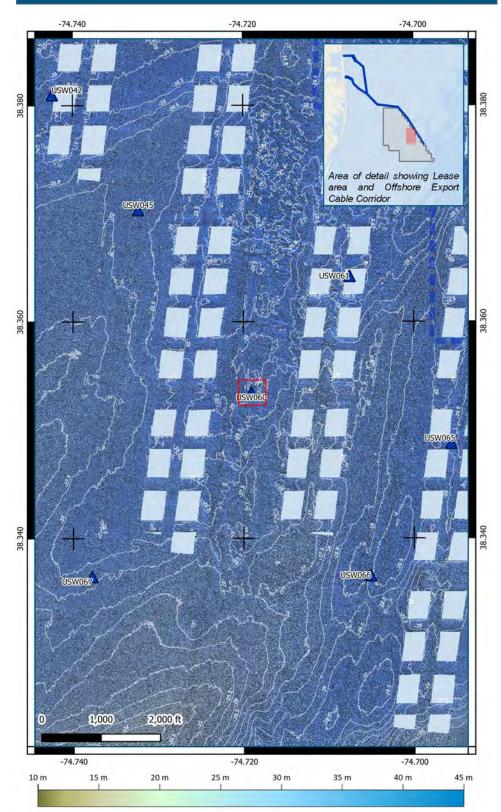
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW058 (BG-LA-F07) Lease Area

Benthic Grab USW059		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		300
Taxa Richness ¹ :		7

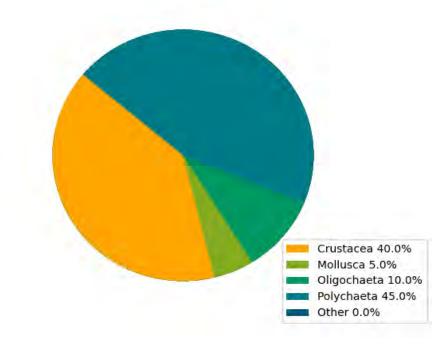

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW059 (BG-LA-H07) Lease Area

Benthic Grab USW060		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		500
Taxa Richness ¹ :		11

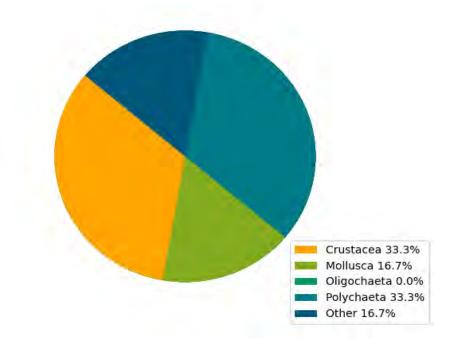

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

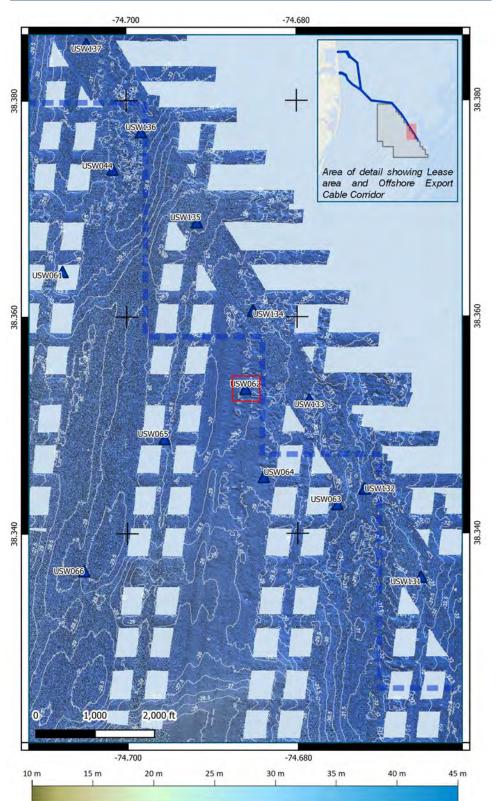
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW060 (BG-LA-J07) Lease Area

Benthic Grab USW061		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		150
Taxa Richness ¹ :		6

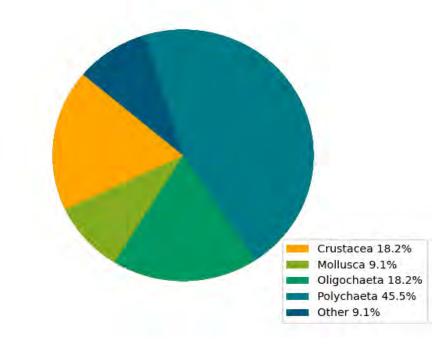

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

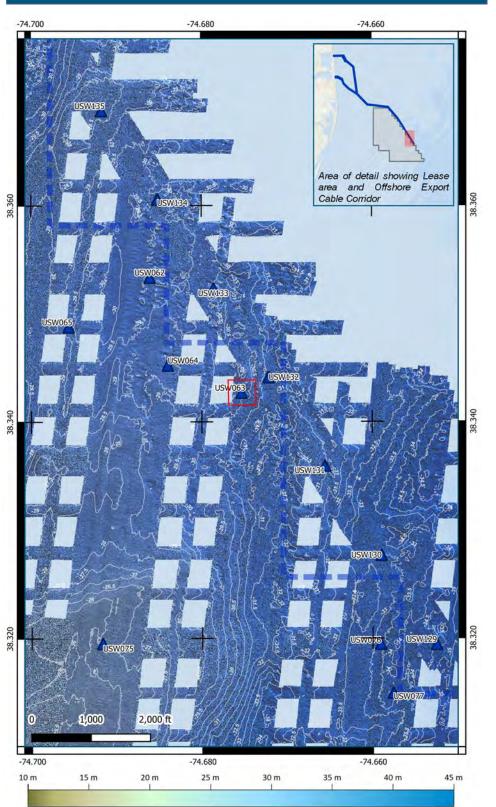

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

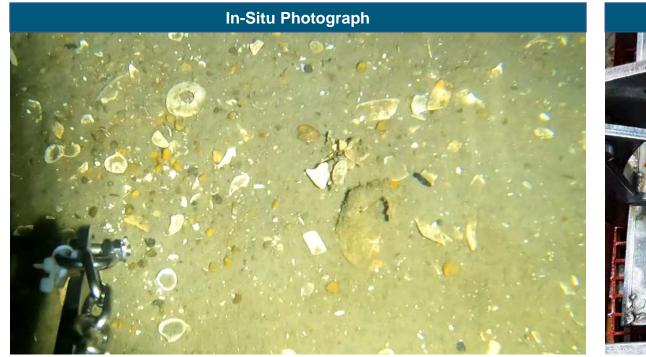
Benthic Sample Site USW061 (BG-LA-Z026) Lease Area

Benthic Grab USW062		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		10


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

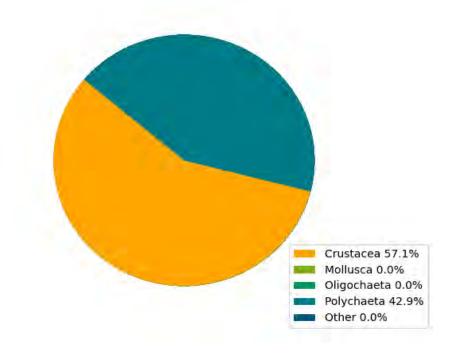

Maryland Offshore Wind Project Offshore Maryland and Delaware

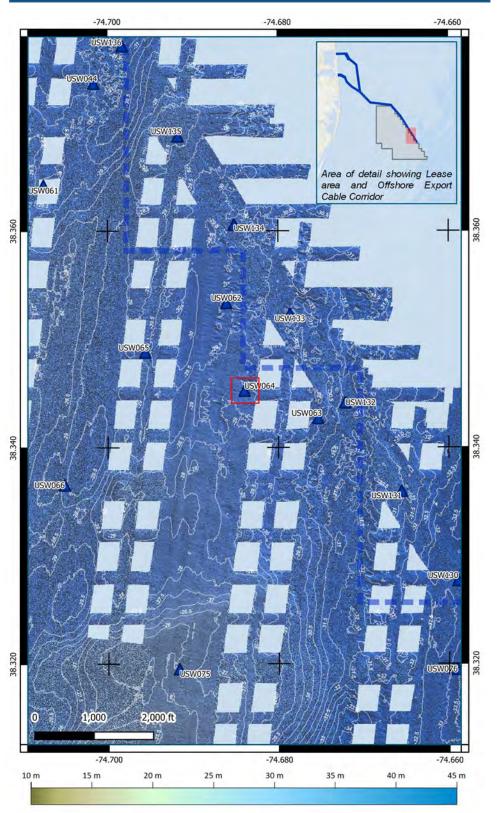
Benthic Organism Density by Taxa Group



Benthic Sample Site USW062 (BG-LA-L07) Lease Area

Benthic Grab USW063		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		175
Taxa Richness ¹ :		6

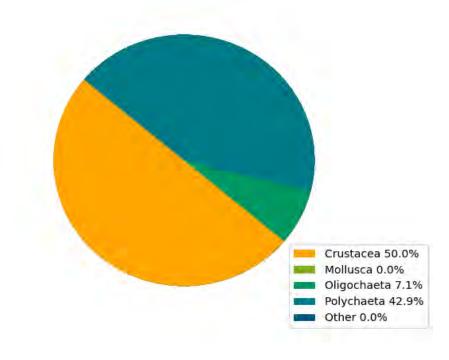

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

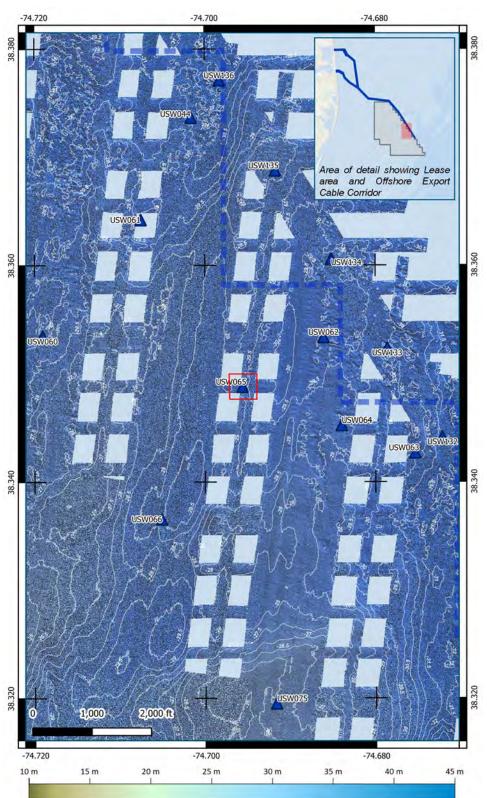

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW063 (BG-LA-Z030) Lease Area

Benthic Grab USW064		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		350
Taxa Richness ¹ :		6

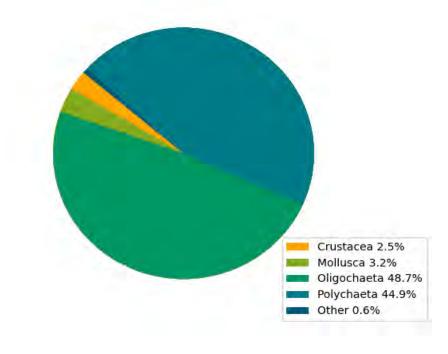

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

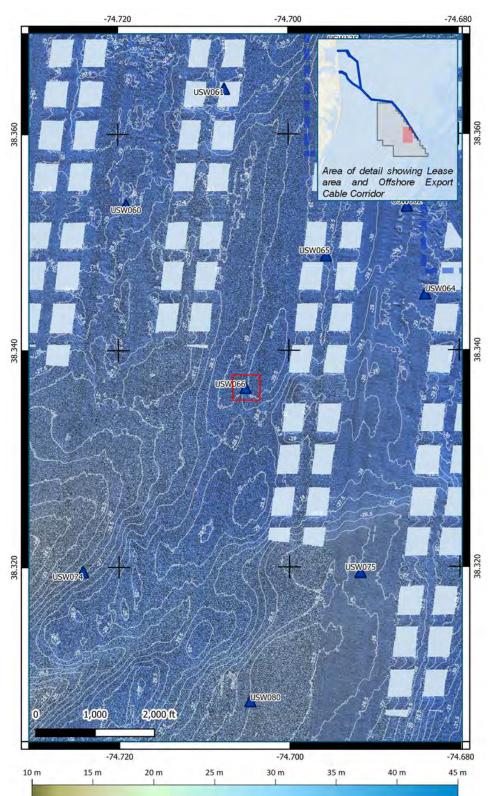

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW064 (BG-LA-Z029) Lease Area

Benthic Grab USW065		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		3950
Taxa Richness ¹ :		23

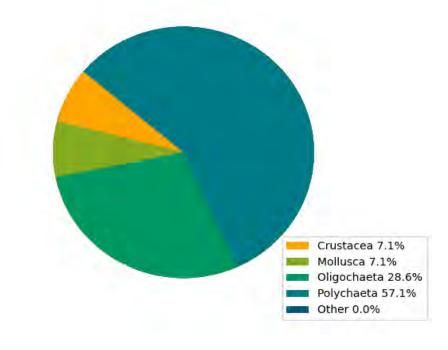

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

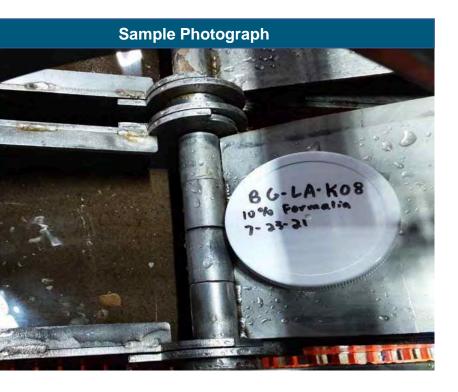

Maryland Offshore Wind Project Offshore Maryland and Delaware

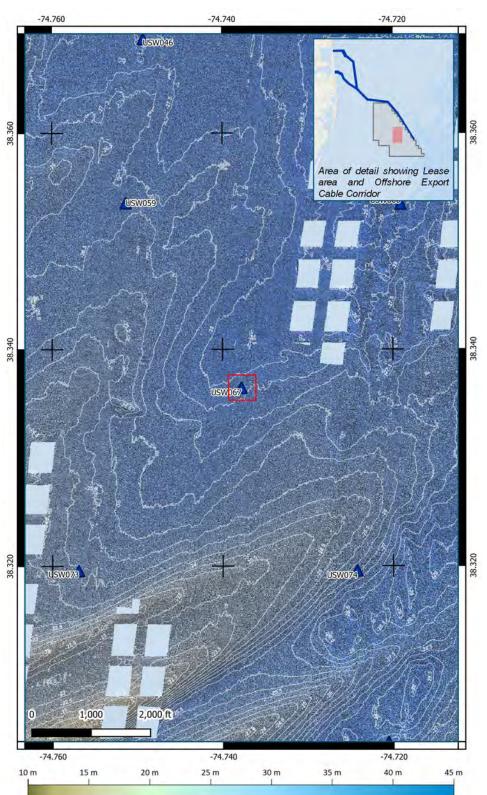
Benthic Organism Density by Taxa Group

Benthic Sample Site USW065 (BG-LA-Z028) Lease Area

Benthic Grab USW066		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		350
Taxa Richness ¹ :		9


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

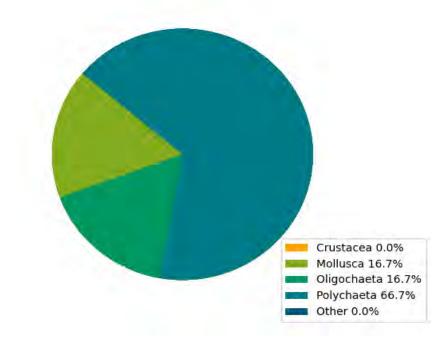


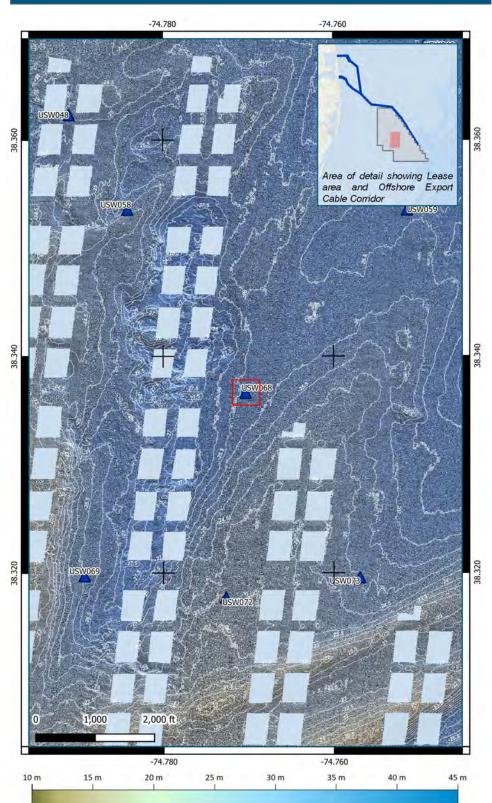

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

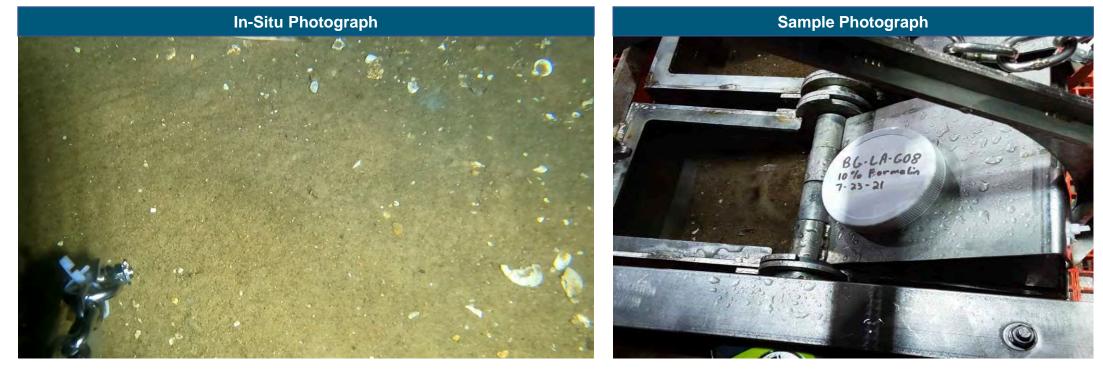
Benthic Sample Site USW066 (BG-LA-K08) Lease Area

Benthic Grab USW067		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		300
Taxa Richness ¹ :		9


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

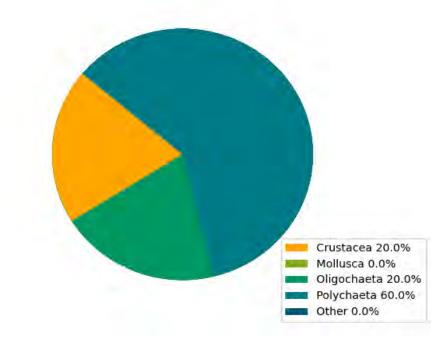

Maryland Offshore Wind Project Offshore Maryland and Delaware

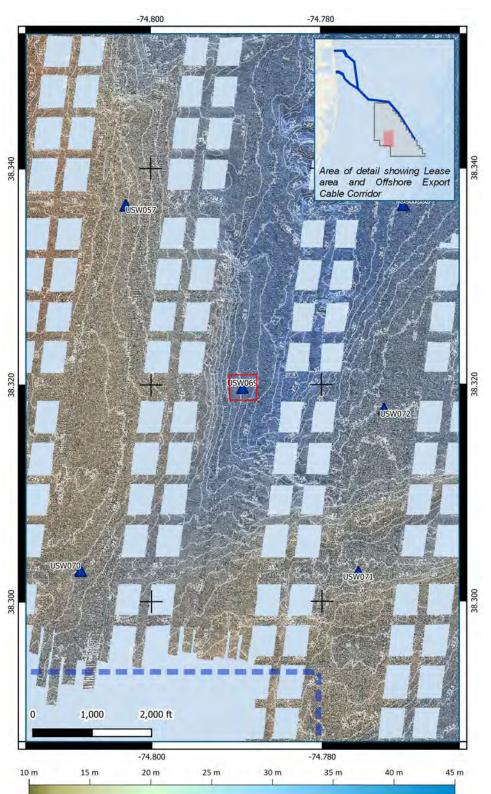
Benthic Organism Density by Taxa Group



Benthic Sample Site USW067 (BG-LA-I08) Lease Area

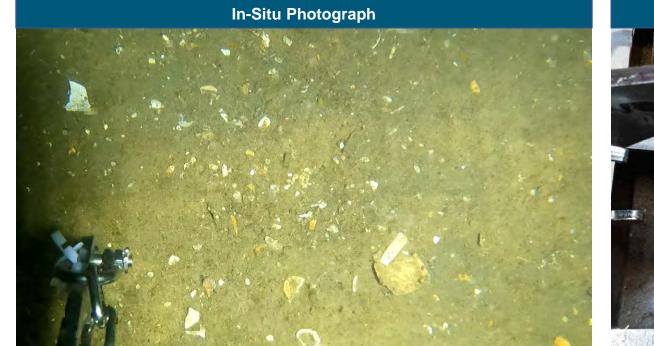
Benthic Grab USW068		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		125
Taxa Richness ¹ :		5


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



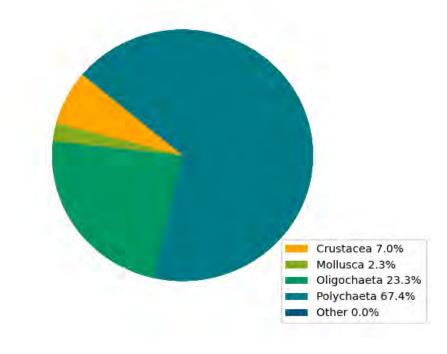
Maryland Offshore Wind Project Offshore Maryland and Delaware

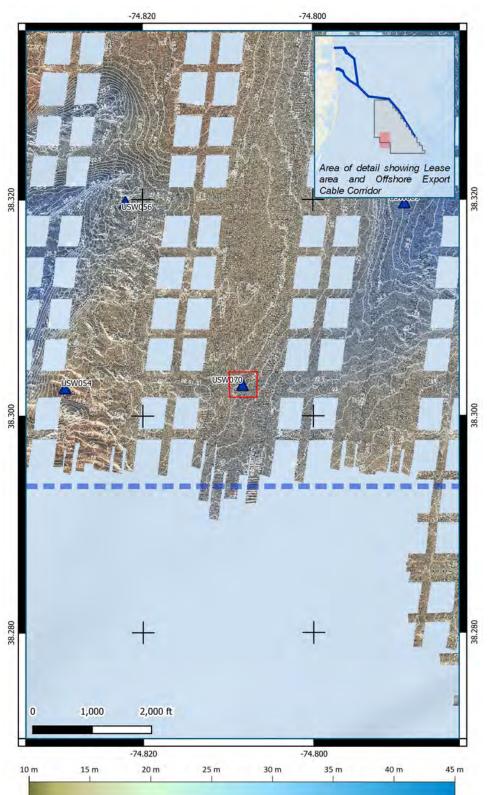
Benthic Organism Density by Taxa Group



Benthic Sample Site USW068 (BG-LA-G08) Lease Area

Benthic Grab USW069		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1075
Taxa Richness ¹ :		14

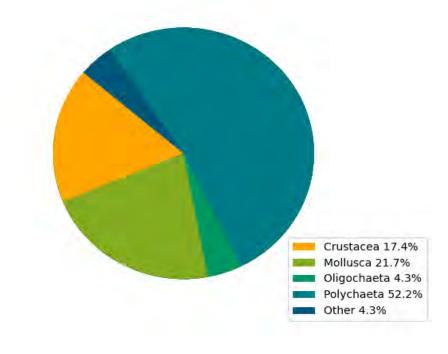

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

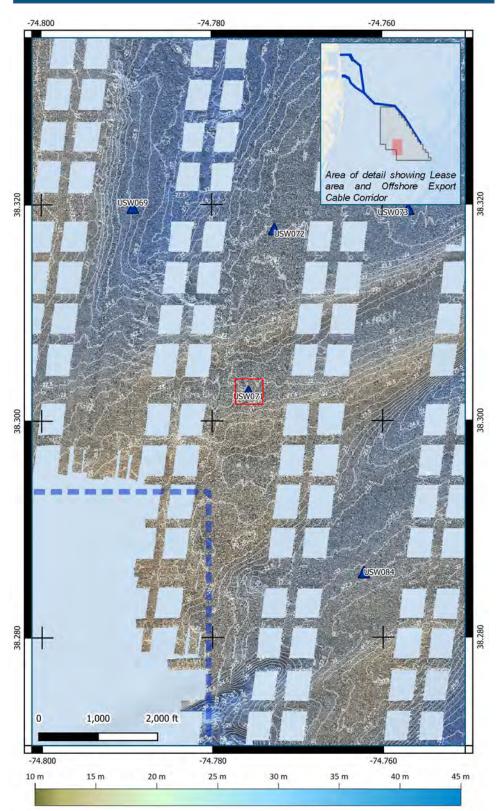

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW069 (BG-LA-F09) Lease Area

Benthic Grab USW070		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		575
Taxa Richness ¹ :		15

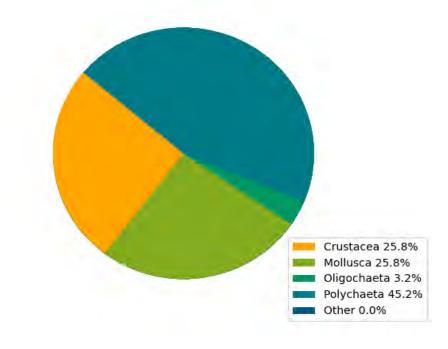

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

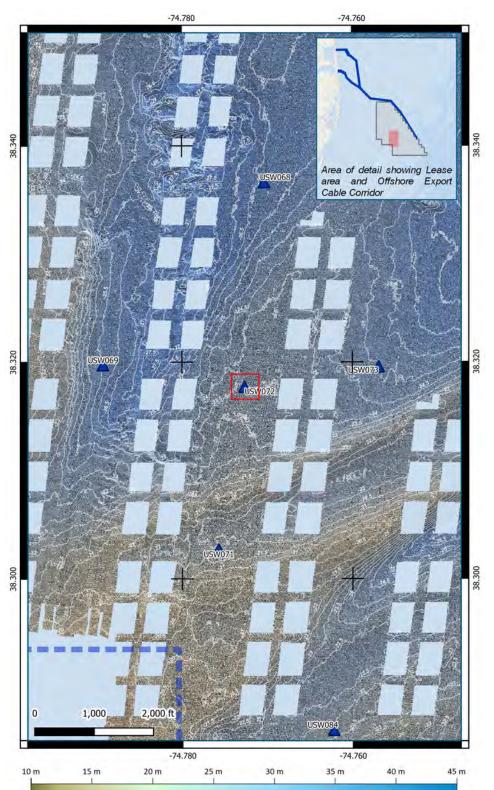

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

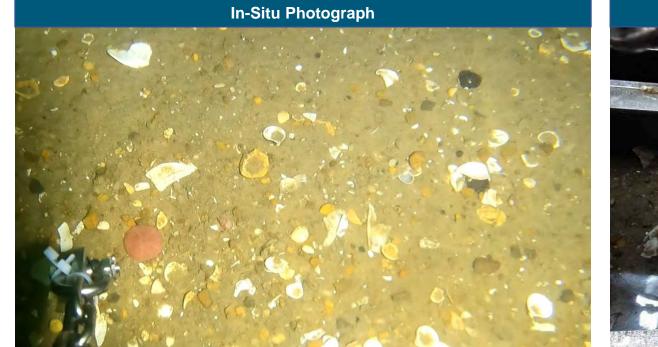
Benthic Sample Site USW070 (BG-LA-E10) Lease Area

Benthic Grab USW071		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		16


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

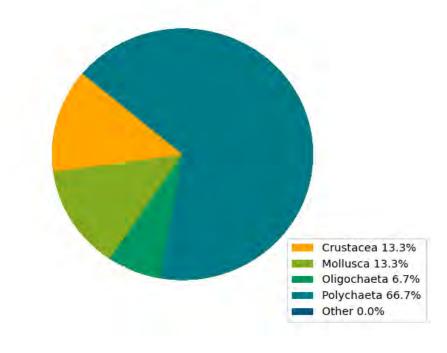

Maryland Offshore Wind Project Offshore Maryland and Delaware

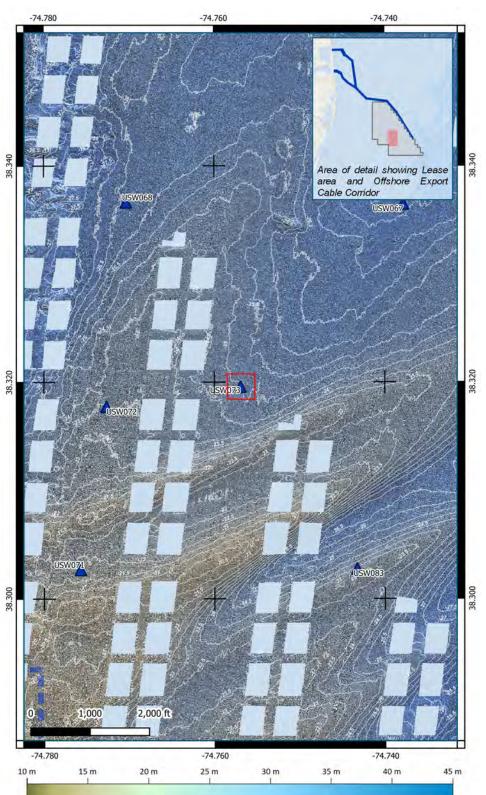
Benthic Organism Density by Taxa Group



Benthic Sample Site USW071 (BG-LA-G10) Lease Area

Benthic Grab USW072		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		375
Taxa Richness ¹ :		9

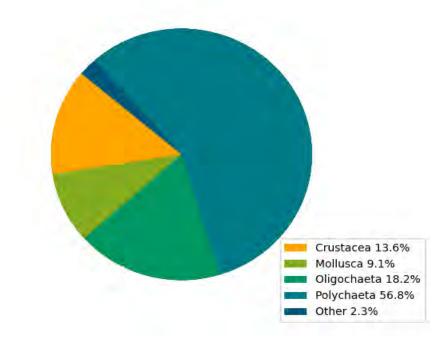

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

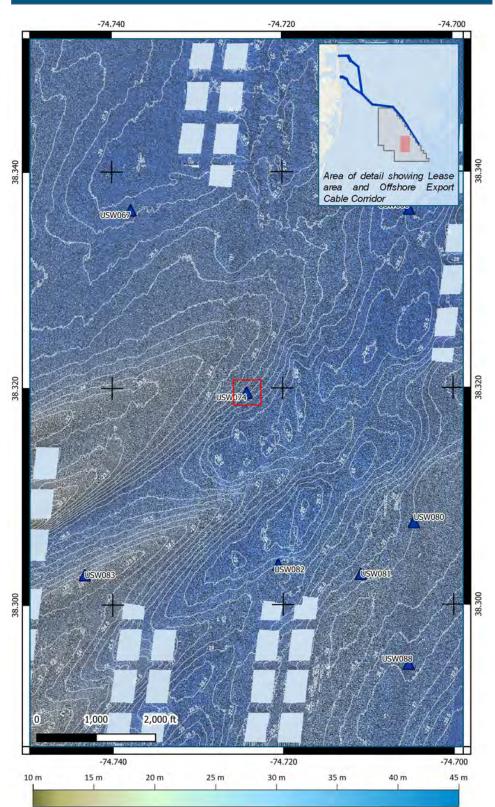

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW072 (BG-LA-Z034) Lease Area

Benthic Grab USW073		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1100
Taxa Richness ¹ :		20


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

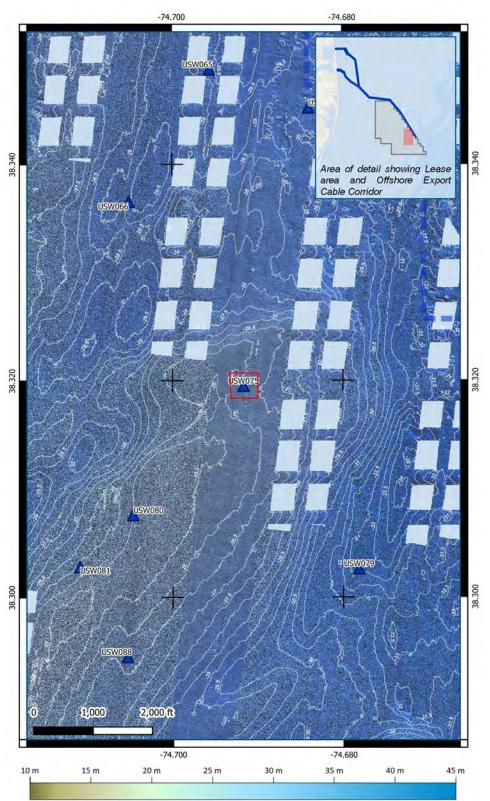

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW073 (BG-LA-H09) Lease Area

Benthic Grab USW074		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1975
Taxa Richness ¹ :		18


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

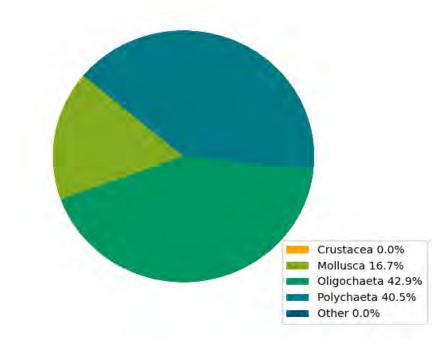


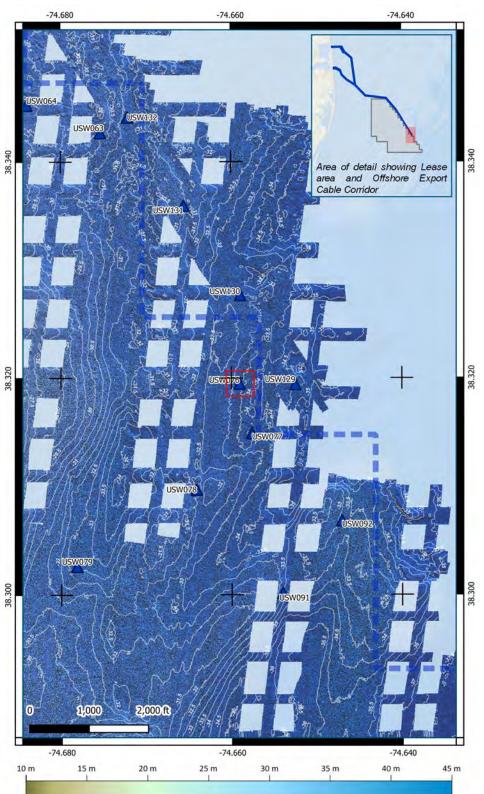
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

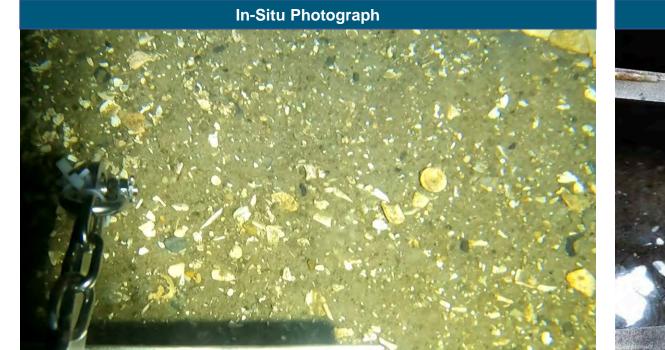
Benthic Sample Site USW074 (BG-LA-J09) Lease Area

Benthic Grab USW075		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1050
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

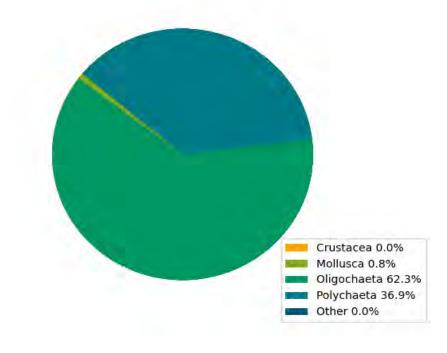

Maryland Offshore Wind Project Offshore Maryland and Delaware

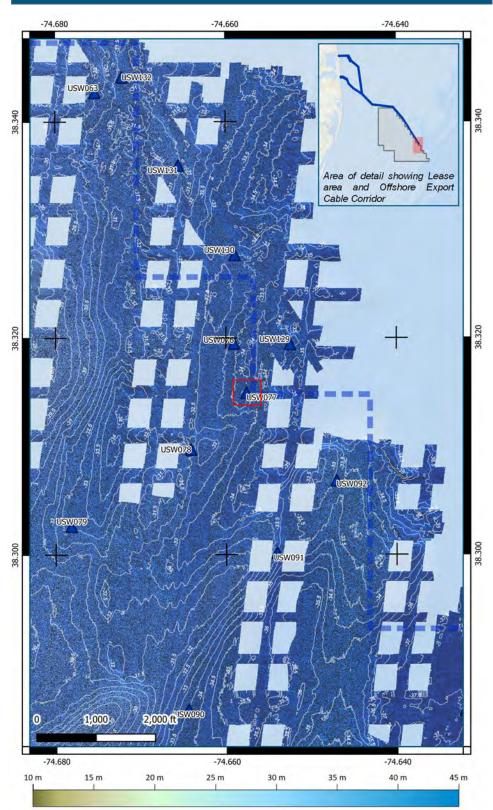
Benthic Organism Density by Taxa Group



Benthic Sample Site USW075 (BG-LA-L09) Lease Area

Benthic Grab USW076		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		3250
Taxa Richness ¹ :		16

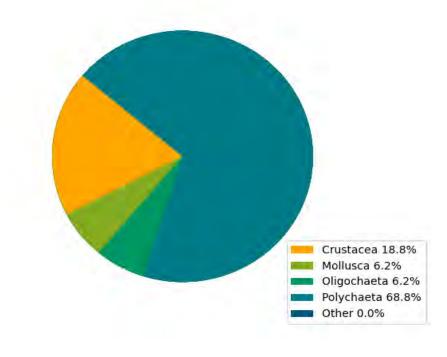

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

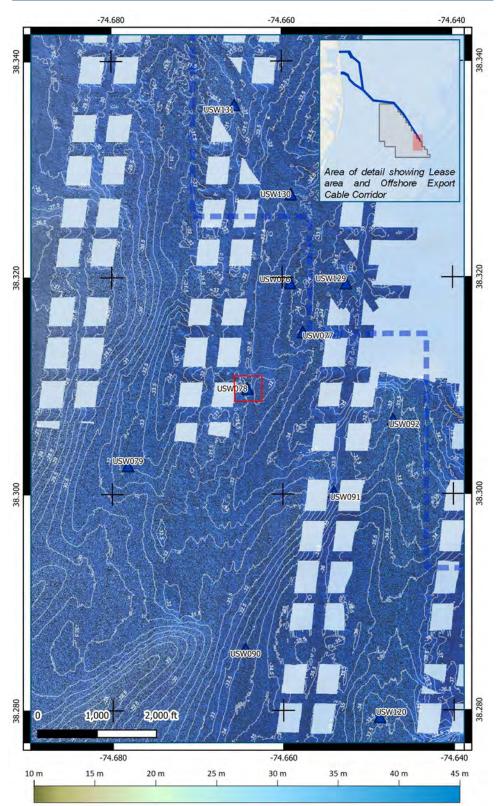

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW076 (BG-LA-N09) Lease Area

Benthic Grab USW077		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		800
Taxa Richness ¹ :		18

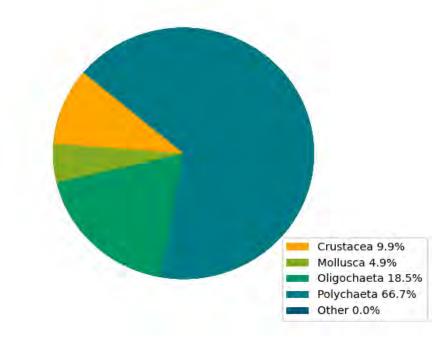

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

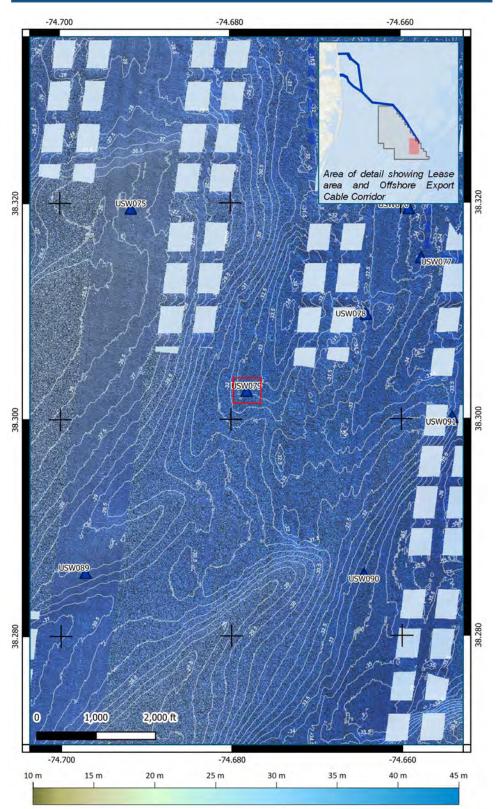

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW077 (BG-LA-Z038) Lease Area

Benthic Grab USW078		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		2025
Taxa Richness ¹ :		21

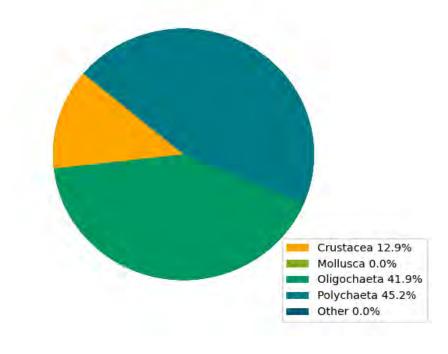

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

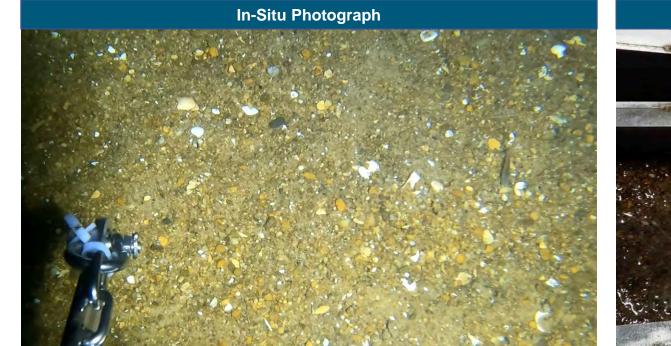
Benthic Sample Site USW078 (BG-LA-Z037) Lease Area

Benthic Grab USW079		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		10


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

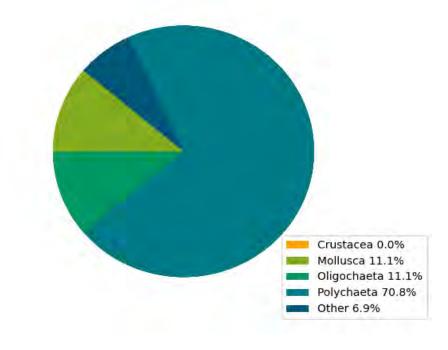
Maryland Offshore Wind Project Offshore Maryland and Delaware

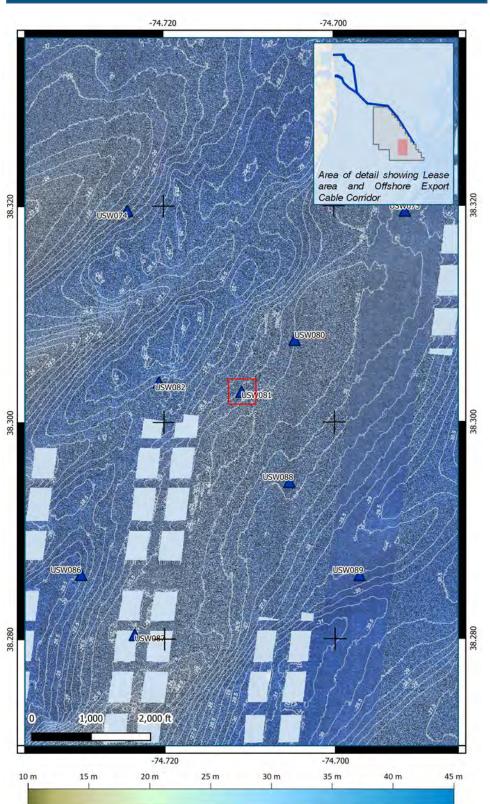
Benthic Organism Density by Taxa Group



Benthic Sample Site USW079 (BG-LA-M10) Lease Area

Benthic Grab USW080		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1800
Taxa Richness ¹ :		14

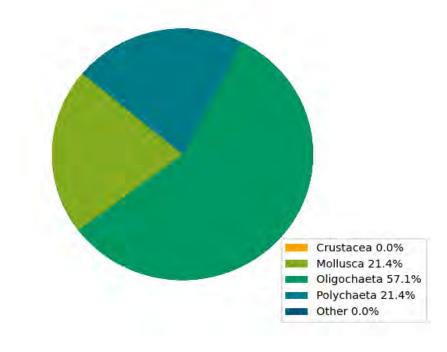

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

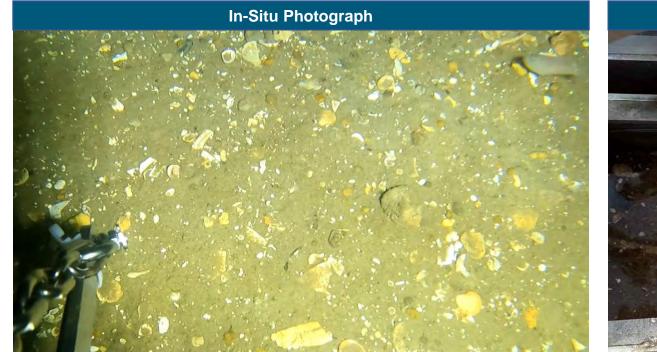
Benthic Sample Site USW080 (BG-LA-Z036) Lease Area

Benthic Grab USW081		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density		1050
(individuals/m ²) ¹ :		1050
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

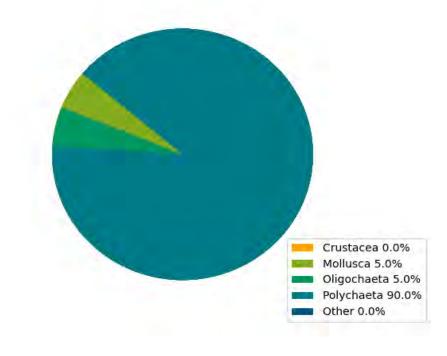
Maryland Offshore Wind Project Offshore Maryland and Delaware

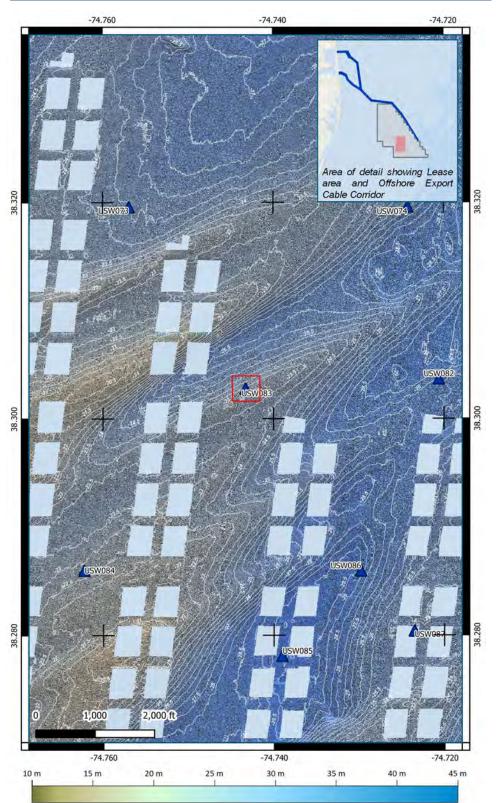
Benthic Organism Density by Taxa Group



Benthic Sample Site USW081 (BG-LA-K10) Lease Area

Benthic Grab USW082		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1000
Taxa Richness ¹ :		9

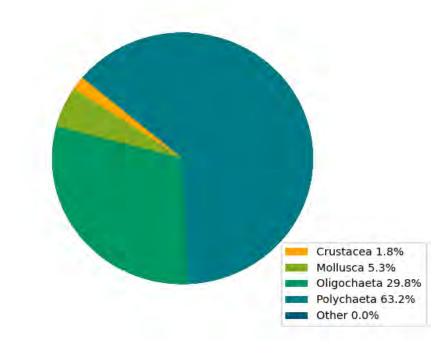

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

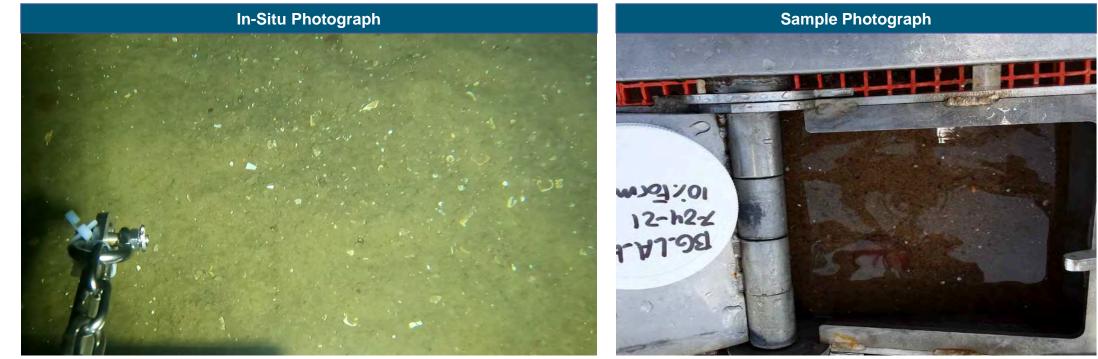
Benthic Sample Site USW082 (BG-LA-Z035) Lease Area

Benthic Grab USW083		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density		1425
(individuals/m ²) ¹ :		
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

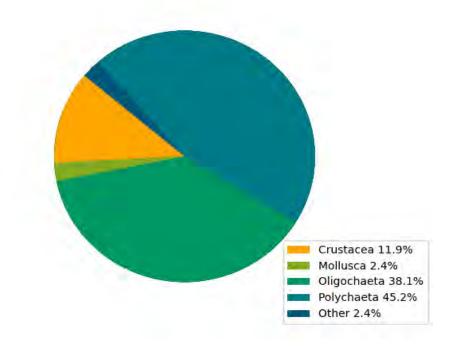
Maryland Offshore Wind Project Offshore Maryland and Delaware

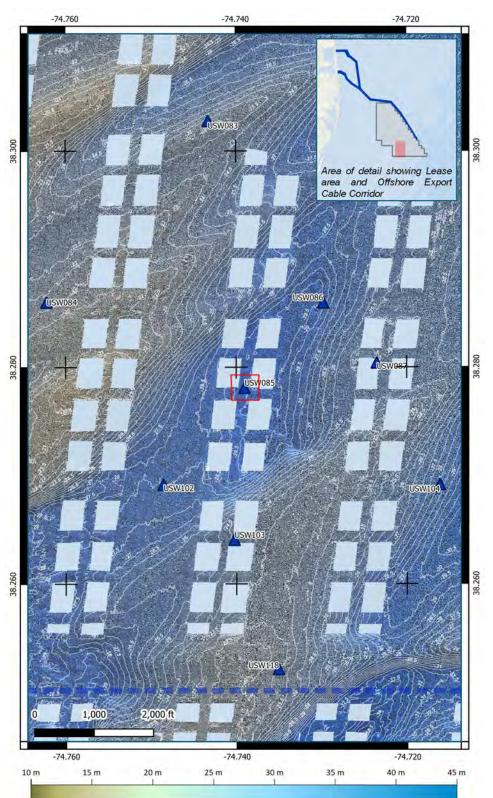
Benthic Organism Density by Taxa Group



Benthic Sample Site USW083 (BG-LA-I10) Lease Area

Benthic Grab USW084		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1050
Taxa Richness ¹ :		15


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

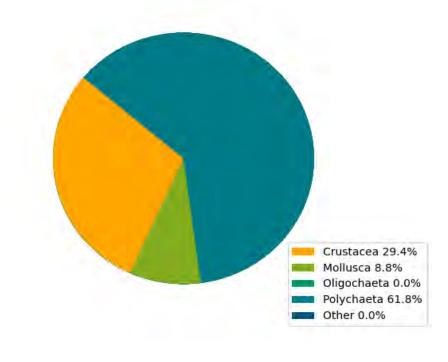


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW084 (BG-LA-H11) Lease Area

Benthic Grab USW085		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		850
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

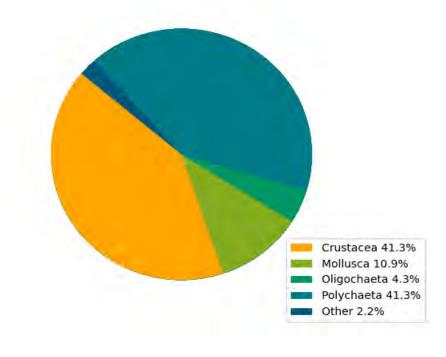


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW085 (BG-LA-Z043) Lease Area

Benthic Grab USW086		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density		1150
(individuals/m ²) ¹ :		1100
Taxa Richness ¹ :		25


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

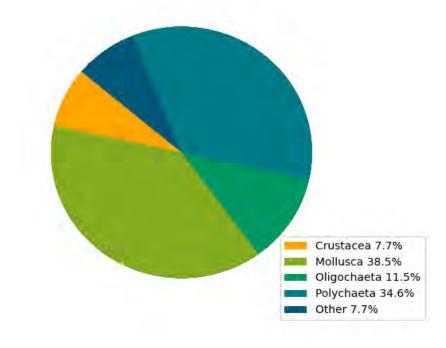
Maryland Offshore Wind Project Offshore Maryland and Delaware

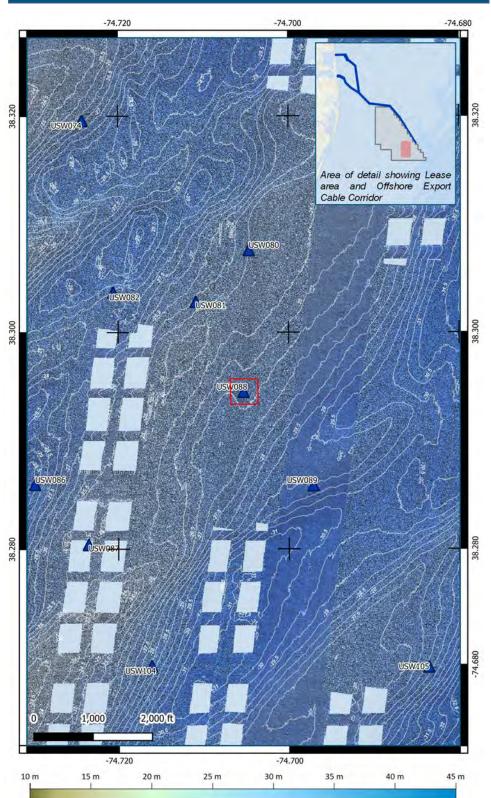
Benthic Organism Density by Taxa Group



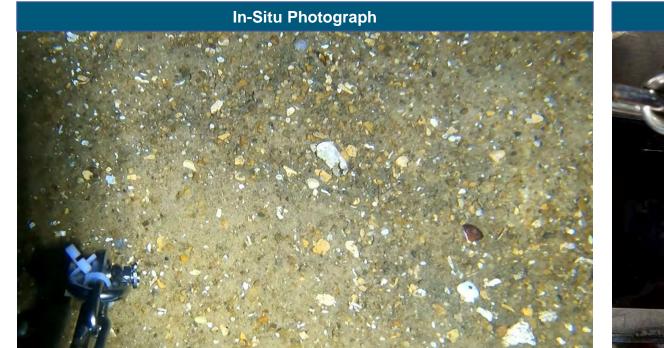
Benthic Sample Site USW086 (BG-LA-J11) Lease Area

Benthic Grab USW087		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		14


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

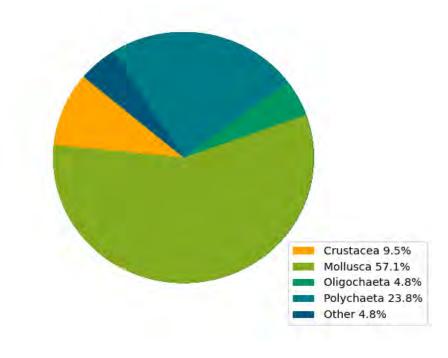

Maryland Offshore Wind Project Offshore Maryland and Delaware

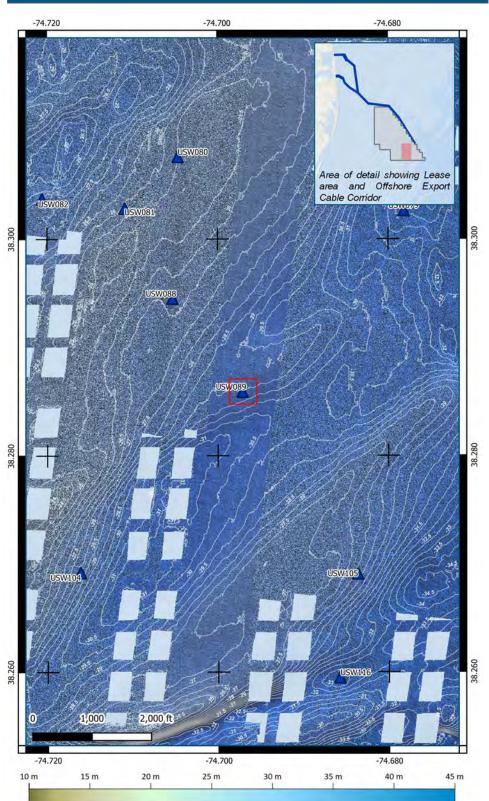
Benthic Organism Density by Taxa Group



Benthic Sample Site USW087 (BG-LA-Z042) Lease Area

Benthic Grab USW088		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		525
Taxa Richness ¹ :		9

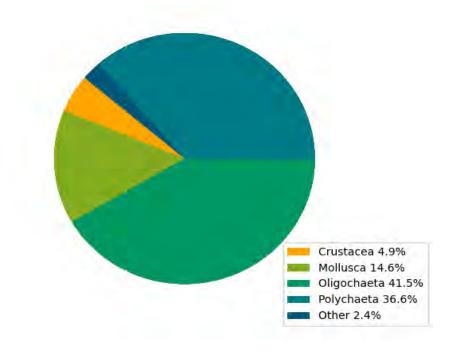

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

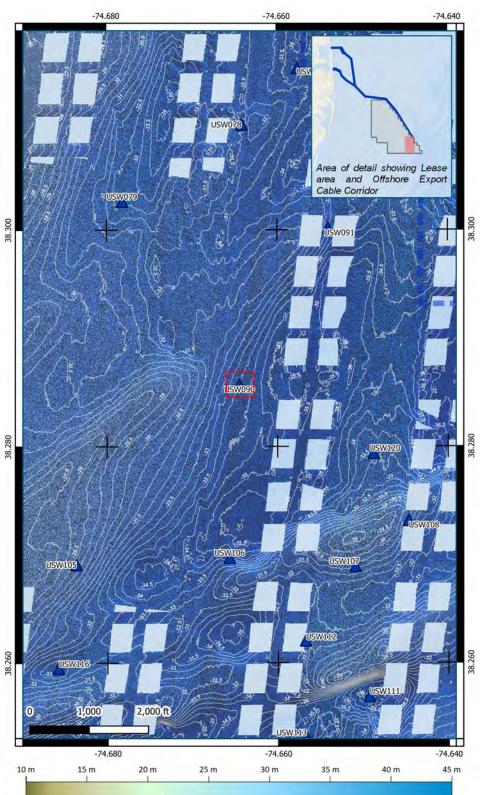

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW088 (BG-LA-Z041) Lease Area

Benthic Grab USW089		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		1025
Taxa Richness ¹ :		17

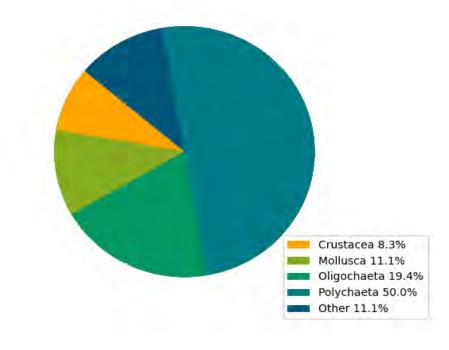

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

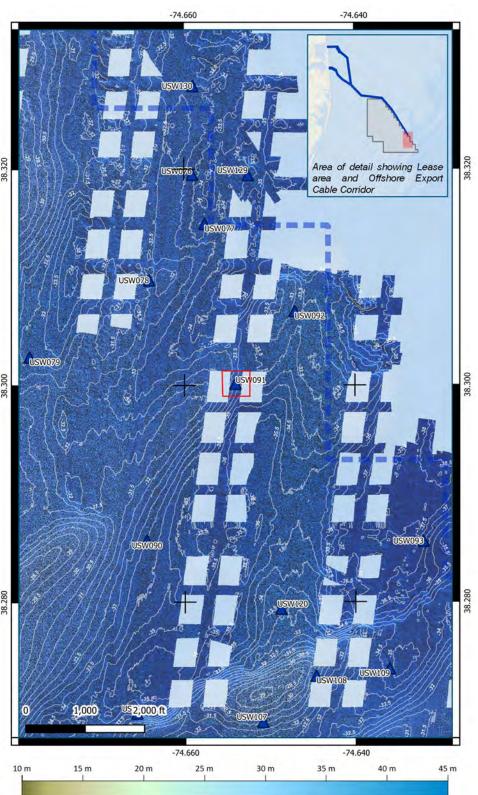

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW089 (BG-LA-L11) Lease Area

Benthic Grab USW090		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		900
Taxa Richness ¹ :		16


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

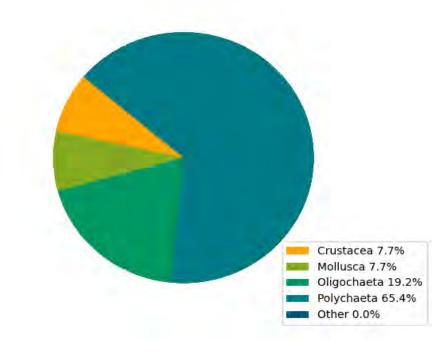


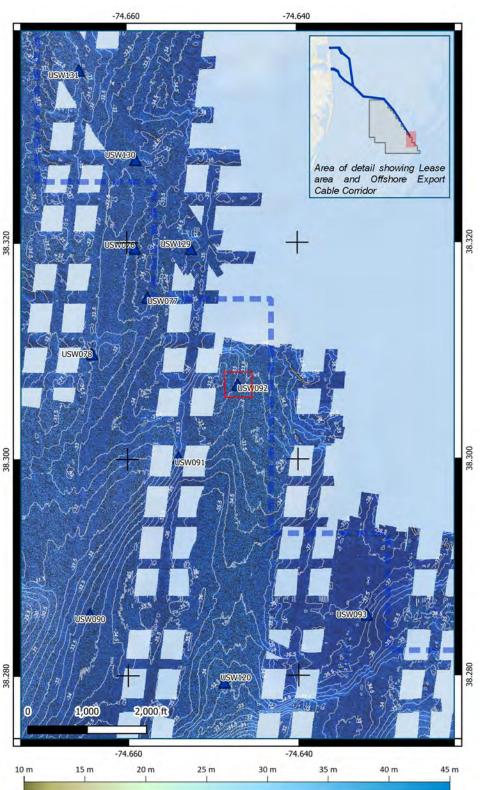
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW090 (BG-LA-N11) Lease Area

Benthic Grab USW091		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		15

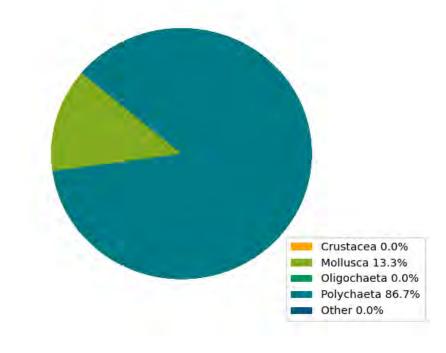

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

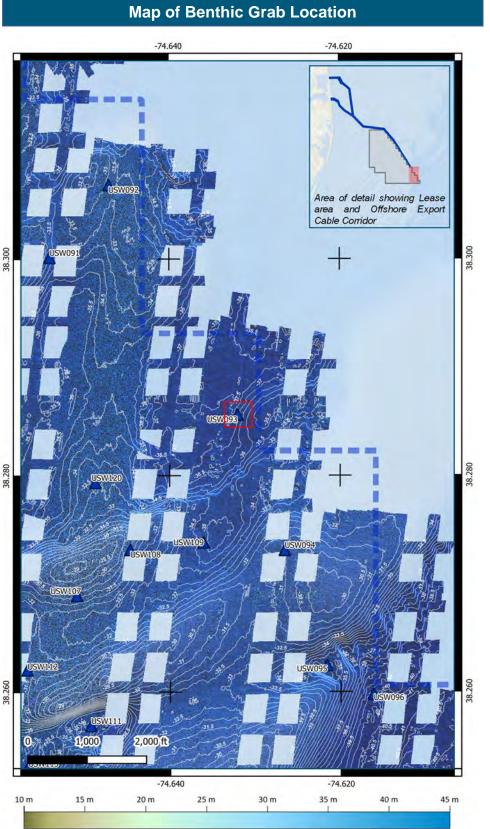

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW091 (BG-LA-Z040) Lease Area

Benthic Grab USW092		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		375
Taxa Richness ¹ :		10

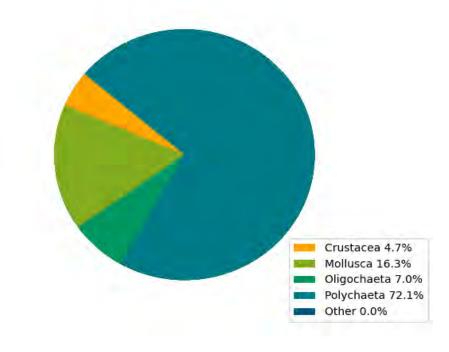

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

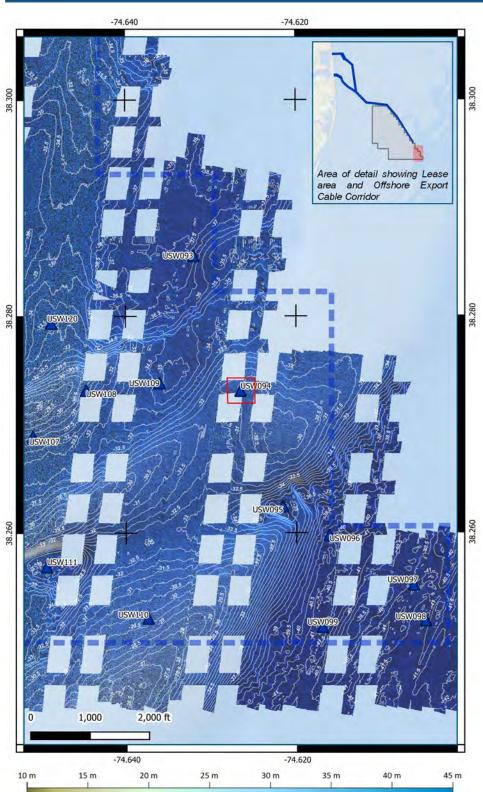

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

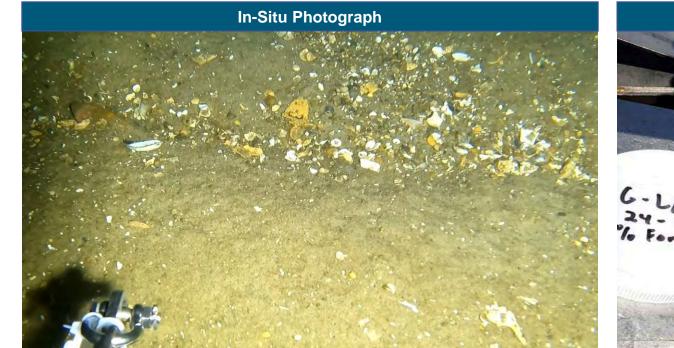
Benthic Sample Site USW092 (BG-LA-Z039) Lease Area

Benthic Grab USW093		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1075
Taxa Richness ¹ :		17


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

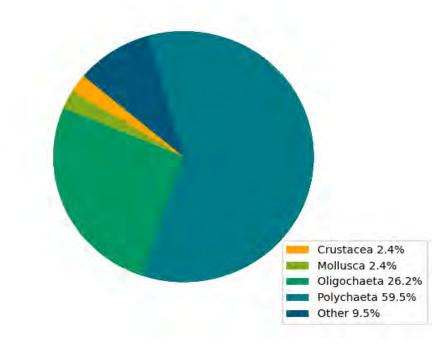

Maryland Offshore Wind Project Offshore Maryland and Delaware

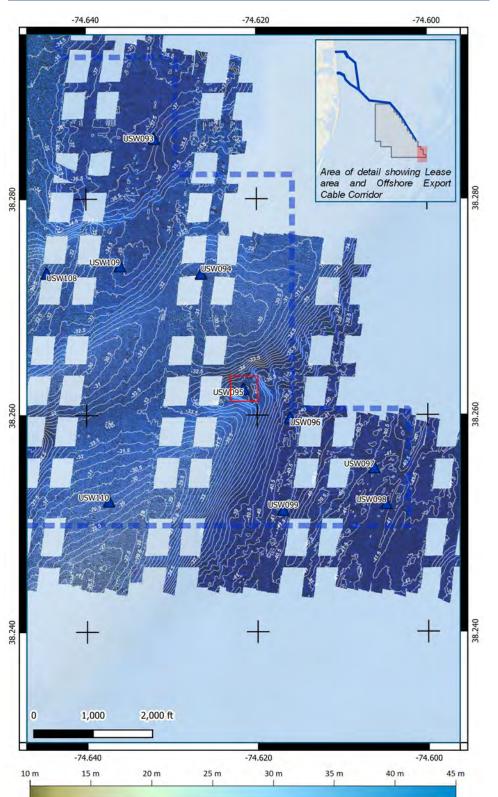
Benthic Organism Density by Taxa Group



Benthic Sample Site USW093 (BG-LA-P11) Lease Area

Benthic Grab USW094		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1050
Taxa Richness ¹ :		12

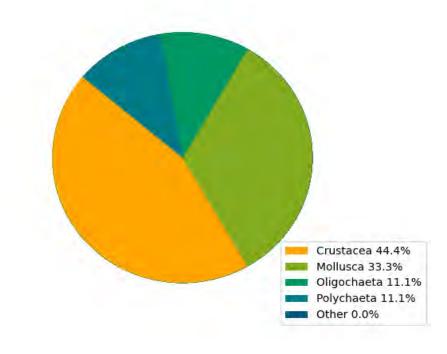

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

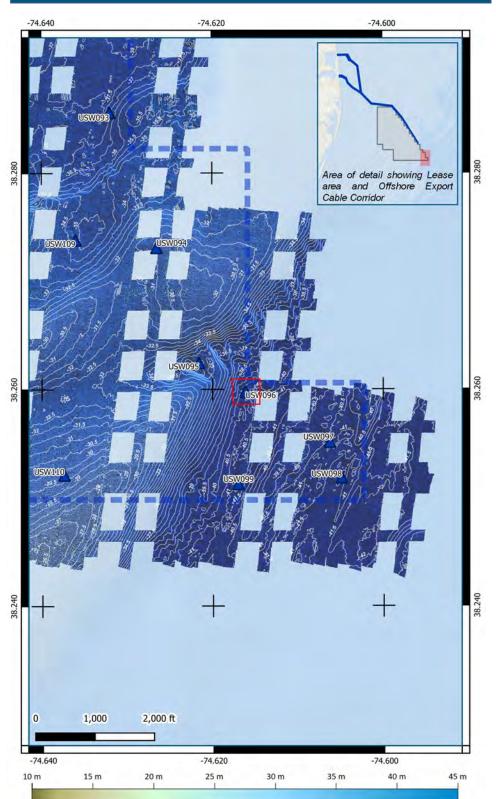

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW094 (BG-LA-Z056) Lease Area

Benthic Grab USW095		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		225
Taxa Richness ¹ :		7

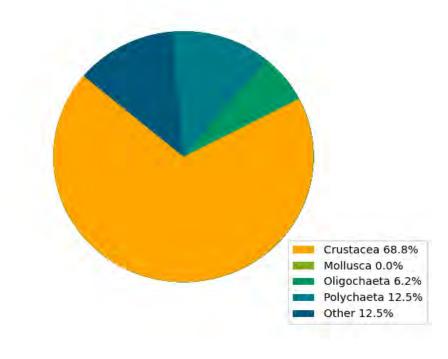

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

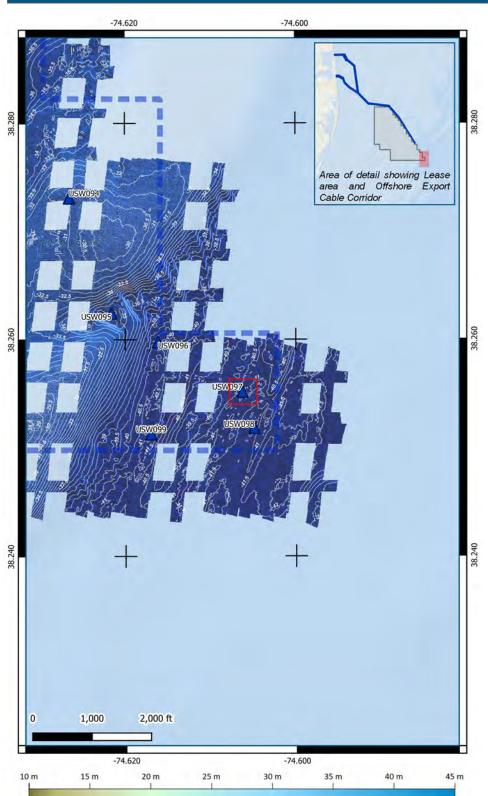

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW095 (BG-LA-Z057) Lease Area

Benthic Grab USW096		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		400
Taxa Richness ¹ :		6

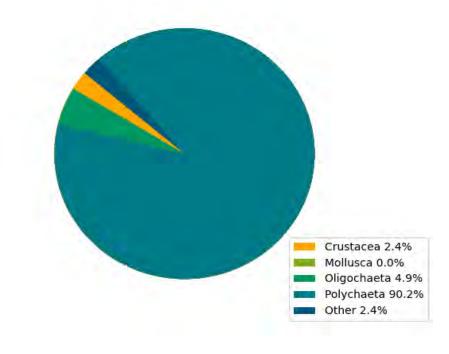

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

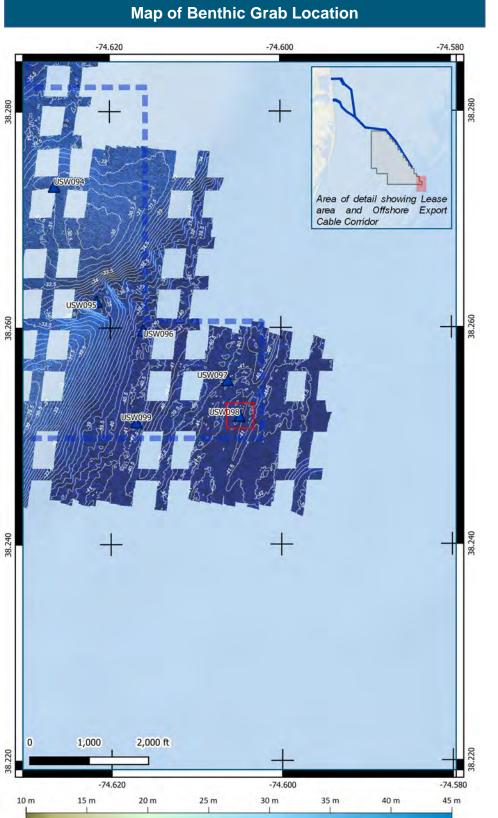

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW096 (BG-LA-Z058) Lease Area

Benthic Grab USW097		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1025
Taxa Richness ¹ :		15


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

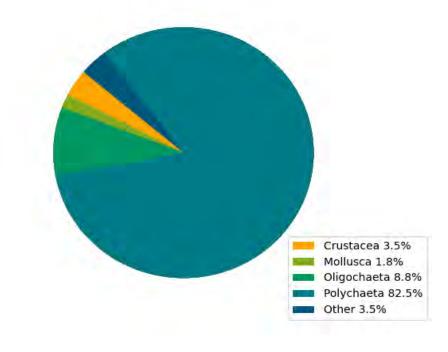


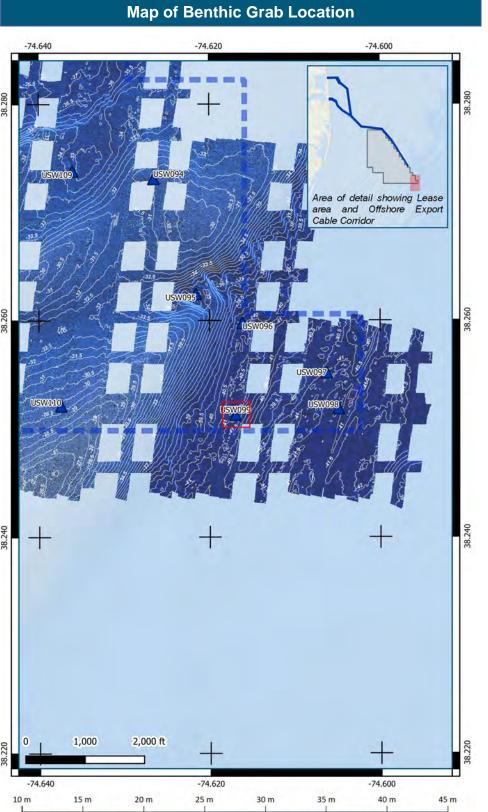
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW097 (BG-LA-Z059) Lease Area

Benthic Grab USW098		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1425
Taxa Richness ¹ :		22

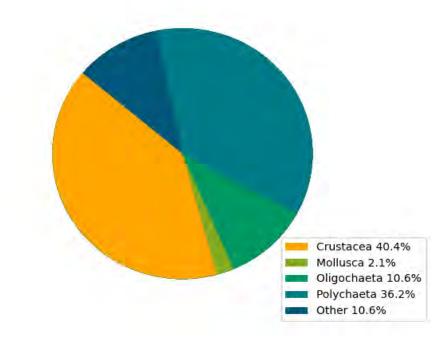

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

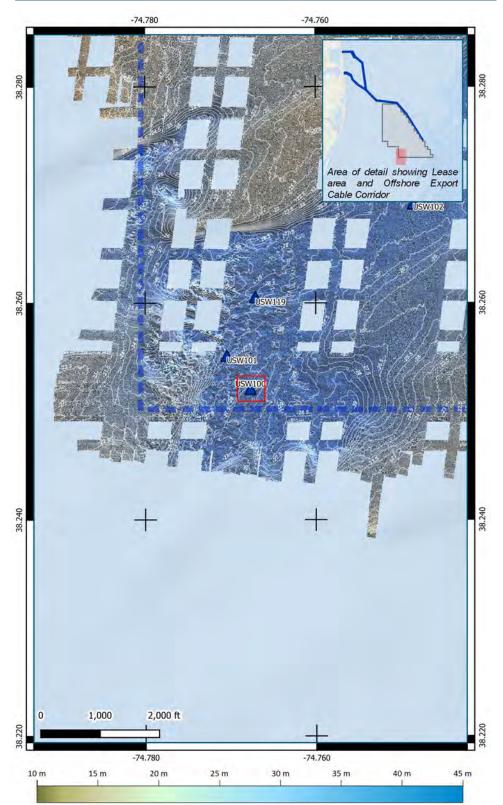

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW098 (BG-LA-R13) Lease Area

Benthic Grab USW099		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1175
Taxa Richness ¹ :		15


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

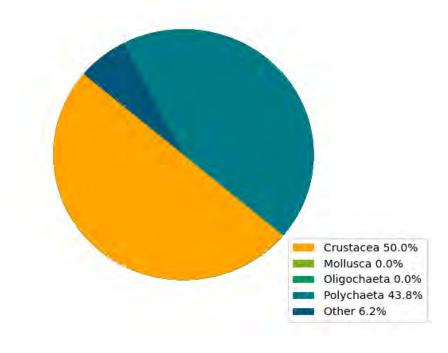


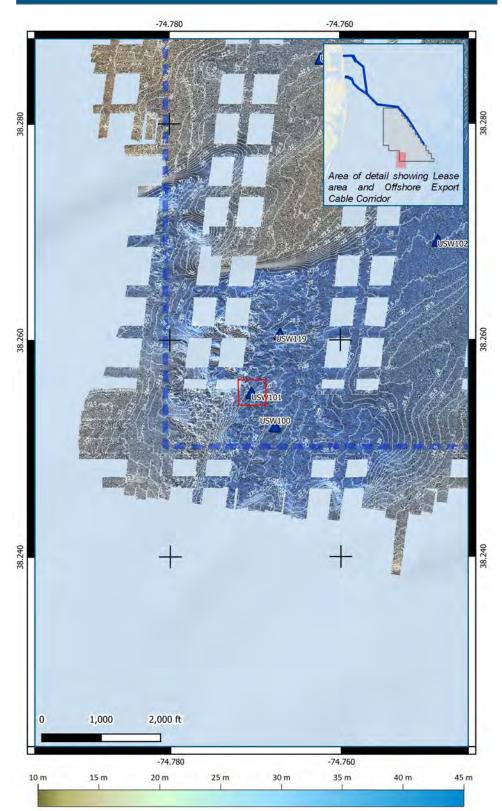
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

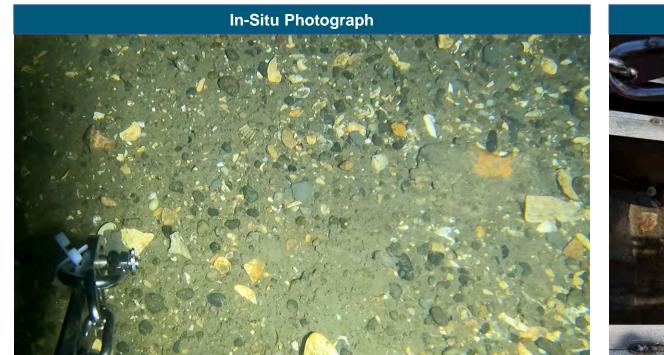
Benthic Sample Site USW099 (BG-LA-Z060) Lease Area

Benthic Grab USW100		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		400
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

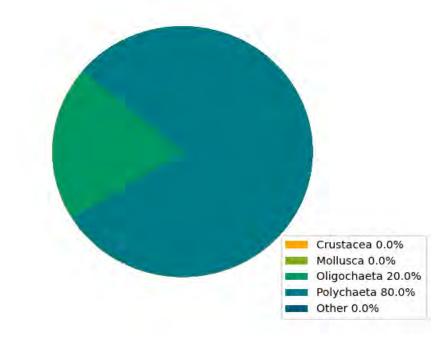

Maryland Offshore Wind Project Offshore Maryland and Delaware

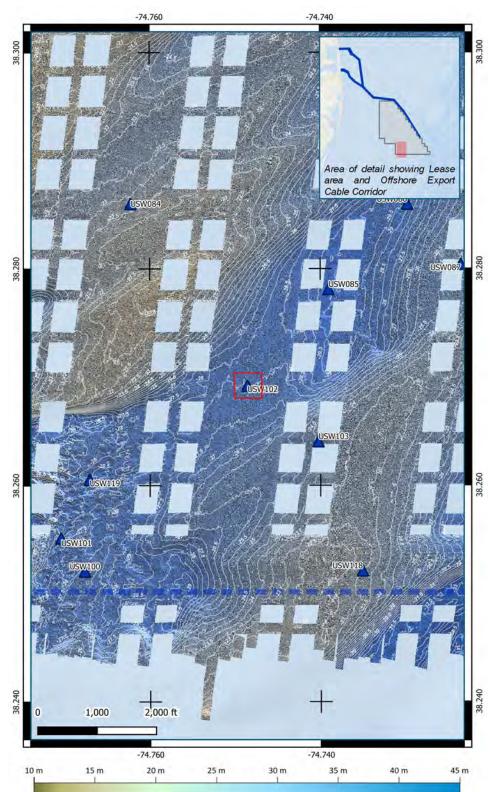
Benthic Organism Density by Taxa Group



Benthic Sample Site USW100 (BG-LA-H13) Lease Area

Benthic Grab USW101		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		125
Taxa Richness ¹ :		5

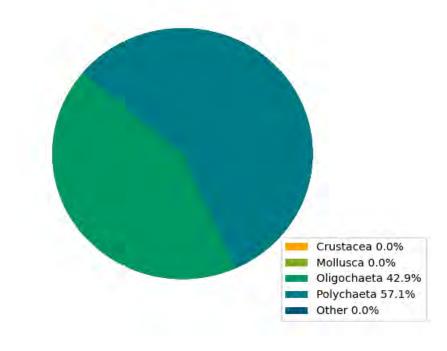

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW101 (BG-LA-Z046) Lease Area

Benthic Grab USW102		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		700
Taxa Richness ¹ :		9


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

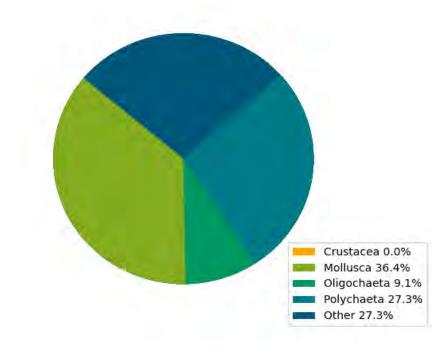
Maryland Offshore Wind Project Offshore Maryland and Delaware

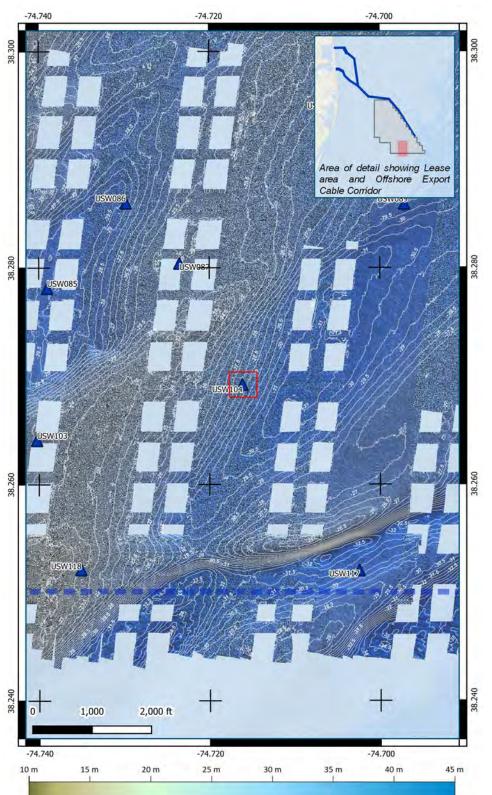
Benthic Organism Density by Taxa Group



Benthic Sample Site USW102 (BG-LA-I12) Lease Area

Benthic Grab USW103		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		9

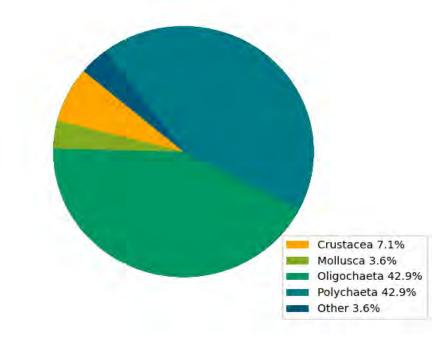

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

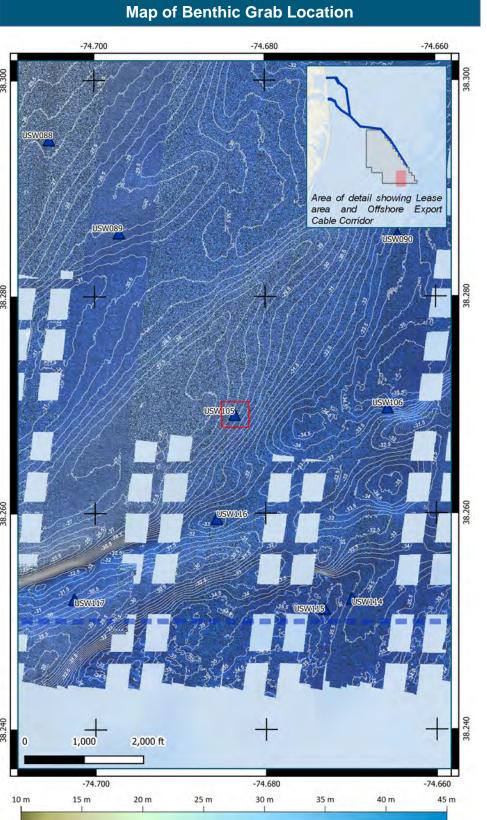

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW103 (BG-LA-Z044) Lease Area

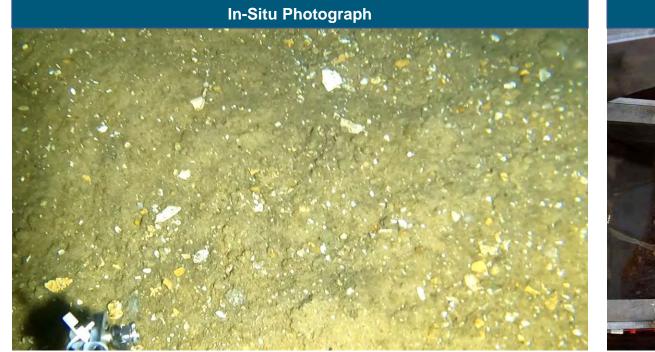
Benthic Grab USW104		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		700
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



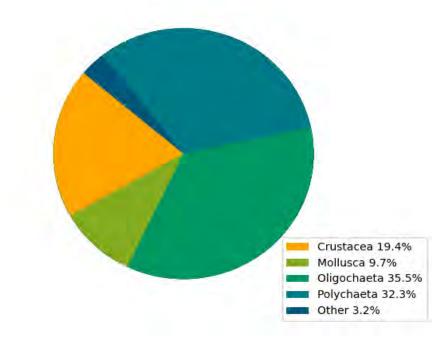
Maryland Offshore Wind Project Offshore Maryland and Delaware

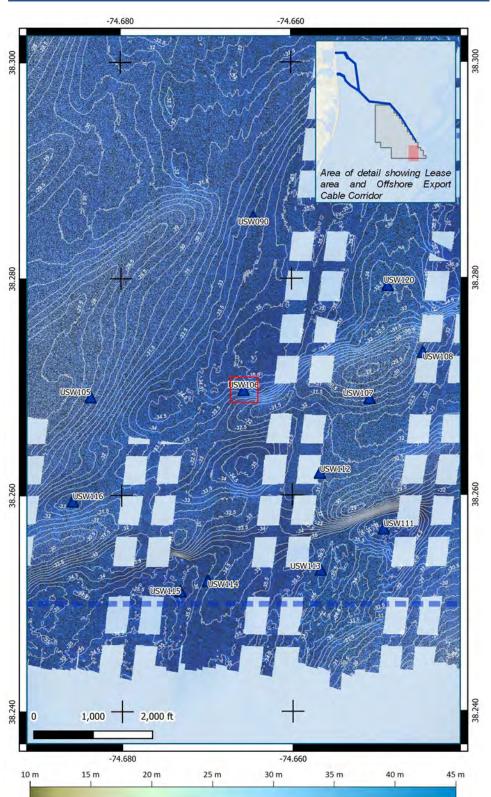
Benthic Organism Density by Taxa Group



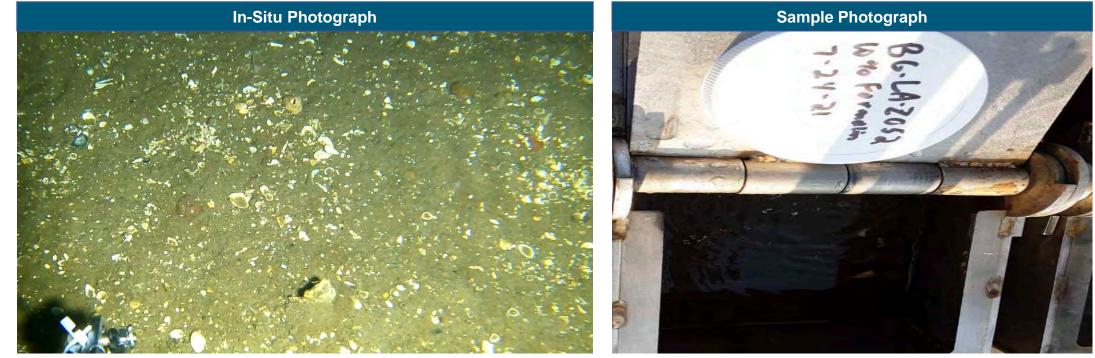
Benthic Sample Site USW104 (BG-LA-K12) Lease Area

Benthic Grab USW105		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		17


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

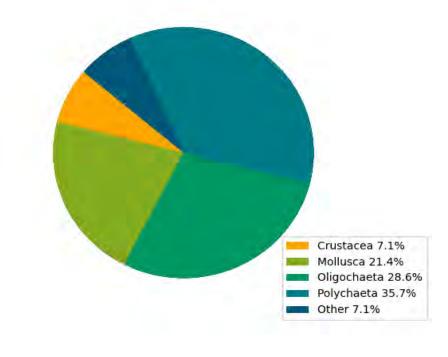

Maryland Offshore Wind Project Offshore Maryland and Delaware

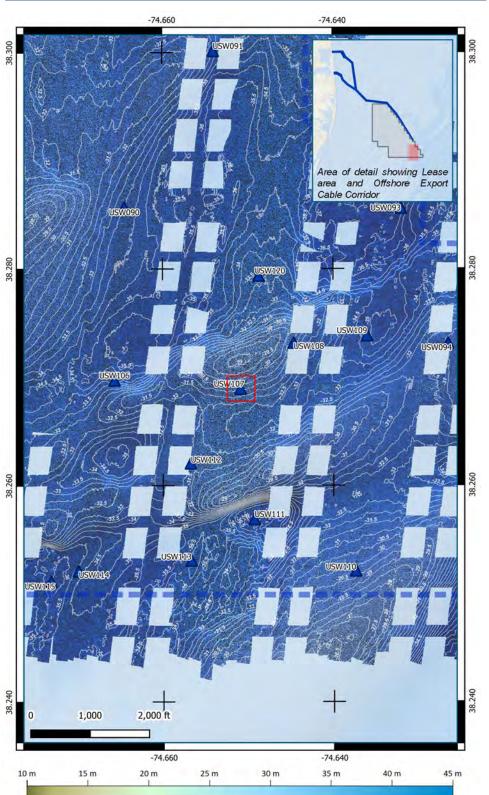
Benthic Organism Density by Taxa Group



Benthic Sample Site USW105 (BG-LA-M12) Lease Area

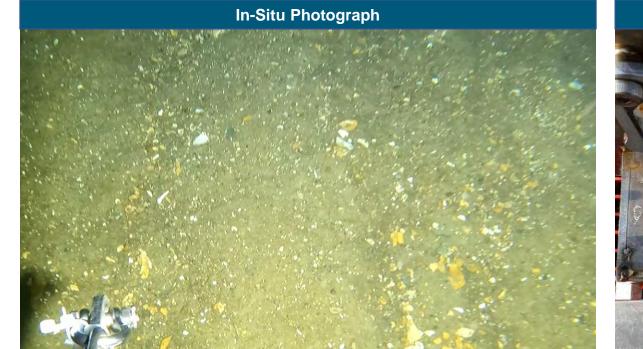
Benthic Grab USW106		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		350
Taxa Richness ¹ :		8


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



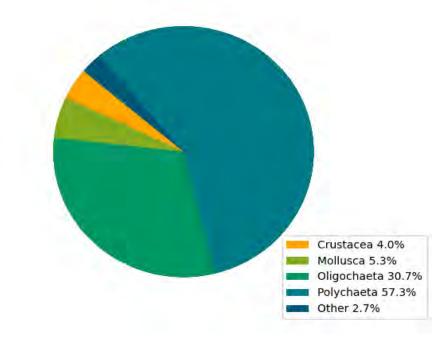
Maryland Offshore Wind Project Offshore Maryland and Delaware

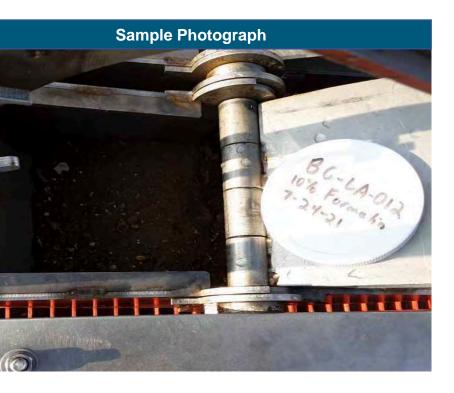
Benthic Organism Density by Taxa Group

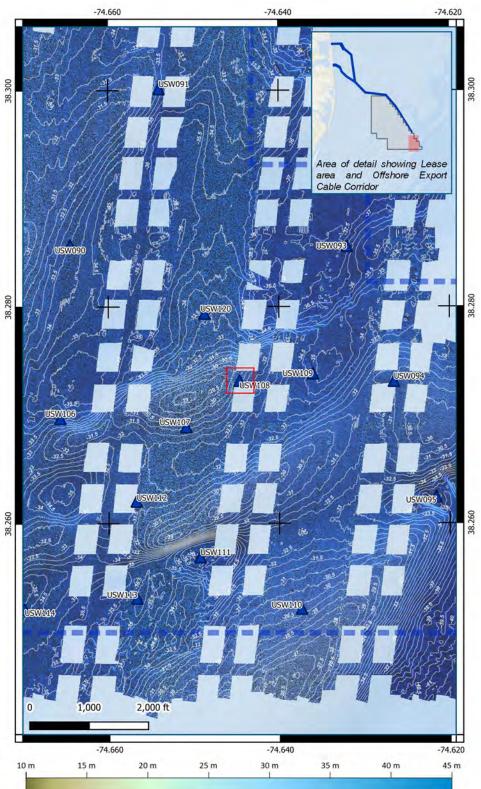


Benthic Sample Site USW106 (BG-LA-Z052) Lease Area

Benthic Grab USW107		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1875
Taxa Richness ¹ :		24


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

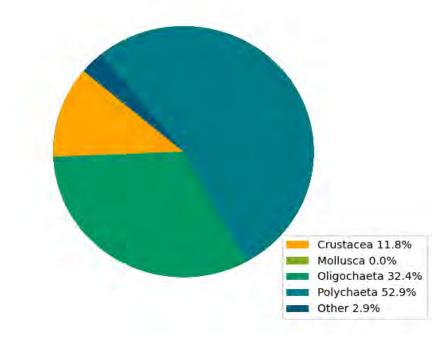


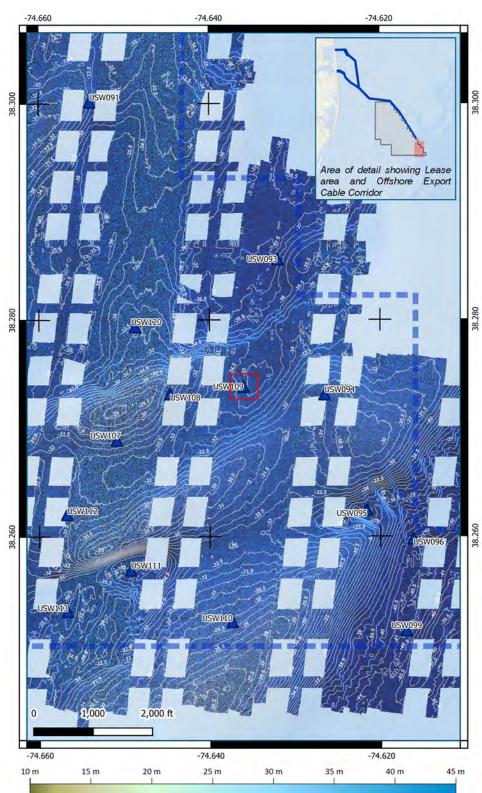

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW107 (BG-LA-O12) Lease Area

Benthic Grab USW108		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		850
Taxa Richness ¹ :		16


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

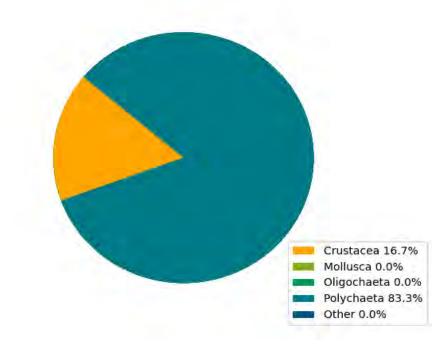


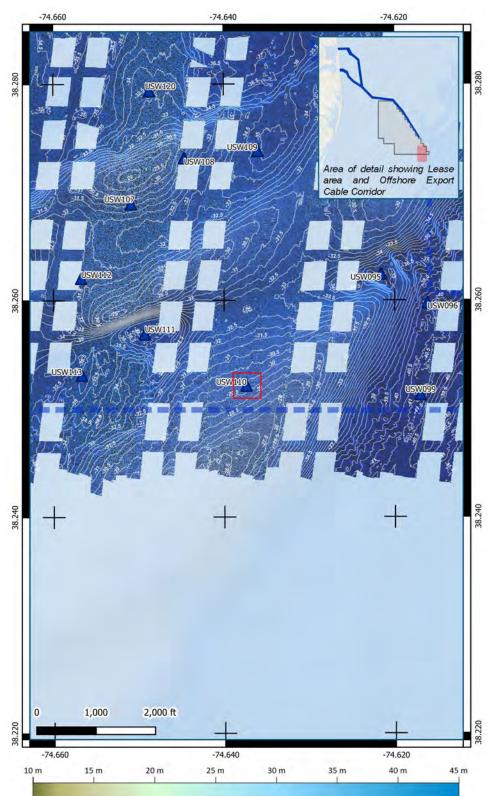
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

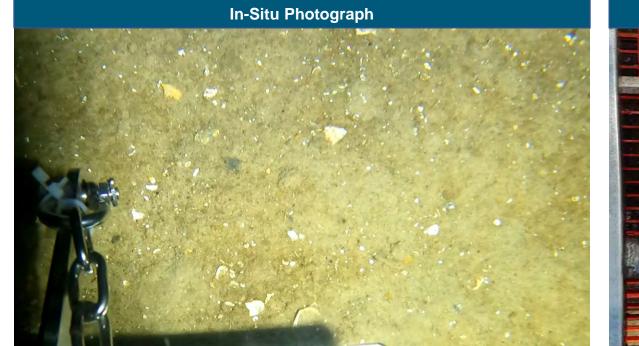
Benthic Sample Site USW108 (BG-LA-Z054) Lease Area

Benthic Grab USW109		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		300
Taxa Richness ¹ :		8


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

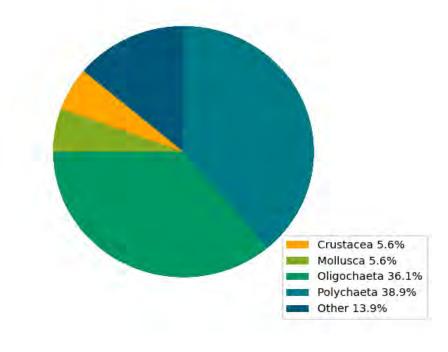

Maryland Offshore Wind Project Offshore Maryland and Delaware

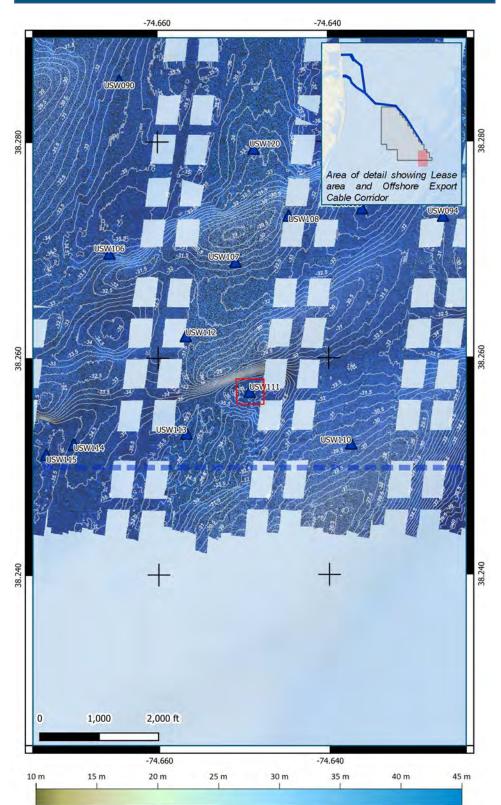
Benthic Organism Density by Taxa Group



Benthic Sample Site USW109 (BG-LA-Z055) Lease Area

Benthic Grab USW110		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		900
Taxa Richness ¹ :		18

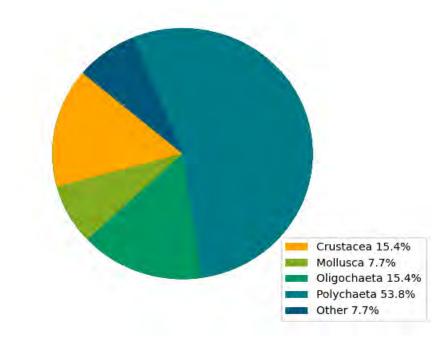

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

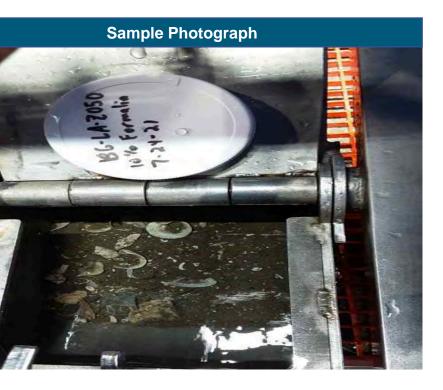

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW110 (BG-LA-P13) Lease Area

Benthic Grab USW111		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		325
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

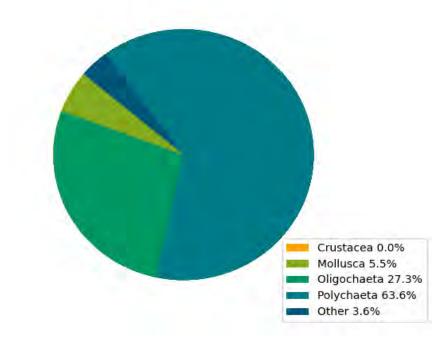


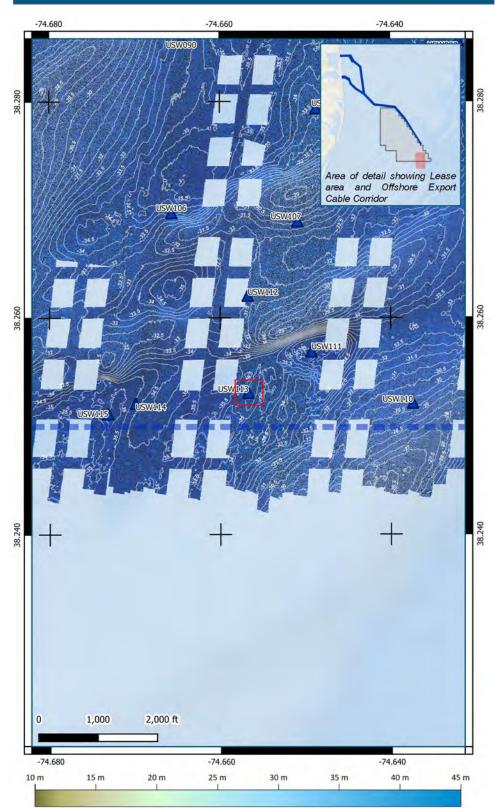
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW111 (BG-LA-Z050) Lease Area

Benthic Grab USW112		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density		1375
(individuals/m ²) ¹ :		1010
Taxa Richness ¹ :		19


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

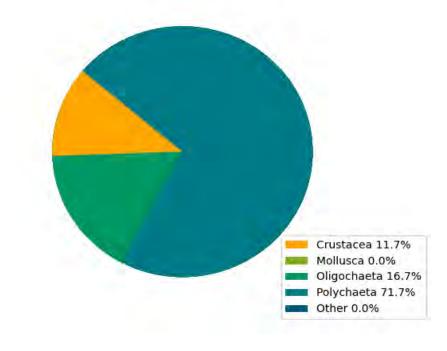


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW112 (BG-LA-Z051) Lease Area

Benthic Grab USW113		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1500
Taxa Richness ¹ :		19

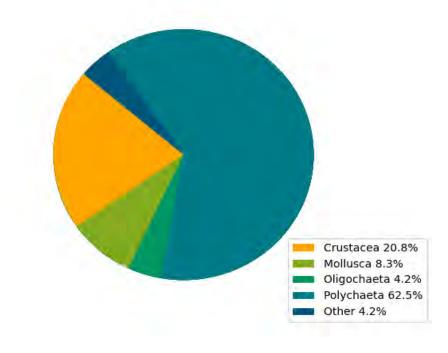

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW113 (BG-LA-Z049) Lease Area

Benthic Grab USW114		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density		600
(individuals/m ²) ¹ :		000
Taxa Richness ¹ :		15

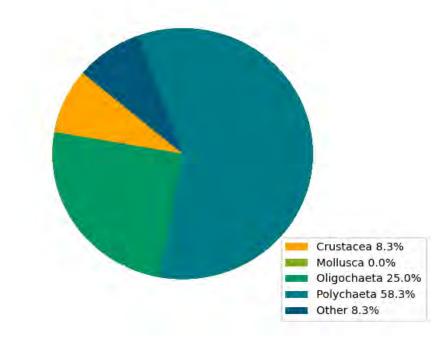

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

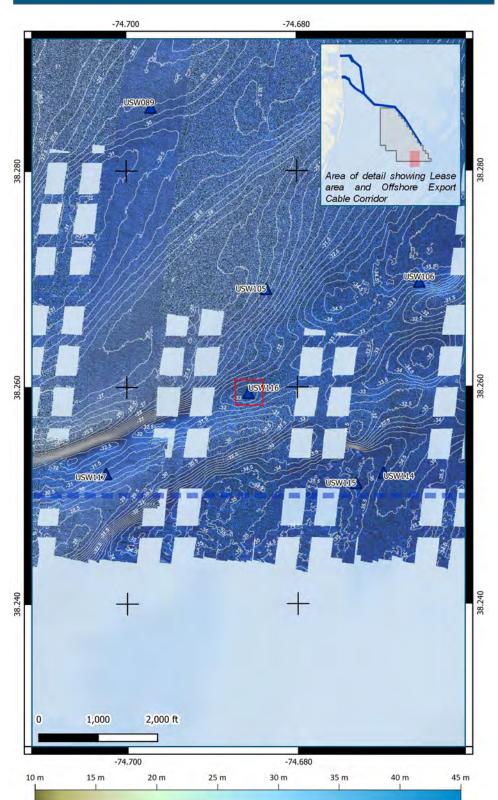
Benthic Organism Density by Taxa Group

Benthic Sample Site USW114 (BG-LA-N13) Lease Area

Benthic Grab USW115		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		300
Taxa Richness ¹ :		9


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

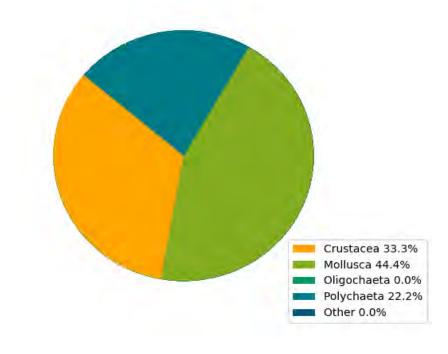
Maryland Offshore Wind Project Offshore Maryland and Delaware

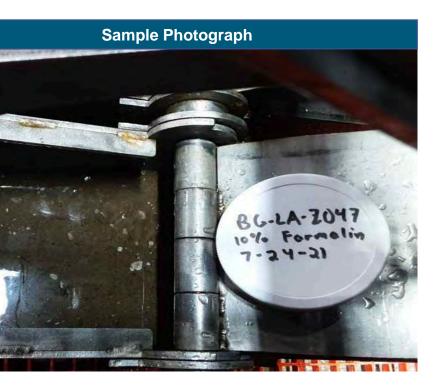

Benthic Organism Density by Taxa Group

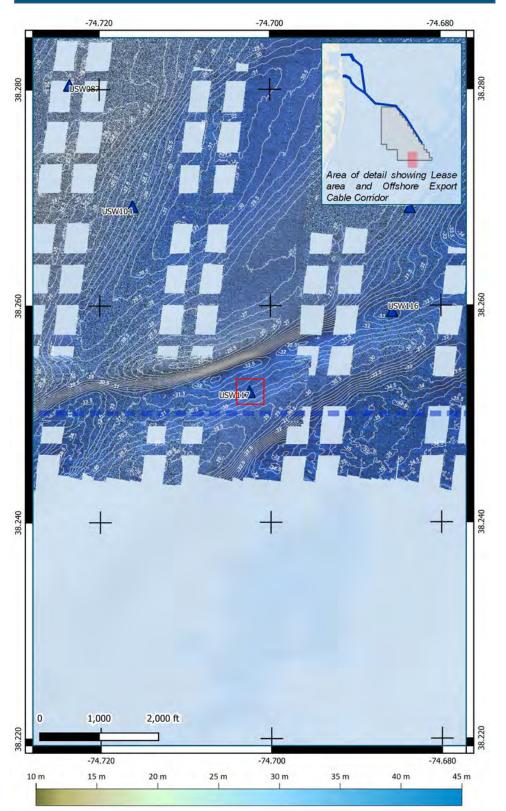
Sample Photograph

Benthic Sample Site USW115 (BG-LA-Z048) Lease Area

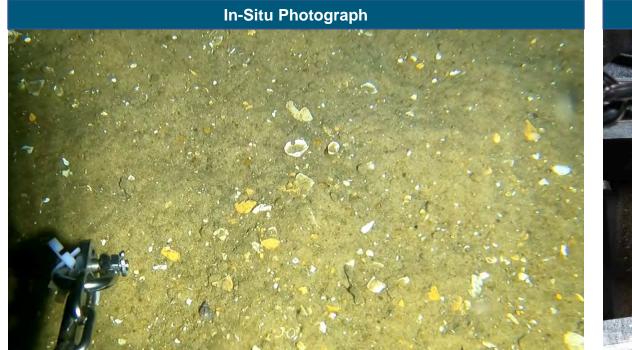
Benthic Grab USW116		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		225
Taxa Richness ¹ :		9


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



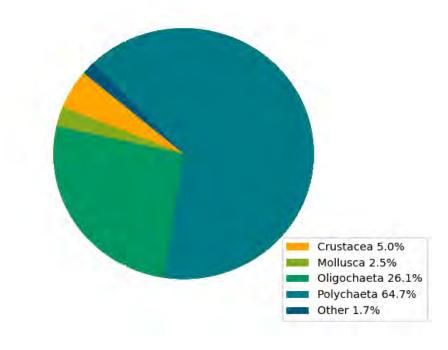

Maryland Offshore Wind Project Offshore Maryland and Delaware

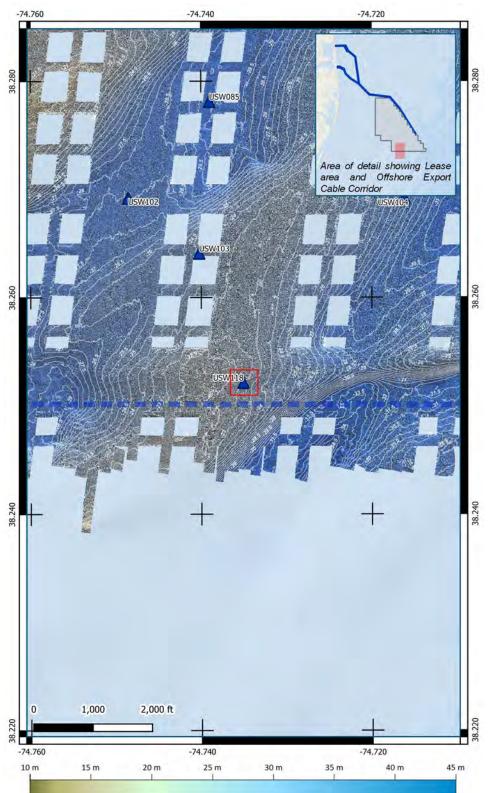
Benthic Organism Density by Taxa Group



Benthic Sample Site USW116 (BG-LA-Z047) Lease Area

Benthic Grab USW117		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density		2975
(individuals/m ²) ¹ :		2915
Taxa Richness ¹ :		22

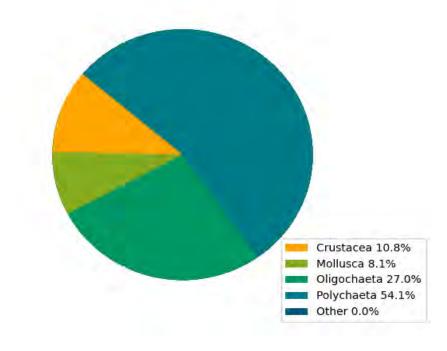

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

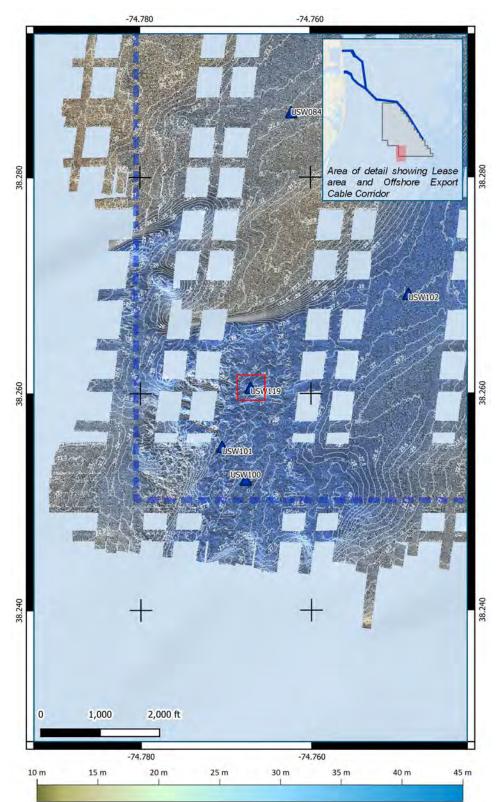

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW117 (BG-LA-L13) Lease Area

Benthic Grab USW118		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		925
Taxa Richness ¹ :		17

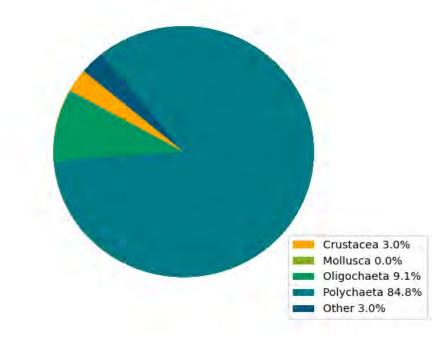

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

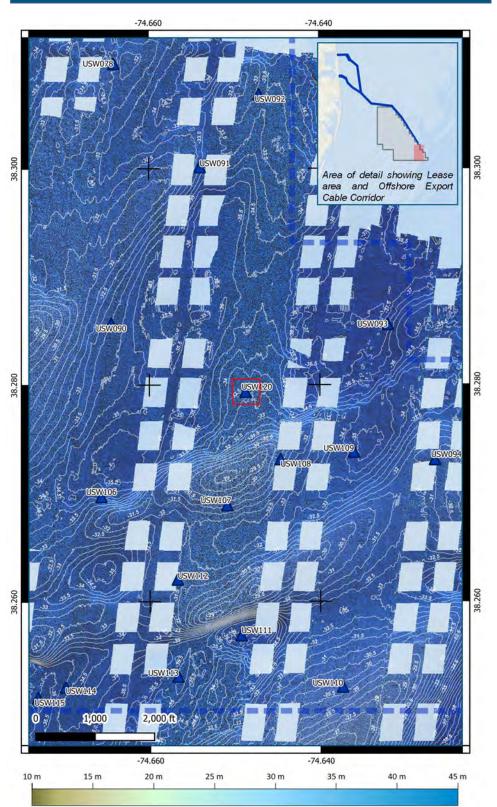

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

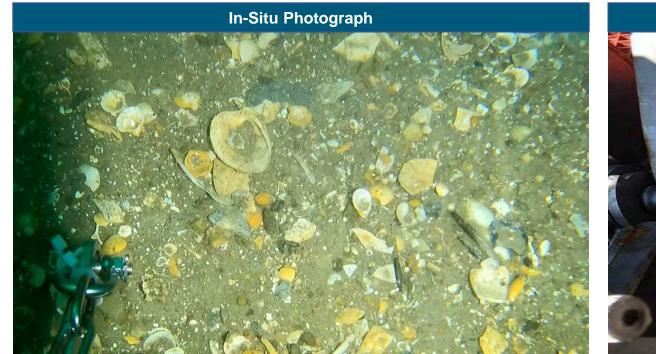
Benthic Sample Site USW118 (BG-LA-J13) Lease Area

Benthic Grab USW119		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		825
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

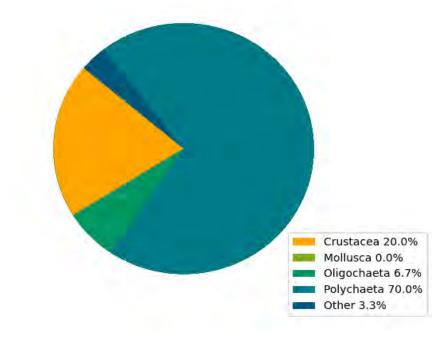

Maryland Offshore Wind Project Offshore Maryland and Delaware

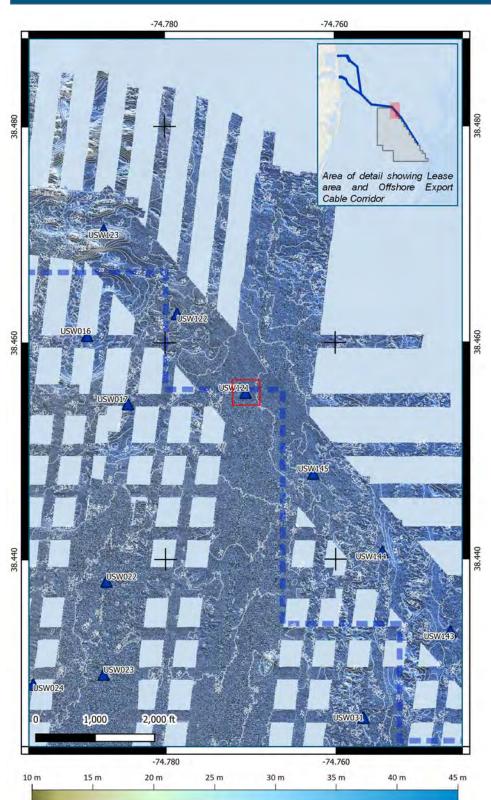
Benthic Organism Density by Taxa Group



Benthic Sample Site USW119 (BG-LA-Z045) Lease Area

Benthic Grab USW120		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density		750
(individuals/m ²) ¹ :		750
Taxa Richness ¹ :		17

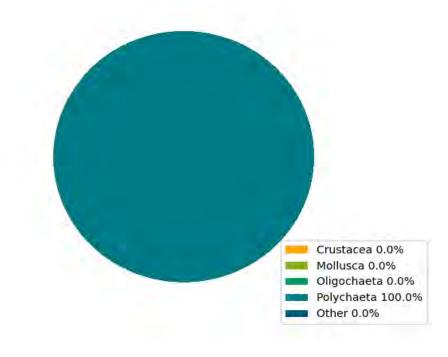

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

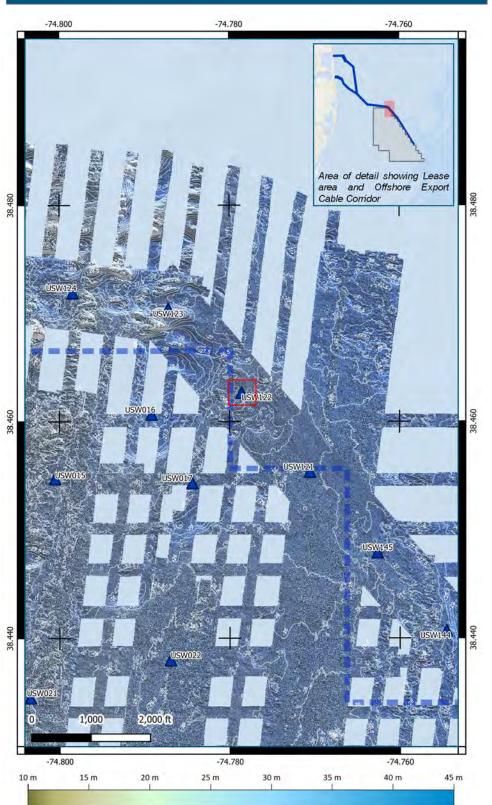
Benthic Organism Density by Taxa Group

Benthic Sample Site USW120 (BG-LA-Z053) Lease Area

Benthic Grab USW121		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		125
Taxa Richness ¹ :		2


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

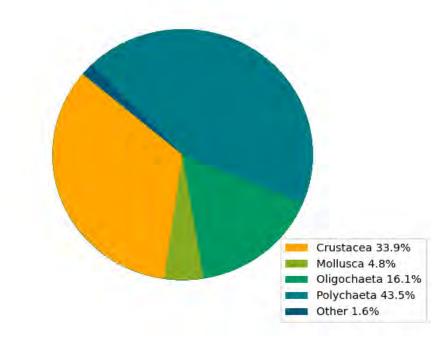
Maryland Offshore Wind Project Offshore Maryland and Delaware

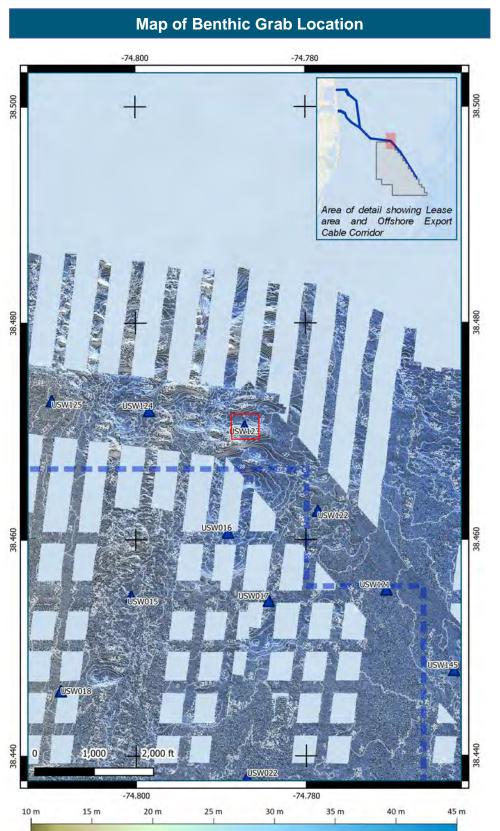

Benthic Organism Density by Taxa Group

Sample Photograph

Benthic Sample Site USW121 (BG-AC-18) Common Corridor

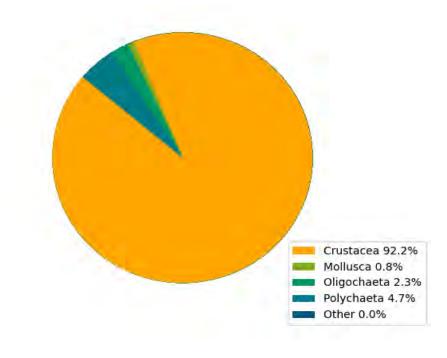
Benthic Grab USW122		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1550
Taxa Richness ¹ :		26

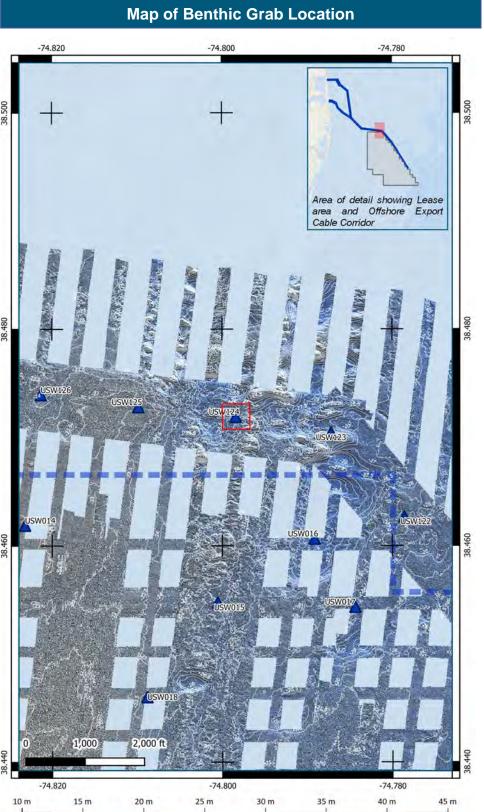

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW122 (BG-AC-19) Common Corridor

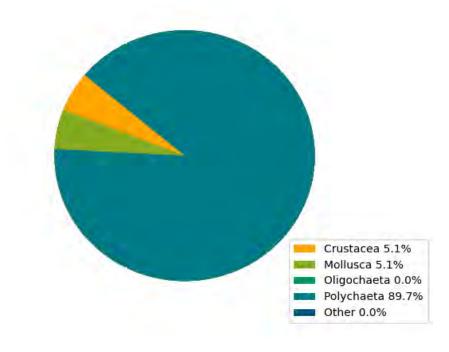

Benthic Grab USW123		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		3225
Taxa Richness ¹ :		16

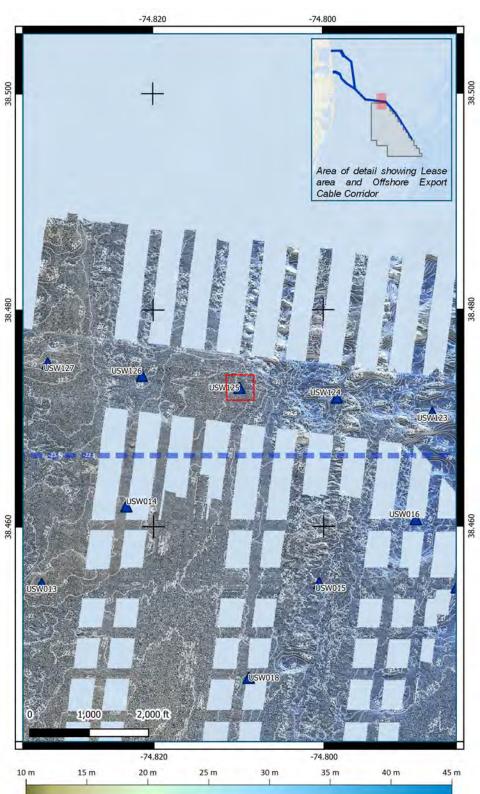

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

<image>

Benthic Sample Site USW123 (BG-AC-20) Common Corridor


Benthic Grab USW124		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		975
Taxa Richness ¹ :		8

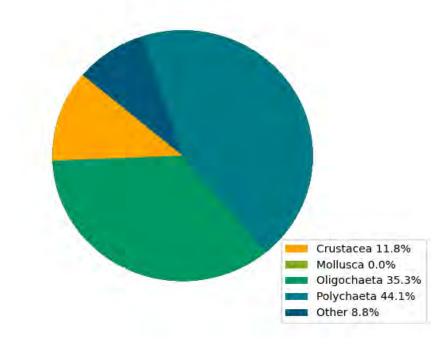


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW124 (BG-AC-21) Common Corridor

Benthic Grab USW125		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		850
Taxa Richness ¹ :		16

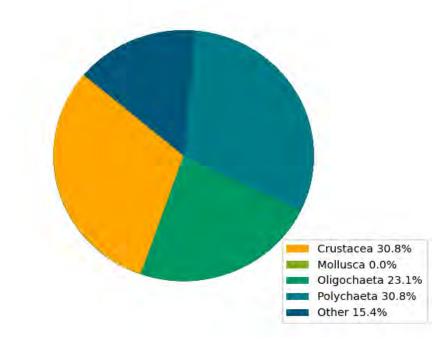

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

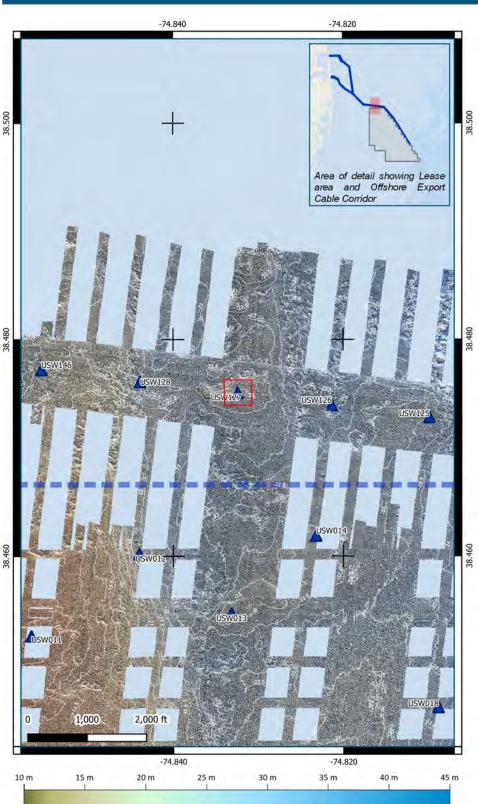
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW125 (BG-AC-22) Common Corridor

Map of Benthic Grab Location

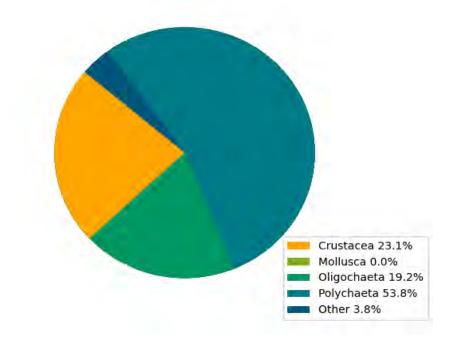

Benthic Grab USW126		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		325
Taxa Richness ¹ :		8


Maryland Offshore Wind Project Offshore Maryland and Delaware

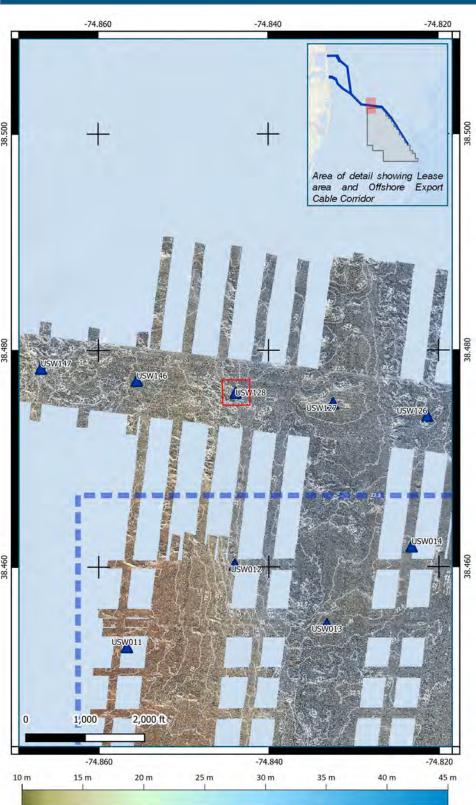
Benthic Organism Density by Taxa Group

Benthic Sample Site USW126 (BG-AC-23) Common Corridor

Benthic Grab USW127		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		10

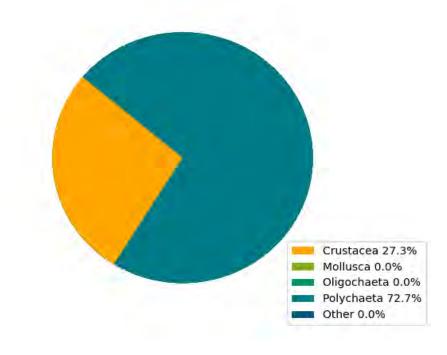

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

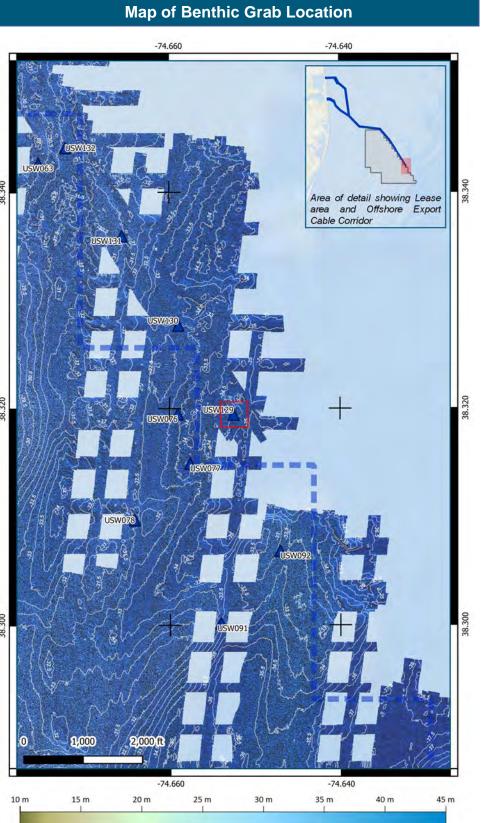
Maryland Offshore Wind Project Offshore Maryland and Delaware


Benthic Organism Density by Taxa Group

Benthic Sample Site USW127 (BG-AC-24) Common Corridor

Map of Benthic Grab Location

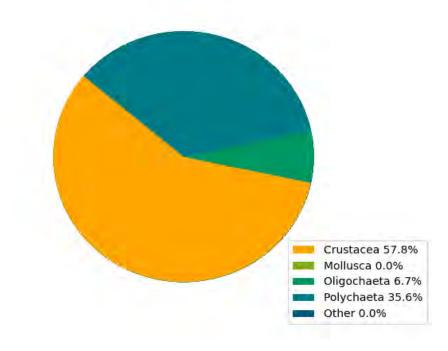

Benthic Grab USW128		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		7

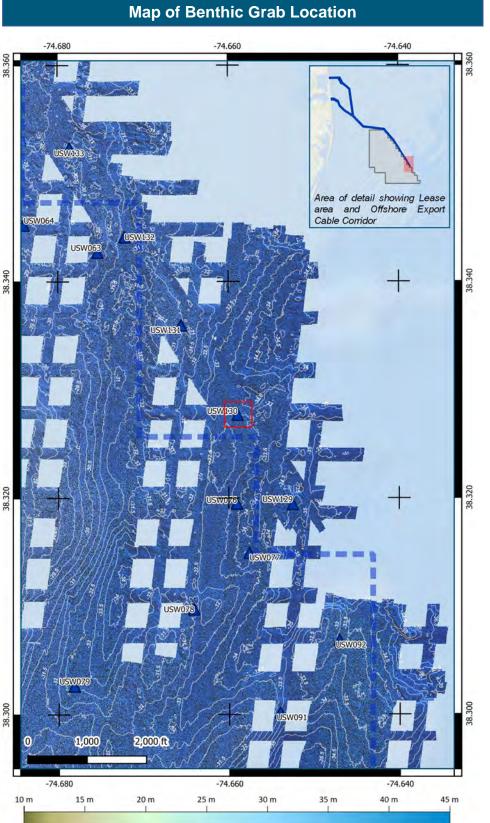

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW128 (BG-AC-25) Common Corridor

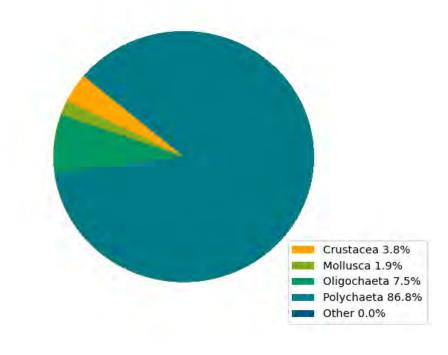

Benthic Grab USW129		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1125
Taxa Richness ¹ :		14

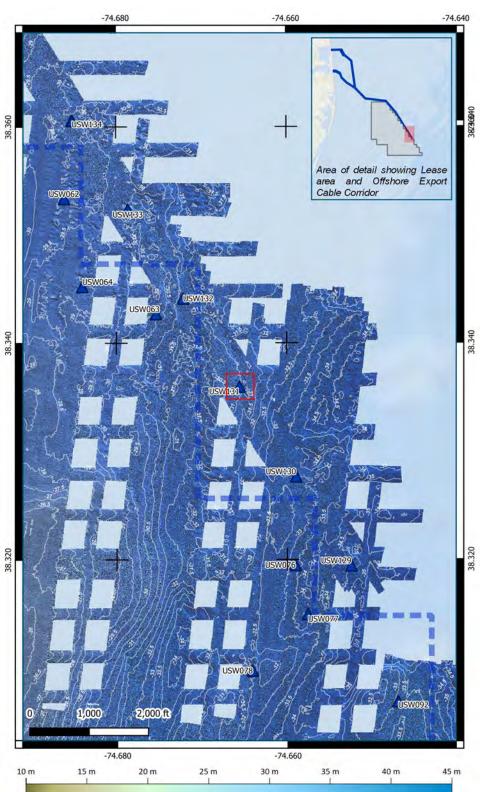


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW129 (BG-AC-1) Common Corridor

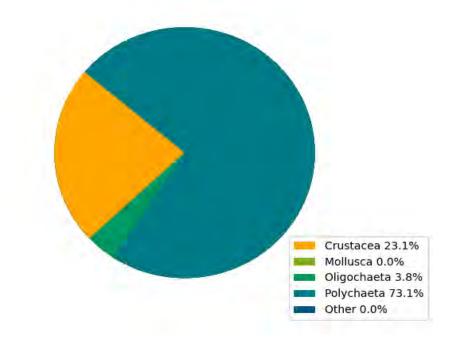

Benthic Grab USW130		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravel Mixes
	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1325
Taxa Richness ¹ :		18


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW130 (BG-AC-2) Common Corridor

Benthic Grab USW131		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		11


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

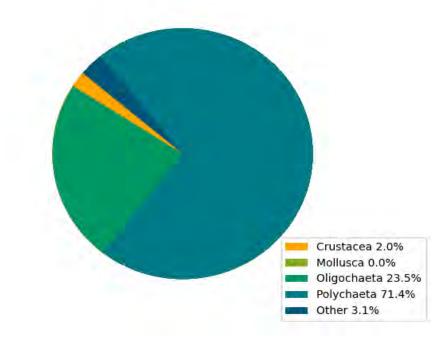
Maryland Offshore Wind Project Offshore Maryland and Delaware

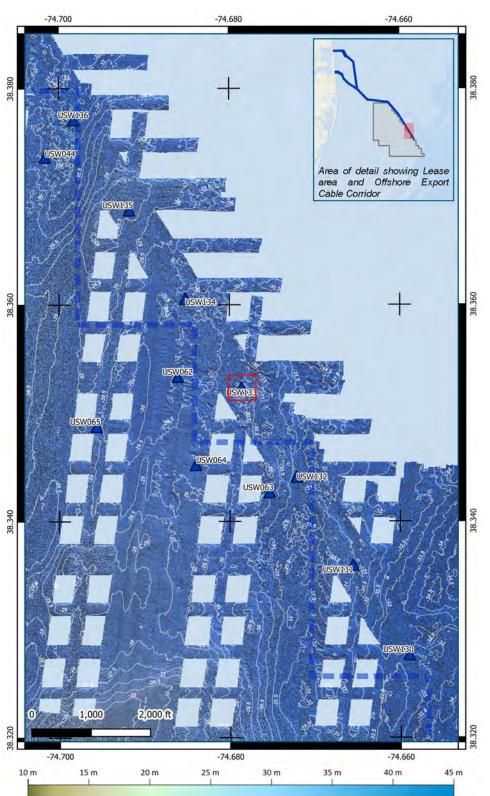
Benthic Organism Density by Taxa Group

Benthic Sample Site USW131 (BG-AC-3) Common Corridor

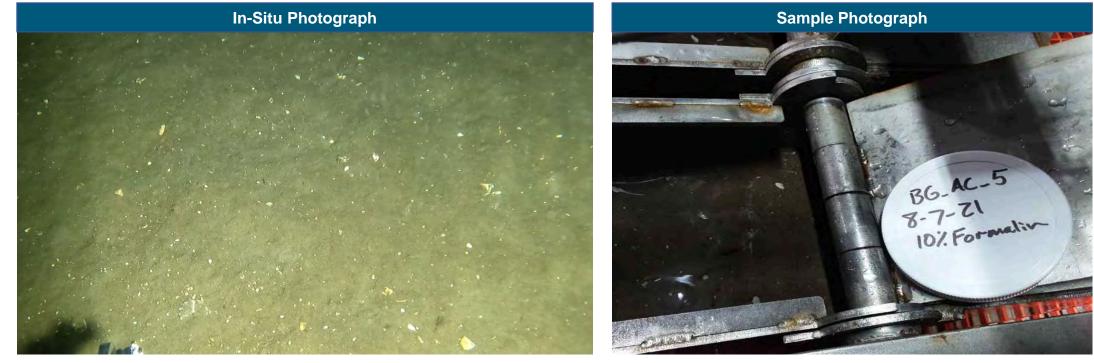
Map of Benthic Grab Location -74.680 -74.660 Area of detail showing Lease area and Offshore Export Cable Corridor + USV/13 1,000 2,000 ft -74.680 -74.660 30 m 35 m 10 m 15 m 20 m 25 m 40 m 45 m

Benthic Grab USW132		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		2450
Taxa Richness ¹ :		20


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

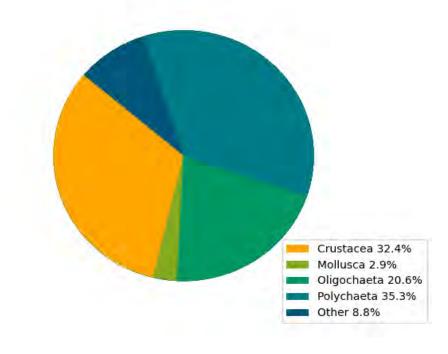

Maryland Offshore Wind Project Offshore Maryland and Delaware

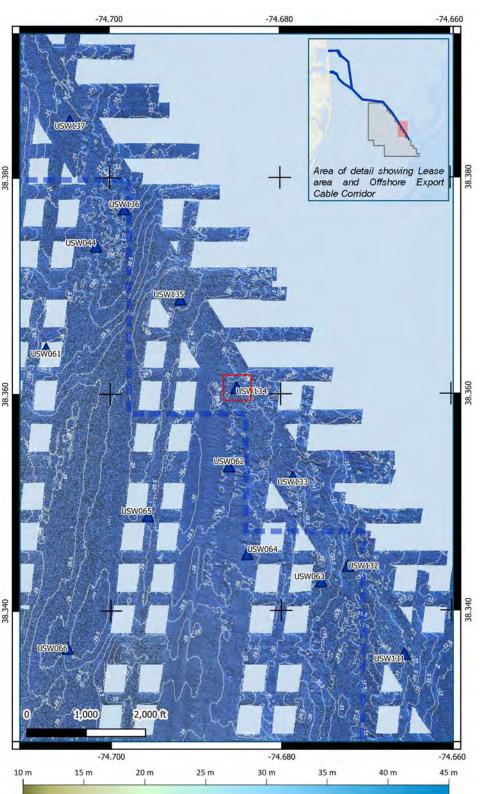
Benthic Organism Density by Taxa Group



Benthic Sample Site USW132 (BG-AC-4) Common Corridor

Benthic Grab USW133		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		850
Taxa Richness ¹ :		18


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

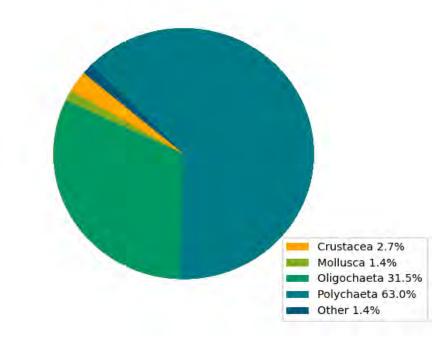


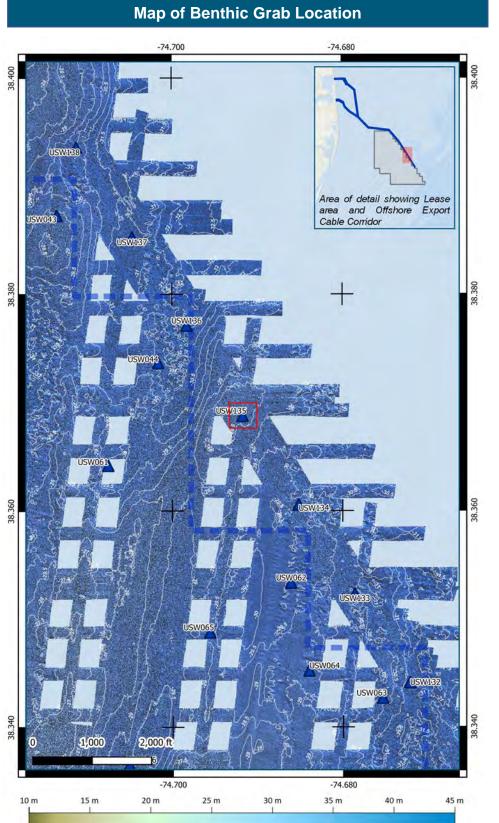
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW133 (BG-AC-5) Common Corridor

Benthic Grab USW134		
CMECS Habitat Classification	Substrate Subclass:	Coarse Unconsolidated Substrate
	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1825
Taxa Richness ¹ :		21

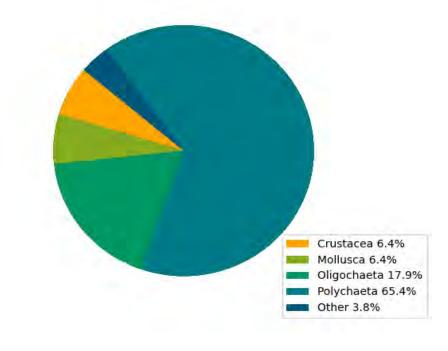

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

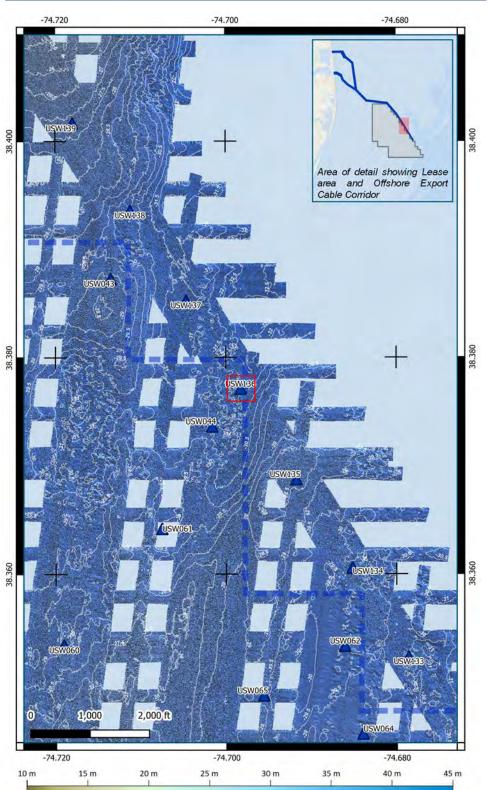


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW134 (BG-AC-6) Common Corridor


Benthic Grab USW135		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1950
Taxa Richness ¹ :		19

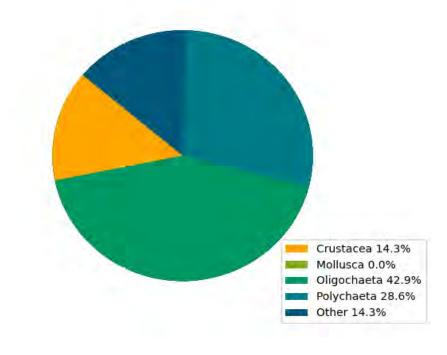


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

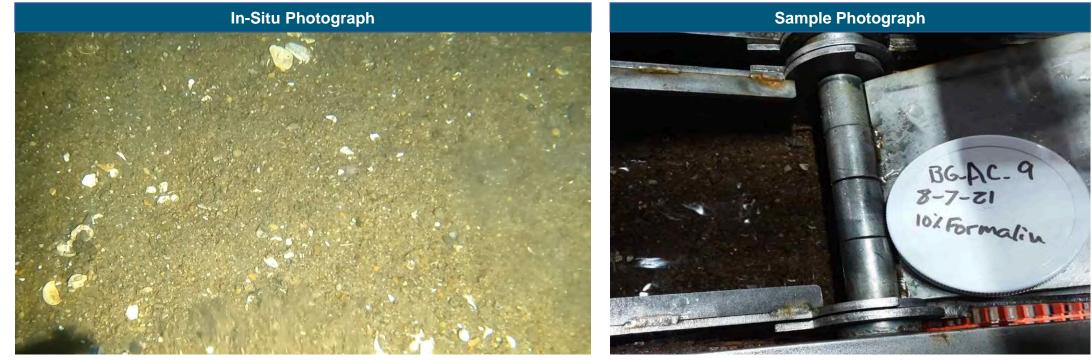
Benthic Sample Site USW135 (BG-AC-7) Common Corridor

Benthic Grab USW136		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		175
Taxa Richness ¹ :		5


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

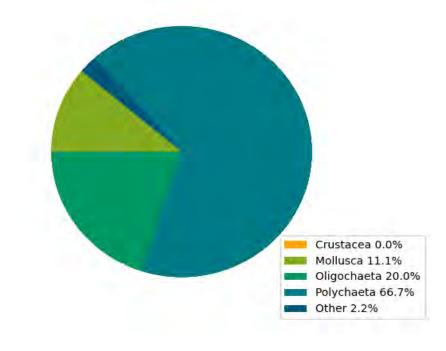
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW136 (BG-AC-8) Common Corridor

Benthic Grab USW137		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1125
Taxa Richness ¹ :		17


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

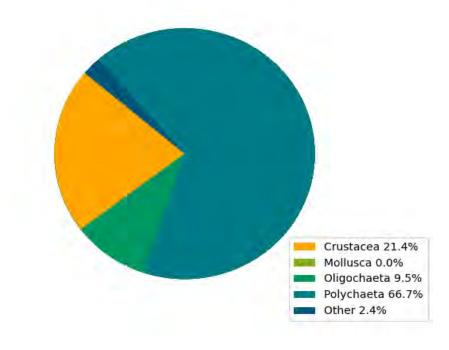
Maryland Offshore Wind Project Offshore Maryland and Delaware

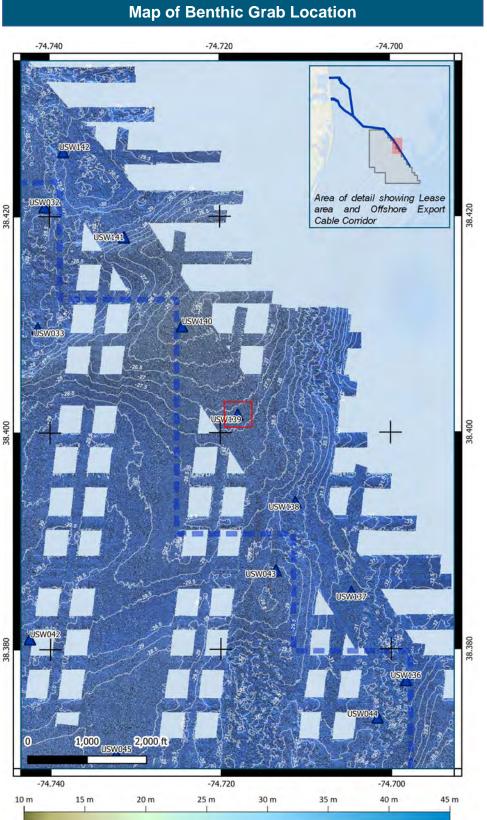
Benthic Organism Density by Taxa Group

Benthic Sample Site USW137 (BG-AC-9) Common Corridor

Map of Benthic Grab Location -74.720 -74.700 Area of detail showing Lease area and Offshore Export Cable Corridor **USW045** 2,000 ft 1,000 -74.720 -74.700 10 m 20 m 30 m 35 m 45 m 15 m 25 m 40 m

Benthic Grab USW138		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1050
Taxa Richness ¹ :		18

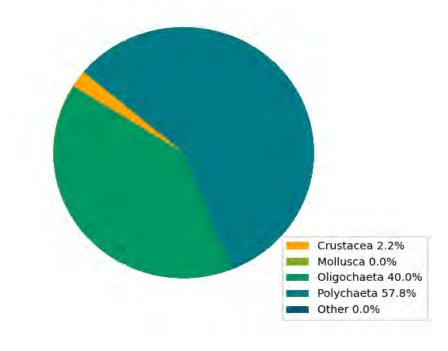

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

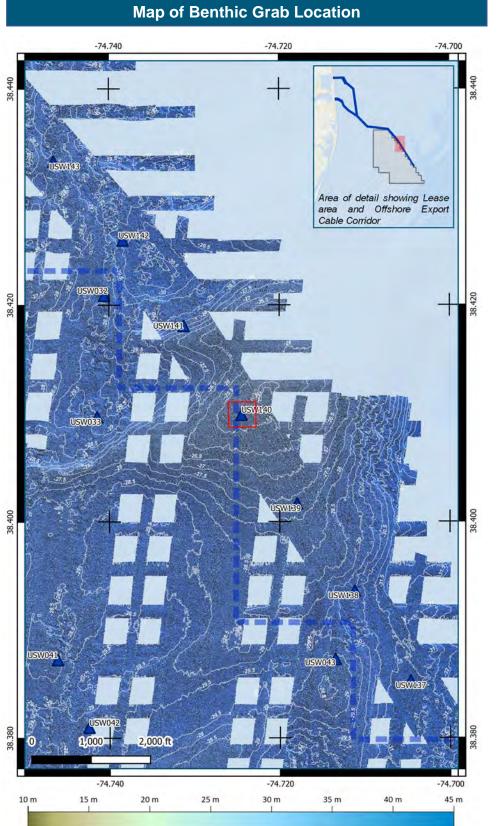


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW138 (BG-AC-10) Common Corridor

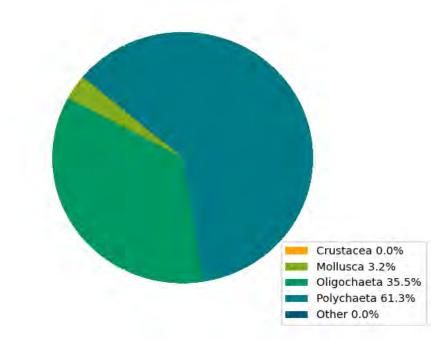

Benthic Grab USW139		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1125
Taxa Richness ¹ :		12

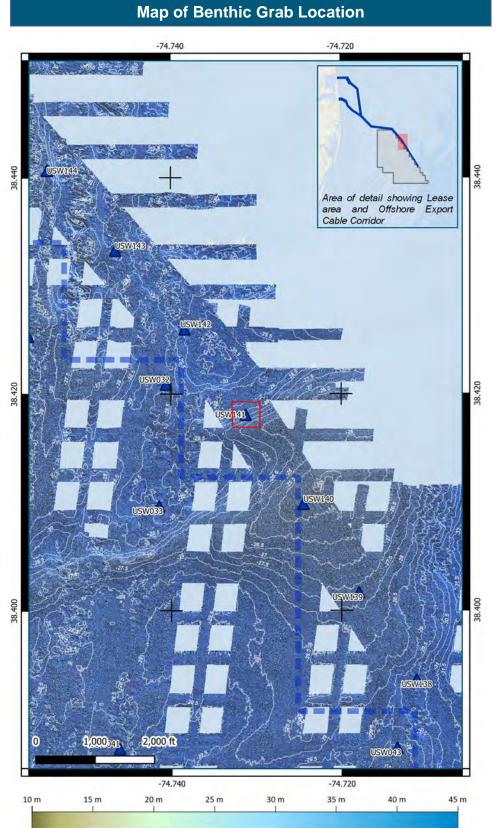


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

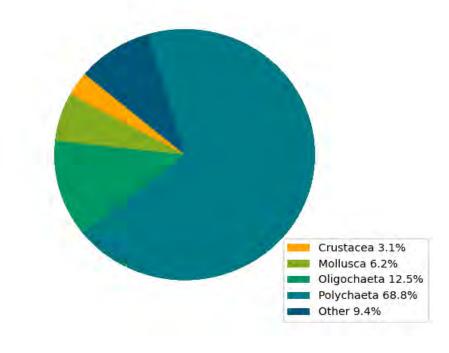
Benthic Sample Site USW139 (BG-AC-11) Common Corridor


Benthic Grab USW140		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		10

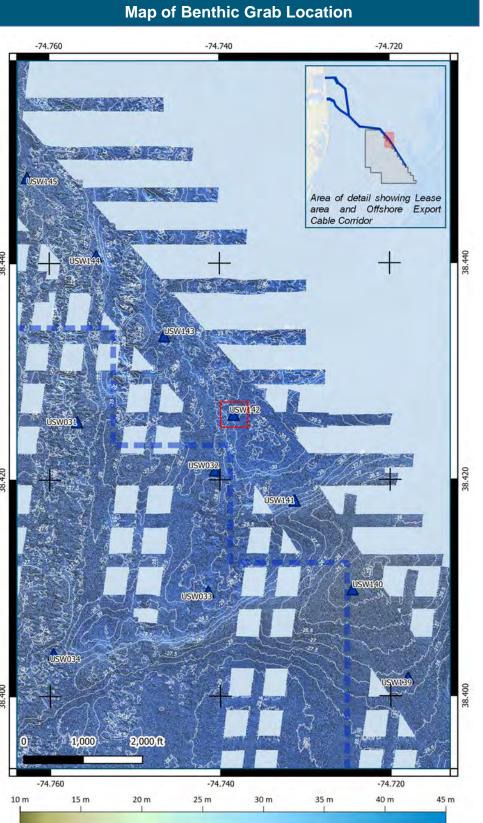

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

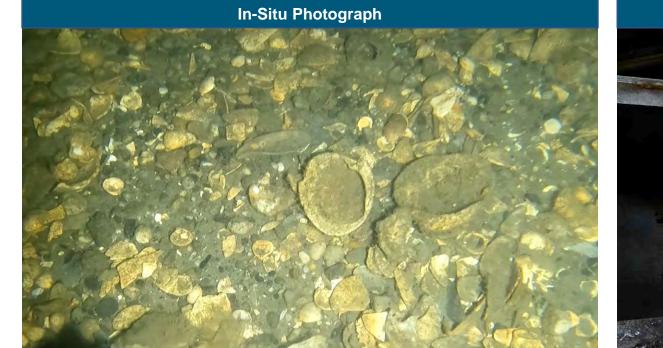
Benthic Sample Site USW140 (BG-AC-12) Common Corridor


Benthic Grab USW141		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravel Mixes
	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		800
Taxa Richness ¹ :		18

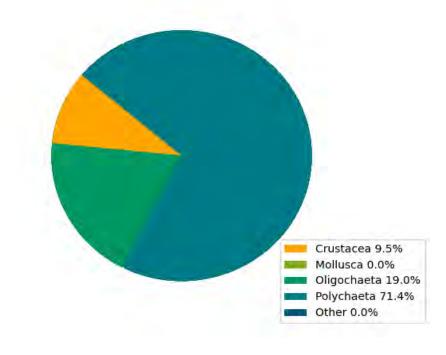
<image>

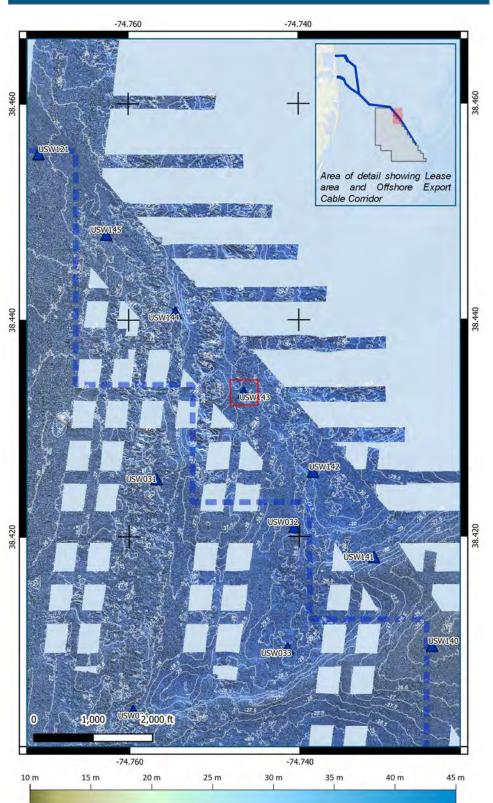

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW141 (BG-AC-13) Common Corridor

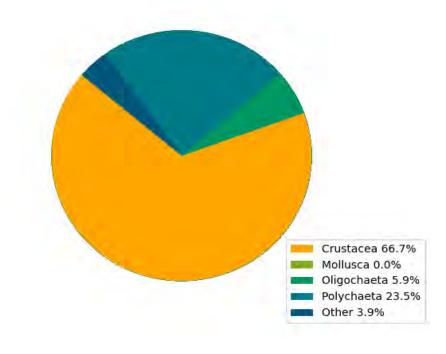

Benthic Grab USW142		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		1575
Taxa Richness ¹ :		18


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW142 (BG-AC-14) Common Corridor

Benthic Grab USW143		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1275
Taxa Richness ¹ :		14


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

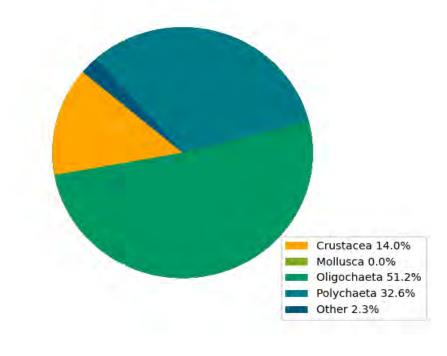
Benthic Organism Density by Taxa Group

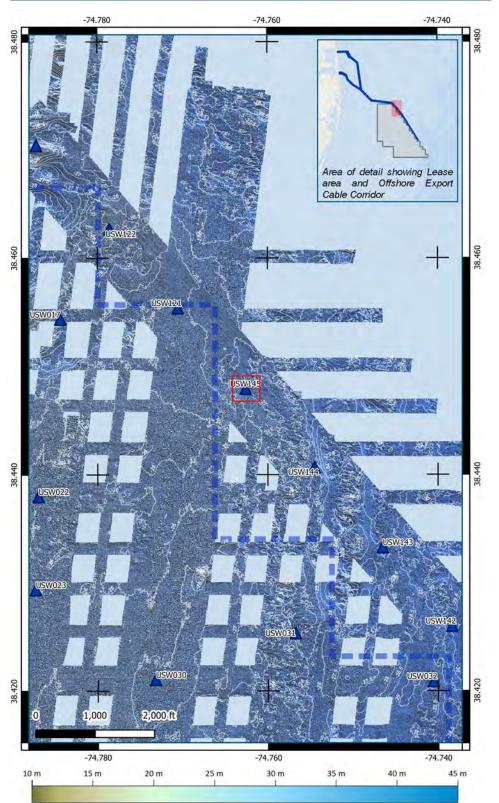
Sample Photo Not Available

Benthic Sample Site USW143 (BG-AC-15) Common Corridor

Map of Benthic Grab Location -74.760 -74.740 Area of detail showing Lease area and Offshore Export Cable Corridor A CALL F 7 9 9 30 5 3 20.0 3 TRUE TRUE 2,000 ft .000 -74.780 -74.760 -74.740 10 m 25 m 35 m 40 m 45 m 15 m 20 m 30 m

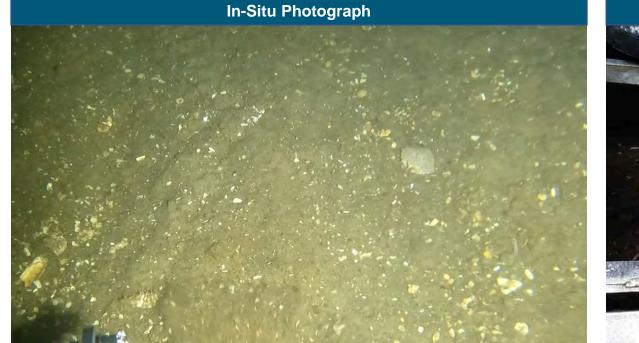
Benthic Grab USW144		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density		1075
(individuals/m ²) ¹ :		1075
Taxa Richness ¹ :		16


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



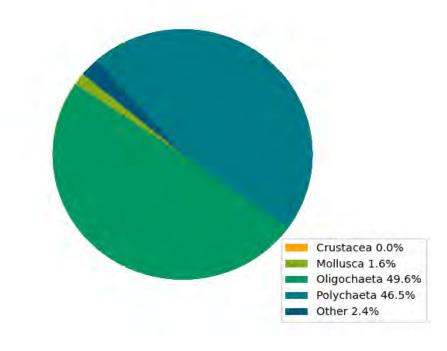
Maryland Offshore Wind Project Offshore Maryland and Delaware

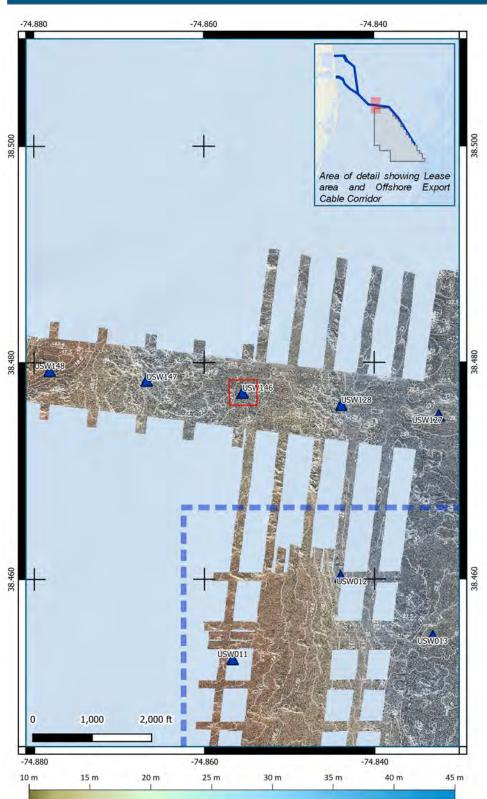
Benthic Organism Density by Taxa Group



Benthic Sample Site USW144 (BG-AC-16) **Common Corridor**

Benthic Grab USW145		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		3175
Taxa Richness ¹ :		18

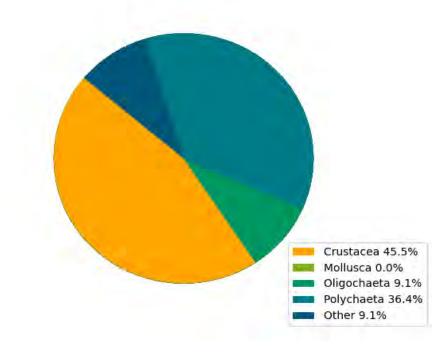

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

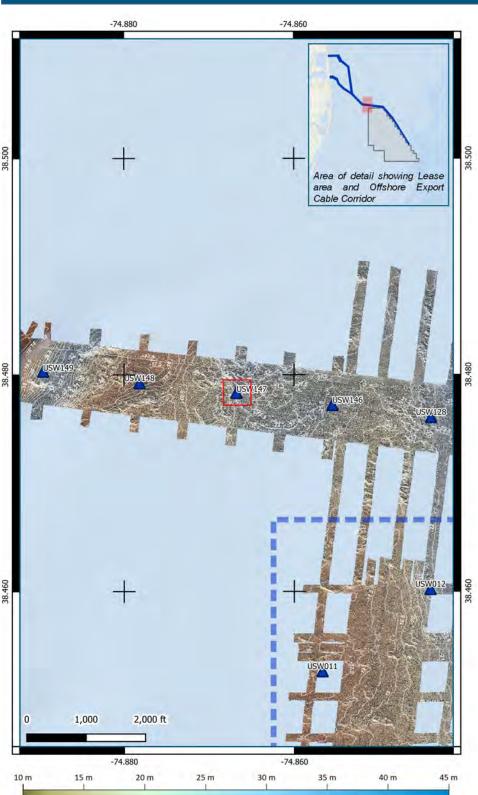

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW145 (BG-AC-17) Common Corridor

Benthic Grab USW146		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		275
Taxa Richness ¹ :		7

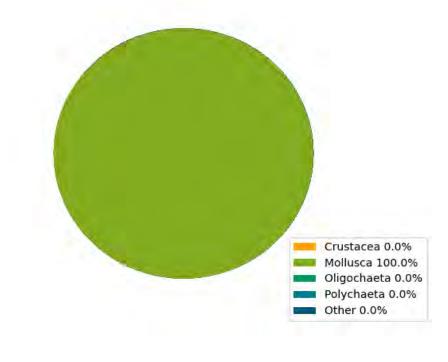

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

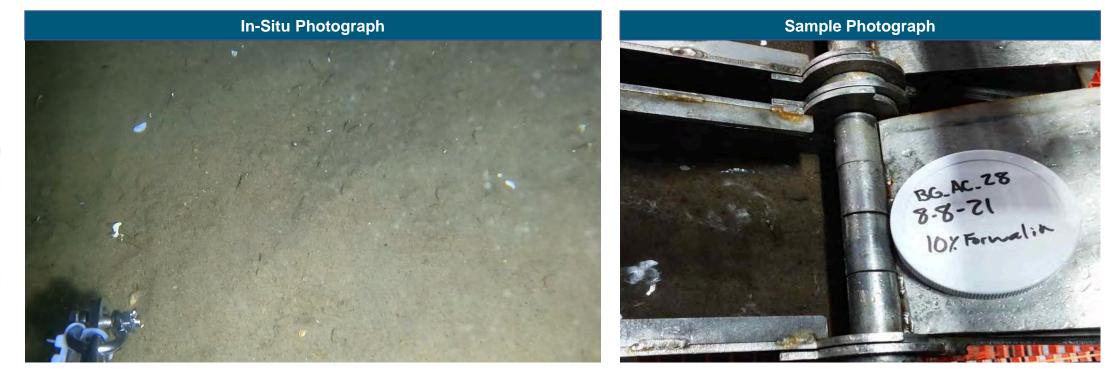
Benthic Sample Site USW146 (BG-AC-26) Common Corridor

Map of Benthic Grab Location


Benthic Grab USW147		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		450
Taxa Richness ¹ :		3

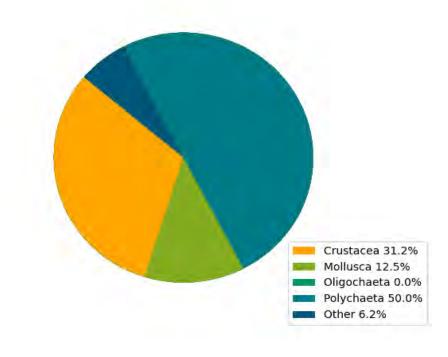
Maryland Offshore Wind Project Offshore Maryland and Delaware

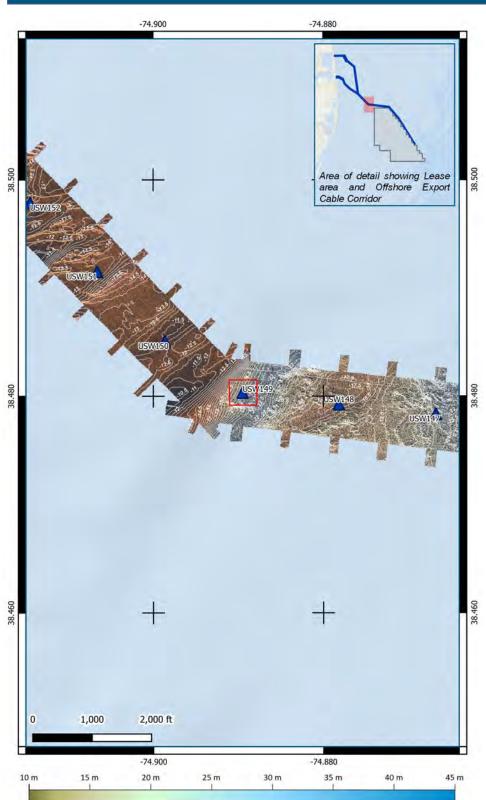
Benthic Organism Density by Taxa Group



Benthic Sample Site USW147 (BG-AC-27) Common Corridor

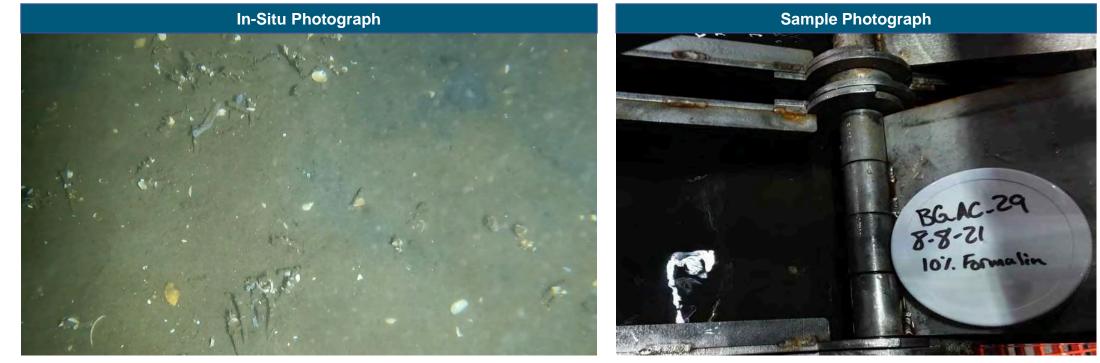
Benthic Grab USW148		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		400
Taxa Richness ¹ :		10


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



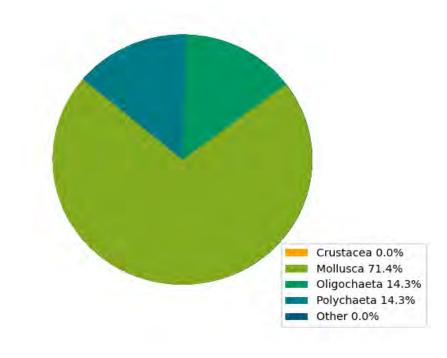
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW148 (BG-AC-28) Common Corridor

Benthic Grab USW149		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		175
Taxa Richness ¹ :		5

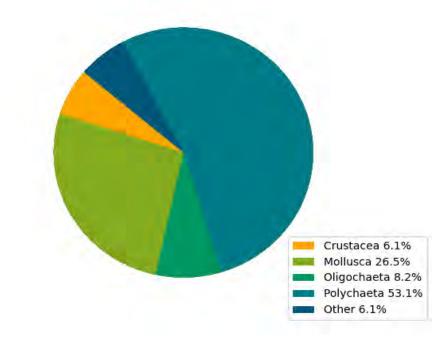

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW149 (BG-AC-29) Common Corridor

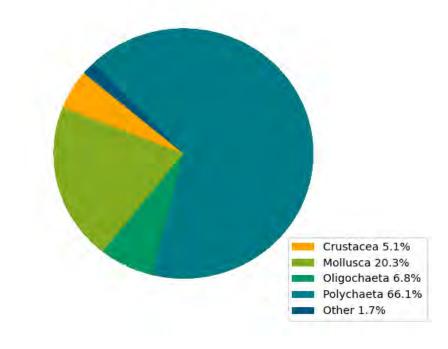
Benthic Grab USW150		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1225
Taxa Richness ¹ :		16


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

Maryland Offshore Wind Project Offshore Maryland and Delaware

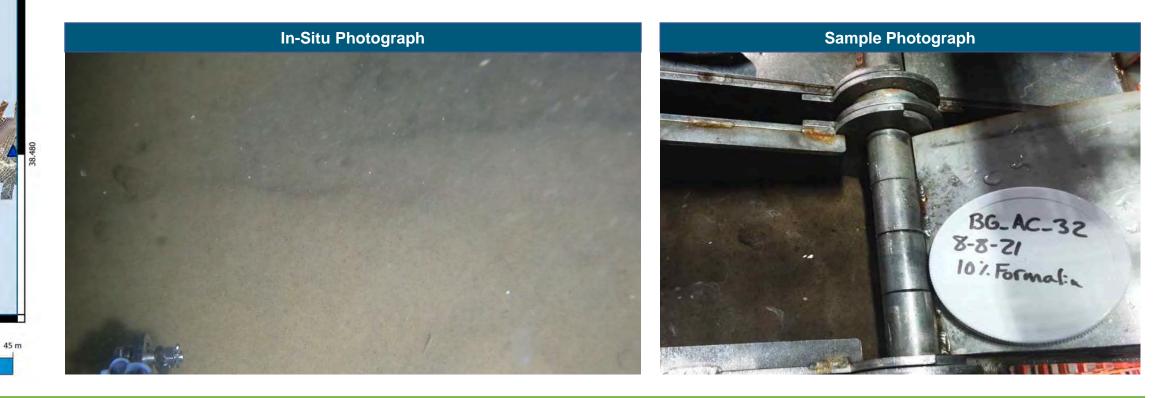
Benthic Organism Density by Taxa Group

Benthic Sample Site USW150 (BG-AC-30) Common Corridor


Benthic Grab USW151		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1475
Taxa Richness ¹ :		13

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW151 (BG-AC-31) Common Corridor

Map of Benthic Grab Location -74.920 -74.900 + Area of detail showing Lease area and Offshore Export Cable Corridor + +

Benthic Grab USW152		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		350
Taxa Richness ¹ :		6

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

10 m

1,000

15 m

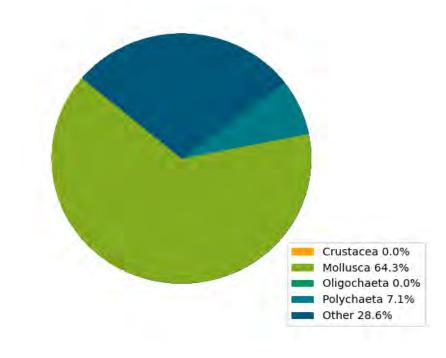
2,000 ft

20 m

-74.920

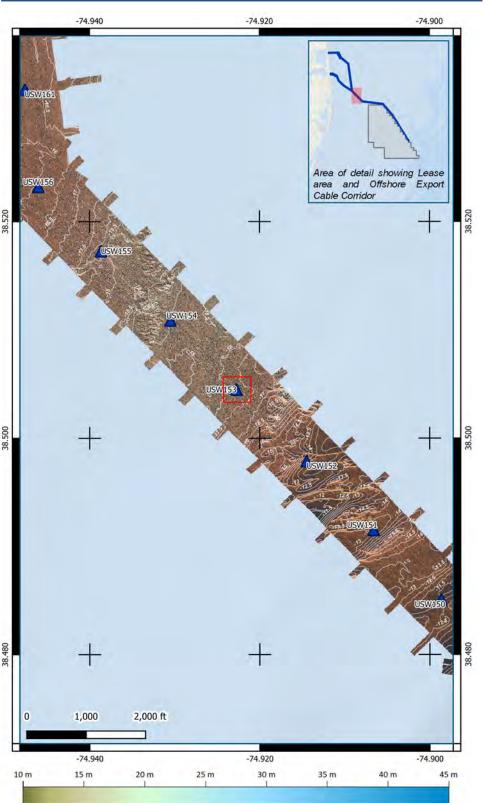
25 m

Maryland Offshore Wind Project Offshore Maryland and Delaware

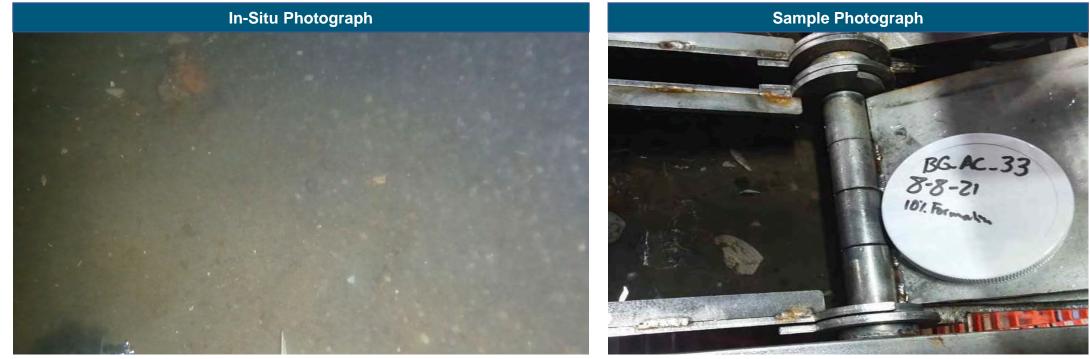

30 m

-74.900

40 m

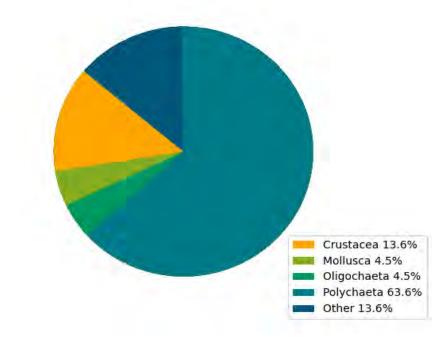

35 m

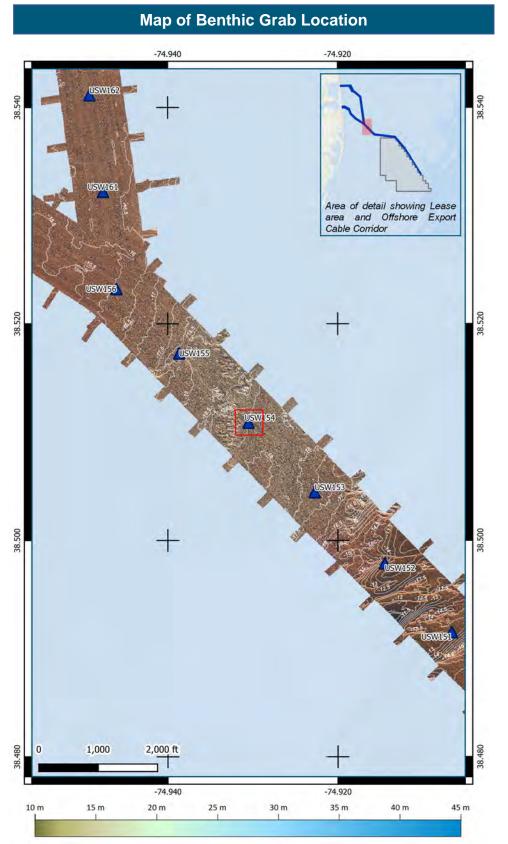
Benthic Organism Density by Taxa Group



Benthic Sample Site USW152 (BG-AC-32) Common Corridor

Map of Benthic Grab Location

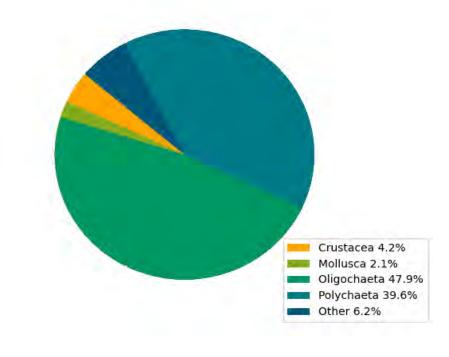

Benthic Grab USW153		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		550
Taxa Richness ¹ :		14

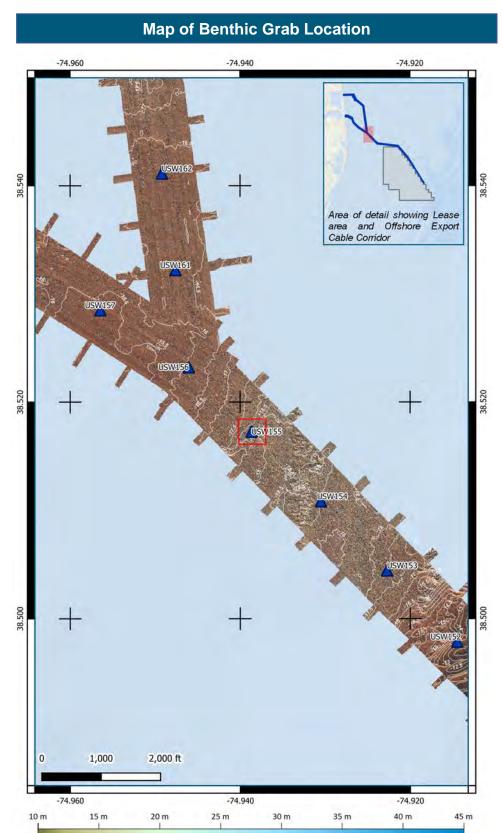


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW153 (BG-AC-33) Common Corridor


Benthic Grab USW154		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1200
Taxa Richness ¹ :		17

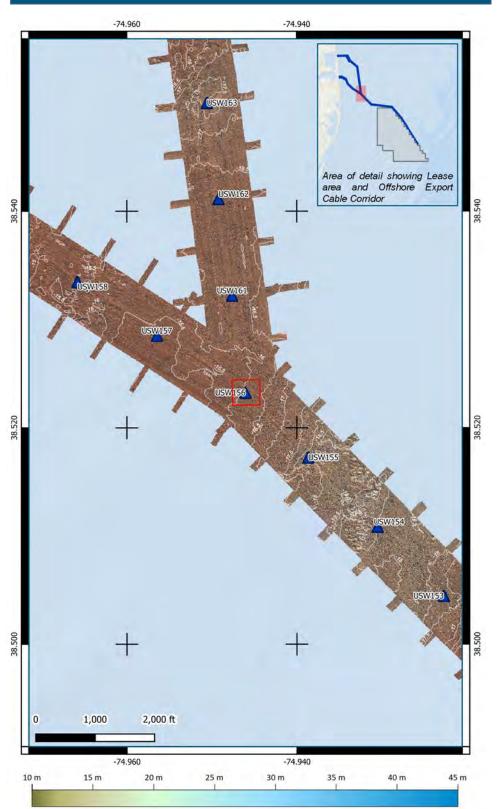


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW154 (BG-AC-34) Common Corridor

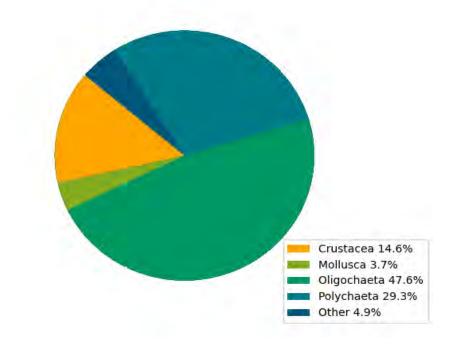
Benthic Grab USW155		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Muddy Sand
Benthic Organism Density (individuals/m ²) ¹ :		500
Taxa Richness ¹ :		3

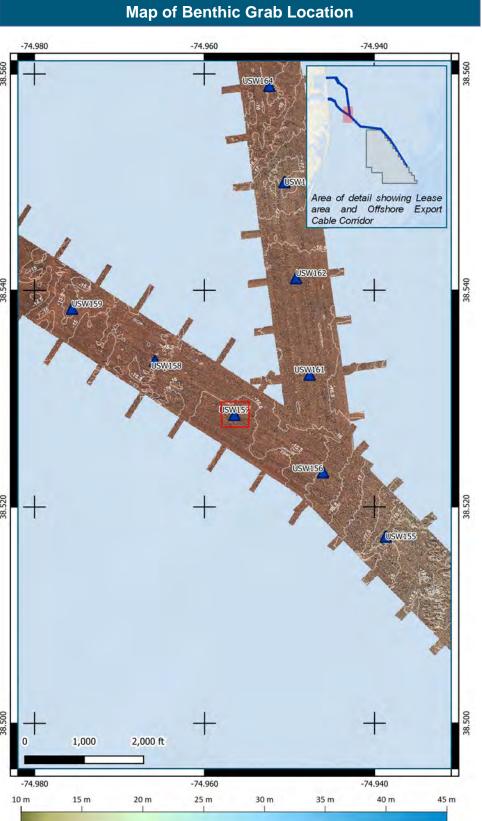

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW155 (BG-AC-35) Common Corridor

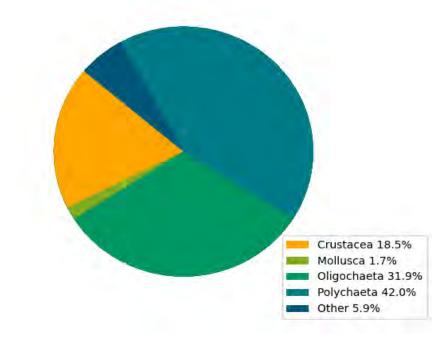
Benthic Grab USW156		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		2050
Taxa Richness ¹ :		19


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW156 (BG-AC-36) Common Corridor

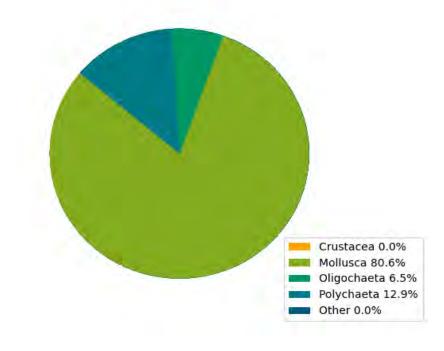

Benthic Grab USW157		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		2975
Taxa Richness ¹ :		23

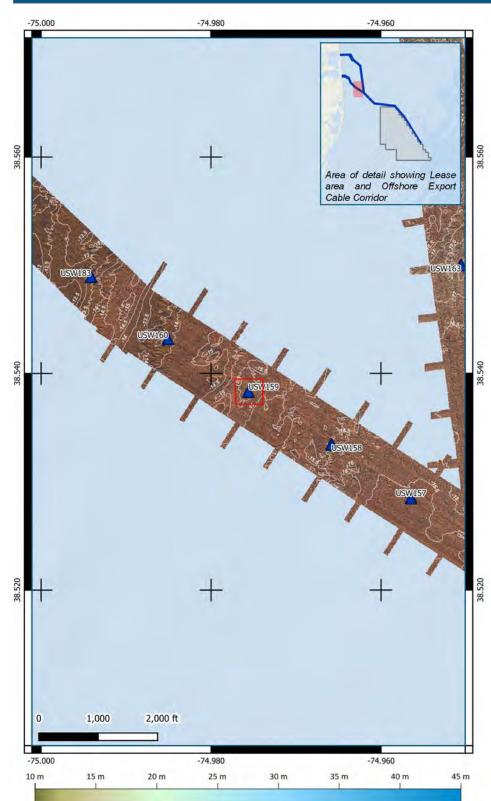
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW157 (BG-AC-37) OECC 1

Map of Benthic Grab Location


Benthic Grab USW158		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		7

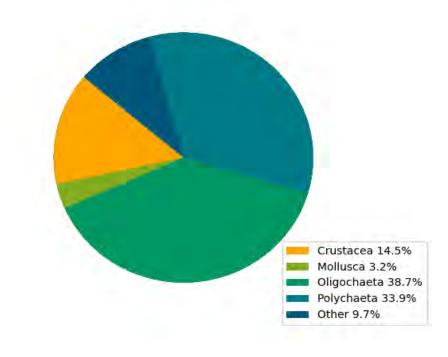

Maryland Offshore Wind Project Offshore Maryland and Delaware

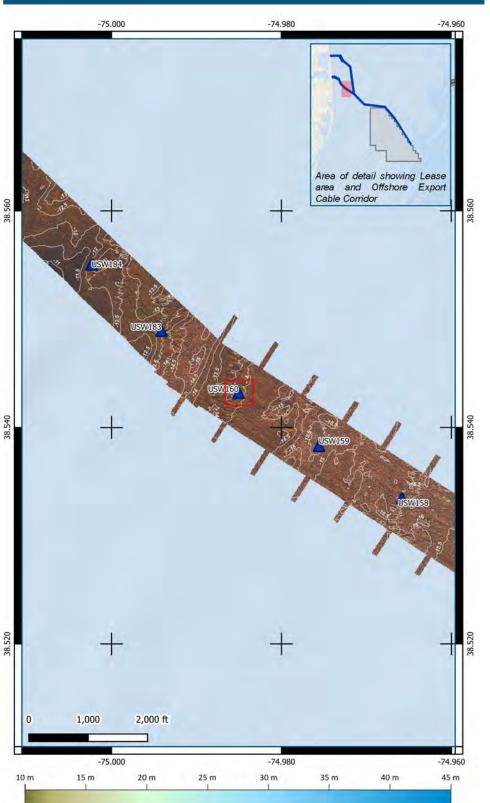
Benthic Organism Density by Taxa Group

Sample Photo Not Available

Benthic Sample Site USW158 (BG-AC-38) OECC 1

Benthic Grab USW159		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1550
Taxa Richness ¹ :		22

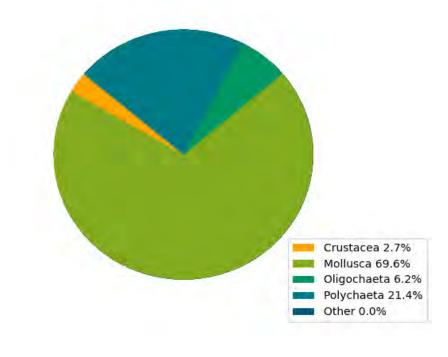

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

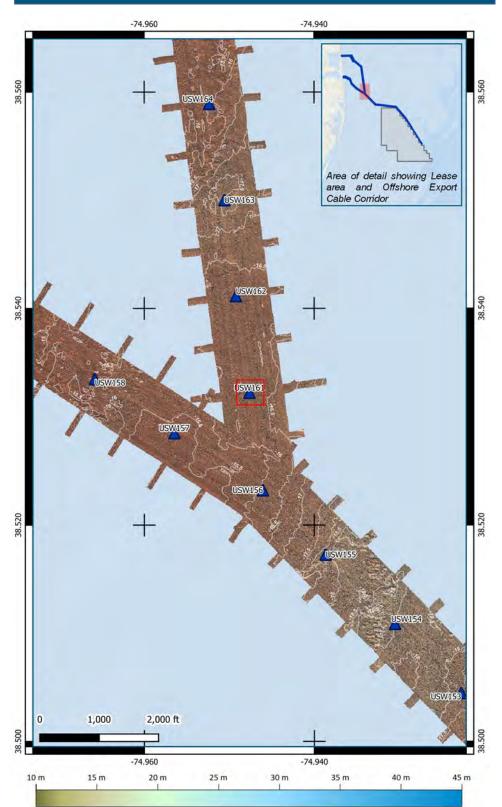

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW159 (BG-AC-39) OECC 1

Map of Benthic Grab Location


Benthic Grab USW160		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		2800
Taxa Richness ¹ :		19

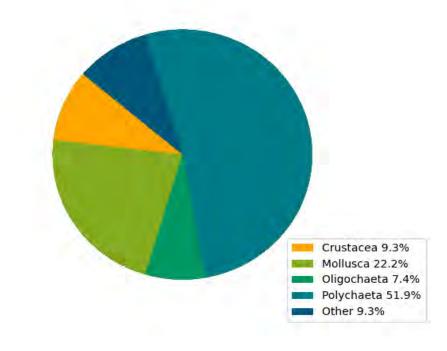


Maryland Offshore Wind Project Offshore Maryland and Delaware

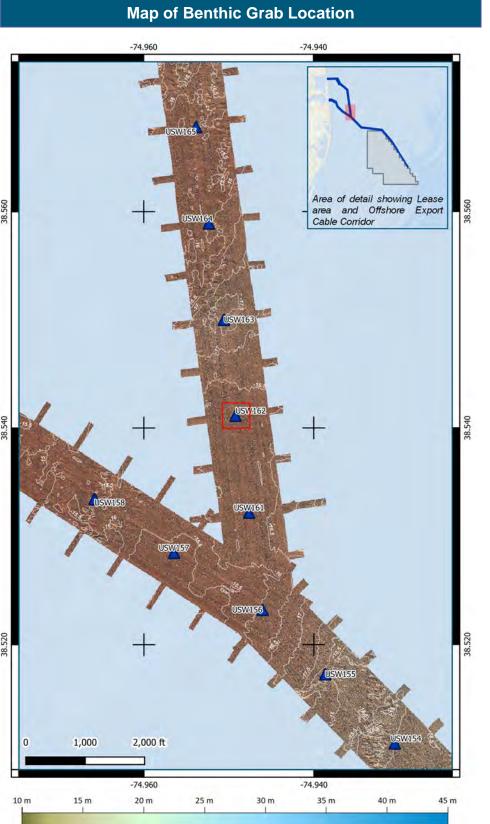
Benthic Organism Density by Taxa Group

Benthic Sample Site USW160 (BG-AC-40) OECC 1

Benthic Grab USW161		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1350
Taxa Richness ¹ :		17

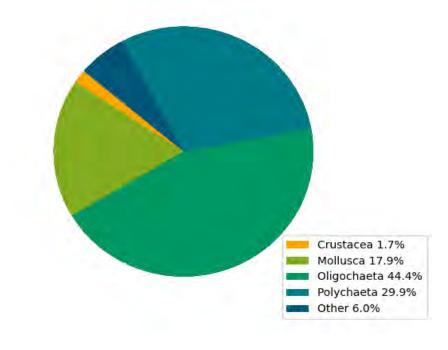

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

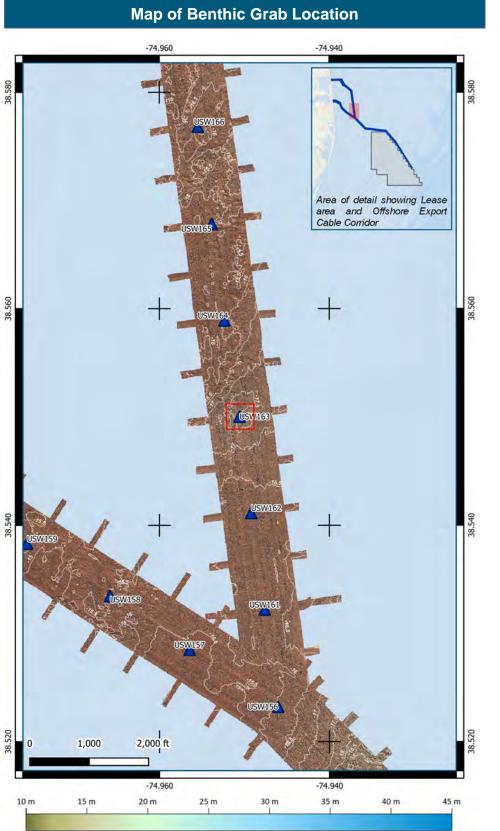



Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW161 (BG-AC-66) OECC 2

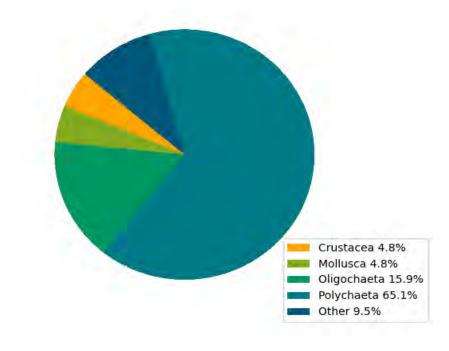

Benthic Grab USW162		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		2925
Taxa Richness ¹ :		20

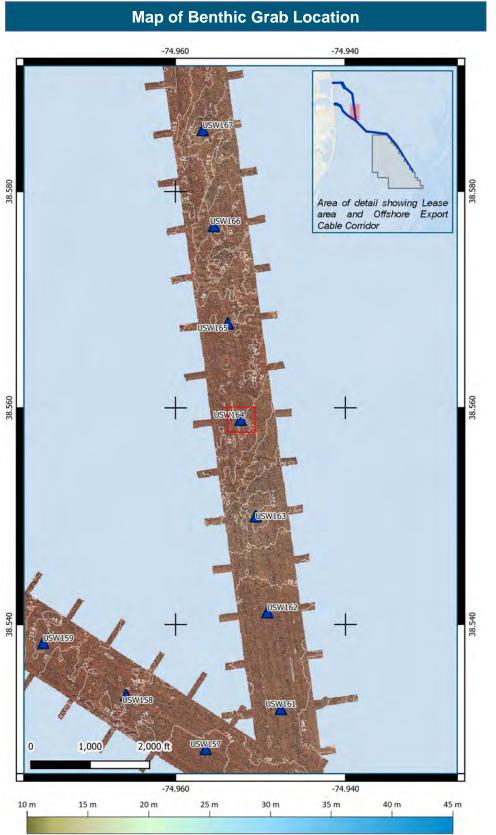


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW162 (BG-AC-67) OECC 2

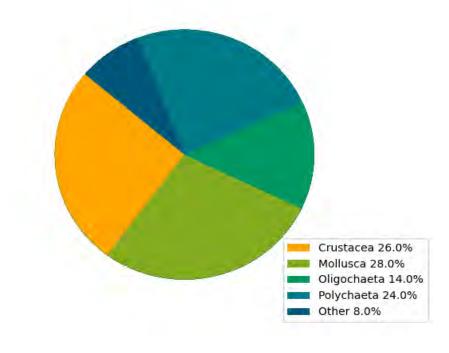

Benthic Grab USW163		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1575
Taxa Richness ¹ :		20

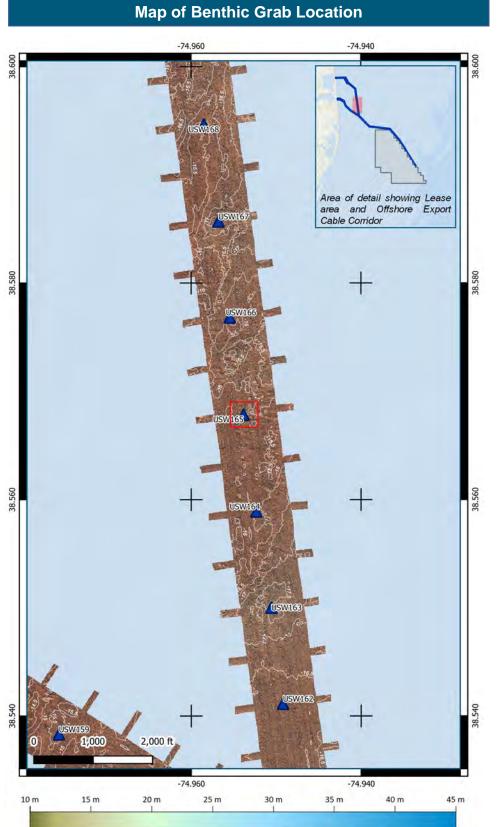


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW163 (BG-AC-68) OECC 2

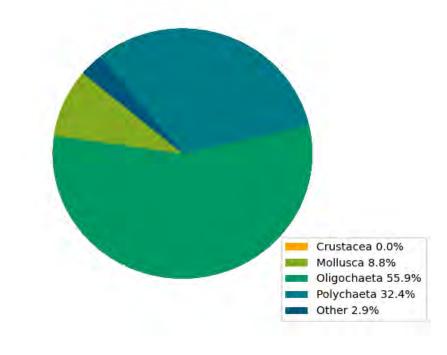

Benthic Grab USW164		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1250
Taxa Richness ¹ :		21

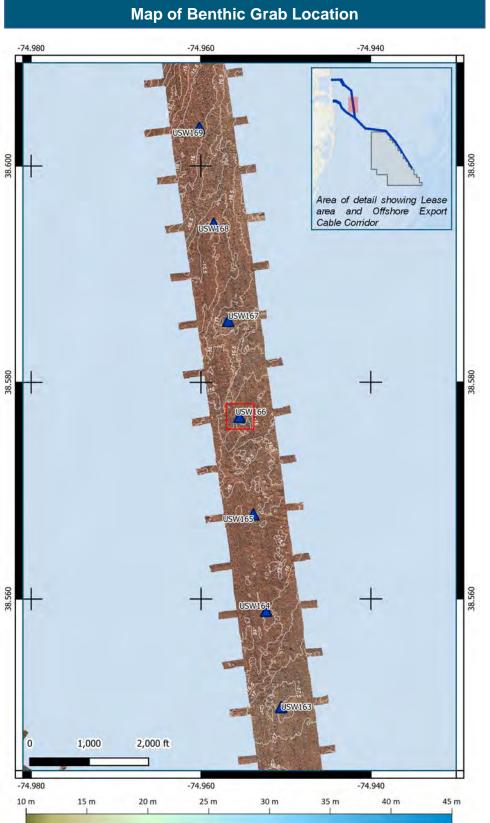


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW164 (BG-AC-69) OECC 2

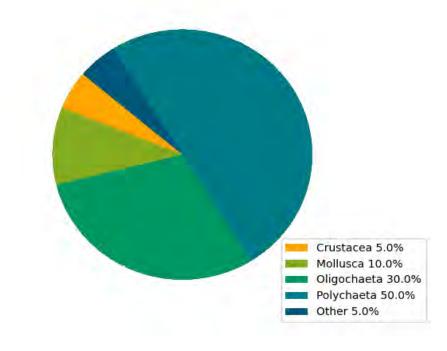

Benthic Grab USW165		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		850
Taxa Richness ¹ :		13

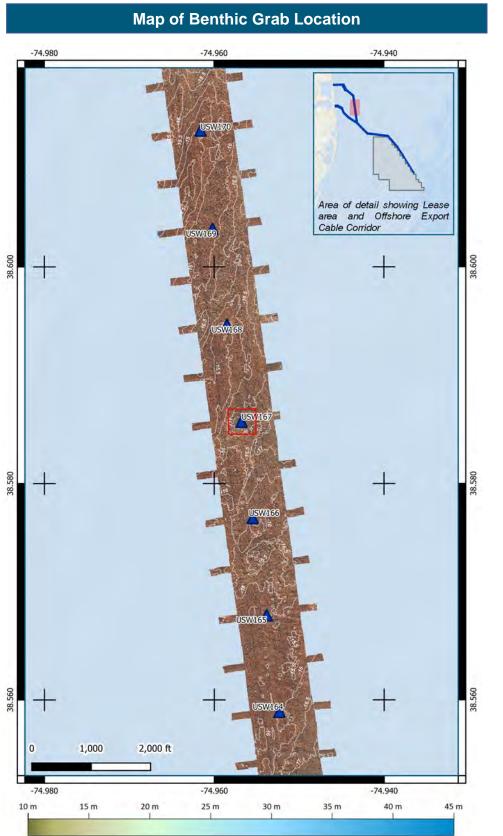


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW165 (BG-AC-70) OECC 2

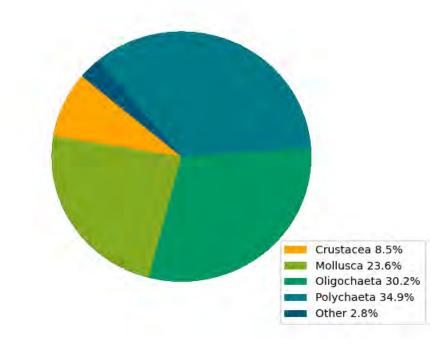

Benthic Grab USW166		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		500
Taxa Richness ¹ :		10



Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW166 (BG-AC-71) OECC 2

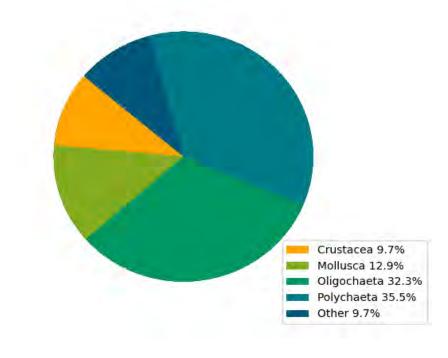

Benthic Grab USW167		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		2650
Taxa Richness ¹ :		17

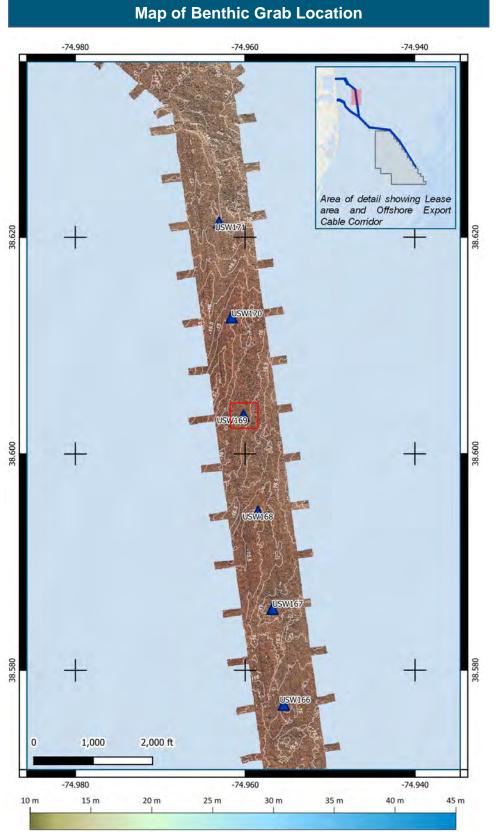


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW167 (BG-AC-72) OECC 2

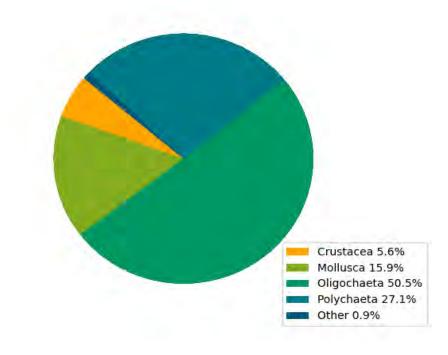

Benthic Grab USW168		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		775
Taxa Richness ¹ :		12

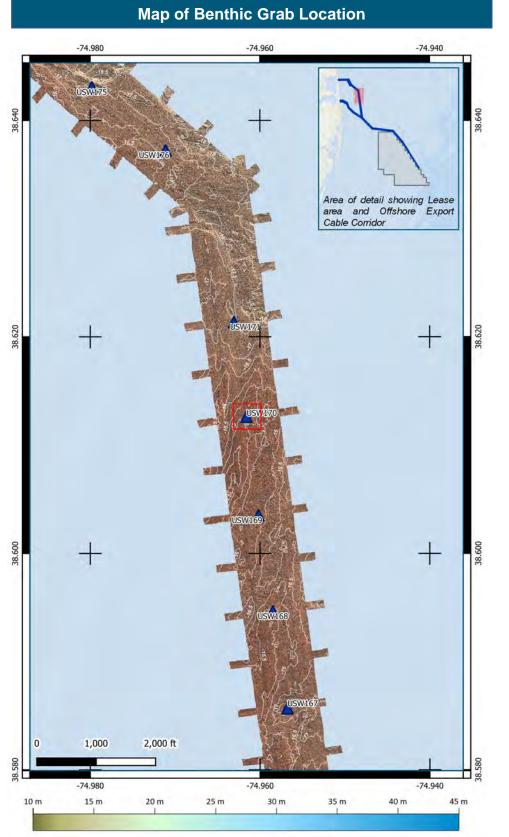


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

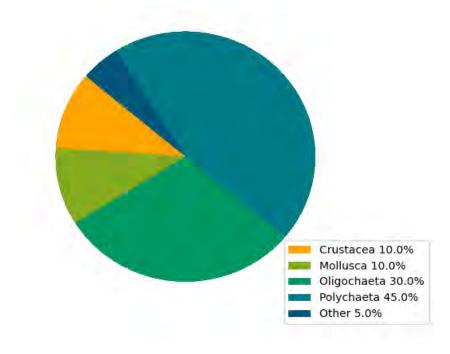
Benthic Sample Site USW168 (BG-AC-73) OECC 2

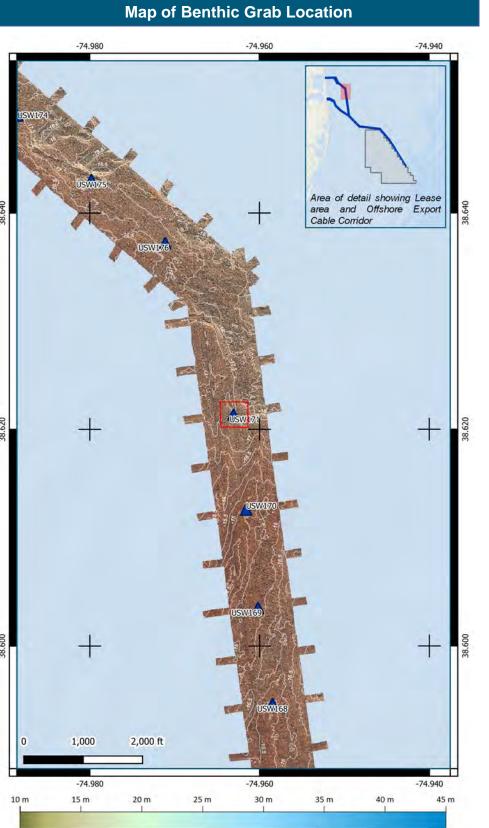

Benthic Grab USW169		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravel Mixes
	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		2675
Taxa Richness ¹ :		23


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW169 (BG-AC-74) OECC 2

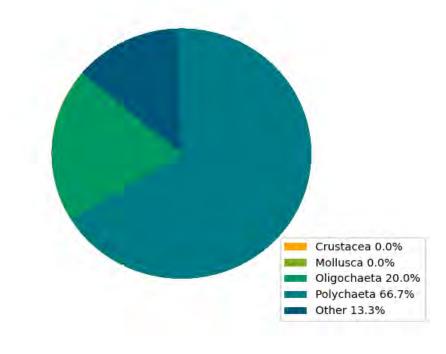

Benthic Grab USW170		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel
Classification	Substrate Subgroup:	Pebble/Granule
Benthic Organism Density (individuals/m ²) ¹ :		500
Taxa Richness ¹ :		13

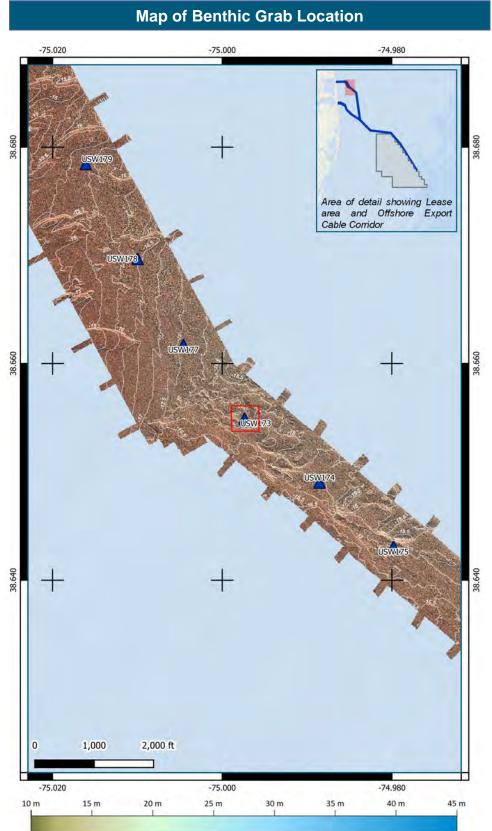


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW170 (BG-AC-75) OECC 2

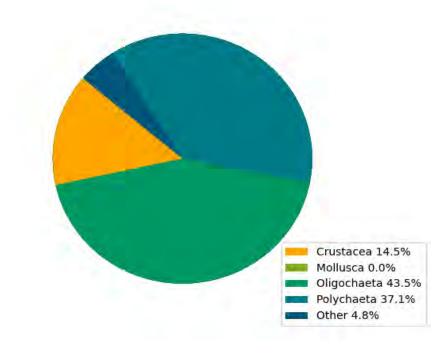

Benthic Grab USW171		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		375
Taxa Richness ¹ :		8

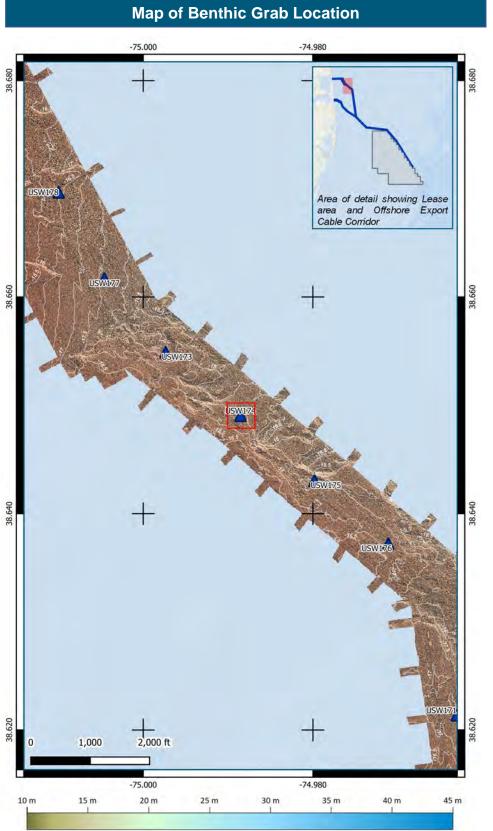


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW171 (BG-AC-76) OECC 2

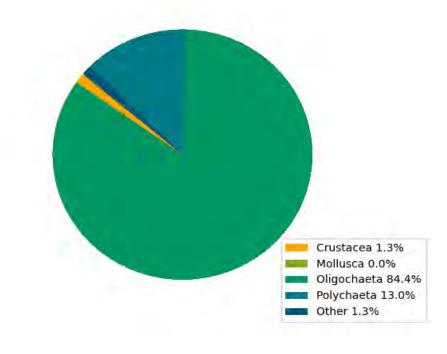

Benthic Grab USW173		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1550
Taxa Richness ¹ :		16



Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW173 (BG-AC-81) OECC 2

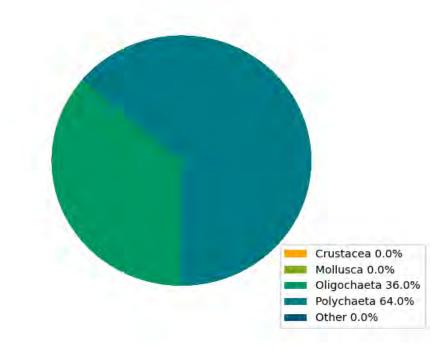

Benthic Grab USW174		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Very Coarse/Coarse Sand
Benthic Organism Density (individuals/m ²) ¹ :		1925
Taxa Richness ¹ :		13

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW174 (BG-AC-80) OECC 2

Benthic Grab USW175		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravel Mixes
	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		625
Taxa Richness ¹ :		8


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

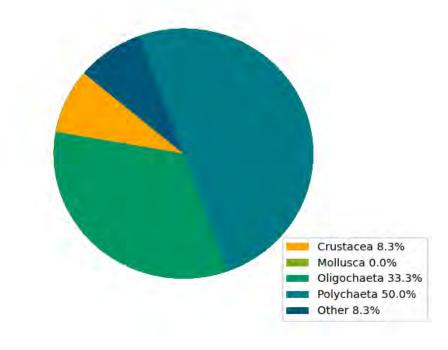
Maryland Offshore Wind Project Offshore Maryland and Delaware

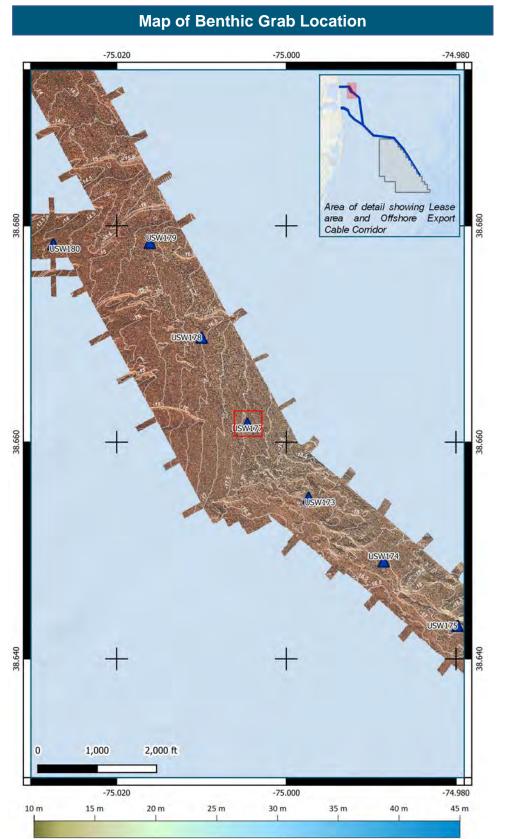
Benthic Organism Density by Taxa Group

Benthic Sample Site USW175 (BG-AC-79) OECC 2

Map of Benthic Grab Location -74.980 -74.960 +Area of detail showing Lease area and Offshore Export Cable Corridor + +1 2,000 ft 1,000 -74.980 -74.960 30 m 35 m 45 m 10 m 15 m 20 m 25 m 40 m

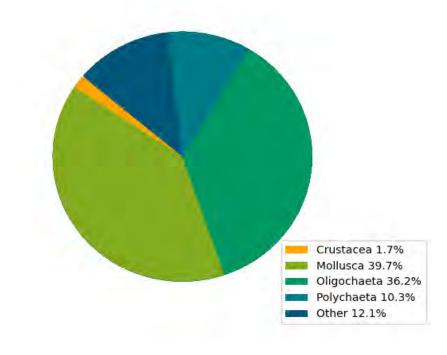
Benthic Grab USW176		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat Classification	Substrate Group:	Gravelly
	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		300
Taxa Richness ¹ :		7

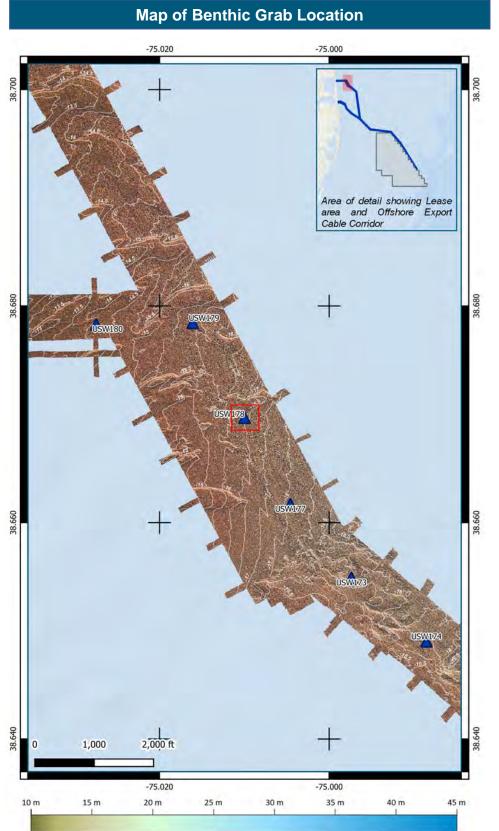

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW176 (BG-AC-78) OECC 2

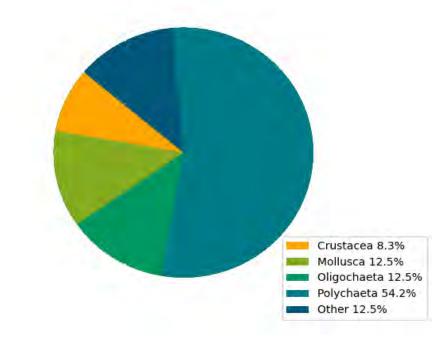

Benthic Grab USW177		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat Classification	Substrate Group:	Sand
	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		1450
Taxa Richness ¹ :		13

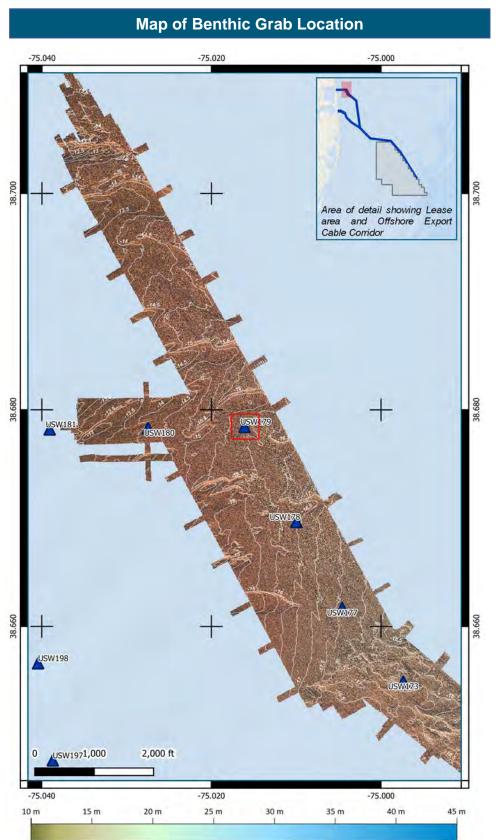


Maryland Offshore Wind Project Offshore Maryland and Delaware

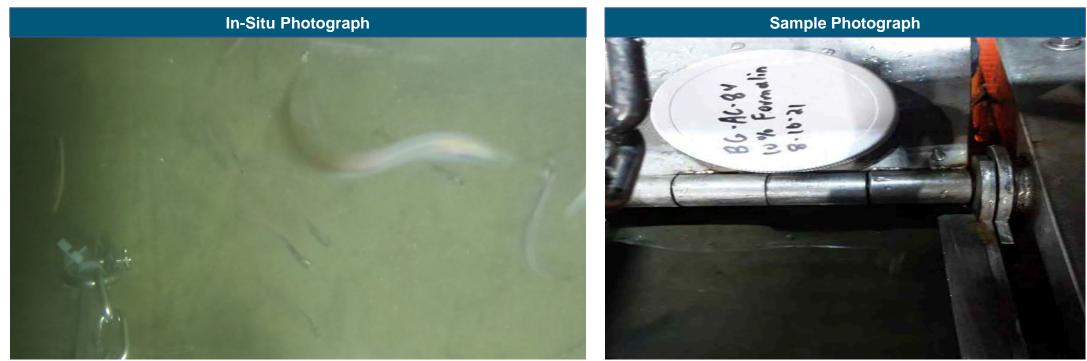
Benthic Organism Density by Taxa Group

Benthic Sample Site USW177 (BG-AC-82) OECC 2

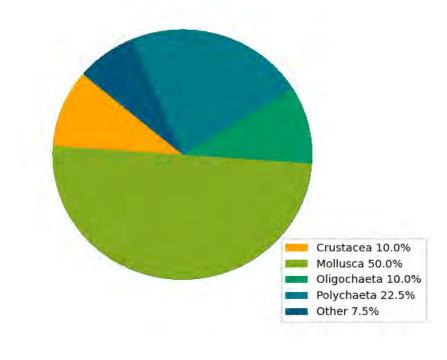

Benthic Grab USW178		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		600
Taxa Richness ¹ :		8

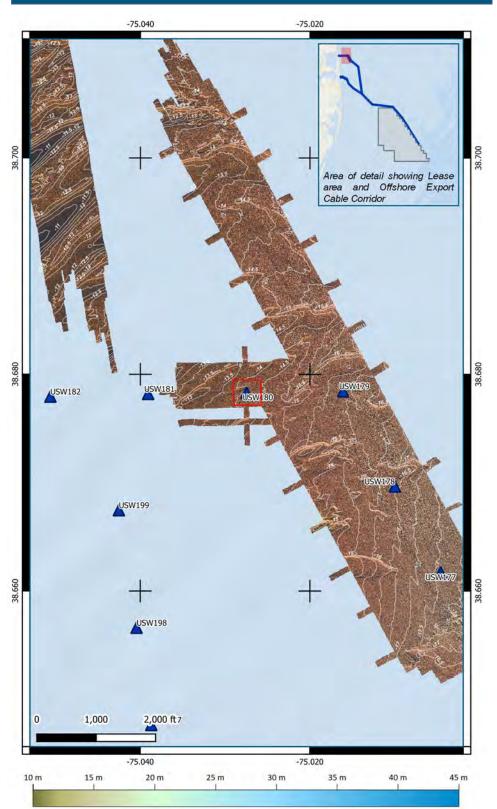


Maryland Offshore Wind Project Offshore Maryland and Delaware


Benthic Organism Density by Taxa Group

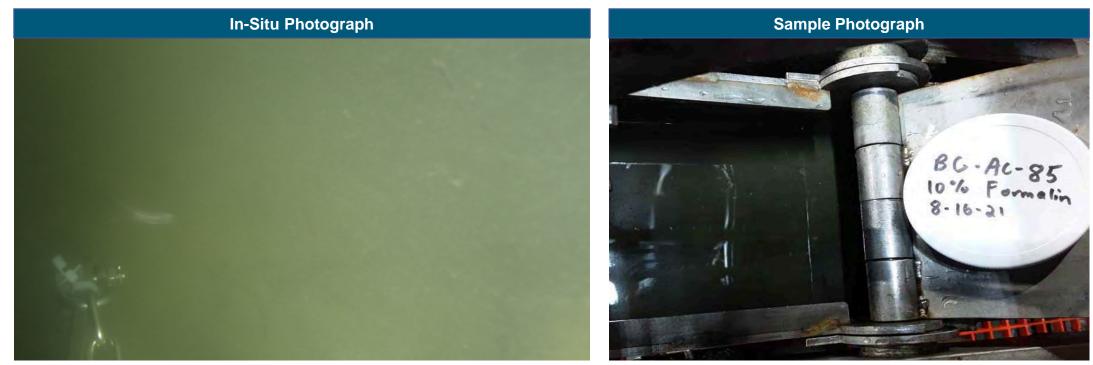
Benthic Sample Site USW178 (BG-AC-83) OECC 2


Benthic Grab USW179		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		1000
Taxa Richness ¹ :		10



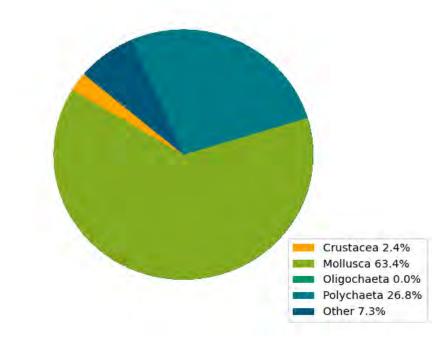
Maryland Offshore Wind Project Offshore Maryland and Delaware

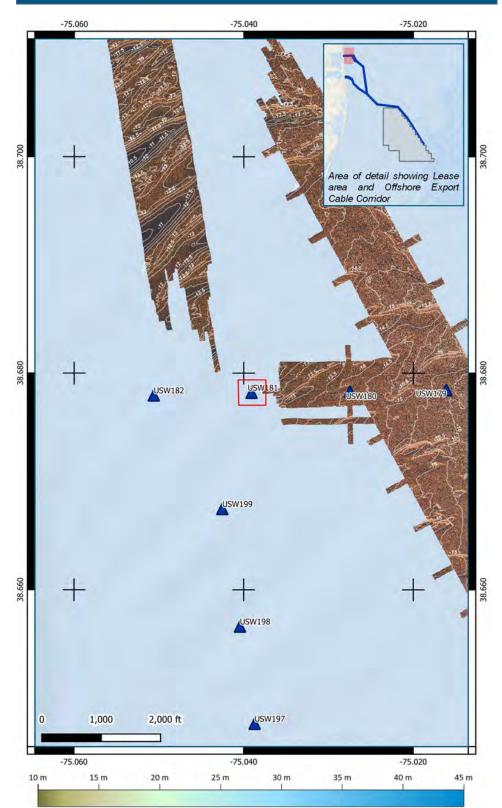
Benthic Organism Density by Taxa Group



Benthic Sample Site USW179 (BG-AC-84) OECC 2

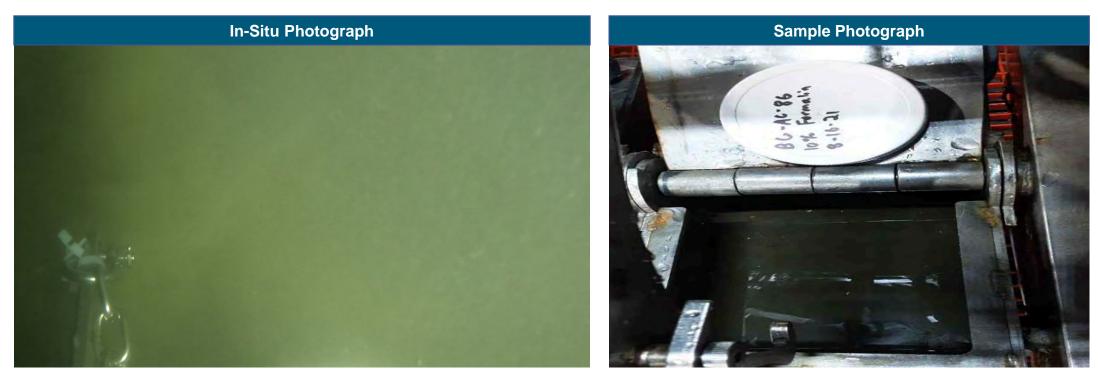
Benthic Grab USW180		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Fine/Very Fine Sand
Benthic Organism Density (individuals/m ²) ¹ :		1025
Taxa Richness ¹ :		13


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



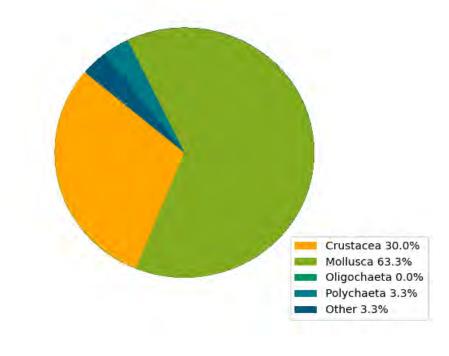
Maryland Offshore Wind Project Offshore Maryland and Delaware

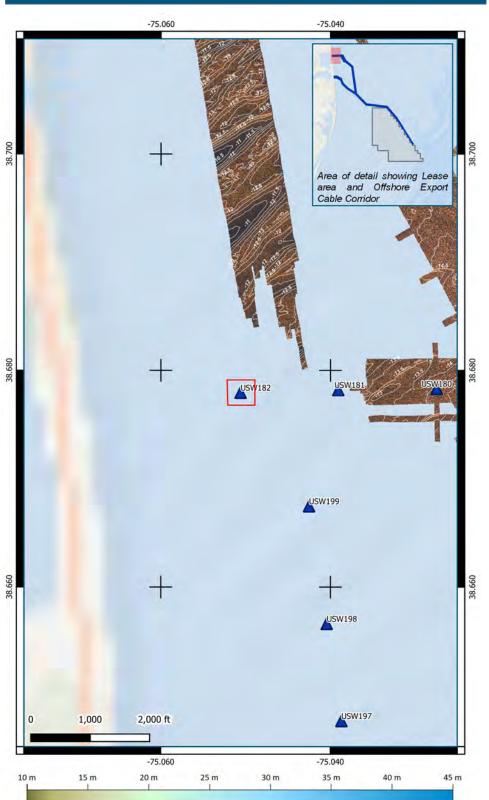
Benthic Organism Density by Taxa Group



Benthic Sample Site USW180 (BG-AC-85) OECC 2

Benthic Grab USW181		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		750
Taxa Richness ¹ :		6


¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),

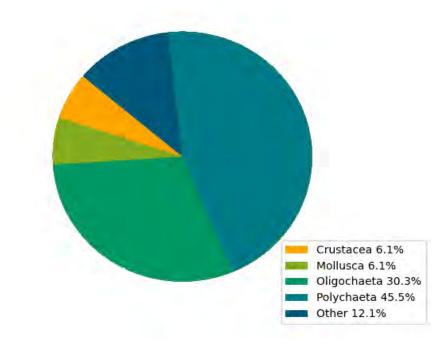


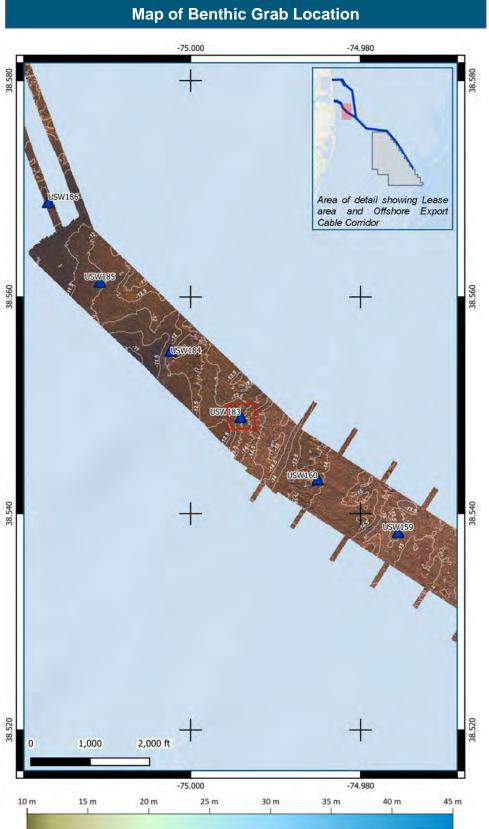
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

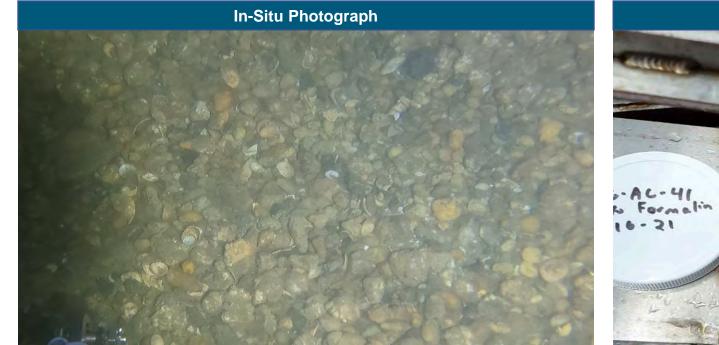
Benthic Sample Site USW181 (BG-AC-86) OECC 2

Benthic Grab USW182		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		825
Taxa Richness ¹ :		14

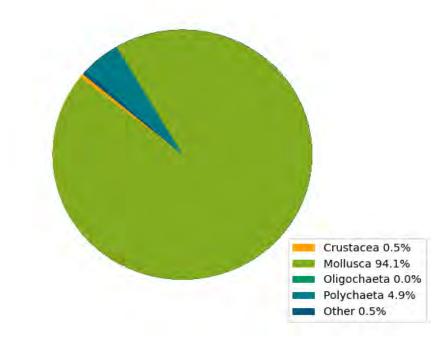

¹All metrics calculated after taxonomic ambiguity in the dataset was resolved using the RPMC-G method described in Cuffney et al. (2007),



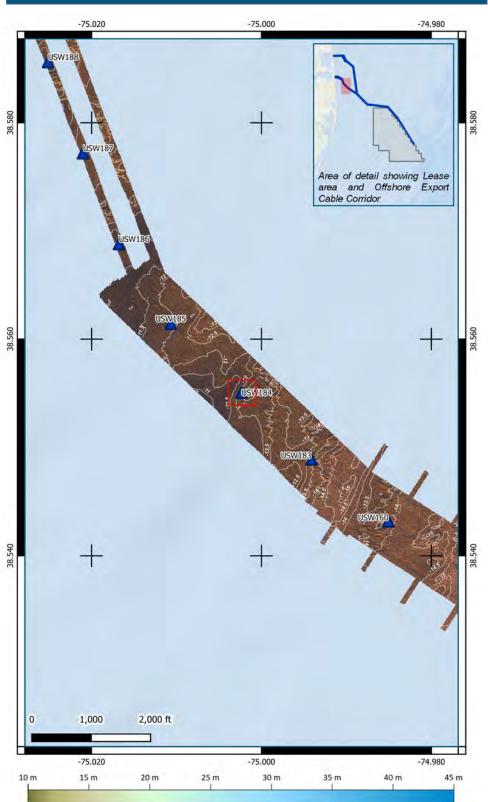
Maryland Offshore Wind Project Offshore Maryland and Delaware


Benthic Organism Density by Taxa Group

Benthic Sample Site USW182 (BG-AC-87) OECC 2

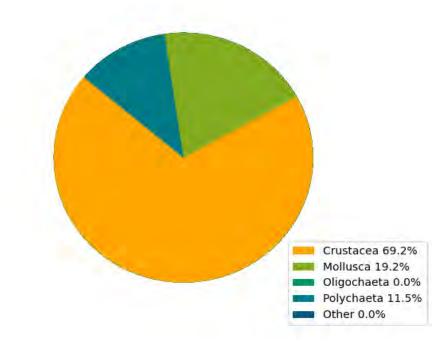

Benthic Grab USW183		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel
Classification	Substrate Subgroup:	Pebble/Granule
Benthic Organism Density (individuals/m ²) ¹ :		5100
Taxa Richness ¹ :		11

Maryland Offshore Wind Project Offshore Maryland and Delaware

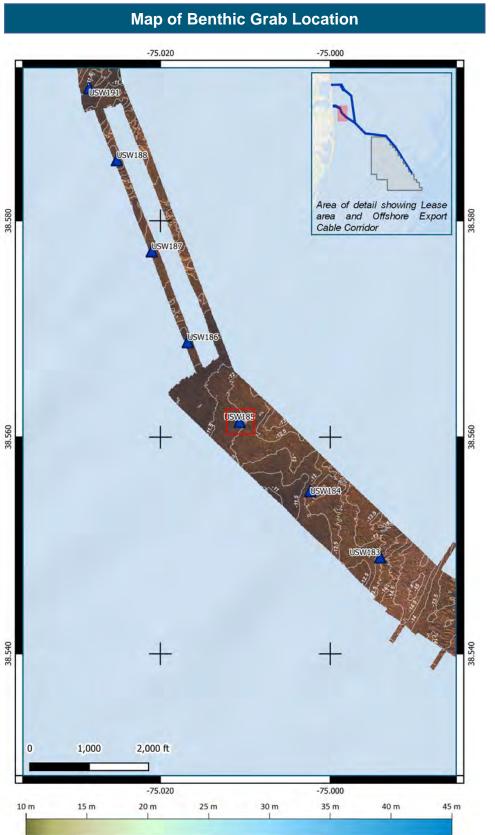

Benthic Organism Density by Taxa Group

Benthic Sample Site USW183 (BG-AC-41) OECC 1

Map of Benthic Grab Location

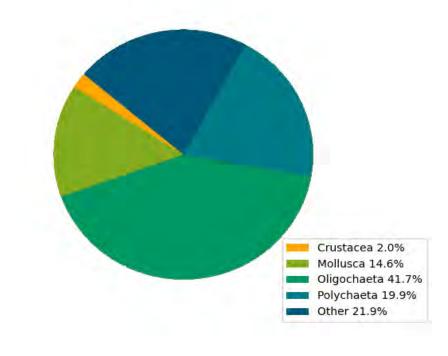

Benthic Grab USW184		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		650
Taxa Richness ¹ :		7

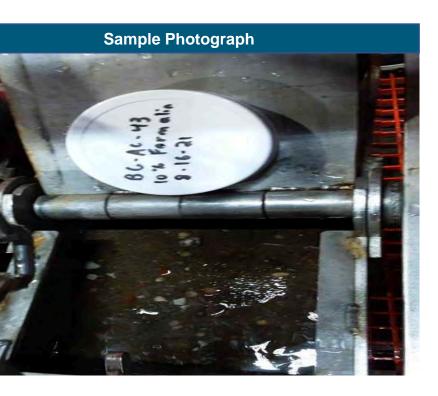
Maryland Offshore Wind Project Offshore Maryland and Delaware

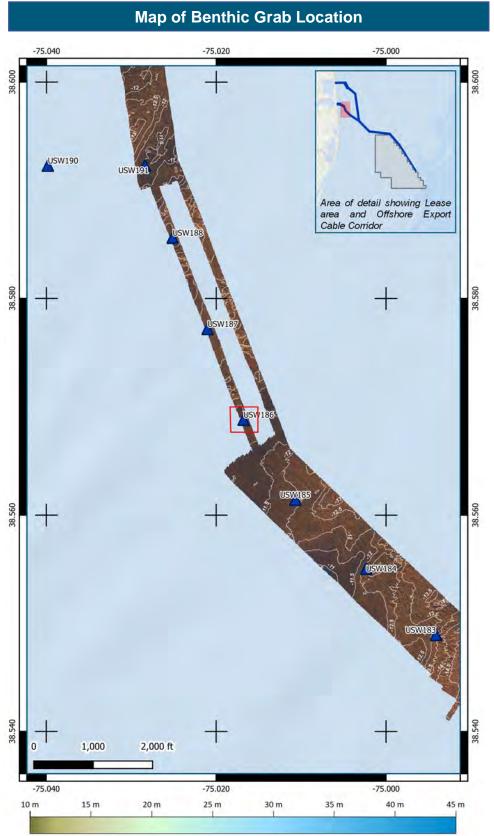

Benthic Organism Density by Taxa Group

Sample Photograph

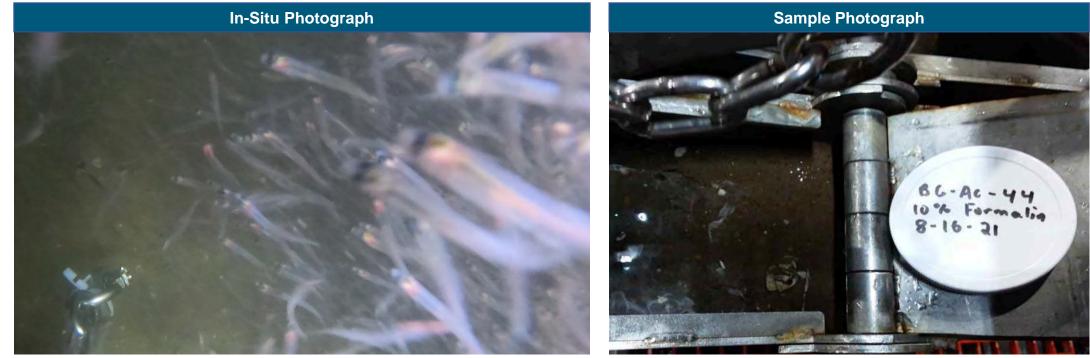
Benthic Sample Site USW184 (BG-AC-42) OECC 1


Benthic Grab USW185		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		3775
Taxa Richness ¹ :		19

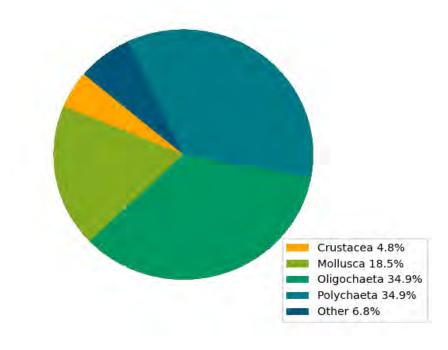


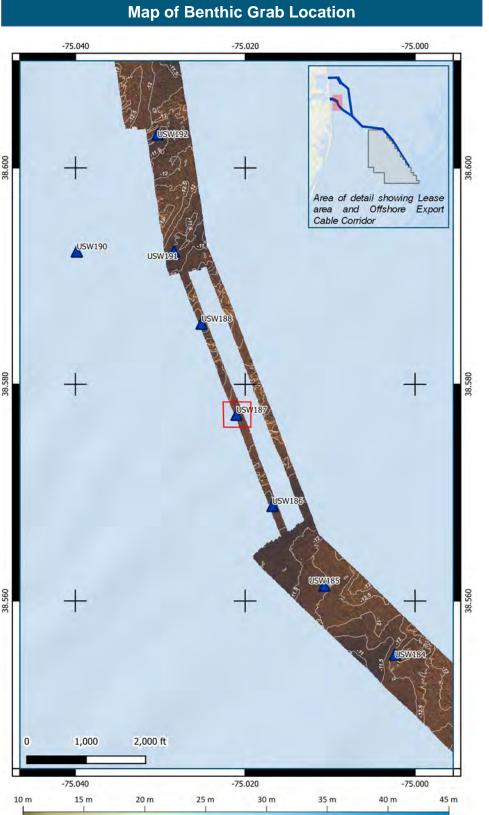

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW185 (BG-AC-43) OECC 1

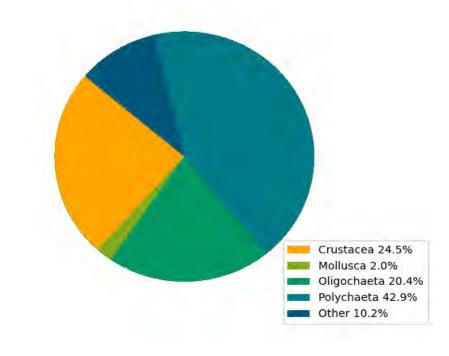

Benthic Grab USW186		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		3650
Taxa Richness ¹ :		21

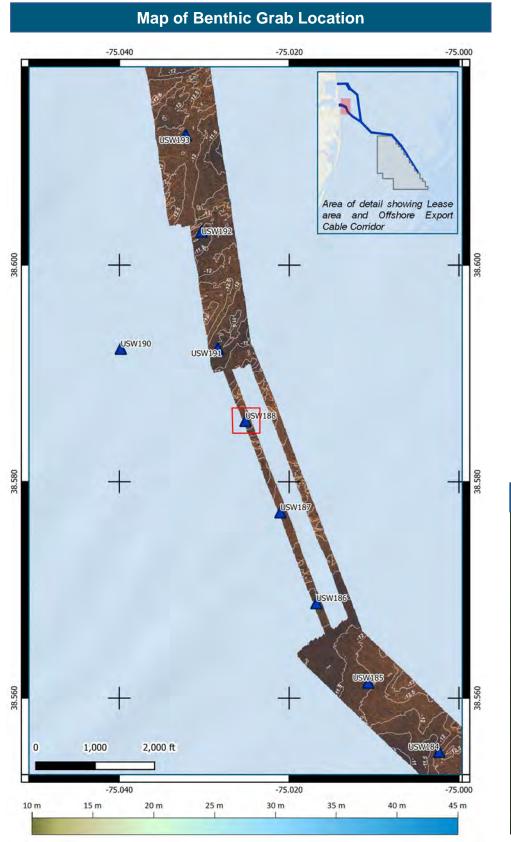


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW186 (BG-AC-44) OECC 1

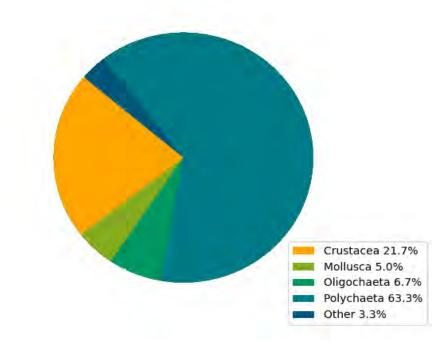

Benthic Grab USW187		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1225
Taxa Richness ¹ :		17

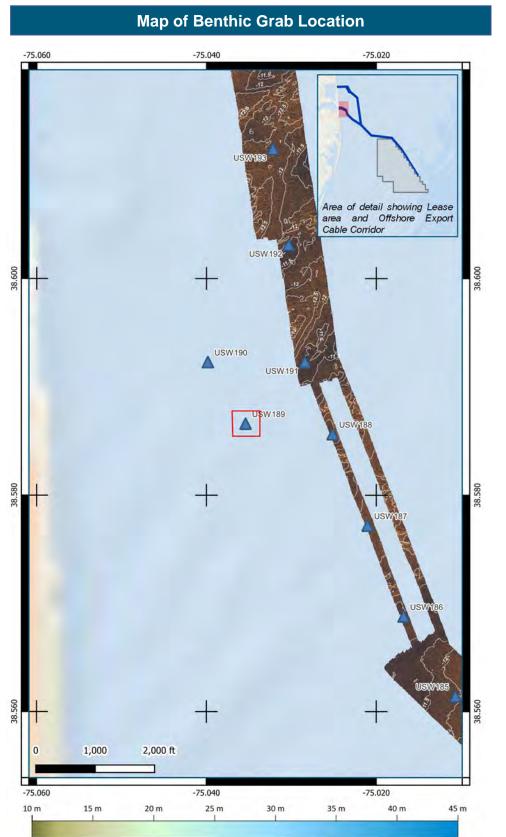


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW187 (BG-AC-45) OECC 1

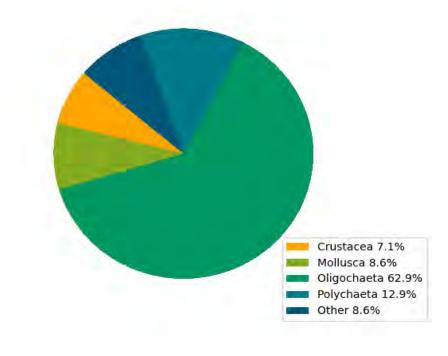

Benthic Grab USW188		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1500
Taxa Richness ¹ :		15

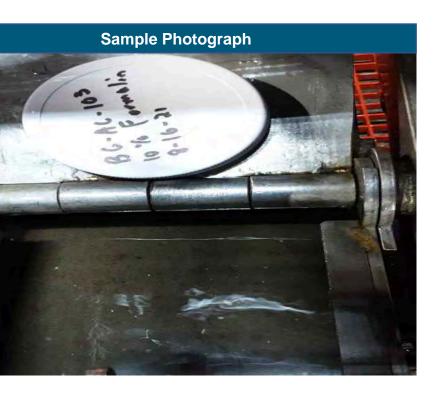


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

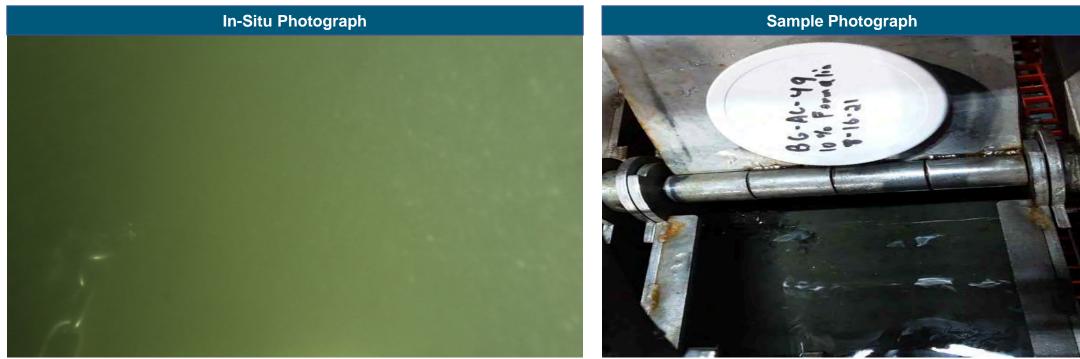
Benthic Sample Site USW188 (BG-AC-46) OECC 1


Benthic Grab USW189		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1750
Taxa Richness ¹ :		16

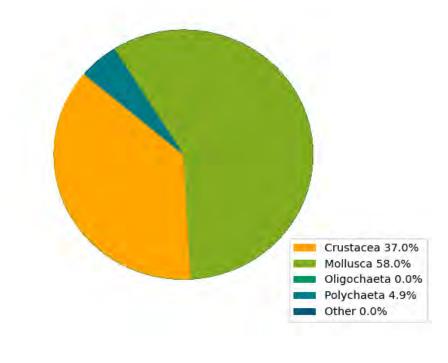


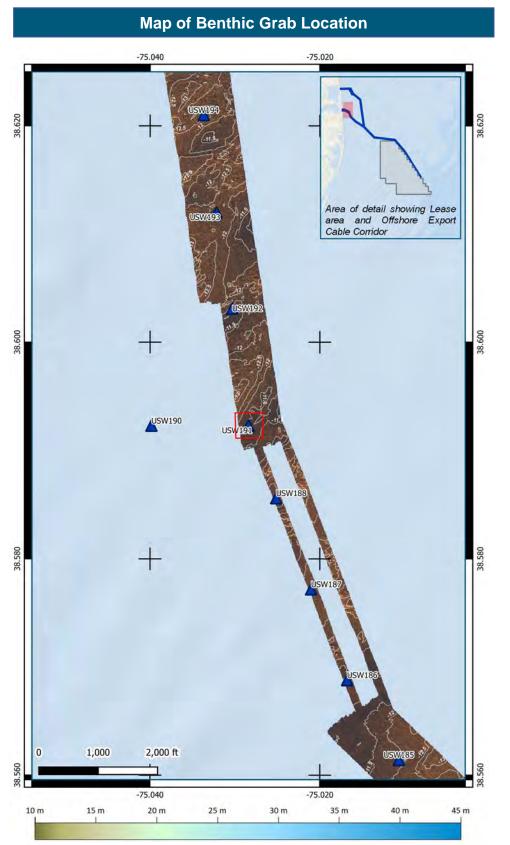
Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group



Benthic Sample Site USW189 (BG-AC-103) OECC 1

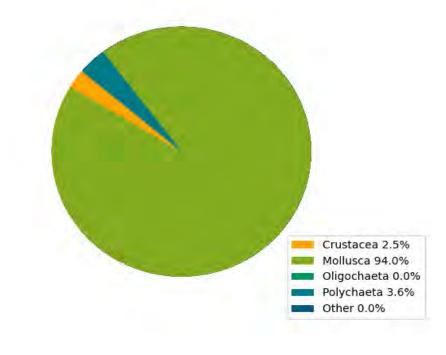

Benthic Grab USW190		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		2025
Taxa Richness ¹ :		14

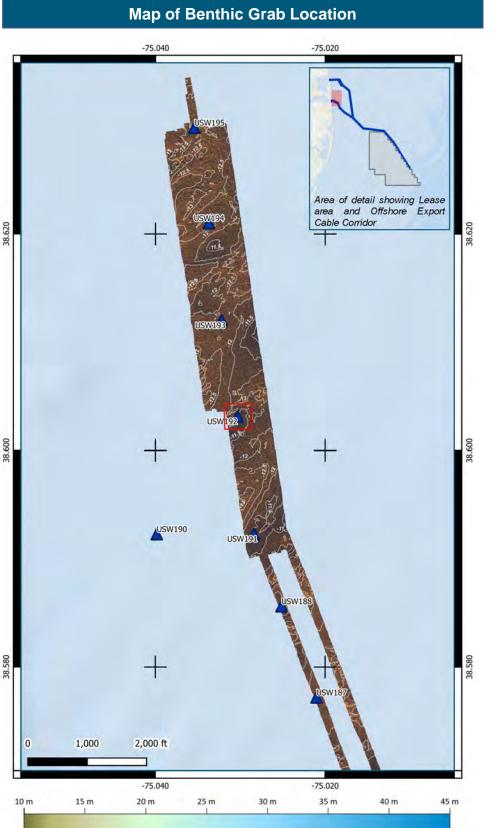


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW190 (BG-AC-49) OECC 1

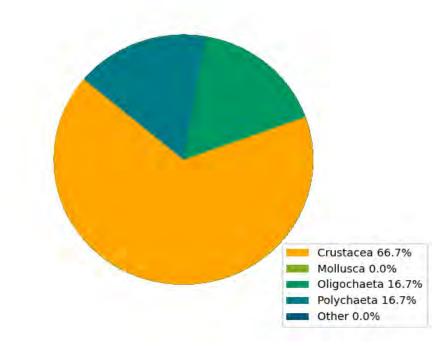

Benthic Grab USW191		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravel Mixes
Classification	Substrate Subgroup:	Sandy Gravel
Benthic Organism Density (individuals/m ²) ¹ :		9125
Taxa Richness ¹ :		17

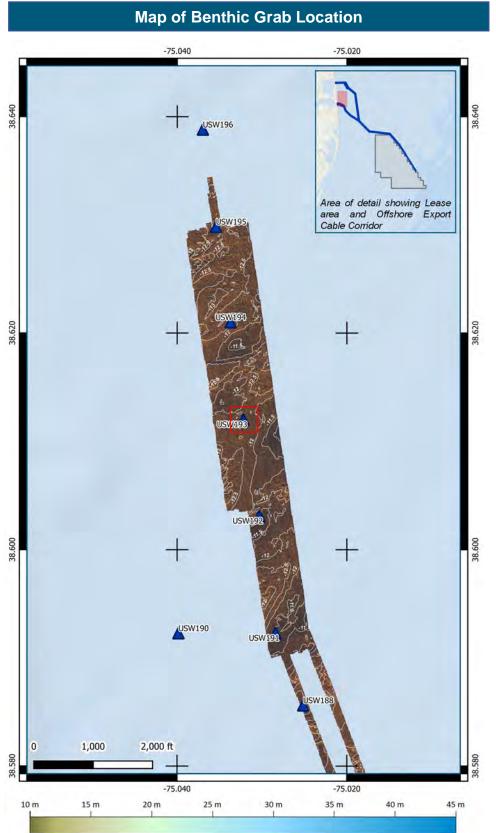


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

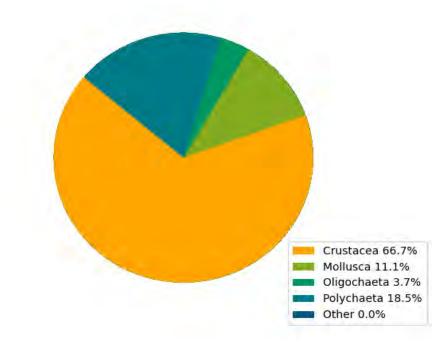
Benthic Sample Site USW191 (BG-AC-48) OECC 2a

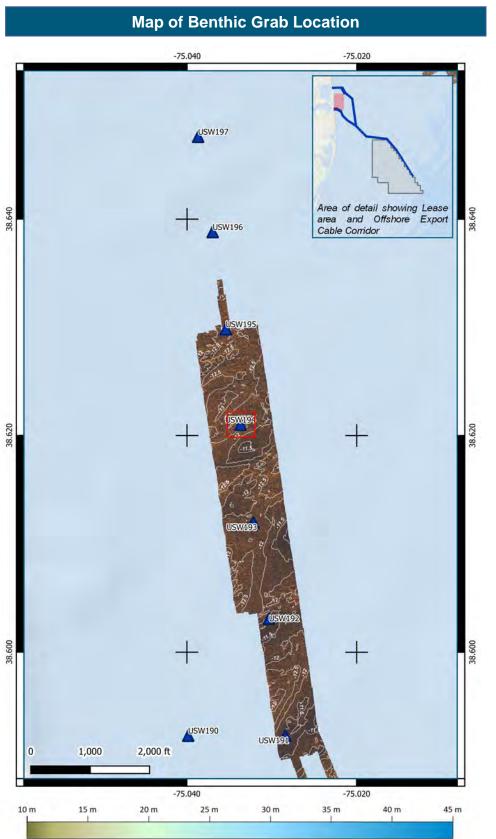

Benthic Grab USW192		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		150
Taxa Richness ¹ :		4


Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW192 (BG-AC-50) OECC 2a

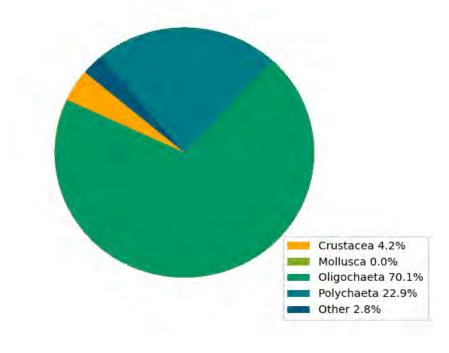

Benthic Grab USW193		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1350
Taxa Richness ¹ :		15

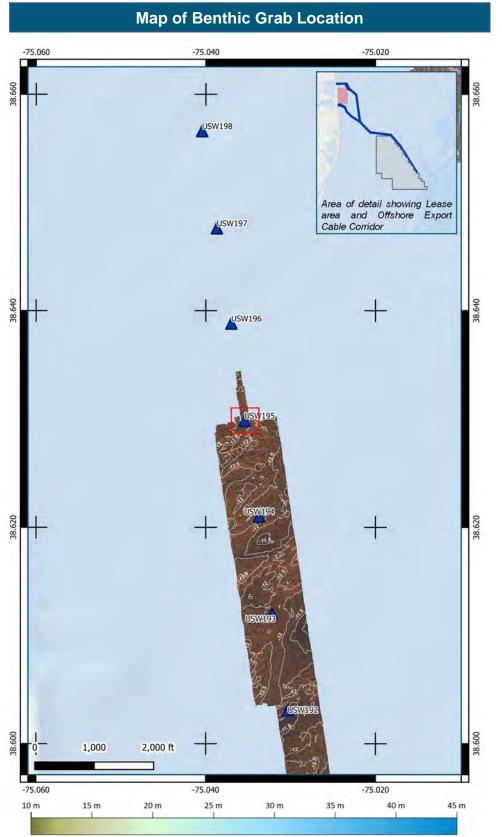


Maryland Offshore Wind Project Offshore Maryland and Delaware

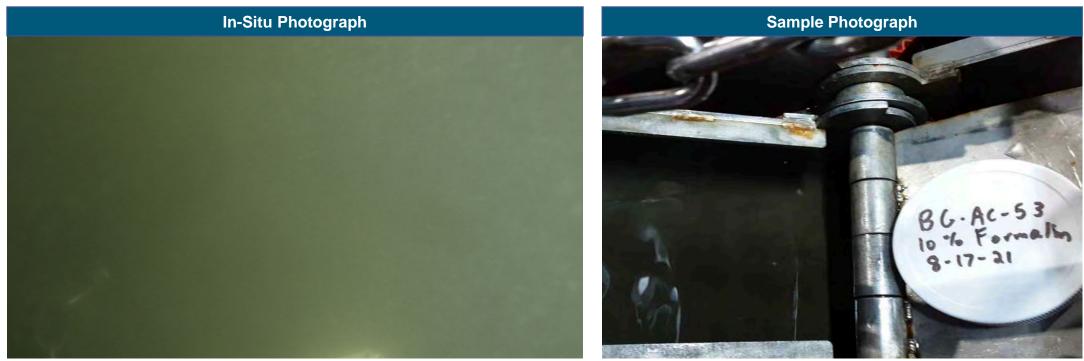
Benthic Organism Density by Taxa Group

Benthic Sample Site USW193 (BG-AC-51) OECC 2a

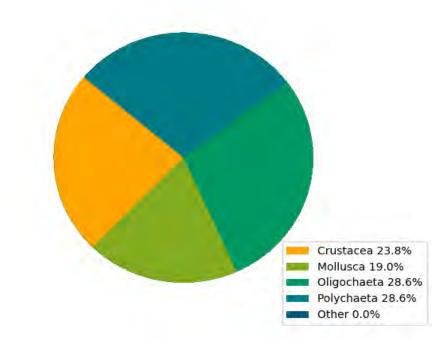

Benthic Grab USW194		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		3600
Taxa Richness ¹ :		16



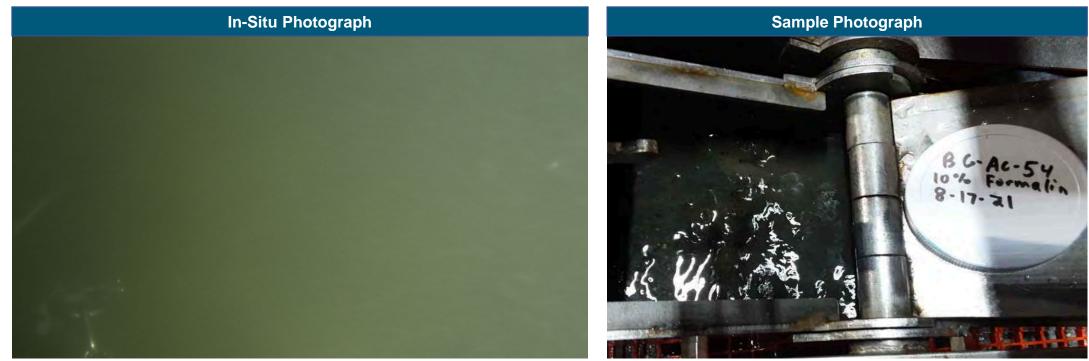
Maryland Offshore Wind Project Offshore Maryland and Delaware


Benthic Organism Density by Taxa Group

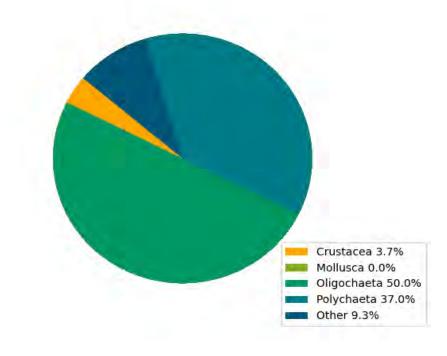
Benthic Sample Site USW194 (BG-AC-52) OECC 2a

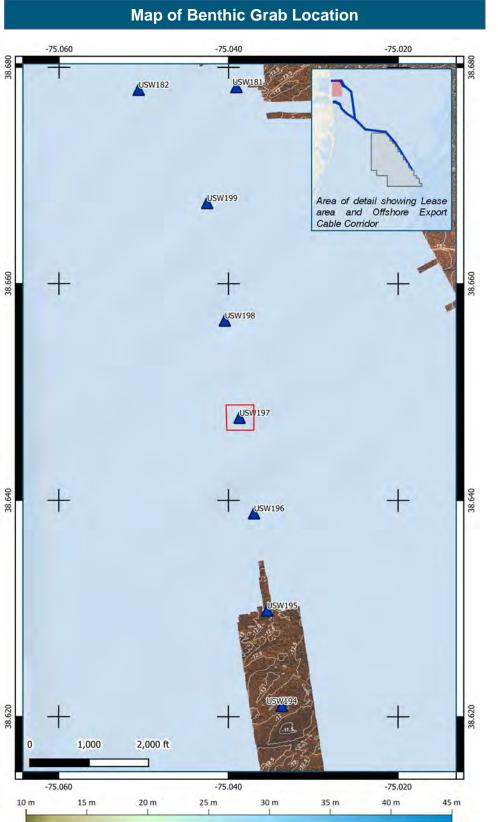

Benthic Grab USW195		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		525
Taxa Richness ¹ :		9

Maryland Offshore Wind Project Offshore Maryland and Delaware

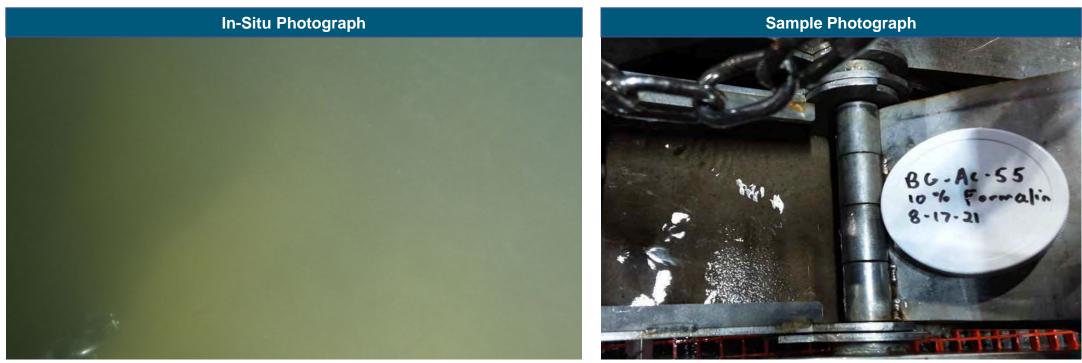

Benthic Organism Density by Taxa Group

Benthic Sample Site USW195 (BG-AC-53) OECC 2a

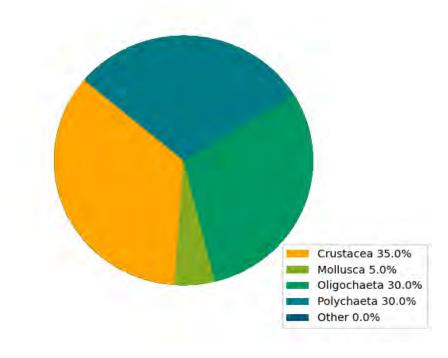

Benthic Grab USW196		
CMECS	Substrate Subclass:	Coarse Unconsolidated Substrate
Habitat	Substrate Group:	Gravelly
Classification	Substrate Subgroup:	Gravelly Sand
Benthic Organism Density (individuals/m ²) ¹ :		1350
Taxa Richness ¹ :		13

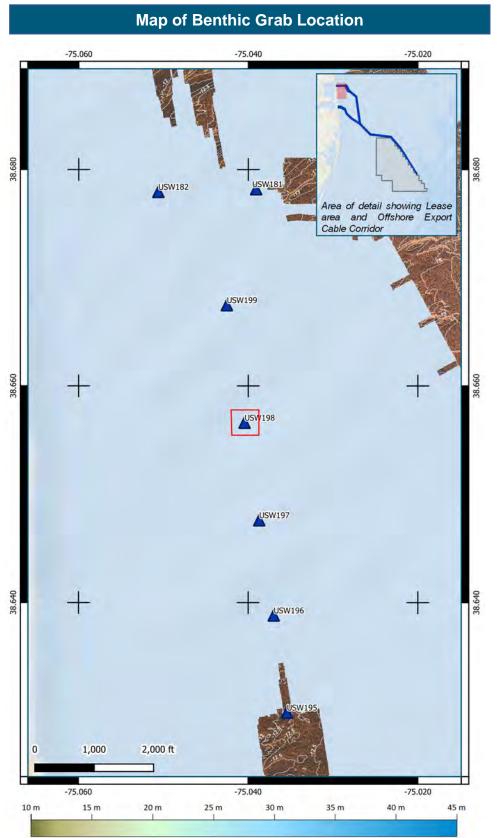


Maryland Offshore Wind Project Offshore Maryland and Delaware

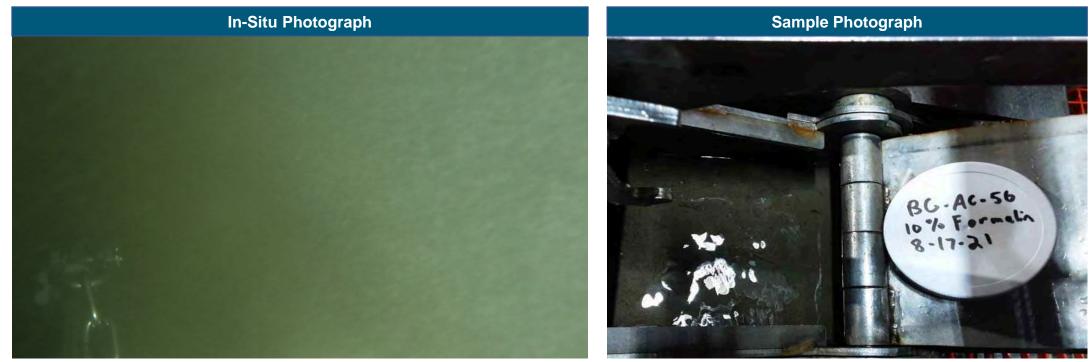

Benthic Organism Density by Taxa Group

Benthic Sample Site USW196 (BG-AC-54) OECC 2a

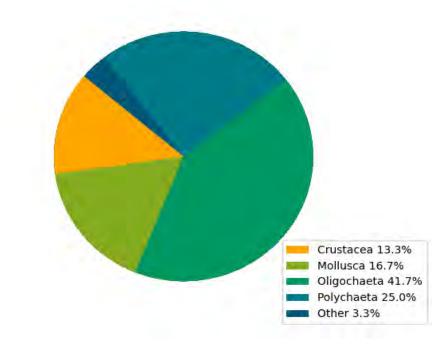

Benthic Grab USW197		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		500
Taxa Richness ¹ :		9

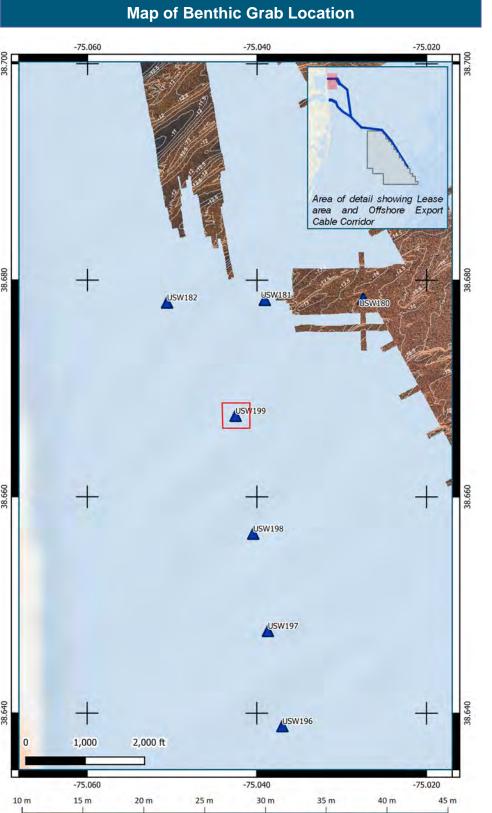


Maryland Offshore Wind Project Offshore Maryland and Delaware


Benthic Organism Density by Taxa Group

Benthic Sample Site USW197 (BG-AC-55) OECC 2a

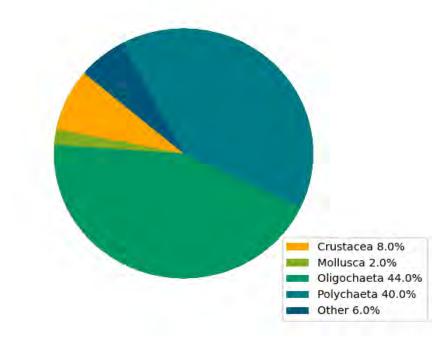

Benthic Grab USW198		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1500
Taxa Richness ¹ :		14



Maryland Offshore Wind Project Offshore Maryland and Delaware


Benthic Organism Density by Taxa Group

Benthic Sample Site USW198 (BG-AC-56) OECC 2a


Benthic Grab USW199		
CMECS	Substrate Subclass:	Fine Unconsolidated Substrate
Habitat	Substrate Group:	Sand
Classification	Substrate Subgroup:	Medium Sand
Benthic Organism Density (individuals/m ²) ¹ :		1250
Taxa Richness ¹ :		18

Maryland Offshore Wind Project Offshore Maryland and Delaware

Benthic Organism Density by Taxa Group

Benthic Sample Site USW199 (BG-AC-57) OECC 2a