Appendix H Final Soil Characterization Findings Report, 39th Street Pier, South Brooklyn Marine Terminal, May 7, 2009

May 7, 2009

Ms. Kay Zias Vice President, Planning New York City Economic Development Corporation 110 William Street Brooklyn, NY 10038

RE: Final Soil Characterization Findings Report 39th Street Pier, South Brooklyn Marine Terminal (SBMT) Brooklyn, New York

Dear Ms. Zias,

The Louis Berger Group, Inc. (LBG) is pleased to present this Final Soil Characterization Findings Report to the New York City Economic Development Corporation (NYCEDC) to detail the results of the waste classification soil samples collected at the above-referenced property. LBG understands that soils from the northeastern corner of the existing bulkhead at the 39th Street Pier (the "Site") located in Brooklyn, New York (see Figure 1 – Site Location Map in Attachment A) will be excavated by others and reconstructed as a rip-rap revetment and concrete barrier. It is anticipated that up to 7,000 cubic yards (CY) (240 feet long by 40 feet wide by 20 feet deep) of material (predominantly soil) will be excavated. LBG characterized the soil in-situ to evaluate soil management issues (i.e. disposal, recycling, reuse, etc.) of soils to be excavated during this project. LBG understands that the ultimate removal of soils associated with the construction of the proposed rip-rap will be addressed by a qualified Contractor procured by Turner Construction (Turner).

Eleven (11) soil borings were advanced within the proposed excavation area to a depth of 20 feet below ground surface (bgs) across the designated section of the existing bulkhead. One (1) additional soil boring, boring B-12, was advanced outside of the proposed excavation area to a depth of 20 feet bgs at the request of Turner's on-site representative. Boring B-12 was located closer to the building to evaluate soil characteristics in that area for future utility relocation. The proposed excavation area was divided equally into six (6) subsections, which each consisted of approximately 1,170 CY of soil. Soil samples were collected from all borings. Discrete soil samples were collected from seven (7) of the 12 borings and analyzed for full Target Analyte List/Target Compound List (TAL/TCL) parameters. One (1) groundwater sample was collected from one of the boreholes and analyzed for Full TAL/TCL parameters. Additionally, six (6) composite samples were collected and analyzed for Toxicity Characteristics Leaching Procedure (TCLP) and Resource Conservation and Recovery Act (RCRA)

waste characteristics. Each composite sample consisted of soil from two (2) boring locations. Laboratory analytical results were compared to the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM 4046) Recommended Soil Cleanup Objectives (RSCO) and RCRA Hazardous Waste Levels. In addition, the results were compared to 6 NYCRR Subpart 375-6 Unrestricted and selected Restricted Use Remedial Cleanup Objectives (UUSCOs and RUSCOs). The following is a summary of the sample collection, analysis and evaluation of the sample results.

Sample Collection

All sampling and investigation activities were performed in accordance with the NYSDEC *Draft DER-*10: Technical Guidance for Site Investigation and Remediation (December, 2002).

From April 7 to April 13, 2009, ADT Drilling of New York performed soil borings with LBG oversight at 12 locations across the Site (see Figure 2 - Soil Boring Location Plan in Attachment A) to a depth of 20 feet below ground surface (bgs). To complete this task, the boring locations were first cleared of utilities using an air-knife to a depth of 6 feet bgs. A hollow stem auger drill rig was then utilized to advance the borings to the required depth. Soil samples were collected using standard split spoon samplers from multiple intervals within each boring, with samples biased toward potentially contaminated intervals based on field screening, visual observations, etc. One discrete soil sample and one waste classification sample was collected from each subsection within the proposed excavation area (see Figure 2 in Attachment A).

The soils were field-screened for organic vapors using a photoionization detector (PID) and classified using the Burmister Soil Classification System (BSCS). To obtain a general characterization of the soil present at the Site, discrete soil samples were collected from seven (7) of the 12 soil borings (B-1, B-3, B-6, B-7, B-10, B-11, and B-12) and analyzed for full TAL/TCL. These soil samples were collected in half-foot intervals from various depths ranging from 5.0 to 20.5 feet bgs. Additionally, soil collected from the two (2) borings within each subsection were combined into one (1) composite sample for TCLP and RCRA analysis using a steel bowl and trowel and mixed until homogenized. A total of six (6) composite samples were collected from the 11 soil borings located within the proposed excavation area for waste classification. In addition, one (1) groundwater sample was collected using a Teflon bailer from boring B-11 and analyzed for full TAL/TCL.

Collected samples were transferred to laboratory supplied glassware, preserved on ice and submitted to Hampton Clarke Veritech Laboratories (HCV) under chain of custody on a 2-week turnaround time (TAT) for the above parameters.

Sample Results

The soil samples collected indicated the presence of non-native fill material throughout the existing bulkhead (see attached Boring Logs in Attachment B). The fill material consisted of dark, yellowish-

Final Soil Characterization Findings Report 39th Street Pier, South Brooklyn Marine Terminal Brooklyn, New York

brown to moderate yellowish-brown sand with some coarse to fine gravel and miscellaneous debris in the form of wood and concrete fragments. Non-native fill was observed throughout all 12 soil borings to a depth of approximately 15 feet bgs. PID readings were below 1-ppm for all soils encountered. Groundwater was encountered at a depth of approximately 7.0 feet bgs. The following provides a summary of the analytical results for the samples collected at the Site. Summary tables are provided in Attachment C and the laboratory analytical report is provided in Attachment D.

Discrete Soil Samples

Seven (7) discrete soil samples were collected from B-2 (5.5 - 6.0 feet bgs), B-3 (11.0 - 11.5 feet bgs), B-6 (20.0 - 20.5 feet bgs), B-7 (15.5 - 16.0 feet bgs), B-10 (10.0 - 10.5 feet bgs), B-11 (5.0 - 5.5 feet bgs), and B-12 (6.0 - 6.5 feet bgs) and analyzed for Full TCL/TAL parameters. The results were compared to NYSDEC TAGM RSCOs, Eastern USA Soil Background levels (where applicable and available) and 6 NYCRR Subpart 376-6 UUSCOs and RUSCOs (see Tables 1 - 3 in Attachment C).

Laboratory results indicate exceedances of TAGM standards in soil collected from each of the borings for several TAL metals including arsenic, chromium, copper, iron, mercury, nickel, selenium and zinc. The results also indicate exceedances of Subpart 376-6 UUSCOs for several TAL metals including chromium, copper, lead, manganese, mercury, nickel, selenium, and zinc. In addition, two borings (B-3 and B-7) contained selenium exceeding the Protection of Groundwater RUSCOs and two borings (B-7 and B-11) contained mercury in excess of the Protection of Groundwater RUSCOs. Elevated levels of metals are mainly attributed to contaminants in urban fill material, historical use of the Site as a rail yard, and may partially be attributed to native background conditions.

The laboratory data also showed several TCL semi-volatile organic compounds (SVOCs) exceeding TAGM, UUSCO, and RUSCO standards. Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluorene, chrysene, and dibenzo(a,h)anthracene were observed in excess of TAGM 4046 RSCO standards. In addition, benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene exceeded Subpart 376-6 UUSCOs in borings B-7 and B-11, and benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene exceeded RUSCO Protection of Groundwater standards in two borings, B-7 and B-11.

Waste Classification Samples

Six (6) composite samples (WC-1 through WC-6) were collected from the Site for waste classification. Each sample was composited from soil from two adjacent borings as shown in Figure 2 with the exception of WC-1, which only consisted of soil from boring B-11. Soil from all depth intervals within the borings were used in the composite samples. Laboratory results from the 6 composited soil samples indicate no exceedances for any of the TCLP parameters and RCRA hazardous waste characteristics (see Table 4 in Attachment C). Barium and lead were detected in several of the samples but in concentrations below the RCRA Hazardous Waste Levels.

Final Soil Characterization Findings Report 39th Street Pier, South Brooklyn Marine Terminal Brooklyn, New York

Discrete Groundwater Sample

One (1) discrete groundwater sample was collected from boring B-11 and analyzed for Full TCL/TAL parameters. Groundwater in this boring was observed at 7 feet bgs. The results were compared to NYSDEC Class GA Groundwater Standards and Guidance Values (see Tables 5 – 6 in Attachment C). The analytical laboratory report is provided in Attachment D. The groundwater contained several TAL metals and TCL SVOCs in excess of the NYSDEC groundwater standards. The metals in excess of the groundwater standards included arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, sodium, vanadium, and zinc. Bis(2-ethylhexyl)phalate was the only SVOC that exceeded the groundwater standard.

Conclusions

The results of LBG's characterization sampling indicate that the soils proposed to be excavated for the rip-rap revetment and concrete barrier are non-hazardous and potentially re-usable on-site as further discussed below.

Contaminated soils excavated from a site in New York State may be subject to New York State Solid Waste Regulations NYCRR Part 360. However, excavated contaminated soils can be exempt from the solid waste regulations under several conditions, including allowable beneficial use on-site as per 6 NYCRR Subpart 360-1 §360-1.15(b)(8), as stated below:

"nonhazardous, contaminated soil which has been excavated as part of a construction project, other than a department-approved or undertaken inactive hazardous waste disposal site remediation program, and which is used as backfill for the same excavation or excavations containing similar contaminants at the same site. Excess materials on these projects are subject to the requirements of this Part. (Note: use of in-place and stockpiled soil from a site being converted to a realty subdivision, as defined by the Public Health Law (10 NYCRR 72), must be approved by the local health department.)"

Based on the above excerpt as well as that the soil contaminants do not exceed the Industrial or Protection of Groundwater RUSCOs (with the exception of borings B-3, B-7 and B-11), the excavated soils can be reused as backfill material at the Site in areas with potentially similar materials and contaminants.

However, LBG understands that there is no place within the project area to reuse these soils. As such, all soils will be subject to Solid Waste Regulations NYCRR Part 360, and can be disposed of at an appropriate off-site disposal/recycling facility. Based on the comparison of the results to the RCRA Hazardous Waste Criteria, the soils sampled at the Site should be considered non-hazardous waste for disposal/recycling; however, the final determination of the waste classification will be made by the disposal/recycling facility. The facility will determine whether the material is acceptable under their permit.

Final Soil Characterization Findings Report 39th Street Pier, South Brooklyn Marine Terminal Brooklyn, New York

If soil is to be transported off-site, LBG requests the following information on behalf of NYCEDC from Turner prior to any waste being transported off-site:

- Receiving facility's name;
- Receiving facility's permit number;
- Receiving facility's location and contact information;
- The receiving facility acceptance letter;
- Turner's submission package to the receiving facility, including waste profile, etc.

Should you have any questions regarding acceptable soil re-use options on-site or any other matters addressed in this letter, please call me at (212) 612-7900 x-1397.

Sincerely,

THE LOUIS BERGER GROUP, INC.

for 7. M.S. ye

Sean T. McGonigal, P.E. Project Manager

cc: K. Zias (NYCEDC) M. McCloskey; S. Morse, A. Kathuria (LBG)

Attachments:

Attachment A - Figures
Figure 1 – Site Location Map
Figure 2 – Soil Boring Location Plan
Attachment B – Boring Logs
Attachment C – Tables
Table 1 – Summary of TCL Volatile Organic Compounds Detected in Soil
Table 2 – Summary of TCL Semi-Volatile Organic Compounds Detected in Soil
Table 3 – Summary of TAL Metals Detected in Soil
Table 4 – Summary of TCLP Parameters Detected in Composite Soil Sample
Table 5 – Summary of TCL Semi-Volatile Organic Compounds Detected in Groundwater
Table 6 – Summary of TCL Semi-Volatile Organic Compounds Detected in Groundwater

ATTACHMENT A - FIGURES

ATTACHMENT B – BORING LOGS

10	The I	Louis	s Berger (Group	o, Inc	2.		Drilling Log	BORING NO.: B-1	
	199 V New 1	vate. York	r Street, 2 x, NY 100	23ra .)38	F 1001	r		Page 1 of 2	WELL NO.: N/A	
CLIENT	Nev	w Y	ork City	Ecor	nomi	c De	evelop	ment Corporation	PROJECT NO: KT2	00A7
PROJEC	T: \$	Sout	h Brookl	lvn N	I arir	ne Te	ermina	1	DATE STARTED: 4/13	/2009
DRILLIN	IG C	ON	TRACT	<u> </u>	:	Aqui	fer Di	illing and Testing, Inc.	DATE FINISHED: 4/13	/2009
DRILLIN	IG N	1ET	HOD:		I	Hollo	ow Ste	em Auger	DRILLER: T. P.	alomeque
В	ORE	EHC	DLE DA	TA		Т		WELL DATA	INSPECTOR: J. La	canlale
Diameter	(in):		4				Comp	letion: N/A	NORTHING (ft): N/A	
Total Der	oth (f	ft):	22.0	0]	[otal]	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:	(Split Sr	oon		S	Screet	n Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A
Depth to	Wate	er (f	$\frac{z_{\rm P} = z_{\rm P}}{t}$; 7	00011)enth	TOC ELEVATION (ft):	N/A	
Depth to	Rock	x (ft): N/	'A			Permi	it No.: N/A		
NOTES.	11001	. (10								
NULES:										
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	1		ASPHALT				N/A	Asphalt.		Asphalt
	1 2 3 5		CONCRE				N/A	Concrete (Airknifed from 0.0 to 5.0 ft by		Concrete Gravelly Sand
	6 7 X X X X X X X Y X X Y X Y X Y X Y X Y	HXHXHXHXHXHXHXHXHX	FILL			5 5 8	<1	Moderate yellowish brown (10YR5/4) c coarse to fine Gravel, little Silt; moist.	coarse to fine SAND, some	Water Level at 7 ft. bgs.

10	The	Loui Wate	s Berger (Grouj 23rd	p, In Floo	c.	PI	3-1		
	New	vvate v Yor	k, NY 10	23ru 038	F 100	r –		Page 2 of 2	WELL NO.:	N/A
Well	Depth	Lith.	NSCS	nterval	Rec.	Blows	DID	Description		Remarks
	10-		FILL			3	<1	Dark yellowish brown (10YR4/2) coarse to fine Gravel, little Silt; wet.	e to fine SAND, some coarse	
	11-					3				
	12-			××		-				
	13-									
	14-									
	15-	<u>z</u>	SP			4	<1	Dark yellowish brown (10YR4/2) mediu	m to fine SAND; wet.	Sand
	16-					4				
	17-									
	18-									
	19-									Collected composite sample WC-6
	20-		SP			4	<1	Dark yellowish brown (10YR4/2) mediu	m to fine SAND; wet.	B-2
	21-					3				End of Boring at 22 ft. bgs.

	The I 100 V	Louis Voto	s Berger (Froup Great), Inc			Drilling Log	BORING NO.: B-2		
	New Y	vate York	r Street, 2 k, NY 100	38 38	FIOOI			Page 1 of 2	WELL NO.: N/A		
CLIENT	: Nev	w Y	ork City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7	
PROJEC	T: 5	Sout	h Brookl	yn N	Iarin	e Te	rmina	1	DATE STARTED: 4/13	/2009	
DRILLIN	NG C	ON	TRACT	OR	: /	Aqui	fer Dı	illing and Testing, Inc.	DATE FINISHED: 4/13	/2009	
DRILLIN	NG N	1ET	HOD:		H	Hollo	w Ste	em Auger	DRILLER: T. Pa	lomeque	
В	ORE	EHC	DLE DA	TA				WELL DATA	INSPECTOR: J. La	canlale	
Diameter	' (in):	:	4			0	Comp	letion: N/A	NORTHING (ft): N/A		
Total Dep	oth (f	it):	16.0	0		Т	'otal I	Depth (ft): N/A	EASTING (ft): N/A		
Sampler:			Split Sp	oon		S	creer	h Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A	
Depth to	Wate	er (f	(t): 7			D	epth	to Water (ft): N/A	TOC ELEVATION (ft):	N/A	
Depth to	Rocl	x (ft	(): N/	A		P	Permi	t No.: N/A			
NOTES:											
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks	
	0		ASPHALT				N/A	Asphalt.		Asphalt	
			CONCRET				N/A	Concrete (Airknife from 0.0 to 6.0 ft bg	s).	Concrete	
	1 - 2 - 3 - 5 -		FILL			6	<1	Moderate yellowish brown (10YR5/4) o	coarse to fine SAND, some	Silty Sand	
	6 - 4 7 - 7 8 - 4 9 - 4	HXHXHXHXHXHXHXHXHXH				4 5 20		Silt, little coarse to fine Gravel; moist.		(Fill), collected B-2 from 5.5 - 6.0 ft bgs Water Level at 7 ft. bgs.	

20	The 1 199 V	Louis Wate	s Berger (r Street	Grouj 23rd	p, Inc Floo	PROJECT NO.: KT200A7 BORING NO.:			BORING NO.:	B-2	
	New	Yorl	k, NY 100	038	1100			Page 2 of 2		WELL NO.:	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID		Description		Remarks
	10		FILL			7	<1	Dusky brown (5YR2/	/2) coarse to fine S	AND, some coarse to fine	Gravelly Sand
	11-					8 15		Gravel, little wood de	ebris; wet.		(FM)
	12-					18					
	13-										
	14-										
	15		FILL			50/3'	<1	Wood debris; wet.			Refusal at 16 ft bgs

10	The Lou	iis Berger (Grou	p, Inc	2.		Drilling Log	BORING NO.: B-3	
	New Yo	rk, NY 100	23ru)38	F 1001	r		Page 1 of 2	WELL NO.: N/A	
CLIENT	New	York City	Eco	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7
PROJEC	T: So	uth Brookl	lyn N	Aarin	ne Te	rmina	1	DATE STARTED: 4/9/2	2009
DRILLIN	IG CO	NTRACI	FOR	:	Aqui	fer Dı	illing and Testing, Inc.	DATE FINISHED: 4/9/2	2009
DRILLIN	IG ME	THOD:		ŀ	Hollo	w Ste	em Auger	DRILLER: J. M	eyer
В	OREH	OLE DA	TA				WELL DATA	INSPECTOR: J. La	canlale
Diameter	(in):	4				Comp	letion: N/A	NORTHING (ft): N/A	
Total Der	oth (ft):	22.0	0		T	otal	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		Split St	oon		s	creei	Length (ft) /Slot (in): N/A	GROUND ELEVATIO	N (ft): N/A
Depth to	Water	(ft): 7)epth	to Water (ft): N/A	TOC ELEVATION (ft)	N/A
Depth to	Rock ($\frac{(-1)!}{\mathbf{ft}} \cdot \mathbf{N}/\mathbf{N}$	'A		Ī	Permi	t No.: N/A		
NOTES	(
noits.									
Well Construction	Depth Lithology	USCS	Sample Interval	ample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0	ASPHALT		S		N/A		Asphalt	
		CONCRE	颷			N/A	Concrete (Airknife from 0.0 to 6.0 ft ba	2)	Concrete
	2 - 3 - 4 - 5 - 5								
					3	<1	Dark yellowish brown (10YR4/2) mediu trace coarse to fine Gravel; moist.	m to fine SAND, little Silt,	Sand (Fill) Water Level at 7 ft. bgs.

40	The Lo	ouis Bei ater Sti	rger (reet 2	Group 23rd 1), Inc Floor	loor PROJECT NO.: KT200A7 BORING NO.: E Page 2 of 2 WELL NO.: N					-3
	New Y	ork, N	Y 100)38	1001			Page 2 of 2		WELL NO.: N	[/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Dese	cription		Remarks
	10	10 FILL 1 11 11 CL 5				1 2 2	<1	Dark yellowish brown (10YR4/2 trace coarse to fine Gravel; wet	2) mediur t.	m to fine SAND, little Silt,	Collected B-3 from 11.0 - 11.5 ft bgs
	12-11111111111111111111111111111111111					5	<1	Dark yellowish brown (10YR4/2 Silty CLAY; wet.	2) to pale	e yellowish brown (10YR6/2)	Silty Clay
	15 SP 22 16 15 15 17 17 17 18 15 18 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10					2 8 15 3	<1	Medium dark gray (N4) to dusk medium to fine SAND, little Sil	y yellow It, trace c	rish brown (10YR2/2) coarse to fine Gravel; wet.	Sand Composite sample collected from B-3 and B-4
	20					13 1 6 4	<1	Medium dark gray (N4) to dusk medium to fine SAND, little Sil	y yellow lt, trace c	rish brown (10YR2/2) coarse to fine Gravel; wet.	End of Boring at 22 ft. bgs.

10	The L	ouis Berger	Grouj 22d	p, Inc	2.		Drilling Log	BORING NO.: B-4	
	New Y	ater Street, Zork, NY 10	23ra 038	F 1001	ſ		Page 1 of 2	WELL NO.: N/A	
CLIENT	Nev	v York City	Eco	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7
PROJEC	T: S	outh Brook	lyn N	Marin	ie Te	rmina	1	DATE STARTED: 4/9/2	2009
DRILLIN		ONTRAC'	TOR	:	Aqui	fer Dı	illing and Testing, Inc.	DATE FINISHED: 4/9/2	2009
DRILLIN	IG M	ETHOD:	_	ŀ	Hollo	w Ste	em Auger	DRILLER: J. M	eyer
В	ORE	HOLE DA	ТА				WELL DATA	INSPECTOR: J. La	canlale
Diameter	(in):	4			(Comp	letion: N/A	NORTHING (ft): N/A	
Total Der	oth (f	t): 22.0)0		Т	lotal]	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		Split S	poon		s	creer	n Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A
Depth to	Wate	r (ft): 7	1			Depth	to Water (ft): N/A	TOC ELEVATION (ft):	N/A
Depth to	Rock	(ft): N	/A		Ŧ	Permi	it No.: N/A		
NOTES		(1))							
noits.									
Well Construction	• Depth	Lithology USCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
		ASPHAL'	T			N/A	Asphalt		
	1 - 2 - 3 - 4 -	CONCRE			4	N/A	Concrete (Airknife from 0.0 - 6.0 ft bgs		Concrete Silty Sand
	6				4 7 8 14	<1	Moderate yellowish brown (10YR5/4) n Silt, little coarse to fine Gravel; moist.	nedium to fine SAND, some	Silty Sand (Fill) Water Level at 7 ft. bgs.

48	The 100	Loui Wat	s Berger (ar Street	Grouj 23rd	p, Ind	c.	PF	ROJECT NO.: KT200A7	BORING NO.: H	3-4
	New	Yor	k, NY 10	038	1.100			Page 2 of 2	WELL NO.: N	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	10-		FILL			5 4 19	<1	Dark yellowish brown (10YR4/2) coarse to fine Gravel, little wood debris; wet.	to fine SAND, some coarse	Gravelly Sand (Fill)
	12-					30				
	13-									
	15-		FILL			17	<1	Moderate yellowish brown (10YR5/4) co coarse to fine Gravel, little wood debris;	parse to fine SAND, some	
	16-		FILL			12	<1	Medium dark gray (N4) Wood debris; w	vet.	
	17-				\$					Collected composite sample WC-5
	18-									from B-3 and B-4
	19-									
	20-		SP			12 14	<1	Medium dark gray (N4) coarse to fine SA Gravel; wet.	AND, little medium to fine	Sand
	21-					7 8				End of Boring at 22 ft. bgs.

10	The Lou	iis Berger (Grouj	p, Inc			Drilling Log	BORING NO.: B-	5
	New Yo	rk, NY 100	23ru .)38	F 1001			Page 1 of 2	WELL NO.: N/A	Δ
CLIENT	New	York City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT	200A7
PROJEC	T: So	uth Brook	lyn N	/Iarin	e Te	rmina	1	DATE STARTED: 4/9/	2009
DRILLIN	IG CO	NTRACI	ΓOR	: .	Aqui	fer Dı	illing and Testing, Inc.	DATE FINISHED: 4/9/	2009
DRILLIN	NG ME	THOD:		ł	Iollo	w Ste	em Auger	DRILLER: J. N	leyer
В	OREH	OLE DA	TA				WELL DATA	INSPECTOR: J. L	acanlale
Diameter	(in):	4			0	Comp	letion: N/A	NORTHING (ft): N/A	
Total Dep	oth (ft)	: 22.0	0		T	'otal	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		Split Sp	poon		S	creei	h Length (ft) /Slot (in): N/A	GROUND ELEVATIO	N (ft): N/A
Depth to	Water	(ft): 7			D	Depth	to Water (ft): N/A	TOC ELEVATION (ft)	: N/A
Depth to	Rock (ft): N/	Ά		P	Permi			
NOTES:									
Well Construction	Depth Lithology	USCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0	ASPHAL1				N/A	Asphalt.	Asphalt	
	1 - 2 - 3 - 4 -	CONCRE				N/A	Concrete (Airknife from 0.0 to 6.0 ft bg	3).	Concrete
	6 7 8 9	K-ALK-ALK-ALK-ALK-ALK-ALK-ALK-ALK-ALK-AL			1 1 1	<1	Moderate yellowish brown (10YR5/4) o coarse to fine Gravel, trace Silt; moist.	oarse to fine SAND, little	Sand (Fill) ₩ater Level at 7 ft. bgs.

28	The	Louis	s Berger (Grouj 22nd	p, In Floo	c.	PF	ROJECT NO.: KT200A7	BORING NO.:	B-5
	New	v ate Yorl	k, NY 100	23ru 038	F 100			Page 2 of 2	WELL NO.:	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Descript	ion	Remarks
	10-		FILL			2	<1	Moderate yellowish brown (10YR5/ coarse to fine Gravel, trace Silt; wet	4) coarse to fine SAND, little	
	11-					2 3				
	13-									
	14-									
	15-		SP			WH 1	<1	Medium gray (N5) medium to fine S	AND, trace fine Gravel; wet.	Sand
	17-					ин 1				sample WC-4 collected from B-5 and B-6
	18-									
	20-		SP			2	<1	Medium gray (N5) medium to fine S	AND; wet.	
	21-					2 1				End of Boring at 22 ft. bgs.

10	The Lou	is Berger (Group), Inc			Drilling Log	BORING NO.: B-6	
	New Yo	rk, NY 100	23ru .)38	F 1001			Page 1 of 2	WELL NO.: N/A	
CLIENT	New	York City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7
PROJEC	T: So	uth Brookl	lyn N	/larin	e Te	rmina		DATE STARTED: 4/9/2	2009
DRILLIN	IG CO	NTRACI	FOR	: /	Aqui	fer Dı	illing and Testing, Inc.	DATE FINISHED: 4/9/2	2009
DRILLIN	NG ME	THOD:		ł	Iollo	w Ste	em Auger	DRILLER: J. M	eyer
В	OREH	OLE DA	TA				WELL DATA	INSPECTOR: J. La	canlale
Diameter	(in):	4			0	Comp	letion: N/A	NORTHING (ft): N/A	
Total Dep	oth (ft):	22.0	0		T	'otal I	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		Split Sp	poon		S	creer	n Length (ft) /Slot (in): N/A	GROUND ELEVATIO	N (ft): N/A
Depth to	Water	(ft): 7			D	Depth	to Water (ft): N/A	TOC ELEVATION (ft):	N/A
Depth to	Rock (ft): N/	Ά		P	Permi			
NOTES:									
Well Construction	Depth Lithology	USCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0	ASPHALT				N/A	Asphalt.		Asphalt
	1 - 2 - 3 - 4 -	CONCRE			2	N/A	Concrete (Airknife from 0.0 to 6.0 ft bg	;).	Concrete
					3 4 3 3	<1	Moderate yellowish brown (10YR5/4) n Silt, little coarse to fine Gravel; moist.	nedium to fine SAND, some	Silty Sand (Fill) Water Level at 7 ft. bgs.

23	The L	ouis Istor	Berger (Grouj 23rd -	p, Inc	PROJECT NO.: KT200A7 BORING NO.:			BORING NO.: B	-6
	New Y	lork,	, NY 100	231u 038	r 100]			Page 2 of 2	WELL NO.: N	[/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	a 10- 11- 12- 13- 14- 15- 16- 17-		FILL			 13 8 3 8 7 4 4 	<1	Dark yellowish brown (10YR4/2) coarse to fine Gravel, little wood debris; wet. Dark yellowish brown (10YR4/2) to med SAND, some coarse to fine Gravel; wet.	e to fine SAND, some coarse lium gray (N5) coarse to fine	Gravelly Sand (Fill)
	18-									Collected composite sample WC-4 from B-5 and B-6, collected B-6 from 20.0 - 20.5 ft bgs
	20		SP			1 2 2 1	<1	Medium gray (N5) medium to fine SAN	D; wet.	Sand End of Boring at 22 ft. bgs.

10	The l 100 V	Louis Note	s Berger (Group Sand 1	o, Inc Floor			Drilling Log	BORING NO.: B-7				
	New	Yorl	k, NY 100)38	r 1001			Page 1 of 2	WELL NO.: N/A				
CLIENT	: Ne	w Y	ork City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7			
PROJEC	T:	Sout	th Brookl	lyn M	/larin	e Te	rmina	1	DATE STARTED: 4/10	/2009			
DRILLIN	IG (CON	TRACT	<u>,</u> FOR	: 4	Aqui	fer D	illing and Testing, Inc.	DATE FINISHED: 4/10	/2009			
DRILLIN	NG N	ЛЕТ	THOD:		ł	Hollo	w Ste	em Auger	DRILLER: J. M	eyer			
В	ORI	EH(DLE DA	TA				WELL DATA	INSPECTOR: J. La	canlale			
Diameter	(in)	:	4			0	Comp	letion: N/A	NORTHING (ft): N/A				
Total Dep	oth (i	ft):	22.0	0		T	'otal	Depth (ft): N/A	EASTING (ft): N/A				
Sampler:			Split Sp	poon		S	creei	Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A			
Depth to	Wat	er (i	ft): 7			D	Depth to Water (ft): N/A TOC ELEVATION (ft):						
Depth to	Roc	k (ft	t): N/	A		F	Permit No.: N/A N/A						
NOTES:													
				le	ry								
ell uction	th	ogy	S	nterva	ecove	(mc	(ud	.					
W nstr	Dep	thol	NSU	le I	le R	ld) (D (b	Description		Remarks			
Co		Ľ		amp	amp	ΗJ	- II						
	0		Δ SPH ΔΙ Τ	$\bigotimes^{\mathbf{S}^2}$	Ŝ		N/A	Asphalt		Asphalt			
			ASITIALI					Asphan.		-			
	1 -		CONCRE	諁			N/A	Congrate (Airknife from 0.0 to 5.0 ft bg	a)	Concrete			
			CONCRE	\boxtimes				Concrete (AllKine from 0.0 to 5.0 ft bg	5).				
				\bigotimes									
	2 -												
	3 -												
	4 -												
	5 -				,								
	5		NA			4	N/A	No Recovery					
				\bigotimes		5							
	6 -												
	0					1							
						1							
	7 _					-				\bigtriangledown			
	/									Water Level at			
										7 ft. bgs.			
	8 -												
	9 -												

48	The 199	Loui Wota	s Berger (or Street	Grouj 23rd	p, Inc Floor	c.	PF	ROJECT NO.: KT200A7	BORING NO.: H	3-7
	New	Yor	k, NY 100	038	1.100			Page 2 of 2	WELL NO.: N	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	10-									
	10		FILL			4	<1	Dark yellowich brown (10YR4/2) mediu little medium to fine Gravel; wet.	m to fine SAND, some Silt,	Silty Sand (Fill)
	11-		· · ·			3				
	12-		- - - -			5				
	13-		,							
	14-		,							
	15-		FILL			4	<1	Dark yellowich brown (10YR4/2) mediu little medium to fine Gravel; wet.	m to fine SAND, some Silt,	Collected B-7 from 15.5 -
	16-		, ,			2				16.0 ft bgs
	17-		,			2				
	18-		,							Composite
	19-		,							collected from B-7 and B-8
	20-		,							Sand
			SP			2	<1	Dark yellowich brown (10YR4/2) to med fine SAND; wet.	lium gray (N5) medium to	Sand
	21-					2 3				End of Boring
L	22		1	\times	V / A	1	1	l		at 22 It. 1985.

4	3	The 1	Louis	s Berger (Grouj 22md -), Inc			Drilling Log	BORING NO.: B-8	
Ē)	New	vvate Yorl	r Street, <i>1</i> x, NY 100	23ru . 038	F 1001	r		Page 1 of 2	WELL NO.: N/A	
CLI	ENT:	Ne	w Y	ork City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7
PRO	JEC	T:	Sout	th Brook	lyn N	/larin	e Te	rmina	1	DATE STARTED: 4/10	/2009
DRI	LLIN	G (CON	TRAC	FOR	:	Aqui	fer D	illing and Testing, Inc.	DATE FINISHED: 4/10	/2009
DRI	LLIN	GI	ИЕТ	THOD:		ł	Hollo	w Ste	em Auger	DRILLER: J. M	eyer
	B	OR	EH()LE DA	TA				WELL DATA	INSPECTOR: J. La	canlale
Dian	neter	(in)):	4			(Comp	letion: N/A	NORTHING (ft): N/A	
Total	l Dep	th ((ft):	22.0	0		ſ	otal	Depth (ft): N/A	EASTING (ft): N/A	
Sam	pler:			Split Sp	poon		S	cree	Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A
Dept	th to `	Wat	ter (f	f t): 7			Ι)epth	to Water (ft): N/A	TOC ELEVATION (ft):	N/A
Dept	th to i	Roc	k (ft	t): N/	/A		I	Perm	it No.: N/A		
NOT	FES:										
	n				/al	ery					
п	Ictio	h	gy	\mathbf{N}	terv	COV() E	Î			
We	stru	ept	holc	JSC	e In	Re	[dd]	dd)	Description		Remarks
	Con	Γ	Lit		ldu	ple	O				
	Ŭ				Saı	San	-				
		0		ASPHALT				N/A	Asphalt (Airknife from 0.0 to 6.0 ft bgs).	Asphalt
										, ,	
		1 -				<u> </u>					
		2 -									
		3 -									
		4 -									
		£									
		<u>э</u> –	\square	FILL			4	<1	Dark yellowish orange (10YR6/6) medi	um to fine SAND, some Silt,	Silty Sand
			Æ				1		little medium to fine Gravel; moist.		(Fill)
		I					1				
		6 –					3				
		:	Æ								
		I					3				
		7 —				•					∽ Water Level at
			$\langle \cdot \rangle$								7 ft. bgs.
			Æ								
		8 -	\sum								
			\mathbb{K}								
			E,								
		9 –									

10	The 1	Louis Noto	s Berger (r Street	Grouj 23rd	p, Ind Floor	c.	PI	ROJECT NO.: KT200A7	BORING NO.:	B-8
	New	Yorl	k, NY 100	231u 038	F 100			Page 2 of 2	WELL NO.:	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	10- 11- 12- 13-	N CHY CHY CHY CHY CHY CHY CHY CHY	FILL			12 58 11 7	<1	Moderate yellowish brown (10YR5/4) me Silt, little wood debris; wet.	edium to fine SAND, some	
	14 15- 16- 17- 18- 19-	N. W.	FILL			41 20 14 17	<1	Moderate yellowish brown (10YR5/4) to to fine SAND, some coarse to fine Grave	e medium gray (N5) coarse el; wet.	Gravelly sand (Fill) Composite sample WC-3 collected from B-7 and B-8
	20-		SP			5 12 11 10	<1	Medium gray (N5) to medium dark gray (little medium to fine Gravel; wet.	(N4) medium to fine SAND	End of Boring at 22 ft. bgs.

10	The Lou	iis Berger (Group	p, Inc			Drilling Log	BORING NO.: B-9	
	New Yo	rk, NY 100	23ru .)38	F 1001	r		Page 1 of 2	WELL NO.: N/A	
CLIENT	New	York City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	.00A7
PROJEC	T: So	uth Brookl	lyn N	/Iarin	e Te	rmina	1	DATE STARTED: 4/10	/2009
DRILLIN	IG CO	NTRACT	FOR	: /	Aqui	fer Di	illing and Testing, Inc.	DATE FINISHED: 4/10	/2009
DRILLIN	NG ME	THOD:		ł	Hollo	w Ste	em Auger	DRILLER: J. M	eyer
В	OREH	OLE DA	TA				WELL DATA	INSPECTOR: J. La	acanlale
Diameter	(in):	4			0	Comp	letion: N/A	NORTHING (ft): N/A	
Total Dep	oth (ft)	22.0	0		T	'otal	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		Split Sp	poon		S	creei	n Length (ft) /Slot (in): N/A	GROUND ELEVATIO	N (ft): N/A
Depth to	Water	(ft): 7			D)epth	N/A		
Depth to	Rock (ft): N/	'A		F	Permi	t No.: N/A		
NOTES:									
Well Construction	Depth Lithology	USCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0	ASPHALT				N/A	Asphalt.		Asphalt
	1 - 2 - 3 - 4 -	CONCRE				N/A	Concrete (Airknife from 0.0 to 0.5 ft bg	;).	Concrete
	6 7 8 9				33	<1	Moderate yellowish brown (10YR5/4) n Silt, little medium to fine Gravel; moist.	nedium to fine SAND, some	Silty Sand (Fill) Water Level at 7 ft. bgs.

40	The Louis Berger Group, Inc 199 Water Street, 23rd Floor New York, NY 10038						PF	ROJECT NO.: KT200A7	BORING NO.:	B-9
9	New	vvau v Yor	k, NY 10	23ru 038	F 100			Page 2 of 2	WELL NO.:	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	10-		NA			1	N/A	No Recovey		
	11-	-				1				
	12-	-				1				
	13-	_								
	14-	_								
	15- 16- 17-		SP			5	<1	Dark yellowish brown (10YR4/2) mediu	m to fine SAND; wet.	Sand
	18- 19- 20- 21-		SP			5	<1	Dark yellowish brown (10YR4/2) mediu	m to fine SAND; wet.	Collected composite sample WC-2 from B-9 and B-10 End of Boring
	122		<u> </u>		<u> </u>	}				at 22 ft. bgs.

25	The Lou	iis Berger (Group	p, Inc			Drilling Log	BORING NO.: B-1	0
	New Yo	rk, NY 100	23ru .)38	F 1001			Page 1 of 2	WELL NO.: N/A	
CLIENT	: New	York City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: KT2	00A7
PROJEC	T: So	uth Brookl	lyn N	/Iarin	e Te	rmina	1	DATE STARTED: 4/10	/2009
DRILLIN	NG CO	NTRACI	ΓOR		Aqui	fer Di	illing and Testing, Inc.	DATE FINISHED: 4/10	/2009
DRILLIN	NG ME	THOD:		ŀ	Hollo	w Ste	em Auger	DRILLER: J. M	eyer
В	OREH	OLE DA	TA				WELL DATA	INSPECTOR: J. La	canlale
Diameter	• (in):	4			0	Comp	letion: N/A	NORTHING (ft): N/A	
Total De	pth (ft)	: 22.0	0		T	'otal	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		Split Sp	poon		S	creei	n Length (ft) /Slot (in): N/A	GROUND ELEVATION	N (ft): N/A
Depth to	Water	(ft): 7			D	Depth	to Water (ft): N/A	TOC ELEVATION (ft):	N/A
Depth to	Rock (ft): N/	A		P	Permi	it No.: N/A		
NOTES:									
Well Construction	Depth Lithology	USCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks
	0	ASPHALT				N/A	Asphalt.		Asphalt
	1 - 2 - 3 - 4 -	CONCRE'					Concrete (Airknife from 0.0 to 6.0 ft bgs	s)).	Concrete
					2 4 5 2	<1	Dark yellowish brown (10YR4/2) coars to fine Gravel; moist.	e to fine SAND, some coarse	Gravelly Sand (Fill) Water Level at 7 ft. bgs.

40	The 100	Loui Wata	is Berger (or Street	Grouj 23rd	p, Ind Floor	c.	PF	ROJECT NO.: KT200A7	BORING NO.: B	-10
	New	Yor	k, NY 100	231u 038	1100			Page 2 of 2	WELL NO.: N	[/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
	10-		FILL			3	<1	Dark yellowish brown (10YR4/2) coarse to fine Gravel; wet.	e to fine SAND, some coarse	Collected B- 10 from 10.0 - 10.5 ft bgs
	11-					6 10				
	13-									
	15-		FILL FILL			11 19	<1 <1	Dark yellowish brown (10YR4/2) coarse to fine Gravel; wet. Wood debris.	e to fine SAND, some coarse	Wood debris
	16- 17-					5 12				
	18-									
	19- 20-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Collected composite sample WC-2 from B-9 and
	21-		FILL			14 11 6 12	<1	Wood debris.		B-10 End of Boring at 22 ft. bgs

10	The	Loui	s Berger (Grou	p, Inc	2.		Drilling Log	BORING NO.: B-1	1
	New	vvate Yorl	k, NY 100	23ra 038	F 1001	ſ		Page 1 of 2	WELL NO.: N/A	
CLIENT	: Ne	ew Y	ork City	Eco	nomi	c De	evelop	ment Corporation	PROJECT NO: KT2	00A7
PROJEC	T:	Sou	th Brook	lyn N	/Iarir	ne Te	ermina	l	DATE STARTED: 4/13	/2009
DRILLIN	NG (CON	TRAC	FOR	:	Aqui	ifer D	illing and Testing, Inc.	DATE FINISHED: 4/13	/2009
DRILLIN		MET	THOD:	- 0	l	Hollo	ow Ste	em Auger	DRILLER: T. P	alomeque
В	OR	EH(DLE DA	ТА				WELL DATA	INSPECTOR: J. La	acanlale
Diameter	· (in)):	4				Comp	letion: N/A	NORTHING (ft): N/A	
Total Der	oth ((ft):	22.0	0		1	Fotal 1	Depth (ft): N/A	EASTING (ft): N/A	
Sampler:		()-	Split S	poon		5	Screet	n Length (ft) /Slot (in): N/A	GROUND ELEVATIO	N (ft): N/A
Depth to	Wat	ter (†	ft): 7	20011		Ī	Depth	to Water (ft): N/A	TOC ELEVATION (ft)	N/A
Depth to	Roc	k (f	t): $N/$	/A			Permi	it No.: N/A		
NOTES.	1100	/II (I	• •							
NUIES:										
				F	ry					
tion		Ŋ		erve	0Ve]	7	(
Vell	pth	golo	SCS	Inte	Rec	udd	udd	Remarks		
V	De	,ith	Ď	ple	[əlc	Ā))			
Ŭ		Ι		Sam	aml	F	P			
	0				S Z		N/A			Asphalt
			CONCRE		\langle / \rangle		N/A	Asphalt. Concrete (Airknife from 0.0 to 6.0 ft by	5)	Concrete
			content						5).	
	1 -				\langle / \rangle					
				×××		•				
	2									
	2									
	3 -									
	4 -									
	5 -									
			FILL		\langle / \rangle	16	<1	Dark yellowish brown (10YR4/2) coars	e to fine SAND, some coarse	Gravelly Sand
					<u> </u>	15		to fine Gravel; moist.		collected B-11
		Æ								from 5.0 - 5.5
	6 -				{	4				ft bgs
						4				_
	7 -				1					Water $\stackrel{\checkmark}{\text{Level}}$ at
										7 ft. bgs.
		K-								
	8 -	X								
		\mathbb{K}								
		KF								
	9 -	X								

48	The Lou	uis Berger (ter Street	Grouj 23rd	p, Ind Floor	c.	PF	ROJECT NO.: KT200A7	BORING NO.: B	-11
	New Yor	rk, NY 10	038	100			Page 2 of 2	WELL NO.: N	//A
Well	Depth Lith.	USCS	Interval	Rec.	Blows	PID	Description		Remarks
					4 3 4 5	<1	Dark yellowish brown (10YR4/2) mediu Gravel; wet.	m to fine SAND, trace fine	Sand (Fill)
	14- 15- 16- 17-				2 2 3	<1	Dusky yellowish brown (10YR2/2) med	ium to fine SAND; wet.	Sand
	19– 20– 21–	SP SP			4	<1	Dusky yellowish brown (10YR2/2) med	ium to fine SAND; wet.	Collected composite sample WC-1 from B-1, collected B- 11GW End of Boring at 22 ft. bgs.

	The l	Louis	s Berger (From). Inc					10		
E	199 V	Vate	r Street, 2	23rd	Floor	r		Drilling Log		-12		
	New	Yorl	k, NY 100)38				Page 1 of 2	WELL NO.: N	'A		
CLIENT	: Ne	w Y	ork City	Ecor	nomi	c De	velop	ment Corporation	PROJECT NO: K	T200A7		
PROJEC	T:	Sout	th Brook	lyn N	I arir	ne Te	rmina	1	DATE STARTED: 4/	13/2009		
DRILLIN	NG (CON	TRAC	ΓOR	:	Aqui	fer D	illing and Testing, Inc.	DATE FINISHED: 4/	13/2009		
DRILLIN	NG N	ЛЕТ	THOD:		I	Hollo	w Ste	em Auger	DRILLER: T.	Palomeque		
В	ORI	EH()LE DA	TA				WELL DATA	INSPECTOR: J.	Lacanlale		
Diameter	(in)	:	4			0	Comp	letion: N/A	NORTHING (ft): N/	A		
Total Dep	oth (ft):	22.0	0		T	otal	Depth (ft): N/A	EASTING (ft): N/A			
Sampler:			Split Sp	poon		S	creei	n Length (ft) /Slot (in): N/A	GROUND ELEVATI	ON (ft): N/A		
Depth to Water (ft): 7)epth	to Water (ft): N/A	TOC ELEVATION (f	t): N/A		
Depth to Rock (ft): N/A						I	Permi	it No.: N/A				
NOTES:												
Well Construction	Depth	Lithology	NSCS	Sample Interval	Sample Recovery	FID (ppm)	PID (ppm)	Description		Remarks		
	0		CONCRE	\otimes			N/A	Concrete (Airknife from 0.0 to 6.0 ft bg	c)	Concrete		
1 2 3 4												
	6		FILL			.7 6 8 10	<1	Moderate yellowish brown (10YR5/4) n coarse to fine Gravel; moist.	nedium to fine SAND, trace	Sand (Fill), collected B-12 from 6.0 - 6.5 ft bgs Water Level at 7 ft. bgs.		

10	The Louis Berger Group, In 199 Water Street, 23rd Floo New York, NY 10038							ROJECT NO.: KT200)A7	BORING NO.:	B-12
	New Y	York,	NY 100	231u 038	F 100			Page 2 of 2		WELL NO.:	N/A
Well	Depth	Lith.	USCS	Interval	Rec.	Blows	PID	D	Description		Remarks
	10										
		S	P			3	<1	Dusky yellowish brown (10Y	(R2/2) med	lium to fine SAND; wet.	Sand
	11-					2					
	12-										
	13-										
	14-										
	15	S	P			8	<1	Medium gray (N5) medium to	o fine SAN	ID; wet.	
	16-					12					
	17-					10					
	18-										
	19-										
	20	S	P			5	<1	Medium gray (N5) medium te	o fine SAN	ID; wet.	
	21-					4					End of Boring
	22					8					at 22 It. 0gs.

ATTACHMENT C - TABLES

Table 1 - Summary of TCL Volatile Organic Compounds Detected in Soil

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

TAL Metals	Subpart 375-6 Unrestricted Use Soil	Subpart 375-6 Restricted Use Soil Clean-up Objective (RUSCO)		TAGM #4046 Recommended Soil Clean-up Objective (RSCOs)	Date Collected, Sample ID and Depth						
	Clean-up Objective				4/13/2009	4/9/2009	4/9/2009	4/10/2009	4/10/2009	4/13/2009	4/13/2009
	(UUSCO)				B2	B-3	B-6	B-7	B-10	B-11	B-12
		(Industrial)	(Protection of GW)	(110000)	5.5-6.0	11.0 -11.5	20-20.5	15.5-16.0	10.0-10.5	5.0-5.5	6.0-6.5
4-Isopropyltoluene	NS	NS	NS	10	ND	ND	0.023	ND	0.0018	ND	0.021
Chloroform	0.37	700	0.37	0.3	ND	ND	ND	0.01	ND	ND	ND
Methylene chloride	0.05	1000	0.05	0.1	ND	ND	0.0061	ND	ND	ND	0.0084

Notes:

All concentrations are reported in parts per million (ppm or mg/kg), unless otherwise indicated.

ND = Not Detected

UUSCOs = Unrestricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006) RUSCOs = Restricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006) TAGM RSCOs = NYSDEC Technical and Administrative Guidance Memorandum (TAGM #4046)

No VOC compounds were detected above UUSCOs and RUSCOs as per 6 NYCRR Subpart 375-6, or TAGM RSCOs

Recommended Soil Cleanup Objectives (RSCOs) (January 24, 1994)
Table 2 - Summary of TCL Semi-Volatile Organic Compounds Detected in Soil

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

Subpart 375-6 Subpart 375-6 Unrestricted Use Soil Restricted Use			art 375-6 ed Use Soil	TAGM #4046 Recommended Soil	Date Collected, Sample ID and Depth										
TCL SVOCs	Clean-up Objective	Clean-u	p Objective	Clean-un Objective	4/13/2009	4/9/2009	4/9/2009	4/10/2009	4/10/2009	4/13/2009	4/13/2009				
	(UUSCO)	(RI	JSCO)	(RSCOs)	B2	B-3	B-6	B-7	B-10	B-11	B-12				
		(Industrial)	(Protection of GW)	(10003)	5.5-6.0	11.0 -11.5	20-20.5	15.5-16.0	10.0-10.5	5.0-5.5	6.0-6.5				
Acenaphthene	20	1000	98	50	ND	ND	ND	0.098	ND	0.3	ND				
Acenaphthylene	100	1000	107	41	ND	ND	ND	0.19	ND	ND	ND				
Anthracene	100	1000	1000	50	ND	ND	ND	0.42	ND	1	ND				
Benzo[a]anthracene	1	11	1	0.224	0.087	ND	ND	2	ND	<u>2.7</u>	0.1				
Benzo[a]pyrene	1	1.1	22	0.061	0.082	ND	ND	<u>1.8</u>	ND	2.2	0.089				
Benzo[b]fluoranthene	1	11	1.7	1.1	0.12	ND	ND	2.2	ND	2.9	0.12				
Benzo[g,h,i]perylene	100	1000	1000	50	ND	ND	ND	1.2	ND	1.4	ND				
Benzo[k]fluoranthene	0.8	110	1.7	1.1	ND	ND	ND	0.76	ND	<u>1</u>	ND				
bis(2-Ethylhexyl)phthalate	NS	NS	NS	50	0.27	ND	ND	0.17	ND	0.57	ND				
Carbazole	NS	NS	NS	50	ND	ND	ND	0.088	ND	ND	ND				
Chrysene	1	110	1	0.4	0.087	ND	ND	<u>2</u>	ND	<u>2.5</u>	0.098				
Dibenzo[a,h]anthracene	0.33	1.1	1000	0.014	ND	ND	ND	0.3	ND	<u>0.43</u>	ND				
Di-n-octylphthalate	NS	NS	NS	8.1	0.21	ND	ND	0.14	ND	0.56	ND				
Fluoranthene	100	1000	1000	50	0.13	ND	ND	3.3	ND	5.6	0.23				
Fluorene	30	1000	386	50	ND	ND	ND	0.12	ND	0.4	ND				
Indeno[1,2,3-cd]pyrene	0.5	11	8.2	3.2	ND	ND	ND	<u>1</u>	ND	1.2	ND				
Phenanthrene	100	1000	1000	50	ND	ND	ND	1.8	ND	4.3	0.13				
Pyrene	100	1000	1000	50	0.14	ND	0.095	4.1	ND	5.3	0.21				

Notes:

All concentrations are reported in parts per million (ppm or mg/kg), unless otherwise indicated.

ND = Not Detected

UUSCOs = Unrestricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006) RUSCOs = Restricted Use Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (December 14, 2006) TAGM RSCOs = NYSDEC Technical and Administrative Guidance Memorandum (TAGM #4046)

BOLD = Detected concentration exceeds NYSDEC TAGM RSCOs

Underlined = Detected concentration exceeeds the UUSCO as per 6 NYCRR Subpart 375-6 Reficembereded Soli Cleanup Objectives (RSC SSC any per 6 NYCRR Subpart 375-6

Table 3 - Summary of TAL Metals Detected in Soil

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

	Subpart 375-6 Unrestricted Use Soil	Subpar Restricted	rt 375-6 d Use Soil	Factor USA Soil	TAGM #4046 I Recommended Soil	Date Collected, Sample ID and Depth										
TAL Metals	Clean-up Objective	Clean-up	Objective	Eastern USA Soli Background	Cloan-up Objective	4/13/2009	4/9/2009	4/9/2009	4/10/2009	4/10/2009	4/13/2009	4/13/2009				
	(UUSCO)	(RUS	SCO)	Background	(RSCOs)	B2	B-3	B-6	B-7	B-10	B-11	B-12				
		(Industrial)	(Protection of GW)		(10000)	5.5-6.0	11.0 -11.5	20-20.5	15.5-16.0	10.0-10.5	5.0-5.5	6.0-6.5				
Aluminum	NS	NS	NS	33000	SB	10000	7400	4100	7600	11000	6000	3200				
Arsenic	13	16	16	3 - 12	7.5 or SB	5.3	4	4.1	7.8	5	6.2	3.6				
Barium	350	10000	820	15 - 600	300 or SB	52	45	18	180	110	96	ND				
Calcium	NS	NS	NS	130 - 35000	SB	10000	2600	1500	5400	1400	16000	ND				
Chromium	30	6800	NS	1.5 - 40	10 or SB	19	15	11	<u>31</u>	27	16	8.6				
Cobalt	NS	NS	NS	2.5 - 60	30 or SB	7.3	9.6	4.6	8.1	16	6.5	3.5				
Copper	50	10000	1720	1 - 50	25 or SB	20	<u>54</u>	8.8	<u>140</u>	27	<u>96</u>	7.3				
Iron	NS	NS	NS	2000 - 550000	2000 or SB	16000	20000	9600	16000	21000	14000	9800				
Lead	63	3900	450	500*	SB	<u>64</u>	18	11	<u>1400</u>	59	<u>180</u>	6.7				
Magnesium	NS	NS	NS	100 - 5000	SB	3000	3500	2100	2500	6300	3600	1300				
Manganese	1600	10000	2000	50 - 5000	SB	260	460	130	310	<u>1600</u>	260	77				
Mercury	0.18	5.7	0.73	0.001 - 0.2	0.1 or SB	ND	ND	ND	<u>2.6</u>	ND	<u>1.4</u>	ND				
Nickel	30	10000	130	0.5 - 25	13 or SB	24	24	12	25	<u>61</u>	25	8.7				
Potassium	NS	NS	NS	8500 - 43000	SB	1100	1200	1200	920	7100	1000	ND				
Selenium	3.9	6800	4	0.1 - 3.9	2 or SB	2.8	<u>4.1</u>	ND	<u>4.1</u>	ND	ND	ND				
Sodium	NS	NS	NS	6000-8000	SB	450	1200	ND	ND	560	ND	ND				
Vanadium	NS	NS	NS	1 - 300	150 or SB	27	28	13	24	32	21	13				
Zinc	109	10000	2480	9 - 50	20 or SB	57	44	34	270	100	<u>240</u>	29				

Notes:

All concentrations are reported in parts per million (ppm or mg/kg), unless otherwise indicated.

ND = Not Detected

NS = No Standard

SB = Site background concentration

SCOs = Soil Cleanup Objectives as per the NYSDEC Regulations 6 NYCRR Subpart 375-6

TAGM RSCOs = NYSDEC Technical and Administrative Guidance Memorandum (TAGM #4046)

Remedial Program Soil Cleanup Objectives (December 14, 2006) Background levels for lead vary widery

BOLD = Detected concentration exceeds NYSDEC TAGM RSCOs Shading = Detected concentration exceeds RSCOs) (January 24, 1994) Shading = Detected concentration exceeds Eastern Soil Background Concentrations as per TAGM RSCOs

Underlined = Detected concentration exceeeds the UUSCO as per 6 NYCRR Subpart 375-6

Italic = Detected concentration exceeeds the RUSCO as per 6 NYCRR Subpart 375-6

Table 4 - Summary of TCLP Parameters Detected in Composite Soil Sample

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

			Date Coll	ected.	Date C	ollected.	Date Coll	ected.	Date C	ollected.	Date Col	lected.	Date Collected,		
	RC	RA	Sample ID, and	d Borina ID	Sample ID.	and Boring ID	Sample ID, an	d Boring ID	Sample ID.	and Boring ID	Sample ID, an	d Borina ID	Sample ID, a	and Boring ID	
Parameter	Hazardo	us Waste	4/13/2	109	<u> </u>	1/2009	4/10/2	nn <u>9</u>	<u> </u>	2009	4/9/20	109	4/13	/2009	
	Le	vels		1		/C-2		3	4/3/ W	<u>C-4</u>		-5	W	C-6	
			B-1	•	B-9	& B-10	B-7 &	е В-8	B-5	& B-6	B-3 & B-4		B-1	<u>8-0</u> & B-2	
Ignitability	< 140	°F	> 140	°F	> 140	l°F	> 140	°F	> 140	l°F	> 140	l°F	> 140	l°F	
nH	> 2 and < 12 5	1	9.6	1.	9.9	1.	9.5	1	92	1	8.6	1.	92	· ·	
Reactive Cvanide	250	ma/ka	ND	ma/ka	ND	ma/ka	ND	ma/ka	ND	ma/ka	ND	ma/ka	ND	ma/ka	
Reactive Sulfide	500	ma/ka	ND	ma/ka	ND	ma/ka	ND	mg/kg	ND	ma/ka	ND	ma/ka	ND	ma/ka	
1.1-Dichloroethene	0.7	ma/L	ND	mg/L	ND	ma/L	ND	mg/L	ND	mg/L	ND	ma/L	ND	ma/L	
1.2-Dichloroethane	0.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	ma/L	ND	mg/L	
1,4-Dichlorobenzene	7.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
2-Butanone	200	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Benzene	0.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Carbon tetrachloride	0.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Chlorobenzene	100	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Chloroform	6	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Tetrachloroethene	0.7	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Trichloroethene	0.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Vinyl Chloride	0.2	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
2,4,5-Trichlorophenol	400	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
2,4,6-Trichlorophenol	2	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
2,4-Dinitrotoluene	0.13	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
2-Methylphenol	200	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
3&4-Methylphenol	200	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Hexachlorobenzene	0.13	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Hexachlorobutadiene	0.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Hexachloroethane	3	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Nitrobenzene	2	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Pentachlorophenol	100	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Pyridine	5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Chlorodane	0.03	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Endrin	0.02	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Gamma-BHC	0.4	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Heptachlor	0.008	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Heptachlor epoxide	0.008	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Methoxychlor	10	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
loxaphene	0.5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
2,4-D	10	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Silvex	1	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Arsenic	5	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Barium Cadraiure	100	mg/L	0.32	mg/L	0.34	mg/∟	0.60	mg/∟	0.33	mg/L	0.39	mg/∟	0.34	mg/L	
	1 r	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	ND	mg/L	
Chromium	5	mg/L		mg/L		mg/∟		mg/∟		mg/L		mg/∟	ND	mg/L	
	5	mg/L	0.26	Img/L	ND	mg/∟	1.2	mg/L	ND	mg/L	ND	mg/L		mg/L	
	0.2	mg/L		ing/L		mg/∟		mg/L		mg/L		mg/L		ing/L	
	NS A	mg/L		mg/L		mg/∟		mg/L		Ing/L		ing/L		mg/L	
Selenium		mg/L		Ing/L		mg/L		mg/L		Ing/L		ing/L		mg/L	
Silver	5	IIIG/L	ND	mg/L	ND	ing/L	ND	ing/∟	UND	mg/L	ND	ing/∟	ND	mg/L	

Notes:

All TCLP concentrations are reported in parts per million (mg/L), unless otherwise indicated.

ND = Compound not detected above method detection limit (see attached lab report for mdl's) **Bold** = Positive detection

Table 5 - Summary of TAL Metals Detected in Groundwater

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

Target Analyte List Metal	NYSDEC Class GA Groundwater	Date Collected, Sample ID and Depth
	Standards and Guidance Values	4/13/2009
		B-11 GW
Aluminum	NS	240000
Arsenic	25	410
Barium	1000	2500
Beryllium	3	28
Cadmium	5	19
Calcium	NS	340000
Chromium	50	770
Cobalt	NS	350
Copper	200	1300
Iron	300	800000
Lead	25	2200
Magnesium	35000	160000
Manganese	300	12000
Mercury	0.7	17
Nickel	100	820
Potassium	NS	65000
Sodium	20000	60000
Vanadium	14	1100
Zinc	2000	4200

Notes:

All concentrations are reported in parts per billion (ppb or ug/l), unless otherwise indicated. NS = No Standard

Bold = Positive detection

Shading = Concentration exceeds NYSDEC Class GA Groundwater Standards and Guidance Values NYSDEC Class GA Groundwater Standards and Guidance Values as per NYSDEC Technical and Operational Guidance Series (TOGS)

Table 6 - Summary of TCL Semi-Volatile Organic Compounds Detected in Groundwater

New York City Economic Development Corporation Soil Characterization for the 39th Street Pier Bulkhead Rehabilitation South Brooklyn Marine Terminal, Brooklyn, NY

Target Analyte List Metal	NYSDEC Class GA Groundwater	Date Collected, Sample ID and Depth
	Standards and Guidance Values	4/13/2009
		B-11 GW
bis(2-Ethylhexyl)phthalate	5	7.9
Pyrene	50	2.5

Notes:

All concentrations are reported in parts per billion (ppb or ug/l), unless otherwise indicated.

NS = No Standard

Bold = Positive detection

Shading = Concentration exceeds NYSDEC Class GA Groundwater Standards and Guidance Values NYSDEC Class GA Groundwater Standards and Guidance Values as per NYSDEC Technical and Operational Guidance Series (TOGS)

ATTACHMENT D – ANALYTICAL REPORT

_

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 198 ROUTE 46 EAST, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: SBMT

Client PO: KT200A7

Report To: Louis Berger & Associates 412 Mt.Kemble Ave. Morristown, NJ 07960

Attn: J.Nelson/Jim V.V

Received Date: 4/13/2009

Report Date: 5/5/2009

Deliverables: NYDOH-CatA

Lab ID: AC43958

Lab Project No: 9041403

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Kobyn nol In

Jeri Rossi - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

USACE

NJ (07071 and 07069) PA

NY (ELAP11408 and 11939) (68-00463 and 68-04409) KY (90124)

CT (PH-0671) WV (353)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 196

SDG Narrative

Client: Louis Berger & Associates Project: SBMT

Hampton-Clarke/Veritech (HC·V) received the following samples on April 13, 2009:

Client ID	HCV Sample ID	<u>Matrix</u>	Analysis
B-2	AC43958-001	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-3	AC43958-002	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-6	AC43958-003	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-7	AC43958-004	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-10	AC43958-005	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-11	AC43958-006	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-12	AC43958-007	Soil	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7471A)
B-11 GW	AC43958-008	Aqueous	VO (8260B), BNA (8270C), PCB (8082), Pesticides (8081A), Metals (6010B, 7470A)
WC-1	AC43958-009	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A), TCLP Metals (6010B, 7470A)
WC-2	AC43958-010	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A), TCLP Metals (6010B, 7470A)
WC-3	AC43958-011	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A), TCLP Metals (6010B, 7470A)
WC-4	AC43958-012	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A), TCLP Motors (6010B, 7470A)
WC-5	AC43958-013	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A), TCLP Motols (6010B, 7470A)
WC-6	AC43958-014	Soil	RCN (7.3.3), RS (7.3.4), Ignitability (1030), pH (9045C), TCLP VO (8260B), TCLP BNA (8270C), TCLP Pesticides (8081A), TCLP Herbicides (8151A), TCLP Motols (6010B, 7470A)
ТВ	AC43958-015	Aqueous	VO (8260B)

Volatile Organic Analysis:

Methylene chloride was recovered in samples AC43958-003 and 007 suggesting possible laboratory contamination.

The recovery of Trichloroethene is biased high, outside QC limits in the Matrix Spike in batch 11916. All QC criteria were met in the Laboratory Control Sample (MBS).

Base Neutral Acid Extractable Analysis:

The surrogate recoveries are outside QC limits in sample AC43958-008 in both extracts.

PCB Analysis:

Data conforms to method requirements.

Pesticide Analysis:

Data conforms to method requirements.

Metals Analysis:

The serial dilution for Beryllium and Calcium is outside QC limits in batch 10131, suggesting matrix interference.

The serial dilution for Potassium is outside QC limits in batch 10136, suggesting matrix interference.

The recovery of Antimony is biased low, outside QC limits in the Matrix Spike and Matrix Spike Duplicate in batch 10131. All QC criteria were met in the LCS and LCS MR.

The recovery of Barium, Magnesium, Potassium and Zinc is biased low, outside QC limits in the Matrix Spike in batch 10131. All QC criteria were met in the LCS and LCS MR.

Wet Chemistry Analysis:

Data conforms to method requirements.

TCLP Volatile Organic Analysis:

Data conforms to method requirements.

TCLP Base Neutral Acid Extractable Analysis:

Data conforms to method requirements.

TCLP Pesticide Analysis:

Data conforms to method requirements.

TCLP Herbicide Analysis:

Data conforms to method requirements.

TCLP Metals Analysis:

Data conforms to method requirements.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Rossi Or Jeri Rossi

Quality Assurance Director

Stanley Gilewicz Laboratory Director 515709

Date

	Sel he	10) Relinquished By:	010- *	-009	800-	-007	-006	-005	-004	-003	-002	-001	l Lab Sample#	AC43958 "	➡ Batch# p	ONLY	FOR LAB		1d) Send Report To:	TC) Send Invoice Io: _	1b) Email/Cell/Fax/Ph:		1a) Customer:		DVELAC/NJ# 07071/070	175 IIC Hun AR Weet Fai
	k NJ >	Accept	WC-7	WC-1	B-IIGN	B-12	3-11	D - 10	5-7	3-6	B-3	B-2	4) Customer Sample ID	W-Ground Water SL-Siudg W-Waste Water O-Oil	Matrix Code N-Drinking Water S-Soil				SEAN N	New York	-+04-2+B	MORRISTOWN	UNIS BERGER	Customer Informati	69 CT# PH-0671 MA# NJ386	find Now lareav 07004 & 1275
	1 60/21/4	ed By Date	V 4110/04 1300 X	5 4/13/00 1245 X	Ger 19/13/19 1330	V 4/17/09 11.00	4/13/09 1210	4/10/09/1230	4/10/09 900	1 1 1 109 1515	V/a/09 1010	5 1/1400 950	5) 6) Sample E Matrix Date Time C		A Air e(C)	Sam	Check if Continger		chonigal .	20	Labor 20	NT 07960 20	MALE ME 20	n	NY/ELAP# 11408/11939 PA#	Rinnmfield Avenue, Building 3. Unit
11) Sampler: Please note NUMBE A fee of \$5/sample will u	7:54 @ Full Tel	Time	X	×		× ×	XX	×	×	×	X	××	Grat		1242	De la		(7 0م		I) Quote#/PO# (If Applicabl	Location (City/state):) Project Manager:	I) Project: SPMT	Project Info	68-463/68-04409 WV# 353 K	FOA Fairfield New Jersev 07004
T La Caulta RED items. If not completed y be assessed for storage should samp	-/TAL+30 (No (Comments. Notes. Sp											/////		/////			Analysis Request		e): KT 200A7	La La Kina	MCUDMIA AI		ormation	Y# 90124	Fax: 973-43
Date: 4	CN), DTW 4/1	Decial Requirements. H	<	.4.	Ц Ц Ц	4				· · · · · · · · · · · · · · · · · · ·		2	None MeOH Encor NaOH		8)		/ /_/ /		Expedited TAT Not always av:	Standard on	1-Week(25%) Fu	4 Day (TPH) CL	48-Hour(100%) Va 48-Hour(75%) Wa	Turnaround Time Re	3) Reporting Requi	
13 OC Cool Blayed.	5/09	ZARDS			1								H2SO HNO3 Other		(If applicable	9) Methano	Check if Contingent		ilable (Please check with lab)!	fer: Other:	PDF	excel-NJCC Excel-Nytagn	ste Equis	port type Electronic	rements(please circle)	2

	y be delayed. nalysis	your analytical work may ple not be activated for any an	Please note NUMBERED items. If not completed A fee of \$5/sample will be assessed for storage should sam					
3.04	4/13/09	Date:	11)Sampler: J. Lacalele					
Cooler Tmp	1			-				1
								6
				17:54	4/13/00	ff	bler R	14
	s, HAZARDS	pecial Requirements	Comments, Notes, S	Time	Date	Accepted By	By:	10)Relinguished
					•			
					4/400 (q	TB	10-15
		<		X X	GEO1 WEI	4	- WC-6	-014
				X X	1/109 1145	-	WC-5	-013
				X X	19/09/1520		WC-4	-012
		2		X	4/10/09 1045	5	NC-3	-011
	HCI H2SO HNO3 Other	None MeOt Encol	11111	Com Grat	6)Sample Date Time	5) Matrix	4) Customer Sample ID	Lab Sample#
Comments	Bottles	/ / # Of		positi p(G)	Ot-Other	SL-Sludge 0-Oil	GW-Ground Water	AC43958
(If applicable)	8		(S) S / / / / / / / / / / / / / / / / / /	e(C)	A-Air	Matrix Codes: S-Soit	DW-Drinking Water	▼ Batch#
9)Methanol				Sample Type	1. A. A.			ONLY
ntingent	c===Check if Co	/ / / / <		igent==>	Check if Contin			FOR LAB
			7) Analysis Request					
check with lab)!	/s available (Please c	Expedited TAT Not alway			1 mg		fo:	1d) Send Report
Other:	Other:	Other: 200024	NPO# (If Applicable): KT なんしんオ	2d) Quote#		¢	ō	IC) Send Invoice
PDF	Full/Cat-B Cat-A	1-Week(25%) 10 Days(10%)					x/Ph:	1b) Email/Cell/Fa
Excel-Nytagm	CLP	4 Day (TPH)	Annager: Source Proches 1/1	2b) Project N		PAGEI	555	
Equis	Waste	48-Hour(75%)	STOLD MARIN	2a) Project: -		2AS	and Chan	Address:
Hazsite/Csv	Data Sum	24-Hour(100%)				r Information	Custome	
Flectronic Deliv	Renort type	Turnaround Time	Design Information		1 # 11700/11000			
ease circle)	muirements(pl	39-1458 3) Renorting Re	eld, New Jersey 07004 Fax: 973-4:	Unit 50A, Fairfi	Avenue, Building 3	004 & 1275 Bloomfield	t, Fairfield, New Jersey 07	175 US Hwy 46 We

CONDITION UPON RECEIPT

		Batch Number AC43958	Entered By: Date Entered	Frantz 4/14/2009 8:39:00 AM
1	Yes	Is there a corresponding COC included with the sa	imples?	
2	Yes	Are the samples in a container such as a cooler or	lce chest?	
3	Yes	Are the COC seals intact?		
4	Yes	Please specify the Temperature inside the contain 3.0	er (in degC)	
5	Yes	Are the samples refrigerated (where required)/hav	e they arrived	on ice?
6	Yes	Are the samples within the holding times for the pasamples:	arameters liste	d on the COC? IF no, list parameters and
7	Yes	Are all of the sample bottles intact? If no, specify s	sample numbe	rs broken/leaking
8	Yes	Are all of the sample labels or numbers legible?	f no specify:	
9	Yes	Do the contents match the COC? If no, specify		
10	Yes	Is there enough sample sent for the analyses liste	d on the COC	? If no, specify:
11	NO	Are samples preserved correctly?		
12	NA	Are all soils preserved in methanol accompanied l	oy dry soil?	
13	NA	Other comments Specify		

14 NA Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Date Entered 4/14/2009 8:39:00 AM	Batch Number	AC43958	Entered By:	Frantz
		· · · · · · · · · · · · · · · · · · ·	Date Entered	4/14/2009 8:39:00 AM

 Lab#:	Container Siz	Container Typ	Paramete	Preservative	PH
AC43958-001	NA	NA	NA	NA	NA
AC43958-002	NA	NA	NA	NA	NA
AC43958-003	NA	NA	NA	NA	NA
AC43958-004	NA	NA	NA	NA	NA
AC43958-005	NA	NA	NA	NA	NA
AC43958-006	NA	NA	NA	NA	NA
AC43958-007	NA	NA	NA	NA	NA
AC43958-008	40ml	G	VO+10	HCL	7
AC43958-008	1L	Р	METALS	HNO3	1
AC43958-008	1L	G	PEST	NONE	7
AC43958-009	NA	NA	NA	NA	NA
AC43958-010	NA	NA	NA	NA	NA
AC43958-011	NA	NA	NA	NA	NA
AC43958-012	NA	NA	NA	NA	NA
AC43958-013	NA	NA	NA	NA	NA
AC43958-014	NA	NA	NA	NA	NA
AC43958-015	40ml	G	VO+10	HCL	1

		Loc	Dat						Loc	Det		
Lob#	DataTima	or	Bot	A/	Analysia		Loh#	DataTima:	or	BOU	A/	Analysis
	Date Time:	User	NU		Analysis) 			User	INU		Received
AC43958-001	04/13/09 17:45	FRAN	0	M	Received		AC43958-005	04/13/09 17:45	FRAN	0	M	
AC43958-001	04/15/09 08:44	SDL	1	A	MIXING		AC43958-005	04/14/09 08:49	R12	1	A	NONE
AC43958-001	04/15/09 10:54	PM	1	A	%SOLIDS		AC43958-005	04/15/09 08:44	SDL	1	A	MIXING
AC43958-001	04/15/09 16:08	R12	1	А	NONE		AC43958-005	04/15/09 10:54	РМ	1	A	%SOLIDS
AC43958-001	04/20/09 11:27	OA	1	A	TDSI/HG	1	AC43958-005	04/15/09 16:08	R12	1	A	NONE
AC43958-001	04/20/09 13:12	R12	1	А	NONE		AC43958-005	04/20/09 11:27	OA	1	Α	TDSI/HG
AC43958-001	04/23/09 10:01	JB	1	Α	BNA-S		AC43958-005	04/20/09 13:12	R12	1	Α	NONE
AC43958-001	04/23/09 10:07	MANSI	1	A	S,P/P		AC43958-005	04/22/09 09:07	MANS	1	A	S,BNA
AC43958-001	04/23/09 11:43	R12	1	A	NONE	ł	AC43958-005	04/22/09 09:48	MANE		Å	
AC43958-001	04/14/09 09:06	SG	2		NONE		AC43958-005	04/23/09 10:07	R12			NONE
AC43958-001	04/15/09 14:22	R21	2		NONE		AC43958-005	04/14/09 09:06	R21	2	A	NONE
AC43958-001	04/16/09 08:43	SG	2	A	VOA		AC43958-005	04/15/09 13:50	SG	2	A	voa
AC43958-001	04/16/09 08:58	R21	2	A	NONE		AC43958-005	04/15/09 14:22	R21	2	A	NONE
AC43958-001	04/15/09 14:22	R21	4	Α	NONE	1	AC43958-005	04/15/09 14:22	R21	4	Α	NONE
AC43958-001	04/15/09 15:21	SG	4	A	voa		AC43958-005	04/15/09 16:51	R21	4	м	NONE
AC43958-001	04/15/09 16:51	R21	4	м	NONE		AC43958-005	04/16/09 08:23	SG	4	Α	voa
AC43958-002	04/13/09 17:45	FRAN	0	м	Received		AC43958-005	04/16/09 10:53	R21	4	M	NONE
AC43958-002	04/14/09 08:39	FRAN	0	M	Login	-	AC43958-006	04/13/09 17:45	FRAN	0	м	Received
AC43958-002	04/15/09 08:44	SOL	1				AC43958-006	04/14/09 08:39	PH2			
AC43958-002	04/15/09 10:54	PM P12			NONE		AC43958-006	04/14/09 08:49	SDI			MIXING
AC43958-002	04/20/09 11:27				TDSI/HG		AC43958-006	04/15/09 10:54	PM	Ľ	Â	%SOLIDS
AC43958-002	04/20/09 13:12	B12			NONE		AC43958-006	04/15/09 16:08	R12	1	A	NONE
AC43958-002	04/20/09 16:29	PRITI	1	A	S-BNA	1	AC43958-006	04/20/09 11:27	OA	1	A	TDSI/HG
AC43958-002	04/20/09 19:14	R12	1	A	NONE		AC43958-006	04/20/09 13:12	R12	1	А	NONE
AC43958-002	04/22/09 09:07	MANS	1	А	S, BNA		AC43958-006	04/23/09 10:01	JB	1	A	BNA-S
AC43958-002	04/22/09 09:48	R12	1	A	NONE		AC43958-006	04/23/09 10:07	MANS	1	Α	S,P/P
AC43958-002	04/23/09 10:07	MANS	1	A	S,P/P		AC43958-006	04/23/09 11:43	R12	1	Α	NONE
AC43958-002	04/23/09 11:37	R12	1	Α	NONE		AC43958-006	04/14/09 09:06	R21	2	A	NONE
AC43958-002	04/14/09 09:06	R21	2	A	NONE		AC43958-006	04/15/09 13:50	SG	2	A	voa
AC43958-002	04/15/09 13:50	SG	2	A	VOa		AC43958-006	04/15/09 14:22	R21	2	A	NONE
AC43958-002	04/15/09 14:22	R21	2	Å	NONE		AC43958-006	04/15/09 14:22	R21	4	A	NONE
AC43958-002	04/16/09 08:58	B21	2		NONE	-	AC43958-006	04/16/09 10:53	R21	4	ĥ	NONE
AC43958-002	04/15/09 14:22	R21	4	A	NONE		AC43958-007	04/13/09 17:45	FRAN	0	м	Received
AC43958-002	04/15/09 15:21	SG	4	A	voa		AC43958-007	04/14/09 08:39	FRAN	0	м	Login
AC43958-002	04/15/09 16:51	R21	4	м	NONE	i i	AC43958-007	04/14/09 08:49	R12	1	A	NONE
AC43958-003	04/13/09 17:45	FRAN	0	м	Received		AC43958-007	04/15/09 08:44	SDL	1	Α	MIXING
AC43958-003	04/14/09 08:39	FRAN	0	м	Login		AC43958-007	04/15/09 10:54	PM	1	A	%SOLIDS
AC43958-003	04/15/09 08:44	SDL	1	A	MIXING		AC43958-007	04/15/09 16:08	R12	1	A	NONE
AC43958-003	04/15/09 10:54	PM	1	A	%SOLIDS		AC43958-007	04/20/09 11:27	OA		A	TDSI/HG
AC43958-003	04/15/09 16:08	R12	1	A			AC43958-007	04/20/09 13:12	R12	1	A	NONE BNA S
AC43958-003	04/20/09 13:12	B12	1		NONE	-	AC43958-007	04/23/09 10:07	MANS			S P/P
AC43958-003	04/20/09 16:29	PRITI	1	A	S-BNA		AC43958-007	04/23/09 11:43	R12	1	A	NONE
AC43958-003	04/20/09 19:14	R12	1	A	NONE		AC43958-007	04/14/09 09:06	R21	2	A	NONE
AC43958-003	04/22/09 09:07	MANS	1	A	S,BNA		AC43958-007	04/15/09 13:50	SG	2	A	voa
AC43958-003	04/22/09 09:48	R12	1	А	NONE		AC43958-007	04/15/09 14:22	R21	2	A	NONE
AC43958-003	04/23/09 10:07	MANS	1	Α	S,P/P		AC43958-007	04/15/09 14:22	R21	4	A	NONE
AC43958-003	04/23/09 11:37	R12	1	Α	NONE		AC43958-007	04/16/09 08:23	SG	4	Α	voa
AC43958-003	04/14/09 09:06	R21	2	A	NONE		AC43958-007	04/16/09 10:53	R21	4	M	NONE
AC43958-003	04/15/09 13:50	SG	2	A	NONE		AC43958-008	04/13/09 17:45	FRAN	0	M	
AC43958-003	04/15/09 14:22	R21	4	A 4	NONE	1	AC43958-008	04/14/09 08:39	R12	1		NONE
AC43958-003	04/15/09 15:21	SG	4	Ā	voa		AC43958-008	04/16/09 17:20	KALPI	81	A	A-P/P
AC43958-003	04/15/09 16:51	R21	4	м	NONE		AC43958-008	04/16/09 19:57	R12	1	A	NONE
AC43958-004	04/13/09 17:45	FRAN	0	м	Received		AC43958-008	04/20/09 17:13	NEHA	1	A	A-BNA
AC43958-004	04/14/09 08:39	FRAN	0	м	Login		AC43958-008	04/20/09 23:56	R12	1	Α	NONE
AC43958-004	04/15/09 08:44	SDL	1	А	MIXING	1	AC43958-008	04/14/09 08:49	R12	2	A	NONE
AC43958-004	04/15/09 10:54	РМ	1	A	%SOLIDS		AC43958-008	04/17/09 05:23	cv	2	A	BNA-A
AC43958-004	04/15/09 16:08	R12	1	Α	NONE		AC43958-008	04/14/09 08:49	R12	3	Α	NONE
AC43958-004	04/20/09 11:27	OA	1	A	TDSI/HG		AC43958-008	04/16/09 17:20	KALPI	3	A	A-P/P
AC43958-004	04/20/09 13:12	R12	1	A		4	AC43958-008	04/14/09 08:49	R12	4	A	
AC43958-004	04/22/09 09:07	MANSI B12		A	S,BNA		AC43958-008	04/16/09 17:20	KALPI	5	A	NONE
AC43958-004	04/22/09 09:48	MANC	1	4	S P/P		AC43958-008	04/14/09 08:49	MP	5		TDSW/HG
AC43958-004	04/23/09 11:37	R12	1	Â	NONE		AC43958-008	04/22/09 11:56	R12	5	Â	NONE
AC43958-004	04/14/09 09:06	R21	2	A	NONE		AC43958-008	04/14/09 08:52	R22	6	A	NONE
AC43958-004	04/15/09 13:50	SG	2	A	voa	1	AC43958-008	04/14/09 08:52	R22	7	A	NONE
AC43958-004	04/15/09 14:22	R21	2	А	NONE		AC43958-008	04/15/09 10:24	WP	7	A	voa
AC43958-004	04/15/09 14:22	R21	4	А	NONE		AC43958-009	04/13/09 17:45	FRAN	0	м	Received
AC43958-004	04/16/09 08:23	SG	4	А	voa		AC43958-009	04/14/09 08:39	FRAN	0	м	Login
AC43958-004	04/16/09 10:53	R21	4	1.4	NONE	1	AC43958-009	04/14/09 08:49	R12	11	Δ	NONE

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

		Loc	D - 1		
lah# [.]	DateTime [.]	or	BOU	AV M	Analysis
AC43958_009	04/15/09 08:44	SDI	1	Δ	MIXING
AC43958-009	04/15/09 10:54	PM	1	Ā	%SOLIDS
AC43958-009	04/15/09 10:55	OA	1	A	TCLP EXT
AC43958-009	04/15/09 11:34	R12	1	A	NONE
AC43958-009	04/16/09 09:15	JAD	1	A	R-CN/R-S
AC43958-009	04/16/09 12:25	JAD	1	M	
AC43958-009	04/16/09 13:54	JAD R12	1	A A	
AC43958-009	04/14/09 08:49	R12	2	Â	NONE
AC43958-009	04/23/09 09:05	SW	2	A	zhe
AC43958-009	04/23/09 09:49	R12	2	A	NONE
AC43958-010	04/13/09 17:45	FRAN	0	м	Received
AC43958-010	04/14/09 08:39	FRAN	0	M	Login
AC43958-010	04/15/09 08:49	SDI	1	A A	MIXING
AC43958-010	04/15/09 10:54	PM	1	A	%SOLIDS
AC43958-010	04/15/09 10:55	OA	1	A	TCLP EXT
AC43958-010	04/15/09 11:34	R12	1	Α	NONE
AC43958-010	04/16/09 09:15	JAD	1	Α	R-CN/R-S
AC43958-010	04/16/09 12:25	JAD	1	M	
AC43958-010	04/16/09 13:54	JAD R12	1		
AC43958-010	04/14/09 08:49	R12	2	A	NONE
AC43958-010	04/21/09 09:06	sw	2	А	ZHE
AC43958-010	04/21/09 10:04	R12	2	А	NONE
AC43958-011	04/13/09 17:45	FRAN	0	м	Received
AC43958-011	04/14/09 08:39	FRAN	0	м	Login
AC43958-011	04/14/09 08:49	R12	1	A	NONE
AC43958-011	04/15/09 10:54	PM	1	Â	%SOLIDS
AC43958-011	04/15/09 10:55	OA	1	A	TCLP EXT
AC43958-011	04/15/09 11:34	R12	1	A	NONE
AC43958-011	04/16/09 09:15	JAD	1	А	R-CN/R-S
AC43958-011	04/16/09 12:25	JAD	1	м	PH
AC43958-011	04/16/09 13:54	JAU R12	1	A ·	
AC43958-011	04/14/09 08:49	R12	2	Ā	NONE
AC43958-011	04/21/09 09:06	SW	2	Α	ZHE
AC43958-011	04/21/09 10:04	R12	2	А	NONE
AC43958-012	04/13/09 17:45	FRAN	0	м	Received
AC43958-012	04/14/09 08:39	FRAN	0	M	Login
AC43958-012	04/15/09 08:49	SDL	1	Ā	MIXING
AC43958-012	04/15/09 10:54	PM	1	A	%SOLIDS
AC43958-012	04/15/09 10:55	OA	1	A	TCLP EXT
AC43958-012	04/15/09 11:34	R12	1	A	NONE
AC43958-012	04/16/09 09:15	JAD	1	A	R-CN/R-S
AC43958-012	04/16/09 12:25	JAD	1	M	
AC43958-012	04/16/09 16:19	R12	1	A	NONE
AC43958-012	04/14/09 08:49	R12	2	A	NONE
AC43958-012	04/21/09 09:06	sw	2	A	ZHE
AC43958-012	04/21/09 10:04	R12	2	A	NONE
AC43958-013	04/13/09 17:45	FRAN	0	м	Received
AC43958-013	04/14/09 08:39	R12	1	A	NONE
AC43958-013	04/15/09 08:44	SDL	1	A	MIXING
AC43958-013	04/15/09 10:54	РМ	1	A	%SOLIDS
AC43958-013	04/15/09 10:55	OA	1	A	TCLP EXT
AC43958-013	04/15/09 11:34	R12	1	A	NONE
AC43958-013	04/16/09 09:15		1	A	R-CN/R-S
AC43958-013	04/16/09 13:54	JAD	1	A	IGNITABILITY
AC43958-013	04/16/09 16:19	R12	1	A	NONE
AC43958-013	04/14/09 08:49	R12	2	A	NONE
AC43958-013	04/21/09 09:06	SW	2	A	ZHE
AC43958-013	04/21/09 10:04	R12	2	A	NONE
AC43958-014	04/13/09 17:45	FRAN	0	M	
AC43958-014	04/14/09 08:49	R12	1	A	NONE
AC43958-014	04/15/09 08:44	SDL	1	A	MIXING
AC43958-014	04/15/09 10:54	РМ	1	A	%SOLIDS
AC43958-014	04/15/09 10:55	OA	1	Α	TCLP EXT
AC43958-014	04/15/09 11:34	R12	1	A	NONE

Lab#:	DateTime:	Loc or User	Bot Nu	A/ M	Analysis
AC43958-014	04/16/09 12:25	JAD	1	М	РН
AC43958-014	04/16/09 13:54	JAD	1	Α	IGNITABILITY
AC43958-014	04/16/09 16:19	R12	1	Α	NONE
AC43958-014	04/14/09 08:49	R12	2	Α	NONE
AC43958-014	04/23/09 09:05	sw	2	Α	zhe
AC43958-014	04/23/09 09:49	R12	2	Α	NONE
AC43958-015	04/13/09 17:45	FRAN	0	м	Received
AC43958-015	04/14/09 08:39	FRAN	0	м	Login
AC43958-015	04/14/09 08:52	R22	3	Α	NONE
AC43958-015	04/15/09 10:24	WP	3	Α	voa
AC43958-015	04/14/09 08:52	R22	4	Α	NONE

 AC43958-014
 04/16/09 09:15
 JAD
 1
 A
 R-CN/R-S

 Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Laboratory Chronicle

Lab#: AC43958-001 Sample ID: B-2

Mercury

	TestGroupName % Preparation Methe Analytical Methe	Solids SM2540G od: SM 2540G od: SM 2540G	5		
		Pre	q	Ana	lysis
	Analyte	Date	Бу	Date	By
	% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT
•	TestGroupName N Preparation Metho Analytical Metho	lercury (Soil/Was od: EPA 7471A od: EPA 7471A	te) 7471A		
	Analyte	Pre Date	р Ву	Ana Date	ilysis By

04/20/09

oluferni

04/22/09

JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

, indificult mouriou				
	Pre	р	Anaiy	SIS
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	MS
Alpha-BHC	04/23/09	mansip	04/24/09	MS
beta-BHC	04/23/09	mansip	04/24/09	MS
Chlordane	04/23/09	mansip	04/24/09	MS
delta-BHC	04/23/09	mansip	04/24/09	MS
Dieldrin	04/23/09	mansip	04/24/09	MS
Endosulfan I	04/23/09	mansip	04/24/09	MS
Endosulfan II	04/23/09	mansip	04/24/09	MS
Endosulfan Sulfate	04/23/09	mansip	04/24/09	MS
Endrin	04/23/09	mansip	04/24/09	MS
Endrin Aldehyde	04/23/09	mansip	04/24/09	MS
Endrin Ketone	04/23/09	mansip	04/24/09	MS
gamma-BHC	04/23/09	mansip	04/24/09	MS
Heptachlor	04/23/09	mansip	04/24/09	MS
Heptachlor Epoxide	04/23/09	mansip	04/24/09	MS
Methoxychlor	04/23/09	mansip	04/24/09	MS
p,p'-DDD	04/23/09	mansip	04/24/09	MS
p,p'-DDE	04/23/09	mansip	04/24/09	MS
p,p'-DDT	04/23/09	mansip	04/24/09	MS
Toxaphene	04/23/09	mansip	04/24/09	MS

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Pre	Prep		
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

	Prep		Anal	ysis
Analyte	Date	Ву	Date	By
1,2,4-Trichlorobenzene	04/23/09	yolanta	04/23/09	AHD
1,2-Diphenylhydrazine	04/23/09	yolanta	04/23/09	AHD
2,4,5-Trichlorophenol	04/23/09	yolanta	04/23/09	AHD
2,4,6-Trichlorophenol	04/23/09	yolanta	04/23/09	AHD
2,4-Dichlorophenol	04/23/09	yolanta	04/23/09	AHD
2,4-Dimethylphenol	04/23/09	yolanta	04/23/09	AHD
2,4-Dinitrophenol	04/23/09	yolanta	04/23/09	AHD
2,4-Dinitrotoluene	04/23/09	yolanta	04/23/09	AHD
2,6-Dinitrotoluene	04/23/09	yolanta	04/23/09	AHD
2-Chloronaphthalene	04/23/09	yolanta	04/23/09	AHD
2-Chlorophenol	04/23/09	yolanta	04/23/09	AHD
2-Methylnaphthalene	04/23/09	yolanta	04/23/09	AHD
2-Methylphenol	04/23/09	yolanta	04/23/09	AHD
2-Nitroaniline	04/23/09	yolanta	04/23/09	AHD
2-Nitrophenol	04/23/09	yolanta	04/23/09	AHD
3&4-Methylphenol	04/23/09	volanta	04/23/09	AHD

Project #: 9041403 0011

Lab#: AC43958-001 Sample ID: B-2

ab#: AC43958-001	Sample ID: B-2			
3,3'-Dichlorobenzidine	04/23/09	yolanta	04/23/09	AHD
3-Nitroaniline	04/23/09	yolanta	04/23/09	AHD
4,6-Dinitro-2-methylphenol	04/23/09	yolanta	04/23/09	AHD
4-Bromophenyl-phenylether	04/23/09	yolanta	04/23/09	AHD
4-Chloro-3-methylphenol	04/23/09	yolanta	04/23/09	AHD
4-Chloroaniline	04/23/09	yolanta	04/23/09	AHD
4-Chlorophenyl-phenylether	04/23/09	yolanta	04/23/09	AHD
4-Nitroaniline	04/23/09	yolanta	04/23/09	AHD
4-Nitrophenol	04/23/09	yolanta	04/23/09	AHD
Acenaphthene	04/23/09	yolanta	04/23/09	AHD
Acenaphthylene	04/23/09	yolanta	04/23/09	AHD
Aniline	04/23/09	yolanta	04/23/09	AHD
Anthracene	04/23/09	yolanta	04/23/09	AHD
Benzidine	04/23/09	yolanta	04/23/09	AHD
Benzo[a]anthracene	04/23/09	yolanta	04/23/09	AHD
Benzo[a]pyrene	04/23/09	yolanta	04/23/09	AHD
Benzo[b]fluoranthene	04/23/09	yolanta	04/23/09	AHD
Benzo[g,h,i]perylene	04/23/09	yolanta	04/23/09	AHD
Benzo[k]fluoranthene	04/23/09	yolanta	04/23/09	AHD
Benzoic acid	04/23/09	yolanta	04/23/09	AHD
bis(2-Chloroethoxy)methane	04/23/09	yolanta	04/23/09	AHD
bis(2-Chloroethyl)ether	04/23/09	yolanta	04/23/09	AHD
bis(2-Chloroisopropyl)ether	04/23/09	yolanta	04/23/09	AHD
bis(2-Ethylhexyl)phthalate	04/23/09	yolanta	04/23/09	AHD
Butylbenzylphthalate	04/23/09	yolanta	04/23/09	AHD
Carbazole	04/23/09	yolanta	04/23/09	AHD
Chrysene	04/23/09	yolanta	04/23/09	AHD
Dibenzo[a,h]anthracene	04/23/09	yolanta	04/23/09	AHD
Dibenzofuran	04/23/09	yolanta	04/23/09	AHD
Diethylphthalate	04/23/09	yolanta	04/23/09	AHD
Dimethylphthalate	04/23/09	yolanta	04/23/09	AHD
Di-n-butylphthalate	04/23/09	yolanta	04/23/09	AHD
Di-n-octylphthalate	04/23/09	yolanta	04/23/09	AHD
Fluoranthene	04/23/09	yolanta	04/23/09	AHD
Fluorene	04/23/09	yolanta	04/23/09	AHD
Hexachlorobenzene	04/23/09	yolanta	04/23/09	AHD
Hexachlorobutadiene	04/23/09	yolanta	04/23/09	AHD
Hexachlorocyclopentadiene	04/23/09	yolanta	04/23/09	AHD
Hexachloroethane	04/23/09	yolanta	04/23/09	AHD
Indeno[1,2,3-cd]pyrene	04/23/09	yolanta	04/23/09	AHD
Isophorone	04/23/09	yolanta	04/23/09	AHD
Naphthalene	04/23/09	yolanta	04/23/09	AHD
Nitrobenzene	04/23/09	yolanta	04/23/09	AHD
N-Nitrosodimethylamine	04/23/09	yolanta	04/23/09	AHD
N-Nitroso-di-n-propylamine	04/23/09	yolanta	04/23/09	AHD
N-Nitrosodiphenylamine	04/23/09	yolanta	04/23/09	AHD
Pentachlorophenol	04/23/09	yolanta	04/23/09	AHD
Phenanthrene	04/23/09	yolanta	04/23/09	AHD
Phenol	04/23/09	yolanta	04/23/09	AHD
ryrene	04/23/09	yolanta	04/23/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep)	Anal	/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	oluferni	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB

Laboratory Chronicle

SB

Lab#: AC43958-001 Sample ID: B-2

Zinc

04/20/09 olufemi 04/24/09

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Analy	/sis	
Analyte	Date	Ву	Date	Ву	
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP	
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP	
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,4-Dioxane	04/16/09	WP	04/16/09	WP	
2-Butanone	04/16/09	WP	04/16/09	WP	
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP	
2-Hexanone	04/16/09	WP	04/16/09	WP	
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP	
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP	
Acetone	04/16/09	WP	04/16/09	WP	
Acrolein	04/16/09	WP	04/16/09	WP	
Acrylonitrile	04/16/09	WP	04/16/09	WP	
Benzene	04/16/09	WP	04/16/09	WP	
Bromodichloromethane	04/16/09	WP	04/16/09	WP	
Bromoform	04/16/09	WP	04/16/09	WP	
Bromomethane	04/16/09	WP	04/16/09	WP	
Carbon disulfide	04/16/09	WP	04/16/09	WP	
Carbon tetrachloride	04/16/09	WP	04/16/09	WP	
Chlorobenzene	04/16/09	WP	04/16/09	WP	
Chloroethane	04/16/09	WP	04/16/09	WP	
Chloroform	04/16/09	WP	04/16/09	WP	
Chloromethane	04/16/09	WP	04/16/09	WP	
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
Dibromochloromethane	04/16/09	WP	04/16/09	WP	
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP	
Ethylbenzene	04/16/09	WP	04/16/09	WP	
Isopropylbenzene	04/16/09	WP	04/16/09	WP	
m&p-Xylenes	04/16/09	WP	04/16/09	WP	
Methylene chloride	04/16/09	WP	04/16/09	WP	
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP	
n-Butylbenzene	04/16/09	WP	04/16/09	WP	
n-Propylbenzene	04/16/09	WP	04/16/09	WP	
o-Xylene	04/16/09	WP	04/16/09	WP	
sec-Butylbenzene	04/16/09	WP	04/16/09	WP	
Styrene	04/16/09	WP	04/16/09	WP	
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP	
t-Butylbenzene	04/16/09	WP	04/16/09	WP	
Tetrachloroethene	04/16/09	WP	04/16/09	WP	
Toluene	04/16/09	WP	04/16/09	WP	
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
Trichloroethene	04/16/09	WP	04/16/09	WP	
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP	
Vinyl chloride	04/16/09	WP	04/16/09	WP	
Xylenes (Total)	04/16/09	WP	04/16/09	WP	

Lab#: AC43958-002 Sample ID: B-3

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Prep Analys			Prep An		lysis
Analyte	Date	Ву	Date	By		
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT		

Lab#: AC43958-002 Sample ID: B-3

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

 Prep
 Analysis

 Analyte
 Date
 By
 Date
 By

 Mercury
 04/20/09
 oluferni
 04/22/09
 JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Prep	Analysis		
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	JP
Alpha-BHC	04/23/09	mansip	04/24/09	JP
beta-BHC	04/23/09	mansip	04/24/09	JP
Chlordane	04/23/09	mansip	04/24/09	JP
delta-BHC	04/23/09	mansip	04/24/09	JP
Dieldrin	04/23/09	mansip	04/24/09	JP
Endosulfan I	04/23/09	mansip	04/24/09	JP
Endosulfan II	04/23/09	mansip	04/24/09	JP
Endosulfan Sulfate	04/23/09	mansip	04/24/09	JP
Endrin	04/23/09	mansip	04/24/09	JP
Endrin Aldehyde	04/23/09	mansip	04/24/09	JP
Endrin Ketone	04/23/09	mansip	04/24/09	JP
gamma-BHC	04/23/09	mansip	04/24/09	JP
Heptachlor	04/23/09	mansip	04/24/09	JP
Heptachlor Epoxide	04/23/09	mansip	04/24/09	JP
Methoxychlor	04/23/09	mansip	04/24/09	JP
p,p'-DDD	04/23/09	mansip	04/24/09	JP
p,p'-DDE	04/23/09	mansip	04/24/09	JP
p,p'-DDT	04/23/09	mansip	04/24/09	JP
Toxaphene	04/23/09	mansip	04/24/09	JP

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Pre	0	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
1,2,4-Trichlorobenzene	04/22/09	mansip	04/22/09	AHD
1,2-Diphenylhydrazine	04/22/09	mansip	04/22/09	AHD
2,4,5-Trichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4,6-Trichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dimethylphenol	04/22/09	mansip	04/22/09	AHD
2,4-Dinitrophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD
2,6-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD
2-Chloronaphthalene	04/22/09	mansip	04/22/09	AHD
2-Chlorophenol	04/22/09	mansip	04/22/09	AHD
2-Methylnaphthalene	04/22/09	mansip	04/22/09	AHD
2-Methylphenol	04/22/09	mansip	04/22/09	AHD
2-Nitroaniline	04/22/09	mansip	04/22/09	AHD
2-Nitrophenol	04/22/09	mansip	04/22/09	AHD
3&4-Methylphenol	04/22/09	mansip	04/22/09	AHD
3,3'-Dichlorobenzidine	04/22/09	mansip	04/22/09	AHD
3-Nitroaniline	04/22/09	mansip	04/22/09	AHD
4,6-Dinitro-2-methylphenol	04/22/09	mansip	04/22/09	AHD
4-Bromophenyl-phenylether	04/22/09	mansip	04/22/09	AHD
4-Chloro-3-methylphenol	04/22/09	mansip	04/22/09	AHD
4-Chloroaniline	04/22/09	mansip	04/22/09	AHD
4-Chlorophenyl-phenylether	04/22/09	mansip	04/22/09	AHD

Lab#: AC43958-002 Sample ID: B-3

4-Nitroaniline	04/22/09	mansip	04/22/09	AHD
4-Nitrophenol	04/22/09	mansip	04/22/09	AHD
Acenaphthene	04/22/09	mansip	04/22/09	AHD
Acenaphthylene	04/22/09	mansip	04/22/09	AHD
Aniline	04/22/09	mansip	04/22/09	AHD
Anthracene	04/22/09	mansip	04/22/09	AHD
Benzidine	04/22/09	mansip	04/22/09	AHD
Benzo[a]anthracene	04/22/09	mansip	04/22/09	AHD
Benzo[a]pyrene	04/22/09	mansip	04/22/09	AHD
Benzo[b]fluoranthene	04/22/09	mansip	04/22/09	AHD
Benzo[g,h,i]perylene	04/22/09	mansip	04/22/09	AHD
Benzo[k]fluoranthene	04/22/09	mansip	04/22/09	AHD
Benzoic acid	04/22/09	mansip	04/22/09	AHD
bis(2-Chloroethoxy)methane	04/22/09	mansip	04/22/09	AHD
bis(2-Chloroethyl)ether	04/22/09	mansip	04/22/09	AHD
bis(2-Chloroisopropyl)ether	04/22/09	mansip	04/22/09	AHD
bis(2-Ethylhexyl)phthalate	04/22/09	mansip	04/22/09	AHD
Butylbenzylphthalate	04/22/09	mansip	04/22/09	AHD
Carbazole	04/22/09	mansip	04/22/09	AHD
Chrysene	04/22/09	mansip	04/22/09	AHD
Dibenzo[a,h]anthracene	04/22/09	mansip	04/22/09	AHD
Dibenzofuran	04/22/09	mansip	04/22/09	AHD
Diethylphthalate	04/22/09	mansip	04/22/09	AHD
Dimethylphthalate	04/22/09	mansip	04/22/09	AHD
Di-n-butylphthalate	04/22/09	mansip	04/22/09	AHD
Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD
Fluoranthene	04/22/09	mansip	04/22/09	AHD
Fluorene	04/22/09	mansip	04/22/09	AHD
Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD
Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD
Hexachlorocyclopentadiene	04/22/09	mansip	04/22/09	AHD
Hexachloroethane	04/22/09	mansip	04/22/09	AHD
Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD
Isophorone	04/22/09	mansip	04/22/09	AHD
Naphthalene	04/22/09	mansip	04/22/09	AHD
Nitrobenzene	04/22/09	mansip	04/22/09	AHD
N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD
N-Nitroso-di-n-propylamine	04/22/09	mansip	04/22/09	AHD
N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD
Pentachlorophenol	04/22/09	mansip	04/22/09	AHD
Phenanthrene	04/22/09	mansip	04/22/09	AHD
Phenol	04/22/09	mansip	04/22/09	AHD
Pyrene	04/22/09	mansip	04/22/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Pre)	Anal	ysis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	oluferni	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву

Lab#: AC43958-002 Sample ID: B-3								
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP				
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP				
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP				
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP				
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP				
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP				
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP				
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP				
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP				
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP				
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP				
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP				
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP				
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP				
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP				
	04/16/09	WP	04/16/09	WP				
2-Butanone	04/16/09		04/16/09					
	04/16/09		04/16/09	W/P				
	04/16/09		04/10/09					
4-Methyl-2-pentanope	04/16/09	WP	04/16/09	WP				
Acetone	04/16/09	WP	04/16/09	WP				
Acrolein	04/16/09	WP	04/16/09	WP				
Acrylonitrile	04/16/09	WP	04/16/09	WP				
Benzene	04/16/09	WP	04/16/09	WP				
Bromodichloromethane	04/16/09	WP	04/16/09	WP				
Bromoform	04/16/09	WP	04/16/09	WP				
Bromomethane	04/16/09	WP	04/16/09	WP				
Carbon disulfide	04/16/09	WP	04/16/09	WP				
Carbon tetrachloride	04/16/09	WP	04/16/09	WP				
Chlorobenzene	04/16/09	WP	04/16/09	WP				
Chloroethane	04/16/09	WP	04/16/09	WP				
Chloroform	04/16/09	WP	04/16/09	WP				
Chloromethane	04/16/09	WP	04/16/09	WP				
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP				
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP				
Dibromochloromethane	04/16/09	WP	04/16/09	WP				
	04/16/09	WP	04/16/09	WP				
	04/16/09	WP	04/16/09					
man Xylenes	04/16/09		04/16/09					
Methylene chloride	04/16/09	WP	04/16/09	WP				
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP				
n-Butylbenzene	04/16/09	WP	04/16/09	WP				
n-Propylbenzene	04/16/09	WP	04/16/09	WP				
o-Xylene	04/16/09	WP	04/16/09	WP				
sec-Butylbenzene	04/16/09	WP	04/16/09	WP				
Styrene	04/16/09	WP	04/16/09	WP				
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP				
t-Butylbenzene	04/16/09	WP	04/16/09	WP				
Tetrachloroethene	04/16/09	WP	04/16/09	WP				
Toluene	04/16/09	WP	04/16/09	WP				
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP				
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP				
Trichloroethene	04/16/09	WP	04/16/09	WP				
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP				
Vinyl chloride	04/16/09	WP	04/16/09	WP				
Xylenes (1 otal)	04/16/09	WP	04/16/09					
Lab#: AC43958-003 Sample ID: B-6								

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

Analytical Method: EPA 7471A

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A

Analyte

Analyte

Mercury

% Solids

Analysis

Analysis

By

Ву

JS

Date

Date

04/22/09

04/15/09 PRASHANT 04/15/09 PRASHANT

Prep

Prep

By

By

oluferni

Date

Date

04/20/09

Lab#: AC43958-003 Sample ID: B-6

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Pre	D	Analysis		
Analyte	Date	Ву	Date	Ву	
Aldrin	04/23/09	mansip	04/24/09	MS	
Alpha-BHC	04/23/09	mansip	04/24/09	MS	
beta-BHC	04/23/09	mansip	04/24/09	MS	
Chlordane	04/23/09	mansip	04/24/09	MS	
delta-BHC	04/23/09	mansip	04/24/09	MS	
Dieldrin	04/23/09	mansip	04/24/09	MS	
Endosulfan I	04/23/09	mansip	04/24/09	MS	
Endosulfan II	04/23/09	mansip	04/24/09	MS	
Endosulfan Sulfate	04/23/09	mansip	04/24/09	MS	
Endrin	04/23/09	mansip	04/24/09	MS	
Endrin Aldehyde	04/23/09	mansip	04/24/09	MS	
Endrin Ketone	04/23/09	mansip	04/24/09	MS	
gamma-BHC	04/23/09	mansip	04/24/09	MS	
Heptachlor	04/23/09	mansip	04/24/09	MS	
Heptachlor Epoxide	04/23/09	mansip	04/24/09	MS	
Methoxychlor	04/23/09	mansip	04/24/09	MS	
p,p'-DDD	04/23/09	mansip	04/24/09	MS	
p,p'-DDE	04/23/09	mansip	04/24/09	MS	
p,p'-DDT	04/23/09	mansip	04/24/09	MS	
Toxaphene	04/23/09	mansin	04/24/09	MS	

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Prep	0	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

	Prep		Analy	/sis
Analyte	Date	Ву	Date	Ву
1,2,4-Trichlorobenzene	04/22/09	mansip	04/22/09	AHD
1,2-Diphenylhydrazine	04/22/09	mansip	04/22/09	AHD
2,4,5-Trichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4,6-Trichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dichlorophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dimethylphenol	04/22/09	mansip	04/22/09	AHD
2,4-Dinitrophenol	04/22/09	mansip	04/22/09	AHD
2,4-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD
2,6-Dinitrotoluene	04/22/09	mansip	04/22/09	AHD
2-Chloronaphthalene	04/22/09	mansip	04/22/09	AHD
2-Chlorophenol	04/22/09	mansip	04/22/09	AHD
2-Methylnaphthalene	04/22/09	mansip	04/22/09	AHD
2-Methylphenol	04/22/09	mansip	04/22/09	AHD
2-Nitroaniline	04/22/09	mansip	04/22/09	AHD
2-Nitrophenol	04/22/09	mansip	04/22/09	AHD
3&4-Methylphenol	04/22/09	mansip	04/22/09	AHD
3,3'-Dichlorobenzidine	04/22/09	mansip	04/22/09	AHD
3-Nitroaniline	04/22/09	mansip	04/22/09	AHD
4,6-Dinitro-2-methylphenol	04/22/09	mansip	04/22/09	AHD
4-Bromophenyl-phenylether	04/22/09	mansip	04/22/09	AHD
4-Chloro-3-methylphenol	04/22/09	mansip	04/22/09	AHD
4-Chloroaniline	04/22/09	mansip	04/22/09	AHD
4-Chlorophenyl-phenylether	04/22/09	mansip	04/22/09	AHD
4-Nitroaniline	04/22/09	mansip	04/22/09	AHD
4-Nitrophenol	04/22/09	mansip	04/22/09	AHD
Acenaphthene	04/22/09	mansip	04/22/09	AHD
Acenaphthylene	04/22/09	mansip	04/22/09	AHD
Aniline	04/22/09	mansip	04/22/09	AHD
Anthracene	04/22/09	mansip	04/22/09	AHD
Benzidine	04/22/09	mansip	04/22/09	AHD

Lab#: AC43958-003 Sample ID: B-6

Benzo[a]anthracene 04/22/09 mansip 04/22/09 AHD	
Benzo[a]pyrene 04/22/09 mansip 04/22/09 AHD	
Benzo[b]fluoranthene 04/22/09 mansip 04/22/09 AHD	
Benzo[g,h,i]perylene 04/22/09 mansip 04/22/09 AHD	
Benzo[k]fluoranthene 04/22/09 mansip 04/22/09 AHD	
Benzoic acid 04/22/09 mansip 04/22/09 AHD	
bis(2-Chloroethoxy)methane 04/22/09 mansip 04/22/09 AHD	
bis(2-Chloroethyl)ether 04/22/09 mansip 04/22/09 AHD	
bis(2-Chloroisopropyl)ether 04/22/09 mansip 04/22/09 AHD	
bis(2-Ethylhexyl)phthalate 04/22/09 mansip 04/22/09 AHD	
Butylbenzylphthalate 04/22/09 mansip 04/22/09 AHD	
Carbazole 04/22/09 mansip 04/22/09 AHD	
Chrysene 04/22/09 mansip 04/22/09 AHD	
Dibenzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD	
Dibenzofuran 04/22/09 mansip 04/22/09 AHD	
Diethylphthalate 04/22/09 mansip 04/22/09 AHD)
Dimethylphthalate 04/22/09 mansip 04/22/09 AHD	
Di-n-butylphthalate 04/22/09 mansip 04/22/09 AHD	
Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD	
Fluoranthene 04/22/09 mansip 04/22/09 AHD)
Fluorene 04/22/09 mansip 04/22/09 AHD)
Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD	
Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD)
Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD)
Hexachloroethane 04/22/09 mansip 04/22/09 AHD)
Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD)
Isophorone 04/22/09 mansip 04/22/09 AHD)
Naphthalene 04/22/09 mansip 04/22/09 AHD)
Nitrobenzene 04/22/09 mansip 04/22/09 AHD)
N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD)
N-Nitroso-di-n-propylamine 04/22/09 mansip 04/22/09 AHD)
N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD)
Pentachiorophenol 04/22/09 mansip 04/22/09 AHE)
Phenanthrene 04/22/09 mansip 04/22/09 AHE)
Phenol 04/22/09 mansip 04/22/09 AHE)
Pyrene 04/22/09 mansip 04/22/09 AHE)

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	oluferni	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Analy	ysis
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP

b#. AC43958-003 C

ι	_ab#: AC43958-003 Samp	ole ID: B-6			
	1,2,4-Trimethyibenzene	04/16/09	WP	04/16/09	WP
	1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
	1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
	1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
	1,3,5- I rimethylbenzene	04/16/09	WP	04/16/09	WP
	1.3-Dichloropropage	04/16/09	WP	04/16/09	WP
	1.4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
	1,4-Dioxane	04/16/09	WP	04/16/09	WP
	2-Butanone	04/16/09	WP	04/16/09	WP
	2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP
	2-Hexanone	04/16/09	WP	04/16/09	WP
	4-isopropyitoluene	04/16/09	WP	04/16/09	
	Acetone	04/16/09	WP	04/16/09	WP
	Acrolein	04/16/09	WP	04/16/09	WP
	Acrylonitrile	04/16/09	WP	04/16/09	WP
	Benzene	04/16/09	WP	04/16/09	WP
	Bromodichloromethane	04/16/09	WP	04/16/09	WP
	Bromoform	04/16/09	WP	04/16/09	WP
		04/16/09	WP	04/16/09	WP
	Carbon tetrachloride	04/16/09	WP	04/16/09	WP
	Chlorobenzene	04/16/09	WP	04/16/09	WP
	Chloroethane	04/16/09	WP	04/16/09	WP
	Chloroform	04/16/09	WP	04/16/09	WP
	Chloromethane	04/16/09	WP	04/16/09	WP
	cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
		04/16/09	WP	04/16/09	WP
	Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
	Ethylbenzene	04/16/09	WP	04/16/09	WP
	Isopropylbenzene	04/16/09	WP	04/16/09	WP
	m&p-Xylenes	04/16/09	WP	04/16/09	WP
	Methylene chloride	04/16/09	WP	04/16/09	WP
	Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP
	n-Propylbenzene	04/16/09	WP	04/16/09	WP
	o-Xylene	04/16/09	WP	04/16/09	WP
	sec-Butylbenzene	04/16/09	WP	04/16/09	WP
	Styrene	04/16/09	WP	04/16/09	WP
	t-Butyl Alcohol	04/16/09	WP	04/16/09	WP
	t-Butylbenzene	04/16/09	WP	04/16/09	WP
		04/16/09	WP	04/16/09	WP
	trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
	trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
	Trichloroethene	04/16/09	WP	04/16/09	WP
	Trichlorofluoromethane	04/16/09	WP	04/16/09	WP
	Vinyl chloride	04/16/09	WP	04/16/09	WP
	Xylenes (1otal)	04/16/09	WP	04/16/09	WP
l	_ab#: AC43958-004 Sam	ole ID: B-7			
-	LestGroupName % Solid	e SM2540G			
	Preparation Method: SM	2540G			
	Analytical Method: SM	2540G			
	A	Prep	_	Ana	ysis
	Analyte	Date	Ву	Date	Ву
	% Solids	04/15/09 F	RASHANT	04/15/09	PRASHANT
٦	FestGroupName Mercury	/ (Soil/Waste) 7471A	`	
	Preparation Method: EPA Analytical Method: EPA	7471A 7471A 7471A	,	-	
	Analyte	Prep	By	Anal	ysis By
	Mercury	04/20/09	olufemi	04/22/09	JS
-					
٦	Preparation Method: EPA	chlorine Pes	ticides	8081	
	Analytical Method: EPA	Drom		Ana	veie
	Analyte	Date	Bv	Date	Bv
	Aldrin	04/23/09	mansip	04/24/09	MS
	Alpha-BHC	04/23/09	mansip	04/24/09	MS

04/23/09

04/23/09

04/24/09

04/24/09

mansip

mansip

MS

MS

beta-BHC

Chlordane

l ah#·	AC43958-004	Sample	ID 8-7
Lau#.	A043330-004	Samule	10.0-1

•	ab#. Actore of Sample ID. 54						
	delta-BHC	04/23/09	mansip	04/24/09	MS		
	Dieldrin	04/23/09	mansip	04/24/09	MS		
	Endosulfan I	04/23/09	mansip	04/24/09	MS		
	Endosulfan II	04/23/09	mansip	04/24/09	MS		
	Endosulfan Sulfate	04/23/09	mansip	04/24/09	MS		
	Endrin	04/23/09	mansip	04/24/09	MS		
	Endrin Aldehyde	04/23/09	mansip	04/24/09	MS		
	Endrin Ketone	04/23/09	mansip	04/24/09	MS		
	gamma-BHC	04/23/09	mansip	04/24/09	MS		
	Heptachlor	04/23/09	mansip	04/24/09	MS		
	Heptachlor Epoxide	04/23/09	mansip	04/24/09	MS		
	Methoxychior	04/23/09	mansip	04/24/09	MS		
	p,p'-DDD	04/23/09	mansip	04/24/09	MS		
	p,p'-DDE	04/23/09	mansip	04/24/09	MS		
	p,p'-DDT	04/23/09	mansip	04/24/09	MS		
	Toxaphene	04/23/09	mansip	04/24/09	MS		
						-	

TestGroupName PCB 8082 Preparation Method: EPA3510/3550

Analytical	Method: EPA 8082
------------	------------------

	Pre	0	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Arocior-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

Analyte Date By Date By 1,2,4-Trichlorobenzene 04/22/09 mansip 04/22/09 AHD 1,2-Diphenylhydrazine 04/22/09 mansip 04/22/09 AHD 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-5-Trichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinchlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 <td< th=""><th></th></td<>	
1,2,4-Trichlorobenzene 04/22/09 mansip 04/22/09 AHC 1,2-Diphenylhydrazine 04/22/09 mansip 04/22/09 AHC 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4,6-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinklorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinklorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22	
1,2-Diphenylhydrazine 04/22/09 mansip 04/22/09 AHC 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09)
2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4,6-Trichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dimethylphenol 04/22/09 mansip 04/22/09 AHC 2,4-Dimitrophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Mathusphikaleno 04/22/09	
2,4,6-Trichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dimethylphenol 04/22/09 mansip 04/22/09 AHD 2,4-Dimitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Mathusphikalene 04/22/09 mansip 04/22/09 AHD	
2,4-Dichlorophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dimethylphenol 04/22/09 mansip 04/22/09 AHC 2,4-Dimethylphenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chloronaphthalene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD	
2,4-Dimethylphenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chloronaphthalene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD	,
2,4-Dinitrophenol 04/22/09 mansip 04/22/09 AHC 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2-Chloronaphthalene 04/22/09 mansip 04/22/09 AHC 2-Chlorophenol 04/22/09 mansip 04/22/09 AHC 2-Mathusphthalene 04/22/09 mansip 04/22/09 AHC	,
2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHC 2-Chloronaphthalene 04/22/09 mansip 04/22/09 AHC 2-Chlorophenol 04/22/09 mansip 04/22/09 AHC 2-Mathuaphthalene 04/22/09 mansip 04/22/09 AHC	,
2,6-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2-Chloronaphthalene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Mathuaphthalene 04/22/09 mansip 04/22/09 AHD	į.
2-Chloronaphthalene 04/22/09 mansip 04/22/09 AHD 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Mathukaphthalana 04/22/09 mansip 04/22/09 AHD	,
2-Chlorophenol 04/22/09 AHD	,
2 Mathulapphibalapp 04/22/00 mappin 04/22/00 AUD	,
	,
2-Methylphenol 04/22/09 mansip 04/22/09 AHD	,
2-Nitroaniline 04/22/09 mansip 04/22/09 AHD	,
2-Nitrophenol 04/22/09 mansip 04/22/09 AHD	,
3&4-Methylphenol 04/22/09 mansip 04/22/09 AHD	,
3,3'-Dichlorobenzidine 04/22/09 mansip 04/22/09 AHD	,
3-Nitroaniline 04/22/09 mansip 04/22/09 AHD	ŧ.
4,6-Dinitro-2-methylphenol 04/22/09 mansip 04/22/09 AHD	į.
4-Bromophenyl-phenylether 04/22/09 mansip 04/22/09 AHD	į –
4-Chloro-3-methylphenol 04/22/09 mansip 04/22/09 AHD	,
4-Chloroaniline 04/22/09 mansip 04/22/09 AHD	,
4-Chlorophenyl-phenylether 04/22/09 mansip 04/22/09 AHD	,
4-Nitroaniline 04/22/09 mansip 04/22/09 AHD	¢.
4-Nitrophenol 04/22/09 mansip 04/22/09 AHD	į –
Acenaphthene 04/22/09 mansip 04/22/09 AHD	į –
Acenaphthylene 04/22/09 mansip 04/22/09 AHD	ļ
Aniline 04/22/09 mansip 04/22/09 AHD	,
Anthracene 04/22/09 mansip 04/22/09 AHD	,
Benzidine 04/22/09 mansip 04/22/09 AHD	J .
Benzo[a]anthracene 04/22/09 mansip 04/22/09 AHD	,
Benzo(a)pyrene 04/22/09 mansip 04/22/09 AHD	¢.
Benzo[b]fluoranthene 04/22/09 mansip 04/22/09 AHD	,
Benzo[g,h,i]perylene 04/22/09 mansip 04/22/09 AHD	
Benzo[k]fluoranthene 04/22/09 mansip 04/22/09 AHD)
Benzoic acid 04/22/09 mansip 04/22/09 AHD)
bis(2-Chloroethoxy)methane 04/22/09 mansip 04/22/09 AHD)
bis(2-Chloroethyl)ether 04/22/09 mansip 04/22/09 AHD	
bis(2-Chloroisopropyl)ether 04/22/09 mansip 04/22/09 AHD	

Lab#: AC43958-004 Sample ID: B-7

bis(2-Ethylhexyl)phthalate 04/22/09 mansip 04/22/09 AHD Butylbenzylphthalate 04/22/09 mansip 04/22/09 AHD Carbazole 04/22/09 mansip 04/22/09 AHD Chrysene 04/22/09 mansip 04/22/09 AHD Dibenzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD Dibenzofuran 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Din-n-butylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobethane 04/22/09 mansip					
Butylbenzylphthalate 04/22/09 mansip 04/22/09 AHD Carbazole 04/22/09 mansip 04/22/09 AHD Chrysene 04/22/09 mansip 04/22/09 AHD Diberzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD Diberzofuran 04/22/09 mansip 04/22/09 AHD Diethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-butylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip	bis(2-Ethylhexyl)phthalate	04/22/09	mansip	04/22/09	AHD
Carbazole 04/22/09 mansip 04/22/09 AHD Chrysene 04/22/09 mansip 04/22/09 AHD Diberzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD Diberzofuran 04/22/09 mansip 04/22/09 AHD Diethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-outylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-outylphthalate 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/	Butylbenzylphthalate	04/22/09	mansip	04/22/09	AHD
Chrysene 04/22/09 mansip 04/22/09 AHD Dibenzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD Dibenzofuran 04/22/09 mansip 04/22/09 AHD Dienzofuran 04/22/09 mansip 04/22/09 AHD Diethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-otylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip <td>Carbazole</td> <td>04/22/09</td> <td>mansip</td> <td>04/22/09</td> <td>AHD</td>	Carbazole	04/22/09	mansip	04/22/09	AHD
Dibenzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD Dibenzofuran 04/22/09 mansip 04/22/09 AHD Dibenzofuran 04/22/09 mansip 04/22/09 AHD Dienthylphthalate 04/22/09 mansip 04/22/09 AHD Dienthylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-butylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indenc[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09	Chrysene	04/22/09	mansip	04/22/09	AHD
Dibenzofuran 04/22/09 mansip 04/22/09 AHD Diethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Din-butylphthalate 04/22/09 mansip 04/22/09 AHD Din-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip	Dibenzo[a,h]anthracene	04/22/09	mansip	04/22/09	AHD
Diethylphthalate 04/22/09 mansip 04/22/09 AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Din-h-butylphthalate 04/22/09 mansip 04/22/09 AHD Din-h-butylphthalate 04/22/09 mansip 04/22/09 AHD Din-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 <t< td=""><td>Dibenzofuran</td><td>04/22/09</td><td>mansip</td><td>04/22/09</td><td>AHD</td></t<>	Dibenzofuran	04/22/09	mansip	04/22/09	AHD
Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-butylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-butylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachloroethane 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 m	Diethylphthalate	04/22/09	mansip	04/22/09	AHD
Di-n-butylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachloroethane 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 masip <td>Dimethylphthalate</td> <td>04/22/09</td> <td>mansip</td> <td>04/22/09</td> <td>AHD</td>	Dimethylphthalate	04/22/09	mansip	04/22/09	AHD
Di-n-octylphthalate 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocthane 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 masip	Di-n-butylphthalate	04/22/09	mansip	04/22/09	AHD
Fluoranthene 04/22/09 mansip 04/22/09 AHD Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 <td>Di-n-octylphthalate</td> <td>04/22/09</td> <td>mansip</td> <td>04/22/09</td> <td>AHD</td>	Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD
Fluorene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09<	Fluoranthene	04/22/09	mansip	04/22/09	AHD
Hexachlorobenzene 04/22/09 mansip 04/22/09 AHD Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04	Fluorene	04/22/09	mansip	04/22/09	AHD
Hexachlorobutadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitroso-di-n-propylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 <td>Hexachlorobenzene</td> <td>04/22/09</td> <td>mansip</td> <td>04/22/09</td> <td>AHD</td>	Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD
Hexachlorocyclopentadiene 04/22/09 mansip 04/22/09 AHD Hexachloroethane 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrosbenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip	Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD
Hexachloroethane 04/22/09 mansip 04/22/09 AHD Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Phenathrene 04/22/09 mansip 04/22/09 AHD Phenathrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09<	Hexachlorocyclopentadiene	04/22/09	mansip	04/22/09	AHD
Indeno[1,2,3-cd]pyrene 04/22/09 mansip 04/22/09 AHD Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 MAD AHD AHD	Hexachloroethane	04/22/09	mansip	04/22/09	AHD
Isophorone 04/22/09 mansip 04/22/09 AHD Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD	Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD
Naphthalene 04/22/09 mansip 04/22/09 AHD Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	Isophorone	04/22/09	mansip	04/22/09	AHD
Nitrobenzene 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	Naphthalene	04/22/09	mansip	04/22/09	AHD
N-Nitrosodimethylamine 04/22/09 mansip 04/22/09 AHD N-Nitroso-di-n-propylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	Nitrobenzene	04/22/09	mansip	04/22/09	AHD
N-Nitroso-di-n-propylamine 04/22/09 mansip 04/22/09 AHD N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD
N-Nitrosodiphenylamine 04/22/09 mansip 04/22/09 AHD Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	N-Nitroso-di-n-propylamine	04/22/09	mansip	04/22/09	AHD
Pentachlorophenol 04/22/09 mansip 04/22/09 AHD Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD
Phenanthrene 04/22/09 mansip 04/22/09 AHD Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	Pentachlorophenol	04/22/09	mansip	04/22/09	AHD
Phenol 04/22/09 mansip 04/22/09 AHD Pyrene 04/22/09 mansip 04/22/09 AHD	Phenanthrene	04/22/09	mansip	04/22/09	AHD
Pyrene 04/22/09 mansip 04/22/09 AHD	Phenol	04/22/09	mansip	04/22/09	AHD
	Pyrene	04/22/09	mansip	04/22/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	olufemi	04/24/09	SB
Barium	04/20/09	olufemi	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	oluferni	04/24/09	SB
Calcium	04/20/09	olufemi	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	oluferni	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	olufemi	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	olufemi	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	olufemi	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep			/sis
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,4-Dioxane	04/16/09	WP	04/16/09	WP

Lab#: AC43958-004 Sample ID: B-7

-	ab#: AC43956-004 Sample	D. D-7			
Γ	2-Butanone	04/16/09	WP	04/16/09	WP
	2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP
	2-Hexanone	04/16/09	WP	04/16/09	WP
L	4-Isopropyltoluene	04/16/09	WP	04/16/09	WP
	4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP
	Acetone	04/16/09	WP	04/16/09	WP
	Acrolein	04/16/09	WP	04/16/09	WP
Į	Acrylonitrile	04/16/09	WP	04/16/09	WP
l	Benzene	04/16/09	WP	04/16/09	WP
	Bromodichloromethane	04/16/09	WP	04/16/09	WP
	Bromoform	04/16/09	WP	04/16/09	WP
	Bromomethane	04/16/09	WP	04/16/09	WP
	Carbon disulfide	04/16/09	WP	04/16/09	WP
	Carbon tetrachloride	04/16/09	WP	04/16/09	WP
	Chlorobenzene	04/16/09	WP	04/16/09	WP
Į	Chloroethane	04/16/09	WP	04/16/09	WP
1	Chloroform	04/16/09	WP	04/16/09	WP
	Chloromethane	04/16/09	WP	04/16/09	WP
	cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
۱	cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
	Dibromochloromethane	04/16/09	WP	04/16/09	WP
	Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
	Ethylbenzene	04/16/09	WP	04/16/09	WP
Ì	Isopropylbenzene	04/16/09	WP	04/16/09	WP
	m&p-Xylenes	04/16/09	WP	04/16/09	WP
l	Methylene chloride	04/16/09	WP	04/16/09	WP
Į	Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP
ļ	n-Butylbenzene	04/16/09	WP	04/16/09	WP
ļ	n-Propylbenzene	04/16/09	WP	04/16/09	WP
ļ	o-Xylene	04/16/09	WP	04/16/09	WP
	sec-Butylbenzene	04/16/09	WP	04/16/09	WP
ļ	Styrene	04/16/09	WP	04/16/09	WP
ļ	t-Butyl Alcohol	04/16/09	WP	04/16/09	WP
1	t-Butylbenzene	04/16/09	WP	04/16/09	WP
ļ	Tetrachloroethene	04/16/09	WP	04/16/09	WP
ļ	Toluene	04/16/09	WP	04/16/09	WP
ļ	trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
	trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
ļ	Trichloroethene	04/16/09	WP	04/16/09	WP
ļ	Trichlorofluoromethane	04/16/09	WP	04/16/09	WP
	Vinyl chloride	04/16/09	WP	04/16/09	WP
	Xylenes (Total)	04/16/09	WP	04/16/09	WP
-					

Lab#: AC43958-005 Sample ID: B-10

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	p	Analysis		
Analyte	Date	By	Date	By	
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT	

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

	Prep		Analysis	
Analyte	Date	Ву	Date	By
Mercury	04/20/09	olufemi	04/22/09	JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	JP
Alpha-BHC	04/23/09	mansip	04/24/09	JP
beta-BHC	04/23/09	mansip	04/24/09	JP
Chlordane	04/23/09	mansip	04/24/09	JP
delta-BHC	04/23/09	mansip	04/24/09	JP
Dieldrin	04/23/09	mansip	04/24/09	JP
Endosulfan I	04/23/09	mansip	04/24/09	JP
Endosulfan II	04/23/09	mansip	04/24/09	JP
Endosulfan Sulfate	04/23/09	mansip	04/24/09	JP
Endrin	04/23/09	mansip	04/24/09	JP
Endrin Aldehyde	04/23/09	mansip	04/24/09	JP
Endrin Ketone	04/23/09	mansip	04/24/09	JP
gamma-BHC	04/23/09	mansip	04/24/09	JP

Lab#: AC43958-005 Sample ID: B-10

	••••••••••				
Heptachlor	04/23/09	mansip	04/24/09	JP	
Heptachlor Epoxide	04/23/09	mansip	04/24/09	JP	
Methoxychior	04/23/09	mansip	04/24/09	JP	
p,p'-DDD	04/23/09	mansip	04/24/09	JP	
p,p'-DDE	04/23/09	mansip	04/24/09	JP	
p,p'-DDT	04/23/09	mansip	04/24/09	JP	
Toxaphene	04/23/09	mansip	04/24/09	JP	

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Pre	þ	Analy	/sis
Analyte	Date	Ву	Date	By
Aroclor (Total)	04/23/09	mansip	04/23/09	MS
Aroclor-1016	04/23/09	mansip	04/23/09	MS
Aroclor-1221	04/23/09	mansip	04/23/09	MS
Aroclor-1232	04/23/09	mansip	04/23/09	MS
Aroclor-1242	04/23/09	mansip	04/23/09	MS
Aroclor-1248	04/23/09	mansip	04/23/09	MS
Aroclor-1254	04/23/09	mansip	04/23/09	MS
Aroclor-1260	04/23/09	mansip	04/23/09	MS
Aroclor-1262	04/23/09	mansip	04/23/09	MS
Aroclor-1268	04/23/09	mansip	04/23/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/35508 Analytical Method: EPA 8270C

Prep Analysis Analyte Date By Date By 1,2,4-Trichlorobenzene 04/22/09 mansip 04/22/09 AHD 1.2-Diphenvlhvdrazine 04/22/09 04/22/09 AHD mansip AHD 2,4,5-Trichlorophenol 04/22/09 mansip 04/22/09 2,4,6-Trichlorophenol 04/22/09 mansip 04/22/09 AHD 2.4-Dichlorophenol 04/22/09 mansip 04/22/09 AHD 2,4-Dimethylphenol 04/22/09 04/22/09 AHD mansip 2,4-Dinitrophenol 04/22/09 04/22/09 AHD mansip 2,4-Dinitrotoluene 04/22/09 mansip 04/22/09 AHD 2,6-Dinitrotoluene 04/22/09 04/22/09 mansip AHD 2-Chloronaphthalene 04/22/09 04/22/09 AHD mansip 2-Chlorophenol 04/22/09 mansip 04/22/09 AHD 2-Methylnaphthalene 04/22/09 mansip 04/22/09 AHD 2-Methylphenol 04/22/09 04/22/09 mansip AHD 2-Nitroaniline 04/22/09 04/22/09 AHD mansip 2-Nitrophenol 04/22/09 04/22/09 AHD mansip 3&4-Methylphenol 04/22/09 mansip 04/22/09 AHD 3,3'-Dichlorobenzidine 04/22/09 04/22/09 mansip AHD 3-Nitroaniline 04/22/09 04/22/09 AHD mansip AHD 4,6-Dinitro-2-methylphenol 04/22/09 04/22/09 mansip 4-Bromophenyl-phenylether 04/22/09 mansip 04/22/09 AHD 4-Chloro-3-methylphenol 04/22/09 mansip 04/22/09 AHD 4-Chloroaniline 04/22/09 04/22/09 mansip AHD 4-Chlorophenyl-phenylether 04/22/09 04/22/09 AHD mansip 4-Nitroaniline 04/22/09 mansip 04/22/09 AHD 4-Nitrophenol 04/22/09 04/22/09 AHD mansip Acenaphthene 04/22/09 mansip 04/22/09 AHD Acenaphthylene 04/22/09 04/22/09 AHD mansip Aniline 04/22/09 04/22/09 AHD mansip Anthracene 04/22/09 mansip 04/22/09 AHD Benzidine 04/22/09 04/22/09 AHD mansip **Benzolalanthracene** 04/22/09 04/22/09 AHD mansip Benzo[a]pyrene 04/22/09 04/22/09 AHD mansip Benzo[b]fluoranthene 04/22/09 mansip 04/22/09 AHD Benzo[g,h,i]perylene 04/22/09 mansip 04/22/09 AHD Benzo[k]fluoranthene 04/22/09 04/22/09 mansip AHD Benzoic acid 04/22/09 04/22/09 AHD mansip bis(2-Chloroethoxy)methane 04/22/09 04/22/09 AHD mansip bis(2-Chloroethyl)ether 04/22/09 04/22/09 AHD mansip bis(2-Chloroisopropyl)ether 04/22/09 mansip 04/22/09 AHD bis(2-Ethylhexyl)phthalate 04/22/09 04/22/09 AHD mansip Butylbenzylphthalate 04/22/09 04/22/09 AHD mansip Carbazole 04/22/09 mansip 04/22/09 AHD Chrysene 04/22/09 04/22/09 AHD mansip Dibenzo[a,h]anthracene 04/22/09 mansip 04/22/09 AHD Dibenzofuran 04/22/09 04/22/09 mansip AHD Diethylphthalate 04/22/09 04/22/09 mansip AHD Dimethylphthalate 04/22/09 mansip 04/22/09 AHD Di-n-butylphthalate 04/22/09 04/22/09 AHD mansip

Lab#: AC43958-005 Sample ID: B-10

Di-n-octylphthalate	04/22/09	mansip	04/22/09	AHD
Fluoranthene	04/22/09	mansip	04/22/09	AHD
Fluorene	04/22/09	mansip	04/22/09	AHD
Hexachlorobenzene	04/22/09	mansip	04/22/09	AHD
Hexachlorobutadiene	04/22/09	mansip	04/22/09	AHD
Hexachlorocyclopentadier	e 04/22/09	mansip	04/22/09	AHD
Hexachloroethane	04/22/09	mansip	04/22/09	AHD
Indeno[1,2,3-cd]pyrene	04/22/09	mansip	04/22/09	AHD
Isophorone	04/22/09	mansip	04/22/09	AHD
Naphthalene	04/22/09	mansip	04/22/09	AHD
Nitrobenzene	04/22/09	mansip	04/22/09	AHD
N-Nitrosodimethylamine	04/22/09	mansip	04/22/09	AHD
N-Nitroso-di-n-propylamin	e 04/22/09	mansip	04/22/09	AHD
N-Nitrosodiphenylamine	04/22/09	mansip	04/22/09	AHD
Pentachlorophenol	04/22/09	mansip	04/22/09	AHD
Phenanthrene	04/22/09	mansip	04/22/09	AHD
Phenol	04/22/09	mansip	04/22/09	AHD
Pyrene	04/22/09	mansip	04/22/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prei	Analysis		
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	oluferni	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	oluferni	04/24/09	SB
Barium	04/20/09	oluferni	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	olufemi	04/24/09	SB
Calcium	04/20/09	oluferni	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	oluferni	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	oluferni	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	olufemi	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	oluferni	04/24/09	SB
Zinc	04/20/09	olufemi	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Anal	sis	-
Analyte	Date	Ву	Date	Ву	
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP	
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP	
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP	
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP	
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP	
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP	
1,4-Dioxane	04/16/09	WP	04/16/09	WP	
2-Butanone	04/16/09	WP	04/16/09	WP	
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP	
2-Hexanone	04/16/09	WP	04/16/09	WP	
4-isopropyltoluene	04/16/09	WP	04/16/09	WP	
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP	
Acetone	04/16/09	WP	04/16/09	WP	
Acrolein	04/16/09	WP	04/16/09	WP	
Acrylonitrile	04/16/09	WP	04/16/09	WP	
Benzene	04/16/09	WP	04/16/09	WP	

Page 7 of 18

Lab#: AC43958-005 Sample ID: B-10

	•			
Bromodichloromethane	04/16/09	WP	04/16/09	WP
Bromoform	04/16/09	WP	04/16/09	WP
Bromomethane	04/16/09	WP	04/16/09	WP
Carbon disulfide	04/16/09	WP	04/16/09	WP
Carbon tetrachloride	04/16/09	WP	04/16/09	WP
Chlorobenzene	04/16/09	WP	04/16/09	WP
Chloroethane	04/16/09	WP	04/16/09	WP
Chloroform	04/16/09	WP	04/16/09	WP
Chloromethane	04/16/09	WP	04/16/09	WP
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Dibromochloromethane	04/16/09	WP	04/16/09	WP
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
Ethylbenzene	04/16/09	WP	04/16/09	WP
Isopropylbenzene	04/16/09	WP	04/16/09	WP
m&p-Xylenes	04/16/09	WP	04/16/09	WP
Methylene chloride	04/16/09	WP	04/16/09	WP
Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP
n-Butylbenzene	04/16/09	WP	04/16/09	WP
n-Propylbenzene	04/16/09	WP	04/16/09	WP
o-Xylene	04/16/09	WP	04/16/09	WP
sec-Butylbenzene	04/16/09	WP	04/16/09	WP
Styrene	04/16/09	WP	04/16/09	WP
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP
t-Butylbenzene	04/16/09	WP	04/16/09	WP
Tetrachloroethene	04/16/09	WP	04/16/09	WP
Toluene	04/16/09	WP	04/16/09	WP
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Trichloroethene	04/16/09	WP	04/16/09	WP
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP
Vinyl chloride	04/16/09	WP	04/16/09	WP
Xylenes (Total)	04/16/09	WP	04/16/09	WP

Lab#: AC43958-006 Sample ID: B-11

TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G

	Pre	ep	Analysis		
Analyte	Date	Ву	Date	By	
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT	

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

	Pre	Prep		/sis
Analyte	Date	Ву	Date	By
Mercury	04/20/09	olufemi	04/22/09	JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Prep		Analys	sis
Analyte	Date	Ву	Date	Ву
Aldrin	04/23/09	mansip	04/24/09	MS
Alpha-BHC	04/23/09	mansip	04/24/09	MS
beta-BHC	04/23/09	mansip	04/24/09	MS
Chlordane	04/23/09	mansip	04/24/09	MS
delta-BHC	04/23/09	mansip	04/24/09	MS
Dieldrin	04/23/09	mansip	04/24/09	MS
Endosulfan I	04/23/09	mansip	04/24/09	MS
Endosulfan II	04/23/09	mansip	04/24/09	MS
Endosulfan Sulfate	04/23/09	mansip	04/24/09	MS
Endrin	04/23/09	mansip	04/24/09	MS
Endrin Aldehyde	04/23/09	mansip	04/24/09	MS
Endrin Ketone	04/23/09	mansip	04/24/09	MS
gamma-BHC	04/23/09	mansip	04/24/09	MS
Heptachlor	04/23/09	mansip	04/24/09	MS
Heptachlor Epoxide	04/23/09	mansip	04/24/09	MS
Methoxychlor	04/23/09	mansip	04/24/09	MS
p,p'-DDD	04/23/09	mansip	04/24/09	MS
p,p'-DDE	04/23/09	mansip	04/24/09	MS
p,p'-DDT	04/23/09	mansip	04/24/09	MS
Toxaphene	04/23/09	mansip	04/24/09	MS

Lab#: AC43958-006 Sample ID: B-11

TestGroupName PCB 8082	
Preparation Method: EPA3510/3550	
Analytical Method: EPA 8082	

	Prep)	Analy	/sis	
Analyte	Date	Ву	Date	Ву	
Aroclor (Total)	04/23/09	mansip	04/23/09	MS	
Aroclor-1016	04/23/09	mansip	04/23/09	MS	
Aroclor-1221	04/23/09	mansip	04/23/09	MS	
Aroclor-1232	04/23/09	mansip	04/23/09	MS	
Aroclor-1242	04/23/09	mansip	04/23/09	MS	
Aroclor-1248	04/23/09	mansip	04/23/09	MS	
Aroclor-1254	04/23/09	mansip	04/23/09	MS	
Aroclor-1260	04/23/09	mansip	04/23/09	MS	
Aroclor-1262	04/23/09	mansip	04/23/09	MS	
Aroclor-1268	04/23/09	mansip	04/23/09	MS	

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

Prep Analysis Date Date By Bv Analyte 04/23/09 04/24/09 1.2.4-Trichlorobenzene AHD volanta 1,2-Diphenylhydrazine 04/23/09 yolanta 04/24/09 AHD 2,4,5-Trichlorophenol 04/23/09 yolanta 04/24/09 AHD 2,4,6-Trichlorophenol 04/23/09 yolanta 04/24/09 AHD 2.4-Dichlorophenol 04/23/09 yolanta 04/24/09 AHD 04/23/09 04/24/09 AHD 2.4-Dimethylphenol yolanta 2,4-Dinitrophenol 04/23/09 yolanta 04/24/09 AHD 2,4-Dinitrotoluene 04/23/09 yolanta 04/24/09 AHD 04/23/09 yolanta 04/24/09 AHD 2.6-Dinitrotoluene 2-Chloronaphthalene 04/23/09 yolanta 04/24/09 AHD 04/23/09 yolanta 04/24/09 AHD 2-Chlorophenol 2-Methylnaphthalene 04/23/09 volanta 04/24/09 AHD 2-Methylphenol 04/23/09 yolanta 04/24/09 AHD 04/23/09 AHD 2-Nitroaniline volanta 04/24/09 2-Nitrophenol 04/23/09 volanta 04/24/09 3&4-Methylphenol 04/23/09 yolanta 04/24/09 AHD 3.3'-Dichlorobenzidine 04/23/09 volanta 04/24/09 AHD AHD 3-Nitroaniline 04/23/09 yolanta 04/24/09 4,6-Dinitro-2-methylphenol 04/23/09 yolanta 04/24/09 AHD 4-Bromophenyl-phenylether 04/23/09 volanta 04/24/09 AHD 4-Chloro-3-methylphenol 04/23/09 yolanta 04/24/09 AHD 04/23/09 04/24/09 AHD 4-Chloroaniline volanta 4-Chlorophenyl-phenylether 04/23/09 yolanta 04/24/09 AHD 4-Nitroaniline 04/23/09 yolanta 04/24/09 AHD 04/23/09 04/24/09 AHD 4-Nitrophenol yolanta Acenaphthene 04/23/09 yolanta 04/24/09 AHD Acenaphthylene 04/23/09 yolanta 04/24/09 AHD Aniline 04/23/09 volanta 04/24/09 AHD Anthracene 04/23/09 yolanta 04/24/09 AHD 04/23/09 04/24/09 AHD volanta Benzidine AHD Benzo[a]anthracene 04/23/09 volanta 04/24/09 04/23/09 yolanta 04/24/09 AHD Benzo[a]pyrene Benzo[b]fluoranthene 04/23/09 yolanta 04/24/09 AHD Benzo[g,h,i]perylene 04/23/09 yolanta 04/24/09 AHD 04/23/09 04/24/09 AHD volanta Benzo[k]fluoranthene Benzoic acid 04/23/09 yolanta 04/24/09 AHD bis(2-Chloroethoxy)methane 04/23/09 volanta 04/24/09 AHD 04/23/09 04/24/09 AHD bis(2-Chloroethyl)ether volanta bis(2-Chloroisopropyl)ether 04/23/09 yolanta 04/24/09 AHD 04/23/09 yolanta 04/24/09 AHD bis(2-Ethylhexyl)phthalate Butylbenzylphthalate 04/23/09 yolanta 04/24/09 AHD Carbazole 04/23/09 yolanta 04/24/09 AHD 04/23/09 volanta 04/24/09 AHD Chrysene Dibenzo[a,h]anthracene 04/23/09 yolanta 04/24/09 AHD 04/23/09 yolanta 04/24/09 AHD Dibenzofuran Diethylphthalate 04/23/09 yolanta 04/24/09 AHD Dimethylphthalate 04/23/09 volanta 04/24/09 AHD Di-n-butylphthalate 04/23/09 volanta 04/24/09 AHD Di-n-octylphthalate 04/23/09 yolanta 04/24/09 AHD 04/23/09 yolanta 04/24/09 AHD Fluoranthene Fluorene 04/23/09 yolanta 04/24/09 AHD Hexachlorobenzene 04/23/09 yolanta 04/24/09 AHD AHD Hexachlorobutadiene 04/23/09 volanta 04/24/09 AHD Hexachlorocyclopentadiene 04/23/09 yolanta 04/24/09 04/23/09 yolanta 04/24/09 AHD Hexachloroethane yolanta Indeno[1,2,3-cd]pyrene 04/23/09 04/24/09 AHD

Lab#: AC43958-006 Sample ID: B-11

•				
Isophorone	04/23/09	yolanta	04/24/09	AHD
Naphthalene	04/23/09	yolanta	04/24/09	AHD
Nitrobenzene	04/23/09	yolanta	04/24/09	AHD
N-Nitrosodimethylamine	04/23/09	yolanta	04/24/09	AHD
N-Nitroso-di-n-propylamine	04/23/09	yolanta	04/24/09	AHD
N-Nitrosodiphenylamine	04/23/09	yolanta	04/24/09	AHD
Pentachlorophenol	04/23/09	yolanta	04/24/09	AHD
Phenanthrene	04/23/09	yolanta	04/24/09	AHD
Phenol	04/23/09	yolanta	04/24/09	AHD
Pyrene	04/23/09	yolanta	04/24/09	AHD

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Pres)	Analy	/sis	-
Analyte	Date	By	Date .	Ву	
Aluminum	04/20/09	olufemi	04/24/09	SB	
Antimony	04/20/09	oluferni	04/24/09	SB	
Arsenic	04/20/09	oluferni	04/24/09	SB	
Barium	04/20/09	oluferni	04/24/09	SB	
Beryllium	04/20/09	olufemi	04/24/09	SB	
Cadmium	04/20/09	olufemi	04/24/09	SB	
Calcium	04/20/09	olufemi	04/23/09	SRB	
Chromium	04/20/09	oluferni	04/24/09	SB	
Cobalt	04/20/09	olufemi	04/24/09	SB	
Copper	04/20/09	olufemi	04/24/09	SB	
Iron	04/20/09	olufemi	04/23/09	SRB	
Lead	04/20/09	olufemi	04/24/09	SB	
Magnesium	04/20/09	olufemi	04/23/09	SRB	
Manganese	04/20/09	olufemi	04/24/09	SB	
Nickel	04/20/09	oluferni	04/24/09	SB	
Potassium	04/20/09	oluferni	04/23/09	SRB	
Selenium	04/20/09	olufemi	04/24/09	SB	
Silver	04/20/09	olufemi	04/24/09	SB	
Sodium	04/20/09	olufemi	04/23/09	SRB	
Thallium	04/20/09	olufemi	04/24/09	SB	
Vanadium	04/20/09	olufemi	04/24/09	SB	
Zinc	04/20/09	olufemi	04/24/09	SB	

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Analy	/sis
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,4-Dioxane	04/16/09	WP	04/16/09	WP
2-Butanone	04/16/09	WP	04/16/09	WP
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP
2-Hexanone	04/16/09	WP	04/16/09	WP
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP
Acetone	04/16/09	WP	04/16/09	WP
Acrolein	04/16/09	WP	04/16/09	WP
Acrylonitrile	04/16/09	WP	04/16/09	WP
Benzene	04/16/09	WP	04/16/09	WP
Bromodichloromethane	04/16/09	WP	04/16/09	WP
Bromoform	04/16/09	WP	04/16/09	WP
Bromomethane	04/16/09	WP	04/16/09	WP
Carbon disulfide	04/16/09	WP	04/16/09	WP
Carbon tetrachloride	04/16/09	WP	04/16/09	WP
Chlorobenzene	04/16/09	WP	04/16/09	WP
Chloroethane	04/16/09	WP	04/16/09	WP
Chloroform	04/16/09	WP	04/16/09	WP

Project #: 9041403

Lab#: AC43958-006 Sample ID: B-11

Chloromethane 04/16/09 WP 04/16/09 WP cis-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP cis-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Dibromochloromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Ethylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP m&p-Xylenes 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP	L	ab#. AC+3350-000 Sample	D. D-11			
cis-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP cis-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Dibromochloromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Ethylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP styrene 04/16/09 WP 04/16/09 WP <		Chloromethane	04/16/09	WP	04/16/09	WP
cis-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Dibromochloromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Ethylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methyl-t-butyl ether 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP styrene 04/16/09 WP 04/16/09 WP	1	cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
Dibromochloromethane 04/16/09 WP 04/16/09 WP Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Ethylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methyl-t-butyl ether 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butylenzene <td></td> <td>cis-1,3-Dichloropropene</td> <td>04/16/09</td> <td>WP</td> <td>04/16/09</td> <td>WP</td>		cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Dichlorodifluoromethane 04/16/09 WP 04/16/09 WP Ethylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP m&p-Xylenes 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methyl-t-butyl ether 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP t-Butylobenzene </td <td></td> <td>Dibromochloromethane</td> <td>04/16/09</td> <td>WP</td> <td>04/16/09</td> <td>WP</td>		Dibromochloromethane	04/16/09	WP	04/16/09	WP
Ethylbenzene 04/16/09 WP 04/16/09 WP Isopropylbenzene 04/16/09 WP 04/16/09 WP m&p-Xylenes 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methyl-t-butyl ether 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP trearchloroethene		Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
Isopropylbenzene 04/16/09 WP 04/16/09 WP m&p-Xylenes 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethen		Ethylbenzene	04/16/09	WP	04/16/09	WP
m&p-Xylenes 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP Methylene chloride 04/16/09 WP 04/16/09 WP nethylene chloride 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-		Isopropylbenzene	04/16/09	WP	04/16/09	WP
Methylene chloride 04/16/09 WP 04/16/09 WP Methyl-t-butyl ether 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/1		m&p-Xylenes	04/16/09	WP	04/16/09	WP
Methyl-t-butyl ether 04/16/09 WP 04/16/09 WP n-Butylbenzene 04/16/09 WP 04/16/09 WP n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP Totuene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene		Methylene chloride	04/16/09	WP	04/16/09	WP
n-Butylbenzene 04/16/09 WP 04/16/09 WP n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trichloroethene		Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP
n-Propylbenzene 04/16/09 WP 04/16/09 WP o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP Tetrachloroethene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichlor		n-Butylbenzene	04/16/09	WP	04/16/09	WP
o-Xylene 04/16/09 WP 04/16/09 WP sec-Butylbenzene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP It-Butyl Alcohol 04/16/09 WP 04/16/09 WP It-Butyl Alcohol 04/16/09 WP 04/16/09 WP It-Butyl Alcohol 04/16/09 WP 04/16/09 WP It-Butylbenzene 04/16/09 WP 04/16/09 WP Tetrachloroethene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Vinyl		n-Propylbenzene	04/16/09	WP	04/16/09	WP
sec-Butylbenzene 04/16/09 WP 04/16/09 WP Styrene 04/16/09 WP 04/16/09 WP It-Butyl Alcohol 04/16/09 WP 04/16/09 WP It-Butyl Alcohol 04/16/09 WP 04/16/09 WP It-Butyl Alcohol 04/16/09 WP 04/16/09 WP It-Butylbenzene 04/16/09 WP 04/16/09 WP Tetrachloroethene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP <td< td=""><td></td><td>o-Xylene</td><td>04/16/09</td><td>WP</td><td>04/16/09</td><td>WP</td></td<>		o-Xylene	04/16/09	WP	04/16/09	WP
Styrene 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP Tetrachloroethene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		sec-Butylbenzene	04/16/09	WP	04/16/09	WP
t-Butyl Alcohol 04/16/09 WP 04/16/09 WP t-Butylbenzene 04/16/09 WP 04/16/09 WP Tetrachloroethene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		Styrene	04/16/09	WP	04/16/09	WP
t-Butylbenzene 04/16/09 WP 04/16/09 WP Tetrachloroethene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichlorofluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		t-Butyl Alcohol	04/16/09	WP	04/16/09	WP
Tetrachloroethene 04/16/09 WP 04/16/09 WP Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichlorofluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		t-Butyibenzene	04/16/09	WP	04/16/09	WP
Toluene 04/16/09 WP 04/16/09 WP trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichlorofluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		Tetrachloroethene	04/16/09	WP	04/16/09	WP
trans-1,2-Dichloroethene 04/16/09 WP 04/16/09 WP trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichlorofluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		Toluene	04/16/09	WP	04/16/09	WP
trans-1,3-Dichloropropene 04/16/09 WP 04/16/09 WP Trichloroethene 04/16/09 WP 04/16/09 WP Trichloroefluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
Trichloroethene 04/16/09 WP 04/16/09 WP Trichlorofluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Trichlorofluoromethane 04/16/09 WP 04/16/09 WP Vinyl chloride 04/16/09 WP 04/16/09 WP		Trichloroethene	04/16/09	WP	04/16/09	WP
Vinyl chloride 04/16/09 WP 04/16/09 WP		Trichlorofluoromethane	04/16/09	WP	04/16/09	WP
		Vinyl chloride	04/16/09	WP	04/16/09	WP
Xylenes (Total) 04/16/09 WP 04/16/09 WP		Xylenes (Total)	04/16/09	WP	04/16/09	WP

Lab#: AC43958-007 Sample ID: B-12

TestGroupName % Solids SM2540G Preparation Method: SM 2540G

Analytical Method: SM 2540G

	Pre	Analysis		
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

TestGroupName Mercury (Soil/Waste) 7471A Preparation Method: EPA 7471A Analytical Method: EPA 7471A

Analytical Method:	EPA /4/ IA				
	Pre	p	Analysis		
Analyte	Date	Ву	Date	Ву	
Mercury	04/20/09	olufemi	04/22/09	JS	

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

	Pre	0	Analy	/sis
Analyte	Date	Ву	Date	By
Aldrin	04/23/09	mansip	04/24/09	JP
Alpha-BHC	04/23/09	mansip	04/24/09	JP
beta-BHC	04/23/09	mansip	04/24/09	JP
Chlordane	04/23/09	mansip	04/24/09	JP
delta-BHC	04/23/09	mansip	04/24/09	JP
Dieldrin	04/23/09	mansip	04/24/09	JP
Endosulfan I	04/23/09	mansip	04/24/09	JP
Endosulfan II	04/23/09	mansip	04/24/09	JP
Endosulfan Sulfate	04/23/09	mansip	04/24/09	JP
Endrin	04/23/09	mansip	04/24/09	JP
Endrin Aldehyde	04/23/09	mansip	04/24/09	JP
Endrin Ketone	04/23/09	mansip	04/24/09	JP
gamma-BHC	04/23/09	mansip	04/24/09	JP
Heptachlor	04/23/09	mansip	04/24/09	JP
Heptachlor Epoxide	04/23/09	mansip	04/24/09	JP
Methoxychlor	04/23/09	mansip	04/24/09	JP
p,p'-DDD	04/23/09	mansip	04/24/09	JP
p,p'-DDE	04/23/09	mansip	04/24/09	JP
p,p'-DDT	04/23/09	mansip	04/24/09	JP
Toxaphene	04/23/09	mansip	04/24/09	JP

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Pre	Prep		Analysis	
Analyte	Date	Ву	Date	By	
Aroclor (Total)	04/23/09	mansip	04/23/09	MS	
Aroclor-1016	04/23/09	mansip	04/23/09	MS	
Arocior-1221	04/23/09	mansip	04/23/09	MS	
Aroclor-1232	04/23/09	mansip	04/23/09	MS	

Lab#: AC43958-007 Sample ID: B-12

Aroclor-1242	04/23/09	mansip	04/23/09	MS	
Aroclor-1248	04/23/09	mansip	04/23/09	MS	
Aroclor-1254	04/23/09	mansip	04/23/09	MS	
Aroclor-1260	04/23/09	mansip	04/23/09	MS	
Aroclor-1262	04/23/09	mansip	04/23/09	MS	
Aroclor-1268	04/23/09	mansip	04/23/09	MS	

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B

Analytical Method: EPA 8270C Prep Analysis Analyte Date By Date Bv 1,2,4-Trichlorobenzene 04/23/09 04/24/09 yolanta AHD yolanta 1,2-Diphenylhydrazine 04/23/09 04/24/09 AHD 2,4,5-Trichlorophenol 04/23/09 volanta 04/24/09 AHD 2.4.6-Trichlorophenol 04/23/09 yolanta 04/24/09 AHD 2,4-Dichlorophenol 04/23/09 04/24/09 AHD yolanta 2,4-Dimethylphenol 04/23/09 04/24/09 volanta AHD yolanta 2.4-Dinitrophenol 04/23/09 04/24/09 AHD 2.4-Dinitrotoluene 04/23/09 yolanta 04/24/09 AHD 2.6-Dinitrotoluene 04/23/09 04/24/09 AHD yolanta 2-Chloronaphthalene 04/23/09 yolanta 04/24/09 AHD 2-Chlorophenol 04/23/09 volanta 04/24/09 AHD yolanta 2-Methylnaphthalene 04/23/09 04/24/09 AHD 04/23/09 2-Methylphenol yolanta 04/24/09 AHD 2-Nitroaniline 04/23/09 volanta 04/24/09 AHD 2-Nitrophenol 04/23/09 yolanta 04/24/09 AHD 3&4-Methylphenol 04/23/09 yolanta 04/24/09 AHD 3.3'-Dichlorobenzidine 04/23/09 yolanta 04/24/09 AHD 3-Nitroaniline 04/23/09 04/24/09 AHD yolanta 04/23/09 04/24/09 4.6-Dinitro-2-methylphenol volanta AHD yolanta AHD 4-Bromophenyl-phenylether 04/23/09 04/24/09 4-Chloro-3-methylphenol 04/23/09 04/24/09 yolanta AHD 4-Chloroaniline 04/23/09 yolanta 04/24/09 AHD 4-Chlorophenyl-phenylether 04/23/09 yolanta 04/24/09 AHD 4-Nitroaniline 04/23/09 yolanta 04/24/09 AHD yolanta 4-Nitrophenol 04/23/09 04/24/09 AHD Acenaphthene 04/23/09 yolanta 04/24/09 AHD Acenaphthylene 04/23/09 04/24/09 volanta AHD Aniline 04/23/09 yolanta 04/24/09 AHD 04/24/09 AHD Anthracene 04/23/09 yolanta Benzidine 04/23/09 04/24/09 AHD yolanta Benzo[a]anthracene 04/23/09 yolanta 04/24/09 AHD Benzo[a]pyrene 04/23/09 volanta 04/24/09 AHD yolanta Benzo[b]fluoranthene 04/23/09 04/24/09 AHD Benzo[g,h,i]perylene 04/23/09 04/24/09 AHD volanta 04/23/09 Benzo[k]fluoranthene volanta 04/24/09 AHD Benzoic acid 04/23/09 yolanta 04/24/09 AHD 04/23/09 04/24/09 AHD bis(2-Chloroethoxy)methane yolanta bis(2-Chloroethyl)ether 04/23/09 04/24/09 AHD yolanta yolanta bis(2-Chloroisopropyl)ether 04/23/09 04/24/09 AHD bis(2-Ethylhexyl)phthalate 04/23/09 volanta 04/24/09 AHD yolanta Butylbenzylphthalate 04/23/09 04/24/09 AHD Carbazole 04/23/09 yolanta 04/24/09 AHD Chrysene 04/23/09 yolanta 04/24/09 AHD Dibenzo[a,h]anthracene 04/23/09 yolanta 04/24/09 AHD Dibenzofuran 04/23/09 yolanta 04/24/09 AHD Diethylphthalate 04/23/09 AHD yolanta 04/24/09 Dimethylphthalate 04/23/09 yolanta 04/24/09 AHD Di-n-butylphthalate 04/23/09 volanta 04/24/09 AHD yolanta Di-n-octylphthalate 04/23/09 04/24/09 AHD Fluoranthene 04/23/09 yolanta 04/24/09 AHD Fluorene 04/23/09 volanta 04/24/09 AHD Hexachlorobenzene 04/23/09 yolanta 04/24/09 AHD Hexachlorobutadiene 04/23/09 volanta 04/24/09 AHD yolanta Hexachlorocyclopentadiene 04/23/09 04/24/09 AHD Hexachloroethane 04/23/09 yolanta 04/24/09 AHD Indeno[1,2,3-cd]pyrene 04/23/09 04/24/09 AHD volanta Isophorone 04/23/09 yolanta 04/24/09 AHD Naphthalene 04/23/09 volanta 04/24/09 AHD Nitrobenzene 04/23/09 yolanta 04/24/09 AHD N-Nitrosodimethylamine 04/23/09 yolanta 04/24/09 AHD N-Nitroso-di-n-propylamine 04/23/09 yolanta 04/24/09 AHD N-Nitrosodiphenylamine 04/23/09 yolanta 04/24/09 AHD Pentachlorophenol 04/23/09 volanta 04/24/09 AHD Phenanthrene 04/23/09 yolanta 04/24/09 AHD Phenol 04/23/09 yolanta 04/24/09 AHD

Lab#: AC43958-007 Sample ID: B-12

AHD

Pyrene 04/23/09

	04/23/09	yolanta	04/24/09
Metals	6010		

TestGroupName	TAL	Met	als 60)10
Preparation M	ethod:	3005	&10/3	050
Analytical M	ethod:	EPA	6010E	3
1				D

	Prep	0	Analy	/sis
Analyte	Date	Ву	Date	Ву
Aluminum	04/20/09	olufemi	04/24/09	SB
Antimony	04/20/09	olufemi	04/24/09	SB
Arsenic	04/20/09	oluferni	04/24/09	SB
Barium	04/20/09	oluferni	04/24/09	SB
Beryllium	04/20/09	olufemi	04/24/09	SB
Cadmium	04/20/09	oluferni	04/24/09	SB
Calcium	04/20/09	oluferni	04/23/09	SRB
Chromium	04/20/09	olufemi	04/24/09	SB
Cobalt	04/20/09	olufemi	04/24/09	SB
Copper	04/20/09	olufemi	04/24/09	SB
Iron	04/20/09	oluferni	04/23/09	SRB
Lead	04/20/09	olufemi	04/24/09	SB
Magnesium	04/20/09	olufemi	04/23/09	SRB
Manganese	04/20/09	olufemi	04/24/09	SB
Nickel	04/20/09	oluferni	04/24/09	SB
Potassium	04/20/09	olufemi	04/23/09	SRB
Selenium	04/20/09	olufemi	04/24/09	SB
Silver	04/20/09	oluferni	04/24/09	SB
Sodium	04/20/09	olufemi	04/23/09	SRB
Thallium	04/20/09	olufemi	04/24/09	SB
Vanadium	04/20/09	oluferni	04/24/09	SB
Zinc	04/20/09	oluferni	04/24/09	SB

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Anaiy	/SIS
Analyte	Date	Ву	Date	Ву
1,1,1-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1,2,2-Tetrachloroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/16/09	WP	04/16/09	WP
1,1,2-Trichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethane	04/16/09	WP	04/16/09	WP
1,1-Dichloroethene	04/16/09	WP	04/16/09	WP
1,2,3-Trichloropropane	04/16/09	WP	04/16/09	WP
1,2,4-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,2-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,2-Dichloroethane	04/16/09	WP	04/16/09	WP
1,2-Dichloropropane	04/16/09	WP	04/16/09	WP
1,3,5-Trimethylbenzene	04/16/09	WP	04/16/09	WP
1,3-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,3-Dichloropropane	04/16/09	WP	04/16/09	WP
1,4-Dichlorobenzene	04/16/09	WP	04/16/09	WP
1,4-Dioxane	04/16/09	WP	04/16/09	WP
2-Butanone	04/16/09	WP	04/16/09	WP
2-Chloroethylvinylether	04/16/09	WP	04/16/09	WP
2-Hexanone	04/16/09	WP	04/16/09	WP
4-Isopropyltoluene	04/16/09	WP	04/16/09	WP
4-Methyl-2-pentanone	04/16/09	WP	04/16/09	WP
Acetone	04/16/09	WP	04/16/09	WP
Acrolein	04/16/09	WP	04/16/09	WP
Acrylonitrile	04/16/09	WP	04/16/09	WP
Benzene	04/16/09	WP	04/16/09	WP
Bromodichloromethane	04/16/09	WP	04/16/09	WP
Bromoform	04/16/09	WP	04/16/09	WP
Bromomethane	04/16/09	WP	04/16/09	WP
Carbon disulfide	04/16/09	WP	04/16/09	WP
Carbon tetrachloride	04/16/09	WP	04/16/09	WP
Chlorobenzene	04/16/09	WP	04/16/09	WP
Chloroethane	04/16/09	WP	04/16/09	WP
Chloroform	04/16/09	WP	04/16/09	WP
Chloromethane	04/16/09	WP	04/16/09	WP
cis-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP
cis-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP
Dibromochloromethane	04/16/09	WP	04/16/09	WP
Dichlorodifluoromethane	04/16/09	WP	04/16/09	WP
Ethylbenzene	04/16/09	WP	04/16/09	WP
Isopropylbenzene	04/16/09	WP	04/16/09	WP
m&p-Xylenes	04/16/09	WP	04/16/09	WP
Methylene chloride	04/16/09	WP	04/16/09	WP

Lab#: AC43958-007 Sample ID: B-12

Methyl-t-butyl ether	04/16/09	WP	04/16/09	WP	
n-Butylbenzene	04/16/09	WP	04/16/09	WP	
n-Propylbenzene	04/16/09	WP	04/16/09	WP	
o-Xylene	04/16/09	WP	04/16/09	WP	1
sec-Butylbenzene	04/16/09	WP	04/16/09	WP	
Styrene	04/16/09	WP	04/16/09	WP	
t-Butyl Alcohol	04/16/09	WP	04/16/09	WP	
t-Butylbenzene	04/16/09	WP	04/16/09	WP	-
Tetrachloroethene	04/16/09	WP	04/16/09	WP	1
Toluene	04/16/09	WP	04/16/09	WP	
trans-1,2-Dichloroethene	04/16/09	WP	04/16/09	WP	
trans-1,3-Dichloropropene	04/16/09	WP	04/16/09	WP	
Trichloroethene	04/16/09	WP	04/16/09	WP	
Trichlorofluoromethane	04/16/09	WP	04/16/09	WP	
Vinyl chloride	04/16/09	WP	04/16/09	WP	
Xvlenes (Total)	04/16/09	WP	04/16/09	WP	

Lab#: AC43958-008 Sample ID: B-11 GW

TestGroupName Mercury (Water) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
Mercury	04/22/09	maxine	04/22/09	JS

TestGroupName Organochlorine Pesticides 8081 Preparation Method: EPA3510/3550 Analytical Method: EPA 8081A

,,						
	Pre)	Analy	/SIS		
Analyte	Date	Ву	Date	Ву		
Aldrin	04/16/09	kalpesh	04/17/09	MS		
Alpha-BHC	04/16/09	kalpesh	04/17/09	MS		
beta-BHC	04/16/09	kalpesh	04/17/09	MS		
Chlordane	04/16/09	kalpesh	04/17/09	MS		
delta-BHC	04/16/09	kalpesh	04/17/09	MS		
Dieldrin	04/16/09	kalpesh	04/17/09	MS		
Endosulfan I	04/16/09	kalpesh	04/17/09	MS		
Endosulfan II	04/16/09	kalpesh	04/17/09	MS		
Endosulfan Sulfate	04/16/09	kalpesh	04/17/09	MS		
Endrin	04/16/09	kalpesh	04/17/09	MS		
Endrin Aldehyde	04/16/09	kalpesh	04/17/09	MS		
Endrin Ketone	04/16/09	kalpesh	04/17/09	MS		
gamma-BHC	04/16/09	kalpesh	04/17/09	MS		
Heptachlor	04/16/09	kalpesh	04/17/09	MS		
Heptachlor Epoxide	04/16/09	kalpesh	04/17/09	MS		
Methoxychlor	04/16/09	kalpesh	04/17/09	MS		
p,p'-DD D	04/16/09	kalpesh	04/17/09	MS		
p,p'-DDE	04/16/09	kalpesh	04/17/09	MS		
p,p'-DDT	04/16/09	kalpesh	04/17/09	MS		
Toxaphene	04/16/09	kaipesh	04/17/09	MS		

TestGroupName PCB 8082 Preparation Method: EPA3510/3550 Analytical Method: EPA 8082

	Pre	Prep		/sis
Analyte	Date	Ву	Date	Ву
Aroclor (Total)	04/16/09	kalpesh	04/17/09	MS
Aroclor-1016	04/16/09	kalpesh	04/17/09	MS
Aroclor-1221	04/16/09	kalpesh	04/17/09	MS
Aroclor-1232	04/16/09	kalpesh	04/17/09	MS
Aroclor-1242	04/16/09	kalpesh	04/17/09	MS
Aroclor-1248	04/16/09	kalpesh	04/17/09	MS
Aroclor-1254	04/16/09	kalpesh	04/17/09	MS
Aroclor-1260	04/16/09	kalpesh	04/17/09	MS
Aroclor-1262	04/16/09	kalpesh	04/17/09	MS
Aroclor-1268	04/16/09	kalpesh	04/17/09	MS

TestGroupName Semivolatile Organics + 25 (8270) Preparation Method: 3510C/3550B Analytical Method: EPA 8270C

	Prep		Analy	ysis	
Analyte	Date	Ву	Date	Ву	
1,2,4-Trichlorobenzene	04/20/09	cv	04/21/09	AHD	
1,2-Diphenylhydrazine	04/20/09	cv	04/21/09	AHD	
2,4,5-Trichlorophenol	04/20/09	cv	04/21/09	AHD	
2,4,6-Trichlorophenol	04/20/09	cv	04/21/09	AHD	

Lab#: AC43958-008 Sample ID: B-11 GW

LaD#: AC43950-008 Sam		399		
2,4-Dichlorophenol	04/20/09	cv	04/21/09	AHD
2,4-Dimethylphenol	04/20/09	cv	04/21/09	AHD
2,4-Dinitrophenol	04/20/09	CV	04/21/09	AHD
2,4-Dinitrotoluene	04/20/09	CV	04/21/09	AHD
2,6-Dinitrotoluene	04/20/09	CV	04/21/09	AHD
2-Chloronaphthalene	04/20/09	CV	04/21/09	AHD
2-Chlorophenol	04/20/09	CV	04/21/09	AHD
2-Methylnaphthalene	04/20/09	CV	04/21/09	AHD
2-Methylphenol	04/20/09	CV	04/21/09	AHD
2-Nitroaniline	04/20/09	CV	04/21/09	AHD
	04/20/09	CV	04/21/09	AHD
3&4-Methylphenol	04/20/09	CV	04/21/09	AHD
3,3-Dichlorobenzialne	04/20/09	CV	04/21/09	
4.6 Disitra 2 methylabasal	04/20/09	CV	04/21/09	
4,0-Dinitro-2-methylphenol	04/20/09	CV	04/21/09	
4-Chloro 3-mothylobenol	04/20/09	CV CV	04/21/09	
4-Chloroaniline	04/20/09	CV CV	04/21/09	
4-Chlorophenyl-phenylether	04/20/09	CV	04/21/09	AHD
4-Nitroaniline	04/20/09	cv	04/21/09	AHD
4-Nitrophenol	04/20/09	cv	04/21/09	AHD
Acenaphthene	04/20/09	cv	04/21/09	AHD
Acenaphthylene	04/20/09	cv	04/21/09	AHD
Aniline	04/20/09	cv	04/21/09	AHD
Anthracene	04/20/09	cv	04/21/09	AHD
Benzidine	04/20/09	CV	04/21/09	AHD
Benzo[a]anthracene	04/20/09	cv	04/21/09	AHD
Benzo[a]pyrene	04/20/09	cv	04/21/09	AHD
Benzo[b]fluoranthene	04/20/09	cv	04/21/09	AHD
Benzo[g,h,i]perylene	04/20/09	cv	04/21/09	AHD
Benzo[k]fluoranthene	04/20/09	cv	04/21/09	AHD
Benzoic acid	04/20/09	cv	04/21/09	AHD
bis(2-Chloroethoxy)methane	04/20/09	CV	04/21/09	AHD
bis(2-Chloroethy!)ether	04/20/09	CV	04/21/09	AHD
bis(2-Chloroisopropyl)ether	04/20/09	cv	04/21/09	AHD
bis(2-Ethylhexyl)phthalate	04/20/09	cv	04/21/09	AHD
Butylbenzylphthalate	04/20/09	CV	04/21/09	AHD
Carbazole	04/20/09	CV	04/21/09	AHD
Chrysene Dibestario hisstbrasses	04/20/09	CV	04/21/09	
Dibenzola, njanunacene	04/20/09	CV	04/21/09	
Diethylobthalate	04/20/09	CV	04/21/09	
Directly/phillalate	04/20/09	CV CV	04/21/09	
Di-n-butylobtbalate	04/20/09	CV	04/21/09	AHD
Di-n-octylphthalate	04/20/09	cv	04/21/09	AHD
Fluoranthene	04/20/09	CV	04/21/09	AHD
Fluorene	04/20/09	cv	04/21/09	AHD
Hexachlorobenzene	04/20/09	cv	04/21/09	AHD
Hexachlorobutadiene	04/20/09	cv	04/21/09	AHD
Hexachlorocyclopentadiene	04/20/09	cv	04/21/09	AHD
Hexachloroethane	04/20/09	cv	04/21/09	AHD
Indeno[1,2,3-cd]pyrene	04/20/09	cv	04/21/09	AHD
Isophorone	04/20/09	CV	04/21/09	AHD
Naphthalene	04/20/09	cv	04/21/09	AHD
Nitrobenzene	04/20/09	cv	04/21/09	AHD
N-Nitrosodimethylamine	04/20/09	CV	04/21/09	AHD
N-Nitroso-di-n-propylamine	04/20/09	cv	04/21/09	AHD
N-Nitrosodiphenylamine	04/20/09	cv	04/21/09	AHD
Pentachlorophenol	04/20/09	cv	04/21/09	AHD
Phenanthrene	04/20/09	cv	04/21/09	AHD
Pyropp	04/20/09	cv	04/21/09	
Гугепе	04/20/09	CV	04/21/09	AND

TestGroupName TAL Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Prep		Analy	alysis	
Analyte	Date	Ву	Date	Ву	
Aluminum	04/22/09	maxine	04/23/09	SRB	
Antimony	04/22/09	maxine	04/24/09	SRB	
Arsenic	04/22/09	maxine	04/24/09	SRB	
Barium	04/22/09	maxine	04/24/09	SRB	
Beryllium	04/22/09	maxine	04/23/09	SRB	
Cadmium	04/22/09	maxine	04/24/09	SRB	
Calcium	04/22/09	maxine	04/24/09	SRB	
Chromium	04/22/09	maxine	04/24/09	SRB	
Cobalt	04/22/09	maxine	04/24/09	SRB	

Laboratory Chronicle

Соррег	04/22/09	maxine	04/24/09	SRB	
Iron	04/22/09	maxine	04/23/09	SRB	
Lead	04/22/09	maxine	04/24/09	SRB	
Magnesium	04/22/09	maxine	04/24/09	SRB	
Manganese	04/22/09	maxine	04/24/09	SRB	
Nickel	04/22/09	maxine	04/24/09	SRB	
Potassium	04/22/09	maxine	04/25/09	SRB	
Selenium	04/22/09	maxine	04/23/09	SRB	
Silver	04/22/09	maxine	04/24/09	SRB	
Sodium	04/22/09	maxine	04/25/09	SRB	
Thallium	04/22/09	maxine	04/23/09	SRB	
Vanadium	04/22/09	maxine	04/24/09	SRB	
Zinc	04/22/09	maxine	04/24/09	SRB	

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

•	Prep		Analysis	
Analyte	Date	Ву	Date	By
1.1.1-Trichloroethane	04/15/09	WP	04/15/09	WP
1,1,2,2-Tetrachloroethane	04/15/09	WP	04/15/09	WP
1,1,2-Trichloro-1,2,2-trifluoroethane	04/15/09	WP	04/15/09	WP
1,1,2-Trichloroethane	04/15/09	WP	04/15/09	WP
1,1-Dichloroethane	04/15/09	WP	04/15/09	WP
1,1-Dichloroethene	04/15/09	WP	04/15/09	WP
1,2,3-Trichloropropane	04/15/09	WP	04/15/09	WP
1,2,4-Trimethylbenzene	04/15/09	WP	04/15/09	WP
1,2-Dichlorobenzene	04/15/09	WP	04/15/09	WP
1,2-Dichloroethane	04/15/09	WP	04/15/09	WP
1,2-Dichloropropane	04/15/09	WP	04/15/09	WP
1,3,5-Trimethylbenzene	04/15/09	WP	04/15/09	WP
1,3-Dichlorobenzene	04/15/09	WP	04/15/09	WP
1,3-Dichloropropane	04/15/09	WP	04/15/09	WP
1,4-Dichlorobenzene	04/15/09	WP	04/15/09	WP
1,4-Dioxane	04/15/09	WP	04/15/09	WP
2-Butanone	04/15/09	WP	04/15/09	WP
2-Chloroethylvinylether	04/15/09	WP	04/15/09	WP
2-Hexanone	04/15/09	WP	04/15/09	WP
4-Isopropyltoluene	04/15/09	WP	04/15/09	WP
4-Methyl-2-pentanone	04/15/09	WP	04/15/09	WP
Acetone	04/15/09	WP	04/15/09	WP
Acrolein	04/15/09	WP	04/15/09	WP
Acrylonitrile	04/15/09	WP	04/15/09	WP
Benzene	04/15/09	WP	04/15/09	WP
Bromodichloromethane	04/15/09	WP	04/15/09	WP
Bromoform	04/15/09	WP	04/15/09	WP
Bromomethane	04/15/09	WP	04/15/09	WP
Carbon disulfide	04/15/09	WP	04/15/09	WP
Carbon tetrachloride	04/15/09	WP	04/15/09	WP
Chlorobenzene	04/15/09	WP	04/15/09	WP
Chloroethane	04/15/09	WP	04/15/09	WP
Chioroform	04/15/09	WP	04/15/09	WP
Chloromethane	04/15/09	WP	04/15/09	WP
cis-1,2-Dichloroethene	04/15/09	WP	04/15/09	WP
cis-1,3-Dichloropropene	04/15/09	WP	04/15/09	WP
Dibromochloromethane	04/15/09	WP	04/15/09	WP
Dichlorodifluoromethane	04/15/09	WP	04/15/09	WP
Ethylbenzene	04/15/09	WP	04/15/09	WP
Isopropylbenzene	04/15/09	WP	04/15/09	WP
m&p-Xylenes	04/15/09	WP	04/15/09	WP
Methylene chloride	04/15/09	WP	04/15/09	WP
Methyl-t-butyl ether	04/15/09	WP	04/15/09	WP
n-Butylbenzene	04/15/09	WP	04/15/09	WP
n-Propylbenzene	04/15/09	WP	04/15/09	WP
o-Xylene	04/15/09	WP	04/15/09	WP
sec-Butylbenzene	04/15/09	WP	04/15/09	WP
Styrene	04/15/09	WP	04/15/09	WP
t-Butyl Alcohol	04/15/09	WP	04/15/09	WP
t-Butylbenzene	04/15/09	WP	04/15/09	WP
Tetrachloroethene	04/15/09	WP	04/15/09	WP
	04/15/09	WP	04/15/09	WP
trans-1,2-Dichloroethene	04/15/09	WP	04/15/09	WP
trans-1,3-Dichloropropene	04/15/09	WP	04/15/09	WP
	04/15/09	WP	04/15/09	WP
Trichlorofluoromethane	04/15/09	WP	04/15/09	WP
Vinyi chloride	04/15/09	WP	04/15/09	WP
Aylenes (Total)	04/15/09	WP	04/15/09	WP

La	b#: AC43958-009 Sample	ID: WC-1			
Те	stGroupName % Solids S Preparation Method: SM 254 Analytical Method: SM 254	M2540G IOG IOG			
		Prep		Analy	sis
A	Analyte	Date	Ву	Date	Ву
%	6 Solids	04/15/09 P	RASHANT	04/15/09 P	RASHANT
Те	stGroupName Ignitability Preparation Method: EPA 10 Analytical Method: EPA 10)30)30	1	Analy	
	Analyte	Date	Bv	Date	Bv
	anitability	04/16/09	iad	04/16/09	iad
Te	stGroupName Mercury (T Preparation Method: EPA 74 Analytical Method: EPA 74	CLP) 7470 70A 70A	DA	Anak	
	Analyte	Date	Bv	Anaiy Date	SIS Rv
	Aercury	04/17/09	olufemi	04/20/09	15
		0-11/03		07120103	
Те	stGroupName pH 9040B/ Preparation Method: 9040B/ Analytical Method: 9040B/	9045C 9045C 9045C			
	Analyta	Prep	By	Analy Date	SIS Bv
H		04/16/09	SDI	04/16/09	SDI
P			501	8010111-0	JUL
Те	stGroupName Reactive C Preparation Method: SW846 Analytical Method: SW846	yanide 7.3 7.3.3		Arab	
	Analyte	Prep	Bv	Analy Date	SIS Bv
-		04/16/09	iod	Dale	ind
	Jyanide (Reactive)	04/16/09	jad	04/16/09	jao
TestGroupName Reactive Sulfide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4					
	Analytical Method: SW846	07.3.4 Pren		Analy	sis
	Analytical Method: SVV846	Prep Date	Ву	Analy Date	/sis By
s	Analytical Method: SVV846 Analyte Sulfide (Reactive)	Prep Date 04/16/09	By jad	Analy Date 04/16/09	/sis By jad
re Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81	Prep Date 04/16/09 Dicides 81 151A	By _{jad} 51	Analy Date 04/16/09	/sis By jad
Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81	Date 04/16/09 Dicides 81 151A 151A Prep	By _{jad} 51	Analy Date 04/16/09 Analy	/sis By jad
Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81	Date 04/16/09 Dicides 81 151A 151A Prep Date	By ^{jad} 51 By	Analy Date 04/16/09 Analy Date	vsis By jad vsis By
Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte	Prep Date 04/16/09 Dicides 81 151A 151A 04/21/09	By jad 51 By	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09	/sis By jad /sis By JP
Te I I I I I I I I I I	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte .4-D Silvex estGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60	Prep Date 04/16/09 Dicides 81 151A Prep Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09	By jad 51 By cv cv	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09	rsis jad rsis By JP JP
Te Te	Analytical Method: SVV846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte Silvex estGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte	017.3.4 Prep Date 04/16/09 Dicides 81 151A 151A 151A 04/21/09	By jad 51 By cv cv cv	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 Analy Date	rsis jad rsis By JP JP
Te Te	Analytical Method: SVV846 Analyte sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte stGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte vsenic	Prep Date 04/16/09 Dicides 81 151A 151A 151A 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09	By jad 51 By cv cv cv dufemi	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 04/22/09 Analy Date 04/17/09	rsis jad rsis By JP JP ysis By SB
Te Te	Analytical Method: SVV846 Analyte sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte stGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte usenic larium	Prep Date 04/16/09 Dicides 81 151A 151A 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/10/09 04/17/09 04/17/09	By jad 51 By cv cv cv dufemi olufemi	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 Analy Date 04/17/09 04/17/09	rsis By jad /sis By JP JP /sis By SB SB
Te Te Te	Analytical Method: SVV846 Analyte sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte stGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte wsenic larium admium	Prep Date 04/16/09 Dicides 81 151A 151A 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 04/17/09 04/17/09 04/17/09	By jad 51 51 cv cv cv cv	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 Analy Date 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP /sis By SB SB SB
Te Te	Analytical Method: SVV846 Analyte sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte .4-D silvex estGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte vsenic larium admium chromium	Prep Date 04/16/09 Dicides 81 151A 151A 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/10/3050 010B Prep 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By jad 51 51 Cv cv cv cv	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP /sis By SB SB SB SB SB
Te Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Hert Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte	Prep Date 04/16/09 Dicides 81 151A Prep Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By jad 51 51 By cv cv cv cv	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP JP ysis By SB SB SB SB SB SB SB SB SB
Te Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Hert Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte	Prep Date 04/16/09 Dicides 81 151A Prep Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By jad 51 51 By cv cv cv dufemi olufemi olufemi olufemi olufemi	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP JP ysis By SB SB SB SB SB SB SB SB SB SB SB
Te Te Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analyte Analyte Analyte StGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte Istenic Barium Chromium ead lickel Belenium Silver	Prep Date 04/16/09 Dicides 81 151A Prep Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By jad 51 51 By cv cv cv dufemi olufemi olufemi olufemi olufemi olufemi olufemi	Analy Date 04/16/09 Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP /sis By SB SB SB SB SB SB SB SB SB SB SB SB SB
Te Te A B C C C C C C C C C C C C C C C C C C	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte	04/16/09 Date 04/16/09 Dicides 81 151A 151A 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 04/1	By jad 51 51 By cv cv cv By olufemi	Analy Date 04/16/09 Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP /sis By SB SB SB SB SB SB SB SB SB SB SB SB SB
Te Te A B C C C C C C C C C C C C C C C C C C	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte Analyte StGroupName TCLP Meta Preparation Method: EPA 60 Analyte Analyte StGroupName TCLP Meta Preparation Method: EPA 60 Analyte StGroupName TCLP Meta Preparation Method: EPA 13 Analytical Meth	Prep Date 04/16/09 Dicides 81 D51A Date Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 <td>By jad 51 51 51 51 51 51 51 51 51 51 51 51 51</td> <td>Analy Date 04/16/09 Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09</td> <td>rsis By jad /sis By JP JP /sis By SB SB SB SB SB SB SB SB SB SB SB SB SB</td>	By jad 51 51 51 51 51 51 51 51 51 51 51 51 51	Analy Date 04/16/09 Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	rsis By jad /sis By JP JP /sis By SB SB SB SB SB SB SB SB SB SB SB SB SB
Tee Tee Tee Tee Tee	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analytical Method: EPA 81 Analyte StGroupName TCLP Meta Preparation Method: 3005&1 Analytical Method: EPA 60 Analyte stGroupName TCLP Meta Preparation Method: EPA 60 Analyte stGroupName TCLP Meta Preparation Method: EPA 13 Analytical Method: EPA 13 Analyte StGroupName TCLP Meta Preparation Method: EPA 13 Analyte StGroupName TCLP Meta	Prep Date 04/16/09 Dicides 81 151A Prep Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09	By jad 51 51 51 51 51 51 51 51 51 51 51 51 51	Analy Date 04/16/09 Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/10 04/10 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/10	rsis By jad /sis By JP JP /sis By SB SB SB SB SB SB SB SB SB SB SB SB SB
Te Te	Analytical Method: SW846 Analyte Sulfide (Reactive) estGroupName TCLP Herk Preparation Method: EPA 81 Analyte 4-D Silvex estGroupName TCLP Meta Preparation Method: EPA 60 Analyte resenic Barium Chromium ead lickel Iselenium Silver estGroupName TCLP Meta Preparation Method: EPA 13 Analytical Method: CLP Metals Extraction estGroupName TCLP Orga Preparation Method: EPA 13 Analytical Method: EPA 13 Analyte CLP Metals Extraction	04/13/09 04/16/09 04/16/09 0icides 81 151A 151A 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09 04/17/09 04/15/09 anics Extract	By jad 51 51 51 51 51 51 51 51 51 51 51 51 51	Analy Date 04/16/09 Analy Date 04/22/09 04/22/09 04/22/09 04/22/09 04/22/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 11 Analy Date NA	rsis By jad /sis By JP JP /sis By SB SB SB SB SB SB SB SB SB SB SB SB SB

Lab#: AC43958-009 Sample ID: WC-1

TCLP Organics Extraction

04/15/09 oa NA

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510 Analytical Method: EPA 8081A

	Prep		Analy	/sis		
Analyte	Date	Ву	Date	Ву		
Chlordane	04/20/09	neha	04/21/09	MS		
Endrin	04/20/09	neha	04/21/09	MS		
gamma-BHC	04/20/09	neha	04/21/09	MS		
Heptachlor	04/20/09	neha	04/21/09	MS		
Heptachlor Epoxide	04/20/09	neha	04/21/09	MS		
Methoxychlor	04/20/09	neha	04/21/09	MS		
Toxaphene	04/20/09	neha	04/21/09	MS		

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510 Analytical Method: EPA 8270C

	Prer	Prep		/sis	_
Analyte	Date	Ву	Date	Ву	
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD	
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD	
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD	
2-Methylphenol	04/19/09	mansip	04/20/09	AHD	
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD	
Hexachiorobenzene	04/19/09	mansip	04/20/09	AHD	
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD	
Hexachloroethane	04/19/09	mansip	04/20/09	AHD	
Nitrobenzene	04/19/09	mansip	04/20/09	AHD	
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD	
Pyridine	04/19/09	mansip	04/20/09	AHD	

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/27/09	WP	04/27/09	WP
1,2-Dichloroethane	04/27/09	WP	04/27/09	WP
1,4-Dichlorobenzene	04/27/09	WP	04/27/09	WP
2-Butanone	04/27/09	WP	04/27/09	WP
Benzene	04/27/09	WP	04/27/09	WP
Carbon tetrachloride	04/27/09	WP	04/27/09	WP
Chlorobenzene	04/27/09	WP	04/27/09	WP
Chloroform	04/27/09	WP	04/27/09	WP
Tetrachloroethene	04/27/09	WP	04/27/09	WP
Trichloroethene	04/27/09	WP	04/27/09	WP
Vinyl chloride	04/27/09	WP	04/27/09	WP

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311 Analytical Method:

	Prep		Analysis	
Analyte	Date	Ву	Date	By
Zero Headspace Extraction	04/23/09	sw	NA	

Lab#: AC43958-010 Sample ID: WC-2

Analyte

	Dre	<u></u>	Δna	lveie
Analyte	Date	Ву	Date	By
% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT
TestGroupName Preparation Met	Ignitability hod: EPA 1030			
TestGroupName Preparation Met Analytical Met	Ignitability hod: EPA 1030 hod: EPA 1030 Pre	əp	Ana	llysis
TestGroupName Preparation Met Analytical Met	Ignitability hod: EPA 1030 hod: EPA 1030 Pre Date	əp By	Ana Date	llysis By

Prep

Ву

Date

Analysis

Ву

Analyte

Date

Project #: 9041403

1.					
Me	rcury	04/17/09	olufemi	04/20/09	JS
Tes	tGroupName pH 90 Preparation Method: 9 Analytical Method: 9	040B/9045C 040B/9045C 040B/9045C			
Ι.		Prep	_	Analy	sis
Ar	nalyte	Date	By	Date	By
, pH		04/16/09	SDL	04/16/09	SDL
Гes	tGroupName Reac Preparation Method: S Analytical Method: S	tive Cyanide SW846 7.3 SW846 7.3.3		Angh	
A	nalvte	Date	Bv	Date	Bv
Cy	anide (Reactive)	04/16/09	jad	04/16/09	jad
Tes	tGroupName Reac Preparation Method: S Analytical Method: S	tive Sulfide 6W846 7.3 6W846 7.3.4			
A .	nalvte	Prep	By	Analy Date	/SIS Bv
Su	lfide (Reactive)	04/16/09	iad	04/16/09	iad
Tes	tGroupName TCLF Preparation Method: E Analytical Method: E	P Herbicides 81 EPA 8151A EP A 8151A	51		
Δ.	nalvte	Prep Date	Bv	Analy Date	/SIS Bv
2.4	I-D	04/21/09	CV	04/22/09	JP
Sil	vex	04/21/09	cv	04/22/09	JP
A	Analytical Method: E	EPA 6010B Prep Date	Ву	Analy Date	/sis By
Ars	senic	04/17/09	olufemi	04/17/09	SB
Ba	rium	04/17/09	olufemi	04/17/09	SB
Ch	romium	04/17/09	olufemi	04/17/09	SB
Le	ad	04/17/09	olufemi	04/17/09	SB
Nic	ckel	04/17/09	olufemi	04/17/09	SB
Sil	ver	04/17/09	olufemi	04/17/09	SB
Tes	tGroupName TCL	P Metals Extrac	tion 13	11	
	Analytical Method:	EPA ISTI			
	Analytical Method:	Prep	By	Analy	/sis
	Analytical Method:	Prep Date 04/15/09	By	Analy Date	/sis By
AI TC	Analytical Method: nalyte CLP Metals Extraction StGroupName TCLF Preparation Method: E Analytical Method:	Prep Date 04/15/09 POrganics Extr EPA 1311	By OA Paction	Analy Date NA 1311	/sis By
AI TC Fes	Analytical Method: nalyte CLP Metals Extraction StGroupName TCLF Preparation Method: E Analytical Method: nalyte	Prep Date 04/15/09 POrganics Extr EPA 1311 Prep Date	By OA Paction	Analy Date NA 1311 Analy Date	/sis By /sis Bv
	Analytical Method: Analyte CLP Metals Extraction StGroupName TCLF Preparation Method: E Analytical Method: Inalyte CLP Organics Extraction	Prep Date 04/15/09 P Organics Extr EPA 1311 Prep Date 04/15/09	By OA raction By	Analy Date NA 1311 Analy Date NA	/sis By /sis By
	Analytical Method: Analytical Method: analyte SLP Metals Extraction StGroupName TCLF Preparation Method: E Analytical Method: StGroupName TCLF Preparation Method: E Analytical Method: E	Prep Date 04/15/09 POrganics Extr PA 1311 Prep Date 04/15/09 Pesticides 804 PA 3510 PA 8081A	By OA Paction By OB B1	Analy Date NA 1311 Analy Date NA	/sis By /sis By
	Analytical Method: Analytical Method: analyte StGroupName TCLF Preparation Method: E Analytical Method: CLP Organics Extraction StGroupName TCLF Preparation Method: E Analytical Method: E Analytical Method: E Analytical Method: E	Prep Date 04/15/09 P Organics Extr EPA 1311 Prep Date 04/15/09 P Pesticides 804 EPA 3510 EPA 8081A Prep Date	By OA Paction By OB B1	Analy Date NA 1311 Date NA Analy Date	/sis By /sis By /sis Bv
	Analytical Method: Analytical Method: analyte CLP Metals Extraction Analytical Method: E Analytical Method: CLP Organics Extraction CLP Org	Prep Date 04/15/09 P Organics Extr PA 1311 Prep Date 04/15/09 P Pesticides 80 PA 3510 PA 8081A Prep Date 04/20/09	By OA Faction By oa B1 By neha	Analy Date NA 1311 Analy Date NA Analy Date 04/21/09	/sis By /sis By /sis By MS
	Analytical Method: Analytical Method: alyte CLP Metals Extraction Analytical Method: E Analytical Method: CLP Organics Extraction CLP Organics Extracting CLP Organics Extraction CLP Organ	Prep Date 04/15/09 P Organics Extr PA 1311 Prep Date 04/15/09 P Pesticides 804 PA 3510 PA 8081A Prep Date 04/20/09 04/20/09	By OA action By oa B1 By neha neha	Analy Date NA 1311 Date NA Analy Date 04/21/09 04/21/09	/sis By /sis By /sis By MS
	Analytical Method: Analytical Method: alyte CLP Metals Extraction Analytical Method: E Analytical Method: CLP Organics Extraction CLP Organ	Prep Date 04/15/09 P Organics Extr PA 1311 Prep Date 04/15/09 P Pesticides 806 PA 3510 PA 8081A Prep Date 04/20/09 04/20/09 04/20/09	By OA action By oa B1 By neha neha neha	Analy Date NA 1311 Analy Date NA Analy Date 04/21/09 04/21/09 04/21/09	/sis By /sis By /sis By MS MS MS
	Analytical Method: Analytical Method: alyte CLP Metals Extraction Analytical Method: E Analytical Method: analyte CLP Organics Extraction CLP Organics Extraction	Prep Date 04/15/09 P Organics Extr PA 1311 Prep Date 04/15/09 P Pesticides 800 PA 3510 PA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09	By OA action By oa B1 By neha neha neha neha	Analy Date NA 1311 Analy Date NA Analy Date 04/21/09 04/21/09 04/21/09 04/21/09	/sis By /sis By /sis By MS MS MS MS
AI TC Fes AI TC Fes AI Ch En Gan He He Me	Analytical Method: Analytical Method: alyte CLP Metals Extraction Analytical Method: E Analytical Method: CLP Organics Extraction CLP Organ	Prep Date 04/15/09 P Organics Extr PA 1311 Prep Date 04/15/09 P Pesticides 80/ PA 3510 PA 3510 PA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	By OA action By oa B1 By neha neha neha neha neha	Analy Date NA 1311 Date NA Analy Date 04/21/09 04/21/09 04/21/09 04/21/09 04/21/09	/sis By /sis By /sis By MS MS MS MS MS MS MS

Date

Analysis

By

Prep

By

Date

Analytical Method: EPA 8270C

Laboratory Chronicle

Lab#: AC43958-010 Sample ID: WC-2

_	•					
	2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD	_
	2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD	
	2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD	
	2-Methylphenol	04/19/09	mansip	04/20/09	AHD	
	3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD	
	Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD	
	Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD	
	Hexachloroethane	04/19/09	mansip	04/20/09	AHD	
	Nitrobenzene	04/19/09	mansip	04/20/09	AHD	
	Pentachlorophenol	04/19/09	mansip	04/20/09	AHD	
	Pyridine	04/19/09	mansip	04/20/09	AHD	

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

	Prep			/sis	
Analyte	Date	Ву	Date	By	
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP	
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP	
1,4-Dichlorobenzene	04/22/09	WP	04/22/09	WP	
2-Butanone	04/22/09	WP	04/22/09	WP	
Benzene	04/22/09	WP	04/22/09	WP	
Carbon tetrachloride	04/22/09	WP	04/22/09	WP	
Chlorobenzene	04/22/09	WP	04/22/09	WP	
Chloroform	04/22/09	WP	04/22/09	WP	
Tetrachloroethene	04/22/09	WP	04/22/09	WP	
Trichloroethene	04/22/09	WP	04/22/09	WP	
Vinyl chloride	04/22/09	WP	04/22/09	WP	

TestGroupName TCLP Zero Headspace Extraction

Prep Analysis Analyte Date By Date By Zero Headspace Extraction 04/21/09 sw NA Lab#: AC43958-011 Sample ID: WC-3 Image: Complex of the system of the syste						
Analyte Date By Date By Zero Headspace Extraction 04/21/09 sw NA Lab#: AC43958-011 Sample ID: WC-3 TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G Mailyte Date By Date By Date By Date By Malytical Method: SM 2540G Preparation Method: SM 2540G Analyte Date By Ignitability						
Zero Headspace Extraction 04/21/09 sw NA Lab#: AC43958-011 Sample ID: WC-3 TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G Analyte Date By Date % Solids 04/15/09 Preparation Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analyte Date By Date Ignitability 04/16/09 Ignitability 04/16/09 Ignitability 04/16/09 Ignitability 04/16/09 TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Mercury<						
Lab#: AC43958-011 Sample ID: WC-3 TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G Prep Analysis Date Analyte Date By Date By % Solids 04/15/09 PRASHANT 04/15/09 PRASHANT TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Prep Analysis Analyte Date By Date By Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Prep Analysis Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A 						
TestGroupName % Solids SM2540G Preparation Method: SM 2540G Analytical Method: SM 2540G Analyte Prep Analysis Maiyte Date By Date By % Solids 04/15/09 PRASHANT 04/15/09 PRASHANT TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Prep Analysis Manalyte Date By Date By Ignitability Prep Analysis Analyte Date By Date By Ignitability O4/16/09 jad O4/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Analysis Mercury O4/17/09 olute By Date By Mercury 04/17/09 olute Jate By						
Prep Analysis Analyte Date By Date By % Solids 04/15/09 PRASHANT 04/15/09 PRASHANT TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Prep Analysis Analyte Date By Date By Ignitability Prep Analysis Ignitability 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Preparation Method: EPA 7470A Preparation Method: EPA 7470A Analyte Date By Manalytical Method: EPA 7470A Analysis Mercury 04/17/09 olufemi 04/10/09 JS Jate						
Analyte Date By Date By % Solids 04/15/09 PRASHANT 04/15/09 PRASHANT TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Prep Analysis Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Analysis Analyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS						
TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Prep Analysis Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Analysis Manalyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS						
TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Analyte Prep Analysis Ignitability Date By Date By Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Analysis Manalyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS						
Prep Analysis Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Analyte Prep Analysis Analyte Date By Date Mercury 04/17/09 olufemi 04/20/09						
Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Prep Analysis Analyte Date By Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS						
Ignitability 04/16/09 jad 04/16/09 jad TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Prep Analysis Analyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS						
TestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Prep Analysis Analyte Date By Mercury 04/17/09 olufemi 04/20/09 JS						
Prep Analysis Analyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS						
Analyte Date By Date By Mercury 04/17/09 olufermi 04/20/09 JS						
Mercury 04/17/09 olufemi 04/20/09 JS						
TestGroupName pH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C						
Prep Analysis						
Analyte Date By Date By						
pH04/16/09 SDL 04/16/09 SDL						
TestGroupName Reactive Cyanide Preparation Method: SW846 7.3						
TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3						
TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3 Prep Analysis						
TestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3 Prep Analysis Analyte Date By Date By Date By						

Project #: 9041403 0024

Analysis

By

Lab#: AC43958-011 Sample ID: WC-3

٦	TestGroupName Preparation N Analytical N	e Reactive Sulfide lethod: SW846 7.3 lethod: SW846 7.3.4		
		Prep)	A
	Analyte	Date	Ву	Date

Sulfide (Reactive)	04/16/09	jad	04/16/09	jad	
					_

TestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A Analytical Method: EPA 8151A

Date	By	Data	D	
	<i>Uy</i>	Date	Ву	
04/21/09	cv	04/22/09	JP	
04/21/09	CV	04/22/09	JP	
	04/21/09 04/21/09	04/21/09 cv 04/21/09 cv	04/21/09 cv 04/22/09 04/21/09 cv 04/22/09	04/21/09 cv 04/22/09 JP 04/21/09 cv 04/22/09 JP

TestGroupName TCLP Metals 6010 Preparation Method: 3005&10/3050 Analytical Method: EPA 6010B

	Pre	0	Analy	/sis	
Analyte	Date	Ву	Date	Ву	
Arsenic	04/17/09	olufemi	04/17/09	SB	
Barium	04/17/09	olufemi	04/17/09	SB	
Cadmium	04/17/09	olufemi	04/17/09	SB	
Chromium	04/17/09	olufemi	04/17/09	SB	
Lead	04/17/09	olufemi	04/17/09	SB	
Nickel	04/17/09	olufemi	04/17/09	SB	
Selenium	04/17/09	olufemi	04/17/09	SB	
Silver	04/17/09	olufemi	04/17/09	SB	

TestGroupName TCLP Metals Extraction 1311 Preparation Method: EPA 1311

Analytical Method:

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
TCLP Metals Extraction	04/15/09	OA	NA	

TestGroupName TCLP Organics Extraction 1311 Preparation Method: EPA 1311 **Analytical Method:**

Analysis Prep Ву Analyte Date Date Ву TCLP Organics Extraction 04/15/09 oa NA

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510 Analytical Method: EPA 8081A

	Prec)	Anal	/sis
Analyte	Date	Ву	Date	Ву
Chlordane	04/20/09	neha	04/21/09	MS
Endrin	04/20/09	neha	04/21/09	MS
gamma-BHC	04/20/09	neha	04/21/09	MS
Heptachlor	04/20/09	neha	04/21/09	MS
Heptachlor Epoxide	04/20/09	neha	04/21/09	MS
Methoxychlor	04/20/09	neha	04/21/09	MS
Toxaphene	04/20/09	neha	04/21/09	MS

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510 Analytical Method: EPA 8270C

Analytical method. EFA 02700					
	Pre	o	Anal	ysis	
Analyte	Date	Ву	Date	By	
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD	
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD	
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD	
2-Methylphenol	04/19/09	mansip	04/20/09	AHD	
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD	
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD	
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD	
Hexachloroethane	04/19/09	mansip	04/20/09	AHD	
Nitrobenzene	04/19/09	mansip	04/20/09	AHD	
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD	
Pyridine	04/19/09	mansip	04/20/09	AHD	

Lab#: AC43958-011 Sample ID: WC-3

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

Analytical Method; EPA	8260B		400	lucio
Analyte	Date	Bv	Date	iysis Bv
1 1-Dichloroethene	04/22/09		04/22/09	W/P
1.2-Dichloroethane	04/22/09		04/22/09	
1 4-Dichlorobenzene	04/22/09	WP	04/22/09	WP
2-Butanone	04/22/09	WP	04/22/09	WP
Benzene	04/22/09	WP	04/22/09	WP
Carbon tetrachloride	04/22/09	WP	04/22/09	WP
Chlorobeozene	04/22/09	WP	04/22/09	WP
Chloroform	04/22/09	WP	04/22/09	WP
Tetrachloroethene	04/22/09	WP	04/22/09	WP
Trichloroethene	04/22/09	WP	04/22/09	WP
Vinyl chloride	04/22/09	WP	04/22/09	WP
TestGroupName TCLP Ze Preparation Method: EPA Analytical Method:	ro Headspa 1311	ce Extra	action	
Analyta	Prep	Bu	Ana	lysis
Analyte	Date	Бу	Date	Бу
Zero Headspace Extraction	04/21/09	SW	NA	
Lab#: AC43958-012 Samp TestGroupName % Solids Preparation Method: SM 2	SM2540G			
Analytical Method: SM 2	540G			
Analuta	Prep	Du	Ana	lysis
Analyte	Date	Ву	Date	Ву
% Solids	04/15/09 P	RASHANT	04/15/09	PRASHANT
Preparation Method: EPA Analytical Method: EPA	1030 1030 Prep		Ana	lysis
Analyte	Date	Ву	Date	Ву
Ignitability	04/16/09	jad	04/16/09	jad
TestGroupName Mercury Preparation Method: EPA Analytical Method: EPA	(TCLP) 7470 7470A 7470A	0A	400	lycic
Analyte	Date	Bv	Date	Iysis Rv
Morguny	04/17/00	olufami	04/20/00	10
TestGroupName pH 9040 Preparation Method: 9040 Analytical Method: 9040	B/9045C B/9045C B/9045C		A	lucio
Anaivte	Date	Bv	Date	Bv
pH	04/16/09	SDL	04/16/09	SDL
TestGroupName Reactive Preparation Method: SW8 Analytical Method: SW8	Cyanide 46 7.3 46 7.3.3			h a la
Analyte	Prep	Bv	Ana Date	IYSIS Bv
Cyanida (Reactive)	04/10/00	ind	Date	by
	04/16/09	jad	04/16/09	jad
TestGroupName Reactive Preparation Method: SW8 Analytical Method: SW8	Sulfide 46 7.3 46 7.3.4			
Analyte	Prep	By	Ana	lysis
	Date	by	Date	Ву
Suitide (Reactive)	04/16/09	jad	04/16/09	jad
Preparation Method: EPA Analytical Method: EPA	rbicides 81 8151A 8151A	51	A	hue!-
Analyte	rbicides 81 8151A 8151A Prep Date	51 By	Ana Date	lysis By

04/21/09

cv

04/22/09

JP

Silvex

Lab#: AC43958-012 Sample ID: WC-4

TestGroupName TCLP Metals 60	10
Preparation Method: 3005&10/305	0
Analytical Method: EPA 6010B	
	-

	Pre	p	Analy	/SIS	
Analyte	Date	Ву	Date	By	
Arsenic	04/17/09	oluferni	04/17/09	SB	
Barium	04/17/09	olufemi	04/17/09	SB	
Cadmium	04/17/09	olufemi	04/17/09	SB	
Chromium	04/17/09	oluferni	04/17/09	SB	
Lead	04/17/09	oluferni	04/17/09	SB	
Nickel	04/17/09	olufemi	04/17/09	SB	
Selenium	04/17/09	oluferni	04/17/09	SB	
Silver	04/17/09	oluferni	04/17/09	SB	

TestGroupName TCLP Metals Extraction 1311 Preparation Method: EPA 1311 Analytical Method:

	Analytical method.				
Т		Prep)	Ana	ysis
	Analyte	Date	Ву	Date	Ву
Γ	TCLP Metals Extraction	04/15/09	OA	NA	

TestGroupName TCLP Organics Extraction 1311 Preparation Method: EPA 1311 Analytical Method:

	Prep)	Ana	ysis	_
Analyte	Date	Ву	Date	Ву	
TCLP Organics Extraction	04/15/09	oa	NA		

TestGroupName TCLP Pesticides 8081 Preparation Method: EPA 3510 Analytical Method: EPA 8081A

	Prep)	Analy	/sis	
Analyte	Date	Ву	Date	Ву	
Chlordane	04/20/09	neha	04/21/09	JP	
Endrin	04/20/09	neha	04/21/09	JP	
gamma-BHC	04/20/09	neha	04/21/09	JP	
Heptachlor	04/20/09	neha	04/21/09	JP	
Heptachlor Epoxide	04/20/09	neha	04/21/09	JP	
Methoxychlor	04/20/09	neha	04/21/09	JP	
Toxaphene	04/20/09	neha	04/21/09	JP	

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510 Analytical Method: EPA 8270C

	Pre	p	Anal	ysis
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

	Prep Ana					Prep Analys		Prep Analys		
Analyte	Date	Ву	Date	Ву						
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP						
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP						
1,4-Dichlorobenzene	04/22/09	WP	04/22/09	WP						
2-Butanone	04/22/09	WP	04/22/09	WP						
Benzene	04/22/09	WP	04/22/09	WP						
Carbon tetrachloride	04/22/09	WP	04/22/09	WP						
Chlorobenzene	04/22/09	WP	04/22/09	WP						
Chloroform	04/22/09	WP	04/22/09	WP						
Tetrachloroethene	04/22/09	WP	04/22/09	WP						
Trichloroethene	04/22/09	WP	04/22/09	WP						
Vinyl chloride	04/22/09	WP	04/22/09	WP						

Laboratory Chronicle

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311 Analytical Method: TestGroupName TCLP Zero Headspace Extraction Analytical Method: TestGroupName TCLP Zero Headspace Extraction Analytical Method: Analyte Date By Date By Lab#: AC43958-013 Sample ID: WC-5 TestGroupName YGLIP Method: TestGroupName TCLIP Preparation Method: SM 2540G Analyte Date By Date By Ignitability Date By Date By	P Metals Extrac EPA 1311 Prep Date 04/15/09 P Organics Extr EPA 1311 Prep Date 04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09	billion 1: By OA raction By ca By neha neha	311
Analyte Date By Date By Lab#: AC43958-013 Sample ID: WC-5 Freparation Method: SM 2540G Freparation Method: SM 2540G Analytical Method: SM 2540G Preparation Method: SM 2540G Analytical Method: SM 2540G Analyte Date By Date By Analytical Method: SM 2540G Preparation Method: SM 2540G Analytical Method: SM 2540G Analyte Date By Date By Solids Out1509 PRASHANT Out1509 PRASHANT Preparation Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analyte Date By Date By Date By Preparation Method: EPA 170A Analytical Method: EPA 7470A Analytical Method: EPA 7470A Analytical Method: EPA 7470A Manalytical Method: SW845 7.3 Analytical Method: SW845 7.3 Analytical Method: SW846 7.3 Preparation Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Preparation Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Prep	Prep Date 04/15/09 P Organics Extr EPA 1311 Prep Date 04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	By OA raction By ca 181 By neha neha	 13
Analyte Date By Date By Date By Lab#: AC43958-013 Sample ID: WC-5 TestGroupName % Solids SM2540G TestGroupName TestGroupName TestGroupName TestGroupName % Solids SM2540G Analyte Date By Date By TestGroupName TestGroupName Imalytical Method: Analytical Method: Preparation Method:	Od/15/09 P Organics Ext EPA 1311 Prep Date 04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	DA raction By ca 181 By neha neha	13
Lab#: AC43958-013 Sample ID: WC-5 TestGroupName W Solids SM2540G TestGroupName TCLI Preparation Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: M 2540G Analytical Method: SM 2540G Preparation Method: SM 2540G Analytical Method: M 2540G Analytical Method: SM 2540G Preparation Method: SM 2540G Analytical Method: Method: Method: M 2540G Analytical Method: SM 2540G Preparation Method: EVA 1030 Analytical Method: M	P Organics Ext EPA 1311 Prep Date 04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	By a By b By neha neha	13
ab#: AC43958-013 Sample ID: WC-5 TestGroupName TCLI FestGroupName % Solids SM2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Prep Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Prep Analytical Method: SM 2540G Prep Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Prep Analytical Method: EPA 1030 Analytical Method: IPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: IPA 7470A Preparation Method: EPA 7470A Prep Analytic Date By Date By Date By Date By Date By Mercury 04/15/09 oludemi 04/20/09 JS Preparation Method: SW467 7.3 Analytical Method: IPA 7470A Analyte Date By Date By pH 04/15/09 SDL 04/15/09 JSL Analyte Date By Date By Date By pH 04/15/09 Jad 04/15/09 Jad Cyande (Reactive) 04/15/09 Jad 04/15/09 Jad Cyande (P Organics Ext EPA 1311 Prep Date 04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	raction By oa)81)81 , By neha neha	13
TestGroupName 76 Solids Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Analytical Method: SM 2540G Date By Date By Assolids 04/15/09 PRASHANT 04/15/09 PRASHANT TestGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: ISM 2540G Analytic Date By Date By Analytical Method: EPA 170A Preparation Method: EPA 7470A Analytical Method: EpX 7470A Analytical Method: EPA 7470A Preparation Method: EpX 7470A Preparation Method: EpX 7470A Analytical Method: 9040B/9045C Preparation Method: 9040B/9045C Preparation Method: SW8467 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Preparation Method: IPA 767.0 Preparation Method: IPA 767.0 Preparation Method: SW846 7.3 Preparation Method: IPA 767.3 Analytical Method: IPA 767.3 Analytical Method: SW846 7.3 Preparation Method: IPA 8151A Analytical Method: IPA 8151A	Prep Date 04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09)81 By)81) By neha neha	
Prep Analysis Date By Date By Analyte Date By Date By Date By K Solids O4/15/09 PRASHANT O4/15/09 PRASHANT Cultor TCLP Organics Extraction TestGroupName Ignitability O4/15/09 PRASHANT O4/15/09 PRASHANT Analytic Analytical Method: EPA 1030 Prep Analytis Date By Date By Analytical Method: EPA 1030 Prep Analysis Date By Date By Ignitability O4/16/09 jad O4/16/09 jad Chiordane Endit Solida Date By Date By Date Date Endit Heptachior Malytical Method: S040B/9045C Preparation Method: 9040B/9045C Analytical Method: S040B/9045C Analytical Method: S040B/9045C Analytical Method: S040B/9045C Analyte Date By Date By Date By Date C4-6-Trichlorophenol 2.4-5-Trichlorophenol 2.4-5-Trichlorophenol 2.4-5-Trichlorophenol 2.4-5-Trichlorophenol </td <td>04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09</td> <td>)81)By neha neha</td> <td></td>	04/15/09 P Pesticides 80 EPA 3510 EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09)81)By neha neha	
Analyte Date By Date By % Solids 04/15/09 PRASHANT 04/15/09 PRASHANT TestGroupName Ignitability Preparation Method: Preparation Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad Analyte Date By Date By Analyte Date By Date By Analyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS FestGroupName PH 9040B/9045C Preparation Method: 9040B/9045C Preparation Method: 9040B/9045C Preparation Method: SW846 7.3.3 Analyte Date By Analyte Date By Date By Preparation Method: SW846 7.3.4 Analytical Method: SW846 7.3.4 Analytical Method: SW846 7.3.4 Analyte Date By Date By Date By<	P Pesticides 80 EPA 3510 EPA 8081A Oate 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09)81 > By neha neha	
% Solids Od/15/09 PRASHANT Od/15/09 PRASHANT Itel StGroupName Analytical Method: Method: Analytical Method: <thanalytical method:<="" th=""> Analytical Method:<td>P Pesticides 80 EPA 3510 EPA 8081A 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09</td><td>By neha neha</td><td></td></thanalytical>	P Pesticides 80 EPA 3510 EPA 8081A 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	By neha neha	
restGroupName Ignitability Preparation Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Prep Analytical Method: EPA 1030 Analytical Method: EPA 1030 Analytical Method: EPA 1030 Prep Analytical Method: EPA 1030 Analytical Method: EPA 1030 Ipnitability 04/16/09 jad Ipnitability 04/16/09 jad FestGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Prep Analytical Method: EPA 7470A Prep Analytical Method: S0408/9045C Prep Analyte Date By Date By Date By Analyte Date By Date By Analyte Date By Date By Analyte Date By Date By Preparation Method: SW846 7.3.3 Analytical Method: SW846 7.3.4 Analytical Method: Method: Method: Method: SW846 7.3.4 Analytical Method: SW846 7.3.4 Preparation Method: SW846 7.3.4 Preparation Method: SW846 7.3.4 Analytical Method: SW846 7.3.4 Preparation Method: SW846 7	EPA 8081A Prep Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09) By neha neha	
Analytical Method: EPA 1030 Analytical Method: EPA 14709 Analyte Date By Date By Ignitability 04/16/09 jad Od/16/09 jad FestGroupName Mercury (TCLP) 7470A Heptachlor Heptachlor Preparation Method: EPA 7470A Heptachlor Heptachlor Analyte Date By Date By Analyte Date By Date By Mercury 04/17/09 old/16/09 JS TestGroupName TCLI Mercury 04/17/09 old/16/09 JS Analytical Method: Analytical Method: Analyte Date By Date By 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol Analyte Date By Date By Date By Analyte Date By Date By Date Hexachlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol FestGroupName Reactive Cyanide Preparation Method: SW846 7.3 Analysis </td <td>Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09</td> <td>By neha neha</td> <td>1</td>	Date 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	By neha neha	1
Prep Analyte Analysis By Date By Date By Ignitability 04/16/09 jad 04/16/09 jad Endrin Ignitability 04/16/09 jad 04/16/09 jad Endrin FestGroupName Mercury (TCLP) 7470A Heptachlor Heptachlor Heptachlor Analytical Method: EPA 7470A Prep Analysis Heptachlor Heptachlor Analytical Method: EPA 7470A Prep Analysis TestGroupName By Mercury 04/17/09 olufemi 04/2009 JS Analysis FestGroupName PH 9040B/9045C Analysis Analytical Method: Analytical Method: Analytical Method: Analytical Method: Analytical Method: 2.4.5.Trichlorophenol 2.	04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	neha neha	
Analyte Date By Date By Ignitability 04/16/09 jad 04/16/09 jad FestGroupName Mercury (TCLP) 7470A Heptachlor Preparation Method: EPA 7470A Heptachlor Analyte Date By Date By Date By Mercury 04/17/09 oldremi 04/20/09 JS FestGroupName PH 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Analyte Date By Date By pH 04/16/09 SDL 04/16/09 SDL PH 04/16/09 SDL 04/16/09 SDL Preparation Method: SW846 7.3 Analytical Method: SW846 7.3 Hexachlorobhane Analyte Date By Date By Preparation Method: SW846 7.3 Analytical Method: SW846 7.3 Hexachlorobhane Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Hexachlorobhane Analytical Method: SW846 7.3 Analysis Preparation Method: SW846 7.3 Analytical Method: SW846 7.3 Analysis Nitrobenzene Analytic	04/20/09 04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	neha	(
Ignitability 04/16/09 jad 04/16/09 jad 04/16/09 jad garma-BHC FestGroupName Mercury (TCLP) 7470A Heptachlor Heptachlor Heptachlor Analytical Method: EPA 7470A Prep Analysis Metoxychlor Toxaphene Analyte Date By Date By TestGroupName TestGroupName TestGroupName TestGroupName TestGroupName Analytical Method: 9040B/9045C Analytical Method: SW846 7.3 Manalytic	04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	ncho	0
estGroupName Mercury (TCLP) 7470A Preparation Method: EPA 7470A Analytical Method: EPA 7470A Analytical Method: EPA 7470A Analytical Method: EPA 7470A Analyte Date By Date Mercury 04/17/09 Mercury 04/17/09 estGroupName PH 9040B/9045C Preparation Method: 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C Preparation Method: 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Preparation Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3.4 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3 Analytical Method: SW846 7.3	04/20/09 04/20/09 04/20/09 04/20/09	nena	0
Preparation Method: EPA 7470A Analytical Method: EPA 7470A Prep Analysis Analytical Method: EPA 7470A Date By Analytical Method: EPA 7470A Date By Analytical Method: EPA 7470A Date By Mercury 04/17/09 olufemi 04/20/09 JS estGroupName PH 9040B/9045C Analysis Analyte Date By Date By Analyte Date By Date By Analyte Date By Date By PHH 04/16/09 SDL 04/16/09 SDL estGroupName Reactive Cyanide Prep Analysis Analyte Date By Date By Analytical Method: SW846 7.3 Analysis Analytical Method: IMethod: IM	04/20/09 04/20/09	neha	0
Analytical Method: EPA 7470A Toxaphene Analytic Prep Analysis Toxaphene Analyte Date By Date By Mercury 04/17/09 olufemi 04/20/09 JS TestGroupName pH 9040B/9045C Analytical Method: Method: Analytical Method: Analytical Method: Analyte Prep Analysis Analysis Analytical Method: Analytical Method: Analytical Method: Analyte Date By Date By Count of the section of the sect	04/20/09	neha	
Prep AnalyticAnalysis DateTestGroupName Preparation Method:Preparation Method:6estGroupName Preparation Method:9040B/9045C Preparation Method:Analytical Method:IAnalytical Method:9040B/9045C Analytical Method:Analysis DateAnalytical Method:AnalyteDateBy DateDateByAnalyteDateBy DateDateByPH04/16/09SDL04/16/09SDL2,4.5.Trichlorophenol2,4.6.Trichlorophenol2,4.5.Trichlorophenol2,4.5.Trichlorophenol2,4.6.Trichlorophenol2,4.6.Trichlorophenol2,4.5.Trichlorophenol2,4.6.Trichlorophenol2,4.6.Trichlorophenol2,4.5.Trichlorophenol2,4.6.Trichlorophenol2,4.6.Trichlorophenol2,4.5.Trichlorophenol2,4.6.Trichlorophenol2,4.6.Trichlorophenol2,4.5.Trichlorophenol2,4.6.TrichlorophenolPreparation Method:SW846 7.3.3HexachlorobutadieneAnalytical Method:SW846 7.3.4HexachlorophenolCyanide (Reactive)04/16/09jad04/16/09Cyanide (Reactive)04/16/09jad04/16/09Sulfide (Reactive)04/16/09jad04/16/09Sulfide (Reactive)04/16/09jad04/16/09Sulfide (Reactive)04/16/09jad04/16/09Sulfide (Reactive)04/16/09jad04/16/09Sulfide (Reactive)04/16/09jad04/16/09Sulfide (Reactive)04/16/09jad04/16/09Sulfide		neha	
AnalyteDateByDateByMercury04/17/09olufemi04/20/09JSTestGroupNamepH 9040B/9045CAnalytical Method:Analytical Method:Preparation Method:9040B/9045C			
Mercury 04/17/09 olufemi 04/20/09 JS Preparation Method: Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Analyte Date By Date By pH 04/16/09 SDL 04/16/09 SDL restGroupName Reactive Cyanide 2.4.6-Trichlorophenol 2.4.6-Trichlorophenol Preparation Method: SW846 7.3 Analytis 38.4-Methylphenol Analyte Date By Date By Preparation Method: SW846 7.3.3 Hexachlorobtacene Hexachlorobtacene Analyte Date By Date By Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Suffice (Reactive) O4/16/09 jad 04/16/09 jad Suffice (Reactive) 04/16/09 jad 04/16/09 jad Suffice (Reactive) 04/16/09 jad 04/16/09 jad Suffice (Reactive) 04/16/09 jad	P Semivolatiles	\$ 8270	
Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Analytical Method: 9040B/9045C Analysis Analytical Method: 9040B/9045C Analysis Analyte Date By Date By PH 04/16/09 SDL 04/16/09 SDL 2.4.6-Trichlorophenol 2.4.6-Trichlorophenol State By Date By Date By 2.4.6-Trichlorophenol 2.4.6-Trichlorophenol Cyanide (Reactive Cyanide Prep Analysis Analysis Analysis Analysis Analytical Method: SW846 7.3 Prep Analysis Analysis Nitrobenzene Hexachlorophenol Cyanide (Reactive) 04/16/09 jad 04/16/09 jad 04/16/09 jad Cyanide (Reactive) Odd/16/09 jad Odd/16/09 jad Odd/16/09 jad Cyanide (Reactive) Odd/16/09 jad Odd/16/09 jad Odd/16/09 jad Cyanide (Reactive) Odd/16/09 jad Odd/16/09 jad Odd/16/09 jad Suiffide (Reactive) Prep A	EPA 3510 EPA 82700		
Preparation Method: 9040B/9045C Analytical Method: SW846 7.3 Analytical Method: SW846 7.3.3 Analytical Method: SW846 7.3.3 Analytical Method: SW846 7.3.4 Prep Analysis Analytical Method: SW846 7.3.4 Prep Analysis Analytical Method: SW846 7.3.4 Prep Analysis Analytical Method: SW846 7.3.4 Analytical Method: SW846 7	Prer	0	
Analytical Method: 9040B/9045C 2,4,5-Trichlorophenol Analyte Date By Date By Date By PH 04/16/09 SDL 04/16/09 SDL FestGroupName Reactive Cyanide 2.4,6-Trichlorophenol 2,4-D Preparation Method: SW846 7.3 38.4-Methylphenol 38.4-Methylphenol Analytical Method: SW846 7.3.3	Date	Ву	
AnalytePrepAnalysisAnalyteDateByDateBypH04/16/09SDL04/16/09SDLPestGroupNameReactive Cyanide2.4.6-TrichlorophenolPreparation Method:SW846 7.3384-MethylphenolAnalytical Method:SW846 7.3.3HexachlorobenzeneAnalyteDateByDateByCyanide (Reactive)04/16/09jad04/16/09Preparation Method:Cyanide (Reactive)04/16/09jad04/16/09jadPreparation Method:SW846 7.3.4Freparation Method:TestGroupNameCyanide (Reactive)04/16/09jad04/16/09jadPreparation Method:SW846 7.3.4Freparation Method:MalysisAnalyteDateByDateBySulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad1,1-DichloroethenePreparation Method:EPA 8151ASenzeneAnalyteDateByDateByAnalyteDateByCatoon tetrachiorideAnalyteDateByDateBy2,4-D04/21/09cv04/22/09JP2,4-D04/21/09cv04/22/09JP <td>04/19/09</td> <td>mansip</td> <td></td>	04/19/09	mansip	
AnalyteDateByDateBypH04/16/09SDL04/16/09SDL34-MethylphenolPestGroupNameReactive Cyanide	04/19/09	mansip	
pH04/16/09SDL04/16/09SDL2-MethylphenolCestGroupNameReactive Cyanide3&4-Methylphenol3&4-Methylphenol3&4-MethylphenolPreparationMethod:SW846 7.3HexachlorobutadieneHexachlorobutadieneAnalyteDateByDateByNitrobenzeneCyanide (Reactive)04/16/09jad04/16/09jadPreparation Method:SW846 7.3Cyanide (Reactive)04/16/09jad04/16/09jadPreparation Method:Preparation Method:SW846 7.3Preparation Method:SW846 7.3Analytical Method:SW846 7.3TestGroupNameTCLI Preparation Method:PrepAnalyteDateByDateByDateBySulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroethaneSulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroethaneSulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroethaneSulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroethaneSulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroethanePreparation Method: EPA 8151A AnalytePrepAnalysisAnalysisAnalyteDateByDateBy2-ButanoneAnalyteDateByDateByCarbon tetrachlorideAnalyteDateByDateByCarbon tetrachlorideA	04/19/09	mansip	
FestGroupName Reactive Cyanide 384-Methylphenol Preparation Method: SW846 7.3 Hexachlorobutadiene Analytical Method: SW846 7.3.3 Hexachlorobutadiene Analyte Date By Date By Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Preparation Method: Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Preparation Method: Preparation Method: Preparation Method: Preparation Method: Preparation Method: Preparation Method: Malytical Method: Preparation Method: Malytical Method: Method: Preparation Method: Method: Nethod: Method: Nethod: Nethod: Method: Nethod: Method: Nethod: Method: Nethod:	04/19/09	mansip	
Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.3 Preparation Method: SW846 7.3.3 Analytic Date By Date By Analyte Date By Date By Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Preparation Method: SW846 7.3.4 Preparation Method: SW846 7.3 Preparation Method: SW846 7.3.4 TestGroupName TCLI Preparation Method: SW846 7.3.4 Prep Analysis Analyte Date By Date By Sulfide (Reactive) 04/16/09 jad 04/16/09 jad Analysis Analyte Date By Date By Analysis Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 1,1-Dichloroethene Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 1,1-Dichloroethene Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 04/16/09 jad Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 04/16/09 jad 1,1-Dichloroethene	04/19/09	mansip	
Preparation Method: SW846 7.3.3 Analytical Method: SW846 7.3.3 Prep Analysis Analyte Date By Date By Quaride (Reactive) 04/16/09 jad 04/16/09 jad Pertrachlorobutadiene Yeyaride (Reactive) 04/16/09 jad 04/16/09 jad Pertrachlorobutadiene Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Pertrachlorobutadiene Preparation Method: SW846 7.3.4 Preparation Method: SW846 7.3.4 Analysis Preparation Method: SW846 7.3.4 Analyte Date By Date By Analysis Analyte Date By Date By Analysis Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 1,1-Dichloroethane Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 04/16/09 jad Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 04/16/09 jad 1,1-Dichloroethane Preparation Method: EPA 8151A EPA 8151A EPA 8151A EPa 8151A EPa 8151 <t< td=""><td>04/19/09</td><td>mansip</td><td></td></t<>	04/19/09	mansip	
Prep AnalyteAnalysisNitrobenaneAnalyteDateByDateByCyanide (Reactive)04/16/09jad04/16/09jad'estGroupNameReactive Sulfide Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4TestGroupNameTestGroupNameAnalyteDateByDateBySulfide (Reactive)04/16/09jad04/16/09JadSulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadPreparation Method: EPA 8151A Analytical Method: EPA 8151A Analytical Method: EPA 8151A AnalytePrep Analysis DateAnalysis BenzeneAnalyteDateByDateBy2,4-D04/21/09cv04/22/09JPSilvex04/21/09cv04/22/09JPSilvex04/21/09cv04/22/09JP	04/19/09	mansip	
AnalyteDateByDateByCyanide (Reactive)04/16/09jad04/16/09jadPentachlorophenolPreparation Method: SW846 7.3 Analytical Method: SW846 7.3.4Freparation Method: SW846 7.3.4TestGroupName TCLI Preparation Method: SW846 7.3.4AnalyteDateByDateBySulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadSulfide (Reactive)04/16/09jad04/16/09jadFreparation Method: EPA 8151A Analytical Method: EPA 8151A AnalytePrep AnalysisAnalysis BenzeneAnalyteDateByDateBy2,4-D04/21/09cv04/22/09JPSilvex04/21/09cv04/22/09JP	04/19/09	mansip	
Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Pyridine Cyanide (Reactive) 04/16/09 jad 04/16/09 jad Pyridine Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4 Frep Analysis Analytical Method: Important of the system Analyte Date By Date By Analysis Sulfide (Reactive) 04/16/09 jad 04/16/09 jad Analysis FestGroupName TCLP Herbicides 8151 Freparation Method: EPA 8151A Analytical Method: Important of the system 1,1-Dichloroethene Preparation Method: EPA 8151A Prep Analysis Analysis Analyte Date By Date By Analyte Date By Date By Analyte Date By Date By 2,4-D 04/21/09 cv 04/22/09 JP Silvex 04/21/09 cv 04/22/09 JP	04/19/09	mansip	
Preparation Method: SW846 7.3 Analytical Method: SW846 7.3.4 Analytical Method: SW846 7.3.4 Prep Analysis Analyte Date By Date By Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 1.1-Dichloroethene Sulfide (Reactive) 04/16/09 jad 04/16/09 jad 1.1-Dichloroethene FeestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A Analytical Method: EPA 8151A ZeButanone Benzene Analyte Date By Date By Childrow Childrow Analyte Date By Date By Childrow Childrow Childrow Analytical Method: EPA 8151A Analyte Date By Date By Childrow Childrow Childrow Z,4-D O4/21/09 cv O4/22/09 JP Tetrachloroethene Childrow Silvex O4/21/09 cv O4/22/09 JP Tetrachloroethene	04/19/09	mansip	
AnalyteDateByDateBySulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroetheneSulfide (Reactive)04/16/09jad04/16/09jad1,1-DichloroetheneestGroupNameTCLP Herbicides 8151 Preparation Method: EPA 8151A Analytical Method: EPA 8151A-1,4-DichlorobenzenePrepAnalysis Carbon tetrachlorideCarbon tetrachlorideCarbon tetrachlorideAnalyteDateByDateBy2,4-D04/21/09cv04/22/09JPSilvex04/21/09cv04/22/09JPSilvex04/21/09cv04/22/09JP	P Volatiles 8260 EPA 5030B EPA 8260B	0	
Sulfide (Reactive) 04/16/09 jad 04/16/09 jad Sulfide (Reactive) 04/16/09 jad 1,1-Dichloroethene Preparation Method: EPA 8151A 2-Butanone 2-Butanone Analytical Method: EPA 8151A Benzene Carbon tetrachloride Analyte Date By Date By 2,4-D 04/21/09 cv 04/22/09 JP Chloroform Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	Date	By	
Preparation Method: EPA 8151A Analytical Method: EPA 8151A 1,2-Dichloroethane Analytical Method: EPA 8151A 2-Butanone Benzene 2-Butanone Analyte Date By 2,4-D 04/21/09 cv 04/22/09 Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	04/22/09	WP	
PestGroupName TCLP Herbicides 8151 Preparation Method: EPA 8151A Analytical Method: EPA 8151A 1,4-Dichlorobenzene 2-Butanone Benzene Prep Analyte Prep Date Analysis Carbon tetrachloride Analyte Date By Date By 2,4-D 04/21/09 cv 04/22/09 JP Chlorobenzene Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	04/22/09	WP	
Preparation Method: EPA 8151A Analytical Method: EPA 8151A 2-Butanone Prep Analysis Benzene Analyte Date By Date By 2,4-D 04/21/09 cv 04/22/09 JP Chlorobenzene Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	04/22/09	WP	
Analytical Method: EPA 8151A Benzene Prep Analysis Carbon tetrachloride Analyte Date By Date By 2,4-D 04/21/09 cv 04/22/09 JP Chlorobenzene Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	04/22/09	WP	
PrepAnalysisCarbon tetrachlorideAnalyteDateByDateByChlorobenzene2,4-D04/21/09cv04/22/09JPChloroformSilvex04/21/09cv04/22/09JPTetrachloroethene	04/22/09	WP	
Arrange Date By Date By Chlorobenzene 2,4-D 04/21/09 cv 04/22/09 JP Chloroform Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	04/22/09	WP	
2,4-D 04/21/09 cv 04/22/09 JP Chlorotorm Silvex 04/21/09 cv 04/22/09 JP Tetrachloroethene	04/22/09	WP	
Silvex 04/21/09 CV 04/22/09 JP Tetrachioroethene	04/22/09	WP	
Trichloroethana	04/22/09	WP	
FestGroupName TCLP Metals 6010 Vinyl chloride Preparation Method: 3005&10/3050 Vinyl chloride TestGroupName TCLI	04/22/09 P Zero Headsp:	WP ace Ex	tra
Prep Analysis Preparation Method: Analyte Date By Date By Analytical Method:	EPA 1311		
Arsenic 04/17/09 olufemi 04/17/09 SB	Prep	<u>،</u>	
Barium 04/17/09 olufemi 04/17/09 SB Analyte	Date	Ву	
Cadmium 04/17/09 oluferni 04/17/09 SB Zero Headspace Extraction	04/21/09	sw	
Chromium 04/17/09 oluferni 04/17/09 SB			
Lead 04/17/09 olufemi 04/17/09 SB Lab#: AC43958-014 Sa	mple ID: WC-6)	
Nickel 04/17/09 olufemi 04/17/09 SB	lide SM2EAOC		
Selenium 04/17/09 olufemi 04/17/09 SB reparation Method	SM 2540G		
Silver 04/17/09 olutemi 04/17/09 SB Analytical Method:			
	SM 2540G		

ID: WC-5

Analytical Method:				
	Prep		Analy	sis
Analyte	Date	Ву	Date	Ву
TCLP Metals Extraction	04/15/09	OA	NA	
estGroupName TCL Preparation Method: Analytical Method:	.P Organics Extr EPA 1311	raction	1311	
	Prep		Analy	rsis
Analyte	Date	Ву	Date	Ву
TCLP Organics Extraction	04/15/09	oa	NA	
Preparation Method: Analytical Method:	EPA 3510 EPA 8081A Prep	01	Analy	sis
Analyte	Date	Ву	Date	_
Chlordane				Ву
	04/20/09	neha	04/21/09	JP
Endrin	04/20/09 04/20/09	neha neha	04/21/09 04/21/09	JP JP
Endrin gamma-BHC	04/20/09 04/20/09 04/20/09	neha neha neha	04/21/09 04/21/09 04/21/09	JP JP JP
Endrin gamma-BHC Heptachlor	04/20/09 04/20/09 04/20/09 04/20/09	neha neha neha neha	04/21/09 04/21/09 04/21/09 04/21/09	By JP JP JP JP
Endrin gamma-BHC Heptachlor Heptachlor Epoxide	04/20/09 04/20/09 04/20/09 04/20/09 04/20/09	neha neha neha neha neha	04/21/09 04/21/09 04/21/09 04/21/09 04/21/09	By JP JP JP JP JP

04/21/09

JP

ivolatiles 8270 510 270C

	Prep	2	Analy	/sis
Analyte	Date	Ву	Date	Ву
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylphenol	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

tiles 8260)30B 160B

,				-
	Prep	Prep		/sis
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/22/09	WP	04/22/09	WP
1,2-Dichloroethane	04/22/09	WP	04/22/09	WP
1,4-Dichlorobenzene	04/22/09	WP	04/22/09	WP
2-Butanone	04/22/09	WP	04/22/09	WP
Benzene	04/22/09	WP	04/22/09	WP
Carbon tetrachloride	04/22/09	WP	04/22/09	WP
Chlorobenzene	04/22/09	WP	04/22/09	WP
Chloroform	04/22/09	WP	04/22/09	WP
Tetrachloroethene	04/22/09	WP	04/22/09	WP
Trichloroethene	04/22/09	WP	04/22/09	WP
Vinyl chloride	04/22/09	WP	04/22/09	WP

Headspace Extraction

	Prep	Prep		Analysis	
Analyte	Date	Ву	Date	Ву	
Zero Headspace Extraction	04/21/09	sw	NA		

ID: WC-6

M2540G 10G 10G

	Analytical method	. 0111 20400			
		Pre	Prep		lysis
	Analyte	Date	By	Date	Ву
	% Solids	04/15/09	PRASHANT	04/15/09	PRASHANT

estGroupName Ignitability	10.110 0			
Preparation Method: EPA 1 Analytical Method: EPA 1	/ 030 030			
Analyta	Prep	Bv	Analy	sis By
	04/16/09	iad	04/16/09	iad
estGroupName Mercury (Preparation Method: EPA 7 Analytical Method: EPA 7	TCLP) 747(470A 470A)A		
Analyte	Prep	By	Analy	sis Bv
Mercury	04/17/09	olufemi	04/20/09	JS
estGroupName pH 9040B Preparation Method: 9040B Analytical Method: 9040B	/9045C /9045C /9045C			
	Prep	D	Analy	sis
pH	04/16/09	SDI	04/16/09	SDI
estGroupName Reactive (Preparation Method: SW840 Analytical Method: SW840	Cyanide 5 7.3 6 7.3.3			
Analyte	Prep Date	Bv	Analy Date	sis Bv
Cyanide (Reactive)	04/16/09	jad	04/16/09	jad
estGroupName Reactive S Preparation Method: SW840 Analytical Method: SW840	Sulfide 6 7.3 6 7.3.4 Prep		Analy	sis
Analyte	Date	Ву	Date	Ву
Sulfide (Reactive)	04/16/09	jad	04/16/09	jad
Preparation Method: EPA 8 Analytical Method: EPA 8	Dicides 81 151A 151A Prep	91 	Analy	sis
2.4-D	04/21/09	CV CV	04/22/09	JP
Silvex	04/21/09	cv	04/22/09	JP
estGroupName TCLP Met Preparation Method: 3005& Analytical Method: EPA 6	als 6010 10/3050 010B			
	Prep		Analy	sis
Analyte	Prep Date	Ву	Analy Date	sis By
Analyte Arsenic	Prep Date 04/17/09	By olufemi	Analy Date 04/17/09	sis By
Analyte Arsenic Barium Cadmium	Prep Date 04/17/09 04/17/09 04/17/09	By olufemi olufemi	Analy Date 04/17/09 04/17/09 04/17/09	SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09	By olufemi olufemi olufemi olufemi	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09	SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By olufemi olufemi olufemi olufemi	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead Nickel	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By olufemi olufemi olufemi olufemi olufemi	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	SB SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead Nickel Selenium Silver	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By olufemi olufemi olufemi olufemi olufemi olufemi	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	SB SB SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead Nickel Selenium Silver FestGroupName Preparation Method: EPA 1: Analytical Method:	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	By olufemi olufemi olufemi olufemi olufemi olufemi	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	SB SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead Nickel Selenium Silver TCLP Met Preparation Method: EPA 1: Analytical Method: Analyte	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 Date	By olufemi olufemi olufemi olufemi olufemi olufemi olufemi tion 13	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09	vsis By SB SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead Nickel Selenium Silver	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 Date 04/15/09	By olufemi olufemi olufemi olufemi olufemi olufemi olufemi tion 13	Analy Date 04/17/09	rsis By SB SB SB SB SB SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Cadmium Chromium Lead Nickel Selenium Silver estGroupName TCLP Metal Preparation Method: EPA TCLP Metals Extraction estGroupName TCLP Org Preparation Method: EPA 1: Analyte TCLP Metals Extraction	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/15/09 alis Extract 311 Prep Date 04/15/09 anics Extra 311	By olufemi olufemi olufemi olufemi olufemi olufemi olufemi tion 13 By OA	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 11 Analy Date NA	rsis By SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Lead Nickel Selenium Silver	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/15/09 als Extract 311 Prep Date 04/15/09 anics Extra 311	By olufemi olufemi olufemi olufemi olufemi olufemi olufemi tion 13 By OA action	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 11 Analy Date NA 1311 Analy Date	sis SB SB SB SB SB SB SB SB SB SB SB SB SB
Analyte Arsenic Barium Cadmium Chromium Chromium Lead Nickel Selenium Silver	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 alis Extract 311 Prep Date 04/15/09 anics Extra 311 Prep Date 04/15/09	By olufemi olufemi olufemi olufemi olufemi olufemi olufemi tion 13 ³ By OA action	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 11 Analy Date NA 1311	sis sis sis by sb sb sb sb sb sb sb sb sb sb sb sb sb
Analyte Arsenic Barium Cadmium Chromium Lead Nickel Selenium Silver TestGroupName TCLP Metals Extraction TCLP Metals Extraction TCLP Metals Extraction TCLP Org Preparation Method: EPA T Analyte TCLP Organics Extraction TCLP Organics Extraction TCLP Pess Preparation Method: EPA 3 Analytical Method: EPA 3	Prep Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/15/09 als Extract 311 Prep Date 04/15/09 anics Extra 311 Prep Date 04/15/09 ticides 808 510 081A	By olufemi olufemi olufemi olufemi olufemi olufemi olufemi ition 13 [:] By OA action By oa	Analy Date 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 04/17/09 11 Analy Date NA	rsis By SB SB SB SB SB SB SB SB SB SB SB SB SB

Lab#: AC43958-014 Sample ID: WC-6

Chlordane	04/20/09	neha	04/21/09	JP
Endrin	04/20/09	neha	04/21/09	JP
gamma-BHC	04/20/09	neha	04/21/09	JP
Heptachlor	04/20/09	neha	04/21/09	JP
Heptachlor Epoxide	04/20/09	neha	04/21/09	JP
Methoxychlor	04/20/09	neha	04/21/09	JP
Toxaphene	04/20/09	neha	04/21/09	JP

TestGroupName TCLP Semivolatiles 8270 Preparation Method: EPA 3510 Analytical Method: EPA 8270C

	Prep		Analysis	
Analyte	Date	Ву	Date	By
2,4,5-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4,6-Trichlorophenol	04/19/09	mansip	04/20/09	AHD
2,4-Dinitrotoluene	04/19/09	mansip	04/20/09	AHD
2-Methylphenol	04/19/09	mansip	04/20/09	AHD
3&4-Methylpheno!	04/19/09	mansip	04/20/09	AHD
Hexachlorobenzene	04/19/09	mansip	04/20/09	AHD
Hexachlorobutadiene	04/19/09	mansip	04/20/09	AHD
Hexachloroethane	04/19/09	mansip	04/20/09	AHD
Nitrobenzene	04/19/09	mansip	04/20/09	AHD
Pentachlorophenol	04/19/09	mansip	04/20/09	AHD
Pyridine	04/19/09	mansip	04/20/09	AHD

TestGroupName TCLP Volatiles 8260 Preparation Method: EPA 5030B Analytical Method: EPA 8260B

	Prep		Analysis	
Analyte	Date	Ву	Date	Ву
1,1-Dichloroethene	04/27/09	WP	04/27/09	WP
1,2-Dichloroethane	04/27/09	WP	04/27/09	WP
1,4-Dichlorobenzene	04/27/09	WP	04/27/09	WP
2-Butanone	04/27/09	WP	04/27/09	WP
Benzene	04/27/09	WP	04/27/09	WP
Carbon tetrachloride	04/27/09	WP	04/27/09	WP
Chlorobenzene	04/27/09	WP	04/27/09	WP
Chloroform	04/27/09	WP	04/27/09	WP
Tetrachloroethene	04/27/09	WP	04/27/09	WP
Trichloroethene	04/27/09	WP	04/27/09	WP
Vinyl chloride	04/27/09	WP	04/27/09	WP

TestGroupName TCLP Zero Headspace Extraction Preparation Method: EPA 1311 Analytical Method:

-		Prep		Analysis	
	Analyte	Date	Ву	Date	By
	Zero Headspace Extraction	04/23/09	sw	NA	

Lab#: AC43958-015 Sample ID: TRIP BLANK

TestGroupName Volatile Organics + 10 (8260) Preparation Method: EPA5030/5035 Analytical Method: EPA 8260B

	Prep)	Analysis		
Analyte	Date	Ву	Date	Ву	
1,1,1-Trichloroethane	04/15/09	WP	04/15/09	WP	
1,1,2,2-Tetrachloroethane	04/15/09	WP	04/15/09	WP	
1,1,2-Trichloro-1,2,2-trifluoroethane	04/15/09	WP	04/15/09	WP	
1,1,2-Trichloroethane	04/15/09	WP	04/15/09	WP	
1,1-Dichloroethane	04/15/09	WP	04/15/09	WP	
1,1-Dichloroethene	04/15/09	WP	04/15/09	WP	
1,2,3-Trichloropropane	04/15/09	WP	04/15/09	WP	
1,2,4-Trimethylbenzene	04/15/09	WP	04/15/09	WP	
1,2-Dichlorobenzene	04/15/09	WP	04/15/09	WP	
1,2-Dichloroethane	04/15/09	WP	04/15/09	WP	
1,2-Dichloropropane	04/15/09	WP	04/15/09	WP	
1,3,5-Trimethylbenzene	04/15/09	WP	04/15/09	WP	
1,3-Dichlorobenzene	04/15/09	WP	04/15/09	WP	
1,3-Dichloropropane	04/15/09	WP	04/15/09	WP	
1,4-Dichlorobenzene	04/15/09	WP	04/15/09	WP	
1,4-Dioxane	04/15/09	WP	04/15/09	WP	
2-Butanone	04/15/09	WP	04/15/09	WP	
2-Chloroethylvinylether	04/15/09	WP	04/15/09	WP	
2-Hexanone	04/15/09	WP	04/15/09	WP	
4-Isopropyltoluene	04/15/09	WP	04/15/09	WP	
4-Methyl-2-pentanone	04/15/09	WP	04/15/09	WP	

Lab#: AC43958-015 Sample ID: TRIP BLANK Acetone 04/15/09 WP 04/15/09 Acetone 04/15/09 WP 04/15/09

-					_
Acetone	04/15/09	WP	04/15/09	WP	
Acrolein	04/15/09	WP	04/15/09	WP	
Acrylonitrile	04/15/09	WP	04/15/09	WP	
Benzene	04/15/09	WP	04/15/09	WP	
Bromodichloromethane	04/15/09	WP	04/15/09	WP	
Bromoform	04/15/09	WP	04/15/09	WP	
Bromomethane	04/15/09	WP	04/15/09	WP	
Carbon disulfide	04/15/09	WP	04/15/09	WP	
Carbon tetrachloride	04/15/09	WP	04/15/09	WP	
Chlorobenzene	04/15/09	WP	04/15/09	WP	
Chloroethane	04/15/09	WP	04/15/09	WP	
Chloroform	04/15/09	WP	04/15/09	WP	
Chloromethane	04/15/09	WP	04/15/09	WP	
cis-1,2-Dichloroethene	04/15/09	WP	04/15/09	WP	
cis-1,3-Dichloropropene	04/15/09	WP	04/15/09	WP	
Dibromochloromethane	04/15/09	WP	04/15/09	WP	
Dichlorodifluoromethane	04/15/09	WP	04/15/09	WP	
Ethylbenzene	04/15/09	WP	04/15/09	WP	
Isopropylbenzene	04/15/09	WP	04/15/09	WP	
m&p-Xylenes	04/15/09	WP	04/15/09	WP	
Methylene chloride	04/15/09	WP	04/15/09	WP	
Methyl-t-butyl ether	04/15/09	WP	04/15/09	WP	
n-Butylbenzene	04/15/09	WP	04/15/09	WP	
n-Propylbenzene	04/15/09	WP	04/15/09	WP	
o-Xylene	04/15/09	WP	04/15/09	WP	
sec-Butylbenzene	04/15/09	WP	04/15/09	WP	
Styrene	04/15/09	WP	04/15/09	WP	
t-Butyl Alcohol	04/15/09	WP	04/15/09	WP	
t-Butylbenzene	04/15/09	WP	04/15/09	WP	
Tetrachioroethene	04/15/09	WP	04/15/09	WP	
Toluene	04/15/09	WP	04/15/09	WP	
trans-1,2-Dichloroethene	04/15/09	WP	04/15/09	WP	
trans-1,3-Dichloropropene	04/15/09	WP	04/15/09	WP	
Trichloroethene	04/15/09	WP	04/15/09	WP	
Trichlorofluoromethane	04/15/09	WP	04/15/09	WP	
Vinyl chloride	04/15/09	WP	04/15/09	WP	
Xylenes (Total)	04/15/09	WP	04/15/09	WP	

Method References

PARAMETER	METHOD	TECHNIQUE	PARAMETER	METHOD	TECHNIQUE
DRINKING WATER PARAMETERS			SOLID HAZARDOUS W	ASTE PARAMETERS	
Total coliform	SM 9221D + E	Presence/Absence	Specific Cond.	SW-846 9050A	Wheatstone Bridge
Total coli/E. coli	SM 9222 B/G	Membrane Filtration/Enumeration	Phenols	SW-846 9065	Colorimetric
Cvanide	SM 4500-CN-E	Dist/Spectrophotometric (man.)	Cvanide	SW-846 9014	Titrimetric/Spectrophotometric
Cvanide	FPA 335.4	Dist/Spectrophotometric (auto)	Chromium VI	SW-846 7196A	Colorimetric
VOA	EPA 524 2	GC/MS	Metals	SW-846 6010B	ICP
Metals	EPA 200.8	ICP/MS	Mercurov (liquid)	SW-846 74704	Manual Cold Vapor
Moroup	EDA 245 1	Manual Cold Vapor	Moroupy (solid)	SW 846 7471A	Manual Cold Vapor
Turbidity	EPA 240.1	Nenhalametria		CIM 04C 0014	Microsytraction CC ECD
	DADAMETERS	Nephelometric	EDD/DBUP	SW-040 00 11	
WATER POLLUTION	PARAMETERS	Marchana Filtratian	Alconois/Glycois	SVV-040 00 10B	
Fecal Coliform	SM 9222 D	Memorane Filtration	Petroleum Organics	OQA QAM 25 rev/	Extraction, GC, FID
Total Colitorm	SM 9222 B	Membrane Filtration	DRO	SW-846 8015B	Extraction, GC, FID
Heterotrophic PC	SM 9215 B	Pour Plate	GRO	SW8468015B m	GC/MS, Purge & Trap
Acidity	SM 2310 B (4a)	Electrometric	РСВ	SW-846 8082	Extraction, GC, ECD
Alkalinity	SM 2320 B	Electrometric	Pesticides	SW-846 8081A	Extraction, GC, ECD
Ammonia	SM4500NH3B-18	Distillation (prep)	Herbicides	SW-846 8151A	Extraction, GC, ECD
Ammonia	SM4500NH3C-18	Nesslerization (analysis)	VOA	SW-846 8260B	GC/MS
BOD	SM 5210 B	DO Depletion	Semi-VOA	SW-846 8270C	Extraction, GC/MS
Bromide	EPA 300.0	Ion Chromatography	Cyanide (T)	SW-846 9012A	Colorimetric (auto)
Calcium	EPA 200.7	Digestion, ICP	Cvanide (T)	SW-846 9010C	Distillation
CBOD	SM 5210 B	DO Depletion, N Inhib.	Cvanide (Am)	SW-846 9010C	Distillation
COD	HACH 8000	Spectrophotometric manual	Sulfides	SW-846 9030B	Redox Titration
Chloride	EPA 300.0	Ion Chromatography	Sulfides	SW-846 9034	Titration
Cvanide (T)	EPA 335 4	Dist/Spectrophotometric (auto)	Sulfato	SW-846 9056	In Chromatography
Cyanide (T)	SM4500 CN C/E	Dist/Spectrophotometric (map.)		SW-040 5050	Elect wests >20% water
Cyanide (1)	SIVHOU-CIN C/C	Distropectiophotometric (mail.)		SW-040 9040D	Lieci, wasie, >20% water
Cyanide (Am)	51VH2000-CIN C/G	Distillation, Spectrophotometric		SW-640 9000	Infrared Spectrometry
Cyanide (Am)	EPA 10//	Flow Injection/Ligand Exchange	TOC (sediment)	Lloyd Kann Meth.	Infrared Spectrometry
Fluonde	EPA 300.0	Ion Chromatography	Oil & Grease hem	SW-846 1664A	Extraction and Gravimetric
Hardness	EPA 200.7	Ca + Mg Carbonates, ICP	Nitrite	SW-846 9056	Ion Chromatography
Hex Chrom	SM 3500-Cr D	Spectrophotometric	Nitrate	SW-846 9056	Ion Chromatography
Magnesium	EPA 200.7	Digestion, ICP	Bromide	SW-846 9056	Ion Chromatography
Metals	EPA 200.7	Digestion, ICP	Chloride	SW-846 9056	Ion Chromatography
Mercury	EPA 245.1	Manual, Cold Vapor	Fluoride	SW-846 9056	Ion Chromatography
Metals	EPA 200.8	ICP/MS	Ortho Phosphate	SW-846 9056	Ion Chromatography
Nitrate	EPA 300.0	Ion Chromatography	SOLID HAZARDOUS W	ASTE PREP	
Nitrite	EPA 300.0	Ion Chromatography	Metals, Total& Diss	SW-846 3005A	Acid Dig/Surface & GW, ICP
O & G HEM	EPA 1664A	Grav., Hexane Extractable	Metals, Total	SW-846 3010A	Acid Dig/Ag Samples, ICP
Oil & Grease SGT	EPA 1664A	Grav., Silica Gel Treated, HEM	Metals	SW-846 3050B	Acid Dig, Soil Sediment, Sludge
Sulfate	EPA 300.0	Ion Chromatography	Metals	SW-846 3060A	Chromium VI Digestion
TOC	SM 5310 B	Combustion	Semi-VO	SW-846 3510C	Separatory Funnel Extraction
Ortho Phosphate	EPA 300.0	Ion Chromatography	Semi-VO	SW-846 3550B	Ultrasonic Extraction
Phenols	EPA 420.1	Distillation, Colorimetric	Semi-VO	SW-846 3520C	Liquid-Liquid Extraction
Total Phosphorus	SM 4500-P 85+F	Persulfate Digestion	Semi-VO	SW-846 3545	Pressurized Fluid Extraction
Potassium	EPA 200 7	Digestion ICP	VO	SW-846 5030B	Purge & Tran Aqueous
Total Residue	SM 2540 B	Gravimetric 103-1050 C	Organics	SIN/ 846 3580A	Waste Dilution
TDQ	SM 2540 C	Gravimetric, 180º C	Organics	CIN/ 946 2595	Waste Dilution Valatila Organica
TOO	SWI 2540 D	Gravimetric, 100°C		011 040 0000	Viasie Diduori, Volaule Organics
Cottlephie Collida	SIVI 2340 D	Volumetric, 105-105°C	VO-low/high conc.	SW-0403033VII	Closed System Purge & Trap
Settleable Solids	5M 2040 F	Volumetric, imnori Cone	Semi-vO	SW-846 3611B	Petroleum waste, Cleanup Alumina
Volatile Solids	EPA 160.4	Gravimetric, 550°C	Semi-VO	SW-846 3620B	Cleanup-Florisi
Total, Fix, Vol Sol.	SM 2540 G	Gravimetric, 550° C	Semi-VO	SW-846 3640A	Cleanup-Gel Permeation
Salinity	SM 2520 B	Electrical Conductivity	Semi-VO	SW-846 3650B	Cleanup-Acid/Base Partition
Sodium	EPA 200.7	Digestion, ICP	Semi-VO	SW-846 3660B	Cleanup-Sulfur Removal
Specific Cond.	SM 2510 B	Wheatstone Bridge	Semi-VO	SW-846 3665A	Cleanup-Sulfuric Acid/KMnO4
Sulfides	SM 4500-S ² F	Titrimetric, lodine	CHARACTERISTICS O	F HAZARDOUS WAST	
Turbidity	SM 2130 B	Nephelometric	Corrosivity	SW-846 9040B	Aqueous Waste, Potentiometric
PCB	EPA 608	Extraction, GC, ECD	Volatile Organics	SW-846 1311	TCLP, Toxicity Procedure, ZHE
Pesticides	EPA 608	Extraction, GC, ECD	Metals-Semi VOA	SW-846 1311	TCLP, Toxicity Procedure, Shaker
Petroleum Org.	OQ QAM 25 rev. 7	Extraction, GC, FID	Metals-Organics	SW-846 1310A	EP Toxicity Test
VOA	EPA 624	GC/MS	Metals-Organics	SW-846 1312	Synthetic PPT Leachate Procedure
Semi-VOA	EPA 625	Extraction, GC/MS	Metals-Organics	SW-846 1320	Multiple Extraction

Method References cont'd

PARAMETER	METHOD	TECHNIQUE	PARAMETER	METHOD	TECHNIQUE		
ANALYZE IMMEDIATELY PARAMETERS			SOLID AND CHEMICAL MATERIALS				
D.O.	SM 4500-O G	Electrode	Ignitability of Solids	SW-846 1030	Burn Rate		
рН	SM 4500-H+ B	Electrometric	Reactivity	SW-846 7.3	HCN, HS Release		
Temperature	SM 2550 B	Thermometric	Cyanide	SW-846 9013	Extraction, Oils and Solids		
рН	SW-846 9040B	Aqueous, Electrometric	EOX	SW-846 9023	Extraction		
ORP	SM-2580 B	Electrode	Sulfides-extractable	SW-846 9031	Water extraction, Distillation		
ASTM			O & G Sludge HEM	SW-846 9071	Extraction and Gravimetric		
Specific Gravity	ASTM D-1429	Erlenmeyer Flask	Free Liquid	SW-846 9095	Flow-through Paint Filtration (obs)		
Sulfur Analysis	ASTM D-1552	Infrared Spectrometry	Fingerprint Analysis	SW-846 8015B	GC/FID		
Total Organic Matter	ASTM D-2974	Organic Content	pH	SW-846 9045C	pH, soit and waste		

REPORTING LIMIT DEFINITIONS

RL = Reporting Limit

PQL = Practical Quantitation Limit

MDL = Method Detection Limit

CRQL= Contract Required Quantitation Limit

For Clean Water Act and SW846 Organic methods, the RL = PQL. The PQL is determined by the concentration of the lowest standard in the calibration curve.

For Clean Water Act Metals method, the RL = PQL. The PQL is determined by the concentration of the lowest standard in the calibration curve.

For Clean Water Act and SW846 Wet Chemistry methods, the RL = PQL. The PQL is defined as a value 3 to 5 times the MDL.

CLP Organics and Inorganics reported to CRQL.

Veritech Report Of Analysis

Lab#: AC43958-00 Sample ID: B-2	01 Col	llection Da	ite: 4/13	/2009
TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		85
Mercury (Soil/Waste) 74714 Mercury	4 167	mg/kg	0.098	ND
Organochlorine Pesticides	8081			
Aldrin	1	mg/kg	0.0059	ND
Alpha-BHC	1	mg/kg	0.0012	ND
beta-BHC	1	mg/kg	0.0012	ND
Chlordane	1	mg/kg	0.012	ND
delta-BHC	1	mg/kg	0.0059	ND
Dieldrin	1	mg/kg	0.0012	ND
Endosulfan I	1	mg/kg	0.0059	ND
Endosulfan II	1	mg/kg	0.0059	ND
Endosulfan Sulfate	1	mg/kg	0.0059	ND
Endrin	1	mg/kg	0.0059	ND
Endrin Aldehyde	1	mg/kg	0.0059	ND
Endrin Ketone	1	mg/kg	0.0059	ND
gamma-BHC	1	mg/kg	0.0012	ND
Heptachlor	1	mg/kg	0.0059	ND
Heptachlor Epoxide	1	mg/kg	0.0059	ND
Methoxychlor	1	mg/kg	0.0059	ND
p,p'-DDD	1	mg/kg	0.0029	ND
p,p'-DDE	1	mg/kg	0.0029	ND
p,p'-DDT	1	mg/kg	0.0029	ND
Toxaphene	1	mg/kg	0.029	ND
PCB 8082				
Aroclor (Total)	1	mg/kg	0.029	ND
Aroclor-1016	1	mg/kg	0.029	ND
Aroclor-1221	1	mg/kg	0.029	ND
Aroclor-1232	1	mg/kg	0.029	ND
Aroclor-1242	1	mg/kg	0.029	ND
Aroclor-1248	1	mg/kg	0.029	ND
Aroclor-1254	1	mg/kg	0.029	ND
Aroclor-1260	1	mg/kg	0.029	ND
Aroclor-1262	1	mg/kg	0.029	ND
Aroclor-1268	1	ma/ka	0.029	ND

Lab#:	AC43958-001 B-2	Collection Date: 4/13/2009				
TestGroup/A	nalvte	DF	Units	RL	Result	
Semivolatile ()rganice ± 25 (927	2.				
:TotalSemiVolatile	-19a11163 + 23 (827 eTic	1	mg/kg	NA	95J	
1,2,4-Trichlorobenz	ene	1	mg/kg	0.078	ND	
1,2-Diphenylhydraz	ine	1	mg/kg	0.078	ND	
2,4,5-Trichloropher	lor	1	mg/kg	0.078	ND	
2,4,6-Trichloropher	loi	1	mg/kg	0.078	ND	
2,4-Dichlorophenol 2,4-Dimethylphenol	1	1	mg/kg	0.078	ND	
2,4-Dinitrophenol		1	mg/kg	0.39	ND	
2,4-Dinitrotoluene		1	mg/kg	0.078	ND	
2,6-Dinitrotoluene		1	mg/kg	0.078	ND	
2-Chloronaphthaler	ne	1	mg/kg	0.078	ND	
2-Chlorophenol		1	mg/kg	0.078	ND	
2-Methylphenol	Ie	1	mg/kg	0.078	ND	
2-Nitroaniline		1	mg/kg	0.078	ND	
2-Nitrophenol		1	mg/kg	0.078	ND	
3&4-Methylphenol		1	mg/kg	0.078	ND	
3,3'-Dichlorobenzio	line	1	mg/kg	0.078	ND	
3-Nitroaniline		1	mg/kg	0.078	ND	
4,6-Dinitro-2-methy		1	mg/kg	0.39		
4-Chloro-3-methylc	phenol	1	mg/kg	0.078	ND	
4-Chloroaniline		1	mg/kg	0.078	ND	
4-Chlorophenyl-ph	enylether	1	mg/kg	0.078	ND	
4-Nitroaniline		1	mg/kg	0.078	ND	
4-Nitrophenol		1	mg/kg	0.078	ND	
Acenaphthene		1	mg/kg	0.078	ND	
Acenaphthylene		1	mg/kg	0.078		
Anthracene		1	ma/ka	0.078	ND	
Benzidine		1	mg/kg	0.39	ND	
Benzo[a]anthrace	ne	1	mg/kg	0.078	0.087	
Benzo[a]pyrene		1	mg/kg	0.078	0.082	
Benzo[b]fluoranth	iene	1	mg/kg	0.078	0.12	
Benzo[g,h,i]peryler	ne So	1	mg/kg	0.078	ND	
Benzolkjiluorantne	ne	1	mg/kg ma/ka	0.078		
bis(2-Chloroethoxy)methane	1	mg/kg	0.078	ND	
bis(2-Chloroethyi)e	ther	1	mg/kg	0.078	ND	
bis(2-Chloroisopro	pyl)ether	1	mg/kg	0.078	ND	
bis(2-Ethylhexyl)p	hthalate	1	mg/kg	0.078	0.27	
Butylbenzylphthala	te	1	mg/kg	0.078	ND	
Carbazole		1	mg/kg	0.078	NU 0.097	
Dibenzola hlanthra	cené	1	mg/kg ma/ka	0.078	ND	
Dibenzofuran		1	mg/kg	0.078	ND	
Diethylphthalate		1	mg/kg	0.078	ND	
Dimethylphthalate		1	mg/kg	0.078	ND	
Di-n-butylphthalate		1	mg/kg	0.078	ND	
Di-n-octylphthalat	e	1	mg/kg	0.078	0.21	
Fluorantnene		1	mg/kg	0.078	0.13 ND	
Hexachlorobenzen	ė	1	ma/ka	0.078	ND	
Hexachlorobutadie	ne	1	mg/kg	0.078	ND	
Hexachlorocyclope	ntadiene	1	mg/kg	0.39	ND	
Hexachloroethane		1	mg/kg	0.078	ND	
Indeno[1,2,3-cd]py	rene	1	mg/kg	0.078	ND	
Naphthalanc		1	mg/kg	0.078		
Nitrobenzene		1	mg/kg mg/kg	0.078	ND	
N-Nitrosodimethyla	mine	1	mg/ka	0.078	ND	
N-Nitroso-di-n-prop	ylamine	1	mg/kg	0.078	ND	
N-Nitrosodiphenyla	mine	1	mg/kg	0.078	ND	
Pentachlorophenol		1	mg/kg	0.39	ND	
Phenanthrene		1	mg/kg	0.078	ND	
Phenol		1	mg/kg	0.078	ND 0.14	
Pyrene		1	mg/kg	0.078	0.14	

RL = Reporting Limit

Lab#: AC43958-001 Sample ID: B-2	Collection Date: 4/13/2009				
TestGroup/Analyte	DF	Units	RL	Result	
TAL Metals 6010					
Aluminum	100	mg/kg	240	10000	
Antimony	100	mg/kg	2.4	ND	
Arsenic	100	mg/kg	2.4	5.3	
Barium	100	mg/kg	12	52	
Beryllium	100	mg/kg	0.71	ND	
Cadmium	100	mg/kg	0.71	ND	
Calcium	100	mg/kg	1200	10000	
Chromium	100	mg/kg	5.9	19	
Cobalt	100	mg/kg	2.9	7.3	
Copper	100	mg/kg	5.9	20	
Iron	100	mg/kg	240	16000	
Lead	100	mg/kg	5.9	64	
Magnesium	100	mg/kg	590	3000	
Manganese	100	mg/kg	12	260	
Nickel	100	mg/kg	5.9	24	
Potassium	100	mg/kg	590	1100	
Selenium	100	mg/kg	2.1	2.8	
Silver	100	mg/kg	1.8	ND	
Sodium	100	mg/kg	290	450	
Thallium	100	mg/kg	1.4	ND	
Vanadium	100	mg/kg	12	27	
Zine	100	ma/ka	12	57	

Lab#: AC43958-001 Sample ID: B-2	Collection Date: 4/13/2009				
TestGroup/Analyte	DF	Units	RL	Result	
/olatile Organics + 10 (8260)					
TotalVolatileTic	0.986	mg/kg	NA	ND	
1,1,1-Trichloroethane	0.986	mg/kg	0.0058	ND	
1,1,2,2-Tetrachloroethane	0.986	mg/kg	0.0058	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.986	mg/kg	0.0058	ND	
1,1,2-Trichloroethane	0.986	mg/kg	0.0058	ND	
I,1-Dichloroethane	0.986	mg/kg	0.0058	ND	
I,1-Dichloroethene	0.986	mg/kg	0.0058	ND	
1,2,3-Trichloropropane	0.986	mg/kg	0.0058	ND	
1,2,4-Trimethylbenzene	0,986	mg/kg	0.0012	ND	
1,2-Dichlorobenzene	0.986	mg/kg	0.0058		
	0.900	mg/kg	0.0058		
1,2-Dichloropropane	0.900	mg/kg	0.0038		
1,3,5- Thilethybenzene	0.900	mg/kg	0.0012	ND	
1.3-Dichloropropage	0.986	ma/ka	0.0058	ND	
1 4-Dichlorobenzene	0.986	ma/ka	0.0058	ND	
1.4-Dioxane	0.986	ma/kg	0.29	ND	
2-Butanone	0.986	mg/kg	0.0058	ND	
2-Chloroethylvinylether	0.986	mg/kg	0.0058	ND	
2-Hexanone	0.986	mg/kg	0.0058	ND	
4-Isopropyltoluene	0.986	mg/kg	0.0012	ND	
4-Methyl-2-pentanone	0.986	mg/kg	0.0058	ND	
Acetone	0.986	mg/kg	0.029	ND	
Acrolein	0.986	mg/kg	0.029	ND	
Acrylonitrile	0.986	mg/kg	0.0058	ND	
Benzene	0.986	mg/kg	0.0012	ND	
Bromodichloromethane	0.986	mg/kg	0.0058	ND	
Bromoform	0.986	mg/kg	0.0058	ND	
Bromomethane	0.986	mg/kg	0.0058		
Carbon disultide	0.966	mg/kg	0.0058		
	0.900	mg/kg	0.0058		
Chloroethane	0.986	mg/kg	0.0058	ND	
Chloroform	0.986	ma/ka	0.0058	ND	
Chloromethane	0.986	ma/ka	0.0058	ND	
cis-1.2-Dichloroethene	0.986	ma/ka	0.0058	ND	
cis-1,3-Dichloropropene	0.986	mg/kg	0.0058	ND	
Dibromochloromethane	0.986	mg/kg	0.0058	ND	
Dichlorodifluoromethane	0.986	mg/kg	0.0058	ND	
Ethylbenzene	0.986	mg/kg	0.0012	ND	
Isopropylbenzene	0.986	mg/kg	0.0012	ND	
m&p-Xylenes	0.986	mg/kg	0.0012	ND	
Methylene chloride	0.986	mg/kg	0.0058	ND	
Methyl-t-butyl ether	0.986	mg/kg	0.0012	ND	
n-Butylbenzene	0.986	mg/kg	0.0012	ND	
n-Propylbenzene	0.986	mg/kg	0.0012	ND	
o-Xylene	0.986	mg/kg	0.0012	ND	
sec-Butylbenzene	0.986	mg/kg	0.0012	ND	
Styrene	0.986	mg/kg	0.0058	ND	
t-Butyl Alcohol t-Butylbonzene	0.900	mg/kg	0.029	ND	
Tetrachloroethene	0.986	mg/kg	0.0012	ND	
Toluene	0.986	ma/ka	0.0012	ND	
trans-1 2-Dichloroethene	0.986	ma/ka	0.0058	ND	
trans-1.3-Dichloropropene	0.986	ma/ka	0.0058	ND	
Trichloroethene	0.986	mg/kg	0.0058	ND	
Trichlorofluoromethane	0.986	mg/kg	0.0058	ND	
Vinyl chloride	0.986	mg/kg	0.0058	ND	
Xylenes (Total)	0.986	mg/kg	0.0012	ND	

Lab#: AC43958-002 Sample ID: B-3	Co	llection Da	nte: 4/9/	2009
TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		87
Mercury (Soil/Waste) 7471A Mercury	167	mg/kg	0.096	ND
Organochlorine Pesticides 80	81			
Aldrin	1	mg/kg	0.0057	ND
Alpha-BHC	1	mg/kg	0.0011	ND
beta-BHC	1	mg/kg	0.0011	ND
Chlordane	1	mg/kg	0.011	ND
delta-BHC	1	mg/kg	0.0057	ND
Dieldrin	1	mg/kg	0.0011	ND
Endosulfan I	1	mg/kg	0.0057	ND
Endosulfan II	1	mg/kg	0.0057	ND
Endosulfan Sulfate	1	mg/kg	0.0057	ND
Endrin	1	mg/kg	0.0057	ND
Endrin Aldehyde	1	mg/kg	0.0057	ND
Endrin Ketone	1	mg/kg	0.0057	ND
gamma-BHC	1	mg/kg	0.0011	ND
Heptachlor	1	mg/kg	0.0057	ND
Heptachlor Epoxide	1	mg/kg	0.0057	ND
Methoxychlor	1	mg/kg	0.0057	ND
p,p'-DDD	1	mg/kg	0.0029	ND
p,p'-DDE	1	mg/kg	0.0029	ND
p,p'-DDT	1	mg/kg	0.0029	ND
Toxaphene	1	mg/kg	0.029	ND
PCB 8082				
Aroclor (Total)	1	mg/kg	0.029	ND
Aroclor-1016	1	mg/kg	0.029	ND
Arocior-1221	1	mg/kg	0.029	ND
Aroclor-1232	1	mg/kg	0.029	ND
Aroclor-1242	1	mg/kg	0.029	ND
Aroclor-1248	1	mg/kg	0.029	ND
Aroclor-1254	1	mg/kg	0.029	ND
Aroclor-1260	1	mg/kg	0.029	ND
Aroclor-1262	1	mg/kg	0.029	ND
Aroclor-1268	1	ma/ka	0.029	ND

Lab#: AC43958-002 Sample ID: B-3	Co	ellection Da	ite: 4/9/	-0034 2009
TestGroup/Analyte	DF	Units	RL	Result
Semivolatile Organics + 25 (82	270)			
:TotalSemiVolatileTic	1	mg/kg	NA	53J
1,2,4-Trichlorobenzene	1	mg/kg mg/kg	0.077	ND
2.4.5-Trichlorophenol	1	mg/kg	0.077	ND
2,4,6-Trichlorophenol	1	mg/kg	0.077	ND
2,4-Dichlorophenol	1	mg/kg	0.077	ND
2,4-Dimethylphenol	1	mg/kg	0.077	ND
2,4-Dinitrophenol	1	mg/kg	0.38	ND
2.6-Dinitrotoluene	1	mg/kg	0.077	ND
2-Chloronaphthalene	1	mg/kg	0.077	ND
2-Chlorophenol	1	mg/kg	0.077	ND
2-Methylnaphthalene	1	mg/kg	0.077	ND
2-Methylphenol	1	mg/kg	0.077	ND
2-Nitroaniline	1	mg/kg	0.077	ND
3&4-Methylphenol	1	mg/kg	0.077	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.077	ND
3-Nitroaniline	1	mg/kg	0.077	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.38	ND
4-Bromophenyl-phenylether	1	mg/kg	0.077	
4-Chloroaniline	1	mg/kg mg/kg	0.077	ND
4-Chiorophenyl-phenylether	1	mg/kg	0.077	ND
4-Nitroaniline	1	mg/kg	0.077	ND
4-Nitrophenol	1	mg/kg	0.077	ND
Acenaphthene	1	mg/kg	0.077	ND
Acenaphthylene	1	mg/kg	0.077	ND
Anthracene	1	mg/kg	0.077	ND
Benzidine	1	mg/kg	0.38	ND
Benzo[a]anthracene	1	mg/kg	0.077	ND
Benzo[a]pyrene	1	mg/kg	0.077	ND
Benzo[b]fluoranthene	1	mg/kg	0.077	ND
Benzo[g,h,i]perylene	1	mg/kg	0.077	ND
Benzolkjnuorantnene Benzolk acid	1	mg/kg	0.38	ND
bis(2-Chloroethoxy)methane	1	mg/kg	0.077	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.077	ND
bis(2-Chloroisopropyl)ether	1	mg/kg	0.077	ND
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.077	ND
Butylbenzylphthalate	1	mg/kg	0.077	
Chrysene	1	ma/ka	0.077	ND
Dibenzo[a,h]anthracene	1	mg/kg	0.077	ND
Dibenzofuran	1	mg/kg	0.077	ND
Diethylphthalate	1	mg/kg	0.077	ND
Dimethylphthalate	1	mg/kg	0.077	ND
Di-n-butyiphthalate	1	mg/kg	0.077	ND
Fluoranthene	1	ma/ka	0.077	ND
Fluorene	1	mg/kg	0.077	ND
Hexachlorobenzene	1	mg/kg	0.077	ND
Hexachlorobutadiene	1	mg/kg	0.077	ND
Hexachlorocyclopentadiene	1	mg/kg	0.38	ND
Hexachloroethane	1	mg/kg	0.077	ND
Isophorone	1	ma/ka	0.077	ND
Naphthalene	1	mg/kg	0.077	ND
Nitrobenzene	1	mg/kg	0.077	ND
N-Nitrosodimethylamine	1	mg/kg	0.077	ND
N-Nitroso-di-n-propylamine	1	mg/kg	0.077	ND
N-Nitrosodiphenylamine	1	mg/kg	0.077	
Phenanthrene	1	ma/ka	0.077	ND
Phenol	1	mg/kg	0.077	ND
Pyrene	1	mg/kg	0.077	ND

Lab#: AC43958-002 Sample ID: B-3	Col	llection Da	ate: 4/9	/2009
TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	230	7400
Antimony	100	mg/kg	2.3	ND
Arsenic	100	mg/kg	2.3	4.0
Barium	100	mg/kg	11	45
Beryllium	100	mg/kg	0.69	ND
Cadmium	100	mg/kg	0.69	ND
Calcium	100	mg/kg	1100	2600
Chromium	100	mg/kg	5.7	15
Cobalt	100	mg/kg	2.9	9.6
Copper	100	mg/kg	5.7	54
iron	100	mg/kg	230	20000
Lead	100	mg/kg	5.7	18
Magnesium	100	mg/kg	570	3500
Manganese	100	mg/kg	11	460
Nickel	100	mg/kg	5.7	24
Potassium	100	mg/kg	570	1200
Selenium	100	mg/kg	2.1	4.1
Silver	100	mg/kg	1.7	ND
Sodium	100	mg/kg	290	1200
Thallium	100	mg/kg	1.4	ND
Vanadium	100	mg/kg	11	28
Zinc	100	mg/kg	11	44

				0035
Lab#: AC43958-002 Sample ID: B-3	Coll	lection Da	ate: 4/9/2	2009
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
TotalVolatileTic	0.984	mg/kg	NA	ND
1,1,1-Trichloroethane	0.984	mg/kg	0.0057	ND
1,1,2,2-Tetrachloroethane	0.984	mg/kg	0.0057	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.984	mg/kg	0.0057	ND
1,1,2-Trichloroethane	0.984	mg/kg	0.0057	ND
1,1-Dichloroethane	0.984	mg/kg	0.0057	ND
1,1-Dichloroethene	0.984	mg/kg	0.0057	ND
1,2,3-Trichloropropane	0.984	mg/kg	0.0057	ND
1,2,4-Trimethylbenzene	0.984	mg/kg	0.0011	ND
1,2-Dichlorobenzene	0.984	mg/kg	0.0057	ND
1,2-Dichloroethane	0.984	mg/kg	0.0057	ND
1,2-Dichloropropane	0.984	mg/kg	0.0057	ND
1,3,5-Trimethylbenzene	0.984	mg/kg	0.0011	ND
1,3-Dichlorobenzene	0.984	mg/kg	0.0057	ND
1,3-Dichloropropane	0.984	mg/kg	0.0057	ND
1,4-Dichlorobenzene	0.984	mg/kg	0.0057	ND
1,4-Dioxane	0.984	mg/kg	0.28	ND
2-Butanone	0.984	mg/kg	0.0057	ND
2-Chloroethylvinylether	0.984	mg/kg	0.0057	ND
2-Hexanone	0.984	mg/kg	0.0057	ND
4-Isopropyltoluene	0.984	mg/kg	0.0011	ND
4-Methyl-2-pentanone	0.984	mg/kg	0.0057	ND
Acetone	0.984	mg/kg	0.028	ND
Acrolein	0.984	mg/kg	0.028	ND
Acrylonitrile	0.984	mg/kg	0.0057	ND
Benzene	0.984	mg/kg	0.0011	ND
Bromodichloromethane	0.984	mg/kg	0.0057	ND
Bromoform	0.984	mg/kg	0.0057	ND
Bromomethane	0.984	mg/kg	0.0057	ND
Carbon disulfide	0.984	mg/kg	0.0057	ND
Carbon tetrachloride	0.984	mg/kg	0.0057	ND
Chlorobenzene	0.984	mg/kg	0.0057	ND
Chloroethane	0.984	mg/kg	0.0057	ND
Chlorotorm	0.984	mg/kg	0.0057	
	0.904	mg/kg	0.0057	ND
cis-1,2-Dichloroetnene	0.904	mg/kg	0.0057	ND
	0.304	ma/kg	0.0057	ND
Dichlorodifluoromethane	0.504	mg/kg	0.0057	ND
Ethylbenzene	0.004	mg/kg	0.0011	ND
Isopropylbenzene	0.984	ma/ka	0.0011	ND
m&n-Xvlenes	0.984	ma/ka	0.0011	ND
Methylene chloride	0.984	ma/ka	0.0057	ND
Methyl-t-butyl ether	0.984	ma/ka	0.0011	ND
n-Butvibenzene	0.984	mg/kg	0.0011	ND
n-Propylbenzene	0.984	mg/kg	0.0011	ND
o-Xvlene	0.984	mg/kg	0.0011	ND
sec-Butylbenzene	0.984	mg/kg	0.0011	ND
Styrene	0.984	mg/kg	0.0057	ND
t-Butyl Alcohol	0.984	mg/kg	0.028	ND
t-Butylbenzene	0.984	mg/kg	0.0011	ND
Tetrachloroethene	0.984	mg/kg	0.0057	ND
Toluene	0.984	mg/kg	0.0011	ND
trans-1,2-Dichloroethene	0.984	mg/kg	0.0057	ND
trans-1,3-Dichloropropene	0.984	mg/kg	0.0057	ND
Trichloroethene	0.984	mg/kg	0.0057	ND
Trichlorofluoromethane	0.984	mg/kg	0.0057	ND
Vinyl chloride	0.984	mg/kg	0.0057	ND
Xylenes (Total)	0.984	mg/kg	0.0011	ND

Lab#: AC43958-003 Collection Date: 4/9/2009 Sample ID: B-6			Lab#: AC43958-003 Collection Date: 4/9/2009 Sample ID: B-6						
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G					Semivolatile Organics + 2	5 (8270)			
% Solids	1	percent		82	:TotalSemiVolatileTic	1	mg/kg	NA	89J
Mercury (Soil/Waste) 7471A					1,2,4-Irichlorobenzene	1	mg/kg	0.081	
Mercury	167	mg/kg	0.10	ND	2 4 5-Trichloronhenol	1	mg/kg	0.081	ND
Organochlorine Pesticides 8	3081				2.4.6-Trichlorophenol	1	ma/ka	0.081	ND
Aldrin	1	mg/kg	0.0061	ND	2,4-Dichlorophenol	1	mg/kg	0.081	ND
Alpha-BHC	1	mg/kg	0.0012	ND	2,4-Dimethylphenol	1	mg/kg	0.081	ND
beta-BHC	1	mg/kg	0.0012	ND	2,4-Dinitrophenol	1	mg/kg	0.41	ND
Chlordane	1	mg/kg	0.012	ND	2,4-Dinitrotoluene	1	mg/kg	0.081	ND
delta-BHC	1	mg/kg	0.0061	ND	2,6-Dinitrotoluene	1	mg/kg	0.081	ND
Dieldrin	1	mg/kg	0.0012	ND	2-Chloronaphthalene	1	mg/kg	0.081	ND
	1	mg/kg	0.0061	ND	2-Chlorophenol	1	mg/kg	0.081	ND
Endosulfan II	1	mg/kg	0.0061	ND	2-Methylnaphthalene	1	mg/kg	0.081	ND
Endosultan Sultate	1	mg/kg	0.0061		2-Methylphenol	1	mg/kg	0.081	
Endrin Aldebyde	1	mg/kg	0.0061		2-Nitronhenol	1	mg/kg	0.081	ND
Endrin Ketone	1	ma/ka	0.0061	ND	3&4-Methylphenol	1	ma/ka	0.081	ND
gamma-BHC	1	ma/ka	0.0012	ND	3.3'-Dichlorobenzidine	1	ma/ka	0.081	ND
Heptachlor	1	ma/ka	0.0061	ND	3-Nitroaniline	1	ma/ka	0.081	ND
Heptachlor Epoxide	1	mg/kg	0.0061	ND	4,6-Dinitro-2-methylphenol	1	mg/kg	0.41	ND
Methoxychlor	1	mg/kg	0.0061	ND	4-Bromophenyl-phenylether	1	mg/kg	0.081	ND
p,p'-DDD	1	mg/kg	0.0030	ND	4-Chloro-3-methylphenol	1	mg/kg	0.081	ND
p,p'-DDE	1	mg/kg	0.0030	ND	4-Chloroaniline	1	mg/kg	0.081	ND
p,p'-DDT	1	mg/kg	0.0030	ND	4-Chlorophenyl-phenylether	1	mg/kg	0.081	ND
Toxaphene	1	mg/kg	0.030	ND	4-Nitroaniline	1	mg/kg	0.081	ND
PCB 8082					4-Nitrophenol	1	mg/kg	0.081	ND
Aroclor (Total)	1	ma/ka	0.03	ND	Acenaphthene	1	mg/kg	0.081	ND
Aroclor-1016	1	mg/kg	0.030	ND	Acenaphthylene	1	mg/kg	0.081	ND
Aroclor-1221	1	mg/kg	0.030	ND	Aniline	1	mg/kg	0.081	ND
Aroclor-1232	1	mg/kg	0.030	ND	Anthracene	1	mg/kg	0.081	ND
Arocior-1242	1	mg/kg	0.030	ND	Benzialine	1	mg/kg	0.41	ND
Aroclor-1248	1	mg/kg	0.030	ND	Benzolajovrene	1	mg/kg	0.081	ND
Aroclor-1254	1	mg/kg	0.030	ND	Benzo(b)fluoranthene	1	ma/ka	0.081	ND
Aroclor-1260	1	mg/kg	0.030	ND	Benzola, h.ilpervlene	1	ma/ka	0.081	ND
Aroclor-1262	1	mg/kg	0.030	ND	Benzo[k]fluoranthene	1	mg/kg	0.081	ND
Aroclor-1268	1	mg/kg	0.030	ND	Benzoic acid	1	mg/kg	0.41	ND
					bis(2-Chloroethoxy)methane	1	mg/kg	0.081	ND
					bis(2-Chloroethyl)ether	1	mg/kg	0.081	ND
					bis(2-Chloroisopropyl)ether	1	mg/kg	0.081	ND
					bis(2-Ethylhexyl)phthalate	1	mg/kg	0.081	ND
					Butylbenzylphthalate	1	mg/kg	0.081	ND
					Carbazole	1	mg/kg	0.081	ND
					Chrysene	1	mg/kg	0.081	ND
					Dibenzola, njanthracene Dibenzola rap	1	mg/kg	0.081	ND
					Diethylohthalate	1	mg/kg	0.081	ND
					Dimethylohthalate	1	mg/kg	0.081	ND
					Di-n-butylphthalate	1	ma/ka	0.081	ND
					Di-n-octylphthalate	1	mg/kg	0.081	ND
					Fluoranthene	1	mg/kg	0.081	ND
					Fluorene	1	mg/kg	0.081	ND
					Hexachlorobenzene	1	mg/kg	0.081	ND
					Hexachlorobutadiene	1	mg/kg	0.081	ND
					Hexachlorocyclopentadiene	1	mg/kg	0.41	ND
					Hexachloroethane	1	mg/kg	0.081	ND
					Indeno[1,2,3-cd]pyrene	1	mg/kg	0.081	ND
					Isophorone	1	mg/kg	0.081	ND
					Naphthalene	1	mg/kg	0.081	ND
					Nitrobenzene	1	mg/kg	0.081	ND
					N-Nitrosodimethylamine	1	mg/kg	0.081	ND
					N-Nitrosodisheevlemise	1	mg/kg	0.081	
					N-Nitrosoupnenylamine Reptachloreshonel	1	mg/Kg	0.081	
					Phenanthrene	1	mg/kg	0.41	ND
					Phenol	1	ma/ka	0.081	ND
					Pyrene	1	ma/ka	0.081	0.095
					,				

RL = Reporting Limit

ND = Not Detected

NOTE: Soil Results are reported to Dry Weight

Project #: 9041403

Lab#: AC43958-003 Sample ID: B-6	Col	llection Da	ate: 4/9	/2009
TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	240	4100
Antimony	100	mg/kg	2.4	ND
Arsenic	100	mg/kg	2.4	4.1
Barium	100	mg/kg	12	18
Beryllium	100	mg/kg	0.73	ND
Cadmium	100	mg/kg	0.73	ND
Calcium	100	mg/kg	1200	1500
Chromium	100	mg/kg	6.1	11
Cobalt	100	mg/kg	3.0	4.6
Copper	100	mg/kg	6.1	8.8
Iron	100	mg/kg	240	9600
Lead	100	mg/kg	6.1	11
Magnesium	100	mg/kg	610	2100
Manganese	100	mg/kg	12	130
Nickel	100	mg/kg	6.1	12
Potassium	100	mg/kg	610	1200
Selenium	100	mg/kg	2.2	ND
Silver	100	mg/kg	1.8	ND
Sodium	100	mg/kg	300	ND
Thallium	100	mg/kg	1.5	ND
Vanadium	100	mg/kg	12	13
Zinc	100	ma/ka	12	34

Lab#: AC43958-003	Co	lection Da	te [.] 4/9/	0037.
Sample ID: B-6	00		. 4/0//	2000
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.98	mg/kg	NA	0.22J
1,1,1-Trichloroethane	0.98	mg/kg	0.0060	ND
1,1,2,2-Tetrachloroethane	0.98	mg/kg	0.0060	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.98	mg/kg	0.0060	ND
1,1,2-Trichloroethane	0.98	mg/kg	0.0060	ND
1,1-Dichloroethane	0.98	mg/kg	0.0060	ND
	0.98	mg/kg	0.0060	
1.2.4-Trimethylbenzene	0.50	mg/kg	0.0000	ND
1 2-Dichlorobenzene	0.98	mg/kg mg/kg	0.0060	ND
1.2-Dichloroethane	0.98	ma/ka	0.0060	ND
1.2-Dichloropropane	0.98	ma/ka	0.0060	ND
1,3,5-Trimethylbenzene	0.98	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.98	mg/kg	0.0060	ND
1,3-Dichloropropane	0.98	mg/kg	0.0060	ND
1,4-Dichlorobenzene	0.98	mg/kg	0.0060	ND
1,4-Dioxane	0.98	mg/kg	0.30	ND
2-Butanone	0.98	mg/kg	0.0060	ND
2-Chloroethylvinylether	0.98	mg/kg	0.0060	ND
2-Hexanone	0.98	mg/kg	0.0060	ND
4-Isopropyltoluene	0.98	mg/kg	0.0012	0.023
4-Methyl-2-pentanone	0.98	mg/kg	0.0060	ND
Acetone	0.98	mg/kg	0.030	ND
Acrolein	0.98	mg/kg	0.030	ND
Response	0.90	mg/kg	0.0060	ND
Bromodichloromethane	0.98	mg/kg	0.0012	
Bromoform	0.98	mg/kg	0.0000	ND
Bromomethane	0.98	ma/ka	0.0060	ND
Carbon disulfide	0.98	ma/ka	0.0060	ND
Carbon tetrachloride	0.98	mg/kg	0.0060	ND
Chlorobenzene	0.98	mg/kg	0.0060	ND
Chloroethane	0.98	mg/kg	0.0060	ND
Chloroform	0.98	mg/kg	0.0060	ND
Chloromethane	0.98	mg/kg	0.0060	ND
cis-1,2-Dichloroethene	0.98	mg/kg	0.0060	ND
cis-1,3-Dichloropropene	0.98	mg/kg	0.0060	ND
Dibromochloromethane	0.98	mg/kg	0.0060	ND
Dichlorodifluoromethane	0.98	mg/kg	0.0060	ND
Ethylbenzene	0.98	mg/kg	0.0012	ND
m&p-Yylenes	0.90	mg/kg	0.0012	ND
Methylene chloride	0.98	mg/kg	0.0060	0.0061
Methyl-t-butyl ether	0.98	mg/kg	0.0012	ND
n-Butylbenzene	0.98	ma/ka	0.0012	ND
n-Propylbenzene	0.98	ma/ka	0.0012	ND
o-Xylene	0.98	mg/kg	0.0012	ND
sec-Butylbenzene	0.98	mg/kg	0.0012	ND
Styrene	0.98	mg/kg	0.0060	ND
t-Butyl Alcohol	0.98	mg/kg	0.030	ND
t-Butylbenzene	0.98	mg/kg	0.0012	ND
Tetrachloroethene	0.98	mg/kg	0.0060	ND
Toluene	0.98	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.98	mg/kg	0.0060	ND
trans-1,3-Dichloropropene	0.98	mg/kg	0.0060	ND
Trichloroethene	0.98	mg/kg	0.0060	ND
Trichlorofluoromethane	0.98	mg/kg	0.0060	ND
Vinyl chloride	0.98	mg/kg	0.0060	ND
Ayrenes (Total)	0.90	ng/kg	0.0012	

Lab#: AC43958-004 Collection Date: 4/10/2009 Sample ID: B-7		Lab#: AC43958-004 Collection Date: 4/10/2009 Sample ID: B-7							
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G					Semivolatile Organics + 25	5 (8270)			
% Solids	1	percent		76	:TotalSemiVolatileTic	1	mg/kg	NA	100J
Mercury (Soil/Waste) 7471A					1,2,4-Trichlorobenzene	1	mg/kg	0.088	ND
Mercury	167	mg/kg	0.11	2.6	1,2-Diphenylhydrazine	1	mg/kg	0.088	ND
Organoshlaring Postisides (0004				2,4,5-Irichlorophenol	1	mg/kg	0.088	ND
	1 000	malka	0.0066	ND	2,4,6- Inchiorophenol	1	mg/kg	0.000	ND
Aloha-BHC	1	mg/kg	0.0000	ND	2 4-Dimethylphenol	1	ma/ka	0.088	ND
beta-BHC	1	mg/kg	0.0013	ND	2 4-Dinitrophenol	1	ma/ka	0.000	ND
Chlordane	1	mg/kg	0.0013	ND	2.4-Dinitrotoluene	1	ma/ka	0.088	ND
delta-BHC	1	ma/ka	0.0066	ND	2.6-Dinitrotoluene	1	ma/ka	0.088	ND
Dieldrin	1	ma/ka	0.0013	ND	2-Chloronaphthalene	1	ma/ka	0.088	ND
Endosulfan I	1	ma/ka	0.0066	ND	2-Chlorophenol	1	ma/ka	0.088	ND
Endosulfan II	1	ma/ka	0.0066	ND	2-Methylnaphthalene	1	ma/ka	0.088	ND
Endosulfan Sulfate	1	ma/ka	0.0066	ND	2-Methylphenol	1	ma/ka	0.088	ND
Endrin	1	ma/ka	0.0066	ND	2-Nitroaniline	1	mg/kg	0.088	ND
Endrin Aldehyde	1	mg/kg	0.0066	ND	2-Nitrophenol	1	mg/kg	0.088	ND
Endrin Ketone	1	mg/kg	0.0066	ND	3&4-Methylphenol	1	mg/kg	0.088	ND
gamma-BHC	1	mg/kg	0.0013	ND	3,3'-Dichlorobenzidine	1	mg/kg	0.088	ND
Heptachlor	1	mg/kg	0.0066	ND	3-Nitroaniline	1	mg/kg	0.088	ND
Heptachlor Epoxide	1	mg/kg	0.0066	ND	4,6-Dinitro-2-methylphenol	1	mg/kg	0.44	ND
Methoxychlor	1	mg/kg	0.0066	ND	4-Bromophenyl-phenylether	1	mg/kg	0.088	ND
p,p'-DDD	1	mg/kg	0.0033	ND	4-Chloro-3-methylphenol	1	mg/kg	0.088	ND
p,p'-DDE	1	mg/kg	0.0033	ND	4-Chloroaniline	1	mg/kg	0.088	ND
p,p'-DDT	1	mg/kg	0.0033	ND	4-Chlorophenyl-phenylether	1	mg/kg	0.088	ND
Toxaphene	1	mg/kg	0.033	ND	4-Nitroaniline	1	mg/kg	0.088	ND
PCB 8082					4-Nitrophenol	1	mg/kg	0.088	ND
Aroclar (Total)	1	malka	0.033	ND	Acenaphthene	1	mg/kg	0.088	0.098
Aroclor-1016	1	mg/kg	0.033	ND	Acenaphthylene	1	mg/kg	0.088	0.19
Aroclor-1221	1	mg/kg	0.033	ND	Aniline	1	mg/kg	0.088	ND
Aroclor-1232		ma/ka	0.033	ND	Anthracene	1	mg/kg	0.088	0.42
Aroclor-1242	1	ma/ka	0.033	ND	Benzidine	1	mg/kg	0.44	ND
Aroclor-1248	1	ma/ka	0.033	ND	Benzo[a]anthracene	1	mg/kg	0.088	2.0
Aroclor-1254	1	ma/ka	0.033	ND	Benzo[a]pyrene	1	mg/kg	0.088	1.8
Aroclor-1260	1	mg/kg	0.033	ND	Benzo[b]fluoranthene	1	mg/kg	0.088	2.2
Aroclor-1262	1	mg/kg	0.033	ND	Benzo[g,h,i]perylene	1	mg/kg	0.088	1.2
Aroclor-1268	1	mg/kg	0.033	ND	Benzo[k]fluoranthene	1	mg/kg	0.088	0.76
					Benzoic acid	1	mg/kg	0.44	ND
					bis(2-Chloroethoxy)methane	1	mg/kg	0.088	ND
					bis(2-Chloroethyl)ether	1	mg/kg	0.088	ND
					bis(2-Chloroisopropyl)ether	1	mg/kg	0.088	ND
					bis(2-Ethylhexyl)phthalate	1	mg/kg	0.088	0.17
					Butylbenzylphthalate	1	mg/kg	0.088	ND
					Carbazole	1	mg/kg	0.088	0.088
					Chrysene	1	mg/kg	0.088	2.0
					Dibenzo[a,h]anthracene	1	mg/kg	0.088	0.30
					Dipenzoturan	1	mg/kg	0.088	ND
					Diethylphthalate	1	mg/kg	0.088	ND
					Dimenyiphinalate	1	mg/kg	0.088	ND
					Di-n-bulyiphthalate	4	mg/kg	0.088	0.44
					Di-n-octyphtnalate	1	mg/kg	0.000	0.14
					Fluoranthene	1	mg/kg	0.000	3.3
					Fluorene	1	mg/kg	0.088	0.12
					Hexachiorobenzene	1	mg/kg	0.066	ND
					Hexachloropulaciene	1	mg/kg	0.000	ND
					Hexachloroethane	1	mg/kg	0.44	ND
					Indeno[1.2.3-cd]ovrene	1	mg/kg	0.000	1.0
					Isophorone	1	malka	0.000	ND
					Nanhthalene	1	mg/kg	0.000	ND
					Nitrobenzene	1	mg/kg	0.000	ND
					N-Nitrosodimethylamine	1	mg/kg	0.000	ND
					N-Nitroso-di-n-propylamine	1	ma/ka	0.088	ND
					N-Nitrosodinhenvlamine	1	mg/kg	0.000	ND
					Pentachlorophenol	1	mg/kg	0.000	ND
					Phenanthrene	1	ma/ka	0.088	1.8
					Phenol	1	ma/ka	0.088	ND
					Pyrene	1	ma/ka	0.088	4.1
								0.000	

Lab#: AC43958-004 Sample ID: B-7	Collection Date: 4/10/2009							
TestGroup/Analyte	DF	Units	RL	Result				
TAL Metals 6010								
Aluminum	100	mg/kg	260	7600				
Antimony	100	mg/kg	2.6	ND				
Arsenic	100	mg/kg	2.6	7.8				
Barium	100	mg/kg	13	180				
Beryllium	100	mg/kg	0.79	ND				
Cadmium	100	mg/kg	0.79	ND				

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Calcium

Cobalt

Copper Iron

Lead

Magnesium

Manganese Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Zinc

Vanadium

Chromium

mg/kg

1300

6.6

3.3

6.6

260

6.6

660

13

6.6

660

2.4

2.0

330

1.6

13

13

5400

31

8.1 140

16000

1400

2500

310

25

920

4.1

ND

ND

ND

24

270

Lab#: AC43958-004 Collection Date: 4/10/2009 Sample ID: B-7

Testoroup/Analyte	DF	Units		Resul	•
Volatile Organics + 10 (8260)	0.994	ma/ka	NA	ND	
	0.004	mg/kg	0.0065	ND	
	0.994	mg/kg	0.0005	ND	
1,1,2,2-1 etrachoroethane	0.994	mg/kg	0.0005	ND	
1,1,2-Trichlereethees	0.994	mg/kg mg/kg	0.0065		
	0.994	mg/kg	0.0005	NO	
	0.994	mg/kg	0.0065		
	0.994	mg/kg	0.0065	ND	
1,2,3-Trichloropropane	0.994	mg/kg	0.0065	ND	
1,2,4- I rimethylbenzene	0.994	mg/kg	0.0013	ND	
1,2-Dichlorobenzene	0.994	mg/kg	0.0065	ND	
1,2-Dichloroethane	0.994	mg/kg	0.0065	ND	
1,2-Dichloropropane	0.994	mg/kg	0.0065	ND	
1,3,5-Trimethylbenzene	0.994	mg/kg	0.0013	ND	
1,3-Dichlorobenzene	0.994	mg/kg	0.0065	ND	
1,3-Dichloropropane	0.994	mg/kg	0.0065	ND	
1,4-Dichlorobenzene	0.994	mg/kg	0.0065	ND	
1,4-Dioxane	0.994	mg/kg	0.33	ND	
2-Butanone	0.994	mg/kg	0.0065	ND	
2-Chloroethylvinylether	0.994	mg/kg	0.0065	ND	
2-Hexanone	0.994	mg/kg	0.0065	ND	
4-Isopropyltoluene	0.994	mg/kg	0.0013	ND	
4-Methyl-2-pentanone	0.994	mg/kg	0.0065	ND	
Acetone	0.994	mg/kg	0.033	ND	
Acrolein	0.994	mg/kg	0.033	ND	
Acrylonitrile	0.994	mg/kg	0.0065	ND	
Benzene	0.994	mg/kg	0.0013	ND	
Bromodichloromethane	0.994	mg/kg	0.0065	ND	
Bromoform	0.994	mg/kg	0.0065	ND	
Bromomethane	0.994	mg/kg	0.0065	ND	
Carbon disulfide	0.994	mg/kg	0.0065	ND	
Carbon tetrachloride	0.994	mg/kg	0.0065	ND	
Chlorobenzene	0.994	mg/kg	0.0065	ND	
Chloroethane	0.994	mg/kg	0.0065	ND	
Chloroform	0.994	mg/kg	0.0065	0.010	
Chloromethane	0.994	mg/kg	0.0065	ND	
cis-1,2-Dichloroethene	0.994	mg/kg	0.0065	ND	
cis-1,3-Dichloropropene	0.994	mg/kg	0.0065	ND	
Dibromochloromethane	0.994	mg/kg	0.0065	ND	
Dichlorodifluoromethane	0.994	mg/kg	0.0065	ND	
Ethylbenzene	0.994	mg/kg	0.0013	ND	
Isopropylbenzene	0.994	mg/kg	0.0013	ND	
m&p-Xylenes	0.994	mg/kg	0.0013	ND	
Methylene chloride	0.994	mg/kg	0.0065	ND	
Methyl-t-butyl ether	0.994	mg/kg	0.0013	ND	
n-Butylbenzene	0.994	mg/kg	0.0013	ND	
n-Propylbenzene	0.994	mg/kg	0.0013	ND	
o-Xylene	0.994	mg/kg	0.0013	ND	
sec-Butylbenzene	0.994	mg/kg	0.0013	ND	
Styrene	0.994	mg/kg	0.0065	ND	
t-Butyl Alcohol	0.994	mg/kg	0.033	NÐ	
t-Butvlbenzene	0.994	mg/kg	0.0013	ND	
Tetrachloroethene	0.994	ma/ka	0.0065	ND	
Toluene	0.994	ma/ka	0.0013	ND	
trans-1.2-Dichloroethene	0.994	ma/ka	0.0065	ND	
trans-1 3-Dichloropropene	0.994	ma/ka	0.0065	ND	
Trichloroethene	0.994	ma/ka	0.0065	ND	
Trichlorofluoromethane	0.994	ma/ka	0.0065	ND	
Vinvl chloride	0.994	ma/ka	0.0065	ND	
Xylenes (Total)	0 994	ma/ka	0.0013	ND	
	0.001				

RL = Reporting Limit

Lab#: AC43958-005 Sample ID: B-10	Co	llection Da	ite: 4/10	/2009
TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		84
Mercury (Soil/Waste) 7471A Mercury	167	mg/kg	0.099	ND
Organochlorine Pesticides 808	81			
Aldrin	1	mg/kg	0.0060	ND
Alpha-BHC	1	mg/kg	0.0012	ND
beta-BHC	1	mg/kg	0.0012	ND
Chlordane	1	mg/kg	0.012	ND
delta-BHC	1	mg/kg	0.0060	ND
Dieldrin	1	mg/kg	0.0012	ND
Endosulfan I	1	mg/kg	0.0060	ND
Endosulfan II	1	mg/kg	0.0060	ND
Endosulfan Sulfate	1	mg/kg	0.0060	ND
Endrin	1	mg/kg	0.0060	ND
Endrin Aldehyde	1	mg/kg	0.0060	ND
Endrin Ketone	1	mg/kg	0.0060	ND
gamma-BHC	1	mg/kg	0.0012	ND
Heptachlor	1	mg/kg	0.0060	ND
Heptachlor Epoxide	1	mg/kg	0.0060	ND
Methoxychlor	1	mg/kg	0.0060	ND
p,p'-DDD	1	mg/kg	0.0030	ND
p,p'-DDE	1	mg/kg	0.0030	ND
p,p'-DDT	1	mg/kg	0.0030	ND
Toxaphene	1	mg/kg	0.030	ND
PCB 8082				
Aroclor (Total)	1	mg/kg	0.03	ND
Aroclor-1016	1	mg/kg	0.030	ND
Aroclor-1221	1	mg/kg	0.030	ND
Aroclor-1232	1	mg/kg	0.030	ND
Aroclor-1242	1	mg/kg	0.030	ND
Aroclor-1248	1	mg/kg	0.030	ND
Aroclor-1254	1	mg/kg	0.030	ND
Aroclor-1260	1	mg/kg	0.030	ND
Aroclor-1262	1	mg/kg	0.030	ND
Aroclor-1268	1	ma/ka	0.030	ND

Lab#: AC43958-005 Sample ID: B-10	Lab#: AC43958-005 Collection Date: 4/10/2009 Sample ID: B-10						
TestGroup/Analyte	DF	Units	RL	Result			
Semivolatile Organics + 25 (82	270)						
:TotalSemiVolatileTic	1	mg/kg	NA	59J			
1,2,4-Trichlorobenzene	1	mg/kg	0.079	ND			
1,2-Diphenylhydrazine	1	mg/kg	0.079	ND			
2,4,5-1 fichlorophenol	1	mg/Kg mg/kg	0.079	ND			
2.4-Dichlorophenol	1	ma/ka	0.079	ND			
2,4-Dimethylphenol	1	mg/kg	0.079	ND			
2,4-Dinitrophenol	1	mg/kg	0.40	ND			
2,4-Dinitrotoluene	1	mg/kg	0.079	ND			
2,6-Dinitrotoluene	1	mg/kg	0.079	ND			
2-Chloronaphthalene	1	mg/kg	0.079	ND			
2-Chlorophenol	1	mg/kg	0.079	ND ND			
∠-metnyinapntnaiene 2-Methylobeooł	1	mg/kg	0.079	ND			
2-Nitroaniline	1	ma/ka	0.079	ND			
2-Nitrophenol	1	mg/ka	0.079	ND			
3&4-Methylphenol	1	mg/kg	0.079	ND			
3,3'-Dichlorobenzidine	1	mg/kg	0.079	ND			
3-Nitroaniline	1	mg/kg	0.079	ND			
4,6-Dinitro-2-methylphenol	1	mg/kg	0.40	ND			
4-Bromophenyl-phenylether	1	mg/kg	0.079	ND			
4-Chlorospilling	1	mg/kg	0.079				
4-Unioroaniine 4-Chlorophenyl-phenylether	1	mg/kg	0.079	ND			
4-Nitroaniline	1	mg/kg	0.079	ND			
4-Nitrophenol	1	mg/kg	0.079	ND			
Acenaphthene	1	mg/kg	0.079	ND			
Acenaphthylene	1	mg/kg	0.079	ND			
Aniline	1	mg/kg	0.079	ND			
Anthracene	1	mg/kg	0.079	ND			
Benzidine	1	mg/kg	0.40	ND			
Benzo[a]anthracene	1	mg/kg	0.079	ND			
Benzo[b]fluoranthene	1	mg/kg	0.079	ND			
Benzo(g,h,i)pervlene	1	mg/ka	0.079	ND			
Benzo[k]fluoranthene	1	mg/kg	0.079	ND			
Benzoic acid	1	mg/kg	0.40	ND			
bis(2-Chloroethoxy)methane	1	mg/kg	0.079	ND			
bis(2-Chloroethyl)ether	1	mg/kg	0.079	ND			
bis(2-Chloroisopropyl)ether	1	mg/kg	0.079	ND			
bis(2-Ethylhexyl)phthalate	1	mg/kg	0.079	ND			
	1	mg/Kg	0.079	ND			
Chrysene	1	mg/kg	0.079	ND			
Dibenzo[a,h]anthracene	1	mg/ka	0.079	ND			
Dibenzofuran	1	mg/kg	0.079	ND			
Diethylphthalate	1	mg/kg	0.079	ND			
Dimethylphthalate	1	mg/kg	0.079	ND			
Di-n-butylphthalate	1	mg/kg	0.079	ND			
Di-n-octylphthalate	1	mg/kg	0.079	ND			
Fluoranthene	1	mg/kg	0.079	ND			
	1	mg/kg	0.079	ND			
Hexachlorobutadiene	1	mg/kg	0.079	ND			
Hexachlorocyclopentadiene	1	mg/kg	0.40	ND			
Hexachloroethane	1	mg/kg	0.079	ND			
Indeno[1,2,3-cd]pyrene	1	mg/kg	0.079	ND			
Isophorone	1	mg/kg	0.079	ND			
Naphthalene	1	mg/kg	0.079	ND			
Nitrobenzene	1	mg/kg	0.079	ND			
N-Nitrosodimethylamine	1	mg/kg	0.079	ND			
N-Nitrosodinhenulamine	1	mg/kg	0.079	ND			
Pentachlorophenol	1	mg/kg	0.079	ND			
Phenanthrene	1	ma/ka	0.079	ND			
Phenol	1	mg/kg	0.079	ND			
Pyrene	1	mg/kg	0.079	ND			

Lab#: AC43958-005 Sample ID: B-10	Co	ellection Dat	:e: 4/10)/2009
TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	240	11000
Antimony	100	mg/kg	2.4	ND
Arsenic	100	mg/kg	2.4	5.0
Barium	100	mg/kg	12	110
Beryllium	100	mg/kg	0.71	ND
Cadmium	100	mg/kg	0.71	ND
Calcium	100	mg/kg	1200	1400
Chromium	100	mg/kg	6.0	27
Cobalt	100	mg/kg	3.0	16
Copper	100	mg/kg	6.0	27
iron	100	mg/kg	240	21000
Lead	100	mg/kg	6.0	59
Magnesium	100	mg/kg	600	6300
Manganese	100	mg/kg	12	1600
Nickel	100	mg/kg	6.0	61
Potassium	100	mg/kg	600	7100
Selenium	100	mg/kg	2.1	ND
Silver	100	mg/kg	1.8	ND
Sodium	100	mg/kg	300	560
Thallium	100	mg/kg	1.4	ND
Vanadium	100	mg/kg	12	32
Zinc	100	mg/kg	12	100

				0041
Lab#: AC43958-005	Coll	ection Da	ate: 4/10/	2009
Sample ID: B-10				
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)				
:TotalVolatileTic	0.996	mg/kg	NA	0.022J
1,1,1-Trichloroethane	0.996	mg/kg	0.0059	ND
1,1,2,2-Tetrachloroethane	0.996	mg/kg	0.0059	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.996	mg/kg	0.0059	ND
1,1,2-Trichloroethane	0.996	mg/kg	0.0059	ND
1,1-Dichloroethane	0.996	mg/kg	0.0059	ND
1, 1-Dichloropropage	0.996	ma/ka	0.0059	ND
1.2.4-Trimethylbenzene	0.996	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.996	mg/kg	0.0059	ND
1,2-Dichloroethane	0.996	mg/kg	0.0059	ND
1,2-Dichloropropane	0.996	mg/kg	0.0059	ND
1,3,5-Trimethylbenzene	0.996	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.996	mg/kg	0.0059	ND
1,3-Dichloropropane	0.996	mg/kg	0.0059	ND
1,4-Dichlorobenzene	0.996	mg/kg	0.0059	ND
1,4-Dioxane	0.996	mg/kg	0.30	ND
2-Butanone	0.996	mg/kg	0.0059	
2-Chloroethylvinylether	0.996	mg/kg	0.0059	
	0.996	mg/kg	0.0003	0.0018
4-Methyl-2-pentanone	0.996	mg/kg	0.0059	ND
Acetone	0.996	ma/ka	0.030	ND
Acrolein	0.996	mg/kg	0.030	ND
Acrylonitrile	0.996	mg/kg	0.0059	ND
Benzene	0.996	mg/kg	0.0012	ND
Bromodichloromethane	0.996	mg/kg	0.0059	ND
Bromoform	0.996	mg/kg	0.0059	ND
Bromomethane	0.996	mg/kg	0.0059	ND
Carbon disulfide	0.996	mg/kg	0.0059	ND
Carbon tetrachloride	0,996	mg/kg	0.0059	ND
Chlorobenzene	0.996	mg/kg	0.0059	ND
Chloroform	0.996	mg/kg	0.0059	ND
Chloromethane	0.996	mg/kg	0.0059	ND
cis-1.2-Dichloroethene	0.996	mg/kg	0.0059	ND
cis-1,3-Dichloropropene	0.996	mg/kg	0.0059	ND
Dibromochloromethane	0.996	mg/kg	0.0059	ND
Dichlorodifluoromethane	0.996	mg/kg	0.0059	ND
Ethylbenzene	0.996	mg/kg	0.0012	ND
Isopropylbenzene	0.996	mg/kg	0.0012	ND
m&p-Xylenes	0.996	mg/kg	0.0012	ND
Methylene chloride	0.996	mg/kg	0.0059	ND
Metnyl-t-butyl etner	0.990	mg/kg	0.0012	ND
n-Butylbenzene	0.990	mg/kg	0.0012	ND
	0.996	mg/kg	0.0012	ND
sec-Butylbenzene	0.996	mg/kg	0.0012	ND
Styrene	0.996	mg/kg	0.0059	ND
t-Butyl Alcohol	0.996	mg/kg	0.030	ND
t-Butylbenzene	0.996	mg/kg	0.0012	ND
Tetrachloroethene	0.996	mg/kg	0.0059	ND
Toluene	0.996	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.996	mg/kg	0.0059	ND
trans-1,3-Dichloropropene	0.996	mg/kg	0.0059	ND
Irichloroethene	0.996	mg/kg	0.0059	ND
I richiorotiuoromethane	0.996	mg/kg	0.0059	ND
viriyi chloride Xvlenes (Total)	0.990	mg/kg	0.0009	ND
	0.000		0.0012	

Lab#: AC43958-006 Sample ID: B-11	Co	llection Da	ate: 4/13	/2009	Lab#: AC43958-0 Sample ID: B-11	06 Co	llection Da	ate: 4/1:	-004 3/2009
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Resu
% Solids SM2540G					Semivolatile Organics + 28	5 (8270)		МА	100 1
% Solids	1	percent		83	:TotalSemiVolatileTic	3	mg/kg	0.24	100J
Mercury (Soil/Waste) 7471A					1,2,4-1 nchlorobenzene	3	mg/kg	0.24	ND
Mercury	167	mg/kg	0.10	1.4	2 4 5-Trichlorophenol	3	ma/ka	0.24	ND
Organochlorine Pesticides 80	081				2,4,6-Trichlorophenol	3	mg/kg	0.24	ND
Aldrin	1	mg/kg	0.0060	ND	2,4-Dichlorophenol	3	mg/kg	0.24	ND
Alpha-BHC	1	mg/kg	0.0012	ND	2,4-Dimethylphenol	3	mg/kg	0.24	ND
beta-BHC	1	mg/kg	0.0012	ND	2,4-Dinitrophenol	3	mg/kg	1.2	ND
Chlordane	1	mg/kg	0.012	ND	2,4-Dinitrotoluene	3	mg/kg	0.24	ND
delta-BHC	1	mg/kg	0.0060	ND	2,6-Dinitrotoluene	3	mg/kg	0.24	
	1	mg/kg	0.0012	ND	2-Chlorophonol	3	mg/kg	0.24	ND
Endosulfan I	1	mg/kg	0.0060	ND	2-Chlorophenol 2-Methylpaphthalene	3	mg/kg	0.24	ND
Endosultan II Endosultan Sulfate	1	mg/kg	0.0060	ND	2-Methylphenol	3	ma/ka	0.24	ND
Endrin	1	ma/ka	0.0060	ND	2-Nitroaniline	3	mg/kg	0.24	ND
Endrin Aldehyde	1	mg/kg	0.0060	ND	2-Nitrophenol	3	mg/kg	0.24	ND
Endrin Ketone	1	mg/kg	0.0060	ND	3&4-Methylphenol	3	mg/kg	0.24	ND
gamma-BHC	1	mg/kg	0.0012	ND	3,3'-Dichlorobenzidine	3	mg/kg	0.24	ND
Heptachlor	1	mg/kg	0.0060	ND	3-Nitroaniline	3	mg/kg	0.24	ND
Heptachlor Epoxide	1	mg/kg	0.0060	ND	4,6-Dinitro-2-methylphenol	3	mg/kg	1.2	ND
Methoxychlor	1	mg/kg	0.0060	ND	4-Bromophenyl-phenylether	3	mg/kg	0.24	ND
p,p'-DDD	1	mg/kg	0.0030	ND	4-Chioro-3-methylphenol	3	mg/kg	0.24	ND
p,p'-DDE	1	mg/kg	0.0030	ND	4-Chloroaniline	3	mg/kg	0.24	ND
	1	mg/kg	0.0030		4-Chlorophenyi-phenyiether 4-Nitroaniline	3	ma/ka	0.24	ND
loxaphene	'	myrky	0.000	ND	4-Nitrophenol	3	mg/kg	0.24	ND
PCB 8082					Acenaphthene	3	mg/kg	0.24	0.30
Aroclor (Total)	1	mg/kg	0.03	ND	Acenaphthylene	3	mg/kg	0.24	ND
Aroclor-1016	1	mg/kg	0.030	ND	Aniline	3	mg/kg	0.24	ND
Aroclor-1221	1	mg/kg	0.030		Anthracene	3	mg/kg	0.24	1.0
Aroclor-1232	1	mg/kg	0.030	ND	Benzidine	3	mg/kg	1.2	ND
Aroclor-1248	1	ma/ka	0.030	ND	Benzo[a]anthracene	3	mg/kg	0.24	2.7
Aroclor-1254	1	mg/kg	0.030	ND	Benzo[a]pyrene	3	mg/kg	0.24	2.2
Aroclor-1260	1	mg/kg	0.030	ND	Benzo[b]fluoranthene	3	mg/kg	0.24	2.9
Aroclor-1262	1	mg/kg	0.030	ND	Benzo[g,h,i]perylene	3	mg/kg	0.24	1.4
Aroclor-1268	1	mg/kg	0.030	ND	Benzo[k]nuorantnene	3	mg/kg	1 2	
					bis(2-Chloroethoxy)methane	3	ma/ka	0.24	ND
					bis(2-Chloroethyl)ether	3	mg/kg	0.24	ND
					bis(2-Chloroisopropyl)ether	3	mg/kg	0.24	ND
					bis(2-Ethylhexyl)phthalate	3	mg/kg	0.24	0.57
					Butylbenzylphthalate	3	mg/kg	0.24	ND
					Carbazole	3	mg/kg	0.24	ND
					Chrysene	3	mg/kg	0.24	2.5
					Dibenzo[a,h]anthracene	3	mg/kg	0.24	0.43
					Dibenzofuran	3	mg/kg	0.24	ND
					Directovionthalate	3	mg/kg	0.24	
						3	mg/kg	0.24	ND
					Di-n-octylphthalate	3	ma/ka	0.24	0.56
					Fluoranthene	3	mg/kg	0.24	5.6
					Fluorene	3	mg/kg	0.24	0.40
					Hexachlorobenzene	3	mg/kg	0.24	ND
					Hexachlorobutadiene	3	mg/kg	0.24	ND
					Hexachlorocyclopentadiene	3	mg/kg	1.2	ND
					Hexachloroethane	3	mg/kg	0.24	ND
					Indeno[1,2,3-cd]pyrene	3	mg/kg	0.24	1.2
					Isophorone	3	mg/kg	0.24	ND
					Nitrobenzene	3	mg/kg	0.24	ND
					Nitrosodimethylamine	3	ma/ka	0.24	ND
					N-Nitroso-di-n-propylamine	3	ma/ka	0.24	ND
					N-Nitrosodiphenylamine	3	mg/kg	0.24	ND
					Pentachlorophenol	3	mg/kg	1.2	ND

Phenanthrene

Phenol

Pyrene

3

3

3

mg/kg

mg/kg

mg/kg

0042

Result

4.3

ND

5.3

0.24

0.24

0.24

Lab#:	AC43958-006	Collection Date:	4/13/2009
Sample ID:	B-11		

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	240	6000
Antimony	100	mg/kg	2.4	ND
Arsenic	100	mg/kg	2.4	6.2
Barium	100	mg/kg	12	96
Beryllium	100	mg/kg	0.72	ND
Cadmium	100	mg/kg	0.72	ND
Calcium	100	mg/kg	1200	16000
Chromium	100	mg/kg	6.0	16
Cobalt	100	mg/kg	3.0	6.5
Copper	100	mg/kg	6.0	96
Iron	100	mg/kg	240	14000
Lead	100	mg/kg	6.0	180
Magnesium	100	mg/kg	600	3600
Manganese	100	mg/kg	12	260
Nickel	100	mg/kg	6.0	25
Potassium	100	mg/kg	600	1000
Selenium	100	mg/kg	2.2	ND
Silver	100	mg/kg	1.8	ND
Sodium	100	mg/kg	300	ND
Thallium	100	mg/kg	1.4	ND
Vanadium	100	mg/kg	12	21
Zinc	100	mg/kg	12	240

Lab#: AC43958-006 Sample ID: B-11	Coll	lection Da	ate: 4/13	0043 /2009
TestGroup/Analyte	DF	Units	RL	Result
Volatile Organics + 10 (8260)	0.065	malka	NA	0.0711
1 1 1-Trichloroethape	0.965	mg/kg	0.0058	ND
1 1 2 2-Tetrachloroethane	0.965	mg/kg	0.0058	ND
1 1 2-Trichloro-1 2 2-trifluoroethane	0.965	ma/ka	0.0058	ND
1,1,2-Trichloroethane	0.965	mg/kg	0.0058	ND
1,1-Dichloroethane	0.965	mg/kg	0.0058	ND
1,1-Dichloroethene	0.965	mg/kg	0.0058	ND
1,2,3-Trichloropropane	0.965	mg/kg	0.0058	ND
1,2,4-Trimethylbenzene	0.965	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.965	mg/kg	0.0058	ND
1,2-Dichloroethane	0.965	mg/kg	0.0058	ND
1,2-Dichloropropane	0.965	mg/kg	0.0058	ND
1,3,5-Trimethylbenzene	0.965	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.965	mg/kg	0.0058	ND
1,3-Dichloropropane	0.965	mg/kg	0.0058	ND
	0.965	mg/kg	0.0058	
1,4-Dioxane	0.905	mg/kg	0.29	ND
2 Chloroethylyipylether	0.965	mg/kg	0.0058	ND
	0.965	mg/kg	0.0058	ND
	0.965	mg/kg	0.0012	ND
4-Methyl-2-pentanone	0.965	ma/ka	0.0058	ND
Acetone	0.965	mg/kg	0.029	ND
Acrolein	0.965	mg/kg	0.029	ND
Acrylonitrile	0.965	mg/kg	0.0058	ND
Benzene	0.965	mg/kg	0.0012	ND
Bromodichloromethane	0,965	mg/kg	0.0058	ND
Bromoform	0.965	mg/kg	0.0058	ND
Bromomethane	0.965	mg/kg	0.0058	ND
Carbon disulfide	0.965	mg/kg	0.0058	ND
Carbon tetrachloride	0.965	mg/kg	0.0058	ND
Chlorobenzene	0.965	mg/kg	0.0058	ND
Chloroethane	0.965	mg/kg	0.0058	ND
Chlorotorm	0.965	mg/kg	0.0058	
chioromethane	0.965	mg/kg	0.0058	ND
cis-1 3-Dichloropropene	0.965	mg/kg	0.0058	ND
Dibromochloromethane	0.965	mg/kg	0.0058	ND
Dichlorodifluoromethane	0.965	ma/ka	0.0058	ND
Ethylbenzene	0.965	mg/kg	0.0012	ND
Isopropylbenzene	0.965	mg/kg	0.0012	ND
m&p-Xylenes	0.965	mg/kg	0.0012	ND
Methylene chloride	0.965	mg/kg	0.0058	ND
Methyl-t-butyl ether	0.965	mg/kg	0.0012	ND
n-Butylbenzene	0.965	mg/kg	0.0012	ND
n-Propylbenzene	0.965	mg/kg	0.0012	ND
o-Xylene	0.965	m g/kg	0.0012	ND
sec-Butylbenzene	0.965	m g/kg	0.0012	ND
Styrene	0.965	mg/kg	0.0058	ND
t-Butyl Alcohol	0.965	mg/kg	0.029	ND
t-Butylbenzene	0.965	mg/kg	0.0012	ND
Tetrachloroethene	0.965	mg/kg	0.0058	ND
	0.965	mg/kg	0.0012	
trans-1,2-Dichloroethene	0.965	mg/kg	0.0058	
trans-1,3-Dichloropropene	0.965	mg/kg	0.0058	ND
Trichlorofluoromethane	0.965	me/ko	0.0058	ND
Vinvl chloride	0.965	ma/ka	0.0058	ND
Xvlenes (Total)	0.965	mo/ko	0.0012	ND
A for the form	0.000		5.0012	

Lab#: AC43958-007 Sample ID: B-12	Co	llection Da	ate: 4/13	/2009	Lab#: AC4 Sample ID: B-1
TestGroup/Analyte	DF	Units	RL.	Result	TestGroup/Analy
% Solids SM2540G % Solids	1	percent		81	Semivolatile Orga :TotalSemiVolatileTic
Mercury (Soil/Waste) 7471A Mercury	167	mg/kg	0.10	ND	1,2,4-1 richlorobenzene 1,2-Diphenylhydrazine 2,4,5-Trichlorophenol
Organochlorine Pesticides 80)81				2,4,6-Trichlorophenol
Aldrin	1	mg/kg	0.0062	ND	2,4-Dichlorophenol
Alpha-BHC	1	mg/kg	0.0012	ND	2,4-Dimethylphenol
beta-BHC	1	mg/kg	0.0012	ND	2,4-Dinitrophenol
Chlordane	1	mg/kg	0.012	ND	2,4-Dinitrotoluene
delta-BHC	1	mg/kg	0.0062	ND	2,6-Dinitrotoluene
Dieldrin	1	mg/kg	0.0012	ND	2-Chloronaphthalene
Endosulfan I	1	mg/kg	0.0062	ND	2-Chlorophenol
Endosulfan II	1	mg/kg	0.0062	ND	2-Methylnaphthalene
Endosulfan Sulfate	1	mg/kg	0.0062	ND	2-Methylphenol
Endrin	1	mg/kg	0.0062	ND	2-Nitroaniline
Endrin Aldehyde	1	mg/kg	0.0062	ND	2-Nitrophenol
Endrin Ketone	1	mg/kg	0.0062	ND	3&4-Methylphenol
gamma-BHC	1	mg/kg	0.0012	ND	3,3'-Dichlorobenzidine
Heptachlor	1	mg/kg	0.0062	ND	3-Nitroaniline
Heptachlor Epoxide	1	mg/kg	0.0062	ND	4,6-Dinitro-2-methylphen
Methoxychlor	1	mg/kg	0.0062	ND	4-Bromophenyl-phenylet
p,p'-DDD	1	mg/kg	0.0031	ND	4-Chloro-3-methylphenol
p,p'-DDE	1	mg/kg	0.0031	ND	4-Chloroaniline
p,p'-DDT	1	mg/kg	0.0031	ND	4-Chlorophenyl-phenylet
Toxaphene	1	mg/kg	0.031	ND	4-Nitroaniline
					4-Nitrophenol
PCB 8082			0.004	ND	Acenaphthene
Aroclor (1 otal)	1	mg/kg	0.031	ND	Acenaphthylene
Aroclor-1016	1	mg/kg	0.031	NU	Aniline
Aroclor-1221	1	mg/kg	0.031	ND	Anthracene
Aroclor-1232	1	mg/kg	0.031	ND	Benzidine
Aroclor-1242	1	mg/kg	0.031	ND	Benzo[a]anthracene
Aroclor-1248	1	mg/kg	0.031	ND	Benzo[a]pyrene
Arocior-1254	1	mg/kg	0.031	ND	Benzo[b]fluoranthene
Aroclor-1260	1	mg/kg	0.031	ND	Benzo(g,h,i)perylene
Aroclor-1262	1	mg/kg	0.031	ND	Benzo[k]fluoranthene
Arocior-1268	1	mg/kg	0.031	NU	Benzoic acid
					bis(2-Chloroethoxy)meth

Lab#: AC43958-007 Sample ID: B-12	Co	llection Da	nte: 4/13	/2009
FestGroup/Analyte	DF	Units	RL	Resul
emivolatile Organics + 25 (82	270)			
otalSemiVolatileTic	1	mg/kg	NA	110J
2,4-Trichlorobenzene	1	mg/kg	0.082	ND
2-Diphenylhydrazine	1	mg/kg	0.082	ND
4,5-Trichlorophenol	1	mg/kg	0.082	ND
4,6-Trichlorophenol	1	mg/kg	0.082	ND
4-Dichlorophenol	1	mg/kg	0.082	ND
4-Dimethylphenol	1	mg/kg	0.082	
4-Dinitrophenol	1	mg/kg	0.092	ND
4-Dinitrotoluene	1	mg/kg	0.082	ND
	1	mg/kg	0.082	ND
Chlorophenol	1	mg/kg	0.082	ND
Methylnaphthalene	1	ma/ka	0.082	ND
Methylnhenol	1	ma/ka	0.082	ND
Nitroaniline	1	mg/kg	0.082	ND
Nitrophenol	1	mg/kg	0.082	ND
&4-Methylphenol	1	mg/kg	0.082	ND
3'-Dichlorobenzidine	1	mg/kg	0.082	ND
Nitroaniline	1	mg/kg	0.082	ND
,6-Dinitro-2-methylphenol	1	mg/kg	0.41	ND
-Bromophenyl-phenylether	1	mg/kg	0.082	ND
-Chloro-3-methylphenol	1	mg/kg	0.082	ND
-Chloroaniline	1	mg/kg	0.082	ND
-Chlorophenyl-phenylether	1	mg/kg	0.082	ND
-Nitroaniline	1	mg/kg	0.082	ND
-Nitrophenol	1	mg/kg	0.082	ND
cenaphthene	1	mg/kg	0.082	ND
cenaphthylene	1	mg/kg	0.082	ND
niline	1	mg/kg	0.082	ND
nthracene	1	mg/kg	0.082	NU
enzidine	1	mg/kg	0.41	NU 0.40
enzolajanthracene	1	mg/kg	0.002	0.10
enzolajpyrene	1	mg/kg	0.082	0.005
	1	mg/kg	0.082	
enzo[g,n,ijperyiene	1	mg/kg	0.062	
	1	mg/kg	0.002	ND
is/2 Chloroethovy)methane	1	mg/kg	0.41	ND
is(2-Chloroethyl)ether	1	mg/kg	0.082	ND
is(2-Chloroisonropyl)ether	1	ma/ka	0.082	ND
is(2-Ethylbexyl)phthalate	1	ma/ka	0.082	ND
sutvibenzviphthalate	1	mg/kg	0.082	ND
arbazole	1	mg/kg	0.082	ND
hrysene	1	mg/kg	0.082	0.098
ibenzo[a,h]anthracene	1	mg/kg	0.082	ND
libenzofuran	1	mg/kg	0.082	ND
iethylphthalate	1	mg/kg	0.082	ND
imethylphthalate	1	mg/kg	0.082	ND
i-n-butylphthalate	1	mg/kg	0.082	ND
i-n-octylphthalate	1	mg/kg	0.082	ND
luoranthene	1	mg/kg	0.082	0.23
luorene	1	mg/kg	0.082	ND
lexachlorobenzene	1	mg/kg	0.082	ND
lexachlorobutadiene	1	mg/kg	0.082	ND
lexachlorocyclopentadiene	1	mg/kg	0.41	ND
lexachloroethane	1	mg/kg	0.082	ND
ndeno[1,2,3-cd]pyrene	1	mg/kg	0.082	ND
sophorone	1	mg/kg	0.082	ND
lapninalene	1	mg/kg	0.082	
	1	mg/kg	0.082	ND
I-Nitrosodimethylamine	1	mg/kg	0.082	ND
I-Nitroso-di-n-propylamine	1	mg/kg	0.082	ND
I-Nitrosodiphenylamine	1	mg/kg	0.082	ND
'entachlorophenol	1	mg/kg	0.41	ND
henanthrene	1	mg/kg	0.082	0,13
henol	1	mg/kg	0.082	ND
			+	

Lab#: AC43958-007 Sample ID: B-12	Col	lection Da	ate: 4/13	3/2009
TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	100	mg/kg	250	3200
Antimony	100	mg/kg	2.5	ND
Arsenic	100	mg/kg	2.5	3.6
Barium	100	mg/kg	12	ND
Beryllium	100	mg/kg	0.74	ND
Cadmium	100	mg/kg	0.74	ND
Calcium	100	mg/kg	1200	ND
Chromium	100	mg/kg	6.2	8.6
Cobalt	100	mg/kg	3.1	3.5
Copper	100	mg/kg	6.2	7.3
Iron	100	mg/kg	250	9800
Lead	100	mg/kg	6.2	6.7
Magnesium	100	mg/kg	620	1300
Manganese	100	mg/kg	12	77
Nickel	100	mg/kg	6.2	8.7
Potassium	100	mg/kg	620	ND
Selenium	100	mg/kg	2.2	ND
Silver	100	mg/kg	1.9	ND
Sodium	100	mg/kg	310	ND
Thallium	100	mg/kg	1.5	ND
Vanadium	100	mg/kg	12	13
Zinc	100	mg/kg	12	29

Lab#: AC43958-007 Sample ID: B-12	Collection Date: 4/13/2009					
TestGroup/Analyte	DF	Units	RL	Result	-	
Volatile Organics + 10 (8260)						
TotalVolatileTic	0.992	mg/kg	NA	0.12J		
1,1,1-Trichloroethane	0.992	mg/kg	0.0061	ND		
1,1,2,2-Tetrachloroethane	0.992	mg/kg	0.0061	ND		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.992	mg/kg	0.0061	ND		
1,1,2-Trichloroethane	0.992	mg/kg	0.0061	ND		
1,1-Dichloroethane	0.992	mg/kg	0.0061	ND		
1,1-Dichloroethene	0.992	mg/kg	0.0061	ND		
1,2,3-Trichloropropane	0.992	mg/kg	0.0061	ND		
1,2,4-Trimethylbenzene	0.992	mg/kg	0.0012	ND		
1,2-Dichlorobenzene	0.992	mg/kg	0.0061	ND		
1,2-Dichloroethane	0.992	mg/kg	0.0061	ND		
1,2-Dichloropropane	0.992	mg/kg	0.0061	ND		
1,3,5-Trimethylbenzene	0.992	mg/kg	0.0012	ND		
1,3-Dichlorobenzene	0.992	mg/kg	0.0061	ND		
1,3-Dichloropropane	0.992	mg/kg	0.0061	ND		
1,4-Dichlorobenzene	0.992	mg/kg	0.0061	ND		
1,4-Dioxane	0.992	mg/kg	0.31	ND		
2-Butanone	0.992	mg/kg	0.0061	ND		
2-Chloroethylvinylether	0.992	mg/kg	0.0061	ND		
2-Hexanone	0.992	mg/kg	0.0061	ND		
4-isopropyitoluene	0.992	mg/kg	0.0012	0.021		
4-Methyl-2-pentanone	0.992	mg/kg	0.0061	ND		
Acetone	0.992	mg/kg	0.031	ND		
Acrolein	0.992	mg/kg	0.031	ND		
Acrylonitrile	0.992	mg/kg	0.0061	ND		
Benzene	0.992	mg/kg	0.0012	ND		
Bromodichloromethane	0.992	mg/kg	0.0061	ND		
Bromoform	0.992	mg/kg	0.0061	ND		
Bromomethane	0.992	mg/kg	0.0061	ND		
Carbon disulfide	0.992	mg/kg	0.0061	ND		
Carbon tetrachloride	0.992	mg/kg	0.0061	ND		
Chlorobenzene	0.992	mg/kg	0.0061	ND		
	0.992	mg/kg	0.0061	ND		
	0.992	mg/kg	0.0061	ND		
	0.992	mg/kg	0.0061	ND		
cis-1,2-Dichloroethene	0.992	mg/kg	0.0061			
Diserrent les methors	0.992	mg/kg	0.0061			
Dichlorodifluoromethane	0.992	mg/kg	0.0061			
Ethylbogrope	0.992	mg/kg	0.0001	ND		
	0.992	mg/kg	0.0012	ND		
m&p_Yvlenes	0.992	mg/kg	0.0012	ND		
Methylene chloride	0.992	mg/kg	0.0012	0 0084		
Methylene chloride	0.002	mg/kg	0.00012			
n-Buty/Henzene	0.992	mg/kg	0.0012	ND		
n-Bronylbenzene	0.002	mg/kg	0.0012	ND		
o-Xvlene	0.002	mg/kg	0.0012	ND		
sec-Butylbenzene	0.352	mg/kg	0.0012	ND		
Styrene	0.992	mg/kg	0.0012	ND		
t-Butyl Alcohol	0.992	ma/ka	0.031	ND		
t-Butylbenzene	0.992	mg/kg	0.0012	ND		
Tetrachloroethene	0.992	mg/kg	0.0061	ND		
Toluene	0.992	ma/ka	0.0012	ND		
trans-1 2-Dichloroethene	0.992	ma/ka	0.0061	ND		
trans-1 3-Dichloropropene	0.992	ma/ka	0 0061	ND		
Trichloroethene	0.992	ma/ka	0.0061	ND		
Trichlorofluoromethane	0.992	ma/ka	0.0061	ND		
Vinvl chloride	0.992	ma/ka	0.0061	ND		
Xvlenes (Total)	0.992	mg/kg	0.0012	ND		
	0.002		0.0016			

-0045

Lab#: AC43958-008 Collection Date: 4/13/2009 Sample ID: B-11 GW			/2009	Lab#: AC43958-008 Collection Date: 4/13/2009 Sample ID: B-11 GW				3/2009	
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
Mercury (Water) 7470A					Semivolatile Organics + 25	(8270)			
Mercury	1	ug/l	0.70	17	:TotalSemiVolatileTic	1	ug/l	NA	4.9J
)rganochlorine Pesticides 8	8081				1,2,4-Trichlorobenzene	1	ug/i	2.0	ND
	1	0.0/1	0.010	ND	1,2-Diphenylhydrazine	1	ug/l	2.0	ND
Joha-BHC	1	ug/i	0.010	ND	2,4,5-Trichlorophenol	1	ug/l	2.0	ND
eta-BHC	1	ug/l	0.010	ND	2,4,6-Trichlorophenol	1	ug/l	2.0	ND
		ug/i	0.010	ND	2,4-Dichlorophenol	1	ug/l	2.0	ND
		ug/i	0.10	ND	2,4-Dimethylphenol	1	ug/l	2.0	ND
		ug/i	0.010	ND	2,4-Dinitrophenol	1	ug/l	10	ND
	1	ug/i	0.010	ND	2,4-Dinitrotoluene	1	ug/l	2.0	ND
	1	ug/i	0.010	ND	2,6-Dinitrotoluene	1	ug/i	2.0	ND
	1	ug/l	0.010	ND	2-Chloronaphthalene	1	ug/l	2.0	ND
ndosulfan Sulfate	1	ug/l	0.010	ND	2-Chlorophenol	1	ua/l	2.0	ND
indrin	1	ug/l	0.010	ND	2-Methylnachthalene	1		2.0	ND
ndrin Aldehyde	1	ug/l	0.010	ND	2-Methylobenol	1	ug/l	2.0	ND
indrin Ketone	1	ug/l	0.010	ND	2-Nitroaniline		ug/l	20	ND
amma-BHC	1	ug/l	0.010	ND	2-Nitrophenol			2.0	ND
leptachlor	1	ug/l	0.010	ND	384-Methylchoool	4	ug/l	2.0	ND
leptachlor Epoxide	1	ug/l	0.010	ND		4	ug/i	2.0	ND
f ethoxychlor	1	ug/l	0.010	ND	3,3-Dichiorobenziaine		ug/i	2.0	ND
p,p'-DDD	1	ug/l	0.010	ND		1	ug/i	2.0	ND
p,p'-DDE	1	ug/l	0.010	ND	4,6-Dinitro-2-methylphenol	1	ug/1	10	ND
p'-DDT	1	ua/l	0.010	ND	4-Bromophenyl-phenylether	1	ug/l	2.0	ND
	1	ua/l	0.25	ND	4-Chloro-3-methylphenol	1	ug/l	2.0	ND
	-	-8-			4-Chloroaniline	1	ug/l	2.0	ND
PCB 8082					4-Chiorophenyl-phenylether	1	ug/l	2.0	ND
Aroclor (Total)	1	ug/l	0.25	ND	4-Nitroaniline	1	ug/l	2.0	ND
Aroclor-1016	1	ug/l	0.25	ND	4-Nitrophenol	1	ug/l	2.0	ND
Aroclor-1221	1	ug/l	0.25	ND	Acenaphthene	1	ug/l	2.0	ND
Aroclor-1232	1	ug/l	0.25	ND	Acenaphthylene	1	ug/l	2.0	ND
Aroclor-1242	1	ug/l	0.25	ND	Aniline	1	ug/l	2.0	ND
Aroclor-1248	1	ug/l	0.25	ND	Anthracene	1	ug/i	2.0	ND
Aroclor-1254	1	ua/l	0.25	ND	Benzidine	1	ua/l	10	ND
Aroclor-1260	1	ug/i	0.25	ND	Benzolalanthracene	1	ug/l	2.0	ND
Araclar-1262	1	ug/l	0.25	ND	Benzolajovrene	1	ug/l	2.0	ND
Aroclor-1268	1	ug/l	0.25	ND	Benzolajpyrene	1	ug/l	2.0	ND
		ugn	0.25	ND	Benzolo h iben/lepe	,	ug/l	2.0	ND
					Bonzolkifluoranthono	1	ug/l	2.0	ND
					Benzolkjildolaninene	1	ug/i	2.0	ND
					bis/2 Chlose these three	1	ugn	20	ND
					bis(2-Chioroethoxy)methane	1	ug/i	2.0	ND
					bis(2-Chloroethyl)ether	1	ug/I	2.0	ND
					bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
					bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	7.9
					Butylbenzylphthalate	1	ug/l	2.0	ND
					Carbazole	1	ug/l	2.0	ND
					Chrysene	1	ug/l	2.0	ND
					Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
					Dibenzofuran	1	ug/l	2.0	ND
					Diethylphthalate	1	ug/ł	2.0	ND
					Dimethylphthalate	1	ug/l	2.0	ND
					Di-n-butylphthalate	1	ug/l	2.0	ND
					Di-n-octylphthalate	1	ug/l	2.0	ND
					Fluoranthene	1	ua/l	2.0	ND
					Fluorene	1	ua/l	2.0	ND
					Hexachlorobenzene	1	ug/l	20	ND
					Hexachlorobutadiene	1	ug/l	2.0	ND
					Hexachlorocyclopentadiene	1		10	ND
					Heyachloroethane	1	ug/l	20	ND
						1	ug/l	2.0	ND
					Inceherene	4	ug/l	2.0	ND
					Nechhelee	1	ug/i	2.0	ND
					Naphthalene	1	ug/I	2.0	ND
					Nitrobenzene	1	ug/I	2.0	ND
					N-Nitrosodimethylamine	1	ug/l	2.0	ND
					N-Nitroso-di-n-propylamine	1	ug/l	2.0	ND
					N-Nitrosodiphenylamine	1	ug/l	2.0	ND
					Pentachlorophenol	1	ug/l	10	ND
					Phenanthrene	1	ug/i	2.0	ND
					Phenol	1	ug/l	2.0	ND

Lab#:	AC43958-008	Collection Date:	4/13/2009
Sample ID:	B-11 GW		

TestGroup/Analyte	DF	Units	RL	Result
TAL Metals 6010				
Aluminum	1	ug/l	180	240000
Antimony	1	ug/l	12	ND
Arsenic	1	ug/l	7.5	410
Barium	1	ug/l	50	2500
Beryllium	1	ug/l	4.0	28
Cadmium	1	ug/l	3.5	19
Calcium	1	ug/l	2000	340000
Chromium	1	ug/l	50	770
Cobalt	1	ug/l	20	350
Copper	1	ug/l	50	1300
Iron	2	ug/l	550	800000
Lead	1	ug/l	4.0	2200
Magnesium	1	ug/l	2000	160000
Manganese	1	ug/l	40	12000
Nickel	1	ug/l	50	820
Potassium	1	ug/i	5000	65000
Selenium	1	ug/l	40	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	60000
Thallium	1	ug/l	10	ND
Vanadium	1	ug/t	50	1100
Zinc	1	uo/l	50	4200

Lab#: AC43958-008 Sample ID: B-11 GW	Collection Date: 4/13/2009						
TestGroup/Analyte	DF	Units	RL	Result			
Volatile Organics + 10 (8260)							
TotalVolatileTic	1	ug/l	NA	ND			
1,1,1-Trichloroethane	1	ug/l	1.0	ND			
1,1,2,2-Tetrachloroethane	1	ug/t	1.0	ND			
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/i	1.0	ND			
1,1,2-Trichloroethane	1	ug/l	1.0	ND			
1,1-Dichloroethane	1	ug/l	1.0	ND			
1,1-Dichloroethene	1	ug/l	1.0				
1,2,3-Trichloropropane	1	ug/i	1.0	ND			
1,2,4-Thinediybenzene	1	ug/l	1.0	ND			
1.2-Dichloroethane	1	ug/l	0.50	ND			
1.2-Dichloropropane	1	ug/l	1.0	ND			
1,3,5-Trimethylbenzene	1	ug/I	1.0	ND			
1,3-Dichlorobenzene	1	ug/l	1.0	ND			
1,3-Dichloropropane	1	ug/l	1.0	ND			
1,4-Dichlorobenzene	1	ug/l	1.0	ND			
1,4-Dioxane	1	ug/I	50	ND			
2-Butanone	1	ug/l	1.0	ND			
2-Chloroethylvinylether	1	ug/l	1.0	ND			
2-Hexanone	1	ug/l	1.0	ND			
4-Isopropyltoluene	1	ug/l	1.0	ND			
4-Methyl-2-pentanone	1	ug/I	1.0	ND			
Acetone	1	ug/l	5.0	ND			
Acrolein	1	ug/l	1.0	ND			
Renzene	1	ug/l	0.50	ND			
Bromodichloromethane	1	ug/l	1.0	ND			
Bromoform	1	ug/l	1.0	ND			
Bromomethane	1	ug/l	5.0	ND			
Carbon disulfide	1	ug/l	1.0	ND			
Carbon tetrachloride	1	ug/l	1.0	ND			
Chlorobenzene	1	ug/l	1.0	ND			
Chloroethane	1	ug/l	1.0	ND			
Chloroform	1	ug/l	1.0	ND			
Chloromethane	1	ug/I	1.0	ND			
cis-1,2-Dichloroethene	1	ug/i	1.0				
Dibromochloromethane	1	ug/i	1.0	ND			
Dichlorodifluoromethane	1	ug/l	1.0	ND			
Ethylbenzene	1	ug/l	1.0	NÐ			
Isopropylbenzene	1	ug/l	1.0	ND			
m&p-Xylenes	1	ug/l	1.0	ND			
Methylene chloride	1	ug/l	1.0	ND			
Methyl-t-butyl ether	1	ug/i	0.50	ND			
n-Butylbenzene	1	ug/I	1.0	ND			
n-Propylbenzene	1	ug/i	1.0	ND			
o-Xylene	1	ug/l	1.0	ND			
sec-Butylbenzene	1	ug/l	1.0	ND			
Styrene	1	ug/1	1.0	ND			
t-Butylhenzene	1	ug/i	1.0	ND			
Tetrachloroethene	1	uo/l	1.0	ND			
Toluene	1	_g/l	1.0	ND			
trans-1.2-Dichloroethene	1	ug/l	1.0	ND			
trans-1,3-Dichloropropene	1	ug/l	1.0	NÐ			
Trichloroethene	1	ug/l	1.0	ND			
Trichlorofluoromethane	1	ug/l	1.0	ND			
Vinyl chloride	1	ug/l	1.0	ND			
Xylenes (Total)	1	ug/l	1	NÐ			

Lab#: AC43958-009 Sample ID: WC-1	Col	lection Da	te: 4/13/	2009	Lab#: AC43958-010 Collection Date: 4/10/2009 Sample ID: WC-2				
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		80	% Solids SM2540G % Solids	1	percent		84
Ignitability Ignitability	1			NEG	lgnitability Ignitability	1			NEG
Mercury (TCLP) 7470A Mercury	1	mg/l	0.00070	ND	Mercury (TCLP) 7470A Mercury	1	mg/l	0.00070	ND
рН 9040В/9045С _Р н	1	ph		9.6	рН 9040B/9045C _{PH}	1	ph		9.9
Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND	Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND
Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND	Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND
TCLP Herbicides 8151					TCLP Herbicides 8151				
2,4-D	1	mg/l	0.0020	ND	2,4-D	1	mg/l	0.0020	ND
Silvex	1	mg/l	0.0020	ND	Silvex	1	mg/i	0.0020	ND
TCLP Metals 6010					TCLP Metals 6010				
Arsenic	1	mg/l	0.20	ND	Arsenic	1	mg/l	0.20	ND
Barium	1	mg/l	0.25	0.32	Barium	1	mg/l	0.25	0.34
Cadmium	1	mg/l	0.050	ND	Chromium	1	mg/l	0.050	
Chromium	1	mg/l	0.20	0.26	Lead	1	ma/l	0.20	ND
Nickel	1	mg/l	0.20	ND	Nickel	1	mg/l	0.20	ND
Selenium	1	mg/l	0.20	ND	Selenium	1	mg/l	0.20	ND
Silver	1	mg/l	0.050	ND	Silver	1	mg/l	0.050	ND
TCLP Metals Extraction 1311 TCLP Metals Extraction	1	n/a		Complete	TCLP Metals Extraction 1311 TCLP Metals Extraction	1	n/a		Complet
TCLP Organics Extraction 1311 TCLP Organics Extraction	1			Complete	TCLP Organics Extraction 131 TCLP Organics Extraction	1 1			Complet
TCLP Pesticides 8081					TCLP Pesticides 8081				
Chlordane	1	mg/l	0.0010	ND	Chlordane	1	mg/l	0.0010	ND
Endrin	1	mg/l	0.00010	ND	Endrin	1	mg/l	0.00010	ND
gamma-BHC	1	mg/l	0.00010	ND	gamma-BHC	1	mg/l	0.00010	ND
Heptachlor	1	mg/l	0.00010	ND	Heptachlor	1	mg/l	0.00010	
Heptachlor Epoxide	1	mg/l	0.00010		Heptachior Epoxide	1	mg/l	0.00010	
Methoxychlor	1	mg/l	0.00010			1	ma/l	0.0025	ND
Toxaphene	'	ing/r	0.0025						
TCLP Semivolatiles 8270			0.0000	ND	ICLP Semivolatiles 8270		ma/l	0 0080	ND
2,4,5-Irichlorophenol	1	mg/l	0.0080		2,4,5- menorophenol	1	ma/ł	0.0080	ND
2 4-Dinitrotoluene	1	ma/l	0.0080	ND	2.4-Dinitrotoluene	1	mg/l	0.0080	ND
2-Methylphenol	1	mg/l	0.0080	ND	2-Methylphenol	1	mg/l	0.0080	ND
3&4-Methylphenol	1	mg/l	0.0080	ND	3&4-Methylphenol	1	mg/l	0.0080	ND
Hexachlorobenzene	1	mg/l	0.0080	ND	Hexachlorobenzene	1	mg/l	0.0080	ND
Hexachlorobutadiene	1	mg/l	0.0080	ND	Hexachlorobutadiene	1	mg/l	0.0080	
Hexachloroethane	1	mg/l	0.0080	ND	Hexachioroethane	1	mg/l	0.0080	
Nitrobenzene Rentachlorophenol	1	mg/l	0.0000	ND	Pentachlorophenol	1	ma/l	0.040	ND
Pvridine	1	ma/l	0.040	ND	Pyridine	1	mg/l	0.040	ND
		U U			TCI B Volatilos 8260				
1 1-Dichloroethene	1	ma/l	0.0010	ND	1,1-Dichloroethene	1	mg/l	0.0010	ND
1,2-Dichloroethane	1	mg/l	0.00050	ND	1,2-Dichloroethane	1	mg/l	0.00050	ND
1,4-Dichlorobenzene	1	mg/l	0.0010	ND	1,4-Dichlorobenzene	1	mg/l	0.0010	ND
2-Butanone	1	mg/l	0.0010	ND	2-Butanone	1	mg/l	0.0010	ND
Benzene	1	mg/l	0.00050	ND	Benzene	1	mg/l	0.00050	ND
Carbon tetrachloride	1	mg/l	0.0010	ND	Carbon tetrachloride	1	mg/l	0.0010	
Chlorobenzene	1	mg/ł	0.0010	ND	Chloroform	1	mg/l	0.0010	ND
Tetrachloroathana	1	mg/i	0.0010	ND	Tetrachloroethene	1	mg/l	0.0010	ND
Trichloroethene	1	mg/l	0.0010	ND	Trichloroethene	1	ma/i	0.0010	ND
Vinvl chloride	1	ma/l	0.0010	ND	Vinyl chloride	1	mg/l	0.0010	ND
TCLP Zero Headspace Extraction	on	5			TCLP Zero Headspace Extract	ion 1			

Lab#: AC43958-011 Collection Date: 4/10/2009 Sample ID: WC-3		Lab#: AC43958-012 Collection Date: 4/9/2009 Sample ID: WC-4							
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		85	% Solids SM2540G % Solids	1	percent		87
lgnitability Ignitability	1			NEG	lgnitability Ignitability	1			NEG
Mercury (TCLP) 7470A Mercury	1	mg/l	0.00070	ND	Mercury (TCLP) 7470A Mercury	1	mg/l	0.00070	ND
рН 9040В/9045С _{рН}	1	ph		9.5	рН 9040В/9045С _{рн}	1	ph		9.2
Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND	Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND
Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND	Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND
TCLP Herbicides 8151					TCLP Herbicides 8151				
2,4-D	1	mg/l	0.0020	ND	2,4-D Silver	1	mg/l	0.0020	
	1	mg/i	0.0020	ND		1	mgn	0.0020	NU
	1	ma/l	0.20	ND	Arsenic	1	ma/l	0.20	ND
Barium	1	mg/l	0.25	0.60	Barium	1	mg/l	0.25	0.33
Cadmium	1	mg/l	0.050	ND	Cadmium	1	mg/l	0.050	ND
Chromium	1	mg/l	0.20	ND	Chromium	1	mg/l	0.20	ND
Lead	1	mg/l	0.15	1.2	Lead	1	mg/l	0.15	ND
Nickel	1	mg/l	0.20	ND	Nickel	1	mg/l	0.20	
Selenium Silver	1	mg/i mg/i	0.20	ND	Silver	1	mg/l	0.050	ND
TCLP Metals Extraction 1311		ilig.i	0.000	NC	TCLP Metals Extraction 1311				
TCLP Metals Extraction	1	n/a		Complete	TCLP Metals Extraction	1	n/a		Complete
TCLP Organics Extraction 131 TCLP Organics Extraction	1			Complete	TCLP Organics Extraction 131 TCLP Organics Extraction	1			Complete
TCLP Pesticides 8081					TCLP Pesticides 8081				
Chlordane	1	mg/l	0.0010	ND	Chlordane	1	mg/l	0.0010	ND
Endrin	1	mg/l	0.00010	ND	Endrin	1	mg/l	0.00010	ND
gamma-BHC	1	mg/l	0.00010	ND	gamma-BHC Hentechler	1	mg/i	0.00010	
Heptachlor Heptachlor Epoxide	1	mg/i	0.00010		Heptachlor Epoxide	1	ma/l	0.00010	ND
Methoxychlor	1	ma/ł	0.00010	ND	Methoxychlor	1	mg/l	0.00010	ND
Toxaphene	1	mg/l	0.0025	ND	Toxaphene	1	mg/l	0.0025	ND
TCLP Semivolatiles 8270					TCLP Semivolatiles 8270				
2,4,5-Trichlorophenol	1	mg/l	0.0080	ND	2,4,5-Trichlorophenol	1	mg/l	0.0080	ND
2,4,6-Trichlorophenol	1	mg/i	0.0080	ND	2,4,6-Trichlorophenol	1	mg/I	0.0080	ND
2,4-Dinitrotoluene	1	mg/l	0.0080	ND	2,4-Dinitrotoluene	1	mg/l	0.0080	ND
2-Methylphenol	1	mg/i	0.0080	ND	2-Methylphenol	1	mg/l	0.0080	
3&4-Methylphenol	1	mg/i	0.0080		3&4-metnyiphenoi Hexachlorobeozene	1	mg/l	0.0080	ND
Hexachlorobutadiene	1	mg/l	0.0080	ND	Hexachlorobutadiene	1	mg/l	0.0080	ND
Hexachloroethane	1	mg/l	0.0080	ND	Hexachloroethane	1	mg/l	0.0080	ND
Nitrobenzene	1	mg/l	0.0080	ND	Nitrobenzene	1	mg/l	0.0080	ND
Pentachlorophenol Pyridine	1 1	mg/l mg/l	0.040 0.040	ND ND	Pentachlorophenol Pyridine	1 1	mg/l mg/l	0.040 0.0080	ND ND
TCI B Volatilaa 8260					TCL P Volatiles 8260				
1 1-Dichloroethene	1	mo/l	0.0010	ND	1.1-Dichloroethene	1	ma/t	0.0010	ND
1,2-Dichloroethane	1	mg/l	0.00050	ND	1,2-Dichloroethane	1	mg/l	0.00050	ND
1,4-Dichlorobenzene	1	mg/l	0.0010	ND	1,4-Dichlorobenzene	1	mg/l	0.0010	ND
2-Butanone	1	mg/l	0.0010	ND	2-Butanone	1	mg/l	0.0010	ND
Benzene	1	mg/l	0.00050	ND	Benzene	1	mg/l	0.00050	ND
Carbon tetrachloride	1	mg/l	0.0010	ND	Carbon tetrachloride	1	mg/l	0.0010	ND
Chlorobenzene	1	mg/l	0.0010	ND	Chloroform	1	mg/l	0.0010	ND
Uniorotorm Tetrachloroethese	1	mg/i	0.0010	ND	Tetrachloroethene	1	mo/l	0.0010	ND
Trichloroethene	1	ma/l	0.0010	ND	Trichloroethene	1	ma/l	0.0010	ND
Vinyl chloride	1	mg/l	0.0010	ND	Vinyl chloride	1	mg/i	0.0010	ND
TCLP Zero Headspace Extraction	ion 1				TCLP Zero Headspace Extract	tion 1			

RL = Reporting Limit

Lab#: AC43958-013 Collection Date: 4/9/2009 Sample ID: WC-5			2009	Lab#: AC43958-014 Collection Date: 4/13/2009 Sample ID: WC-6					
TestGroup/Analyte	DF	Units	RL	Result	TestGroup/Analyte	DF	Units	RL	Result
% Solids SM2540G % Solids	1	percent		86	% Solids SM2540G % Solids	1	percent		79
Ignitability Ignitability	1			NEG	Ignitability Ignitability	1			NEG
Mercury (TCLP) 7470A Mercury	1	mg/t	0.00070	ND	Mercury (TCLP) 7470A Mercury	1	mg/I	0.00070	ND
рН 9040В/9045С _{рн}	1	ph		8.6	рН 9040В/9045С _{рн}	1	ph		9.2
Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND	Reactive Cyanide Cyanide (Reactive)	1	mg/kg	10	ND
Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND	Reactive Sulfide Sulfide (Reactive)	1	mg/kg	100	ND
TCLP Herbicides 8151					TCLP Herbicides 8151				
2,4-D Silvey	1	mg/l	0.0020	ND ND	2,4-D Silvex	1	mg/l ma/l	0.0020	ND
Silvex	1	mg/i	0.0020	ND		•	(iigii	0.0020	
TCLP Metals 6010			0.20		TCLP Metals 6010	1	mo/l	0.20	ND
Barium	1	mg/l	0.20	0.39	Barium	1	mg/l	0.25	0.34
Cadmium	1	mg/l	0.050	ND	Cadmium	1	mg/t	0.050	ND
Chromium	1	mg/l	0.20	ND	Chromium	1	mg/l	0.20	ND
Lead	1	mg/l	0.15	ND	Lead	1	mg/l	0.15	ND
Nickel	1	mg/l	0.20	ND	Nickel	1	mg/i	0.20	
Selenium	1	mg/l	0.20	ND	Silver	1	ma/l	0.050	ND
TCLP Metals Extraction 1311 TCLP Metals Extraction	1	n/a	0.000	Complete	TCLP Metals Extraction 1311	1	n/a		Complete
TCLP Organics Extraction 1311 TCLP Organics Extraction	1			Complete	TCLP Organics Extraction 131 TCLP Organics Extraction	1 1			Complete
TCLP Pesticides 8081					TCLP Pesticides 8081				
Chlordane	1	mg/l	0.0010	ND	Chlordane	1	mg/l	0.0010	ND
Endrin	1	mg/l	0.00010	ND	Endrin	1	mg/l	0.00010	ND
gamma-BHC	1	mg/l	0.00010	ND	gamma-BHC	1	mg/l	0.00010	ND
Heptachlor	1	mg/l	0.00010		Heptachlor Heptachlor Epoxide	1	mg/l	0.00010	ND
Methoxychlor	1	ma/l	0.00010	ND	Methoxychlor	1	mg/i	0.00010	ND
Toxaphene	1	mg/l	0.0025	ND	Toxaphene	1	mg/ł	0.0025	ND
TCI P Semivolatiles 8270		-			TCL P Semivolatiles 8270				
2.4.5-Trichlorophenol	1	mg/l	0.0080	ND	2,4,5-Trichlorophenol	1	mg/l	0.0080	ND
2,4,6-Trichlorophenol	1	mg/l	0.0080	ND	2,4,6-Trichlorophenol	1	mg/l	0.0080	ND
2,4-Dinitrotoluene	1	mg/l	0.0080	ND	2,4-Dinitrotoluene	1	mg/l	0.0080	ND
2-Methylphenol	1	mg/l	0.0080	ND	2-Methylphenol	1	mg/l	0.0080	
	1	mg/i ma/i	0.0080		Hexachlorobenzene	1	mg/l	0.0080	ND
Hexachlorobutadiene	1	mg/i	0.0080	ND	Hexachlorobutadiene	1	mg/l	0.0080	ND
Hexachloroethane	1	mg/l	0.0080	ND	Hexachloroethane	1	mg/i	0.0080	ND
Nitrobenzene	1	mg/l	0.0080	ND	Nitrobenzene	1	mg/l	0.0080	ND
Pentachlorophenol	1	mg/l	0.040		Pentachlorophenol Pyridine	1	mg/l ma/l	0.040	ND ND
		ngn	0.040			•			
TCLP Volatiles 8260			0.0040		TCLP Volatiles 8260	1	mo//	0.0010	ND
1, 1-Dichloroethane	1	ma/l	0.00050	ND	1,2-Dichloroethane	1	mg/l	0.00050	ND
1,4-Dichlorobenzene	1	mg/l	0.0010	ND	1,4-Dichlorobenzene	1	mg/l	0.0010	ND
2-Butanone	1	mg/l	0.0010	ND	2-Butanone	1	mg/ł	0.0010	ND
Benzene	1	mg/l	0.00050	ND	Benzene	1	mg/l	0.00050	ND
Carbon tetrachloride	1	mg/l	0.0010	ND	Carbon tetrachloride	1	mg/l	0.0010	ND
Chlorobenzene	1	mg/l	0.0010			1	mg/i	0.0010	ND
	1	mg/l	0.0010	ND	Tetrachloroethene	1	ma/l	0.0010	ND
Trichloroethene	1	ma/l	0.0010	ND	Trichloroethene	1	mg/l	0.0010	ND
Vinyl chloride	1	mg/l	0.0010	ND	Vinyl chloride	1	mg/l	0.0010	ND
TCLP Zero Headspace Extracti	on				TCLP Zero Headspace Extract	ion 1			

Lab#: AC43958-015 Sample ID: TRIP BLANK	Collection Date: 4/6/2009						
TestGroup/Analyte	DF	Units	RL	Result			
Volatile Organics + 10 (8260)							
:TotalVolatileTic	1	ug/l	NA	ND			
1,1,1-Trichloroethane	1	ug/l	1.0	ND			
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND			
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND			
1,1,2-Trichloroethane	1	ug/l	1.0	ND			
1,1-Dichloroethane	1	ug/l	1.0	ND			
1,1-Dichloroethene	1	ug/l	1.0	ND			
1,2,3-Trichloropropane	1	ug/l	1.0	ND			
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND			
1,2-Dichlorobenzene	1	ug/l	1.0	ND			
1,2-Dichloroethane	1	ug/l	0.50	ND			
1,2-Dichloropropane	1	ug/l	1.0	ND			
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND			
1,3-Dichlorobenzene	1	ug/l	1.0	ND			
1,3-Dichloropropane	1	ug/l	1.0	ND			
1,4-Dichlorobenzene	1	ug/l	1.0	ND			
1,4-Dioxane	1	ug/l	50	ND			
2-Butanone	1	ug/l	1.0	ND			
2-Chloroethylvinylether	1	ug/l	1.0	ND			
2-Hexanone	1	ug/l	1.0	ND			
4-Isopropyltoluene	1	ug/l	1.0	ND			
4-Methyl-2-pentanone	1	ug/l	1.0	ND			
Acetone	1	ug/l	5.0	ND			
Acrolein	1	ug/l	5.0	ND			
Acrylonitrile	1	ug/l	1.0	ND			
Benzene	1	ug/l	0.50	ND			
Bromodichloromethane	1	ug/l	1.0	ND			
Bromoform	1	ug/l	1.0	ND			
Bromomethane	1	ug/l	5.0	ND			
Carbon disulfide	1	ug/l	1.0	ND			
Carbon tetrachloride	1	ug/l	1.0	ND			
Chlorobenzene	1	ug/I	1.0	ND			
Chloroethane	1	ug/l	1.0	ND			
Chloroform	1	ug/l	1.0	ND			
Chloromethane	1	ug/l	1.0	ND			
cis-1,2-Dichloroethene	1	ug/l	1.0	ND			
cis-1,3-Dichloropropene	1	ug/l	1.0	ND			
Dibromochloromethane	1	ug/l	1.0	ND			
Dichlorodifluoromethane	1	ug/l	1.0	ND			
Ethylbenzene	1	ug/l	1.0	ND			
Isopropylbenzene	1	ug/i	1.0	ND			
m&p-Xylenes	1	ug/l	1.0	ND			
Methylene chloride	1	ug/l	1.0	ND			
Methyl-t-Dutyl ether	1	ug/i	0.50	ND			
n-Butylbenzene	1	ug/I	1.0	ND			
n-Propylbenzene	1	ug/i	1.0	ND			
o-Xylene	1	ug/i	1.0	ND			
sec-ButyIDenzene	1	ug/i	1.0				
Styrene	1	ug/i	1.0				
t-Butyi Alconol	1	ug/i	5.0	ND			
t-Butylbenzene	1	ug/i	1.0				
	1	ug/i	1.0	ND			
		ug/i	1.0	ND			
trans-1,2-Dichloroethene	1	ug/i	1.0	ND			
trans-1,3-Dichloropropene	1	ug/i	1.0	ND			
	1	ug/i	1.0	ND			
i richiorofiuorometnane	1	ug/i	1.0	ND			
Virigi chioride		ug/i	1.0	ND			
Ayrenes (Total)	1	ug/i	1	ND			

Sample Number: DAILY BLANK

Client Id:

Data File: 3M61735.D

Analysis Date: 04/15/09 09:25

Date Rec/Extracted:

Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	<u>Cas #</u>	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5 1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3 1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4 1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
107-06-2 1,2-Dichloroethane	0.50	U	100-41-4	Ethylbenzene	1.0	U
78-87-5 1,2-Dichloropropane	1.0	U	98-82-8	Isopropylbenzene	1.0	U
108-67-8 1,3,5-Trimethylbenzene	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
123-91-1 1,4-Dioxane	50	U	103-65-1	n-Propylbenzene	1.0	U
78-93-3 2-Butanone	1.0	U	95-47-6	o-Xylene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	U	135-98-8	sec-Butylbenzene	1.0	U
591-78-6 2-Hexanone	1.0	U	100-42-5	Styrene	1.0	U
99-87-6 4-Isopropyltoluene	1.0	U	75-65-0	t-Butyl Alcohol	5.0	U
108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6	t-Butylbenzene	1.0	U
67-64-1 Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
107-02-8 Acrolein	5.0	U	108-88-3	Toluene	1.0	U
107-13-1 Acrylonitrile	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
71-43-2 Benzene	0.50	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-27-4 Bromodichloromethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-25-2 Bromoform	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
74-83-9 Bromomethane	5.0	U	75-01-4	Vinyl Chloride	1.0	U
75-15-0 Carbon Disulfide	1.0	U				

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK	Matrix: Aqueous
Client Id:	Initial Vol: 5ml
Data File: 3M61735.D	Final Vol: NA
Analysis Date: 04/15/09 09:25	Dilution: 1.00
Date Rec/Extracted:	Solids:
	Method: EPA 8260B

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	01	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

Sample Number: DAILY BLANK

Client Id:

Data File: 1M43985.D

Analysis Date: 04/15/09 15:10

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Soil Initial Vol: 5g Final Vol: NA Dilution: 1.00 Solids: 100

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # C	Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0050	U	56-23-5 Ca	arbon Tetrachloride	0.0050	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0050	U	108-90-7 Cl	hlorobenzene	0.0050	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0050	U	75-00-3 Ch	chloroethane	0.0050	U
79-00-5 1,1,2-Trichloroethane	0.0050	U	67-66-3 CI	hloroform	0.0050	U
75-34-3 1,1-Dichloroethane	0.0050	U	74-87-3 Cl	hloromethane	0.0050	U
75-35-4 1,1-Dichloroethene	0.0050	U	156-59-2 cis	is-1,2-Dichloroethene	0.0050	U
96-18-4 1,2,3-Trichloropropane	0.0050	U	10061-01-5 cis	is-1,3-Dichloropropene	0.0050	U
95-63-6 1,2,4-Trimethylbenzene	0.0010	U	124-48-1 Di	bibromochloromethane	0.0050	U
95-50-1 1,2-Dichlorobenzene	0.0050	υ	75-71-8 Di	Dichlorodifluoromethane	0.0050	U
107-06-2 1,2-Dichloroethane	0.0050	U	100-41-4 Et	thylbenzene	0.0010	U
78-87-5 1,2-Dichloropropane	0.0050	U	98-82-8 Is	sopropylbenzene	0.0010	U
108-67-8 1,3,5-Trimethylbenzene	0.0010	U	136777612 m	n&p-Xylenes	0.0010	U
541-73-1 1,3-Dichlorobenzene	0.0050	U	75-09-2 M	lethylene Chloride	0.0050	U
142-28-9 1,3-Dichloropropane	0.0050	U	1634-04-4 M	lethyl-t-butyl ether	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0050	U	104-51-8 n-	-Butylbenzene	0.0010	U
123-91-1 1,4-Dioxane	0.25	U	103-65-1 n-	-Propylbenzene	0.0010	U
78-93-3 2-Butanone	0.0050	U	95-47-6 0-	-Xylene	0.0010	U
110-75-8 2-Chloroethylvinylether	0.0050	U	135-98-8 se	ec-Butylbenzene	0.0010	U
591-78-6 2-Hexanone	0.0050	U	100-42-5 St	Styrene	0.0050	U
99-87-6 4-Isopropyltoluene	0.0010	U	75-65-0 t-I	-Butyl Alcohol	0.025	U
108-10-1 4-Methyl-2-Pentanone	0.0050	U	98-06-6 t-l	-Butylbenzene	0.0010	υ
67-64-1 Acetone	0.025	U	127-18-4 Te	etrachloroethene	0.0050	U
107-02-8 Acrolein	0.025	U	108-88-3 To	oluene	0.0010	U
107-13-1 Acrylonitrile	0.0050	U	156-60-5 tra	rans-1,2-Dichloroethene	0.0050	U
71-43-2 Benzene	0.0010	U	10061-02-6 tra	rans-1,3-Dichloropropene	0.0050	U
75-27-4 Bromodichloromethane	0.0050	U	79-01-6 Ti	richloroethene	0.0050	U
75-25-2 Bromoform	0.0050	U	75-69-4 Ti	richlorofluoromethane	0.0050	U
74-83-9 Bromomethane	0.0050	U	75-01-4 Vi	/inyl Chloride	0.0050	U
75-15-0 Carbon Disulfide	0.0050	U				
			-			

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

- J Indicates an estimated value when a compound is detected at less than the
- specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK	Matrix: Soil
Client Id:	Initial Vol: 5g
Data File: 1M43985.D	Final Vol: NA
Analysis Date: 04/15/09 15:10	Dilution: 1.00
Date Rec/Extracted:	Solids: 100
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	01	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

Sample Number: DAILY BLANK

Client Id:

Data File: 1M44035.D

Analysis Date: 04/16/09 07:18

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Soil Initial Vol: 5g Final Vol: NA Dilution: 1.00 Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0050	U	56-23-5	Carbon Tetrachloride	0.0050	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0050	U	108-90-7	Chlorobenzene	0.0050	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0050	U	75-00-3	Chloroethane	0.0050	U
79-00-5	1,1,2-Trichloroethane	0.0050	U	67-66-3	Chloroform	0.0050	U
75-34-3	1,1-Dichloroethane	0.0050	U	74-87-3	Chloromethane	0.0050	U
75-35-4	1,1-Dichloroethene	0.0050	U	156-59-2	cis-1,2-Dichloroethene	0.0050	U
96-18-4	1,2,3-Trichloropropane	0.0050	U	10061-01-5	cis-1,3-Dichloropropene	0.0050	U
95-63-6	1,2,4-Trimethylbenzene	0.0010	U	124-48-1	Dibromochloromethane	0.0050	U
95-50-1	1,2-Dichlorobenzene	0.0050	U	75-71-8	Dichlorodifluoromethane	0.0050	U
107-06-2	1,2-Dichloroethane	0.0050	U	100-41-4	Ethylbenzene	0.0010	U
78-87-5	1,2-Dichloropropane	0.0050	U	98-82-8	Isopropylbenzene	0.0010	U
108-67 - 8	1,3,5-Trimethylbenzene	0.0010	U	136777612	m&p-Xylenes	0.0010	U
541-73-1	1,3-Dichlorobenzene	0.0050	U	75-09-2	Methylene Chloride	0.0050	U
142-28-9	1,3-Dichloropropane	0.0050	U	1634-04-4	Methyl-t-butyl ether	0.0010	U
106-46-7	1,4-Dichlorobenzene	0.0050	U	104-51-8	n-Butylbenzene	0.0010	U
123-91-1	1,4-Dioxane	0.25	U	103-65-1	n-Propylbenzene	0.0010	U
78-93-3	2-Butanone	0.0050	U	95-47-6	o-Xylene	0.0010	U
110-75-8	2-Chloroethylvinylether	0.0050	U	135-98-8	sec-Butylbenzene	0.0010	U
591-78-6	2-Hexanone	0.0050	U	100-42-5	Styrene	0.0050	U
99-87-6	4-Isopropyltoluene	0.0010	U	75-65-0	t-Butyl Alcohol	0.025	U
108-10- 1	4-Methyl-2-Pentanone	0.0050	U	98-06-6	t-Butylbenzene	0.0010	U
67-64-1	Acetone	0.025	U	127-18-4	Tetrachloroethene	0.0050	U
107-02-8	Acrolein	0.025	U	108-88-3	Toluene	0.0010	U
107-13-1	Acrylonitrile	0.0050	U	156-60-5	trans-1,2-Dichloroethene	0.0050	U
71-43-2	Benzene	0.0010	U	10061-02-6	trans-1,3-Dichloropropene	0.0050	U
75-27-4	Bromodichloromethane	0.0050	U	79-01-6	Trichloroethene	0.0050	U
75-25-2	Bromoform	0.0050	U	75-69-4	Trichlorofluoromethane	0.0050	U
74-83-9	Bromomethane	0.0050	U	75-01-4	Vinyl Chloride	0.0050	U
75-15-0	Carbon Disulfide	0.0050	U				

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK	Matrix: Soil
Client Id:	Initial Vol: 5g
Data File: 1M44035.D	Final Vol: NA
Analysis Date: 04/16/09 07:18	Dilution: 1.00
Date Rec/Extracted:	Solids: 100
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

Sample Number: AC43958-001 Client Id: B-2 Data File: 1M44020.D Analysis Date: 04/16/09 00:48 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Soil Initial Vol: 5.07g Final Vol: NA Dilution: 0.986 Solids: 85

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0058	U	56-23-5 Carbon Tetrachloride	0.0058	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0058	U	108-90-7 Chlorobenzene	0.0058	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0058	υ	75-00-3 Chloroethane	0.0058	U
79-00-5 1,1,2-Trichloroethane	0.0058	U	67-66-3 Chloroform	0.0058	U
75-34-3 1,1-Dichloroethane	0.0058	U	74-87-3 Chloromethane	0.0058	U
75-35-4 1,1-Dichloroethene	0.0058	U	156-59-2 cis-1,2-Dichloroethene	0.0058	U
96-18-4 1,2,3-Trichloropropane	0.0058	U	10061-01-5 cis-1,3-Dichloropropene	0.0058	U
95-63-6 1,2,4-Trimethylbenzene	0.0012	U	124-48-1 Dibromochloromethane	0.0058	U
95-50-1 1,2-Dichlorobenzene	0.0058	U	75-71-8 Dichlorodifluoromethane	0.0058	U
107-06-2 1,2-Dichloroethane	0.0058	U	100-41-4 Ethylbenzene	0.0012	U
78-87-5 1,2-Dichloropropane	0.0058	U	98-82-8 Isopropylbenzene	0.0012	U
108-67-8 1,3,5-Trimethylbenzene	0.0012	U	136777612 m&p-Xylenes	0.0012	U
541-73-1 1,3-Dichlorobenzene	0.0058	U	75-09-2 Methylene Chloride	0.0058	U
142-28-9 1,3-Dichloropropane	0.0058	U	1634-04-4 Methyl-t-butyl ether	0.0012	U
106-46-7 1,4-Dichlorobenzene	0.0058	U	104-51-8 n-Butylbenzene	0.0012	U
123-91-1 1,4-Dioxane	0.29	U	103-65-1 n-Propylbenzene	0.0012	U
78-93-3 2-Butanone	0.0058	U	95-47-6 o-Xylene	0.0012	U
110-75-8 2-Chloroethylvinylether	0.0058	U	135-98-8 sec-Butylbenzene	0.0012	U
591-78-6 2-Hexanone	0.0058	U	100-42-5 Styrene	0.0058	U
99-87-6 4-Isopropyltoluene	0.0012	U	75-65-0 t-Butyl Alcohol	0.029	U
108-10-1 4-Methyl-2-Pentanone	0.0058	U	98-06-6 t-Butylbenzene	0.0012	U
67-64-1 Acetone	0.029	U	127-18-4 Tetrachloroethene	0.0058	U
107-02-8 Acrolein	0.029	U	108-88-3 Toluene	0.0012	U
107-13-1 Acrylonitrile	0.0058	υ	156-60-5 trans-1,2-Dichloroethene	0.0058	U
71-43-2 Benzene	0.0012	U	10061-02-6 trans-1,3-Dichloropropene	0.0058	U
75-27-4 Bromodichloromethane	0.0058	U	79-01-6 Trichloroethene	0.0058	U
75-25-2 Bromoform	0.0058	U	75-69-4 Trichlorofluoromethane	0.0058	U
74-83-9 Bromomethane	0.0058	U	75-01-4 Vinyl Chloride	0.0058	U
75-15-0 Carbon Disulfide	0.0058	U	1330-20-7 Xylenes (Total)	0.0012	U

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Matrix: Soil
Initial Vol: 5.07g
Final Vol: NA
Dilution: 0.986
Solids: 85
Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	0 J

Worksheet #: 115287

Total Tentatively Identified Concentration 0

Sample Number: AC43958-002 Client Id: B-3 Data File: 1M44021.D Analysis Date: 04/16/09 01:04 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Soil Initial Vol: 5.08g Final Vol: NA Dilution: 0.984 Solids: 87

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0057	U	56-23-5 Carbon Tetrachloride	0.0057	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0057	U	108-90-7 Chlorobenzene	0.0057	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0057	U	75-00-3 Chloroethane	0.0057	U
79-00-5 1,1,2-Trichloroethane	0.0057	U	67-66-3 Chloroform	0.0057	U
75-34-3 1,1-Dichloroethane	0.0057	U	74-87-3 Chloromethane	0.0057	U
75-35-4 1,1-Dichloroethene	0.0057	U	156-59-2 cis-1,2-Dichloroethene	0.0057	U
96-18-4 1,2,3-Trichloropropane	0.0057	U	10061-01-5 cis-1,3-Dichloropropene	0.0057	U
95-63-6 1,2,4-Trimethylbenzene	0.0011	U	124-48-1 Dibromochloromethane	0.0057	U
95-50-1 1,2-Dichlorobenzene	0.0057	U	75-71-8 Dichlorodifluoromethane	0.0057	U
107-06-2 1,2-Dichloroethane	0.0057	U	100-41-4 Ethylbenzene	0.0011	U
78-87-5 1,2-Dichloropropane	0.0057	U	98-82-8 Isopropylbenzene	0.0011	U
108-67-8 1,3,5-Trimethylbenzene	0.0011	U	136777612 m&p-Xylenes	0.0011	U
541-73-1 1,3-Dichlorobenzene	0.0057	U	75-09-2 Methylene Chloride	0.0057	U
142-28-9 1,3-Dichloropropane	0.0057	U	1634-04-4 Methyl-t-butyl ether	0.0011	U
106-46-7 1,4-Dichlorobenzene	0.0057	U	104-51-8 n-Butylbenzene	0.0011	U
123-91-1 1,4-Dioxane	0.28	U	103-65-1 n-Propylbenzene	0.0011	U
78-93-3 2-Butanone	0.0057	U	95-47-6 o-Xylene	0.0011	U
110-75-8 2-Chloroethylvinylether	0.0057	U	135-98-8 sec-Butylbenzene	0.0011	U
591-78-6 2-Hexanone	0.0057	U	100-42-5 Styrene	0.0057	U
99-87-6 4-Isopropyltoluene	0.0011	U	75-65-0 t-Butyl Alcohol	0.028	U
108-10-1 4-Methyl-2-Pentanone	0.0057	U	98-06-6 t-Butylbenzene	0.0011	U
67-64-1 Acetone	0.028	U	127-18-4 Tetrachloroethene	0.0057	U
107-02-8 Acrolein	0.028	U	108-88-3 Toluene	0.0011	U
107-13-1 Acrylonitrile	0.0057	U	156-60-5 trans-1,2-Dichloroethene	0.0057	U
71-43-2 Benzene	0.0011	U	10061-02-6 trans-1,3-Dichloropropene	0.0057	U
75-27-4 Bromodichloromethane	0.0057	U	79-01-6 Trichloroethene	0.0057	U
75-25-2 Bromoform	0.0057	U	75-69-4 Trichlorofluoromethane	0.0057	U
74-83-9 Bromomethane	0.0057	U	75-01-4 Vinyl Chloride	0.0057	U
75-15-0 Carbon Disulfide	0.0057	U	1330-20-7 Xylenes (Total)	0.0011	U

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

 \hat{d} - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-002	Matrix: Soil
Client Id: B-3	Initial Vol: 5.08g
Data File: 1M44021.D	Final Vol: NA
Analysis Date: 04/16/09 01:04	Dilution: 0.984
Date Rec/Extracted: 04/13/09-NA	Solids: 87
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

Sample Number: AC43958-003 Client Id: B-6 Data File: 1M44022.D Analysis Date: 04/16/09 01:21 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Soil Initial Vol: 5.1g Final Vol: NA Dilution: 0.980 Solids: 82

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0060	U	56-23-5	Carbon Tetrachloride	0.0060	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0060	U	108-90-7	Chlorobenzene	0.0060	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0060	U	75-00-3	Chloroethane	0.0060	U
79-00-5	1,1,2-Trichloroethane	0.0060	U	67-66-3	Chloroform	0.0060	U
75-34-3	1,1-Dichloroethane	0.0060	U	74-87-3	Chloromethane	0.0060	U
75-35-4	1,1-Dichloroethene	0.0060	U	156-59-2	cis-1,2-Dichloroethene	0.0060	U
96-18-4	1,2,3-Trichloropropane	0.0060	U	10061-01-5	cis-1,3-Dichloropropene	0.0060	U
95-63-6	1,2,4-Trimethylbenzene	0.0012	U	124-48-1	Dibromochloromethane	0.0060	U
95-50-1	1,2-Dichlorobenzene	0.0060	U	75-71-8	Dichlorodifluoromethane	0.0060	U
107-06-2	1,2-Dichloroethane	0.0060	U	100-41-4	Ethylbenzene	0.0012	U
78-87-5	1,2-Dichloropropane	0.0060	U	98-82-8	Isopropylbenzene	0.0012	U
108-67-8	1,3,5-Trimethylbenzene	0.0012	U	136777612	m&p-Xylenes	0.0012	U
541-73-1	1,3-Dichlorobenzene	0.0060	U	75-09-2	Methylene Chloride	0.0060	0.0061
142-28-9	1,3-Dichloropropane	0.0060	U	1634-04-4	Methyl-t-butyl ether	0.0012	U
106-46-7	1,4-Dichlorobenzene	0.0060	U	104-51-8	n-Butylbenzene	0.0012	U
123-91-1	1,4-Dioxane	0.30	U	103-65-1	n-Propylbenzene	0.0012	U
78-93-3	2-Butanone	0.0060	U	95-47-6	o-Xylene	0.0012	U
110-75-8	2-Chloroethylvinylether	0.0060	U	135-98-8	sec-Butylbenzene	0.0012	U
591 -7 8-6	2-Hexanone	0.0060	U	100-42-5	Styrene	0.0060	U
99-87-6	4-Isopropyltoluene	0.0012	0.023	75-65-0	t-Butyl Alcohol	0.030	U
108-10-1	4-Methyl-2-Pentanone	0.0060	U	98-06-6	t-Butylbenzene	0.0012	U
67-64-1	Acetone	0.030	U	127-18-4	Tetrachloroethene	0.0060	U
107-02-8	Acrolein	0.030	U	108-88-3	Toluene	0.0012	U
107-13-1	Acrylonitrile	0.0060	U	156-60-5	trans-1,2-Dichloroethene	0.0060	U
71-43-2	Benzene	0.0012	U	10061-02-6	trans-1,3-Dichloropropene	0.0060	U
75-27 -4	Bromodichloromethane	0.0060	U	79-01-6	Trichloroethene	0.0060	U
7 5-25-2	Bromoform	0.0060	U	75-69-4	Trichlorofluoromethane	0.0060	U
74-83-9	Bromomethane	0.0060	U	75-01-4	Vinyl Chloride	0.0060	U
75-15-0	Carbon Disulfide	0.0060	U	1330-20-7	Xylenes (Total)	0.0012	U

Worksheet #: 115287

Total Target Concentration 0.029

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

 \hat{d} - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-003	Matrix: Soil
Client Id: B-6	Initial Vol: 5.1g
Data File: 1M44022.D	Final Vol: NA
Analysis Date: 04/16/09 01:21	Dilution: 0.980
Date Rec/Extracted: 04/13/09-NA	Solids: 82
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1	80-56-8	.ALPHAPINENE, (-)-	7.09	0.11 J	
2	79-92-5	Camphene	7.27	0.0044 J	
3	18172-67-3	IbetaPinene	7.50	0.0076 J	
4	13466-78-9	.DELTA.3-Carene	7.69	0.10 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0.22

Sample Number: AC43958-004 Client Id: B-7 Data File: 1M44040.D Analysis Date: 04/16/09 08:44 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Soil Initial Vol: 5.03g Final Vol: NA Dilution: 0.994 Solids: 76

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0065	U	56-23-5 Carbon Tetrachloride	0.0065	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0065	U	108-90-7 Chlorobenzene	0.0065	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0065	U	75-00-3 Chloroethane	0.0065	U
79-00-5 1,1,2-Trichloroethane	0.0065	U	67-66-3 Chloroform	0.0065	0.010
75-34-3 1,1-Dichloroethane	0.0065	U	74-87-3 Chloromethane	0.0065	U
75-35-4 1,1-Dichloroethene	0.0065	U	156-59-2 cis-1,2-Dichloroethene	0.0065	U
96-18-4 1,2,3-Trichloropropane	0.0065	U	10061-01-5 cis-1,3-Dichloropropene	0.0065	U
95-63-6 1,2,4-Trimethylbenzene	0.0013	U	124-48-1 Dibromochloromethane	0.0065	U
95-50-1 1,2-Dichlorobenzene	0.0065	U	75-71-8 Dichlorodifluoromethane	0.0065	U
107-06-2 1,2-Dichloroethane	0.0065	U	100-41-4 Ethylbenzene	0.0013	U
78-87-5 1,2-Dichloropropane	0.0065	U	98-82-8 Isopropylbenzene	0.0013	U
108-67-8 1,3,5-Trimethylbenzene	0.0013	U	136777612 m&p-Xylenes	0.0013	U
541-73-1 1,3-Dichlorobenzene	0.0065	U	75-09-2 Methylene Chloride	0.0065	U
142-28-9 1,3-Dichloropropane	0.0065	U	1634-04-4 Methyl-t-butyl ether	0.0013	U
106-46-7 1,4-Dichlorobenzene	0.0065	U	104-51-8 n-Butylbenzene	0.0013	U
123-91-1 1,4-Dioxane	0.33	U	103-65-1 n-Propylbenzene	0.0013	U
78-93-3 2-Butanone	0.0065	U	95-47-6 o-Xylene	0.0013	U
110-75-8 2-Chloroethylvinylether	0.0065	U	135-98-8 sec-Butylbenzene	0.0013	U
591-78-6 2-Hexanone	0.0065	U	100-42-5 Styrene	0.0065	U
99-87-6 4-Isopropyltoluene	0.0013	U	75-65-0 t-Butyl Alcohol	0.033	U
108-10-1 4-Methyl-2-Pentanone	0.0065	U	98-06-6 t-Butylbenzene	0.0013	U
67-64-1 Acetone	0.033	U	127-18-4 Tetrachloroethene	0.0065	U
107-02-8 Acrolein	0.033	U	108-88-3 Toluene	0.0013	U
107-13-1 Acrylonitrile	0.0065	U	156-60-5 trans-1,2-Dichloroethene	0.0065	U
71-43-2 Benzene	0.0013	U	10061-02-6 trans-1,3-Dichloropropene	0.0065	U
75-27-4 Bromodichloromethane	0.0065	U	79-01-6 Trichloroethene	0.0065	U
75-25-2 Bromoform	0.0065	U	75-69-4 Trichlorofluoromethane	0.0065	U
74-83-9 Bromomethane	0.0065	U	75-01-4 Vinyl Chloride	0.0065	U
75-15-0 Carbon Disulfide	0.0065	U	1330-20-7 Xylenes (Total)	0.0013	U

Worksheet #: 115287

Total Target Concentration 0.01

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-004	Matrix: Soil
Client Id: B-7	Initial Vol: 5.03g
Data File: 1M44040.D	Final Vol: NA
Analysis Date: 04/16/09 08:44	Dilution: 0.994
Date Rec/Extracted: 04/13/09-NA	Solids: 76
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0
Sample Number: AC43958-005 Client Id: B-10 Data File: 1M44041.D Analysis Date: 04/16/09 09:01 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Soil Initial Vol: 5.02g Final Vol: NA Dilution: 0.996 Solids: 84

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0059	U	56-23-5 Carbon Tetrachloride	0.0059	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0059	U	108-90-7 Chlorobenzene	0.0059	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0059	U	75-00-3 Chloroethane	0.0059	U
79-00-5	1,1,2-Trichloroethane	0.0059	U	67-66-3 Chloroform	0.0059	U
75-34-3	1,1-Dichloroethane	0.0059	U	74-87-3 Chloromethane	0.0059	U
75-35-4	1,1-Dichloroethene	0.0059	U	156-59-2 cis-1,2-Dichloroethene	0.0059	U
96-18-4	1,2,3-Trichloropropane	0.0059	U	10061-01-5 cis-1,3-Dichloropropene	0.0059	U
95-63-6	1,2,4-Trimethylbenzene	0.0012	U	124-48-1 Dibromochloromethane	0.0059	U
95-50-1	1,2-Dichlorobenzene	0.0059	U	75-71-8 Dichlorodifluoromethane	0.0059	U
107-06-2	1,2-Dichloroethane	0.0059	U	100-41-4 Ethylbenzene	0.0012	U
78-87-5	1,2-Dichloropropane	0.0059	U	98-82-8 Isopropylbenzene	0.0012	U
108-67-8	1,3,5-Trimethylbenzene	0.0012	U	136777612 m&p-Xylenes	0.0012	U
541-73-1	1,3-Dichlorobenzene	0.0059	U	75-09-2 Methylene Chloride	0.0059	U
142-28-9	1,3-Dichloropropane	0.0059	U	1634-04-4 Methyl-t-butyl ether	0.0012	U
106-46-7	1,4-Dichlorobenzene	0.0059	U	104-51-8 n-Butylbenzene	0.0012	U
123-91-1	1,4-Dioxane	0.30	U	103-65-1 n-Propylbenzene	0.0012	U
78-93-3	2-Butanone	0.0059	U	95-47-6 o-Xylene	0.0012	U
110-75-8	2-Chloroethylvinylether	0.0059	U	135-98-8 sec-Butylbenzene	0.0012	U
591-78-6	2-Hexanone	0.0059	U	100-42-5 Styrene	0.0059	U
99-87-6	4-Isopropyltoluene	0.0012	0.0018	75-65-0 t-Butyl Alcohol	0.030	U
108-10-1	4-Methyl-2-Pentanone	0.0059	U	98-06-6 t-Butylbenzene	0.0012	U
67-64-1	Acetone	0.030	U	127-18-4 Tetrachloroethene	0.0059	U
107-02-8	Acrolein	0.030	U	108-88-3 Toluene	0.0012	U
107-13-1	Acrylonitrile	0.0059	U	156-60-5 trans-1,2-Dichloroethene	0.0059	U
71-43-2	Benzene	0.0012	U	10061-02-6 trans-1,3-Dichloropropene	0.0059	U
75-27-4	Bromodichloromethane	0.0059	U	79-01-6 Trichloroethene	0.0059	U
75-25-2	Bromoform	0.0059	U	75-69-4 Trichlorofluoromethane	0.0059	U
74-83-9	Bromomethane	0.0059	U	75-01-4 Vinyl Chloride	0.0059	U
75-15-0	Carbon Disulfide	0.0059	U	1330-20-7 Xylenes (Total)	0.0012	U

Worksheet #: 115287

Total Target Concentration 0.0018

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-005	Matrix: Soil
Client Id: B-10	Initial Vol: 5.02g
Data File: 1M44041.D	Final Vol: NA
Analysis Date: 04/16/09 09:01	Dilution: 0.996
Date Rec/Extracted: 04/13/09-NA	Solids: 84
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1	80-56-8	.ALPHAPINENE, (-)-	7.08	0.022 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0.022

Sample Number: AC43958-006 Client Id: B-11 Data File: 1M44042.D Analysis Date: 04/16/09 09:17 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Soil Initial Vol: 5.18g Final Vol: NA Dilution: 0.965 Solids: 83

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	0.0058	U	56-23-5 Carbon Tetrachloride	0.0058	U
79-34-5 1,1,2,2-Tetrachloroethane	0.0058	U	108-90-7 Chlorobenzene	0.0058	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	0.0058	U	75-00-3 Chloroethane	0.0058	U
79-00-5 1,1,2-Trichloroethane	0.0058	U	67-66-3 Chloroform	0.0058	U
75-34-3 1,1-Dichloroethane	0.0058	U	74-87-3 Chloromethane	0.0058	U
75-35-4 1,1-Dichloroethene	0.0058	U	156-59-2 cis-1,2-Dichloroethene	0.0058	U
96-18-4 1,2,3-Trichloropropane	0.0058	U	10061-01-5 cis-1,3-Dichloropropene	0.0058	U
95-63-6 1,2,4-Trimethylbenzene	0.0012	U	124-48-1 Dibromochloromethane	0.0058	U
95-50-1 1,2-Dichlorobenzene	0.0058	U	75-71-8 Dichlorodifluoromethane	0.0058	U
107-06-2 1,2-Dichloroethane	0.0058	U	100-41-4 Ethylbenzene	0.0012	U
78-87-5 1,2-Dichloropropane	0.0058	U	98-82-8 Isopropylbenzene	0.0012	U
108-67-8 1,3,5-Trimethylbenzene	0.0012	U	136777612 m&p-Xylenes	0.0012	U
541-73-1 1,3-Dichlorobenzene	0.0058	U	75-09-2 Methylene Chloride	0.0058	U
142-28-9 1,3-Dichloropropane	0.0058	U	1634-04-4 Methyl-t-butyl ether	0.0012	U
106-46-7 1,4-Dichlorobenzene	0.0058	U	104-51-8 n-Butylbenzene	0.0012	U
123-91-1 1,4-Dioxane	0.29	U	103-65-1 n-Propylbenzene	0.0012	U
78-93-3 2-Butanone	0.0058	U	95-47-6 o-Xylene	0.0012	U
110-75-8 2-Chloroethylvinylether	0.0058	U	135-98-8 sec-Butylbenzene	0.0012	U
591-78-6 2-Hexanone	0.0058	U	100-42-5 Styrene	0.0058	U
99-87-6 4-Isopropyltoluene	0.0012	U	75-65-0 t-Butyl Alcohol	0.029	U
108-10-1 4-Methyl-2-Pentanone	0.0058	U	98-06-6 t-Butylbenzene	0.0012	U
67-64-1 Acetone	0.029	U	127-18-4 Tetrachloroethene	0.0058	U
107-02-8 Acrolein	0.029	U	108-88-3 Toluene	0.0012	U
107-13-1 Acrylonitrile	0.0058	U	156-60-5 trans-1,2-Dichloroethene	0.0058	U
71-43-2 Benzene	0.0012	U	10061-02-6 trans-1,3-Dichloropropene	0.0058	U
75-27-4 Bromodichloromethane	0.0058	U	79-01-6 Trichloroethene	0.0058	U
75-25-2 Bromoform	0.0058	U	75-69-4 Trichlorofluoromethane	0.0058	U
74-83-9 Bromomethane	0.0058	U	75-01-4 Vinyl Chloride	0.0058	U
75-15-0 Carbon Disulfide	0.0058	U	1330-20-7 Xylenes (Total)	0.0012	U
			-		

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of specified detection limit.

the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-006	Matrix: Soil
Client Id: B-11	Initial Vol: 5.18g
Data File: 1M44042.D	Final Vol: NA
Analysis Date: 04/16/09 09:17	Dilution: 0.965
Date Rec/Extracted: 04/13/09-NA	Solids: 83
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		unknown	7.42	0.0052 J	
2		unknown	8.47	0.0074 J	
3	2958-76-1	Naphthalene, decahydro-2-methyl-	8.56	0.0053 J	
4	2958-76-1	2-METHYLDECALIN (PROBABLY TRA	8.70	0.0068 J	
5		unknown	8.92	0.0061 J	
6	54725-16-5	2H-Inden-2-one, 1,4,5,6,7,7a-hexahydro	9.08	0.0054 J	
7	4175-53-5	1H-Indene, 2,3-dihydro-1,3-dimethyl-	9.23	0.011 J	
8	91-20-3	Naphthalene	9.37	0.010 J	
9		unknown	9.47	0.0092 J	
10	4175-54-6	Naphthalene, 1,2,3,4-tetrahydro-1,4-dim	9.85	0.0049 J	

Worksheet #: 115287

Total Tentativelv Identified Concentration 0.071

Sample Number: AC43958-007 Client Id: B-12 Data File: 1M44043.D Analysis Date: 04/16/09 09:34 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Soil Initial Vol: 5.04g Final Vol: NA Dilution: 0.992 Solids: 81

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0061	U	56-23-5 Carbon Tetrachloride	0.0061	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0061	U	108-90-7 Chlorobenzene	0.0061	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0061	U	75-00-3 Chloroethane	0.0061	U
79-00-5	1,1,2-Trichloroethane	0.0061	U	67-66-3 Chloroform	0.0061	U
75-34-3	1,1-Dichloroethane	0.0061	U	74-87-3 Chloromethane	0.0061	U
75-35-4	1,1-Dichloroethene	0.0061	U	156-59-2 cis-1,2-Dichloroethene	0.0061	U
96-18-4	1,2,3-Trichloropropane	0.0061	U	10061-01-5 cis-1,3-Dichloropropene	0.0061	U
95-63-6	1,2,4-Trimethylbenzene	0.0012	U	124-48-1 Dibromochloromethane	0.0061	U
95-50-1	1,2-Dichlorobenzene	0.0061	U	75-71-8 Dichlorodifluoromethane	0.0061	U
107-06-2	1,2-Dichloroethane	0.0061	U	100-41-4 Ethylbenzene	0.0012	U
78-87-5	1,2-Dichloropropane	0.0061	U	98-82-8 Isopropylbenzene	0.0012	U
108-67-8	1,3,5-Trimethylbenzene	0.0012	U	136777612 m&p-Xylenes	0.0012	U
541-73-1	1,3-Dichlorobenzene	0.0061	U	75-09-2 Methylene Chloride	0.0061	0.0084
142-28-9	1,3-Dichloropropane	0.0061	U	1634-04-4 Methyl-t-butyl ether	0.0012	U
106-46-7	1,4-Dichlorobenzene	0.0061	U	104-51-8 n-Butylbenzene	0.0012	U
123-91-1	1,4-Dioxane	0.31	U	103-65-1 n-Propylbenzene	0.0012	U
78-93-3	2-Butanone	0.0061	U	95-47-6 o-Xylene	0.0012	U
110-75-8	2-Chloroethylvinylether	0.0061	U	135-98-8 sec-Butylbenzene	0.0012	U
591-78-6	2-Hexanone	0.0061	U	100-42-5 Styrene	0.0061	U
99-87-6	4-IsopropyItoluene	0.0012	0.021	75-65-0 t-Butyl Alcohol	0.031	U
108-10-1	4-Methyl-2-Pentanone	0.0061	U	98-06-6 t-Butylbenzene	0.0012	U
67-64-1	Acetone	0.031	U	127-18-4 Tetrachloroethene	0.0061	U
107-02-8	Acrolein	0.031	U	108-88-3 Toluene	0.0012	U
107-13-1	Acrylonitrile	0.0061	U	156-60-5 trans-1,2-Dichloroethene	0.0061	U
71-43-2	Benzene	0.0012	U	10061-02-6 trans-1,3-Dichloropropene	0.0061	U
75-27-4	Bromodichloromethane	0.0061	U	79-01-6 Trichloroethene	0.0061	U
75-25-2	Bromoform	0.0061	U	75-69-4 Trichlorofluoromethane	0.0061	U
74-83-9	Bromomethane	0.0061	U	75-01-4 Vinyl Chloride	0.0061	U
75-15-0	Carbon Disulfide	0.0061	U	1330-20-7 Xylenes (Total)	0.0012	U

Worksheet #: 115287

Total Target Concentration 0.029

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-007	Matrix: Soil
Client Id: B-12	Initial Vol: 5.04g
Data File: 1M44043.D	Final Vol: NA
Analysis Date: 04/16/09 09:34	Dilution: 0.992
Date Rec/Extracted: 04/13/09-NA	Solids: 81
	Method: EPA 8260B

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1	80-56-8	.ALPHAPINENE, (-)-	7.08	0.060 J	
2	18172-67-3	IbetaPinene	7.49	0.0066 J	
3	13466-78-9	.DELTA.3-Carene	7.69	0.054 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0.12

Sample Number: AC43958-008 Client Id: B-11 GW Data File: 3M61743.D Analysis Date: 04/15/09 11:42 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
79-34-5 1,1,2,2-Tetrachloroethane	1.0	U	108-90-7 Chlorobenzene	1.0	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3 Chloroethane	1.0	U
79-00-5 1,1,2-Trichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
75-34-3 1,1-Dichloroethane	1.0	U	74-87-3 Chloromethane	1.0	U
75-35-4 1,1-Dichloroethene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U
107-06-2 1,2-Dichloroethane	0.50	U	100-41-4 Ethylbenzene	1.0	U
78-87-5 1,2-Dichloropropane	1.0	U	98-82-8 Isopropylbenzene	1.0	U
108-67-8 1,3,5-Trimethylbenzene	1.0	U	136777612 m&p-Xylenes	1.0	U
541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	0.50	U
106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
123-91-1 1,4-Dioxane	50	U	103-65-1 n-Propylbenzene	1.0	U
78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	U	135-98-8 sec-Butylbenzene	1.0	U
591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	U
99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	U
108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U
67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	U
107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	U
107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	U
71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
75-27-4 Bromodichloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
75-25-2 Bromoform	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
74-83-9 Bromomethane	5.0	U	75-01-4 Vinyl Chloride	1.0	U
75-15-0 Carbon Disulfide	1.0	U	1330-20-7 Xylenes (Total)	1	U

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-008	Matrix: Aqueous
Client Id: B-11 GW	Initial Vol: 5ml
Data File: 3M61743.D	Final Vol: NA
Analysis Date: 04/15/09 11:42	Dilution: 1.00
Date Rec/Extracted: 04/13/09-NA	Solids:
	Method: EPA 8260B

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

Sample Number: AC43958-015 Client Id: TRIP BLANK Data File: 3M61740.D Analysis Date: 04/15/09 10:51 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
71-55-6 1,1,1-Trichloroethane	1.0	U	56-23-5 Carbon Tetrachloride	1.0	U
79-34-5 1,1,2,2-Tetrachloroethane	1.0	υ	108-90-7 Chlorobenzene	1.0	U
76-13-1 1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3 Chloroethane	1.0	U
79-00-5 1,1,2-Trichloroethane	1.0	U	67-66-3 Chloroform	1.0	U
75-34-3 1,1-Dichloroethane	1.0	U	74-87-3 Chloromethane	1.0	U
75-35-4 1,1-Dichloroethene	1.0	U	156-59-2 cis-1,2-Dichloroethene	1.0	U
96-18-4 1,2,3-Trichloropropane	1.0	U	10061-01-5 cis-1,3-Dichloropropene	1.0	U
95-63-6 1,2,4-Trimethylbenzene	1.0	U	124-48-1 Dibromochloromethane	1.0	U
95-50-1 1,2-Dichlorobenzene	1.0	U	75-71-8 Dichlorodifluoromethane	1.0	U
107-06-2 1,2-Dichloroethane	0.50	U	100-41-4 Ethylbenzene	1.0	U
78-87-5 1,2-Dichloropropane	1.0	U	98-82-8 Isopropylbenzene	1.0	U
108-67-8 1,3,5-Trimethylbenzene	1.0	U	136777612 m&p-Xylenes	1.0	U
541-73-1 1,3-Dichlorobenzene	1.0	U	75-09-2 Methylene Chloride	1.0	U
142-28-9 1,3-Dichloropropane	1.0	U	1634-04-4 Methyl-t-butyl ether	0.50	U
106-46-7 1,4-Dichlorobenzene	1.0	U	104-51-8 n-Butylbenzene	1.0	U
123-91-1 1,4-Dioxane	50	U	103-65-1 n-Propylbenzene	1.0	U
78-93-3 2-Butanone	1.0	U	95-47-6 o-Xylene	1.0	U
110-75-8 2-Chloroethylvinylether	1.0	U	135-98-8 sec-Butylbenzene	1.0	U
591-78-6 2-Hexanone	1.0	U	100-42-5 Styrene	1.0	U
99-87-6 4-Isopropyltoluene	1.0	U	75-65-0 t-Butyl Alcohol	5.0	U
108-10-1 4-Methyl-2-Pentanone	1.0	U	98-06-6 t-Butylbenzene	1.0	U
67-64-1 Acetone	5.0	U	127-18-4 Tetrachloroethene	1.0	U
107-02-8 Acrolein	5.0	U	108-88-3 Toluene	1.0	U
107-13-1 Acrylonitrile	1.0	U	156-60-5 trans-1,2-Dichloroethene	1.0	U
71-43-2 Benzene	0.50	U	10061-02-6 trans-1,3-Dichloropropene	1.0	U
75-27-4 Bromodichloromethane	1.0	U	79-01-6 Trichloroethene	1.0	U
75-25-2 Bromoform	1.0	U	75-69-4 Trichlorofluoromethane	1.0	U
74-83-9 Bromomethane	5.0	U	75-01-4 Vinyl Chloride	1.0	U
75-15-0 Carbon Disulfide	1.0	U	1330-20-7 Xylenes (Total)	1	U

Worksheet #: 115287

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

Form1e ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-015	Matrix: Aqueous			
Client Id: TRIP BLANK	Initial Vol: 5ml			
Data File: 3M61740.D	Final Vol: NA			
Analysis Date: 04/15/09 10:51	Dilution: 1.00			
Date Rec/Extracted: 04/13/09-NA	Solids:			
	Method: EPA 8260B			

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	01	

Worksheet #: 115287

Total Tentatively Identified Concentration 0

FORM 3

Batch Number: MBS11916 Mbs Name: MBS11916 Ns Name: AC43942-014 Ms Name: AC43942-014(MS) Msd Name: AC43942-014(MSD Mbs File: 1M43986.D Non Spk'd File: 1M43963.D Spike File: 1M44006.D Spike Dup File: 1M44007.D Matrix: Soil Method: EPA 8260B
 Mbs Date:
 04/15/09 15:27

 Non Spk'd Date:
 04/15/09 09:16

 Spike Date:
 04/15/09 20:57

 Spike Dup Date:
 04/15/09 21:14

									Mictiliou.							
Compound	C#	Co	o Mr	Conc Exp	Lo Llm	Hi Lim	Rpd Llm	Mbs Conc	Sample Conc	Spike Conc	Spike Dup Conc	Mbs Rec	MS Rec	Msd Rec	Rpd	-
Vinyl Chloride	6	1	0	50	6	117	53	39.76	0.00	39.14	36.75	80	78	74	6.3	
1,1-Dichloroethene	19	1	0	50	8	114	53	40.98	0.00	39.88	37.53	82	80	75	6.1	
1,1-Dichloroethane	22	1	0	50	14	127	44	44.88	0.00	42.52	42.76	90	85	86	0.56	
Chloroform	29	1	0	50	26	119	39	46.67	0.00	44.31	43.60	93	89	87	1.6	
1,2-Dichloroethane	33	1	0	50	18	130	37	45.93	0.00	41.36	42.80	92	83	86	3.4	
2-Butanone	34	1	0	50	4	141	59	48.27	0.00	47.26	43.98	97	95	88	7.2	
Carbon Tetrachloride	36	1	0	50	19	122	40	41.99	0.00	44.76	36.81	84	90	74	19	
Trichloroethene	42	1	0	50	21	116	39	39.98	0.00	59.10	55.24	80	118 Mo	110	6.8	
Benzene	43	1	0	50	21	122	38	39.40	0.00	37.66	36.11	79	75	72	4.2	
Tetrachloroethene	55	1	0	50	18	116	37	32.86	0.00	39.60	29.60	66	79	59	29	
Toluene	57	1	0	50	19	128	35	41.15	0.00	42.03	36.24	82	84	72	15	
Chlorobenzene	59	1	0	50	21	117	37	38.95	0.00	39.71	33.72	78	79	67	16	
1,4-Dichlorobenzene	70	1	0	50	20	110	41	31.30	0.00	32.01	26.17	63	64	52	20	
1,2-Dichlorobenzene	71	1	0	50	19	113	42	35.48	0.00	38.08	30.24	71	76	60	23	
n-Propylbenzene	78	1	0	50	16	122	42	34.04	0.00	40.87	31.46	68	82	63	26	
sec-Butylbenzene	83	1	0	50	9	125	48	33.24	0.00	42.00	33.60	66	84	67	22	

Sample Number: WMB4113 Client Id:

Data File: 5M50076.D

Analysis Date: 04/21/09 10:00

Date Rec/Extracted: NA-04/20/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
122-66-7	1,2-Diphenylhydrazine	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	65-85-0	Benzoic Acid	10	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
120-83-2	2,4-Dichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	85-68-7	Butylbenzylphthalate	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	2.0	U
95-48-7	2-Methylphenol	2.0	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U
106-44-5	3&4-Methylphenol	2.0	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8	4-Chloroaniline	2.0	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	2.0	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	62-75-9	N-Nitrosodimethylamine	2.0	U
62-53-3	Aniline	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	2.0	U
120-12-7	Anthracene	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
92-87-5	Benzidine	10	U	87-86-5	Pentachlorophenol	10	U
56-55-3	Benzo[a]anthracene	2.0	U	85-01-8	Phenanthrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U	108-95-2	Phenol	2.0	U
205-99-2	Benzo[b]fluoranthene	2.0	U	129-00-0	Pyrene	2.0	U

Worksheet #: 116081

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

Form1e ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: WMB4113	Matrix: Aqueous				
Client Id:	Initial Vol: 1000ml				
Data File: 5M50076.D	Final Vol: 1ml				
Analysis Date: 04/21/09 10:00	Dilution: 1				
Date Rec/Extracted: NA-04/20/09	Solids: 0				
	Method: EPA 8270C				

Units: ug/L

	Cas #	Compound	RT	Conc	
1	111-76-2	Ethanol, 2-butoxy-	4.56	4.6 J	
2	526-73-8	Benzene, 1,2,3-trimethyl-	5.33	4.5 J	

Worksheet #: 116081

Total Tentatively Identified Concentration 9.1

Sample Number: SMB4113 Client Id:

Data File: 9M17766.D

Analysis Date: 04/22/09 13:13

Date Rec/Extracted: NA-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 100

Units: mg/Kg

Cas # Comp	ound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-T	richlorobenzene	0.067	U	191 - 24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7 1,2-Dip	henylhydrazine	0.067	U	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4 2,4,5-T	richlorophenol	0.067	U	65-85-0	Benzoic Acid	0.33	U
88-06-2 2,4,6-T	richlorophenol	0.067	U	111 - 91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2 2,4-Dic	hlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.067	U
105-67-9 2,4-Din	nethylphenol	0.067	บ	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
51-28-5 2,4-Din	itrophenol	0.33	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
121-14-2 2,4-Din	itrotoluene	0.067	U	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2 2,6-Din	itrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-58-7 2-Chlor	ronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-57-8 2-Chlor	rophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	U
91-57-6 2-Meth	ylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	U
95-48-7 2-Meth	ylphenol	0.067	U	84-66-2	Diethylphthalate	0.067	U
88-74-4 2-Nitro	aniline	0.067	U	131-11-3	Dimethylphthalate	0.067	U
88-75-5 2-Nitro	phenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	U
106-44-5 3&4-M	ethylphenol	0.067	U	117-84-0	Di-n-octylphthalate	0.067	U
91-94-1 3,3'-Die	chlorobenzidine	0.067	U	206-44-0	Fluoranthene	0.067	U
99-09-2 3-Nitro	aniline	0.067	U	86-73-7	Fluorene	0.067	U
534-52-1 4,6-Dir	itro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U
101-55-3 4-Brom	ophenyl-phenylether	0.067	U	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7 4-Chlo	ro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U
106-47-8 4-Chlo	roaniline	0.067	U	67-72-1	Hexachloroethane	0.067	U
7005-72-3 4-Chlo	rophenyl-phenylether	0.067	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
100-01-6 4-Nitro	aniline	0.067	U	78-59-1	Isophorone	0.067	U
100-02-7 4-Nitro	phenol	0.067	U	91-20-3	Naphthalene	0.067	U
83-32-9 Acena	ohthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
208-96-8 Acena	ohthylene	0.067	U	62-75-9	N-Nitrosodimethylamine	0.067	U
62-53-3 Aniline		0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	U
120-12-7 Anthra	cene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U
92-87-5 Benzid	ine	0.33	U	87-86-5	Pentachlorophenol	0.33	ປ
56-55-3 Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
50-32-8 Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	U
205-99-2 Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	U

Worksheet #: 116081

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: SMB4113	Matrix: Soil
Client Id:	Initial Vol: 30g
Data File: 9M17766.D	Final Vol: 1ml
Analysis Date: 04/22/09 13:13	Dilution: 1
Date Rec/Extracted: NA-04/22/09	Solids: 100
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		unknown	3.53	0.27 J	
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.88	64 JA	
3		unknown	4.63	0.20 J	

Worksheet #: 116081

Total Tentatively Identified Concentration 64

Sample Number: SMB4113

Client Id: Data File: 10M04342.D

Analysis Date: 04/22/09 13:31

Date Rec/Extracted: NA-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.067	U	191-24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7	1,2-Diphenylhydrazine	0.067	U	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4	2,4,5-Trichlorophenol	0.067	U	65-85-0	Benzoic Acid	0.33	U
88-06-2	2,4,6-Trichlorophenol	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2	2,4-Dichlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.067	U
105-67-9	2,4-Dimethylphenol	0.067	U	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
51-28-5	2,4-Dinitrophenol	0.33	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
121-14-2	2,4-Dinitrotoluene	0.067	U	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2	2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-58-7	2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-57-8	2-Chlorophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	U
91-57-6	2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	U
95-48-7	2-Methylphenol	0.067	U	84-66-2	Diethylphthalate	0.067	U
88-74-4	2-Nitroaniline	0.067	U	131-11-3	Dimethylphthalate	0.067	U
88-75-5	2-Nitrophenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	U
106-44-5	3&4-Methylphenol	0.067	U	117-84-0	Di-n-octylphthalate	0.067	U
91-94-1	3,3'-Dichlorobenzidine	0.067	U	206-44-0	Fluoranthene	0.067	U
99-09-2	3-Nitroaniline	0.067	U	86-73-7	Fluorene	0.067	U
534-52-1	4,6-Dinitro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U
101-55-3	4-Bromophenyl-phenylether	0.067	U	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7	4-Chloro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U
106-47-8	4-Chloroaniline	0.067	U	67-72-1	Hexachloroethane	0.067	U
7005-72-3	4-Chlorophenyl-phenylether	0.067	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
100-01-6	4-Nitroaniline	0.067	U	78-59-1	Isophorone	0.067	U
100-02-7	4-Nitrophenot	0.067	U	91-20-3	Naphthalene	0.067	U
83-32-9	Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
208-96-8	Acenaphthylene	0.067	U	62-75-9	N-Nitrosodimethylamine	0.067	U
62-53-3	Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	U
120-12-7	Anthracene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U
92-87-5	Benzidine	0.33	U	87-86-5	Pentachlorophenol	0.33	U
56-55-3	Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
50-32-8	Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	U
205-99-2	Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	U

Worksheet #: 116081

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

Form1e ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: SMB4113	Matrix: Soil
Client Id:	Initial Vol: 30g
Data File: 10M04342.D	Final Vol: 1ml
Analysis Date: 04/22/09 13:31	Dilution: 1
Date Rec/Extracted: NA-04/22/09	Solids: 100
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		unknown	3.19	0.26 J	
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.60	68 JA	
3		unknown	4.37	0.19 J	

Worksheet #: 116081

Total Tentatively Identified Concentration 68

Sample Number: SMB4113 Client Id:

Data File: 5M50102.D

Analysis Date: 04/22/09 13:40

Date Rec/Extracted: NA-04/22/09

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 100

Units: mg/Kg

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.067	U	191-24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7 1,2-Diphenylhydrazine	0.067	U	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4 2,4,5-Trichlorophenol	0.067	U	65-85-0	Benzoic Acid	0.33	U
88-06-2 2,4,6-Trichlorophenol	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2 2,4-Dichlorophenol	0.067	U	111-44-4	bis(2-Chloroethyl)ether	0.067	U
105-67-9 2,4-Dimethylphenol	0.067	U	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
51-28-5 2,4-Dinitrophenol	0.33	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
121-14-2 2,4-Dinitrotoluene	0.067	U	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2 2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-58-7 2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-57-8 2-Chlorophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	U
91-57-6 2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	U
95-48-7 2-Methylphenol	0.067	U	84-66-2	Diethylphthalate	0.067	U
88-74-4 2-Nitroaniline	0.067	U	131-11-3	Dimethylphthalate	0.067	U
88-75-5 2-Nitrophenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	U
106-44-5 3&4-Methylphenol	0.067	U	117-84-0	Di-n-octylphthalate	0.067	U
91-94-1 3,3'-Dichlorobenzidine	0.067	U	206-44-0	Fluoranthene	0.067	U
99-09-2 3-Nitroaniline	0.067	U	86-73-7	Fluorene	0.067	U
534-52-1 4,6-Dinitro-2-methylphenol	0.33	U	118-74-1	Hexachlorobenzene	0.067	U
101-55-3 4-Bromophenyl-phenylether	0.067	U	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7 4-Chloro-3-methylphenol	0.067	U	77-47-4	Hexachlorocyclopentadiene	0.33	U
106-47-8 4-Chloroaniline	0.067	U	67-72-1	Hexachloroethane	0.067	U
7005-72-3 4-Chlorophenyl-phenylether	0.067	U	193-39-5	indeno[1,2,3-cd]pyrene	0.067	U
100-01-6 4-Nitroaniline	0.067	U	78-59-1	Isophorone	0.067	U
100-02-7 4-Nitrophenoł	0.067	U	91-20-3	Naphthalene	0.067	U
83-32-9 Acenaphthene	0.067	U	98-95-3	Nitrobenzene	0.067	U
208-96-8 Acenaphthylene	0.067	U	62-75-9	N-Nitrosodimethylamine	0.067	U
62-53-3 Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	U
120-12-7 Anthracene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	U
92-87-5 Benzidine	0.33	U	87-86-5	Pentachlorophenol	0.33	U
56-55-3 Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
50-32-8 Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	U
205-99-2 Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	U

Worksheet #: 116081

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: SMB4113	Matrix: Soil
Client Id:	Initial Vol: 30g
Data File: 5M50102.D	Final Vol: 1ml
Analysis Date: 04/22/09 13:40	Dilution: 1
Date Rec/Extracted: NA-04/22/09	Solids: 100
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.61	0.35 J
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.95	40 JA
3	111-76-2	Ethanol, 2-butoxy-	4.56	0.16 J
4		unknown	4.67	0.24 J

Worksheet #: 116081

Total Tentatively Identified Concentration 41

Sample Number: SMB4115 Client Id:

Data File: 9M17799.D

Analysis Date: 04/23/09 16:41

Date Rec/Extracted: NA-04/23/09

Column:DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.067	υ	191-24-2	Benzo[g,h,i]perylene	0.067	U
122-66-7	1,2-Diphenylhydrazine	0.067	υ	207-08-9	Benzo[k]fluoranthene	0.067	U
95-95-4	2,4,5-Trichlorophenol	0.067	U	65-85-0	Benzoic Acid	0.33	U
88-06-2	2,4,6-Trichlorophenol	0.067	U	111-91-1	bis(2-Chloroethoxy)methan	0.067	U
120-83-2	2,4-Dichlorophenol	0.067	υ	111-44-4	bis(2-Chloroethyl)ether	0.067	U
105-67-9	2,4-Dimethylphenol	0.067	υ	108-60-1	bis(2-chloroisopropyl)ether	0.067	U
51-28-5	2,4-Dinitrophenol	0.33	υ	117-81-7	bis(2-Ethylhexyl)phthalate	0.067	U
121-14-2	2,4-Dinitrotoluene	0.067	υ	85-68-7	Butylbenzylphthalate	0.067	U
606-20-2	2,6-Dinitrotoluene	0.067	U	86-74-8	Carbazole	0.067	U
91-58-7	2-Chloronaphthalene	0.067	U	218-01-9	Chrysene	0.067	U
95-57-8	2-Chlorophenol	0.067	U	53-70-3	Dibenzo[a,h]anthracene	0.067	υ
91-57-6	2-Methylnaphthalene	0.067	U	132-64-9	Dibenzofuran	0.067	υ
95-48-7	2-Methylphenol	0.067	υ	84-66-2	Diethylphthalate	0.067	υ
88-74-4	2-Nitroaniline	0.067	υ	131-11-3	Dimethylphthalate	0.067	υ
88-75-5	2-Nitrophenol	0.067	U	84-74-2	Di-n-butylphthalate	0.067	υ
106-44-5	3&4-Methylphenol	0.067	υ	117-84-0	Di-n-octylphthalate	0.067	υ
91-94-1	3,3'-Dichlorobenzidine	0.067	υ	206-44-0	Fluoranthene	0.067	υ
99-09-2	3-Nitroaniline	0.067	υ	86-73-7	Fluorene	0.067	U
534-52-1	4,6-Dinitro-2-methylphenol	0.33	υ	118-74-1	Hexachlorobenzene	0.067	υ
101-55-3	4-Bromophenyl-phenylether	0.067	υ	87-68-3	Hexachlorobutadiene	0.067	U
59-50-7	4-Chloro-3-methylphenol	0.067	υ	77-47-4	Hexachlorocyclopentadiene	0.33	υ
106-47-8	4-Chloroaniline	0.067	υ	67-72-1	Hexachloroethane	0.067	U
7005-72-3	4-Chlorophenyl-phenylether	0.067	υ	193-39-5	Indeno[1,2,3-cd]pyrene	0.067	U
100-01-6	4-Nitroaniline	0.067	υ	78-59-1	Isophorone	0.067	U
100-02-7	4-Nitrophenol	0.067	υ	91-20-3	Naphthalene	0.067	U
83-32-9	Acenaphthene	0.067	υ	98-95-3	Nitrobenzene	0.067	U
208-96-8	Acenaphthylene	0.067	υ	62-75-9	N-Nitrosodimethylamine	0.067	υ
62-53-3	Aniline	0.067	U	621-64-7	N-Nitroso-di-n-propylamine	0.067	υ
120-12-7	Anthracene	0.067	U	86-30-6	n-Nitrosodiphenylamine	0.067	υ
92-87-5	Benzidine	0.33	U	87-86-5	Pentachlorophenol	0.33	υ
56-55-3	Benzo[a]anthracene	0.067	U	85-01-8	Phenanthrene	0.067	U
50-32-8	Benzo[a]pyrene	0.067	U	108-95-2	Phenol	0.067	υ
205-99-2	Benzo[b]fluoranthene	0.067	U	129-00-0	Pyrene	0.067	υ

Worksheet #: 116081

Total Target Concentration 0

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

specified detection limit. the instrument.

J - Indicates an estimated value when a compound is detected at less than the

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: SMB4115	Matrix: Soil
Client Id:	Initial Vol: 30g
Data File: 9M17799.D	Final Vol: 1ml
Analysis Date: 04/23/09 16:41	Dilution: 1
Date Rec/Extracted: NA-04/23/09	Solids: 100
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		unknown	3.53	0.38 J	_
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.89	88 JA	
3		unknown	4.62	0.28 J	

Worksheet #: 116081

Total Tentatively Identified Concentration 89

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-001 Client Id: B-2 Data File: 9M17803.D Analysis Date: 04/23/09 18:10 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 85

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.078	U	191-24-2	Benzo[g,h,i]perylene	0.078	U
122-66-7	1,2-Diphenylhydrazine	0.078	U	207-08-9	Benzo[k]fluoranthene	0.078	U
95-95-4	2,4,5-Trichlorophenol	0.078	U	65-85-0	Benzoic Acid	0.39	U
88-06-2	2,4,6-Trichlorophenol	0.078	U	111-91-1	bis(2-Chloroethoxy)methan	0.078	U
120-83-2	2,4-Dichlorophenol	0.078	U	111-44-4	bis(2-Chloroethyl)ether	0.078	U
105-67-9	2,4-Dimethylphenol	0.078	U	108-60-1	bis(2-chloroisopropyl)ether	0.078	U
51-28-5	2,4-Dinitrophenol	0.39	U	117-81- 7	bis(2-Ethylhexyl)phthalate	0.078	0.27
121-14-2	2,4-Dinitrotoluene	0.078	U	85-68-7	Butylbenzylphthalate	0.078	U
606-20-2	2,6-Dinitrotoluene	0.078	U	86-74-8	Carbazole	0.078	U
91-58-7	2-Chioronaphthalene	0.078	U	218-01-9	Chrysene	0.078	0.087
95-57-8	2-Chloropheno!	0.078	U	53-70-3	Dibenzo[a,h]anthracene	0.078	U
91-57-6	2-Methylnaphthalene	0.078	U	132-64-9	Dibenzofuran	0.078	U
95-48-7	2-Methylphenol	0.078	U	84-66-2	Diethylphthalate	0.078	U
88-74-4	2-Nitroaniline	0.078	U	131-11-3	Dimethylphthalate	0.078	U
88-75-5	2-Nitrophenol	0.078	U	84-74-2	Di-n-butylphthalate	0.078	U
106-44-5	3&4-Methylphenol	0.078	U	117-84-0	Di-n-octylphthalate	0.078	0.21
91-94-1	3,3'-Dichlorobenzidine	0.078	U	206-44-0	Fluoranthene	0.078	0.13
99-09-2	3-Nitroaniline	0.078	U	86-73-7	Fluorene	0.078	U
534-52-1	4,6-Dinitro-2-methylphenol	0.39	U	118-74-1	Hexachlorobenzene	0.078	U
101-55-3	4-Bromophenyl-phenylether	0.078	U	87-68-3	Hexachlorobutadiene	0.078	U
59-50-7	4-Chloro-3-methylphenol	0.078	U	77-47-4	Hexachlorocyclopentadiene	0.39	U
106-47-8	4-Chloroaniline	0.078	U	67-72-1	Hexachloroethane	0.078	U
7005-72-3	4-Chlorophenyl-phenylether	0.078	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.078	U
100-01-6	4-Nitroaniline	0.078	U	78-59-1	Isophorone	0.078	U
100-02-7	4-Nitrophenol	0.078	U	91-20-3	Naphthalene	0.078	U
83-32-9	Acenaphthene	0.078	U	98-95-3	Nitrobenzene	0.078	U
208-96-8	Acenaphthylene	0.078	U	62-75-9	N-Nitrosodimethylamine	0.078	U
62-53-3	Aniline	0.078	U	621-64-7	N-Nitroso-di-n-propylamine	0.078	U
120-12-7	Anthracene	0.078	U	86-30-6	n-Nitrosodiphenylamine	0.078	U
92-87-5	Benzidine	0.39	U	87-86-5	Pentachlorophenol	0.39	U
56-55-3	Benzo[a]anthracene	0.078	0.087	85-01-8	Phenanthrene	0.078	U
50-32-8	Benzo[a]pyrene	0.078	0.082	108-95-2	Phenol	0.078	U
205-99-2	Benzo[b]fluoranthene	0.078	0.12	129-00-0	Pyrene	0.078	0.14

Worksheet #: 116081

Total Target Concentration 1.1

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-001	Matrix: Soil
Client Id: B-2	Initial Vol: 30g
Data File: 9M17803.D	Final Vol: 1ml
Analysis Date: 04/23/09 18:10	Dilution: 1
Date Rec/Extracted: 04/13/09-04/23/09	Solids: 85
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.52	0.43 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.88	93 JAB
3		unknown	4.62	0.31 JB
4	85027-76-5	17-Methoxy-3.betamethoxymethoxy-9.	12.17	0.22 J
5		unknown	13.12	0.21 J
6	1330-96-7	1,2-Benzenedicarboxylic acid, isodecyl	13.78	0.38 J

Worksheet #: 116081

Total Tentatively Identified Concentration 95

Sample Number: AC43958-002 Client Id: B-3 Data File: 5M50105.D Analysis Date: 04/22/09 17:01 Date Rec/Extracted: 04/13/09-04/22/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 87

Units: mg/Kg

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	0.077	U	191-24-2	Benzo[g,h,i]perylene	0.077	U
122-66-7 1,2-Diphenylhydrazine	0.077	U	207-08-9	Benzo[k]fluoranthene	0.077	U
95-95-4 2,4,5-Trichlorophenol	0.077	U	65-85-0	Benzoic Acid	0.38	U
88-06-2 2,4,6-Trichlorophenol	0.077	U	111-91-1	bis(2-Chloroethoxy)methan	0.077	U
120-83-2 2,4-Dichlorophenol	0.077	U	111-44-4	bis(2-Chloroethyl)ether	0.077	U
105-67-9 2,4-Dimethylphenol	0.077	U	108-60-1	bis(2-chloroisopropyl)ether	0.077	U
51-28-5 2,4-Dinitrophenol	0.38	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.077	U
121-14-2 2,4-Dinitrotoluene	0.077	U	85-68-7	Butylbenzylphthalate	0.077	U
606-20-2 2,6-Dinitrotoluene	0.077	U	86-74-8	Carbazole	0.077	U
91-58-7 2-Chloronaphthalene	0.077	U	218-01-9	Chrysene	0.077	U
95-57-8 2-Chlorophenol	0.077	U	53-70-3	Dibenzo[a,h]anthracene	0.077	U
91-57-6 2-Methylnaphthalene	0.077	U	132-64-9	Dibenzofuran	0.077	U
95-48-7 2-Methylphenol	0.077	U	84-66-2	Diethylphthalate	0.077	U
88-74-4 2-Nitroaniline	0.077	U	131-11-3	Dimethylphthalate	0.077	U
88-75-5 2-Nitrophenol	0.077	U	84-74-2	Di-n-butylphthalate	0.077	U
106-44-5 3&4-Methylphenol	0.077	U	117-84-0	Di-n-octylphthalate	0.077	U
91-94-1 3,3'-Dichlorobenzidine	0.077	U	206-44-0	Fluoranthene	0.077	U
99-09-2 3-Nitroaniline	0.077	U	86-73-7	Fluorene	0.077	U
534-52-1 4,6-Dinitro-2-methylphenol	0.38	U	118-74-1	Hexachlorobenzene	0.077	U
101-55-3 4-Bromophenyl-phenylether	0.077	U	87-68-3	Hexachlorobutadiene	0.077	U
59-50-7 4-Chloro-3-methylphenol	0.077	U	77-47-4	Hexachlorocyclopentadiene	0.38	U
106-47-8 4-Chloroaniline	0.077	U	67-72-1	Hexachloroethane	0.077	U
7005-72-3 4-Chlorophenyl-phenylether	0.077	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.077	U
100-01-6 4-Nitroaniline	0.077	U	78-59-1	isophorone	0.077	U
100-02-7 4-Nitrophenol	0.077	U	91-20-3	Naphthalene	0.077	U
83-32-9 Acenaphthene	0.077	U	98-95-3	Nitrobenzene	0.077	U
208-96-8 Acenaphthylene	0.077	U	62-75-9	N-Nitrosodimethylamine	0.077	U
62-53-3 Aniline	0.077	U	621-64-7	N-Nitroso-di-n-propylamine	0.077	U
120-12-7 Anthracene	0.077	U	86-30-6	n-Nitrosodiphenylamine	0.077	U
92-87-5 Benzidine	0.38	U	87-86-5	Pentachlorophenol	0.38	U
56-55-3 Benzo[a]anthracene	0.077	U	85-01-8	Phenanthrene	0.077	U
50-32-8 Benzo[a]pyrene	0.077	U	108-95-2	Phenol	0.077	U
205-99-2 Benzo[b]fluoranthene	0.077	U	129-00-0	Pyrene	0.077	U

Worksheet #: 116081

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-002	Matrix: Soil
Client Id: B-3	Initial Vol: 30g
Data File: 5M50105.D	Final Vol: 1ml
Analysis Date: 04/22/09 17:01	Dilution: 1
Date Rec/Extracted: 04/13/09-04/22/09	Solids: 87
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.60	0.43 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.94	52 JAB
3		unknown	4.67	0.30 JB

Worksheet #: 116081

Total Tentatively Identified Concentration 53

Sample Number: AC43958-003 Client Id: B-6 Data File: 10M04346.D Analysis Date: 04/22/09 17:00 Date Rec/Extracted: 04/13/09-04/22/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 82

Units: mg/Kg

0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081	U U U U U U U U U
0.081 0.41 0.081 0.081 0.081 0.081 0.081 0.081 0.081	U U U U U U U
0.41 0.081 0.081 0.081 0.081 0.081 0.081 0.081	U U U U U U U
0.081 0.081 0.081 0.081 0.081 0.081 0.081	U U U U U U
0.081 0.081 0.081 0.081 0.081 0.081	U U U U U
0.081 0.081 0.081 0.081 0.081	U U U U
0.081 0.081 0.081 0.081	U U U
0.081 0.081 0.081	U U
0.081 0.081	U
0.081	
	U
0.081	U
0.41	U
0.081	U
0.41	U
0.081	U
0.081	U
0.081	0.095
	0.081 0.081

Worksheet #: 116081

Total Target Concentration 0.095

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

 \hat{d} - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-003	Matrix: Soil
Client Id: B-6	Initial Vol: 30g
Data File: 10M04346.D	Final Vol: 1ml
Analysis Date: 04/22/09 17:00	Dilution: 1
Date Rec/Extracted: 04/13/09-04/22/09	Solids: 82
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.18	0.34 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.60	88 JAB
3		unknown	4.37	0.25 JB

Worksheet #: 116081

Total Tentatively Identified Concentration 89

Sample Number: AC43958-004 Client Id: B-7 Data File: 9M17773.D Analysis Date: 04/22/09 17:37 Date Rec/Extracted: 04/13/09-04/22/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 76

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.088	U	191-24-2	Benzo[g,h,i]perylene	0.088	1.2
122-66-7	1,2-Diphenylhydrazine	0.088	U	207-08-9	Benzo[k]fluoranthene	0.088	0.76
95-95-4	2,4,5-Trichlorophenol	0.088	U	65-85-0	Benzoic Acid	0.44	U
88-06-2	2,4,6-Trichlorophenol	0.088	U	111-91-1	bis(2-Chloroethoxy)methan	0.088	U
120-83-2	2,4-Dichlorophenol	0.088	U	111-44-4	bis(2-Chloroethyl)ether	0.088	U
105-67-9	2,4-Dimethylphenol	0.088	U	108-60-1	bis(2-chloroisopropyl)ether	0.088	U
51-28-5	2,4-Dinitrophenol	0.44	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.088	0.17
121-14-2	2,4-Dinitrotoluene	0.088	U	85-68-7	Butylbenzylphthalate	0.088	U
606-20-2	2,6-Dinitrotoluene	0.088	U	86-74-8	Carbazole	0.088	0.088
91-58-7	2-Chloronaphthalene	0.088	U	218-01-9	Chrysene	0.088	2.0
95-57-8	2-Chlorophenol	0.088	U	53-70-3	Dibenzo[a,h]anthracene	0.088	0.30
91-57-6	2-Methylnaphthalene	0.088	U	132-64-9	Dibenzofuran	0.088	U
95-48-7	2-Methylphenol	0.088	U	84-66-2	Diethylphthalate	0.088	U
88-74-4	2-Nitroaniline	0.088	U	131-11-3	Dimethylphthalate	0.088	U
88-7 5-5	2-Nitrophenol	0.088	U	84-74-2	Di-n-butylphthalate	0.088	U
106-44-5	3&4-Methylphenol	0.088	U	117-84-0	Di-n-octylphthalate	0.088	0.14
91-94-1	3,3'-Dichlorobenzidine	0.088	U	206-44-0	Fluoranthene	0.088	3.3
99-09-2	3-Nitroaniline	0.088	U	86-73- 7	Fluorene	0.088	0.12
534-52-1	4,6-Dinitro-2-methylphenol	0.44	U	118-74-1	Hexachlorobenzene	0.088	U
101-55-3	4-Bromophenyl-phenylether	0.088	U	87-68-3	Hexachlorobutadiene	0.088	U
59-50-7	4-Chloro-3-methylphenol	0.088	U	77-47-4	Hexachlorocyclopentadiene	0.44	U
106-47-8	4-Chloroaniline	0.088	U	67-72-1	Hexachloroethane	0.088	U
7005-72-3	4-Chlorophenyl-phenylether	0.088	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.088	1.0
100-01-6	4-Nitroaniline	0.088	U	78-59-1	Isophorone	0.088	U
100-02-7	4-Nitrophenol	0.088	U	91-20-3	Naphthalene	0.088	U
83-32-9	Acenaphthene	0.088	0.098	98-95-3	Nitrobenzene	0.088	U
208-96-8	Acenaphthylene	0.088	0.19	62-75-9	N-Nitrosodimethylamine	0.088	U
62-53-3	Aniline	0.088	U	621-64-7	N-Nitroso-di-n-propylamine	0.088	U
120-12-7	Anthracene	0.088	0.42	86-30-6	n-Nitrosodiphenylamine	0.088	U
92-87-5	Benzidine	0.44	U	87-86-5	Pentachlorophenol	0.44	U
56-55-3	Benzo[a]anthracene	0.088	2.0	85-01-8	Phenanthrene	0.088	1.8
50-32-8	Benzo[a]pyrene	0.088	1.8	108-95-2	Phenol	0.088	U
205-99-2	Benzo[b]fluoranthene	0.088	2.2	129-00-0	Pyrene	0.088	4.1

Worksheet #: 116081

Total Target Concentration 22

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1e ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-004	Matrix: Soil
Client Id: B-7	Initial Vol: 30g
Data File: 9M17773.D	Final Vol: 1ml
Analysis Date: 04/22/09 17:37	Dilution: 1
Date Rec/Extracted: 04/13/09-04/22/09	Solids: 76
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.54	0.41 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.90	92 JAB
3		unknown	4.63	0.31 JB
4	629-78-7	Heptadecane	8.69	0.27 J
5	779-02-2	Anthracene, 9-methyl-	9.81	0.42 J
6	779-02-2	Anthracene, 9-methyl-	9.84	0.53 J
7	90-60-8	Benzaldehyde, 3,5-dichloro-2-hydroxy-	9.93	0.64 J
8	1961-96-2	1H-Indene, 1-phenyl-	9.96	0.35 J
9	35465-71-5	2-PHENYLNAPHTHALENE	10.14	0.32 J
10	3674-66-6	Phenanthrene, 2,5-dimethyl-	10.43	0.50 J
11	4630-07-3	Valencene	10.46	0.29 J
12	1576-69-8	Phenanthrene, 2,7-dimethyl-	10.53	0.44 J
13	7380-78-1	Benzene, 1-methoxy-4-(phenylethynyl)-	10.77	0.28 J
14	238-84-6	11H-Benzo[a]fluorene	11.26	0.43 J
15	2381-21-7	Pyrene, 1-methyl-	11.38	0.36 J
16	2381-21-7	Pyrene, 1-methyl-	11.52	0.31 J
17		unknown	12.03	0.30 J
18		unknown	13.34	0.40 J
19	192-97-2	Benzo[e]pyrene	13.60	0.30 J
20	630-03-5	Nonacosane	13.69	0.46 J
21	192-97-2	Benzo[e]pyrene	13.78	1.1 J
22		unknown	14.47	0.37 J
23		unknown	14.80	0.48 J
24	215-58-7	1,2:3,4-Dibenzoanthracene	15.18	0.29 J
25	215-58-7	1,2:3,4-Dibenzoanthracene	15.21	0.38 J

Worksheet #: 116081

Total Tentatively Identified Concentration 100

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-005 Client Id: B-10 Data File: 5M50104.D Analysis Date: 04/22/09 16:38 Date Rec/Extracted: 04/13/09-04/22/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 84

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.079	U	191-24-2	Benzo[g,h,i]perylene	0.079	U
122-66-7	1,2-Diphenylhydrazine	0.079	U	207-08-9	Benzo[k]fluoranthene	0.079	U
95-95-4	2,4,5-Trichlorophenol	0.079	υ	65-85-0	Benzoic Acid	0.40	U
88-06-2	2,4,6-Trichlorophenol	0.079	υ	111-91-1	bis(2-Chloroethoxy)methan	0.079	U
120-83-2	2,4-Dichlorophenol	0.079	υ	111-44-4	bis(2-Chloroethyl)ether	0.079	U
105-67-9	2,4-Dimethylphenol	0.079	υ	108-60-1	bis(2-chloroisopropyl)ether	0.079	U
51-28-5	2,4-Dinitrophenol	0.40	υ	117-81-7	bis(2-Ethylhexyl)phthalate	0.079	U
121-14-2	2,4-Dinitrotoluene	0.079	υ	85-68-7	Butylbenzylphthalate	0.079	U
606-20-2	2,6-Dinitrotoluene	0.079	υ	86-74-8	Carbazole	0.079	υ
91-58-7	2-Chloronaphthalene	0.079	υ	218-01-9	Chrysene	0.079	υ
95-57-8	2-Chlorophenol	0.079	υ	53-70-3	Dibenzo[a,h]anthracene	0.079	υ
91-57-6	2-Methylnaphthalene	0.079	U	132-64-9	Dibenzofuran	0.079	U
95-48-7	2-Methylphenol	0.079	U	84-66-2	Diethylphthalate	0.079	U
88-74-4	2-Nitroaniline	0.079	U	131-11-3	Dimethylphthalate	0.079	U
88-75-5	2-Nitrophenol	0.079	U	84-74-2	Di-n-butylphthalate	0.079	υ
106-44-5	3&4-Methylphenol	0.079	U	117-84-0	Di-n-octylphthalate	0.079	υ
91-94-1	3,3'-Dichlorobenzidine	0.079	U	206-44-0	Fluoranthene	0.079	U
99-09-2	3-Nitroaniline	0.079	U	86-73-7	Fluorene	0.079	U
534-52-1	4,6-Dinitro-2-methylphenol	0.40	U	118-74-1	Hexachlorobenzene	0.079	U
101-55-3	4-Bromophenyl-phenylether	0.079	U	87-68-3	Hexachlorobutadiene	0.079	U
59-50-7	4-Chloro-3-methylphenol	0.079	U	77-47-4	Hexachlorocyclopentadiene	0.40	U
106-47-8	4-Chloroaniline	0.079	U	67-72-1	Hexachloroethane	0.079	U
7005-72-3	4-Chlorophenyl-phenylether	0.079	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.079	U
100-01-6	4-Nitroaniline	0.079	U	78-59-1	Isophorone	0.079	U
100-02-7	4-Nitrophenol	0.079	U	91-20-3	Naphthalene	0.079	U
83-32-9	Acenaphthene	0.079	U	98-95-3	Nitrobenzene	0.079	U
208-96-8	Acenaphthylene	0.079	U	62-75-9	N-Nitrosodimethylamine	0.079	U
62-53-3	Aniline	0.079	U	621-64-7	N-Nitroso-di-n-propylamine	0.079	U
120-12-7	Anthracene	0.079	U	86-30-6	n-Nitrosodiphenylamine	0.079	υ
92-87-5	Benzidine	0.40	U	87-86-5	Pentachlorophenol	0.40	U
56-55-3	Benzo[a]anthracene	0.079	U	85-01-8	Phenanthrene	0.079	U
50-32-8	Benzo[a]pyrene	0.079	U	108-95-2	Phenol	0.079	U
205-99-2	Benzo[b]fluoranthene	0.079	U	129-00-0	Pyrene	0.079	U

Worksheet #: 116081

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

Form1e ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-005	Matrix: Soil
Client Id: B-10	Initial Vol: 30g
Data File: 5M50104.D	Final Vol: 1ml
Analysis Date: 04/22/09 16:38	Dilution: 1
Date Rec/Extracted: 04/13/09-04/22/09	Solids: 84
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.60	0.50 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.94	58 JAB
3		unknown	4.67	0.32 JB
4	102-76-1	1,2,3-Propanetriol, triacetate	7.09	0.24 J

Worksheet #: 116081

Total Tentatively Identified Concentration 59

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-006(3X) Client Id: B-11 Data File: 9M17823.D Analysis Date: 04/24/09 11:16 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 3 Solids: 83

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.24	U	191-24-2	Benzo[g,h,i]perylene	0.24	1.4
122-66-7	1,2-Diphenylhydrazine	0.24	U	207-08-9	Benzo[k]fluoranthene	0.24	1.0
95-95-4	2,4,5-Trichlorophenol	0.24	U	65-85-0	Benzoic Acid	1.2	U
88-06-2	2,4,6-Trichlorophenol	0.24	U	111-91-1	bis(2-Chloroethoxy)methan	0.24	U
120-83-2	2,4-Dichlorophenol	0.24	U	111-44-4	bis(2-Chloroethyl)ether	0.24	U
105-67-9	2,4-Dimethylphenol	0.24	U	108-60-1	bis(2-chloroisopropyl)ether	0.24	U
51-28-5	2,4-Dinitrophenol	1.2	U	117 - 81-7	bis(2-Ethylhexyl)phthalate	0.24	0.57
121-14-2	2,4-Dinitrotoluene	0.24	U	85-68-7	Butylbenzylphthalate	0.24	U
606-20-2	2,6-Dinitrotoluene	0.24	U	86-74-8	Carbazole	0.24	U
91-58-7	2-Chloronaphthalene	0.24	U	218-01-9	Chrysene	0.24	2.5
95-57-8	2-Chlorophenol	0.24	U	53-70-3	Dibenzo[a,h]anthracene	0.24	0.43
91-57-6	2-Methylnaphthalene	0.24	U	132-64-9	Dibenzofuran	0.24	U
95-48-7	2-Methylphenol	0.24	U	84-66-2	Diethylphthalate	0.24	U
88-74-4	2-Nitroaniline	0.24	U	131-11-3	Dimethylphthalate	0.24	U
88-75-5	2-Nitrophenol	0.24	U	84-74-2	Di-n-butylphthalate	0.24	U
106-44-5	3&4-Methylphenol	0.24	U	117-84-0	Di-n-octylphthalate	0.24	0.56
91-94-1	3,3'-Dichlorobenzidine	0.24	U	206-44-0	Fluoranthene	0.24	5.6
99-09-2	3-Nitroaniline	0.24	U	86-73-7	Fluorene	0.24	0.40
534-52-1	4,6-Dinitro-2-methylphenol	1.2	U	118-74-1	Hexachlorobenzene	0.24	U
101-55-3	4-Bromophenyl-phenylether	0.24	U	87-68-3	Hexachlorobutadiene	0.24	U
59-50-7	4-Chloro-3-methylphenol	0.24	U	77-47-4	Hexachlorocyclopentadiene	1.2	U
106-47-8	4-Chloroaniline	0.24	U	67-72-1	Hexachloroethane	0.24	U
7005-72-3	4-Chlorophenyl-phenylether	0.24	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.24	1.2
100-01-6	4-Nitroaniline	0.24	U	78-59-1	Isophorone	0.24	U
100-02-7	4-Nitrophenol	0.24	U	91-20-3	Naphthalene	0.24	U
83-32- 9	Acenaphthene	0.24	0.30	98-95-3	Nitrobenzene	0.24	U
208-96-8	Acenaphthylene	0.24	U	62-75-9	N-Nitrosodimethylamine	0.24	U
62-53-3	Aniline	0.24	U	621-64-7	N-Nitroso-di-n-propylamine	0.24	U
120-12-7	Anthracene	0.24	1.0	86-30-6	n-Nitrosodiphenylamine	0.24	U
92-87-5	Benzidine	1.2	U	87-86-5	Pentachlorophenol	1.2	U
56-55-3	Benzo[a]anthracene	0.24	2.7	85-01-8	Phenanthrene	0.24	4.3
50-32-8	Benzo[a]pyrene	0.24	2.2	108-95-2	Phenol	0.24	U
205-99-2	Benzo[b]fluoranthene	0.24	2.9	129-00-0	Pyrene	0.24	5.3

Worksheet #: 116081

Total Target Concentration 32

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-006(3X)	Matrix: Soil
Client Id: B-11	Initial Vol: 30g
Data File: 9M17823.D	Final Vol: 1ml
Analysis Date: 04/24/09 11:16	Dilution: 3
Date Rec/Extracted: 04/13/09-04/23/09	Solids: 83
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.84	94 JAB
2	111-01-3	Tetracosane, 2,6,10,15,19,23-hexameth	8.67	0.52 J
3	613-12-7	Anthracene, 2-methyl-	9.77	0.72 J
4	613-12-7	Anthracene, 2-methyl-	9.81	0.94 J
5	90-60-8	Benzaldehyde, 3,5-dichloro-2-hydroxy-	9.89	1.4 J
6	35465-71-5	2-PHENYLNAPHTHALENE	10.10	0.50 J
7	3674-66-6	Phenanthrene, 2,5-dimethyl-	10.39	0.62 J
8		unknown	10.43	0.52 J
9	243-17-4	11H-Benzo[b]fluorene	11.22	0.59 J
10	3351-31-3	Chrysene, 3-methyl-	12.73	0.49 J
11	192-97-2	Benzo[e]pyrene	13.55	0.52 J
12	192-97-2	Benzo[e]pyrene	13.74	1.4 J
13	87953-47-7	[4aS-(4a.alpha.,4b.beta.,7.alpha.,8.alph	14.74	0.57 J
14	944-61-6	Benzene, 1,2,3,4-tetrachloro-5,6-dimeth	14.86	0.56 J

Worksheet #: 116081

Total Tentatively Identified Concentration 100

Sample Number: AC43958-007 Client Id: B-12 Data File: 9M17820.D Analysis Date: 04/24/09 10:10 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 81

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.082	U	191-24-2	Benzo[g,h,i]perylene	0.082	U
122-66-7	1,2-Diphenylhydrazine	0.082	U	207-08-9	Benzo[k]fluoranthene	0.082	U
95-95-4	2,4,5-Trichlorophenol	0.082	U	65-85-0	Benzoic Acid	0.41	U
88-06-2	2,4,6-Trichlorophenol	0.082	U	111-91-1	bis(2-Chloroethoxy)methan	0.082	U
120-83-2	2,4-Dichlorophenol	0.082	U	111-44-4	bis(2-Chloroethyl)ether	0.082	U
105-67-9	2,4-Dimethylphenol	0.082	U	108-60-1	bis(2-chloroisopropyl)ether	0.082	U
51-28-5	2,4-Dinitrophenol	0.41	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.082	U
121-14-2	2,4-Dinitrotoluene	0.082	U	85-68-7	Butylbenzylphthalate	0.082	U
606-20-2	2,6-Dinitrotoluene	0.082	U	86-74-8	Carbazole	0.082	U
91-58-7	2-Chloronaphthalene	0.082	U	218-01-9	Chrysene	0.082	0.098
95-57-8	2-Chlorophenol	0.082	U	53-70-3	Dibenzo[a,h]anthracene	0.082	U
91-57-6	2-Methylnaphthalene	0.082	U	132-64-9	Dibenzofuran	0.082	U
95-48-7	2-Methylphenol	0.082	U	84-66-2	Diethylphthalate	0.082	U
88-74-4	2-Nitroaniline	0.082	U	131-11-3	Dimethylphthalate	0.082	U
88-75-5	2-Nitrophenol	0.082	U	84-74-2	Di-n-butylphthalate	0.082	U
106-44-5	3&4-Methylphenol	0.082	U	117-84-0	Di-n-octylphthalate	0.082	U
91-94-1	3,3'-Dichlorobenzidine	0.082	U	206-44-0	Fluoranthene	0.082	0.23
99-09-2	3-Nitroaniline	0.082	U	86-73-7	Fluorene	0.082	U
534-52-1	4,6-Dinitro-2-methylphenol	0.41	U	118-74-1	Hexachlorobenzene	0.082	U
101-55-3	4-Bromophenyl-phenylether	0.082	U	87-68-3	Hexachlorobutadiene	0.082	U
59-50-7	4-Chloro-3-methylphenol	0.082	U	77-47-4	Hexachlorocyclopentadiene	0.41	U
106-47-8	4-Chloroaniline	0.082	U	67-72-1	Hexachloroethane	0.082	U
7005-72-3	4-Chlorophenyl-phenylether	0.082	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.082	U
100-01-6	4-Nitroaniline	0.082	U	78-59-1	Isophorone	0.082	U
100-02-7	4-Nitrophenol	0.082	U	91-20-3	Naphthalene	0.082	U
83-32-9	Acenaphthene	0.082	U	98-95-3	Nitrobenzene	0.082	U
208-96-8	Acenaphthylene	0.082	U	62-75-9	N-Nitrosodimethylamine	0.082	U
62-53-3	Aniline	0.082	U	621-64-7	N-Nitroso-di-n-propylamine	0.082	U
120-12-7	Anthracene	0.082	U	86-30-6	n-Nitrosodiphenylamine	0.082	U
92-87-5	Benzidine	0.41	U	87-86-5	Pentachlorophenol	0.41	U
56-55-3	Benzo[a]anthracene	0.082	0.10	85-01-8	Phenanthrene	0.082	0.13
50-32-8	Benzo[a]pyrene	0.082	0.089	108-95-2	Phenol	0.082	U
205-99-2	Benzo[b]fluoranthene	0.082	0.12	129-00-0	Pyrene	0.082	0.21

Worksheet #: 116081

Total Target Concentration 0.98

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-007	Matrix: Soil
Client Id: B-12	Initial Vol: 30g
Data File: 9M17820.D	Final Vol: 1ml
Analysis Date: 04/24/09 10:10	Dilution: 1
Date Rec/Extracted: 04/13/09-04/23/09	Solids: 81
	Method: EPA 8270C

Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.52	0.50 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.88	110 JAB
3		unknown	4.61	0.34 JB
4		unknown	14.71	0.21 J

Worksheet #: 116081

Total Tentatively Identified Concentration 110

Sample Number: AC43958-008(R) Client Id: B-11 GW Data File: 5M50080.D Analysis Date: 04/21/09 11:30 Date Rec/Extracted: 04/13/09-04/20/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml Dilution: 1 Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1 1,2,4-Trichlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
122-66-7 1,2-Diphenylhydrazine	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4 2,4,5-Trichlorophenol	2.0	U	65-85-0	Benzoic Acid	10	U
88-06-2 2,4,6-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
120-83-2 2,4-Dichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	2.0	U
105-67-9 2,4-Dimethylphenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
51-28-5 2,4-Dinitrophenol	10	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	7.9
121-14-2 2,4-Dinitrotoluene	2.0	U	85-68-7	Butylbenzylphthalate	2.0	U
606-20-2 2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7 2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8 2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6 2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	2.0	U
95-48-7 2-Methylphenol	2.0	U	84-66-2	Diethylphthalate	2.0	U
88-74-4 2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5 2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	2.0	U
106-44-5 3&4-Methylphenol	2.0	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1 3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2 3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1 4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3 4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7 4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8 4-Chloroaniline	2.0	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3 4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6 4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7 4-Nitrophenol	2.0	U	91-20-3	Naphthalene	2.0	U
83-32-9 Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8 Acenaphthylene	2.0	U	62-75-9	N-Nitrosodimethylamine	2.0	U
62-53-3 Aniline	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	2.0	U
120-12-7 Anthracene	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
92-87-5 Benzidine	10	U	87-86-5	Pentachlorophenol	10	U
56-55-3 Benzo[a]anthracene	2.0	U	85-01-8	Phenanthrene	2.0	U
50-32-8 Benzo[a]pyrene	2.0	U	108-95-2	Phenol	2.0	U
205-99-2 Benzo[b]fluoranthene	2.0	U	129-00-0	Pyrene	2.0	2.5

Worksheet #: 116081

Total Target Concentration 10

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the
Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC43958-008(R)	Matrix: Aqueous
Client Id: B-11 GW	Initial Vol: 500ml
Data File: 5M50080.D	Final Vol: 0.5ml
Analysis Date: 04/21/09 11:30	Dilution: 1
Date Rec/Extracted: 04/13/09-04/20/09	Solids:
	Method: EPA 8270C

Units: ug/L

	Cas #	Compound	RT	Conc	
1	111-76-2	Ethanol, 2-butoxy-	4.56	4.9 JB	

Worksheet #: 116081

Total Tentatively Identified Concentration 4.9

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample.

FORM2

Surrogate Recovery

Method: EPA 8270C

					Diluta	Column1	Column1	Column1	Column1	Column1	Column1
				Surr	Out	S1	S2	S3	S4	S5	S6
Dfile	Sample#	Matrix	Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
10M04316.D	SMB4112	Soil	04/21/09 13:47	1		84	81	77	76	77	99
10M04342.D	SMB4113	Soil	04/22/09 13:31	1		98	92	91	92	93	108
10M04370.D	SMB4115	Soil	04/23/09 16:14	1		83	78	83	81	74	91
5M50012.D	WMB4111	Aqueous	04/17/09 13:04	1		63	48	96	96	110	96
5M50076.D	WMB4113	Aqueous	04/21/09 10:00	1		66	48	101	98	107	104
5M50102.D	SMB4113	Soil	04/22/09 13:40	1		78	84	86	95	91	102
5M50115.D	SMB4114	Soil	04/23/09 12:12	1		72	74	77	84	79	89
9M17644.D	WMB4109	Aqueous	04/16/09 15:43	1		59	38	93	95	123	114
9M17766.D	SMB4113	Soil	04/22/09 13:13	1		99	97	90	87	99	94
9M17799.D	SMB4115	Soil	04/23/09 16:41	1		80	77	80	83	90	85
9M17803.D	AC43958-001	Soil	04/23/09 18:10	1		75	72	77	79	78	84
5M50105.D	AC43958-002	Soil	04/22/09 17:01	1		69	76	73	84	84	87
10M04346.D	AC43958-003	Soil	04/22/09 17:00	1		84	83	85	89	91	99
9M17773.D	AC43958-004	Soil	04/22/09 17:37	1		84	85	82	87	94	99
5M50104.D	AC43958-005	Soil	04/22/09 16:38	1		72	80	83	91	93	95
9M17823.D	AC43958-006(Soil	04/24/09 11:16	3		75	75	81	83	74	88
9M17820.D	AC43958-007	Soil	04/24/09 10:10	1		77	74	77	80	87	87
5M50080.D	AC43958-008(Aqueous	04/21/09 11:30	1		5.6 *	7.3	4.4 *	5.1*	3*	5.8*
5M50085.D	AC43958-008	Aqueous	04/21/09 15:07	1		19*	781 *	0*	4.5*	4.2 *	7.6*
10M04315.D	SMB4112(MS)	Soil	04/21/09 13:24	1		85	82	82	81	90	105
10M04317.D	AC44027-002	Soil	04/21/09 14:09	1		88	84	85	87	91	102
10M04318.D	AC44027-002(Soil	04/21/09 14:32	1		81	78	80	81	83	92
10M04319.D	AC44027-002(Soil	04/21/09 14:54	1		78	76	74	76	82	91
10M04371.D	SMB4115(MS)	Soil	04/23/09 16:36	1		86	82	89	88	90	97
5M50013.D	WMB4111(MS	Aqueous	04/17/09 13:27	1		71	54	100	95	106	104
5M50077.D	WMB4113(MS	Aqueous	04/21/09 10:22	1		63	45	102	90	103	108
5M50116.D	SMB4114(MS)	Soil	04/23/09 12:35	1		80	88	85	87	92	92
5M50117.D	AC44057-003	Soil	04/23/09 12:58	1		73	79	81	83	88	89
5M50118.D	AC44057-003(Soil	04/23/09 13:21	1		72	79	83	84	85	84
5M50119.D	AC44057-003(Soil	04/23/09 13:44	1		75	83	81	81	90	85
9M17643.D	WMB4109(MS	Aqueous	04/16/09 15:18	1		61	40	93	93	119	107
9M17647.D	AC43942-001(Aqueous	04/16/09 16:50	1		74	57	94	96	123	107
9M17671.D	AC43942-001	Aqueous	04/17/09 13:26	1		63	49	79	81	109	92
9M17672.D	AC43942-001(Aqueous	04/17/09 13:48	1		68	54	89	90	116	97
9M17765.D	SMB4113(MS)	Soil	04/22/09 12:51	1		90	90	87	85	99	96

Flags: SD=Surrogate diluted out *=Surrogate out

Method: 8270

Soil Limits

Compound	Spike Amt	Limits
S1=2-Fluorophenol	100	36-114
S2=Phenol-d5	100	32-113
S3=Nitrobenzene-d5	50	37-116
S4=2-Fluorobiphenyl	50	47-113
S5=2,4,6-Tribromophenol	100	31-140
S6=Terphenyl-d14	50	41-152

Aqueous Limits

	Spike	
Compound	Amt	Limits
S1=2-Fluorophenol	100	22-101
S2=Phenol-d5	100	1-95
S3=Nitrobenzene-d5	50	50-128
S4=2-Fluorobiphenyl	50	48-123
S5=2,4,6-Tribromophenol	100	10-123
S6=Terphenyl-d14	50	44-132

Sample Number: SMB2236B	Method
Client Id:	Matrix
Data File: 2G44119.D	Initial Vo
Analysis Date: 04/23/09 12:35	Final Vo
Date Rec/Extracted: NA-04/23/09	Dilution
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids

: EPA 8082 c Soil l:20g l: 10ml n: 1 : 100

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.025	U	11097-69-1 Aroclor-1254	0.025	U
11104-28-2 Aroclor-1221	0.025	υ	11096-82-5 Aroclor-1260	0.025	U
11141-16-5 Aroclor-1232	0.025	υ	37324-23-5 Aroclor-1262	0.025	U
53469-21-9 Aroclor-1242	0.025	υ	11100-14-4 Aroclor-1268	0.025	U
12672-29-6 Aroclor-1248	0.025	U			

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: WMB3536	Method:
Client Id:	Matrix:
Data File: 5G21568.D	Initial Vol:
Analysis Date: 04/16/09 16:19	Final Vol:
Date Rec/Extracted: NA-04/16/09	Dilution:
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids:

EPA 8082 Aqueous 1000ml 5ml 1 0

Units: ug/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.25	U	11097-69-1 Aroclor-1254	0.25	U
11104-28-2 Aroclor-1221	0.25	U	11096-82-5 Aroclor-1260	0.25	U
11141-16-5 Aroclor-1232	0.25	U	37324-23-5 Aroclor-1262	0.25	U
53469-21-9 Aroclor-1242	0.25	U	11100-14-4 Aroclor-1268	0.25	U
12672-29-6 Aroclor-1248	0.25	U			

Worksheet #: 116197

Total Target Concentration 0

 U - Indicates the compound was analyzed but not detected.
 B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-001	Method: EPA 8082
Client Id: B-2	Matrix: Soil
Data File: 2G44132.D	Initial Vol: 20g
Analysis Date: 04/23/09 18:54	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/23/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 85

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.029	U	11097-69-1 Aroclor-1254	0.029	U
11104-28-2 Aroclor-1221	0.029	U	11096-82-5 Aroclor-1260	0.029	U
11141-16-5 Aroclor-1232	0.029	U	37324-23-5 Aroclor-1262	0.029	U
53469-21-9 Aroclor-1242	0.029	U	11100-14-4 Aroclor-1268	0.029	U
12672-29-6 Aroclor-1248	0.029	U	1336-36-3 Aroclor (Total)	0.029	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-002 Client Id: B-3 Data File: 2G44133.D I Analysis Date: 04/23/09 19:08 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082 Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 87

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.029	U	11097-69-1 Aroclor-1254	0.029	U
11104-28-2 Aroclor-1221	0.029	U	11096-82-5 Aroclor-1260	0.029	U
11141-16-5 Aroclor-1232	0.029	U	37324-23-5 Aroclor-1262	0.029	U
53469-21-9 Aroclor-1242	0.029	U	11100-14-4 Aroclor-1268	0.029	U
12672-29-6 Aroclor-1248	0.029	U	1336-36-3 Aroclor (Total)	0.029	U

Worksheet #: 116197

Total Target Concentration 0

 ${\it U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-003	Method: EPA 8082
Client Id: B-6	Matrix: Soil
Data File: 2G44134.D	Initial Vol: 20g
Analysis Date: 04/23/09 19:22	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/23/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 82

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.030	U	11097-69-1 Aroclor-1254	0.030	U
11104-28-2 Aroclor-1221	0.030	U	11096-82-5 Aroclor-1260	0.030	U
11141-16-5 Aroclor-1232	0.030	U	37324-23-5 Aroclor-1262	0.030	U
53469-21-9 Aroclor-1242	0.030	U	11100-14-4 Aroclor-1268	0.030	U
12672-29-6 Aroclor-1248	0.030	U	1336-36-3 Aroclor (Total)	0.03	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-004	Method: EPA 8082	
Client Id: B-7	Matrix: Soil	
Data File: 2G44135.D	Initial Vol: 20g	
Analysis Date: 04/23/09 19:36	Final Vol: 10ml	
Date Rec/Extracted: 04/13/09-04/23/09	Dilution: 1	
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 76	

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.033	U	11097-69-1 Aroclor-1254	0.033	U
11104-28-2 Aroclor-1221	0.033	U	11096-82-5 Aroclor-1260	0.033	U
11141-16-5 Aroclor-1232	0.033	U	37324-23-5 Aroclor-1262	0.033	U
53469-21-9 Aroclor-1242	0.033	U	11100-14-4 Aroclor-1268	0.033	U
12672-29-6 Aroclor-1248	0.033	U	1336-36-3 Aroclor (Total)	0.033	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

 Sample Number: AC43958-005
 I

 Client Id: B-10
 Ini

 Data File: 2G44136.D
 Ini

 Analysis Date: 04/23/09 19:50
 Fi

 Date Rec/Extracted: 04/13/09-04/23/09
 I

 Column: DB-17/1701P 30M 0.32mm ID 0.25um film
 I

Method: EPA 8082 Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 84

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.030	U	11097-69-1 Aroclor-1254	0.030	U
11104-28-2 Aroclor-1221	0.030	U	11096-82-5 Arocior-1260	0.030	U
11141-16-5 Aroclor-1232	0.030	U	37324-23-5 Aroclor-1262	0.030	U
53469-21-9 Aroclor-1242	0.030	υ	11100-14-4 Aroclor-1268	0.030	U
12672-29-6 Aroclor-1248	0.030	U	1336-36-3 Aroclor (Total)	0.03	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of R - Retention Time Out
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

the instrument.

Sample Number: AC43958-006	Met
Client Id: B-11	Ma
Data File: 2G44151.D	Initial
Analysis Date: 04/23/09 23:18	Final
Date Rec/Extracted: 04/13/09-04/23/09	Dilu
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	So

Method: EPA 8082 Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 83

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.030	U	11097-69-1 Aroclor-1254	0.030	U
11104-28-2 Aroclor-1221	0.030	U	11096-82-5 Aroclor-1260	0.030	U
11141-16-5 Aroclor-1232	0.030	U	37324-23-5 Aroclor-1262	0.030	U
53469-21-9 Aroclor-1242	0.030	U	11100-14-4 Aroclor-1268	0.030	U
12672-29-6 Aroclor-1248	0.030	U	1336-36-3 Aroclor (Total)	0.03	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-007	Method: EPA 8082
Client Id: B-12	Matrix: Soil
Data File: 2G44137.D	Initial Vol: 20g
Analysis Date: 04/23/09 20:03	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/23/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 81

Units: mg/Kg

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.031	U	11097-69-1 Aroclor-1254	0.031	U
11104-28-2 Aroclor-1221	0.031	U	11096-82-5 Aroclor-1260	0.031	U
11141-16-5 Aroclor-1232	0.031	U	37324-23-5 Aroclor-1262	0.031	U
53469-21-9 Aroclor-1242	0.031	U	11100-14-4 Aroclor-1268	0.031	U
12672-29-6 Aroclor-1248	0.031	U	1336-36-3 Aroclor (Total)	0.031	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 ${\it E}$ - Indicates the analyte concentration exceeds the calibration range of

the instrument.

Sample Number: AC43958-008	Method: EPA 8082
Client Id: B-11 GW	Matrix: Aqueous
Data File: 2G43938.D	Initial Vol: 500ml
Analysis Date: 04/17/09 08:49	Final Vol: 2.5ml
Date Rec/Extracted: 04/13/09-04/16/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: ug/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
12674-11-2 Aroclor-1016	0.25	U	11097-69-1 Aroclor-1254	0.25	U
11104-28-2 Aroclor-1221	0.25	U	11096-82-5 Aroclor-1260	0.25	U
11141-16-5 Aroclor-1232	0.25	U	37324-23-5 Aroclor-1262	0.25	U
53469-21-9 Aroclor-1242	0.25	U	11100-14-4 Aroclor-1268	0.25	U
12672-29-6 Aroclor-1248	0.25	U	1336-36-3 Aroclor (Total)	0.25	U

Worksheet #: 116197

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: WMB3536 Client Id: Data File: 5G21559.D Analysis Date: 04/16/09 13:23 Date Rec/Extracted: NA-04/16/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film Method: EPA 8081A Matrix: Aqueous Initial Vol: 1000ml Final Vol: 5ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.010	U	7421-93-4	Endrin Aldehyde	0.010	U
319-84-6	alpha-BHC	0.010	U	53494-70-5	Endrin Ketone	0.010	U
319-85-7	beta-BHC	0.010	U	58-89-9	gamma-BHC	0.010	U
57-74-9	Chlordane	0.10	U	76-44-8	Heptachlor	0.010	U
319-86-8	delta-BHC	0.010	U	1024-57-3	Heptachlor Epoxide	0.010	U
60-57-1	Dieldrin	0.010	U	72-43-5	Methoxychlor	0.010	U
959-98-8	Endosulfan I	0.010	·U	72-54-8	p,p'-DDD	0.010	U
33213-65-9	Endosulfan II	0.010	U	72-55-9	p,p'-DDE	0.010	U
1031-07-8	Endosulfan Sulfate	0.010	U	50-29-3	p,p'-DDT	0.010	U
72-20-8	Endrin	0.010	U	8001-35-2	Toxaphene	0.25	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: SMB2236B Client Id: Data File: 5G21666.D Analysis Date: 04/23/09 12:21 Date Rec/Extracted: NA-04/23/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.0050	U	7421-93-4	Endrin Aldehyde	0.0050	U
319-84-6	alpha-BHC	0.0010	U	53494-70-5	Endrin Ketone	0.0050	U
319-85-7	beta-BHC	0.0010	U	58-89-9	gamma-BHC	0.0010	U
57-74-9	Chlordane	0.010	U	76-44-8	Heptachlor	0.0050	U
319-86-8	delta-BHC	0.0050	U	1024-57-3	Heptachlor Epoxide	0.0050	U
60-57-1	Dieldrin	0.0010	U	72-43-5	Methoxychlor	0.0050	U
959-98 - 8	Endosulfan I	0.0050	U	72-54-8	p,p'-DDD	0.0025	U
33213-65-9	Endosulfan II	0.0050	U	72-55-9	p,p'-DDE	0.0025	U
1031-07-8	Endosulfan Sulfate	0.0050	U	50-29-3	p,p'-DDT	0.0025	U
72-20-8	Endrin	0.0050	U	8001-35-2	Toxaphene	0.025	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-001 Client Id: B-2 Data File: 6G14085.D Analysis Date: 04/24/09 04:19 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 85

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.0059	U	7421-93-4	Endrin Aldehyde	0.0059	υ
319-84-6	alpha-BHC	0.0012	U	53494-70-5	Endrin Ketone	0.0059	U
319-85-7	beta-BHC	0.0012	U	58-89-9	gamma-BHC	0.0012	U
57-74-9	Chlordane	0.012	U	76-44-8	Heptachlor	0.0059	U
319-86-8	delta-BHC	0.0059	U	1024-57-3	Heptachlor Epoxide	0.0059	U
60-57-1	Dieldrin	0.0012	U	72-43-5	Methoxychlor	0.0059	υ
959-98-8	Endosulfan I	0.0059	U	72-54-8	p,p'-DDD	0.0029	υ
33213-65-9	Endosulfan II	0.0059	U	72-55-9	p,p'-DDE	0.0029	U
1031 - 07-8	Endosulfan Sulfate	0.0059	U	50-29-3	p,p'-DDT	0.0029	U
72-20-8	Endrin	0.0059	U	8001-35-2	Toxaphene	0.029	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

 \hat{d} - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Form1

ORGANICS PESTICIDE REPORT

Sample Number: AC43958-002	Method: EPA 8081A
Client Id: B-3	Matrix: Soil
Data File: 5G21682.D	Initial Vol: 20g
Analysis Date: 04/24/09 06:09	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/23/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 87

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2	Aldrin	0.0057	U	7421-93-4 Endrin Aldehyde	0.0057	U
319-84-6	alpha-BHC	0.0011	U	53494-70-5 Endrin Ketone	0.0057	U
319-85-7	beta-BHC	0.0011	U	58-89-9 gamma-BHC	0.0011	U
57-74-9	Chlordane	0.011	U	76-44-8 Heptachlor	0.0057	U
319-86-8	delta-BHC	0.0057	U	1024-57-3 Heptachlor Epoxide	0.0057	U
60-57-1	Dieldrin	0.0011	U	72-43-5 Methoxychlor	0.0057	U
959-98-8	Endosulfan I	0.0057	U	72-54-8 p,p'-DDD	0.0029	U
33213-65-9	Endosulfan II	0.0057	U	72-55-9 p,p'-DDE	0.0029	U
1031-07-8	Endosulfan Sulfate	0.0057	U	50-29-3 p,p'-DDT	0.0029	U
72-20-8	Endrin	0.0057	U	8001-35-2 Toxaphene	0.029	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.R - RetenB - Indicates the analyte was found in the blank as well as in the sample.J - IndicatesE - Indicates the analyte concentration exceeds the calibration range of
the instrument.specified
d - Pestic

Sample Number: AC43958-003 Client Id: B-6 Data File: 6G14086.D Analysis Date: 04/24/09 04:34 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 82

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas # Compound	RL	Conc
309-00-2	Aldrin	0.0061	U	7421-93-4 Endrin Aldehyde	0.0061	U
319-84-6	alpha-BHC	0.0012	U	53494-70-5 Endrin Ketone	0.0061	U
319-85-7	beta-BHC	0.0012	U	58-89-9 gamma-BHC	0.0012	U
57-74-9	Chlordane	0.012	U	76-44-8 Heptachlor	0.0061	U
319-86-8	delta-BHC	0.0061	U	1024-57-3 Heptachlor Epoxide	0.0061	U
60-57-1	Dieldrin	0.0012	U	72-43-5 Methoxychlor	0.0061	U
959-98-8	Endosulfan I	0.0061	U	72-54-8 p,p'-DDD	0.0030	U
33213-65-9	Endosulfan II	0.0061	U	72-55-9 p,p'-DDE	0.0030	U
1031-07-8	Endosulfan Sulfate	0.0061	U	50-29-3 p,p'-DDT	0.0030	U
72-20-8	Endrin	0.0061	U	8001-35-2 Toxaphene	0.030	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: AC43958-004MethodClient Id: B-7MatrixData File: 6G14087.DInitial VoAnalysis Date: 04/24/09 04:49Final VoDate Rec/Extracted: 04/13/09-04/23/09DilutionColumn: DB-17/1701P 30M 0.32mm ID 0.25um filmSolide

Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 76

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.0066	U	7421-93-4	Endrin Aldehyde	0.0066	U
319-84-6	alpha-BHC	0.0013	U	53494-70-5	Endrin Ketone	0.0066	U
319-85-7	beta-BHC	0.0013	U	58-89-9	gamma-BHC	0.0013	U
57-74-9	Chlordane	0.013	U	76-44-8	Heptachlor	0.0066	U
319-86-8	delta-BHC	0.0066	U	1024-57-3	Heptachlor Epoxide	0.0066	U
60-57-1	Dieldrin	0.0013	U	72-43-5	Methoxychlor	0.0066	U
959-98-8	Endosulfan I	0.0066	U	72-54-8	p,p'-DDD	0.0033	U
33213-65-9	Endosulfan II	0.0066	U	72-55-9	p,p'-DDE	0.0033	U
1031-07-8	Endosulfan Sulfate	0.0066	U	50-29-3	p,p'-DDT	0.0033	U
72-20-8	Endrin	0.0066	U	8001-35-2	Toxaphene	0.033	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-005 Client Id: B-10 Data File: 5G21683.D Analysis Date: 04/24/09 06:27 Date Rec/Extracted: 04/13/09-04/23/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 84

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.0060	U	7421-93-4	Endrin Aldehyde	0.0060	U
319-84-6	alpha-BHC	0.0012	U	53494-70-5	Endrin Ketone	0.0060	U
319-85-7	beta-BHC	0.0012	U	58-89-9	gamma-BHC	0.0012	U
57-74-9	Chlordane	0.012	U	76-44-8	Heptachlor	0.0060	U
319-86-8	delta-BHC	0.0060	U	1024-57-3	Heptachlor Epoxide	0.0060	U
60-57-1	Dieldrin	0.0012	U	72-43-5	Methoxychlor	0.0060	U
959-98-8	Endosulfan I	0.0060	U	72-54-8	p,p'-DDD	0.0030	U
33213-65-9	Endosulfan II	0.0060	U	72-55-9	p,p'-DDE	0.0030	U
1031-07-8	Endosulfan Sulfate	0.0060	U	50-29-3	p,p'-DDT	0.0030	U
72-20-8	Endrin	0.0060	U	8001-35-2	Toxaphene	0.030	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

 Sample Number: AC43958-006
 Me

 Client Id: B-11
 N

 Data File: 6G14090.D
 Initia

 Analysis Date: 04/24/09 05:34
 Fina

 Date Rec/Extracted: 04/13/09-04/23/09
 Dil

 Column: DB-17/1701P 30M 0.32mm ID 0.25um film
 S

Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 83

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.0060	U	7421-93-4	Endrin Aldehyde	0.0060	U
319-84-6	alpha-BHC	0.0012	U	53494-70-5	Endrin Ketone	0.0060	U
319-85-7	beta-BHC	0.0012	U	58-89-9	gamma-BHC	0.0012	U
57-74-9	Chlordane	0.012	U	76-44-8	Heptachlor	0.0060	U
319-86-8	delta-BHC	0.0060	U	1024-57-3	Heptachlor Epoxide	0.0060	U
60-57-1	Dieldrin	0.0012	U	72-43-5	Methoxychlor	0.0060	U
959-98-8	Endosulfan I	0.0060	U	72-54-8	p,p'-DDD	0.0030	U
33213-65-9	Endosulfan II	0.0060	U	72-55-9	p,p'-DDE	0.0030	U
1031-07-8	Endosulfan Sulfate	0.0060	U	50 - 29-3	p,p'-DDT	0.0030	U
72-20-8	Endrin	0.0060	U	8001-35-2	Toxaphene	0.030	U

Worksheet #: 116170

the instrument.

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

 Sample Number: AC43958-007
 M

 Client Id: B-12
 Inii

 Data File: 5G21684.D
 Inii

 Analysis Date: 04/24/09 06:45
 Fin

 Date Rec/Extracted: 04/13/09-04/23/09
 Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A Matrix: Soil Initial Vol: 20g Final Vol: 10ml Dilution: 1 Solids: 81

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.0062	U	7421-93-4	Endrin Aldehyde	0.0062	U
319-84-6	alpha-BHC	0.0012	U	53494-70-5	Endrin Ketone	0.0062	U
319-85-7	beta-BHC	0.0012	U	58-89-9	gamma-BHC	0.0012	U
57-74-9	Chlordane	0.012	U	76-44-8	Heptachlor	0.0062	U
319-86-8	delta-BHC	0.0062	U	1024-57 - 3	Heptachlor Epoxide	0.0062	U
60-57-1	Dieldrin	0.0012	U	72-43-5	Methoxychior	0.0062	U
959-98-8	Endosulfan I	0.0062	U	72-54-8	p,p'-DDD	0.0031	U
33213-65-9	Endosulfan II	0.0062	U	72-55-9	p,p'-DDE	0.0031	U
1031-07-8	Endosulfan Sulfate	0.0062	U	50-29-3	p,p'-DDT	0.0031	U
72-20-8	Endrin	0.0062	U	8001-35-2	Toxaphene	0.031	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-008 Client Id: B-11 GW Data File: 6G13944.D Analysis Date: 04/17/09 10:44 Date Rec/Extracted: 04/13/09-04/16/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A Matrix: Aqueous Initial Vol: 500ml Final Vol: 2.5ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL C	onc	Cas #	Compound	RL	Conc
309-00-2	Aldrin	0.010	U	7421-93-4	Endrin Aldehyde	0.010	U
319-84-6	alpha-BHC	0.010	U	53494-70-5	Endrin Ketone	0.010	U
319-85-7	beta-BHC	0.010	U	58-89-9	gamma-BHC	0.010	U
57-74-9	Chlordane	0.10	U	76-44-8	Heptachlor	0.010	U
319-86-8	delta-BHC	0.010	U	1024-57-3	Heptachlor Epoxide	0.010	U
60-57-1	Dieldrin	0.010	υ	72-43-5	Methoxychlor	0.010	U
959-98-8	Endosulfan I	0.010	υ	72-54-8	p,p'-DDD	0.010	υ
33213-65-9	Endosulfan II	0.010	υ	72-55-9	p,p'-DDE	0.010	υ
1031-07-8	Endosulfan Sulfate	0.010	υ	50-29-3	p,p'-DDT	0.010	υ
72-20-8	Endrin	0.010	U	8001-35-2	Toxaphene	0.25	U

Worksheet #: 116170

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample ID: Client Id: Matrix: Level:	AC43958-001 B-2 SOIL LOW	% Solid: Units: Date Rec:	85 MG/KG 4/14/2009	Lab Name Lab Code Contraci	: Veritech : :	N S C	Iras No Sdg No ase No):):):
				Analysis	Prep	Sea		

Cas No.	Analyte	RL	Conc	Dil Fact	Date:	Batch	File:	Num:	м	Instr
7429-90-5	Aluminum	240	10000	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-38-2	Arsenic	2.4	5.3	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-39-3	Barium	12	52	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-41-7	Beryllium	0.71	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-43-9	Cadmium	0.71	NÐ	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-70-2	Calcium	1200	10000	100	04/23/09	10131	S10131B	24	Р	PEICPRAD1
7440-47-3	Chromium	5.9	19	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-48-4	Cobalt	2.9	7.3	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-50-8	Copper	5.9	20	100	04/24/09	10131	S10131C	25	Р	PEICP1
7439-89-6	Iron	240	16000	100	04/23/09	10131	S10131B	24	Р	PEICPRAD1
7439 - 92-1	Lead	5.9	64	100	04/24/09	10131	S10131C	25	Р	PEICP1
7439-95-4	Magnesium	590	3000	100	04/23/09	10131	S10131B	24	Р	PEICPRAD1
7439-96-5	Manganese	12	260	100	04/24/09	10131	S10131C	25	Р	PEICP1
7439-97-6	Mercury	0.098	ND	167	04/22/09	10131	H10131S	25	cv	HGCV1
7440-02-0	Nickel	5.9	24	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-09-7	Potassium	590	1100	100	04/23/09	10131	S10131B	24	Р	PEICPRAD1
7782-49-2	Selenium	2.1	2.8	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-22-4	Silver	1.8	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-23-5	Sodium	290	450	100	04/23/09	10131	S10131B	24	Р	PEICPRAD1
7440-28-0	Thallium	1.4	ND	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-62-2	Vanadium	12	27	100	04/24/09	10131	S10131C	25	Р	PEICP1
7440-66-6	Zinc	12	57	100	04/24/09	10131	S10131C	25	Р	PEICP1

Comments:

Flag Codes:

٦

Form1 Inorganic Analysis Data Sheet

Sample ID: Client Id: Matrix: Level:	AC43958-002 B-3 SOIL LOW	% Solid: Units: Date Rec:	87 MG/KG 4/14/2009	Lab Name: Lab Code: Contract:	Veritech	Nras No: Sdg No: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	230	7400	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-36-0	Antimony	2.3	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-38-2	Arsenic	2.3	4.0	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-39-3	Barium	11	45	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-41-7	Beryllium	0.69	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-43-9	Cadmium	0.69	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-70-2	Calcium	1100	2600	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7440-47-3	Chromium	5.7	15	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-48-4	Cobalt	2.9	9.6	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-50-8	Copper	5.7	54	100	04/24/09	10131	S10131C	26	Р	PEICP1
7439-89-6	Iron	230	20000	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7439-92-1	Lead	5.7	18	100	04/24/09	10131	S10131C	26	Р	PEICP1
7439-95-4	Magnesium	570	3500	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7439-96-5	Manganese	11	460	100	04/24/09	10131	S10131C	26	Р	PEICP1
7439-97-6	Mercury	0.096	ND	167	04/22/09	10131	H10131S	26	cv	HGCV1
7440-02-0	Nickel	5.7	24	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-09-7	Potassium	570	1200	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7782-49-2	Selenium	2.1	4.1	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-22-4	Silver	1.7	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-23-5	Sodium	290	1200	100	04/23/09	10131	S10131B	25	Р	PEICPRAD1
7440-28-0	Thallium	1.4	ND	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-62-2	Vanadium	11	28	100	04/24/09	10131	S10131C	26	Р	PEICP1
7440-66-6	Zinc	11	44	100	04/24/09	10131	S10131C	26	Р	PEICP1

Comments:

ſ

Т

Flag Codes:

Sample Client Mati Lev	ID: AC43958-003 Id: B-6 rix: SOIL rel: LOW	% : I Date	Solid: 82 Units: MG/KC Rec: 4/14/20	9 009	Lab Na Lab C Cont	ume: Verite ode: ract:	ch	C	Nras No Sdg No Case No);););
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	240	4100	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-38-2	Arsenic	2.4	4.1	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-39-3	Barium	12	18	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-41-7	Beryllium	0.73	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-43-9	Cadmium	0.73	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-70-2	Calcium	1200	1500	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7440-47-3	Chromium	6.1	11	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-48-4	Cobalt	3.0	4.6	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-50-8	Copper	6.1	8.8	100	04/24/09	10131	S10131C	27	Р	PEICP1
7439-89-6	Iron	240	9600	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7439-92-1	Lead	6.1	11	100	04/24/09	10131	S10131C	27	Р	PEICP1
7439-95-4	Magnesium	610	2100	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7439-96-5	Manganese	12	130	100	04/24/09	10131	S10131C	27	Р	PEICP1
7439-97-6	Mercury	0.10	ND	167	04/22/09	10131	H10131S	27	cv	HGCV1
7440-02-0	Nickel	6.1	12	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-09-7	Potassium	610	1200	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7782-49-2	Selenium	2.2	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-22-4	Silver	1.8	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-23-5	Sodium	300	ND	100	04/23/09	10131	S10131B	26	Р	PEICPRAD1
7440-28-0	Thallium	1.5	ND	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-62-2	Vanadium	12	13	100	04/24/09	10131	S10131C	27	Р	PEICP1
7440-66-6	Zinc	12	34	100	04/24/09	10131	S10131C	27	Р	PEICP1

Comments:

Flag Codes:

Sample Client Mat Lev	ID: AC43958-004 Id: B-7 rix: SOIL vel: LOW	% s L Date	Solid: 76 Jnits: MG/KC Rec: 4/14/20	3 009	Lab Na Lab Co Contr	me: Verite ode: act:	ch	۲ C	Vras No Sdg No Case No);););
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	260	7600	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-36-0	Antimony	2.6	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-38-2	Arsenic	2.6	7.8	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-39-3	Barium	13	180	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-41-7	Beryllium	0.79	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-43-9	Cadmium	0.79	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-70-2	Calcium	1300	5400	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7440-47-3	Chromium	6.6	31	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-48-4	Cobalt	3.3	8.1	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-50-8	Copper	6.6	140	100	04/24/09	10131	S10131C	32	Р	PEICP1
7439-89-6	Iron	260	16000	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7439-92-1	Lead	6.6	1400	100	04/24/09	10131	S10131C	32	Р	PEICP1
7439-95-4	Magnesium	660	2500	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7439-96-5	Manganese	13	310	100	04/24/09	10131	S10131C	32	Р	PEICP1
7439-97-6	Mercury	0.11	2.6	167	04/22/09	10131	H10131S	28	cv	HGCV1
7440-02-0	Nickel	6.6	25	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-09-7	Potassium	660	920	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7782-49-2	Selenium	2.4	4.1	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-22-4	Silver	2.0	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-23-5	Sodium	330	ND	100	04/23/09	10131	S10131B	31	Р	PEICPRAD1
7440-28-0	Thallium	1.6	ND	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-62-2	Vanadium	13	24	100	04/24/09	10131	S10131C	32	Р	PEICP1
7440-66-6	Zinc	13	270	100	04/24/09	10131	S10131C	32	Р	PEICP1

Comments:

Flag Codes:

Sample ID: AC43958-005 Client Id: B-10 Matrix: SOIL Level: LOW		% Date	Units: MG/KG Date Rec: 4/14/2009		Lab Code: 9 Contract:					Sdg No: Case No:			
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr			
7429-90-5	Aluminum	240	11000	100	04/24/09	10131	S10131C	33	Р	PEICP1			
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1			
7440-38-2	Arsenic	2.4	5.0	100	04/24/09	10131	S10131C	33	Р	PEICP1			
7440-39-3	Barium	12	110	100	04/24/09	10131	S10131C	33	Р	PEICP1			
7440-41-7	Beryllium	0.71	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1			
7440-43-9	Cadmium	0.71	ND	100	04/24/09	10131	S10131C	33	Р	PEICP1			
7440-70-2	Calcium	1200	1400	100	04/23/09	10131	S10131B	32	Р	PEICPRAD1			
7440-47-3	Chromium	6.0	27	100	04/24/09	10131	S10131C	33	Р	PEICP1			

16

27

59

6300

1600

ND

61

7100

ND

ND

560

ND

32

100

21000

100 04/24/09

100 04/24/09

100 04/23/09

100 04/24/09

100 04/23/09

100 04/24/09

167 04/22/09

100 04/24/09

100 04/23/09

100 04/24/09

100 04/24/09

100 04/23/09

100 04/24/09

100 04/24/09

100 04/24/09

10131

10131

10131

10131

10131

10131

10131

10131

10131

10131

10131

10131

10131

10131

10131

S10131C 33

S10131C 33

S10131B 32

S10131C 33

S10131B 32

S10131C 33

H10131S 29

S10131C 33

S10131C 33

S10131C 33

S10131B 32

S10131C 33

S10131C 33

S10131C 33

32

S10131B

Ρ

Ρ

Ρ

Ρ

Ρ

Ρ

C∨ P

> P P

Ρ

Ρ

Р Р

Ρ

PEICP1

PEICP1

PEICPRAD1

PEICP1 PEICPRAD1

PEICP1

HGCV1

PEICP1

PEICPRAD1

PEICP1

PEICP1

PEICPRAD1

PEICP1

PEICP1

PEICP1

Comments:

7440-48-4

7440-50-8

7439-89-6

7439-92-1

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

3.0

6.0

240

6.0

600

0.099

12

6.0

600

2.1

1.8

300

1.4

12

12

Sample Client Mat Lev	ID: AC43958-006 Id: B-11 rix: SOIL vel: LOW	% Date	Solid: 83 Units: MG/K0 Rec: 4/14/20	9 009	Lab Nar Lab Co Contra	ne: Verite de: act:	ch	N C	Iras No Sdg No ase No):):):
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	240	6000	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-36-0	Antimony	2.4	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-38-2	Arsenic	2.4	6.2	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-39-3	Barium	12	96	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-41-7	Beryllium	0.72	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-43-9	Cadmium	0.72	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-70-2	Calcium	1200	16000	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7440-47-3	Chromium	6.0	16	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-48-4	Cobalt	3.0	6.5	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-50-8	Copper	6.0	96	100	04/24/09	10131	S10131C	34	Р	PEICP1
7439-89-6	Iron	240	14000	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7439-92-1	Lead	6.0	180	100	04/24/09	10131	S10131C	34	Р	PEICP1
7439-95-4	Magnesium	600	3600	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7439-96-5	Manganese	12	260	100	04/24/09	10131	S10131C	34	Р	PEICP1
7439-97-6	Mercury	0.10	1.4	167	04/22/09	10131	H10131S	30	cv	HGCV1
7440-02-0	Nickel	6.0	25	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-09-7	Potassium	600	1000	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7782-49-2	Selenium	2.2	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-22-4	Silver	1.8	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-23-5	Sodium	300	ND	100	04/23/09	10131	S10131B	33	Р	PEICPRAD1
7440-28-0	Thallium	1.4	ND	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-62-2	Vanadium	12	21	100	04/24/09	10131	S10131C	34	Р	PEICP1
7440-66-6	Zinc	12	240	100	04/24/09	10131	S10131C	34	Р	PEICP1

Comments:

Flag Codes:

Sample ID:	AC43958-007	% Solid:	81	Lab Name:	Veritech	Nras No:
Client Id:	B-12	Units:	MG/KG	Lab Code:		Sdg No:
Matrix:	SOIL	Date Rec:	4/14/2009	Contract:		Case No:
Level:	LOW					

Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	250	3200	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-36-0	Antimony	2.5	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-38-2	Arsenic	2.5	3.6	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-39-3	Barium	12	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-41-7	Beryllium	0.74	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-43-9	Cadmium	0.74	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-70-2	Calcium	1200	ND	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7440-47-3	Chromium	6.2	8.6	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-48-4	Cobalt	3.1	3.5	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-50-8	Copper	6.2	7.3	100	04/24/09	10131	S10131C	35	Р	PEICP1
7439-89-6	Iron	250	9800	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7439-92-1	Lead	6.2	6.7	100	04/24/09	10131	S10131C	35	Р	PEICP1
7439-95-4	Magnesium	620	1300	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7439-96-5	Manganese	12	77	100	04/24/09	10131	S10131C	35	Р	PEICP1
7439-97-6	Mercury	0.10	ND	167	04/22/09	10131	H10131S	31	cv	HGCV1
7440-02-0	Nickel	6.2	8.7	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-09-7	Potassium	620	ND	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7782-49-2	Selenium	2.2	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-22-4	Silver	1.9	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-23-5	Sodium	310	ND	100	04/23/09	10131	S10131B	34	Р	PEICPRAD1
7440-28-0	Thallium	1.5	ND	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-62-2	Vanadium	12	13	100	04/24/09	10131	S10131C	35	Р	PEICP1
7440-66-6	Zinc	12	29	100	04/24/09	10131	S10131C	35	Р	PEICP1

Comments:

Flag Codes:

Sample	ID: AC43958-008	%	Solid: 0		Lab Na	me: Verit	ech	Ν	Iras No):
Client	ld: B-11 GW		Units: UG/L		Lab Co	ode:			Sdg No) :
Mati	rix: AQUEOUS	Date	Rec: 4/14/20	009	Contr	act:		С	ase No):
Lev	vel: LOW									
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7429-90-5	Aluminum	180	240000	1	04/23/09	10136	SW10136A2	22	Ρ	PEICP2
7440-36-0	Antimony	12	ND	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-38-2	Arsenic	7.5	410	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-39-3	Barium	50	2500	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-41-7	Beryllium	4.0	28	1	04/23/09	10136	SW10136A2	22	Р	PEICP2
7440-43-9	Cadmium	3.5	19	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-70-2	Calcium	2000	340000	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-47-3	Chromium	50	770	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-48-4	Cobalt	20	350	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-50-8	Copper	50	1300	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-89-6	Iron	550	800000	2	04/23/09	10136	SW10136A	24	Р	PEICP2
7439-92-1	Lead	4.0	2200	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-95-4	Magnesium	2000	160000	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-96-5	Manganese	40	12000	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7439-97-6	Mercury	0.70	17	1	04/22/09	10136	H10136SW	18	cv	HGCV1
7440-02-0	Nickel	50	820	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-09-7	Potassium	5000	65000	1	04/25/09	10136	SW10136C	21	Р	PEICPRAD2
7782-49-2	Selenium	40	ND	1	04/23/09	10136	SW10136A	22	Р	PEICP2
7440-22-4	Silver	20	ND	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-23-5	Sodium	5000	60000	1	04/25/09	10136	SW10136C	21	Р	PEICPRAD2
7440-28-0	Thallium	10	ND	1	04/23/09	10136	SW10136A2	22	Р	PEICP2
7440-62-2	Vanadium	50	1100	1	04/24/09	10136	SW10136B	22	Р	PEICP1
7440-66-6	Zinc	50	4200	1	04/24/09	10136	SW10136B	22	Р	PEICP1

Comments:

Flag Codes:

Date Analyzed: 04/22/09 Data File: S10131B Prep Batch: 10131 Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg) Instrument: PEICPRAD1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-62945-7	CCB-19	CCB-30	CCB-39	CCB-46	MB 10131 (100)-10	
Calcium	10 U	10 U	10 U	10 U	10 U	1000 U	
Iron	2 U	2 U	2 U	2 U	2 U	200 U	
Magnesium	5 U	5 U	5 U	5 U	5 U	500 U	
Potassium	5 U	5 U	5 U	5 U	5 U	500 U	
Sodium	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	250 U	

 Date Analyzed: 04/23/09
 Lab Nar

 Data File: SW10136A2
 Lab Co

 Prep Batch: 10136
 Contra

 Reporting Limits Used: AQUEOUS,6010B(ICP)/7470A,7471A(Hg)
 Nras

 Instrument: PEICP2
 Sdg

 Units: All units in ppm except Hg and icp-ms in ppb
 Case

 Project Number: 9041403
 Case

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-62945-8	CCB-18	CCB-30	CCB-40	CCB-50	MB 10136 (1)- 11	
Aluminum	.18 U	.18 U	.18 U	.18 U	.18 U	.18 U	
Beryllium	.004 U	.004 U	.004 U	.004 U	.004 U	.004U	
iron	.275 U	.275 U	.275 U	.275 U	.275 U	.28 U	
Selenium	.04 U	.04 U	.04 U	.04 U	.04 U	.04 U	
Thallium	.01 U	.01 U	.01 U	.01 U	.01 U	.01 U	

Date Analyzed: 04/24/09 Data File: S10131C Prep Batch: 10131 Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg) Instrument: PEICP1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-62945-8	CCB-20	CCB-31	CCB-40	CCB-47	MB 10131 (100)-11	
Aluminum	2 U	2 U	2 U	2 U	2 U	200 U	
Antimony	.02 U	.02 U	.02 U	.02 U	.02 U	2U	
Arsenic	.02 U	.02 U	.02 U	.02 U	.02 U	20	
Barium	.1 U	.1 U	.1 U	.10	.1 U	10U	
Beryllium	.006 U	.006 U	.006 U	.006 U	.006 U	.6U	
Cadmium	.006 U	.006 U	.006 U	.006 U	.006 U	.6U	
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	5U	
Cobait	.025 U	.025 U	.025 U	.025 U	.025 U	2.5U	
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	5U	
Lead	.05 U	.05 U	.05 U	.05 U	.05 U	5U	
Manganese	.1 U	.1 U	.1 U	.1 U	.1 U	10U	
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U	5U	
Selenium	.018 U	.018 U	.018 U	.018 U	.018 U	1.8U	
Silver	.015 U	.015 U	.015 U	.015 U	.015 U	1.5U	
Thallium	.012 U	.012 U	.012 U	.012 U	.012 U	1.2U	
Vanadium	.1U	.1 U	.1 U	.10	.1 U	10 U	
Zinc	.1 U	.1 U	.1 U	.1 U	.1 U	10U	

Date Analyzed: 04/24/09 Data File: SW10136B Prep Batch: 10136 Reporting Limits Used: AQUEOUS,6010B(ICP)/7470A,7471A(Hg) Instrument: PEICP1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Ancheta	ICB V-62945-8	CCB-20	CCB-30	CCB-38	MB 10136 (1)-
Analyte					11
Antimony	.012 U	.012 U	.012 U	.012 U	.012 U
Arsenic	.0075 U	.0075 U	.0075 U	.0075 U	.0075 U
Barium	.05 U	.05 U	.05 U	.05 U	.05 U
Cadmium	.0035 U	.0035 U	.0035 U	.0035 U	.0035 U
Calcium	2 U	2 U	2 U	2 U	2 U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U
Cobalt	.02 U	.02 U	.02 U	.02 U	.02 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U
Lead	.004 U	.004 U	.004 U	.004 U	.004 U
Magnesium	2 U	2 U	2 U	2 U	2 U
Manganese	.04 U	.04 U	.04 U	.04 U	.04 U
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U
Silver	.02 U	.02 U	.02 U	.02 U	.02 U
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U

Date Analyzed	: 04/25/09	Lah Nama;	Voritech
Data File	: SW10136C2	Lab Name.	Ventech
Prep Batch	: 10136	Lab Code:	
Reporting Limits Used	· AQUEOUS.6010B(ICP)/7470A.7471A(Hg)	Contract:	
Instrument:		Nras No:	
		Sdg No:	
Units	: All units in ppm except Hg and icp-ms in ppb	Case No:	
Project Number	: 9041403		

Analyte	ICB V-62945-7	CCB-17	CCB-25	MB 10136 (1)- 10		
Potassium	5 U	5 U	5 U	5 U		
Sodium	5 U	5 U	5 U	5 U		

Data File: H10131S Prep Batch: 10131 Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg) Instrument: HGCV1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403	Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:	
--	---	--

Analyte	ICB-10	CCB-22	CCB-34	CCB-42	MB 10131 (167)-11	
Mercury	.5 U	.5 U	.5 U	.5 U	84 U	
FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/22/09	Lab Nama: Varitaab
Data File: H10136SW	Lab Name. Ventech
Pres Batch: 10136	Lab Code:
	Contract:
Reporting Limits Used: AQUEUUS, 6010B(ICF)/1470A, 1471A(Ing)	Nras No:
Instrument: HGCV1	Sda No:
Units: All units in ppm except Hg and icp-ms in ppb	
Project Number: 9041403	Case No:
-,	

	ICB-10	CCB-20	MB 10136 (1)-	
Analyte			11	
Mercury	.7 U	.7 U	.7 U	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 5/FORM 7 SPIKE/LCS RECOVERY

Date Analyzed: 04/22/09 Data File: S10131B Prep Batch: 10131 Analytical Method: 6010B(ICP)/7470A,7471A(Hg) Instrument: PEICPRAD1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403 MATRIX SPIKE SOURCE: VHG LABS Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No: Matrix: SOIL Level: Low

		Sp	oike Ar	nts	LCS	Non Spike									
	Analyte	MS-Tclp MS-Aq MS-soil	LCS Soil	LCS Aq	Rec Limits	Conc AC43975- 001-13	AC43975- 002-15-1X	%REC OR Conc	AC43975- 003-16-1X	%REC OR Conc	LCS 100- 11-1X	%REC OR Conc	LCS MR 100-12-1X	%REC OR Conc	%REC OR Conc
(Calcium	50	98.7		82.0 - 115	10 U	51.8065	104	53.0271	106	102.02	102	108.157	108	
I	ron	5	180		91.2 - 269	324.659	319.482	-100 b	335.765	222 b	195.135	195	190.227	190	
3	Magnesium	50	40.0		31.4 - 48.7	115.091	134.613	39 a	166.415	103	41.3245	41.3	42.3215	42.3	
1	Potassium	50	43.0		31.6 - 54.4	113.922	133.212	39 a	168.072	108	44.3102	44.3	43.819	43.8	
15	Sodium	50	10.2		7.52 - 12.9	9.27847	58.4579	98	58.3371	98	10.2637	10.3	10.1666	10.2	

	MS Qc Limits:	
EPA600:	SW846	CLP
MS: 70-130	MS TCLP: >50% MS soil/aqueous:75-125	MS:75-125

Note: All Elements analyzed by ICP(P) or ICP-MS except Mercury(CV)

Flags:

U: Conc < Reporting Limit

a: Recovery Failed Specified Limit

b: Recovery Failed Specified Limit but Non Spike concentration > 4* spike amount

FORM 5/FORM 7 SPIKE/LCS RECOVERY

Date Analyzed: 04/24/09 Data File: S10131C Prep Batch: 10131 Analytical Method: 6010B(ICP)/7470A,7471A(Hg) Instrument: PEICP1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403 MATRIX SPIKE SOURCE: VHG LABS

Lab Name:	Veritech
Lab Code:	
Contract:	
Nras No:	
Sdg No:	
Case No:	
Matrix:	SOIL
Level:	Low

	Sp	oike Ar	nts	LCS	Non Spike										
Analyte	MS-Tclp MS-Aq MS-soil	LCS Soil	LCS Aq	Rec Limits	Conc AC43975- 001-14		AC43975- 002-16-1X	%REC OR Conc	AC43975- 003-17-1X	%REC OR Conc	LCS 100- 12-1X	%REC OR Conc	LCS MR 100-13-1X	%REC OR Conc	%REC OR Conc
Aluminum	5.0	105		59.1 - 151	297.393		307.942	211 b	328.654	625 b	103.52	104	102.91	103	
Antimony	0.5	0.674		0.102 - 1.24	0.02	U	0.285551	57 a	0.295565	59 a	1.20057	1.2	1.2125	1.21	
Arsenic	0.5	1.04		0.807 - 1.28	0.02	U	0.49875	100	0.49608	99	1,12665	1.13	1.14574	1.15	
Barium	0.5	1,98		1.58 - 2.37	1.71562		1.90983	39 a	2.22344	102	2.10981	2.11	2.05894	2.06	
Beryllium	0.5	0.776		0.650 - 0.90	0.0128059		0.529433	103	0.534658	104	0.850593	.851	0.835002	.835	
Cadmium	0.5	0.607	1	0.491 - 0.72	0.006	U	0.509569	102	0.513092	103	0.635862	.636	0.661289	.661	
Chromium	0.5	2.36		1.88 - 2.84	0.520192		0.962722	89	1.03456	103	2.60566	2.61	2.61306	2.61	
Cobalt	0.5	0.912		0.739 - 1.09	0.182161		0.633501	90	0.681692	100	1.00913	1.01	1.02503	1.03	
Copper	0.5	1.74		1.40 - 2.06	0.139673		0.72627	117	0.662514	105	1.91539	1.92	1.93341	1.93	
Lead	0.5	0.860		0.678 - 1.05	0.0868843		0.576971	98	0.606817	104	0.923312	.923	0.909096	.909	
Manganese	0.5	5.58		4.53 - 6.64	5.46919		5.17787	-58 b	6.92819	292 b	5.99659	6	6.06307	6.06	
Nickel	0.5	1.34		1.04 - 1.65	0.389977		0.789882	80	0.870811	96	1.48178	1.48	1.51828	1.52	
Selenium	0.5	2.86		2.19 - 3.52	0.0277424		0.513603	97	0.499247	94	3.04125	3.04	3.15031	3.15	
Silver	0.1	0.301		0.200 - 0.40	0.015	U	0.10024	100	0.0994491	99	0.343751	.344	0.332955	.333	
Thallium	0.5	1.21		0.946 - 1.48	0.012	U	0.52653	105	0.52377	105	1.32409	1.32	1.34175	1.34	
Vanadium	0.5	1.15		0.913 - 1.39	0.735357		1.21017	95	1.2407	101	1.26834	1.27	1.23691	1.24	
Zinc	0.5	5.94		4.72 - 7.17	1.14894		1.40679	52 a	1.68957	108	6.75798	6.76	6.71457	6.71	

	MS Qc Limits:	
EPA600:	SW846	CLP
MS: 70-130	MS TCLP: >50% MS soil/aqueous:75-125	MS:75-125

Flags:

U: Conc < Reporting Limit

a: Recovery Failed Specified Limit

b: Recovery Failed Specified Limit but Non Spike concentration > 4* spike amount

Note: All Elements analyzed by ICP(P) or ICP-MS except Mercury(CV)

FORM6/FORM9 RPDS

Date Analyzed: 04/22/09 Data File: S10131B Prep Batch: 10131 Analytical Method: 6010B(ICP)/7470A,7471A(Hg) Instrument: PEICPRAD1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403 Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

	Qc Limits		Sample	Method Rep		LCS	LCS MR		Sample	Serial Dil	
Analyte	LCS/MR	SD	AC43975- 001-13	AC43975- 001-14	RPD	LCS 100-11	LCS MR 100-12	RPD	AC43975- 001-13	AC43975- 001-20	%Diff
Calcium	<=20	<=10	10 U	10 U					5.12501	4.519525	12 Sa
Iron	<=20	<=10	324.659	325.572	0.28				324.659	333.554	2.7
Magnesium	<=20	<=10	115.091	115.983	0.77				115.091	116.632	1.3
Potassium	<=20	<=10	113.922	115.060	0.99				113.922	115.596	1.5
Sodium	<=20	<=10	9.27847	8.86177	4.6				9.27847	9.26935	0.098

Flags:

Na::Method Rep outside of Qc Limits

Nb :Method Rep out but concentrations < 5* Reporting Limits U: Conc < Reporting Limit (Method Rep) or < IDL (serial Dilution) Lm:Lcs Rpd Out Sa:Serial Dilution outside of qc limits Sb: Serial dilution out but concentration < 10 * IDL E: Serial Dilution outside of qc limits CLP

FORM6/FORM9 RPDS

Date Analyzed: 04/24/09 Data File: S10131C Prep Batch: 10131 Analytical Method: 6010B(ICP)/7470A,7471A(Hg) Instrument: PEICP1 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403 Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

	Qc Limits		Sample	Method Rep		LCS	LCS MR		Sample	Serial Dil	
Analyte	LCS/MR SD		AC43975- 001-14	AC43975- 001-15	RPD	LCS 100-12	LCS MR 100-13	RPD	AC43975- 001-14	AC43975- 001-21	%Diff
Aluminum	<=20	<=10	297.393	304.988	2.5				297.393	297.084	0.1
Antimony	<=20	<=10	0.02 U	0.02 U					0.0114742	0.014798	29 Sb
Arsenic	<=20	<=10	0.02 U	0.02 U					0.0124262	0.0344765	177 Sb
Barium	<=20	<=10	1.71562	1.75504	2.3				1.71562	1.707875	0.45
Beryllium	<=20	<=10	0.0128059	0.0138557	7.9				0.0128059	0.0143755	12 Sa
Cadmium	<=20	<=10	0.006 U	0.006 U					0.0026387	0.00055 U	
Chromium	<=20	<=10	0.520192	0.513125	1.4				0.520192	0.521165	0.19
Cobalt	<=20	<=10	0.182161	0.181978	0.1				0.182161	0.1893585	4
Copper	<=20	<=10	0.139673	0.128256	8.5				0.139673	0.130746	6.4
Lead	<=20	<=10	0.0868843	0.0892254	2.7				0.0868843	0.094529	8.8
Manganese	<=20	<=10	5.46919	5.37052	1.8				5.46919	5.60075	2.4
Nickel	<=20	<=10	0.389977	0.389242	0.19				0.389977	0.4095475	5
Selenium	<=20	<=10	0.0277424	0.0287636	3.6				0.0277424	0.041322	49 Sb
Silver	<=20	<=10	0.015 U	0.015 U					0.000311 U	0.001555 U	
Thallium	<=20	<=10	0.012 U	0.0218933		-			0.0058158	0.0275935	374 Sb
Vanadium	<=20	<=10	0.735357	0.731701	0.5				0.735357	0.712035	3.2
Zinc	<=20 <=10 <=20 <=10		1.14894	1.14044	0.74				1.14894	1,18142	2.8

Flags:

Na::Method Rep outside of Qc Limits

Nb :Method Rep out but concentrations < 5* Reporting Limits U: Conc < Reporting Limit (Method Rep) or < IDL (serial Dilution) Lm:Lcs Rpd Out Sa:Serial Dilution outside of qc limits

Sb: Serial dilution out but concentration < 10 * IDL E: Serial Dilution outside of qc limits CLP

FORM6/FORM9 RPDS

Date Analyzed: 04/25/09 Data File: SW10136C2 Prep Batch: 10136 Analytical Method: 6010B(ICP)/7470A,7471A(Hg) Instrument: PEICPRAD2 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403 Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

	Qc Lim	tc Limits Sample Method Rep LCS LCS MR		Method Rep		Sample Method Rep			Sample	Serial Dil		
Analyte	LCS/MR	SD	AC43601- 001-13	AC43601- 001-14	RPD	LCSW-11	LCSW MR-12	RPD	AC43601- 001-13	AC43601- 001-20	%Diff	
Potassium	<=20	<=10	5 U	5 U					4.85218	4.149735	14 Sa	
Sodium	<=20	<=10	74.0301	73.5317	0.68			3	74.0301	71.887	2.9	

Flags:

Na::Method Rep outside of Qc Limits

Nb :Method Rep out but concentrations < 5* Reporting Limits U: Conc < Reporting Limit (Method Rep) or < IDL (serial Dilution) Lm:Lcs Rpd Out Sa:Serial Dilution outside of qc limits

Sb: Serial dilution out but concentration < 10 * IDL

E: Serial Dilution outside of qc limits CLP

VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC43958-009 Matrix Soil Client SampleID: WC-1					Proje Rece Co	ct Number: 9041 eived Date: 4/13/ ollect Date: 4/13/	403 2009 2009	
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:	
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09	
Ignitability	IGNITABILITY	1	NEG				04/16/09	
pH	PH-SOIL	1	9.6	Ph			04/16/09	
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09	
Lab#: AC43958-010					Proje	ct Number: 9041	403	
Matrix Soil					Rece	eived Date: 4/13/	2009	
Client SampleID: WC-2					Co	ollect Date: 4/10/	2009	
Analysis	TestGroup	tGroup Dilution: Result Units:				Prep Date:	Analysis Date:	
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09	
Ignitability	IGNITABILITY	1	NEG				04/16/09	
pН	PH-SOIL	1	9.9	Ph			04/16/09	
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09	
Lab#: AC43958-011					Proje	ct Number: 9041	403	
Matrix Soil					Rece	eived Date: 4/13/	2009	
Client SampleID: WC-3					Co	ollect Date: 4/10/	2009	
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:	
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09	
Ignitability	IGNITABILITY	1	NEG				04/16/09	
pН	PH-SOIL	1	9.5	Ph			04/16/09	
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09	
Lab#: AC43958-012 Matrix Soil					Proje	ct Number: 9041	403	
Client SampleID: WC-4					Co	ollect Date: 4/13/	2009	
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:	
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09	
Ignitability	IGNITABILITY	1	NEG				04/16/09	
	PH-SOIL	1	9.2	Ph			04/16/09	
Sullide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09	
Lab#: AC43958-013					Projec	ct Number: 9041	403	
Matrix Soil					Rece	eived Date: 4/13/2	2009	
Client SampleID: WC-5					Co	ollect Date: 4/9/20	009	
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:	
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09	
Ignitability	IGNITABILITY	1	NEG				04/16/09	
pН	PH-SOIL	1	8.6	Ph			04/16/09	
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09	
Lab#: AC43958-014					Projec	t Number: 90414	403	
Matrix Soil					Received Date: 4/13/2009			
Client SampleID: WC-6					Collect Date: 4/13/2009			
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:	
Cyanide (Reactive)	CN-REACTIVE	1	ND	mg/kg	10	04/16/09	04/16/09	
Ignitability	IGNITABILITY	1	NEG				04/16/09	
рН	PH-SOIL	1	9.2	Ph			04/16/09	
Sulfide (Reactive)	S-REACTIVE	1	ND	mg/kg	100	04/16/09	04/16/09	

and a second and a second a s			000001447022032555557469424450000000000000000000000000000000000	######################################				0	145
Ar	nalysis T	vpe: PH-S	a da aktika sata sata sata sata			n i Mala (Nameri Chanasara) Ar		-	
Batch Number: PH-S-348				l	Jnits: F	ph			
Calibration Curve Information			Qc S	ummar	y Res	ults			
	Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
		AC43845-011 LCS-3 LCS-2 LCS	0 44 44 44	NA 75-12 <u>5</u> 75-125 75-125 75-125	20 NA NA NA	7 33 4 37 4 48 4 51	NA 99 102 103	2 6 NA NA NA	
Analytical Method(s)									
9040B/9045C									

Sam #	Туре	MB R	esult	RL I	Per Sol	Raw Result	PH	Prep Date	Prep By	Anal Date	Anal By
AC43845-011	DUP		7.3	***********	100	7.33	7.33	199 1999 99		04/09/09	bct
AC43845-011	Sample		7.1		100	7.14	7.14			04/09/09	bct
AC43845-013	Sample		8.3		100	8.26	8.26			04/09/09	bct
AC43845-015	Sample		8.4		100	8.44	8.44			04/09/09	bct
LCS	LCS		4.5		100	4.51	4.51			04/09/09	bct
AC43857-001	Sample		8.3		100	8.26	8.26			04/13/09	BCT
AC43857-002	Sample		6.5		100	6.5	6.50			04/13/09	BCT
AC43857-003	Sample		7.5		100	7.49	7.49			04/13/09	BCT
AC43857-004	Sample		6.3		100	6.33	6.33			04/13/09	BCT
AC43871-003	Sample		9		100	9.03	9.03			04/13/09	BCT
AC43876-001	Sample		8.6		100	8.64	8.64			04/13/09	BCT
AC43910-001	Sample		6.8		100	6.85	6.85			04/13/09	BCT
AC43832-002	Sample		8		100	7.96	7.96			04/13/09	BCT
AC43874-003	Sample		8.1		100	8.08	8.08			04/13/09	BCT
AC43924-002	Sample		7.8		100	7.82	7.82			04/13/09	BCT
LCS-2	LCS		4.5		100	4.48	4.48			04/13/09	BCT
LCS-3	LCS		4.4		100	4.37	4.37			04/16/09	SDL
AC43958-009	Sample		9.6		100	9.6	9.60			04/16/09	SDL
AC43958-010	Sample		9.9		100	9.86	9.86			04/16/09	SDL
AC43958-011	Sample		9.5		100	9.51	9.51			04/16/09	SDL
AC43958-012	Sample		9.2		100	9.17	9.17			04/16/09	SDL
AC43958-013	Sample		8.6		100	8.55	8.55			04/16/09	SDL
AC43958-014	Sample		9.2		100	9.25	9.25			04/16/09	SDL
AC43977-009	Sample		6.5		100	6.5	6.50			04/16/09	SDL

Sma lever 4/16/09

	a soon of the lifest for all real		Analysis T	vpe:RCN							146				
	Batch Nu	mber: RCN-259	Cal Curve Da	ate: 04/14/09		U	nits:r	ng/kg							
Cali	bration Curv	e Information		Qc Summary Results											
Concentration:	Abs/Area	Slope: 1.299907	Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags				
0 0.01 0.02 0.04 0.08 0.2 0.4 0.8	0.002 0.021 0.035 0.063 0.115 0.28 0.55 1.04	Intercept: 0.011393 Rsquared: 0.9996462 Date Performed: 04/14/09	1 2 CAI-01 CAI-01 CAI-02 CAI-02 CAI-02 CAI-02 CAI-02 CAI-02 CAI-02 CAI-02 CAI-02 CAI-02 CAI-01 CAI-01 CAI-01 CAI-01 CAI-01 CAI-01 CAI-02	CAL-D1-D4/16/09 CAL-D1-D4/15/09 CAL-D2-D4/16/09 CAL-D2-D4/16/09 CCV-2 CCV AC43940-D02 I CS-2 I CS AC43940-D02 AC43940-D02	0 08 0 08 0 8 0 8 0 08 0 08 0 08 0 0 0 378 1000 1000 1000 1000	90-110 90-110 90-110 90-110 90-110 90-110 90-110 1 504-2 034 1 504-2 034 1 478-1 945 1 478-1 945	NA NA NA NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA	0 08354975 0 08508832 0 851297 0 85297 0 08201118 0 0858576 0 06525659 0 4143426 20 64776 21 12857 20 45544 20 80162	104 106 106 107 103 107 NA 110 21 21 21 2 21	NA NA NA NA NA NA NA NA NA NA 17	Nr. Ra Ra Ra Ra				

Analytical Method(s)

EPA 7.3.3

						Sec. 100		reprintegione e consectaria da						
Sam #	Туре	мв	Result	RL	Per Sol	Raw Result	Abs	Sam Wt/Vol	DF	Scrb Vol	Prep Date	Prep By	Anal Date	Anal By
CAL-01-04/15/09	CAL-01		0.085	an gaanta ni dagadaleed	100	0.085088	0.122	1	1 1]		Mananan colagia	04/15/09	iad
CAL-02-04/15/09	CAL-02		0.86		100	0.85668	1.125	1	1	1			04/15/09	iad
MB-1-04/15/09	MB	MB-1-04/15/09	ND	10	100	-0.14219	0.004	10	1	250	04/15/09	iad	04/15/09	iad
LCS	LCS	MB-1-04/15/09	21	10	100	21.129	1.110	10	1	250	04/15/09	iad	04/15/09	iad
AC43940-002	Sample	MB-1-04/15/09	ND	10	91	-0.084489	0.007	10	1	250	04/15/09	iad	04/15/09	iad
AC43940-002	DUP	MB-1-04/15/09	ND	10	91	-0.065257	0.008	10	1	250	04/15/09	jad	04/15/09	jad
AC43940-002	MS	MB-1-04/15/09	20	10	91	20.455	1.075	10	1	250	04/15/09	jad	04/15/09	iad
AC43940-002	MSD	MB-1-04/15/09	21	10	91	20.802	1.093	10	1	250	04/15/09	iad	04/15/09	iad
AC43940-003	Sample	MB-1-04/15/09	ND	10	91	-0.10372	0.006	10	1	250	04/15/09	iad	04/15/09	iad
AC43940-004	Sample	MB-1-04/15/09	ND	10	95	-0.065257	0.008	10	1	250	04/15/09	jad	04/15/09	jad
AC43940-005	Sample	MB-1-04/15/09	ND	10	96	-0.084489	0.007	10	1	250	04/15/09	jad	04/15/09	jad
AC43940-006	Sample	MB-1-04/15/09	ND	10	97	-0.065257	0.008	10	1	250	04/15/09	jad	04/15/09	jad
AC43936-001	Sample	MB-1-04/15/09	ND	10	22	-0.026792	0.010	10	1	250	04/15/09	jad	04/15/09	iad
AC43936-002	Sample	MB-1-04/15/09	ND	10	9	-0.046024	0.009	10	1	250	04/15/09	iad	04/15/09	iad
AC43936-003	Sample	MB-1-04/15/09	ND	10	34	-0.065257	0.008	10	1	250	04/15/09	jad	04/15/09	jad
AC43936-004	Sample	MB-1-04/15/09	ND	10	23	-0.007560	0.011	10	1	250	04/15/09	jad	04/15/09	jad
AC43936-005	Sample	MB-1-04/15/09	ND	10	24	-0.026792	0.010	10	1	250	04/15/09	jad	04/15/09	iad
CCV	CCV	MB-1-04/15/09	ND	10	100	0.085858	0.123	1	1	1	04/15/09	jad	04/15/09	jad
CAL-01-04/16/09	CAL-01		0.084		100	0.08355	0.120	1	1	1			04/16/09	jad
CAL-02-04/16/09	CAL-02		0.85		100	0.8513	1.118	1	1	1			04/16/09	jad
MB-1-04/16/09	MB	MB-1-04/16/09	ND	10	100	-0.14219	0.004	10	1	250	04/16/09	iad	04/16/09	iad
LCS-2	LCS	MB-1-04/16/09	21	10	100	20.648	1.085	10	1	250	04/16/09	iad	04/16/09	iad
AC43984-001	Sample	MB-1-04/16/09	ND	10	44	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	iad
AC43997-001	Sample	MB-1-04/16/09	ND	10	100	-0.10372	0.006	10	1	250	04/16/09	jad	04/16/09	iad
AC43958-009	Sample	MB-1-04/16/09	ND	10	80	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	iad
AC43958-010	Sample	MB-1-04/16/09	ND	10	84	-0.10372	0.006	10	1	250	04/16/09	iad	04/16/09	iad
AC43958-011	Sample	MB-1-04/16/09	ND	10	85	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	jad
AC43958-012	Sample	MB-1-04/16/09	ND	10	87	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	iad
AC43958-014	Sample	MB-1-04/16/09	ND	10	79	-0.065257	0.008	10	1	250	04/16/09	iad	04/16/09	iad
AC43977-009	Sample	MB-1-04/16/09	ND	10	84	-0.12295	0.005	10	1	250	04/16/09	jad	04/16/09	jad
AC43985-006	Sample	MB-1-04/16/09	ND	10	80	-0.10372	0.006	10	1	250	04/16/09	jad	04/16/09	jad
AC43958-013	Sample	MB-1-04/16/09	ND	10	86	-0.084489	0.007	10	1	250	04/16/09	iad	04/16/09	iad
CCV-2	CCV	MB-1-04/16/09	ND	10	100	0.082011	0.118	1	1	1	04/16/09	iad	04/16/09	iad
ICV-04/14/09	ICV		ND	10	100	0.41434	0.550	1	1	1			04/14/09	iad

ля Ч/16/09

Rp - RPD failed specified criteria.

Nc - Not Checked ...either one or both values =ND

Batch Number: RS-259	Units: mg/kg										
Calibration Curve Information			Qc S	ummar	v Res	ults		a an			
	Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags		
	CAL_01 CAL_01 DHP LCS LCS MS MSD	CAL-01-04/15/09 CAL-01-04/16/09 AC43940-002 I CS I CS-2 AC43940-002 AC43940-002	16 16 0 500 500 500 500	90-110 90-110 NA 44-80 44-80 22-81 22-81	NA 20 NA NA 20	16 03 16 43075 40 075 300 5625 270 5063 240 45 250 4687	100 103 NA 60 54 48 50	NA NA NA NA A 1	No		

Analytical Method(s)

EPA 7.3.4

					Per	Raw	Titr Vol	lod Vol	DF	Sam	Scrb	Prep	Prep	Anal	Anal
Sam #	Туре	MB	Result	RL	Sol	Result	t			Wt (g)	Vol (ml)	Date	Ву	Date	Ву
CAL-01-04/15/09	CAL-01	ale na suppli a superior de la faga de la participada de la factoria de la factoria de la factoria de la factor	16		100	16.03	6.0	10	l	250	250	99294999 - C.	2/254/4+212-Kirejiy	04/15/09	jad
MB-1-04/15/09	MB	MB-1-04/15/09	ND	100	100	10.019	9.9	10	1	10	250	04/15/09	jad	04/15/09	jad
LCS	LCS	MB-1-04/15/09	300	100	100	300.56	7.0	10	1	10	250	04/15/09	jad	04/15/09	iad
AC43940-002	Sample	MB-1-04/15/09	ND	100	91	60.112	9.4	10	1	10	250	04/15/09	iad	04/15/09	jađ
AC43940-002	DUP	MB-1-04/15/09	ND	100	91	40.075	9.6	10		10	250	04/15/09	iad	04/15/09	jad
AC43940-002	MS	MB-1-04/15/09	240	100	91	240.45	7.6	10	1	10	250	04/15/09	iad	04/15/09	iad
AC43940-002	MSD	MB-1-04/15/09	250	100	91	250.47	7.5	10	1	10	250	04/15/09	iad	04/15/09	iad
AC43940-003	Sample	MB-1-04/15/09	ND	100	91	70.131	9.3	10	1	10	250	04/15/09	iad	04/15/09	iad
AC43940-004	Sample	MB-1-04/15/09	ND	100	95	60.112	9.4	10	1	10	250	04/15/09	iad	04/15/09	iad
AC43940-005	Sample	MB-1-04/15/09	ND	100	96	40,075	9.6	10	1	10	250	04/15/09	jad	04/15/09	iad
AC43940-006	Sample	MB-1-04/15/09	ND	100	97	70.131	9.3	10	1	10	250	04/15/09	iad	04/15/09	jad
AC43936-001	Sample	MB-1-04/15/09	ND	100	22	60.112	9.4	10	1	10	250	04/15/09	iad	04/15/09	jad
AC43936-002	Sample	MB-1-04/15/09	ND	100	9	40.075	9.6	10	1	10	250	04/15/09	jad	04/15/09	iad
AC43936-003	Sample	MB-1-04/15/09	ND	100	34	50.094	9.5	10	1	10	250	04/15/09	iad	04/15/09	jad
AC43936-004	Sample	MB-1-04/15/09	ND	100	23	70.131	9.3	10	1	10	250	04/15/09	jad	04/15/09	jad
AC43936-005	Sample	MB-1-04/15/09	ND	100	24	60.112	9.4	10	1	10	250	04/15/09	iad	04/15/09	iad
CAL-01-04/16/09	CAL-01		16		100	16.431	5.9	10	1	250	250			04/16/09	iad
MB-1-04/16/09	MB	MB-1-04/16/09	ND	100	100	20.038	9.8	10	1	10	250	04/16/09	jad	04/16/09	iad
LCS-2	LCS	MB-1-04/16/09	270	100	100	270.51	7.3	10	1	10	250	04/16/09	iad	04/16/09	iad
AC43984-001	Sample	MB-1-04/16/09	ND	100	44	60.112	9.4	10	1	10	250	04/16/09	jad	04/16/09	jad
AC43997-001	Sample	MB-1-04/16/09	ND	100	100	30.056	9.7	10	1	10	250	04/16/09	jad	04/16/09	iad
AC43958-009	Sample	MB-1-04/16/09	ND	100	80	70.131	9.3	10	1	10	250	04/16/09	jad	04/16/09	jad
AC43958-010	Sample	MB-1-04/16/09	ND	100	84	40.075	9.6	10	1	10	250	04/16/09	iad	04/16/09	jad
AC43958-011	Sample	MB-1-04/16/09	ND	100	85	30.056	9.7	10	1	10	250	04/16/09	iad	04/16/09	jad
AC43958-012	Sample	MB-1-04/16/09	ND	100	87	40.075	9.6	10	1	10	250	04/16/09	jad	04/16/09	jad
AC43958-013	Sample	MB-1-04/16/09	ND	100	86	50.094	9.5	10	1	10	250	04/16/09	iad	04/16/09	iad
AC43958-014	Sample	MB-1-04/16/09	ND	100	79	30.056	9.7	10	1	10	250	04/16/09	iad	04/16/09	jad
AC43977-009	Sample	MB-1-04/16/09	ND	100	84	50.094	9.5	10	1	10	250	04/16/09	iad	04/16/09	iad
AC43985-006	Sample	MB-1-04/16/09	ND	100	80	50.094	9.5	10	1	10	250	04/16/09	iad	04/16/09	iad

Jon 6 Jan-

	nalysis T	vpe: IGNIT						0	148						
Batch Number: IGNIT-214					Units:										
Calibration Curve Information	Calibration Curve Information							Qc Summary Results							
	Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags						
	PI ID	AC43940-002	n	NA	NA	#Frror	NA	NA							
Analytical Method(s)															
EPA 1030															

				_	_						
_				Per	Raw	Pos/Ne		Prep	Prep	Anal	Anal
Туре	MB	Result	RL	SOI	Resul	t 9		Dale	БУ	Dale	Бу
Sample		NEG		100	0	NEG		00011923-40221104000000111193		04/15/09	iad
DUP		NEG		100	0	NEG				04/15/09	iad
Sample		NEG		100	0	NEG				04/15/09	iad
Sample		NEG		100	0	NEG				04/15/09	iad
Sample		NEG		100	0	NEG				04/15/09	jad
Sample		NEG		100	0	NEG				04/15/09	iad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	jad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	jad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/16/09	iad
Sample		NEG		100	0	NEG				04/20/09	SDL
Sample		NEG		100	0	NEG				04/20/09	SDL
	Type Sample DUP Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample	TypeMBSampleDUPSample	TypeMBResultSampleNEGDUPNEGSampleNEG	TypeMBResultRLSampleNEGDUPNEGSampleNEG	Type MB Result RL Sol Sample NEG 100 DUP NEG 100 Sample NEG <td>Type MB Result RL Sol Result Sample NEG 100 0 DUP NEG 100 0 Sample NEG 100 0 Samp</td> <td>Type MB Result RL Sol Result 9 Sample NEG 100 0 NEG DUP NEG 100 0 NEG Sample NEG 100 0 NEG <td< td=""><td>TypeMBResultRLSolResult 9SampleNEG1000NEGDUPNEG1000NEGSampleNEG1000NEG<td>TypeMBResultRLSolResult 9DateSampleNEG1000NEGDUPNEG1000NEGSampleNEG1000<!--</td--><td>TypeMBResultRLSolResult 9DateBySampleNEG1000NEGDUPNEG1000NEGSampleNEG100<</td><td>Type MB Result RL Sol Result 9 Date By Date Sample NEG 100 0 NEG 04/15/09 04/15/09 DUP NEG 100 0 NEG 04/15/09 04/15/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 NEG 04/16/09 04/16/09 Sample NEG 100 NEG 04/</td></td></td></td<></td>	Type MB Result RL Sol Result Sample NEG 100 0 DUP NEG 100 0 Sample NEG 100 0 Samp	Type MB Result RL Sol Result 9 Sample NEG 100 0 NEG DUP NEG 100 0 NEG Sample NEG 100 0 NEG <td< td=""><td>TypeMBResultRLSolResult 9SampleNEG1000NEGDUPNEG1000NEGSampleNEG1000NEG<td>TypeMBResultRLSolResult 9DateSampleNEG1000NEGDUPNEG1000NEGSampleNEG1000<!--</td--><td>TypeMBResultRLSolResult 9DateBySampleNEG1000NEGDUPNEG1000NEGSampleNEG100<</td><td>Type MB Result RL Sol Result 9 Date By Date Sample NEG 100 0 NEG 04/15/09 04/15/09 DUP NEG 100 0 NEG 04/15/09 04/15/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 NEG 04/16/09 04/16/09 Sample NEG 100 NEG 04/</td></td></td></td<>	TypeMBResultRLSolResult 9SampleNEG1000NEGDUPNEG1000NEGSampleNEG1000NEG <td>TypeMBResultRLSolResult 9DateSampleNEG1000NEGDUPNEG1000NEGSampleNEG1000<!--</td--><td>TypeMBResultRLSolResult 9DateBySampleNEG1000NEGDUPNEG1000NEGSampleNEG100<</td><td>Type MB Result RL Sol Result 9 Date By Date Sample NEG 100 0 NEG 04/15/09 04/15/09 DUP NEG 100 0 NEG 04/15/09 04/15/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 NEG 04/16/09 04/16/09 Sample NEG 100 NEG 04/</td></td>	TypeMBResultRLSolResult 9DateSampleNEG1000NEGDUPNEG1000NEGSampleNEG1000 </td <td>TypeMBResultRLSolResult 9DateBySampleNEG1000NEGDUPNEG1000NEGSampleNEG100<</td> <td>Type MB Result RL Sol Result 9 Date By Date Sample NEG 100 0 NEG 04/15/09 04/15/09 DUP NEG 100 0 NEG 04/15/09 04/15/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 NEG 04/16/09 04/16/09 Sample NEG 100 NEG 04/</td>	TypeMBResultRLSolResult 9DateBySampleNEG1000NEGDUPNEG1000NEGSampleNEG100<	Type MB Result RL Sol Result 9 Date By Date Sample NEG 100 0 NEG 04/15/09 04/15/09 DUP NEG 100 0 NEG 04/15/09 04/15/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 0 NEG 04/16/09 Sample NEG 100 NEG 04/16/09 04/16/09 Sample NEG 100 NEG 04/

Some 0. Cent 4/20/09

Nc - Not Checked ...either one or both values =ND

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK Client Id: Data File: 6M40461.D Analysis Date: 04/22/09 08:43

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	υ	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	υ	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	υ	127-18-4 Tetrachloroethene	0.0010	υ
78-93-3 2-Butanone	0.0010	υ	79-01-6 Trichloroethene	0.0010	υ
71-43-2 Benzene	0.00050	υ	75-01-4 Vinyl Chloride	0.0010	υ
56-23-5 Carbon Tetrachloride	0.0010	υ			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: DAILY BLANK Client Id:

Data File: 3M62146.D

Analysis Date: 04/27/09 08:19

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out *J* - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: DAILY BLANK

Client Id: Data File: 6M40649.D

Analysis Date: 04/28/09 11:20

Date Rec/Extracted:

Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	e 0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116383

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

 \hat{d} - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: EF-1-V-64326(042209)	Method: EPA 8260B
Client Id:	Matrix: Aqueous
Data File: 6M40496.D	Initial Vol: 5ml
Analysis Date: 04/22/09 18:46	Final Vol: NA
Date Rec/Extracted:	Dilution: 1.00
Column:DB-624 25M 0.200mm ID 1.12um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: EF-1-V64326(042409) Client Id: Data File: 6M40675.D Analysis Date: 04/28/09 18:24

Analysis Date. 04/20/05

Date Rec/Extracted:

Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	υ	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116383

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument. R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-009(T) Client Id: WC-1 Data File: 3M62152.D Analysis Date: 04/27/09 10:01 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7	Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3	Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4	Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6	Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4	Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U				

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-010(T) Client Id: WC-2 Data File: 6M40492.D Analysis Date: 04/22/09 17:42 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	υ	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-011(T) Client Id: WC-3 Data File: 6M40493.D Analysis Date: 04/22/09 17:58 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte was journa in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-012(T) Client Id: WC-4 Data File: 6M40494.D Analysis Date: 04/22/09 18:14 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	υ	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	υ	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: AC43958-013(T) Client Id: WC-5 Data File: 6M40495.D Analysis Date: 04/22/09 18:30 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachioroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS VOLATILE REPORT

Sample Number: AC43958-014(T) Client Id: WC-6 Data File: 3M62153.D Analysis Date: 04/27/09 10:18 Date Rec/Extracted: 04/13/09-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
75-35-4 1,1-Dichloroethene	0.0010	U	108-90-7 Chlorobenzene	0.0010	U
107-06-2 1,2-Dichloroethane	0.00050	U	67-66-3 Chloroform	0.0010	U
106-46-7 1,4-Dichlorobenzene	0.0010	U	127-18-4 Tetrachloroethene	0.0010	U
78-93-3 2-Butanone	0.0010	U	79-01-6 Trichloroethene	0.0010	U
71-43-2 Benzene	0.00050	U	75-01-4 Vinyl Chloride	0.0010	U
56-23-5 Carbon Tetrachloride	0.0010	U			

Worksheet #: 116127

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: WMB4111 Client Id: Data File: 5M50012.D Analysis Date: 04/17/09 13:04 Date Rec/Extracted: NA-04/17/09

7

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0020	U	87-68-3 Hexachlorobutadiene	0.0020	U
88-06-2 2,4,6-Trichlorophenol	0.0020	U	67-72-1 Hexachloroethane	0.0020	U
121-14-2 2,4-Dinitrotoluene	0.0020	U	98-95-3 Nitrobenzene	0.0020	U
95-48-7 2-Methylphenol	0.0020	U	87-86-5 Pentachlorophenol	0.010	U
106-44-5 3&4-Methylphenol	0.0020	U	110-86-1 Pyridine	0.0020	U
118-74-1 Hexachlorobenzene	0.0020	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: WMB4112 Client Id: Data File: 7M40116.D Analysis Date: 04/20/09 15:35 Date Rec/Extracted: NA-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0020	U	87-68-3 Hexachlorobutadiene	0.0020	U
88-06-2 2,4,6-Trichlorophenol	0.0020	U	67-72-1 Hexachloroethane	0.0020	U
121-14-2 2,4-Dinitrotoluene	0.0020	U	98-95-3 Nitrobenzene	0.0020	U
95-48-7 2-Methylphenol	0.0020	U	87-86-5 Pentachlorophenol	0.010	U
106-44-5 3&4-Methylphenol	0.0020	U	110-86-1 Pyridine	0.010	U
118-74-1 Hexachlorobenzene	0.0020	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS SEMIVOLATILE REPORT

Sample Number: EF-1 V-64004(R) Client Id: Data File: 5M50051.D Analysis Date: 04/20/09 11:26 Date Rec/Extracted: NA-04/17/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	υ	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	υ	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	υ	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	υ	110-86-1 Pyridine	0.0080	U
118-74-1 Hexachlorobenzene	0.0080	υ			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: AC43958-009(T) Client Id: WC-1 Data File: 7M40117.D Analysis Date: 04/20/09 15:58 Date Rec/Extracted: 04/13/09-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-010(T) Client Id: WC-2 Data File: 7M40118.D Analysis Date: 04/20/09 16:21 Date Rec/Extracted: 04/13/09-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-011(T) Client Id: WC-3 Data File: 7M40119.D Analysis Date: 04/20/09 16:44 Date Rec/Extracted: 04/13/09-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-012(T) Client Id: WC-4 Data File: 5M50053.D Analysis Date: 04/20/09 12:11 Date Rec/Extracted: 04/13/09-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compoun	d RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorob	outadiene 0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroe	ethane 0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzen	e 0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachloro	phenol 0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.0080	U
118-74-1 Hexachlorobenzene	0.0080	υ			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-013(T) Client Id: WC-5 Data File: 7M40120.D Analysis Date: 04/20/09 17:07 Date Rec/Extracted: 04/13/09-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC43958-014(T) Client Id: WC-6 Data File: 7M40121.D Analysis Date: 04/20/09 17:29 Date Rec/Extracted: 04/13/09-04/19/09 Column: DB-5MS 30M 0.250mm ID 0.25um film Method: EPA 8270C Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
95-95-4 2,4,5-Trichlorophenol	0.0080	U	87-68-3 Hexachlorobutadiene	0.0080	U
88-06-2 2,4,6-Trichlorophenol	0.0080	U	67-72-1 Hexachloroethane	0.0080	U
121-14-2 2,4-Dinitrotoluene	0.0080	U	98-95-3 Nitrobenzene	0.0080	U
95-48-7 2-Methylphenol	0.0080	U	87-86-5 Pentachlorophenol	0.040	U
106-44-5 3&4-Methylphenol	0.0080	U	110-86-1 Pyridine	0.040	U
118-74-1 Hexachlorobenzene	0.0080	U			

Worksheet #: 115692

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument. **R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: WMB3536MeClient Id:MData File: 5G21559.DInitiaAnalysis Date: 04/16/09 13:23FinaDate Rec/Extracted: NA-04/16/09DiluColumn: DB-17/1701P 30M 0.32mm ID 0.25um filmS

Method: EPA 8081A Matrix: Aqueous Initial Vol: 1000ml Final Vol: 5ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.00010	U	1024-57-3 Heptachlor Epoxide	0.000010	U
72-20-8 Endrin	0.000010	U	72-43-5 Methoxychlor	0.000010	U
58-89-9 gamma-BHC	0.000010	U	8001-35-2 Toxaphene	0.00025	U
76-44-8 Heptachlor	0.000010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. F - Indicates the analyte concentration exceeds the calibration range of

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: EF-1 V-64004 Client Id: Data File: 5G21591.D Analysis Date: 04/17/09 10:09 Date Rec/Extracted: NA-04/16/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8081A Matrix: Aqueous Initial Vol: 100ml Final Vol: 5ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

the instrument.

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

Sample Number: WMB3539MethClient Id:MaData File: 6G13976.DInitialAnalysis Date: 04/21/09 07:34FinalDate Rec/Extracted: NA-04/20/09DiluColumn: DB-17/1701P 30M 0.32mm ID 0.25um filmSo

Method: EPA 8081A Matrix: Aqueous Initial Vol: 1000ml Final Vol: 5ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.00010	υ	1024-57-3 Heptachlor Epoxide	0.000010	U
72-20-8 Endrin	0.000010	U	72-43-5 Methoxychlor	0.000010	U
58-89-9 gamma-BHC	0.000010	U	8001-35-2 Toxaphene	0.00025	U
76-44-8 Heptachlor	0.000010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-009(T)	Method: EPA 8081A
Client Id: WC-1	Matrix: Aqueous
Data File: 6G13982.D	Initial Vol: 100ml
Analysis Date: 04/21/09 09:06	Final Vol: 5ml
Date Rec/Extracted: 04/13/09-04/20/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of R - Retention Time Out
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

the instrument.

Sample Number: AC43958-010(T)	Method: EPA 8081A
Client Id: WC-2	Matrix: Aqueous
Data File: 6G13983.D	Initial Vol: 100ml
Analysis Date: 04/21/09 09:21	Final Vol: 5ml
Date Rec/Extracted: 04/13/09-04/20/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.
Sample Number: AC43958-011(T)	Method: EPA 8081A
Client Id: WC-3	Matrix: Aqueous
Data File: 6G13984.D	Initial Vol: 100ml
Analysis Date: 04/21/09 09:36	Final Vol: 5ml
Date Rec/Extracted: 04/13/09-04/20/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-012(T)	Method: EPA 8081A
Client Id: WC-4	Matrix: Aqueous
Data File: 5G21633.D	Initial Vol: 100ml
Analysis Date: 04/21/09 08:46	Final Vol: 5ml
Date Rec/Extracted: 04/13/09-04/20/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

the instrument.

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

Sample Number: AC43958-013(T)	Method: EPA 8081A
Client Id: WC-5	Matrix: Aqueous
Data File: 5G21634.D	Initial Vol: 100ml
Analysis Date: 04/21/09 09:04	Final Vol: 5ml
Date Rec/Extracted: 04/13/09-04/20/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	U	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	U	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-014(T)	Method: EPA 8081A
Client Id: WC-6	Matrix: Aqueous
Data File: 5G21635.D	Initial Vol: 100ml
Analysis Date: 04/21/09 09:22	Final Vol: 5ml
Date Rec/Extracted: 04/13/09-04/20/09	Dilution: 1
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
57-74-9 Chlordane	0.0010	υ	1024-57-3 Heptachlor Epoxide	0.00010	U
72-20-8 Endrin	0.00010	υ	72-43-5 Methoxychlor	0.00010	U
58-89-9 gamma-BHC	0.00010	U	8001-35-2 Toxaphene	0.0025	U
76-44-8 Heptachlor	0.00010	U			

Worksheet #: 115537

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: WMB3537 M Client Id: Data File: 3G45143.D Init Analysis Date: 04/16/09 19:28 Fir Date Rec/Extracted: NA-04/16/09 D Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8151A Matrix: Aqueous Initial Vol: 1000ml Final Vol: 10ml Dilution: 1 Solids: 0

Units:	mg/L
--------	------

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.00020	U	93-72-1 Silvex	0.00020	U

Worksheet #: 115796

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Sample Number: EF-1 V-64004	Method: EPA 8151A
Client Id:	Matrix: Aqueous
Data File: 3G45150.D	Initial Vol: 100ml
Analysis Date: 04/16/09 21:24	Final Vol: 10ml
Date Rec/Extracted: NA-04/16/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units:	mg/L
--------	------

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U

Worksheet #: 115796

0 Total Target Concentration

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: WMB3540 Client Id: Data File: 3G45218.D Analysis Date: 04/22/09 09:20 Date Rec/Extracted: NA-04/21/09 Column: DB-17/1701P 30M 0.32mm ID 0.25um film Method: EPA 8151A Matrix: Aqueous Initial Vol: 1000ml Final Vol: 10ml Dilution: 1 Solids: 0

Units: mg/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.00020	U	93-72-1 Silvex	0.00020	U

Worksheet #: 115796

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-009(T)	Method: EPA 8151A
Client Id: WC-1	Matrix: Aqueous
Data File: 3G45229.D	Initial Vol: 100ml
Analysis Date: 04/22/09 12:23	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/21/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

		Units: n	ng/L				
Cas # Compound	RL	Conc	Cas #	Compound	RL	Conc	
94-75-7 2,4-D	0.0020	U	93-72-1	Silvex	0.0020	U	

Worksheet #: 115796

the instrument.

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of

Sample Number: AC43958-010(T)	Method: EPA 8151A	
Client Id: WC-2	Matrix: Aqueous	
Data File: 3G45230.D	Initial Vol: 100ml	
Analysis Date: 04/22/09 12:40	Final Vol: 10ml	
Date Rec/Extracted: 04/13/09-04/21/09	Dilution: 1	
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0	

		Units: r	ng/L		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U

Worksheet #: 115796

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-011(T)	Method: EPA 8151A
Client Id: WC-3	Matrix: Aqueous
Data File: 3G45231.D	Initial Vol: 100ml
Analysis Date: 04/22/09 12:57	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/21/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

		Units: r	ng/L			
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc	
94-75-7 2,4-D	0.0020	υ	93-72-1 Silvex	0.0020	U	

Worksheet #: 115796

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B_{-} Indicates the analyte was found in the blank as well as in t

B - Indicates the analyte was found in the blank as well as in the sample. **E** - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-012(T)	Method: EPA 8151A
Client Id: WC-4	Matrix: Aqueous
Data File: 3G45232.D	Initial Vol: 100ml
Analysis Date: 04/22/09 13:14	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/21/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

		Units: r	ng/L		
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U

Worksheet #: 115796

0 Total Target Concentration

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-013(T)	Method: EPA 8151A	
Client Id: WC-5	Matrix: Aqueous	
Data File: 3G45233.D	Initial Vol: 100ml	
Analysis Date: 04/22/09 13:30	Final Vol: 10ml	
Date Rec/Extracted: 04/13/09-04/21/09	Dilution: 1	
Column:DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0	

		Units: r	ng/L			
Cas # Compound	RL	Conc	Cas # Compound	RL	Conc	_
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U	

Worksheet #: 115796

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Number: AC43958-014(T)	Method: EPA 8151A
Client Id: WC-6	Matrix: Aqueous
Data File: 3G45234.D	Initial Vol: 100ml
Analysis Date: 04/22/09 13:47	Final Vol: 10ml
Date Rec/Extracted: 04/13/09-04/21/09	Dilution: 1
Column: DB-17/1701P 30M 0.32mm ID 0.25um film	Solids: 0

Units:	ma/L
Units.	IIIQ/L

Cas # Compound	RL	Conc	Cas # Compound	RL	Conc
94-75-7 2,4-D	0.0020	U	93-72-1 Silvex	0.0020	U

Worksheet #: 115796

Total Target Concentration 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Sample Client Mat Lev	ID: AC43958-009 Id: WC-1 rix: TCLP vel: LOW	% Date	Solid: 0 Units: MG/L e Rec: 4/14/2	0 Lab Name: Veritech MG/L Lab Code: 4/14/2009 Contract:		ech	Nras No: Sdg No: Case No:		D: D: D:	
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-39-3	Barium	0.25	0.32	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	23	Р	PÉICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7439-92-1	Lead	0.15	0.26	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	19	cv	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	23	Р	PEICP2

Comments:

Flag Codes:

Sample Client Mat Lev	ID: AC43958-010 Id: WC-2 rix: TCLP vel: LOW	% Date	Solid: 0 Units: MG/L ⊧ Rec: 4/14/2	009	Lab Na Lab Co Contr	me: Verite ode: act:	ch	C	Iras No Sdg No ase No);););
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	М	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-39-3	Barium	0.25	0.34	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7439-92 -1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	20	CV	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	24	Р	PEICP2

Comments:

Flag Codes:

Sample Client Mat Lev	ID: AC43958-011 Id: WC-3 rix: TCLP vel: LOW	% Date	Solid: 0 Units: MG/L Rec: 4/14/20	Lab Name: Veritech G/L Lab Code: 14/2009 Contract:		ech	Nras No: Sdg No: Case No:		p: p: p:	
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	M	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-39-3	Barium	0.25	0.60	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7439-92-1	Lead	0.15	1.2	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	23	cv	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	25	Р	PEICP2

Comments:

Flag Codes:

Sample Client Mat Lev	ID: AC43958-012 Id: WC-4 rix: TCLP /el: LOW	% Date	Solid: 0 Units: MG/L Rec: 4/14/2	009	Lab Na Lab Co Contr	ime: Verite ode: ract:	ech	n Nras No: Sdg No: Case No:		D: D: D:
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-39-3	Barium	0.25	0.33	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	26	Р	PEICP2

7439-97-6 0.00070 Mercury ND 1 04/20/09 10132 H10132T 24 CV HGCV2 7440-02-0 T10132A2 26 Ρ Nickel 0.20 ND 1 04/17/09 10132 PEICP2 7782-49-2 Selenium T10132A2 26 0.20 ND 1 04/17/09 10132 Ρ PEICP2 7440-22-4 Silver 0.050 ND 1 04/17/09 T10132A2 26 PEICP2 10132 Ρ

Comments:

Flag Codes:

Sample Client Mat Lev	ID: AC43958-013 Id: WC-5 rix: TCLP vel: LOW	% s L Date	Solid: 0 Jnits: MG/L Rec: 4/14/20	Lab Name: Veritech i/L Lab Code: 4/2009 Contract:		ch	Nras No: Sdg No: Case No:		D: D: D:	
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-39-3	Barium	0.25	0.39	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	25	cv	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	31	Р	PEICP2

Comments:

Flag Codes:

Sample Client Mat Lev	ID: AC43958-014 Id: WC-6 rix: TCLP vel: LOW	% Date	Solid: 0 Units: MG/L Rec: 4/14/20	009	Lab Na Lab Co Contr	me: Verite ode: act:	ch	C	Iras No Sdg No ase No	o: o: o:
Cas No.	Analyte	RL	Conc	Dil Fact	Analysis Date:	Prep Batch	File:	Seq Num:	м	Instr
7440-38-2	Arsenic	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-39-3	Barium	0.25	0.34	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-43-9	Cadmium	0.050	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-47-3	Chromium	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7439-92-1	Lead	0.15	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7439-97-6	Mercury	0.00070	ND	1	04/20/09	10132	H10132T	26	cv	HGCV2
7440-02-0	Nickel	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7782-49-2	Selenium	0.20	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2
7440-22-4	Silver	0.050	ND	1	04/17/09	10132	T10132A2	32	Р	PEICP2

Comments:

Flag Codes:

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/17/09 Data File: T10132A2 Prep Batch: 10132 Reporting Limits Used: TCLP,6010B(ICP)/7470A,7471A(Hg) Instrument: PEICP2 Units: All units in ppm except Hg and icp-ms in ppb Project Number: 9041403

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

	ICB V-62945-8	CCB-18	CCB-30	CCB-38	MB 10132 (1)-	EF-V-64004-34	
Analyte					11		
Arsenic	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	
Barium	.25 U	.25 U	.25 U	.25 U	.25 U	.25 U	
Cadmium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	
Chromium	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	
Copper	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	
Lead	.15 U	.15 U	.15 U	.15 U	.15 U	.15U	
Nickel	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	
Selenium	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	
Silver	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	
Zinc	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/20/09	Lah Name: Veritech
Data File: H10132T	Lab Code:
Prep Batch: 10132	Cantracti
Reporting Limits Used: TCLP,6010B(ICP)/7470A,7471A(Hg)	
Instrument: HGCV2	Nras No:
Units: All units in ppm except Hg and icp-ms in ppb	Sdg No:
Project Number: 9041403	Case No:

Analyte	ICB-10	CCB-22	CCB-30	MB 10132 (1)- 11	EF-V-64004-28		
Mercury	.7 U	.7 U	.7 U	.7 U	.7 U		

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pressu	al Final tre Pressure	Ext. Fluid	Wt./Vol. Of	Start Date	Start Time	Finish Date	Finish Time	Ext. Type*	Analyst (s)	Transfer To**	Transfer To**	Comments	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		64326	Sample	141									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70	0 ll		JK/ Scont	the the	with	4-22	(°;0))-	SW	P			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		18	$\overline{\boldsymbol{\lambda}}$	~				_			-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-11-	18			-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-J	18			4			->	~>	->	\rightarrow			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	81 0	661336 EFIV-	Śooml	42-2	11:00	1.2. h	S;00	۴	66				
[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2		14		2595/1							P			
		- % /												
		18												
		91	v										~	
		Q1												
		77			· · · ·									
		9/												
		[1/												
9	0	91							_					
		9	_					Ţ						

ZERO HEADSPACE EXTRACTION- SAMPLE ENTRY

,

Environte Constanting

]

,

]

記述なる法語

Sale And

95 **810000**

Starting Date:	:	04-,	15-21	D I	Ending	g Date:		04-	16.	2009	Aci (if a	i d L e any)	ot #_	
ample #	pН	pH in HCL	pH Prior to Ext.	Final pH	Ext. Fluid	Wt./V of Sar	/ol n,ple	Sta Tin	art ne	Finish Time	Ana (s	lyst s)	Ext. Type	Comments
13977-009	6.93	j.45	489	4.94	EF-1 V-64004	1009	2L	13:	45	09:10	0	A	T	
43985-06	5.78	1.45	4.85	4.91	1	1509	3L					1	1	
13984-001	7.65	1.62	485	5.10		1009	2L	-						
13958-009	勞	A 44	4:86	4.98		1509	13L	-						
3958-010	9.26	1.47	4.87	5.11										
43958-011	9.25	1.48	4.87	5.08										
+3958-012	8.97	1.47	4.85	5.07	,									
43958-013	8.76	1.45	4.85	5.03										
+3958-014	9.37	1.47	4.87	5.60										
43962-001	6.78	1.51	4.89	4.95		189	2/12	-						
EF-1 V-64004	-		4.88	4.88		31								
,														
												· · · ·	r ç	
														
·								-						
· · · · · · · · · · · · · · · · · · ·														

and the second

e n test

R

- 19

A STEN

0196